1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
5 Copyright (C) 1993-2013 Free Software Foundation, Inc.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 - structure the opcode space into opcode+flag.
22 - merge with glibc's regex.[ch].
23 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
24 need to modify the compiled regexp so that re_match can be reentrant.
25 - get rid of on_failure_jump_smart by doing the optimization in re_comp
26 rather than at run-time, so that re_match can be reentrant.
29 /* AIX requires this to be the first thing in the file. */
30 #if defined _AIX && !defined REGEX_MALLOC
34 /* Ignore some GCC warnings for now. This section should go away
35 once the Emacs and Gnulib regex code is merged. */
36 #if (__GNUC__ == 4 && 5 <= __GNUC_MINOR__) || 4 < __GNUC__
37 # pragma GCC diagnostic ignored "-Wstrict-overflow"
39 # pragma GCC diagnostic ignored "-Wunused-but-set-variable"
40 # pragma GCC diagnostic ignored "-Wunused-function"
41 # pragma GCC diagnostic ignored "-Wunused-macros"
42 # pragma GCC diagnostic ignored "-Wunused-result"
43 # pragma GCC diagnostic ignored "-Wunused-variable"
52 /* We need this for `regex.h', and perhaps for the Emacs include files. */
53 # include <sys/types.h>
56 /* Whether to use ISO C Amendment 1 wide char functions.
57 Those should not be used for Emacs since it uses its own. */
59 #define WIDE_CHAR_SUPPORT 1
61 #define WIDE_CHAR_SUPPORT \
62 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
65 /* For platform which support the ISO C amendment 1 functionality we
66 support user defined character classes. */
68 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
74 /* We have to keep the namespace clean. */
75 # define regfree(preg) __regfree (preg)
76 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
77 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
78 # define regerror(err_code, preg, errbuf, errbuf_size) \
79 __regerror (err_code, preg, errbuf, errbuf_size)
80 # define re_set_registers(bu, re, nu, st, en) \
81 __re_set_registers (bu, re, nu, st, en)
82 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
83 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
84 # define re_match(bufp, string, size, pos, regs) \
85 __re_match (bufp, string, size, pos, regs)
86 # define re_search(bufp, string, size, startpos, range, regs) \
87 __re_search (bufp, string, size, startpos, range, regs)
88 # define re_compile_pattern(pattern, length, bufp) \
89 __re_compile_pattern (pattern, length, bufp)
90 # define re_set_syntax(syntax) __re_set_syntax (syntax)
91 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
92 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
93 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
95 /* Make sure we call libc's function even if the user overrides them. */
96 # define btowc __btowc
97 # define iswctype __iswctype
98 # define wctype __wctype
100 # define WEAK_ALIAS(a,b) weak_alias (a, b)
102 /* We are also using some library internals. */
103 # include <locale/localeinfo.h>
104 # include <locale/elem-hash.h>
105 # include <langinfo.h>
107 # define WEAK_ALIAS(a,b)
110 /* This is for other GNU distributions with internationalized messages. */
111 #if HAVE_LIBINTL_H || defined _LIBC
112 # include <libintl.h>
114 # define gettext(msgid) (msgid)
118 /* This define is so xgettext can find the internationalizable
120 # define gettext_noop(String) String
123 /* The `emacs' switch turns on certain matching commands
124 that make sense only in Emacs. */
128 # include "character.h"
131 /* Make syntax table lookup grant data in gl_state. */
132 # define SYNTAX_ENTRY_VIA_PROPERTY
135 # include "category.h"
140 # define malloc xmalloc
144 # define realloc xrealloc
150 /* Converts the pointer to the char to BEG-based offset from the start. */
151 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
152 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
154 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
155 # define RE_TARGET_MULTIBYTE_P(bufp) ((bufp)->target_multibyte)
156 # define RE_STRING_CHAR(p, multibyte) \
157 (multibyte ? (STRING_CHAR (p)) : (*(p)))
158 # define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) \
159 (multibyte ? (STRING_CHAR_AND_LENGTH (p, len)) : ((len) = 1, *(p)))
161 # define RE_CHAR_TO_MULTIBYTE(c) UNIBYTE_TO_CHAR (c)
163 # define RE_CHAR_TO_UNIBYTE(c) CHAR_TO_BYTE_SAFE (c)
165 /* Set C a (possibly converted to multibyte) character before P. P
166 points into a string which is the virtual concatenation of STR1
167 (which ends at END1) or STR2 (which ends at END2). */
168 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
170 if (target_multibyte) \
172 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
173 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
174 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
175 c = STRING_CHAR (dtemp); \
179 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
180 (c) = RE_CHAR_TO_MULTIBYTE (c); \
184 /* Set C a (possibly converted to multibyte) character at P, and set
185 LEN to the byte length of that character. */
186 # define GET_CHAR_AFTER(c, p, len) \
188 if (target_multibyte) \
189 (c) = STRING_CHAR_AND_LENGTH (p, len); \
194 (c) = RE_CHAR_TO_MULTIBYTE (c); \
198 #else /* not emacs */
200 /* If we are not linking with Emacs proper,
201 we can't use the relocating allocator
202 even if config.h says that we can. */
207 /* When used in Emacs's lib-src, we need xmalloc and xrealloc. */
210 xmalloc (size_t size
)
212 void *val
= malloc (size
);
215 write (2, "virtual memory exhausted\n", 25);
222 xrealloc (void *block
, size_t size
)
225 /* We must call malloc explicitly when BLOCK is 0, since some
226 reallocs don't do this. */
230 val
= realloc (block
, size
);
233 write (2, "virtual memory exhausted\n", 25);
242 # define malloc xmalloc
246 # define realloc xrealloc
248 # include <stdbool.h>
251 /* Define the syntax stuff for \<, \>, etc. */
253 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
254 enum syntaxcode
{ Swhitespace
= 0, Sword
= 1, Ssymbol
= 2 };
256 /* Dummy macros for non-Emacs environments. */
257 # define CHAR_CHARSET(c) 0
258 # define CHARSET_LEADING_CODE_BASE(c) 0
259 # define MAX_MULTIBYTE_LENGTH 1
260 # define RE_MULTIBYTE_P(x) 0
261 # define RE_TARGET_MULTIBYTE_P(x) 0
262 # define WORD_BOUNDARY_P(c1, c2) (0)
263 # define CHAR_HEAD_P(p) (1)
264 # define SINGLE_BYTE_CHAR_P(c) (1)
265 # define SAME_CHARSET_P(c1, c2) (1)
266 # define BYTES_BY_CHAR_HEAD(p) (1)
267 # define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
268 # define STRING_CHAR(p) (*(p))
269 # define RE_STRING_CHAR(p, multibyte) STRING_CHAR (p)
270 # define CHAR_STRING(c, s) (*(s) = (c), 1)
271 # define STRING_CHAR_AND_LENGTH(p, actual_len) ((actual_len) = 1, *(p))
272 # define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) STRING_CHAR_AND_LENGTH (p, len)
273 # define RE_CHAR_TO_MULTIBYTE(c) (c)
274 # define RE_CHAR_TO_UNIBYTE(c) (c)
275 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
276 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
277 # define GET_CHAR_AFTER(c, p, len) \
279 # define MAKE_CHAR(charset, c1, c2) (c1)
280 # define BYTE8_TO_CHAR(c) (c)
281 # define CHAR_BYTE8_P(c) (0)
282 # define CHAR_LEADING_CODE(c) (c)
284 #endif /* not emacs */
287 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
288 # define RE_TRANSLATE_P(TBL) (TBL)
291 /* Get the interface, including the syntax bits. */
294 /* isalpha etc. are used for the character classes. */
299 /* 1 if C is an ASCII character. */
300 # define IS_REAL_ASCII(c) ((c) < 0200)
302 /* 1 if C is a unibyte character. */
303 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
305 /* The Emacs definitions should not be directly affected by locales. */
307 /* In Emacs, these are only used for single-byte characters. */
308 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
309 # define ISCNTRL(c) ((c) < ' ')
310 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
311 || ((c) >= 'a' && (c) <= 'f') \
312 || ((c) >= 'A' && (c) <= 'F'))
314 /* This is only used for single-byte characters. */
315 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
317 /* The rest must handle multibyte characters. */
319 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
320 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
323 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
324 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
327 # define ISALNUM(c) (IS_REAL_ASCII (c) \
328 ? (((c) >= 'a' && (c) <= 'z') \
329 || ((c) >= 'A' && (c) <= 'Z') \
330 || ((c) >= '0' && (c) <= '9')) \
331 : SYNTAX (c) == Sword)
333 # define ISALPHA(c) (IS_REAL_ASCII (c) \
334 ? (((c) >= 'a' && (c) <= 'z') \
335 || ((c) >= 'A' && (c) <= 'Z')) \
336 : SYNTAX (c) == Sword)
338 # define ISLOWER(c) lowercasep (c)
340 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
341 ? ((c) > ' ' && (c) < 0177 \
342 && !(((c) >= 'a' && (c) <= 'z') \
343 || ((c) >= 'A' && (c) <= 'Z') \
344 || ((c) >= '0' && (c) <= '9'))) \
345 : SYNTAX (c) != Sword)
347 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
349 # define ISUPPER(c) uppercasep (c)
351 # define ISWORD(c) (SYNTAX (c) == Sword)
353 #else /* not emacs */
355 /* 1 if C is an ASCII character. */
356 # define IS_REAL_ASCII(c) ((c) < 0200)
358 /* This distinction is not meaningful, except in Emacs. */
359 # define ISUNIBYTE(c) 1
362 # define ISBLANK(c) isblank (c)
364 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
367 # define ISGRAPH(c) isgraph (c)
369 # define ISGRAPH(c) (isprint (c) && !isspace (c))
372 /* Solaris defines ISPRINT so we must undefine it first. */
374 # define ISPRINT(c) isprint (c)
375 # define ISDIGIT(c) isdigit (c)
376 # define ISALNUM(c) isalnum (c)
377 # define ISALPHA(c) isalpha (c)
378 # define ISCNTRL(c) iscntrl (c)
379 # define ISLOWER(c) islower (c)
380 # define ISPUNCT(c) ispunct (c)
381 # define ISSPACE(c) isspace (c)
382 # define ISUPPER(c) isupper (c)
383 # define ISXDIGIT(c) isxdigit (c)
385 # define ISWORD(c) ISALPHA (c)
388 # define TOLOWER(c) _tolower (c)
390 # define TOLOWER(c) tolower (c)
393 /* How many characters in the character set. */
394 # define CHAR_SET_SIZE 256
398 extern char *re_syntax_table
;
400 # else /* not SYNTAX_TABLE */
402 static char re_syntax_table
[CHAR_SET_SIZE
];
405 init_syntax_once (void)
413 memset (re_syntax_table
, 0, sizeof re_syntax_table
);
415 for (c
= 0; c
< CHAR_SET_SIZE
; ++c
)
417 re_syntax_table
[c
] = Sword
;
419 re_syntax_table
['_'] = Ssymbol
;
424 # endif /* not SYNTAX_TABLE */
426 # define SYNTAX(c) re_syntax_table[(c)]
428 #endif /* not emacs */
430 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
432 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
433 use `alloca' instead of `malloc'. This is because using malloc in
434 re_search* or re_match* could cause memory leaks when C-g is used in
435 Emacs; also, malloc is slower and causes storage fragmentation. On
436 the other hand, malloc is more portable, and easier to debug.
438 Because we sometimes use alloca, some routines have to be macros,
439 not functions -- `alloca'-allocated space disappears at the end of the
440 function it is called in. */
444 # define REGEX_ALLOCATE malloc
445 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
446 # define REGEX_FREE free
448 #else /* not REGEX_MALLOC */
450 /* Emacs already defines alloca, sometimes. */
453 /* Make alloca work the best possible way. */
455 # define alloca __builtin_alloca
456 # else /* not __GNUC__ */
457 # ifdef HAVE_ALLOCA_H
459 # endif /* HAVE_ALLOCA_H */
460 # endif /* not __GNUC__ */
462 # endif /* not alloca */
464 # define REGEX_ALLOCATE alloca
466 /* Assumes a `char *destination' variable. */
467 # define REGEX_REALLOCATE(source, osize, nsize) \
468 (destination = (char *) alloca (nsize), \
469 memcpy (destination, source, osize))
471 /* No need to do anything to free, after alloca. */
472 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
474 #endif /* not REGEX_MALLOC */
476 /* Define how to allocate the failure stack. */
478 #if defined REL_ALLOC && defined REGEX_MALLOC
480 # define REGEX_ALLOCATE_STACK(size) \
481 r_alloc (&failure_stack_ptr, (size))
482 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
483 r_re_alloc (&failure_stack_ptr, (nsize))
484 # define REGEX_FREE_STACK(ptr) \
485 r_alloc_free (&failure_stack_ptr)
487 #else /* not using relocating allocator */
491 # define REGEX_ALLOCATE_STACK malloc
492 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
493 # define REGEX_FREE_STACK free
495 # else /* not REGEX_MALLOC */
497 # define REGEX_ALLOCATE_STACK alloca
499 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
500 REGEX_REALLOCATE (source, osize, nsize)
501 /* No need to explicitly free anything. */
502 # define REGEX_FREE_STACK(arg) ((void)0)
504 # endif /* not REGEX_MALLOC */
505 #endif /* not using relocating allocator */
508 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
509 `string1' or just past its end. This works if PTR is NULL, which is
511 #define FIRST_STRING_P(ptr) \
512 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
514 /* (Re)Allocate N items of type T using malloc, or fail. */
515 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
516 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
517 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
519 #define BYTEWIDTH 8 /* In bits. */
521 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
525 #define MAX(a, b) ((a) > (b) ? (a) : (b))
526 #define MIN(a, b) ((a) < (b) ? (a) : (b))
528 /* Type of source-pattern and string chars. */
530 typedef unsigned char re_char
;
532 typedef const unsigned char re_char
;
535 typedef char boolean
;
537 static regoff_t
re_match_2_internal (struct re_pattern_buffer
*bufp
,
538 re_char
*string1
, size_t size1
,
539 re_char
*string2
, size_t size2
,
541 struct re_registers
*regs
,
544 /* These are the command codes that appear in compiled regular
545 expressions. Some opcodes are followed by argument bytes. A
546 command code can specify any interpretation whatsoever for its
547 arguments. Zero bytes may appear in the compiled regular expression. */
553 /* Succeed right away--no more backtracking. */
556 /* Followed by one byte giving n, then by n literal bytes. */
559 /* Matches any (more or less) character. */
562 /* Matches any one char belonging to specified set. First
563 following byte is number of bitmap bytes. Then come bytes
564 for a bitmap saying which chars are in. Bits in each byte
565 are ordered low-bit-first. A character is in the set if its
566 bit is 1. A character too large to have a bit in the map is
567 automatically not in the set.
569 If the length byte has the 0x80 bit set, then that stuff
570 is followed by a range table:
571 2 bytes of flags for character sets (low 8 bits, high 8 bits)
572 See RANGE_TABLE_WORK_BITS below.
573 2 bytes, the number of pairs that follow (upto 32767)
574 pairs, each 2 multibyte characters,
575 each multibyte character represented as 3 bytes. */
578 /* Same parameters as charset, but match any character that is
579 not one of those specified. */
582 /* Start remembering the text that is matched, for storing in a
583 register. Followed by one byte with the register number, in
584 the range 0 to one less than the pattern buffer's re_nsub
588 /* Stop remembering the text that is matched and store it in a
589 memory register. Followed by one byte with the register
590 number, in the range 0 to one less than `re_nsub' in the
594 /* Match a duplicate of something remembered. Followed by one
595 byte containing the register number. */
598 /* Fail unless at beginning of line. */
601 /* Fail unless at end of line. */
604 /* Succeeds if at beginning of buffer (if emacs) or at beginning
605 of string to be matched (if not). */
608 /* Analogously, for end of buffer/string. */
611 /* Followed by two byte relative address to which to jump. */
614 /* Followed by two-byte relative address of place to resume at
615 in case of failure. */
618 /* Like on_failure_jump, but pushes a placeholder instead of the
619 current string position when executed. */
620 on_failure_keep_string_jump
,
622 /* Just like `on_failure_jump', except that it checks that we
623 don't get stuck in an infinite loop (matching an empty string
625 on_failure_jump_loop
,
627 /* Just like `on_failure_jump_loop', except that it checks for
628 a different kind of loop (the kind that shows up with non-greedy
629 operators). This operation has to be immediately preceded
631 on_failure_jump_nastyloop
,
633 /* A smart `on_failure_jump' used for greedy * and + operators.
634 It analyzes the loop before which it is put and if the
635 loop does not require backtracking, it changes itself to
636 `on_failure_keep_string_jump' and short-circuits the loop,
637 else it just defaults to changing itself into `on_failure_jump'.
638 It assumes that it is pointing to just past a `jump'. */
639 on_failure_jump_smart
,
641 /* Followed by two-byte relative address and two-byte number n.
642 After matching N times, jump to the address upon failure.
643 Does not work if N starts at 0: use on_failure_jump_loop
647 /* Followed by two-byte relative address, and two-byte number n.
