Bump version number to 23.0.95.
[emacs.git] / lisp / emacs-lisp / byte-opt.el
blob779505e2191b84f46c5e6510b0eb43aa1b0943b6
1 ;;; byte-opt.el --- the optimization passes of the emacs-lisp byte compiler
3 ;; Copyright (C) 1991, 1994, 2000, 2001, 2002, 2003, 2004,
4 ;; 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
6 ;; Author: Jamie Zawinski <jwz@lucid.com>
7 ;; Hallvard Furuseth <hbf@ulrik.uio.no>
8 ;; Maintainer: FSF
9 ;; Keywords: internal
11 ;; This file is part of GNU Emacs.
13 ;; GNU Emacs is free software: you can redistribute it and/or modify
14 ;; it under the terms of the GNU General Public License as published by
15 ;; the Free Software Foundation, either version 3 of the License, or
16 ;; (at your option) any later version.
18 ;; GNU Emacs is distributed in the hope that it will be useful,
19 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
20 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 ;; GNU General Public License for more details.
23 ;; You should have received a copy of the GNU General Public License
24 ;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
26 ;;; Commentary:
28 ;; ========================================================================
29 ;; "No matter how hard you try, you can't make a racehorse out of a pig.
30 ;; You can, however, make a faster pig."
32 ;; Or, to put it another way, the Emacs byte compiler is a VW Bug. This code
33 ;; makes it be a VW Bug with fuel injection and a turbocharger... You're
34 ;; still not going to make it go faster than 70 mph, but it might be easier
35 ;; to get it there.
38 ;; TO DO:
40 ;; (apply (lambda (x &rest y) ...) 1 (foo))
42 ;; maintain a list of functions known not to access any global variables
43 ;; (actually, give them a 'dynamically-safe property) and then
44 ;; (let ( v1 v2 ... vM vN ) <...dynamically-safe...> ) ==>
45 ;; (let ( v1 v2 ... vM ) vN <...dynamically-safe...> )
46 ;; by recursing on this, we might be able to eliminate the entire let.
47 ;; However certain variables should never have their bindings optimized
48 ;; away, because they affect everything.
49 ;; (put 'debug-on-error 'binding-is-magic t)
50 ;; (put 'debug-on-abort 'binding-is-magic t)
51 ;; (put 'debug-on-next-call 'binding-is-magic t)
52 ;; (put 'inhibit-quit 'binding-is-magic t)
53 ;; (put 'quit-flag 'binding-is-magic t)
54 ;; (put 't 'binding-is-magic t)
55 ;; (put 'nil 'binding-is-magic t)
56 ;; possibly also
57 ;; (put 'gc-cons-threshold 'binding-is-magic t)
58 ;; (put 'track-mouse 'binding-is-magic t)
59 ;; others?
61 ;; Simple defsubsts often produce forms like
62 ;; (let ((v1 (f1)) (v2 (f2)) ...)
63 ;; (FN v1 v2 ...))
64 ;; It would be nice if we could optimize this to
65 ;; (FN (f1) (f2) ...)
66 ;; but we can't unless FN is dynamically-safe (it might be dynamically
67 ;; referring to the bindings that the lambda arglist established.)
68 ;; One of the uncountable lossages introduced by dynamic scope...
70 ;; Maybe there should be a control-structure that says "turn on
71 ;; fast-and-loose type-assumptive optimizations here." Then when
72 ;; we see a form like (car foo) we can from then on assume that
73 ;; the variable foo is of type cons, and optimize based on that.
74 ;; But, this won't win much because of (you guessed it) dynamic
75 ;; scope. Anything down the stack could change the value.
76 ;; (Another reason it doesn't work is that it is perfectly valid
77 ;; to call car with a null argument.) A better approach might
78 ;; be to allow type-specification of the form
79 ;; (put 'foo 'arg-types '(float (list integer) dynamic))
80 ;; (put 'foo 'result-type 'bool)
81 ;; It should be possible to have these types checked to a certain
82 ;; degree.
84 ;; collapse common subexpressions
86 ;; It would be nice if redundant sequences could be factored out as well,
87 ;; when they are known to have no side-effects:
88 ;; (list (+ a b c) (+ a b c)) --> a b add c add dup list-2
89 ;; but beware of traps like
90 ;; (cons (list x y) (list x y))
92 ;; Tail-recursion elimination is not really possible in Emacs Lisp.
93 ;; Tail-recursion elimination is almost always impossible when all variables
94 ;; have dynamic scope, but given that the "return" byteop requires the
95 ;; binding stack to be empty (rather than emptying it itself), there can be
96 ;; no truly tail-recursive Emacs Lisp functions that take any arguments or
97 ;; make any bindings.
99 ;; Here is an example of an Emacs Lisp function which could safely be
100 ;; byte-compiled tail-recursively:
102 ;; (defun tail-map (fn list)
103 ;; (cond (list
104 ;; (funcall fn (car list))
105 ;; (tail-map fn (cdr list)))))
107 ;; However, if there was even a single let-binding around the COND,
108 ;; it could not be byte-compiled, because there would be an "unbind"
109 ;; byte-op between the final "call" and "return." Adding a
110 ;; Bunbind_all byteop would fix this.
112 ;; (defun foo (x y z) ... (foo a b c))
113 ;; ... (const foo) (varref a) (varref b) (varref c) (call 3) END: (return)
114 ;; ... (varref a) (varbind x) (varref b) (varbind y) (varref c) (varbind z) (goto 0) END: (unbind-all) (return)
115 ;; ... (varref a) (varset x) (varref b) (varset y) (varref c) (varset z) (goto 0) END: (return)
117 ;; this also can be considered tail recursion:
119 ;; ... (const foo) (varref a) (call 1) (goto X) ... X: (return)
120 ;; could generalize this by doing the optimization
121 ;; (goto X) ... X: (return) --> (return)
123 ;; But this doesn't solve all of the problems: although by doing tail-
124 ;; recursion elimination in this way, the call-stack does not grow, the
125 ;; binding-stack would grow with each recursive step, and would eventually
126 ;; overflow. I don't believe there is any way around this without lexical
127 ;; scope.
129 ;; Wouldn't it be nice if Emacs Lisp had lexical scope.
131 ;; Idea: the form (lexical-scope) in a file means that the file may be
132 ;; compiled lexically. This proclamation is file-local. Then, within
133 ;; that file, "let" would establish lexical bindings, and "let-dynamic"
134 ;; would do things the old way. (Or we could use CL "declare" forms.)
135 ;; We'd have to notice defvars and defconsts, since those variables should
136 ;; always be dynamic, and attempting to do a lexical binding of them
137 ;; should simply do a dynamic binding instead.
138 ;; But! We need to know about variables that were not necessarily defvarred
139 ;; in the file being compiled (doing a boundp check isn't good enough.)
140 ;; Fdefvar() would have to be modified to add something to the plist.
142 ;; A major disadvantage of this scheme is that the interpreter and compiler
143 ;; would have different semantics for files compiled with (dynamic-scope).
144 ;; Since this would be a file-local optimization, there would be no way to
145 ;; modify the interpreter to obey this (unless the loader was hacked
146 ;; in some grody way, but that's a really bad idea.)
148 ;; Other things to consider:
150 ;; ;; Associative math should recognize subcalls to identical function:
151 ;; (disassemble (lambda (x) (+ (+ (foo) 1) (+ (bar) 2))))
152 ;; ;; This should generate the same as (1+ x) and (1- x)
154 ;; (disassemble (lambda (x) (cons (+ x 1) (- x 1))))
155 ;; ;; An awful lot of functions always return a non-nil value. If they're
156 ;; ;; error free also they may act as true-constants.
158 ;; (disassemble (lambda (x) (and (point) (foo))))
159 ;; ;; When
160 ;; ;; - all but one arguments to a function are constant
161 ;; ;; - the non-constant argument is an if-expression (cond-expression?)
162 ;; ;; then the outer function can be distributed. If the guarding
163 ;; ;; condition is side-effect-free [assignment-free] then the other
164 ;; ;; arguments may be any expressions. Since, however, the code size
165 ;; ;; can increase this way they should be "simple". Compare:
167 ;; (disassemble (lambda (x) (eq (if (point) 'a 'b) 'c)))
168 ;; (disassemble (lambda (x) (if (point) (eq 'a 'c) (eq 'b 'c))))
170 ;; ;; (car (cons A B)) -> (prog1 A B)
171 ;; (disassemble (lambda (x) (car (cons (foo) 42))))
173 ;; ;; (cdr (cons A B)) -> (progn A B)
174 ;; (disassemble (lambda (x) (cdr (cons 42 (foo)))))
176 ;; ;; (car (list A B ...)) -> (prog1 A B ...)
177 ;; (disassemble (lambda (x) (car (list (foo) 42 (bar)))))
179 ;; ;; (cdr (list A B ...)) -> (progn A (list B ...))
180 ;; (disassemble (lambda (x) (cdr (list 42 (foo) (bar)))))
183 ;;; Code:
185 (require 'bytecomp)
186 (eval-when-compile (require 'cl))
188 (defun byte-compile-log-lap-1 (format &rest args)
189 (if (aref byte-code-vector 0)
190 (error "The old version of the disassembler is loaded. Reload new-bytecomp as well"))
191 (byte-compile-log-1
192 (apply 'format format
193 (let (c a)
194 (mapcar (lambda (arg)
195 (if (not (consp arg))
196 (if (and (symbolp arg)
197 (string-match "^byte-" (symbol-name arg)))
198 (intern (substring (symbol-name arg) 5))
199 arg)
200 (if (integerp (setq c (car arg)))
201 (error "non-symbolic byte-op %s" c))
202 (if (eq c 'TAG)
203 (setq c arg)
204 (setq a (cond ((memq c byte-goto-ops)
205 (car (cdr (cdr arg))))
206 ((memq c byte-constref-ops)
207 (car (cdr arg)))
208 (t (cdr arg))))
209 (setq c (symbol-name c))
210 (if (string-match "^byte-." c)
211 (setq c (intern (substring c 5)))))
212 (if (eq c 'constant) (setq c 'const))
213 (if (and (eq (cdr arg) 0)
214 (not (memq c '(unbind call const))))
216 (format "(%s %s)" c a))))
217 args)))))
219 (defmacro byte-compile-log-lap (format-string &rest args)
220 `(and (memq byte-optimize-log '(t byte))
221 (byte-compile-log-lap-1 ,format-string ,@args)))
224 ;;; byte-compile optimizers to support inlining
226 (put 'inline 'byte-optimizer 'byte-optimize-inline-handler)
228 (defun byte-optimize-inline-handler (form)
229 "byte-optimize-handler for the `inline' special-form."
230 (cons 'progn
231 (mapcar
232 (lambda (sexp)
233 (let ((f (car-safe sexp)))
234 (if (and (symbolp f)
235 (or (cdr (assq f byte-compile-function-environment))
236 (not (or (not (fboundp f))
237 (cdr (assq f byte-compile-macro-environment))
238 (and (consp (setq f (symbol-function f)))
239 (eq (car f) 'macro))
240 (subrp f)))))
241 (byte-compile-inline-expand sexp)
242 sexp)))
243 (cdr form))))
246 ;; Splice the given lap code into the current instruction stream.
247 ;; If it has any labels in it, you're responsible for making sure there
248 ;; are no collisions, and that byte-compile-tag-number is reasonable
249 ;; after this is spliced in. The provided list is destroyed.
