2003-07-11 John Paul Wallington <jpw@gnu.org>
[emacs.git] / src / alloc.c
blob359904a775a39233c2d7fbb7832989ff092413f8
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 86, 88, 93, 94, 95, 97, 98, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
30 /* Note that this declares bzero on OSF/1. How dumb. */
32 #include <signal.h>
34 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
35 memory. Can do this only if using gmalloc.c. */
37 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
38 #undef GC_MALLOC_CHECK
39 #endif
41 /* This file is part of the core Lisp implementation, and thus must
42 deal with the real data structures. If the Lisp implementation is
43 replaced, this file likely will not be used. */
45 #undef HIDE_LISP_IMPLEMENTATION
46 #include "lisp.h"
47 #include "process.h"
48 #include "intervals.h"
49 #include "puresize.h"
50 #include "buffer.h"
51 #include "window.h"
52 #include "keyboard.h"
53 #include "frame.h"
54 #include "blockinput.h"
55 #include "charset.h"
56 #include "syssignal.h"
57 #include <setjmp.h>
59 #ifdef HAVE_UNISTD_H
60 #include <unistd.h>
61 #else
62 extern POINTER_TYPE *sbrk ();
63 #endif
65 #ifdef DOUG_LEA_MALLOC
67 #include <malloc.h>
68 /* malloc.h #defines this as size_t, at least in glibc2. */
69 #ifndef __malloc_size_t
70 #define __malloc_size_t int
71 #endif
73 /* Specify maximum number of areas to mmap. It would be nice to use a
74 value that explicitly means "no limit". */
76 #define MMAP_MAX_AREAS 100000000
78 #else /* not DOUG_LEA_MALLOC */
80 /* The following come from gmalloc.c. */
82 #define __malloc_size_t size_t
83 extern __malloc_size_t _bytes_used;
84 extern __malloc_size_t __malloc_extra_blocks;
86 #endif /* not DOUG_LEA_MALLOC */
88 /* Value of _bytes_used, when spare_memory was freed. */
90 static __malloc_size_t bytes_used_when_full;
92 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
93 to a struct Lisp_String. */
95 #define MARK_STRING(S) ((S)->size |= MARKBIT)
96 #define UNMARK_STRING(S) ((S)->size &= ~MARKBIT)
97 #define STRING_MARKED_P(S) ((S)->size & MARKBIT)
99 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
100 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
101 #define VECTOR_MARKED_P(V) ((V)->size & ARRAY_MARK_FLAG)
103 /* Value is the number of bytes/chars of S, a pointer to a struct
104 Lisp_String. This must be used instead of STRING_BYTES (S) or
105 S->size during GC, because S->size contains the mark bit for
106 strings. */
108 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
109 #define GC_STRING_CHARS(S) ((S)->size & ~MARKBIT)
111 /* Number of bytes of consing done since the last gc. */
113 int consing_since_gc;
115 /* Count the amount of consing of various sorts of space. */
117 EMACS_INT cons_cells_consed;
118 EMACS_INT floats_consed;
119 EMACS_INT vector_cells_consed;
120 EMACS_INT symbols_consed;
121 EMACS_INT string_chars_consed;
122 EMACS_INT misc_objects_consed;
123 EMACS_INT intervals_consed;
124 EMACS_INT strings_consed;
126 /* Number of bytes of consing since GC before another GC should be done. */
128 EMACS_INT gc_cons_threshold;
130 /* Nonzero during GC. */
132 int gc_in_progress;
134 /* Nonzero means abort if try to GC.