648 Jump to the address N times, then fail. */
651 /* Set the following two-byte relative address to the
652 subsequent two-byte number. The address *includes* the two
656 wordbeg
, /* Succeeds if at word beginning. */
657 wordend
, /* Succeeds if at word end. */
659 wordbound
, /* Succeeds if at a word boundary. */
660 notwordbound
, /* Succeeds if not at a word boundary. */
662 symbeg
, /* Succeeds if at symbol beginning. */
663 symend
, /* Succeeds if at symbol end. */
665 /* Matches any character whose syntax is specified. Followed by
666 a byte which contains a syntax code, e.g., Sword. */
669 /* Matches any character whose syntax is not that specified. */
673 ,before_dot
, /* Succeeds if before point. */
674 at_dot
, /* Succeeds if at point. */
675 after_dot
, /* Succeeds if after point. */
677 /* Matches any character whose category-set contains the specified
678 category. The operator is followed by a byte which contains a
679 category code (mnemonic ASCII character). */
682 /* Matches any character whose category-set does not contain the
683 specified category. The operator is followed by a byte which
684 contains the category code (mnemonic ASCII character). */
689 /* Common operations on the compiled pattern. */
691 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
693 #define STORE_NUMBER(destination, number) \
695 (destination)[0] = (number) & 0377; \
696 (destination)[1] = (number) >> 8; \
699 /* Same as STORE_NUMBER, except increment DESTINATION to
700 the byte after where the number is stored. Therefore, DESTINATION
701 must be an lvalue. */
703 #define STORE_NUMBER_AND_INCR(destination, number) \
705 STORE_NUMBER (destination, number); \
706 (destination) += 2; \
709 /* Put into DESTINATION a number stored in two contiguous bytes starting
712 #define EXTRACT_NUMBER(destination, source) \
714 (destination) = *(source) & 0377; \
715 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
720 extract_number (int *dest
, re_char
*source
)
722 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
723 *dest
= *source
& 0377;
727 # ifndef EXTRACT_MACROS /* To debug the macros. */
728 # undef EXTRACT_NUMBER
729 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
730 # endif /* not EXTRACT_MACROS */
734 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
735 SOURCE must be an lvalue. */
737 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
739 EXTRACT_NUMBER (destination, source); \
745 extract_number_and_incr (int *destination
, re_char
**source
)
747 extract_number (destination
, *source
);
751 # ifndef EXTRACT_MACROS
752 # undef EXTRACT_NUMBER_AND_INCR
753 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
754 extract_number_and_incr (&dest, &src)
755 # endif /* not EXTRACT_MACROS */
759 /* Store a multibyte character in three contiguous bytes starting
760 DESTINATION, and increment DESTINATION to the byte after where the
761 character is stored. Therefore, DESTINATION must be an lvalue. */
763 #define STORE_CHARACTER_AND_INCR(destination, character) \
765 (destination)[0] = (character) & 0377; \
766 (destination)[1] = ((character) >> 8) & 0377; \
767 (destination)[2] = (character) >> 16; \
768 (destination) += 3; \
771 /* Put into DESTINATION a character stored in three contiguous bytes
772 starting at SOURCE. */
774 #define EXTRACT_CHARACTER(destination, source) \
776 (destination) = ((source)[0] \
777 | ((source)[1] << 8) \
778 | ((source)[2] << 16)); \
782 /* Macros for charset. */
784 /* Size of bitmap of charset P in bytes. P is a start of charset,
785 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
786 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
788 /* Nonzero if charset P has range table. */
789 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
791 /* Return the address of range table of charset P. But not the start
792 of table itself, but the before where the number of ranges is
793 stored. `2 +' means to skip re_opcode_t and size of bitmap,
794 and the 2 bytes of flags at the start of the range table. */
795 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
797 /* Extract the bit flags that start a range table. */
798 #define CHARSET_RANGE_TABLE_BITS(p) \
799 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
800 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
802 /* Return the address of end of RANGE_TABLE. COUNT is number of
803 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
804 is start of range and end of range. `* 3' is size of each start
806 #define CHARSET_RANGE_TABLE_END(range_table, count) \
807 ((range_table) + (count) * 2 * 3)
809 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
810 COUNT is number of ranges in RANGE_TABLE. */
811 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
814 re_wchar_t range_start, range_end; \
816 re_char *range_table_end \
817 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
819 for (rtp = (range_table); rtp < range_table_end; rtp += 2 * 3) \
821 EXTRACT_CHARACTER (range_start, rtp); \
822 EXTRACT_CHARACTER (range_end, rtp + 3); \
824 if (range_start <= (c) && (c) <= range_end) \
833 /* Test if C is in range table of CHARSET. The flag NOT is negated if
834 C is listed in it. */
835 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
838 /* Number of ranges in range table. */ \
840 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
842 EXTRACT_NUMBER_AND_INCR (count, range_table); \
843 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
847 /* If DEBUG is defined, Regex prints many voluminous messages about what
848 it is doing (if the variable `debug' is nonzero). If linked with the
849 main program in `iregex.c', you can enter patterns and strings
850 interactively. And if linked with the main program in `main.c' and
851 the other test files, you can run the already-written tests. */
855 /* We use standard I/O for debugging. */
858 /* It is useful to test things that ``must'' be true when debugging. */
861 static int debug
= -100000;
863 # define DEBUG_STATEMENT(e) e
864 # define DEBUG_PRINT1(x) if (debug > 0) printf (x)
865 # define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
866 # define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
867 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
868 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
869 if (debug > 0) print_partial_compiled_pattern (s, e)
870 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
871 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
874 /* Print the fastmap in human-readable form. */
877 print_fastmap (fastmap
)
880 unsigned was_a_range
= 0;
883 while (i
< (1 << BYTEWIDTH
))
889 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
905 /* Print a compiled pattern string in human-readable form, starting at
906 the START pointer into it and ending just before the pointer END. */
909 print_partial_compiled_pattern (start
, end
)
919 fprintf (stderr
, "(null)\n");
923 /* Loop over pattern commands. */
926 fprintf (stderr
, "%d:\t", p
- start
);
928 switch ((re_opcode_t
) *p
++)
931 fprintf (stderr
, "/no_op");
935 fprintf (stderr
, "/succeed");
940 fprintf (stderr
, "/exactn/%d", mcnt
);
943 fprintf (stderr
, "/%c", *p
++);
949 fprintf (stderr
, "/start_memory/%d", *p
++);
953 fprintf (stderr
, "/stop_memory/%d", *p
++);
957 fprintf (stderr
, "/duplicate/%d", *p
++);
961 fprintf (stderr
, "/anychar");
967 register int c
, last
= -100;
968 register int in_range
= 0;
969 int length
= CHARSET_BITMAP_SIZE (p
- 1);
970 int has_range_table
= CHARSET_RANGE_TABLE_EXISTS_P (p
- 1);
972 fprintf (stderr
, "/charset [%s",
973 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
976 fprintf (stderr
, " !extends past end of pattern! ");
978 for (c
= 0; c
< 256; c
++)
980 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
982 /* Are we starting a range? */
983 if (last
+ 1 == c
&& ! in_range
)
985 fprintf (stderr
, "-");
988 /* Have we broken a range? */
989 else if (last
+ 1 != c
&& in_range
)
991 fprintf (stderr
, "%c", last
);
996 fprintf (stderr
, "%c", c
);
1002 fprintf (stderr
, "%c", last
);
1004 fprintf (stderr
, "]");
1008 if (has_range_table
)
1011 fprintf (stderr
, "has-range-table");
1013 /* ??? Should print the range table; for now, just skip it. */
1014 p
+= 2; /* skip range table bits */
1015 EXTRACT_NUMBER_AND_INCR (count
, p
);
1016 p
= CHARSET_RANGE_TABLE_END (p
, count
);
1022 fprintf (stderr
, "/begline");
1026 fprintf (stderr
, "/endline");
1029 case on_failure_jump
:
1030 extract_number_and_incr (&mcnt
, &p
);
1031 fprintf (stderr
, "/on_failure_jump to %d", p
+ mcnt
- start
);
1034 case on_failure_keep_string_jump
:
1035 extract_number_and_incr (&mcnt
, &p
);
1036 fprintf (stderr
, "/on_failure_keep_string_jump to %d", p
+ mcnt
- start
);
1039 case on_failure_jump_nastyloop
:
1040 extract_number_and_incr (&mcnt
, &p
);
1041 fprintf (stderr
, "/on_failure_jump_nastyloop to %d", p
+ mcnt
- start
);
1044 case on_failure_jump_loop
:
1045 extract_number_and_incr (&mcnt
, &p
);
1046 fprintf (stderr
, "/on_failure_jump_loop to %d", p
+ mcnt
- start
);
1049 case on_failure_jump_smart
:
1050 extract_number_and_incr (&mcnt
, &p
);
1051 fprintf (stderr
, "/on_failure_jump_smart to %d", p
+ mcnt
- start
);
1055 extract_number_and_incr (&mcnt
, &p
);
1056 fprintf (stderr
, "/jump to %d", p
+ mcnt
- start
);
1060 extract_number_and_incr (&mcnt
, &p
);
1061 extract_number_and_incr (&mcnt2
, &p
);
1062 fprintf (stderr
, "/succeed_n to %d, %d times", p
- 2 + mcnt
- start
, mcnt2
);
1066 extract_number_and_incr (&mcnt
, &p
);
1067 extract_number_and_incr (&mcnt2
, &p
);
1068 fprintf (stderr
, "/jump_n to %d, %d times", p
- 2 + mcnt
- start
, mcnt2
);
1072 extract_number_and_incr (&mcnt
, &p
);
1073 extract_number_and_incr (&mcnt2
, &p
);
1074 fprintf (stderr
, "/set_number_at location %d to %d", p
- 2 + mcnt
- start
, mcnt2
);
1078 fprintf (stderr
, "/wordbound");
1082 fprintf (stderr
, "/notwordbound");
1086 fprintf (stderr
, "/wordbeg");
1090 fprintf (stderr
, "/wordend");
1094 fprintf (stderr
, "/symbeg");
1098 fprintf (stderr
, "/symend");
1102 fprintf (stderr
, "/syntaxspec");
1104 fprintf (stderr
, "/%d", mcnt
);
1108 fprintf (stderr
, "/notsyntaxspec");
1110 fprintf (stderr
, "/%d", mcnt
);
1115 fprintf (stderr
, "/before_dot");
1119 fprintf (stderr
, "/at_dot");
1123 fprintf (stderr
, "/after_dot");
1127 fprintf (stderr
, "/categoryspec");
1129 fprintf (stderr
, "/%d", mcnt
);
1132 case notcategoryspec
:
1133 fprintf (stderr
, "/notcategoryspec");
1135 fprintf (stderr
, "/%d", mcnt
);
1140 fprintf (stderr
, "/begbuf");
1144 fprintf (stderr
, "/endbuf");
1148 fprintf (stderr
, "?%d", *(p
-1));
1151 fprintf (stderr
, "\n");
1154 fprintf (stderr
, "%d:\tend of pattern.\n", p
- start
);
1159 print_compiled_pattern (bufp
)
1160 struct re_pattern_buffer
*bufp
;
1162 re_char
*buffer
= bufp
->buffer
;
1164 print_partial_compiled_pattern (buffer
, buffer
+ bufp
->used
);
1165 printf ("%ld bytes used/%ld bytes allocated.\n",
1166 bufp
->used
, bufp
->allocated
);
1168 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
1170 printf ("fastmap: ");
1171 print_fastmap (bufp
->fastmap
);
1174 printf ("re_nsub: %d\t", bufp
->re_nsub
);
1175 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
1176 printf ("can_be_null: %d\t", bufp
->can_be_null
);
1177 printf ("no_sub: %d\t", bufp
->no_sub
);
1178 printf ("not_bol: %d\t", bufp
->not_bol
);
1179 printf ("not_eol: %d\t", bufp
->not_eol
);
1180 printf ("syntax: %lx\n", bufp
->syntax
);
1182 /* Perhaps we should print the translate table? */
1187 print_double_string (where
, string1
, size1
, string2
, size2
)
1200 if (FIRST_STRING_P (where
))
1202 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
1203 putchar (string1
[this_char
]);
1208 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
1209 putchar (string2
[this_char
]);
1213 #else /* not DEBUG */
1218 # define DEBUG_STATEMENT(e)
1219 # define DEBUG_PRINT1(x)
1220 # define DEBUG_PRINT2(x1, x2)
1221 # define DEBUG_PRINT3(x1, x2, x3)
1222 # define DEBUG_PRINT4(x1, x2, x3, x4)
1223 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1224 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1226 #endif /* not DEBUG */
1228 /* Use this to suppress gcc's `...may be used before initialized' warnings. */
1230 # define IF_LINT(Code) Code
1232 # define IF_LINT(Code) /* empty */
1235 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1236 also be assigned to arbitrarily: each pattern buffer stores its own
1237 syntax, so it can be changed between regex compilations. */
1238 /* This has no initializer because initialized variables in Emacs
1239 become read-only after dumping. */
1240 reg_syntax_t re_syntax_options
;
1243 /* Specify the precise syntax of regexps for compilation. This provides
1244 for compatibility for various utilities which historically have
1245 different, incompatible syntaxes.
1247 The argument SYNTAX is a bit mask comprised of the various bits
1248 defined in regex.h. We return the old syntax. */
1251 re_set_syntax (reg_syntax_t syntax
)
1253 reg_syntax_t ret
= re_syntax_options
;
1255 re_syntax_options
= syntax
;
1258 WEAK_ALIAS (__re_set_syntax
, re_set_syntax
)
1260 /* Regexp to use to replace spaces, or NULL meaning don't. */
1261 static re_char
*whitespace_regexp
;
1264 re_set_whitespace_regexp (const char *regexp
)
1266 whitespace_regexp
= (re_char
*) regexp
;
1268 WEAK_ALIAS (__re_set_syntax
, re_set_syntax
)
1270 /* This table gives an error message for each of the error codes listed
1271 in regex.h. Obviously the order here has to be same as there.
1272 POSIX doesn't require that we do anything for REG_NOERROR,
1273 but why not be nice? */
1275 static const char *re_error_msgid
[] =
1277 gettext_noop ("Success"), /* REG_NOERROR */
1278 gettext_noop ("No match"), /* REG_NOMATCH */
1279 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1280 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1281 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1282 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1283 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1284 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1285 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1286 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1287 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1288 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1289 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1290 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1291 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1292 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1293 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1294 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
1297 /* Avoiding alloca during matching, to placate r_alloc. */
1299 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1300 searching and matching functions should not call alloca. On some
1301 systems, alloca is implemented in terms of malloc, and if we're
1302 using the relocating allocator routines, then malloc could cause a
1303 relocation, which might (if the strings being searched are in the
1304 ralloc heap) shift the data out from underneath the regexp
1307 Here's another reason to avoid allocation: Emacs
1308 processes input from X in a signal handler; processing X input may
1309 call malloc; if input arrives while a matching routine is calling
1310 malloc, then we're scrod. But Emacs can't just block input while
1311 calling matching routines; then we don't notice interrupts when
1312 they come in. So, Emacs blocks input around all regexp calls
1313 except the matching calls, which it leaves unprotected, in the
1314 faith that they will not malloc. */
1316 /* Normally, this is fine. */
1317 #define MATCH_MAY_ALLOCATE
1319 /* The match routines may not allocate if (1) they would do it with malloc
1320 and (2) it's not safe for them to use malloc.
1321 Note that if REL_ALLOC is defined, matching would not use malloc for the
1322 failure stack, but we would still use it for the register vectors;
1323 so REL_ALLOC should not affect this. */
1324 #if defined REGEX_MALLOC && defined emacs
1325 # undef MATCH_MAY_ALLOCATE
1329 /* Failure stack declarations and macros; both re_compile_fastmap and
1330 re_match_2 use a failure stack. These have to be macros because of
1331 REGEX_ALLOCATE_STACK. */
1334 /* Approximate number of failure points for which to initially allocate space
1335 when matching. If this number is exceeded, we allocate more
1336 space, so it is not a hard limit. */
1337 #ifndef INIT_FAILURE_ALLOC
1338 # define INIT_FAILURE_ALLOC 20
1341 /* Roughly the maximum number of failure points on the stack. Would be
1342 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1343 This is a variable only so users of regex can assign to it; we never
1344 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1345 before using it, so it should probably be a byte-count instead. */
1346 # if defined MATCH_MAY_ALLOCATE
1347 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1348 whose default stack limit is 2mb. In order for a larger
1349 value to work reliably, you have to try to make it accord
1350 with the process stack limit. */
1351 size_t re_max_failures
= 40000;
1353 size_t re_max_failures
= 4000;
1356 union fail_stack_elt
1359 /* This should be the biggest `int' that's no bigger than a pointer. */
1363 typedef union fail_stack_elt fail_stack_elt_t
;
1367 fail_stack_elt_t
*stack
;
1369 size_t avail
; /* Offset of next open position. */
1370 size_t frame
; /* Offset of the cur constructed frame. */
1373 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1376 /* Define macros to initialize and free the failure stack.
1377 Do `return -2' if the alloc fails. */
1379 #ifdef MATCH_MAY_ALLOCATE
1380 # define INIT_FAIL_STACK() \
1382 fail_stack.stack = \
1383 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1384 * sizeof (fail_stack_elt_t)); \
1386 if (fail_stack.stack == NULL) \
1389 fail_stack.size = INIT_FAILURE_ALLOC; \
1390 fail_stack.avail = 0; \
1391 fail_stack.frame = 0; \
1394 # define INIT_FAIL_STACK() \
1396 fail_stack.avail = 0; \
1397 fail_stack.frame = 0; \
1400 # define RETALLOC_IF(addr, n, t) \
1401 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
1405 /* Double the size of FAIL_STACK, up to a limit
1406 which allows approximately `re_max_failures' items.
1408 Return 1 if succeeds, and 0 if either ran out of memory
1409 allocating space for it or it was already too large.
1411 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1413 /* Factor to increase the failure stack size by
1414 when we increase it.
1415 This used to be 2, but 2 was too wasteful
1416 because the old discarded stacks added up to as much space
1417 were as ultimate, maximum-size stack. */
1418 #define FAIL_STACK_GROWTH_FACTOR 4
1420 #define GROW_FAIL_STACK(fail_stack) \
1421 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1422 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1424 : ((fail_stack).stack \
1425 = REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1426 (fail_stack).size * sizeof (fail_stack_elt_t), \
1427 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1428 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1429 * FAIL_STACK_GROWTH_FACTOR))), \
1431 (fail_stack).stack == NULL \
1433 : ((fail_stack).size \
1434 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1435 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1436 * FAIL_STACK_GROWTH_FACTOR)) \
1437 / sizeof (fail_stack_elt_t)), \
1441 /* Push a pointer value onto the failure stack.
1442 Assumes the variable `fail_stack'. Probably should only
1443 be called from within `PUSH_FAILURE_POINT'. */
1444 #define PUSH_FAILURE_POINTER(item) \
1445 fail_stack.stack[fail_stack.avail++].pointer = (item)
1447 /* This pushes an integer-valued item onto the failure stack.
1448 Assumes the variable `fail_stack'. Probably should only
1449 be called from within `PUSH_FAILURE_POINT'. */
1450 #define PUSH_FAILURE_INT(item) \
1451 fail_stack.stack[fail_stack.avail++].integer = (item)
1453 /* These POP... operations complement the PUSH... operations.
1454 All assume that `fail_stack' is nonempty. */
1455 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1456 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1458 /* Individual items aside from the registers. */
1459 #define NUM_NONREG_ITEMS 3
1461 /* Used to examine the stack (to detect infinite loops). */
1462 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1463 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1464 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1465 #define TOP_FAILURE_HANDLE() fail_stack.frame
1468 #define ENSURE_FAIL_STACK(space) \
1469 while (REMAINING_AVAIL_SLOTS <= space) { \
1470 if (!GROW_FAIL_STACK (fail_stack)) \
1472 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1473 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1476 /* Push register NUM onto the stack. */
1477 #define PUSH_FAILURE_REG(num) \
1479 char *destination; \
1480 ENSURE_FAIL_STACK(3); \
1481 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1482 num, regstart[num], regend[num]); \
1483 PUSH_FAILURE_POINTER (regstart[num]); \
1484 PUSH_FAILURE_POINTER (regend[num]); \
1485 PUSH_FAILURE_INT (num); \
1488 /* Change the counter's value to VAL, but make sure that it will
1489 be reset when backtracking. */
1490 #define PUSH_NUMBER(ptr,val) \
1492 char *destination; \
1494 ENSURE_FAIL_STACK(3); \
1495 EXTRACT_NUMBER (c, ptr); \
1496 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
1497 PUSH_FAILURE_INT (c); \
1498 PUSH_FAILURE_POINTER (ptr); \
1499 PUSH_FAILURE_INT (-1); \
1500 STORE_NUMBER (ptr, val); \
1503 /* Pop a saved register off the stack. */
1504 #define POP_FAILURE_REG_OR_COUNT() \
1506 long pfreg = POP_FAILURE_INT (); \
1509 /* It's a counter. */ \
1510 /* Here, we discard `const', making re_match non-reentrant. */ \
1511 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1512 pfreg = POP_FAILURE_INT (); \
1513 STORE_NUMBER (ptr, pfreg); \
1514 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, pfreg); \
1518 regend[pfreg] = POP_FAILURE_POINTER (); \
1519 regstart[pfreg] = POP_FAILURE_POINTER (); \
1520 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1521 pfreg, regstart[pfreg], regend[pfreg]); \
1525 /* Check that we are not stuck in an infinite loop. */
1526 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1528 ssize_t failure = TOP_FAILURE_HANDLE (); \
1529 /* Check for infinite matching loops */ \
1530 while (failure > 0 \
1531 && (FAILURE_STR (failure) == string_place \
1532 || FAILURE_STR (failure) == NULL)) \
1534 assert (FAILURE_PAT (failure) >= bufp->buffer \
1535 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1536 if (FAILURE_PAT (failure) == pat_cur) \
1541 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1542 failure = NEXT_FAILURE_HANDLE(failure); \
1544 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1547 /* Push the information about the state we will need
1548 if we ever fail back to it.
1550 Requires variables fail_stack, regstart, regend and
1551 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1554 Does `return FAILURE_CODE' if runs out of memory. */
1556 #define PUSH_FAILURE_POINT(pattern, string_place) \
1558 char *destination; \
1559 /* Must be int, so when we don't save any registers, the arithmetic \
1560 of 0 + -1 isn't done as unsigned. */ \
1562 DEBUG_STATEMENT (nfailure_points_pushed++); \
1563 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
1564 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1565 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1567 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1569 DEBUG_PRINT1 ("\n"); \
1571 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1572 PUSH_FAILURE_INT (fail_stack.frame); \
1574 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1575 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1576 DEBUG_PRINT1 ("'\n"); \
1577 PUSH_FAILURE_POINTER (string_place); \
1579 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1580 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1581 PUSH_FAILURE_POINTER (pattern); \
1583 /* Close the frame by moving the frame pointer past it. */ \
1584 fail_stack.frame = fail_stack.avail; \
1587 /* Estimate the size of data pushed by a typical failure stack entry.
1588 An estimate is all we need, because all we use this for
1589 is to choose a limit for how big to make the failure stack. */
1590 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1591 #define TYPICAL_FAILURE_SIZE 20
1593 /* How many items can still be added to the stack without overflowing it. */
1594 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1597 /* Pops what PUSH_FAIL_STACK pushes.
