More details and index entries for isearch-lazy-highlight.
[emacs.git] / lisp / emacs-lisp / byte-opt.el
blobe1cc0db3f368c2a4f27b7a6c3d7ae4ac3c8266f6
1 ;;; byte-opt.el --- the optimization passes of the emacs-lisp byte compiler.
3 ;;; Copyright (c) 1991, 1994, 2000 Free Software Foundation, Inc.
5 ;; Author: Jamie Zawinski <jwz@lucid.com>
6 ;; Hallvard Furuseth <hbf@ulrik.uio.no>
7 ;; Maintainer: FSF
8 ;; Keywords: internal
10 ;; This file is part of GNU Emacs.
12 ;; GNU Emacs is free software; you can redistribute it and/or modify
13 ;; it under the terms of the GNU General Public License as published by
14 ;; the Free Software Foundation; either version 2, or (at your option)
15 ;; any later version.
17 ;; GNU Emacs is distributed in the hope that it will be useful,
18 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
19 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 ;; GNU General Public License for more details.
22 ;; You should have received a copy of the GNU General Public License
23 ;; along with GNU Emacs; see the file COPYING. If not, write to the
24 ;; Free Software Foundation, Inc., 59 Temple Place - Suite 330,
25 ;; Boston, MA 02111-1307, USA.
27 ;;; Commentary:
29 ;; ========================================================================
30 ;; "No matter how hard you try, you can't make a racehorse out of a pig.
31 ;; You can, however, make a faster pig."
33 ;; Or, to put it another way, the emacs byte compiler is a VW Bug. This code
34 ;; makes it be a VW Bug with fuel injection and a turbocharger... You're
35 ;; still not going to make it go faster than 70 mph, but it might be easier
36 ;; to get it there.
39 ;; TO DO:
41 ;; (apply (lambda (x &rest y) ...) 1 (foo))
43 ;; maintain a list of functions known not to access any global variables
44 ;; (actually, give them a 'dynamically-safe property) and then
45 ;; (let ( v1 v2 ... vM vN ) <...dynamically-safe...> ) ==>
46 ;; (let ( v1 v2 ... vM ) vN <...dynamically-safe...> )
47 ;; by recursing on this, we might be able to eliminate the entire let.
48 ;; However certain variables should never have their bindings optimized
49 ;; away, because they affect everything.
50 ;; (put 'debug-on-error 'binding-is-magic t)
51 ;; (put 'debug-on-abort 'binding-is-magic t)
52 ;; (put 'debug-on-next-call 'binding-is-magic t)
53 ;; (put 'mocklisp-arguments 'binding-is-magic t)
54 ;; (put 'inhibit-quit 'binding-is-magic t)
55 ;; (put 'quit-flag 'binding-is-magic t)
56 ;; (put 't 'binding-is-magic t)
57 ;; (put 'nil 'binding-is-magic t)
58 ;; possibly also
59 ;; (put 'gc-cons-threshold 'binding-is-magic t)
60 ;; (put 'track-mouse 'binding-is-magic t)
61 ;; others?
63 ;; Simple defsubsts often produce forms like
64 ;; (let ((v1 (f1)) (v2 (f2)) ...)
65 ;; (FN v1 v2 ...))
66 ;; It would be nice if we could optimize this to
67 ;; (FN (f1) (f2) ...)
68 ;; but we can't unless FN is dynamically-safe (it might be dynamically
69 ;; referring to the bindings that the lambda arglist established.)
70 ;; One of the uncountable lossages introduced by dynamic scope...
72 ;; Maybe there should be a control-structure that says "turn on
73 ;; fast-and-loose type-assumptive optimizations here." Then when
74 ;; we see a form like (car foo) we can from then on assume that
75 ;; the variable foo is of type cons, and optimize based on that.
76 ;; But, this won't win much because of (you guessed it) dynamic
77 ;; scope. Anything down the stack could change the value.
78 ;; (Another reason it doesn't work is that it is perfectly valid
79 ;; to call car with a null argument.) A better approach might
80 ;; be to allow type-specification of the form
81 ;; (put 'foo 'arg-types '(float (list integer) dynamic))
82 ;; (put 'foo 'result-type 'bool)
83 ;; It should be possible to have these types checked to a certain
84 ;; degree.
86 ;; collapse common subexpressions
88 ;; It would be nice if redundant sequences could be factored out as well,
89 ;; when they are known to have no side-effects:
90 ;; (list (+ a b c) (+ a b c)) --> a b add c add dup list-2
91 ;; but beware of traps like
92 ;; (cons (list x y) (list x y))
94 ;; Tail-recursion elimination is not really possible in Emacs Lisp.
95 ;; Tail-recursion elimination is almost always impossible when all variables
96 ;; have dynamic scope, but given that the "return" byteop requires the
97 ;; binding stack to be empty (rather than emptying it itself), there can be
98 ;; no truly tail-recursive Emacs Lisp functions that take any arguments or
99 ;; make any bindings.
101 ;; Here is an example of an Emacs Lisp function which could safely be
102 ;; byte-compiled tail-recursively:
104 ;; (defun tail-map (fn list)
105 ;; (cond (list
106 ;; (funcall fn (car list))
107 ;; (tail-map fn (cdr list)))))
109 ;; However, if there was even a single let-binding around the COND,
110 ;; it could not be byte-compiled, because there would be an "unbind"
111 ;; byte-op between the final "call" and "return." Adding a
112 ;; Bunbind_all byteop would fix this.
114 ;; (defun foo (x y z) ... (foo a b c))
115 ;; ... (const foo) (varref a) (varref b) (varref c) (call 3) END: (return)
116 ;; ... (varref a) (varbind x) (varref b) (varbind y) (varref c) (varbind z) (goto 0) END: (unbind-all) (return)
117 ;; ... (varref a) (varset x) (varref b) (varset y) (varref c) (varset z) (goto 0) END: (return)
119 ;; this also can be considered tail recursion:
121 ;; ... (const foo) (varref a) (call 1) (goto X) ... X: (return)
122 ;; could generalize this by doing the optimization
123 ;; (goto X) ... X: (return) --> (return)
125 ;; But this doesn't solve all of the problems: although by doing tail-
126 ;; recursion elimination in this way, the call-stack does not grow, the
127 ;; binding-stack would grow with each recursive step, and would eventually
128 ;; overflow. I don't believe there is any way around this without lexical
129 ;; scope.
131 ;; Wouldn't it be nice if Emacs Lisp had lexical scope.
133 ;; Idea: the form (lexical-scope) in a file means that the file may be
134 ;; compiled lexically. This proclamation is file-local. Then, within
135 ;; that file, "let" would establish lexical bindings, and "let-dynamic"
136 ;; would do things the old way. (Or we could use CL "declare" forms.)
137 ;; We'd have to notice defvars and defconsts, since those variables should
138 ;; always be dynamic, and attempting to do a lexical binding of them
139 ;; should simply do a dynamic binding instead.
140 ;; But! We need to know about variables that were not necessarily defvarred
141 ;; in the file being compiled (doing a boundp check isn't good enough.)
142 ;; Fdefvar() would have to be modified to add something to the plist.
144 ;; A major disadvantage of this scheme is that the interpreter and compiler
145 ;; would have different semantics for files compiled with (dynamic-scope).
146 ;; Since this would be a file-local optimization, there would be no way to
147 ;; modify the interpreter to obey this (unless the loader was hacked
148 ;; in some grody way, but that's a really bad idea.)
150 ;; Other things to consider:
152 ;;;;; Associative math should recognize subcalls to identical function:
153 ;;;(disassemble (lambda (x) (+ (+ (foo) 1) (+ (bar) 2))))
154 ;;;;; This should generate the same as (1+ x) and (1- x)
156 ;;;(disassemble (lambda (x) (cons (+ x 1) (- x 1))))
157 ;;;;; An awful lot of functions always return a non-nil value. If they're
158 ;;;;; error free also they may act as true-constants.
160 ;;;(disassemble (lambda (x) (and (point) (foo))))
161 ;;;;; When
162 ;;;;; - all but one arguments to a function are constant
163 ;;;;; - the non-constant argument is an if-expression (cond-expression?)
164 ;;;;; then the outer function can be distributed. If the guarding
165 ;;;;; condition is side-effect-free [assignment-free] then the other
166 ;;;;; arguments may be any expressions. Since, however, the code size
167 ;;;;; can increase this way they should be "simple". Compare:
169 ;;;(disassemble (lambda (x) (eq (if (point) 'a 'b) 'c)))
170 ;;;(disassemble (lambda (x) (if (point) (eq 'a 'c) (eq 'b 'c))))
172 ;;;;; (car (cons A B)) -> (progn B A)
173 ;;;(disassemble (lambda (x) (car (cons (foo) 42))))
175 ;;;;; (cdr (cons A B)) -> (progn A B)
176 ;;;(disassemble (lambda (x) (cdr (cons 42 (foo)))))
178 ;;;;; (car (list A B ...)) -> (progn B ... A)
179 ;;;(disassemble (lambda (x) (car (list (foo) 42 (bar)))))
181 ;;;;; (cdr (list A B ...)) -> (progn A (list B ...))
182 ;;;(disassemble (lambda (x) (cdr (list 42 (foo) (bar)))))
185 ;;; Code:
187 (require 'bytecomp)
189 (defun byte-compile-log-lap-1 (format &rest args)
190 (if (aref byte-code-vector 0)
191 (error "The old version of the disassembler is loaded. Reload new-bytecomp as well."))
192 (byte-compile-log-1
193 (apply 'format format
194 (let (c a)
195 (mapcar (lambda (arg)
196 (if (not (consp arg))
197 (if (and (symbolp arg)
198 (string-match "^byte-" (symbol-name arg)))
199 (intern (substring (symbol-name arg) 5))
200 arg)
201 (if (integerp (setq c (car arg)))
202 (error "non-symbolic byte-op %s" c))
203 (if (eq c 'TAG)
204 (setq c arg)
205 (setq a (cond ((memq c byte-goto-ops)
206 (car (cdr (cdr arg))))
207 ((memq c byte-constref-ops)
208 (car (cdr arg)))
209 (t (cdr arg))))
210 (setq c (symbol-name c))
211 (if (string-match "^byte-." c)
212 (setq c (intern (substring c 5)))))
213 (if (eq c 'constant) (setq c 'const))
214 (if (and (eq (cdr arg) 0)
215 (not (memq c '(unbind call const))))
217 (format "(%s %s)" c a))))
218 args)))))
220 (defmacro byte-compile-log-lap (format-string &rest args)
221 (list 'and
222 '(memq byte-optimize-log '(t byte))
223 (cons 'byte-compile-log-lap-1
224 (cons format-string args))))
227 ;;; byte-compile optimizers to support inlining
229 (put 'inline 'byte-optimizer 'byte-optimize-inline-handler)
231 (defun byte-optimize-inline-handler (form)
232 "byte-optimize-handler for the `inline' special-form."