135 This is for code which is written on the assumption that
136 no GC will happen, so as to verify that assumption. */
138 int abort_on_gc;
140 /* Nonzero means display messages at beginning and end of GC. */
142 int garbage_collection_messages;
144 #ifndef VIRT_ADDR_VARIES
145 extern
146 #endif /* VIRT_ADDR_VARIES */
147 int malloc_sbrk_used;
149 #ifndef VIRT_ADDR_VARIES
150 extern
151 #endif /* VIRT_ADDR_VARIES */
152 int malloc_sbrk_unused;
154 /* Two limits controlling how much undo information to keep. */
156 EMACS_INT undo_limit;
157 EMACS_INT undo_strong_limit;
159 /* Number of live and free conses etc. */
161 static int total_conses, total_markers, total_symbols, total_vector_size;
162 static int total_free_conses, total_free_markers, total_free_symbols;
163 static int total_free_floats, total_floats;
165 /* Points to memory space allocated as "spare", to be freed if we run
166 out of memory. */
168 static char *spare_memory;
170 /* Amount of spare memory to keep in reserve. */
172 #define SPARE_MEMORY (1 << 14)
174 /* Number of extra blocks malloc should get when it needs more core. */
176 static int malloc_hysteresis;
178 /* Non-nil means defun should do purecopy on the function definition. */
180 Lisp_Object Vpurify_flag;
182 /* Non-nil means we are handling a memory-full error. */
184 Lisp_Object Vmemory_full;
186 #ifndef HAVE_SHM
188 /* Force it into data space! */
190 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {0,};
191 #define PUREBEG (char *) pure
193 #else /* HAVE_SHM */
195 #define pure PURE_SEG_BITS /* Use shared memory segment */
196 #define PUREBEG (char *)PURE_SEG_BITS
198 #endif /* HAVE_SHM */
200 /* Pointer to the pure area, and its size. */
202 static char *purebeg;
203 static size_t pure_size;
205 /* Number of bytes of pure storage used before pure storage overflowed.
206 If this is non-zero, this implies that an overflow occurred. */
208 static size_t pure_bytes_used_before_overflow;
210 /* Value is non-zero if P points into pure space. */
212 #define PURE_POINTER_P(P) \
213 (((PNTR_COMPARISON_TYPE) (P) \
214 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
215 && ((PNTR_COMPARISON_TYPE) (P) \
216 >= (PNTR_COMPARISON_TYPE) purebeg))
218 /* Index in pure at which next pure object will be allocated.. */
220 EMACS_INT pure_bytes_used;
222 /* If nonzero, this is a warning delivered by malloc and not yet
223 displayed. */
225 char *pending_malloc_warning;
227 /* Pre-computed signal argument for use when memory is exhausted. */
229 Lisp_Object Vmemory_signal_data;
231 /* Maximum amount of C stack to save when a GC happens. */
233 #ifndef MAX_SAVE_STACK
234 #define MAX_SAVE_STACK 16000
235 #endif
237 /* Buffer in which we save a copy of the C stack at each GC. */
239 char *stack_copy;
240 int stack_copy_size;
242 /* Non-zero means ignore malloc warnings. Set during initialization.
243 Currently not used. */
245 int ignore_warnings;
247 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
249 /* Hook run after GC has finished. */
251 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
253 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
254 EMACS_INT gcs_done; /* accumulated GCs */
256 static void mark_buffer P_ ((Lisp_Object));
257 extern void mark_kboards P_ ((void));
258 static void gc_sweep P_ ((void));
259 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
260 static void mark_face_cache P_ ((struct face_cache *));
262 #ifdef HAVE_WINDOW_SYSTEM
263 static void mark_image P_ ((struct image *));
264 static void mark_image_cache P_ ((struct frame *));
265 #endif /* HAVE_WINDOW_SYSTEM */
267 static struct Lisp_String *allocate_string P_ ((void));
268 static void compact_small_strings P_ ((void));
269 static void free_large_strings P_ ((void));
270 static void sweep_strings P_ ((void));
272 extern int message_enable_multibyte;
274 /* When scanning the C stack for live Lisp objects, Emacs keeps track
275 of what memory allocated via lisp_malloc is intended for what
276 purpose. This enumeration specifies the type of memory. */
278 enum mem_type
280 MEM_TYPE_NON_LISP,
281 MEM_TYPE_BUFFER,
282 MEM_TYPE_CONS,
283 MEM_TYPE_STRING,
284 MEM_TYPE_MISC,
285 MEM_TYPE_SYMBOL,
286 MEM_TYPE_FLOAT,
287 /* Keep the following vector-like types together, with
288 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
289 first. Or change the code of live_vector_p, for instance. */
290 MEM_TYPE_VECTOR,
291 MEM_TYPE_PROCESS,
292 MEM_TYPE_HASH_TABLE,
293 MEM_TYPE_FRAME,
294 MEM_TYPE_WINDOW
297 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
299 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
300 #include <stdio.h> /* For fprintf. */
301 #endif
303 /* A unique object in pure space used to make some Lisp objects
304 on free lists recognizable in O(1). */
306 Lisp_Object Vdead;
308 #ifdef GC_MALLOC_CHECK
310 enum mem_type allocated_mem_type;
311 int dont_register_blocks;
313 #endif /* GC_MALLOC_CHECK */
315 /* A node in the red-black tree describing allocated memory containing
316 Lisp data. Each such block is recorded with its start and end
317 address when it is allocated, and removed from the tree when it
318 is freed.