1599 We restore into the parameters, all of which should be lvalues:
1600 STR -- the saved data position.
1601 PAT -- the saved pattern position.
1602 REGSTART, REGEND -- arrays of string positions.
1604 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1605 `pend', `string1', `size1', `string2', and `size2'. */
1607 #define POP_FAILURE_POINT(str, pat) \
1609 assert (!FAIL_STACK_EMPTY ()); \
1611 /* Remove failure points and point to how many regs pushed. */ \
1612 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1613 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1614 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1616 /* Pop the saved registers. */ \
1617 while (fail_stack.frame < fail_stack.avail) \
1618 POP_FAILURE_REG_OR_COUNT (); \
1620 pat = POP_FAILURE_POINTER (); \
1621 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1622 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1624 /* If the saved string location is NULL, it came from an \
1625 on_failure_keep_string_jump opcode, and we want to throw away the \
1626 saved NULL, thus retaining our current position in the string. */ \
1627 str = POP_FAILURE_POINTER (); \
1628 DEBUG_PRINT2 (" Popping string %p: `", str); \
1629 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1630 DEBUG_PRINT1 ("'\n"); \
1632 fail_stack.frame = POP_FAILURE_INT (); \
1633 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
1635 assert (fail_stack.avail >= 0); \
1636 assert (fail_stack.frame <= fail_stack.avail); \
1638 DEBUG_STATEMENT (nfailure_points_popped++); \
1639 } while (0) /* POP_FAILURE_POINT */
1643 /* Registers are set to a sentinel when they haven't yet matched. */
1644 #define REG_UNSET(e) ((e) == NULL)
1646 /* Subroutine declarations and macros for regex_compile. */
1648 static reg_errcode_t
regex_compile (re_char
*pattern
, size_t size
,
1649 reg_syntax_t syntax
,
1650 struct re_pattern_buffer
*bufp
);
1651 static void store_op1 (re_opcode_t op
, unsigned char *loc
, int arg
);
1652 static void store_op2 (re_opcode_t op
, unsigned char *loc
, int arg1
, int arg2
);
1653 static void insert_op1 (re_opcode_t op
, unsigned char *loc
,
1654 int arg
, unsigned char *end
);
1655 static void insert_op2 (re_opcode_t op
, unsigned char *loc
,
1656 int arg1
, int arg2
, unsigned char *end
);
1657 static boolean
at_begline_loc_p (re_char
*pattern
, re_char
*p
,
1658 reg_syntax_t syntax
);
1659 static boolean
at_endline_loc_p (re_char
*p
, re_char
*pend
,
1660 reg_syntax_t syntax
);
1661 static re_char
*skip_one_char (re_char
*p
);
1662 static int analyse_first (re_char
*p
, re_char
*pend
,
1663 char *fastmap
, const int multibyte
);
1665 /* Fetch the next character in the uncompiled pattern, with no
1667 #define PATFETCH(c) \
1670 if (p == pend) return REG_EEND; \
1671 c = RE_STRING_CHAR_AND_LENGTH (p, len, multibyte); \
1676 /* If `translate' is non-null, return translate[D], else just D. We
1677 cast the subscript to translate because some data is declared as
1678 `char *', to avoid warnings when a string constant is passed. But
1679 when we use a character as a subscript we must make it unsigned. */
1681 # define TRANSLATE(d) \
1682 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1686 /* Macros for outputting the compiled pattern into `buffer'. */
1688 /* If the buffer isn't allocated when it comes in, use this. */
1689 #define INIT_BUF_SIZE 32
1691 /* Make sure we have at least N more bytes of space in buffer. */
1692 #define GET_BUFFER_SPACE(n) \
1693 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1696 /* Make sure we have one more byte of buffer space and then add C to it. */
1697 #define BUF_PUSH(c) \
1699 GET_BUFFER_SPACE (1); \
1700 *b++ = (unsigned char) (c); \
1704 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1705 #define BUF_PUSH_2(c1, c2) \
1707 GET_BUFFER_SPACE (2); \
1708 *b++ = (unsigned char) (c1); \
1709 *b++ = (unsigned char) (c2); \
1713 /* Store a jump with opcode OP at LOC to location TO. We store a
1714 relative address offset by the three bytes the jump itself occupies. */
1715 #define STORE_JUMP(op, loc, to) \
1716 store_op1 (op, loc, (to) - (loc) - 3)
1718 /* Likewise, for a two-argument jump. */
1719 #define STORE_JUMP2(op, loc, to, arg) \
1720 store_op2 (op, loc, (to) - (loc) - 3, arg)
1722 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1723 #define INSERT_JUMP(op, loc, to) \
1724 insert_op1 (op, loc, (to) - (loc) - 3, b)
1726 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1727 #define INSERT_JUMP2(op, loc, to, arg) \
1728 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1731 /* This is not an arbitrary limit: the arguments which represent offsets
1732 into the pattern are two bytes long. So if 2^15 bytes turns out to
1733 be too small, many things would have to change. */
1734 # define MAX_BUF_SIZE (1L << 15)
1736 /* Extend the buffer by twice its current size via realloc and
1737 reset the pointers that pointed into the old block to point to the
1738 correct places in the new one. If extending the buffer results in it
1739 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1740 #if __BOUNDED_POINTERS__
1741 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1742 # define MOVE_BUFFER_POINTER(P) \
1743 (__ptrlow (P) = new_buffer + (__ptrlow (P) - old_buffer), \
1744 SET_HIGH_BOUND (P), \
1745 __ptrvalue (P) = new_buffer + (__ptrvalue (P) - old_buffer))
1746 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1749 SET_HIGH_BOUND (b); \
1750 SET_HIGH_BOUND (begalt); \
1751 if (fixup_alt_jump) \
1752 SET_HIGH_BOUND (fixup_alt_jump); \
1754 SET_HIGH_BOUND (laststart); \
1755 if (pending_exact) \
1756 SET_HIGH_BOUND (pending_exact); \
1759 # define MOVE_BUFFER_POINTER(P) ((P) = new_buffer + ((P) - old_buffer))
1760 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
1762 #define EXTEND_BUFFER() \
1764 unsigned char *old_buffer = bufp->buffer; \
1765 if (bufp->allocated == MAX_BUF_SIZE) \
1767 bufp->allocated <<= 1; \
1768 if (bufp->allocated > MAX_BUF_SIZE) \
1769 bufp->allocated = MAX_BUF_SIZE; \
1770 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1771 if (bufp->buffer == NULL) \
1772 return REG_ESPACE; \
1773 /* If the buffer moved, move all the pointers into it. */ \
1774 if (old_buffer != bufp->buffer) \
1776 unsigned char *new_buffer = bufp->buffer; \
1777 MOVE_BUFFER_POINTER (b); \
1778 MOVE_BUFFER_POINTER (begalt); \
1779 if (fixup_alt_jump) \
1780 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1782 MOVE_BUFFER_POINTER (laststart); \
1783 if (pending_exact) \
1784 MOVE_BUFFER_POINTER (pending_exact); \
1786 ELSE_EXTEND_BUFFER_HIGH_BOUND \
1790 /* Since we have one byte reserved for the register number argument to
1791 {start,stop}_memory, the maximum number of groups we can report
1792 things about is what fits in that byte. */
1793 #define MAX_REGNUM 255
1795 /* But patterns can have more than `MAX_REGNUM' registers. We just
1796 ignore the excess. */
1797 typedef int regnum_t
;
1800 /* Macros for the compile stack. */
1802 /* Since offsets can go either forwards or backwards, this type needs to
1803 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1804 /* int may be not enough when sizeof(int) == 2. */
1805 typedef long pattern_offset_t
;
1809 pattern_offset_t begalt_offset
;
1810 pattern_offset_t fixup_alt_jump
;
1811 pattern_offset_t laststart_offset
;
1813 } compile_stack_elt_t
;
1818 compile_stack_elt_t
*stack
;
1820 size_t avail
; /* Offset of next open position. */
1821 } compile_stack_type
;
1824 #define INIT_COMPILE_STACK_SIZE 32
1826 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1827 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1829 /* The next available element. */
1830 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1832 /* Explicit quit checking is needed for Emacs, which uses polling to
1833 process input events. */
1835 # define IMMEDIATE_QUIT_CHECK \
1837 if (immediate_quit) QUIT; \
1840 # define IMMEDIATE_QUIT_CHECK ((void)0)
1843 /* Structure to manage work area for range table. */
1844 struct range_table_work_area
1846 int *table
; /* actual work area. */
1847 int allocated
; /* allocated size for work area in bytes. */
1848 int used
; /* actually used size in words. */
1849 int bits
; /* flag to record character classes */
1852 /* Make sure that WORK_AREA can hold more N multibyte characters.
1853 This is used only in set_image_of_range and set_image_of_range_1.
1854 It expects WORK_AREA to be a pointer.
1855 If it can't get the space, it returns from the surrounding function. */
1857 #define EXTEND_RANGE_TABLE(work_area, n) \
1859 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
1861 extend_range_table_work_area (&work_area); \
1862 if ((work_area).table == 0) \
1863 return (REG_ESPACE); \
1867 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1868 (work_area).bits |= (bit)
1870 /* Bits used to implement the multibyte-part of the various character classes
1871 such as [:alnum:] in a charset's range table. */
1872 #define BIT_WORD 0x1
1873 #define BIT_LOWER 0x2
1874 #define BIT_PUNCT 0x4
1875 #define BIT_SPACE 0x8
1876 #define BIT_UPPER 0x10
1877 #define BIT_MULTIBYTE 0x20
1879 /* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1880 #define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
1882 EXTEND_RANGE_TABLE ((work_area), 2); \
1883 (work_area).table[(work_area).used++] = (range_start); \
1884 (work_area).table[(work_area).used++] = (range_end); \
1887 /* Free allocated memory for WORK_AREA. */
1888 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1890 if ((work_area).table) \
1891 free ((work_area).table); \
1894 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1895 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1896 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1897 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1900 /* Set the bit for character C in a list. */
1901 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
1906 /* Store characters in the range FROM to TO in the bitmap at B (for
1907 ASCII and unibyte characters) and WORK_AREA (for multibyte
1908 characters) while translating them and paying attention to the
1909 continuity of translated characters.
1911 Implementation note: It is better to implement these fairly big
1912 macros by a function, but it's not that easy because macros called
1913 in this macro assume various local variables already declared. */
1915 /* Both FROM and TO are ASCII characters. */
1917 #define SETUP_ASCII_RANGE(work_area, FROM, TO) \
1921 for (C0 = (FROM); C0 <= (TO); C0++) \
1923 C1 = TRANSLATE (C0); \
1924 if (! ASCII_CHAR_P (C1)) \
1926 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
1927 if ((C1 = RE_CHAR_TO_UNIBYTE (C1)) < 0) \
1930 SET_LIST_BIT (C1); \
1935 /* Both FROM and TO are unibyte characters (0x80..0xFF). */
1937 #define SETUP_UNIBYTE_RANGE(work_area, FROM, TO) \
1939 int C0, C1, C2, I; \
1940 int USED = RANGE_TABLE_WORK_USED (work_area); \
1942 for (C0 = (FROM); C0 <= (TO); C0++) \
1944 C1 = RE_CHAR_TO_MULTIBYTE (C0); \
1945 if (CHAR_BYTE8_P (C1)) \
1946 SET_LIST_BIT (C0); \
1949 C2 = TRANSLATE (C1); \
1951 || (C1 = RE_CHAR_TO_UNIBYTE (C2)) < 0) \
1953 SET_LIST_BIT (C1); \
1954 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
1956 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
1957 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
1959 if (C2 >= from - 1 && C2 <= to + 1) \
1961 if (C2 == from - 1) \
1962 RANGE_TABLE_WORK_ELT (work_area, I)--; \
1963 else if (C2 == to + 1) \
1964 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
1969 SET_RANGE_TABLE_WORK_AREA ((work_area), C2, C2); \
1975 /* Both FROM and TO are multibyte characters. */
1977 #define SETUP_MULTIBYTE_RANGE(work_area, FROM, TO) \
1979 int C0, C1, C2, I, USED = RANGE_TABLE_WORK_USED (work_area); \
1981 SET_RANGE_TABLE_WORK_AREA ((work_area), (FROM), (TO)); \
1982 for (C0 = (FROM); C0 <= (TO); C0++) \
1984 C1 = TRANSLATE (C0); \
1985 if ((C2 = RE_CHAR_TO_UNIBYTE (C1)) >= 0 \
1986 || (C1 != C0 && (C2 = RE_CHAR_TO_UNIBYTE (C0)) >= 0)) \
1987 SET_LIST_BIT (C2); \
1988 if (C1 >= (FROM) && C1 <= (TO)) \
1990 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
1992 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
1993 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
1995 if (C1 >= from - 1 && C1 <= to + 1) \
1997 if (C1 == from - 1) \
1998 RANGE_TABLE_WORK_ELT (work_area, I)--; \
1999 else if (C1 == to + 1) \
2000 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
2005 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
2011 /* Get the next unsigned number in the uncompiled pattern. */
2012 #define GET_UNSIGNED_NUMBER(num) \
2015 FREE_STACK_RETURN (REG_EBRACE); \
2019 while ('0' <= c && c <= '9') \
2025 num = num * 10 + c - '0'; \
2026 if (num / 10 != prev) \
2027 FREE_STACK_RETURN (REG_BADBR); \
2029 FREE_STACK_RETURN (REG_EBRACE); \
2035 #if ! WIDE_CHAR_SUPPORT
2037 /* Map a string to the char class it names (if any). */
2039 re_wctype (const re_char
*str
)
2041 const char *string
= (const char *) str
;
2042 if (STREQ (string
, "alnum")) return RECC_ALNUM
;
2043 else if (STREQ (string
, "alpha")) return RECC_ALPHA
;
2044 else if (STREQ (string
, "word")) return RECC_WORD
;
2045 else if (STREQ (string
, "ascii")) return RECC_ASCII
;
2046 else if (STREQ (string
, "nonascii")) return RECC_NONASCII
;
2047 else if (STREQ (string
, "graph")) return RECC_GRAPH
;
2048 else if (STREQ (string
, "lower")) return RECC_LOWER
;
2049 else if (STREQ (string
, "print")) return RECC_PRINT
;
2050 else if (STREQ (string
, "punct")) return RECC_PUNCT
;
2051 else if (STREQ (string
, "space")) return RECC_SPACE
;
2052 else if (STREQ (string
, "upper")) return RECC_UPPER
;
2053 else if (STREQ (string
, "unibyte")) return RECC_UNIBYTE
;
2054 else if (STREQ (string
, "multibyte")) return RECC_MULTIBYTE
;
2055 else if (STREQ (string
, "digit")) return RECC_DIGIT
;
2056 else if (STREQ (string
, "xdigit")) return RECC_XDIGIT
;
2057 else if (STREQ (string
, "cntrl")) return RECC_CNTRL
;
2058 else if (STREQ (string
, "blank")) return RECC_BLANK
;
2062 /* True if CH is in the char class CC. */
2064 re_iswctype (int ch
, re_wctype_t cc
)
2068 case RECC_ALNUM
: return ISALNUM (ch
) != 0;
2069 case RECC_ALPHA
: return ISALPHA (ch
) != 0;
2070 case RECC_BLANK
: return ISBLANK (ch
) != 0;
2071 case RECC_CNTRL
: return ISCNTRL (ch
) != 0;
2072 case RECC_DIGIT
: return ISDIGIT (ch
) != 0;
2073 case RECC_GRAPH
: return ISGRAPH (ch
) != 0;
2074 case RECC_LOWER
: return ISLOWER (ch
) != 0;
2075 case RECC_PRINT
: return ISPRINT (ch
) != 0;
2076 case RECC_PUNCT
: return ISPUNCT (ch
) != 0;
2077 case RECC_SPACE
: return ISSPACE (ch
) != 0;
2078 case RECC_UPPER
: return ISUPPER (ch
) != 0;
2079 case RECC_XDIGIT
: return ISXDIGIT (ch
) != 0;
2080 case RECC_ASCII
: return IS_REAL_ASCII (ch
) != 0;
2081 case RECC_NONASCII
: return !IS_REAL_ASCII (ch
);
2082 case RECC_UNIBYTE
: return ISUNIBYTE (ch
) != 0;
2083 case RECC_MULTIBYTE
: return !ISUNIBYTE (ch
);
2084 case RECC_WORD
: return ISWORD (ch
) != 0;
2085 case RECC_ERROR
: return false;
2091 /* Return a bit-pattern to use in the range-table bits to match multibyte
2092 chars of class CC. */
2094 re_wctype_to_bit (re_wctype_t cc
)
2098 case RECC_NONASCII
: case RECC_PRINT
: case RECC_GRAPH
:
2099 case RECC_MULTIBYTE
: return BIT_MULTIBYTE
;
2100 case RECC_ALPHA
: case RECC_ALNUM
: case RECC_WORD
: return BIT_WORD
;
2101 case RECC_LOWER
: return BIT_LOWER
;
2102 case RECC_UPPER
: return BIT_UPPER
;
2103 case RECC_PUNCT
: return BIT_PUNCT
;
2104 case RECC_SPACE
: return BIT_SPACE
;
2105 case RECC_ASCII
: case RECC_DIGIT
: case RECC_XDIGIT
: case RECC_CNTRL
:
2106 case RECC_BLANK
: case RECC_UNIBYTE
: case RECC_ERROR
: return 0;
2113 /* Filling in the work area of a range. */
2115 /* Actually extend the space in WORK_AREA. */
2118 extend_range_table_work_area (struct range_table_work_area
*work_area
)
2120 work_area
->allocated
+= 16 * sizeof (int);
2121 work_area
->table
= realloc (work_area
->table
, work_area
->allocated
);
2127 /* Carefully find the ranges of codes that are equivalent
2128 under case conversion to the range start..end when passed through
2129 TRANSLATE. Handle the case where non-letters can come in between
2130 two upper-case letters (which happens in Latin-1).
2131 Also handle the case of groups of more than 2 case-equivalent chars.
2133 The basic method is to look at consecutive characters and see
2134 if they can form a run that can be handled as one.
2136 Returns -1 if successful, REG_ESPACE if ran out of space. */
2139 set_image_of_range_1 (struct range_table_work_area
*work_area
,
2140 re_wchar_t start
, re_wchar_t end
,
2141 RE_TRANSLATE_TYPE translate
)
2143 /* `one_case' indicates a character, or a run of characters,
2144 each of which is an isolate (no case-equivalents).
2145 This includes all ASCII non-letters.
2147 `two_case' indicates a character, or a run of characters,
2148 each of which has two case-equivalent forms.
2149 This includes all ASCII letters.
2151 `strange' indicates a character that has more than one
2154 enum case_type
{one_case
, two_case
, strange
};
2156 /* Describe the run that is in progress,
2157 which the next character can try to extend.
2158 If run_type is strange, that means there really is no run.
2159 If run_type is one_case, then run_start...run_end is the run.
2160 If run_type is two_case, then the run is run_start...run_end,
2161 and the case-equivalents end at run_eqv_end. */
2163 enum case_type run_type
= strange
;
2164 int run_start
, run_end
, run_eqv_end
;
2166 Lisp_Object eqv_table
;
2168 if (!RE_TRANSLATE_P (translate
))
2170 EXTEND_RANGE_TABLE (work_area
, 2);
2171 work_area
->table
[work_area
->used
++] = (start
);
2172 work_area
->table
[work_area
->used
++] = (end
);
2176 eqv_table
= XCHAR_TABLE (translate
)->extras
[2];
2178 for (; start
<= end
; start
++)
2180 enum case_type this_type
;
2181 int eqv
= RE_TRANSLATE (eqv_table
, start
);
2182 int minchar
, maxchar
;
2184 /* Classify this character */
2186 this_type
= one_case
;
2187 else if (RE_TRANSLATE (eqv_table
, eqv
) == start
)
2188 this_type
= two_case
;
2190 this_type
= strange
;
2193 minchar
= start
, maxchar
= eqv
;
2195 minchar
= eqv
, maxchar
= start
;
2197 /* Can this character extend the run in progress? */
2198 if (this_type
== strange
|| this_type
!= run_type
2199 || !(minchar
== run_end
+ 1
2200 && (run_type
== two_case
2201 ? maxchar
== run_eqv_end
+ 1 : 1)))
2204 Record each of its equivalent ranges. */
2205 if (run_type
== one_case
)
2207 EXTEND_RANGE_TABLE (work_area
, 2);
2208 work_area
->table
[work_area
->used
++] = run_start
;
2209 work_area
->table
[work_area
->used
++] = run_end
;
2211 else if (run_type
== two_case
)
2213 EXTEND_RANGE_TABLE (work_area
, 4);
2214 work_area
->table
[work_area
->used
++] = run_start
;
2215 work_area
->table
[work_area
->used
++] = run_end
;
2216 work_area
->table
[work_area
->used
++]
2217 = RE_TRANSLATE (eqv_table
, run_start
);
2218 work_area
->table
[work_area
->used
++]
2219 = RE_TRANSLATE (eqv_table
, run_end
);
2224 if (this_type
== strange
)
2226 /* For a strange character, add each of its equivalents, one
2227 by one. Don't start a range. */
2230 EXTEND_RANGE_TABLE (work_area
, 2);
2231 work_area
->table
[work_area
->used
++] = eqv
;
2232 work_area
->table
[work_area
->used
++] = eqv
;
2233 eqv
= RE_TRANSLATE (eqv_table
, eqv
);
2235 while (eqv
!= start
);
2238 /* Add this char to the run, or start a new run. */
2239 else if (run_type
== strange
)
2241 /* Initialize a new range. */
2242 run_type
= this_type
;
2245 run_eqv_end
= RE_TRANSLATE (eqv_table
, run_end
);
2249 /* Extend a running range. */
2251 run_eqv_end
= RE_TRANSLATE (eqv_table
, run_end
);
2255 /* If a run is still in progress at the end, finish it now
2256 by recording its equivalent ranges. */
2257 if (run_type
== one_case
)
2259 EXTEND_RANGE_TABLE (work_area
, 2);
2260 work_area
->table
[work_area
->used
++] = run_start
;
2261 work_area
->table
[work_area
->used
++] = run_end
;
2263 else if (run_type
== two_case
)
2265 EXTEND_RANGE_TABLE (work_area
, 4);
2266 work_area
->table
[work_area
->used
++] = run_start
;
2267 work_area
->table
[work_area
->used
++] = run_end
;
2268 work_area
->table
[work_area
->used
++]
2269 = RE_TRANSLATE (eqv_table
, run_start
);
2270 work_area
->table
[work_area
->used
++]
2271 = RE_TRANSLATE (eqv_table
, run_end
);
2279 /* Record the image of the range start..end when passed through
2280 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2281 and is not even necessarily contiguous.
2282 Normally we approximate it with the smallest contiguous range that contains
2283 all the chars we need. However, for Latin-1 we go to extra effort
2286 This function is not called for ASCII ranges.
2288 Returns -1 if successful, REG_ESPACE if ran out of space. */
2291 set_image_of_range (struct range_table_work_area
*work_area
,
2292 re_wchar_t start
, re_wchar_t end
,
2293 RE_TRANSLATE_TYPE translate
)
2295 re_wchar_t cmin
, cmax
;
2298 /* For Latin-1 ranges, use set_image_of_range_1
2299 to get proper handling of ranges that include letters and nonletters.
2300 For a range that includes the whole of Latin-1, this is not necessary.
2301 For other character sets, we don't bother to get this right. */
2302 if (RE_TRANSLATE_P (translate
) && start
< 04400
2303 && !(start
< 04200 && end
>= 04377))
2310 tem
= set_image_of_range_1 (work_area
, start
, newend
, translate
);
2320 EXTEND_RANGE_TABLE (work_area
, 2);
2321 work_area
->table
[work_area
->used
++] = (start
);
2322 work_area
->table
[work_area
->used
++] = (end
);
2324 cmin
= -1, cmax
= -1;
2326 if (RE_TRANSLATE_P (translate
))
2330 for (ch
= start
; ch
<= end
; ch
++)
2332 re_wchar_t c
= TRANSLATE (ch
);
2333 if (! (start
<= c
&& c
<= end
))
2339 cmin
= MIN (cmin
, c
);
2340 cmax
= MAX (cmax
, c
);
2347 EXTEND_RANGE_TABLE (work_area
, 2);
2348 work_area
->table
[work_area
->used
++] = (cmin
);
2349 work_area
->table
[work_area
->used
++] = (cmax
);
2357 #ifndef MATCH_MAY_ALLOCATE
2359 /* If we cannot allocate large objects within re_match_2_internal,
2360 we make the fail stack and register vectors global.
