Revert the change of 2003-07-29 as GTK+ 2.2 is not required anymore.
[emacs.git] / src / alloc.c
blob7f05cf77937ee00bd8b7e050c8634eb0371a1484
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 86, 88, 93, 94, 95, 97, 98, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
30 /* Note that this declares bzero on OSF/1. How dumb. */
32 #include <signal.h>
34 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
35 memory. Can do this only if using gmalloc.c. */
37 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
38 #undef GC_MALLOC_CHECK
39 #endif
41 /* This file is part of the core Lisp implementation, and thus must
42 deal with the real data structures. If the Lisp implementation is
43 replaced, this file likely will not be used. */
45 #undef HIDE_LISP_IMPLEMENTATION
46 #include "lisp.h"
47 #include "process.h"
48 #include "intervals.h"
49 #include "puresize.h"
50 #include "buffer.h"
51 #include "window.h"
52 #include "keyboard.h"
53 #include "frame.h"
54 #include "blockinput.h"
55 #include "charset.h"
56 #include "syssignal.h"
57 #include <setjmp.h>
59 #ifdef HAVE_UNISTD_H
60 #include <unistd.h>
61 #else
62 extern POINTER_TYPE *sbrk ();
63 #endif
65 #ifdef DOUG_LEA_MALLOC
67 #include <malloc.h>
68 /* malloc.h #defines this as size_t, at least in glibc2. */
69 #ifndef __malloc_size_t
70 #define __malloc_size_t int
71 #endif
73 /* Specify maximum number of areas to mmap. It would be nice to use a
74 value that explicitly means "no limit". */
76 #define MMAP_MAX_AREAS 100000000
78 #else /* not DOUG_LEA_MALLOC */
80 /* The following come from gmalloc.c. */
82 #define __malloc_size_t size_t
83 extern __malloc_size_t _bytes_used;
84 extern __malloc_size_t __malloc_extra_blocks;
86 #endif /* not DOUG_LEA_MALLOC */
88 /* Value of _bytes_used, when spare_memory was freed. */
90 static __malloc_size_t bytes_used_when_full;
92 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
93 to a struct Lisp_String. */
95 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
96 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
97 #define STRING_MARKED_P(S) ((S)->size & ARRAY_MARK_FLAG)
99 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
100 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
101 #define VECTOR_MARKED_P(V) ((V)->size & ARRAY_MARK_FLAG)
103 /* Value is the number of bytes/chars of S, a pointer to a struct
104 Lisp_String. This must be used instead of STRING_BYTES (S) or
105 S->size during GC, because S->size contains the mark bit for
106 strings. */
108 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
109 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
111 /* Number of bytes of consing done since the last gc. */
113 int consing_since_gc;
115 /* Count the amount of consing of various sorts of space. */
117 EMACS_INT cons_cells_consed;
118 EMACS_INT floats_consed;
119 EMACS_INT vector_cells_consed;
120 EMACS_INT symbols_consed;
121 EMACS_INT string_chars_consed;
122 EMACS_INT misc_objects_consed;
123 EMACS_INT intervals_consed;
124 EMACS_INT strings_consed;
126 /* Number of bytes of consing since GC before another GC should be done. */
128 EMACS_INT gc_cons_threshold;
130 /* Nonzero during GC. */
132 int gc_in_progress;
134 /* Nonzero means abort if try to GC.
135 This is for code which is written on the assumption that
136 no GC will happen, so as to verify that assumption. */
138 int abort_on_gc;
140 /* Nonzero means display messages at beginning and end of GC. */
142 int garbage_collection_messages;
144 #ifndef VIRT_ADDR_VARIES
145 extern
146 #endif /* VIRT_ADDR_VARIES */
147 int malloc_sbrk_used;
149 #ifndef VIRT_ADDR_VARIES
150 extern
151 #endif /* VIRT_ADDR_VARIES */
152 int malloc_sbrk_unused;
154 /* Two limits controlling how much undo information to keep. */
156 EMACS_INT undo_limit;
157 EMACS_INT undo_strong_limit;
159 /* Number of live and free conses etc. */
161 static int total_conses, total_markers, total_symbols, total_vector_size;
162 static int total_free_conses, total_free_markers, total_free_symbols;
163 static int total_free_floats, total_floats;
165 /* Points to memory space allocated as "spare", to be freed if we run
166 out of memory. */
168 static char *spare_memory;
170 /* Amount of spare memory to keep in reserve. */
172 #define SPARE_MEMORY (1 << 14)
174 /* Number of extra blocks malloc should get when it needs more core. */
176 static int malloc_hysteresis;
178 /* Non-nil means defun should do purecopy on the function definition. */
180 Lisp_Object Vpurify_flag;
182 /* Non-nil means we are handling a memory-full error. */
184 Lisp_Object Vmemory_full;
186 #ifndef HAVE_SHM
188 /* Force it into data space! Initialize it to a nonzero value;
189 otherwise some compilers put it into BSS. */
191 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
192 #define PUREBEG (char *) pure
194 #else /* HAVE_SHM */
196 #define pure PURE_SEG_BITS /* Use shared memory segment */
197 #define PUREBEG (char *)PURE_SEG_BITS
199 #endif /* HAVE_SHM */
201 /* Pointer to the pure area, and its size. */
203 static char *purebeg;
204 static size_t pure_size;
206 /* Number of bytes of pure storage used before pure storage overflowed.
207 If this is non-zero, this implies that an overflow occurred. */
209 static size_t pure_bytes_used_before_overflow;
211 /* Value is non-zero if P points into pure space. */
213 #define PURE_POINTER_P(P) \
214 (((PNTR_COMPARISON_TYPE) (P) \
215 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
216 && ((PNTR_COMPARISON_TYPE) (P) \
217 >= (PNTR_COMPARISON_TYPE) purebeg))
219 /* Index in pure at which next pure object will be allocated.. */
221 EMACS_INT pure_bytes_used;
223 /* If nonzero, this is a warning delivered by malloc and not yet
224 displayed. */
226 char *pending_malloc_warning;
228 /* Pre-computed signal argument for use when memory is exhausted. */
230 Lisp_Object Vmemory_signal_data;
232 /* Maximum amount of C stack to save when a GC happens. */
234 #ifndef MAX_SAVE_STACK
235 #define MAX_SAVE_STACK 16000
236 #endif
238 /* Buffer in which we save a copy of the C stack at each GC. */
240 char *stack_copy;
241 int stack_copy_size;
243 /* Non-zero means ignore malloc warnings. Set during initialization.
244 Currently not used. */
246 int ignore_warnings;
248 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
250 /* Hook run after GC has finished. */
252 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
254 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
255 EMACS_INT gcs_done; /* accumulated GCs */
257 static void mark_buffer P_ ((Lisp_Object));
258 extern void mark_kboards P_ ((void));
259 static void gc_sweep P_ ((void));
260 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
261 static void mark_face_cache P_ ((struct face_cache *));
263 #ifdef HAVE_WINDOW_SYSTEM
264 static void mark_image P_ ((struct image *));
265 static void mark_image_cache P_ ((struct frame *));
266 #endif /* HAVE_WINDOW_SYSTEM */
268 static struct Lisp_String *allocate_string P_ ((void));
269 static void compact_small_strings P_ ((void));
270 static void free_large_strings P_ ((void));
271 static void sweep_strings P_ ((void));
273 extern int message_enable_multibyte;
275 /* When scanning the C stack for live Lisp objects, Emacs keeps track
276 of what memory allocated via lisp_malloc is intended for what
277 purpose. This enumeration specifies the type of memory. */
279 enum mem_type
281 MEM_TYPE_NON_LISP,
282 MEM_TYPE_BUFFER,
283 MEM_TYPE_CONS,
284 MEM_TYPE_STRING,
285 MEM_TYPE_MISC,
286 MEM_TYPE_SYMBOL,
287 MEM_TYPE_FLOAT,
288 /* Keep the following vector-like types together, with
289 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
290 first. Or change the code of live_vector_p, for instance. */
291 MEM_TYPE_VECTOR,
292 MEM_TYPE_PROCESS,
293 MEM_TYPE_HASH_TABLE,
294 MEM_TYPE_FRAME,
295 MEM_TYPE_WINDOW
298 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
300 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
301 #include <stdio.h> /* For fprintf. */
302 #endif
304 /* A unique object in pure space used to make some Lisp objects
305 on free lists recognizable in O(1). */
307 Lisp_Object Vdead;
309 #ifdef GC_MALLOC_CHECK
311 enum mem_type allocated_mem_type;
312 int dont_register_blocks;
314 #endif /* GC_MALLOC_CHECK */
316 /* A node in the red-black tree describing allocated memory containing
317 Lisp data. Each such block is recorded with its start and end
318 address when it is allocated, and removed from the tree when it
319 is freed.
321 A red-black tree is a balanced binary tree with the following
322 properties:
324 1. Every node is either red or black.
325 2. Every leaf is black.
326 3. If a node is red, then both of its children are black.
327 4. Every simple path from a node to a descendant leaf contains
328 the same number of black nodes.
329 5. The root is always black.
331 When nodes are inserted into the tree, or deleted from the tree,
332 the tree is "fixed" so that these properties are always true.
334 A red-black tree with N internal nodes has height at most 2
335 log(N+1). Searches, insertions and deletions are done in O(log N).
336 Please see a text book about data structures for a detailed
337 description of red-black trees. Any book worth its salt should
338 describe them. */
340 struct mem_node
342 /* Children of this node. These pointers are never NULL. When there
343 is no child, the value is MEM_NIL, which points to a dummy node. */
344 struct mem_node *left, *right;
346 /* The parent of this node. In the root node, this is NULL. */
347 struct mem_node *parent;
349 /* Start and end of allocated region. */
350 void *start, *end;
352 /* Node color. */
353 enum {MEM_BLACK, MEM_RED} color;
355 /* Memory type. */
356 enum mem_type type;
359 /* Base address of stack. Set in main. */
361 Lisp_Object *stack_base;
363 /* Root of the tree describing allocated Lisp memory. */
365 static struct mem_node *mem_root;
367 /* Lowest and highest known address in the heap. */
369 static void *min_heap_address, *max_heap_address;
371 /* Sentinel node of the tree. */
373 static struct mem_node mem_z;
374 #define MEM_NIL &mem_z
376 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
377 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
378 static void lisp_free P_ ((POINTER_TYPE *));
379 static void mark_stack P_ ((void));
380 static int live_vector_p P_ ((struct mem_node *, void *));
381 static int live_buffer_p P_ ((struct mem_node *, void *));
382 static int live_string_p P_ ((struct mem_node *, void *));
383 static int live_cons_p P_ ((struct mem_node *, void *));
384 static int live_symbol_p P_ ((struct mem_node *, void *));
385 static int live_float_p P_ ((struct mem_node *, void *));
386 static int live_misc_p P_ ((struct mem_node *, void *));
387 static void mark_maybe_object P_ ((Lisp_Object));
388 static void mark_memory P_ ((void *, void *));
389 static void mem_init P_ ((void));
390 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
391 static void mem_insert_fixup P_ ((struct mem_node *));
392 static void mem_rotate_left P_ ((struct mem_node *));
393 static void mem_rotate_right P_ ((struct mem_node *));
394 static void mem_delete P_ ((struct mem_node *));
395 static void mem_delete_fixup P_ ((struct mem_node *));
396 static INLINE struct mem_node *mem_find P_ ((void *));
398 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
399 static void check_gcpros P_ ((void));
400 #endif
402 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
404 /* Recording what needs to be marked for gc. */
406 struct gcpro *gcprolist;
408 /* Addresses of staticpro'd variables. Initialize it to a nonzero
409 value; otherwise some compilers put it into BSS. */
411 #define NSTATICS 1280
412 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
414 /* Index of next unused slot in staticvec. */
416 int staticidx = 0;
418 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
421 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
422 ALIGNMENT must be a power of 2. */
424 #define ALIGN(ptr, ALIGNMENT) \
425 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
426 & ~((ALIGNMENT) - 1)))
430 /************************************************************************
431 Malloc
432 ************************************************************************/
434 /* Function malloc calls this if it finds we are near exhausting storage. */
436 void
437 malloc_warning (str)
438 char *str;
440 pending_malloc_warning = str;
444 /* Display an already-pending malloc warning. */
446 void
447 display_malloc_warning ()
449 call3 (intern ("display-warning"),
450 intern ("alloc"),
451 build_string (pending_malloc_warning),
452 intern ("emergency"));
453 pending_malloc_warning = 0;
457 #ifdef DOUG_LEA_MALLOC
458 # define BYTES_USED (mallinfo ().arena)
459 #else
460 # define BYTES_USED _bytes_used
461 #endif
464 /* Called if malloc returns zero. */
466 void
467 memory_full ()
469 Vmemory_full = Qt;
471 #ifndef SYSTEM_MALLOC
472 bytes_used_when_full = BYTES_USED;
473 #endif
475 /* The first time we get here, free the spare memory. */
476 if (spare_memory)
478 free (spare_memory);
479 spare_memory = 0;
482 /* This used to call error, but if we've run out of memory, we could
483 get infinite recursion trying to build the string. */
484 while (1)
485 Fsignal (Qnil, Vmemory_signal_data);
489 /* Called if we can't allocate relocatable space for a buffer. */
491 void
492 buffer_memory_full ()
494 /* If buffers use the relocating allocator, no need to free
495 spare_memory, because we may have plenty of malloc space left
496 that we could get, and if we don't, the malloc that fails will
497 itself cause spare_memory to be freed. If buffers don't use the
498 relocating allocator, treat this like any other failing
499 malloc. */
501 #ifndef REL_ALLOC
502 memory_full ();
503 #endif
505 Vmemory_full = Qt;
507 /* This used to call error, but if we've run out of memory, we could
508 get infinite recursion trying to build the string. */
509 while (1)
510 Fsignal (Qnil, Vmemory_signal_data);
514 /* Like malloc but check for no memory and block interrupt input.. */
516 POINTER_TYPE *
517 xmalloc (size)
518 size_t size;
520 register POINTER_TYPE *val;
522 BLOCK_INPUT;
523 val = (POINTER_TYPE *) malloc (size);
524 UNBLOCK_INPUT;
526 if (!val && size)
527 memory_full ();
528 return val;
532 /* Like realloc but check for no memory and block interrupt input.. */
534 POINTER_TYPE *
535 xrealloc (block, size)
536 POINTER_TYPE *block;
537 size_t size;
539 register POINTER_TYPE *val;
541 BLOCK_INPUT;
542 /* We must call malloc explicitly when BLOCK is 0, since some
543 reallocs don't do this. */
544 if (! block)
545 val = (POINTER_TYPE *) malloc (size);
546 else
547 val = (POINTER_TYPE *) realloc (block, size);
548 UNBLOCK_INPUT;
550 if (!val && size) memory_full ();
551 return val;
555 /* Like free but block interrupt input.. */
557 void
558 xfree (block)
559 POINTER_TYPE *block;
561 BLOCK_INPUT;
562 free (block);
563 UNBLOCK_INPUT;
567 /* Like strdup, but uses xmalloc. */
569 char *
570 xstrdup (s)
571 const char *s;
573 size_t len = strlen (s) + 1;
574 char *p = (char *) xmalloc (len);
575 bcopy (s, p, len);
576 return p;
580 /* Like malloc but used for allocating Lisp data. NBYTES is the
581 number of bytes to allocate, TYPE describes the intended use of the
582 allcated memory block (for strings, for conses, ...). */
584 static void *lisp_malloc_loser;
586 static POINTER_TYPE *
587 lisp_malloc (nbytes, type)
588 size_t nbytes;
589 enum mem_type type;
591 register void *val;
593 BLOCK_INPUT;
595 #ifdef GC_MALLOC_CHECK
596 allocated_mem_type = type;
597 #endif
599 val = (void *) malloc (nbytes);
601 /* If the memory just allocated cannot be addressed thru a Lisp
602 object's pointer, and it needs to be,
603 that's equivalent to running out of memory. */
604 if (val && type != MEM_TYPE_NON_LISP)
606 Lisp_Object tem;
607 XSETCONS (tem, (char *) val + nbytes - 1);
608 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
610 lisp_malloc_loser = val;
611 free (val);
612 val = 0;
616 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
617 if (val && type != MEM_TYPE_NON_LISP)
618 mem_insert (val, (char *) val + nbytes, type);
619 #endif
621 UNBLOCK_INPUT;
622 if (!val && nbytes)
623 memory_full ();
624 return val;
627 /* Free BLOCK. This must be called to free memory allocated with a
628 call to lisp_malloc. */
630 static void
631 lisp_free (block)
632 POINTER_TYPE *block;
634 BLOCK_INPUT;
635 free (block);
636 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
637 mem_delete (mem_find (block));
638 #endif
639 UNBLOCK_INPUT;
642 /* Allocation of aligned blocks of memory to store Lisp data. */
643 /* The entry point is lisp_align_malloc which returns blocks of at most */
644 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
647 /* BLOCK_ALIGN has to be a power of 2. */
648 #define BLOCK_ALIGN (1 << 10)
650 /* Padding to leave at the end of a malloc'd block. This is to give
651 malloc a chance to minimize the amount of memory wasted to alignment.
652 It should be tuned to the particular malloc library used.
653 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
654 posix_memalign on the other hand would ideally prefer a value of 4
655 because otherwise, there's 1020 bytes wasted between each ablocks.
656 But testing shows that those 1020 will most of the time be efficiently
657 used by malloc to place other objects, so a value of 0 is still preferable
658 unless you have a lot of cons&floats and virtually nothing else. */
659 #define BLOCK_PADDING 0
660 #define BLOCK_BYTES \
661 (BLOCK_ALIGN - sizeof (struct aligned_block *) - BLOCK_PADDING)
663 /* Internal data structures and constants. */
665 #define ABLOCKS_SIZE 16
667 /* An aligned block of memory. */
668 struct ablock
670 union
672 char payload[BLOCK_BYTES];
673 struct ablock *next_free;
674 } x;
675 /* `abase' is the aligned base of the ablocks. */
676 /* It is overloaded to hold the virtual `busy' field that counts
677 the number of used ablock in the parent ablocks.
678 The first ablock has the `busy' field, the others have the `abase'
679 field. To tell the difference, we assume that pointers will have
680 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
681 is used to tell whether the real base of the parent ablocks is `abase'
682 (if not, the word before the first ablock holds a pointer to the
683 real base). */
684 struct ablocks *abase;
685 /* The padding of all but the last ablock is unused. The padding of
686 the last ablock in an ablocks is not allocated. */
687 #if BLOCK_PADDING
688 char padding[BLOCK_PADDING];
689 #endif
692 /* A bunch of consecutive aligned blocks. */
693 struct ablocks
695 struct ablock blocks[ABLOCKS_SIZE];
698 /* Size of the block requested from malloc or memalign. */
699 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
701 #define ABLOCK_ABASE(block) \
702 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
703 ? (struct ablocks *)(block) \
704 : (block)->abase)
706 /* Virtual `busy' field. */
707 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
709 /* Pointer to the (not necessarily aligned) malloc block. */
710 #ifdef HAVE_POSIX_MEMALIGN
711 #define ABLOCKS_BASE(abase) (abase)
712 #else
713 #define ABLOCKS_BASE(abase) \
714 (1 & (int) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
715 #endif
717 /* The list of free ablock. */
718 static struct ablock *free_ablock;
720 /* Allocate an aligned block of nbytes.