320 A red-black tree is a balanced binary tree with the following
321 properties:
323 1. Every node is either red or black.
324 2. Every leaf is black.
325 3. If a node is red, then both of its children are black.
326 4. Every simple path from a node to a descendant leaf contains
327 the same number of black nodes.
328 5. The root is always black.
330 When nodes are inserted into the tree, or deleted from the tree,
331 the tree is "fixed" so that these properties are always true.
333 A red-black tree with N internal nodes has height at most 2
334 log(N+1). Searches, insertions and deletions are done in O(log N).
335 Please see a text book about data structures for a detailed
336 description of red-black trees. Any book worth its salt should
337 describe them. */
339 struct mem_node
341 /* Children of this node. These pointers are never NULL. When there
342 is no child, the value is MEM_NIL, which points to a dummy node. */
343 struct mem_node *left, *right;
345 /* The parent of this node. In the root node, this is NULL. */
346 struct mem_node *parent;
348 /* Start and end of allocated region. */
349 void *start, *end;
351 /* Node color. */
352 enum {MEM_BLACK, MEM_RED} color;
354 /* Memory type. */
355 enum mem_type type;
358 /* Base address of stack. Set in main. */
360 Lisp_Object *stack_base;
362 /* Root of the tree describing allocated Lisp memory. */
364 static struct mem_node *mem_root;
366 /* Lowest and highest known address in the heap. */
368 static void *min_heap_address, *max_heap_address;
370 /* Sentinel node of the tree. */
372 static struct mem_node mem_z;
373 #define MEM_NIL &mem_z
375 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
376 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
377 static void lisp_free P_ ((POINTER_TYPE *));
378 static void mark_stack P_ ((void));
379 static int live_vector_p P_ ((struct mem_node *, void *));
380 static int live_buffer_p P_ ((struct mem_node *, void *));
381 static int live_string_p P_ ((struct mem_node *, void *));
382 static int live_cons_p P_ ((struct mem_node *, void *));
383 static int live_symbol_p P_ ((struct mem_node *, void *));
384 static int live_float_p P_ ((struct mem_node *, void *));
385 static int live_misc_p P_ ((struct mem_node *, void *));
386 static void mark_maybe_object P_ ((Lisp_Object));
387 static void mark_memory P_ ((void *, void *));
388 static void mem_init P_ ((void));
389 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
390 static void mem_insert_fixup P_ ((struct mem_node *));
391 static void mem_rotate_left P_ ((struct mem_node *));
392 static void mem_rotate_right P_ ((struct mem_node *));
393 static void mem_delete P_ ((struct mem_node *));
394 static void mem_delete_fixup P_ ((struct mem_node *));
395 static INLINE struct mem_node *mem_find P_ ((void *));
397 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
398 static void check_gcpros P_ ((void));
399 #endif
401 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
403 /* Recording what needs to be marked for gc. */
405 struct gcpro *gcprolist;
407 /* Addresses of staticpro'd variables. */
409 #define NSTATICS 1280
410 Lisp_Object *staticvec[NSTATICS] = {0};
412 /* Index of next unused slot in staticvec. */
414 int staticidx = 0;
416 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
419 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
420 ALIGNMENT must be a power of 2. */
422 #define ALIGN(ptr, ALIGNMENT) \
423 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
424 & ~((ALIGNMENT) - 1)))
428 /************************************************************************
429 Malloc
430 ************************************************************************/
432 /* Function malloc calls this if it finds we are near exhausting storage. */
434 void
435 malloc_warning (str)