233 (cons 'progn
234 (mapcar
235 (lambda (sexp)
236 (let ((fn (car-safe sexp)))
237 (if (and (symbolp fn)
238 (or (cdr (assq fn byte-compile-function-environment))
239 (and (fboundp fn)
240 (not (or (cdr (assq fn byte-compile-macro-environment))
241 (and (consp (setq fn (symbol-function fn)))
242 (eq (car fn) 'macro))
243 (subrp fn))))))
244 (byte-compile-inline-expand sexp)
245 sexp)))
246 (cdr form))))
249 ;; Splice the given lap code into the current instruction stream.
250 ;; If it has any labels in it, you're responsible for making sure there
251 ;; are no collisions, and that byte-compile-tag-number is reasonable
252 ;; after this is spliced in. The provided list is destroyed.
253 (defun byte-inline-lapcode (lap)
254 (setq byte-compile-output (nconc (nreverse lap) byte-compile-output)))
257 (defun byte-compile-inline-expand (form)
258 (let* ((name (car form))
259 (fn (or (cdr (assq name byte-compile-function-environment))
260 (and (fboundp name) (symbol-function name)))))
261 (if (null fn)
262 (progn
263 (byte-compile-warn "Attempt to inline `%s' before it was defined"
264 name)
265 form)
266 ;; else
267 (when (and (consp fn) (eq (car fn) 'autoload))
268 (load (nth 2 fn))
269 (setq fn (or (and (fboundp name) (symbol-function name))
270 (cdr (assq name byte-compile-function-environment)))))
271 (if (and (consp fn) (eq (car fn) 'autoload))
272 (error "File `%s' didn't define `%s'" (nth 2 fn) name))
273 (if (symbolp fn)
274 (byte-compile-inline-expand (cons fn (cdr form)))
275 (if (byte-code-function-p fn)
276 (let (string)
277 (fetch-bytecode fn)
278 (setq string (aref fn 1))
279 (if (fboundp 'string-as-unibyte)
280 (setq string (string-as-unibyte string)))
281 (cons (list 'lambda (aref fn 0)
282 (list 'byte-code string (aref fn 2) (aref fn 3)))
283 (cdr form)))
284 (if (eq (car-safe fn) 'lambda)
285 (cons fn (cdr form))
286 ;; Give up on inlining.
287 form))))))
289 ;;; ((lambda ...) ...)
290 ;;;
291 (defun byte-compile-unfold-lambda (form &optional name)
292 (or name (setq name "anonymous lambda"))
293 (let ((lambda (car form))
294 (values (cdr form)))
295 (if (byte-code-function-p lambda)
296 (setq lambda (list 'lambda (aref lambda 0)
297 (list 'byte-code (aref lambda 1)
298 (aref lambda 2) (aref lambda 3)))))
299 (let ((arglist (nth 1 lambda))
300 (body (cdr (cdr lambda)))
301 optionalp restp
302 bindings)
303 (if (and (stringp (car body)) (cdr body))
304 (setq body (cdr body)))
305 (if (and (consp (car body)) (eq 'interactive (car (car body))))
306 (setq body (cdr body)))
307 (while arglist
308 (cond ((eq (car arglist) '&optional)
309 ;; ok, I'll let this slide because funcall_lambda() does...
310 ;; (if optionalp (error "multiple &optional keywords in %s" name))
311 (if restp (error "&optional found after &rest in %s" name))
312 (if (null (cdr arglist))
313 (error "nothing after &optional in %s" name))
314 (setq optionalp t))
315 ((eq (car arglist) '&rest)
316 ;; ...but it is by no stretch of the imagination a reasonable
317 ;; thing that funcall_lambda() allows (&rest x y) and
318 ;; (&rest x &optional y) in arglists.
319 (if (null (cdr arglist))
320 (error "nothing after &rest in %s" name))
321 (if (cdr (cdr arglist))
322 (error "multiple vars after &rest in %s" name))
323 (setq restp t))
324 (restp
325 (setq bindings (cons (list (car arglist)
326 (and values (cons 'list values)))
327 bindings)
328 values nil))
329 ((and (not optionalp) (null values))
330 (byte-compile-warn "Attempt to open-code `%s' with too few arguments" name)
331 (setq arglist nil values 'too-few))
333 (setq bindings (cons (list (car arglist) (car values))
334 bindings)
335 values (cdr values))))
336 (setq arglist (cdr arglist)))
337 (if values
338 (progn
339 (or (eq values 'too-few)
340 (byte-compile-warn
341 "Attempt to open-code `%s' with too many arguments" name))
342 form)
343 (setq body (mapcar 'byte-optimize-form body))
344 (let ((newform
345 (if bindings
346 (cons 'let (cons (nreverse bindings) body))
347 (cons 'progn body))))
348 (byte-compile-log " %s\t==>\t%s" form newform)
349 newform)))))
352 ;;; implementing source-level optimizers
354 (defun byte-optimize-form-code-walker (form for-effect)
356 ;; For normal function calls, We can just mapcar the optimizer the cdr. But
357 ;; we need to have special knowledge of the syntax of the special forms
358 ;; like let and defun (that's why they're special forms :-). (Actually,
359 ;; the important aspect is that they are subrs that don't evaluate all of
360 ;; their args.)
362 (let ((fn (car-safe form))
363 tmp)
364 (cond ((not (consp form))
365 (if (not (and for-effect
366 (or byte-compile-delete-errors
367 (not (symbolp form))
368 (eq form t))))
369 form))
370 ((eq fn 'quote)
371 (if (cdr (cdr form))
372 (byte-compile-warn "Malformed quote form: `%s'"
373 (prin1-to-string form)))
374 ;; map (quote nil) to nil to simplify optimizer logic.
375 ;; map quoted constants to nil if for-effect (just because).
376 (and (nth 1 form)
377 (not for-effect)
378 form))
379 ((or (byte-code-function-p fn)
380 (eq 'lambda (car-safe fn)))
381 (byte-compile-unfold-lambda form))
382 ((memq fn '(let let*))
383 ;; recursively enter the optimizer for the bindings and body
384 ;; of a let or let*. This for depth-firstness: forms that
385 ;; are more deeply nested are optimized first.
386 (cons fn
387 (cons
388 (mapcar (lambda (binding)
389 (if (symbolp binding)
390 binding
391 (if (cdr (cdr binding))
392 (byte-compile-warn "Malformed let binding: `%s'"
393 (prin1-to-string binding)))
394 (list (car binding)
395 (byte-optimize-form (nth 1 binding) nil))))
396 (nth 1 form))
397 (byte-optimize-body (cdr (cdr form)) for-effect))))
398 ((eq fn 'cond)
399 (cons fn
400 (mapcar (lambda (clause)
401 (if (consp clause)
402 (cons
403 (byte-optimize-form (car clause) nil)
404 (byte-optimize-body (cdr clause) for-effect))
405 (byte-compile-warn "Malformed cond form: `%s'"
406 (prin1-to-string clause))
407 clause))
408 (cdr form))))
409 ((eq fn 'progn)
410 ;; as an extra added bonus, this simplifies (progn <x>) --> <x>
411 (if (cdr (cdr form))
412 (progn
413 (setq tmp (byte-optimize-body (cdr form) for-effect))
414 (if (cdr tmp) (cons 'progn tmp) (car tmp)))
415 (byte-optimize-form (nth 1 form) for-effect)))
416 ((eq fn 'prog1)
417 (if (cdr (cdr form))
418 (cons 'prog1
419 (cons (byte-optimize-form (nth 1 form) for-effect)
420 (byte-optimize-body (cdr (cdr form)) t)))
421 (byte-optimize-form (nth 1 form) for-effect)))
422 ((eq fn 'prog2)
423 (cons 'prog2
424 (cons (byte-optimize-form (nth 1 form) t)
425 (cons (byte-optimize-form (nth 2 form) for-effect)
426 (byte-optimize-body (cdr (cdr (cdr form))) t)))))
428 ((memq fn '(save-excursion save-restriction save-current-buffer))
429 ;; those subrs which have an implicit progn; it's not quite good
430 ;; enough to treat these like normal function calls.
431 ;; This can turn (save-excursion ...) into (save-excursion) which
432 ;; will be optimized away in the lap-optimize pass.
433 (cons fn (byte-optimize-body (cdr form) for-effect)))
435 ((eq fn 'with-output-to-temp-buffer)
436 ;; this is just like the above, except for the first argument.
437 (cons fn
438 (cons
439 (byte-optimize-form (nth 1 form) nil)
440 (byte-optimize-body (cdr (cdr form)) for-effect))))
442 ((eq fn 'if)
443 (cons fn
444 (cons (byte-optimize-form (nth 1 form) nil)
445 (cons
446 (byte-optimize-form (nth 2 form) for-effect)
447 (byte-optimize-body (nthcdr 3 form) for-effect)))))
449 ((memq fn '(and or)) ; remember, and/or are control structures.
450 ;; take forms off the back until we can't any more.
451 ;; In the future it could conceivably be a problem that the
452 ;; subexpressions of these forms are optimized in the reverse
453 ;; order, but it's ok for now.
454 (if for-effect
455 (let ((backwards (reverse (cdr form))))
456 (while (and backwards
457 (null (setcar backwards
458 (byte-optimize-form (car backwards)
459 for-effect))))
460 (setq backwards (cdr backwards)))
461 (if (and (cdr form) (null backwards))
462 (byte-compile-log
463 " all subforms of %s called for effect; deleted" form))
464 (and backwards
465 (cons fn (nreverse backwards))))
466 (cons fn (mapcar 'byte-optimize-form (cdr form)))))
468 ((eq fn 'interactive)
469 (byte-compile-warn "Misplaced interactive spec: `%s'"
470 (prin1-to-string form))
471 nil)
473 ((memq fn '(defun defmacro function
474 condition-case save-window-excursion))
475 ;; These forms are compiled as constants or by breaking out
476 ;; all the subexpressions and compiling them separately.
477 form)
479 ((eq fn 'unwind-protect)
480 ;; the "protected" part of an unwind-protect is compiled (and thus
481 ;; optimized) as a top-level form, so don't do it here. But the
482 ;; non-protected part has the same for-effect status as the
483 ;; unwind-protect itself. (The protected part is always for effect,
484 ;; but that isn't handled properly yet.)
485 (cons fn
486 (cons (byte-optimize-form (nth 1 form) for-effect)
487 (cdr (cdr form)))))
489 ((eq fn 'catch)
490 ;; the body of a catch is compiled (and thus optimized) as a
491 ;; top-level form, so don't do it here. The tag is never
492 ;; for-effect. The body should have the same for-effect status
493 ;; as the catch form itself, but that isn't handled properly yet.
494 (cons fn
495 (cons (byte-optimize-form (nth 1 form) nil)
496 (cdr (cdr form)))))
498 ;; If optimization is on, this is the only place that macros are
499 ;; expanded. If optimization is off, then macroexpansion happens
500 ;; in byte-compile-form. Otherwise, the macros are already expanded
501 ;; by the time that is reached.