250 (defun byte-inline-lapcode (lap)
251 (setq byte-compile-output (nconc (nreverse lap) byte-compile-output)))
253 (defun byte-compile-inline-expand (form)
254 (let* ((name (car form))
255 (fn (or (cdr (assq name byte-compile-function-environment))
256 (and (fboundp name) (symbol-function name)))))
257 (if (null fn)
258 (progn
259 (byte-compile-warn "attempt to inline `%s' before it was defined"
260 name)
261 form)
262 ;; else
263 (when (and (consp fn) (eq (car fn) 'autoload))
264 (load (nth 1 fn))
265 (setq fn (or (and (fboundp name) (symbol-function name))
266 (cdr (assq name byte-compile-function-environment)))))
267 (if (and (consp fn) (eq (car fn) 'autoload))
268 (error "File `%s' didn't define `%s'" (nth 1 fn) name))
269 (if (and (symbolp fn) (not (eq fn t)))
270 (byte-compile-inline-expand (cons fn (cdr form)))
271 (if (byte-code-function-p fn)
272 (let (string)
273 (fetch-bytecode fn)
274 (setq string (aref fn 1))
275 ;; Isn't it an error for `string' not to be unibyte?? --stef
276 (if (fboundp 'string-as-unibyte)
277 (setq string (string-as-unibyte string)))
278 ;; `byte-compile-splice-in-already-compiled-code'
279 ;; takes care of inlining the body.
280 (cons `(lambda ,(aref fn 0)
281 (byte-code ,string ,(aref fn 2) ,(aref fn 3)))
282 (cdr form)))
283 (if (eq (car-safe fn) 'lambda)
284 (cons fn (cdr form))
285 ;; Give up on inlining.
286 form))))))
288 ;; ((lambda ...) ...)
289 (defun byte-compile-unfold-lambda (form &optional name)
290 (or name (setq name "anonymous lambda"))
291 (let ((lambda (car form))
292 (values (cdr form)))
293 (if (byte-code-function-p lambda)
294 (setq lambda (list 'lambda (aref lambda 0)
295 (list 'byte-code (aref lambda 1)
296 (aref lambda 2) (aref lambda 3)))))
297 (let ((arglist (nth 1 lambda))
298 (body (cdr (cdr lambda)))
299 optionalp restp
300 bindings)
301 (if (and (stringp (car body)) (cdr body))
302 (setq body (cdr body)))
303 (if (and (consp (car body)) (eq 'interactive (car (car body))))
304 (setq body (cdr body)))
305 (while arglist
306 (cond ((eq (car arglist) '&optional)
307 ;; ok, I'll let this slide because funcall_lambda() does...
308 ;; (if optionalp (error "multiple &optional keywords in %s" name))
309 (if restp (error "&optional found after &rest in %s" name))
310 (if (null (cdr arglist))
311 (error "nothing after &optional in %s" name))
312 (setq optionalp t))
313 ((eq (car arglist) '&rest)
314 ;; ...but it is by no stretch of the imagination a reasonable
315 ;; thing that funcall_lambda() allows (&rest x y) and
316 ;; (&rest x &optional y) in arglists.
317 (if (null (cdr arglist))
318 (error "nothing after &rest in %s" name))
319 (if (cdr (cdr arglist))
320 (error "multiple vars after &rest in %s" name))
321 (setq restp t))
322 (restp
323 (setq bindings (cons (list (car arglist)
324 (and values (cons 'list values)))
325 bindings)
326 values nil))
327 ((and (not optionalp) (null values))
328 (byte-compile-warn "attempt to open-code `%s' with too few arguments" name)
329 (setq arglist nil values 'too-few))
331 (setq bindings (cons (list (car arglist) (car values))
332 bindings)
333 values (cdr values))))
334 (setq arglist (cdr arglist)))
335 (if values
336 (progn
337 (or (eq values 'too-few)
338 (byte-compile-warn
339 "attempt to open-code `%s' with too many arguments" name))
340 form)
342 ;; The following leads to infinite recursion when loading a
343 ;; file containing `(defsubst f () (f))', and then trying to
344 ;; byte-compile that file.
345 ;(setq body (mapcar 'byte-optimize-form body)))
347 (let ((newform
348 (if bindings
349 (cons 'let (cons (nreverse bindings) body))
350 (cons 'progn body))))
351 (byte-compile-log " %s\t==>\t%s" form newform)
352 newform)))))
355 ;;; implementing source-level optimizers
357 (defun byte-optimize-form-code-walker (form for-effect)
359 ;; For normal function calls, We can just mapcar the optimizer the cdr. But
360 ;; we need to have special knowledge of the syntax of the special forms
361 ;; like let and defun (that's why they're special forms :-). (Actually,
362 ;; the important aspect is that they are subrs that don't evaluate all of
363 ;; their args.)
365 (let ((fn (car-safe form))
366 tmp)
367 (cond ((not (consp form))
368 (if (not (and for-effect
369 (or byte-compile-delete-errors
370 (not (symbolp form))
371 (eq form t))))
372 form))
373 ((eq fn 'quote)
374 (if (cdr (cdr form))
375 (byte-compile-warn "malformed quote form: `%s'"
376 (prin1-to-string form)))
377 ;; map (quote nil) to nil to simplify optimizer logic.
378 ;; map quoted constants to nil if for-effect (just because).
379 (and (nth 1 form)
380 (not for-effect)
381 form))
382 ((or (byte-code-function-p fn)
383 (eq 'lambda (car-safe fn)))
384 (byte-optimize-form-code-walker
385 (byte-compile-unfold-lambda form)
386 for-effect))
387 ((memq fn '(let let*))
388 ;; recursively enter the optimizer for the bindings and body
389 ;; of a let or let*. This for depth-firstness: forms that
390 ;; are more deeply nested are optimized first.
391 (cons fn
392 (cons
393 (mapcar (lambda (binding)
394 (if (symbolp binding)
395 binding
396 (if (cdr (cdr binding))
397 (byte-compile-warn "malformed let binding: `%s'"
398 (prin1-to-string binding)))
399 (list (car binding)
400 (byte-optimize-form (nth 1 binding) nil))))
401 (nth 1 form))
402 (byte-optimize-body (cdr (cdr form)) for-effect))))
403 ((eq fn 'cond)
404 (cons fn
405 (mapcar (lambda (clause)
406 (if (consp clause)
407 (cons
408 (byte-optimize-form (car clause) nil)
409 (byte-optimize-body (cdr clause) for-effect))
410 (byte-compile-warn "malformed cond form: `%s'"
411 (prin1-to-string clause))
412 clause))
413 (cdr form))))
414 ((eq fn 'progn)
415 ;; as an extra added bonus, this simplifies (progn <x>) --> <x>
416 (if (cdr (cdr form))
417 (progn
418 (setq tmp (byte-optimize-body (cdr form) for-effect))
419 (if (cdr tmp) (cons 'progn tmp) (car tmp)))
420 (byte-optimize-form (nth 1 form) for-effect)))
421 ((eq fn 'prog1)
422 (if (cdr (cdr form))
423 (cons 'prog1
424 (cons (byte-optimize-form (nth 1 form) for-effect)
425 (byte-optimize-body (cdr (cdr form)) t)))
426 (byte-optimize-form (nth 1 form) for-effect)))
427 ((eq fn 'prog2)
428 (cons 'prog2
429 (cons (byte-optimize-form (nth 1 form) t)
430 (cons (byte-optimize-form (nth 2 form) for-effect)
431 (byte-optimize-body (cdr (cdr (cdr form))) t)))))
433 ((memq fn '(save-excursion save-restriction save-current-buffer))
434 ;; those subrs which have an implicit progn; it's not quite good
435 ;; enough to treat these like normal function calls.
436 ;; This can turn (save-excursion ...) into (save-excursion) which
437 ;; will be optimized away in the lap-optimize pass.
438 (cons fn (byte-optimize-body (cdr form) for-effect)))
440 ((eq fn 'with-output-to-temp-buffer)
441 ;; this is just like the above, except for the first argument.
442 (cons fn
443 (cons
444 (byte-optimize-form (nth 1 form) nil)
445 (byte-optimize-body (cdr (cdr form)) for-effect))))
447 ((eq fn 'if)
448 (when (< (length form) 3)
449 (byte-compile-warn "too few arguments for `if'"))
450 (cons fn
451 (cons (byte-optimize-form (nth 1 form) nil)
452 (cons
453 (byte-optimize-form (nth 2 form) for-effect)
454 (byte-optimize-body (nthcdr 3 form) for-effect)))))
456 ((memq fn '(and or)) ; remember, and/or are control structures.
457 ;; take forms off the back until we can't any more.
458 ;; In the future it could conceivably be a problem that the
459 ;; subexpressions of these forms are optimized in the reverse
460 ;; order, but it's ok for now.
461 (if for-effect
462 (let ((backwards (reverse (cdr form))))
463 (while (and backwards
464 (null (setcar backwards
465 (byte-optimize-form (car backwards)
466 for-effect))))
467 (setq backwards (cdr backwards)))
468 (if (and (cdr form) (null backwards))
469 (byte-compile-log
470 " all subforms of %s called for effect; deleted" form))
471 (and backwards
472 (cons fn (nreverse (mapcar 'byte-optimize-form backwards)))))
473 (cons fn (mapcar 'byte-optimize-form (cdr form)))))
475 ((eq fn 'interactive)
476 (byte-compile-warn "misplaced interactive spec: `%s'"
477 (prin1-to-string form))
478 nil)
480 ((memq fn '(defun defmacro function
481 condition-case save-window-excursion))
482 ;; These forms are compiled as constants or by breaking out
483 ;; all the subexpressions and compiling them separately.
484 form)
486 ((eq fn 'unwind-protect)
487 ;; the "protected" part of an unwind-protect is compiled (and thus
488 ;; optimized) as a top-level form, so don't do it here. But the
489 ;; non-protected part has the same for-effect status as the
490 ;; unwind-protect itself. (The protected part is always for effect,
491 ;; but that isn't handled properly yet.)
492 (cons fn
493 (cons (byte-optimize-form (nth 1 form) for-effect)
494 (cdr (cdr form)))))
496 ((eq fn 'catch)
497 ;; the body of a catch is compiled (and thus optimized) as a
498 ;; top-level form, so don't do it here. The tag is never
499 ;; for-effect. The body should have the same for-effect status
500 ;; as the catch form itself, but that isn't handled properly yet.
501 (cons fn
502 (cons (byte-optimize-form (nth 1 form) nil)
503 (cdr (cdr form)))))
505 ((eq fn 'ignore)
506 ;; Don't treat the args to `ignore' as being
507 ;; computed for effect. We want to avoid the warnings
508 ;; that might occur if they were treated that way.
509 ;; However, don't actually bother calling `ignore'.
510 `(prog1 nil . ,(mapcar 'byte-optimize-form (cdr form))))
512 ;; If optimization is on, this is the only place that macros are
513 ;; expanded. If optimization is off, then macroexpansion happens
514 ;; in byte-compile-form. Otherwise, the macros are already expanded
515 ;; by the time that is reached.
516 ((not (eq form
517 (setq form (macroexpand form
518 byte-compile-macro-environment))))
519 (byte-optimize-form form for-effect))
521 ;; Support compiler macros as in cl.el.
522 ((and (fboundp 'compiler-macroexpand)
523 (symbolp (car-safe form))
524 (get (car-safe form) 'cl-compiler-macro)
525 (not (eq form
526 (with-no-warnings
527 (setq form (compiler-macroexpand form))))))
528 (byte-optimize-form form for-effect))
530 ((not (symbolp fn))
531 (byte-compile-warn "`%s' is a malformed function"
532 (prin1-to-string fn))
533 form)
535 ((and for-effect (setq tmp (get fn 'side-effect-free))
536 (or byte-compile-delete-errors
537 (eq tmp 'error-free)
538 ;; Detect the expansion of (pop foo).
