1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
5 Copyright (C) 1993-2018 Free Software Foundation, Inc.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <https://www.gnu.org/licenses/>. */
21 - structure the opcode space into opcode+flag.
22 - merge with glibc's regex.[ch].
23 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
24 need to modify the compiled regexp so that re_match can be reentrant.
25 - get rid of on_failure_jump_smart by doing the optimization in re_comp
26 rather than at run-time, so that re_match can be reentrant.
29 /* AIX requires this to be the first thing in the file. */
30 #if defined _AIX && !defined REGEX_MALLOC
34 /* Ignore some GCC warnings for now. This section should go away
35 once the Emacs and Gnulib regex code is merged. */
36 #if 4 < __GNUC__ + (5 <= __GNUC_MINOR__) || defined __clang__
37 # pragma GCC diagnostic ignored "-Wstrict-overflow"
39 # pragma GCC diagnostic ignored "-Wunused-function"
40 # pragma GCC diagnostic ignored "-Wunused-macros"
41 # pragma GCC diagnostic ignored "-Wunused-result"
42 # pragma GCC diagnostic ignored "-Wunused-variable"
46 #if 4 < __GNUC__ + (6 <= __GNUC_MINOR__) && ! defined __clang__
47 # pragma GCC diagnostic ignored "-Wunused-but-set-variable"
56 /* We need this for `regex.h', and perhaps for the Emacs include files. */
57 # include <sys/types.h>
60 /* Whether to use ISO C Amendment 1 wide char functions.
61 Those should not be used for Emacs since it uses its own. */
63 #define WIDE_CHAR_SUPPORT 1
65 #define WIDE_CHAR_SUPPORT \
66 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
69 /* For platform which support the ISO C amendment 1 functionality we
70 support user defined character classes. */
72 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
78 /* We have to keep the namespace clean. */
79 # define regfree(preg) __regfree (preg)
80 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
81 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
82 # define regerror(err_code, preg, errbuf, errbuf_size) \
83 __regerror (err_code, preg, errbuf, errbuf_size)
84 # define re_set_registers(bu, re, nu, st, en) \
85 __re_set_registers (bu, re, nu, st, en)
86 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
87 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
88 # define re_match(bufp, string, size, pos, regs) \
89 __re_match (bufp, string, size, pos, regs)
90 # define re_search(bufp, string, size, startpos, range, regs) \
91 __re_search (bufp, string, size, startpos, range, regs)
92 # define re_compile_pattern(pattern, length, bufp) \
93 __re_compile_pattern (pattern, length, bufp)
94 # define re_set_syntax(syntax) __re_set_syntax (syntax)
95 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
96 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
97 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
99 /* Make sure we call libc's function even if the user overrides them. */
100 # define btowc __btowc
101 # define iswctype __iswctype
102 # define wctype __wctype
104 # define WEAK_ALIAS(a,b) weak_alias (a, b)
106 /* We are also using some library internals. */
107 # include <locale/localeinfo.h>
108 # include <locale/elem-hash.h>
109 # include <langinfo.h>
111 # define WEAK_ALIAS(a,b)
114 /* This is for other GNU distributions with internationalized messages. */
115 #if HAVE_LIBINTL_H || defined _LIBC
116 # include <libintl.h>
118 # define gettext(msgid) (msgid)
122 /* This define is so xgettext can find the internationalizable
124 # define gettext_noop(String) String
127 /* The `emacs' switch turns on certain matching commands
128 that make sense only in Emacs. */
132 # include "character.h"
136 # include "category.h"
138 /* Make syntax table lookup grant data in gl_state. */
139 # define SYNTAX(c) syntax_property (c, 1)
144 # define malloc xmalloc
148 # define realloc xrealloc
154 /* Converts the pointer to the char to BEG-based offset from the start. */
155 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
156 /* Strings are 0-indexed, buffers are 1-indexed; we pun on the boolean
157 result to get the right base index. */
158 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
160 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
161 # define RE_TARGET_MULTIBYTE_P(bufp) ((bufp)->target_multibyte)
162 # define RE_STRING_CHAR(p, multibyte) \
163 (multibyte ? (STRING_CHAR (p)) : (*(p)))
164 # define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) \
165 (multibyte ? (STRING_CHAR_AND_LENGTH (p, len)) : ((len) = 1, *(p)))
167 # define RE_CHAR_TO_MULTIBYTE(c) UNIBYTE_TO_CHAR (c)
169 # define RE_CHAR_TO_UNIBYTE(c) CHAR_TO_BYTE_SAFE (c)
171 /* Set C a (possibly converted to multibyte) character before P. P
172 points into a string which is the virtual concatenation of STR1
173 (which ends at END1) or STR2 (which ends at END2). */
174 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
176 if (target_multibyte) \
178 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
179 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
180 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
181 c = STRING_CHAR (dtemp); \
185 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
186 (c) = RE_CHAR_TO_MULTIBYTE (c); \
190 /* Set C a (possibly converted to multibyte) character at P, and set
191 LEN to the byte length of that character. */
192 # define GET_CHAR_AFTER(c, p, len) \
194 if (target_multibyte) \
195 (c) = STRING_CHAR_AND_LENGTH (p, len); \
200 (c) = RE_CHAR_TO_MULTIBYTE (c); \
204 #else /* not emacs */
206 /* If we are not linking with Emacs proper,
207 we can't use the relocating allocator
208 even if config.h says that we can. */
213 /* When used in Emacs's lib-src, we need xmalloc and xrealloc. */
216 xmalloc (size_t size
)
218 void *val
= malloc (size
);
221 write (STDERR_FILENO
, "virtual memory exhausted\n", 25);
228 xrealloc (void *block
, size_t size
)
231 /* We must call malloc explicitly when BLOCK is 0, since some
232 reallocs don't do this. */
236 val
= realloc (block
, size
);
239 write (STDERR_FILENO
, "virtual memory exhausted\n", 25);
248 # define malloc xmalloc
252 # define realloc xrealloc
254 # include <stdbool.h>
257 /* Define the syntax stuff for \<, \>, etc. */
259 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
260 enum syntaxcode
{ Swhitespace
= 0, Sword
= 1, Ssymbol
= 2 };
262 /* Dummy macros for non-Emacs environments. */
263 # define MAX_MULTIBYTE_LENGTH 1
264 # define RE_MULTIBYTE_P(x) 0
265 # define RE_TARGET_MULTIBYTE_P(x) 0
266 # define WORD_BOUNDARY_P(c1, c2) (0)
267 # define BYTES_BY_CHAR_HEAD(p) (1)
268 # define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
269 # define STRING_CHAR(p) (*(p))
270 # define RE_STRING_CHAR(p, multibyte) STRING_CHAR (p)
271 # define CHAR_STRING(c, s) (*(s) = (c), 1)
272 # define STRING_CHAR_AND_LENGTH(p, actual_len) ((actual_len) = 1, *(p))
273 # define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) STRING_CHAR_AND_LENGTH (p, len)
274 # define RE_CHAR_TO_MULTIBYTE(c) (c)
275 # define RE_CHAR_TO_UNIBYTE(c) (c)
276 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
277 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
278 # define GET_CHAR_AFTER(c, p, len) \
280 # define CHAR_BYTE8_P(c) (0)
281 # define CHAR_LEADING_CODE(c) (c)
283 #endif /* not emacs */
286 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
287 # define RE_TRANSLATE_P(TBL) (TBL)
290 /* Get the interface, including the syntax bits. */
293 /* isalpha etc. are used for the character classes. */
298 /* 1 if C is an ASCII character. */
299 # define IS_REAL_ASCII(c) ((c) < 0200)
301 /* 1 if C is a unibyte character. */
302 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
304 /* The Emacs definitions should not be directly affected by locales. */
306 /* In Emacs, these are only used for single-byte characters. */
307 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
308 # define ISCNTRL(c) ((c) < ' ')
309 # define ISXDIGIT(c) (0 <= char_hexdigit (c))
311 /* The rest must handle multibyte characters. */
313 # define ISBLANK(c) (IS_REAL_ASCII (c) \
314 ? ((c) == ' ' || (c) == '\t') \
317 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
318 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0240) \
321 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
322 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
325 # define ISALNUM(c) (IS_REAL_ASCII (c) \
326 ? (((c) >= 'a' && (c) <= 'z') \
327 || ((c) >= 'A' && (c) <= 'Z') \
328 || ((c) >= '0' && (c) <= '9')) \
331 # define ISALPHA(c) (IS_REAL_ASCII (c) \
332 ? (((c) >= 'a' && (c) <= 'z') \
333 || ((c) >= 'A' && (c) <= 'Z')) \
336 # define ISLOWER(c) lowercasep (c)
338 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
339 ? ((c) > ' ' && (c) < 0177 \
340 && !(((c) >= 'a' && (c) <= 'z') \
341 || ((c) >= 'A' && (c) <= 'Z') \
342 || ((c) >= '0' && (c) <= '9'))) \
343 : SYNTAX (c) != Sword)
345 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
347 # define ISUPPER(c) uppercasep (c)
349 # define ISWORD(c) (SYNTAX (c) == Sword)
351 #else /* not emacs */
353 /* 1 if C is an ASCII character. */
354 # define IS_REAL_ASCII(c) ((c) < 0200)
356 /* This distinction is not meaningful, except in Emacs. */
357 # define ISUNIBYTE(c) 1
360 # define ISBLANK(c) isblank (c)
362 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
365 # define ISGRAPH(c) isgraph (c)
367 # define ISGRAPH(c) (isprint (c) && !isspace (c))
370 /* Solaris defines ISPRINT so we must undefine it first. */
372 # define ISPRINT(c) isprint (c)
373 # define ISDIGIT(c) isdigit (c)
374 # define ISALNUM(c) isalnum (c)
375 # define ISALPHA(c) isalpha (c)
376 # define ISCNTRL(c) iscntrl (c)
377 # define ISLOWER(c) islower (c)
378 # define ISPUNCT(c) ispunct (c)
379 # define ISSPACE(c) isspace (c)
380 # define ISUPPER(c) isupper (c)
381 # define ISXDIGIT(c) isxdigit (c)
383 # define ISWORD(c) ISALPHA (c)
386 # define TOLOWER(c) _tolower (c)
388 # define TOLOWER(c) tolower (c)
391 /* How many characters in the character set. */
392 # define CHAR_SET_SIZE 256
396 extern char *re_syntax_table
;
398 # else /* not SYNTAX_TABLE */
400 static char re_syntax_table
[CHAR_SET_SIZE
];
403 init_syntax_once (void)
411 memset (re_syntax_table
, 0, sizeof re_syntax_table
);
413 for (c
= 0; c
< CHAR_SET_SIZE
; ++c
)
415 re_syntax_table
[c
] = Sword
;
417 re_syntax_table
['_'] = Ssymbol
;
422 # endif /* not SYNTAX_TABLE */
424 # define SYNTAX(c) re_syntax_table[(c)]
426 #endif /* not emacs */
428 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
430 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
431 use `alloca' instead of `malloc'. This is because using malloc in
432 re_search* or re_match* could cause memory leaks when C-g is used
433 in Emacs (note that SAFE_ALLOCA could also call malloc, but does so
434 via `record_xmalloc' which uses `unwind_protect' to ensure the
435 memory is freed even in case of non-local exits); also, malloc is
436 slower and causes storage fragmentation. On the other hand, malloc
437 is more portable, and easier to debug.
439 Because we sometimes use alloca, some routines have to be macros,
440 not functions -- `alloca'-allocated space disappears at the end of the
441 function it is called in. */
445 # define REGEX_ALLOCATE malloc
446 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
447 # define REGEX_FREE free
449 #else /* not REGEX_MALLOC */
452 /* This may be adjusted in main(), if the stack is successfully grown. */
453 ptrdiff_t emacs_re_safe_alloca
= MAX_ALLOCA
;
454 /* Like USE_SAFE_ALLOCA, but use emacs_re_safe_alloca. */
455 # define REGEX_USE_SAFE_ALLOCA \
456 ptrdiff_t sa_avail = emacs_re_safe_alloca; \
457 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
459 # define REGEX_SAFE_FREE() SAFE_FREE ()
460 # define REGEX_ALLOCATE SAFE_ALLOCA
463 # define REGEX_ALLOCATE alloca
466 /* Assumes a `char *destination' variable. */
467 # define REGEX_REALLOCATE(source, osize, nsize) \
468 (destination = REGEX_ALLOCATE (nsize), \
469 memcpy (destination, source, osize))
471 /* No need to do anything to free, after alloca. */
472 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
474 #endif /* not REGEX_MALLOC */
476 #ifndef REGEX_USE_SAFE_ALLOCA
477 # define REGEX_USE_SAFE_ALLOCA ((void) 0)
478 # define REGEX_SAFE_FREE() ((void) 0)
481 /* Define how to allocate the failure stack. */
483 #if defined REL_ALLOC && defined REGEX_MALLOC
485 # define REGEX_ALLOCATE_STACK(size) \
486 r_alloc (&failure_stack_ptr, (size))
487 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
488 r_re_alloc (&failure_stack_ptr, (nsize))
489 # define REGEX_FREE_STACK(ptr) \
490 r_alloc_free (&failure_stack_ptr)
492 #else /* not using relocating allocator */
494 # define REGEX_ALLOCATE_STACK(size) REGEX_ALLOCATE (size)
495 # define REGEX_REALLOCATE_STACK(source, o, n) REGEX_REALLOCATE (source, o, n)
496 # define REGEX_FREE_STACK(ptr) REGEX_FREE (ptr)
498 #endif /* not using relocating allocator */
501 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
502 `string1' or just past its end. This works if PTR is NULL, which is
504 #define FIRST_STRING_P(ptr) \
505 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
507 /* (Re)Allocate N items of type T using malloc, or fail. */
508 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
509 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
510 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
512 #define BYTEWIDTH 8 /* In bits. */
517 # define max(a, b) ((a) > (b) ? (a) : (b))
518 # define min(a, b) ((a) < (b) ? (a) : (b))
521 /* Type of source-pattern and string chars. */
522 typedef const unsigned char re_char
;
524 typedef char boolean
;
526 static regoff_t
re_match_2_internal (struct re_pattern_buffer
*bufp
,
527 re_char
*string1
, size_t size1
,
528 re_char
*string2
, size_t size2
,
530 struct re_registers
*regs
,
533 /* These are the command codes that appear in compiled regular
534 expressions. Some opcodes are followed by argument bytes. A
535 command code can specify any interpretation whatsoever for its
536 arguments. Zero bytes may appear in the compiled regular expression. */
542 /* Succeed right away--no more backtracking. */
545 /* Followed by one byte giving n, then by n literal bytes. */
548 /* Matches any (more or less) character. */
551 /* Matches any one char belonging to specified set. First
552 following byte is number of bitmap bytes. Then come bytes
553 for a bitmap saying which chars are in. Bits in each byte
554 are ordered low-bit-first. A character is in the set if its
555 bit is 1. A character too large to have a bit in the map is
556 automatically not in the set.
558 If the length byte has the 0x80 bit set, then that stuff
559 is followed by a range table:
560 2 bytes of flags for character sets (low 8 bits, high 8 bits)
561 See RANGE_TABLE_WORK_BITS below.
562 2 bytes, the number of pairs that follow (upto 32767)
563 pairs, each 2 multibyte characters,
564 each multibyte character represented as 3 bytes. */
567 /* Same parameters as charset, but match any character that is
568 not one of those specified. */
571 /* Start remembering the text that is matched, for storing in a
572 register. Followed by one byte with the register number, in
573 the range 0 to one less than the pattern buffer's re_nsub
577 /* Stop remembering the text that is matched and store it in a
578 memory register. Followed by one byte with the register
579 number, in the range 0 to one less than `re_nsub' in the
583 /* Match a duplicate of something remembered. Followed by one
584 byte containing the register number. */
587 /* Fail unless at beginning of line. */
590 /* Fail unless at end of line. */
593 /* Succeeds if at beginning of buffer (if emacs) or at beginning
594 of string to be matched (if not). */
597 /* Analogously, for end of buffer/string. */
600 /* Followed by two byte relative address to which to jump. */
603 /* Followed by two-byte relative address of place to resume at
604 in case of failure. */
607 /* Like on_failure_jump, but pushes a placeholder instead of the
608 current string position when executed. */
609 on_failure_keep_string_jump
,
611 /* Just like `on_failure_jump', except that it checks that we
612 don't get stuck in an infinite loop (matching an empty string
614 on_failure_jump_loop
,
616 /* Just like `on_failure_jump_loop', except that it checks for
617 a different kind of loop (the kind that shows up with non-greedy
618 operators). This operation has to be immediately preceded
620 on_failure_jump_nastyloop
,
622 /* A smart `on_failure_jump' used for greedy * and + operators.
623 It analyzes the loop before which it is put and if the
624 loop does not require backtracking, it changes itself to
625 `on_failure_keep_string_jump' and short-circuits the loop,
626 else it just defaults to changing itself into `on_failure_jump'.
627 It assumes that it is pointing to just past a `jump'. */
628 on_failure_jump_smart
,
630 /* Followed by two-byte relative address and two-byte number n.
631 After matching N times, jump to the address upon failure.
632 Does not work if N starts at 0: use on_failure_jump_loop
636 /* Followed by two-byte relative address, and two-byte number n.