2361 The fail stack, we grow to the maximum size when a regexp
2363 The register vectors, we adjust in size each time we
2364 compile a regexp, according to the number of registers it needs. */
2366 static fail_stack_type fail_stack
;
2368 /* Size with which the following vectors are currently allocated.
2369 That is so we can make them bigger as needed,
2370 but never make them smaller. */
2371 static int regs_allocated_size
;
2373 static re_char
** regstart
, ** regend
;
2374 static re_char
**best_regstart
, **best_regend
;
2376 /* Make the register vectors big enough for NUM_REGS registers,
2377 but don't make them smaller. */
2380 regex_grow_registers (int num_regs
)
2382 if (num_regs
> regs_allocated_size
)
2384 RETALLOC_IF (regstart
, num_regs
, re_char
*);
2385 RETALLOC_IF (regend
, num_regs
, re_char
*);
2386 RETALLOC_IF (best_regstart
, num_regs
, re_char
*);
2387 RETALLOC_IF (best_regend
, num_regs
, re_char
*);
2389 regs_allocated_size
= num_regs
;
2393 #endif /* not MATCH_MAY_ALLOCATE */
2395 static boolean
group_in_compile_stack (compile_stack_type compile_stack
,
2398 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2399 Returns one of error codes defined in `regex.h', or zero for success.
2401 Assumes the `allocated' (and perhaps `buffer') and `translate'
2402 fields are set in BUFP on entry.
2404 If it succeeds, results are put in BUFP (if it returns an error, the
2405 contents of BUFP are undefined):
2406 `buffer' is the compiled pattern;
2407 `syntax' is set to SYNTAX;
2408 `used' is set to the length of the compiled pattern;
2409 `fastmap_accurate' is zero;
2410 `re_nsub' is the number of subexpressions in PATTERN;
2411 `not_bol' and `not_eol' are zero;
2413 The `fastmap' field is neither examined nor set. */
2415 /* Insert the `jump' from the end of last alternative to "here".
2416 The space for the jump has already been allocated. */
2417 #define FIXUP_ALT_JUMP() \
2419 if (fixup_alt_jump) \
2420 STORE_JUMP (jump, fixup_alt_jump, b); \
2424 /* Return, freeing storage we allocated. */
2425 #define FREE_STACK_RETURN(value) \
2427 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2428 free (compile_stack.stack); \
2432 static reg_errcode_t
2433 regex_compile (const re_char
*pattern
, size_t size
, reg_syntax_t syntax
, struct re_pattern_buffer
*bufp
)
2435 /* We fetch characters from PATTERN here. */
2436 register re_wchar_t c
, c1
;
2438 /* Points to the end of the buffer, where we should append. */
2439 register unsigned char *b
;
2441 /* Keeps track of unclosed groups. */
2442 compile_stack_type compile_stack
;
2444 /* Points to the current (ending) position in the pattern. */
2446 /* `const' makes AIX compiler fail. */
2447 unsigned char *p
= pattern
;
2449 re_char
*p
= pattern
;
2451 re_char
*pend
= pattern
+ size
;
2453 /* How to translate the characters in the pattern. */
2454 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
2456 /* Address of the count-byte of the most recently inserted `exactn'
2457 command. This makes it possible to tell if a new exact-match
2458 character can be added to that command or if the character requires
2459 a new `exactn' command. */
2460 unsigned char *pending_exact
= 0;
2462 /* Address of start of the most recently finished expression.
2463 This tells, e.g., postfix * where to find the start of its
2464 operand. Reset at the beginning of groups and alternatives. */
2465 unsigned char *laststart
= 0;
2467 /* Address of beginning of regexp, or inside of last group. */
2468 unsigned char *begalt
;
2470 /* Place in the uncompiled pattern (i.e., the {) to
2471 which to go back if the interval is invalid. */
2472 re_char
*beg_interval
;
2474 /* Address of the place where a forward jump should go to the end of
2475 the containing expression. Each alternative of an `or' -- except the
2476 last -- ends with a forward jump of this sort. */
2477 unsigned char *fixup_alt_jump
= 0;
2479 /* Work area for range table of charset. */
2480 struct range_table_work_area range_table_work
;
2482 /* If the object matched can contain multibyte characters. */
2483 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
2485 /* Nonzero if we have pushed down into a subpattern. */
2486 int in_subpattern
= 0;
2488 /* These hold the values of p, pattern, and pend from the main
2489 pattern when we have pushed into a subpattern. */
2490 re_char
*main_p
IF_LINT (= NULL
);
2491 re_char
*main_pattern
IF_LINT (= NULL
);
2492 re_char
*main_pend
IF_LINT (= NULL
);
2496 DEBUG_PRINT1 ("\nCompiling pattern: ");
2499 unsigned debug_count
;
2501 for (debug_count
= 0; debug_count
< size
; debug_count
++)
2502 putchar (pattern
[debug_count
]);
2507 /* Initialize the compile stack. */
2508 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
2509 if (compile_stack
.stack
== NULL
)
2512 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
2513 compile_stack
.avail
= 0;
2515 range_table_work
.table
= 0;
2516 range_table_work
.allocated
= 0;
2518 /* Initialize the pattern buffer. */
2519 bufp
->syntax
= syntax
;
2520 bufp
->fastmap_accurate
= 0;
2521 bufp
->not_bol
= bufp
->not_eol
= 0;
2522 bufp
->used_syntax
= 0;
2524 /* Set `used' to zero, so that if we return an error, the pattern
2525 printer (for debugging) will think there's no pattern. We reset it
2529 /* Always count groups, whether or not bufp->no_sub is set. */
2532 #if !defined emacs && !defined SYNTAX_TABLE
2533 /* Initialize the syntax table. */
2534 init_syntax_once ();
2537 if (bufp
->allocated
== 0)
2540 { /* If zero allocated, but buffer is non-null, try to realloc
2541 enough space. This loses if buffer's address is bogus, but
2542 that is the user's responsibility. */
2543 RETALLOC (bufp
->buffer
, INIT_BUF_SIZE
, unsigned char);
2546 { /* Caller did not allocate a buffer. Do it for them. */
2547 bufp
->buffer
= TALLOC (INIT_BUF_SIZE
, unsigned char);
2549 if (!bufp
->buffer
) FREE_STACK_RETURN (REG_ESPACE
);
2551 bufp
->allocated
= INIT_BUF_SIZE
;
2554 begalt
= b
= bufp
->buffer
;
2556 /* Loop through the uncompiled pattern until we're at the end. */
2561 /* If this is the end of an included regexp,
2562 pop back to the main regexp and try again. */
2566 pattern
= main_pattern
;
2571 /* If this is the end of the main regexp, we are done. */
2583 /* If there's no special whitespace regexp, treat
2584 spaces normally. And don't try to do this recursively. */
2585 if (!whitespace_regexp
|| in_subpattern
)
2588 /* Peek past following spaces. */
2595 /* If the spaces are followed by a repetition op,
2596 treat them normally. */
2598 && (*p1
== '*' || *p1
== '+' || *p1
== '?'
2599 || (*p1
== '\\' && p1
+ 1 != pend
&& p1
[1] == '{')))
2602 /* Replace the spaces with the whitespace regexp. */
2606 main_pattern
= pattern
;
2607 p
= pattern
= whitespace_regexp
;
2608 pend
= p
+ strlen ((const char *) p
);
2614 if ( /* If at start of pattern, it's an operator. */
2616 /* If context independent, it's an operator. */
2617 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2618 /* Otherwise, depends on what's come before. */
2619 || at_begline_loc_p (pattern
, p
, syntax
))
2620 BUF_PUSH ((syntax
& RE_NO_NEWLINE_ANCHOR
) ? begbuf
: begline
);
2629 if ( /* If at end of pattern, it's an operator. */
2631 /* If context independent, it's an operator. */
2632 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2633 /* Otherwise, depends on what's next. */
2634 || at_endline_loc_p (p
, pend
, syntax
))
2635 BUF_PUSH ((syntax
& RE_NO_NEWLINE_ANCHOR
) ? endbuf
: endline
);
2644 if ((syntax
& RE_BK_PLUS_QM
)
2645 || (syntax
& RE_LIMITED_OPS
))
2649 /* If there is no previous pattern... */
2652 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2653 FREE_STACK_RETURN (REG_BADRPT
);
2654 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
2659 /* 1 means zero (many) matches is allowed. */
2660 boolean zero_times_ok
= 0, many_times_ok
= 0;
2663 /* If there is a sequence of repetition chars, collapse it
2664 down to just one (the right one). We can't combine
2665 interval operators with these because of, e.g., `a{2}*',
2666 which should only match an even number of `a's. */
2670 if ((syntax
& RE_FRUGAL
)
2671 && c
== '?' && (zero_times_ok
|| many_times_ok
))
2675 zero_times_ok
|= c
!= '+';
2676 many_times_ok
|= c
!= '?';
2682 || (!(syntax
& RE_BK_PLUS_QM
)
2683 && (*p
== '+' || *p
== '?')))
2685 else if (syntax
& RE_BK_PLUS_QM
&& *p
== '\\')
2688 FREE_STACK_RETURN (REG_EESCAPE
);
2689 if (p
[1] == '+' || p
[1] == '?')
2690 PATFETCH (c
); /* Gobble up the backslash. */
2696 /* If we get here, we found another repeat character. */
2700 /* Star, etc. applied to an empty pattern is equivalent
2701 to an empty pattern. */
2702 if (!laststart
|| laststart
== b
)
2705 /* Now we know whether or not zero matches is allowed
2706 and also whether or not two or more matches is allowed. */
2711 boolean simple
= skip_one_char (laststart
) == b
;
2712 size_t startoffset
= 0;
2714 /* Check if the loop can match the empty string. */
2715 (simple
|| !analyse_first (laststart
, b
, NULL
, 0))
2716 ? on_failure_jump
: on_failure_jump_loop
;
2717 assert (skip_one_char (laststart
) <= b
);
2719 if (!zero_times_ok
&& simple
)
2720 { /* Since simple * loops can be made faster by using
2721 on_failure_keep_string_jump, we turn simple P+
2722 into PP* if P is simple. */
2723 unsigned char *p1
, *p2
;
2724 startoffset
= b
- laststart
;
2725 GET_BUFFER_SPACE (startoffset
);
2726 p1
= b
; p2
= laststart
;
2732 GET_BUFFER_SPACE (6);
2735 STORE_JUMP (ofj
, b
, b
+ 6);
2737 /* Simple * loops can use on_failure_keep_string_jump
2738 depending on what follows. But since we don't know
2739 that yet, we leave the decision up to
2740 on_failure_jump_smart. */
2741 INSERT_JUMP (simple
? on_failure_jump_smart
: ofj
,
2742 laststart
+ startoffset
, b
+ 6);
2744 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
2749 /* A simple ? pattern. */
2750 assert (zero_times_ok
);
2751 GET_BUFFER_SPACE (3);
2752 INSERT_JUMP (on_failure_jump
, laststart
, b
+ 3);
2756 else /* not greedy */
2757 { /* I wish the greedy and non-greedy cases could be merged. */
2759 GET_BUFFER_SPACE (7); /* We might use less. */
2762 boolean emptyp
= analyse_first (laststart
, b
, NULL
, 0);
2764 /* The non-greedy multiple match looks like
2765 a repeat..until: we only need a conditional jump
2766 at the end of the loop. */
2767 if (emptyp
) BUF_PUSH (no_op
);
2768 STORE_JUMP (emptyp
? on_failure_jump_nastyloop
2769 : on_failure_jump
, b
, laststart
);
2773 /* The repeat...until naturally matches one or more.
2774 To also match zero times, we need to first jump to
2775 the end of the loop (its conditional jump). */
2776 INSERT_JUMP (jump
, laststart
, b
);
2782 /* non-greedy a?? */
2783 INSERT_JUMP (jump
, laststart
, b
+ 3);
2785 INSERT_JUMP (on_failure_jump
, laststart
, laststart
+ 6);
2804 CLEAR_RANGE_TABLE_WORK_USED (range_table_work
);
2806 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2808 /* Ensure that we have enough space to push a charset: the
2809 opcode, the length count, and the bitset; 34 bytes in all. */
2810 GET_BUFFER_SPACE (34);
2814 /* We test `*p == '^' twice, instead of using an if
2815 statement, so we only need one BUF_PUSH. */
2816 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
2820 /* Remember the first position in the bracket expression. */
2823 /* Push the number of bytes in the bitmap. */
2824 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
2826 /* Clear the whole map. */
2827 memset (b
, 0, (1 << BYTEWIDTH
) / BYTEWIDTH
);
2829 /* charset_not matches newline according to a syntax bit. */
2830 if ((re_opcode_t
) b
[-2] == charset_not
2831 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
2832 SET_LIST_BIT ('\n');
2834 /* Read in characters and ranges, setting map bits. */
2837 boolean escaped_char
= false;
2838 const unsigned char *p2
= p
;
2841 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2843 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2844 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2845 So the translation is done later in a loop. Example:
2846 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
2849 /* \ might escape characters inside [...] and [^...]. */
2850 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
2852 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2855 escaped_char
= true;
2859 /* Could be the end of the bracket expression. If it's
2860 not (i.e., when the bracket expression is `[]' so
2861 far), the ']' character bit gets set way below. */
2862 if (c
== ']' && p2
!= p1
)
2866 /* See if we're at the beginning of a possible character
2869 if (!escaped_char
&&
2870 syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
2872 /* Leave room for the null. */
2873 unsigned char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
2874 const unsigned char *class_beg
;
2880 /* If pattern is `[[:'. */
2881 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2886 if ((c
== ':' && *p
== ']') || p
== pend
)
2888 if (c1
< CHAR_CLASS_MAX_LENGTH
)
2891 /* This is in any case an invalid class name. */
2896 /* If isn't a word bracketed by `[:' and `:]':
2897 undo the ending character, the letters, and
2898 leave the leading `:' and `[' (but set bits for
2900 if (c
== ':' && *p
== ']')
2902 re_wctype_t cc
= re_wctype (str
);
2905 FREE_STACK_RETURN (REG_ECTYPE
);
2907 /* Throw away the ] at the end of the character
2911 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2914 for (ch
= 0; ch
< (1 << BYTEWIDTH
); ++ch
)
2915 if (re_iswctype (btowc (ch
), cc
))
2918 if (c
< (1 << BYTEWIDTH
))
2922 /* Most character classes in a multibyte match
2923 just set a flag. Exceptions are is_blank,
2924 is_digit, is_cntrl, and is_xdigit, since
2925 they can only match ASCII characters. We
2926 don't need to handle them for multibyte.
2927 They are distinguished by a negative wctype. */
2929 /* Setup the gl_state object to its buffer-defined
2930 value. This hardcodes the buffer-global
2931 syntax-table for ASCII chars, while the other chars
2932 will obey syntax-table properties. It's not ideal,
2933 but it's the way it's been done until now. */
2934 SETUP_BUFFER_SYNTAX_TABLE ();
2936 for (ch
= 0; ch
< 256; ++ch
)
2938 c
= RE_CHAR_TO_MULTIBYTE (ch
);
2939 if (! CHAR_BYTE8_P (c
)
2940 && re_iswctype (c
, cc
))
2946 if (ASCII_CHAR_P (c1
))
2948 else if ((c1
= RE_CHAR_TO_UNIBYTE (c1
)) >= 0)
2952 SET_RANGE_TABLE_WORK_AREA_BIT
2953 (range_table_work
, re_wctype_to_bit (cc
));
2955 /* In most cases the matching rule for char classes
2956 only uses the syntax table for multibyte chars,
2957 so that the content of the syntax-table it is not
2958 hardcoded in the range_table. SPACE and WORD are
2959 the two exceptions. */
2960 if ((1 << cc
) & ((1 << RECC_SPACE
) | (1 << RECC_WORD
)))
2961 bufp
->used_syntax
= 1;
2963 /* Repeat the loop. */
2968 /* Go back to right after the "[:". */
2972 /* Because the `:' may starts the range, we
2973 can't simply set bit and repeat the loop.
2974 Instead, just set it to C and handle below. */
2979 if (p
< pend
&& p
[0] == '-' && p
[1] != ']')
2982 /* Discard the `-'. */
2985 /* Fetch the character which ends the range. */
2988 if (CHAR_BYTE8_P (c1
)
2989 && ! ASCII_CHAR_P (c
) && ! CHAR_BYTE8_P (c
))
2990 /* Treat the range from a multibyte character to
2991 raw-byte character as empty. */
2996 /* Range from C to C. */
3001 if (syntax
& RE_NO_EMPTY_RANGES
)
3002 FREE_STACK_RETURN (REG_ERANGEX
);
3003 /* Else, repeat the loop. */
3008 /* Set the range into bitmap */
3009 for (; c
<= c1
; c
++)
3012 if (ch
< (1 << BYTEWIDTH
))
3019 SETUP_ASCII_RANGE (range_table_work
, c
, ch
);
3021 if (CHAR_BYTE8_P (c1
))
3022 c
= BYTE8_TO_CHAR (128);
3026 if (CHAR_BYTE8_P (c
))
3028 c
= CHAR_TO_BYTE8 (c
);
3029 c1
= CHAR_TO_BYTE8 (c1
);
3030 for (; c
<= c1
; c
++)
3035 SETUP_MULTIBYTE_RANGE (range_table_work
, c
, c1
);
3039 SETUP_UNIBYTE_RANGE (range_table_work
, c
, c1
);
3046 /* Discard any (non)matching list bytes that are all 0 at the
3047 end of the map. Decrease the map-length byte too. */
3048 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
3052 /* Build real range table from work area. */
3053 if (RANGE_TABLE_WORK_USED (range_table_work
)
3054 || RANGE_TABLE_WORK_BITS (range_table_work
))
3057 int used
= RANGE_TABLE_WORK_USED (range_table_work
);
3059 /* Allocate space for COUNT + RANGE_TABLE. Needs two
3060 bytes for flags, two for COUNT, and three bytes for
3062 GET_BUFFER_SPACE (4 + used
* 3);
3064 /* Indicate the existence of range table. */
3065 laststart
[1] |= 0x80;
3067 /* Store the character class flag bits into the range table.
3068 If not in emacs, these flag bits are always 0. */
3069 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) & 0xff;
3070 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) >> 8;
3072 STORE_NUMBER_AND_INCR (b
, used
/ 2);
3073 for (i
= 0; i
< used
; i
++)
3074 STORE_CHARACTER_AND_INCR
3075 (b
, RANGE_TABLE_WORK_ELT (range_table_work
, i
));
3082 if (syntax
& RE_NO_BK_PARENS
)
3089 if (syntax
& RE_NO_BK_PARENS
)
3096 if (syntax
& RE_NEWLINE_ALT
)
3103 if (syntax
& RE_NO_BK_VBAR
)
3110 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
3111 goto handle_interval
;
3117 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
3119 /* Do not translate the character after the \, so that we can
3120 distinguish, e.g., \B from \b, even if we normally would
3121 translate, e.g., B to b. */
3127 if (syntax
& RE_NO_BK_PARENS
)
3128 goto normal_backslash
;
3133 regnum_t regnum
= 0;
3136 /* Look for a special (?...) construct */
3137 if ((syntax
& RE_SHY_GROUPS
) && *p
== '?')
