Auto-commit of loaddefs files.
[emacs.git] / lisp / emacs-lisp / cl-loaddefs.el
blobeaae3ce1e9b8ed3767f822ee802b215bc97c13af
1 ;;; cl-loaddefs.el --- automatically extracted autoloads
2 ;;
3 ;;; Code:
5 \f
6 ;;;### (autoloads (cl-prettyexpand cl-remprop cl--do-remf cl--set-getf
7 ;;;;;; cl-getf cl-get cl-tailp cl-list-length cl-nreconc cl-revappend
8 ;;;;;; cl-concatenate cl-subseq cl-float-limits cl-random-state-p
9 ;;;;;; cl-make-random-state cl-random cl-signum cl-rem cl-mod cl-round
10 ;;;;;; cl-truncate cl-ceiling cl-floor cl-isqrt cl-lcm cl-gcd cl--set-frame-visible-p
11 ;;;;;; cl--map-overlays cl--map-intervals cl--map-keymap-recursively
12 ;;;;;; cl-notevery cl-notany cl-every cl-some cl-mapcon cl-mapcan
13 ;;;;;; cl-mapl cl-mapc cl-maplist cl-map cl--mapcar-many cl-equalp
14 ;;;;;; cl-coerce) "cl-extra" "cl-extra.el" "b7d4e24fe58609eaf4fb319c81eb829e")
15 ;;; Generated autoloads from cl-extra.el
17 (autoload 'cl-coerce "cl-extra" "\
18 Coerce OBJECT to type TYPE.
19 TYPE is a Common Lisp type specifier.
21 \(fn OBJECT TYPE)" nil nil)
23 (autoload 'cl-equalp "cl-extra" "\
24 Return t if two Lisp objects have similar structures and contents.
25 This is like `equal', except that it accepts numerically equal
26 numbers of different types (float vs. integer), and also compares
27 strings case-insensitively.
29 \(fn X Y)" nil nil)
31 (autoload 'cl--mapcar-many "cl-extra" "\
34 \(fn CL-FUNC CL-SEQS)" nil nil)
36 (autoload 'cl-map "cl-extra" "\
37 Map a FUNCTION across one or more SEQUENCEs, returning a sequence.
38 TYPE is the sequence type to return.
40 \(fn TYPE FUNCTION SEQUENCE...)" nil nil)
42 (autoload 'cl-maplist "cl-extra" "\
43 Map FUNCTION to each sublist of LIST or LISTs.
44 Like `cl-mapcar', except applies to lists and their cdr's rather than to
45 the elements themselves.
47 \(fn FUNCTION LIST...)" nil nil)
49 (autoload 'cl-mapc "cl-extra" "\
50 Like `cl-mapcar', but does not accumulate values returned by the function.
52 \(fn FUNCTION SEQUENCE...)" nil nil)
54 (autoload 'cl-mapl "cl-extra" "\
55 Like `cl-maplist', but does not accumulate values returned by the function.
57 \(fn FUNCTION LIST...)" nil nil)
59 (autoload 'cl-mapcan "cl-extra" "\
60 Like `cl-mapcar', but nconc's together the values returned by the function.
62 \(fn FUNCTION SEQUENCE...)" nil nil)
64 (autoload 'cl-mapcon "cl-extra" "\
65 Like `cl-maplist', but nconc's together the values returned by the function.
67 \(fn FUNCTION LIST...)" nil nil)
69 (autoload 'cl-some "cl-extra" "\
70 Return true if PREDICATE is true of any element of SEQ or SEQs.
71 If so, return the true (non-nil) value returned by PREDICATE.
73 \(fn PREDICATE SEQ...)" nil nil)
75 (autoload 'cl-every "cl-extra" "\
76 Return true if PREDICATE is true of every element of SEQ or SEQs.
78 \(fn PREDICATE SEQ...)" nil nil)
80 (autoload 'cl-notany "cl-extra" "\
81 Return true if PREDICATE is false of every element of SEQ or SEQs.
83 \(fn PREDICATE SEQ...)" nil nil)
85 (autoload 'cl-notevery "cl-extra" "\
86 Return true if PREDICATE is false of some element of SEQ or SEQs.
88 \(fn PREDICATE SEQ...)" nil nil)
90 (autoload 'cl--map-keymap-recursively "cl-extra" "\
93 \(fn CL-FUNC-REC CL-MAP &optional CL-BASE)" nil nil)
95 (autoload 'cl--map-intervals "cl-extra" "\
98 \(fn CL-FUNC &optional CL-WHAT CL-PROP CL-START CL-END)" nil nil)
100 (autoload 'cl--map-overlays "cl-extra" "\
103 \(fn CL-FUNC &optional CL-BUFFER CL-START CL-END CL-ARG)" nil nil)
105 (autoload 'cl--set-frame-visible-p "cl-extra" "\
108 \(fn FRAME VAL)" nil nil)
110 (autoload 'cl-gcd "cl-extra" "\
111 Return the greatest common divisor of the arguments.
113 \(fn &rest ARGS)" nil nil)
115 (autoload 'cl-lcm "cl-extra" "\
116 Return the least common multiple of the arguments.
118 \(fn &rest ARGS)" nil nil)
120 (autoload 'cl-isqrt "cl-extra" "\
121 Return the integer square root of the argument.
123 \(fn X)" nil nil)
125 (autoload 'cl-floor "cl-extra" "\
126 Return a list of the floor of X and the fractional part of X.
127 With two arguments, return floor and remainder of their quotient.
129 \(fn X &optional Y)" nil nil)
131 (autoload 'cl-ceiling "cl-extra" "\
132 Return a list of the ceiling of X and the fractional part of X.
133 With two arguments, return ceiling and remainder of their quotient.
135 \(fn X &optional Y)" nil nil)
137 (autoload 'cl-truncate "cl-extra" "\
138 Return a list of the integer part of X and the fractional part of X.
139 With two arguments, return truncation and remainder of their quotient.
141 \(fn X &optional Y)" nil nil)