637 Jump to the address N times, then fail. */
640 /* Set the following two-byte relative address to the
641 subsequent two-byte number. The address *includes* the two
645 wordbeg
, /* Succeeds if at word beginning. */
646 wordend
, /* Succeeds if at word end. */
648 wordbound
, /* Succeeds if at a word boundary. */
649 notwordbound
, /* Succeeds if not at a word boundary. */
651 symbeg
, /* Succeeds if at symbol beginning. */
652 symend
, /* Succeeds if at symbol end. */
654 /* Matches any character whose syntax is specified. Followed by
655 a byte which contains a syntax code, e.g., Sword. */
658 /* Matches any character whose syntax is not that specified. */
662 , at_dot
, /* Succeeds if at point. */
664 /* Matches any character whose category-set contains the specified
665 category. The operator is followed by a byte which contains a
666 category code (mnemonic ASCII character). */
669 /* Matches any character whose category-set does not contain the
670 specified category. The operator is followed by a byte which
671 contains the category code (mnemonic ASCII character). */
676 /* Common operations on the compiled pattern. */
678 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
680 #define STORE_NUMBER(destination, number) \
682 (destination)[0] = (number) & 0377; \
683 (destination)[1] = (number) >> 8; \
686 /* Same as STORE_NUMBER, except increment DESTINATION to
687 the byte after where the number is stored. Therefore, DESTINATION
688 must be an lvalue. */
690 #define STORE_NUMBER_AND_INCR(destination, number) \
692 STORE_NUMBER (destination, number); \
693 (destination) += 2; \
696 /* Put into DESTINATION a number stored in two contiguous bytes starting
699 #define EXTRACT_NUMBER(destination, source) \
700 ((destination) = extract_number (source))
703 extract_number (re_char
*source
)
705 unsigned leading_byte
= SIGN_EXTEND_CHAR (source
[1]);
706 return (leading_byte
<< 8) + source
[0];
709 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
710 SOURCE must be an lvalue. */
712 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
713 ((destination) = extract_number_and_incr (&source))
716 extract_number_and_incr (re_char
**source
)
718 int num
= extract_number (*source
);
723 /* Store a multibyte character in three contiguous bytes starting
724 DESTINATION, and increment DESTINATION to the byte after where the
725 character is stored. Therefore, DESTINATION must be an lvalue. */
727 #define STORE_CHARACTER_AND_INCR(destination, character) \
729 (destination)[0] = (character) & 0377; \
730 (destination)[1] = ((character) >> 8) & 0377; \
731 (destination)[2] = (character) >> 16; \
732 (destination) += 3; \
735 /* Put into DESTINATION a character stored in three contiguous bytes
736 starting at SOURCE. */
738 #define EXTRACT_CHARACTER(destination, source) \
740 (destination) = ((source)[0] \
741 | ((source)[1] << 8) \
742 | ((source)[2] << 16)); \
746 /* Macros for charset. */
748 /* Size of bitmap of charset P in bytes. P is a start of charset,
749 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
750 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
752 /* Nonzero if charset P has range table. */
753 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
755 /* Return the address of range table of charset P. But not the start
756 of table itself, but the before where the number of ranges is
757 stored. `2 +' means to skip re_opcode_t and size of bitmap,
758 and the 2 bytes of flags at the start of the range table. */
759 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
762 /* Extract the bit flags that start a range table. */
763 #define CHARSET_RANGE_TABLE_BITS(p) \
764 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
765 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
768 /* Return the address of end of RANGE_TABLE. COUNT is number of
769 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
770 is start of range and end of range. `* 3' is size of each start
772 #define CHARSET_RANGE_TABLE_END(range_table, count) \
773 ((range_table) + (count) * 2 * 3)
775 /* If DEBUG is defined, Regex prints many voluminous messages about what
776 it is doing (if the variable `debug' is nonzero). If linked with the
777 main program in `iregex.c', you can enter patterns and strings
778 interactively. And if linked with the main program in `main.c' and
779 the other test files, you can run the already-written tests. */
783 /* We use standard I/O for debugging. */
786 /* It is useful to test things that ``must'' be true when debugging. */
789 static int debug
= -100000;
791 # define DEBUG_STATEMENT(e) e
792 # define DEBUG_PRINT(...) if (debug > 0) printf (__VA_ARGS__)
793 # define DEBUG_COMPILES_ARGUMENTS
794 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
795 if (debug > 0) print_partial_compiled_pattern (s, e)
796 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
797 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
800 /* Print the fastmap in human-readable form. */
803 print_fastmap (char *fastmap
)
805 unsigned was_a_range
= 0;
808 while (i
< (1 << BYTEWIDTH
))
814 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
830 /* Print a compiled pattern string in human-readable form, starting at
831 the START pointer into it and ending just before the pointer END. */
834 print_partial_compiled_pattern (re_char
*start
, re_char
*end
)
842 fprintf (stderr
, "(null)\n");
846 /* Loop over pattern commands. */
849 fprintf (stderr
, "%td:\t", p
- start
);
851 switch ((re_opcode_t
) *p
++)
854 fprintf (stderr
, "/no_op");
858 fprintf (stderr
, "/succeed");
863 fprintf (stderr
, "/exactn/%d", mcnt
);
866 fprintf (stderr
, "/%c", *p
++);
872 fprintf (stderr
, "/start_memory/%d", *p
++);
876 fprintf (stderr
, "/stop_memory/%d", *p
++);
880 fprintf (stderr
, "/duplicate/%d", *p
++);
884 fprintf (stderr
, "/anychar");
890 register int c
, last
= -100;
891 register int in_range
= 0;
892 int length
= CHARSET_BITMAP_SIZE (p
- 1);
893 int has_range_table
= CHARSET_RANGE_TABLE_EXISTS_P (p
- 1);
895 fprintf (stderr
, "/charset [%s",
896 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
899 fprintf (stderr
, " !extends past end of pattern! ");
901 for (c
= 0; c
< 256; c
++)
903 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
905 /* Are we starting a range? */
906 if (last
+ 1 == c
&& ! in_range
)
908 fprintf (stderr
, "-");
911 /* Have we broken a range? */
912 else if (last
+ 1 != c
&& in_range
)
914 fprintf (stderr
, "%c", last
);
919 fprintf (stderr
, "%c", c
);
925 fprintf (stderr
, "%c", last
);
927 fprintf (stderr
, "]");
934 fprintf (stderr
, "has-range-table");
936 /* ??? Should print the range table; for now, just skip it. */
937 p
+= 2; /* skip range table bits */
938 EXTRACT_NUMBER_AND_INCR (count
, p
);
939 p
= CHARSET_RANGE_TABLE_END (p
, count
);
945 fprintf (stderr
, "/begline");
949 fprintf (stderr
, "/endline");
952 case on_failure_jump
:
953 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
954 fprintf (stderr
, "/on_failure_jump to %td", p
+ mcnt
- start
);
957 case on_failure_keep_string_jump
:
958 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
959 fprintf (stderr
, "/on_failure_keep_string_jump to %td",
963 case on_failure_jump_nastyloop
:
964 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
965 fprintf (stderr
, "/on_failure_jump_nastyloop to %td",
969 case on_failure_jump_loop
:
970 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
971 fprintf (stderr
, "/on_failure_jump_loop to %td",
975 case on_failure_jump_smart
:
976 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
977 fprintf (stderr
, "/on_failure_jump_smart to %td",
982 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
983 fprintf (stderr
, "/jump to %td", p
+ mcnt
- start
);
987 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
988 EXTRACT_NUMBER_AND_INCR (mcnt2
, p
);
989 fprintf (stderr
, "/succeed_n to %td, %d times",
990 p
- 2 + mcnt
- start
, mcnt2
);
994 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
995 EXTRACT_NUMBER_AND_INCR (mcnt2
, p
);
996 fprintf (stderr
, "/jump_n to %td, %d times",
997 p
- 2 + mcnt
- start
, mcnt2
);
1001 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
1002 EXTRACT_NUMBER_AND_INCR (mcnt2
, p
);
1003 fprintf (stderr
, "/set_number_at location %td to %d",
1004 p
- 2 + mcnt
- start
, mcnt2
);
1008 fprintf (stderr
, "/wordbound");
1012 fprintf (stderr
, "/notwordbound");
1016 fprintf (stderr
, "/wordbeg");
1020 fprintf (stderr
, "/wordend");
1024 fprintf (stderr
, "/symbeg");
1028 fprintf (stderr
, "/symend");
1032 fprintf (stderr
, "/syntaxspec");
1034 fprintf (stderr
, "/%d", mcnt
);
1038 fprintf (stderr
, "/notsyntaxspec");
1040 fprintf (stderr
, "/%d", mcnt
);
1045 fprintf (stderr
, "/at_dot");
1049 fprintf (stderr
, "/categoryspec");
1051 fprintf (stderr
, "/%d", mcnt
);
1054 case notcategoryspec
:
1055 fprintf (stderr
, "/notcategoryspec");
1057 fprintf (stderr
, "/%d", mcnt
);
1062 fprintf (stderr
, "/begbuf");
1066 fprintf (stderr
, "/endbuf");
1070 fprintf (stderr
, "?%d", *(p
-1));
1073 fprintf (stderr
, "\n");
1076 fprintf (stderr
, "%td:\tend of pattern.\n", p
- start
);
1081 print_compiled_pattern (struct re_pattern_buffer
*bufp
)
1083 re_char
*buffer
= bufp
->buffer
;
1085 print_partial_compiled_pattern (buffer
, buffer
+ bufp
->used
);
1086 printf ("%ld bytes used/%ld bytes allocated.\n",
1087 bufp
->used
, bufp
->allocated
);
1089 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
1091 printf ("fastmap: ");
1092 print_fastmap (bufp
->fastmap
);
1095 printf ("re_nsub: %zu\t", bufp
->re_nsub
);
1096 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
1097 printf ("can_be_null: %d\t", bufp
->can_be_null
);
1098 printf ("no_sub: %d\t", bufp
->no_sub
);
1099 printf ("not_bol: %d\t", bufp
->not_bol
);
1100 printf ("not_eol: %d\t", bufp
->not_eol
);
1102 printf ("syntax: %lx\n", bufp
->syntax
);
1105 /* Perhaps we should print the translate table? */
1110 print_double_string (re_char
*where
, re_char
*string1
, ssize_t size1
,
1111 re_char
*string2
, ssize_t size2
)
1119 if (FIRST_STRING_P (where
))
1121 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
1122 putchar (string1
[this_char
]);
1127 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
1128 putchar (string2
[this_char
]);
1132 #else /* not DEBUG */
1137 # define DEBUG_STATEMENT(e)
1138 # define DEBUG_PRINT(...)
1139 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1140 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1142 #endif /* not DEBUG */
1146 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1147 also be assigned to arbitrarily: each pattern buffer stores its own
1148 syntax, so it can be changed between regex compilations. */
1149 /* This has no initializer because initialized variables in Emacs
1150 become read-only after dumping. */
1151 reg_syntax_t re_syntax_options
;
1154 /* Specify the precise syntax of regexps for compilation. This provides
1155 for compatibility for various utilities which historically have
1156 different, incompatible syntaxes.
1158 The argument SYNTAX is a bit mask comprised of the various bits
1159 defined in regex.h. We return the old syntax. */
1162 re_set_syntax (reg_syntax_t syntax
)
1164 reg_syntax_t ret
= re_syntax_options
;
1166 re_syntax_options
= syntax
;
1169 WEAK_ALIAS (__re_set_syntax
, re_set_syntax
)
1173 /* This table gives an error message for each of the error codes listed
1174 in regex.h. Obviously the order here has to be same as there.
1175 POSIX doesn't require that we do anything for REG_NOERROR,
1176 but why not be nice? */
1178 static const char *re_error_msgid
[] =
1180 gettext_noop ("Success"), /* REG_NOERROR */
1181 gettext_noop ("No match"), /* REG_NOMATCH */
1182 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1183 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1184 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1185 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1186 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1187 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1188 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1189 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1190 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1191 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1192 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1193 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1194 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1195 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1196 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1197 gettext_noop ("Range striding over charsets"), /* REG_ERANGEX */
1198 gettext_noop ("Invalid content of \\{\\}, repetitions too big") /* REG_ESIZEBR */
1201 /* Whether to allocate memory during matching. */
1203 /* Define MATCH_MAY_ALLOCATE to allow the searching and matching
1204 functions allocate memory for the failure stack and registers.
1205 Normally should be defined, because otherwise searching and
1206 matching routines will have much smaller memory resources at their
1207 disposal, and therefore might fail to handle complex regexps.
1208 Therefore undefine MATCH_MAY_ALLOCATE only in the following
1209 exceptional situations:
1211 . When running on a system where memory is at premium.
1212 . When alloca cannot be used at all, perhaps due to bugs in
1213 its implementation, or its being unavailable, or due to a
1214 very small stack size. This requires to define REGEX_MALLOC
1215 to use malloc instead, which in turn could lead to memory
1216 leaks if search is interrupted by a signal. (For these
1217 reasons, defining REGEX_MALLOC when building Emacs
1218 automatically undefines MATCH_MAY_ALLOCATE, but outside
1219 Emacs you may not care about memory leaks.) If you want to
1220 prevent the memory leaks, undefine MATCH_MAY_ALLOCATE.
1221 . When code that calls the searching and matching functions
1222 cannot allow memory allocation, for whatever reasons. */
1224 /* Normally, this is fine. */
1225 #define MATCH_MAY_ALLOCATE
1227 /* The match routines may not allocate if (1) they would do it with malloc
1228 and (2) it's not safe for them to use malloc.
1229 Note that if REL_ALLOC is defined, matching would not use malloc for the
1230 failure stack, but we would still use it for the register vectors;
1231 so REL_ALLOC should not affect this. */
1232 #if defined REGEX_MALLOC && defined emacs
1233 # undef MATCH_MAY_ALLOCATE
1237 /* Failure stack declarations and macros; both re_compile_fastmap and
1238 re_match_2 use a failure stack. These have to be macros because of
1239 REGEX_ALLOCATE_STACK. */
1242 /* Approximate number of failure points for which to initially allocate space
1243 when matching. If this number is exceeded, we allocate more
1244 space, so it is not a hard limit. */
1245 #ifndef INIT_FAILURE_ALLOC
1246 # define INIT_FAILURE_ALLOC 20
1249 /* Roughly the maximum number of failure points on the stack. Would be
1250 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1251 This is a variable only so users of regex can assign to it; we never
1252 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1253 before using it, so it should probably be a byte-count instead. */
1254 # if defined MATCH_MAY_ALLOCATE
1255 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1256 whose default stack limit is 2mb. In order for a larger
1257 value to work reliably, you have to try to make it accord
1258 with the process stack limit. */
1259 size_t emacs_re_max_failures
= 40000;
1261 size_t emacs_re_max_failures
= 4000;
1264 union fail_stack_elt
1267 /* This should be the biggest `int' that's no bigger than a pointer. */
1271 typedef union fail_stack_elt fail_stack_elt_t
;
1275 fail_stack_elt_t
*stack
;
1277 size_t avail
; /* Offset of next open position. */
1278 size_t frame
; /* Offset of the cur constructed frame. */
1281 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1284 /* Define macros to initialize and free the failure stack.
1285 Do `return -2' if the alloc fails. */
1287 #ifdef MATCH_MAY_ALLOCATE
1288 # define INIT_FAIL_STACK() \
1290 fail_stack.stack = \
1291 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1292 * sizeof (fail_stack_elt_t)); \
1294 if (fail_stack.stack == NULL) \
1297 fail_stack.size = INIT_FAILURE_ALLOC; \
1298 fail_stack.avail = 0; \
1299 fail_stack.frame = 0; \
1302 # define INIT_FAIL_STACK() \
1304 fail_stack.avail = 0; \
1305 fail_stack.frame = 0; \
1308 # define RETALLOC_IF(addr, n, t) \
1309 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
1313 /* Double the size of FAIL_STACK, up to a limit
1314 which allows approximately `emacs_re_max_failures' items.
1316 Return 1 if succeeds, and 0 if either ran out of memory
1317 allocating space for it or it was already too large.
1319 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1321 /* Factor to increase the failure stack size by
1322 when we increase it.
1323 This used to be 2, but 2 was too wasteful
1324 because the old discarded stacks added up to as much space
1325 were as ultimate, maximum-size stack. */
1326 #define FAIL_STACK_GROWTH_FACTOR 4
1328 #define GROW_FAIL_STACK(fail_stack) \
1329 (((fail_stack).size >= emacs_re_max_failures * TYPICAL_FAILURE_SIZE) \
1331 : ((fail_stack).stack \
1332 = REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1333 (fail_stack).size * sizeof (fail_stack_elt_t), \
1334 min (emacs_re_max_failures * TYPICAL_FAILURE_SIZE, \
1335 ((fail_stack).size * FAIL_STACK_GROWTH_FACTOR)) \
1336 * sizeof (fail_stack_elt_t)), \
1338 (fail_stack).stack == NULL \
1340 : ((fail_stack).size \
1341 = (min (emacs_re_max_failures * TYPICAL_FAILURE_SIZE, \
1342 ((fail_stack).size * FAIL_STACK_GROWTH_FACTOR))), \
1346 /* Push a pointer value onto the failure stack.
1347 Assumes the variable `fail_stack'. Probably should only
1348 be called from within `PUSH_FAILURE_POINT'. */
1349 #define PUSH_FAILURE_POINTER(item) \
1350 fail_stack.stack[fail_stack.avail++].pointer = (item)
1352 /* This pushes an integer-valued item onto the failure stack.
1353 Assumes the variable `fail_stack'. Probably should only
1354 be called from within `PUSH_FAILURE_POINT'. */
1355 #define PUSH_FAILURE_INT(item) \
1356 fail_stack.stack[fail_stack.avail++].integer = (item)
1358 /* These POP... operations complement the PUSH... operations.
1359 All assume that `fail_stack' is nonempty. */
1360 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1361 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1363 /* Individual items aside from the registers. */
1364 #define NUM_NONREG_ITEMS 3
1366 /* Used to examine the stack (to detect infinite loops). */
1367 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1368 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1369 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1370 #define TOP_FAILURE_HANDLE() fail_stack.frame
1373 #define ENSURE_FAIL_STACK(space) \
1374 while (REMAINING_AVAIL_SLOTS <= space) { \
1375 if (!GROW_FAIL_STACK (fail_stack)) \
1377 DEBUG_PRINT ("\n Doubled stack; size now: %zd\n", (fail_stack).size);\
1378 DEBUG_PRINT (" slots available: %zd\n", REMAINING_AVAIL_SLOTS);\
1381 /* Push register NUM onto the stack. */
1382 #define PUSH_FAILURE_REG(num) \
1384 char *destination; \
1386 ENSURE_FAIL_STACK(3); \
1387 DEBUG_PRINT (" Push reg %ld (spanning %p -> %p)\n", \
1388 n, regstart[n], regend[n]); \
1389 PUSH_FAILURE_POINTER (regstart[n]); \
1390 PUSH_FAILURE_POINTER (regend[n]); \
1391 PUSH_FAILURE_INT (n); \
1394 /* Change the counter's value to VAL, but make sure that it will
1395 be reset when backtracking. */
1396 #define PUSH_NUMBER(ptr,val) \
1398 char *destination; \
1400 ENSURE_FAIL_STACK(3); \
1401 EXTRACT_NUMBER (c, ptr); \
1402 DEBUG_PRINT (" Push number %p = %d -> %d\n", ptr, c, val); \
1403 PUSH_FAILURE_INT (c); \
1404 PUSH_FAILURE_POINTER (ptr); \
1405 PUSH_FAILURE_INT (-1); \
1406 STORE_NUMBER (ptr, val); \
1409 /* Pop a saved register off the stack. */
1410 #define POP_FAILURE_REG_OR_COUNT() \
1412 long pfreg = POP_FAILURE_INT (); \
1415 /* It's a counter. */ \
1416 /* Here, we discard `const', making re_match non-reentrant. */ \
1417 unsigned char *ptr = (unsigned char *) POP_FAILURE_POINTER (); \
1418 pfreg = POP_FAILURE_INT (); \
1419 STORE_NUMBER (ptr, pfreg); \
1420 DEBUG_PRINT (" Pop counter %p = %ld\n", ptr, pfreg); \
1424 regend[pfreg] = POP_FAILURE_POINTER (); \
1425 regstart[pfreg] = POP_FAILURE_POINTER (); \
1426 DEBUG_PRINT (" Pop reg %ld (spanning %p -> %p)\n", \
1427 pfreg, regstart[pfreg], regend[pfreg]); \
1431 /* Check that we are not stuck in an infinite loop. */
1432 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1434 ssize_t failure = TOP_FAILURE_HANDLE (); \
1435 /* Check for infinite matching loops */ \
1436 while (failure > 0 \
1437 && (FAILURE_STR (failure) == string_place \
1438 || FAILURE_STR (failure) == NULL)) \
1440 assert (FAILURE_PAT (failure) >= bufp->buffer \
1441 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1442 if (FAILURE_PAT (failure) == pat_cur) \
1447 DEBUG_PRINT (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1448 failure = NEXT_FAILURE_HANDLE(failure); \
1450 DEBUG_PRINT (" Other string: %p\n", FAILURE_STR (failure)); \
1453 /* Push the information about the state we will need
1454 if we ever fail back to it.
1456 Requires variables fail_stack, regstart, regend and
1457 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1460 Does `return FAILURE_CODE' if runs out of memory. */
1462 #define PUSH_FAILURE_POINT(pattern, string_place) \
1464 char *destination; \
1465 /* Must be int, so when we don't save any registers, the arithmetic \
1466 of 0 + -1 isn't done as unsigned. */ \
1468 DEBUG_STATEMENT (nfailure_points_pushed++); \
1469 DEBUG_PRINT ("\nPUSH_FAILURE_POINT:\n"); \
1470 DEBUG_PRINT (" Before push, next avail: %zd\n", (fail_stack).avail); \
1471 DEBUG_PRINT (" size: %zd\n", (fail_stack).size);\
1473 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1475 DEBUG_PRINT ("\n"); \
1477 DEBUG_PRINT (" Push frame index: %zd\n", fail_stack.frame); \
1478 PUSH_FAILURE_INT (fail_stack.frame); \
1480 DEBUG_PRINT (" Push string %p: \"", string_place); \
1481 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1482 DEBUG_PRINT ("\"\n"); \
1483 PUSH_FAILURE_POINTER (string_place); \
1485 DEBUG_PRINT (" Push pattern %p: ", pattern); \
1486 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1487 PUSH_FAILURE_POINTER (pattern); \
1489 /* Close the frame by moving the frame pointer past it. */ \
1490 fail_stack.frame = fail_stack.avail; \
1493 /* Estimate the size of data pushed by a typical failure stack entry.
1494 An estimate is all we need, because all we use this for
1495 is to choose a limit for how big to make the failure stack. */
1496 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1497 #define TYPICAL_FAILURE_SIZE 20
1499 /* How many items can still be added to the stack without overflowing it. */
1500 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1503 /* Pops what PUSH_FAIL_STACK pushes.