3139 PATFETCH (c
); /* Gobble up the '?'. */
3145 case ':': shy
= 1; break;
3147 /* An explicitly specified regnum must start
3150 FREE_STACK_RETURN (REG_BADPAT
);
3151 case '1': case '2': case '3': case '4':
3152 case '5': case '6': case '7': case '8': case '9':
3153 regnum
= 10*regnum
+ (c
- '0'); break;
3155 /* Only (?:...) is supported right now. */
3156 FREE_STACK_RETURN (REG_BADPAT
);
3163 regnum
= ++bufp
->re_nsub
;
3165 { /* It's actually not shy, but explicitly numbered. */
3167 if (regnum
> bufp
->re_nsub
)
3168 bufp
->re_nsub
= regnum
;
3169 else if (regnum
> bufp
->re_nsub
3170 /* Ideally, we'd want to check that the specified
3171 group can't have matched (i.e. all subgroups
3172 using the same regnum are in other branches of
3173 OR patterns), but we don't currently keep track
3174 of enough info to do that easily. */
3175 || group_in_compile_stack (compile_stack
, regnum
))
3176 FREE_STACK_RETURN (REG_BADPAT
);
3179 /* It's really shy. */
3180 regnum
= - bufp
->re_nsub
;
3182 if (COMPILE_STACK_FULL
)
3184 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
3185 compile_stack_elt_t
);
3186 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
3188 compile_stack
.size
<<= 1;
3191 /* These are the values to restore when we hit end of this
3192 group. They are all relative offsets, so that if the
3193 whole pattern moves because of realloc, they will still
3195 COMPILE_STACK_TOP
.begalt_offset
= begalt
- bufp
->buffer
;
3196 COMPILE_STACK_TOP
.fixup_alt_jump
3197 = fixup_alt_jump
? fixup_alt_jump
- bufp
->buffer
+ 1 : 0;
3198 COMPILE_STACK_TOP
.laststart_offset
= b
- bufp
->buffer
;
3199 COMPILE_STACK_TOP
.regnum
= regnum
;
3201 /* Do not push a start_memory for groups beyond the last one
3202 we can represent in the compiled pattern. */
3203 if (regnum
<= MAX_REGNUM
&& regnum
> 0)
3204 BUF_PUSH_2 (start_memory
, regnum
);
3206 compile_stack
.avail
++;
3211 /* If we've reached MAX_REGNUM groups, then this open
3212 won't actually generate any code, so we'll have to
3213 clear pending_exact explicitly. */
3219 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
3221 if (COMPILE_STACK_EMPTY
)
3223 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3224 goto normal_backslash
;
3226 FREE_STACK_RETURN (REG_ERPAREN
);
3232 /* See similar code for backslashed left paren above. */
3233 if (COMPILE_STACK_EMPTY
)
3235 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3238 FREE_STACK_RETURN (REG_ERPAREN
);
3241 /* Since we just checked for an empty stack above, this
3242 ``can't happen''. */
3243 assert (compile_stack
.avail
!= 0);
3245 /* We don't just want to restore into `regnum', because
3246 later groups should continue to be numbered higher,
3247 as in `(ab)c(de)' -- the second group is #2. */
3250 compile_stack
.avail
--;
3251 begalt
= bufp
->buffer
+ COMPILE_STACK_TOP
.begalt_offset
;
3253 = COMPILE_STACK_TOP
.fixup_alt_jump
3254 ? bufp
->buffer
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
3256 laststart
= bufp
->buffer
+ COMPILE_STACK_TOP
.laststart_offset
;
3257 regnum
= COMPILE_STACK_TOP
.regnum
;
3258 /* If we've reached MAX_REGNUM groups, then this open
3259 won't actually generate any code, so we'll have to
3260 clear pending_exact explicitly. */
3263 /* We're at the end of the group, so now we know how many
3264 groups were inside this one. */
3265 if (regnum
<= MAX_REGNUM
&& regnum
> 0)
3266 BUF_PUSH_2 (stop_memory
, regnum
);
3271 case '|': /* `\|'. */
3272 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
3273 goto normal_backslash
;
3275 if (syntax
& RE_LIMITED_OPS
)
3278 /* Insert before the previous alternative a jump which
3279 jumps to this alternative if the former fails. */
3280 GET_BUFFER_SPACE (3);
3281 INSERT_JUMP (on_failure_jump
, begalt
, b
+ 6);
3285 /* The alternative before this one has a jump after it
3286 which gets executed if it gets matched. Adjust that
3287 jump so it will jump to this alternative's analogous
3288 jump (put in below, which in turn will jump to the next
3289 (if any) alternative's such jump, etc.). The last such
3290 jump jumps to the correct final destination. A picture:
3296 If we are at `b', then fixup_alt_jump right now points to a
3297 three-byte space after `a'. We'll put in the jump, set
3298 fixup_alt_jump to right after `b', and leave behind three
3299 bytes which we'll fill in when we get to after `c'. */
3303 /* Mark and leave space for a jump after this alternative,
3304 to be filled in later either by next alternative or
3305 when know we're at the end of a series of alternatives. */
3307 GET_BUFFER_SPACE (3);
3316 /* If \{ is a literal. */
3317 if (!(syntax
& RE_INTERVALS
)
3318 /* If we're at `\{' and it's not the open-interval
3320 || (syntax
& RE_NO_BK_BRACES
))
3321 goto normal_backslash
;
3325 /* If got here, then the syntax allows intervals. */
3327 /* At least (most) this many matches must be made. */
3328 int lower_bound
= 0, upper_bound
= -1;
3332 GET_UNSIGNED_NUMBER (lower_bound
);
3335 GET_UNSIGNED_NUMBER (upper_bound
);
3337 /* Interval such as `{1}' => match exactly once. */
3338 upper_bound
= lower_bound
;
3340 if (lower_bound
< 0 || upper_bound
> RE_DUP_MAX
3341 || (upper_bound
>= 0 && lower_bound
> upper_bound
))
3342 FREE_STACK_RETURN (REG_BADBR
);
3344 if (!(syntax
& RE_NO_BK_BRACES
))
3347 FREE_STACK_RETURN (REG_BADBR
);
3349 FREE_STACK_RETURN (REG_EESCAPE
);
3354 FREE_STACK_RETURN (REG_BADBR
);
3356 /* We just parsed a valid interval. */
3358 /* If it's invalid to have no preceding re. */
3361 if (syntax
& RE_CONTEXT_INVALID_OPS
)
3362 FREE_STACK_RETURN (REG_BADRPT
);
3363 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
3366 goto unfetch_interval
;
3369 if (upper_bound
== 0)
3370 /* If the upper bound is zero, just drop the sub pattern
3373 else if (lower_bound
== 1 && upper_bound
== 1)
3374 /* Just match it once: nothing to do here. */
3377 /* Otherwise, we have a nontrivial interval. When
3378 we're all done, the pattern will look like:
3379 set_number_at <jump count> <upper bound>
3380 set_number_at <succeed_n count> <lower bound>
3381 succeed_n <after jump addr> <succeed_n count>
3383 jump_n <succeed_n addr> <jump count>
3384 (The upper bound and `jump_n' are omitted if
3385 `upper_bound' is 1, though.) */
3387 { /* If the upper bound is > 1, we need to insert
3388 more at the end of the loop. */
3389 unsigned int nbytes
= (upper_bound
< 0 ? 3
3390 : upper_bound
> 1 ? 5 : 0);
3391 unsigned int startoffset
= 0;
3393 GET_BUFFER_SPACE (20); /* We might use less. */
3395 if (lower_bound
== 0)
3397 /* A succeed_n that starts with 0 is really a
3398 a simple on_failure_jump_loop. */
3399 INSERT_JUMP (on_failure_jump_loop
, laststart
,
3405 /* Initialize lower bound of the `succeed_n', even
3406 though it will be set during matching by its
3407 attendant `set_number_at' (inserted next),
3408 because `re_compile_fastmap' needs to know.
3409 Jump to the `jump_n' we might insert below. */
3410 INSERT_JUMP2 (succeed_n
, laststart
,
3415 /* Code to initialize the lower bound. Insert
3416 before the `succeed_n'. The `5' is the last two
3417 bytes of this `set_number_at', plus 3 bytes of
3418 the following `succeed_n'. */
3419 insert_op2 (set_number_at
, laststart
, 5, lower_bound
, b
);
3424 if (upper_bound
< 0)
3426 /* A negative upper bound stands for infinity,
3427 in which case it degenerates to a plain jump. */
3428 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
3431 else if (upper_bound
> 1)
3432 { /* More than one repetition is allowed, so
3433 append a backward jump to the `succeed_n'
3434 that starts this interval.
3436 When we've reached this during matching,
3437 we'll have matched the interval once, so
3438 jump back only `upper_bound - 1' times. */
3439 STORE_JUMP2 (jump_n
, b
, laststart
+ startoffset
,
3443 /* The location we want to set is the second
3444 parameter of the `jump_n'; that is `b-2' as
3445 an absolute address. `laststart' will be
3446 the `set_number_at' we're about to insert;
3447 `laststart+3' the number to set, the source
3448 for the relative address. But we are
3449 inserting into the middle of the pattern --
3450 so everything is getting moved up by 5.
3451 Conclusion: (b - 2) - (laststart + 3) + 5,
3452 i.e., b - laststart.
3454 We insert this at the beginning of the loop
3455 so that if we fail during matching, we'll
3456 reinitialize the bounds. */
3457 insert_op2 (set_number_at
, laststart
, b
- laststart
,
3458 upper_bound
- 1, b
);
3463 beg_interval
= NULL
;
3468 /* If an invalid interval, match the characters as literals. */
3469 assert (beg_interval
);
3471 beg_interval
= NULL
;
3473 /* normal_char and normal_backslash need `c'. */
3476 if (!(syntax
& RE_NO_BK_BRACES
))
3478 assert (p
> pattern
&& p
[-1] == '\\');
3479 goto normal_backslash
;
3485 /* There is no way to specify the before_dot and after_dot
3486 operators. rms says this is ok. --karl */
3494 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
3500 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
3506 BUF_PUSH_2 (categoryspec
, c
);
3512 BUF_PUSH_2 (notcategoryspec
, c
);
3518 if (syntax
& RE_NO_GNU_OPS
)
3521 BUF_PUSH_2 (syntaxspec
, Sword
);
3526 if (syntax
& RE_NO_GNU_OPS
)
3529 BUF_PUSH_2 (notsyntaxspec
, Sword
);
3534 if (syntax
& RE_NO_GNU_OPS
)
3540 if (syntax
& RE_NO_GNU_OPS
)
3546 if (syntax
& RE_NO_GNU_OPS
)
3555 FREE_STACK_RETURN (REG_BADPAT
);
3559 if (syntax
& RE_NO_GNU_OPS
)
3561 BUF_PUSH (wordbound
);
3565 if (syntax
& RE_NO_GNU_OPS
)
3567 BUF_PUSH (notwordbound
);
3571 if (syntax
& RE_NO_GNU_OPS
)
3577 if (syntax
& RE_NO_GNU_OPS
)
3582 case '1': case '2': case '3': case '4': case '5':
3583 case '6': case '7': case '8': case '9':
3587 if (syntax
& RE_NO_BK_REFS
)
3588 goto normal_backslash
;
3592 if (reg
> bufp
->re_nsub
|| reg
< 1
3593 /* Can't back reference to a subexp before its end. */
3594 || group_in_compile_stack (compile_stack
, reg
))
3595 FREE_STACK_RETURN (REG_ESUBREG
);
3598 BUF_PUSH_2 (duplicate
, reg
);
3605 if (syntax
& RE_BK_PLUS_QM
)
3608 goto normal_backslash
;
3612 /* You might think it would be useful for \ to mean
3613 not to translate; but if we don't translate it
3614 it will never match anything. */
3621 /* Expects the character in `c'. */
3623 /* If no exactn currently being built. */
3626 /* If last exactn not at current position. */
3627 || pending_exact
+ *pending_exact
+ 1 != b
3629 /* We have only one byte following the exactn for the count. */
3630 || *pending_exact
>= (1 << BYTEWIDTH
) - MAX_MULTIBYTE_LENGTH
3632 /* If followed by a repetition operator. */
3633 || (p
!= pend
&& (*p
== '*' || *p
== '^'))
3634 || ((syntax
& RE_BK_PLUS_QM
)
3635 ? p
+ 1 < pend
&& *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
3636 : p
!= pend
&& (*p
== '+' || *p
== '?'))
3637 || ((syntax
& RE_INTERVALS
)
3638 && ((syntax
& RE_NO_BK_BRACES
)
3639 ? p
!= pend
&& *p
== '{'
3640 : p
+ 1 < pend
&& p
[0] == '\\' && p
[1] == '{')))
3642 /* Start building a new exactn. */
3646 BUF_PUSH_2 (exactn
, 0);
3647 pending_exact
= b
- 1;
3650 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH
);
3657 len
= CHAR_STRING (c
, b
);
3662 c1
= RE_CHAR_TO_MULTIBYTE (c
);
3663 if (! CHAR_BYTE8_P (c1
))
3665 re_wchar_t c2
= TRANSLATE (c1
);
3667 if (c1
!= c2
&& (c1
= RE_CHAR_TO_UNIBYTE (c2
)) >= 0)
3673 (*pending_exact
) += len
;
3678 } /* while p != pend */
3681 /* Through the pattern now. */
3685 if (!COMPILE_STACK_EMPTY
)
3686 FREE_STACK_RETURN (REG_EPAREN
);
3688 /* If we don't want backtracking, force success
3689 the first time we reach the end of the compiled pattern. */
3690 if (syntax
& RE_NO_POSIX_BACKTRACKING
)
3693 /* We have succeeded; set the length of the buffer. */
3694 bufp
->used
= b
- bufp
->buffer
;
3699 re_compile_fastmap (bufp
);
3700 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3701 print_compiled_pattern (bufp
);
3706 #ifndef MATCH_MAY_ALLOCATE
3707 /* Initialize the failure stack to the largest possible stack. This
3708 isn't necessary unless we're trying to avoid calling alloca in
3709 the search and match routines. */
3711 int num_regs
= bufp
->re_nsub
+ 1;
3713 if (fail_stack
.size
< re_max_failures
* TYPICAL_FAILURE_SIZE
)
3715 fail_stack
.size
= re_max_failures
* TYPICAL_FAILURE_SIZE
;
3716 falk_stack
.stack
= realloc (fail_stack
.stack
,
3717 fail_stack
.size
* sizeof *falk_stack
.stack
);
3720 regex_grow_registers (num_regs
);
3722 #endif /* not MATCH_MAY_ALLOCATE */
3724 FREE_STACK_RETURN (REG_NOERROR
);
3725 } /* regex_compile */
3727 /* Subroutines for `regex_compile'. */
3729 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3732 store_op1 (re_opcode_t op
, unsigned char *loc
, int arg
)
3734 *loc
= (unsigned char) op
;
3735 STORE_NUMBER (loc
+ 1, arg
);
3739 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3742 store_op2 (re_opcode_t op
, unsigned char *loc
, int arg1
, int arg2
)
3744 *loc
= (unsigned char) op
;
3745 STORE_NUMBER (loc
+ 1, arg1
);
3746 STORE_NUMBER (loc
+ 3, arg2
);
3750 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3751 for OP followed by two-byte integer parameter ARG. */
3754 insert_op1 (re_opcode_t op
, unsigned char *loc
, int arg
, unsigned char *end
)
3756 register unsigned char *pfrom
= end
;
3757 register unsigned char *pto
= end
+ 3;
3759 while (pfrom
!= loc
)
3762 store_op1 (op
, loc
, arg
);
3766 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3769 insert_op2 (re_opcode_t op
, unsigned char *loc
, int arg1
, int arg2
, unsigned char *end
)
3771 register unsigned char *pfrom
= end
;
3772 register unsigned char *pto
= end
+ 5;
3774 while (pfrom
!= loc
)
3777 store_op2 (op
, loc
, arg1
, arg2
);
3781 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3782 after an alternative or a begin-subexpression. We assume there is at
3783 least one character before the ^. */
3786 at_begline_loc_p (const re_char
*pattern
, const re_char
*p
, reg_syntax_t syntax
)
3788 re_char
*prev
= p
- 2;
3789 boolean odd_backslashes
;
3791 /* After a subexpression? */
3793 odd_backslashes
= (syntax
& RE_NO_BK_PARENS
) == 0;
3795 /* After an alternative? */
3796 else if (*prev
== '|')
3797 odd_backslashes
= (syntax
& RE_NO_BK_VBAR
) == 0;
3799 /* After a shy subexpression? */
3800 else if (*prev
== ':' && (syntax
& RE_SHY_GROUPS
))
3802 /* Skip over optional regnum. */
3803 while (prev
- 1 >= pattern
&& prev
[-1] >= '0' && prev
[-1] <= '9')
3806 if (!(prev
- 2 >= pattern
3807 && prev
[-1] == '?' && prev
[-2] == '('))
3810 odd_backslashes
= (syntax
& RE_NO_BK_PARENS
) == 0;
3815 /* Count the number of preceding backslashes. */
3817 while (prev
- 1 >= pattern
&& prev
[-1] == '\\')
3819 return (p
- prev
) & odd_backslashes
;
3823 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3824 at least one character after the $, i.e., `P < PEND'. */
3827 at_endline_loc_p (const re_char
*p
, const re_char
*pend
, reg_syntax_t syntax
)
3830 boolean next_backslash
= *next
== '\\';
3831 re_char
*next_next
= p
+ 1 < pend
? p
+ 1 : 0;
3834 /* Before a subexpression? */
3835 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
3836 : next_backslash
&& next_next
&& *next_next
== ')')
3837 /* Before an alternative? */
3838 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
3839 : next_backslash
&& next_next
&& *next_next
== '|');
3843 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3844 false if it's not. */
3847 group_in_compile_stack (compile_stack_type compile_stack
, regnum_t regnum
)
3849 ssize_t this_element
;
3851 for (this_element
= compile_stack
.avail
- 1;
3854 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
3861 If fastmap is non-NULL, go through the pattern and fill fastmap
3862 with all the possible leading chars. If fastmap is NULL, don't
3863 bother filling it up (obviously) and only return whether the
3864 pattern could potentially match the empty string.
3866 Return 1 if p..pend might match the empty string.
3867 Return 0 if p..pend matches at least one char.
3868 Return -1 if fastmap was not updated accurately. */
3871 analyse_first (const re_char
*p
, const re_char
*pend
, char *fastmap
, const int multibyte
)
3876 /* If all elements for base leading-codes in fastmap is set, this
3877 flag is set true. */
3878 boolean match_any_multibyte_characters
= false;
3882 /* The loop below works as follows:
3883 - It has a working-list kept in the PATTERN_STACK and which basically
3884 starts by only containing a pointer to the first operation.
3885 - If the opcode we're looking at is a match against some set of
3886 chars, then we add those chars to the fastmap and go on to the
3887 next work element from the worklist (done via `break').
3888 - If the opcode is a control operator on the other hand, we either
3889 ignore it (if it's meaningless at this point, such as `start_memory')
3890 or execute it (if it's a jump). If the jump has several destinations
3891 (i.e. `on_failure_jump'), then we push the other destination onto the
3893 We guarantee termination by ignoring backward jumps (more or less),
3894 so that `p' is monotonically increasing. More to the point, we
3895 never set `p' (or push) anything `<= p1'. */
3899 /* `p1' is used as a marker of how far back a `on_failure_jump'
3900 can go without being ignored. It is normally equal to `p'
3901 (which prevents any backward `on_failure_jump') except right
3902 after a plain `jump', to allow patterns such as:
3905 10: on_failure_jump 3
3906 as used for the *? operator. */
3915 /* If the first character has to match a backreference, that means
3916 that the group was empty (since it already matched). Since this
3917 is the only case that interests us here, we can assume that the
3918 backreference must match the empty string. */
3923 /* Following are the cases which match a character. These end
3929 /* If multibyte is nonzero, the first byte of each
3930 character is an ASCII or a leading code. Otherwise,
3931 each byte is a character. Thus, this works in both
3936 /* For the case of matching this unibyte regex
3937 against multibyte, we must set a leading code of
3938 the corresponding multibyte character. */
3939 int c
= RE_CHAR_TO_MULTIBYTE (p
[1]);
3941 fastmap
[CHAR_LEADING_CODE (c
)] = 1;
3948 /* We could put all the chars except for \n (and maybe \0)
3949 but we don't bother since it is generally not worth it. */
3950 if (!fastmap
) break;
3955 if (!fastmap
) break;
3957 /* Chars beyond end of bitmap are possible matches. */
3958 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
;
3959 j
< (1 << BYTEWIDTH
); j
++)
3965 if (!fastmap
) break;
3966 not = (re_opcode_t
) *(p
- 1) == charset_not
;
3967 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
- 1, p
++;
3969 if (!!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))) ^ not)
3973 if (/* Any leading code can possibly start a character
3974 which doesn't match the specified set of characters. */
3977 /* If we can match a character class, we can match any
3978 multibyte characters. */
3979 (CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
3980 && CHARSET_RANGE_TABLE_BITS (&p
[-2]) != 0))
3983 if (match_any_multibyte_characters
== false)
3985 for (j
= MIN_MULTIBYTE_LEADING_CODE
;
3986 j
<= MAX_MULTIBYTE_LEADING_CODE
; j
++)
3988 match_any_multibyte_characters
= true;
3992 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
3993 && match_any_multibyte_characters
== false)
3995 /* Set fastmap[I] to 1 where I is a leading code of each
3996 multibyte character in the range table. */
3998 unsigned char lc1
, lc2
;
4000 /* Make P points the range table. `+ 2' is to skip flag
4001 bits for a character class. */
4002 p
+= CHARSET_BITMAP_SIZE (&p
[-2]) + 2;
4004 /* Extract the number of ranges in range table into COUNT. */
4005 EXTRACT_NUMBER_AND_INCR (count
, p
);
4006 for (; count
> 0; count
--, p
+= 3)
4008 /* Extract the start and end of each range. */
4009 EXTRACT_CHARACTER (c
, p
);
4010 lc1
= CHAR_LEADING_CODE (c
);
4012 EXTRACT_CHARACTER (c
, p
);
4013 lc2
= CHAR_LEADING_CODE (c
);
4014 for (j
= lc1
; j
<= lc2
; j
++)
4023 if (!fastmap
) break;
4025 not = (re_opcode_t
)p
[-1] == notsyntaxspec
;
4027 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4028 if ((SYNTAX (j
) == (enum syntaxcode
) k
) ^ not)
4032 /* This match depends on text properties. These end with
4033 aborting optimizations. */
4037 case notcategoryspec
:
4038 if (!fastmap
) break;
4039 not = (re_opcode_t
)p
[-1] == notcategoryspec
;
4041 for (j
= (1 << BYTEWIDTH
); j
>= 0; j
--)
4042 if ((CHAR_HAS_CATEGORY (j
, k
)) ^ not)
4045 /* Any leading code can possibly start a character which
4046 has or doesn't has the specified category. */
4047 if (match_any_multibyte_characters
== false)
4049 for (j
= MIN_MULTIBYTE_LEADING_CODE
;
4050 j
<= MAX_MULTIBYTE_LEADING_CODE
; j
++)
4052 match_any_multibyte_characters
= true;
4056 /* All cases after this match the empty string. These end with
4078 EXTRACT_NUMBER_AND_INCR (j
, p
);
4080 /* Backward jumps can only go back to code that we've already
4081 visited. `re_compile' should make sure this is true. */
4086 case on_failure_jump
:
4087 case on_failure_keep_string_jump
:
4088 case on_failure_jump_loop
:
4089 case on_failure_jump_nastyloop
:
4090 case on_failure_jump_smart
:
4096 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
4097 to jump back to "just after here". */
4100 case on_failure_jump
:
4101 case on_failure_keep_string_jump
:
4102 case on_failure_jump_nastyloop
:
4103 case on_failure_jump_loop
:
4104 case on_failure_jump_smart
:
4105 EXTRACT_NUMBER_AND_INCR (j
, p
);
4107 ; /* Backward jump to be ignored. */
4109 { /* We have to look down both arms.