502 ((not (eq form
503 (setq form (macroexpand form
504 byte-compile-macro-environment))))
505 (byte-optimize-form form for-effect))
507 ;; Support compiler macros as in cl.el.
508 ((and (fboundp 'compiler-macroexpand)
509 (symbolp (car-safe form))
510 (get (car-safe form) 'cl-compiler-macro)
511 (not (eq form
512 (setq form (compiler-macroexpand form)))))
513 (byte-optimize-form form for-effect))
515 ((not (symbolp fn))
516 (or (eq 'mocklisp (car-safe fn)) ; ha!
517 (byte-compile-warn "`%s' is a malformed function"
518 (prin1-to-string fn)))
519 form)
521 ((and for-effect (setq tmp (get fn 'side-effect-free))
522 (or byte-compile-delete-errors
523 (eq tmp 'error-free)
524 (progn
525 (byte-compile-warn "`%s' called for effect"
526 (prin1-to-string form))
527 nil)))
528 (byte-compile-log " %s called for effect; deleted" fn)
529 ;; appending a nil here might not be necessary, but it can't hurt.
530 (byte-optimize-form
531 (cons 'progn (append (cdr form) '(nil))) t))
534 ;; Otherwise, no args can be considered to be for-effect,
535 ;; even if the called function is for-effect, because we
536 ;; don't know anything about that function.
537 (cons fn (mapcar 'byte-optimize-form (cdr form)))))))
540 (defun byte-optimize-form (form &optional for-effect)
541 "The source-level pass of the optimizer."
543 ;; First, optimize all sub-forms of this one.
544 (setq form (byte-optimize-form-code-walker form for-effect))
546 ;; after optimizing all subforms, optimize this form until it doesn't
547 ;; optimize any further. This means that some forms will be passed through
548 ;; the optimizer many times, but that's necessary to make the for-effect
549 ;; processing do as much as possible.
551 (let (opt new)
552 (if (and (consp form)
553 (symbolp (car form))
554 (or (and for-effect
555 ;; we don't have any of these yet, but we might.
556 (setq opt (get (car form) 'byte-for-effect-optimizer)))
557 (setq opt (get (car form) 'byte-optimizer)))
558 (not (eq form (setq new (funcall opt form)))))
559 (progn
560 ;; (if (equal form new) (error "bogus optimizer -- %s" opt))
561 (byte-compile-log " %s\t==>\t%s" form new)
562 (setq new (byte-optimize-form new for-effect))
563 new)
564 form)))
567 (defun byte-optimize-body (forms all-for-effect)
568 ;; optimize the cdr of a progn or implicit progn; all forms is a list of
569 ;; forms, all but the last of which are optimized with the assumption that
570 ;; they are being called for effect. the last is for-effect as well if
571 ;; all-for-effect is true. returns a new list of forms.
572 (let ((rest forms)
573 (result nil)
574 fe new)
575 (while rest
576 (setq fe (or all-for-effect (cdr rest)))
577 (setq new (and (car rest) (byte-optimize-form (car rest) fe)))
578 (if (or new (not fe))
579 (setq result (cons new result)))
580 (setq rest (cdr rest)))
581 (nreverse result)))
584 ;;; some source-level optimizers
586 ;;; when writing optimizers, be VERY careful that the optimizer returns
587 ;;; something not EQ to its argument if and ONLY if it has made a change.
588 ;;; This implies that you cannot simply destructively modify the list;
589 ;;; you must return something not EQ to it if you make an optimization.
591 ;;; It is now safe to optimize code such that it introduces new bindings.
593 ;; I'd like this to be a defsubst, but let's not be self-referential...
594 (defmacro byte-compile-trueconstp (form)
595 ;; Returns non-nil if FORM is a non-nil constant.
596 `(cond ((consp ,form) (eq (car ,form) 'quote))
597 ((not (symbolp ,form)))
598 ((eq ,form t))
599 ((keywordp ,form))))
601 ;; If the function is being called with constant numeric args,
602 ;; evaluate as much as possible at compile-time. This optimizer
603 ;; assumes that the function is associative, like + or *.
604 (defun byte-optimize-associative-math (form)
605 (let ((args nil)
606 (constants nil)
607 (rest (cdr form)))
608 (while rest
609 (if (numberp (car rest))
610 (setq constants (cons (car rest) constants))
611 (setq args (cons (car rest) args)))
612 (setq rest (cdr rest)))
613 (if (cdr constants)
614 (if args
615 (list (car form)
616 (apply (car form) constants)
617 (if (cdr args)
618 (cons (car form) (nreverse args))
619 (car args)))
620 (apply (car form) constants))
621 form)))
623 ;; If the function is being called with constant numeric args,
624 ;; evaluate as much as possible at compile-time. This optimizer
625 ;; assumes that the function satisfies
626 ;; (op x1 x2 ... xn) == (op ...(op (op x1 x2) x3) ...xn)
627 ;; like - and /.
628 (defun byte-optimize-nonassociative-math (form)
629 (if (or (not (numberp (car (cdr form))))
630 (not (numberp (car (cdr (cdr form))))))
631 form
632 (let ((constant (car (cdr form)))
633 (rest (cdr (cdr form))))
634 (while (numberp (car rest))
635 (setq constant (funcall (car form) constant (car rest))
636 rest (cdr rest)))
637 (if rest
638 (cons (car form) (cons constant rest))
639 constant))))
641 ;;(defun byte-optimize-associative-two-args-math (form)
642 ;; (setq form (byte-optimize-associative-math form))
643 ;; (if (consp form)
644 ;; (byte-optimize-two-args-left form)
645 ;; form))
647 ;;(defun byte-optimize-nonassociative-two-args-math (form)
648 ;; (setq form (byte-optimize-nonassociative-math form))
649 ;; (if (consp form)
650 ;; (byte-optimize-two-args-right form)
651 ;; form))
653 (defun byte-optimize-approx-equal (x y)
654 (<= (* (abs (- x y)) 100) (abs (+ x y))))
656 ;; Collect all the constants from FORM, after the STARTth arg,
657 ;; and apply FUN to them to make one argument at the end.
658 ;; For functions that can handle floats, that optimization
659 ;; can be incorrect because reordering can cause an overflow
660 ;; that would otherwise be avoided by encountering an arg that is a float.
661 ;; We avoid this problem by (1) not moving float constants and
662 ;; (2) not moving anything if it would cause an overflow.
663 (defun byte-optimize-delay-constants-math (form start fun)
664 ;; Merge all FORM's constants from number START, call FUN on them
665 ;; and put the result at the end.
666 (let ((rest (nthcdr (1- start) form))
667 (orig form)
668 ;; t means we must check for overflow.
669 (overflow (memq fun '(+ *))))
670 (while (cdr (setq rest (cdr rest)))
671 (if (integerp (car rest))
672 (let (constants)
673 (setq form (copy-sequence form)
674 rest (nthcdr (1- start) form))
675 (while (setq rest (cdr rest))
676 (cond ((integerp (car rest))
677 (setq constants (cons (car rest) constants))
678 (setcar rest nil))))
679 ;; If necessary, check now for overflow
680 ;; that might be caused by reordering.
681 (if (and overflow
682 ;; We have overflow if the result of doing the arithmetic
683 ;; on floats is not even close to the result
684 ;; of doing it on integers.
685 (not (byte-optimize-approx-equal
686 (apply fun (mapcar 'float constants))
687 (float (apply fun constants)))))
688 (setq form orig)
689 (setq form (nconc (delq nil form)
690 (list (apply fun (nreverse constants)))))))))
691 form))
693 (defun byte-optimize-plus (form)
694 (setq form (byte-optimize-delay-constants-math form 1 '+))
695 (if (memq 0 form) (setq form (delq 0 (copy-sequence form))))
696 ;;(setq form (byte-optimize-associative-two-args-math form))
697 (cond ((null (cdr form))
698 (condition-case ()
699 (eval form)
700 (error form)))
701 ;;; It is not safe to delete the function entirely
702 ;;; (actually, it would be safe if we know the sole arg
703 ;;; is not a marker).
704 ;; ((null (cdr (cdr form))) (nth 1 form))
705 ((null (cddr form))
706 (if (numberp (nth 1 form))
707 (nth 1 form)
708 form))
709 ((and (null (nthcdr 3 form))
710 (or (memq (nth 1 form) '(1 -1))
711 (memq (nth 2 form) '(1 -1))))
712 ;; Optimize (+ x 1) into (1+ x) and (+ x -1) into (1- x).
713 (let ((integer
714 (if (memq (nth 1 form) '(1 -1))
715 (nth 1 form)
716 (nth 2 form)))
717 (other
718 (if (memq (nth 1 form) '(1 -1))
719 (nth 2 form)
720 (nth 1 form))))
721 (list (if (eq integer 1) '1+ '1-)
722 other)))
723 (t form)))
725 (defun byte-optimize-minus (form)
726 ;; Put constants at the end, except the last constant.
727 (setq form (byte-optimize-delay-constants-math form 2 '+))
728 ;; Now only first and last element can be a number.
729 (let ((last (car (reverse (nthcdr 3 form)))))
730 (cond ((eq 0 last)
731 ;; (- x y ... 0) --> (- x y ...)
732 (setq form (copy-sequence form))
733 (setcdr (cdr (cdr form)) (delq 0 (nthcdr 3 form))))
734 ((equal (nthcdr 2 form) '(1))
735 (setq form (list '1- (nth 1 form))))
736 ((equal (nthcdr 2 form) '(-1))
737 (setq form (list '1+ (nth 1 form))))
738 ;; If form is (- CONST foo... CONST), merge first and last.
739 ((and (numberp (nth 1 form))
740 (numberp last))
741 (setq form (nconc (list '- (- (nth 1 form) last) (nth 2 form))
742 (delq last (copy-sequence (nthcdr 3 form))))))))
743 ;;; It is not safe to delete the function entirely
744 ;;; (actually, it would be safe if we know the sole arg
745 ;;; is not a marker).
746 ;;; (if (eq (nth 2 form) 0)
747 ;;; (nth 1 form) ; (- x 0) --> x
748 (byte-optimize-predicate
749 (if (and (null (cdr (cdr (cdr form))))
750 (eq (nth 1 form) 0)) ; (- 0 x) --> (- x)
751 (cons (car form) (cdr (cdr form)))
752 form))
753 ;;; )
756 (defun byte-optimize-multiply (form)
757 (setq form (byte-optimize-delay-constants-math form 1 '*))
758 ;; If there is a constant in FORM, it is now the last element.
759 (cond ((null (cdr form)) 1)
760 ;;; It is not safe to delete the function entirely
761 ;;; (actually, it would be safe if we know the sole arg
762 ;;; is not a marker or if it appears in other arithmetic).