1505 We restore into the parameters, all of which should be lvalues:
1506 STR -- the saved data position.
1507 PAT -- the saved pattern position.
1508 REGSTART, REGEND -- arrays of string positions.
1510 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1511 `pend', `string1', `size1', `string2', and `size2'. */
1513 #define POP_FAILURE_POINT(str, pat) \
1515 assert (!FAIL_STACK_EMPTY ()); \
1517 /* Remove failure points and point to how many regs pushed. */ \
1518 DEBUG_PRINT ("POP_FAILURE_POINT:\n"); \
1519 DEBUG_PRINT (" Before pop, next avail: %zd\n", fail_stack.avail); \
1520 DEBUG_PRINT (" size: %zd\n", fail_stack.size); \
1522 /* Pop the saved registers. */ \
1523 while (fail_stack.frame < fail_stack.avail) \
1524 POP_FAILURE_REG_OR_COUNT (); \
1526 pat = POP_FAILURE_POINTER (); \
1527 DEBUG_PRINT (" Popping pattern %p: ", pat); \
1528 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1530 /* If the saved string location is NULL, it came from an \
1531 on_failure_keep_string_jump opcode, and we want to throw away the \
1532 saved NULL, thus retaining our current position in the string. */ \
1533 str = POP_FAILURE_POINTER (); \
1534 DEBUG_PRINT (" Popping string %p: \"", str); \
1535 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1536 DEBUG_PRINT ("\"\n"); \
1538 fail_stack.frame = POP_FAILURE_INT (); \
1539 DEBUG_PRINT (" Popping frame index: %zd\n", fail_stack.frame); \
1541 assert (fail_stack.avail >= 0); \
1542 assert (fail_stack.frame <= fail_stack.avail); \
1544 DEBUG_STATEMENT (nfailure_points_popped++); \
1545 } while (0) /* POP_FAILURE_POINT */
1549 /* Registers are set to a sentinel when they haven't yet matched. */
1550 #define REG_UNSET(e) ((e) == NULL)
1552 /* Subroutine declarations and macros for regex_compile. */
1554 static reg_errcode_t
regex_compile (re_char
*pattern
, size_t size
,
1556 bool posix_backtracking
,
1557 const char *whitespace_regexp
,
1559 reg_syntax_t syntax
,
1561 struct re_pattern_buffer
*bufp
);
1562 static void store_op1 (re_opcode_t op
, unsigned char *loc
, int arg
);
1563 static void store_op2 (re_opcode_t op
, unsigned char *loc
, int arg1
, int arg2
);
1564 static void insert_op1 (re_opcode_t op
, unsigned char *loc
,
1565 int arg
, unsigned char *end
);
1566 static void insert_op2 (re_opcode_t op
, unsigned char *loc
,
1567 int arg1
, int arg2
, unsigned char *end
);
1568 static boolean
at_begline_loc_p (re_char
*pattern
, re_char
*p
,
1569 reg_syntax_t syntax
);
1570 static boolean
at_endline_loc_p (re_char
*p
, re_char
*pend
,
1571 reg_syntax_t syntax
);
1572 static re_char
*skip_one_char (re_char
*p
);
1573 static int analyze_first (re_char
*p
, re_char
*pend
,
1574 char *fastmap
, const int multibyte
);
1576 /* Fetch the next character in the uncompiled pattern, with no
1578 #define PATFETCH(c) \
1581 if (p == pend) return REG_EEND; \
1582 c = RE_STRING_CHAR_AND_LENGTH (p, len, multibyte); \
1587 /* If `translate' is non-null, return translate[D], else just D. We
1588 cast the subscript to translate because some data is declared as
1589 `char *', to avoid warnings when a string constant is passed. But
1590 when we use a character as a subscript we must make it unsigned. */
1592 # define TRANSLATE(d) \
1593 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1597 /* Macros for outputting the compiled pattern into `buffer'. */
1599 /* If the buffer isn't allocated when it comes in, use this. */
1600 #define INIT_BUF_SIZE 32
1602 /* Make sure we have at least N more bytes of space in buffer. */
1603 #define GET_BUFFER_SPACE(n) \
1604 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1607 /* Make sure we have one more byte of buffer space and then add C to it. */
1608 #define BUF_PUSH(c) \
1610 GET_BUFFER_SPACE (1); \
1611 *b++ = (unsigned char) (c); \
1615 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1616 #define BUF_PUSH_2(c1, c2) \
1618 GET_BUFFER_SPACE (2); \
1619 *b++ = (unsigned char) (c1); \
1620 *b++ = (unsigned char) (c2); \
1624 /* Store a jump with opcode OP at LOC to location TO. We store a
1625 relative address offset by the three bytes the jump itself occupies. */
1626 #define STORE_JUMP(op, loc, to) \
1627 store_op1 (op, loc, (to) - (loc) - 3)
1629 /* Likewise, for a two-argument jump. */
1630 #define STORE_JUMP2(op, loc, to, arg) \
1631 store_op2 (op, loc, (to) - (loc) - 3, arg)
1633 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1634 #define INSERT_JUMP(op, loc, to) \
1635 insert_op1 (op, loc, (to) - (loc) - 3, b)
1637 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1638 #define INSERT_JUMP2(op, loc, to, arg) \
1639 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1642 /* This is not an arbitrary limit: the arguments which represent offsets
1643 into the pattern are two bytes long. So if 2^15 bytes turns out to
1644 be too small, many things would have to change. */
1645 # define MAX_BUF_SIZE (1L << 15)
1647 /* Extend the buffer by twice its current size via realloc and
1648 reset the pointers that pointed into the old block to point to the
1649 correct places in the new one. If extending the buffer results in it
1650 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1651 #define EXTEND_BUFFER() \
1653 unsigned char *old_buffer = bufp->buffer; \
1654 if (bufp->allocated == MAX_BUF_SIZE) \
1656 bufp->allocated <<= 1; \
1657 if (bufp->allocated > MAX_BUF_SIZE) \
1658 bufp->allocated = MAX_BUF_SIZE; \
1659 ptrdiff_t b_off = b - old_buffer; \
1660 ptrdiff_t begalt_off = begalt - old_buffer; \
1661 bool fixup_alt_jump_set = !!fixup_alt_jump; \
1662 bool laststart_set = !!laststart; \
1663 bool pending_exact_set = !!pending_exact; \
1664 ptrdiff_t fixup_alt_jump_off, laststart_off, pending_exact_off; \
1665 if (fixup_alt_jump_set) fixup_alt_jump_off = fixup_alt_jump - old_buffer; \
1666 if (laststart_set) laststart_off = laststart - old_buffer; \
1667 if (pending_exact_set) pending_exact_off = pending_exact - old_buffer; \
1668 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1669 if (bufp->buffer == NULL) \
1670 return REG_ESPACE; \
1671 unsigned char *new_buffer = bufp->buffer; \
1672 b = new_buffer + b_off; \
1673 begalt = new_buffer + begalt_off; \
1674 if (fixup_alt_jump_set) fixup_alt_jump = new_buffer + fixup_alt_jump_off; \
1675 if (laststart_set) laststart = new_buffer + laststart_off; \
1676 if (pending_exact_set) pending_exact = new_buffer + pending_exact_off; \
1680 /* Since we have one byte reserved for the register number argument to
1681 {start,stop}_memory, the maximum number of groups we can report
1682 things about is what fits in that byte. */
1683 #define MAX_REGNUM 255
1685 /* But patterns can have more than `MAX_REGNUM' registers. We just
1686 ignore the excess. */
1687 typedef int regnum_t
;
1690 /* Macros for the compile stack. */
1692 /* Since offsets can go either forwards or backwards, this type needs to
1693 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1694 /* int may be not enough when sizeof(int) == 2. */
1695 typedef long pattern_offset_t
;
1699 pattern_offset_t begalt_offset
;
1700 pattern_offset_t fixup_alt_jump
;
1701 pattern_offset_t laststart_offset
;
1703 } compile_stack_elt_t
;
1708 compile_stack_elt_t
*stack
;
1710 size_t avail
; /* Offset of next open position. */
1711 } compile_stack_type
;
1714 #define INIT_COMPILE_STACK_SIZE 32
1716 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1717 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1719 /* The next available element. */
1720 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1722 /* Explicit quit checking is needed for Emacs, which uses polling to
1723 process input events. */
1725 static void maybe_quit (void) {}
1728 /* Structure to manage work area for range table. */
1729 struct range_table_work_area
1731 int *table
; /* actual work area. */
1732 int allocated
; /* allocated size for work area in bytes. */
1733 int used
; /* actually used size in words. */
1734 int bits
; /* flag to record character classes */
1739 /* Make sure that WORK_AREA can hold more N multibyte characters.
1740 This is used only in set_image_of_range and set_image_of_range_1.
1741 It expects WORK_AREA to be a pointer.
1742 If it can't get the space, it returns from the surrounding function. */
1744 #define EXTEND_RANGE_TABLE(work_area, n) \
1746 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
1748 extend_range_table_work_area (&work_area); \
1749 if ((work_area).table == 0) \
1750 return (REG_ESPACE); \
1754 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1755 (work_area).bits |= (bit)
1757 /* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1758 #define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
1760 EXTEND_RANGE_TABLE ((work_area), 2); \
1761 (work_area).table[(work_area).used++] = (range_start); \
1762 (work_area).table[(work_area).used++] = (range_end); \
1767 /* Free allocated memory for WORK_AREA. */
1768 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1770 if ((work_area).table) \
1771 free ((work_area).table); \
1774 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1775 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1776 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1777 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1779 /* Bits used to implement the multibyte-part of the various character classes
1780 such as [:alnum:] in a charset's range table. The code currently assumes
1781 that only the low 16 bits are used. */
1782 #define BIT_WORD 0x1
1783 #define BIT_LOWER 0x2
1784 #define BIT_PUNCT 0x4
1785 #define BIT_SPACE 0x8
1786 #define BIT_UPPER 0x10
1787 #define BIT_MULTIBYTE 0x20
1788 #define BIT_ALPHA 0x40
1789 #define BIT_ALNUM 0x80
1790 #define BIT_GRAPH 0x100
1791 #define BIT_PRINT 0x200
1792 #define BIT_BLANK 0x400
1795 /* Set the bit for character C in a list. */
1796 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
1801 /* Store characters in the range FROM to TO in the bitmap at B (for
1802 ASCII and unibyte characters) and WORK_AREA (for multibyte
1803 characters) while translating them and paying attention to the
1804 continuity of translated characters.
1806 Implementation note: It is better to implement these fairly big
1807 macros by a function, but it's not that easy because macros called
1808 in this macro assume various local variables already declared. */
1810 /* Both FROM and TO are ASCII characters. */
1812 #define SETUP_ASCII_RANGE(work_area, FROM, TO) \
1816 for (C0 = (FROM); C0 <= (TO); C0++) \
1818 C1 = TRANSLATE (C0); \
1819 if (! ASCII_CHAR_P (C1)) \
1821 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
1822 if ((C1 = RE_CHAR_TO_UNIBYTE (C1)) < 0) \
1825 SET_LIST_BIT (C1); \
1830 /* Both FROM and TO are unibyte characters (0x80..0xFF). */
1832 #define SETUP_UNIBYTE_RANGE(work_area, FROM, TO) \
1834 int C0, C1, C2, I; \
1835 int USED = RANGE_TABLE_WORK_USED (work_area); \
1837 for (C0 = (FROM); C0 <= (TO); C0++) \
1839 C1 = RE_CHAR_TO_MULTIBYTE (C0); \
1840 if (CHAR_BYTE8_P (C1)) \
1841 SET_LIST_BIT (C0); \
1844 C2 = TRANSLATE (C1); \
1846 || (C1 = RE_CHAR_TO_UNIBYTE (C2)) < 0) \
1848 SET_LIST_BIT (C1); \
1849 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
1851 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
1852 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
1854 if (C2 >= from - 1 && C2 <= to + 1) \
1856 if (C2 == from - 1) \
1857 RANGE_TABLE_WORK_ELT (work_area, I)--; \
1858 else if (C2 == to + 1) \
1859 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
1864 SET_RANGE_TABLE_WORK_AREA ((work_area), C2, C2); \
1870 /* Both FROM and TO are multibyte characters. */
1872 #define SETUP_MULTIBYTE_RANGE(work_area, FROM, TO) \
1874 int C0, C1, C2, I, USED = RANGE_TABLE_WORK_USED (work_area); \
1876 SET_RANGE_TABLE_WORK_AREA ((work_area), (FROM), (TO)); \
1877 for (C0 = (FROM); C0 <= (TO); C0++) \
1879 C1 = TRANSLATE (C0); \
1880 if ((C2 = RE_CHAR_TO_UNIBYTE (C1)) >= 0 \
1881 || (C1 != C0 && (C2 = RE_CHAR_TO_UNIBYTE (C0)) >= 0)) \
1882 SET_LIST_BIT (C2); \
1883 if (C1 >= (FROM) && C1 <= (TO)) \
1885 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
1887 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
1888 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
1890 if (C1 >= from - 1 && C1 <= to + 1) \
1892 if (C1 == from - 1) \
1893 RANGE_TABLE_WORK_ELT (work_area, I)--; \
1894 else if (C1 == to + 1) \
1895 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
1900 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
1906 /* Get the next unsigned number in the uncompiled pattern. */
1907 #define GET_INTERVAL_COUNT(num) \
1910 FREE_STACK_RETURN (REG_EBRACE); \
1914 while ('0' <= c && c <= '9') \
1918 if (RE_DUP_MAX / 10 - (RE_DUP_MAX % 10 < c - '0') < num) \
1919 FREE_STACK_RETURN (REG_ESIZEBR); \
1920 num = num * 10 + c - '0'; \
1922 FREE_STACK_RETURN (REG_EBRACE); \
1928 #if ! WIDE_CHAR_SUPPORT
1930 /* Parse a character class, i.e. string such as "[:name:]". *strp
1931 points to the string to be parsed and limit is length, in bytes, of
1934 If *strp point to a string that begins with "[:name:]", where name is
1935 a non-empty sequence of lower case letters, *strp will be advanced past the
1936 closing square bracket and RECC_* constant which maps to the name will be
1937 returned. If name is not a valid character class name zero, or RECC_ERROR,
1940 Otherwise, if *strp doesn't begin with "[:name:]", -1 is returned.
1942 The function can be used on ASCII and multibyte (UTF-8-encoded) strings.
1945 re_wctype_parse (const unsigned char **strp
, unsigned limit
)
1947 const char *beg
= (const char *)*strp
, *it
;
1949 if (limit
< 4 || beg
[0] != '[' || beg
[1] != ':')
1952 beg
+= 2; /* skip opening "[:" */
1953 limit
-= 3; /* opening "[:" and half of closing ":]"; --limit handles rest */
1954 for (it
= beg
; it
[0] != ':' || it
[1] != ']'; ++it
)
1958 *strp
= (const unsigned char *)(it
+ 2);
1960 /* Sort tests in the length=five case by frequency the classes to minimize
1961 number of times we fail the comparison. The frequencies of character class
1962 names used in Emacs sources as of 2016-07-27:
1964 $ find \( -name \*.c -o -name \*.el \) -exec grep -h '\[:[a-z]*:]' {} + |
1965 sed 's/]/]\n/g' |grep -o '\[:[a-z]*:]' |sort |uniq -c |sort -nr
1983 If you update this list, consider also updating chain of or'ed conditions
1984 in execute_charset function.
1989 if (!memcmp (beg
, "word", 4)) return RECC_WORD
;
1992 if (!memcmp (beg
, "alnum", 5)) return RECC_ALNUM
;
1993 if (!memcmp (beg
, "alpha", 5)) return RECC_ALPHA
;
1994 if (!memcmp (beg
, "space", 5)) return RECC_SPACE
;
1995 if (!memcmp (beg
, "digit", 5)) return RECC_DIGIT
;
1996 if (!memcmp (beg
, "blank", 5)) return RECC_BLANK
;
1997 if (!memcmp (beg
, "upper", 5)) return RECC_UPPER
;
1998 if (!memcmp (beg
, "lower", 5)) return RECC_LOWER
;
1999 if (!memcmp (beg
, "punct", 5)) return RECC_PUNCT
;
2000 if (!memcmp (beg
, "ascii", 5)) return RECC_ASCII
;
2001 if (!memcmp (beg
, "graph", 5)) return RECC_GRAPH
;
2002 if (!memcmp (beg
, "print", 5)) return RECC_PRINT
;
2003 if (!memcmp (beg
, "cntrl", 5)) return RECC_CNTRL
;
2006 if (!memcmp (beg
, "xdigit", 6)) return RECC_XDIGIT
;
2009 if (!memcmp (beg
, "unibyte", 7)) return RECC_UNIBYTE
;
2012 if (!memcmp (beg
, "nonascii", 8)) return RECC_NONASCII
;
2015 if (!memcmp (beg
, "multibyte", 9)) return RECC_MULTIBYTE
;
2022 /* True if CH is in the char class CC. */
2024 re_iswctype (int ch
, re_wctype_t cc
)
2028 case RECC_ALNUM
: return ISALNUM (ch
) != 0;
2029 case RECC_ALPHA
: return ISALPHA (ch
) != 0;
2030 case RECC_BLANK
: return ISBLANK (ch
) != 0;
2031 case RECC_CNTRL
: return ISCNTRL (ch
) != 0;
2032 case RECC_DIGIT
: return ISDIGIT (ch
) != 0;
2033 case RECC_GRAPH
: return ISGRAPH (ch
) != 0;
2034 case RECC_LOWER
: return ISLOWER (ch
) != 0;
2035 case RECC_PRINT
: return ISPRINT (ch
) != 0;
2036 case RECC_PUNCT
: return ISPUNCT (ch
) != 0;
2037 case RECC_SPACE
: return ISSPACE (ch
) != 0;
2038 case RECC_UPPER
: return ISUPPER (ch
) != 0;
2039 case RECC_XDIGIT
: return ISXDIGIT (ch
) != 0;
2040 case RECC_ASCII
: return IS_REAL_ASCII (ch
) != 0;
2041 case RECC_NONASCII
: return !IS_REAL_ASCII (ch
);
2042 case RECC_UNIBYTE
: return ISUNIBYTE (ch
) != 0;
2043 case RECC_MULTIBYTE
: return !ISUNIBYTE (ch
);
2044 case RECC_WORD
: return ISWORD (ch
) != 0;
2045 case RECC_ERROR
: return false;
2051 /* Return a bit-pattern to use in the range-table bits to match multibyte
2052 chars of class CC. */
2054 re_wctype_to_bit (re_wctype_t cc
)
2059 case RECC_MULTIBYTE
: return BIT_MULTIBYTE
;
2060 case RECC_ALPHA
: return BIT_ALPHA
;
2061 case RECC_ALNUM
: return BIT_ALNUM
;
2062 case RECC_WORD
: return BIT_WORD
;
2063 case RECC_LOWER
: return BIT_LOWER
;
2064 case RECC_UPPER
: return BIT_UPPER
;
2065 case RECC_PUNCT
: return BIT_PUNCT
;
2066 case RECC_SPACE
: return BIT_SPACE
;
2067 case RECC_GRAPH
: return BIT_GRAPH
;
2068 case RECC_PRINT
: return BIT_PRINT
;
2069 case RECC_BLANK
: return BIT_BLANK
;
2070 case RECC_ASCII
: case RECC_DIGIT
: case RECC_XDIGIT
: case RECC_CNTRL
:
2071 case RECC_UNIBYTE
: case RECC_ERROR
: return 0;
2078 /* Filling in the work area of a range. */
2080 /* Actually extend the space in WORK_AREA. */
2083 extend_range_table_work_area (struct range_table_work_area
*work_area
)
2085 work_area
->allocated
+= 16 * sizeof (int);
2086 work_area
->table
= realloc (work_area
->table
, work_area
->allocated
);
2092 /* Carefully find the ranges of codes that are equivalent
2093 under case conversion to the range start..end when passed through
2094 TRANSLATE. Handle the case where non-letters can come in between
2095 two upper-case letters (which happens in Latin-1).
2096 Also handle the case of groups of more than 2 case-equivalent chars.
2098 The basic method is to look at consecutive characters and see
2099 if they can form a run that can be handled as one.
2101 Returns -1 if successful, REG_ESPACE if ran out of space. */
2104 set_image_of_range_1 (struct range_table_work_area
*work_area
,
2105 re_wchar_t start
, re_wchar_t end
,
2106 RE_TRANSLATE_TYPE translate
)
2108 /* `one_case' indicates a character, or a run of characters,
2109 each of which is an isolate (no case-equivalents).
2110 This includes all ASCII non-letters.
2112 `two_case' indicates a character, or a run of characters,
2113 each of which has two case-equivalent forms.
2114 This includes all ASCII letters.
2116 `strange' indicates a character that has more than one
2119 enum case_type
{one_case
, two_case
, strange
};
2121 /* Describe the run that is in progress,
2122 which the next character can try to extend.
2123 If run_type is strange, that means there really is no run.
2124 If run_type is one_case, then run_start...run_end is the run.
2125 If run_type is two_case, then the run is run_start...run_end,
2126 and the case-equivalents end at run_eqv_end. */
2128 enum case_type run_type
= strange
;
2129 int run_start
, run_end
, run_eqv_end
;
2131 Lisp_Object eqv_table
;
2133 if (!RE_TRANSLATE_P (translate
))
2135 EXTEND_RANGE_TABLE (work_area
, 2);
2136 work_area
->table
[work_area
->used
++] = (start
);
2137 work_area
->table
[work_area
->used
++] = (end
);
2141 eqv_table
= XCHAR_TABLE (translate
)->extras
[2];
2143 for (; start
<= end
; start
++)
2145 enum case_type this_type
;
2146 int eqv
= RE_TRANSLATE (eqv_table
, start
);
2147 int minchar
, maxchar
;
2149 /* Classify this character */
2151 this_type
= one_case
;
2152 else if (RE_TRANSLATE (eqv_table
, eqv
) == start
)
2153 this_type
= two_case
;
2155 this_type
= strange
;
2158 minchar
= start
, maxchar
= eqv
;
2160 minchar
= eqv
, maxchar
= start
;
2162 /* Can this character extend the run in progress? */
2163 if (this_type
== strange
|| this_type
!= run_type
2164 || !(minchar
== run_end
+ 1
2165 && (run_type
== two_case
2166 ? maxchar
== run_eqv_end
+ 1 : 1)))
2169 Record each of its equivalent ranges. */
2170 if (run_type
== one_case
)
2172 EXTEND_RANGE_TABLE (work_area
, 2);
2173 work_area
->table
[work_area
->used
++] = run_start
;
2174 work_area
->table
[work_area
->used
++] = run_end
;
2176 else if (run_type
== two_case
)
2178 EXTEND_RANGE_TABLE (work_area
, 4);
2179 work_area
->table
[work_area
->used
++] = run_start
;
2180 work_area
->table
[work_area
->used
++] = run_end
;
2181 work_area
->table
[work_area
->used
++]
2182 = RE_TRANSLATE (eqv_table
, run_start
);
2183 work_area
->table
[work_area
->used
++]
2184 = RE_TRANSLATE (eqv_table
, run_end
);
2189 if (this_type
== strange
)
2191 /* For a strange character, add each of its equivalents, one
2192 by one. Don't start a range. */
2195 EXTEND_RANGE_TABLE (work_area
, 2);
2196 work_area
->table
[work_area
->used
++] = eqv
;
2197 work_area
->table
[work_area
->used
++] = eqv
;
2198 eqv
= RE_TRANSLATE (eqv_table
, eqv
);
2200 while (eqv
!= start
);
2203 /* Add this char to the run, or start a new run. */
2204 else if (run_type
== strange
)
2206 /* Initialize a new range. */
2207 run_type
= this_type
;
2210 run_eqv_end
= RE_TRANSLATE (eqv_table
, run_end
);
2214 /* Extend a running range. */
2216 run_eqv_end
= RE_TRANSLATE (eqv_table
, run_end
);
2220 /* If a run is still in progress at the end, finish it now
2221 by recording its equivalent ranges. */
2222 if (run_type
== one_case
)
2224 EXTEND_RANGE_TABLE (work_area
, 2);
2225 work_area
->table
[work_area
->used
++] = run_start
;
2226 work_area
->table
[work_area
->used
++] = run_end
;
2228 else if (run_type
== two_case
)
2230 EXTEND_RANGE_TABLE (work_area
, 4);
2231 work_area
->table
[work_area
->used
++] = run_start
;
2232 work_area
->table
[work_area
->used
++] = run_end
;
2233 work_area
->table
[work_area
->used
++]
2234 = RE_TRANSLATE (eqv_table
, run_start
);
2235 work_area
->table
[work_area
->used
++]
2236 = RE_TRANSLATE (eqv_table
, run_end
);
2244 /* Record the image of the range start..end when passed through
2245 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2246 and is not even necessarily contiguous.
2247 Normally we approximate it with the smallest contiguous range that contains
2248 all the chars we need. However, for Latin-1 we go to extra effort
2251 This function is not called for ASCII ranges.
2253 Returns -1 if successful, REG_ESPACE if ran out of space. */
2256 set_image_of_range (struct range_table_work_area
*work_area
,
2257 re_wchar_t start
, re_wchar_t end
,
2258 RE_TRANSLATE_TYPE translate
)
2260 re_wchar_t cmin
, cmax
;
2263 /* For Latin-1 ranges, use set_image_of_range_1
2264 to get proper handling of ranges that include letters and nonletters.
2265 For a range that includes the whole of Latin-1, this is not necessary.
2266 For other character sets, we don't bother to get this right. */
2267 if (RE_TRANSLATE_P (translate
) && start
< 04400
2268 && !(start
< 04200 && end
>= 04377))
2275 tem
= set_image_of_range_1 (work_area
, start
, newend
, translate
);
2285 EXTEND_RANGE_TABLE (work_area
, 2);
2286 work_area
->table
[work_area
->used
++] = (start
);
2287 work_area
->table
[work_area
->used
++] = (end
);
2289 cmin
= -1, cmax
= -1;
2291 if (RE_TRANSLATE_P (translate
))
2295 for (ch
= start
; ch
<= end
; ch
++)
2297 re_wchar_t c
= TRANSLATE (ch
);
2298 if (! (start
<= c
&& c
<= end
))
2304 cmin
= min (cmin
, c
);
2305 cmax
= max (cmax
, c
);
2312 EXTEND_RANGE_TABLE (work_area
, 2);
2313 work_area
->table
[work_area
->used
++] = (cmin
);
2314 work_area
->table
[work_area
->used
++] = (cmax
);
2322 #ifndef MATCH_MAY_ALLOCATE
2324 /* If we cannot allocate large objects within re_match_2_internal,
2325 we make the fail stack and register vectors global.