539 ;; There is no need to compile the call to `car' there.
540 (and (eq fn 'car)
541 (eq (car-safe (cadr form)) 'prog1)
542 (let ((var (cadr (cadr form)))
543 (last (nth 2 (cadr form))))
544 (and (symbolp var)
545 (null (nthcdr 3 (cadr form)))
546 (eq (car-safe last) 'setq)
547 (eq (cadr last) var)
548 (eq (car-safe (nth 2 last)) 'cdr)
549 (eq (cadr (nth 2 last)) var))))
550 (progn
551 (byte-compile-warn "value returned from %s is unused"
552 (prin1-to-string form))
553 nil)))
554 (byte-compile-log " %s called for effect; deleted" fn)
555 ;; appending a nil here might not be necessary, but it can't hurt.
556 (byte-optimize-form
557 (cons 'progn (append (cdr form) '(nil))) t))
560 ;; Otherwise, no args can be considered to be for-effect,
561 ;; even if the called function is for-effect, because we
562 ;; don't know anything about that function.
563 (let ((args (mapcar #'byte-optimize-form (cdr form))))
564 (if (and (get fn 'pure)
565 (byte-optimize-all-constp args))
566 (list 'quote (apply fn (mapcar #'eval args)))
567 (cons fn args)))))))
569 (defun byte-optimize-all-constp (list)
570 "Non-nil if all elements of LIST satisfy `byte-compile-constp'."
571 (let ((constant t))
572 (while (and list constant)
573 (unless (byte-compile-constp (car list))
574 (setq constant nil))
575 (setq list (cdr list)))
576 constant))
578 (defun byte-optimize-form (form &optional for-effect)
579 "The source-level pass of the optimizer."
581 ;; First, optimize all sub-forms of this one.
582 (setq form (byte-optimize-form-code-walker form for-effect))
584 ;; after optimizing all subforms, optimize this form until it doesn't
585 ;; optimize any further. This means that some forms will be passed through
586 ;; the optimizer many times, but that's necessary to make the for-effect
587 ;; processing do as much as possible.
589 (let (opt new)
590 (if (and (consp form)
591 (symbolp (car form))
592 (or (and for-effect
593 ;; we don't have any of these yet, but we might.
594 (setq opt (get (car form) 'byte-for-effect-optimizer)))
595 (setq opt (get (car form) 'byte-optimizer)))
596 (not (eq form (setq new (funcall opt form)))))
597 (progn
598 ;; (if (equal form new) (error "bogus optimizer -- %s" opt))
599 (byte-compile-log " %s\t==>\t%s" form new)
600 (setq new (byte-optimize-form new for-effect))
601 new)
602 form)))
605 (defun byte-optimize-body (forms all-for-effect)
606 ;; optimize the cdr of a progn or implicit progn; all forms is a list of
607 ;; forms, all but the last of which are optimized with the assumption that
608 ;; they are being called for effect. the last is for-effect as well if
609 ;; all-for-effect is true. returns a new list of forms.
610 (let ((rest forms)
611 (result nil)
612 fe new)
613 (while rest
614 (setq fe (or all-for-effect (cdr rest)))
615 (setq new (and (car rest) (byte-optimize-form (car rest) fe)))
616 (if (or new (not fe))
617 (setq result (cons new result)))
618 (setq rest (cdr rest)))
619 (nreverse result)))
622 ;; some source-level optimizers
624 ;; when writing optimizers, be VERY careful that the optimizer returns
625 ;; something not EQ to its argument if and ONLY if it has made a change.
626 ;; This implies that you cannot simply destructively modify the list;
627 ;; you must return something not EQ to it if you make an optimization.
629 ;; It is now safe to optimize code such that it introduces new bindings.
631 (defsubst byte-compile-trueconstp (form)
632 "Return non-nil if FORM always evaluates to a non-nil value."
633 (while (eq (car-safe form) 'progn)
634 (setq form (car (last (cdr form)))))
635 (cond ((consp form)
636 (case (car form)
637 (quote (cadr form))
638 ;; Can't use recursion in a defsubst.
639 ;; (progn (byte-compile-trueconstp (car (last (cdr form)))))
641 ((not (symbolp form)))
642 ((eq form t))
643 ((keywordp form))))
645 (defsubst byte-compile-nilconstp (form)
646 "Return non-nil if FORM always evaluates to a nil value."
647 (while (eq (car-safe form) 'progn)
648 (setq form (car (last (cdr form)))))
649 (cond ((consp form)
650 (case (car form)
651 (quote (null (cadr form)))
652 ;; Can't use recursion in a defsubst.
653 ;; (progn (byte-compile-nilconstp (car (last (cdr form)))))
655 ((not (symbolp form)) nil)
656 ((null form))))
658 ;; If the function is being called with constant numeric args,
659 ;; evaluate as much as possible at compile-time. This optimizer
660 ;; assumes that the function is associative, like + or *.
661 (defun byte-optimize-associative-math (form)
662 (let ((args nil)
663 (constants nil)
664 (rest (cdr form)))
665 (while rest
666 (if (numberp (car rest))
667 (setq constants (cons (car rest) constants))
668 (setq args (cons (car rest) args)))
669 (setq rest (cdr rest)))
670 (if (cdr constants)
671 (if args
672 (list (car form)
673 (apply (car form) constants)
674 (if (cdr args)
675 (cons (car form) (nreverse args))
676 (car args)))
677 (apply (car form) constants))
678 form)))
680 ;; If the function is being called with constant numeric args,
681 ;; evaluate as much as possible at compile-time. This optimizer
682 ;; assumes that the function satisfies
683 ;; (op x1 x2 ... xn) == (op ...(op (op x1 x2) x3) ...xn)
684 ;; like - and /.
685 (defun byte-optimize-nonassociative-math (form)
686 (if (or (not (numberp (car (cdr form))))
687 (not (numberp (car (cdr (cdr form))))))
688 form
689 (let ((constant (car (cdr form)))
690 (rest (cdr (cdr form))))
691 (while (numberp (car rest))
692 (setq constant (funcall (car form) constant (car rest))
693 rest (cdr rest)))
694 (if rest
695 (cons (car form) (cons constant rest))
696 constant))))
698 ;;(defun byte-optimize-associative-two-args-math (form)
699 ;; (setq form (byte-optimize-associative-math form))
700 ;; (if (consp form)
701 ;; (byte-optimize-two-args-left form)
702 ;; form))
704 ;;(defun byte-optimize-nonassociative-two-args-math (form)
705 ;; (setq form (byte-optimize-nonassociative-math form))
706 ;; (if (consp form)
707 ;; (byte-optimize-two-args-right form)
708 ;; form))
710 (defun byte-optimize-approx-equal (x y)
711 (<= (* (abs (- x y)) 100) (abs (+ x y))))
713 ;; Collect all the constants from FORM, after the STARTth arg,
714 ;; and apply FUN to them to make one argument at the end.
715 ;; For functions that can handle floats, that optimization
716 ;; can be incorrect because reordering can cause an overflow
717 ;; that would otherwise be avoided by encountering an arg that is a float.
718 ;; We avoid this problem by (1) not moving float constants and
719 ;; (2) not moving anything if it would cause an overflow.
720 (defun byte-optimize-delay-constants-math (form start fun)
721 ;; Merge all FORM's constants from number START, call FUN on them
722 ;; and put the result at the end.
723 (let ((rest (nthcdr (1- start) form))
724 (orig form)
725 ;; t means we must check for overflow.
726 (overflow (memq fun '(+ *))))
727 (while (cdr (setq rest (cdr rest)))
728 (if (integerp (car rest))
729 (let (constants)
730 (setq form (copy-sequence form)
731 rest (nthcdr (1- start) form))
732 (while (setq rest (cdr rest))
733 (cond ((integerp (car rest))
734 (setq constants (cons (car rest) constants))
735 (setcar rest nil))))
736 ;; If necessary, check now for overflow
737 ;; that might be caused by reordering.
738 (if (and overflow
739 ;; We have overflow if the result of doing the arithmetic
740 ;; on floats is not even close to the result
741 ;; of doing it on integers.
742 (not (byte-optimize-approx-equal
743 (apply fun (mapcar 'float constants))
744 (float (apply fun constants)))))
745 (setq form orig)
746 (setq form (nconc (delq nil form)
747 (list (apply fun (nreverse constants)))))))))
748 form))
750 (defsubst byte-compile-butlast (form)
751 (nreverse (cdr (reverse form))))
753 (defun byte-optimize-plus (form)
754 ;; Don't call `byte-optimize-delay-constants-math' (bug#1334).
755 ;;(setq form (byte-optimize-delay-constants-math form 1 '+))
756 (if (memq 0 form) (setq form (delq 0 (copy-sequence form))))
757 ;; For (+ constants...), byte-optimize-predicate does the work.
758 (when (memq nil (mapcar 'numberp (cdr form)))
759 (cond
760 ;; (+ x 1) --> (1+ x) and (+ x -1) --> (1- x).
761 ((and (= (length form) 3)
762 (or (memq (nth 1 form) '(1 -1))
763 (memq (nth 2 form) '(1 -1))))
764 (let (integer other)
765 (if (memq (nth 1 form) '(1 -1))
766 (setq integer (nth 1 form) other (nth 2 form))
767 (setq integer (nth 2 form) other (nth 1 form)))
768 (setq form
769 (list (if (eq integer 1) '1+ '1-) other))))
770 ;; Here, we could also do
771 ;; (+ x y ... 1) --> (1+ (+ x y ...))
772 ;; (+ x y ... -1) --> (1- (+ x y ...))
773 ;; The resulting bytecode is smaller, but is it faster? -- cyd
775 (byte-optimize-predicate form))
777 (defun byte-optimize-minus (form)
778 ;; Don't call `byte-optimize-delay-constants-math' (bug#1334).
779 ;;(setq form (byte-optimize-delay-constants-math form 2 '+))
780 ;; Remove zeros.
781 (when (and (nthcdr 3 form)
782 (memq 0 (cddr form)))
783 (setq form (nconc (list (car form) (cadr form))
784 (delq 0 (copy-sequence (cddr form)))))
785 ;; After the above, we must turn (- x) back into (- x 0)
786 (or (cddr form)
787 (setq form (nconc form (list 0)))))
788 ;; For (- constants..), byte-optimize-predicate does the work.
789 (when (memq nil (mapcar 'numberp (cdr form)))
790 (cond
791 ;; (- x 1) --> (1- x)
792 ((equal (nthcdr 2 form) '(1))
793 (setq form (list '1- (nth 1 form))))
794 ;; (- x -1) --> (1+ x)
795 ((equal (nthcdr 2 form) '(-1))
796 (setq form (list '1+ (nth 1 form))))
797 ;; (- 0 x) --> (- x)
798 ((and (eq (nth 1 form) 0)
799 (= (length form) 3))
800 (setq form (list '- (nth 2 form))))
801 ;; Here, we could also do
802 ;; (- x y ... 1) --> (1- (- x y ...))
803 ;; (- x y ... -1) --> (1+ (- x y ...))
804 ;; The resulting bytecode is smaller, but is it faster? -- cyd
806 (byte-optimize-predicate form))
808 (defun byte-optimize-multiply (form)
809 (setq form (byte-optimize-delay-constants-math form 1 '*))
810 ;; For (* constants..), byte-optimize-predicate does the work.