721 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
722 smaller or equal to BLOCK_BYTES. */
723 static POINTER_TYPE *
724 lisp_align_malloc (nbytes, type)
725 size_t nbytes;
726 enum mem_type type;
728 void *base, *val;
729 struct ablocks *abase;
731 eassert (nbytes <= BLOCK_BYTES);
733 BLOCK_INPUT;
735 #ifdef GC_MALLOC_CHECK
736 allocated_mem_type = type;
737 #endif
739 if (!free_ablock)
741 int i, aligned;
743 #ifdef DOUG_LEA_MALLOC
744 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
745 because mapped region contents are not preserved in
746 a dumped Emacs. */
747 mallopt (M_MMAP_MAX, 0);
748 #endif
750 #ifdef HAVE_POSIX_MEMALIGN
752 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
753 abase = err ? (base = NULL) : base;
755 #else
756 base = malloc (ABLOCKS_BYTES);
757 abase = ALIGN (base, BLOCK_ALIGN);
758 #endif
760 aligned = (base == abase);
761 if (!aligned)
762 ((void**)abase)[-1] = base;
764 #ifdef DOUG_LEA_MALLOC
765 /* Back to a reasonable maximum of mmap'ed areas. */
766 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
767 #endif
769 /* Initialize the blocks and put them on the free list.
770 Is `base' was not properly aligned, we can't use the last block. */
771 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
773 abase->blocks[i].abase = abase;
774 abase->blocks[i].x.next_free = free_ablock;
775 free_ablock = &abase->blocks[i];
777 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
779 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
780 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
781 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
782 eassert (ABLOCKS_BASE (abase) == base);
783 eassert (aligned == (int)ABLOCKS_BUSY (abase));
786 abase = ABLOCK_ABASE (free_ablock);
787 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (int) ABLOCKS_BUSY (abase));
788 val = free_ablock;
789 free_ablock = free_ablock->x.next_free;
791 /* If the memory just allocated cannot be addressed thru a Lisp
792 object's pointer, and it needs to be,
793 that's equivalent to running out of memory. */
794 if (val && type != MEM_TYPE_NON_LISP)
796 Lisp_Object tem;
797 XSETCONS (tem, (char *) val + nbytes - 1);
798 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
800 lisp_malloc_loser = val;
801 free (val);
802 val = 0;
806 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
807 if (val && type != MEM_TYPE_NON_LISP)
808 mem_insert (val, (char *) val + nbytes, type);
809 #endif
811 UNBLOCK_INPUT;
812 if (!val && nbytes)
813 memory_full ();
815 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
816 return val;
819 static void
820 lisp_align_free (block)
821 POINTER_TYPE *block;
823 struct ablock *ablock = block;
824 struct ablocks *abase = ABLOCK_ABASE (ablock);
826 BLOCK_INPUT;
827 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
828 mem_delete (mem_find (block));
829 #endif
830 /* Put on free list. */
831 ablock->x.next_free = free_ablock;
832 free_ablock = ablock;
833 /* Update busy count. */
834 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (int) ABLOCKS_BUSY (abase));
836 if (2 > (int) ABLOCKS_BUSY (abase))
837 { /* All the blocks are free. */
838 int i = 0, aligned = (int) ABLOCKS_BUSY (abase);
839 struct ablock **tem = &free_ablock;
840 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
842 while (*tem)
844 if (*tem >= (struct ablock *) abase && *tem < atop)
846 i++;
847 *tem = (*tem)->x.next_free;
849 else
850 tem = &(*tem)->x.next_free;
852 eassert ((aligned & 1) == aligned);
853 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
854 free (ABLOCKS_BASE (abase));
856 UNBLOCK_INPUT;
859 /* Return a new buffer structure allocated from the heap with
860 a call to lisp_malloc. */
862 struct buffer *
863 allocate_buffer ()
865 struct buffer *b
866 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
867 MEM_TYPE_BUFFER);
868 return b;
872 /* Arranging to disable input signals while we're in malloc.
874 This only works with GNU malloc. To help out systems which can't
875 use GNU malloc, all the calls to malloc, realloc, and free
876 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
877 pairs; unfortunately, we have no idea what C library functions
878 might call malloc, so we can't really protect them unless you're
879 using GNU malloc. Fortunately, most of the major operating systems
880 can use GNU malloc. */
882 #ifndef SYSTEM_MALLOC
883 #ifndef DOUG_LEA_MALLOC
884 extern void * (*__malloc_hook) P_ ((size_t));
885 extern void * (*__realloc_hook) P_ ((void *, size_t));
886 extern void (*__free_hook) P_ ((void *));
887 /* Else declared in malloc.h, perhaps with an extra arg. */
888 #endif /* DOUG_LEA_MALLOC */
889 static void * (*old_malloc_hook) ();
890 static void * (*old_realloc_hook) ();
891 static void (*old_free_hook) ();
893 /* This function is used as the hook for free to call. */
895 static void
896 emacs_blocked_free (ptr)
897 void *ptr;
899 BLOCK_INPUT;
901 #ifdef GC_MALLOC_CHECK
902 if (ptr)
904 struct mem_node *m;
906 m = mem_find (ptr);
907 if (m == MEM_NIL || m->start != ptr)
909 fprintf (stderr,
910 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
911 abort ();
913 else
915 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
916 mem_delete (m);
919 #endif /* GC_MALLOC_CHECK */
921 __free_hook = old_free_hook;
922 free (ptr);
924 /* If we released our reserve (due to running out of memory),
925 and we have a fair amount free once again,
926 try to set aside another reserve in case we run out once more. */
927 if (spare_memory == 0
928 /* Verify there is enough space that even with the malloc
929 hysteresis this call won't run out again.
930 The code here is correct as long as SPARE_MEMORY
931 is substantially larger than the block size malloc uses. */
932 && (bytes_used_when_full
933 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
934 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
936 __free_hook = emacs_blocked_free;
937 UNBLOCK_INPUT;
941 /* If we released our reserve (due to running out of memory),
942 and we have a fair amount free once again,
943 try to set aside another reserve in case we run out once more.
945 This is called when a relocatable block is freed in ralloc.c. */
947 void
948 refill_memory_reserve ()
950 if (spare_memory == 0)
951 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
955 /* This function is the malloc hook that Emacs uses. */
957 static void *
958 emacs_blocked_malloc (size)
959 size_t size;
961 void *value;
963 BLOCK_INPUT;
964 __malloc_hook = old_malloc_hook;
965 #ifdef DOUG_LEA_MALLOC
966 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
967 #else
968 __malloc_extra_blocks = malloc_hysteresis;
969 #endif
971 value = (void *) malloc (size);
973 #ifdef GC_MALLOC_CHECK
975 struct mem_node *m = mem_find (value);
976 if (m != MEM_NIL)
978 fprintf (stderr, "Malloc returned %p which is already in use\n",
979 value);
980 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
981 m->start, m->end, (char *) m->end - (char *) m->start,
982 m->type);
983 abort ();
986 if (!dont_register_blocks)
988 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
989 allocated_mem_type = MEM_TYPE_NON_LISP;
992 #endif /* GC_MALLOC_CHECK */
994 __malloc_hook = emacs_blocked_malloc;
995 UNBLOCK_INPUT;
997 /* fprintf (stderr, "%p malloc\n", value); */
998 return value;
1002 /* This function is the realloc hook that Emacs uses. */
1004 static void *
1005 emacs_blocked_realloc (ptr, size)
1006 void *ptr;
1007 size_t size;
1009 void *value;
1011 BLOCK_INPUT;
1012 __realloc_hook = old_realloc_hook;
1014 #ifdef GC_MALLOC_CHECK
1015 if (ptr)
1017 struct mem_node *m = mem_find (ptr);
1018 if (m == MEM_NIL || m->start != ptr)
1020 fprintf (stderr,
1021 "Realloc of %p which wasn't allocated with malloc\n",
1022 ptr);
1023 abort ();
1026 mem_delete (m);
1029 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1031 /* Prevent malloc from registering blocks. */
1032 dont_register_blocks = 1;
1033 #endif /* GC_MALLOC_CHECK */
1035 value = (void *) realloc (ptr, size);
1037 #ifdef GC_MALLOC_CHECK
1038 dont_register_blocks = 0;
1041 struct mem_node *m = mem_find (value);
1042 if (m != MEM_NIL)
1044 fprintf (stderr, "Realloc returns memory that is already in use\n");
1045 abort ();
1048 /* Can't handle zero size regions in the red-black tree. */
1049 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1052 /* fprintf (stderr, "%p <- realloc\n", value); */
1053 #endif /* GC_MALLOC_CHECK */
1055 __realloc_hook = emacs_blocked_realloc;
1056 UNBLOCK_INPUT;
1058 return value;
1062 /* Called from main to set up malloc to use our hooks. */
1064 void
1065 uninterrupt_malloc ()
1067 if (__free_hook != emacs_blocked_free)
1068 old_free_hook = __free_hook;
1069 __free_hook = emacs_blocked_free;
1071 if (__malloc_hook != emacs_blocked_malloc)
1072 old_malloc_hook = __malloc_hook;
1073 __malloc_hook = emacs_blocked_malloc;
1075 if (__realloc_hook != emacs_blocked_realloc)
1076 old_realloc_hook = __realloc_hook;
1077 __realloc_hook = emacs_blocked_realloc;
1080 #endif /* not SYSTEM_MALLOC */
1084 /***********************************************************************
1085 Interval Allocation
1086 ***********************************************************************/
1088 /* Number of intervals allocated in an interval_block structure.
1089 The 1020 is 1024 minus malloc overhead. */
1091 #define INTERVAL_BLOCK_SIZE \
1092 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1094 /* Intervals are allocated in chunks in form of an interval_block
1095 structure. */
1097 struct interval_block
1099 struct interval_block *next;
1100 struct interval intervals[INTERVAL_BLOCK_SIZE];
1103 /* Current interval block. Its `next' pointer points to older
1104 blocks. */
1106 struct interval_block *interval_block;
1108 /* Index in interval_block above of the next unused interval
1109 structure. */
1111 static int interval_block_index;
1113 /* Number of free and live intervals. */
1115 static int total_free_intervals, total_intervals;
1117 /* List of free intervals. */
1119 INTERVAL interval_free_list;
1121 /* Total number of interval blocks now in use. */
1123 int n_interval_blocks;
1126 /* Initialize interval allocation. */
1128 static void
1129 init_intervals ()
1131 interval_block
1132 = (struct interval_block *) lisp_malloc (sizeof *interval_block,
1133 MEM_TYPE_NON_LISP);
1134 interval_block->next = 0;
1135 bzero ((char *) interval_block->intervals, sizeof interval_block->intervals);
1136 interval_block_index = 0;
1137 interval_free_list = 0;
1138 n_interval_blocks = 1;
1142 /* Return a new interval. */
1144 INTERVAL
1145 make_interval ()
1147 INTERVAL val;
1149 if (interval_free_list)
1151 val = interval_free_list;
1152 interval_free_list = INTERVAL_PARENT (interval_free_list);
1154 else
1156 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1158 register struct interval_block *newi;
1160 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1161 MEM_TYPE_NON_LISP);
1163 newi->next = interval_block;
1164 interval_block = newi;
1165 interval_block_index = 0;
1166 n_interval_blocks++;
1168 val = &interval_block->intervals[interval_block_index++];
1170 consing_since_gc += sizeof (struct interval);
1171 intervals_consed++;
1172 RESET_INTERVAL (val);
1173 val->gcmarkbit = 0;
1174 return val;
1178 /* Mark Lisp objects in interval I. */
1180 static void
1181 mark_interval (i, dummy)
1182 register INTERVAL i;
1183 Lisp_Object dummy;
1185 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1186 i->gcmarkbit = 1;
1187 mark_object (i->plist);
1191 /* Mark the interval tree rooted in TREE. Don't call this directly;
1192 use the macro MARK_INTERVAL_TREE instead. */
1194 static void
1195 mark_interval_tree (tree)
1196 register INTERVAL tree;
1198 /* No need to test if this tree has been marked already; this
1199 function is always called through the MARK_INTERVAL_TREE macro,
1200 which takes care of that. */
1202 traverse_intervals_noorder (tree, mark_interval, Qnil);
1206 /* Mark the interval tree rooted in I. */
1208 #define MARK_INTERVAL_TREE(i) \
1209 do { \
1210 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1211 mark_interval_tree (i); \
1212 } while (0)
1215 #define UNMARK_BALANCE_INTERVALS(i) \
1216 do { \
1217 if (! NULL_INTERVAL_P (i)) \
1218 (i) = balance_intervals (i); \
1219 } while (0)
1222 /* Number support. If NO_UNION_TYPE isn't in effect, we
1223 can't create number objects in macros. */
1224 #ifndef make_number
1225 Lisp_Object
1226 make_number (n)
1227 int n;
1229 Lisp_Object obj;
1230 obj.s.val = n;
1231 obj.s.type = Lisp_Int;
1232 return obj;
1234 #endif
1236 /***********************************************************************
1237 String Allocation
1238 ***********************************************************************/
1240 /* Lisp_Strings are allocated in string_block structures. When a new
1241 string_block is allocated, all the Lisp_Strings it contains are
1242 added to a free-list string_free_list. When a new Lisp_String is
1243 needed, it is taken from that list. During the sweep phase of GC,
1244 string_blocks that are entirely free are freed, except two which
1245 we keep.
1247 String data is allocated from sblock structures. Strings larger
1248 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1249 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1251 Sblocks consist internally of sdata structures, one for each
1252 Lisp_String. The sdata structure points to the Lisp_String it
1253 belongs to. The Lisp_String points back to the `u.data' member of
1254 its sdata structure.
1256 When a Lisp_String is freed during GC, it is put back on
1257 string_free_list, and its `data' member and its sdata's `string'
1258 pointer is set to null. The size of the string is recorded in the
1259 `u.nbytes' member of the sdata. So, sdata structures that are no
1260 longer used, can be easily recognized, and it's easy to compact the
1261 sblocks of small strings which we do in compact_small_strings. */
1263 /* Size in bytes of an sblock structure used for small strings. This
1264 is 8192 minus malloc overhead. */
1266 #define SBLOCK_SIZE 8188
1268 /* Strings larger than this are considered large strings. String data
1269 for large strings is allocated from individual sblocks. */
1271 #define LARGE_STRING_BYTES 1024
1273 /* Structure describing string memory sub-allocated from an sblock.
1274 This is where the contents of Lisp strings are stored. */
1276 struct sdata
1278 /* Back-pointer to the string this sdata belongs to. If null, this
1279 structure is free, and the NBYTES member of the union below
1280 contains the string's byte size (the same value that STRING_BYTES
1281 would return if STRING were non-null). If non-null, STRING_BYTES
1282 (STRING) is the size of the data, and DATA contains the string's
1283 contents. */
1284 struct Lisp_String *string;
1286 #ifdef GC_CHECK_STRING_BYTES
1288 EMACS_INT nbytes;
1289 unsigned char data[1];
1291 #define SDATA_NBYTES(S) (S)->nbytes
1292 #define SDATA_DATA(S) (S)->data
1294 #else /* not GC_CHECK_STRING_BYTES */
1296 union
1298 /* When STRING in non-null. */
1299 unsigned char data[1];
1301 /* When STRING is null. */
1302 EMACS_INT nbytes;
1303 } u;
1306 #define SDATA_NBYTES(S) (S)->u.nbytes
1307 #define SDATA_DATA(S) (S)->u.data
1309 #endif /* not GC_CHECK_STRING_BYTES */
1313 /* Structure describing a block of memory which is sub-allocated to
1314 obtain string data memory for strings. Blocks for small strings
1315 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1316 as large as needed. */
1318 struct sblock
1320 /* Next in list. */
1321 struct sblock *next;
1323 /* Pointer to the next free sdata block. This points past the end
1324 of the sblock if there isn't any space left in this block. */
1325 struct sdata *next_free;
1327 /* Start of data. */
1328 struct sdata first_data;
1331 /* Number of Lisp strings in a string_block structure. The 1020 is
1332 1024 minus malloc overhead. */
1334 #define STRING_BLOCK_SIZE \
1335 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1337 /* Structure describing a block from which Lisp_String structures
1338 are allocated. */
1340 struct string_block
1342 struct string_block *next;
1343 struct Lisp_String strings[STRING_BLOCK_SIZE];
1346 /* Head and tail of the list of sblock structures holding Lisp string
1347 data. We always allocate from current_sblock. The NEXT pointers
1348 in the sblock structures go from oldest_sblock to current_sblock. */
1350 static struct sblock *oldest_sblock, *current_sblock;
1352 /* List of sblocks for large strings. */
1354 static struct sblock *large_sblocks;
1356 /* List of string_block structures, and how many there are. */
1358 static struct string_block *string_blocks;
1359 static int n_string_blocks;
1361 /* Free-list of Lisp_Strings. */
1363 static struct Lisp_String *string_free_list;
1365 /* Number of live and free Lisp_Strings. */
1367 static int total_strings, total_free_strings;
1369 /* Number of bytes used by live strings. */
1371 static int total_string_size;
1373 /* Given a pointer to a Lisp_String S which is on the free-list
1374 string_free_list, return a pointer to its successor in the
1375 free-list. */
1377 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1379 /* Return a pointer to the sdata structure belonging to Lisp string S.