2326 The fail stack, we grow to the maximum size when a regexp
2328 The register vectors, we adjust in size each time we
2329 compile a regexp, according to the number of registers it needs. */
2331 static fail_stack_type fail_stack
;
2333 /* Size with which the following vectors are currently allocated.
2334 That is so we can make them bigger as needed,
2335 but never make them smaller. */
2336 static int regs_allocated_size
;
2338 static re_char
** regstart
, ** regend
;
2339 static re_char
**best_regstart
, **best_regend
;
2341 /* Make the register vectors big enough for NUM_REGS registers,
2342 but don't make them smaller. */
2345 regex_grow_registers (int num_regs
)
2347 if (num_regs
> regs_allocated_size
)
2349 RETALLOC_IF (regstart
, num_regs
, re_char
*);
2350 RETALLOC_IF (regend
, num_regs
, re_char
*);
2351 RETALLOC_IF (best_regstart
, num_regs
, re_char
*);
2352 RETALLOC_IF (best_regend
, num_regs
, re_char
*);
2354 regs_allocated_size
= num_regs
;
2358 #endif /* not MATCH_MAY_ALLOCATE */
2360 static boolean
group_in_compile_stack (compile_stack_type compile_stack
,
2363 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2364 Returns one of error codes defined in `regex.h', or zero for success.
2366 If WHITESPACE_REGEXP is given (only #ifdef emacs), it is used instead of
2367 a space character in PATTERN.
2369 Assumes the `allocated' (and perhaps `buffer') and `translate'
2370 fields are set in BUFP on entry.
2372 If it succeeds, results are put in BUFP (if it returns an error, the
2373 contents of BUFP are undefined):
2374 `buffer' is the compiled pattern;
2375 `syntax' is set to SYNTAX;
2376 `used' is set to the length of the compiled pattern;
2377 `fastmap_accurate' is zero;
2378 `re_nsub' is the number of subexpressions in PATTERN;
2379 `not_bol' and `not_eol' are zero;
2381 The `fastmap' field is neither examined nor set. */
2383 /* Insert the `jump' from the end of last alternative to "here".
2384 The space for the jump has already been allocated. */
2385 #define FIXUP_ALT_JUMP() \
2387 if (fixup_alt_jump) \
2388 STORE_JUMP (jump, fixup_alt_jump, b); \
2392 /* Return, freeing storage we allocated. */
2393 #define FREE_STACK_RETURN(value) \
2395 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2396 free (compile_stack.stack); \
2400 static reg_errcode_t
2401 regex_compile (re_char
*pattern
, size_t size
,
2403 # define syntax RE_SYNTAX_EMACS
2404 bool posix_backtracking
,
2405 const char *whitespace_regexp
,
2407 reg_syntax_t syntax
,
2408 # define posix_backtracking (!(syntax & RE_NO_POSIX_BACKTRACKING))
2410 struct re_pattern_buffer
*bufp
)
2412 /* We fetch characters from PATTERN here. */
2413 register re_wchar_t c
, c1
;
2415 /* Points to the end of the buffer, where we should append. */
2416 register unsigned char *b
;
2418 /* Keeps track of unclosed groups. */
2419 compile_stack_type compile_stack
;
2421 /* Points to the current (ending) position in the pattern. */
2423 /* `const' makes AIX compiler fail. */
2424 unsigned char *p
= pattern
;
2426 re_char
*p
= pattern
;
2428 re_char
*pend
= pattern
+ size
;
2430 /* How to translate the characters in the pattern. */
2431 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
2433 /* Address of the count-byte of the most recently inserted `exactn'
2434 command. This makes it possible to tell if a new exact-match
2435 character can be added to that command or if the character requires
2436 a new `exactn' command. */
2437 unsigned char *pending_exact
= 0;
2439 /* Address of start of the most recently finished expression.
2440 This tells, e.g., postfix * where to find the start of its
2441 operand. Reset at the beginning of groups and alternatives. */
2442 unsigned char *laststart
= 0;
2444 /* Address of beginning of regexp, or inside of last group. */
2445 unsigned char *begalt
;
2447 /* Place in the uncompiled pattern (i.e., the {) to
2448 which to go back if the interval is invalid. */
2449 re_char
*beg_interval
;
2451 /* Address of the place where a forward jump should go to the end of
2452 the containing expression. Each alternative of an `or' -- except the
2453 last -- ends with a forward jump of this sort. */
2454 unsigned char *fixup_alt_jump
= 0;
2456 /* Work area for range table of charset. */
2457 struct range_table_work_area range_table_work
;
2459 /* If the object matched can contain multibyte characters. */
2460 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
2463 /* Nonzero if we have pushed down into a subpattern. */
2464 int in_subpattern
= 0;
2466 /* These hold the values of p, pattern, and pend from the main
2467 pattern when we have pushed into a subpattern. */
2469 re_char
*main_pattern
;
2475 DEBUG_PRINT ("\nCompiling pattern: ");
2478 unsigned debug_count
;
2480 for (debug_count
= 0; debug_count
< size
; debug_count
++)
2481 putchar (pattern
[debug_count
]);
2486 /* Initialize the compile stack. */
2487 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
2488 if (compile_stack
.stack
== NULL
)
2491 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
2492 compile_stack
.avail
= 0;
2494 range_table_work
.table
= 0;
2495 range_table_work
.allocated
= 0;
2497 /* Initialize the pattern buffer. */
2499 bufp
->syntax
= syntax
;
2501 bufp
->fastmap_accurate
= 0;
2502 bufp
->not_bol
= bufp
->not_eol
= 0;
2503 bufp
->used_syntax
= 0;
2505 /* Set `used' to zero, so that if we return an error, the pattern
2506 printer (for debugging) will think there's no pattern. We reset it
2510 /* Always count groups, whether or not bufp->no_sub is set. */
2513 #if !defined emacs && !defined SYNTAX_TABLE
2514 /* Initialize the syntax table. */
2515 init_syntax_once ();
2518 if (bufp
->allocated
== 0)
2521 { /* If zero allocated, but buffer is non-null, try to realloc
2522 enough space. This loses if buffer's address is bogus, but
2523 that is the user's responsibility. */
2524 RETALLOC (bufp
->buffer
, INIT_BUF_SIZE
, unsigned char);
2527 { /* Caller did not allocate a buffer. Do it for them. */
2528 bufp
->buffer
= TALLOC (INIT_BUF_SIZE
, unsigned char);
2530 if (!bufp
->buffer
) FREE_STACK_RETURN (REG_ESPACE
);
2532 bufp
->allocated
= INIT_BUF_SIZE
;
2535 begalt
= b
= bufp
->buffer
;
2537 /* Loop through the uncompiled pattern until we're at the end. */
2543 /* If this is the end of an included regexp,
2544 pop back to the main regexp and try again. */
2548 pattern
= main_pattern
;
2554 /* If this is the end of the main regexp, we are done. */
2567 /* If there's no special whitespace regexp, treat
2568 spaces normally. And don't try to do this recursively. */
2569 if (!whitespace_regexp
|| in_subpattern
)
2572 /* Peek past following spaces. */
2579 /* If the spaces are followed by a repetition op,
2580 treat them normally. */
2582 && (*p1
== '*' || *p1
== '+' || *p1
== '?'
2583 || (*p1
== '\\' && p1
+ 1 != pend
&& p1
[1] == '{')))
2586 /* Replace the spaces with the whitespace regexp. */
2590 main_pattern
= pattern
;
2591 p
= pattern
= (re_char
*) whitespace_regexp
;
2592 pend
= p
+ strlen (whitespace_regexp
);
2599 if ( /* If at start of pattern, it's an operator. */
2601 /* If context independent, it's an operator. */
2602 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2603 /* Otherwise, depends on what's come before. */
2604 || at_begline_loc_p (pattern
, p
, syntax
))
2605 BUF_PUSH ((syntax
& RE_NO_NEWLINE_ANCHOR
) ? begbuf
: begline
);
2614 if ( /* If at end of pattern, it's an operator. */
2616 /* If context independent, it's an operator. */
2617 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2618 /* Otherwise, depends on what's next. */
2619 || at_endline_loc_p (p
, pend
, syntax
))
2620 BUF_PUSH ((syntax
& RE_NO_NEWLINE_ANCHOR
) ? endbuf
: endline
);
2629 if ((syntax
& RE_BK_PLUS_QM
)
2630 || (syntax
& RE_LIMITED_OPS
))
2635 /* If there is no previous pattern... */
2638 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2639 FREE_STACK_RETURN (REG_BADRPT
);
2640 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
2645 /* 1 means zero (many) matches is allowed. */
2646 boolean zero_times_ok
= 0, many_times_ok
= 0;
2649 /* If there is a sequence of repetition chars, collapse it
2650 down to just one (the right one). We can't combine
2651 interval operators with these because of, e.g., `a{2}*',
2652 which should only match an even number of `a's. */
2656 if ((syntax
& RE_FRUGAL
)
2657 && c
== '?' && (zero_times_ok
|| many_times_ok
))
2661 zero_times_ok
|= c
!= '+';
2662 many_times_ok
|= c
!= '?';
2668 || (!(syntax
& RE_BK_PLUS_QM
)
2669 && (*p
== '+' || *p
== '?')))
2671 else if (syntax
& RE_BK_PLUS_QM
&& *p
== '\\')
2674 FREE_STACK_RETURN (REG_EESCAPE
);
2675 if (p
[1] == '+' || p
[1] == '?')
2676 PATFETCH (c
); /* Gobble up the backslash. */
2682 /* If we get here, we found another repeat character. */
2686 /* Star, etc. applied to an empty pattern is equivalent
2687 to an empty pattern. */
2688 if (!laststart
|| laststart
== b
)
2691 /* Now we know whether or not zero matches is allowed
2692 and also whether or not two or more matches is allowed. */
2697 boolean simple
= skip_one_char (laststart
) == b
;
2698 size_t startoffset
= 0;
2700 /* Check if the loop can match the empty string. */
2701 (simple
|| !analyze_first (laststart
, b
, NULL
, 0))
2702 ? on_failure_jump
: on_failure_jump_loop
;
2703 assert (skip_one_char (laststart
) <= b
);
2705 if (!zero_times_ok
&& simple
)
2706 { /* Since simple * loops can be made faster by using
2707 on_failure_keep_string_jump, we turn simple P+
2708 into PP* if P is simple. */
2709 unsigned char *p1
, *p2
;
2710 startoffset
= b
- laststart
;
2711 GET_BUFFER_SPACE (startoffset
);
2712 p1
= b
; p2
= laststart
;
2718 GET_BUFFER_SPACE (6);
2721 STORE_JUMP (ofj
, b
, b
+ 6);
2723 /* Simple * loops can use on_failure_keep_string_jump
2724 depending on what follows. But since we don't know
2725 that yet, we leave the decision up to
2726 on_failure_jump_smart. */
2727 INSERT_JUMP (simple
? on_failure_jump_smart
: ofj
,
2728 laststart
+ startoffset
, b
+ 6);
2730 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
2735 /* A simple ? pattern. */
2736 assert (zero_times_ok
);
2737 GET_BUFFER_SPACE (3);
2738 INSERT_JUMP (on_failure_jump
, laststart
, b
+ 3);
2742 else /* not greedy */
2743 { /* I wish the greedy and non-greedy cases could be merged. */
2745 GET_BUFFER_SPACE (7); /* We might use less. */
2748 boolean emptyp
= analyze_first (laststart
, b
, NULL
, 0);
2750 /* The non-greedy multiple match looks like
2751 a repeat..until: we only need a conditional jump
2752 at the end of the loop. */
2753 if (emptyp
) BUF_PUSH (no_op
);
2754 STORE_JUMP (emptyp
? on_failure_jump_nastyloop
2755 : on_failure_jump
, b
, laststart
);
2759 /* The repeat...until naturally matches one or more.
2760 To also match zero times, we need to first jump to
2761 the end of the loop (its conditional jump). */
2762 INSERT_JUMP (jump
, laststart
, b
);
2768 /* non-greedy a?? */
2769 INSERT_JUMP (jump
, laststart
, b
+ 3);
2771 INSERT_JUMP (on_failure_jump
, laststart
, laststart
+ 6);
2790 CLEAR_RANGE_TABLE_WORK_USED (range_table_work
);
2792 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2794 /* Ensure that we have enough space to push a charset: the
2795 opcode, the length count, and the bitset; 34 bytes in all. */
2796 GET_BUFFER_SPACE (34);
2800 /* We test `*p == '^' twice, instead of using an if
2801 statement, so we only need one BUF_PUSH. */
2802 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
2806 /* Remember the first position in the bracket expression. */
2809 /* Push the number of bytes in the bitmap. */
2810 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
2812 /* Clear the whole map. */
2813 memset (b
, 0, (1 << BYTEWIDTH
) / BYTEWIDTH
);
2815 /* charset_not matches newline according to a syntax bit. */
2816 if ((re_opcode_t
) b
[-2] == charset_not
2817 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
2818 SET_LIST_BIT ('\n');
2820 /* Read in characters and ranges, setting map bits. */
2823 boolean escaped_char
= false;
2824 const unsigned char *p2
= p
;
2828 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2830 /* See if we're at the beginning of a possible character
2832 if (syntax
& RE_CHAR_CLASSES
&&
2833 (cc
= re_wctype_parse(&p
, pend
- p
)) != -1)
2836 FREE_STACK_RETURN (REG_ECTYPE
);
2839 FREE_STACK_RETURN (REG_EBRACK
);
2842 for (ch
= 0; ch
< (1 << BYTEWIDTH
); ++ch
)
2843 if (re_iswctype (btowc (ch
), cc
))
2846 if (c
< (1 << BYTEWIDTH
))
2850 /* Most character classes in a multibyte match just set
2851 a flag. Exceptions are is_blank, is_digit, is_cntrl, and
2852 is_xdigit, since they can only match ASCII characters.
2853 We don't need to handle them for multibyte. */
2855 /* Setup the gl_state object to its buffer-defined value.
2856 This hardcodes the buffer-global syntax-table for ASCII
2857 chars, while the other chars will obey syntax-table
2858 properties. It's not ideal, but it's the way it's been
2860 SETUP_BUFFER_SYNTAX_TABLE ();
2862 for (c
= 0; c
< 0x80; ++c
)
2863 if (re_iswctype (c
, cc
))
2869 if (ASCII_CHAR_P (c1
))
2871 else if ((c1
= RE_CHAR_TO_UNIBYTE (c1
)) >= 0)
2874 SET_RANGE_TABLE_WORK_AREA_BIT
2875 (range_table_work
, re_wctype_to_bit (cc
));
2877 /* In most cases the matching rule for char classes only
2878 uses the syntax table for multibyte chars, so that the
2879 content of the syntax-table is not hardcoded in the
2880 range_table. SPACE and WORD are the two exceptions. */
2881 if ((1 << cc
) & ((1 << RECC_SPACE
) | (1 << RECC_WORD
)))
2882 bufp
->used_syntax
= 1;
2884 /* Repeat the loop. */
2888 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2889 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2890 So the translation is done later in a loop. Example:
2891 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
2894 /* \ might escape characters inside [...] and [^...]. */
2895 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
2897 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2900 escaped_char
= true;
2904 /* Could be the end of the bracket expression. If it's
2905 not (i.e., when the bracket expression is `[]' so
2906 far), the ']' character bit gets set way below. */
2907 if (c
== ']' && p2
!= p1
)
2911 if (p
< pend
&& p
[0] == '-' && p
[1] != ']')
2914 /* Discard the `-'. */
2917 /* Fetch the character which ends the range. */
2920 if (CHAR_BYTE8_P (c1
)
2921 && ! ASCII_CHAR_P (c
) && ! CHAR_BYTE8_P (c
))
2922 /* Treat the range from a multibyte character to
2923 raw-byte character as empty. */
2928 /* Range from C to C. */
2933 if (syntax
& RE_NO_EMPTY_RANGES
)
2934 FREE_STACK_RETURN (REG_ERANGEX
);
2935 /* Else, repeat the loop. */
2940 /* Set the range into bitmap */
2941 for (; c
<= c1
; c
++)
2944 if (ch
< (1 << BYTEWIDTH
))
2951 SETUP_ASCII_RANGE (range_table_work
, c
, ch
);
2953 if (CHAR_BYTE8_P (c1
))
2954 c
= BYTE8_TO_CHAR (128);
2958 if (CHAR_BYTE8_P (c
))
2960 c
= CHAR_TO_BYTE8 (c
);
2961 c1
= CHAR_TO_BYTE8 (c1
);
2962 for (; c
<= c1
; c
++)
2967 SETUP_MULTIBYTE_RANGE (range_table_work
, c
, c1
);
2971 SETUP_UNIBYTE_RANGE (range_table_work
, c
, c1
);
2978 /* Discard any (non)matching list bytes that are all 0 at the
2979 end of the map. Decrease the map-length byte too. */
2980 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
2984 /* Build real range table from work area. */
2985 if (RANGE_TABLE_WORK_USED (range_table_work
)
2986 || RANGE_TABLE_WORK_BITS (range_table_work
))
2989 int used
= RANGE_TABLE_WORK_USED (range_table_work
);
2991 /* Allocate space for COUNT + RANGE_TABLE. Needs two
2992 bytes for flags, two for COUNT, and three bytes for
2994 GET_BUFFER_SPACE (4 + used
* 3);
2996 /* Indicate the existence of range table. */
2997 laststart
[1] |= 0x80;
2999 /* Store the character class flag bits into the range table.
3000 If not in emacs, these flag bits are always 0. */
3001 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) & 0xff;
3002 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) >> 8;
3004 STORE_NUMBER_AND_INCR (b
, used
/ 2);
3005 for (i
= 0; i
< used
; i
++)
3006 STORE_CHARACTER_AND_INCR
3007 (b
, RANGE_TABLE_WORK_ELT (range_table_work
, i
));
3014 if (syntax
& RE_NO_BK_PARENS
)
3021 if (syntax
& RE_NO_BK_PARENS
)
3028 if (syntax
& RE_NEWLINE_ALT
)
3035 if (syntax
& RE_NO_BK_VBAR
)
3042 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
3043 goto handle_interval
;
3049 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
3051 /* Do not translate the character after the \, so that we can
3052 distinguish, e.g., \B from \b, even if we normally would
3053 translate, e.g., B to b. */
3059 if (syntax
& RE_NO_BK_PARENS
)
3060 goto normal_backslash
;
3065 regnum_t regnum
= 0;
3068 /* Look for a special (?...) construct */
3069 if ((syntax
& RE_SHY_GROUPS
) && *p
== '?')