763 ;;; ((null (cdr (cdr form))) (nth 1 form))
764 ((let ((last (car (reverse form))))
765 (cond ((eq 0 last) (cons 'progn (cdr form)))
766 ((eq 1 last) (delq 1 (copy-sequence form)))
767 ((eq -1 last) (list '- (delq -1 (copy-sequence form))))
768 ((and (eq 2 last)
769 (memq t (mapcar 'symbolp (cdr form))))
770 (prog1 (setq form (delq 2 (copy-sequence form)))
771 (while (not (symbolp (car (setq form (cdr form))))))
772 (setcar form (list '+ (car form) (car form)))))
773 (form))))))
775 (defsubst byte-compile-butlast (form)
776 (nreverse (cdr (reverse form))))
778 (defun byte-optimize-divide (form)
779 (setq form (byte-optimize-delay-constants-math form 2 '*))
780 (let ((last (car (reverse (cdr (cdr form))))))
781 (if (numberp last)
782 (cond ((= (length form) 3)
783 (if (and (numberp (nth 1 form))
784 (not (zerop last))
785 (condition-case nil
786 (/ (nth 1 form) last)
787 (error nil)))
788 (setq form (list 'progn (/ (nth 1 form) last)))))
789 ((= last 1)
790 (setq form (byte-compile-butlast form)))
791 ((numberp (nth 1 form))
792 (setq form (cons (car form)
793 (cons (/ (nth 1 form) last)
794 (byte-compile-butlast (cdr (cdr form)))))
795 last nil))))
796 (cond
797 ;;; ((null (cdr (cdr form)))
798 ;;; (nth 1 form))
799 ((eq (nth 1 form) 0)
800 (append '(progn) (cdr (cdr form)) '(0)))
801 ((eq last -1)
802 (list '- (if (nthcdr 3 form)
803 (byte-compile-butlast form)
804 (nth 1 form))))
805 (form))))
807 (defun byte-optimize-logmumble (form)
808 (setq form (byte-optimize-delay-constants-math form 1 (car form)))
809 (byte-optimize-predicate
810 (cond ((memq 0 form)
811 (setq form (if (eq (car form) 'logand)
812 (cons 'progn (cdr form))
813 (delq 0 (copy-sequence form)))))
814 ((and (eq (car-safe form) 'logior)
815 (memq -1 form))
816 (cons 'progn (cdr form)))
817 (form))))
820 (defun byte-optimize-binary-predicate (form)
821 (if (byte-compile-constp (nth 1 form))
822 (if (byte-compile-constp (nth 2 form))
823 (condition-case ()
824 (list 'quote (eval form))
825 (error form))
826 ;; This can enable some lapcode optimizations.
827 (list (car form) (nth 2 form) (nth 1 form)))
828 form))
830 (defun byte-optimize-predicate (form)
831 (let ((ok t)
832 (rest (cdr form)))
833 (while (and rest ok)
834 (setq ok (byte-compile-constp (car rest))
835 rest (cdr rest)))
836 (if ok
837 (condition-case ()
838 (list 'quote (eval form))
839 (error form))
840 form)))
842 (defun byte-optimize-identity (form)
843 (if (and (cdr form) (null (cdr (cdr form))))
844 (nth 1 form)
845 (byte-compile-warn "Identity called with %d arg%s, but requires 1"
846 (length (cdr form))
847 (if (= 1 (length (cdr form))) "" "s"))
848 form))
850 (put 'identity 'byte-optimizer 'byte-optimize-identity)
852 (put '+ 'byte-optimizer 'byte-optimize-plus)
853 (put '* 'byte-optimizer 'byte-optimize-multiply)
854 (put '- 'byte-optimizer 'byte-optimize-minus)
855 (put '/ 'byte-optimizer 'byte-optimize-divide)
856 (put 'max 'byte-optimizer 'byte-optimize-associative-math)
857 (put 'min 'byte-optimizer 'byte-optimize-associative-math)
859 (put '= 'byte-optimizer 'byte-optimize-binary-predicate)
860 (put 'eq 'byte-optimizer 'byte-optimize-binary-predicate)
861 (put 'equal 'byte-optimizer 'byte-optimize-binary-predicate)
862 (put 'string= 'byte-optimizer 'byte-optimize-binary-predicate)
863 (put 'string-equal 'byte-optimizer 'byte-optimize-binary-predicate)
865 (put '< 'byte-optimizer 'byte-optimize-predicate)
866 (put '> 'byte-optimizer 'byte-optimize-predicate)
867 (put '<= 'byte-optimizer 'byte-optimize-predicate)
868 (put '>= 'byte-optimizer 'byte-optimize-predicate)
869 (put '1+ 'byte-optimizer 'byte-optimize-predicate)
870 (put '1- 'byte-optimizer 'byte-optimize-predicate)
871 (put 'not 'byte-optimizer 'byte-optimize-predicate)
872 (put 'null 'byte-optimizer 'byte-optimize-predicate)
873 (put 'memq 'byte-optimizer 'byte-optimize-predicate)
874 (put 'consp 'byte-optimizer 'byte-optimize-predicate)
875 (put 'listp 'byte-optimizer 'byte-optimize-predicate)
876 (put 'symbolp 'byte-optimizer 'byte-optimize-predicate)
877 (put 'stringp 'byte-optimizer 'byte-optimize-predicate)
878 (put 'string< 'byte-optimizer 'byte-optimize-predicate)
879 (put 'string-lessp 'byte-optimizer 'byte-optimize-predicate)
881 (put 'logand 'byte-optimizer 'byte-optimize-logmumble)
882 (put 'logior 'byte-optimizer 'byte-optimize-logmumble)
883 (put 'logxor 'byte-optimizer 'byte-optimize-logmumble)
884 (put 'lognot 'byte-optimizer 'byte-optimize-predicate)
886 (put 'car 'byte-optimizer 'byte-optimize-predicate)
887 (put 'cdr 'byte-optimizer 'byte-optimize-predicate)
888 (put 'car-safe 'byte-optimizer 'byte-optimize-predicate)
889 (put 'cdr-safe 'byte-optimizer 'byte-optimize-predicate)
892 ;; I'm not convinced that this is necessary. Doesn't the optimizer loop
893 ;; take care of this? - Jamie
894 ;; I think this may some times be necessary to reduce ie (quote 5) to 5,
895 ;; so arithmetic optimizers recognize the numeric constant. - Hallvard
896 (put 'quote 'byte-optimizer 'byte-optimize-quote)
897 (defun byte-optimize-quote (form)
898 (if (or (consp (nth 1 form))
899 (and (symbolp (nth 1 form))
900 (not (byte-compile-const-symbol-p form))))
901 form
902 (nth 1 form)))
904 (defun byte-optimize-zerop (form)
905 (cond ((numberp (nth 1 form))
906 (eval form))
907 (byte-compile-delete-errors
908 (list '= (nth 1 form) 0))
909 (form)))
911 (put 'zerop 'byte-optimizer 'byte-optimize-zerop)
913 (defun byte-optimize-and (form)
914 ;; Simplify if less than 2 args.
915 ;; if there is a literal nil in the args to `and', throw it and following
916 ;; forms away, and surround the `and' with (progn ... nil).
917 (cond ((null (cdr form)))
918 ((memq nil form)
919 (list 'progn
920 (byte-optimize-and
921 (prog1 (setq form (copy-sequence form))
922 (while (nth 1 form)
923 (setq form (cdr form)))
924 (setcdr form nil)))
925 nil))
926 ((null (cdr (cdr form)))
927 (nth 1 form))
928 ((byte-optimize-predicate form))))
930 (defun byte-optimize-or (form)
931 ;; Throw away nil's, and simplify if less than 2 args.
932 ;; If there is a literal non-nil constant in the args to `or', throw away all
933 ;; following forms.
934 (if (memq nil form)
935 (setq form (delq nil (copy-sequence form))))
936 (let ((rest form))
937 (while (cdr (setq rest (cdr rest)))
938 (if (byte-compile-trueconstp (car rest))
939 (setq form (copy-sequence form)
940 rest (setcdr (memq (car rest) form) nil))))
941 (if (cdr (cdr form))
942 (byte-optimize-predicate form)
943 (nth 1 form))))
945 (defun byte-optimize-cond (form)
946 ;; if any clauses have a literal nil as their test, throw them away.
947 ;; if any clause has a literal non-nil constant as its test, throw
948 ;; away all following clauses.
949 (let (rest)
950 ;; This must be first, to reduce (cond (t ...) (nil)) to (progn t ...)
951 (while (setq rest (assq nil (cdr form)))
952 (setq form (delq rest (copy-sequence form))))
953 (if (memq nil (cdr form))
954 (setq form (delq nil (copy-sequence form))))
955 (setq rest form)
956 (while (setq rest (cdr rest))
957 (cond ((byte-compile-trueconstp (car-safe (car rest)))
958 (cond ((eq rest (cdr form))
959 (setq form
960 (if (cdr (car rest))
961 (if (cdr (cdr (car rest)))
962 (cons 'progn (cdr (car rest)))
963 (nth 1 (car rest)))
964 (car (car rest)))))
965 ((cdr rest)
966 (setq form (copy-sequence form))
967 (setcdr (memq (car rest) form) nil)))
968 (setq rest nil)))))
970 ;; Turn (cond (( <x> )) ... ) into (or <x> (cond ... ))
971 (if (eq 'cond (car-safe form))
972 (let ((clauses (cdr form)))
973 (if (and (consp (car clauses))
974 (null (cdr (car clauses))))
975 (list 'or (car (car clauses))
976 (byte-optimize-cond
977 (cons (car form) (cdr (cdr form)))))
978 form))
979 form))
981 (defun byte-optimize-if (form)
982 ;; (if <true-constant> <then> <else...>) ==> <then>
983 ;; (if <false-constant> <then> <else...>) ==> (progn <else...>)
984 ;; (if <test> nil <else...>) ==> (if (not <test>) (progn <else...>))
985 ;; (if <test> <then> nil) ==> (if <test> <then>)
986 (let ((clause (nth 1 form)))
987 (cond ((byte-compile-trueconstp clause)
988 (nth 2 form))
989 ((null clause)
990 (if (nthcdr 4 form)
991 (cons 'progn (nthcdr 3 form))
992 (nth 3 form)))
993 ((nth 2 form)
994 (if (equal '(nil) (nthcdr 3 form))
995 (list 'if clause (nth 2 form))
996 form))
997 ((or (nth 3 form) (nthcdr 4 form))
998 (list 'if
999 ;; Don't make a double negative;
1000 ;; instead, take away the one that is there.
1001 (if (and (consp clause) (memq (car clause) '(not null))
1002 (= (length clause) 2)) ; (not xxxx) or (not (xxxx))
1003 (nth 1 clause)
1004 (list 'not clause))
1005 (if (nthcdr 4 form)
1006 (cons 'progn (nthcdr 3 form))
1007 (nth 3 form))))
1009 (list 'progn clause nil)))))
1011 (defun byte-optimize-while (form)
1012 (if (nth 1 form)
1013 form))
1015 (put 'and 'byte-optimizer 'byte-optimize-and)
1016 (put 'or 'byte-optimizer 'byte-optimize-or)
1017 (put 'cond 'byte-optimizer 'byte-optimize-cond)
1018 (put 'if 'byte-optimizer 'byte-optimize-if)
1019 (put 'while 'byte-optimizer 'byte-optimize-while)
1021 ;; byte-compile-negation-optimizer lives in bytecomp.el
1022 (put '/= 'byte-optimizer 'byte-compile-negation-optimizer)
1023 (put 'atom 'byte-optimizer 'byte-compile-negation-optimizer)
1024 (put 'nlistp 'byte-optimizer 'byte-compile-negation-optimizer)
1027 (defun byte-optimize-funcall (form)
1028 ;; (funcall (lambda ...) ...) ==> ((lambda ...) ...)