811 (when (memq nil (mapcar 'numberp (cdr form)))
812 ;; After `byte-optimize-predicate', if there is a INTEGER constant
813 ;; in FORM, it is in the last element.
814 (let ((last (car (reverse (cdr form)))))
815 (cond
816 ;; Would handling (* ... 0) here cause floating point errors?
817 ;; See bug#1334.
818 ((eq 1 last) (setq form (byte-compile-butlast form)))
819 ((eq -1 last)
820 (setq form (list '- (if (nthcdr 3 form)
821 (byte-compile-butlast form)
822 (nth 1 form))))))))
823 (byte-optimize-predicate form))
825 (defun byte-optimize-divide (form)
826 (setq form (byte-optimize-delay-constants-math form 2 '*))
827 ;; After `byte-optimize-predicate', if there is a INTEGER constant
828 ;; in FORM, it is in the last element.
829 (let ((last (car (reverse (cdr (cdr form))))))
830 (cond
831 ;; Runtime error (leave it intact).
832 ((or (null last)
833 (eq last 0)
834 (memql 0.0 (cddr form))))
835 ;; No constants in expression
836 ((not (numberp last)))
837 ;; For (* constants..), byte-optimize-predicate does the work.
838 ((null (memq nil (mapcar 'numberp (cdr form)))))
839 ;; (/ x y.. 1) --> (/ x y..)
840 ((and (eq last 1) (nthcdr 3 form))
841 (setq form (byte-compile-butlast form)))
842 ;; (/ x -1), (/ x .. -1) --> (- x), (- (/ x ..))
843 ((eq last -1)
844 (setq form (list '- (if (nthcdr 3 form)
845 (byte-compile-butlast form)
846 (nth 1 form)))))))
847 (byte-optimize-predicate form))
849 (defun byte-optimize-logmumble (form)
850 (setq form (byte-optimize-delay-constants-math form 1 (car form)))
851 (byte-optimize-predicate
852 (cond ((memq 0 form)
853 (setq form (if (eq (car form) 'logand)
854 (cons 'progn (cdr form))
855 (delq 0 (copy-sequence form)))))
856 ((and (eq (car-safe form) 'logior)
857 (memq -1 form))
858 (cons 'progn (cdr form)))
859 (form))))
862 (defun byte-optimize-binary-predicate (form)
863 (if (byte-compile-constp (nth 1 form))
864 (if (byte-compile-constp (nth 2 form))
865 (condition-case ()
866 (list 'quote (eval form))
867 (error form))
868 ;; This can enable some lapcode optimizations.
869 (list (car form) (nth 2 form) (nth 1 form)))
870 form))
872 (defun byte-optimize-predicate (form)
873 (let ((ok t)
874 (rest (cdr form)))
875 (while (and rest ok)
876 (setq ok (byte-compile-constp (car rest))
877 rest (cdr rest)))
878 (if ok
879 (condition-case ()
880 (list 'quote (eval form))
881 (error form))
882 form)))
884 (defun byte-optimize-identity (form)
885 (if (and (cdr form) (null (cdr (cdr form))))
886 (nth 1 form)
887 (byte-compile-warn "identity called with %d arg%s, but requires 1"
888 (length (cdr form))
889 (if (= 1 (length (cdr form))) "" "s"))
890 form))
892 (put 'identity 'byte-optimizer 'byte-optimize-identity)
894 (put '+ 'byte-optimizer 'byte-optimize-plus)
895 (put '* 'byte-optimizer 'byte-optimize-multiply)
896 (put '- 'byte-optimizer 'byte-optimize-minus)
897 (put '/ 'byte-optimizer 'byte-optimize-divide)
898 (put 'max 'byte-optimizer 'byte-optimize-associative-math)
899 (put 'min 'byte-optimizer 'byte-optimize-associative-math)
901 (put '= 'byte-optimizer 'byte-optimize-binary-predicate)
902 (put 'eq 'byte-optimizer 'byte-optimize-binary-predicate)
903 (put 'equal 'byte-optimizer 'byte-optimize-binary-predicate)
904 (put 'string= 'byte-optimizer 'byte-optimize-binary-predicate)
905 (put 'string-equal 'byte-optimizer 'byte-optimize-binary-predicate)
907 (put '< 'byte-optimizer 'byte-optimize-predicate)
908 (put '> 'byte-optimizer 'byte-optimize-predicate)
909 (put '<= 'byte-optimizer 'byte-optimize-predicate)
910 (put '>= 'byte-optimizer 'byte-optimize-predicate)
911 (put '1+ 'byte-optimizer 'byte-optimize-predicate)
912 (put '1- 'byte-optimizer 'byte-optimize-predicate)
913 (put 'not 'byte-optimizer 'byte-optimize-predicate)
914 (put 'null 'byte-optimizer 'byte-optimize-predicate)
915 (put 'memq 'byte-optimizer 'byte-optimize-predicate)
916 (put 'consp 'byte-optimizer 'byte-optimize-predicate)
917 (put 'listp 'byte-optimizer 'byte-optimize-predicate)
918 (put 'symbolp 'byte-optimizer 'byte-optimize-predicate)
919 (put 'stringp 'byte-optimizer 'byte-optimize-predicate)
920 (put 'string< 'byte-optimizer 'byte-optimize-predicate)
921 (put 'string-lessp 'byte-optimizer 'byte-optimize-predicate)
923 (put 'logand 'byte-optimizer 'byte-optimize-logmumble)
924 (put 'logior 'byte-optimizer 'byte-optimize-logmumble)
925 (put 'logxor 'byte-optimizer 'byte-optimize-logmumble)
926 (put 'lognot 'byte-optimizer 'byte-optimize-predicate)
928 (put 'car 'byte-optimizer 'byte-optimize-predicate)
929 (put 'cdr 'byte-optimizer 'byte-optimize-predicate)
930 (put 'car-safe 'byte-optimizer 'byte-optimize-predicate)
931 (put 'cdr-safe 'byte-optimizer 'byte-optimize-predicate)
934 ;; I'm not convinced that this is necessary. Doesn't the optimizer loop
935 ;; take care of this? - Jamie
936 ;; I think this may some times be necessary to reduce ie (quote 5) to 5,
937 ;; so arithmetic optimizers recognize the numeric constant. - Hallvard
938 (put 'quote 'byte-optimizer 'byte-optimize-quote)
939 (defun byte-optimize-quote (form)
940 (if (or (consp (nth 1 form))
941 (and (symbolp (nth 1 form))
942 (not (byte-compile-const-symbol-p form))))
943 form
944 (nth 1 form)))
946 (defun byte-optimize-zerop (form)
947 (cond ((numberp (nth 1 form))
948 (eval form))
949 (byte-compile-delete-errors
950 (list '= (nth 1 form) 0))
951 (form)))
953 (put 'zerop 'byte-optimizer 'byte-optimize-zerop)
955 (defun byte-optimize-and (form)
956 ;; Simplify if less than 2 args.
957 ;; if there is a literal nil in the args to `and', throw it and following
958 ;; forms away, and surround the `and' with (progn ... nil).
959 (cond ((null (cdr form)))
960 ((memq nil form)
961 (list 'progn
962 (byte-optimize-and
963 (prog1 (setq form (copy-sequence form))
964 (while (nth 1 form)
965 (setq form (cdr form)))
966 (setcdr form nil)))
967 nil))
968 ((null (cdr (cdr form)))
969 (nth 1 form))
970 ((byte-optimize-predicate form))))
972 (defun byte-optimize-or (form)
973 ;; Throw away nil's, and simplify if less than 2 args.
974 ;; If there is a literal non-nil constant in the args to `or', throw away all
975 ;; following forms.
976 (if (memq nil form)
977 (setq form (delq nil (copy-sequence form))))
978 (let ((rest form))
979 (while (cdr (setq rest (cdr rest)))
980 (if (byte-compile-trueconstp (car rest))
981 (setq form (copy-sequence form)
982 rest (setcdr (memq (car rest) form) nil))))
983 (if (cdr (cdr form))
984 (byte-optimize-predicate form)
985 (nth 1 form))))
987 (defun byte-optimize-cond (form)
988 ;; if any clauses have a literal nil as their test, throw them away.
989 ;; if any clause has a literal non-nil constant as its test, throw
990 ;; away all following clauses.
991 (let (rest)
992 ;; This must be first, to reduce (cond (t ...) (nil)) to (progn t ...)
993 (while (setq rest (assq nil (cdr form)))
994 (setq form (delq rest (copy-sequence form))))
995 (if (memq nil (cdr form))
996 (setq form (delq nil (copy-sequence form))))
997 (setq rest form)
998 (while (setq rest (cdr rest))
999 (cond ((byte-compile-trueconstp (car-safe (car rest)))
1000 ;; This branch will always be taken: kill the subsequent ones.
1001 (cond ((eq rest (cdr form)) ;First branch of `cond'.
1002 (setq form `(progn ,@(car rest))))
1003 ((cdr rest)
1004 (setq form (copy-sequence form))
1005 (setcdr (memq (car rest) form) nil)))
1006 (setq rest nil))
1007 ((and (consp (car rest))
1008 (byte-compile-nilconstp (caar rest)))
1009 ;; This branch will never be taken: kill its body.
1010 (setcdr (car rest) nil)))))
1012 ;; Turn (cond (( <x> )) ... ) into (or <x> (cond ... ))
1013 (if (eq 'cond (car-safe form))
1014 (let ((clauses (cdr form)))
1015 (if (and (consp (car clauses))
1016 (null (cdr (car clauses))))
1017 (list 'or (car (car clauses))
1018 (byte-optimize-cond
1019 (cons (car form) (cdr (cdr form)))))
1020 form))
1021 form))
1023 (defun byte-optimize-if (form)
1024 ;; (if (progn <insts> <test>) <rest>) ==> (progn <insts> (if <test> <rest>))
1025 ;; (if <true-constant> <then> <else...>) ==> <then>
1026 ;; (if <false-constant> <then> <else...>) ==> (progn <else...>)
1027 ;; (if <test> nil <else...>) ==> (if (not <test>) (progn <else...>))
1028 ;; (if <test> <then> nil) ==> (if <test> <then>)
1029 (let ((clause (nth 1 form)))
1030 (cond ((and (eq (car-safe clause) 'progn)
1031 ;; `clause' is a proper list.
1032 (null (cdr (last clause))))
1033 (if (null (cddr clause))
1034 ;; A trivial `progn'.
1035 (byte-optimize-if `(if ,(cadr clause) ,@(nthcdr 2 form)))
1036 (nconc (butlast clause)
1037 (list
1038 (byte-optimize-if
1039 `(if ,(car (last clause)) ,@(nthcdr 2 form)))))))
1040 ((byte-compile-trueconstp clause)
1041 `(progn ,clause ,(nth 2 form)))
1042 ((byte-compile-nilconstp clause)
1043 `(progn ,clause ,@(nthcdr 3 form)))
1044 ((nth 2 form)
1045 (if (equal '(nil) (nthcdr 3 form))
1046 (list 'if clause (nth 2 form))
1047 form))
1048 ((or (nth 3 form) (nthcdr 4 form))
1049 (list 'if
1050 ;; Don't make a double negative;
1051 ;; instead, take away the one that is there.