3071 PATFETCH (c
); /* Gobble up the '?'. */
3077 case ':': shy
= 1; break;
3079 /* An explicitly specified regnum must start
3082 FREE_STACK_RETURN (REG_BADPAT
);
3084 case '1': case '2': case '3': case '4':
3085 case '5': case '6': case '7': case '8': case '9':
3086 regnum
= 10*regnum
+ (c
- '0'); break;
3088 /* Only (?:...) is supported right now. */
3089 FREE_STACK_RETURN (REG_BADPAT
);
3096 regnum
= ++bufp
->re_nsub
;
3098 { /* It's actually not shy, but explicitly numbered. */
3100 if (regnum
> bufp
->re_nsub
)
3101 bufp
->re_nsub
= regnum
;
3102 else if (regnum
> bufp
->re_nsub
3103 /* Ideally, we'd want to check that the specified
3104 group can't have matched (i.e. all subgroups
3105 using the same regnum are in other branches of
3106 OR patterns), but we don't currently keep track
3107 of enough info to do that easily. */
3108 || group_in_compile_stack (compile_stack
, regnum
))
3109 FREE_STACK_RETURN (REG_BADPAT
);
3112 /* It's really shy. */
3113 regnum
= - bufp
->re_nsub
;
3115 if (COMPILE_STACK_FULL
)
3117 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
3118 compile_stack_elt_t
);
3119 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
3121 compile_stack
.size
<<= 1;
3124 /* These are the values to restore when we hit end of this
3125 group. They are all relative offsets, so that if the
3126 whole pattern moves because of realloc, they will still
3128 COMPILE_STACK_TOP
.begalt_offset
= begalt
- bufp
->buffer
;
3129 COMPILE_STACK_TOP
.fixup_alt_jump
3130 = fixup_alt_jump
? fixup_alt_jump
- bufp
->buffer
+ 1 : 0;
3131 COMPILE_STACK_TOP
.laststart_offset
= b
- bufp
->buffer
;
3132 COMPILE_STACK_TOP
.regnum
= regnum
;
3134 /* Do not push a start_memory for groups beyond the last one
3135 we can represent in the compiled pattern. */
3136 if (regnum
<= MAX_REGNUM
&& regnum
> 0)
3137 BUF_PUSH_2 (start_memory
, regnum
);
3139 compile_stack
.avail
++;
3144 /* If we've reached MAX_REGNUM groups, then this open
3145 won't actually generate any code, so we'll have to
3146 clear pending_exact explicitly. */
3152 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
3154 if (COMPILE_STACK_EMPTY
)
3156 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3157 goto normal_backslash
;
3159 FREE_STACK_RETURN (REG_ERPAREN
);
3165 /* See similar code for backslashed left paren above. */
3166 if (COMPILE_STACK_EMPTY
)
3168 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3171 FREE_STACK_RETURN (REG_ERPAREN
);
3174 /* Since we just checked for an empty stack above, this
3175 ``can't happen''. */
3176 assert (compile_stack
.avail
!= 0);
3178 /* We don't just want to restore into `regnum', because
3179 later groups should continue to be numbered higher,
3180 as in `(ab)c(de)' -- the second group is #2. */
3183 compile_stack
.avail
--;
3184 begalt
= bufp
->buffer
+ COMPILE_STACK_TOP
.begalt_offset
;
3186 = COMPILE_STACK_TOP
.fixup_alt_jump
3187 ? bufp
->buffer
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
3189 laststart
= bufp
->buffer
+ COMPILE_STACK_TOP
.laststart_offset
;
3190 regnum
= COMPILE_STACK_TOP
.regnum
;
3191 /* If we've reached MAX_REGNUM groups, then this open
3192 won't actually generate any code, so we'll have to
3193 clear pending_exact explicitly. */
3196 /* We're at the end of the group, so now we know how many
3197 groups were inside this one. */
3198 if (regnum
<= MAX_REGNUM
&& regnum
> 0)
3199 BUF_PUSH_2 (stop_memory
, regnum
);
3204 case '|': /* `\|'. */
3205 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
3206 goto normal_backslash
;
3208 if (syntax
& RE_LIMITED_OPS
)
3211 /* Insert before the previous alternative a jump which
3212 jumps to this alternative if the former fails. */
3213 GET_BUFFER_SPACE (3);
3214 INSERT_JUMP (on_failure_jump
, begalt
, b
+ 6);
3218 /* The alternative before this one has a jump after it
3219 which gets executed if it gets matched. Adjust that
3220 jump so it will jump to this alternative's analogous
3221 jump (put in below, which in turn will jump to the next
3222 (if any) alternative's such jump, etc.). The last such
3223 jump jumps to the correct final destination. A picture:
3229 If we are at `b', then fixup_alt_jump right now points to a
3230 three-byte space after `a'. We'll put in the jump, set
3231 fixup_alt_jump to right after `b', and leave behind three
3232 bytes which we'll fill in when we get to after `c'. */
3236 /* Mark and leave space for a jump after this alternative,
3237 to be filled in later either by next alternative or
3238 when know we're at the end of a series of alternatives. */
3240 GET_BUFFER_SPACE (3);
3249 /* If \{ is a literal. */
3250 if (!(syntax
& RE_INTERVALS
)
3251 /* If we're at `\{' and it's not the open-interval
3253 || (syntax
& RE_NO_BK_BRACES
))
3254 goto normal_backslash
;
3258 /* If got here, then the syntax allows intervals. */
3260 /* At least (most) this many matches must be made. */
3261 int lower_bound
= 0, upper_bound
= -1;
3265 GET_INTERVAL_COUNT (lower_bound
);
3268 GET_INTERVAL_COUNT (upper_bound
);
3270 /* Interval such as `{1}' => match exactly once. */
3271 upper_bound
= lower_bound
;
3274 || (0 <= upper_bound
&& upper_bound
< lower_bound
))
3275 FREE_STACK_RETURN (REG_BADBR
);
3277 if (!(syntax
& RE_NO_BK_BRACES
))
3280 FREE_STACK_RETURN (REG_BADBR
);
3282 FREE_STACK_RETURN (REG_EESCAPE
);
3287 FREE_STACK_RETURN (REG_BADBR
);
3289 /* We just parsed a valid interval. */
3291 /* If it's invalid to have no preceding re. */
3294 if (syntax
& RE_CONTEXT_INVALID_OPS
)
3295 FREE_STACK_RETURN (REG_BADRPT
);
3296 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
3299 goto unfetch_interval
;
3302 if (upper_bound
== 0)
3303 /* If the upper bound is zero, just drop the sub pattern
3306 else if (lower_bound
== 1 && upper_bound
== 1)
3307 /* Just match it once: nothing to do here. */
3310 /* Otherwise, we have a nontrivial interval. When
3311 we're all done, the pattern will look like:
3312 set_number_at <jump count> <upper bound>
3313 set_number_at <succeed_n count> <lower bound>
3314 succeed_n <after jump addr> <succeed_n count>
3316 jump_n <succeed_n addr> <jump count>
3317 (The upper bound and `jump_n' are omitted if
3318 `upper_bound' is 1, though.) */
3320 { /* If the upper bound is > 1, we need to insert
3321 more at the end of the loop. */
3322 unsigned int nbytes
= (upper_bound
< 0 ? 3
3323 : upper_bound
> 1 ? 5 : 0);
3324 unsigned int startoffset
= 0;
3326 GET_BUFFER_SPACE (20); /* We might use less. */
3328 if (lower_bound
== 0)
3330 /* A succeed_n that starts with 0 is really a
3331 a simple on_failure_jump_loop. */
3332 INSERT_JUMP (on_failure_jump_loop
, laststart
,
3338 /* Initialize lower bound of the `succeed_n', even
3339 though it will be set during matching by its
3340 attendant `set_number_at' (inserted next),
3341 because `re_compile_fastmap' needs to know.
3342 Jump to the `jump_n' we might insert below. */
3343 INSERT_JUMP2 (succeed_n
, laststart
,
3348 /* Code to initialize the lower bound. Insert
3349 before the `succeed_n'. The `5' is the last two
3350 bytes of this `set_number_at', plus 3 bytes of
3351 the following `succeed_n'. */
3352 insert_op2 (set_number_at
, laststart
, 5, lower_bound
, b
);
3357 if (upper_bound
< 0)
3359 /* A negative upper bound stands for infinity,
3360 in which case it degenerates to a plain jump. */
3361 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
3364 else if (upper_bound
> 1)
3365 { /* More than one repetition is allowed, so
3366 append a backward jump to the `succeed_n'
3367 that starts this interval.
3369 When we've reached this during matching,
3370 we'll have matched the interval once, so
3371 jump back only `upper_bound - 1' times. */
3372 STORE_JUMP2 (jump_n
, b
, laststart
+ startoffset
,
3376 /* The location we want to set is the second
3377 parameter of the `jump_n'; that is `b-2' as
3378 an absolute address. `laststart' will be
3379 the `set_number_at' we're about to insert;
3380 `laststart+3' the number to set, the source
3381 for the relative address. But we are
3382 inserting into the middle of the pattern --
3383 so everything is getting moved up by 5.
3384 Conclusion: (b - 2) - (laststart + 3) + 5,
3385 i.e., b - laststart.
3387 We insert this at the beginning of the loop
3388 so that if we fail during matching, we'll
3389 reinitialize the bounds. */
3390 insert_op2 (set_number_at
, laststart
, b
- laststart
,
3391 upper_bound
- 1, b
);
3396 beg_interval
= NULL
;
3401 /* If an invalid interval, match the characters as literals. */
3402 assert (beg_interval
);
3404 beg_interval
= NULL
;
3406 /* normal_char and normal_backslash need `c'. */
3409 if (!(syntax
& RE_NO_BK_BRACES
))
3411 assert (p
> pattern
&& p
[-1] == '\\');
3412 goto normal_backslash
;
3426 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
3432 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
3438 BUF_PUSH_2 (categoryspec
, c
);
3444 BUF_PUSH_2 (notcategoryspec
, c
);
3450 if (syntax
& RE_NO_GNU_OPS
)
3453 BUF_PUSH_2 (syntaxspec
, Sword
);
3458 if (syntax
& RE_NO_GNU_OPS
)
3461 BUF_PUSH_2 (notsyntaxspec
, Sword
);
3466 if (syntax
& RE_NO_GNU_OPS
)
3473 if (syntax
& RE_NO_GNU_OPS
)
3480 if (syntax
& RE_NO_GNU_OPS
)
3489 FREE_STACK_RETURN (REG_BADPAT
);
3493 if (syntax
& RE_NO_GNU_OPS
)
3495 BUF_PUSH (wordbound
);
3499 if (syntax
& RE_NO_GNU_OPS
)
3501 BUF_PUSH (notwordbound
);
3505 if (syntax
& RE_NO_GNU_OPS
)
3511 if (syntax
& RE_NO_GNU_OPS
)
3516 case '1': case '2': case '3': case '4': case '5':
3517 case '6': case '7': case '8': case '9':
3521 if (syntax
& RE_NO_BK_REFS
)
3522 goto normal_backslash
;
3526 if (reg
> bufp
->re_nsub
|| reg
< 1
3527 /* Can't back reference to a subexp before its end. */
3528 || group_in_compile_stack (compile_stack
, reg
))
3529 FREE_STACK_RETURN (REG_ESUBREG
);
3532 BUF_PUSH_2 (duplicate
, reg
);
3539 if (syntax
& RE_BK_PLUS_QM
)
3542 goto normal_backslash
;
3546 /* You might think it would be useful for \ to mean
3547 not to translate; but if we don't translate it
3548 it will never match anything. */
3555 /* Expects the character in `c'. */
3557 /* If no exactn currently being built. */
3560 /* If last exactn not at current position. */
3561 || pending_exact
+ *pending_exact
+ 1 != b
3563 /* We have only one byte following the exactn for the count. */
3564 || *pending_exact
>= (1 << BYTEWIDTH
) - MAX_MULTIBYTE_LENGTH
3566 /* If followed by a repetition operator. */
3567 || (p
!= pend
&& (*p
== '*' || *p
== '^'))
3568 || ((syntax
& RE_BK_PLUS_QM
)
3569 ? p
+ 1 < pend
&& *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
3570 : p
!= pend
&& (*p
== '+' || *p
== '?'))
3571 || ((syntax
& RE_INTERVALS
)
3572 && ((syntax
& RE_NO_BK_BRACES
)
3573 ? p
!= pend
&& *p
== '{'
3574 : p
+ 1 < pend
&& p
[0] == '\\' && p
[1] == '{')))
3576 /* Start building a new exactn. */
3580 BUF_PUSH_2 (exactn
, 0);
3581 pending_exact
= b
- 1;
3584 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH
);
3591 len
= CHAR_STRING (c
, b
);
3596 c1
= RE_CHAR_TO_MULTIBYTE (c
);
3597 if (! CHAR_BYTE8_P (c1
))
3599 re_wchar_t c2
= TRANSLATE (c1
);
3601 if (c1
!= c2
&& (c1
= RE_CHAR_TO_UNIBYTE (c2
)) >= 0)
3607 (*pending_exact
) += len
;
3612 } /* while p != pend */
3615 /* Through the pattern now. */
3619 if (!COMPILE_STACK_EMPTY
)
3620 FREE_STACK_RETURN (REG_EPAREN
);
3622 /* If we don't want backtracking, force success
3623 the first time we reach the end of the compiled pattern. */
3624 if (!posix_backtracking
)
3627 /* We have succeeded; set the length of the buffer. */
3628 bufp
->used
= b
- bufp
->buffer
;
3633 re_compile_fastmap (bufp
);
3634 DEBUG_PRINT ("\nCompiled pattern: \n");
3635 print_compiled_pattern (bufp
);
3640 #ifndef MATCH_MAY_ALLOCATE
3641 /* Initialize the failure stack to the largest possible stack. This
3642 isn't necessary unless we're trying to avoid calling alloca in
3643 the search and match routines. */
3645 int num_regs
= bufp
->re_nsub
+ 1;
3647 if (fail_stack
.size
< emacs_re_max_failures
* TYPICAL_FAILURE_SIZE
)
3649 fail_stack
.size
= emacs_re_max_failures
* TYPICAL_FAILURE_SIZE
;
3650 falk_stack
.stack
= realloc (fail_stack
.stack
,
3651 fail_stack
.size
* sizeof *falk_stack
.stack
);
3654 regex_grow_registers (num_regs
);
3656 #endif /* not MATCH_MAY_ALLOCATE */
3658 FREE_STACK_RETURN (REG_NOERROR
);
3663 # undef posix_backtracking
3665 } /* regex_compile */
3667 /* Subroutines for `regex_compile'. */
3669 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3672 store_op1 (re_opcode_t op
, unsigned char *loc
, int arg
)
3674 *loc
= (unsigned char) op
;
3675 STORE_NUMBER (loc
+ 1, arg
);
3679 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3682 store_op2 (re_opcode_t op
, unsigned char *loc
, int arg1
, int arg2
)
3684 *loc
= (unsigned char) op
;
3685 STORE_NUMBER (loc
+ 1, arg1
);
3686 STORE_NUMBER (loc
+ 3, arg2
);
3690 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3691 for OP followed by two-byte integer parameter ARG. */
3694 insert_op1 (re_opcode_t op
, unsigned char *loc
, int arg
, unsigned char *end
)
3696 register unsigned char *pfrom
= end
;
3697 register unsigned char *pto
= end
+ 3;
3699 while (pfrom
!= loc
)
3702 store_op1 (op
, loc
, arg
);
3706 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3709 insert_op2 (re_opcode_t op
, unsigned char *loc
, int arg1
, int arg2
, unsigned char *end
)
3711 register unsigned char *pfrom
= end
;
3712 register unsigned char *pto
= end
+ 5;
3714 while (pfrom
!= loc
)
3717 store_op2 (op
, loc
, arg1
, arg2
);
3721 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3722 after an alternative or a begin-subexpression. We assume there is at
3723 least one character before the ^. */
3726 at_begline_loc_p (re_char
*pattern
, re_char
*p
, reg_syntax_t syntax
)
3728 re_char
*prev
= p
- 2;
3729 boolean odd_backslashes
;
3731 /* After a subexpression? */
3733 odd_backslashes
= (syntax
& RE_NO_BK_PARENS
) == 0;
3735 /* After an alternative? */
3736 else if (*prev
== '|')
3737 odd_backslashes
= (syntax
& RE_NO_BK_VBAR
) == 0;
3739 /* After a shy subexpression? */
3740 else if (*prev
== ':' && (syntax
& RE_SHY_GROUPS
))
3742 /* Skip over optional regnum. */
3743 while (prev
- 1 >= pattern
&& prev
[-1] >= '0' && prev
[-1] <= '9')
3746 if (!(prev
- 2 >= pattern
3747 && prev
[-1] == '?' && prev
[-2] == '('))
3750 odd_backslashes
= (syntax
& RE_NO_BK_PARENS
) == 0;
3755 /* Count the number of preceding backslashes. */
3757 while (prev
- 1 >= pattern
&& prev
[-1] == '\\')
3759 return (p
- prev
) & odd_backslashes
;
3763 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3764 at least one character after the $, i.e., `P < PEND'. */
3767 at_endline_loc_p (re_char
*p
, re_char
*pend
, reg_syntax_t syntax
)
3770 boolean next_backslash
= *next
== '\\';
3771 re_char
*next_next
= p
+ 1 < pend
? p
+ 1 : 0;
3774 /* Before a subexpression? */
3775 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
3776 : next_backslash
&& next_next
&& *next_next
== ')')
3777 /* Before an alternative? */
3778 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
3779 : next_backslash
&& next_next
&& *next_next
== '|');
3783 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3784 false if it's not. */
3787 group_in_compile_stack (compile_stack_type compile_stack
, regnum_t regnum
)
3789 ssize_t this_element
;
3791 for (this_element
= compile_stack
.avail
- 1;
3794 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
3801 If fastmap is non-NULL, go through the pattern and fill fastmap
3802 with all the possible leading chars. If fastmap is NULL, don't
3803 bother filling it up (obviously) and only return whether the
3804 pattern could potentially match the empty string.
3806 Return 1 if p..pend might match the empty string.
3807 Return 0 if p..pend matches at least one char.
3808 Return -1 if fastmap was not updated accurately. */
3811 analyze_first (re_char
*p
, re_char
*pend
, char *fastmap
,
3812 const int multibyte
)
3817 /* If all elements for base leading-codes in fastmap is set, this
3818 flag is set true. */
3819 boolean match_any_multibyte_characters
= false;
3823 /* The loop below works as follows:
3824 - It has a working-list kept in the PATTERN_STACK and which basically
3825 starts by only containing a pointer to the first operation.
3826 - If the opcode we're looking at is a match against some set of
3827 chars, then we add those chars to the fastmap and go on to the
3828 next work element from the worklist (done via `break').
3829 - If the opcode is a control operator on the other hand, we either
3830 ignore it (if it's meaningless at this point, such as `start_memory')
3831 or execute it (if it's a jump). If the jump has several destinations
3832 (i.e. `on_failure_jump'), then we push the other destination onto the
3834 We guarantee termination by ignoring backward jumps (more or less),
3835 so that `p' is monotonically increasing. More to the point, we
3836 never set `p' (or push) anything `<= p1'. */
3840 /* `p1' is used as a marker of how far back a `on_failure_jump'
3841 can go without being ignored. It is normally equal to `p'
3842 (which prevents any backward `on_failure_jump') except right
3843 after a plain `jump', to allow patterns such as:
3846 10: on_failure_jump 3
3847 as used for the *? operator. */
3856 /* If the first character has to match a backreference, that means
3857 that the group was empty (since it already matched). Since this
3858 is the only case that interests us here, we can assume that the
3859 backreference must match the empty string. */
3864 /* Following are the cases which match a character. These end
3870 /* If multibyte is nonzero, the first byte of each
3871 character is an ASCII or a leading code. Otherwise,
3872 each byte is a character. Thus, this works in both
3877 /* For the case of matching this unibyte regex
3878 against multibyte, we must set a leading code of
3879 the corresponding multibyte character. */
3880 int c
= RE_CHAR_TO_MULTIBYTE (p
[1]);
3882 fastmap
[CHAR_LEADING_CODE (c
)] = 1;
3889 /* We could put all the chars except for \n (and maybe \0)
3890 but we don't bother since it is generally not worth it. */
3891 if (!fastmap
) break;
3896 if (!fastmap
) break;
3898 /* Chars beyond end of bitmap are possible matches. */
3899 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
;
3900 j
< (1 << BYTEWIDTH
); j
++)
3905 if (!fastmap
) break;
3906 not = (re_opcode_t
) *(p
- 1) == charset_not
;
3907 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
- 1, p
++;
3909 if (!!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))) ^ not)
3913 if (/* Any leading code can possibly start a character
3914 which doesn't match the specified set of characters. */
3917 /* If we can match a character class, we can match any
3918 multibyte characters. */
3919 (CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
3920 && CHARSET_RANGE_TABLE_BITS (&p
[-2]) != 0))
3923 if (match_any_multibyte_characters
== false)
3925 for (j
= MIN_MULTIBYTE_LEADING_CODE
;
3926 j
<= MAX_MULTIBYTE_LEADING_CODE
; j
++)
3928 match_any_multibyte_characters
= true;
3932 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
3933 && match_any_multibyte_characters
== false)
3935 /* Set fastmap[I] to 1 where I is a leading code of each
3936 multibyte character in the range table. */
3938 unsigned char lc1
, lc2
;
3940 /* Make P points the range table. `+ 2' is to skip flag
3941 bits for a character class. */
3942 p
+= CHARSET_BITMAP_SIZE (&p
[-2]) + 2;
3944 /* Extract the number of ranges in range table into COUNT. */
3945 EXTRACT_NUMBER_AND_INCR (count
, p
);
3946 for (; count
> 0; count
--, p
+= 3)
3948 /* Extract the start and end of each range. */
3949 EXTRACT_CHARACTER (c
, p
);
3950 lc1
= CHAR_LEADING_CODE (c
);
3952 EXTRACT_CHARACTER (c
, p
);
3953 lc2
= CHAR_LEADING_CODE (c
);
3954 for (j
= lc1
; j
<= lc2
; j
++)
3963 if (!fastmap
) break;
3965 not = (re_opcode_t
)p
[-1] == notsyntaxspec
;
3967 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3968 if ((SYNTAX (j
) == (enum syntaxcode
) k
) ^ not)
3972 /* This match depends on text properties. These end with
3973 aborting optimizations. */
3977 case notcategoryspec
:
3978 if (!fastmap
) break;
3979 not = (re_opcode_t
)p
[-1] == notcategoryspec
;
3981 for (j
= (1 << BYTEWIDTH
); j
>= 0; j
--)
3982 if ((CHAR_HAS_CATEGORY (j
, k
)) ^ not)
3985 /* Any leading code can possibly start a character which
3986 has or doesn't has the specified category. */
3987 if (match_any_multibyte_characters
== false)
3989 for (j
= MIN_MULTIBYTE_LEADING_CODE
;
3990 j
<= MAX_MULTIBYTE_LEADING_CODE
; j
++)
3992 match_any_multibyte_characters
= true;
3996 /* All cases after this match the empty string. These end with
4016 EXTRACT_NUMBER_AND_INCR (j
, p
);
4018 /* Backward jumps can only go back to code that we've already
4019 visited. `re_compile' should make sure this is true. */
4024 case on_failure_jump
:
4025 case on_failure_keep_string_jump
:
4026 case on_failure_jump_loop
:
4027 case on_failure_jump_nastyloop
:
4028 case on_failure_jump_smart
:
4034 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
4035 to jump back to "just after here". */
4038 case on_failure_jump
:
4039 case on_failure_keep_string_jump
:
4040 case on_failure_jump_nastyloop
:
4041 case on_failure_jump_loop
:
4042 case on_failure_jump_smart
:
4043 EXTRACT_NUMBER_AND_INCR (j
, p
);
4045 ; /* Backward jump to be ignored. */
4047 { /* We have to look down both arms.
4048 We first go down the "straight" path so as to minimize
4049 stack usage when going through alternatives. */
4050 int r
= analyze_first (p
, pend
, fastmap
, multibyte
);
4058 /* This code simply does not properly handle forward jump_n. */
4059 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
); assert (j
< 0));
4061 /* jump_n can either jump or fall through. The (backward) jump
4062 case has already been handled, so we only need to look at the
4063 fallthrough case. */
4067 /* If N == 0, it should be an on_failure_jump_loop instead. */
4068 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
+ 2); assert (j
> 0));
4070 /* We only care about one iteration of the loop, so we don't
4071 need to consider the case where this behaves like an
4088 abort (); /* We have listed all the cases. */
4091 /* Getting here means we have found the possible starting
4092 characters for one path of the pattern -- and that the empty
4093 string does not match. We need not follow this path further. */
4097 /* We reached the end without matching anything. */
4100 } /* analyze_first */
4102 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4103 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4104 characters can start a string that matches the pattern. This fastmap
4105 is used by re_search to skip quickly over impossible starting points.
4107 Character codes above (1 << BYTEWIDTH) are not represented in the
4108 fastmap, but the leading codes are represented. Thus, the fastmap
4109 indicates which character sets could start a match.
4111 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4112 area as BUFP->fastmap.