143 (autoload 'cl-round "cl-extra" "\
144 Return a list of X rounded to the nearest integer and the remainder.
145 With two arguments, return rounding and remainder of their quotient.
147 \(fn X &optional Y)" nil nil)
149 (autoload 'cl-mod "cl-extra" "\
150 The remainder of X divided by Y, with the same sign as Y.
152 \(fn X Y)" nil nil)
154 (autoload 'cl-rem "cl-extra" "\
155 The remainder of X divided by Y, with the same sign as X.
157 \(fn X Y)" nil nil)
159 (autoload 'cl-signum "cl-extra" "\
160 Return 1 if X is positive, -1 if negative, 0 if zero.
162 \(fn X)" nil nil)
164 (autoload 'cl-random "cl-extra" "\
165 Return a random nonnegative number less than LIM, an integer or float.
166 Optional second arg STATE is a random-state object.
168 \(fn LIM &optional STATE)" nil nil)
170 (autoload 'cl-make-random-state "cl-extra" "\
171 Return a copy of random-state STATE, or of the internal state if omitted.
172 If STATE is t, return a new state object seeded from the time of day.
174 \(fn &optional STATE)" nil nil)
176 (autoload 'cl-random-state-p "cl-extra" "\
177 Return t if OBJECT is a random-state object.
179 \(fn OBJECT)" nil nil)
181 (autoload 'cl-float-limits "cl-extra" "\
182 Initialize the Common Lisp floating-point parameters.
183 This sets the values of: `cl-most-positive-float', `cl-most-negative-float',
184 `cl-least-positive-float', `cl-least-negative-float', `cl-float-epsilon',
185 `cl-float-negative-epsilon', `cl-least-positive-normalized-float', and
186 `cl-least-negative-normalized-float'.
188 \(fn)" nil nil)
190 (autoload 'cl-subseq "cl-extra" "\
191 Return the subsequence of SEQ from START to END.
192 If END is omitted, it defaults to the length of the sequence.
193 If START or END is negative, it counts from the end.
195 \(fn SEQ START &optional END)" nil nil)
197 (autoload 'cl-concatenate "cl-extra" "\
198 Concatenate, into a sequence of type TYPE, the argument SEQUENCEs.
200 \(fn TYPE SEQUENCE...)" nil nil)
202 (autoload 'cl-revappend "cl-extra" "\
203 Equivalent to (append (reverse X) Y).
205 \(fn X Y)" nil nil)
207 (autoload 'cl-nreconc "cl-extra" "\
208 Equivalent to (nconc (nreverse X) Y).
210 \(fn X Y)" nil nil)
212 (autoload 'cl-list-length "cl-extra" "\
213 Return the length of list X. Return nil if list is circular.
215 \(fn X)" nil nil)
217 (autoload 'cl-tailp "cl-extra" "\
218 Return true if SUBLIST is a tail of LIST.
220 \(fn SUBLIST LIST)" nil nil)
222 (autoload 'cl-get "cl-extra" "\
223 Return the value of SYMBOL's PROPNAME property, or DEFAULT if none.
225 \(fn SYMBOL PROPNAME &optional DEFAULT)" nil nil)
227 (put 'cl-get 'compiler-macro #'cl--compiler-macro-get)
229 (autoload 'cl-getf "cl-extra" "\
230 Search PROPLIST for property PROPNAME; return its value or DEFAULT.
231 PROPLIST is a list of the sort returned by `symbol-plist'.
233 \(fn PROPLIST PROPNAME &optional DEFAULT)" nil nil)
235 (autoload 'cl--set-getf "cl-extra" "\
238 \(fn PLIST TAG VAL)" nil nil)
240 (autoload 'cl--do-remf "cl-extra" "\
243 \(fn PLIST TAG)" nil nil)
245 (autoload 'cl-remprop "cl-extra" "\
246 Remove from SYMBOL's plist the property PROPNAME and its value.
248 \(fn SYMBOL PROPNAME)" nil nil)
250 (autoload 'cl-prettyexpand "cl-extra" "\
251 Expand macros in FORM and insert the pretty-printed result.
252 Optional argument FULL non-nil means to expand all macros,
253 including `cl-block' and `cl-eval-when'.
255 \(fn FORM &optional FULL)" nil nil)
257 ;;;***
259 ;;;### (autoloads (cl--compiler-macro-adjoin cl-defsubst cl-compiler-macroexpand
260 ;;;;;; cl-define-compiler-macro cl-assert cl-check-type cl-typep
261 ;;;;;; cl-deftype cl-defstruct cl-callf2 cl-callf cl-letf* cl-letf
262 ;;;;;; cl-rotatef cl-shiftf cl-remf cl-psetf cl-declare cl-the cl-locally
263 ;;;;;; cl-multiple-value-setq cl-multiple-value-bind cl-symbol-macrolet
264 ;;;;;; cl-macrolet cl-labels cl-flet* cl-flet cl-progv cl-psetq
265 ;;;;;; cl-do-all-symbols cl-do-symbols cl-dotimes cl-dolist cl-do*
266 ;;;;;; cl-do cl-loop cl-return-from cl-return cl-block cl-etypecase
267 ;;;;;; cl-typecase cl-ecase cl-case cl-load-time-value cl-eval-when
268 ;;;;;; cl-destructuring-bind cl-function cl-defmacro cl-defun cl-gentemp
269 ;;;;;; cl-gensym cl--compiler-macro-cXXr cl--compiler-macro-list*)
270 ;;;;;; "cl-macs" "cl-macs.el" "f254af8368e40df51f8b6440ec764a6a")
271 ;;; Generated autoloads from cl-macs.el
273 (autoload 'cl--compiler-macro-list* "cl-macs" "\
276 \(fn FORM ARG &rest OTHERS)" nil nil)
278 (autoload 'cl--compiler-macro-cXXr "cl-macs" "\
281 \(fn FORM X)" nil nil)
283 (autoload 'cl-gensym "cl-macs" "\
284 Generate a new uninterned symbol.
285 The name is made by appending a number to PREFIX, default \"G\".
287 \(fn &optional PREFIX)" nil nil)
289 (autoload 'cl-gentemp "cl-macs" "\
290 Generate a new interned symbol with a unique name.
291 The name is made by appending a number to PREFIX, default \"G\".
293 \(fn &optional PREFIX)" nil nil)
295 (autoload 'cl-defun "cl-macs" "\
296 Define NAME as a function.
297 Like normal `defun', except ARGLIST allows full Common Lisp conventions,
298 and BODY is implicitly surrounded by (cl-block NAME ...).