1029 ;; (funcall foo ...) ==> (foo ...)
1030 (let ((fn (nth 1 form)))
1031 (if (memq (car-safe fn) '(quote function))
1032 (cons (nth 1 fn) (cdr (cdr form)))
1033 form)))
1035 (defun byte-optimize-apply (form)
1036 ;; If the last arg is a literal constant, turn this into a funcall.
1037 ;; The funcall optimizer can then transform (funcall 'foo ...) -> (foo ...).
1038 (let ((fn (nth 1 form))
1039 (last (nth (1- (length form)) form))) ; I think this really is fastest
1040 (or (if (or (null last)
1041 (eq (car-safe last) 'quote))
1042 (if (listp (nth 1 last))
1043 (let ((butlast (nreverse (cdr (reverse (cdr (cdr form)))))))
1044 (nconc (list 'funcall fn) butlast
1045 (mapcar (lambda (x) (list 'quote x)) (nth 1 last))))
1046 (byte-compile-warn
1047 "Last arg to apply can't be a literal atom: `%s'"
1048 (prin1-to-string last))
1049 nil))
1050 form)))
1052 (put 'funcall 'byte-optimizer 'byte-optimize-funcall)
1053 (put 'apply 'byte-optimizer 'byte-optimize-apply)
1056 (put 'let 'byte-optimizer 'byte-optimize-letX)
1057 (put 'let* 'byte-optimizer 'byte-optimize-letX)
1058 (defun byte-optimize-letX (form)
1059 (cond ((null (nth 1 form))
1060 ;; No bindings
1061 (cons 'progn (cdr (cdr form))))
1062 ((or (nth 2 form) (nthcdr 3 form))
1063 form)
1064 ;; The body is nil
1065 ((eq (car form) 'let)
1066 (append '(progn) (mapcar 'car-safe (mapcar 'cdr-safe (nth 1 form)))
1067 '(nil)))
1069 (let ((binds (reverse (nth 1 form))))
1070 (list 'let* (reverse (cdr binds)) (nth 1 (car binds)) nil)))))
1073 (put 'nth 'byte-optimizer 'byte-optimize-nth)
1074 (defun byte-optimize-nth (form)
1075 (if (and (= (safe-length form) 3) (memq (nth 1 form) '(0 1)))
1076 (list 'car (if (zerop (nth 1 form))
1077 (nth 2 form)
1078 (list 'cdr (nth 2 form))))
1079 (byte-optimize-predicate form)))
1081 (put 'nthcdr 'byte-optimizer 'byte-optimize-nthcdr)
1082 (defun byte-optimize-nthcdr (form)
1083 (if (and (= (safe-length form) 3) (not (memq (nth 1 form) '(0 1 2))))
1084 (byte-optimize-predicate form)
1085 (let ((count (nth 1 form)))
1086 (setq form (nth 2 form))
1087 (while (>= (setq count (1- count)) 0)
1088 (setq form (list 'cdr form)))
1089 form)))
1091 (put 'concat 'byte-optimizer 'byte-optimize-concat)
1092 (defun byte-optimize-concat (form)
1093 (let ((args (cdr form))
1094 (constant t))
1095 (while (and args constant)
1096 (or (byte-compile-constp (car args))
1097 (setq constant nil))
1098 (setq args (cdr args)))
1099 (if constant
1100 (eval form)
1101 form)))
1103 ;; Avoid having to write forward-... with a negative arg for speed.
1104 (put 'backward-char 'byte-optimizer 'byte-optimize-backward-char)
1105 (defun byte-optimize-backward-char (form)
1106 (cond ((and (= 2 (safe-length form))
1107 (numberp (nth 1 form)))
1108 (list 'forward-char (eval (- (nth 1 form)))))
1109 ((= 1 (safe-length form))
1110 '(forward-char -1))
1111 (t form)))
1113 (put 'backward-word 'byte-optimizer 'byte-optimize-backward-word)
1114 (defun byte-optimize-backward-word (form)
1115 (cond ((and (= 2 (safe-length form))
1116 (numberp (nth 1 form)))
1117 (list 'forward-word (eval (- (nth 1 form)))))
1118 ((= 1 (safe-length form))
1119 '(forward-char -1))
1120 (t form)))
1122 (put 'char-before 'byte-optimizer 'byte-optimize-char-before)
1123 (defun byte-optimize-char-before (form)
1124 (cond ((= 2 (safe-length form))
1125 `(char-after (1- ,(nth 1 form))))
1126 ((= 1 (safe-length form))
1127 '(char-after (1- (point))))
1128 (t form)))
1130 ;;; enumerating those functions which need not be called if the returned
1131 ;;; value is not used. That is, something like
1132 ;;; (progn (list (something-with-side-effects) (yow))
1133 ;;; (foo))
1134 ;;; may safely be turned into
1135 ;;; (progn (progn (something-with-side-effects) (yow))
1136 ;;; (foo))
1137 ;;; Further optimizations will turn (progn (list 1 2 3) 'foo) into 'foo.
1139 ;;; I wonder if I missed any :-\)
1140 (let ((side-effect-free-fns
1141 '(% * + - / /= 1+ 1- < <= = > >= abs acos append aref ash asin atan
1142 assoc assq
1143 boundp buffer-file-name buffer-local-variables buffer-modified-p
1144 buffer-substring
1145 capitalize car-less-than-car car cdr ceiling char-after char-before
1146 concat coordinates-in-window-p
1147 char-width copy-marker cos count-lines
1148 default-boundp default-value documentation downcase
1149 elt exp expt fboundp featurep
1150 file-directory-p file-exists-p file-locked-p file-name-absolute-p
1151 file-newer-than-file-p file-readable-p file-symlink-p file-writable-p
1152 float floor format frame-visible-p
1153 get gethash get-buffer get-buffer-window getenv get-file-buffer
1154 hash-table-count
1155 int-to-string
1156 keymap-parent
1157 length local-variable-if-set-p local-variable-p log log10 logand
1158 logb logior lognot logxor lsh
1159 marker-buffer max member memq min mod
1160 next-window nth nthcdr number-to-string
1161 parse-colon-path prefix-numeric-value previous-window propertize
1162 radians-to-degrees rassq regexp-quote reverse round
1163 sin sqrt string string< string= string-equal string-lessp string-to-char
1164 string-to-int string-to-number substring symbol-function symbol-plist
1165 symbol-value
1166 tan unibyte-char-to-multibyte upcase user-variable-p vconcat
1167 window-buffer window-dedicated-p window-edges window-height
1168 window-hscroll window-minibuffer-p window-width
1169 zerop))
1170 (side-effect-and-error-free-fns
1171 '(arrayp atom
1172 bobp bolp buffer-end buffer-list buffer-size buffer-string bufferp
1173 car-safe case-table-p cdr-safe char-or-string-p commandp cons consp
1174 current-buffer current-global-map current-indentation
1175 current-local-map current-minor-mode-maps
1176 dot dot-marker eobp eolp eq equal eventp
1177 floatp following-char framep
1178 get-largest-window get-lru-window
1179 hash-table-p
1180 identity ignore integerp integer-or-marker-p interactive-p
1181 invocation-directory invocation-name
1182 keymapp
1183 line-beginning-position line-end-position list listp
1184 make-marker mark mark-marker markerp memory-limit minibuffer-window
1185 mouse-movement-p
1186 natnump nlistp not null number-or-marker-p numberp
1187 one-window-p overlayp
1188 point point-marker point-min point-max preceding-char processp
1189 recent-keys recursion-depth
1190 selected-frame selected-window sequencep stringp subrp symbolp
1191 standard-case-table standard-syntax-table syntax-table-p
1192 this-command-keys this-command-keys-vector this-single-command-keys
1193 this-single-command-raw-keys
1194 user-full-name user-login-name user-original-login-name
1195 user-real-login-name user-real-uid user-uid
1196 vector vectorp visible-frame-list
1197 window-configuration-p window-live-p windowp)))
1198 (while side-effect-free-fns
1199 (put (car side-effect-free-fns) 'side-effect-free t)
1200 (setq side-effect-free-fns (cdr side-effect-free-fns)))
1201 (while side-effect-and-error-free-fns
1202 (put (car side-effect-and-error-free-fns) 'side-effect-free 'error-free)
1203 (setq side-effect-and-error-free-fns (cdr side-effect-and-error-free-fns)))
1204 nil)
1207 (defun byte-compile-splice-in-already-compiled-code (form)
1208 ;; form is (byte-code "..." [...] n)
1209 (if (not (memq byte-optimize '(t lap)))
1210 (byte-compile-normal-call form)
1211 (byte-inline-lapcode
1212 (byte-decompile-bytecode-1 (nth 1 form) (nth 2 form) t))
1213 (setq byte-compile-maxdepth (max (+ byte-compile-depth (nth 3 form))
1214 byte-compile-maxdepth))
1215 (setq byte-compile-depth (1+ byte-compile-depth))))
1217 (put 'byte-code 'byte-compile 'byte-compile-splice-in-already-compiled-code)
1220 (defconst byte-constref-ops
1221 '(byte-constant byte-constant2 byte-varref byte-varset byte-varbind))
1223 ;;; This function extracts the bitfields from variable-length opcodes.
1224 ;;; Originally defined in disass.el (which no longer uses it.)
1226 (defun disassemble-offset ()
1227 "Don't call this!"
1228 ;; fetch and return the offset for the current opcode.
1229 ;; return NIL if this opcode has no offset
1230 ;; OP, PTR and BYTES are used and set dynamically
1231 (defvar op)
1232 (defvar ptr)
1233 (defvar bytes)
1234 (cond ((< op byte-nth)
1235 (let ((tem (logand op 7)))
1236 (setq op (logand op 248))
1237 (cond ((eq tem 6)
1238 (setq ptr (1+ ptr)) ;offset in next byte
1239 (aref bytes ptr))
1240 ((eq tem 7)
1241 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1242 (+ (aref bytes ptr)
1243 (progn (setq ptr (1+ ptr))
1244 (lsh (aref bytes ptr) 8))))
1245 (t tem)))) ;offset was in opcode
1246 ((>= op byte-constant)
1247 (prog1 (- op byte-constant) ;offset in opcode
1248 (setq op byte-constant)))
1249 ((and (>= op byte-constant2)
1250 (<= op byte-goto-if-not-nil-else-pop))
1251 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1252 (+ (aref bytes ptr)
1253 (progn (setq ptr (1+ ptr))
1254 (lsh (aref bytes ptr) 8))))
1255 ((and (>= op byte-listN)
1256 (<= op byte-insertN))
1257 (setq ptr (1+ ptr)) ;offset in next byte
1258 (aref bytes ptr))))
1261 ;;; This de-compiler is used for inline expansion of compiled functions,
1262 ;;; and by the disassembler.