1380 S must be live, i.e. S->data must not be null. S->data is actually
1381 a pointer to the `u.data' member of its sdata structure; the
1382 structure starts at a constant offset in front of that. */
1384 #ifdef GC_CHECK_STRING_BYTES
1386 #define SDATA_OF_STRING(S) \
1387 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1388 - sizeof (EMACS_INT)))
1390 #else /* not GC_CHECK_STRING_BYTES */
1392 #define SDATA_OF_STRING(S) \
1393 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1395 #endif /* not GC_CHECK_STRING_BYTES */
1397 /* Value is the size of an sdata structure large enough to hold NBYTES
1398 bytes of string data. The value returned includes a terminating
1399 NUL byte, the size of the sdata structure, and padding. */
1401 #ifdef GC_CHECK_STRING_BYTES
1403 #define SDATA_SIZE(NBYTES) \
1404 ((sizeof (struct Lisp_String *) \
1405 + (NBYTES) + 1 \
1406 + sizeof (EMACS_INT) \
1407 + sizeof (EMACS_INT) - 1) \
1408 & ~(sizeof (EMACS_INT) - 1))
1410 #else /* not GC_CHECK_STRING_BYTES */
1412 #define SDATA_SIZE(NBYTES) \
1413 ((sizeof (struct Lisp_String *) \
1414 + (NBYTES) + 1 \
1415 + sizeof (EMACS_INT) - 1) \
1416 & ~(sizeof (EMACS_INT) - 1))
1418 #endif /* not GC_CHECK_STRING_BYTES */
1420 /* Initialize string allocation. Called from init_alloc_once. */
1422 void
1423 init_strings ()
1425 total_strings = total_free_strings = total_string_size = 0;
1426 oldest_sblock = current_sblock = large_sblocks = NULL;
1427 string_blocks = NULL;
1428 n_string_blocks = 0;
1429 string_free_list = NULL;
1433 #ifdef GC_CHECK_STRING_BYTES
1435 static int check_string_bytes_count;
1437 void check_string_bytes P_ ((int));
1438 void check_sblock P_ ((struct sblock *));
1440 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1443 /* Like GC_STRING_BYTES, but with debugging check. */
1446 string_bytes (s)
1447 struct Lisp_String *s;
1449 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1450 if (!PURE_POINTER_P (s)
1451 && s->data
1452 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1453 abort ();
1454 return nbytes;
1457 /* Check validity of Lisp strings' string_bytes member in B. */
1459 void
1460 check_sblock (b)
1461 struct sblock *b;
1463 struct sdata *from, *end, *from_end;
1465 end = b->next_free;
1467 for (from = &b->first_data; from < end; from = from_end)
1469 /* Compute the next FROM here because copying below may
1470 overwrite data we need to compute it. */
1471 int nbytes;
1473 /* Check that the string size recorded in the string is the
1474 same as the one recorded in the sdata structure. */
1475 if (from->string)
1476 CHECK_STRING_BYTES (from->string);
1478 if (from->string)
1479 nbytes = GC_STRING_BYTES (from->string);
1480 else
1481 nbytes = SDATA_NBYTES (from);
1483 nbytes = SDATA_SIZE (nbytes);
1484 from_end = (struct sdata *) ((char *) from + nbytes);
1489 /* Check validity of Lisp strings' string_bytes member. ALL_P
1490 non-zero means check all strings, otherwise check only most
1491 recently allocated strings. Used for hunting a bug. */
1493 void
1494 check_string_bytes (all_p)
1495 int all_p;
1497 if (all_p)
1499 struct sblock *b;
1501 for (b = large_sblocks; b; b = b->next)
1503 struct Lisp_String *s = b->first_data.string;
1504 if (s)
1505 CHECK_STRING_BYTES (s);
1508 for (b = oldest_sblock; b; b = b->next)
1509 check_sblock (b);
1511 else
1512 check_sblock (current_sblock);
1515 #endif /* GC_CHECK_STRING_BYTES */
1518 /* Return a new Lisp_String. */
1520 static struct Lisp_String *
1521 allocate_string ()
1523 struct Lisp_String *s;
1525 /* If the free-list is empty, allocate a new string_block, and
1526 add all the Lisp_Strings in it to the free-list. */
1527 if (string_free_list == NULL)
1529 struct string_block *b;
1530 int i;
1532 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1533 bzero (b, sizeof *b);
1534 b->next = string_blocks;
1535 string_blocks = b;
1536 ++n_string_blocks;
1538 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1540 s = b->strings + i;
1541 NEXT_FREE_LISP_STRING (s) = string_free_list;
1542 string_free_list = s;
1545 total_free_strings += STRING_BLOCK_SIZE;
1548 /* Pop a Lisp_String off the free-list. */
1549 s = string_free_list;
1550 string_free_list = NEXT_FREE_LISP_STRING (s);
1552 /* Probably not strictly necessary, but play it safe. */
1553 bzero (s, sizeof *s);
1555 --total_free_strings;
1556 ++total_strings;
1557 ++strings_consed;
1558 consing_since_gc += sizeof *s;
1560 #ifdef GC_CHECK_STRING_BYTES
1561 if (!noninteractive
1562 #ifdef MAC_OS8
1563 && current_sblock
1564 #endif
1567 if (++check_string_bytes_count == 200)
1569 check_string_bytes_count = 0;
1570 check_string_bytes (1);
1572 else
1573 check_string_bytes (0);
1575 #endif /* GC_CHECK_STRING_BYTES */
1577 return s;
1581 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1582 plus a NUL byte at the end. Allocate an sdata structure for S, and
1583 set S->data to its `u.data' member. Store a NUL byte at the end of
1584 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1585 S->data if it was initially non-null. */
1587 void
1588 allocate_string_data (s, nchars, nbytes)
1589 struct Lisp_String *s;
1590 int nchars, nbytes;
1592 struct sdata *data, *old_data;
1593 struct sblock *b;
1594 int needed, old_nbytes;
1596 /* Determine the number of bytes needed to store NBYTES bytes
1597 of string data. */
1598 needed = SDATA_SIZE (nbytes);
1600 if (nbytes > LARGE_STRING_BYTES)
1602 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1604 #ifdef DOUG_LEA_MALLOC
1605 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1606 because mapped region contents are not preserved in
1607 a dumped Emacs.
1609 In case you think of allowing it in a dumped Emacs at the
1610 cost of not being able to re-dump, there's another reason:
1611 mmap'ed data typically have an address towards the top of the
1612 address space, which won't fit into an EMACS_INT (at least on
1613 32-bit systems with the current tagging scheme). --fx */
1614 mallopt (M_MMAP_MAX, 0);
1615 #endif
1617 b = (struct sblock *) lisp_malloc (size, MEM_TYPE_NON_LISP);
1619 #ifdef DOUG_LEA_MALLOC
1620 /* Back to a reasonable maximum of mmap'ed areas. */
1621 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1622 #endif
1624 b->next_free = &b->first_data;
1625 b->first_data.string = NULL;
1626 b->next = large_sblocks;
1627 large_sblocks = b;
1629 else if (current_sblock == NULL
1630 || (((char *) current_sblock + SBLOCK_SIZE
1631 - (char *) current_sblock->next_free)
1632 < needed))
1634 /* Not enough room in the current sblock. */
1635 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1636 b->next_free = &b->first_data;
1637 b->first_data.string = NULL;
1638 b->next = NULL;
1640 if (current_sblock)
1641 current_sblock->next = b;
1642 else
1643 oldest_sblock = b;
1644 current_sblock = b;
1646 else
1647 b = current_sblock;
1649 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1650 old_nbytes = GC_STRING_BYTES (s);
1652 data = b->next_free;
1653 data->string = s;
1654 s->data = SDATA_DATA (data);
1655 #ifdef GC_CHECK_STRING_BYTES
1656 SDATA_NBYTES (data) = nbytes;
1657 #endif
1658 s->size = nchars;
1659 s->size_byte = nbytes;
1660 s->data[nbytes] = '\0';
1661 b->next_free = (struct sdata *) ((char *) data + needed);
1663 /* If S had already data assigned, mark that as free by setting its
1664 string back-pointer to null, and recording the size of the data
1665 in it. */
1666 if (old_data)
1668 SDATA_NBYTES (old_data) = old_nbytes;
1669 old_data->string = NULL;
1672 consing_since_gc += needed;
1676 /* Sweep and compact strings. */
1678 static void
1679 sweep_strings ()
1681 struct string_block *b, *next;
1682 struct string_block *live_blocks = NULL;
1684 string_free_list = NULL;
1685 total_strings = total_free_strings = 0;
1686 total_string_size = 0;
1688 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1689 for (b = string_blocks; b; b = next)
1691 int i, nfree = 0;
1692 struct Lisp_String *free_list_before = string_free_list;
1694 next = b->next;
1696 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1698 struct Lisp_String *s = b->strings + i;
1700 if (s->data)
1702 /* String was not on free-list before. */
1703 if (STRING_MARKED_P (s))
1705 /* String is live; unmark it and its intervals. */
1706 UNMARK_STRING (s);
1708 if (!NULL_INTERVAL_P (s->intervals))
1709 UNMARK_BALANCE_INTERVALS (s->intervals);
1711 ++total_strings;
1712 total_string_size += STRING_BYTES (s);
1714 else
1716 /* String is dead. Put it on the free-list. */
1717 struct sdata *data = SDATA_OF_STRING (s);
1719 /* Save the size of S in its sdata so that we know
1720 how large that is. Reset the sdata's string
1721 back-pointer so that we know it's free. */
1722 #ifdef GC_CHECK_STRING_BYTES
1723 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
1724 abort ();
1725 #else
1726 data->u.nbytes = GC_STRING_BYTES (s);
1727 #endif
1728 data->string = NULL;
1730 /* Reset the strings's `data' member so that we
1731 know it's free. */
1732 s->data = NULL;
1734 /* Put the string on the free-list. */
1735 NEXT_FREE_LISP_STRING (s) = string_free_list;
1736 string_free_list = s;
1737 ++nfree;
1740 else
1742 /* S was on the free-list before. Put it there again. */
1743 NEXT_FREE_LISP_STRING (s) = string_free_list;
1744 string_free_list = s;
1745 ++nfree;
1749 /* Free blocks that contain free Lisp_Strings only, except
1750 the first two of them. */
1751 if (nfree == STRING_BLOCK_SIZE
1752 && total_free_strings > STRING_BLOCK_SIZE)
1754 lisp_free (b);
1755 --n_string_blocks;
1756 string_free_list = free_list_before;
1758 else
1760 total_free_strings += nfree;
1761 b->next = live_blocks;
1762 live_blocks = b;
1766 string_blocks = live_blocks;
1767 free_large_strings ();
1768 compact_small_strings ();
1772 /* Free dead large strings. */
1774 static void
1775 free_large_strings ()
1777 struct sblock *b, *next;
1778 struct sblock *live_blocks = NULL;
1780 for (b = large_sblocks; b; b = next)
1782 next = b->next;
1784 if (b->first_data.string == NULL)
1785 lisp_free (b);
1786 else
1788 b->next = live_blocks;
1789 live_blocks = b;
1793 large_sblocks = live_blocks;
1797 /* Compact data of small strings. Free sblocks that don't contain
1798 data of live strings after compaction. */
1800 static void
1801 compact_small_strings ()
1803 struct sblock *b, *tb, *next;
1804 struct sdata *from, *to, *end, *tb_end;
1805 struct sdata *to_end, *from_end;
1807 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1808 to, and TB_END is the end of TB. */
1809 tb = oldest_sblock;
1810 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1811 to = &tb->first_data;
1813 /* Step through the blocks from the oldest to the youngest. We
1814 expect that old blocks will stabilize over time, so that less
1815 copying will happen this way. */
1816 for (b = oldest_sblock; b; b = b->next)
1818 end = b->next_free;
1819 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1821 for (from = &b->first_data; from < end; from = from_end)
1823 /* Compute the next FROM here because copying below may
1824 overwrite data we need to compute it. */
1825 int nbytes;
1827 #ifdef GC_CHECK_STRING_BYTES
1828 /* Check that the string size recorded in the string is the
1829 same as the one recorded in the sdata structure. */
1830 if (from->string
1831 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
1832 abort ();
1833 #endif /* GC_CHECK_STRING_BYTES */
1835 if (from->string)
1836 nbytes = GC_STRING_BYTES (from->string);
1837 else
1838 nbytes = SDATA_NBYTES (from);
1840 nbytes = SDATA_SIZE (nbytes);
1841 from_end = (struct sdata *) ((char *) from + nbytes);
1843 /* FROM->string non-null means it's alive. Copy its data. */
1844 if (from->string)
1846 /* If TB is full, proceed with the next sblock. */
1847 to_end = (struct sdata *) ((char *) to + nbytes);
1848 if (to_end > tb_end)
1850 tb->next_free = to;
1851 tb = tb->next;
1852 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1853 to = &tb->first_data;
1854 to_end = (struct sdata *) ((char *) to + nbytes);
1857 /* Copy, and update the string's `data' pointer. */
1858 if (from != to)
1860 xassert (tb != b || to <= from);
1861 safe_bcopy ((char *) from, (char *) to, nbytes);
1862 to->string->data = SDATA_DATA (to);
1865 /* Advance past the sdata we copied to. */
1866 to = to_end;
1871 /* The rest of the sblocks following TB don't contain live data, so
1872 we can free them. */
1873 for (b = tb->next; b; b = next)
1875 next = b->next;
1876 lisp_free (b);
1879 tb->next_free = to;
1880 tb->next = NULL;
1881 current_sblock = tb;
1885 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1886 doc: /* Return a newly created string of length LENGTH, with each element being INIT.
1887 Both LENGTH and INIT must be numbers. */)
1888 (length, init)
1889 Lisp_Object length, init;
1891 register Lisp_Object val;
1892 register unsigned char *p, *end;
1893 int c, nbytes;
1895 CHECK_NATNUM (length);
1896 CHECK_NUMBER (init);
1898 c = XINT (init);
1899 if (SINGLE_BYTE_CHAR_P (c))
1901 nbytes = XINT (length);
1902 val = make_uninit_string (nbytes);
1903 p = SDATA (val);
1904 end = p + SCHARS (val);
1905 while (p != end)
1906 *p++ = c;
1908 else
1910 unsigned char str[MAX_MULTIBYTE_LENGTH];
1911 int len = CHAR_STRING (c, str);
1913 nbytes = len * XINT (length);
1914 val = make_uninit_multibyte_string (XINT (length), nbytes);
1915 p = SDATA (val);
1916 end = p + nbytes;
1917 while (p != end)
1919 bcopy (str, p, len);
1920 p += len;
1924 *p = 0;
1925 return val;
1929 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
1930 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
1931 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
1932 (length, init)
1933 Lisp_Object length, init;
1935 register Lisp_Object val;
1936 struct Lisp_Bool_Vector *p;
1937 int real_init, i;
1938 int length_in_chars, length_in_elts, bits_per_value;
1940 CHECK_NATNUM (length);
1942 bits_per_value = sizeof (EMACS_INT) * BITS_PER_CHAR;
1944 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
1945 length_in_chars = ((XFASTINT (length) + BITS_PER_CHAR - 1) / BITS_PER_CHAR);
1947 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1948 slot `size' of the struct Lisp_Bool_Vector. */
1949 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
1950 p = XBOOL_VECTOR (val);
1952 /* Get rid of any bits that would cause confusion. */
1953 p->vector_size = 0;
1954 XSETBOOL_VECTOR (val, p);
1955 p->size = XFASTINT (length);
1957 real_init = (NILP (init) ? 0 : -1);
1958 for (i = 0; i < length_in_chars ; i++)
1959 p->data[i] = real_init;
1961 /* Clear the extraneous bits in the last byte. */
1962 if (XINT (length) != length_in_chars * BITS_PER_CHAR)
1963 XBOOL_VECTOR (val)->data[length_in_chars - 1]
1964 &= (1 << (XINT (length) % BITS_PER_CHAR)) - 1;
1966 return val;
1970 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
1971 of characters from the contents. This string may be unibyte or
1972 multibyte, depending on the contents. */
1974 Lisp_Object
1975 make_string (contents, nbytes)
1976 const char *contents;
1977 int nbytes;
1979 register Lisp_Object val;
1980 int nchars, multibyte_nbytes;
1982 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
1983 if (nbytes == nchars || nbytes != multibyte_nbytes)
1984 /* CONTENTS contains no multibyte sequences or contains an invalid
1985 multibyte sequence. We must make unibyte string. */
1986 val = make_unibyte_string (contents, nbytes);
1987 else
1988 val = make_multibyte_string (contents, nchars, nbytes);
1989 return val;
1993 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
1995 Lisp_Object
1996 make_unibyte_string (contents, length)
1997 const char *contents;
1998 int length;
2000 register Lisp_Object val;
2001 val = make_uninit_string (length);
2002 bcopy (contents, SDATA (val), length);
2003 STRING_SET_UNIBYTE (val);
2004 return val;
2008 /* Make a multibyte string from NCHARS characters occupying NBYTES
2009 bytes at CONTENTS. */
2011 Lisp_Object
2012 make_multibyte_string (contents, nchars, nbytes)
2013 const char *contents;
2014 int nchars, nbytes;
2016 register Lisp_Object val;
2017 val = make_uninit_multibyte_string (nchars, nbytes);
2018 bcopy (contents, SDATA (val), nbytes);
2019 return val;
2023 /* Make a string from NCHARS characters occupying NBYTES bytes at
2024 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2026 Lisp_Object
2027 make_string_from_bytes (contents, nchars, nbytes)
2028 const char *contents;
2029 int nchars, nbytes;
2031 register Lisp_Object val;
2032 val = make_uninit_multibyte_string (nchars, nbytes);
2033 bcopy (contents, SDATA (val), nbytes);
2034 if (SBYTES (val) == SCHARS (val))
2035 STRING_SET_UNIBYTE (val);
2036 return val;
2040 /* Make a string from NCHARS characters occupying NBYTES bytes at
2041 CONTENTS. The argument MULTIBYTE controls whether to label the
2042 string as multibyte. If NCHARS is negative, it counts the number of
2043 characters by itself. */
2045 Lisp_Object
2046 make_specified_string (contents, nchars, nbytes, multibyte)
2047 const char *contents;
2048 int nchars, nbytes;
2049 int multibyte;
2051 register Lisp_Object val;
2053 if (nchars < 0)
2055 if (multibyte)
2056 nchars = multibyte_chars_in_text (contents, nbytes);
2057 else
2058 nchars = nbytes;
2060 val = make_uninit_multibyte_string (nchars, nbytes);
2061 bcopy (contents, SDATA (val), nbytes);
2062 if (!multibyte)
2063 STRING_SET_UNIBYTE (val);
2064 return val;
2068 /* Make a string from the data at STR, treating it as multibyte if the
2069 data warrants. */
2071 Lisp_Object
2072 build_string (str)
2073 const char *str;
2075 return make_string (str, strlen (str));
2079 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2080 occupying LENGTH bytes. */
2082 Lisp_Object
2083 make_uninit_string (length)
2084 int length;
2086 Lisp_Object val;
2087 val = make_uninit_multibyte_string (length, length);
2088 STRING_SET_UNIBYTE (val);
2089 return val;
2093 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2094 which occupy NBYTES bytes. */
2096 Lisp_Object
2097 make_uninit_multibyte_string (nchars, nbytes)
2098 int nchars, nbytes;
2100 Lisp_Object string;
2101 struct Lisp_String *s;
2103 if (nchars < 0)
2104 abort ();
2106 s = allocate_string ();
2107 allocate_string_data (s, nchars, nbytes);
2108 XSETSTRING (string, s);
2109 string_chars_consed += nbytes;
2110 return string;
2115 /***********************************************************************
2116 Float Allocation
2117 ***********************************************************************/
2119 /* We store float cells inside of float_blocks, allocating a new
2120 float_block with malloc whenever necessary. Float cells reclaimed
2121 by GC are put on a free list to be reallocated before allocating
2122 any new float cells from the latest float_block. */
2124 #define FLOAT_BLOCK_SIZE \
2125 (((BLOCK_BYTES - sizeof (struct float_block *)) * CHAR_BIT) \
2126 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2128 #define GETMARKBIT(block,n) \
2129 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2130 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2131 & 1)
2133 #define SETMARKBIT(block,n) \
2134 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2135 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2137 #define UNSETMARKBIT(block,n) \
2138 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2139 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2141 #define FLOAT_BLOCK(fptr) \
2142 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2144 #define FLOAT_INDEX(fptr) \
2145 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2147 struct float_block
2149 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2150 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2151 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2152 struct float_block *next;
2155 #define FLOAT_MARKED_P(fptr) \
2156 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2158 #define FLOAT_MARK(fptr) \
2159 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2161 #define FLOAT_UNMARK(fptr) \
2162 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2164 /* Current float_block. */
2166 struct float_block *float_block;
2168 /* Index of first unused Lisp_Float in the current float_block. */
2170 int float_block_index;
2172 /* Total number of float blocks now in use. */
2174 int n_float_blocks;
2176 /* Free-list of Lisp_Floats. */
2178 struct Lisp_Float *float_free_list;
2181 /* Initialize float allocation. */
2183 void
2184 init_float ()
2186 float_block = NULL;
2187 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2188 float_free_list = 0;
2189 n_float_blocks = 0;
2193 /* Explicitly free a float cell by putting it on the free-list. */
2195 void
2196 free_float (ptr)
2197 struct Lisp_Float *ptr;
2199 *(struct Lisp_Float **)&ptr->data = float_free_list;
2200 float_free_list = ptr;
2204 /* Return a new float object with value FLOAT_VALUE. */
2206 Lisp_Object
2207 make_float (float_value)
2208 double float_value;
2210 register Lisp_Object val;
2212 if (float_free_list)
2214 /* We use the data field for chaining the free list
2215 so that we won't use the same field that has the mark bit. */
2216 XSETFLOAT (val, float_free_list);
2217 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2219 else
2221 if (float_block_index == FLOAT_BLOCK_SIZE)
2223 register struct float_block *new;
2225 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2226 MEM_TYPE_FLOAT);
2227 new->next = float_block;
2228 float_block = new;
2229 float_block_index = 0;
2230 n_float_blocks++;
2232 XSETFLOAT (val, &float_block->floats[float_block_index++]);
2235 XFLOAT_DATA (val) = float_value;
2236 FLOAT_UNMARK (XFLOAT (val));
2237 consing_since_gc += sizeof (struct Lisp_Float);
2238 floats_consed++;
2239 return val;
2244 /***********************************************************************
2245 Cons Allocation
2246 ***********************************************************************/
2248 /* We store cons cells inside of cons_blocks, allocating a new
2249 cons_block with malloc whenever necessary. Cons cells reclaimed by
2250 GC are put on a free list to be reallocated before allocating
2251 any new cons cells from the latest cons_block. */
2253 #define CONS_BLOCK_SIZE \
2254 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2255 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2257 #define CONS_BLOCK(fptr) \
2258 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2260 #define CONS_INDEX(fptr) \
2261 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2263 struct cons_block
2265 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2266 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2267 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2268 struct cons_block *next;
2271 #define CONS_MARKED_P(fptr) \
2272 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2274 #define CONS_MARK(fptr) \
2275 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2277 #define CONS_UNMARK(fptr) \
2278 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2280 /* Current cons_block. */
2282 struct cons_block *cons_block;
2284 /* Index of first unused Lisp_Cons in the current block. */
2286 int cons_block_index;
2288 /* Free-list of Lisp_Cons structures. */
2290 struct Lisp_Cons *cons_free_list;
2292 /* Total number of cons blocks now in use. */
2294 int n_cons_blocks;
2297 /* Initialize cons allocation. */
2299 void
2300 init_cons ()
2302 cons_block = NULL;
2303 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2304 cons_free_list = 0;
2305 n_cons_blocks = 0;
2309 /* Explicitly free a cons cell by putting it on the free-list. */
2311 void
2312 free_cons (ptr)
2313 struct Lisp_Cons *ptr;
2315 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2316 #if GC_MARK_STACK
2317 ptr->car = Vdead;
2318 #endif
2319 cons_free_list = ptr;
2323 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2324 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2325 (car, cdr)
2326 Lisp_Object car, cdr;
2328 register Lisp_Object val;
2330 if (cons_free_list)
2332 /* We use the cdr for chaining the free list
2333 so that we won't use the same field that has the mark bit. */
2334 XSETCONS (val, cons_free_list);
2335 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2337 else
2339 if (cons_block_index == CONS_BLOCK_SIZE)
2341 register struct cons_block *new;
2342 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2343 MEM_TYPE_CONS);
2344 new->next = cons_block;
2345 cons_block = new;
2346 cons_block_index = 0;
2347 n_cons_blocks++;
2349 XSETCONS (val, &cons_block->conses[cons_block_index++]);
2352 XSETCAR (val, car);
2353 XSETCDR (val, cdr);
2354 CONS_UNMARK (XCONS (val));
2355 consing_since_gc += sizeof (struct Lisp_Cons);
2356 cons_cells_consed++;
2357 return val;
2361 /* Make a list of 2, 3, 4 or 5 specified objects. */
2363 Lisp_Object
2364 list2 (arg1, arg2)
2365 Lisp_Object arg1, arg2;
2367 return Fcons (arg1, Fcons (arg2, Qnil));
2371 Lisp_Object
2372 list3 (arg1, arg2, arg3)
2373 Lisp_Object arg1, arg2, arg3;
2375 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2379 Lisp_Object
2380 list4 (arg1, arg2, arg3, arg4)
2381 Lisp_Object arg1, arg2, arg3, arg4;
2383 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2387 Lisp_Object
2388 list5 (arg1, arg2, arg3, arg4, arg5)
2389 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2391 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2392 Fcons (arg5, Qnil)))));
2396 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2397 doc: /* Return a newly created list with specified arguments as elements.