300 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil t)
302 (put 'cl-defun 'doc-string-elt '3)
304 (put 'cl-defun 'lisp-indent-function '2)
306 (autoload 'cl-defmacro "cl-macs" "\
307 Define NAME as a macro.
308 Like normal `defmacro', except ARGLIST allows full Common Lisp conventions,
309 and BODY is implicitly surrounded by (cl-block NAME ...).
311 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil t)
313 (put 'cl-defmacro 'doc-string-elt '3)
315 (put 'cl-defmacro 'lisp-indent-function '2)
317 (autoload 'cl-function "cl-macs" "\
318 Introduce a function.
319 Like normal `function', except that if argument is a lambda form,
320 its argument list allows full Common Lisp conventions.
322 \(fn FUNC)" nil t)
324 (autoload 'cl-destructuring-bind "cl-macs" "\
325 Bind the variables in ARGS to the result of EXPR and execute BODY.
327 \(fn ARGS EXPR &rest BODY)" nil t)
329 (put 'cl-destructuring-bind 'lisp-indent-function '2)
331 (autoload 'cl-eval-when "cl-macs" "\
332 Control when BODY is evaluated.
333 If `compile' is in WHEN, BODY is evaluated when compiled at top-level.
334 If `load' is in WHEN, BODY is evaluated when loaded after top-level compile.
335 If `eval' is in WHEN, BODY is evaluated when interpreted or at non-top-level.
337 \(fn (WHEN...) BODY...)" nil t)
339 (put 'cl-eval-when 'lisp-indent-function '1)
341 (autoload 'cl-load-time-value "cl-macs" "\
342 Like `progn', but evaluates the body at load time.
343 The result of the body appears to the compiler as a quoted constant.
345 \(fn FORM &optional READ-ONLY)" nil t)
347 (autoload 'cl-case "cl-macs" "\
348 Eval EXPR and choose among clauses on that value.
349 Each clause looks like (KEYLIST BODY...). EXPR is evaluated and compared
350 against each key in each KEYLIST; the corresponding BODY is evaluated.
351 If no clause succeeds, cl-case returns nil. A single atom may be used in
352 place of a KEYLIST of one atom. A KEYLIST of t or `otherwise' is
353 allowed only in the final clause, and matches if no other keys match.
354 Key values are compared by `eql'.
356 \(fn EXPR (KEYLIST BODY...)...)" nil t)
358 (put 'cl-case 'lisp-indent-function '1)
360 (autoload 'cl-ecase "cl-macs" "\
361 Like `cl-case', but error if no case fits.
362 `otherwise'-clauses are not allowed.
364 \(fn EXPR (KEYLIST BODY...)...)" nil t)
366 (put 'cl-ecase 'lisp-indent-function '1)
368 (autoload 'cl-typecase "cl-macs" "\
369 Evals EXPR, chooses among clauses on that value.
370 Each clause looks like (TYPE BODY...). EXPR is evaluated and, if it
371 satisfies TYPE, the corresponding BODY is evaluated. If no clause succeeds,
372 cl-typecase returns nil. A TYPE of t or `otherwise' is allowed only in the
373 final clause, and matches if no other keys match.
375 \(fn EXPR (TYPE BODY...)...)" nil t)
377 (put 'cl-typecase 'lisp-indent-function '1)
379 (autoload 'cl-etypecase "cl-macs" "\
380 Like `cl-typecase', but error if no case fits.
381 `otherwise'-clauses are not allowed.
383 \(fn EXPR (TYPE BODY...)...)" nil t)
385 (put 'cl-etypecase 'lisp-indent-function '1)
387 (autoload 'cl-block "cl-macs" "\
388 Define a lexically-scoped block named NAME.
389 NAME may be any symbol. Code inside the BODY forms can call `cl-return-from'
390 to jump prematurely out of the block. This differs from `catch' and `throw'
391 in two respects: First, the NAME is an unevaluated symbol rather than a
392 quoted symbol or other form; and second, NAME is lexically rather than
393 dynamically scoped: Only references to it within BODY will work. These
394 references may appear inside macro expansions, but not inside functions
395 called from BODY.
397 \(fn NAME &rest BODY)" nil t)
399 (put 'cl-block 'lisp-indent-function '1)
401 (autoload 'cl-return "cl-macs" "\
402 Return from the block named nil.
403 This is equivalent to `(cl-return-from nil RESULT)'.
405 \(fn &optional RESULT)" nil t)
407 (autoload 'cl-return-from "cl-macs" "\
408 Return from the block named NAME.
409 This jumps out to the innermost enclosing `(cl-block NAME ...)' form,
410 returning RESULT from that form (or nil if RESULT is omitted).
411 This is compatible with Common Lisp, but note that `defun' and
412 `defmacro' do not create implicit blocks as they do in Common Lisp.
414 \(fn NAME &optional RESULT)" nil t)
416 (put 'cl-return-from 'lisp-indent-function '1)
418 (autoload 'cl-loop "cl-macs" "\
419 The Common Lisp `loop' macro.
420 Valid clauses are:
421 for VAR from/upfrom/downfrom NUM to/upto/downto/above/below NUM by NUM,
422 for VAR in LIST by FUNC, for VAR on LIST by FUNC, for VAR = INIT then EXPR,
423 for VAR across ARRAY, repeat NUM, with VAR = INIT, while COND, until COND,
424 always COND, never COND, thereis COND, collect EXPR into VAR,
425 append EXPR into VAR, nconc EXPR into VAR, sum EXPR into VAR,
426 count EXPR into VAR, maximize EXPR into VAR, minimize EXPR into VAR,
427 if COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
428 unless COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...],
429 do EXPRS..., initially EXPRS..., finally EXPRS..., return EXPR,
430 finally return EXPR, named NAME.