1052 (if (and (consp clause) (memq (car clause) '(not null))
1053 (= (length clause) 2)) ; (not xxxx) or (not (xxxx))
1054 (nth 1 clause)
1055 (list 'not clause))
1056 (if (nthcdr 4 form)
1057 (cons 'progn (nthcdr 3 form))
1058 (nth 3 form))))
1060 (list 'progn clause nil)))))
1062 (defun byte-optimize-while (form)
1063 (when (< (length form) 2)
1064 (byte-compile-warn "too few arguments for `while'"))
1065 (if (nth 1 form)
1066 form))
1068 (put 'and 'byte-optimizer 'byte-optimize-and)
1069 (put 'or 'byte-optimizer 'byte-optimize-or)
1070 (put 'cond 'byte-optimizer 'byte-optimize-cond)
1071 (put 'if 'byte-optimizer 'byte-optimize-if)
1072 (put 'while 'byte-optimizer 'byte-optimize-while)
1074 ;; byte-compile-negation-optimizer lives in bytecomp.el
1075 (put '/= 'byte-optimizer 'byte-compile-negation-optimizer)
1076 (put 'atom 'byte-optimizer 'byte-compile-negation-optimizer)
1077 (put 'nlistp 'byte-optimizer 'byte-compile-negation-optimizer)
1080 (defun byte-optimize-funcall (form)
1081 ;; (funcall (lambda ...) ...) ==> ((lambda ...) ...)
1082 ;; (funcall foo ...) ==> (foo ...)
1083 (let ((fn (nth 1 form)))
1084 (if (memq (car-safe fn) '(quote function))
1085 (cons (nth 1 fn) (cdr (cdr form)))
1086 form)))
1088 (defun byte-optimize-apply (form)
1089 ;; If the last arg is a literal constant, turn this into a funcall.
1090 ;; The funcall optimizer can then transform (funcall 'foo ...) -> (foo ...).
1091 (let ((fn (nth 1 form))
1092 (last (nth (1- (length form)) form))) ; I think this really is fastest
1093 (or (if (or (null last)
1094 (eq (car-safe last) 'quote))
1095 (if (listp (nth 1 last))
1096 (let ((butlast (nreverse (cdr (reverse (cdr (cdr form)))))))
1097 (nconc (list 'funcall fn) butlast
1098 (mapcar (lambda (x) (list 'quote x)) (nth 1 last))))
1099 (byte-compile-warn
1100 "last arg to apply can't be a literal atom: `%s'"
1101 (prin1-to-string last))
1102 nil))
1103 form)))
1105 (put 'funcall 'byte-optimizer 'byte-optimize-funcall)
1106 (put 'apply 'byte-optimizer 'byte-optimize-apply)
1109 (put 'let 'byte-optimizer 'byte-optimize-letX)
1110 (put 'let* 'byte-optimizer 'byte-optimize-letX)
1111 (defun byte-optimize-letX (form)
1112 (cond ((null (nth 1 form))
1113 ;; No bindings
1114 (cons 'progn (cdr (cdr form))))
1115 ((or (nth 2 form) (nthcdr 3 form))
1116 form)
1117 ;; The body is nil
1118 ((eq (car form) 'let)
1119 (append '(progn) (mapcar 'car-safe (mapcar 'cdr-safe (nth 1 form)))
1120 '(nil)))
1122 (let ((binds (reverse (nth 1 form))))
1123 (list 'let* (reverse (cdr binds)) (nth 1 (car binds)) nil)))))
1126 (put 'nth 'byte-optimizer 'byte-optimize-nth)
1127 (defun byte-optimize-nth (form)
1128 (if (= (safe-length form) 3)
1129 (if (memq (nth 1 form) '(0 1))
1130 (list 'car (if (zerop (nth 1 form))
1131 (nth 2 form)
1132 (list 'cdr (nth 2 form))))
1133 (byte-optimize-predicate form))
1134 form))
1136 (put 'nthcdr 'byte-optimizer 'byte-optimize-nthcdr)
1137 (defun byte-optimize-nthcdr (form)
1138 (if (= (safe-length form) 3)
1139 (if (memq (nth 1 form) '(0 1 2))
1140 (let ((count (nth 1 form)))
1141 (setq form (nth 2 form))
1142 (while (>= (setq count (1- count)) 0)
1143 (setq form (list 'cdr form)))
1144 form)
1145 (byte-optimize-predicate form))
1146 form))
1148 ;; Fixme: delete-char -> delete-region (byte-coded)
1149 ;; optimize string-as-unibyte, string-as-multibyte, string-make-unibyte,
1150 ;; string-make-multibyte for constant args.
1152 (put 'featurep 'byte-optimizer 'byte-optimize-featurep)
1153 (defun byte-optimize-featurep (form)
1154 ;; Emacs-21's byte-code doesn't run under XEmacs or SXEmacs anyway, so we
1155 ;; can safely optimize away this test.
1156 (if (member (cdr-safe form) '(((quote xemacs)) ((quote sxemacs))))
1158 (if (member (cdr-safe form) '(((quote emacs))))
1160 form)))
1162 (put 'set 'byte-optimizer 'byte-optimize-set)
1163 (defun byte-optimize-set (form)
1164 (let ((var (car-safe (cdr-safe form))))
1165 (cond
1166 ((and (eq (car-safe var) 'quote) (consp (cdr var)))
1167 `(setq ,(cadr var) ,@(cddr form)))
1168 ((and (eq (car-safe var) 'make-local-variable)
1169 (eq (car-safe (setq var (car-safe (cdr var)))) 'quote)
1170 (consp (cdr var)))
1171 `(progn ,(cadr form) (setq ,(cadr var) ,@(cddr form))))
1172 (t form))))
1174 ;; enumerating those functions which need not be called if the returned
1175 ;; value is not used. That is, something like
1176 ;; (progn (list (something-with-side-effects) (yow))
1177 ;; (foo))
1178 ;; may safely be turned into
1179 ;; (progn (progn (something-with-side-effects) (yow))
1180 ;; (foo))
1181 ;; Further optimizations will turn (progn (list 1 2 3) 'foo) into 'foo.
1183 ;; Some of these functions have the side effect of allocating memory
1184 ;; and it would be incorrect to replace two calls with one.
1185 ;; But we don't try to do those kinds of optimizations,
1186 ;; so it is safe to list such functions here.
1187 ;; Some of these functions return values that depend on environment
1188 ;; state, so that constant folding them would be wrong,
1189 ;; but we don't do constant folding based on this list.
1191 ;; However, at present the only optimization we normally do
1192 ;; is delete calls that need not occur, and we only do that
1193 ;; with the error-free functions.
1195 ;; I wonder if I missed any :-\)
1196 (let ((side-effect-free-fns
1197 '(% * + - / /= 1+ 1- < <= = > >= abs acos append aref ash asin atan
1198 assoc assq
1199 boundp buffer-file-name buffer-local-variables buffer-modified-p
1200 buffer-substring byte-code-function-p
1201 capitalize car-less-than-car car cdr ceiling char-after char-before
1202 char-equal char-to-string char-width
1203 compare-strings concat coordinates-in-window-p
1204 copy-alist copy-sequence copy-marker cos count-lines
1205 decode-char
1206 decode-time default-boundp default-value documentation downcase
1207 elt encode-char exp expt encode-time error-message-string
1208 fboundp fceiling featurep ffloor
1209 file-directory-p file-exists-p file-locked-p file-name-absolute-p
1210 file-newer-than-file-p file-readable-p file-symlink-p file-writable-p
1211 float float-time floor format format-time-string frame-visible-p
1212 fround ftruncate
1213 get gethash get-buffer get-buffer-window getenv get-file-buffer
1214 hash-table-count
1215 int-to-string intern-soft
1216 keymap-parent
1217 length local-variable-if-set-p local-variable-p log log10 logand
1218 logb logior lognot logxor lsh langinfo
1219 make-list make-string make-symbol
1220 marker-buffer max member memq min mod multibyte-char-to-unibyte
1221 next-window nth nthcdr number-to-string
1222 parse-colon-path plist-get plist-member
1223 prefix-numeric-value previous-window prin1-to-string propertize
1224 radians-to-degrees rassq rassoc read-from-string regexp-quote
1225 region-beginning region-end reverse round
1226 sin sqrt string string< string= string-equal string-lessp string-to-char
1227 string-to-int string-to-number substring sxhash symbol-function
1228 symbol-name symbol-plist symbol-value string-make-unibyte
1229 string-make-multibyte string-as-multibyte string-as-unibyte
1230 string-to-multibyte
1231 tan truncate
1232 unibyte-char-to-multibyte upcase user-full-name
1233 user-login-name user-original-login-name user-variable-p
1234 vconcat
1235 window-buffer window-dedicated-p window-edges window-height
1236 window-hscroll window-minibuffer-p window-width
1237 zerop))
1238 (side-effect-and-error-free-fns
1239 '(arrayp atom
1240 bobp bolp bool-vector-p
1241 buffer-end buffer-list buffer-size buffer-string bufferp
1242 car-safe case-table-p cdr-safe char-or-string-p characterp
1243 charsetp commandp cons consp
1244 current-buffer current-global-map current-indentation
1245 current-local-map current-minor-mode-maps current-time
1246 current-time-string current-time-zone
1247 eobp eolp eq equal eventp
1248 floatp following-char framep
1249 get-largest-window get-lru-window
1250 hash-table-p
1251 identity ignore integerp integer-or-marker-p interactive-p
1252 invocation-directory invocation-name
1253 keymapp
1254 line-beginning-position line-end-position list listp
1255 make-marker mark mark-marker markerp max-char
1256 memory-limit minibuffer-window
1257 mouse-movement-p
1258 natnump nlistp not null number-or-marker-p numberp
1259 one-window-p overlayp
1260 point point-marker point-min point-max preceding-char primary-charset
1261 processp
1262 recent-keys recursion-depth
1263 safe-length selected-frame selected-window sequencep
1264 standard-case-table standard-syntax-table stringp subrp symbolp
1265 syntax-table syntax-table-p
1266 this-command-keys this-command-keys-vector this-single-command-keys
1267 this-single-command-raw-keys
1268 user-real-login-name user-real-uid user-uid
1269 vector vectorp visible-frame-list
1270 wholenump window-configuration-p window-live-p windowp)))
1271 (while side-effect-free-fns
1272 (put (car side-effect-free-fns) 'side-effect-free t)
1273 (setq side-effect-free-fns (cdr side-effect-free-fns)))
1274 (while side-effect-and-error-free-fns
1275 (put (car side-effect-and-error-free-fns) 'side-effect-free 'error-free)
1276 (setq side-effect-and-error-free-fns (cdr side-effect-and-error-free-fns)))
1277 nil)
1280 ;; pure functions are side-effect free functions whose values depend
1281 ;; only on their arguments. For these functions, calls with constant
1282 ;; arguments can be evaluated at compile time. This may shift run time
1283 ;; errors to compile time.
1285 (let ((pure-fns
1286 '(concat symbol-name regexp-opt regexp-quote string-to-syntax)))
1287 (while pure-fns
1288 (put (car pure-fns) 'pure t)
1289 (setq pure-fns (cdr pure-fns)))
1290 nil)
1292 (defun byte-compile-splice-in-already-compiled-code (form)
1293 ;; form is (byte-code "..." [...] n)
1294 (if (not (memq byte-optimize '(t lap)))
1295 (byte-compile-normal-call form)
1296 (byte-inline-lapcode
1297 (byte-decompile-bytecode-1 (nth 1 form) (nth 2 form) t))
1298 (setq byte-compile-maxdepth (max (+ byte-compile-depth (nth 3 form))
1299 byte-compile-maxdepth))
1300 (setq byte-compile-depth (1+ byte-compile-depth))))
1302 (put 'byte-code 'byte-compile 'byte-compile-splice-in-already-compiled-code)
1305 (defconst byte-constref-ops
1306 '(byte-constant byte-constant2 byte-varref byte-varset byte-varbind))
1308 ;; This function extracts the bitfields from variable-length opcodes.