2398 Any number of arguments, even zero arguments, are allowed.
2399 usage: (list &rest OBJECTS) */)
2400 (nargs, args)
2401 int nargs;
2402 register Lisp_Object *args;
2404 register Lisp_Object val;
2405 val = Qnil;
2407 while (nargs > 0)
2409 nargs--;
2410 val = Fcons (args[nargs], val);
2412 return val;
2416 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2417 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2418 (length, init)
2419 register Lisp_Object length, init;
2421 register Lisp_Object val;
2422 register int size;
2424 CHECK_NATNUM (length);
2425 size = XFASTINT (length);
2427 val = Qnil;
2428 while (size > 0)
2430 val = Fcons (init, val);
2431 --size;
2433 if (size > 0)
2435 val = Fcons (init, val);
2436 --size;
2438 if (size > 0)
2440 val = Fcons (init, val);
2441 --size;
2443 if (size > 0)
2445 val = Fcons (init, val);
2446 --size;
2448 if (size > 0)
2450 val = Fcons (init, val);
2451 --size;
2457 QUIT;
2460 return val;
2465 /***********************************************************************
2466 Vector Allocation
2467 ***********************************************************************/
2469 /* Singly-linked list of all vectors. */
2471 struct Lisp_Vector *all_vectors;
2473 /* Total number of vector-like objects now in use. */
2475 int n_vectors;
2478 /* Value is a pointer to a newly allocated Lisp_Vector structure
2479 with room for LEN Lisp_Objects. */
2481 static struct Lisp_Vector *
2482 allocate_vectorlike (len, type)
2483 EMACS_INT len;
2484 enum mem_type type;
2486 struct Lisp_Vector *p;
2487 size_t nbytes;
2489 #ifdef DOUG_LEA_MALLOC
2490 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2491 because mapped region contents are not preserved in
2492 a dumped Emacs. */
2493 mallopt (M_MMAP_MAX, 0);
2494 #endif
2496 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2497 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2499 #ifdef DOUG_LEA_MALLOC
2500 /* Back to a reasonable maximum of mmap'ed areas. */
2501 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2502 #endif
2504 consing_since_gc += nbytes;
2505 vector_cells_consed += len;
2507 p->next = all_vectors;
2508 all_vectors = p;
2509 ++n_vectors;
2510 return p;
2514 /* Allocate a vector with NSLOTS slots. */
2516 struct Lisp_Vector *
2517 allocate_vector (nslots)
2518 EMACS_INT nslots;
2520 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2521 v->size = nslots;
2522 return v;
2526 /* Allocate other vector-like structures. */
2528 struct Lisp_Hash_Table *
2529 allocate_hash_table ()
2531 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2532 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2533 EMACS_INT i;
2535 v->size = len;
2536 for (i = 0; i < len; ++i)
2537 v->contents[i] = Qnil;
2539 return (struct Lisp_Hash_Table *) v;
2543 struct window *
2544 allocate_window ()
2546 EMACS_INT len = VECSIZE (struct window);
2547 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2548 EMACS_INT i;
2550 for (i = 0; i < len; ++i)
2551 v->contents[i] = Qnil;
2552 v->size = len;
2554 return (struct window *) v;
2558 struct frame *
2559 allocate_frame ()
2561 EMACS_INT len = VECSIZE (struct frame);
2562 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2563 EMACS_INT i;
2565 for (i = 0; i < len; ++i)
2566 v->contents[i] = make_number (0);
2567 v->size = len;
2568 return (struct frame *) v;
2572 struct Lisp_Process *
2573 allocate_process ()
2575 EMACS_INT len = VECSIZE (struct Lisp_Process);
2576 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2577 EMACS_INT i;
2579 for (i = 0; i < len; ++i)
2580 v->contents[i] = Qnil;
2581 v->size = len;
2583 return (struct Lisp_Process *) v;
2587 struct Lisp_Vector *
2588 allocate_other_vector (len)
2589 EMACS_INT len;
2591 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2592 EMACS_INT i;
2594 for (i = 0; i < len; ++i)
2595 v->contents[i] = Qnil;
2596 v->size = len;
2598 return v;
2602 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2603 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2604 See also the function `vector'. */)
2605 (length, init)
2606 register Lisp_Object length, init;
2608 Lisp_Object vector;
2609 register EMACS_INT sizei;
2610 register int index;
2611 register struct Lisp_Vector *p;
2613 CHECK_NATNUM (length);
2614 sizei = XFASTINT (length);
2616 p = allocate_vector (sizei);
2617 for (index = 0; index < sizei; index++)
2618 p->contents[index] = init;
2620 XSETVECTOR (vector, p);
2621 return vector;
2625 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
2626 doc: /* Return a newly created char-table, with purpose PURPOSE.
2627 Each element is initialized to INIT, which defaults to nil.
2628 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
2629 The property's value should be an integer between 0 and 10. */)
2630 (purpose, init)
2631 register Lisp_Object purpose, init;
2633 Lisp_Object vector;
2634 Lisp_Object n;
2635 CHECK_SYMBOL (purpose);
2636 n = Fget (purpose, Qchar_table_extra_slots);
2637 CHECK_NUMBER (n);
2638 if (XINT (n) < 0 || XINT (n) > 10)
2639 args_out_of_range (n, Qnil);
2640 /* Add 2 to the size for the defalt and parent slots. */
2641 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
2642 init);
2643 XCHAR_TABLE (vector)->top = Qt;
2644 XCHAR_TABLE (vector)->parent = Qnil;
2645 XCHAR_TABLE (vector)->purpose = purpose;
2646 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2647 return vector;
2651 /* Return a newly created sub char table with default value DEFALT.
2652 Since a sub char table does not appear as a top level Emacs Lisp
2653 object, we don't need a Lisp interface to make it. */
2655 Lisp_Object
2656 make_sub_char_table (defalt)
2657 Lisp_Object defalt;
2659 Lisp_Object vector
2660 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
2661 XCHAR_TABLE (vector)->top = Qnil;
2662 XCHAR_TABLE (vector)->defalt = defalt;
2663 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2664 return vector;
2668 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2669 doc: /* Return a newly created vector with specified arguments as elements.
2670 Any number of arguments, even zero arguments, are allowed.
2671 usage: (vector &rest OBJECTS) */)
2672 (nargs, args)
2673 register int nargs;
2674 Lisp_Object *args;
2676 register Lisp_Object len, val;
2677 register int index;
2678 register struct Lisp_Vector *p;
2680 XSETFASTINT (len, nargs);
2681 val = Fmake_vector (len, Qnil);
2682 p = XVECTOR (val);
2683 for (index = 0; index < nargs; index++)
2684 p->contents[index] = args[index];
2685 return val;
2689 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2690 doc: /* Create a byte-code object with specified arguments as elements.
2691 The arguments should be the arglist, bytecode-string, constant vector,
2692 stack size, (optional) doc string, and (optional) interactive spec.
2693 The first four arguments are required; at most six have any
2694 significance.
2695 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2696 (nargs, args)
2697 register int nargs;
2698 Lisp_Object *args;
2700 register Lisp_Object len, val;
2701 register int index;
2702 register struct Lisp_Vector *p;
2704 XSETFASTINT (len, nargs);
2705 if (!NILP (Vpurify_flag))
2706 val = make_pure_vector ((EMACS_INT) nargs);
2707 else
2708 val = Fmake_vector (len, Qnil);
2710 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2711 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2712 earlier because they produced a raw 8-bit string for byte-code
2713 and now such a byte-code string is loaded as multibyte while
2714 raw 8-bit characters converted to multibyte form. Thus, now we
2715 must convert them back to the original unibyte form. */
2716 args[1] = Fstring_as_unibyte (args[1]);
2718 p = XVECTOR (val);
2719 for (index = 0; index < nargs; index++)
2721 if (!NILP (Vpurify_flag))
2722 args[index] = Fpurecopy (args[index]);
2723 p->contents[index] = args[index];
2725 XSETCOMPILED (val, p);
2726 return val;
2731 /***********************************************************************
2732 Symbol Allocation
2733 ***********************************************************************/
2735 /* Each symbol_block is just under 1020 bytes long, since malloc
2736 really allocates in units of powers of two and uses 4 bytes for its
2737 own overhead. */
2739 #define SYMBOL_BLOCK_SIZE \
2740 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2742 struct symbol_block
2744 struct symbol_block *next;
2745 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
2748 /* Current symbol block and index of first unused Lisp_Symbol
2749 structure in it. */
2751 struct symbol_block *symbol_block;
2752 int symbol_block_index;
2754 /* List of free symbols. */
2756 struct Lisp_Symbol *symbol_free_list;
2758 /* Total number of symbol blocks now in use. */
2760 int n_symbol_blocks;
2763 /* Initialize symbol allocation. */
2765 void
2766 init_symbol ()
2768 symbol_block = (struct symbol_block *) lisp_malloc (sizeof *symbol_block,
2769 MEM_TYPE_SYMBOL);
2770 symbol_block->next = 0;
2771 bzero ((char *) symbol_block->symbols, sizeof symbol_block->symbols);
2772 symbol_block_index = 0;
2773 symbol_free_list = 0;
2774 n_symbol_blocks = 1;
2778 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
2779 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
2780 Its value and function definition are void, and its property list is nil. */)
2781 (name)
2782 Lisp_Object name;
2784 register Lisp_Object val;
2785 register struct Lisp_Symbol *p;
2787 CHECK_STRING (name);
2789 if (symbol_free_list)
2791 XSETSYMBOL (val, symbol_free_list);
2792 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
2794 else
2796 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
2798 struct symbol_block *new;
2799 new = (struct symbol_block *) lisp_malloc (sizeof *new,
2800 MEM_TYPE_SYMBOL);
2801 new->next = symbol_block;
2802 symbol_block = new;
2803 symbol_block_index = 0;
2804 n_symbol_blocks++;
2806 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index++]);
2809 p = XSYMBOL (val);
2810 p->xname = name;
2811 p->plist = Qnil;
2812 p->value = Qunbound;
2813 p->function = Qunbound;
2814 p->next = NULL;
2815 p->gcmarkbit = 0;
2816 p->interned = SYMBOL_UNINTERNED;
2817 p->constant = 0;
2818 p->indirect_variable = 0;
2819 consing_since_gc += sizeof (struct Lisp_Symbol);
2820 symbols_consed++;
2821 return val;
2826 /***********************************************************************
2827 Marker (Misc) Allocation
2828 ***********************************************************************/
2830 /* Allocation of markers and other objects that share that structure.
2831 Works like allocation of conses. */
2833 #define MARKER_BLOCK_SIZE \
2834 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2836 struct marker_block
2838 struct marker_block *next;
2839 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
2842 struct marker_block *marker_block;
2843 int marker_block_index;
2845 union Lisp_Misc *marker_free_list;
2847 /* Total number of marker blocks now in use. */
2849 int n_marker_blocks;
2851 void
2852 init_marker ()
2854 marker_block = (struct marker_block *) lisp_malloc (sizeof *marker_block,
2855 MEM_TYPE_MISC);
2856 marker_block->next = 0;
2857 bzero ((char *) marker_block->markers, sizeof marker_block->markers);
2858 marker_block_index = 0;
2859 marker_free_list = 0;
2860 n_marker_blocks = 1;
2863 /* Return a newly allocated Lisp_Misc object, with no substructure. */
2865 Lisp_Object
2866 allocate_misc ()
2868 Lisp_Object val;
2870 if (marker_free_list)
2872 XSETMISC (val, marker_free_list);
2873 marker_free_list = marker_free_list->u_free.chain;
2875 else
2877 if (marker_block_index == MARKER_BLOCK_SIZE)
2879 struct marker_block *new;
2880 new = (struct marker_block *) lisp_malloc (sizeof *new,
2881 MEM_TYPE_MISC);
2882 new->next = marker_block;
2883 marker_block = new;
2884 marker_block_index = 0;
2885 n_marker_blocks++;
2887 XSETMISC (val, &marker_block->markers[marker_block_index++]);
2890 consing_since_gc += sizeof (union Lisp_Misc);
2891 misc_objects_consed++;
2892 XMARKER (val)->gcmarkbit = 0;
2893 return val;
2896 /* Return a Lisp_Misc_Save_Value object containing POINTER and
2897 INTEGER. This is used to package C values to call record_unwind_protect.
2898 The unwind function can get the C values back using XSAVE_VALUE. */
2900 Lisp_Object
2901 make_save_value (pointer, integer)
2902 void *pointer;
2903 int integer;
2905 register Lisp_Object val;
2906 register struct Lisp_Save_Value *p;
2908 val = allocate_misc ();
2909 XMISCTYPE (val) = Lisp_Misc_Save_Value;
2910 p = XSAVE_VALUE (val);
2911 p->pointer = pointer;
2912 p->integer = integer;
2913 return val;
2916 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
2917 doc: /* Return a newly allocated marker which does not point at any place. */)
2920 register Lisp_Object val;
2921 register struct Lisp_Marker *p;
2923 val = allocate_misc ();
2924 XMISCTYPE (val) = Lisp_Misc_Marker;
2925 p = XMARKER (val);
2926 p->buffer = 0;
2927 p->bytepos = 0;
2928 p->charpos = 0;
2929 p->next = NULL;
2930 p->insertion_type = 0;
2931 return val;
2934 /* Put MARKER back on the free list after using it temporarily. */
2936 void
2937 free_marker (marker)
2938 Lisp_Object marker;
2940 unchain_marker (XMARKER (marker));
2942 XMISC (marker)->u_marker.type = Lisp_Misc_Free;
2943 XMISC (marker)->u_free.chain = marker_free_list;
2944 marker_free_list = XMISC (marker);
2946 total_free_markers++;
2950 /* Return a newly created vector or string with specified arguments as
2951 elements. If all the arguments are characters that can fit
2952 in a string of events, make a string; otherwise, make a vector.