436 char *str;
438 pending_malloc_warning = str;
442 /* Display an already-pending malloc warning. */
444 void
445 display_malloc_warning ()
447 call3 (intern ("display-warning"),
448 intern ("alloc"),
449 build_string (pending_malloc_warning),
450 intern ("emergency"));
451 pending_malloc_warning = 0;
455 #ifdef DOUG_LEA_MALLOC
456 # define BYTES_USED (mallinfo ().arena)
457 #else
458 # define BYTES_USED _bytes_used
459 #endif
462 /* Called if malloc returns zero. */
464 void
465 memory_full ()
467 Vmemory_full = Qt;
469 #ifndef SYSTEM_MALLOC
470 bytes_used_when_full = BYTES_USED;
471 #endif
473 /* The first time we get here, free the spare memory. */
474 if (spare_memory)
476 free (spare_memory);
477 spare_memory = 0;
480 /* This used to call error, but if we've run out of memory, we could
481 get infinite recursion trying to build the string. */
482 while (1)
483 Fsignal (Qnil, Vmemory_signal_data);
487 /* Called if we can't allocate relocatable space for a buffer. */
489 void
490 buffer_memory_full ()
492 /* If buffers use the relocating allocator, no need to free
493 spare_memory, because we may have plenty of malloc space left
494 that we could get, and if we don't, the malloc that fails will
495 itself cause spare_memory to be freed. If buffers don't use the
496 relocating allocator, treat this like any other failing
497 malloc. */
499 #ifndef REL_ALLOC
500 memory_full ();
501 #endif
503 Vmemory_full = Qt;
505 /* This used to call error, but if we've run out of memory, we could
506 get infinite recursion trying to build the string. */
507 while (1)
508 Fsignal (Qnil, Vmemory_signal_data);
512 /* Like malloc but check for no memory and block interrupt input.. */
514 POINTER_TYPE *
515 xmalloc (size)
516 size_t size;
518 register POINTER_TYPE *val;
520 BLOCK_INPUT;
521 val = (POINTER_TYPE *) malloc (size);
522 UNBLOCK_INPUT;
524 if (!val && size)
525 memory_full ();
526 return val;
530 /* Like realloc but check for no memory and block interrupt input.. */
532 POINTER_TYPE *
533 xrealloc (block, size)
534 POINTER_TYPE *block;
535 size_t size;
537 register POINTER_TYPE *val;
539 BLOCK_INPUT;
540 /* We must call malloc explicitly when BLOCK is 0, since some
541 reallocs don't do this. */
542 if (! block)
543 val = (POINTER_TYPE *) malloc (size);
544 else
545 val = (POINTER_TYPE *) realloc (block, size);
546 UNBLOCK_INPUT;
548 if (!val && size) memory_full ();
549 return val;
553 /* Like free but block interrupt input.. */
555 void
556 xfree (block)
557 POINTER_TYPE *block;
559 BLOCK_INPUT;
560 free (block);
561 UNBLOCK_INPUT;
565 /* Like strdup, but uses xmalloc. */
567 char *
568 xstrdup (s)
569 const char *s;
571 size_t len = strlen (s) + 1;
572 char *p = (char *) xmalloc (len);
573 bcopy (s, p, len);
574 return p;
578 /* Like malloc but used for allocating Lisp data. NBYTES is the
579 number of bytes to allocate, TYPE describes the intended use of the
580 allcated memory block (for strings, for conses, ...). */
582 static void *lisp_malloc_loser;
584 static POINTER_TYPE *
585 lisp_malloc (nbytes, type)
586 size_t nbytes;
587 enum mem_type type;
589 register void *val;
591 BLOCK_INPUT;
593 #ifdef GC_MALLOC_CHECK
594 allocated_mem_type = type;
595 #endif
597 val = (void *) malloc (nbytes);
599 /* If the memory just allocated cannot be addressed thru a Lisp
600 object's pointer, and it needs to be,
601 that's equivalent to running out of memory. */
602 if (val && type != MEM_TYPE_NON_LISP)
604 Lisp_Object tem;
605 XSETCONS (tem, (char *) val + nbytes - 1);
606 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
608 lisp_malloc_loser = val;
609 free (val);
610 val = 0;
614 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
615 if (val && type != MEM_TYPE_NON_LISP)
616 mem_insert (val, (char *) val + nbytes, type);
617 #endif