432 \(fn CLAUSE...)" nil t)
434 (autoload 'cl-do "cl-macs" "\
435 The Common Lisp `do' loop.
437 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil t)
439 (put 'cl-do 'lisp-indent-function '2)
441 (autoload 'cl-do* "cl-macs" "\
442 The Common Lisp `do*' loop.
444 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)" nil t)
446 (put 'cl-do* 'lisp-indent-function '2)
448 (autoload 'cl-dolist "cl-macs" "\
449 Loop over a list.
450 Evaluate BODY with VAR bound to each `car' from LIST, in turn.
451 Then evaluate RESULT to get return value, default nil.
452 An implicit nil block is established around the loop.
454 \(fn (VAR LIST [RESULT]) BODY...)" nil t)
456 (put 'cl-dolist 'lisp-indent-function '1)
458 (autoload 'cl-dotimes "cl-macs" "\
459 Loop a certain number of times.
460 Evaluate BODY with VAR bound to successive integers from 0, inclusive,
461 to COUNT, exclusive. Then evaluate RESULT to get return value, default
462 nil.
464 \(fn (VAR COUNT [RESULT]) BODY...)" nil t)
466 (put 'cl-dotimes 'lisp-indent-function '1)
468 (autoload 'cl-do-symbols "cl-macs" "\
469 Loop over all symbols.
470 Evaluate BODY with VAR bound to each interned symbol, or to each symbol
471 from OBARRAY.
473 \(fn (VAR [OBARRAY [RESULT]]) BODY...)" nil t)
475 (put 'cl-do-symbols 'lisp-indent-function '1)
477 (autoload 'cl-do-all-symbols "cl-macs" "\
478 Like `cl-do-symbols', but use the default obarray.
480 \(fn (VAR [RESULT]) BODY...)" nil t)
482 (put 'cl-do-all-symbols 'lisp-indent-function '1)
484 (autoload 'cl-psetq "cl-macs" "\
485 Set SYMs to the values VALs in parallel.
486 This is like `setq', except that all VAL forms are evaluated (in order)
487 before assigning any symbols SYM to the corresponding values.
489 \(fn SYM VAL SYM VAL ...)" nil t)
491 (autoload 'cl-progv "cl-macs" "\
492 Bind SYMBOLS to VALUES dynamically in BODY.
493 The forms SYMBOLS and VALUES are evaluated, and must evaluate to lists.
494 Each symbol in the first list is bound to the corresponding value in the
495 second list (or to nil if VALUES is shorter than SYMBOLS); then the
496 BODY forms are executed and their result is returned. This is much like
497 a `let' form, except that the list of symbols can be computed at run-time.
499 \(fn SYMBOLS VALUES &rest BODY)" nil t)
501 (put 'cl-progv 'lisp-indent-function '2)
503 (autoload 'cl-flet "cl-macs" "\
504 Make local function definitions.
505 Like `cl-labels' but the definitions are not recursive.
507 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil t)
509 (put 'cl-flet 'lisp-indent-function '1)
511 (autoload 'cl-flet* "cl-macs" "\
512 Make local function definitions.
513 Like `cl-flet' but the definitions can refer to previous ones.
515 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil t)
517 (put 'cl-flet* 'lisp-indent-function '1)
519 (autoload 'cl-labels "cl-macs" "\
520 Make temporary function bindings.
521 The bindings can be recursive and the scoping is lexical, but capturing them
522 in closures will only work if `lexical-binding' is in use.
524 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)" nil t)
526 (put 'cl-labels 'lisp-indent-function '1)
528 (autoload 'cl-macrolet "cl-macs" "\
529 Make temporary macro definitions.
530 This is like `cl-flet', but for macros instead of functions.
532 \(fn ((NAME ARGLIST BODY...) ...) FORM...)" nil t)
534 (put 'cl-macrolet 'lisp-indent-function '1)
536 (autoload 'cl-symbol-macrolet "cl-macs" "\
537 Make symbol macro definitions.
538 Within the body FORMs, references to the variable NAME will be replaced
539 by EXPANSION, and (setq NAME ...) will act like (setf EXPANSION ...).
541 \(fn ((NAME EXPANSION) ...) FORM...)" nil t)
543 (put 'cl-symbol-macrolet 'lisp-indent-function '1)
545 (autoload 'cl-multiple-value-bind "cl-macs" "\
546 Collect multiple return values.
547 FORM must return a list; the BODY is then executed with the first N elements
548 of this list bound (`let'-style) to each of the symbols SYM in turn. This
549 is analogous to the Common Lisp `cl-multiple-value-bind' macro, using lists to
550 simulate true multiple return values. For compatibility, (cl-values A B C) is
551 a synonym for (list A B C).
553 \(fn (SYM...) FORM BODY)" nil t)
555 (put 'cl-multiple-value-bind 'lisp-indent-function '2)
557 (autoload 'cl-multiple-value-setq "cl-macs" "\
558 Collect multiple return values.
559 FORM must return a list; the first N elements of this list are stored in
560 each of the symbols SYM in turn. This is analogous to the Common Lisp
561 `cl-multiple-value-setq' macro, using lists to simulate true multiple return
562 values. For compatibility, (cl-values A B C) is a synonym for (list A B C).
564 \(fn (SYM...) FORM)" nil t)
566 (put 'cl-multiple-value-setq 'lisp-indent-function '1)
568 (autoload 'cl-locally "cl-macs" "\
569 Equivalent to `progn'.
571 \(fn &rest BODY)" nil t)
573 (autoload 'cl-the "cl-macs" "\
574 At present this ignores _TYPE and is simply equivalent to FORM.
576 \(fn TYPE FORM)" nil t)
578 (put 'cl-the 'lisp-indent-function '1)
580 (autoload 'cl-declare "cl-macs" "\
581 Declare SPECS about the current function while compiling.
582 For instance
584 (cl-declare (warn 0))
586 will turn off byte-compile warnings in the function.
587 See Info node `(cl)Declarations' for details.
589 \(fn &rest SPECS)" nil t)
591 (autoload 'cl-psetf "cl-macs" "\
592 Set PLACEs to the values VALs in parallel.
593 This is like `setf', except that all VAL forms are evaluated (in order)
594 before assigning any PLACEs to the corresponding values.