4114 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4117 Returns 0 if we succeed, -2 if an internal error. */
4120 re_compile_fastmap (struct re_pattern_buffer
*bufp
)
4122 char *fastmap
= bufp
->fastmap
;
4125 assert (fastmap
&& bufp
->buffer
);
4127 memset (fastmap
, 0, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
4128 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
4130 analysis
= analyze_first (bufp
->buffer
, bufp
->buffer
+ bufp
->used
,
4131 fastmap
, RE_MULTIBYTE_P (bufp
));
4132 bufp
->can_be_null
= (analysis
!= 0);
4134 } /* re_compile_fastmap */
4136 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4137 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4138 this memory for recording register information. STARTS and ENDS
4139 must be allocated using the malloc library routine, and must each
4140 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4142 If NUM_REGS == 0, then subsequent matches should allocate their own
4145 Unless this function is called, the first search or match using
4146 PATTERN_BUFFER will allocate its own register data, without
4147 freeing the old data. */
4150 re_set_registers (struct re_pattern_buffer
*bufp
, struct re_registers
*regs
, unsigned int num_regs
, regoff_t
*starts
, regoff_t
*ends
)
4154 bufp
->regs_allocated
= REGS_REALLOCATE
;
4155 regs
->num_regs
= num_regs
;
4156 regs
->start
= starts
;
4161 bufp
->regs_allocated
= REGS_UNALLOCATED
;
4163 regs
->start
= regs
->end
= 0;
4166 WEAK_ALIAS (__re_set_registers
, re_set_registers
)
4168 /* Searching routines. */
4170 /* Like re_search_2, below, but only one string is specified, and
4171 doesn't let you say where to stop matching. */
4174 re_search (struct re_pattern_buffer
*bufp
, const char *string
, size_t size
,
4175 ssize_t startpos
, ssize_t range
, struct re_registers
*regs
)
4177 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
4180 WEAK_ALIAS (__re_search
, re_search
)
4182 /* Head address of virtual concatenation of string. */
4183 #define HEAD_ADDR_VSTRING(P) \
4184 (((P) >= size1 ? string2 : string1))
4186 /* Address of POS in the concatenation of virtual string. */
4187 #define POS_ADDR_VSTRING(POS) \
4188 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
4190 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4191 virtual concatenation of STRING1 and STRING2, starting first at index
4192 STARTPOS, then at STARTPOS + 1, and so on.
4194 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4196 RANGE is how far to scan while trying to match. RANGE = 0 means try
4197 only at STARTPOS; in general, the last start tried is STARTPOS +
4200 In REGS, return the indices of the virtual concatenation of STRING1
4201 and STRING2 that matched the entire BUFP->buffer and its contained
4204 Do not consider matching one past the index STOP in the virtual
4205 concatenation of STRING1 and STRING2.
4207 We return either the position in the strings at which the match was
4208 found, -1 if no match, or -2 if error (such as failure
4212 re_search_2 (struct re_pattern_buffer
*bufp
, const char *str1
, size_t size1
,
4213 const char *str2
, size_t size2
, ssize_t startpos
, ssize_t range
,
4214 struct re_registers
*regs
, ssize_t stop
)
4217 re_char
*string1
= (re_char
*) str1
;
4218 re_char
*string2
= (re_char
*) str2
;
4219 register char *fastmap
= bufp
->fastmap
;
4220 register RE_TRANSLATE_TYPE translate
= bufp
->translate
;
4221 size_t total_size
= size1
+ size2
;
4222 ssize_t endpos
= startpos
+ range
;
4223 boolean anchored_start
;
4224 /* Nonzero if we are searching multibyte string. */
4225 const boolean multibyte
= RE_TARGET_MULTIBYTE_P (bufp
);
4227 /* Check for out-of-range STARTPOS. */
4228 if (startpos
< 0 || startpos
> total_size
)
4231 /* Fix up RANGE if it might eventually take us outside
4232 the virtual concatenation of STRING1 and STRING2.
4233 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
4235 range
= 0 - startpos
;
4236 else if (endpos
> total_size
)
4237 range
= total_size
- startpos
;
4239 /* If the search isn't to be a backwards one, don't waste time in a
4240 search for a pattern anchored at beginning of buffer. */
4241 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == begbuf
&& range
> 0)
4250 /* In a forward search for something that starts with \=.
4251 don't keep searching past point. */
4252 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == at_dot
&& range
> 0)
4254 range
= PT_BYTE
- BEGV_BYTE
- startpos
;
4260 /* Update the fastmap now if not correct already. */
4261 if (fastmap
&& !bufp
->fastmap_accurate
)
4262 re_compile_fastmap (bufp
);
4264 /* See whether the pattern is anchored. */
4265 anchored_start
= (bufp
->buffer
[0] == begline
);
4268 gl_state
.object
= re_match_object
; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
4270 ssize_t charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos
));
4272 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
4276 /* Loop through the string, looking for a place to start matching. */
4279 /* If the pattern is anchored,
4280 skip quickly past places we cannot match.
4281 We don't bother to treat startpos == 0 specially
4282 because that case doesn't repeat. */
4283 if (anchored_start
&& startpos
> 0)
4285 if (! ((startpos
<= size1
? string1
[startpos
- 1]
4286 : string2
[startpos
- size1
- 1])
4291 /* If a fastmap is supplied, skip quickly over characters that
4292 cannot be the start of a match. If the pattern can match the
4293 null string, however, we don't need to skip characters; we want
4294 the first null string. */
4295 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
4297 register re_char
*d
;
4298 register re_wchar_t buf_ch
;
4300 d
= POS_ADDR_VSTRING (startpos
);
4302 if (range
> 0) /* Searching forwards. */
4304 ssize_t irange
= range
, lim
= 0;
4306 if (startpos
< size1
&& startpos
+ range
>= size1
)
4307 lim
= range
- (size1
- startpos
);
4309 /* Written out as an if-else to avoid testing `translate'
4311 if (RE_TRANSLATE_P (translate
))
4318 buf_ch
= STRING_CHAR_AND_LENGTH (d
, buf_charlen
);
4319 buf_ch
= RE_TRANSLATE (translate
, buf_ch
);
4320 if (fastmap
[CHAR_LEADING_CODE (buf_ch
)])
4323 range
-= buf_charlen
;
4329 register re_wchar_t ch
, translated
;
4332 ch
= RE_CHAR_TO_MULTIBYTE (buf_ch
);
4333 translated
= RE_TRANSLATE (translate
, ch
);
4334 if (translated
!= ch
4335 && (ch
= RE_CHAR_TO_UNIBYTE (translated
)) >= 0)
4337 if (fastmap
[buf_ch
])
4350 buf_ch
= STRING_CHAR_AND_LENGTH (d
, buf_charlen
);
4351 if (fastmap
[CHAR_LEADING_CODE (buf_ch
)])
4353 range
-= buf_charlen
;
4357 while (range
> lim
&& !fastmap
[*d
])
4363 startpos
+= irange
- range
;
4365 else /* Searching backwards. */
4369 buf_ch
= STRING_CHAR (d
);
4370 buf_ch
= TRANSLATE (buf_ch
);
4371 if (! fastmap
[CHAR_LEADING_CODE (buf_ch
)])
4376 register re_wchar_t ch
, translated
;
4379 ch
= RE_CHAR_TO_MULTIBYTE (buf_ch
);
4380 translated
= TRANSLATE (ch
);
4381 if (translated
!= ch
4382 && (ch
= RE_CHAR_TO_UNIBYTE (translated
)) >= 0)
4384 if (! fastmap
[TRANSLATE (buf_ch
)])
4390 /* If can't match the null string, and that's all we have left, fail. */
4391 if (range
>= 0 && startpos
== total_size
&& fastmap
4392 && !bufp
->can_be_null
)
4395 val
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
4396 startpos
, regs
, stop
);
4409 /* Update STARTPOS to the next character boundary. */
4412 re_char
*p
= POS_ADDR_VSTRING (startpos
);
4413 int len
= BYTES_BY_CHAR_HEAD (*p
);
4431 /* Update STARTPOS to the previous character boundary. */
4434 re_char
*p
= POS_ADDR_VSTRING (startpos
) + 1;
4436 re_char
*phead
= HEAD_ADDR_VSTRING (startpos
);
4438 /* Find the head of multibyte form. */
4439 PREV_CHAR_BOUNDARY (p
, phead
);
4440 range
+= p0
- 1 - p
;
4444 startpos
-= p0
- 1 - p
;
4450 WEAK_ALIAS (__re_search_2
, re_search_2
)
4452 /* Declarations and macros for re_match_2. */
4454 static int bcmp_translate (re_char
*s1
, re_char
*s2
,
4455 register ssize_t len
,
4456 RE_TRANSLATE_TYPE translate
,
4457 const int multibyte
);
4459 /* This converts PTR, a pointer into one of the search strings `string1'
4460 and `string2' into an offset from the beginning of that string. */
4461 #define POINTER_TO_OFFSET(ptr) \
4462 (FIRST_STRING_P (ptr) \
4464 : (ptr) - string2 + (ptrdiff_t) size1)
4466 /* Call before fetching a character with *d. This switches over to
4467 string2 if necessary.
4468 Check re_match_2_internal for a discussion of why end_match_2 might
4469 not be within string2 (but be equal to end_match_1 instead). */
4470 #define PREFETCH() \
4473 /* End of string2 => fail. */ \
4474 if (dend == end_match_2) \
4476 /* End of string1 => advance to string2. */ \
4478 dend = end_match_2; \
4481 /* Call before fetching a char with *d if you already checked other limits.
4482 This is meant for use in lookahead operations like wordend, etc..
4483 where we might need to look at parts of the string that might be
4484 outside of the LIMITs (i.e past `stop'). */
4485 #define PREFETCH_NOLIMIT() \
4489 dend = end_match_2; \
4492 /* Test if at very beginning or at very end of the virtual concatenation
4493 of `string1' and `string2'. If only one string, it's `string2'. */
4494 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4495 #define AT_STRINGS_END(d) ((d) == end2)
4497 /* Disabled due to a compiler bug -- see comment at case wordbound */
4499 /* The comment at case wordbound is following one, but we don't use
4500 AT_WORD_BOUNDARY anymore to support multibyte form.
4502 The DEC Alpha C compiler 3.x generates incorrect code for the
4503 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4504 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4505 macro and introducing temporary variables works around the bug. */
4508 /* Test if D points to a character which is word-constituent. We have
4509 two special cases to check for: if past the end of string1, look at
4510 the first character in string2; and if before the beginning of
4511 string2, look at the last character in string1. */
4512 #define WORDCHAR_P(d) \
4513 (SYNTAX ((d) == end1 ? *string2 \
4514 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4517 /* Test if the character before D and the one at D differ with respect
4518 to being word-constituent. */
4519 #define AT_WORD_BOUNDARY(d) \
4520 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4521 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4524 /* Free everything we malloc. */
4525 #ifdef MATCH_MAY_ALLOCATE
4526 # define FREE_VAR(var) \
4534 # define FREE_VARIABLES() \
4536 REGEX_FREE_STACK (fail_stack.stack); \
4537 FREE_VAR (regstart); \
4538 FREE_VAR (regend); \
4539 FREE_VAR (best_regstart); \
4540 FREE_VAR (best_regend); \
4541 REGEX_SAFE_FREE (); \
4544 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4545 #endif /* not MATCH_MAY_ALLOCATE */
4548 /* Optimization routines. */
4550 /* If the operation is a match against one or more chars,
4551 return a pointer to the next operation, else return NULL. */
4553 skip_one_char (re_char
*p
)
4566 if (CHARSET_RANGE_TABLE_EXISTS_P (p
- 1))
4569 p
= CHARSET_RANGE_TABLE (p
- 1);
4570 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4571 p
= CHARSET_RANGE_TABLE_END (p
, mcnt
);
4574 p
+= 1 + CHARSET_BITMAP_SIZE (p
- 1);
4581 case notcategoryspec
:
4593 /* Jump over non-matching operations. */
4595 skip_noops (re_char
*p
, re_char
*pend
)
4609 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4620 /* Test if C matches charset op. *PP points to the charset or charset_not
4621 opcode. When the function finishes, *PP will be advanced past that opcode.
4622 C is character to test (possibly after translations) and CORIG is original
4623 character (i.e. without any translations). UNIBYTE denotes whether c is
4624 unibyte or multibyte character. */
4626 execute_charset (re_char
**pp
, unsigned c
, unsigned corig
, bool unibyte
)
4628 re_char
*p
= *pp
, *rtp
= NULL
;
4629 bool not = (re_opcode_t
) *p
== charset_not
;
4631 if (CHARSET_RANGE_TABLE_EXISTS_P (p
))
4634 rtp
= CHARSET_RANGE_TABLE (p
);
4635 EXTRACT_NUMBER_AND_INCR (count
, rtp
);
4636 *pp
= CHARSET_RANGE_TABLE_END ((rtp
), (count
));
4639 *pp
+= 2 + CHARSET_BITMAP_SIZE (p
);
4641 if (unibyte
&& c
< (1 << BYTEWIDTH
))
4642 { /* Lookup bitmap. */
4643 /* Cast to `unsigned' instead of `unsigned char' in
4644 case the bit list is a full 32 bytes long. */
4645 if (c
< (unsigned) (CHARSET_BITMAP_SIZE (p
) * BYTEWIDTH
)
4646 && p
[2 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4652 int class_bits
= CHARSET_RANGE_TABLE_BITS (p
);
4653 re_wchar_t range_start
, range_end
;
4655 /* Sort tests by the most commonly used classes with some adjustment to which
4656 tests are easiest to perform. Take a look at comment in re_wctype_parse
4657 for table with frequencies of character class names. */
4659 if ((class_bits
& BIT_MULTIBYTE
) ||
4660 (class_bits
& BIT_ALNUM
&& ISALNUM (c
)) ||
4661 (class_bits
& BIT_ALPHA
&& ISALPHA (c
)) ||
4662 (class_bits
& BIT_SPACE
&& ISSPACE (c
)) ||
4663 (class_bits
& BIT_BLANK
&& ISBLANK (c
)) ||
4664 (class_bits
& BIT_WORD
&& ISWORD (c
)) ||
4665 ((class_bits
& BIT_UPPER
) &&
4666 (ISUPPER (c
) || (corig
!= c
&&
4667 c
== downcase (corig
) && ISLOWER (c
)))) ||
4668 ((class_bits
& BIT_LOWER
) &&
4669 (ISLOWER (c
) || (corig
!= c
&&
4670 c
== upcase (corig
) && ISUPPER(c
)))) ||
4671 (class_bits
& BIT_PUNCT
&& ISPUNCT (c
)) ||
4672 (class_bits
& BIT_GRAPH
&& ISGRAPH (c
)) ||
4673 (class_bits
& BIT_PRINT
&& ISPRINT (c
)))
4676 for (p
= *pp
; rtp
< p
; rtp
+= 2 * 3)
4678 EXTRACT_CHARACTER (range_start
, rtp
);
4679 EXTRACT_CHARACTER (range_end
, rtp
+ 3);
4680 if (range_start
<= c
&& c
<= range_end
)
4688 /* Non-zero if "p1 matches something" implies "p2 fails". */
4690 mutually_exclusive_p (struct re_pattern_buffer
*bufp
, re_char
*p1
,
4694 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4695 unsigned char *pend
= bufp
->buffer
+ bufp
->used
;
4697 assert (p1
>= bufp
->buffer
&& p1
< pend
4698 && p2
>= bufp
->buffer
&& p2
<= pend
);
4700 /* Skip over open/close-group commands.
4701 If what follows this loop is a ...+ construct,
4702 look at what begins its body, since we will have to
4703 match at least one of that. */
4704 p2
= skip_noops (p2
, pend
);
4705 /* The same skip can be done for p1, except that this function
4706 is only used in the case where p1 is a simple match operator. */
4707 /* p1 = skip_noops (p1, pend); */
4709 assert (p1
>= bufp
->buffer
&& p1
< pend
4710 && p2
>= bufp
->buffer
&& p2
<= pend
);
4712 op2
= p2
== pend
? succeed
: *p2
;
4718 /* If we're at the end of the pattern, we can change. */
4719 if (skip_one_char (p1
))
4721 DEBUG_PRINT (" End of pattern: fast loop.\n");
4729 register re_wchar_t c
4730 = (re_opcode_t
) *p2
== endline
? '\n'
4731 : RE_STRING_CHAR (p2
+ 2, multibyte
);
4733 if ((re_opcode_t
) *p1
== exactn
)
4735 if (c
!= RE_STRING_CHAR (p1
+ 2, multibyte
))
4737 DEBUG_PRINT (" '%c' != '%c' => fast loop.\n", c
, p1
[2]);
4742 else if ((re_opcode_t
) *p1
== charset
4743 || (re_opcode_t
) *p1
== charset_not
)
4745 if (!execute_charset (&p1
, c
, c
, !multibyte
|| IS_REAL_ASCII (c
)))
4747 DEBUG_PRINT (" No match => fast loop.\n");
4751 else if ((re_opcode_t
) *p1
== anychar
4754 DEBUG_PRINT (" . != \\n => fast loop.\n");
4762 if ((re_opcode_t
) *p1
== exactn
)
4763 /* Reuse the code above. */
4764 return mutually_exclusive_p (bufp
, p2
, p1
);
4766 /* It is hard to list up all the character in charset
4767 P2 if it includes multibyte character. Give up in
4769 else if (!multibyte
|| !CHARSET_RANGE_TABLE_EXISTS_P (p2
))
4771 /* Now, we are sure that P2 has no range table.
4772 So, for the size of bitmap in P2, `p2[1]' is
4773 enough. But P1 may have range table, so the
4774 size of bitmap table of P1 is extracted by
4775 using macro `CHARSET_BITMAP_SIZE'.
4777 In a multibyte case, we know that all the character
4778 listed in P2 is ASCII. In a unibyte case, P1 has only a
4779 bitmap table. So, in both cases, it is enough to test
4780 only the bitmap table of P1. */
4782 if ((re_opcode_t
) *p1
== charset
)
4785 /* We win if the charset inside the loop
4786 has no overlap with the one after the loop. */
4789 && idx
< CHARSET_BITMAP_SIZE (p1
));
4791 if ((p2
[2 + idx
] & p1
[2 + idx
]) != 0)
4795 || idx
== CHARSET_BITMAP_SIZE (p1
))
4797 DEBUG_PRINT (" No match => fast loop.\n");
4801 else if ((re_opcode_t
) *p1
== charset_not
)
4804 /* We win if the charset_not inside the loop lists
4805 every character listed in the charset after. */
4806 for (idx
= 0; idx
< (int) p2
[1]; idx
++)
4807 if (! (p2
[2 + idx
] == 0
4808 || (idx
< CHARSET_BITMAP_SIZE (p1
)
4809 && ((p2
[2 + idx
] & ~ p1
[2 + idx
]) == 0))))
4814 DEBUG_PRINT (" No match => fast loop.\n");
4827 /* Reuse the code above. */
4828 return mutually_exclusive_p (bufp
, p2
, p1
);
4830 /* When we have two charset_not, it's very unlikely that
4831 they don't overlap. The union of the two sets of excluded
4832 chars should cover all possible chars, which, as a matter of
4833 fact, is virtually impossible in multibyte buffers. */
4839 return ((re_opcode_t
) *p1
== syntaxspec
&& p1
[1] == Sword
);
4841 return ((re_opcode_t
) *p1
== syntaxspec
4842 && (p1
[1] == Ssymbol
|| p1
[1] == Sword
));
4844 return ((re_opcode_t
) *p1
== syntaxspec
&& p1
[1] == p2
[1]);
4847 return ((re_opcode_t
) *p1
== notsyntaxspec
&& p1
[1] == Sword
);
4849 return ((re_opcode_t
) *p1
== notsyntaxspec
4850 && (p1
[1] == Ssymbol
|| p1
[1] == Sword
));
4852 return ((re_opcode_t
) *p1
== notsyntaxspec
&& p1
[1] == p2
[1]);
4855 return (((re_opcode_t
) *p1
== notsyntaxspec
4856 || (re_opcode_t
) *p1
== syntaxspec
)
4861 return ((re_opcode_t
) *p1
== notcategoryspec
&& p1
[1] == p2
[1]);
4862 case notcategoryspec
:
4863 return ((re_opcode_t
) *p1
== categoryspec
&& p1
[1] == p2
[1]);
4875 /* Matching routines. */
4877 #ifndef emacs /* Emacs never uses this. */
4878 /* re_match is like re_match_2 except it takes only a single string. */
4881 re_match (struct re_pattern_buffer
*bufp
, const char *string
,
4882 size_t size
, ssize_t pos
, struct re_registers
*regs
)
4884 regoff_t result
= re_match_2_internal (bufp
, NULL
, 0, (re_char
*) string
,
4885 size
, pos
, regs
, size
);
4888 WEAK_ALIAS (__re_match
, re_match
)
4889 #endif /* not emacs */
4891 /* re_match_2 matches the compiled pattern in BUFP against the
4892 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4893 and SIZE2, respectively). We start matching at POS, and stop
4896 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4897 store offsets for the substring each group matched in REGS. See the
4898 documentation for exactly how many groups we fill.