1309 ;; Originally defined in disass.el (which no longer uses it.)
1311 (defun disassemble-offset ()
1312 "Don't call this!"
1313 ;; fetch and return the offset for the current opcode.
1314 ;; return nil if this opcode has no offset
1315 ;; OP, PTR and BYTES are used and set dynamically
1316 (defvar op)
1317 (defvar ptr)
1318 (defvar bytes)
1319 (cond ((< op byte-nth)
1320 (let ((tem (logand op 7)))
1321 (setq op (logand op 248))
1322 (cond ((eq tem 6)
1323 (setq ptr (1+ ptr)) ;offset in next byte
1324 (aref bytes ptr))
1325 ((eq tem 7)
1326 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1327 (+ (aref bytes ptr)
1328 (progn (setq ptr (1+ ptr))
1329 (lsh (aref bytes ptr) 8))))
1330 (t tem)))) ;offset was in opcode
1331 ((>= op byte-constant)
1332 (prog1 (- op byte-constant) ;offset in opcode
1333 (setq op byte-constant)))
1334 ((and (>= op byte-constant2)
1335 (<= op byte-goto-if-not-nil-else-pop))
1336 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1337 (+ (aref bytes ptr)
1338 (progn (setq ptr (1+ ptr))
1339 (lsh (aref bytes ptr) 8))))
1340 ((and (>= op byte-listN)
1341 (<= op byte-insertN))
1342 (setq ptr (1+ ptr)) ;offset in next byte
1343 (aref bytes ptr))))
1346 ;; This de-compiler is used for inline expansion of compiled functions,
1347 ;; and by the disassembler.
1349 ;; This list contains numbers, which are pc values,
1350 ;; before each instruction.
1351 (defun byte-decompile-bytecode (bytes constvec)
1352 "Turn BYTECODE into lapcode, referring to CONSTVEC."
1353 (let ((byte-compile-constants nil)
1354 (byte-compile-variables nil)
1355 (byte-compile-tag-number 0))
1356 (byte-decompile-bytecode-1 bytes constvec)))
1358 ;; As byte-decompile-bytecode, but updates
1359 ;; byte-compile-{constants, variables, tag-number}.
1360 ;; If MAKE-SPLICEABLE is true, then `return' opcodes are replaced
1361 ;; with `goto's destined for the end of the code.
1362 ;; That is for use by the compiler.
1363 ;; If MAKE-SPLICEABLE is nil, we are being called for the disassembler.
1364 ;; In that case, we put a pc value into the list
1365 ;; before each insn (or its label).
1366 (defun byte-decompile-bytecode-1 (bytes constvec &optional make-spliceable)
1367 (let ((length (length bytes))
1368 (ptr 0) optr tags op offset
1369 lap tmp
1370 endtag)
1371 (while (not (= ptr length))
1372 (or make-spliceable
1373 (setq lap (cons ptr lap)))
1374 (setq op (aref bytes ptr)
1375 optr ptr
1376 offset (disassemble-offset)) ; this does dynamic-scope magic
1377 (setq op (aref byte-code-vector op))
1378 (cond ((memq op byte-goto-ops)
1379 ;; it's a pc
1380 (setq offset
1381 (cdr (or (assq offset tags)
1382 (car (setq tags
1383 (cons (cons offset
1384 (byte-compile-make-tag))
1385 tags)))))))
1386 ((cond ((eq op 'byte-constant2) (setq op 'byte-constant) t)
1387 ((memq op byte-constref-ops)))
1388 (setq tmp (if (>= offset (length constvec))
1389 (list 'out-of-range offset)
1390 (aref constvec offset))
1391 offset (if (eq op 'byte-constant)
1392 (byte-compile-get-constant tmp)
1393 (or (assq tmp byte-compile-variables)
1394 (car (setq byte-compile-variables
1395 (cons (list tmp)
1396 byte-compile-variables)))))))
1397 ((and make-spliceable
1398 (eq op 'byte-return))
1399 (if (= ptr (1- length))
1400 (setq op nil)
1401 (setq offset (or endtag (setq endtag (byte-compile-make-tag)))
1402 op 'byte-goto))))
1403 ;; lap = ( [ (pc . (op . arg)) ]* )
1404 (setq lap (cons (cons optr (cons op (or offset 0)))
1405 lap))
1406 (setq ptr (1+ ptr)))
1407 ;; take off the dummy nil op that we replaced a trailing "return" with.
1408 (let ((rest lap))
1409 (while rest
1410 (cond ((numberp (car rest)))
1411 ((setq tmp (assq (car (car rest)) tags))
1412 ;; this addr is jumped to
1413 (setcdr rest (cons (cons nil (cdr tmp))
1414 (cdr rest)))
1415 (setq tags (delq tmp tags))
1416 (setq rest (cdr rest))))
1417 (setq rest (cdr rest))))
1418 (if tags (error "optimizer error: missed tags %s" tags))
1419 (if (null (car (cdr (car lap))))
1420 (setq lap (cdr lap)))
1421 (if endtag
1422 (setq lap (cons (cons nil endtag) lap)))
1423 ;; remove addrs, lap = ( [ (op . arg) | (TAG tagno) ]* )
1424 (mapcar (function (lambda (elt)
1425 (if (numberp elt)
1427 (cdr elt))))
1428 (nreverse lap))))
1431 ;;; peephole optimizer
1433 (defconst byte-tagref-ops (cons 'TAG byte-goto-ops))
1435 (defconst byte-conditional-ops
1436 '(byte-goto-if-nil byte-goto-if-not-nil byte-goto-if-nil-else-pop
1437 byte-goto-if-not-nil-else-pop))
1439 (defconst byte-after-unbind-ops
1440 '(byte-constant byte-dup
1441 byte-symbolp byte-consp byte-stringp byte-listp byte-numberp byte-integerp
1442 byte-eq byte-not
1443 byte-cons byte-list1 byte-list2 ; byte-list3 byte-list4
1444 byte-interactive-p)
1445 ;; How about other side-effect-free-ops? Is it safe to move an
1446 ;; error invocation (such as from nth) out of an unwind-protect?
1447 ;; No, it is not, because the unwind-protect forms can alter
1448 ;; the inside of the object to which nth would apply.
1449 ;; For the same reason, byte-equal was deleted from this list.
1450 "Byte-codes that can be moved past an unbind.")
1452 (defconst byte-compile-side-effect-and-error-free-ops
1453 '(byte-constant byte-dup byte-symbolp byte-consp byte-stringp byte-listp
1454 byte-integerp byte-numberp byte-eq byte-equal byte-not byte-car-safe
1455 byte-cdr-safe byte-cons byte-list1 byte-list2 byte-point byte-point-max
1456 byte-point-min byte-following-char byte-preceding-char
1457 byte-current-column byte-eolp byte-eobp byte-bolp byte-bobp
1458 byte-current-buffer byte-interactive-p))
1460 (defconst byte-compile-side-effect-free-ops
1461 (nconc
1462 '(byte-varref byte-nth byte-memq byte-car byte-cdr byte-length byte-aref
1463 byte-symbol-value byte-get byte-concat2 byte-concat3 byte-sub1 byte-add1
1464 byte-eqlsign byte-gtr byte-lss byte-leq byte-geq byte-diff byte-negate
1465 byte-plus byte-max byte-min byte-mult byte-char-after byte-char-syntax
1466 byte-buffer-substring byte-string= byte-string< byte-nthcdr byte-elt
1467 byte-member byte-assq byte-quo byte-rem)
1468 byte-compile-side-effect-and-error-free-ops))
1470 ;; This crock is because of the way DEFVAR_BOOL variables work.
1471 ;; Consider the code
1473 ;; (defun foo (flag)
1474 ;; (let ((old-pop-ups pop-up-windows)
1475 ;; (pop-up-windows flag))
1476 ;; (cond ((not (eq pop-up-windows old-pop-ups))
1477 ;; (setq old-pop-ups pop-up-windows)
1478 ;; ...))))
1480 ;; Uncompiled, old-pop-ups will always be set to nil or t, even if FLAG is
1481 ;; something else. But if we optimize
1483 ;; varref flag
1484 ;; varbind pop-up-windows
1485 ;; varref pop-up-windows
1486 ;; not
1487 ;; to
1488 ;; varref flag
1489 ;; dup
1490 ;; varbind pop-up-windows
1491 ;; not
1493 ;; we break the program, because it will appear that pop-up-windows and
1494 ;; old-pop-ups are not EQ when really they are. So we have to know what
1495 ;; the BOOL variables are, and not perform this optimization on them.
1497 ;; The variable `byte-boolean-vars' is now primitive and updated
1498 ;; automatically by DEFVAR_BOOL.
1500 (defun byte-optimize-lapcode (lap &optional for-effect)
1501 "Simple peephole optimizer. LAP is both modified and returned.
1502 If FOR-EFFECT is non-nil, the return value is assumed to be of no importance."
1503 (let (lap0
1504 lap1
1505 lap2
1506 (keep-going 'first-time)
1507 (add-depth 0)
1508 rest tmp tmp2 tmp3
1509 (side-effect-free (if byte-compile-delete-errors
1510 byte-compile-side-effect-free-ops
1511 byte-compile-side-effect-and-error-free-ops)))
1512 (while keep-going
1513 (or (eq keep-going 'first-time)
1514 (byte-compile-log-lap " ---- next pass"))
1515 (setq rest lap
1516 keep-going nil)
1517 (while rest
1518 (setq lap0 (car rest)
1519 lap1 (nth 1 rest)
1520 lap2 (nth 2 rest))
1522 ;; You may notice that sequences like "dup varset discard" are
1523 ;; optimized but sequences like "dup varset TAG1: discard" are not.
1524 ;; You may be tempted to change this; resist that temptation.
1525 (cond ;;
1526 ;; <side-effect-free> pop --> <deleted>
1527 ;; ...including:
1528 ;; const-X pop --> <deleted>
1529 ;; varref-X pop --> <deleted>
1530 ;; dup pop --> <deleted>
1532 ((and (eq 'byte-discard (car lap1))
1533 (memq (car lap0) side-effect-free))
1534 (setq keep-going t)
1535 (setq tmp (aref byte-stack+-info (symbol-value (car lap0))))
1536 (setq rest (cdr rest))
1537 (cond ((= tmp 1)
1538 (byte-compile-log-lap
1539 " %s discard\t-->\t<deleted>" lap0)
1540 (setq lap (delq lap0 (delq lap1 lap))))
1541 ((= tmp 0)
1542 (byte-compile-log-lap
1543 " %s discard\t-->\t<deleted> discard" lap0)
1544 (setq lap (delq lap0 lap)))
1545 ((= tmp -1)
1546 (byte-compile-log-lap
1547 " %s discard\t-->\tdiscard discard" lap0)
1548 (setcar lap0 'byte-discard)
1549 (setcdr lap0 0))
1550 ((error "Optimizer error: too much on the stack"))))
1552 ;; goto*-X X: --> X:
1554 ((and (memq (car lap0) byte-goto-ops)
1555 (eq (cdr lap0) lap1))
1556 (cond ((eq (car lap0) 'byte-goto)
1557 (setq lap (delq lap0 lap))
1558 (setq tmp "<deleted>"))
1559 ((memq (car lap0) byte-goto-always-pop-ops)
1560 (setcar lap0 (setq tmp 'byte-discard))
1561 (setcdr lap0 0))
1562 ((error "Depth conflict at tag %d" (nth 2 lap0))))
1563 (and (memq byte-optimize-log '(t byte))
1564 (byte-compile-log " (goto %s) %s:\t-->\t%s %s:"
1565 (nth 1 lap1) (nth 1 lap1)
1566 tmp (nth 1 lap1)))
1567 (setq keep-going t))
1569 ;; varset-X varref-X --> dup varset-X
1570 ;; varbind-X varref-X --> dup varbind-X
1571 ;; const/dup varset-X varref-X --> const/dup varset-X const/dup
1572 ;; const/dup varbind-X varref-X --> const/dup varbind-X const/dup
1573 ;; The latter two can enable other optimizations.