596 \(fn PLACE VAL PLACE VAL ...)" nil t)
598 (autoload 'cl-remf "cl-macs" "\
599 Remove TAG from property list PLACE.
600 PLACE may be a symbol, or any generalized variable allowed by `setf'.
601 The form returns true if TAG was found and removed, nil otherwise.
603 \(fn PLACE TAG)" nil t)
605 (autoload 'cl-shiftf "cl-macs" "\
606 Shift left among PLACEs.
607 Example: (cl-shiftf A B C) sets A to B, B to C, and returns the old A.
608 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
610 \(fn PLACE... VAL)" nil t)
612 (autoload 'cl-rotatef "cl-macs" "\
613 Rotate left among PLACEs.
614 Example: (cl-rotatef A B C) sets A to B, B to C, and C to A. It returns nil.
615 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
617 \(fn PLACE...)" nil t)
619 (autoload 'cl-letf "cl-macs" "\
620 Temporarily bind to PLACEs.
621 This is the analogue of `let', but with generalized variables (in the
622 sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
623 VALUE, then the BODY forms are executed. On exit, either normally or
624 because of a `throw' or error, the PLACEs are set back to their original
625 values. Note that this macro is *not* available in Common Lisp.
626 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
627 the PLACE is not modified before executing BODY.
629 \(fn ((PLACE VALUE) ...) BODY...)" nil t)
631 (put 'cl-letf 'lisp-indent-function '1)
633 (autoload 'cl-letf* "cl-macs" "\
634 Temporarily bind to PLACEs.
635 Like `cl-letf' but where the bindings are performed one at a time,
636 rather than all at the end (i.e. like `let*' rather than like `let').
638 \(fn BINDINGS &rest BODY)" nil t)
640 (put 'cl-letf* 'lisp-indent-function '1)
642 (autoload 'cl-callf "cl-macs" "\
643 Set PLACE to (FUNC PLACE ARGS...).
644 FUNC should be an unquoted function name. PLACE may be a symbol,
645 or any generalized variable allowed by `setf'.
647 \(fn FUNC PLACE &rest ARGS)" nil t)
649 (put 'cl-callf 'lisp-indent-function '2)
651 (autoload 'cl-callf2 "cl-macs" "\
652 Set PLACE to (FUNC ARG1 PLACE ARGS...).
653 Like `cl-callf', but PLACE is the second argument of FUNC, not the first.
655 \(fn FUNC ARG1 PLACE ARGS...)" nil t)
657 (put 'cl-callf2 'lisp-indent-function '3)
659 (autoload 'cl-defstruct "cl-macs" "\
660 Define a struct type.
661 This macro defines a new data type called NAME that stores data
662 in SLOTs. It defines a `make-NAME' constructor, a `copy-NAME'
663 copier, a `NAME-p' predicate, and slot accessors named `NAME-SLOT'.
664 You can use the accessors to set the corresponding slots, via `setf'.
666 NAME may instead take the form (NAME OPTIONS...), where each
667 OPTION is either a single keyword or (KEYWORD VALUE) where
668 KEYWORD can be one of :conc-name, :constructor, :copier, :predicate,
669 :type, :named, :initial-offset, :print-function, or :include.
671 Each SLOT may instead take the form (SLOT SLOT-OPTS...), where
672 SLOT-OPTS are keyword-value pairs for that slot. Currently, only
673 one keyword is supported, `:read-only'. If this has a non-nil
674 value, that slot cannot be set via `setf'.
676 \(fn NAME SLOTS...)" nil t)
678 (put 'cl-defstruct 'doc-string-elt '2)
680 (put 'cl-defstruct 'lisp-indent-function '1)
682 (autoload 'cl-deftype "cl-macs" "\
683 Define NAME as a new data type.
684 The type name can then be used in `cl-typecase', `cl-check-type', etc.
686 \(fn NAME ARGLIST &rest BODY)" nil t)
688 (put 'cl-deftype 'doc-string-elt '3)
690 (autoload 'cl-typep "cl-macs" "\
691 Check that OBJECT is of type TYPE.
692 TYPE is a Common Lisp-style type specifier.
694 \(fn OBJECT TYPE)" nil nil)
696 (autoload 'cl-check-type "cl-macs" "\
697 Verify that FORM is of type TYPE; signal an error if not.
698 STRING is an optional description of the desired type.
700 \(fn FORM TYPE &optional STRING)" nil t)
702 (autoload 'cl-assert "cl-macs" "\
703 Verify that FORM returns non-nil; signal an error if not.
704 Second arg SHOW-ARGS means to include arguments of FORM in message.
705 Other args STRING and ARGS... are arguments to be passed to `error'.
706 They are not evaluated unless the assertion fails. If STRING is
707 omitted, a default message listing FORM itself is used.
709 \(fn FORM &optional SHOW-ARGS STRING &rest ARGS)" nil t)
711 (autoload 'cl-define-compiler-macro "cl-macs" "\
712 Define a compiler-only macro.
713 This is like `defmacro', but macro expansion occurs only if the call to
714 FUNC is compiled (i.e., not interpreted). Compiler macros should be used
715 for optimizing the way calls to FUNC are compiled; the form returned by
716 BODY should do the same thing as a call to the normal function called
717 FUNC, though possibly more efficiently. Note that, like regular macros,
718 compiler macros are expanded repeatedly until no further expansions are
719 possible. Unlike regular macros, BODY can decide to \"punt\" and leave the
720 original function call alone by declaring an initial `&whole foo' parameter
721 and then returning foo.
723 \(fn FUNC ARGS &rest BODY)" nil t)
725 (autoload 'cl-compiler-macroexpand "cl-macs" "\
726 Like `macroexpand', but for compiler macros.
727 Expands FORM repeatedly until no further expansion is possible.
728 Returns FORM unchanged if it has no compiler macro, or if it has a
729 macro that returns its `&whole' argument.
731 \(fn FORM)" nil nil)
733 (autoload 'cl-defsubst "cl-macs" "\
734 Define NAME as a function.
735 Like `defun', except the function is automatically declared `inline',
736 ARGLIST allows full Common Lisp conventions, and BODY is implicitly
737 surrounded by (cl-block NAME ...).