1264 ;;; This list contains numbers, which are pc values,
1265 ;;; before each instruction.
1266 (defun byte-decompile-bytecode (bytes constvec)
1267 "Turns BYTECODE into lapcode, referring to CONSTVEC."
1268 (let ((byte-compile-constants nil)
1269 (byte-compile-variables nil)
1270 (byte-compile-tag-number 0))
1271 (byte-decompile-bytecode-1 bytes constvec)))
1273 ;; As byte-decompile-bytecode, but updates
1274 ;; byte-compile-{constants, variables, tag-number}.
1275 ;; If MAKE-SPLICEABLE is true, then `return' opcodes are replaced
1276 ;; with `goto's destined for the end of the code.
1277 ;; That is for use by the compiler.
1278 ;; If MAKE-SPLICEABLE is nil, we are being called for the disassembler.
1279 ;; In that case, we put a pc value into the list
1280 ;; before each insn (or its label).
1281 (defun byte-decompile-bytecode-1 (bytes constvec &optional make-spliceable)
1282 (let ((length (length bytes))
1283 (ptr 0) optr tag tags op offset
1284 lap tmp
1285 endtag
1286 (retcount 0))
1287 (while (not (= ptr length))
1288 (or make-spliceable
1289 (setq lap (cons ptr lap)))
1290 (setq op (aref bytes ptr)
1291 optr ptr
1292 offset (disassemble-offset)) ; this does dynamic-scope magic
1293 (setq op (aref byte-code-vector op))
1294 (cond ((memq op byte-goto-ops)
1295 ;; it's a pc
1296 (setq offset
1297 (cdr (or (assq offset tags)
1298 (car (setq tags
1299 (cons (cons offset
1300 (byte-compile-make-tag))
1301 tags)))))))
1302 ((cond ((eq op 'byte-constant2) (setq op 'byte-constant) t)
1303 ((memq op byte-constref-ops)))
1304 (setq tmp (if (>= offset (length constvec))
1305 (list 'out-of-range offset)
1306 (aref constvec offset))
1307 offset (if (eq op 'byte-constant)
1308 (byte-compile-get-constant tmp)
1309 (or (assq tmp byte-compile-variables)
1310 (car (setq byte-compile-variables
1311 (cons (list tmp)
1312 byte-compile-variables)))))))
1313 ((and make-spliceable
1314 (eq op 'byte-return))
1315 (if (= ptr (1- length))
1316 (setq op nil)
1317 (setq offset (or endtag (setq endtag (byte-compile-make-tag)))
1318 op 'byte-goto))))
1319 ;; lap = ( [ (pc . (op . arg)) ]* )
1320 (setq lap (cons (cons optr (cons op (or offset 0)))
1321 lap))
1322 (setq ptr (1+ ptr)))
1323 ;; take off the dummy nil op that we replaced a trailing "return" with.
1324 (let ((rest lap))
1325 (while rest
1326 (cond ((numberp (car rest)))
1327 ((setq tmp (assq (car (car rest)) tags))
1328 ;; this addr is jumped to
1329 (setcdr rest (cons (cons nil (cdr tmp))
1330 (cdr rest)))
1331 (setq tags (delq tmp tags))
1332 (setq rest (cdr rest))))
1333 (setq rest (cdr rest))))
1334 (if tags (error "optimizer error: missed tags %s" tags))
1335 (if (null (car (cdr (car lap))))
1336 (setq lap (cdr lap)))
1337 (if endtag
1338 (setq lap (cons (cons nil endtag) lap)))
1339 ;; remove addrs, lap = ( [ (op . arg) | (TAG tagno) ]* )
1340 (mapcar (function (lambda (elt)
1341 (if (numberp elt)
1343 (cdr elt))))
1344 (nreverse lap))))
1347 ;;; peephole optimizer
1349 (defconst byte-tagref-ops (cons 'TAG byte-goto-ops))
1351 (defconst byte-conditional-ops
1352 '(byte-goto-if-nil byte-goto-if-not-nil byte-goto-if-nil-else-pop
1353 byte-goto-if-not-nil-else-pop))
1355 (defconst byte-after-unbind-ops
1356 '(byte-constant byte-dup
1357 byte-symbolp byte-consp byte-stringp byte-listp byte-numberp byte-integerp
1358 byte-eq byte-not
1359 byte-cons byte-list1 byte-list2 ; byte-list3 byte-list4
1360 byte-interactive-p)
1361 ;; How about other side-effect-free-ops? Is it safe to move an
1362 ;; error invocation (such as from nth) out of an unwind-protect?
1363 ;; No, it is not, because the unwind-protect forms can alter
1364 ;; the inside of the object to which nth would apply.
1365 ;; For the same reason, byte-equal was deleted from this list.
1366 "Byte-codes that can be moved past an unbind.")
1368 (defconst byte-compile-side-effect-and-error-free-ops
1369 '(byte-constant byte-dup byte-symbolp byte-consp byte-stringp byte-listp
1370 byte-integerp byte-numberp byte-eq byte-equal byte-not byte-car-safe
1371 byte-cdr-safe byte-cons byte-list1 byte-list2 byte-point byte-point-max
1372 byte-point-min byte-following-char byte-preceding-char
1373 byte-current-column byte-eolp byte-eobp byte-bolp byte-bobp
1374 byte-current-buffer byte-interactive-p))
1376 (defconst byte-compile-side-effect-free-ops
1377 (nconc
1378 '(byte-varref byte-nth byte-memq byte-car byte-cdr byte-length byte-aref
1379 byte-symbol-value byte-get byte-concat2 byte-concat3 byte-sub1 byte-add1
1380 byte-eqlsign byte-gtr byte-lss byte-leq byte-geq byte-diff byte-negate
1381 byte-plus byte-max byte-min byte-mult byte-char-after byte-char-syntax
1382 byte-buffer-substring byte-string= byte-string< byte-nthcdr byte-elt
1383 byte-member byte-assq byte-quo byte-rem)
1384 byte-compile-side-effect-and-error-free-ops))
1386 ;;; This crock is because of the way DEFVAR_BOOL variables work.
1387 ;;; Consider the code
1389 ;;; (defun foo (flag)
1390 ;;; (let ((old-pop-ups pop-up-windows)
1391 ;;; (pop-up-windows flag))
1392 ;;; (cond ((not (eq pop-up-windows old-pop-ups))
1393 ;;; (setq old-pop-ups pop-up-windows)
1394 ;;; ...))))
1396 ;;; Uncompiled, old-pop-ups will always be set to nil or t, even if FLAG is
1397 ;;; something else. But if we optimize
1399 ;;; varref flag
1400 ;;; varbind pop-up-windows
1401 ;;; varref pop-up-windows
1402 ;;; not
1403 ;;; to
1404 ;;; varref flag
1405 ;;; dup
1406 ;;; varbind pop-up-windows
1407 ;;; not
1409 ;;; we break the program, because it will appear that pop-up-windows and
1410 ;;; old-pop-ups are not EQ when really they are. So we have to know what
1411 ;;; the BOOL variables are, and not perform this optimization on them.
1413 ;;; The variable `byte-boolean-vars' is now primitive and updated
1414 ;;; automatically by DEFVAR_BOOL.
1416 (defun byte-optimize-lapcode (lap &optional for-effect)
1417 "Simple peephole optimizer. LAP is both modified and returned."
1418 (let (lap0 off0
1419 lap1 off1
1420 lap2 off2
1421 (keep-going 'first-time)
1422 (add-depth 0)
1423 rest tmp tmp2 tmp3
1424 (side-effect-free (if byte-compile-delete-errors
1425 byte-compile-side-effect-free-ops
1426 byte-compile-side-effect-and-error-free-ops)))
1427 (while keep-going
1428 (or (eq keep-going 'first-time)
1429 (byte-compile-log-lap " ---- next pass"))
1430 (setq rest lap
1431 keep-going nil)
1432 (while rest
1433 (setq lap0 (car rest)
1434 lap1 (nth 1 rest)
1435 lap2 (nth 2 rest))
1437 ;; You may notice that sequences like "dup varset discard" are
1438 ;; optimized but sequences like "dup varset TAG1: discard" are not.
1439 ;; You may be tempted to change this; resist that temptation.
1440 (cond ;;
1441 ;; <side-effect-free> pop --> <deleted>
1442 ;; ...including:
1443 ;; const-X pop --> <deleted>
1444 ;; varref-X pop --> <deleted>
1445 ;; dup pop --> <deleted>
1447 ((and (eq 'byte-discard (car lap1))
1448 (memq (car lap0) side-effect-free))
1449 (setq keep-going t)
1450 (setq tmp (aref byte-stack+-info (symbol-value (car lap0))))
1451 (setq rest (cdr rest))
1452 (cond ((= tmp 1)
1453 (byte-compile-log-lap
1454 " %s discard\t-->\t<deleted>" lap0)
1455 (setq lap (delq lap0 (delq lap1 lap))))
1456 ((= tmp 0)
1457 (byte-compile-log-lap
1458 " %s discard\t-->\t<deleted> discard" lap0)
1459 (setq lap (delq lap0 lap)))
1460 ((= tmp -1)
1461 (byte-compile-log-lap
1462 " %s discard\t-->\tdiscard discard" lap0)
1463 (setcar lap0 'byte-discard)
1464 (setcdr lap0 0))
1465 ((error "Optimizer error: too much on the stack"))))
1467 ;; goto*-X X: --> X:
1469 ((and (memq (car lap0) byte-goto-ops)
1470 (eq (cdr lap0) lap1))
1471 (cond ((eq (car lap0) 'byte-goto)
1472 (setq lap (delq lap0 lap))
1473 (setq tmp "<deleted>"))
1474 ((memq (car lap0) byte-goto-always-pop-ops)
1475 (setcar lap0 (setq tmp 'byte-discard))
1476 (setcdr lap0 0))
1477 ((error "Depth conflict at tag %d" (nth 2 lap0))))
1478 (and (memq byte-optimize-log '(t byte))
1479 (byte-compile-log " (goto %s) %s:\t-->\t%s %s:"
1480 (nth 1 lap1) (nth 1 lap1)
1481 tmp (nth 1 lap1)))
1482 (setq keep-going t))
1484 ;; varset-X varref-X --> dup varset-X
1485 ;; varbind-X varref-X --> dup varbind-X
1486 ;; const/dup varset-X varref-X --> const/dup varset-X const/dup
1487 ;; const/dup varbind-X varref-X --> const/dup varbind-X const/dup
1488 ;; The latter two can enable other optimizations.