2954 Any number of arguments, even zero arguments, are allowed. */
2956 Lisp_Object
2957 make_event_array (nargs, args)
2958 register int nargs;
2959 Lisp_Object *args;
2961 int i;
2963 for (i = 0; i < nargs; i++)
2964 /* The things that fit in a string
2965 are characters that are in 0...127,
2966 after discarding the meta bit and all the bits above it. */
2967 if (!INTEGERP (args[i])
2968 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
2969 return Fvector (nargs, args);
2971 /* Since the loop exited, we know that all the things in it are
2972 characters, so we can make a string. */
2974 Lisp_Object result;
2976 result = Fmake_string (make_number (nargs), make_number (0));
2977 for (i = 0; i < nargs; i++)
2979 SSET (result, i, XINT (args[i]));
2980 /* Move the meta bit to the right place for a string char. */
2981 if (XINT (args[i]) & CHAR_META)
2982 SSET (result, i, SREF (result, i) | 0x80);
2985 return result;
2991 /************************************************************************
2992 C Stack Marking
2993 ************************************************************************/
2995 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
2997 /* Conservative C stack marking requires a method to identify possibly
2998 live Lisp objects given a pointer value. We do this by keeping
2999 track of blocks of Lisp data that are allocated in a red-black tree
3000 (see also the comment of mem_node which is the type of nodes in
3001 that tree). Function lisp_malloc adds information for an allocated
3002 block to the red-black tree with calls to mem_insert, and function
3003 lisp_free removes it with mem_delete. Functions live_string_p etc
3004 call mem_find to lookup information about a given pointer in the
3005 tree, and use that to determine if the pointer points to a Lisp
3006 object or not. */
3008 /* Initialize this part of alloc.c. */
3010 static void
3011 mem_init ()
3013 mem_z.left = mem_z.right = MEM_NIL;
3014 mem_z.parent = NULL;
3015 mem_z.color = MEM_BLACK;
3016 mem_z.start = mem_z.end = NULL;
3017 mem_root = MEM_NIL;
3021 /* Value is a pointer to the mem_node containing START. Value is
3022 MEM_NIL if there is no node in the tree containing START. */
3024 static INLINE struct mem_node *
3025 mem_find (start)
3026 void *start;
3028 struct mem_node *p;
3030 if (start < min_heap_address || start > max_heap_address)
3031 return MEM_NIL;
3033 /* Make the search always successful to speed up the loop below. */
3034 mem_z.start = start;
3035 mem_z.end = (char *) start + 1;
3037 p = mem_root;
3038 while (start < p->start || start >= p->end)
3039 p = start < p->start ? p->left : p->right;
3040 return p;
3044 /* Insert a new node into the tree for a block of memory with start
3045 address START, end address END, and type TYPE. Value is a
3046 pointer to the node that was inserted. */
3048 static struct mem_node *
3049 mem_insert (start, end, type)
3050 void *start, *end;
3051 enum mem_type type;
3053 struct mem_node *c, *parent, *x;
3055 if (start < min_heap_address)
3056 min_heap_address = start;
3057 if (end > max_heap_address)
3058 max_heap_address = end;
3060 /* See where in the tree a node for START belongs. In this
3061 particular application, it shouldn't happen that a node is already
3062 present. For debugging purposes, let's check that. */
3063 c = mem_root;
3064 parent = NULL;
3066 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3068 while (c != MEM_NIL)
3070 if (start >= c->start && start < c->end)
3071 abort ();
3072 parent = c;
3073 c = start < c->start ? c->left : c->right;
3076 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3078 while (c != MEM_NIL)
3080 parent = c;
3081 c = start < c->start ? c->left : c->right;
3084 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3086 /* Create a new node. */
3087 #ifdef GC_MALLOC_CHECK
3088 x = (struct mem_node *) _malloc_internal (sizeof *x);
3089 if (x == NULL)
3090 abort ();
3091 #else
3092 x = (struct mem_node *) xmalloc (sizeof *x);
3093 #endif
3094 x->start = start;
3095 x->end = end;
3096 x->type = type;
3097 x->parent = parent;
3098 x->left = x->right = MEM_NIL;
3099 x->color = MEM_RED;
3101 /* Insert it as child of PARENT or install it as root. */
3102 if (parent)
3104 if (start < parent->start)
3105 parent->left = x;
3106 else
3107 parent->right = x;
3109 else
3110 mem_root = x;
3112 /* Re-establish red-black tree properties. */
3113 mem_insert_fixup (x);
3115 return x;
3119 /* Re-establish the red-black properties of the tree, and thereby
3120 balance the tree, after node X has been inserted; X is always red. */
3122 static void
3123 mem_insert_fixup (x)
3124 struct mem_node *x;
3126 while (x != mem_root && x->parent->color == MEM_RED)
3128 /* X is red and its parent is red. This is a violation of
3129 red-black tree property #3. */
3131 if (x->parent == x->parent->parent->left)
3133 /* We're on the left side of our grandparent, and Y is our
3134 "uncle". */
3135 struct mem_node *y = x->parent->parent->right;
3137 if (y->color == MEM_RED)
3139 /* Uncle and parent are red but should be black because
3140 X is red. Change the colors accordingly and proceed
3141 with the grandparent. */
3142 x->parent->color = MEM_BLACK;
3143 y->color = MEM_BLACK;
3144 x->parent->parent->color = MEM_RED;
3145 x = x->parent->parent;
3147 else
3149 /* Parent and uncle have different colors; parent is
3150 red, uncle is black. */
3151 if (x == x->parent->right)
3153 x = x->parent;
3154 mem_rotate_left (x);
3157 x->parent->color = MEM_BLACK;
3158 x->parent->parent->color = MEM_RED;
3159 mem_rotate_right (x->parent->parent);
3162 else
3164 /* This is the symmetrical case of above. */
3165 struct mem_node *y = x->parent->parent->left;
3167 if (y->color == MEM_RED)
3169 x->parent->color = MEM_BLACK;
3170 y->color = MEM_BLACK;
3171 x->parent->parent->color = MEM_RED;
3172 x = x->parent->parent;
3174 else
3176 if (x == x->parent->left)
3178 x = x->parent;
3179 mem_rotate_right (x);
3182 x->parent->color = MEM_BLACK;
3183 x->parent->parent->color = MEM_RED;
3184 mem_rotate_left (x->parent->parent);
3189 /* The root may have been changed to red due to the algorithm. Set
3190 it to black so that property #5 is satisfied. */
3191 mem_root->color = MEM_BLACK;
3195 /* (x) (y)
3196 / \ / \
3197 a (y) ===> (x) c
3198 / \ / \
3199 b c a b */
3201 static void
3202 mem_rotate_left (x)
3203 struct mem_node *x;
3205 struct mem_node *y;
3207 /* Turn y's left sub-tree into x's right sub-tree. */
3208 y = x->right;
3209 x->right = y->left;
3210 if (y->left != MEM_NIL)
3211 y->left->parent = x;
3213 /* Y's parent was x's parent. */
3214 if (y != MEM_NIL)
3215 y->parent = x->parent;
3217 /* Get the parent to point to y instead of x. */
3218 if (x->parent)
3220 if (x == x->parent->left)
3221 x->parent->left = y;
3222 else
3223 x->parent->right = y;
3225 else
3226 mem_root = y;
3228 /* Put x on y's left. */
3229 y->left = x;
3230 if (x != MEM_NIL)
3231 x->parent = y;
3235 /* (x) (Y)
3236 / \ / \
3237 (y) c ===> a (x)
3238 / \ / \
3239 a b b c */
3241 static void
3242 mem_rotate_right (x)
3243 struct mem_node *x;
3245 struct mem_node *y = x->left;
3247 x->left = y->right;
3248 if (y->right != MEM_NIL)
3249 y->right->parent = x;
3251 if (y != MEM_NIL)
3252 y->parent = x->parent;
3253 if (x->parent)
3255 if (x == x->parent->right)
3256 x->parent->right = y;
3257 else
3258 x->parent->left = y;
3260 else
3261 mem_root = y;
3263 y->right = x;
3264 if (x != MEM_NIL)
3265 x->parent = y;
3269 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3271 static void
3272 mem_delete (z)
3273 struct mem_node *z;
3275 struct mem_node *x, *y;
3277 if (!z || z == MEM_NIL)
3278 return;
3280 if (z->left == MEM_NIL || z->right == MEM_NIL)
3281 y = z;
3282 else
3284 y = z->right;
3285 while (y->left != MEM_NIL)
3286 y = y->left;
3289 if (y->left != MEM_NIL)
3290 x = y->left;
3291 else
3292 x = y->right;
3294 x->parent = y->parent;
3295 if (y->parent)
3297 if (y == y->parent->left)
3298 y->parent->left = x;
3299 else
3300 y->parent->right = x;
3302 else
3303 mem_root = x;
3305 if (y != z)
3307 z->start = y->start;
3308 z->end = y->end;
3309 z->type = y->type;
3312 if (y->color == MEM_BLACK)
3313 mem_delete_fixup (x);
3315 #ifdef GC_MALLOC_CHECK
3316 _free_internal (y);
3317 #else
3318 xfree (y);
3319 #endif
3323 /* Re-establish the red-black properties of the tree, after a
3324 deletion. */
3326 static void
3327 mem_delete_fixup (x)
3328 struct mem_node *x;
3330 while (x != mem_root && x->color == MEM_BLACK)
3332 if (x == x->parent->left)
3334 struct mem_node *w = x->parent->right;
3336 if (w->color == MEM_RED)
3338 w->color = MEM_BLACK;
3339 x->parent->color = MEM_RED;
3340 mem_rotate_left (x->parent);
3341 w = x->parent->right;
3344 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3346 w->color = MEM_RED;
3347 x = x->parent;
3349 else
3351 if (w->right->color == MEM_BLACK)
3353 w->left->color = MEM_BLACK;
3354 w->color = MEM_RED;
3355 mem_rotate_right (w);
3356 w = x->parent->right;
3358 w->color = x->parent->color;
3359 x->parent->color = MEM_BLACK;
3360 w->right->color = MEM_BLACK;
3361 mem_rotate_left (x->parent);
3362 x = mem_root;
3365 else
3367 struct mem_node *w = x->parent->left;
3369 if (w->color == MEM_RED)
3371 w->color = MEM_BLACK;
3372 x->parent->color = MEM_RED;
3373 mem_rotate_right (x->parent);
3374 w = x->parent->left;
3377 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3379 w->color = MEM_RED;
3380 x = x->parent;
3382 else
3384 if (w->left->color == MEM_BLACK)
3386 w->right->color = MEM_BLACK;
3387 w->color = MEM_RED;
3388 mem_rotate_left (w);
3389 w = x->parent->left;
3392 w->color = x->parent->color;
3393 x->parent->color = MEM_BLACK;
3394 w->left->color = MEM_BLACK;
3395 mem_rotate_right (x->parent);
3396 x = mem_root;
3401 x->color = MEM_BLACK;
3405 /* Value is non-zero if P is a pointer to a live Lisp string on
3406 the heap. M is a pointer to the mem_block for P. */
3408 static INLINE int
3409 live_string_p (m, p)
3410 struct mem_node *m;
3411 void *p;
3413 if (m->type == MEM_TYPE_STRING)
3415 struct string_block *b = (struct string_block *) m->start;
3416 int offset = (char *) p - (char *) &b->strings[0];
3418 /* P must point to the start of a Lisp_String structure, and it
3419 must not be on the free-list. */
3420 return (offset >= 0
3421 && offset % sizeof b->strings[0] == 0
3422 && ((struct Lisp_String *) p)->data != NULL);
3424 else
3425 return 0;
3429 /* Value is non-zero if P is a pointer to a live Lisp cons on
3430 the heap. M is a pointer to the mem_block for P. */
3432 static INLINE int
3433 live_cons_p (m, p)
3434 struct mem_node *m;
3435 void *p;
3437 if (m->type == MEM_TYPE_CONS)
3439 struct cons_block *b = (struct cons_block *) m->start;
3440 int offset = (char *) p - (char *) &b->conses[0];
3442 /* P must point to the start of a Lisp_Cons, not be
3443 one of the unused cells in the current cons block,
3444 and not be on the free-list. */
3445 return (offset >= 0
3446 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3447 && offset % sizeof b->conses[0] == 0
3448 && (b != cons_block
3449 || offset / sizeof b->conses[0] < cons_block_index)
3450 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3452 else
3453 return 0;
3457 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3458 the heap. M is a pointer to the mem_block for P. */
3460 static INLINE int
3461 live_symbol_p (m, p)
3462 struct mem_node *m;
3463 void *p;
3465 if (m->type == MEM_TYPE_SYMBOL)
3467 struct symbol_block *b = (struct symbol_block *) m->start;
3468 int offset = (char *) p - (char *) &b->symbols[0];
3470 /* P must point to the start of a Lisp_Symbol, not be
3471 one of the unused cells in the current symbol block,
3472 and not be on the free-list. */
3473 return (offset >= 0
3474 && offset % sizeof b->symbols[0] == 0
3475 && (b != symbol_block
3476 || offset / sizeof b->symbols[0] < symbol_block_index)
3477 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3479 else
3480 return 0;
3484 /* Value is non-zero if P is a pointer to a live Lisp float on
3485 the heap. M is a pointer to the mem_block for P. */
3487 static INLINE int
3488 live_float_p (m, p)
3489 struct mem_node *m;
3490 void *p;
3492 if (m->type == MEM_TYPE_FLOAT)
3494 struct float_block *b = (struct float_block *) m->start;
3495 int offset = (char *) p - (char *) &b->floats[0];
3497 /* P must point to the start of a Lisp_Float and not be
3498 one of the unused cells in the current float block. */
3499 return (offset >= 0
3500 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3501 && offset % sizeof b->floats[0] == 0
3502 && (b != float_block
3503 || offset / sizeof b->floats[0] < float_block_index));
3505 else
3506 return 0;
3510 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3511 the heap. M is a pointer to the mem_block for P. */
3513 static INLINE int
3514 live_misc_p (m, p)
3515 struct mem_node *m;
3516 void *p;
3518 if (m->type == MEM_TYPE_MISC)
3520 struct marker_block *b = (struct marker_block *) m->start;
3521 int offset = (char *) p - (char *) &b->markers[0];
3523 /* P must point to the start of a Lisp_Misc, not be
3524 one of the unused cells in the current misc block,
3525 and not be on the free-list. */
3526 return (offset >= 0
3527 && offset % sizeof b->markers[0] == 0
3528 && (b != marker_block
3529 || offset / sizeof b->markers[0] < marker_block_index)
3530 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3532 else
3533 return 0;
3537 /* Value is non-zero if P is a pointer to a live vector-like object.