739 \(fn NAME ARGLIST [DOCSTRING] BODY...)" nil t)
741 (put 'cl-defsubst 'lisp-indent-function '2)
743 (autoload 'cl--compiler-macro-adjoin "cl-macs" "\
746 \(fn FORM A LIST &rest KEYS)" nil nil)
748 ;;;***
750 ;;;### (autoloads (cl-tree-equal cl-nsublis cl-sublis cl-nsubst-if-not
751 ;;;;;; cl-nsubst-if cl-nsubst cl-subst-if-not cl-subst-if cl-subsetp
752 ;;;;;; cl-nset-exclusive-or cl-set-exclusive-or cl-nset-difference
753 ;;;;;; cl-set-difference cl-nintersection cl-intersection cl-nunion
754 ;;;;;; cl-union cl-rassoc-if-not cl-rassoc-if cl-rassoc cl-assoc-if-not
755 ;;;;;; cl-assoc-if cl-assoc cl--adjoin cl-member-if-not cl-member-if
756 ;;;;;; cl-member cl-merge cl-stable-sort cl-sort cl-search cl-mismatch
757 ;;;;;; cl-count-if-not cl-count-if cl-count cl-position-if-not cl-position-if
758 ;;;;;; cl-position cl-find-if-not cl-find-if cl-find cl-nsubstitute-if-not
759 ;;;;;; cl-nsubstitute-if cl-nsubstitute cl-substitute-if-not cl-substitute-if
760 ;;;;;; cl-substitute cl-delete-duplicates cl-remove-duplicates cl-delete-if-not
761 ;;;;;; cl-delete-if cl-delete cl-remove-if-not cl-remove-if cl-remove
762 ;;;;;; cl-replace cl-fill cl-reduce) "cl-seq" "cl-seq.el" "4c1e1191e82dc8d5449a5ec4d59efc10")
763 ;;; Generated autoloads from cl-seq.el
765 (autoload 'cl-reduce "cl-seq" "\
766 Reduce two-argument FUNCTION across SEQ.
768 Keywords supported: :start :end :from-end :initial-value :key
770 \(fn FUNCTION SEQ [KEYWORD VALUE]...)" nil nil)
772 (autoload 'cl-fill "cl-seq" "\
773 Fill the elements of SEQ with ITEM.
775 Keywords supported: :start :end
777 \(fn SEQ ITEM [KEYWORD VALUE]...)" nil nil)
779 (autoload 'cl-replace "cl-seq" "\
780 Replace the elements of SEQ1 with the elements of SEQ2.
781 SEQ1 is destructively modified, then returned.
783 Keywords supported: :start1 :end1 :start2 :end2
785 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
787 (autoload 'cl-remove "cl-seq" "\
788 Remove all occurrences of ITEM in SEQ.
789 This is a non-destructive function; it makes a copy of SEQ if necessary
790 to avoid corrupting the original SEQ.
792 Keywords supported: :test :test-not :key :count :start :end :from-end
794 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
796 (autoload 'cl-remove-if "cl-seq" "\
797 Remove all items satisfying PREDICATE in SEQ.
798 This is a non-destructive function; it makes a copy of SEQ if necessary
799 to avoid corrupting the original SEQ.
801 Keywords supported: :key :count :start :end :from-end
803 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
805 (autoload 'cl-remove-if-not "cl-seq" "\
806 Remove all items not satisfying PREDICATE in SEQ.
807 This is a non-destructive function; it makes a copy of SEQ if necessary
808 to avoid corrupting the original SEQ.
810 Keywords supported: :key :count :start :end :from-end
812 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
814 (autoload 'cl-delete "cl-seq" "\
815 Remove all occurrences of ITEM in SEQ.
816 This is a destructive function; it reuses the storage of SEQ whenever possible.
818 Keywords supported: :test :test-not :key :count :start :end :from-end
820 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
822 (autoload 'cl-delete-if "cl-seq" "\
823 Remove all items satisfying PREDICATE in SEQ.
824 This is a destructive function; it reuses the storage of SEQ whenever possible.
826 Keywords supported: :key :count :start :end :from-end
828 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
830 (autoload 'cl-delete-if-not "cl-seq" "\
831 Remove all items not satisfying PREDICATE in SEQ.
832 This is a destructive function; it reuses the storage of SEQ whenever possible.
834 Keywords supported: :key :count :start :end :from-end
836 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
838 (autoload 'cl-remove-duplicates "cl-seq" "\
839 Return a copy of SEQ with all duplicate elements removed.
841 Keywords supported: :test :test-not :key :start :end :from-end
843 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
845 (autoload 'cl-delete-duplicates "cl-seq" "\
846 Remove all duplicate elements from SEQ (destructively).
848 Keywords supported: :test :test-not :key :start :end :from-end
850 \(fn SEQ [KEYWORD VALUE]...)" nil nil)
852 (autoload 'cl-substitute "cl-seq" "\
853 Substitute NEW for OLD in SEQ.
854 This is a non-destructive function; it makes a copy of SEQ if necessary
855 to avoid corrupting the original SEQ.
857 Keywords supported: :test :test-not :key :count :start :end :from-end
859 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
861 (autoload 'cl-substitute-if "cl-seq" "\
862 Substitute NEW for all items satisfying PREDICATE in SEQ.
863 This is a non-destructive function; it makes a copy of SEQ if necessary
864 to avoid corrupting the original SEQ.
866 Keywords supported: :key :count :start :end :from-end
868 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
870 (autoload 'cl-substitute-if-not "cl-seq" "\
871 Substitute NEW for all items not satisfying PREDICATE in SEQ.
872 This is a non-destructive function; it makes a copy of SEQ if necessary
873 to avoid corrupting the original SEQ.