4900 We return -1 if no match, -2 if an internal error (such as the
4901 failure stack overflowing). Otherwise, we return the length of the
4902 matched substring. */
4905 re_match_2 (struct re_pattern_buffer
*bufp
, const char *string1
,
4906 size_t size1
, const char *string2
, size_t size2
, ssize_t pos
,
4907 struct re_registers
*regs
, ssize_t stop
)
4913 gl_state
.object
= re_match_object
; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
4914 charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos
));
4915 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
4918 result
= re_match_2_internal (bufp
, (re_char
*) string1
, size1
,
4919 (re_char
*) string2
, size2
,
4923 WEAK_ALIAS (__re_match_2
, re_match_2
)
4926 /* This is a separate function so that we can force an alloca cleanup
4929 re_match_2_internal (struct re_pattern_buffer
*bufp
, re_char
*string1
,
4930 size_t size1
, re_char
*string2
, size_t size2
,
4931 ssize_t pos
, struct re_registers
*regs
, ssize_t stop
)
4933 /* General temporaries. */
4937 /* Just past the end of the corresponding string. */
4938 re_char
*end1
, *end2
;
4940 /* Pointers into string1 and string2, just past the last characters in
4941 each to consider matching. */
4942 re_char
*end_match_1
, *end_match_2
;
4944 /* Where we are in the data, and the end of the current string. */
4947 /* Used sometimes to remember where we were before starting matching
4948 an operator so that we can go back in case of failure. This "atomic"
4949 behavior of matching opcodes is indispensable to the correctness
4950 of the on_failure_keep_string_jump optimization. */
4953 /* Where we are in the pattern, and the end of the pattern. */
4954 re_char
*p
= bufp
->buffer
;
4955 re_char
*pend
= p
+ bufp
->used
;
4957 /* We use this to map every character in the string. */
4958 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
4960 /* Nonzero if BUFP is setup from a multibyte regex. */
4961 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4963 /* Nonzero if STRING1/STRING2 are multibyte. */
4964 const boolean target_multibyte
= RE_TARGET_MULTIBYTE_P (bufp
);
4966 /* Failure point stack. Each place that can handle a failure further
4967 down the line pushes a failure point on this stack. It consists of
4968 regstart, and regend for all registers corresponding to
4969 the subexpressions we're currently inside, plus the number of such
4970 registers, and, finally, two char *'s. The first char * is where
4971 to resume scanning the pattern; the second one is where to resume
4972 scanning the strings. */
4973 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4974 fail_stack_type fail_stack
;
4976 #ifdef DEBUG_COMPILES_ARGUMENTS
4977 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
4980 #if defined REL_ALLOC && defined REGEX_MALLOC
4981 /* This holds the pointer to the failure stack, when
4982 it is allocated relocatably. */
4983 fail_stack_elt_t
*failure_stack_ptr
;
4986 /* We fill all the registers internally, independent of what we
4987 return, for use in backreferences. The number here includes
4988 an element for register zero. */
4989 size_t num_regs
= bufp
->re_nsub
+ 1;
4991 /* Information on the contents of registers. These are pointers into
4992 the input strings; they record just what was matched (on this
4993 attempt) by a subexpression part of the pattern, that is, the
4994 regnum-th regstart pointer points to where in the pattern we began
4995 matching and the regnum-th regend points to right after where we
4996 stopped matching the regnum-th subexpression. (The zeroth register
4997 keeps track of what the whole pattern matches.) */
4998 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4999 re_char
**regstart
, **regend
;
5002 /* The following record the register info as found in the above
5003 variables when we find a match better than any we've seen before.
5004 This happens as we backtrack through the failure points, which in
5005 turn happens only if we have not yet matched the entire string. */
5006 unsigned best_regs_set
= false;
5007 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5008 re_char
**best_regstart
, **best_regend
;
5011 /* Logically, this is `best_regend[0]'. But we don't want to have to
5012 allocate space for that if we're not allocating space for anything
5013 else (see below). Also, we never need info about register 0 for
5014 any of the other register vectors, and it seems rather a kludge to
5015 treat `best_regend' differently than the rest. So we keep track of
5016 the end of the best match so far in a separate variable. We
5017 initialize this to NULL so that when we backtrack the first time
5018 and need to test it, it's not garbage. */
5019 re_char
*match_end
= NULL
;
5021 #ifdef DEBUG_COMPILES_ARGUMENTS
5022 /* Counts the total number of registers pushed. */
5023 unsigned num_regs_pushed
= 0;
5026 DEBUG_PRINT ("\n\nEntering re_match_2.\n");
5028 REGEX_USE_SAFE_ALLOCA
;
5032 #ifdef MATCH_MAY_ALLOCATE
5033 /* Do not bother to initialize all the register variables if there are
5034 no groups in the pattern, as it takes a fair amount of time. If
5035 there are groups, we include space for register 0 (the whole
5036 pattern), even though we never use it, since it simplifies the
5037 array indexing. We should fix this. */
5040 regstart
= REGEX_TALLOC (num_regs
, re_char
*);
5041 regend
= REGEX_TALLOC (num_regs
, re_char
*);
5042 best_regstart
= REGEX_TALLOC (num_regs
, re_char
*);
5043 best_regend
= REGEX_TALLOC (num_regs
, re_char
*);
5045 if (!(regstart
&& regend
&& best_regstart
&& best_regend
))
5053 /* We must initialize all our variables to NULL, so that
5054 `FREE_VARIABLES' doesn't try to free them. */
5055 regstart
= regend
= best_regstart
= best_regend
= NULL
;
5057 #endif /* MATCH_MAY_ALLOCATE */
5059 /* The starting position is bogus. */
5060 if (pos
< 0 || pos
> size1
+ size2
)
5066 /* Initialize subexpression text positions to -1 to mark ones that no
5067 start_memory/stop_memory has been seen for. Also initialize the
5068 register information struct. */
5069 for (reg
= 1; reg
< num_regs
; reg
++)
5070 regstart
[reg
] = regend
[reg
] = NULL
;
5072 /* We move `string1' into `string2' if the latter's empty -- but not if
5073 `string1' is null. */
5074 if (size2
== 0 && string1
!= NULL
)
5081 end1
= string1
+ size1
;
5082 end2
= string2
+ size2
;
5084 /* `p' scans through the pattern as `d' scans through the data.
5085 `dend' is the end of the input string that `d' points within. `d'
5086 is advanced into the following input string whenever necessary, but
5087 this happens before fetching; therefore, at the beginning of the
5088 loop, `d' can be pointing at the end of a string, but it cannot
5092 /* Only match within string2. */
5093 d
= string2
+ pos
- size1
;
5094 dend
= end_match_2
= string2
+ stop
- size1
;
5095 end_match_1
= end1
; /* Just to give it a value. */
5101 /* Only match within string1. */
5102 end_match_1
= string1
+ stop
;
5104 When we reach end_match_1, PREFETCH normally switches to string2.
5105 But in the present case, this means that just doing a PREFETCH
5106 makes us jump from `stop' to `gap' within the string.
5107 What we really want here is for the search to stop as
5108 soon as we hit end_match_1. That's why we set end_match_2
5109 to end_match_1 (since PREFETCH fails as soon as we hit
5111 end_match_2
= end_match_1
;
5114 { /* It's important to use this code when stop == size so that
5115 moving `d' from end1 to string2 will not prevent the d == dend
5116 check from catching the end of string. */
5118 end_match_2
= string2
+ stop
- size1
;
5124 DEBUG_PRINT ("The compiled pattern is: ");
5125 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
5126 DEBUG_PRINT ("The string to match is: \"");
5127 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
5128 DEBUG_PRINT ("\"\n");
5130 /* This loops over pattern commands. It exits by returning from the
5131 function if the match is complete, or it drops through if the match
5132 fails at this starting point in the input data. */
5135 DEBUG_PRINT ("\n%p: ", p
);
5139 /* End of pattern means we might have succeeded. */
5140 DEBUG_PRINT ("end of pattern ... ");
5142 /* If we haven't matched the entire string, and we want the
5143 longest match, try backtracking. */
5144 if (d
!= end_match_2
)
5146 /* True if this match is the best seen so far. */
5150 /* True if this match ends in the same string (string1
5151 or string2) as the best previous match. */
5152 bool same_str_p
= (FIRST_STRING_P (match_end
)
5153 == FIRST_STRING_P (d
));
5155 /* AIX compiler got confused when this was combined
5156 with the previous declaration. */
5158 best_match_p
= d
> match_end
;
5160 best_match_p
= !FIRST_STRING_P (d
);
5163 DEBUG_PRINT ("backtracking.\n");
5165 if (!FAIL_STACK_EMPTY ())
5166 { /* More failure points to try. */
5168 /* If exceeds best match so far, save it. */
5169 if (!best_regs_set
|| best_match_p
)
5171 best_regs_set
= true;
5174 DEBUG_PRINT ("\nSAVING match as best so far.\n");
5176 for (reg
= 1; reg
< num_regs
; reg
++)
5178 best_regstart
[reg
] = regstart
[reg
];
5179 best_regend
[reg
] = regend
[reg
];
5185 /* If no failure points, don't restore garbage. And if
5186 last match is real best match, don't restore second
5188 else if (best_regs_set
&& !best_match_p
)
5191 /* Restore best match. It may happen that `dend ==
5192 end_match_1' while the restored d is in string2.
5193 For example, the pattern `x.*y.*z' against the
5194 strings `x-' and `y-z-', if the two strings are
5195 not consecutive in memory. */
5196 DEBUG_PRINT ("Restoring best registers.\n");
5199 dend
= ((d
>= string1
&& d
<= end1
)
5200 ? end_match_1
: end_match_2
);
5202 for (reg
= 1; reg
< num_regs
; reg
++)
5204 regstart
[reg
] = best_regstart
[reg
];
5205 regend
[reg
] = best_regend
[reg
];
5208 } /* d != end_match_2 */
5211 DEBUG_PRINT ("Accepting match.\n");
5213 /* If caller wants register contents data back, do it. */
5214 if (regs
&& !bufp
->no_sub
)
5216 /* Have the register data arrays been allocated? */
5217 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
5218 { /* No. So allocate them with malloc. We need one
5219 extra element beyond `num_regs' for the `-1' marker
5221 regs
->num_regs
= max (RE_NREGS
, num_regs
+ 1);
5222 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
5223 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
5224 if (regs
->start
== NULL
|| regs
->end
== NULL
)
5229 bufp
->regs_allocated
= REGS_REALLOCATE
;
5231 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
5232 { /* Yes. If we need more elements than were already
5233 allocated, reallocate them. If we need fewer, just
5235 if (regs
->num_regs
< num_regs
+ 1)
5237 regs
->num_regs
= num_regs
+ 1;
5238 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
5239 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
5240 if (regs
->start
== NULL
|| regs
->end
== NULL
)
5249 /* These braces fend off a "empty body in an else-statement"
5250 warning under GCC when assert expands to nothing. */
5251 assert (bufp
->regs_allocated
== REGS_FIXED
);
5254 /* Convert the pointer data in `regstart' and `regend' to
5255 indices. Register zero has to be set differently,
5256 since we haven't kept track of any info for it. */
5257 if (regs
->num_regs
> 0)
5259 regs
->start
[0] = pos
;
5260 regs
->end
[0] = POINTER_TO_OFFSET (d
);
5263 /* Go through the first `min (num_regs, regs->num_regs)'
5264 registers, since that is all we initialized. */
5265 for (reg
= 1; reg
< min (num_regs
, regs
->num_regs
); reg
++)
5267 if (REG_UNSET (regstart
[reg
]) || REG_UNSET (regend
[reg
]))
5268 regs
->start
[reg
] = regs
->end
[reg
] = -1;
5271 regs
->start
[reg
] = POINTER_TO_OFFSET (regstart
[reg
]);
5272 regs
->end
[reg
] = POINTER_TO_OFFSET (regend
[reg
]);
5276 /* If the regs structure we return has more elements than
5277 were in the pattern, set the extra elements to -1. If
5278 we (re)allocated the registers, this is the case,
5279 because we always allocate enough to have at least one
5281 for (reg
= num_regs
; reg
< regs
->num_regs
; reg
++)
5282 regs
->start
[reg
] = regs
->end
[reg
] = -1;
5283 } /* regs && !bufp->no_sub */
5285 DEBUG_PRINT ("%u failure points pushed, %u popped (%u remain).\n",
5286 nfailure_points_pushed
, nfailure_points_popped
,
5287 nfailure_points_pushed
- nfailure_points_popped
);
5288 DEBUG_PRINT ("%u registers pushed.\n", num_regs_pushed
);
5290 ptrdiff_t dcnt
= POINTER_TO_OFFSET (d
) - pos
;
5292 DEBUG_PRINT ("Returning %td from re_match_2.\n", dcnt
);
5298 /* Otherwise match next pattern command. */
5301 /* Ignore these. Used to ignore the n of succeed_n's which
5302 currently have n == 0. */
5304 DEBUG_PRINT ("EXECUTING no_op.\n");
5308 DEBUG_PRINT ("EXECUTING succeed.\n");
5311 /* Match the next n pattern characters exactly. The following
5312 byte in the pattern defines n, and the n bytes after that
5313 are the characters to match. */
5316 DEBUG_PRINT ("EXECUTING exactn %d.\n", mcnt
);
5318 /* Remember the start point to rollback upon failure. */
5322 /* This is written out as an if-else so we don't waste time
5323 testing `translate' inside the loop. */
5324 if (RE_TRANSLATE_P (translate
))
5328 if (RE_TRANSLATE (translate
, *d
) != *p
++)
5348 /* The cost of testing `translate' is comparatively small. */
5349 if (target_multibyte
)
5352 int pat_charlen
, buf_charlen
;
5357 pat_ch
= STRING_CHAR_AND_LENGTH (p
, pat_charlen
);
5360 pat_ch
= RE_CHAR_TO_MULTIBYTE (*p
);
5363 buf_ch
= STRING_CHAR_AND_LENGTH (d
, buf_charlen
);
5365 if (TRANSLATE (buf_ch
) != pat_ch
)
5373 mcnt
-= pat_charlen
;
5385 pat_ch
= STRING_CHAR_AND_LENGTH (p
, pat_charlen
);
5386 pat_ch
= RE_CHAR_TO_UNIBYTE (pat_ch
);
5393 buf_ch
= RE_CHAR_TO_MULTIBYTE (*d
);
5394 if (! CHAR_BYTE8_P (buf_ch
))
5396 buf_ch
= TRANSLATE (buf_ch
);
5397 buf_ch
= RE_CHAR_TO_UNIBYTE (buf_ch
);
5403 if (buf_ch
!= pat_ch
)
5416 /* Match any character except possibly a newline or a null. */
5421 reg_syntax_t syntax
;
5423 DEBUG_PRINT ("EXECUTING anychar.\n");
5426 buf_ch
= RE_STRING_CHAR_AND_LENGTH (d
, buf_charlen
,
5428 buf_ch
= TRANSLATE (buf_ch
);
5431 syntax
= RE_SYNTAX_EMACS
;
5433 syntax
= bufp
->syntax
;
5436 if ((!(syntax
& RE_DOT_NEWLINE
) && buf_ch
== '\n')
5437 || ((syntax
& RE_DOT_NOT_NULL
) && buf_ch
== '\000'))
5440 DEBUG_PRINT (" Matched \"%d\".\n", *d
);
5449 register unsigned int c
, corig
;
5452 /* Whether matching against a unibyte character. */
5453 boolean unibyte_char
= false;
5455 DEBUG_PRINT ("EXECUTING charset%s.\n",
5456 (re_opcode_t
) *(p
- 1) == charset_not
? "_not" : "");
5459 corig
= c
= RE_STRING_CHAR_AND_LENGTH (d
, len
, target_multibyte
);
5460 if (target_multibyte
)
5465 c1
= RE_CHAR_TO_UNIBYTE (c
);
5468 unibyte_char
= true;
5474 int c1
= RE_CHAR_TO_MULTIBYTE (c
);
5476 if (! CHAR_BYTE8_P (c1
))
5478 c1
= TRANSLATE (c1
);
5479 c1
= RE_CHAR_TO_UNIBYTE (c1
);
5482 unibyte_char
= true;
5487 unibyte_char
= true;
5491 if (!execute_charset (&p
, c
, corig
, unibyte_char
))
5499 /* The beginning of a group is represented by start_memory.
5500 The argument is the register number. The text
5501 matched within the group is recorded (in the internal
5502 registers data structure) under the register number. */
5504 DEBUG_PRINT ("EXECUTING start_memory %d:\n", *p
);
5506 /* In case we need to undo this operation (via backtracking). */
5507 PUSH_FAILURE_REG (*p
);
5510 regend
[*p
] = NULL
; /* probably unnecessary. -sm */
5511 DEBUG_PRINT (" regstart: %td\n", POINTER_TO_OFFSET (regstart
[*p
]));
5513 /* Move past the register number and inner group count. */
5518 /* The stop_memory opcode represents the end of a group. Its
5519 argument is the same as start_memory's: the register number. */
5521 DEBUG_PRINT ("EXECUTING stop_memory %d:\n", *p
);
5523 assert (!REG_UNSET (regstart
[*p
]));
5524 /* Strictly speaking, there should be code such as:
5526 assert (REG_UNSET (regend[*p]));
5527 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5529 But the only info to be pushed is regend[*p] and it is known to
5530 be UNSET, so there really isn't anything to push.
5531 Not pushing anything, on the other hand deprives us from the
5532 guarantee that regend[*p] is UNSET since undoing this operation
5533 will not reset its value properly. This is not important since
5534 the value will only be read on the next start_memory or at
5535 the very end and both events can only happen if this stop_memory
5539 DEBUG_PRINT (" regend: %td\n", POINTER_TO_OFFSET (regend
[*p
]));
5541 /* Move past the register number and the inner group count. */
5546 /* \<digit> has been turned into a `duplicate' command which is
5547 followed by the numeric value of <digit> as the register number. */
5550 register re_char
*d2
, *dend2
;
5551 int regno
= *p
++; /* Get which register to match against. */
5552 DEBUG_PRINT ("EXECUTING duplicate %d.\n", regno
);
5554 /* Can't back reference a group which we've never matched. */
5555 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
5558 /* Where in input to try to start matching. */
5559 d2
= regstart
[regno
];
5561 /* Remember the start point to rollback upon failure. */
5564 /* Where to stop matching; if both the place to start and
5565 the place to stop matching are in the same string, then
5566 set to the place to stop, otherwise, for now have to use
5567 the end of the first string. */
5569 dend2
= ((FIRST_STRING_P (regstart
[regno
])
5570 == FIRST_STRING_P (regend
[regno
]))
5571 ? regend
[regno
] : end_match_1
);
5576 /* If necessary, advance to next segment in register
5580 if (dend2
== end_match_2
) break;
5581 if (dend2
== regend
[regno
]) break;
5583 /* End of string1 => advance to string2. */
5585 dend2
= regend
[regno
];
5587 /* At end of register contents => success */
5588 if (d2
== dend2
) break;
5590 /* If necessary, advance to next segment in data. */
5593 /* How many characters left in this segment to match. */
5596 /* Want how many consecutive characters we can match in
5597 one shot, so, if necessary, adjust the count. */
5598 if (dcnt
> dend2
- d2
)
5601 /* Compare that many; failure if mismatch, else move
5603 if (RE_TRANSLATE_P (translate
)
5604 ? bcmp_translate (d
, d2
, dcnt
, translate
, target_multibyte
)
5605 : memcmp (d
, d2
, dcnt
))
5610 d
+= dcnt
, d2
+= dcnt
;
5616 /* begline matches the empty string at the beginning of the string
5617 (unless `not_bol' is set in `bufp'), and after newlines. */
5619 DEBUG_PRINT ("EXECUTING begline.\n");
5621 if (AT_STRINGS_BEG (d
))
5623 if (!bufp
->not_bol
) break;
5628 GET_CHAR_BEFORE_2 (c
, d
, string1
, end1
, string2
, end2
);
5632 /* In all other cases, we fail. */
5636 /* endline is the dual of begline. */
5638 DEBUG_PRINT ("EXECUTING endline.\n");
5640 if (AT_STRINGS_END (d
))
5642 if (!bufp
->not_eol
) break;
5646 PREFETCH_NOLIMIT ();
5653 /* Match at the very beginning of the data. */
5655 DEBUG_PRINT ("EXECUTING begbuf.\n");
5656 if (AT_STRINGS_BEG (d
))
5661 /* Match at the very end of the data. */
5663 DEBUG_PRINT ("EXECUTING endbuf.\n");
5664 if (AT_STRINGS_END (d
))
5669 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5670 pushes NULL as the value for the string on the stack. Then
5671 `POP_FAILURE_POINT' will keep the current value for the
5672 string, instead of restoring it. To see why, consider
5673 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5674 then the . fails against the \n. But the next thing we want
5675 to do is match the \n against the \n; if we restored the
5676 string value, we would be back at the foo.
5678 Because this is used only in specific cases, we don't need to
5679 check all the things that `on_failure_jump' does, to make
5680 sure the right things get saved on the stack. Hence we don't
5681 share its code. The only reason to push anything on the
5682 stack at all is that otherwise we would have to change
5683 `anychar's code to do something besides goto fail in this
5684 case; that seems worse than this. */
5685 case on_failure_keep_string_jump
:
5686 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5687 DEBUG_PRINT ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5690 PUSH_FAILURE_POINT (p
- 3, NULL
);
5693 /* A nasty loop is introduced by the non-greedy *? and +?.
5694 With such loops, the stack only ever contains one failure point
5695 at a time, so that a plain on_failure_jump_loop kind of
5696 cycle detection cannot work. Worse yet, such a detection
5697 can not only fail to detect a cycle, but it can also wrongly
5698 detect a cycle (between different instantiations of the same
5700 So the method used for those nasty loops is a little different:
5701 We use a special cycle-detection-stack-frame which is pushed
5702 when the on_failure_jump_nastyloop failure-point is *popped*.
5703 This special frame thus marks the beginning of one iteration
5704 through the loop and we can hence easily check right here
5705 whether something matched between the beginning and the end of
5707 case on_failure_jump_nastyloop
:
5708 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5709 DEBUG_PRINT ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5712 assert ((re_opcode_t
)p
[-4] == no_op
);
5715 CHECK_INFINITE_LOOP (p
- 4, d
);
5717 /* If there's a cycle, just continue without pushing
5718 this failure point. The failure point is the "try again"
5719 option, which shouldn't be tried.
5720 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5721 PUSH_FAILURE_POINT (p
- 3, d
);
5725 /* Simple loop detecting on_failure_jump: just check on the
5726 failure stack if the same spot was already hit earlier. */
5727 case on_failure_jump_loop
:
5729 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5730 DEBUG_PRINT ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5734 CHECK_INFINITE_LOOP (p
- 3, d
);
5736 /* If there's a cycle, get out of the loop, as if the matching
5737 had failed. We used to just `goto fail' here, but that was
5738 aborting the search a bit too early: we want to keep the
5739 empty-loop-match and keep matching after the loop.
5740 We want (x?)*y\1z to match both xxyz and xxyxz. */
5743 PUSH_FAILURE_POINT (p
- 3, d
);
5748 /* Uses of on_failure_jump:
5750 Each alternative starts with an on_failure_jump that points
5751 to the beginning of the next alternative. Each alternative
5752 except the last ends with a jump that in effect jumps past
5753 the rest of the alternatives. (They really jump to the
5754 ending jump of the following alternative, because tensioning
5755 these jumps is a hassle.)
5757 Repeats start with an on_failure_jump that points past both
5758 the repetition text and either the following jump or
5759 pop_failure_jump back to this on_failure_jump. */
5760 case on_failure_jump
:
5761 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5762 DEBUG_PRINT ("EXECUTING on_failure_jump %d (to %p):\n",
5765 PUSH_FAILURE_POINT (p
-3, d
);
5768 /* This operation is used for greedy *.