3538 M is a pointer to the mem_block for P. */
3540 static INLINE int
3541 live_vector_p (m, p)
3542 struct mem_node *m;
3543 void *p;
3545 return (p == m->start
3546 && m->type >= MEM_TYPE_VECTOR
3547 && m->type <= MEM_TYPE_WINDOW);
3551 /* Value is non-zero if P is a pointer to a live buffer. M is a
3552 pointer to the mem_block for P. */
3554 static INLINE int
3555 live_buffer_p (m, p)
3556 struct mem_node *m;
3557 void *p;
3559 /* P must point to the start of the block, and the buffer
3560 must not have been killed. */
3561 return (m->type == MEM_TYPE_BUFFER
3562 && p == m->start
3563 && !NILP (((struct buffer *) p)->name));
3566 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3568 #if GC_MARK_STACK
3570 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3572 /* Array of objects that are kept alive because the C stack contains
3573 a pattern that looks like a reference to them . */
3575 #define MAX_ZOMBIES 10
3576 static Lisp_Object zombies[MAX_ZOMBIES];
3578 /* Number of zombie objects. */
3580 static int nzombies;
3582 /* Number of garbage collections. */
3584 static int ngcs;
3586 /* Average percentage of zombies per collection. */
3588 static double avg_zombies;
3590 /* Max. number of live and zombie objects. */
3592 static int max_live, max_zombies;
3594 /* Average number of live objects per GC. */
3596 static double avg_live;
3598 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3599 doc: /* Show information about live and zombie objects. */)
3602 Lisp_Object args[8], zombie_list = Qnil;
3603 int i;
3604 for (i = 0; i < nzombies; i++)
3605 zombie_list = Fcons (zombies[i], zombie_list);
3606 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3607 args[1] = make_number (ngcs);
3608 args[2] = make_float (avg_live);
3609 args[3] = make_float (avg_zombies);
3610 args[4] = make_float (avg_zombies / avg_live / 100);
3611 args[5] = make_number (max_live);
3612 args[6] = make_number (max_zombies);
3613 args[7] = zombie_list;
3614 return Fmessage (8, args);
3617 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3620 /* Mark OBJ if we can prove it's a Lisp_Object. */
3622 static INLINE void
3623 mark_maybe_object (obj)
3624 Lisp_Object obj;
3626 void *po = (void *) XPNTR (obj);
3627 struct mem_node *m = mem_find (po);
3629 if (m != MEM_NIL)
3631 int mark_p = 0;
3633 switch (XGCTYPE (obj))
3635 case Lisp_String:
3636 mark_p = (live_string_p (m, po)
3637 && !STRING_MARKED_P ((struct Lisp_String *) po));
3638 break;
3640 case Lisp_Cons:
3641 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3642 break;
3644 case Lisp_Symbol:
3645 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3646 break;
3648 case Lisp_Float:
3649 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3650 break;
3652 case Lisp_Vectorlike:
3653 /* Note: can't check GC_BUFFERP before we know it's a
3654 buffer because checking that dereferences the pointer
3655 PO which might point anywhere. */
3656 if (live_vector_p (m, po))
3657 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3658 else if (live_buffer_p (m, po))
3659 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3660 break;
3662 case Lisp_Misc:
3663 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
3664 break;
3666 case Lisp_Int:
3667 case Lisp_Type_Limit:
3668 break;
3671 if (mark_p)
3673 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3674 if (nzombies < MAX_ZOMBIES)
3675 zombies[nzombies] = obj;
3676 ++nzombies;
3677 #endif
3678 mark_object (obj);
3684 /* If P points to Lisp data, mark that as live if it isn't already
3685 marked. */
3687 static INLINE void
3688 mark_maybe_pointer (p)
3689 void *p;
3691 struct mem_node *m;
3693 /* Quickly rule out some values which can't point to Lisp data. We
3694 assume that Lisp data is aligned on even addresses. */
3695 if ((EMACS_INT) p & 1)
3696 return;
3698 m = mem_find (p);
3699 if (m != MEM_NIL)
3701 Lisp_Object obj = Qnil;
3703 switch (m->type)
3705 case MEM_TYPE_NON_LISP:
3706 /* Nothing to do; not a pointer to Lisp memory. */
3707 break;
3709 case MEM_TYPE_BUFFER:
3710 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
3711 XSETVECTOR (obj, p);
3712 break;
3714 case MEM_TYPE_CONS:
3715 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
3716 XSETCONS (obj, p);
3717 break;
3719 case MEM_TYPE_STRING:
3720 if (live_string_p (m, p)
3721 && !STRING_MARKED_P ((struct Lisp_String *) p))
3722 XSETSTRING (obj, p);
3723 break;
3725 case MEM_TYPE_MISC:
3726 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
3727 XSETMISC (obj, p);
3728 break;
3730 case MEM_TYPE_SYMBOL:
3731 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
3732 XSETSYMBOL (obj, p);
3733 break;
3735 case MEM_TYPE_FLOAT:
3736 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
3737 XSETFLOAT (obj, p);
3738 break;
3740 case MEM_TYPE_VECTOR:
3741 case MEM_TYPE_PROCESS:
3742 case MEM_TYPE_HASH_TABLE:
3743 case MEM_TYPE_FRAME:
3744 case MEM_TYPE_WINDOW:
3745 if (live_vector_p (m, p))
3747 Lisp_Object tem;
3748 XSETVECTOR (tem, p);
3749 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
3750 obj = tem;
3752 break;
3754 default:
3755 abort ();
3758 if (!GC_NILP (obj))
3759 mark_object (obj);
3764 /* Mark Lisp objects referenced from the address range START..END. */
3766 static void
3767 mark_memory (start, end)
3768 void *start, *end;
3770 Lisp_Object *p;
3771 void **pp;
3773 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3774 nzombies = 0;
3775 #endif
3777 /* Make START the pointer to the start of the memory region,
3778 if it isn't already. */
3779 if (end < start)
3781 void *tem = start;
3782 start = end;
3783 end = tem;
3786 /* Mark Lisp_Objects. */
3787 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
3788 mark_maybe_object (*p);
3790 /* Mark Lisp data pointed to. This is necessary because, in some
3791 situations, the C compiler optimizes Lisp objects away, so that
3792 only a pointer to them remains. Example:
3794 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
3797 Lisp_Object obj = build_string ("test");
3798 struct Lisp_String *s = XSTRING (obj);
3799 Fgarbage_collect ();
3800 fprintf (stderr, "test `%s'\n", s->data);
3801 return Qnil;
3804 Here, `obj' isn't really used, and the compiler optimizes it
3805 away. The only reference to the life string is through the
3806 pointer `s'. */
3808 for (pp = (void **) start; (void *) pp < end; ++pp)
3809 mark_maybe_pointer (*pp);
3812 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
3813 the GCC system configuration. In gcc 3.2, the only systems for
3814 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
3815 by others?) and ns32k-pc532-min. */
3817 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
3819 static int setjmp_tested_p, longjmps_done;
3821 #define SETJMP_WILL_LIKELY_WORK "\
3823 Emacs garbage collector has been changed to use conservative stack\n\
3824 marking. Emacs has determined that the method it uses to do the\n\
3825 marking will likely work on your system, but this isn't sure.\n\
3827 If you are a system-programmer, or can get the help of a local wizard\n\
3828 who is, please take a look at the function mark_stack in alloc.c, and\n\
3829 verify that the methods used are appropriate for your system.\n\
3831 Please mail the result to <emacs-devel@gnu.org>.\n\
3834 #define SETJMP_WILL_NOT_WORK "\
3836 Emacs garbage collector has been changed to use conservative stack\n\
3837 marking. Emacs has determined that the default method it uses to do the\n\
3838 marking will not work on your system. We will need a system-dependent\n\
3839 solution for your system.\n\
3841 Please take a look at the function mark_stack in alloc.c, and\n\
3842 try to find a way to make it work on your system.\n\
3844 Note that you may get false negatives, depending on the compiler.\n\
3845 In particular, you need to use -O with GCC for this test.\n\
3847 Please mail the result to <emacs-devel@gnu.org>.\n\
3851 /* Perform a quick check if it looks like setjmp saves registers in a
3852 jmp_buf. Print a message to stderr saying so. When this test
3853 succeeds, this is _not_ a proof that setjmp is sufficient for
3854 conservative stack marking. Only the sources or a disassembly
3855 can prove that. */
3857 static void
3858 test_setjmp ()
3860 char buf[10];
3861 register int x;
3862 jmp_buf jbuf;
3863 int result = 0;
3865 /* Arrange for X to be put in a register. */
3866 sprintf (buf, "1");
3867 x = strlen (buf);
3868 x = 2 * x - 1;
3870 setjmp (jbuf);
3871 if (longjmps_done == 1)
3873 /* Came here after the longjmp at the end of the function.
3875 If x == 1, the longjmp has restored the register to its
3876 value before the setjmp, and we can hope that setjmp
3877 saves all such registers in the jmp_buf, although that
3878 isn't sure.
3880 For other values of X, either something really strange is
3881 taking place, or the setjmp just didn't save the register. */
3883 if (x == 1)
3884 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
3885 else
3887 fprintf (stderr, SETJMP_WILL_NOT_WORK);
3888 exit (1);
3892 ++longjmps_done;
3893 x = 2;
3894 if (longjmps_done == 1)
3895 longjmp (jbuf, 1);
3898 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3901 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3903 /* Abort if anything GCPRO'd doesn't survive the GC. */
3905 static void
3906 check_gcpros ()
3908 struct gcpro *p;
3909 int i;
3911 for (p = gcprolist; p; p = p->next)
3912 for (i = 0; i < p->nvars; ++i)
3913 if (!survives_gc_p (p->var[i]))
3914 /* FIXME: It's not necessarily a bug. It might just be that the
3915 GCPRO is unnecessary or should release the object sooner. */
3916 abort ();
3919 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3921 static void
3922 dump_zombies ()
3924 int i;
3926 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
3927 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
3929 fprintf (stderr, " %d = ", i);
3930 debug_print (zombies[i]);
3934 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3937 /* Mark live Lisp objects on the C stack.
3939 There are several system-dependent problems to consider when
3940 porting this to new architectures:
3942 Processor Registers
3944 We have to mark Lisp objects in CPU registers that can hold local
3945 variables or are used to pass parameters.
3947 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
3948 something that either saves relevant registers on the stack, or
3949 calls mark_maybe_object passing it each register's contents.
3951 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
3952 implementation assumes that calling setjmp saves registers we need
3953 to see in a jmp_buf which itself lies on the stack. This doesn't
3954 have to be true! It must be verified for each system, possibly
3955 by taking a look at the source code of setjmp.
3957 Stack Layout
3959 Architectures differ in the way their processor stack is organized.
3960 For example, the stack might look like this
3962 +----------------+
3963 | Lisp_Object | size = 4
3964 +----------------+
3965 | something else | size = 2
3966 +----------------+
3967 | Lisp_Object | size = 4
3968 +----------------+
3969 | ... |
3971 In such a case, not every Lisp_Object will be aligned equally. To
3972 find all Lisp_Object on the stack it won't be sufficient to walk
3973 the stack in steps of 4 bytes. Instead, two passes will be
3974 necessary, one starting at the start of the stack, and a second
3975 pass starting at the start of the stack + 2. Likewise, if the
3976 minimal alignment of Lisp_Objects on the stack is 1, four passes
3977 would be necessary, each one starting with one byte more offset
3978 from the stack start.
3980 The current code assumes by default that Lisp_Objects are aligned
3981 equally on the stack. */
3983 static void
3984 mark_stack ()
3986 int i;
3987 jmp_buf j;
3988 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
3989 void *end;
3991 /* This trick flushes the register windows so that all the state of
3992 the process is contained in the stack. */
3993 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
3994 needed on ia64 too. See mach_dep.c, where it also says inline
3995 assembler doesn't work with relevant proprietary compilers. */
3996 #ifdef sparc
3997 asm ("ta 3");
3998 #endif
4000 /* Save registers that we need to see on the stack. We need to see
4001 registers used to hold register variables and registers used to
4002 pass parameters. */
4003 #ifdef GC_SAVE_REGISTERS_ON_STACK
4004 GC_SAVE_REGISTERS_ON_STACK (end);
4005 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4007 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4008 setjmp will definitely work, test it
4009 and print a message with the result
4010 of the test. */
4011 if (!setjmp_tested_p)
4013 setjmp_tested_p = 1;
4014 test_setjmp ();
4016 #endif /* GC_SETJMP_WORKS */
4018 setjmp (j);
4019 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4020 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4022 /* This assumes that the stack is a contiguous region in memory. If
4023 that's not the case, something has to be done here to iterate
4024 over the stack segments. */
4025 #ifndef GC_LISP_OBJECT_ALIGNMENT
4026 #ifdef __GNUC__
4027 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4028 #else
4029 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4030 #endif
4031 #endif
4032 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4033 mark_memory ((char *) stack_base + i, end);
4035 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4036 check_gcpros ();
4037 #endif
4041 #endif /* GC_MARK_STACK != 0 */
4045 /***********************************************************************
4046 Pure Storage Management
4047 ***********************************************************************/
4049 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4050 pointer to it. TYPE is the Lisp type for which the memory is
4051 allocated. TYPE < 0 means it's not used for a Lisp object.
4053 If store_pure_type_info is set and TYPE is >= 0, the type of
4054 the allocated object is recorded in pure_types. */
4056 static POINTER_TYPE *
4057 pure_alloc (size, type)
4058 size_t size;
4059 int type;
4061 POINTER_TYPE *result;
4062 size_t alignment = sizeof (EMACS_INT);
4064 /* Give Lisp_Floats an extra alignment. */
4065 if (type == Lisp_Float)
4067 #if defined __GNUC__ && __GNUC__ >= 2
4068 alignment = __alignof (struct Lisp_Float);
4069 #else
4070 alignment = sizeof (struct Lisp_Float);
4071 #endif
4074 again:
4075 result = ALIGN (purebeg + pure_bytes_used, alignment);
4076 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4078 if (pure_bytes_used <= pure_size)
4079 return result;
4081 /* Don't allocate a large amount here,
4082 because it might get mmap'd and then its address
4083 might not be usable. */
4084 purebeg = (char *) xmalloc (10000);
4085 pure_size = 10000;
4086 pure_bytes_used_before_overflow += pure_bytes_used - size;
4087 pure_bytes_used = 0;
4088 goto again;
4092 /* Print a warning if PURESIZE is too small. */
4094 void
4095 check_pure_size ()
4097 if (pure_bytes_used_before_overflow)
4098 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4099 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4103 /* Return a string allocated in pure space. DATA is a buffer holding
4104 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4105 non-zero means make the result string multibyte.
4107 Must get an error if pure storage is full, since if it cannot hold
4108 a large string it may be able to hold conses that point to that
4109 string; then the string is not protected from gc. */
4111 Lisp_Object
4112 make_pure_string (data, nchars, nbytes, multibyte)
4113 char *data;
4114 int nchars, nbytes;
4115 int multibyte;
4117 Lisp_Object string;
4118 struct Lisp_String *s;
4120 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4121 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4122 s->size = nchars;
4123 s->size_byte = multibyte ? nbytes : -1;
4124 bcopy (data, s->data, nbytes);
4125 s->data[nbytes] = '\0';
4126 s->intervals = NULL_INTERVAL;
4127 XSETSTRING (string, s);
4128 return string;
4132 /* Return a cons allocated from pure space. Give it pure copies
4133 of CAR as car and CDR as cdr. */
4135 Lisp_Object
4136 pure_cons (car, cdr)
4137 Lisp_Object car, cdr;
4139 register Lisp_Object new;
4140 struct Lisp_Cons *p;
4142 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4143 XSETCONS (new, p);
4144 XSETCAR (new, Fpurecopy (car));
4145 XSETCDR (new, Fpurecopy (cdr));
4146 return new;
4150 /* Value is a float object with value NUM allocated from pure space. */
4152 Lisp_Object
4153 make_pure_float (num)
4154 double num;
4156 register Lisp_Object new;
4157 struct Lisp_Float *p;
4159 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4160 XSETFLOAT (new, p);
4161 XFLOAT_DATA (new) = num;
4162 return new;
4166 /* Return a vector with room for LEN Lisp_Objects allocated from
4167 pure space. */
4169 Lisp_Object
4170 make_pure_vector (len)
4171 EMACS_INT len;
4173 Lisp_Object new;
4174 struct Lisp_Vector *p;
4175 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4177 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4178 XSETVECTOR (new, p);
4179 XVECTOR (new)->size = len;
4180 return new;
4184 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4185 doc: /* Make a copy of OBJECT in pure storage.
4186 Recursively copies contents of vectors and cons cells.
4187 Does not copy symbols. Copies strings without text properties. */)
4188 (obj)
4189 register Lisp_Object obj;
4191 if (NILP (Vpurify_flag))
4192 return obj;
4194 if (PURE_POINTER_P (XPNTR (obj)))
4195 return obj;
4197 if (CONSP (obj))
4198 return pure_cons (XCAR (obj), XCDR (obj));
4199 else if (FLOATP (obj))
4200 return make_pure_float (XFLOAT_DATA (obj));
4201 else if (STRINGP (obj))
4202 return make_pure_string (SDATA (obj), SCHARS (obj),
4203 SBYTES (obj),
4204 STRING_MULTIBYTE (obj));
4205 else if (COMPILEDP (obj) || VECTORP (obj))
4207 register struct Lisp_Vector *vec;
4208 register int i, size;
4210 size = XVECTOR (obj)->size;
4211 if (size & PSEUDOVECTOR_FLAG)
4212 size &= PSEUDOVECTOR_SIZE_MASK;
4213 vec = XVECTOR (make_pure_vector ((EMACS_INT) size));
4214 for (i = 0; i < size; i++)
4215 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4216 if (COMPILEDP (obj))
4217 XSETCOMPILED (obj, vec);
4218 else
4219 XSETVECTOR (obj, vec);
4220 return obj;
4222 else if (MARKERP (obj))
4223 error ("Attempt to copy a marker to pure storage");
4225 return obj;
4230 /***********************************************************************
4231 Protection from GC
4232 ***********************************************************************/
4234 /* Put an entry in staticvec, pointing at the variable with address
4235 VARADDRESS. */
4237 void
4238 staticpro (varaddress)
4239 Lisp_Object *varaddress;
4241 staticvec[staticidx++] = varaddress;
4242 if (staticidx >= NSTATICS)
4243 abort ();
4246 struct catchtag
4248 Lisp_Object tag;
4249 Lisp_Object val;
4250 struct catchtag *next;
4253 struct backtrace
4255 struct backtrace *next;
4256 Lisp_Object *function;
4257 Lisp_Object *args; /* Points to vector of args. */
4258 int nargs; /* Length of vector. */
4259 /* If nargs is UNEVALLED, args points to slot holding list of
4260 unevalled args. */
4261 char evalargs;
4266 /***********************************************************************
4267 Protection from GC
4268 ***********************************************************************/
4270 /* Temporarily prevent garbage collection. */
4273 inhibit_garbage_collection ()
4275 int count = SPECPDL_INDEX ();
4276 int nbits = min (VALBITS, BITS_PER_INT);
4278 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4279 return count;
4283 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4284 doc: /* Reclaim storage for Lisp objects no longer needed.
4285 Garbage collection happens automatically if you cons more than
4286 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4287 `garbage-collect' normally returns a list with info on amount of space in use:
4288 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4289 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4290 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4291 (USED-STRINGS . FREE-STRINGS))
4292 However, if there was overflow in pure space, `garbage-collect'
4293 returns nil, because real GC can't be done. */)
4296 register struct specbinding *bind;
4297 struct catchtag *catch;
4298 struct handler *handler;
4299 register struct backtrace *backlist;
4300 char stack_top_variable;
4301 register int i;
4302 int message_p;
4303 Lisp_Object total[8];
4304 int count = SPECPDL_INDEX ();
4305 EMACS_TIME t1, t2, t3;
4307 if (abort_on_gc)
4308 abort ();
4310 EMACS_GET_TIME (t1);
4312 /* Can't GC if pure storage overflowed because we can't determine
4313 if something is a pure object or not. */
4314 if (pure_bytes_used_before_overflow)
4315 return Qnil;
4317 /* In case user calls debug_print during GC,
4318 don't let that cause a recursive GC. */
4319 consing_since_gc = 0;
4321 /* Save what's currently displayed in the echo area. */
4322 message_p = push_message ();
4323 record_unwind_protect (pop_message_unwind, Qnil);
4325 /* Save a copy of the contents of the stack, for debugging. */
4326 #if MAX_SAVE_STACK > 0
4327 if (NILP (Vpurify_flag))
4329 i = &stack_top_variable - stack_bottom;
4330 if (i < 0) i = -i;
4331 if (i < MAX_SAVE_STACK)
4333 if (stack_copy == 0)
4334 stack_copy = (char *) xmalloc (stack_copy_size = i);
4335 else if (stack_copy_size < i)
4336 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4337 if (stack_copy)
4339 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4340 bcopy (stack_bottom, stack_copy, i);
4341 else
4342 bcopy (&stack_top_variable, stack_copy, i);
4346 #endif /* MAX_SAVE_STACK > 0 */
4348 if (garbage_collection_messages)
4349 message1_nolog ("Garbage collecting...");
4351 BLOCK_INPUT;
4353 shrink_regexp_cache ();
4355 /* Don't keep undo information around forever. */
4357 register struct buffer *nextb = all_buffers;
4359 while (nextb)
4361 /* If a buffer's undo list is Qt, that means that undo is
4362 turned off in that buffer. Calling truncate_undo_list on
4363 Qt tends to return NULL, which effectively turns undo back on.
4364 So don't call truncate_undo_list if undo_list is Qt. */
4365 if (! EQ (nextb->undo_list, Qt))
4366 nextb->undo_list
4367 = truncate_undo_list (nextb->undo_list, undo_limit,
4368 undo_strong_limit);
4370 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4371 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4373 /* If a buffer's gap size is more than 10% of the buffer
4374 size, or larger than 2000 bytes, then shrink it
4375 accordingly. Keep a minimum size of 20 bytes. */
4376 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4378 if (nextb->text->gap_size > size)
4380 struct buffer *save_current = current_buffer;
4381 current_buffer = nextb;
4382 make_gap (-(nextb->text->gap_size - size));
4383 current_buffer = save_current;
4387 nextb = nextb->next;
4391 gc_in_progress = 1;
4393 /* clear_marks (); */
4395 /* Mark all the special slots that serve as the roots of accessibility.