4110 We first go down the "straight" path so as to minimize
4111 stack usage when going through alternatives. */
4112 int r
= analyse_first (p
, pend
, fastmap
, multibyte
);
4120 /* This code simply does not properly handle forward jump_n. */
4121 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
); assert (j
< 0));
4123 /* jump_n can either jump or fall through. The (backward) jump
4124 case has already been handled, so we only need to look at the
4125 fallthrough case. */
4129 /* If N == 0, it should be an on_failure_jump_loop instead. */
4130 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
+ 2); assert (j
> 0));
4132 /* We only care about one iteration of the loop, so we don't
4133 need to consider the case where this behaves like an
4150 abort (); /* We have listed all the cases. */
4153 /* Getting here means we have found the possible starting
4154 characters for one path of the pattern -- and that the empty
4155 string does not match. We need not follow this path further. */
4159 /* We reached the end without matching anything. */
4162 } /* analyse_first */
4164 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4165 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4166 characters can start a string that matches the pattern. This fastmap
4167 is used by re_search to skip quickly over impossible starting points.
4169 Character codes above (1 << BYTEWIDTH) are not represented in the
4170 fastmap, but the leading codes are represented. Thus, the fastmap
4171 indicates which character sets could start a match.
4173 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4174 area as BUFP->fastmap.
4176 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4179 Returns 0 if we succeed, -2 if an internal error. */
4182 re_compile_fastmap (struct re_pattern_buffer
*bufp
)
4184 char *fastmap
= bufp
->fastmap
;
4187 assert (fastmap
&& bufp
->buffer
);
4189 memset (fastmap
, 0, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
4190 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
4192 analysis
= analyse_first (bufp
->buffer
, bufp
->buffer
+ bufp
->used
,
4193 fastmap
, RE_MULTIBYTE_P (bufp
));
4194 bufp
->can_be_null
= (analysis
!= 0);
4196 } /* re_compile_fastmap */
4198 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4199 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4200 this memory for recording register information. STARTS and ENDS
4201 must be allocated using the malloc library routine, and must each
4202 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4204 If NUM_REGS == 0, then subsequent matches should allocate their own
4207 Unless this function is called, the first search or match using
4208 PATTERN_BUFFER will allocate its own register data, without
4209 freeing the old data. */
4212 re_set_registers (struct re_pattern_buffer
*bufp
, struct re_registers
*regs
, unsigned int num_regs
, regoff_t
*starts
, regoff_t
*ends
)
4216 bufp
->regs_allocated
= REGS_REALLOCATE
;
4217 regs
->num_regs
= num_regs
;
4218 regs
->start
= starts
;
4223 bufp
->regs_allocated
= REGS_UNALLOCATED
;
4225 regs
->start
= regs
->end
= (regoff_t
*) 0;
4228 WEAK_ALIAS (__re_set_registers
, re_set_registers
)
4230 /* Searching routines. */
4232 /* Like re_search_2, below, but only one string is specified, and
4233 doesn't let you say where to stop matching. */
4236 re_search (struct re_pattern_buffer
*bufp
, const char *string
, size_t size
,
4237 ssize_t startpos
, ssize_t range
, struct re_registers
*regs
)
4239 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
4242 WEAK_ALIAS (__re_search
, re_search
)
4244 /* Head address of virtual concatenation of string. */
4245 #define HEAD_ADDR_VSTRING(P) \
4246 (((P) >= size1 ? string2 : string1))
4248 /* Address of POS in the concatenation of virtual string. */
4249 #define POS_ADDR_VSTRING(POS) \
4250 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
4252 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4253 virtual concatenation of STRING1 and STRING2, starting first at index
4254 STARTPOS, then at STARTPOS + 1, and so on.
4256 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4258 RANGE is how far to scan while trying to match. RANGE = 0 means try
4259 only at STARTPOS; in general, the last start tried is STARTPOS +
4262 In REGS, return the indices of the virtual concatenation of STRING1
4263 and STRING2 that matched the entire BUFP->buffer and its contained
4266 Do not consider matching one past the index STOP in the virtual
4267 concatenation of STRING1 and STRING2.
4269 We return either the position in the strings at which the match was
4270 found, -1 if no match, or -2 if error (such as failure
4274 re_search_2 (struct re_pattern_buffer
*bufp
, const char *str1
, size_t size1
,
4275 const char *str2
, size_t size2
, ssize_t startpos
, ssize_t range
,
4276 struct re_registers
*regs
, ssize_t stop
)
4279 re_char
*string1
= (re_char
*) str1
;
4280 re_char
*string2
= (re_char
*) str2
;
4281 register char *fastmap
= bufp
->fastmap
;
4282 register RE_TRANSLATE_TYPE translate
= bufp
->translate
;
4283 size_t total_size
= size1
+ size2
;
4284 ssize_t endpos
= startpos
+ range
;
4285 boolean anchored_start
;
4286 /* Nonzero if we are searching multibyte string. */
4287 const boolean multibyte
= RE_TARGET_MULTIBYTE_P (bufp
);
4289 /* Check for out-of-range STARTPOS. */
4290 if (startpos
< 0 || startpos
> total_size
)
4293 /* Fix up RANGE if it might eventually take us outside
4294 the virtual concatenation of STRING1 and STRING2.
4295 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
4297 range
= 0 - startpos
;
4298 else if (endpos
> total_size
)
4299 range
= total_size
- startpos
;
4301 /* If the search isn't to be a backwards one, don't waste time in a
4302 search for a pattern anchored at beginning of buffer. */
4303 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == begbuf
&& range
> 0)
4312 /* In a forward search for something that starts with \=.
4313 don't keep searching past point. */
4314 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == at_dot
&& range
> 0)
4316 range
= PT_BYTE
- BEGV_BYTE
- startpos
;
4322 /* Update the fastmap now if not correct already. */
4323 if (fastmap
&& !bufp
->fastmap_accurate
)
4324 re_compile_fastmap (bufp
);
4326 /* See whether the pattern is anchored. */
4327 anchored_start
= (bufp
->buffer
[0] == begline
);
4330 gl_state
.object
= re_match_object
; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
4332 ssize_t charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos
));
4334 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
4338 /* Loop through the string, looking for a place to start matching. */
4341 /* If the pattern is anchored,
4342 skip quickly past places we cannot match.
4343 We don't bother to treat startpos == 0 specially
4344 because that case doesn't repeat. */
4345 if (anchored_start
&& startpos
> 0)
4347 if (! ((startpos
<= size1
? string1
[startpos
- 1]
4348 : string2
[startpos
- size1
- 1])
4353 /* If a fastmap is supplied, skip quickly over characters that
4354 cannot be the start of a match. If the pattern can match the
4355 null string, however, we don't need to skip characters; we want
4356 the first null string. */
4357 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
4359 register re_char
*d
;
4360 register re_wchar_t buf_ch
;
4362 d
= POS_ADDR_VSTRING (startpos
);
4364 if (range
> 0) /* Searching forwards. */
4366 register int lim
= 0;
4367 ssize_t irange
= range
;
4369 if (startpos
< size1
&& startpos
+ range
>= size1
)
4370 lim
= range
- (size1
- startpos
);
4372 /* Written out as an if-else to avoid testing `translate'
4374 if (RE_TRANSLATE_P (translate
))
4381 buf_ch
= STRING_CHAR_AND_LENGTH (d
, buf_charlen
);
4382 buf_ch
= RE_TRANSLATE (translate
, buf_ch
);
4383 if (fastmap
[CHAR_LEADING_CODE (buf_ch
)])
4386 range
-= buf_charlen
;
4392 register re_wchar_t ch
, translated
;
4395 ch
= RE_CHAR_TO_MULTIBYTE (buf_ch
);
4396 translated
= RE_TRANSLATE (translate
, ch
);
4397 if (translated
!= ch
4398 && (ch
= RE_CHAR_TO_UNIBYTE (translated
)) >= 0)
4400 if (fastmap
[buf_ch
])
4413 buf_ch
= STRING_CHAR_AND_LENGTH (d
, buf_charlen
);
4414 if (fastmap
[CHAR_LEADING_CODE (buf_ch
)])
4416 range
-= buf_charlen
;
4420 while (range
> lim
&& !fastmap
[*d
])
4426 startpos
+= irange
- range
;
4428 else /* Searching backwards. */
4432 buf_ch
= STRING_CHAR (d
);
4433 buf_ch
= TRANSLATE (buf_ch
);
4434 if (! fastmap
[CHAR_LEADING_CODE (buf_ch
)])
4439 register re_wchar_t ch
, translated
;
4442 ch
= RE_CHAR_TO_MULTIBYTE (buf_ch
);
4443 translated
= TRANSLATE (ch
);
4444 if (translated
!= ch
4445 && (ch
= RE_CHAR_TO_UNIBYTE (translated
)) >= 0)
4447 if (! fastmap
[TRANSLATE (buf_ch
)])
4453 /* If can't match the null string, and that's all we have left, fail. */
4454 if (range
>= 0 && startpos
== total_size
&& fastmap
4455 && !bufp
->can_be_null
)
4458 val
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
4459 startpos
, regs
, stop
);
4472 /* Update STARTPOS to the next character boundary. */
4475 re_char
*p
= POS_ADDR_VSTRING (startpos
);
4476 int len
= BYTES_BY_CHAR_HEAD (*p
);
4494 /* Update STARTPOS to the previous character boundary. */
4497 re_char
*p
= POS_ADDR_VSTRING (startpos
) + 1;
4499 re_char
*phead
= HEAD_ADDR_VSTRING (startpos
);
4501 /* Find the head of multibyte form. */
4502 PREV_CHAR_BOUNDARY (p
, phead
);
4503 range
+= p0
- 1 - p
;
4507 startpos
-= p0
- 1 - p
;
4513 WEAK_ALIAS (__re_search_2
, re_search_2
)
4515 /* Declarations and macros for re_match_2. */
4517 static int bcmp_translate (re_char
*s1
, re_char
*s2
,
4518 register ssize_t len
,
4519 RE_TRANSLATE_TYPE translate
,
4520 const int multibyte
);
4522 /* This converts PTR, a pointer into one of the search strings `string1'
4523 and `string2' into an offset from the beginning of that string. */
4524 #define POINTER_TO_OFFSET(ptr) \
4525 (FIRST_STRING_P (ptr) \
4526 ? ((regoff_t) ((ptr) - string1)) \
4527 : ((regoff_t) ((ptr) - string2 + size1)))
4529 /* Call before fetching a character with *d. This switches over to
4530 string2 if necessary.
4531 Check re_match_2_internal for a discussion of why end_match_2 might
4532 not be within string2 (but be equal to end_match_1 instead). */
4533 #define PREFETCH() \
4536 /* End of string2 => fail. */ \
4537 if (dend == end_match_2) \
4539 /* End of string1 => advance to string2. */ \
4541 dend = end_match_2; \
4544 /* Call before fetching a char with *d if you already checked other limits.
4545 This is meant for use in lookahead operations like wordend, etc..
4546 where we might need to look at parts of the string that might be
4547 outside of the LIMITs (i.e past `stop'). */
4548 #define PREFETCH_NOLIMIT() \
4552 dend = end_match_2; \
4555 /* Test if at very beginning or at very end of the virtual concatenation
4556 of `string1' and `string2'. If only one string, it's `string2'. */
4557 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4558 #define AT_STRINGS_END(d) ((d) == end2)
4560 /* Disabled due to a compiler bug -- see comment at case wordbound */
4562 /* The comment at case wordbound is following one, but we don't use
4563 AT_WORD_BOUNDARY anymore to support multibyte form.
4565 The DEC Alpha C compiler 3.x generates incorrect code for the
4566 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4567 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4568 macro and introducing temporary variables works around the bug. */
4571 /* Test if D points to a character which is word-constituent. We have
4572 two special cases to check for: if past the end of string1, look at
4573 the first character in string2; and if before the beginning of
4574 string2, look at the last character in string1. */
4575 #define WORDCHAR_P(d) \
4576 (SYNTAX ((d) == end1 ? *string2 \
4577 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4580 /* Test if the character before D and the one at D differ with respect
4581 to being word-constituent. */
4582 #define AT_WORD_BOUNDARY(d) \
4583 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4584 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4587 /* Free everything we malloc. */
4588 #ifdef MATCH_MAY_ALLOCATE
4589 # define FREE_VAR(var) \
4597 # define FREE_VARIABLES() \
4599 REGEX_FREE_STACK (fail_stack.stack); \
4600 FREE_VAR (regstart); \
4601 FREE_VAR (regend); \
4602 FREE_VAR (best_regstart); \
4603 FREE_VAR (best_regend); \
4606 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4607 #endif /* not MATCH_MAY_ALLOCATE */
4610 /* Optimization routines. */
4612 /* If the operation is a match against one or more chars,
4613 return a pointer to the next operation, else return NULL. */
4615 skip_one_char (const re_char
*p
)
4628 if (CHARSET_RANGE_TABLE_EXISTS_P (p
- 1))
4631 p
= CHARSET_RANGE_TABLE (p
- 1);
4632 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4633 p
= CHARSET_RANGE_TABLE_END (p
, mcnt
);
4636 p
+= 1 + CHARSET_BITMAP_SIZE (p
- 1);
4643 case notcategoryspec
:
4655 /* Jump over non-matching operations. */
4657 skip_noops (const re_char
*p
, const re_char
*pend
)
4671 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4682 /* Non-zero if "p1 matches something" implies "p2 fails". */
4684 mutually_exclusive_p (struct re_pattern_buffer
*bufp
, const re_char
*p1
, const re_char
*p2
)
4687 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4688 unsigned char *pend
= bufp
->buffer
+ bufp
->used
;
4690 assert (p1
>= bufp
->buffer
&& p1
< pend
4691 && p2
>= bufp
->buffer
&& p2
<= pend
);
4693 /* Skip over open/close-group commands.
4694 If what follows this loop is a ...+ construct,
4695 look at what begins its body, since we will have to
4696 match at least one of that. */
4697 p2
= skip_noops (p2
, pend
);
4698 /* The same skip can be done for p1, except that this function
4699 is only used in the case where p1 is a simple match operator. */
4700 /* p1 = skip_noops (p1, pend); */
4702 assert (p1
>= bufp
->buffer
&& p1
< pend
4703 && p2
>= bufp
->buffer
&& p2
<= pend
);
4705 op2
= p2
== pend
? succeed
: *p2
;
4711 /* If we're at the end of the pattern, we can change. */
4712 if (skip_one_char (p1
))
4714 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4722 register re_wchar_t c
4723 = (re_opcode_t
) *p2
== endline
? '\n'
4724 : RE_STRING_CHAR (p2
+ 2, multibyte
);
4726 if ((re_opcode_t
) *p1
== exactn
)
4728 if (c
!= RE_STRING_CHAR (p1
+ 2, multibyte
))
4730 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c
, p1
[2]);
4735 else if ((re_opcode_t
) *p1
== charset
4736 || (re_opcode_t
) *p1
== charset_not
)
4738 int not = (re_opcode_t
) *p1
== charset_not
;
4740 /* Test if C is listed in charset (or charset_not)
4742 if (! multibyte
|| IS_REAL_ASCII (c
))
4744 if (c
< CHARSET_BITMAP_SIZE (p1
) * BYTEWIDTH
4745 && p1
[2 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4748 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1
))
4749 CHARSET_LOOKUP_RANGE_TABLE (not, c
, p1
);
4751 /* `not' is equal to 1 if c would match, which means
4752 that we can't change to pop_failure_jump. */
4755 DEBUG_PRINT1 (" No match => fast loop.\n");
4759 else if ((re_opcode_t
) *p1
== anychar
4762 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4770 if ((re_opcode_t
) *p1
== exactn
)
4771 /* Reuse the code above. */
4772 return mutually_exclusive_p (bufp
, p2
, p1
);
4774 /* It is hard to list up all the character in charset
4775 P2 if it includes multibyte character. Give up in
4777 else if (!multibyte
|| !CHARSET_RANGE_TABLE_EXISTS_P (p2
))
4779 /* Now, we are sure that P2 has no range table.
4780 So, for the size of bitmap in P2, `p2[1]' is
4781 enough. But P1 may have range table, so the
4782 size of bitmap table of P1 is extracted by
4783 using macro `CHARSET_BITMAP_SIZE'.
4785 In a multibyte case, we know that all the character
4786 listed in P2 is ASCII. In a unibyte case, P1 has only a
4787 bitmap table. So, in both cases, it is enough to test
4788 only the bitmap table of P1. */
4790 if ((re_opcode_t
) *p1
== charset
)
4793 /* We win if the charset inside the loop
4794 has no overlap with the one after the loop. */
4797 && idx
< CHARSET_BITMAP_SIZE (p1
));
4799 if ((p2
[2 + idx
] & p1
[2 + idx
]) != 0)
4803 || idx
== CHARSET_BITMAP_SIZE (p1
))
4805 DEBUG_PRINT1 (" No match => fast loop.\n");
4809 else if ((re_opcode_t
) *p1
== charset_not
)
4812 /* We win if the charset_not inside the loop lists
4813 every character listed in the charset after. */
4814 for (idx
= 0; idx
< (int) p2
[1]; idx
++)
4815 if (! (p2
[2 + idx
] == 0
4816 || (idx
< CHARSET_BITMAP_SIZE (p1
)
4817 && ((p2
[2 + idx
] & ~ p1
[2 + idx
]) == 0))))
4822 DEBUG_PRINT1 (" No match => fast loop.\n");
4835 /* Reuse the code above. */
4836 return mutually_exclusive_p (bufp
, p2
, p1
);
4838 /* When we have two charset_not, it's very unlikely that
4839 they don't overlap. The union of the two sets of excluded
4840 chars should cover all possible chars, which, as a matter of
4841 fact, is virtually impossible in multibyte buffers. */
4847 return ((re_opcode_t
) *p1
== syntaxspec
&& p1
[1] == Sword
);
4849 return ((re_opcode_t
) *p1
== syntaxspec
4850 && (p1
[1] == Ssymbol
|| p1
[1] == Sword
));
4852 return ((re_opcode_t
) *p1
== syntaxspec
&& p1
[1] == p2
[1]);
4855 return ((re_opcode_t
) *p1
== notsyntaxspec
&& p1
[1] == Sword
);
4857 return ((re_opcode_t
) *p1
== notsyntaxspec
4858 && (p1
[1] == Ssymbol
|| p1
[1] == Sword
));
4860 return ((re_opcode_t
) *p1
== notsyntaxspec
&& p1
[1] == p2
[1]);
4863 return (((re_opcode_t
) *p1
== notsyntaxspec
4864 || (re_opcode_t
) *p1
== syntaxspec
)
4869 return ((re_opcode_t
) *p1
== notcategoryspec
&& p1
[1] == p2
[1]);
4870 case notcategoryspec
:
4871 return ((re_opcode_t
) *p1
== categoryspec
&& p1
[1] == p2
[1]);
4883 /* Matching routines. */
4885 #ifndef emacs /* Emacs never uses this. */
4886 /* re_match is like re_match_2 except it takes only a single string. */
4889 re_match (struct re_pattern_buffer
*bufp
, const char *string
,
4890 size_t size
, ssize_t pos
, struct re_registers
*regs
)
4892 regoff_t result
= re_match_2_internal (bufp
, NULL
, 0, (re_char
*) string
,
4893 size
, pos
, regs
, size
);
4896 WEAK_ALIAS (__re_match
, re_match
)
4897 #endif /* not emacs */
4900 /* In Emacs, this is the string or buffer in which we
4901 are matching. It is used for looking up syntax properties. */
4902 Lisp_Object re_match_object
;
4905 /* re_match_2 matches the compiled pattern in BUFP against the
4906 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4907 and SIZE2, respectively). We start matching at POS, and stop
4910 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4911 store offsets for the substring each group matched in REGS. See the
4912 documentation for exactly how many groups we fill.
4914 We return -1 if no match, -2 if an internal error (such as the
4915 failure stack overflowing). Otherwise, we return the length of the
4916 matched substring. */
4919 re_match_2 (struct re_pattern_buffer
*bufp
, const char *string1
,
4920 size_t size1
, const char *string2
, size_t size2
, ssize_t pos
,
4921 struct re_registers
*regs
, ssize_t stop
)
4927 gl_state
.object
= re_match_object
; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
4928 charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos
));
4929 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
4932 result
= re_match_2_internal (bufp
, (re_char
*) string1
, size1
,
4933 (re_char
*) string2
, size2
,
4937 WEAK_ALIAS (__re_match_2
, re_match_2
)
4940 /* This is a separate function so that we can force an alloca cleanup
4943 re_match_2_internal (struct re_pattern_buffer
*bufp
, const re_char
*string1
,
4944 size_t size1
, const re_char
*string2
, size_t size2
,
4945 ssize_t pos
, struct re_registers
*regs
, ssize_t stop
)
4947 /* General temporaries. */
4951 /* Just past the end of the corresponding string. */
4952 re_char
*end1
, *end2
;
4954 /* Pointers into string1 and string2, just past the last characters in
4955 each to consider matching. */
4956 re_char
*end_match_1
, *end_match_2
;
4958 /* Where we are in the data, and the end of the current string. */
4961 /* Used sometimes to remember where we were before starting matching
4962 an operator so that we can go back in case of failure. This "atomic"
4963 behavior of matching opcodes is indispensable to the correctness
4964 of the on_failure_keep_string_jump optimization. */
4967 /* Where we are in the pattern, and the end of the pattern. */
4968 re_char
*p
= bufp
->buffer
;
4969 re_char
*pend
= p
+ bufp
->used
;
4971 /* We use this to map every character in the string. */
4972 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
4974 /* Nonzero if BUFP is setup from a multibyte regex. */
4975 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4977 /* Nonzero if STRING1/STRING2 are multibyte. */
4978 const boolean target_multibyte
= RE_TARGET_MULTIBYTE_P (bufp
);
4980 /* Failure point stack. Each place that can handle a failure further
4981 down the line pushes a failure point on this stack. It consists of
4982 regstart, and regend for all registers corresponding to
4983 the subexpressions we're currently inside, plus the number of such
4984 registers, and, finally, two char *'s. The first char * is where
4985 to resume scanning the pattern; the second one is where to resume
4986 scanning the strings. */
4987 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4988 fail_stack_type fail_stack
;
4991 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
4994 #if defined REL_ALLOC && defined REGEX_MALLOC
4995 /* This holds the pointer to the failure stack, when
4996 it is allocated relocatably. */
4997 fail_stack_elt_t
*failure_stack_ptr
;
5000 /* We fill all the registers internally, independent of what we
5001 return, for use in backreferences. The number here includes
5002 an element for register zero. */
5003 size_t num_regs
= bufp
->re_nsub
+ 1;
5005 /* Information on the contents of registers. These are pointers into
5006 the input strings; they record just what was matched (on this
5007 attempt) by a subexpression part of the pattern, that is, the
5008 regnum-th regstart pointer points to where in the pattern we began
5009 matching and the regnum-th regend points to right after where we
5010 stopped matching the regnum-th subexpression. (The zeroth register
5011 keeps track of what the whole pattern matches.) */
5012 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5013 re_char
**regstart
, **regend
;
5016 /* The following record the register info as found in the above
5017 variables when we find a match better than any we've seen before.