1490 ((and (eq 'byte-varref (car lap2))
1491 (eq (cdr lap1) (cdr lap2))
1492 (memq (car lap1) '(byte-varset byte-varbind)))
1493 (if (and (setq tmp (memq (car (cdr lap2)) byte-boolean-vars))
1494 (not (eq (car lap0) 'byte-constant)))
1496 (setq keep-going t)
1497 (if (memq (car lap0) '(byte-constant byte-dup))
1498 (progn
1499 (setq tmp (if (or (not tmp)
1500 (byte-compile-const-symbol-p
1501 (car (cdr lap0))))
1502 (cdr lap0)
1503 (byte-compile-get-constant t)))
1504 (byte-compile-log-lap " %s %s %s\t-->\t%s %s %s"
1505 lap0 lap1 lap2 lap0 lap1
1506 (cons (car lap0) tmp))
1507 (setcar lap2 (car lap0))
1508 (setcdr lap2 tmp))
1509 (byte-compile-log-lap " %s %s\t-->\tdup %s" lap1 lap2 lap1)
1510 (setcar lap2 (car lap1))
1511 (setcar lap1 'byte-dup)
1512 (setcdr lap1 0)
1513 ;; The stack depth gets locally increased, so we will
1514 ;; increase maxdepth in case depth = maxdepth here.
1515 ;; This can cause the third argument to byte-code to
1516 ;; be larger than necessary.
1517 (setq add-depth 1))))
1519 ;; dup varset-X discard --> varset-X
1520 ;; dup varbind-X discard --> varbind-X
1521 ;; (the varbind variant can emerge from other optimizations)
1523 ((and (eq 'byte-dup (car lap0))
1524 (eq 'byte-discard (car lap2))
1525 (memq (car lap1) '(byte-varset byte-varbind)))
1526 (byte-compile-log-lap " dup %s discard\t-->\t%s" lap1 lap1)
1527 (setq keep-going t
1528 rest (cdr rest))
1529 (setq lap (delq lap0 (delq lap2 lap))))
1531 ;; not goto-X-if-nil --> goto-X-if-non-nil
1532 ;; not goto-X-if-non-nil --> goto-X-if-nil
1534 ;; it is wrong to do the same thing for the -else-pop variants.
1536 ((and (eq 'byte-not (car lap0))
1537 (or (eq 'byte-goto-if-nil (car lap1))
1538 (eq 'byte-goto-if-not-nil (car lap1))))
1539 (byte-compile-log-lap " not %s\t-->\t%s"
1540 lap1
1541 (cons
1542 (if (eq (car lap1) 'byte-goto-if-nil)
1543 'byte-goto-if-not-nil
1544 'byte-goto-if-nil)
1545 (cdr lap1)))
1546 (setcar lap1 (if (eq (car lap1) 'byte-goto-if-nil)
1547 'byte-goto-if-not-nil
1548 'byte-goto-if-nil))
1549 (setq lap (delq lap0 lap))
1550 (setq keep-going t))
1552 ;; goto-X-if-nil goto-Y X: --> goto-Y-if-non-nil X:
1553 ;; goto-X-if-non-nil goto-Y X: --> goto-Y-if-nil X:
1555 ;; it is wrong to do the same thing for the -else-pop variants.
1557 ((and (or (eq 'byte-goto-if-nil (car lap0))
1558 (eq 'byte-goto-if-not-nil (car lap0))) ; gotoX
1559 (eq 'byte-goto (car lap1)) ; gotoY
1560 (eq (cdr lap0) lap2)) ; TAG X
1561 (let ((inverse (if (eq 'byte-goto-if-nil (car lap0))
1562 'byte-goto-if-not-nil 'byte-goto-if-nil)))
1563 (byte-compile-log-lap " %s %s %s:\t-->\t%s %s:"
1564 lap0 lap1 lap2
1565 (cons inverse (cdr lap1)) lap2)
1566 (setq lap (delq lap0 lap))
1567 (setcar lap1 inverse)
1568 (setq keep-going t)))
1570 ;; const goto-if-* --> whatever
1572 ((and (eq 'byte-constant (car lap0))
1573 (memq (car lap1) byte-conditional-ops))
1574 (cond ((if (or (eq (car lap1) 'byte-goto-if-nil)
1575 (eq (car lap1) 'byte-goto-if-nil-else-pop))
1576 (car (cdr lap0))
1577 (not (car (cdr lap0))))
1578 (byte-compile-log-lap " %s %s\t-->\t<deleted>"
1579 lap0 lap1)
1580 (setq rest (cdr rest)
1581 lap (delq lap0 (delq lap1 lap))))
1583 (if (memq (car lap1) byte-goto-always-pop-ops)
1584 (progn
1585 (byte-compile-log-lap " %s %s\t-->\t%s"
1586 lap0 lap1 (cons 'byte-goto (cdr lap1)))
1587 (setq lap (delq lap0 lap)))
1588 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1589 (cons 'byte-goto (cdr lap1))))
1590 (setcar lap1 'byte-goto)))
1591 (setq keep-going t))
1593 ;; varref-X varref-X --> varref-X dup
1594 ;; varref-X [dup ...] varref-X --> varref-X [dup ...] dup
1595 ;; We don't optimize the const-X variations on this here,
1596 ;; because that would inhibit some goto optimizations; we
1597 ;; optimize the const-X case after all other optimizations.
1599 ((and (eq 'byte-varref (car lap0))
1600 (progn
1601 (setq tmp (cdr rest))
1602 (while (eq (car (car tmp)) 'byte-dup)
1603 (setq tmp (cdr tmp)))
1605 (eq (cdr lap0) (cdr (car tmp)))
1606 (eq 'byte-varref (car (car tmp))))
1607 (if (memq byte-optimize-log '(t byte))
1608 (let ((str ""))
1609 (setq tmp2 (cdr rest))
1610 (while (not (eq tmp tmp2))
1611 (setq tmp2 (cdr tmp2)
1612 str (concat str " dup")))
1613 (byte-compile-log-lap " %s%s %s\t-->\t%s%s dup"
1614 lap0 str lap0 lap0 str)))
1615 (setq keep-going t)
1616 (setcar (car tmp) 'byte-dup)
1617 (setcdr (car tmp) 0)
1618 (setq rest tmp))
1620 ;; TAG1: TAG2: --> TAG1: <deleted>
1621 ;; (and other references to TAG2 are replaced with TAG1)
1623 ((and (eq (car lap0) 'TAG)
1624 (eq (car lap1) 'TAG))
1625 (and (memq byte-optimize-log '(t byte))
1626 (byte-compile-log " adjacent tags %d and %d merged"
1627 (nth 1 lap1) (nth 1 lap0)))
1628 (setq tmp3 lap)
1629 (while (setq tmp2 (rassq lap0 tmp3))
1630 (setcdr tmp2 lap1)
1631 (setq tmp3 (cdr (memq tmp2 tmp3))))
1632 (setq lap (delq lap0 lap)
1633 keep-going t))
1635 ;; unused-TAG: --> <deleted>
1637 ((and (eq 'TAG (car lap0))
1638 (not (rassq lap0 lap)))
1639 (and (memq byte-optimize-log '(t byte))
1640 (byte-compile-log " unused tag %d removed" (nth 1 lap0)))
1641 (setq lap (delq lap0 lap)
1642 keep-going t))
1644 ;; goto ... --> goto <delete until TAG or end>
1645 ;; return ... --> return <delete until TAG or end>
1647 ((and (memq (car lap0) '(byte-goto byte-return))
1648 (not (memq (car lap1) '(TAG nil))))
1649 (setq tmp rest)
1650 (let ((i 0)
1651 (opt-p (memq byte-optimize-log '(t lap)))
1652 str deleted)
1653 (while (and (setq tmp (cdr tmp))
1654 (not (eq 'TAG (car (car tmp)))))
1655 (if opt-p (setq deleted (cons (car tmp) deleted)
1656 str (concat str " %s")
1657 i (1+ i))))
1658 (if opt-p
1659 (let ((tagstr
1660 (if (eq 'TAG (car (car tmp)))
1661 (format "%d:" (car (cdr (car tmp))))
1662 (or (car tmp) ""))))
1663 (if (< i 6)
1664 (apply 'byte-compile-log-lap-1
1665 (concat " %s" str
1666 " %s\t-->\t%s <deleted> %s")
1667 lap0
1668 (nconc (nreverse deleted)
1669 (list tagstr lap0 tagstr)))
1670 (byte-compile-log-lap
1671 " %s <%d unreachable op%s> %s\t-->\t%s <deleted> %s"
1672 lap0 i (if (= i 1) "" "s")
1673 tagstr lap0 tagstr))))
1674 (rplacd rest tmp))
1675 (setq keep-going t))
1677 ;; <safe-op> unbind --> unbind <safe-op>
1678 ;; (this may enable other optimizations.)
1680 ((and (eq 'byte-unbind (car lap1))
1681 (memq (car lap0) byte-after-unbind-ops))
1682 (byte-compile-log-lap " %s %s\t-->\t%s %s" lap0 lap1 lap1 lap0)
1683 (setcar rest lap1)
1684 (setcar (cdr rest) lap0)
1685 (setq keep-going t))
1687 ;; varbind-X unbind-N --> discard unbind-(N-1)
1688 ;; save-excursion unbind-N --> unbind-(N-1)
1689 ;; save-restriction unbind-N --> unbind-(N-1)
1691 ((and (eq 'byte-unbind (car lap1))
1692 (memq (car lap0) '(byte-varbind byte-save-excursion
1693 byte-save-restriction))
1694 (< 0 (cdr lap1)))
1695 (if (zerop (setcdr lap1 (1- (cdr lap1))))
1696 (delq lap1 rest))
1697 (if (eq (car lap0) 'byte-varbind)
1698 (setcar rest (cons 'byte-discard 0))
1699 (setq lap (delq lap0 lap)))
1700 (byte-compile-log-lap " %s %s\t-->\t%s %s"
1701 lap0 (cons (car lap1) (1+ (cdr lap1)))
1702 (if (eq (car lap0) 'byte-varbind)
1703 (car rest)
1704 (car (cdr rest)))
1705 (if (and (/= 0 (cdr lap1))
1706 (eq (car lap0) 'byte-varbind))
1707 (car (cdr rest))
1708 ""))
1709 (setq keep-going t))
1711 ;; goto*-X ... X: goto-Y --> goto*-Y
1712 ;; goto-X ... X: return --> return
1714 ((and (memq (car lap0) byte-goto-ops)
1715 (memq (car (setq tmp (nth 1 (memq (cdr lap0) lap))))
1716 '(byte-goto byte-return)))
1717 (cond ((and (not (eq tmp lap0))
1718 (or (eq (car lap0) 'byte-goto)
1719 (eq (car tmp) 'byte-goto)))
1720 (byte-compile-log-lap " %s [%s]\t-->\t%s"
1721 (car lap0) tmp tmp)
1722 (if (eq (car tmp) 'byte-return)
1723 (setcar lap0 'byte-return))
1724 (setcdr lap0 (cdr tmp))
1725 (setq keep-going t))))
1727 ;; goto-*-else-pop X ... X: goto-if-* --> whatever
1728 ;; goto-*-else-pop X ... X: discard --> whatever
1730 ((and (memq (car lap0) '(byte-goto-if-nil-else-pop
1731 byte-goto-if-not-nil-else-pop))
1732 (memq (car (car (setq tmp (cdr (memq (cdr lap0) lap)))))
1733 (eval-when-compile
1734 (cons 'byte-discard byte-conditional-ops)))
1735 (not (eq lap0 (car tmp))))
1736 (setq tmp2 (car tmp))
1737 (setq tmp3 (assq (car lap0) '((byte-goto-if-nil-else-pop
1738 byte-goto-if-nil)
1739 (byte-goto-if-not-nil-else-pop
1740 byte-goto-if-not-nil))))
1741 (if (memq (car tmp2) tmp3)
1742 (progn (setcar lap0 (car tmp2))
1743 (setcdr lap0 (cdr tmp2))
1744 (byte-compile-log-lap " %s-else-pop [%s]\t-->\t%s"
1745 (car lap0) tmp2 lap0))
1746 ;; Get rid of the -else-pop's and jump one step further.