5769 Compare the beginning of the repeat with what in the
5770 pattern follows its end. If we can establish that there
5771 is nothing that they would both match, i.e., that we
5772 would have to backtrack because of (as in, e.g., `a*a')
5773 then we can use a non-backtracking loop based on
5774 on_failure_keep_string_jump instead of on_failure_jump. */
5775 case on_failure_jump_smart
:
5776 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5777 DEBUG_PRINT ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5780 re_char
*p1
= p
; /* Next operation. */
5781 /* Here, we discard `const', making re_match non-reentrant. */
5782 unsigned char *p2
= (unsigned char *) p
+ mcnt
; /* Jump dest. */
5783 unsigned char *p3
= (unsigned char *) p
- 3; /* opcode location. */
5785 p
-= 3; /* Reset so that we will re-execute the
5786 instruction once it's been changed. */
5788 EXTRACT_NUMBER (mcnt
, p2
- 2);
5790 /* Ensure this is indeed the trivial kind of loop
5791 we are expecting. */
5792 assert (skip_one_char (p1
) == p2
- 3);
5793 assert ((re_opcode_t
) p2
[-3] == jump
&& p2
+ mcnt
== p
);
5794 DEBUG_STATEMENT (debug
+= 2);
5795 if (mutually_exclusive_p (bufp
, p1
, p2
))
5797 /* Use a fast `on_failure_keep_string_jump' loop. */
5798 DEBUG_PRINT (" smart exclusive => fast loop.\n");
5799 *p3
= (unsigned char) on_failure_keep_string_jump
;
5800 STORE_NUMBER (p2
- 2, mcnt
+ 3);
5804 /* Default to a safe `on_failure_jump' loop. */
5805 DEBUG_PRINT (" smart default => slow loop.\n");
5806 *p3
= (unsigned char) on_failure_jump
;
5808 DEBUG_STATEMENT (debug
-= 2);
5812 /* Unconditionally jump (without popping any failure points). */
5816 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
5817 DEBUG_PRINT ("EXECUTING jump %d ", mcnt
);
5818 p
+= mcnt
; /* Do the jump. */
5819 DEBUG_PRINT ("(to %p).\n", p
);
5823 /* Have to succeed matching what follows at least n times.
5824 After that, handle like `on_failure_jump'. */
5826 /* Signedness doesn't matter since we only compare MCNT to 0. */
5827 EXTRACT_NUMBER (mcnt
, p
+ 2);
5828 DEBUG_PRINT ("EXECUTING succeed_n %d.\n", mcnt
);
5830 /* Originally, mcnt is how many times we HAVE to succeed. */
5833 /* Here, we discard `const', making re_match non-reentrant. */
5834 unsigned char *p2
= (unsigned char *) p
+ 2; /* counter loc. */
5837 PUSH_NUMBER (p2
, mcnt
);
5840 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5845 /* Signedness doesn't matter since we only compare MCNT to 0. */
5846 EXTRACT_NUMBER (mcnt
, p
+ 2);
5847 DEBUG_PRINT ("EXECUTING jump_n %d.\n", mcnt
);
5849 /* Originally, this is how many times we CAN jump. */
5852 /* Here, we discard `const', making re_match non-reentrant. */
5853 unsigned char *p2
= (unsigned char *) p
+ 2; /* counter loc. */
5855 PUSH_NUMBER (p2
, mcnt
);
5856 goto unconditional_jump
;
5858 /* If don't have to jump any more, skip over the rest of command. */
5865 unsigned char *p2
; /* Location of the counter. */
5866 DEBUG_PRINT ("EXECUTING set_number_at.\n");
5868 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5869 /* Here, we discard `const', making re_match non-reentrant. */
5870 p2
= (unsigned char *) p
+ mcnt
;
5871 /* Signedness doesn't matter since we only copy MCNT's bits. */
5872 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5873 DEBUG_PRINT (" Setting %p to %d.\n", p2
, mcnt
);
5874 PUSH_NUMBER (p2
, mcnt
);
5881 boolean
not = (re_opcode_t
) *(p
- 1) == notwordbound
;
5882 DEBUG_PRINT ("EXECUTING %swordbound.\n", not ? "not" : "");
5884 /* We SUCCEED (or FAIL) in one of the following cases: */
5886 /* Case 1: D is at the beginning or the end of string. */
5887 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
5891 /* C1 is the character before D, S1 is the syntax of C1, C2
5892 is the character at D, and S2 is the syntax of C2. */
5897 ssize_t offset
= PTR_TO_OFFSET (d
- 1);
5898 ssize_t charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5899 UPDATE_SYNTAX_TABLE_FAST (charpos
);
5901 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5904 UPDATE_SYNTAX_TABLE_FORWARD_FAST (charpos
+ 1);
5906 PREFETCH_NOLIMIT ();
5907 GET_CHAR_AFTER (c2
, d
, dummy
);
5910 if (/* Case 2: Only one of S1 and S2 is Sword. */
5911 ((s1
== Sword
) != (s2
== Sword
))
5912 /* Case 3: Both of S1 and S2 are Sword, and macro
5913 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5914 || ((s1
== Sword
) && WORD_BOUNDARY_P (c1
, c2
)))
5924 DEBUG_PRINT ("EXECUTING wordbeg.\n");
5926 /* We FAIL in one of the following cases: */
5928 /* Case 1: D is at the end of string. */
5929 if (AT_STRINGS_END (d
))
5933 /* C1 is the character before D, S1 is the syntax of C1, C2
5934 is the character at D, and S2 is the syntax of C2. */
5939 ssize_t offset
= PTR_TO_OFFSET (d
);
5940 ssize_t charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5941 UPDATE_SYNTAX_TABLE_FAST (charpos
);
5944 GET_CHAR_AFTER (c2
, d
, dummy
);
5947 /* Case 2: S2 is not Sword. */
5951 /* Case 3: D is not at the beginning of string ... */
5952 if (!AT_STRINGS_BEG (d
))
5954 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5956 UPDATE_SYNTAX_TABLE_BACKWARD (charpos
- 1);
5960 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5962 if ((s1
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
5969 DEBUG_PRINT ("EXECUTING wordend.\n");
5971 /* We FAIL in one of the following cases: */
5973 /* Case 1: D is at the beginning of string. */
5974 if (AT_STRINGS_BEG (d
))
5978 /* C1 is the character before D, S1 is the syntax of C1, C2
5979 is the character at D, and S2 is the syntax of C2. */
5984 ssize_t offset
= PTR_TO_OFFSET (d
) - 1;
5985 ssize_t charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5986 UPDATE_SYNTAX_TABLE_FAST (charpos
);
5988 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5991 /* Case 2: S1 is not Sword. */
5995 /* Case 3: D is not at the end of string ... */
5996 if (!AT_STRINGS_END (d
))
5998 PREFETCH_NOLIMIT ();
5999 GET_CHAR_AFTER (c2
, d
, dummy
);
6001 UPDATE_SYNTAX_TABLE_FORWARD_FAST (charpos
);
6005 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
6007 if ((s2
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
6014 DEBUG_PRINT ("EXECUTING symbeg.\n");
6016 /* We FAIL in one of the following cases: */
6018 /* Case 1: D is at the end of string. */
6019 if (AT_STRINGS_END (d
))
6023 /* C1 is the character before D, S1 is the syntax of C1, C2
6024 is the character at D, and S2 is the syntax of C2. */
6028 ssize_t offset
= PTR_TO_OFFSET (d
);
6029 ssize_t charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6030 UPDATE_SYNTAX_TABLE_FAST (charpos
);
6033 c2
= RE_STRING_CHAR (d
, target_multibyte
);
6036 /* Case 2: S2 is neither Sword nor Ssymbol. */
6037 if (s2
!= Sword
&& s2
!= Ssymbol
)
6040 /* Case 3: D is not at the beginning of string ... */
6041 if (!AT_STRINGS_BEG (d
))
6043 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
6045 UPDATE_SYNTAX_TABLE_BACKWARD (charpos
- 1);
6049 /* ... and S1 is Sword or Ssymbol. */
6050 if (s1
== Sword
|| s1
== Ssymbol
)
6057 DEBUG_PRINT ("EXECUTING symend.\n");
6059 /* We FAIL in one of the following cases: */
6061 /* Case 1: D is at the beginning of string. */
6062 if (AT_STRINGS_BEG (d
))
6066 /* C1 is the character before D, S1 is the syntax of C1, C2
6067 is the character at D, and S2 is the syntax of C2. */
6071 ssize_t offset
= PTR_TO_OFFSET (d
) - 1;
6072 ssize_t charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6073 UPDATE_SYNTAX_TABLE_FAST (charpos
);
6075 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
6078 /* Case 2: S1 is neither Ssymbol nor Sword. */
6079 if (s1
!= Sword
&& s1
!= Ssymbol
)
6082 /* Case 3: D is not at the end of string ... */
6083 if (!AT_STRINGS_END (d
))
6085 PREFETCH_NOLIMIT ();
6086 c2
= RE_STRING_CHAR (d
, target_multibyte
);
6088 UPDATE_SYNTAX_TABLE_FORWARD_FAST (charpos
+ 1);
6092 /* ... and S2 is Sword or Ssymbol. */
6093 if (s2
== Sword
|| s2
== Ssymbol
)
6102 boolean
not = (re_opcode_t
) *(p
- 1) == notsyntaxspec
;
6104 DEBUG_PRINT ("EXECUTING %ssyntaxspec %d.\n", not ? "not" : "",
6109 ssize_t offset
= PTR_TO_OFFSET (d
);
6110 ssize_t pos1
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6111 UPDATE_SYNTAX_TABLE_FAST (pos1
);
6118 GET_CHAR_AFTER (c
, d
, len
);
6119 if ((SYNTAX (c
) != (enum syntaxcode
) mcnt
) ^ not)
6128 DEBUG_PRINT ("EXECUTING at_dot.\n");
6129 if (PTR_BYTE_POS (d
) != PT_BYTE
)
6134 case notcategoryspec
:
6136 boolean
not = (re_opcode_t
) *(p
- 1) == notcategoryspec
;
6138 DEBUG_PRINT ("EXECUTING %scategoryspec %d.\n",
6139 not ? "not" : "", mcnt
);
6145 GET_CHAR_AFTER (c
, d
, len
);
6146 if ((!CHAR_HAS_CATEGORY (c
, mcnt
)) ^ not)
6158 continue; /* Successfully executed one pattern command; keep going. */
6161 /* We goto here if a matching operation fails. */
6164 if (!FAIL_STACK_EMPTY ())
6167 /* A restart point is known. Restore to that state. */
6168 DEBUG_PRINT ("\nFAIL:\n");
6169 POP_FAILURE_POINT (str
, pat
);
6172 case on_failure_keep_string_jump
:
6173 assert (str
== NULL
);
6174 goto continue_failure_jump
;
6176 case on_failure_jump_nastyloop
:
6177 assert ((re_opcode_t
)pat
[-2] == no_op
);
6178 PUSH_FAILURE_POINT (pat
- 2, str
);
6180 case on_failure_jump_loop
:
6181 case on_failure_jump
:
6184 continue_failure_jump
:
6185 EXTRACT_NUMBER_AND_INCR (mcnt
, pat
);
6190 /* A special frame used for nastyloops. */
6197 assert (p
>= bufp
->buffer
&& p
<= pend
);
6199 if (d
>= string1
&& d
<= end1
)
6203 break; /* Matching at this starting point really fails. */
6207 goto restore_best_regs
;
6211 return -1; /* Failure to match. */
6214 /* Subroutine definitions for re_match_2. */
6216 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6217 bytes; nonzero otherwise. */
6220 bcmp_translate (re_char
*s1
, re_char
*s2
, ssize_t len
,
6221 RE_TRANSLATE_TYPE translate
, const int target_multibyte
)
6223 re_char
*p1
= s1
, *p2
= s2
;
6224 re_char
*p1_end
= s1
+ len
;
6225 re_char
*p2_end
= s2
+ len
;
6227 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6228 different lengths, but relying on a single `len' would break this. -sm */
6229 while (p1
< p1_end
&& p2
< p2_end
)
6231 int p1_charlen
, p2_charlen
;
6232 re_wchar_t p1_ch
, p2_ch
;
6234 GET_CHAR_AFTER (p1_ch
, p1
, p1_charlen
);
6235 GET_CHAR_AFTER (p2_ch
, p2
, p2_charlen
);
6237 if (RE_TRANSLATE (translate
, p1_ch
)
6238 != RE_TRANSLATE (translate
, p2_ch
))
6241 p1
+= p1_charlen
, p2
+= p2_charlen
;
6244 if (p1
!= p1_end
|| p2
!= p2_end
)
6250 /* Entry points for GNU code. */
6252 /* re_compile_pattern is the GNU regular expression compiler: it
6253 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6254 Returns 0 if the pattern was valid, otherwise an error string.
6256 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6257 are set in BUFP on entry.
6259 We call regex_compile to do the actual compilation. */
6262 re_compile_pattern (const char *pattern
, size_t length
,
6264 bool posix_backtracking
, const char *whitespace_regexp
,
6266 struct re_pattern_buffer
*bufp
)
6270 /* GNU code is written to assume at least RE_NREGS registers will be set
6271 (and at least one extra will be -1). */
6272 bufp
->regs_allocated
= REGS_UNALLOCATED
;
6274 /* And GNU code determines whether or not to get register information
6275 by passing null for the REGS argument to re_match, etc., not by
6279 ret
= regex_compile ((re_char
*) pattern
, length
,
6290 return gettext (re_error_msgid
[(int) ret
]);
6292 WEAK_ALIAS (__re_compile_pattern
, re_compile_pattern
)
6294 /* Entry points compatible with 4.2 BSD regex library. We don't define
6295 them unless specifically requested. */
6297 #if defined _REGEX_RE_COMP || defined _LIBC
6299 /* BSD has one and only one pattern buffer. */
6300 static struct re_pattern_buffer re_comp_buf
;
6304 /* Make these definitions weak in libc, so POSIX programs can redefine
6305 these names if they don't use our functions, and still use
6306 regcomp/regexec below without link errors. */
6309 re_comp (const char *s
)
6315 if (!re_comp_buf
.buffer
)
6316 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6317 return (char *) gettext ("No previous regular expression");
6321 if (!re_comp_buf
.buffer
)
6323 re_comp_buf
.buffer
= malloc (200);
6324 if (re_comp_buf
.buffer
== NULL
)
6325 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6326 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
6327 re_comp_buf
.allocated
= 200;
6329 re_comp_buf
.fastmap
= malloc (1 << BYTEWIDTH
);
6330 if (re_comp_buf
.fastmap
== NULL
)
6331 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6332 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
6335 /* Since `re_exec' always passes NULL for the `regs' argument, we
6336 don't need to initialize the pattern buffer fields which affect it. */
6338 ret
= regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
6343 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6344 return (char *) gettext (re_error_msgid
[(int) ret
]);
6352 re_exec (const char *s
)
6354 const size_t len
= strlen (s
);
6355 return re_search (&re_comp_buf
, s
, len
, 0, len
, 0) >= 0;
6357 #endif /* _REGEX_RE_COMP */
6359 /* POSIX.2 functions. Don't define these for Emacs. */
6363 /* regcomp takes a regular expression as a string and compiles it.
6365 PREG is a regex_t *. We do not expect any fields to be initialized,
6366 since POSIX says we shouldn't. Thus, we set
6368 `buffer' to the compiled pattern;
6369 `used' to the length of the compiled pattern;
6370 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6371 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6372 RE_SYNTAX_POSIX_BASIC;
6373 `fastmap' to an allocated space for the fastmap;
6374 `fastmap_accurate' to zero;
6375 `re_nsub' to the number of subexpressions in PATTERN.
6377 PATTERN is the address of the pattern string.
6379 CFLAGS is a series of bits which affect compilation.
6381 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6382 use POSIX basic syntax.
6384 If REG_NEWLINE is set, then . and [^...] don't match newline.
6385 Also, regexec will try a match beginning after every newline.
6387 If REG_ICASE is set, then we considers upper- and lowercase
6388 versions of letters to be equivalent when matching.
6390 If REG_NOSUB is set, then when PREG is passed to regexec, that
6391 routine will report only success or failure, and nothing about the
6394 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6395 the return codes and their meanings.) */
6398 regcomp (regex_t
*_Restrict_ preg
, const char *_Restrict_ pattern
,
6403 = (cflags
& REG_EXTENDED
) ?
6404 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
6406 /* regex_compile will allocate the space for the compiled pattern. */
6408 preg
->allocated
= 0;
6411 /* Try to allocate space for the fastmap. */
6412 preg
->fastmap
= malloc (1 << BYTEWIDTH
);
6414 if (cflags
& REG_ICASE
)
6418 preg
->translate
= malloc (CHAR_SET_SIZE
* sizeof *preg
->translate
);
6419 if (preg
->translate
== NULL
)
6420 return (int) REG_ESPACE
;
6422 /* Map uppercase characters to corresponding lowercase ones. */
6423 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
6424 preg
->translate
[i
] = ISUPPER (i
) ? TOLOWER (i
) : i
;
6427 preg
->translate
= NULL
;
6429 /* If REG_NEWLINE is set, newlines are treated differently. */
6430 if (cflags
& REG_NEWLINE
)
6431 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6432 syntax
&= ~RE_DOT_NEWLINE
;
6433 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
6436 syntax
|= RE_NO_NEWLINE_ANCHOR
;
6438 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
6440 /* POSIX says a null character in the pattern terminates it, so we
6441 can use strlen here in compiling the pattern. */
6442 ret
= regex_compile ((re_char
*) pattern
, strlen (pattern
), syntax
, preg
);
6444 /* POSIX doesn't distinguish between an unmatched open-group and an
6445 unmatched close-group: both are REG_EPAREN. */
6446 if (ret
== REG_ERPAREN
)
6449 if (ret
== REG_NOERROR
&& preg
->fastmap
)
6450 { /* Compute the fastmap now, since regexec cannot modify the pattern
6452 re_compile_fastmap (preg
);
6453 if (preg
->can_be_null
)
6454 { /* The fastmap can't be used anyway. */
6455 free (preg
->fastmap
);
6456 preg
->fastmap
= NULL
;
6461 WEAK_ALIAS (__regcomp
, regcomp
)
6464 /* regexec searches for a given pattern, specified by PREG, in the
6467 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6468 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6469 least NMATCH elements, and we set them to the offsets of the
6470 corresponding matched substrings.
6472 EFLAGS specifies `execution flags' which affect matching: if
6473 REG_NOTBOL is set, then ^ does not match at the beginning of the
6474 string; if REG_NOTEOL is set, then $ does not match at the end.
6476 We return 0 if we find a match and REG_NOMATCH if not. */
6479 regexec (const regex_t
*_Restrict_ preg
, const char *_Restrict_ string
,
6480 size_t nmatch
, regmatch_t pmatch
[_Restrict_arr_
], int eflags
)
6483 struct re_registers regs
;
6484 regex_t private_preg
;
6485 size_t len
= strlen (string
);
6486 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0 && pmatch
;
6488 private_preg
= *preg
;
6490 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
6491 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
6493 /* The user has told us exactly how many registers to return
6494 information about, via `nmatch'. We have to pass that on to the
6495 matching routines. */
6496 private_preg
.regs_allocated
= REGS_FIXED
;
6500 regs
.num_regs
= nmatch
;
6501 regs
.start
= TALLOC (nmatch
* 2, regoff_t
);
6502 if (regs
.start
== NULL
)
6504 regs
.end
= regs
.start
+ nmatch
;
6507 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6508 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6509 was a little bit longer but still only matching the real part.
6510 This works because the `endline' will check for a '\n' and will find a
6511 '\0', correctly deciding that this is not the end of a line.
6512 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6513 a convenient '\0' there. For all we know, the string could be preceded
6514 by '\n' which would throw things off. */
6516 /* Perform the searching operation. */
6517 ret
= re_search (&private_preg
, string
, len
,
6518 /* start: */ 0, /* range: */ len
,
6519 want_reg_info
? ®s
: 0);
6521 /* Copy the register information to the POSIX structure. */
6528 for (r
= 0; r
< nmatch
; r
++)
6530 pmatch
[r
].rm_so
= regs
.start
[r
];
6531 pmatch
[r
].rm_eo
= regs
.end
[r
];
6535 /* If we needed the temporary register info, free the space now. */
6539 /* We want zero return to mean success, unlike `re_search'. */
6540 return ret
>= 0 ? REG_NOERROR
: REG_NOMATCH
;
6542 WEAK_ALIAS (__regexec
, regexec
)
6545 /* Returns a message corresponding to an error code, ERR_CODE, returned
6546 from either regcomp or regexec. We don't use PREG here.
6548 ERR_CODE was previously called ERRCODE, but that name causes an
6549 error with msvc8 compiler. */
6552 regerror (int err_code
, const regex_t
*preg
, char *errbuf
, size_t errbuf_size
)
6558 || err_code
>= (sizeof (re_error_msgid
) / sizeof (re_error_msgid
[0])))
6559 /* Only error codes returned by the rest of the code should be passed
6560 to this routine. If we are given anything else, or if other regex
6561 code generates an invalid error code, then the program has a bug.
6562 Dump core so we can fix it. */
6565 msg
= gettext (re_error_msgid
[err_code
]);
6567 msg_size
= strlen (msg
) + 1; /* Includes the null. */
6569 if (errbuf_size
!= 0)
6571 if (msg_size
> errbuf_size
)
6573 memcpy (errbuf
, msg
, errbuf_size
- 1);
6574 errbuf
[errbuf_size
- 1] = 0;
6577 strcpy (errbuf
, msg
);
6582 WEAK_ALIAS (__regerror
, regerror
)
6585 /* Free dynamically allocated space used by PREG. */
6588 regfree (regex_t
*preg
)
6590 free (preg
->buffer
);
6591 preg
->buffer
= NULL
;
6593 preg
->allocated
= 0;
6596 free (preg
->fastmap
);
6597 preg
->fastmap
= NULL
;
6598 preg
->fastmap_accurate
= 0;
6600 free (preg
->translate
);
6601 preg
->translate
= NULL
;
6603 WEAK_ALIAS (__regfree
, regfree
)
6605 #endif /* not emacs */