1575 ((and (eq 'byte-varref (car lap2))
1576 (eq (cdr lap1) (cdr lap2))
1577 (memq (car lap1) '(byte-varset byte-varbind)))
1578 (if (and (setq tmp (memq (car (cdr lap2)) byte-boolean-vars))
1579 (not (eq (car lap0) 'byte-constant)))
1581 (setq keep-going t)
1582 (if (memq (car lap0) '(byte-constant byte-dup))
1583 (progn
1584 (setq tmp (if (or (not tmp)
1585 (byte-compile-const-symbol-p
1586 (car (cdr lap0))))
1587 (cdr lap0)
1588 (byte-compile-get-constant t)))
1589 (byte-compile-log-lap " %s %s %s\t-->\t%s %s %s"
1590 lap0 lap1 lap2 lap0 lap1
1591 (cons (car lap0) tmp))
1592 (setcar lap2 (car lap0))
1593 (setcdr lap2 tmp))
1594 (byte-compile-log-lap " %s %s\t-->\tdup %s" lap1 lap2 lap1)
1595 (setcar lap2 (car lap1))
1596 (setcar lap1 'byte-dup)
1597 (setcdr lap1 0)
1598 ;; The stack depth gets locally increased, so we will
1599 ;; increase maxdepth in case depth = maxdepth here.
1600 ;; This can cause the third argument to byte-code to
1601 ;; be larger than necessary.
1602 (setq add-depth 1))))
1604 ;; dup varset-X discard --> varset-X
1605 ;; dup varbind-X discard --> varbind-X
1606 ;; (the varbind variant can emerge from other optimizations)
1608 ((and (eq 'byte-dup (car lap0))
1609 (eq 'byte-discard (car lap2))
1610 (memq (car lap1) '(byte-varset byte-varbind)))
1611 (byte-compile-log-lap " dup %s discard\t-->\t%s" lap1 lap1)
1612 (setq keep-going t
1613 rest (cdr rest))
1614 (setq lap (delq lap0 (delq lap2 lap))))
1616 ;; not goto-X-if-nil --> goto-X-if-non-nil
1617 ;; not goto-X-if-non-nil --> goto-X-if-nil
1619 ;; it is wrong to do the same thing for the -else-pop variants.
1621 ((and (eq 'byte-not (car lap0))
1622 (or (eq 'byte-goto-if-nil (car lap1))
1623 (eq 'byte-goto-if-not-nil (car lap1))))
1624 (byte-compile-log-lap " not %s\t-->\t%s"
1625 lap1
1626 (cons
1627 (if (eq (car lap1) 'byte-goto-if-nil)
1628 'byte-goto-if-not-nil
1629 'byte-goto-if-nil)
1630 (cdr lap1)))
1631 (setcar lap1 (if (eq (car lap1) 'byte-goto-if-nil)
1632 'byte-goto-if-not-nil
1633 'byte-goto-if-nil))
1634 (setq lap (delq lap0 lap))
1635 (setq keep-going t))
1637 ;; goto-X-if-nil goto-Y X: --> goto-Y-if-non-nil X:
1638 ;; goto-X-if-non-nil goto-Y X: --> goto-Y-if-nil X:
1640 ;; it is wrong to do the same thing for the -else-pop variants.
1642 ((and (or (eq 'byte-goto-if-nil (car lap0))
1643 (eq 'byte-goto-if-not-nil (car lap0))) ; gotoX
1644 (eq 'byte-goto (car lap1)) ; gotoY
1645 (eq (cdr lap0) lap2)) ; TAG X
1646 (let ((inverse (if (eq 'byte-goto-if-nil (car lap0))
1647 'byte-goto-if-not-nil 'byte-goto-if-nil)))
1648 (byte-compile-log-lap " %s %s %s:\t-->\t%s %s:"
1649 lap0 lap1 lap2
1650 (cons inverse (cdr lap1)) lap2)
1651 (setq lap (delq lap0 lap))
1652 (setcar lap1 inverse)
1653 (setq keep-going t)))
1655 ;; const goto-if-* --> whatever
1657 ((and (eq 'byte-constant (car lap0))
1658 (memq (car lap1) byte-conditional-ops))
1659 (cond ((if (or (eq (car lap1) 'byte-goto-if-nil)
1660 (eq (car lap1) 'byte-goto-if-nil-else-pop))
1661 (car (cdr lap0))
1662 (not (car (cdr lap0))))
1663 (byte-compile-log-lap " %s %s\t-->\t<deleted>"
1664 lap0 lap1)
1665 (setq rest (cdr rest)
1666 lap (delq lap0 (delq lap1 lap))))
1668 (if (memq (car lap1) byte-goto-always-pop-ops)
1669 (progn
1670 (byte-compile-log-lap " %s %s\t-->\t%s"
1671 lap0 lap1 (cons 'byte-goto (cdr lap1)))
1672 (setq lap (delq lap0 lap)))
1673 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1674 (cons 'byte-goto (cdr lap1))))
1675 (setcar lap1 'byte-goto)))
1676 (setq keep-going t))
1678 ;; varref-X varref-X --> varref-X dup
1679 ;; varref-X [dup ...] varref-X --> varref-X [dup ...] dup
1680 ;; We don't optimize the const-X variations on this here,
1681 ;; because that would inhibit some goto optimizations; we
1682 ;; optimize the const-X case after all other optimizations.
1684 ((and (eq 'byte-varref (car lap0))
1685 (progn
1686 (setq tmp (cdr rest))
1687 (while (eq (car (car tmp)) 'byte-dup)
1688 (setq tmp (cdr tmp)))
1690 (eq (cdr lap0) (cdr (car tmp)))
1691 (eq 'byte-varref (car (car tmp))))
1692 (if (memq byte-optimize-log '(t byte))
1693 (let ((str ""))
1694 (setq tmp2 (cdr rest))
1695 (while (not (eq tmp tmp2))
1696 (setq tmp2 (cdr tmp2)
1697 str (concat str " dup")))
1698 (byte-compile-log-lap " %s%s %s\t-->\t%s%s dup"
1699 lap0 str lap0 lap0 str)))
1700 (setq keep-going t)
1701 (setcar (car tmp) 'byte-dup)
1702 (setcdr (car tmp) 0)
1703 (setq rest tmp))
1705 ;; TAG1: TAG2: --> TAG1: <deleted>
1706 ;; (and other references to TAG2 are replaced with TAG1)
1708 ((and (eq (car lap0) 'TAG)
1709 (eq (car lap1) 'TAG))
1710 (and (memq byte-optimize-log '(t byte))
1711 (byte-compile-log " adjacent tags %d and %d merged"
1712 (nth 1 lap1) (nth 1 lap0)))
1713 (setq tmp3 lap)
1714 (while (setq tmp2 (rassq lap0 tmp3))
1715 (setcdr tmp2 lap1)
1716 (setq tmp3 (cdr (memq tmp2 tmp3))))
1717 (setq lap (delq lap0 lap)
1718 keep-going t))
1720 ;; unused-TAG: --> <deleted>
1722 ((and (eq 'TAG (car lap0))
1723 (not (rassq lap0 lap)))
1724 (and (memq byte-optimize-log '(t byte))
1725 (byte-compile-log " unused tag %d removed" (nth 1 lap0)))
1726 (setq lap (delq lap0 lap)
1727 keep-going t))
1729 ;; goto ... --> goto <delete until TAG or end>
1730 ;; return ... --> return <delete until TAG or end>
1732 ((and (memq (car lap0) '(byte-goto byte-return))
1733 (not (memq (car lap1) '(TAG nil))))
1734 (setq tmp rest)
1735 (let ((i 0)
1736 (opt-p (memq byte-optimize-log '(t lap)))
1737 str deleted)
1738 (while (and (setq tmp (cdr tmp))
1739 (not (eq 'TAG (car (car tmp)))))
1740 (if opt-p (setq deleted (cons (car tmp) deleted)
1741 str (concat str " %s")
1742 i (1+ i))))
1743 (if opt-p
1744 (let ((tagstr
1745 (if (eq 'TAG (car (car tmp)))
1746 (format "%d:" (car (cdr (car tmp))))
1747 (or (car tmp) ""))))
1748 (if (< i 6)
1749 (apply 'byte-compile-log-lap-1
1750 (concat " %s" str
1751 " %s\t-->\t%s <deleted> %s")
1752 lap0
1753 (nconc (nreverse deleted)
1754 (list tagstr lap0 tagstr)))
1755 (byte-compile-log-lap
1756 " %s <%d unreachable op%s> %s\t-->\t%s <deleted> %s"
1757 lap0 i (if (= i 1) "" "s")
1758 tagstr lap0 tagstr))))
1759 (rplacd rest tmp))
1760 (setq keep-going t))
1762 ;; <safe-op> unbind --> unbind <safe-op>
1763 ;; (this may enable other optimizations.)
1765 ((and (eq 'byte-unbind (car lap1))
1766 (memq (car lap0) byte-after-unbind-ops))
1767 (byte-compile-log-lap " %s %s\t-->\t%s %s" lap0 lap1 lap1 lap0)
1768 (setcar rest lap1)
1769 (setcar (cdr rest) lap0)
1770 (setq keep-going t))
1772 ;; varbind-X unbind-N --> discard unbind-(N-1)
1773 ;; save-excursion unbind-N --> unbind-(N-1)
1774 ;; save-restriction unbind-N --> unbind-(N-1)
1776 ((and (eq 'byte-unbind (car lap1))
1777 (memq (car lap0) '(byte-varbind byte-save-excursion
1778 byte-save-restriction))
1779 (< 0 (cdr lap1)))
1780 (if (zerop (setcdr lap1 (1- (cdr lap1))))
1781 (delq lap1 rest))
1782 (if (eq (car lap0) 'byte-varbind)
1783 (setcar rest (cons 'byte-discard 0))
1784 (setq lap (delq lap0 lap)))
1785 (byte-compile-log-lap " %s %s\t-->\t%s %s"
1786 lap0 (cons (car lap1) (1+ (cdr lap1)))
1787 (if (eq (car lap0) 'byte-varbind)
1788 (car rest)
1789 (car (cdr rest)))
1790 (if (and (/= 0 (cdr lap1))
1791 (eq (car lap0) 'byte-varbind))
1792 (car (cdr rest))
1793 ""))
1794 (setq keep-going t))
1796 ;; goto*-X ... X: goto-Y --> goto*-Y
1797 ;; goto-X ... X: return --> return
1799 ((and (memq (car lap0) byte-goto-ops)
1800 (memq (car (setq tmp (nth 1 (memq (cdr lap0) lap))))
1801 '(byte-goto byte-return)))
1802 (cond ((and (not (eq tmp lap0))
1803 (or (eq (car lap0) 'byte-goto)
1804 (eq (car tmp) 'byte-goto)))
1805 (byte-compile-log-lap " %s [%s]\t-->\t%s"
1806 (car lap0) tmp tmp)
1807 (if (eq (car tmp) 'byte-return)
1808 (setcar lap0 'byte-return))
1809 (setcdr lap0 (cdr tmp))
1810 (setq keep-going t))))
1812 ;; goto-*-else-pop X ... X: goto-if-* --> whatever
1813 ;; goto-*-else-pop X ... X: discard --> whatever
1815 ((and (memq (car lap0) '(byte-goto-if-nil-else-pop
1816 byte-goto-if-not-nil-else-pop))
1817 (memq (car (car (setq tmp (cdr (memq (cdr lap0) lap)))))
1818 (eval-when-compile
1819 (cons 'byte-discard byte-conditional-ops)))
1820 (not (eq lap0 (car tmp))))
1821 (setq tmp2 (car tmp))
1822 (setq tmp3 (assq (car lap0) '((byte-goto-if-nil-else-pop
1823 byte-goto-if-nil)
1824 (byte-goto-if-not-nil-else-pop
1825 byte-goto-if-not-nil))))
1826 (if (memq (car tmp2) tmp3)
1827 (progn (setcar lap0 (car tmp2))
1828 (setcdr lap0 (cdr tmp2))
1829 (byte-compile-log-lap " %s-else-pop [%s]\t-->\t%s"
1830 (car lap0) tmp2 lap0))
1831 ;; Get rid of the -else-pop's and jump one step further.