619 UNBLOCK_INPUT;
620 if (!val && nbytes)
621 memory_full ();
622 return val;
625 /* Free BLOCK. This must be called to free memory allocated with a
626 call to lisp_malloc. */
628 static void
629 lisp_free (block)
630 POINTER_TYPE *block;
632 BLOCK_INPUT;
633 free (block);
634 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
635 mem_delete (mem_find (block));
636 #endif
637 UNBLOCK_INPUT;
640 /* Allocation of aligned blocks of memory to store Lisp data. */
641 /* The entry point is lisp_align_malloc which returns blocks of at most */
642 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
645 /* BLOCK_ALIGN has to be a power of 2. */
646 #define BLOCK_ALIGN (1 << 10)
647 #define BLOCK_BYTES \
648 (BLOCK_ALIGN - sizeof (struct alinged_block *) - ABLOCKS_PADDING)
650 /* Internal data structures and constants. */
652 /* Padding to leave at the end of a malloc'd block. This is to give
653 malloc a chance to minimize the amount of memory wasted to alignment.
654 It should be tuned to the particular malloc library used.
655 The current setting is based on glibc-2.3.2. */
656 #define ABLOCKS_PADDING 0
657 #define ABLOCKS_SIZE 16
659 /* An aligned block of memory. */
660 struct ablock
662 union
664 char payload[BLOCK_BYTES];
665 struct ablock *next_free;
666 } x;
667 /* `abase' is the aligned base of the ablocks. */
668 /* It is overloaded to hold the virtual `busy' field that counts
669 the number of used ablock in the parent ablocks.
670 The first ablock has the `busy' field, the others have the `abase'
671 field. To tell the difference, we assume that pointers will have
672 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
673 is used to tell whether the real base of the parent ablocks is `abase'
674 (if not, the word before the first ablock holds a pointer to the
675 real base). */
676 struct ablocks *abase;
677 /* The padding of all but the last ablock is unused. The padding of
678 the last ablock in an ablocks is not allocated. */
679 #if ABLOCKS_PADDING
680 char padding[ABLOCKS_PADDING];
681 #endif
684 /* A bunch of consecutive aligned blocks. */
685 struct ablocks
687 struct ablock blocks[ABLOCKS_SIZE];
690 /* Size of the block requested from malloc or memalign. */
691 #define ABLOCKS_BYTES (sizeof (struct ablocks) - ABLOCKS_PADDING)
693 #define ABLOCK_ABASE(block) \
694 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
695 ? (struct ablocks *)(block) \
696 : (block)->abase)
698 /* Virtual `busy' field. */
699 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
701 /* Pointer to the (not necessarily aligned) malloc block. */
702 #define ABLOCKS_BASE(abase) \
703 (1 & (int) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
705 /* The list of free ablock. */
706 static struct ablock *free_ablock;
708 /* Allocate an aligned block of nbytes.
709 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
710 smaller or equal to BLOCK_BYTES. */
711 static POINTER_TYPE *
712 lisp_align_malloc (nbytes, type)
713 size_t nbytes;
714 enum mem_type type;
716 void *base, *val;
717 struct ablocks *abase;
719 eassert (nbytes <= BLOCK_BYTES);
721 BLOCK_INPUT;
723 #ifdef GC_MALLOC_CHECK
724 allocated_mem_type = type;
725 #endif
727 if (!free_ablock)
729 int i, aligned;
731 #ifdef DOUG_LEA_MALLOC
732 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
733 because mapped region contents are not preserved in
734 a dumped Emacs. */
735 mallopt (M_MMAP_MAX, 0);
736 #endif
738 base = malloc (ABLOCKS_BYTES);
739 abase = ALIGN (base, BLOCK_ALIGN);
741 aligned = (base == abase);
742 if (!aligned)
743 ((void**)abase)[-1] = base;
745 #ifdef DOUG_LEA_MALLOC
746 /* Back to a reasonable maximum of mmap'ed areas. */
747 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
748 #endif
750 /* Initialize the blocks and put them on the free list.