5018 This happens as we backtrack through the failure points, which in
5019 turn happens only if we have not yet matched the entire string. */
5020 unsigned best_regs_set
= false;
5021 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5022 re_char
**best_regstart
, **best_regend
;
5025 /* Logically, this is `best_regend[0]'. But we don't want to have to
5026 allocate space for that if we're not allocating space for anything
5027 else (see below). Also, we never need info about register 0 for
5028 any of the other register vectors, and it seems rather a kludge to
5029 treat `best_regend' differently than the rest. So we keep track of
5030 the end of the best match so far in a separate variable. We
5031 initialize this to NULL so that when we backtrack the first time
5032 and need to test it, it's not garbage. */
5033 re_char
*match_end
= NULL
;
5036 /* Counts the total number of registers pushed. */
5037 unsigned num_regs_pushed
= 0;
5040 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5044 #ifdef MATCH_MAY_ALLOCATE
5045 /* Do not bother to initialize all the register variables if there are
5046 no groups in the pattern, as it takes a fair amount of time. If
5047 there are groups, we include space for register 0 (the whole
5048 pattern), even though we never use it, since it simplifies the
5049 array indexing. We should fix this. */
5052 regstart
= REGEX_TALLOC (num_regs
, re_char
*);
5053 regend
= REGEX_TALLOC (num_regs
, re_char
*);
5054 best_regstart
= REGEX_TALLOC (num_regs
, re_char
*);
5055 best_regend
= REGEX_TALLOC (num_regs
, re_char
*);
5057 if (!(regstart
&& regend
&& best_regstart
&& best_regend
))
5065 /* We must initialize all our variables to NULL, so that
5066 `FREE_VARIABLES' doesn't try to free them. */
5067 regstart
= regend
= best_regstart
= best_regend
= NULL
;
5069 #endif /* MATCH_MAY_ALLOCATE */
5071 /* The starting position is bogus. */
5072 if (pos
< 0 || pos
> size1
+ size2
)
5078 /* Initialize subexpression text positions to -1 to mark ones that no
5079 start_memory/stop_memory has been seen for. Also initialize the
5080 register information struct. */
5081 for (reg
= 1; reg
< num_regs
; reg
++)
5082 regstart
[reg
] = regend
[reg
] = NULL
;
5084 /* We move `string1' into `string2' if the latter's empty -- but not if
5085 `string1' is null. */
5086 if (size2
== 0 && string1
!= NULL
)
5093 end1
= string1
+ size1
;
5094 end2
= string2
+ size2
;
5096 /* `p' scans through the pattern as `d' scans through the data.
5097 `dend' is the end of the input string that `d' points within. `d'
5098 is advanced into the following input string whenever necessary, but
5099 this happens before fetching; therefore, at the beginning of the
5100 loop, `d' can be pointing at the end of a string, but it cannot
5104 /* Only match within string2. */
5105 d
= string2
+ pos
- size1
;
5106 dend
= end_match_2
= string2
+ stop
- size1
;
5107 end_match_1
= end1
; /* Just to give it a value. */
5113 /* Only match within string1. */
5114 end_match_1
= string1
+ stop
;
5116 When we reach end_match_1, PREFETCH normally switches to string2.
5117 But in the present case, this means that just doing a PREFETCH
5118 makes us jump from `stop' to `gap' within the string.
5119 What we really want here is for the search to stop as
5120 soon as we hit end_match_1. That's why we set end_match_2
5121 to end_match_1 (since PREFETCH fails as soon as we hit
5123 end_match_2
= end_match_1
;
5126 { /* It's important to use this code when stop == size so that
5127 moving `d' from end1 to string2 will not prevent the d == dend
5128 check from catching the end of string. */
5130 end_match_2
= string2
+ stop
- size1
;
5136 DEBUG_PRINT1 ("The compiled pattern is: ");
5137 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
5138 DEBUG_PRINT1 ("The string to match is: `");
5139 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
5140 DEBUG_PRINT1 ("'\n");
5142 /* This loops over pattern commands. It exits by returning from the
5143 function if the match is complete, or it drops through if the match
5144 fails at this starting point in the input data. */
5147 DEBUG_PRINT2 ("\n%p: ", p
);
5150 { /* End of pattern means we might have succeeded. */
5151 DEBUG_PRINT1 ("end of pattern ... ");
5153 /* If we haven't matched the entire string, and we want the
5154 longest match, try backtracking. */
5155 if (d
!= end_match_2
)
5157 /* 1 if this match ends in the same string (string1 or string2)
5158 as the best previous match. */
5159 boolean same_str_p
= (FIRST_STRING_P (match_end
)
5160 == FIRST_STRING_P (d
));
5161 /* 1 if this match is the best seen so far. */
5162 boolean best_match_p
;
5164 /* AIX compiler got confused when this was combined
5165 with the previous declaration. */
5167 best_match_p
= d
> match_end
;
5169 best_match_p
= !FIRST_STRING_P (d
);
5171 DEBUG_PRINT1 ("backtracking.\n");
5173 if (!FAIL_STACK_EMPTY ())
5174 { /* More failure points to try. */
5176 /* If exceeds best match so far, save it. */
5177 if (!best_regs_set
|| best_match_p
)
5179 best_regs_set
= true;
5182 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5184 for (reg
= 1; reg
< num_regs
; reg
++)
5186 best_regstart
[reg
] = regstart
[reg
];
5187 best_regend
[reg
] = regend
[reg
];
5193 /* If no failure points, don't restore garbage. And if
5194 last match is real best match, don't restore second
5196 else if (best_regs_set
&& !best_match_p
)
5199 /* Restore best match. It may happen that `dend ==
5200 end_match_1' while the restored d is in string2.
5201 For example, the pattern `x.*y.*z' against the
5202 strings `x-' and `y-z-', if the two strings are
5203 not consecutive in memory. */
5204 DEBUG_PRINT1 ("Restoring best registers.\n");
5207 dend
= ((d
>= string1
&& d
<= end1
)
5208 ? end_match_1
: end_match_2
);
5210 for (reg
= 1; reg
< num_regs
; reg
++)
5212 regstart
[reg
] = best_regstart
[reg
];
5213 regend
[reg
] = best_regend
[reg
];
5216 } /* d != end_match_2 */
5219 DEBUG_PRINT1 ("Accepting match.\n");
5221 /* If caller wants register contents data back, do it. */
5222 if (regs
&& !bufp
->no_sub
)
5224 /* Have the register data arrays been allocated? */
5225 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
5226 { /* No. So allocate them with malloc. We need one
5227 extra element beyond `num_regs' for the `-1' marker
5229 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
5230 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
5231 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
5232 if (regs
->start
== NULL
|| regs
->end
== NULL
)
5237 bufp
->regs_allocated
= REGS_REALLOCATE
;
5239 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
5240 { /* Yes. If we need more elements than were already
5241 allocated, reallocate them. If we need fewer, just
5243 if (regs
->num_regs
< num_regs
+ 1)
5245 regs
->num_regs
= num_regs
+ 1;
5246 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
5247 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
5248 if (regs
->start
== NULL
|| regs
->end
== NULL
)
5257 /* These braces fend off a "empty body in an else-statement"
5258 warning under GCC when assert expands to nothing. */
5259 assert (bufp
->regs_allocated
== REGS_FIXED
);
5262 /* Convert the pointer data in `regstart' and `regend' to
5263 indices. Register zero has to be set differently,
5264 since we haven't kept track of any info for it. */
5265 if (regs
->num_regs
> 0)
5267 regs
->start
[0] = pos
;
5268 regs
->end
[0] = POINTER_TO_OFFSET (d
);
5271 /* Go through the first `min (num_regs, regs->num_regs)'
5272 registers, since that is all we initialized. */
5273 for (reg
= 1; reg
< MIN (num_regs
, regs
->num_regs
); reg
++)
5275 if (REG_UNSET (regstart
[reg
]) || REG_UNSET (regend
[reg
]))
5276 regs
->start
[reg
] = regs
->end
[reg
] = -1;
5280 = (regoff_t
) POINTER_TO_OFFSET (regstart
[reg
]);
5282 = (regoff_t
) POINTER_TO_OFFSET (regend
[reg
]);
5286 /* If the regs structure we return has more elements than
5287 were in the pattern, set the extra elements to -1. If
5288 we (re)allocated the registers, this is the case,
5289 because we always allocate enough to have at least one
5291 for (reg
= num_regs
; reg
< regs
->num_regs
; reg
++)
5292 regs
->start
[reg
] = regs
->end
[reg
] = -1;
5293 } /* regs && !bufp->no_sub */
5295 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5296 nfailure_points_pushed
, nfailure_points_popped
,
5297 nfailure_points_pushed
- nfailure_points_popped
);
5298 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
5300 mcnt
= POINTER_TO_OFFSET (d
) - pos
;
5302 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
5308 /* Otherwise match next pattern command. */
5311 /* Ignore these. Used to ignore the n of succeed_n's which
5312 currently have n == 0. */
5314 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5318 DEBUG_PRINT1 ("EXECUTING succeed.\n");
5321 /* Match the next n pattern characters exactly. The following
5322 byte in the pattern defines n, and the n bytes after that
5323 are the characters to match. */
5326 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
5328 /* Remember the start point to rollback upon failure. */
5332 /* This is written out as an if-else so we don't waste time
5333 testing `translate' inside the loop. */
5334 if (RE_TRANSLATE_P (translate
))
5338 if (RE_TRANSLATE (translate
, *d
) != *p
++)
5358 /* The cost of testing `translate' is comparatively small. */
5359 if (target_multibyte
)
5362 int pat_charlen
, buf_charlen
;
5367 pat_ch
= STRING_CHAR_AND_LENGTH (p
, pat_charlen
);
5370 pat_ch
= RE_CHAR_TO_MULTIBYTE (*p
);
5373 buf_ch
= STRING_CHAR_AND_LENGTH (d
, buf_charlen
);
5375 if (TRANSLATE (buf_ch
) != pat_ch
)
5383 mcnt
-= pat_charlen
;
5395 pat_ch
= STRING_CHAR_AND_LENGTH (p
, pat_charlen
);
5396 pat_ch
= RE_CHAR_TO_UNIBYTE (pat_ch
);
5403 buf_ch
= RE_CHAR_TO_MULTIBYTE (*d
);
5404 if (! CHAR_BYTE8_P (buf_ch
))
5406 buf_ch
= TRANSLATE (buf_ch
);
5407 buf_ch
= RE_CHAR_TO_UNIBYTE (buf_ch
);
5413 if (buf_ch
!= pat_ch
)
5426 /* Match any character except possibly a newline or a null. */
5432 DEBUG_PRINT1 ("EXECUTING anychar.\n");
5435 buf_ch
= RE_STRING_CHAR_AND_LENGTH (d
, buf_charlen
,
5437 buf_ch
= TRANSLATE (buf_ch
);
5439 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
)
5441 || ((bufp
->syntax
& RE_DOT_NOT_NULL
)
5442 && buf_ch
== '\000'))
5445 DEBUG_PRINT2 (" Matched `%d'.\n", *d
);
5454 register unsigned int c
;
5455 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
5458 /* Start of actual range_table, or end of bitmap if there is no
5460 re_char
*range_table
IF_LINT (= NULL
);
5462 /* Nonzero if there is a range table. */
5463 int range_table_exists
;
5465 /* Number of ranges of range table. This is not included
5466 in the initial byte-length of the command. */
5469 /* Whether matching against a unibyte character. */
5470 boolean unibyte_char
= false;
5472 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
5474 range_table_exists
= CHARSET_RANGE_TABLE_EXISTS_P (&p
[-1]);
5476 if (range_table_exists
)
5478 range_table
= CHARSET_RANGE_TABLE (&p
[-1]); /* Past the bitmap. */
5479 EXTRACT_NUMBER_AND_INCR (count
, range_table
);
5483 c
= RE_STRING_CHAR_AND_LENGTH (d
, len
, target_multibyte
);
5484 if (target_multibyte
)
5489 c1
= RE_CHAR_TO_UNIBYTE (c
);
5492 unibyte_char
= true;
5498 int c1
= RE_CHAR_TO_MULTIBYTE (c
);
5500 if (! CHAR_BYTE8_P (c1
))
5502 c1
= TRANSLATE (c1
);
5503 c1
= RE_CHAR_TO_UNIBYTE (c1
);
5506 unibyte_char
= true;
5511 unibyte_char
= true;
5514 if (unibyte_char
&& c
< (1 << BYTEWIDTH
))
5515 { /* Lookup bitmap. */
5516 /* Cast to `unsigned' instead of `unsigned char' in
5517 case the bit list is a full 32 bytes long. */
5518 if (c
< (unsigned) (CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
)
5519 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
5523 else if (range_table_exists
)
5525 int class_bits
= CHARSET_RANGE_TABLE_BITS (&p
[-1]);
5527 if ( (class_bits
& BIT_LOWER
&& ISLOWER (c
))
5528 | (class_bits
& BIT_MULTIBYTE
)
5529 | (class_bits
& BIT_PUNCT
&& ISPUNCT (c
))
5530 | (class_bits
& BIT_SPACE
&& ISSPACE (c
))
5531 | (class_bits
& BIT_UPPER
&& ISUPPER (c
))
5532 | (class_bits
& BIT_WORD
&& ISWORD (c
)))
5535 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c
, range_table
, count
);
5539 if (range_table_exists
)
5540 p
= CHARSET_RANGE_TABLE_END (range_table
, count
);
5542 p
+= CHARSET_BITMAP_SIZE (&p
[-1]) + 1;
5544 if (!not) goto fail
;
5551 /* The beginning of a group is represented by start_memory.
5552 The argument is the register number. The text
5553 matched within the group is recorded (in the internal
5554 registers data structure) under the register number. */
5556 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p
);
5558 /* In case we need to undo this operation (via backtracking). */
5559 PUSH_FAILURE_REG ((unsigned int)*p
);
5562 regend
[*p
] = NULL
; /* probably unnecessary. -sm */
5563 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
5565 /* Move past the register number and inner group count. */
5570 /* The stop_memory opcode represents the end of a group. Its
5571 argument is the same as start_memory's: the register number. */
5573 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p
);
5575 assert (!REG_UNSET (regstart
[*p
]));
5576 /* Strictly speaking, there should be code such as:
5578 assert (REG_UNSET (regend[*p]));
5579 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5581 But the only info to be pushed is regend[*p] and it is known to
5582 be UNSET, so there really isn't anything to push.
5583 Not pushing anything, on the other hand deprives us from the
5584 guarantee that regend[*p] is UNSET since undoing this operation
5585 will not reset its value properly. This is not important since
5586 the value will only be read on the next start_memory or at
5587 the very end and both events can only happen if this stop_memory
5591 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
5593 /* Move past the register number and the inner group count. */
5598 /* \<digit> has been turned into a `duplicate' command which is
5599 followed by the numeric value of <digit> as the register number. */
5602 register re_char
*d2
, *dend2
;
5603 int regno
= *p
++; /* Get which register to match against. */
5604 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
5606 /* Can't back reference a group which we've never matched. */
5607 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
5610 /* Where in input to try to start matching. */
5611 d2
= regstart
[regno
];
5613 /* Remember the start point to rollback upon failure. */
5616 /* Where to stop matching; if both the place to start and
5617 the place to stop matching are in the same string, then
5618 set to the place to stop, otherwise, for now have to use
5619 the end of the first string. */
5621 dend2
= ((FIRST_STRING_P (regstart
[regno
])
5622 == FIRST_STRING_P (regend
[regno
]))
5623 ? regend
[regno
] : end_match_1
);
5626 /* If necessary, advance to next segment in register
5630 if (dend2
== end_match_2
) break;
5631 if (dend2
== regend
[regno
]) break;
5633 /* End of string1 => advance to string2. */
5635 dend2
= regend
[regno
];
5637 /* At end of register contents => success */
5638 if (d2
== dend2
) break;
5640 /* If necessary, advance to next segment in data. */
5643 /* How many characters left in this segment to match. */
5646 /* Want how many consecutive characters we can match in
5647 one shot, so, if necessary, adjust the count. */
5648 if (mcnt
> dend2
- d2
)
5651 /* Compare that many; failure if mismatch, else move
5653 if (RE_TRANSLATE_P (translate
)
5654 ? bcmp_translate (d
, d2
, mcnt
, translate
, target_multibyte
)
5655 : memcmp (d
, d2
, mcnt
))
5660 d
+= mcnt
, d2
+= mcnt
;
5666 /* begline matches the empty string at the beginning of the string
5667 (unless `not_bol' is set in `bufp'), and after newlines. */
5669 DEBUG_PRINT1 ("EXECUTING begline.\n");
5671 if (AT_STRINGS_BEG (d
))
5673 if (!bufp
->not_bol
) break;
5678 GET_CHAR_BEFORE_2 (c
, d
, string1
, end1
, string2
, end2
);
5682 /* In all other cases, we fail. */
5686 /* endline is the dual of begline. */
5688 DEBUG_PRINT1 ("EXECUTING endline.\n");
5690 if (AT_STRINGS_END (d
))
5692 if (!bufp
->not_eol
) break;
5696 PREFETCH_NOLIMIT ();
5703 /* Match at the very beginning of the data. */
5705 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5706 if (AT_STRINGS_BEG (d
))
5711 /* Match at the very end of the data. */
5713 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
5714 if (AT_STRINGS_END (d
))
5719 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5720 pushes NULL as the value for the string on the stack. Then
5721 `POP_FAILURE_POINT' will keep the current value for the
5722 string, instead of restoring it. To see why, consider
5723 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5724 then the . fails against the \n. But the next thing we want
5725 to do is match the \n against the \n; if we restored the
5726 string value, we would be back at the foo.
5728 Because this is used only in specific cases, we don't need to
5729 check all the things that `on_failure_jump' does, to make
5730 sure the right things get saved on the stack. Hence we don't
5731 share its code. The only reason to push anything on the
5732 stack at all is that otherwise we would have to change
5733 `anychar's code to do something besides goto fail in this
5734 case; that seems worse than this. */
5735 case on_failure_keep_string_jump
:
5736 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5737 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5740 PUSH_FAILURE_POINT (p
- 3, NULL
);
5743 /* A nasty loop is introduced by the non-greedy *? and +?.
5744 With such loops, the stack only ever contains one failure point
5745 at a time, so that a plain on_failure_jump_loop kind of
5746 cycle detection cannot work. Worse yet, such a detection
5747 can not only fail to detect a cycle, but it can also wrongly
5748 detect a cycle (between different instantiations of the same
5750 So the method used for those nasty loops is a little different:
5751 We use a special cycle-detection-stack-frame which is pushed
5752 when the on_failure_jump_nastyloop failure-point is *popped*.
5753 This special frame thus marks the beginning of one iteration
5754 through the loop and we can hence easily check right here
5755 whether something matched between the beginning and the end of
5757 case on_failure_jump_nastyloop
:
5758 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5759 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5762 assert ((re_opcode_t
)p
[-4] == no_op
);
5765 CHECK_INFINITE_LOOP (p
- 4, d
);
5767 /* If there's a cycle, just continue without pushing
5768 this failure point. The failure point is the "try again"
5769 option, which shouldn't be tried.
5770 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5771 PUSH_FAILURE_POINT (p
- 3, d
);
5775 /* Simple loop detecting on_failure_jump: just check on the
5776 failure stack if the same spot was already hit earlier. */
5777 case on_failure_jump_loop
:
5779 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5780 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5784 CHECK_INFINITE_LOOP (p
- 3, d
);
5786 /* If there's a cycle, get out of the loop, as if the matching
5787 had failed. We used to just `goto fail' here, but that was
5788 aborting the search a bit too early: we want to keep the
5789 empty-loop-match and keep matching after the loop.
5790 We want (x?)*y\1z to match both xxyz and xxyxz. */
5793 PUSH_FAILURE_POINT (p
- 3, d
);
5798 /* Uses of on_failure_jump:
5800 Each alternative starts with an on_failure_jump that points
5801 to the beginning of the next alternative. Each alternative
5802 except the last ends with a jump that in effect jumps past
5803 the rest of the alternatives. (They really jump to the
5804 ending jump of the following alternative, because tensioning
5805 these jumps is a hassle.)