875 Keywords supported: :key :count :start :end :from-end
877 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
879 (autoload 'cl-nsubstitute "cl-seq" "\
880 Substitute NEW for OLD in SEQ.
881 This is a destructive function; it reuses the storage of SEQ whenever possible.
883 Keywords supported: :test :test-not :key :count :start :end :from-end
885 \(fn NEW OLD SEQ [KEYWORD VALUE]...)" nil nil)
887 (autoload 'cl-nsubstitute-if "cl-seq" "\
888 Substitute NEW for all items satisfying PREDICATE in SEQ.
889 This is a destructive function; it reuses the storage of SEQ whenever possible.
891 Keywords supported: :key :count :start :end :from-end
893 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
895 (autoload 'cl-nsubstitute-if-not "cl-seq" "\
896 Substitute NEW for all items not satisfying PREDICATE in SEQ.
897 This is a destructive function; it reuses the storage of SEQ whenever possible.
899 Keywords supported: :key :count :start :end :from-end
901 \(fn NEW PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
903 (autoload 'cl-find "cl-seq" "\
904 Find the first occurrence of ITEM in SEQ.
905 Return the matching ITEM, or nil if not found.
907 Keywords supported: :test :test-not :key :start :end :from-end
909 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
911 (autoload 'cl-find-if "cl-seq" "\
912 Find the first item satisfying PREDICATE in SEQ.
913 Return the matching item, or nil if not found.
915 Keywords supported: :key :start :end :from-end
917 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
919 (autoload 'cl-find-if-not "cl-seq" "\
920 Find the first item not satisfying PREDICATE in SEQ.
921 Return the matching item, or nil if not found.
923 Keywords supported: :key :start :end :from-end
925 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
927 (autoload 'cl-position "cl-seq" "\
928 Find the first occurrence of ITEM in SEQ.
929 Return the index of the matching item, or nil if not found.
931 Keywords supported: :test :test-not :key :start :end :from-end
933 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
935 (autoload 'cl-position-if "cl-seq" "\
936 Find the first item satisfying PREDICATE in SEQ.
937 Return the index of the matching item, or nil if not found.
939 Keywords supported: :key :start :end :from-end
941 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
943 (autoload 'cl-position-if-not "cl-seq" "\
944 Find the first item not satisfying PREDICATE in SEQ.
945 Return the index of the matching item, or nil if not found.
947 Keywords supported: :key :start :end :from-end
949 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
951 (autoload 'cl-count "cl-seq" "\
952 Count the number of occurrences of ITEM in SEQ.
954 Keywords supported: :test :test-not :key :start :end
956 \(fn ITEM SEQ [KEYWORD VALUE]...)" nil nil)
958 (autoload 'cl-count-if "cl-seq" "\
959 Count the number of items satisfying PREDICATE in SEQ.
961 Keywords supported: :key :start :end
963 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
965 (autoload 'cl-count-if-not "cl-seq" "\
966 Count the number of items not satisfying PREDICATE in SEQ.
968 Keywords supported: :key :start :end
970 \(fn PREDICATE SEQ [KEYWORD VALUE]...)" nil nil)
972 (autoload 'cl-mismatch "cl-seq" "\
973 Compare SEQ1 with SEQ2, return index of first mismatching element.
974 Return nil if the sequences match. If one sequence is a prefix of the
975 other, the return value indicates the end of the shorter sequence.
977 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
979 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
981 (autoload 'cl-search "cl-seq" "\
982 Search for SEQ1 as a subsequence of SEQ2.
983 Return the index of the leftmost element of the first match found;
984 return nil if there are no matches.
986 Keywords supported: :test :test-not :key :start1 :end1 :start2 :end2 :from-end
988 \(fn SEQ1 SEQ2 [KEYWORD VALUE]...)" nil nil)
990 (autoload 'cl-sort "cl-seq" "\
991 Sort the argument SEQ according to PREDICATE.
992 This is a destructive function; it reuses the storage of SEQ if possible.
994 Keywords supported: :key
996 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
998 (autoload 'cl-stable-sort "cl-seq" "\
999 Sort the argument SEQ stably according to PREDICATE.
1000 This is a destructive function; it reuses the storage of SEQ if possible.
1002 Keywords supported: :key
1004 \(fn SEQ PREDICATE [KEYWORD VALUE]...)" nil nil)
1006 (autoload 'cl-merge "cl-seq" "\
1007 Destructively merge the two sequences to produce a new sequence.
1008 TYPE is the sequence type to return, SEQ1 and SEQ2 are the two argument
1009 sequences, and PREDICATE is a `less-than' predicate on the elements.
1011 Keywords supported: :key
1013 \(fn TYPE SEQ1 SEQ2 PREDICATE [KEYWORD VALUE]...)" nil nil)
1015 (autoload 'cl-member "cl-seq" "\
1016 Find the first occurrence of ITEM in LIST.
1017 Return the sublist of LIST whose car is ITEM.
1019 Keywords supported: :test :test-not :key
1021 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1023 (put 'cl-member 'compiler-macro #'cl--compiler-macro-member)
1025 (autoload 'cl-member-if "cl-seq" "\
1026 Find the first item satisfying PREDICATE in LIST.
1027 Return the sublist of LIST whose car matches.
1029 Keywords supported: :key
1031 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1033 (autoload 'cl-member-if-not "cl-seq" "\
1034 Find the first item not satisfying PREDICATE in LIST.
1035 Return the sublist of LIST whose car matches.
1037 Keywords supported: :key
1039 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1041 (autoload 'cl--adjoin "cl-seq" "\
1044 \(fn CL-ITEM CL-LIST &rest CL-KEYS)" nil nil)
1046 (autoload 'cl-assoc "cl-seq" "\
1047 Find the first item whose car matches ITEM in LIST.
1049 Keywords supported: :test :test-not :key
1051 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1053 (put 'cl-assoc 'compiler-macro #'cl--compiler-macro-assoc)
1055 (autoload 'cl-assoc-if "cl-seq" "\
1056 Find the first item whose car satisfies PREDICATE in LIST.
1058 Keywords supported: :key
1060 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1062 (autoload 'cl-assoc-if-not "cl-seq" "\
1063 Find the first item whose car does not satisfy PREDICATE in LIST.
1065 Keywords supported: :key
1067 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1069 (autoload 'cl-rassoc "cl-seq" "\
1070 Find the first item whose cdr matches ITEM in LIST.
1072 Keywords supported: :test :test-not :key
1074 \(fn ITEM LIST [KEYWORD VALUE]...)" nil nil)
1076 (autoload 'cl-rassoc-if "cl-seq" "\
1077 Find the first item whose cdr satisfies PREDICATE in LIST.
1079 Keywords supported: :key
1081 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1083 (autoload 'cl-rassoc-if-not "cl-seq" "\
1084 Find the first item whose cdr does not satisfy PREDICATE in LIST.
1086 Keywords supported: :key
1088 \(fn PREDICATE LIST [KEYWORD VALUE]...)" nil nil)
1090 (autoload 'cl-union "cl-seq" "\
1091 Combine LIST1 and LIST2 using a set-union operation.
1092 The resulting list contains all items that appear in either LIST1 or LIST2.
1093 This is a non-destructive function; it makes a copy of the data if necessary
1094 to avoid corrupting the original LIST1 and LIST2.