751 Is `base' was not properly aligned, we can't use the last block. */
752 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
754 abase->blocks[i].abase = abase;
755 abase->blocks[i].x.next_free = free_ablock;
756 free_ablock = &abase->blocks[i];
758 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
760 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
761 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
762 eassert (ABLOCKS_BASE (abase) == base);
763 eassert (aligned == (int)ABLOCKS_BUSY (abase));
766 abase = ABLOCK_ABASE (free_ablock);
767 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (int) ABLOCKS_BUSY (abase));
768 val = free_ablock;
769 free_ablock = free_ablock->x.next_free;
771 /* If the memory just allocated cannot be addressed thru a Lisp
772 object's pointer, and it needs to be,
773 that's equivalent to running out of memory. */
774 if (val && type != MEM_TYPE_NON_LISP)
776 Lisp_Object tem;
777 XSETCONS (tem, (char *) val + nbytes - 1);
778 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
780 lisp_malloc_loser = val;
781 free (val);
782 val = 0;
786 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
787 if (val && type != MEM_TYPE_NON_LISP)
788 mem_insert (val, (char *) val + nbytes, type);
789 #endif
791 UNBLOCK_INPUT;
792 if (!val && nbytes)
793 memory_full ();
795 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
796 return val;
799 static void
800 lisp_align_free (block)
801 POINTER_TYPE *block;
803 struct ablock *ablock = block;
804 struct ablocks *abase = ABLOCK_ABASE (ablock);
806 BLOCK_INPUT;
807 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
808 mem_delete (mem_find (block));
809 #endif
810 /* Put on free list. */
811 ablock->x.next_free = free_ablock;
812 free_ablock = ablock;
813 /* Update busy count. */
814 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (int) ABLOCKS_BUSY (abase));
816 if (2 > (int) ABLOCKS_BUSY (abase))
817 { /* All the blocks are free. */
818 int i = 0, aligned = (int) ABLOCKS_BUSY (abase);
819 struct ablock **tem = &free_ablock;
820 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
822 while (*tem)
824 if (*tem >= (struct ablock *) abase && *tem < atop)
826 i++;
827 *tem = (*tem)->x.next_free;
829 else
830 tem = &(*tem)->x.next_free;
832 eassert ((aligned & 1) == aligned);
833 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
834 free (ABLOCKS_BASE (abase));
836 UNBLOCK_INPUT;
839 /* Return a new buffer structure allocated from the heap with
840 a call to lisp_malloc. */
842 struct buffer *
843 allocate_buffer ()
845 struct buffer *b
846 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
847 MEM_TYPE_BUFFER);
848 return b;
852 /* Arranging to disable input signals while we're in malloc.
854 This only works with GNU malloc. To help out systems which can't
855 use GNU malloc, all the calls to malloc, realloc, and free
856 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
857 pairs; unfortunately, we have no idea what C library functions
858 might call malloc, so we can't really protect them unless you're
859 using GNU malloc. Fortunately, most of the major operating systems
860 can use GNU malloc. */
862 #ifndef SYSTEM_MALLOC
863 #ifndef DOUG_LEA_MALLOC
864 extern void * (*__malloc_hook) P_ ((size_t));
865 extern void * (*__realloc_hook) P_ ((void *, size_t));
866 extern void (*__free_hook) P_ ((void *));
867 /* Else declared in malloc.h, perhaps with an extra arg. */
868 #endif /* DOUG_LEA_MALLOC */
869 static void * (*old_malloc_hook) ();
870 static void * (*old_realloc_hook) ();
871 static void (*old_free_hook) ();
873 /* This function is used as the hook for free to call. */
875 static void
876 emacs_blocked_free (ptr)
877 void *ptr;
879 BLOCK_INPUT;
881 #ifdef GC_MALLOC_CHECK
882 if (ptr)
884 struct mem_node *m;
886 m = mem_find (ptr);
887 if (m == MEM_NIL || m->start != ptr)
889 fprintf (stderr,
890 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
891 abort ();
893 else
895 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
896 mem_delete (m);
899 #endif /* GC_MALLOC_CHECK */
901 __free_hook = old_free_hook;
902 free (ptr);
904 /* If we released our reserve (due to running out of memory),
905 and we have a fair amount free once again,
906 try to set aside another reserve in case we run out once more. */
907 if (spare_memory == 0
908 /* Verify there is enough space that even with the malloc
909 hysteresis this call won't run out again.