1832 (or (eq 'TAG (car (nth 1 tmp)))
1833 (setcdr tmp (cons (byte-compile-make-tag)
1834 (cdr tmp))))
1835 (byte-compile-log-lap " %s [%s]\t-->\t%s <skip>"
1836 (car lap0) tmp2 (nth 1 tmp3))
1837 (setcar lap0 (nth 1 tmp3))
1838 (setcdr lap0 (nth 1 tmp)))
1839 (setq keep-going t))
1841 ;; const goto-X ... X: goto-if-* --> whatever
1842 ;; const goto-X ... X: discard --> whatever
1844 ((and (eq (car lap0) 'byte-constant)
1845 (eq (car lap1) 'byte-goto)
1846 (memq (car (car (setq tmp (cdr (memq (cdr lap1) lap)))))
1847 (eval-when-compile
1848 (cons 'byte-discard byte-conditional-ops)))
1849 (not (eq lap1 (car tmp))))
1850 (setq tmp2 (car tmp))
1851 (cond ((memq (car tmp2)
1852 (if (null (car (cdr lap0)))
1853 '(byte-goto-if-nil byte-goto-if-nil-else-pop)
1854 '(byte-goto-if-not-nil
1855 byte-goto-if-not-nil-else-pop)))
1856 (byte-compile-log-lap " %s goto [%s]\t-->\t%s %s"
1857 lap0 tmp2 lap0 tmp2)
1858 (setcar lap1 (car tmp2))
1859 (setcdr lap1 (cdr tmp2))
1860 ;; Let next step fix the (const,goto-if*) sequence.
1861 (setq rest (cons nil rest)))
1863 ;; Jump one step further
1864 (byte-compile-log-lap
1865 " %s goto [%s]\t-->\t<deleted> goto <skip>"
1866 lap0 tmp2)
1867 (or (eq 'TAG (car (nth 1 tmp)))
1868 (setcdr tmp (cons (byte-compile-make-tag)
1869 (cdr tmp))))
1870 (setcdr lap1 (car (cdr tmp)))
1871 (setq lap (delq lap0 lap))))
1872 (setq keep-going t))
1874 ;; X: varref-Y ... varset-Y goto-X -->
1875 ;; X: varref-Y Z: ... dup varset-Y goto-Z
1876 ;; (varset-X goto-BACK, BACK: varref-X --> copy the varref down.)
1877 ;; (This is so usual for while loops that it is worth handling).
1879 ((and (eq (car lap1) 'byte-varset)
1880 (eq (car lap2) 'byte-goto)
1881 (not (memq (cdr lap2) rest)) ;Backwards jump
1882 (eq (car (car (setq tmp (cdr (memq (cdr lap2) lap)))))
1883 'byte-varref)
1884 (eq (cdr (car tmp)) (cdr lap1))
1885 (not (memq (car (cdr lap1)) byte-boolean-vars)))
1886 ;;(byte-compile-log-lap " Pulled %s to end of loop" (car tmp))
1887 (let ((newtag (byte-compile-make-tag)))
1888 (byte-compile-log-lap
1889 " %s: %s ... %s %s\t-->\t%s: %s %s: ... %s %s %s"
1890 (nth 1 (cdr lap2)) (car tmp)
1891 lap1 lap2
1892 (nth 1 (cdr lap2)) (car tmp)
1893 (nth 1 newtag) 'byte-dup lap1
1894 (cons 'byte-goto newtag)
1896 (setcdr rest (cons (cons 'byte-dup 0) (cdr rest)))
1897 (setcdr tmp (cons (setcdr lap2 newtag) (cdr tmp))))
1898 (setq add-depth 1)
1899 (setq keep-going t))
1901 ;; goto-X Y: ... X: goto-if*-Y --> goto-if-not-*-X+1 Y:
1902 ;; (This can pull the loop test to the end of the loop)
1904 ((and (eq (car lap0) 'byte-goto)
1905 (eq (car lap1) 'TAG)
1906 (eq lap1
1907 (cdr (car (setq tmp (cdr (memq (cdr lap0) lap))))))
1908 (memq (car (car tmp))
1909 '(byte-goto byte-goto-if-nil byte-goto-if-not-nil
1910 byte-goto-if-nil-else-pop)))
1911 ;; (byte-compile-log-lap " %s %s, %s %s --> moved conditional"
1912 ;; lap0 lap1 (cdr lap0) (car tmp))
1913 (let ((newtag (byte-compile-make-tag)))
1914 (byte-compile-log-lap
1915 "%s %s: ... %s: %s\t-->\t%s ... %s:"
1916 lap0 (nth 1 lap1) (nth 1 (cdr lap0)) (car tmp)
1917 (cons (cdr (assq (car (car tmp))
1918 '((byte-goto-if-nil . byte-goto-if-not-nil)
1919 (byte-goto-if-not-nil . byte-goto-if-nil)
1920 (byte-goto-if-nil-else-pop .
1921 byte-goto-if-not-nil-else-pop)
1922 (byte-goto-if-not-nil-else-pop .
1923 byte-goto-if-nil-else-pop))))
1924 newtag)
1926 (nth 1 newtag)
1928 (setcdr tmp (cons (setcdr lap0 newtag) (cdr tmp)))
1929 (if (eq (car (car tmp)) 'byte-goto-if-nil-else-pop)
1930 ;; We can handle this case but not the -if-not-nil case,
1931 ;; because we won't know which non-nil constant to push.
1932 (setcdr rest (cons (cons 'byte-constant
1933 (byte-compile-get-constant nil))
1934 (cdr rest))))
1935 (setcar lap0 (nth 1 (memq (car (car tmp))
1936 '(byte-goto-if-nil-else-pop
1937 byte-goto-if-not-nil
1938 byte-goto-if-nil
1939 byte-goto-if-not-nil
1940 byte-goto byte-goto))))
1942 (setq keep-going t))
1944 (setq rest (cdr rest)))
1946 ;; Cleanup stage:
1947 ;; Rebuild byte-compile-constants / byte-compile-variables.
1948 ;; Simple optimizations that would inhibit other optimizations if they
1949 ;; were done in the optimizing loop, and optimizations which there is no
1950 ;; need to do more than once.
1951 (setq byte-compile-constants nil
1952 byte-compile-variables nil)
1953 (setq rest lap)
1954 (while rest
1955 (setq lap0 (car rest)
1956 lap1 (nth 1 rest))
1957 (if (memq (car lap0) byte-constref-ops)
1958 (if (or (eq (car lap0) 'byte-constant)
1959 (eq (car lap0) 'byte-constant2))
1960 (unless (memq (cdr lap0) byte-compile-constants)
1961 (setq byte-compile-constants (cons (cdr lap0)
1962 byte-compile-constants)))
1963 (unless (memq (cdr lap0) byte-compile-variables)
1964 (setq byte-compile-variables (cons (cdr lap0)
1965 byte-compile-variables)))))
1966 (cond (;;
1967 ;; const-C varset-X const-C --> const-C dup varset-X
1968 ;; const-C varbind-X const-C --> const-C dup varbind-X
1970 (and (eq (car lap0) 'byte-constant)
1971 (eq (car (nth 2 rest)) 'byte-constant)
1972 (eq (cdr lap0) (cdr (nth 2 rest)))
1973 (memq (car lap1) '(byte-varbind byte-varset)))
1974 (byte-compile-log-lap " %s %s %s\t-->\t%s dup %s"
1975 lap0 lap1 lap0 lap0 lap1)
1976 (setcar (cdr (cdr rest)) (cons (car lap1) (cdr lap1)))
1977 (setcar (cdr rest) (cons 'byte-dup 0))
1978 (setq add-depth 1))
1980 ;; const-X [dup/const-X ...] --> const-X [dup ...] dup
1981 ;; varref-X [dup/varref-X ...] --> varref-X [dup ...] dup
1983 ((memq (car lap0) '(byte-constant byte-varref))
1984 (setq tmp rest
1985 tmp2 nil)
1986 (while (progn
1987 (while (eq 'byte-dup (car (car (setq tmp (cdr tmp))))))
1988 (and (eq (cdr lap0) (cdr (car tmp)))
1989 (eq (car lap0) (car (car tmp)))))
1990 (setcar tmp (cons 'byte-dup 0))
1991 (setq tmp2 t))
1992 (if tmp2
1993 (byte-compile-log-lap
1994 " %s [dup/%s]...\t-->\t%s dup..." lap0 lap0 lap0)))
1996 ;; unbind-N unbind-M --> unbind-(N+M)
1998 ((and (eq 'byte-unbind (car lap0))
1999 (eq 'byte-unbind (car lap1)))
2000 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
2001 (cons 'byte-unbind
2002 (+ (cdr lap0) (cdr lap1))))
2003 (setq keep-going t)
2004 (setq lap (delq lap0 lap))
2005 (setcdr lap1 (+ (cdr lap1) (cdr lap0))))
2007 (setq rest (cdr rest)))
2008 (setq byte-compile-maxdepth (+ byte-compile-maxdepth add-depth)))
2009 lap)
2011 (provide 'byte-opt)
2014 ;; To avoid "lisp nesting exceeds max-lisp-eval-depth" when this file compiles
2015 ;; itself, compile some of its most used recursive functions (at load time).
2017 (eval-when-compile
2018 (or (byte-code-function-p (symbol-function 'byte-optimize-form))
2019 (assq 'byte-code (symbol-function 'byte-optimize-form))
2020 (let ((byte-optimize nil)
2021 (byte-compile-warnings nil))
2022 (mapc (lambda (x)
2023 (or noninteractive (message "compiling %s..." x))
2024 (byte-compile x)
2025 (or noninteractive (message "compiling %s...done" x)))
2026 '(byte-optimize-form
2027 byte-optimize-body
2028 byte-optimize-predicate
2029 byte-optimize-binary-predicate
2030 ;; Inserted some more than necessary, to speed it up.
2031 byte-optimize-form-code-walker
2032 byte-optimize-lapcode))))
2033 nil)
2035 ;; arch-tag: 0f14076b-737e-4bef-aae6-908826ec1ff1
2036 ;;; byte-opt.el ends here