1096 Keywords supported: :test :test-not :key
1098 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1100 (autoload 'cl-nunion "cl-seq" "\
1101 Combine LIST1 and LIST2 using a set-union operation.
1102 The resulting list contains all items that appear in either LIST1 or LIST2.
1103 This is a destructive function; it reuses the storage of LIST1 and LIST2
1104 whenever possible.
1106 Keywords supported: :test :test-not :key
1108 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1110 (autoload 'cl-intersection "cl-seq" "\
1111 Combine LIST1 and LIST2 using a set-intersection operation.
1112 The resulting list contains all items that appear in both LIST1 and LIST2.
1113 This is a non-destructive function; it makes a copy of the data if necessary
1114 to avoid corrupting the original LIST1 and LIST2.
1116 Keywords supported: :test :test-not :key
1118 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1120 (autoload 'cl-nintersection "cl-seq" "\
1121 Combine LIST1 and LIST2 using a set-intersection operation.
1122 The resulting list contains all items that appear in both LIST1 and LIST2.
1123 This is a destructive function; it reuses the storage of LIST1 and LIST2
1124 whenever possible.
1126 Keywords supported: :test :test-not :key
1128 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1130 (autoload 'cl-set-difference "cl-seq" "\
1131 Combine LIST1 and LIST2 using a set-difference operation.
1132 The resulting list contains all items that appear in LIST1 but not LIST2.
1133 This is a non-destructive function; it makes a copy of the data if necessary
1134 to avoid corrupting the original LIST1 and LIST2.
1136 Keywords supported: :test :test-not :key
1138 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1140 (autoload 'cl-nset-difference "cl-seq" "\
1141 Combine LIST1 and LIST2 using a set-difference operation.
1142 The resulting list contains all items that appear in LIST1 but not LIST2.
1143 This is a destructive function; it reuses the storage of LIST1 and LIST2
1144 whenever possible.
1146 Keywords supported: :test :test-not :key
1148 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1150 (autoload 'cl-set-exclusive-or "cl-seq" "\
1151 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1152 The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1153 This is a non-destructive function; it makes a copy of the data if necessary
1154 to avoid corrupting the original LIST1 and LIST2.
1156 Keywords supported: :test :test-not :key
1158 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1160 (autoload 'cl-nset-exclusive-or "cl-seq" "\
1161 Combine LIST1 and LIST2 using a set-exclusive-or operation.
1162 The resulting list contains all items appearing in exactly one of LIST1, LIST2.
1163 This is a destructive function; it reuses the storage of LIST1 and LIST2
1164 whenever possible.
1166 Keywords supported: :test :test-not :key
1168 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1170 (autoload 'cl-subsetp "cl-seq" "\
1171 Return true if LIST1 is a subset of LIST2.
1172 I.e., if every element of LIST1 also appears in LIST2.
1174 Keywords supported: :test :test-not :key
1176 \(fn LIST1 LIST2 [KEYWORD VALUE]...)" nil nil)
1178 (autoload 'cl-subst-if "cl-seq" "\
1179 Substitute NEW for elements matching PREDICATE in TREE (non-destructively).
1180 Return a copy of TREE with all matching elements replaced by NEW.
1182 Keywords supported: :key
1184 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1186 (autoload 'cl-subst-if-not "cl-seq" "\
1187 Substitute NEW for elts not matching PREDICATE in TREE (non-destructively).
1188 Return a copy of TREE with all non-matching elements replaced by NEW.
1190 Keywords supported: :key
1192 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1194 (autoload 'cl-nsubst "cl-seq" "\
1195 Substitute NEW for OLD everywhere in TREE (destructively).
1196 Any element of TREE which is `eql' to OLD is changed to NEW (via a call
1197 to `setcar').
1199 Keywords supported: :test :test-not :key
1201 \(fn NEW OLD TREE [KEYWORD VALUE]...)" nil nil)
1203 (autoload 'cl-nsubst-if "cl-seq" "\
1204 Substitute NEW for elements matching PREDICATE in TREE (destructively).
1205 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1207 Keywords supported: :key
1209 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1211 (autoload 'cl-nsubst-if-not "cl-seq" "\
1212 Substitute NEW for elements not matching PREDICATE in TREE (destructively).
1213 Any element of TREE which matches is changed to NEW (via a call to `setcar').
1215 Keywords supported: :key
1217 \(fn NEW PREDICATE TREE [KEYWORD VALUE]...)" nil nil)
1219 (autoload 'cl-sublis "cl-seq" "\
1220 Perform substitutions indicated by ALIST in TREE (non-destructively).
1221 Return a copy of TREE with all matching elements replaced.
1223 Keywords supported: :test :test-not :key
1225 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1227 (autoload 'cl-nsublis "cl-seq" "\
1228 Perform substitutions indicated by ALIST in TREE (destructively).
1229 Any matching element of TREE is changed via a call to `setcar'.
1231 Keywords supported: :test :test-not :key
1233 \(fn ALIST TREE [KEYWORD VALUE]...)" nil nil)
1235 (autoload 'cl-tree-equal "cl-seq" "\
1236 Return t if trees TREE1 and TREE2 have `eql' leaves.
1237 Atoms are compared by `eql'; cons cells are compared recursively.
1239 Keywords supported: :test :test-not :key
1241 \(fn TREE1 TREE2 [KEYWORD VALUE]...)" nil nil)
1243 ;;;***
1245 ;; Local Variables:
1246 ;; version-control: never
1247 ;; no-byte-compile: t
1248 ;; no-update-autoloads: t
1249 ;; coding: utf-8
1250 ;; End:
1251 ;;; cl-loaddefs.el ends here