1747 (or (eq 'TAG (car (nth 1 tmp)))
1748 (setcdr tmp (cons (byte-compile-make-tag)
1749 (cdr tmp))))
1750 (byte-compile-log-lap " %s [%s]\t-->\t%s <skip>"
1751 (car lap0) tmp2 (nth 1 tmp3))
1752 (setcar lap0 (nth 1 tmp3))
1753 (setcdr lap0 (nth 1 tmp)))
1754 (setq keep-going t))
1756 ;; const goto-X ... X: goto-if-* --> whatever
1757 ;; const goto-X ... X: discard --> whatever
1759 ((and (eq (car lap0) 'byte-constant)
1760 (eq (car lap1) 'byte-goto)
1761 (memq (car (car (setq tmp (cdr (memq (cdr lap1) lap)))))
1762 (eval-when-compile
1763 (cons 'byte-discard byte-conditional-ops)))
1764 (not (eq lap1 (car tmp))))
1765 (setq tmp2 (car tmp))
1766 (cond ((memq (car tmp2)
1767 (if (null (car (cdr lap0)))
1768 '(byte-goto-if-nil byte-goto-if-nil-else-pop)
1769 '(byte-goto-if-not-nil
1770 byte-goto-if-not-nil-else-pop)))
1771 (byte-compile-log-lap " %s goto [%s]\t-->\t%s %s"
1772 lap0 tmp2 lap0 tmp2)
1773 (setcar lap1 (car tmp2))
1774 (setcdr lap1 (cdr tmp2))
1775 ;; Let next step fix the (const,goto-if*) sequence.
1776 (setq rest (cons nil rest)))
1778 ;; Jump one step further
1779 (byte-compile-log-lap
1780 " %s goto [%s]\t-->\t<deleted> goto <skip>"
1781 lap0 tmp2)
1782 (or (eq 'TAG (car (nth 1 tmp)))
1783 (setcdr tmp (cons (byte-compile-make-tag)
1784 (cdr tmp))))
1785 (setcdr lap1 (car (cdr tmp)))
1786 (setq lap (delq lap0 lap))))
1787 (setq keep-going t))
1789 ;; X: varref-Y ... varset-Y goto-X -->
1790 ;; X: varref-Y Z: ... dup varset-Y goto-Z
1791 ;; (varset-X goto-BACK, BACK: varref-X --> copy the varref down.)
1792 ;; (This is so usual for while loops that it is worth handling).
1794 ((and (eq (car lap1) 'byte-varset)
1795 (eq (car lap2) 'byte-goto)
1796 (not (memq (cdr lap2) rest)) ;Backwards jump
1797 (eq (car (car (setq tmp (cdr (memq (cdr lap2) lap)))))
1798 'byte-varref)
1799 (eq (cdr (car tmp)) (cdr lap1))
1800 (not (memq (car (cdr lap1)) byte-boolean-vars)))
1801 ;;(byte-compile-log-lap " Pulled %s to end of loop" (car tmp))
1802 (let ((newtag (byte-compile-make-tag)))
1803 (byte-compile-log-lap
1804 " %s: %s ... %s %s\t-->\t%s: %s %s: ... %s %s %s"
1805 (nth 1 (cdr lap2)) (car tmp)
1806 lap1 lap2
1807 (nth 1 (cdr lap2)) (car tmp)
1808 (nth 1 newtag) 'byte-dup lap1
1809 (cons 'byte-goto newtag)
1811 (setcdr rest (cons (cons 'byte-dup 0) (cdr rest)))
1812 (setcdr tmp (cons (setcdr lap2 newtag) (cdr tmp))))
1813 (setq add-depth 1)
1814 (setq keep-going t))
1816 ;; goto-X Y: ... X: goto-if*-Y --> goto-if-not-*-X+1 Y:
1817 ;; (This can pull the loop test to the end of the loop)
1819 ((and (eq (car lap0) 'byte-goto)
1820 (eq (car lap1) 'TAG)
1821 (eq lap1
1822 (cdr (car (setq tmp (cdr (memq (cdr lap0) lap))))))
1823 (memq (car (car tmp))
1824 '(byte-goto byte-goto-if-nil byte-goto-if-not-nil
1825 byte-goto-if-nil-else-pop)))
1826 ;; (byte-compile-log-lap " %s %s, %s %s --> moved conditional"
1827 ;; lap0 lap1 (cdr lap0) (car tmp))
1828 (let ((newtag (byte-compile-make-tag)))
1829 (byte-compile-log-lap
1830 "%s %s: ... %s: %s\t-->\t%s ... %s:"
1831 lap0 (nth 1 lap1) (nth 1 (cdr lap0)) (car tmp)
1832 (cons (cdr (assq (car (car tmp))
1833 '((byte-goto-if-nil . byte-goto-if-not-nil)
1834 (byte-goto-if-not-nil . byte-goto-if-nil)
1835 (byte-goto-if-nil-else-pop .
1836 byte-goto-if-not-nil-else-pop)
1837 (byte-goto-if-not-nil-else-pop .
1838 byte-goto-if-nil-else-pop))))
1839 newtag)
1841 (nth 1 newtag)
1843 (setcdr tmp (cons (setcdr lap0 newtag) (cdr tmp)))
1844 (if (eq (car (car tmp)) 'byte-goto-if-nil-else-pop)
1845 ;; We can handle this case but not the -if-not-nil case,
1846 ;; because we won't know which non-nil constant to push.
1847 (setcdr rest (cons (cons 'byte-constant
1848 (byte-compile-get-constant nil))
1849 (cdr rest))))
1850 (setcar lap0 (nth 1 (memq (car (car tmp))
1851 '(byte-goto-if-nil-else-pop
1852 byte-goto-if-not-nil
1853 byte-goto-if-nil
1854 byte-goto-if-not-nil
1855 byte-goto byte-goto))))
1857 (setq keep-going t))
1859 (setq rest (cdr rest)))
1861 ;; Cleanup stage:
1862 ;; Rebuild byte-compile-constants / byte-compile-variables.
1863 ;; Simple optimizations that would inhibit other optimizations if they
1864 ;; were done in the optimizing loop, and optimizations which there is no
1865 ;; need to do more than once.
1866 (setq byte-compile-constants nil
1867 byte-compile-variables nil)
1868 (setq rest lap)
1869 (while rest
1870 (setq lap0 (car rest)
1871 lap1 (nth 1 rest))
1872 (if (memq (car lap0) byte-constref-ops)
1873 (if (not (eq (car lap0) 'byte-constant))
1874 (or (memq (cdr lap0) byte-compile-variables)
1875 (setq byte-compile-variables (cons (cdr lap0)
1876 byte-compile-variables)))
1877 (or (memq (cdr lap0) byte-compile-constants)
1878 (setq byte-compile-constants (cons (cdr lap0)
1879 byte-compile-constants)))))
1880 (cond (;;
1881 ;; const-C varset-X const-C --> const-C dup varset-X
1882 ;; const-C varbind-X const-C --> const-C dup varbind-X
1884 (and (eq (car lap0) 'byte-constant)
1885 (eq (car (nth 2 rest)) 'byte-constant)
1886 (eq (cdr lap0) (car (nth 2 rest)))
1887 (memq (car lap1) '(byte-varbind byte-varset)))
1888 (byte-compile-log-lap " %s %s %s\t-->\t%s dup %s"
1889 lap0 lap1 lap0 lap0 lap1)
1890 (setcar (cdr (cdr rest)) (cons (car lap1) (cdr lap1)))
1891 (setcar (cdr rest) (cons 'byte-dup 0))
1892 (setq add-depth 1))
1894 ;; const-X [dup/const-X ...] --> const-X [dup ...] dup
1895 ;; varref-X [dup/varref-X ...] --> varref-X [dup ...] dup
1897 ((memq (car lap0) '(byte-constant byte-varref))
1898 (setq tmp rest
1899 tmp2 nil)
1900 (while (progn
1901 (while (eq 'byte-dup (car (car (setq tmp (cdr tmp))))))
1902 (and (eq (cdr lap0) (cdr (car tmp)))
1903 (eq (car lap0) (car (car tmp)))))
1904 (setcar tmp (cons 'byte-dup 0))
1905 (setq tmp2 t))
1906 (if tmp2
1907 (byte-compile-log-lap
1908 " %s [dup/%s]...\t-->\t%s dup..." lap0 lap0 lap0)))
1910 ;; unbind-N unbind-M --> unbind-(N+M)
1912 ((and (eq 'byte-unbind (car lap0))
1913 (eq 'byte-unbind (car lap1)))
1914 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1915 (cons 'byte-unbind
1916 (+ (cdr lap0) (cdr lap1))))
1917 (setq keep-going t)
1918 (setq lap (delq lap0 lap))
1919 (setcdr lap1 (+ (cdr lap1) (cdr lap0))))
1921 (setq rest (cdr rest)))
1922 (setq byte-compile-maxdepth (+ byte-compile-maxdepth add-depth)))
1923 lap)
1925 (provide 'byte-opt)
1928 ;; To avoid "lisp nesting exceeds max-lisp-eval-depth" when this file compiles
1929 ;; itself, compile some of its most used recursive functions (at load time).
1931 (eval-when-compile
1932 (or (byte-code-function-p (symbol-function 'byte-optimize-form))
1933 (assq 'byte-code (symbol-function 'byte-optimize-form))
1934 (let ((byte-optimize nil)
1935 (byte-compile-warnings nil))
1936 (mapcar (lambda (x)
1937 (or noninteractive (message "compiling %s..." x))
1938 (byte-compile x)
1939 (or noninteractive (message "compiling %s...done" x)))
1940 '(byte-optimize-form
1941 byte-optimize-body
1942 byte-optimize-predicate
1943 byte-optimize-binary-predicate
1944 ;; Inserted some more than necessary, to speed it up.
1945 byte-optimize-form-code-walker
1946 byte-optimize-lapcode))))
1947 nil)
1949 ;;; byte-opt.el ends here