4397 Usually the special slots to mark are contained in particular structures.
4398 Then we know no slot is marked twice because the structures don't overlap.
4399 In some cases, the structures point to the slots to be marked.
4400 For these, we use MARKBIT to avoid double marking of the slot. */
4402 for (i = 0; i < staticidx; i++)
4403 mark_object (*staticvec[i]);
4405 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4406 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4407 mark_stack ();
4408 #else
4410 register struct gcpro *tail;
4411 for (tail = gcprolist; tail; tail = tail->next)
4412 for (i = 0; i < tail->nvars; i++)
4413 if (!XMARKBIT (tail->var[i]))
4415 mark_object (tail->var[i]);
4416 XMARK (tail->var[i]);
4419 #endif
4421 mark_byte_stack ();
4422 for (bind = specpdl; bind != specpdl_ptr; bind++)
4424 mark_object (bind->symbol);
4425 mark_object (bind->old_value);
4427 for (catch = catchlist; catch; catch = catch->next)
4429 mark_object (catch->tag);
4430 mark_object (catch->val);
4432 for (handler = handlerlist; handler; handler = handler->next)
4434 mark_object (handler->handler);
4435 mark_object (handler->var);
4437 for (backlist = backtrace_list; backlist; backlist = backlist->next)
4439 if (!XMARKBIT (*backlist->function))
4441 mark_object (*backlist->function);
4442 XMARK (*backlist->function);
4444 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
4445 i = 0;
4446 else
4447 i = backlist->nargs - 1;
4448 for (; i >= 0; i--)
4449 if (!XMARKBIT (backlist->args[i]))
4451 mark_object (backlist->args[i]);
4452 XMARK (backlist->args[i]);
4455 mark_kboards ();
4457 /* Look thru every buffer's undo list
4458 for elements that update markers that were not marked,
4459 and delete them. */
4461 register struct buffer *nextb = all_buffers;
4463 while (nextb)
4465 /* If a buffer's undo list is Qt, that means that undo is
4466 turned off in that buffer. Calling truncate_undo_list on
4467 Qt tends to return NULL, which effectively turns undo back on.
4468 So don't call truncate_undo_list if undo_list is Qt. */
4469 if (! EQ (nextb->undo_list, Qt))
4471 Lisp_Object tail, prev;
4472 tail = nextb->undo_list;
4473 prev = Qnil;
4474 while (CONSP (tail))
4476 if (GC_CONSP (XCAR (tail))
4477 && GC_MARKERP (XCAR (XCAR (tail)))
4478 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4480 if (NILP (prev))
4481 nextb->undo_list = tail = XCDR (tail);
4482 else
4484 tail = XCDR (tail);
4485 XSETCDR (prev, tail);
4488 else
4490 prev = tail;
4491 tail = XCDR (tail);
4496 nextb = nextb->next;
4500 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4501 mark_stack ();
4502 #endif
4504 #ifdef USE_GTK
4506 extern void xg_mark_data ();
4507 xg_mark_data ();
4509 #endif
4511 gc_sweep ();
4513 /* Clear the mark bits that we set in certain root slots. */
4515 #if (GC_MARK_STACK == GC_USE_GCPROS_AS_BEFORE \
4516 || GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES)
4518 register struct gcpro *tail;
4520 for (tail = gcprolist; tail; tail = tail->next)
4521 for (i = 0; i < tail->nvars; i++)
4522 XUNMARK (tail->var[i]);
4524 #endif
4526 unmark_byte_stack ();
4527 for (backlist = backtrace_list; backlist; backlist = backlist->next)
4529 XUNMARK (*backlist->function);
4530 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
4531 i = 0;
4532 else
4533 i = backlist->nargs - 1;
4534 for (; i >= 0; i--)
4535 XUNMARK (backlist->args[i]);
4537 VECTOR_UNMARK (&buffer_defaults);
4538 VECTOR_UNMARK (&buffer_local_symbols);
4540 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4541 dump_zombies ();
4542 #endif
4544 UNBLOCK_INPUT;
4546 /* clear_marks (); */
4547 gc_in_progress = 0;
4549 consing_since_gc = 0;
4550 if (gc_cons_threshold < 10000)
4551 gc_cons_threshold = 10000;
4553 if (garbage_collection_messages)
4555 if (message_p || minibuf_level > 0)
4556 restore_message ();
4557 else
4558 message1_nolog ("Garbage collecting...done");
4561 unbind_to (count, Qnil);
4563 total[0] = Fcons (make_number (total_conses),
4564 make_number (total_free_conses));
4565 total[1] = Fcons (make_number (total_symbols),
4566 make_number (total_free_symbols));
4567 total[2] = Fcons (make_number (total_markers),
4568 make_number (total_free_markers));
4569 total[3] = make_number (total_string_size);
4570 total[4] = make_number (total_vector_size);
4571 total[5] = Fcons (make_number (total_floats),
4572 make_number (total_free_floats));
4573 total[6] = Fcons (make_number (total_intervals),
4574 make_number (total_free_intervals));
4575 total[7] = Fcons (make_number (total_strings),
4576 make_number (total_free_strings));
4578 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4580 /* Compute average percentage of zombies. */
4581 double nlive = 0;
4583 for (i = 0; i < 7; ++i)
4584 if (CONSP (total[i]))
4585 nlive += XFASTINT (XCAR (total[i]));
4587 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4588 max_live = max (nlive, max_live);
4589 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4590 max_zombies = max (nzombies, max_zombies);
4591 ++ngcs;
4593 #endif
4595 if (!NILP (Vpost_gc_hook))
4597 int count = inhibit_garbage_collection ();
4598 safe_run_hooks (Qpost_gc_hook);
4599 unbind_to (count, Qnil);
4602 /* Accumulate statistics. */
4603 EMACS_GET_TIME (t2);
4604 EMACS_SUB_TIME (t3, t2, t1);
4605 if (FLOATP (Vgc_elapsed))
4606 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4607 EMACS_SECS (t3) +
4608 EMACS_USECS (t3) * 1.0e-6);
4609 gcs_done++;
4611 return Flist (sizeof total / sizeof *total, total);
4615 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4616 only interesting objects referenced from glyphs are strings. */
4618 static void
4619 mark_glyph_matrix (matrix)
4620 struct glyph_matrix *matrix;
4622 struct glyph_row *row = matrix->rows;
4623 struct glyph_row *end = row + matrix->nrows;
4625 for (; row < end; ++row)
4626 if (row->enabled_p)
4628 int area;
4629 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4631 struct glyph *glyph = row->glyphs[area];
4632 struct glyph *end_glyph = glyph + row->used[area];
4634 for (; glyph < end_glyph; ++glyph)
4635 if (GC_STRINGP (glyph->object)
4636 && !STRING_MARKED_P (XSTRING (glyph->object)))
4637 mark_object (glyph->object);
4643 /* Mark Lisp faces in the face cache C. */
4645 static void
4646 mark_face_cache (c)
4647 struct face_cache *c;
4649 if (c)
4651 int i, j;
4652 for (i = 0; i < c->used; ++i)
4654 struct face *face = FACE_FROM_ID (c->f, i);
4656 if (face)
4658 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
4659 mark_object (face->lface[j]);
4666 #ifdef HAVE_WINDOW_SYSTEM
4668 /* Mark Lisp objects in image IMG. */
4670 static void
4671 mark_image (img)
4672 struct image *img;
4674 mark_object (img->spec);
4676 if (!NILP (img->data.lisp_val))
4677 mark_object (img->data.lisp_val);
4681 /* Mark Lisp objects in image cache of frame F. It's done this way so
4682 that we don't have to include xterm.h here. */
4684 static void
4685 mark_image_cache (f)
4686 struct frame *f;
4688 forall_images_in_image_cache (f, mark_image);
4691 #endif /* HAVE_X_WINDOWS */
4695 /* Mark reference to a Lisp_Object.
4696 If the object referred to has not been seen yet, recursively mark
4697 all the references contained in it. */
4699 #define LAST_MARKED_SIZE 500
4700 Lisp_Object last_marked[LAST_MARKED_SIZE];
4701 int last_marked_index;
4703 /* For debugging--call abort when we cdr down this many
4704 links of a list, in mark_object. In debugging,
4705 the call to abort will hit a breakpoint.
4706 Normally this is zero and the check never goes off. */
4707 int mark_object_loop_halt;
4709 void
4710 mark_object (arg)
4711 Lisp_Object arg;
4713 register Lisp_Object obj = arg;
4714 #ifdef GC_CHECK_MARKED_OBJECTS
4715 void *po;
4716 struct mem_node *m;
4717 #endif
4718 int cdr_count = 0;
4720 loop:
4721 XUNMARK (obj);
4723 if (PURE_POINTER_P (XPNTR (obj)))
4724 return;
4726 last_marked[last_marked_index++] = obj;
4727 if (last_marked_index == LAST_MARKED_SIZE)
4728 last_marked_index = 0;
4730 /* Perform some sanity checks on the objects marked here. Abort if
4731 we encounter an object we know is bogus. This increases GC time
4732 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
4733 #ifdef GC_CHECK_MARKED_OBJECTS
4735 po = (void *) XPNTR (obj);
4737 /* Check that the object pointed to by PO is known to be a Lisp
4738 structure allocated from the heap. */
4739 #define CHECK_ALLOCATED() \
4740 do { \
4741 m = mem_find (po); \
4742 if (m == MEM_NIL) \
4743 abort (); \
4744 } while (0)
4746 /* Check that the object pointed to by PO is live, using predicate
4747 function LIVEP. */
4748 #define CHECK_LIVE(LIVEP) \
4749 do { \
4750 if (!LIVEP (m, po)) \
4751 abort (); \
4752 } while (0)
4754 /* Check both of the above conditions. */
4755 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
4756 do { \
4757 CHECK_ALLOCATED (); \
4758 CHECK_LIVE (LIVEP); \
4759 } while (0) \
4761 #else /* not GC_CHECK_MARKED_OBJECTS */
4763 #define CHECK_ALLOCATED() (void) 0
4764 #define CHECK_LIVE(LIVEP) (void) 0
4765 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
4767 #endif /* not GC_CHECK_MARKED_OBJECTS */
4769 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
4771 case Lisp_String:
4773 register struct Lisp_String *ptr = XSTRING (obj);
4774 CHECK_ALLOCATED_AND_LIVE (live_string_p);
4775 MARK_INTERVAL_TREE (ptr->intervals);
4776 MARK_STRING (ptr);
4777 #ifdef GC_CHECK_STRING_BYTES
4778 /* Check that the string size recorded in the string is the
4779 same as the one recorded in the sdata structure. */
4780 CHECK_STRING_BYTES (ptr);
4781 #endif /* GC_CHECK_STRING_BYTES */
4783 break;
4785 case Lisp_Vectorlike:
4786 #ifdef GC_CHECK_MARKED_OBJECTS
4787 m = mem_find (po);
4788 if (m == MEM_NIL && !GC_SUBRP (obj)
4789 && po != &buffer_defaults
4790 && po != &buffer_local_symbols)
4791 abort ();
4792 #endif /* GC_CHECK_MARKED_OBJECTS */
4794 if (GC_BUFFERP (obj))
4796 if (!VECTOR_MARKED_P (XBUFFER (obj)))
4798 #ifdef GC_CHECK_MARKED_OBJECTS
4799 if (po != &buffer_defaults && po != &buffer_local_symbols)
4801 struct buffer *b;
4802 for (b = all_buffers; b && b != po; b = b->next)
4804 if (b == NULL)
4805 abort ();
4807 #endif /* GC_CHECK_MARKED_OBJECTS */
4808 mark_buffer (obj);
4811 else if (GC_SUBRP (obj))
4812 break;
4813 else if (GC_COMPILEDP (obj))
4814 /* We could treat this just like a vector, but it is better to
4815 save the COMPILED_CONSTANTS element for last and avoid
4816 recursion there. */
4818 register struct Lisp_Vector *ptr = XVECTOR (obj);
4819 register EMACS_INT size = ptr->size;
4820 register int i;
4822 if (VECTOR_MARKED_P (ptr))
4823 break; /* Already marked */
4825 CHECK_LIVE (live_vector_p);
4826 VECTOR_MARK (ptr); /* Else mark it */
4827 size &= PSEUDOVECTOR_SIZE_MASK;
4828 for (i = 0; i < size; i++) /* and then mark its elements */
4830 if (i != COMPILED_CONSTANTS)
4831 mark_object (ptr->contents[i]);
4833 obj = ptr->contents[COMPILED_CONSTANTS];
4834 goto loop;
4836 else if (GC_FRAMEP (obj))
4838 register struct frame *ptr = XFRAME (obj);
4840 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4841 VECTOR_MARK (ptr); /* Else mark it */
4843 CHECK_LIVE (live_vector_p);
4844 mark_object (ptr->name);
4845 mark_object (ptr->icon_name);
4846 mark_object (ptr->title);
4847 mark_object (ptr->focus_frame);
4848 mark_object (ptr->selected_window);
4849 mark_object (ptr->minibuffer_window);
4850 mark_object (ptr->param_alist);
4851 mark_object (ptr->scroll_bars);
4852 mark_object (ptr->condemned_scroll_bars);
4853 mark_object (ptr->menu_bar_items);
4854 mark_object (ptr->face_alist);
4855 mark_object (ptr->menu_bar_vector);
4856 mark_object (ptr->buffer_predicate);
4857 mark_object (ptr->buffer_list);
4858 mark_object (ptr->menu_bar_window);
4859 mark_object (ptr->tool_bar_window);
4860 mark_face_cache (ptr->face_cache);
4861 #ifdef HAVE_WINDOW_SYSTEM
4862 mark_image_cache (ptr);
4863 mark_object (ptr->tool_bar_items);
4864 mark_object (ptr->desired_tool_bar_string);
4865 mark_object (ptr->current_tool_bar_string);
4866 #endif /* HAVE_WINDOW_SYSTEM */
4868 else if (GC_BOOL_VECTOR_P (obj))
4870 register struct Lisp_Vector *ptr = XVECTOR (obj);
4872 if (VECTOR_MARKED_P (ptr))
4873 break; /* Already marked */
4874 CHECK_LIVE (live_vector_p);
4875 VECTOR_MARK (ptr); /* Else mark it */
4877 else if (GC_WINDOWP (obj))
4879 register struct Lisp_Vector *ptr = XVECTOR (obj);
4880 struct window *w = XWINDOW (obj);
4881 register int i;
4883 /* Stop if already marked. */
4884 if (VECTOR_MARKED_P (ptr))
4885 break;
4887 /* Mark it. */
4888 CHECK_LIVE (live_vector_p);
4889 VECTOR_MARK (ptr);
4891 /* There is no Lisp data above The member CURRENT_MATRIX in
4892 struct WINDOW. Stop marking when that slot is reached. */
4893 for (i = 0;
4894 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
4895 i++)
4896 mark_object (ptr->contents[i]);
4898 /* Mark glyphs for leaf windows. Marking window matrices is
4899 sufficient because frame matrices use the same glyph
4900 memory. */
4901 if (NILP (w->hchild)
4902 && NILP (w->vchild)
4903 && w->current_matrix)
4905 mark_glyph_matrix (w->current_matrix);
4906 mark_glyph_matrix (w->desired_matrix);
4909 else if (GC_HASH_TABLE_P (obj))
4911 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
4913 /* Stop if already marked. */
4914 if (VECTOR_MARKED_P (h))
4915 break;
4917 /* Mark it. */
4918 CHECK_LIVE (live_vector_p);
4919 VECTOR_MARK (h);
4921 /* Mark contents. */
4922 /* Do not mark next_free or next_weak.
4923 Being in the next_weak chain
4924 should not keep the hash table alive.
4925 No need to mark `count' since it is an integer. */
4926 mark_object (h->test);
4927 mark_object (h->weak);
4928 mark_object (h->rehash_size);
4929 mark_object (h->rehash_threshold);
4930 mark_object (h->hash);
4931 mark_object (h->next);
4932 mark_object (h->index);
4933 mark_object (h->user_hash_function);
4934 mark_object (h->user_cmp_function);
4936 /* If hash table is not weak, mark all keys and values.
4937 For weak tables, mark only the vector. */
4938 if (GC_NILP (h->weak))
4939 mark_object (h->key_and_value);
4940 else
4941 VECTOR_MARK (XVECTOR (h->key_and_value));
4943 else
4945 register struct Lisp_Vector *ptr = XVECTOR (obj);
4946 register EMACS_INT size = ptr->size;
4947 register int i;
4949 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4950 CHECK_LIVE (live_vector_p);
4951 VECTOR_MARK (ptr); /* Else mark it */
4952 if (size & PSEUDOVECTOR_FLAG)
4953 size &= PSEUDOVECTOR_SIZE_MASK;
4955 for (i = 0; i < size; i++) /* and then mark its elements */
4956 mark_object (ptr->contents[i]);
4958 break;
4960 case Lisp_Symbol:
4962 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
4963 struct Lisp_Symbol *ptrx;
4965 if (ptr->gcmarkbit) break;
4966 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
4967 ptr->gcmarkbit = 1;
4968 mark_object (ptr->value);
4969 mark_object (ptr->function);
4970 mark_object (ptr->plist);
4972 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
4973 MARK_STRING (XSTRING (ptr->xname));
4974 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
4976 /* Note that we do not mark the obarray of the symbol.
4977 It is safe not to do so because nothing accesses that
4978 slot except to check whether it is nil. */
4979 ptr = ptr->next;
4980 if (ptr)
4982 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
4983 XSETSYMBOL (obj, ptrx);
4984 goto loop;
4987 break;
4989 case Lisp_Misc:
4990 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
4991 if (XMARKER (obj)->gcmarkbit)
4992 break;
4993 XMARKER (obj)->gcmarkbit = 1;
4994 switch (XMISCTYPE (obj))
4996 case Lisp_Misc_Buffer_Local_Value:
4997 case Lisp_Misc_Some_Buffer_Local_Value:
4999 register struct Lisp_Buffer_Local_Value *ptr
5000 = XBUFFER_LOCAL_VALUE (obj);
5001 /* If the cdr is nil, avoid recursion for the car. */
5002 if (EQ (ptr->cdr, Qnil))
5004 obj = ptr->realvalue;
5005 goto loop;
5007 mark_object (ptr->realvalue);
5008 mark_object (ptr->buffer);
5009 mark_object (ptr->frame);
5010 obj = ptr->cdr;
5011 goto loop;
5014 case Lisp_Misc_Marker:
5015 /* DO NOT mark thru the marker's chain.