5807 Repeats start with an on_failure_jump that points past both
5808 the repetition text and either the following jump or
5809 pop_failure_jump back to this on_failure_jump. */
5810 case on_failure_jump
:
5811 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5812 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5815 PUSH_FAILURE_POINT (p
-3, d
);
5818 /* This operation is used for greedy *.
5819 Compare the beginning of the repeat with what in the
5820 pattern follows its end. If we can establish that there
5821 is nothing that they would both match, i.e., that we
5822 would have to backtrack because of (as in, e.g., `a*a')
5823 then we can use a non-backtracking loop based on
5824 on_failure_keep_string_jump instead of on_failure_jump. */
5825 case on_failure_jump_smart
:
5826 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5827 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5830 re_char
*p1
= p
; /* Next operation. */
5831 /* Here, we discard `const', making re_match non-reentrant. */
5832 unsigned char *p2
= (unsigned char*) p
+ mcnt
; /* Jump dest. */
5833 unsigned char *p3
= (unsigned char*) p
- 3; /* opcode location. */
5835 p
-= 3; /* Reset so that we will re-execute the
5836 instruction once it's been changed. */
5838 EXTRACT_NUMBER (mcnt
, p2
- 2);
5840 /* Ensure this is a indeed the trivial kind of loop
5841 we are expecting. */
5842 assert (skip_one_char (p1
) == p2
- 3);
5843 assert ((re_opcode_t
) p2
[-3] == jump
&& p2
+ mcnt
== p
);
5844 DEBUG_STATEMENT (debug
+= 2);
5845 if (mutually_exclusive_p (bufp
, p1
, p2
))
5847 /* Use a fast `on_failure_keep_string_jump' loop. */
5848 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
5849 *p3
= (unsigned char) on_failure_keep_string_jump
;
5850 STORE_NUMBER (p2
- 2, mcnt
+ 3);
5854 /* Default to a safe `on_failure_jump' loop. */
5855 DEBUG_PRINT1 (" smart default => slow loop.\n");
5856 *p3
= (unsigned char) on_failure_jump
;
5858 DEBUG_STATEMENT (debug
-= 2);
5862 /* Unconditionally jump (without popping any failure points). */
5865 IMMEDIATE_QUIT_CHECK
;
5866 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
5867 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
5868 p
+= mcnt
; /* Do the jump. */
5869 DEBUG_PRINT2 ("(to %p).\n", p
);
5873 /* Have to succeed matching what follows at least n times.
5874 After that, handle like `on_failure_jump'. */
5876 /* Signedness doesn't matter since we only compare MCNT to 0. */
5877 EXTRACT_NUMBER (mcnt
, p
+ 2);
5878 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
5880 /* Originally, mcnt is how many times we HAVE to succeed. */
5883 /* Here, we discard `const', making re_match non-reentrant. */
5884 unsigned char *p2
= (unsigned char*) p
+ 2; /* counter loc. */
5887 PUSH_NUMBER (p2
, mcnt
);
5890 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5895 /* Signedness doesn't matter since we only compare MCNT to 0. */
5896 EXTRACT_NUMBER (mcnt
, p
+ 2);
5897 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
5899 /* Originally, this is how many times we CAN jump. */
5902 /* Here, we discard `const', making re_match non-reentrant. */
5903 unsigned char *p2
= (unsigned char*) p
+ 2; /* counter loc. */
5905 PUSH_NUMBER (p2
, mcnt
);
5906 goto unconditional_jump
;
5908 /* If don't have to jump any more, skip over the rest of command. */
5915 unsigned char *p2
; /* Location of the counter. */
5916 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5918 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5919 /* Here, we discard `const', making re_match non-reentrant. */
5920 p2
= (unsigned char*) p
+ mcnt
;
5921 /* Signedness doesn't matter since we only copy MCNT's bits . */
5922 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5923 DEBUG_PRINT3 (" Setting %p to %d.\n", p2
, mcnt
);
5924 PUSH_NUMBER (p2
, mcnt
);
5931 boolean
not = (re_opcode_t
) *(p
- 1) == notwordbound
;
5932 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
5934 /* We SUCCEED (or FAIL) in one of the following cases: */
5936 /* Case 1: D is at the beginning or the end of string. */
5937 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
5941 /* C1 is the character before D, S1 is the syntax of C1, C2
5942 is the character at D, and S2 is the syntax of C2. */
5947 ssize_t offset
= PTR_TO_OFFSET (d
- 1);
5948 ssize_t charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5949 UPDATE_SYNTAX_TABLE (charpos
);
5951 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5954 UPDATE_SYNTAX_TABLE_FORWARD (charpos
+ 1);
5956 PREFETCH_NOLIMIT ();
5957 GET_CHAR_AFTER (c2
, d
, dummy
);
5960 if (/* Case 2: Only one of S1 and S2 is Sword. */
5961 ((s1
== Sword
) != (s2
== Sword
))
5962 /* Case 3: Both of S1 and S2 are Sword, and macro
5963 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5964 || ((s1
== Sword
) && WORD_BOUNDARY_P (c1
, c2
)))
5974 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5976 /* We FAIL in one of the following cases: */
5978 /* Case 1: D is at the end of string. */
5979 if (AT_STRINGS_END (d
))
5983 /* C1 is the character before D, S1 is the syntax of C1, C2
5984 is the character at D, and S2 is the syntax of C2. */
5989 ssize_t offset
= PTR_TO_OFFSET (d
);
5990 ssize_t charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5991 UPDATE_SYNTAX_TABLE (charpos
);
5994 GET_CHAR_AFTER (c2
, d
, dummy
);
5997 /* Case 2: S2 is not Sword. */
6001 /* Case 3: D is not at the beginning of string ... */
6002 if (!AT_STRINGS_BEG (d
))
6004 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
6006 UPDATE_SYNTAX_TABLE_BACKWARD (charpos
- 1);
6010 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
6012 if ((s1
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
6019 DEBUG_PRINT1 ("EXECUTING wordend.\n");
6021 /* We FAIL in one of the following cases: */
6023 /* Case 1: D is at the beginning of string. */
6024 if (AT_STRINGS_BEG (d
))
6028 /* C1 is the character before D, S1 is the syntax of C1, C2
6029 is the character at D, and S2 is the syntax of C2. */
6034 ssize_t offset
= PTR_TO_OFFSET (d
) - 1;
6035 ssize_t charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6036 UPDATE_SYNTAX_TABLE (charpos
);
6038 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
6041 /* Case 2: S1 is not Sword. */
6045 /* Case 3: D is not at the end of string ... */
6046 if (!AT_STRINGS_END (d
))
6048 PREFETCH_NOLIMIT ();
6049 GET_CHAR_AFTER (c2
, d
, dummy
);
6051 UPDATE_SYNTAX_TABLE_FORWARD (charpos
);
6055 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
6057 if ((s2
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
6064 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
6066 /* We FAIL in one of the following cases: */
6068 /* Case 1: D is at the end of string. */
6069 if (AT_STRINGS_END (d
))
6073 /* C1 is the character before D, S1 is the syntax of C1, C2
6074 is the character at D, and S2 is the syntax of C2. */
6078 ssize_t offset
= PTR_TO_OFFSET (d
);
6079 ssize_t charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6080 UPDATE_SYNTAX_TABLE (charpos
);
6083 c2
= RE_STRING_CHAR (d
, target_multibyte
);
6086 /* Case 2: S2 is neither Sword nor Ssymbol. */
6087 if (s2
!= Sword
&& s2
!= Ssymbol
)
6090 /* Case 3: D is not at the beginning of string ... */
6091 if (!AT_STRINGS_BEG (d
))
6093 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
6095 UPDATE_SYNTAX_TABLE_BACKWARD (charpos
- 1);
6099 /* ... and S1 is Sword or Ssymbol. */
6100 if (s1
== Sword
|| s1
== Ssymbol
)
6107 DEBUG_PRINT1 ("EXECUTING symend.\n");
6109 /* We FAIL in one of the following cases: */
6111 /* Case 1: D is at the beginning of string. */
6112 if (AT_STRINGS_BEG (d
))
6116 /* C1 is the character before D, S1 is the syntax of C1, C2
6117 is the character at D, and S2 is the syntax of C2. */
6121 ssize_t offset
= PTR_TO_OFFSET (d
) - 1;
6122 ssize_t charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6123 UPDATE_SYNTAX_TABLE (charpos
);
6125 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
6128 /* Case 2: S1 is neither Ssymbol nor Sword. */
6129 if (s1
!= Sword
&& s1
!= Ssymbol
)
6132 /* Case 3: D is not at the end of string ... */
6133 if (!AT_STRINGS_END (d
))
6135 PREFETCH_NOLIMIT ();
6136 c2
= RE_STRING_CHAR (d
, target_multibyte
);
6138 UPDATE_SYNTAX_TABLE_FORWARD (charpos
+ 1);
6142 /* ... and S2 is Sword or Ssymbol. */
6143 if (s2
== Sword
|| s2
== Ssymbol
)
6152 boolean
not = (re_opcode_t
) *(p
- 1) == notsyntaxspec
;
6154 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt
);
6158 ssize_t offset
= PTR_TO_OFFSET (d
);
6159 ssize_t pos1
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6160 UPDATE_SYNTAX_TABLE (pos1
);
6167 GET_CHAR_AFTER (c
, d
, len
);
6168 if ((SYNTAX (c
) != (enum syntaxcode
) mcnt
) ^ not)
6177 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
6178 if (PTR_BYTE_POS (d
) >= PT_BYTE
)
6183 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
6184 if (PTR_BYTE_POS (d
) != PT_BYTE
)
6189 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
6190 if (PTR_BYTE_POS (d
) <= PT_BYTE
)
6195 case notcategoryspec
:
6197 boolean
not = (re_opcode_t
) *(p
- 1) == notcategoryspec
;
6199 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n",
6200 not?"not":"", mcnt
);
6206 GET_CHAR_AFTER (c
, d
, len
);
6207 if ((!CHAR_HAS_CATEGORY (c
, mcnt
)) ^ not)
6219 continue; /* Successfully executed one pattern command; keep going. */
6222 /* We goto here if a matching operation fails. */
6224 IMMEDIATE_QUIT_CHECK
;
6225 if (!FAIL_STACK_EMPTY ())
6228 /* A restart point is known. Restore to that state. */
6229 DEBUG_PRINT1 ("\nFAIL:\n");
6230 POP_FAILURE_POINT (str
, pat
);
6233 case on_failure_keep_string_jump
:
6234 assert (str
== NULL
);
6235 goto continue_failure_jump
;
6237 case on_failure_jump_nastyloop
:
6238 assert ((re_opcode_t
)pat
[-2] == no_op
);
6239 PUSH_FAILURE_POINT (pat
- 2, str
);
6242 case on_failure_jump_loop
:
6243 case on_failure_jump
:
6246 continue_failure_jump
:
6247 EXTRACT_NUMBER_AND_INCR (mcnt
, pat
);
6252 /* A special frame used for nastyloops. */
6259 assert (p
>= bufp
->buffer
&& p
<= pend
);
6261 if (d
>= string1
&& d
<= end1
)
6265 break; /* Matching at this starting point really fails. */
6269 goto restore_best_regs
;
6273 return -1; /* Failure to match. */
6276 /* Subroutine definitions for re_match_2. */
6278 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6279 bytes; nonzero otherwise. */
6282 bcmp_translate (const re_char
*s1
, const re_char
*s2
, register ssize_t len
,
6283 RE_TRANSLATE_TYPE translate
, const int target_multibyte
)
6285 register re_char
*p1
= s1
, *p2
= s2
;
6286 re_char
*p1_end
= s1
+ len
;
6287 re_char
*p2_end
= s2
+ len
;
6289 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6290 different lengths, but relying on a single `len' would break this. -sm */
6291 while (p1
< p1_end
&& p2
< p2_end
)
6293 int p1_charlen
, p2_charlen
;
6294 re_wchar_t p1_ch
, p2_ch
;
6296 GET_CHAR_AFTER (p1_ch
, p1
, p1_charlen
);
6297 GET_CHAR_AFTER (p2_ch
, p2
, p2_charlen
);
6299 if (RE_TRANSLATE (translate
, p1_ch
)
6300 != RE_TRANSLATE (translate
, p2_ch
))
6303 p1
+= p1_charlen
, p2
+= p2_charlen
;
6306 if (p1
!= p1_end
|| p2
!= p2_end
)
6312 /* Entry points for GNU code. */
6314 /* re_compile_pattern is the GNU regular expression compiler: it
6315 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6316 Returns 0 if the pattern was valid, otherwise an error string.
6318 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6319 are set in BUFP on entry.
6321 We call regex_compile to do the actual compilation. */
6324 re_compile_pattern (const char *pattern
, size_t length
,
6325 struct re_pattern_buffer
*bufp
)
6329 /* GNU code is written to assume at least RE_NREGS registers will be set
6330 (and at least one extra will be -1). */
6331 bufp
->regs_allocated
= REGS_UNALLOCATED
;
6333 /* And GNU code determines whether or not to get register information
6334 by passing null for the REGS argument to re_match, etc., not by
6338 ret
= regex_compile ((re_char
*) pattern
, length
, re_syntax_options
, bufp
);
6342 return gettext (re_error_msgid
[(int) ret
]);
6344 WEAK_ALIAS (__re_compile_pattern
, re_compile_pattern
)
6346 /* Entry points compatible with 4.2 BSD regex library. We don't define
6347 them unless specifically requested. */
6349 #if defined _REGEX_RE_COMP || defined _LIBC
6351 /* BSD has one and only one pattern buffer. */
6352 static struct re_pattern_buffer re_comp_buf
;
6356 /* Make these definitions weak in libc, so POSIX programs can redefine
6357 these names if they don't use our functions, and still use
6358 regcomp/regexec below without link errors. */
6361 re_comp (const char *s
)
6367 if (!re_comp_buf
.buffer
)
6368 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6369 return (char *) gettext ("No previous regular expression");
6373 if (!re_comp_buf
.buffer
)
6375 re_comp_buf
.buffer
= malloc (200);
6376 if (re_comp_buf
.buffer
== NULL
)
6377 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6378 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
6379 re_comp_buf
.allocated
= 200;
6381 re_comp_buf
.fastmap
= malloc (1 << BYTEWIDTH
);
6382 if (re_comp_buf
.fastmap
== NULL
)
6383 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6384 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
6387 /* Since `re_exec' always passes NULL for the `regs' argument, we
6388 don't need to initialize the pattern buffer fields which affect it. */
6390 ret
= regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
6395 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6396 return (char *) gettext (re_error_msgid
[(int) ret
]);
6404 re_exec (const char *s
)
6406 const size_t len
= strlen (s
);
6408 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
6410 #endif /* _REGEX_RE_COMP */
6412 /* POSIX.2 functions. Don't define these for Emacs. */
6416 /* regcomp takes a regular expression as a string and compiles it.
6418 PREG is a regex_t *. We do not expect any fields to be initialized,
6419 since POSIX says we shouldn't. Thus, we set
6421 `buffer' to the compiled pattern;
6422 `used' to the length of the compiled pattern;
6423 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6424 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6425 RE_SYNTAX_POSIX_BASIC;
6426 `fastmap' to an allocated space for the fastmap;
6427 `fastmap_accurate' to zero;
6428 `re_nsub' to the number of subexpressions in PATTERN.
6430 PATTERN is the address of the pattern string.
6432 CFLAGS is a series of bits which affect compilation.
6434 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6435 use POSIX basic syntax.
6437 If REG_NEWLINE is set, then . and [^...] don't match newline.
6438 Also, regexec will try a match beginning after every newline.
6440 If REG_ICASE is set, then we considers upper- and lowercase
6441 versions of letters to be equivalent when matching.
6443 If REG_NOSUB is set, then when PREG is passed to regexec, that
6444 routine will report only success or failure, and nothing about the
6447 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6448 the return codes and their meanings.) */
6451 regcomp (regex_t
*__restrict preg
, const char *__restrict pattern
,
6456 = (cflags
& REG_EXTENDED
) ?
6457 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
6459 /* regex_compile will allocate the space for the compiled pattern. */
6461 preg
->allocated
= 0;
6464 /* Try to allocate space for the fastmap. */
6465 preg
->fastmap
= malloc (1 << BYTEWIDTH
);
6467 if (cflags
& REG_ICASE
)
6471 preg
->translate
= malloc (CHAR_SET_SIZE
* sizeof *preg
->translate
);
6472 if (preg
->translate
== NULL
)
6473 return (int) REG_ESPACE
;
6475 /* Map uppercase characters to corresponding lowercase ones. */
6476 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
6477 preg
->translate
[i
] = ISUPPER (i
) ? TOLOWER (i
) : i
;
6480 preg
->translate
= NULL
;
6482 /* If REG_NEWLINE is set, newlines are treated differently. */
6483 if (cflags
& REG_NEWLINE
)
6484 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6485 syntax
&= ~RE_DOT_NEWLINE
;
6486 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
6489 syntax
|= RE_NO_NEWLINE_ANCHOR
;
6491 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
6493 /* POSIX says a null character in the pattern terminates it, so we
6494 can use strlen here in compiling the pattern. */
6495 ret
= regex_compile ((re_char
*) pattern
, strlen (pattern
), syntax
, preg
);
6497 /* POSIX doesn't distinguish between an unmatched open-group and an
6498 unmatched close-group: both are REG_EPAREN. */
6499 if (ret
== REG_ERPAREN
)
6502 if (ret
== REG_NOERROR
&& preg
->fastmap
)
6503 { /* Compute the fastmap now, since regexec cannot modify the pattern
6505 re_compile_fastmap (preg
);
6506 if (preg
->can_be_null
)
6507 { /* The fastmap can't be used anyway. */
6508 free (preg
->fastmap
);
6509 preg
->fastmap
= NULL
;
6514 WEAK_ALIAS (__regcomp
, regcomp
)
6517 /* regexec searches for a given pattern, specified by PREG, in the
6520 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6521 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6522 least NMATCH elements, and we set them to the offsets of the
6523 corresponding matched substrings.
6525 EFLAGS specifies `execution flags' which affect matching: if
6526 REG_NOTBOL is set, then ^ does not match at the beginning of the
6527 string; if REG_NOTEOL is set, then $ does not match at the end.
6529 We return 0 if we find a match and REG_NOMATCH if not. */
6532 regexec (const regex_t
*__restrict preg
, const char *__restrict string
,
6533 size_t nmatch
, regmatch_t pmatch
[__restrict_arr
], int eflags
)
6536 struct re_registers regs
;
6537 regex_t private_preg
;
6538 size_t len
= strlen (string
);
6539 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0 && pmatch
;
6541 private_preg
= *preg
;
6543 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
6544 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
6546 /* The user has told us exactly how many registers to return
6547 information about, via `nmatch'. We have to pass that on to the
6548 matching routines. */
6549 private_preg
.regs_allocated
= REGS_FIXED
;
6553 regs
.num_regs
= nmatch
;
6554 regs
.start
= TALLOC (nmatch
* 2, regoff_t
);
6555 if (regs
.start
== NULL
)
6557 regs
.end
= regs
.start
+ nmatch
;
6560 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6561 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6562 was a little bit longer but still only matching the real part.
6563 This works because the `endline' will check for a '\n' and will find a
6564 '\0', correctly deciding that this is not the end of a line.
6565 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6566 a convenient '\0' there. For all we know, the string could be preceded
6567 by '\n' which would throw things off. */
6569 /* Perform the searching operation. */
6570 ret
= re_search (&private_preg
, string
, len
,
6571 /* start: */ 0, /* range: */ len
,
6572 want_reg_info
? ®s
: (struct re_registers
*) 0);
6574 /* Copy the register information to the POSIX structure. */
6581 for (r
= 0; r
< nmatch
; r
++)
6583 pmatch
[r
].rm_so
= regs
.start
[r
];
6584 pmatch
[r
].rm_eo
= regs
.end
[r
];
6588 /* If we needed the temporary register info, free the space now. */
6592 /* We want zero return to mean success, unlike `re_search'. */
6593 return ret
>= 0 ? REG_NOERROR
: REG_NOMATCH
;
6595 WEAK_ALIAS (__regexec
, regexec
)
6598 /* Returns a message corresponding to an error code, ERR_CODE, returned
6599 from either regcomp or regexec. We don't use PREG here.
6601 ERR_CODE was previously called ERRCODE, but that name causes an
6602 error with msvc8 compiler. */
6605 regerror (int err_code
, const regex_t
*preg
, char *errbuf
, size_t errbuf_size
)
6611 || err_code
>= (sizeof (re_error_msgid
) / sizeof (re_error_msgid
[0])))
6612 /* Only error codes returned by the rest of the code should be passed
6613 to this routine. If we are given anything else, or if other regex
6614 code generates an invalid error code, then the program has a bug.
6615 Dump core so we can fix it. */
6618 msg
= gettext (re_error_msgid
[err_code
]);
6620 msg_size
= strlen (msg
) + 1; /* Includes the null. */
6622 if (errbuf_size
!= 0)
6624 if (msg_size
> errbuf_size
)
6626 memcpy (errbuf
, msg
, errbuf_size
- 1);
6627 errbuf
[errbuf_size
- 1] = 0;
6630 strcpy (errbuf
, msg
);
6635 WEAK_ALIAS (__regerror
, regerror
)
6638 /* Free dynamically allocated space used by PREG. */
6641 regfree (regex_t
*preg
)
6643 free (preg
->buffer
);
6644 preg
->buffer
= NULL
;
6646 preg
->allocated
= 0;
6649 free (preg
->fastmap
);
6650 preg
->fastmap
= NULL
;
6651 preg
->fastmap_accurate
= 0;
6653 free (preg
->translate
);
6654 preg
->translate
= NULL
;
6656 WEAK_ALIAS (__regfree
, regfree
)
6658 #endif /* not emacs */