5016 The buffer's markers chain does not preserve markers from gc;
5017 instead, markers are removed from the chain when freed by gc. */
5018 case Lisp_Misc_Intfwd:
5019 case Lisp_Misc_Boolfwd:
5020 case Lisp_Misc_Objfwd:
5021 case Lisp_Misc_Buffer_Objfwd:
5022 case Lisp_Misc_Kboard_Objfwd:
5023 /* Don't bother with Lisp_Buffer_Objfwd,
5024 since all markable slots in current buffer marked anyway. */
5025 /* Don't need to do Lisp_Objfwd, since the places they point
5026 are protected with staticpro. */
5027 case Lisp_Misc_Save_Value:
5028 break;
5030 case Lisp_Misc_Overlay:
5032 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5033 mark_object (ptr->start);
5034 mark_object (ptr->end);
5035 mark_object (ptr->plist);
5036 if (ptr->next)
5038 XSETMISC (obj, ptr->next);
5039 goto loop;
5042 break;
5044 default:
5045 abort ();
5047 break;
5049 case Lisp_Cons:
5051 register struct Lisp_Cons *ptr = XCONS (obj);
5052 if (CONS_MARKED_P (ptr)) break;
5053 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5054 CONS_MARK (ptr);
5055 /* If the cdr is nil, avoid recursion for the car. */
5056 if (EQ (ptr->cdr, Qnil))
5058 obj = ptr->car;
5059 cdr_count = 0;
5060 goto loop;
5062 mark_object (ptr->car);
5063 obj = ptr->cdr;
5064 cdr_count++;
5065 if (cdr_count == mark_object_loop_halt)
5066 abort ();
5067 goto loop;
5070 case Lisp_Float:
5071 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5072 FLOAT_MARK (XFLOAT (obj));
5073 break;
5075 case Lisp_Int:
5076 break;
5078 default:
5079 abort ();
5082 #undef CHECK_LIVE
5083 #undef CHECK_ALLOCATED
5084 #undef CHECK_ALLOCATED_AND_LIVE
5087 /* Mark the pointers in a buffer structure. */
5089 static void
5090 mark_buffer (buf)
5091 Lisp_Object buf;
5093 register struct buffer *buffer = XBUFFER (buf);
5094 register Lisp_Object *ptr, tmp;
5095 Lisp_Object base_buffer;
5097 VECTOR_MARK (buffer);
5099 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5101 if (CONSP (buffer->undo_list))
5103 Lisp_Object tail;
5104 tail = buffer->undo_list;
5106 /* We mark the undo list specially because
5107 its pointers to markers should be weak. */
5109 while (CONSP (tail))
5111 register struct Lisp_Cons *ptr = XCONS (tail);
5113 if (CONS_MARKED_P (ptr))
5114 break;
5115 CONS_MARK (ptr);
5116 if (GC_CONSP (ptr->car)
5117 && !CONS_MARKED_P (XCONS (ptr->car))
5118 && GC_MARKERP (XCAR (ptr->car)))
5120 CONS_MARK (XCONS (ptr->car));
5121 mark_object (XCDR (ptr->car));
5123 else
5124 mark_object (ptr->car);
5126 if (CONSP (ptr->cdr))
5127 tail = ptr->cdr;
5128 else
5129 break;
5132 mark_object (XCDR (tail));
5134 else
5135 mark_object (buffer->undo_list);
5137 if (buffer->overlays_before)
5139 XSETMISC (tmp, buffer->overlays_before);
5140 mark_object (tmp);
5142 if (buffer->overlays_after)
5144 XSETMISC (tmp, buffer->overlays_after);
5145 mark_object (tmp);
5148 for (ptr = &buffer->name;
5149 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5150 ptr++)
5151 mark_object (*ptr);
5153 /* If this is an indirect buffer, mark its base buffer. */
5154 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5156 XSETBUFFER (base_buffer, buffer->base_buffer);
5157 mark_buffer (base_buffer);
5162 /* Value is non-zero if OBJ will survive the current GC because it's
5163 either marked or does not need to be marked to survive. */
5166 survives_gc_p (obj)
5167 Lisp_Object obj;
5169 int survives_p;
5171 switch (XGCTYPE (obj))
5173 case Lisp_Int:
5174 survives_p = 1;
5175 break;
5177 case Lisp_Symbol:
5178 survives_p = XSYMBOL (obj)->gcmarkbit;
5179 break;
5181 case Lisp_Misc:
5182 survives_p = XMARKER (obj)->gcmarkbit;
5183 break;
5185 case Lisp_String:
5186 survives_p = STRING_MARKED_P (XSTRING (obj));
5187 break;
5189 case Lisp_Vectorlike:
5190 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5191 break;
5193 case Lisp_Cons:
5194 survives_p = CONS_MARKED_P (XCONS (obj));
5195 break;
5197 case Lisp_Float:
5198 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5199 break;
5201 default:
5202 abort ();
5205 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5210 /* Sweep: find all structures not marked, and free them. */
5212 static void
5213 gc_sweep ()
5215 /* Remove or mark entries in weak hash tables.
5216 This must be done before any object is unmarked. */
5217 sweep_weak_hash_tables ();
5219 sweep_strings ();
5220 #ifdef GC_CHECK_STRING_BYTES
5221 if (!noninteractive)
5222 check_string_bytes (1);
5223 #endif
5225 /* Put all unmarked conses on free list */
5227 register struct cons_block *cblk;
5228 struct cons_block **cprev = &cons_block;
5229 register int lim = cons_block_index;
5230 register int num_free = 0, num_used = 0;
5232 cons_free_list = 0;
5234 for (cblk = cons_block; cblk; cblk = *cprev)
5236 register int i;
5237 int this_free = 0;
5238 for (i = 0; i < lim; i++)
5239 if (!CONS_MARKED_P (&cblk->conses[i]))
5241 this_free++;
5242 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
5243 cons_free_list = &cblk->conses[i];
5244 #if GC_MARK_STACK
5245 cons_free_list->car = Vdead;
5246 #endif
5248 else
5250 num_used++;
5251 CONS_UNMARK (&cblk->conses[i]);
5253 lim = CONS_BLOCK_SIZE;
5254 /* If this block contains only free conses and we have already
5255 seen more than two blocks worth of free conses then deallocate
5256 this block. */
5257 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5259 *cprev = cblk->next;
5260 /* Unhook from the free list. */
5261 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
5262 lisp_align_free (cblk);
5263 n_cons_blocks--;
5265 else
5267 num_free += this_free;
5268 cprev = &cblk->next;
5271 total_conses = num_used;
5272 total_free_conses = num_free;
5275 /* Put all unmarked floats on free list */
5277 register struct float_block *fblk;
5278 struct float_block **fprev = &float_block;
5279 register int lim = float_block_index;
5280 register int num_free = 0, num_used = 0;
5282 float_free_list = 0;
5284 for (fblk = float_block; fblk; fblk = *fprev)
5286 register int i;
5287 int this_free = 0;
5288 for (i = 0; i < lim; i++)
5289 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5291 this_free++;
5292 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5293 float_free_list = &fblk->floats[i];
5295 else
5297 num_used++;
5298 FLOAT_UNMARK (&fblk->floats[i]);
5300 lim = FLOAT_BLOCK_SIZE;
5301 /* If this block contains only free floats and we have already
5302 seen more than two blocks worth of free floats then deallocate
5303 this block. */
5304 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5306 *fprev = fblk->next;
5307 /* Unhook from the free list. */
5308 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5309 lisp_align_free (fblk);
5310 n_float_blocks--;
5312 else
5314 num_free += this_free;
5315 fprev = &fblk->next;
5318 total_floats = num_used;
5319 total_free_floats = num_free;
5322 /* Put all unmarked intervals on free list */
5324 register struct interval_block *iblk;
5325 struct interval_block **iprev = &interval_block;
5326 register int lim = interval_block_index;
5327 register int num_free = 0, num_used = 0;
5329 interval_free_list = 0;
5331 for (iblk = interval_block; iblk; iblk = *iprev)
5333 register int i;
5334 int this_free = 0;
5336 for (i = 0; i < lim; i++)
5338 if (!iblk->intervals[i].gcmarkbit)
5340 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5341 interval_free_list = &iblk->intervals[i];
5342 this_free++;
5344 else
5346 num_used++;
5347 iblk->intervals[i].gcmarkbit = 0;
5350 lim = INTERVAL_BLOCK_SIZE;
5351 /* If this block contains only free intervals and we have already
5352 seen more than two blocks worth of free intervals then
5353 deallocate this block. */
5354 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5356 *iprev = iblk->next;
5357 /* Unhook from the free list. */
5358 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5359 lisp_free (iblk);
5360 n_interval_blocks--;
5362 else
5364 num_free += this_free;
5365 iprev = &iblk->next;
5368 total_intervals = num_used;
5369 total_free_intervals = num_free;
5372 /* Put all unmarked symbols on free list */
5374 register struct symbol_block *sblk;
5375 struct symbol_block **sprev = &symbol_block;
5376 register int lim = symbol_block_index;
5377 register int num_free = 0, num_used = 0;
5379 symbol_free_list = NULL;
5381 for (sblk = symbol_block; sblk; sblk = *sprev)
5383 int this_free = 0;
5384 struct Lisp_Symbol *sym = sblk->symbols;
5385 struct Lisp_Symbol *end = sym + lim;
5387 for (; sym < end; ++sym)
5389 /* Check if the symbol was created during loadup. In such a case
5390 it might be pointed to by pure bytecode which we don't trace,
5391 so we conservatively assume that it is live. */
5392 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5394 if (!sym->gcmarkbit && !pure_p)
5396 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5397 symbol_free_list = sym;
5398 #if GC_MARK_STACK
5399 symbol_free_list->function = Vdead;
5400 #endif
5401 ++this_free;
5403 else
5405 ++num_used;
5406 if (!pure_p)
5407 UNMARK_STRING (XSTRING (sym->xname));
5408 sym->gcmarkbit = 0;
5412 lim = SYMBOL_BLOCK_SIZE;
5413 /* If this block contains only free symbols and we have already
5414 seen more than two blocks worth of free symbols then deallocate
5415 this block. */
5416 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5418 *sprev = sblk->next;
5419 /* Unhook from the free list. */
5420 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5421 lisp_free (sblk);
5422 n_symbol_blocks--;
5424 else
5426 num_free += this_free;
5427 sprev = &sblk->next;
5430 total_symbols = num_used;
5431 total_free_symbols = num_free;
5434 /* Put all unmarked misc's on free list.
5435 For a marker, first unchain it from the buffer it points into. */
5437 register struct marker_block *mblk;
5438 struct marker_block **mprev = &marker_block;
5439 register int lim = marker_block_index;
5440 register int num_free = 0, num_used = 0;
5442 marker_free_list = 0;
5444 for (mblk = marker_block; mblk; mblk = *mprev)
5446 register int i;
5447 int this_free = 0;
5449 for (i = 0; i < lim; i++)
5451 if (!mblk->markers[i].u_marker.gcmarkbit)
5453 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5454 unchain_marker (&mblk->markers[i].u_marker);
5455 /* Set the type of the freed object to Lisp_Misc_Free.
5456 We could leave the type alone, since nobody checks it,
5457 but this might catch bugs faster. */
5458 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5459 mblk->markers[i].u_free.chain = marker_free_list;
5460 marker_free_list = &mblk->markers[i];
5461 this_free++;
5463 else
5465 num_used++;
5466 mblk->markers[i].u_marker.gcmarkbit = 0;
5469 lim = MARKER_BLOCK_SIZE;
5470 /* If this block contains only free markers and we have already
5471 seen more than two blocks worth of free markers then deallocate
5472 this block. */
5473 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5475 *mprev = mblk->next;
5476 /* Unhook from the free list. */
5477 marker_free_list = mblk->markers[0].u_free.chain;
5478 lisp_free (mblk);
5479 n_marker_blocks--;
5481 else
5483 num_free += this_free;
5484 mprev = &mblk->next;
5488 total_markers = num_used;
5489 total_free_markers = num_free;
5492 /* Free all unmarked buffers */
5494 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5496 while (buffer)
5497 if (!VECTOR_MARKED_P (buffer))
5499 if (prev)
5500 prev->next = buffer->next;
5501 else
5502 all_buffers = buffer->next;
5503 next = buffer->next;
5504 lisp_free (buffer);
5505 buffer = next;
5507 else
5509 VECTOR_UNMARK (buffer);
5510 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5511 prev = buffer, buffer = buffer->next;
5515 /* Free all unmarked vectors */
5517 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5518 total_vector_size = 0;
5520 while (vector)
5521 if (!VECTOR_MARKED_P (vector))
5523 if (prev)
5524 prev->next = vector->next;
5525 else
5526 all_vectors = vector->next;
5527 next = vector->next;
5528 lisp_free (vector);
5529 n_vectors--;
5530 vector = next;
5533 else
5535 VECTOR_UNMARK (vector);
5536 if (vector->size & PSEUDOVECTOR_FLAG)
5537 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5538 else
5539 total_vector_size += vector->size;
5540 prev = vector, vector = vector->next;
5544 #ifdef GC_CHECK_STRING_BYTES
5545 if (!noninteractive)
5546 check_string_bytes (1);
5547 #endif
5553 /* Debugging aids. */
5555 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5556 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5557 This may be helpful in debugging Emacs's memory usage.
5558 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5561 Lisp_Object end;
5563 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5565 return end;
5568 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5569 doc: /* Return a list of counters that measure how much consing there has been.
5570 Each of these counters increments for a certain kind of object.
5571 The counters wrap around from the largest positive integer to zero.
5572 Garbage collection does not decrease them.
5573 The elements of the value are as follows:
5574 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5575 All are in units of 1 = one object consed
5576 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5577 objects consed.
5578 MISCS include overlays, markers, and some internal types.
5579 Frames, windows, buffers, and subprocesses count as vectors
5580 (but the contents of a buffer's text do not count here). */)
5583 Lisp_Object consed[8];
5585 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5586 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5587 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5588 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5589 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5590 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5591 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5592 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
5594 return Flist (8, consed);
5597 int suppress_checking;
5598 void
5599 die (msg, file, line)
5600 const char *msg;
5601 const char *file;
5602 int line;
5604 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5605 file, line, msg);
5606 abort ();
5609 /* Initialization */
5611 void
5612 init_alloc_once ()
5614 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5615 purebeg = PUREBEG;
5616 pure_size = PURESIZE;
5617 pure_bytes_used = 0;
5618 pure_bytes_used_before_overflow = 0;
5620 /* Initialize the list of free aligned blocks. */
5621 free_ablock = NULL;
5623 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5624 mem_init ();
5625 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5626 #endif
5628 all_vectors = 0;
5629 ignore_warnings = 1;
5630 #ifdef DOUG_LEA_MALLOC
5631 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5632 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
5633 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
5634 #endif
5635 init_strings ();
5636 init_cons ();
5637 init_symbol ();
5638 init_marker ();
5639 init_float ();
5640 init_intervals ();
5642 #ifdef REL_ALLOC
5643 malloc_hysteresis = 32;
5644 #else
5645 malloc_hysteresis = 0;
5646 #endif
5648 spare_memory = (char *) malloc (SPARE_MEMORY);
5650 ignore_warnings = 0;
5651 gcprolist = 0;
5652 byte_stack_list = 0;
5653 staticidx = 0;
5654 consing_since_gc = 0;
5655 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
5656 #ifdef VIRT_ADDR_VARIES
5657 malloc_sbrk_unused = 1<<22; /* A large number */
5658 malloc_sbrk_used = 100000; /* as reasonable as any number */
5659 #endif /* VIRT_ADDR_VARIES */
5662 void
5663 init_alloc ()
5665 gcprolist = 0;
5666 byte_stack_list = 0;
5667 #if GC_MARK_STACK
5668 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5669 setjmp_tested_p = longjmps_done = 0;
5670 #endif
5671 #endif
5672 Vgc_elapsed = make_float (0.0);
5673 gcs_done = 0;
5676 void
5677 syms_of_alloc ()
5679 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
5680 doc: /* *Number of bytes of consing between garbage collections.
5681 Garbage collection can happen automatically once this many bytes have been
5682 allocated since the last garbage collection. All data types count.
5684 Garbage collection happens automatically only when `eval' is called.
5686 By binding this temporarily to a large number, you can effectively
5687 prevent garbage collection during a part of the program. */);
5689 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
5690 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
5692 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
5693 doc: /* Number of cons cells that have been consed so far. */);
5695 DEFVAR_INT ("floats-consed", &floats_consed,
5696 doc: /* Number of floats that have been consed so far. */);
5698 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
5699 doc: /* Number of vector cells that have been consed so far. */);
5701 DEFVAR_INT ("symbols-consed", &symbols_consed,
5702 doc: /* Number of symbols that have been consed so far. */);
5704 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
5705 doc: /* Number of string characters that have been consed so far. */);
5707 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
5708 doc: /* Number of miscellaneous objects that have been consed so far. */);
5710 DEFVAR_INT ("intervals-consed", &intervals_consed,
5711 doc: /* Number of intervals that have been consed so far. */);
5713 DEFVAR_INT ("strings-consed", &strings_consed,
5714 doc: /* Number of strings that have been consed so far. */);
5716 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
5717 doc: /* Non-nil means loading Lisp code in order to dump an executable.
5718 This means that certain objects should be allocated in shared (pure) space. */);
5720 DEFVAR_INT ("undo-limit", &undo_limit,
5721 doc: /* Keep no more undo information once it exceeds this size.
5722 This limit is applied when garbage collection happens.
5723 The size is counted as the number of bytes occupied,
5724 which includes both saved text and other data. */);
5725 undo_limit = 20000;
5727 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
5728 doc: /* Don't keep more than this much size of undo information.
5729 A command which pushes past this size is itself forgotten.
5730 This limit is applied when garbage collection happens.
5731 The size is counted as the number of bytes occupied,
5732 which includes both saved text and other data. */);
5733 undo_strong_limit = 30000;
5735 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
5736 doc: /* Non-nil means display messages at start and end of garbage collection. */);
5737 garbage_collection_messages = 0;
5739 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
5740 doc: /* Hook run after garbage collection has finished. */);
5741 Vpost_gc_hook = Qnil;
5742 Qpost_gc_hook = intern ("post-gc-hook");
5743 staticpro (&Qpost_gc_hook);
5745 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
5746 doc: /* Precomputed `signal' argument for memory-full error. */);
5747 /* We build this in advance because if we wait until we need it, we might
5748 not be able to allocate the memory to hold it. */
5749 Vmemory_signal_data
5750 = list2 (Qerror,
5751 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
5753 DEFVAR_LISP ("memory-full", &Vmemory_full,
5754 doc: /* Non-nil means we are handling a memory-full error. */);
5755 Vmemory_full = Qnil;
5757 staticpro (&Qgc_cons_threshold);
5758 Qgc_cons_threshold = intern ("gc-cons-threshold");
5760 staticpro (&Qchar_table_extra_slots);
5761 Qchar_table_extra_slots = intern ("char-table-extra-slots");
5763 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
5764 doc: /* Accumulated time elapsed in garbage collections.
5765 The time is in seconds as a floating point value. */);
5766 DEFVAR_INT ("gcs-done", &gcs_done,
5767 doc: /* Accumulated number of garbage collections done. */);
5769 defsubr (&Scons);
5770 defsubr (&Slist);
5771 defsubr (&Svector);
5772 defsubr (&Smake_byte_code);
5773 defsubr (&Smake_list);
5774 defsubr (&Smake_vector);
5775 defsubr (&Smake_char_table);
5776 defsubr (&Smake_string);
5777 defsubr (&Smake_bool_vector);
5778 defsubr (&Smake_symbol);
5779 defsubr (&Smake_marker);
5780 defsubr (&Spurecopy);
5781 defsubr (&Sgarbage_collect);
5782 defsubr (&Smemory_limit);
5783 defsubr (&Smemory_use_counts);
5785 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5786 defsubr (&Sgc_status);
5787 #endif