910 The code here is correct as long as SPARE_MEMORY
911 is substantially larger than the block size malloc uses. */
912 && (bytes_used_when_full
913 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
914 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
916 __free_hook = emacs_blocked_free;
917 UNBLOCK_INPUT;
921 /* If we released our reserve (due to running out of memory),
922 and we have a fair amount free once again,
923 try to set aside another reserve in case we run out once more.
925 This is called when a relocatable block is freed in ralloc.c. */
927 void
928 refill_memory_reserve ()
930 if (spare_memory == 0)
931 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
935 /* This function is the malloc hook that Emacs uses. */
937 static void *
938 emacs_blocked_malloc (size)
939 size_t size;
941 void *value;
943 BLOCK_INPUT;
944 __malloc_hook = old_malloc_hook;
945 #ifdef DOUG_LEA_MALLOC
946 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
947 #else
948 __malloc_extra_blocks = malloc_hysteresis;
949 #endif
951 value = (void *) malloc (size);
953 #ifdef GC_MALLOC_CHECK
955 struct mem_node *m = mem_find (value);
956 if (m != MEM_NIL)
958 fprintf (stderr, "Malloc returned %p which is already in use\n",
959 value);
960 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
961 m->start, m->end, (char *) m->end - (char *) m->start,
962 m->type);
963 abort ();
966 if (!dont_register_blocks)
968 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
969 allocated_mem_type = MEM_TYPE_NON_LISP;
972 #endif /* GC_MALLOC_CHECK */
974 __malloc_hook = emacs_blocked_malloc;
975 UNBLOCK_INPUT;
977 /* fprintf (stderr, "%p malloc\n", value); */
978 return value;
982 /* This function is the realloc hook that Emacs uses. */
984 static void *
985 emacs_blocked_realloc (ptr, size)
986 void *ptr;
987 size_t size;
989 void *value;
991 BLOCK_INPUT;
992 __realloc_hook = old_realloc_hook;
994 #ifdef GC_MALLOC_CHECK
995 if (ptr)
997 struct mem_node *m = mem_find (ptr);
998 if (m == MEM_NIL || m->start != ptr)
1000 fprintf (stderr,
1001 "Realloc of %p which wasn't allocated with malloc\n",
1002 ptr);
1003 abort ();
1006 mem_delete (m);
1009 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1011 /* Prevent malloc from registering blocks. */
1012 dont_register_blocks = 1;
1013 #endif /* GC_MALLOC_CHECK */
1015 value = (void *) realloc (ptr, size);
1017 #ifdef GC_MALLOC_CHECK
1018 dont_register_blocks = 0;
1021 struct mem_node *m = mem_find (value);
1022 if (m != MEM_NIL)
1024 fprintf (stderr, "Realloc returns memory that is already in use\n");
1025 abort ();
1028 /* Can't handle zero size regions in the red-black tree. */
1029 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1032 /* fprintf (stderr, "%p <- realloc\n", value); */
1033 #endif /* GC_MALLOC_CHECK */
1035 __realloc_hook = emacs_blocked_realloc;
1036 UNBLOCK_INPUT;
1038 return value;
1042 /* Called from main to set up malloc to use our hooks. */
1044 void
1045 uninterrupt_malloc ()
1047 if (__free_hook != emacs_blocked_free)
1048 old_free_hook = __free_hook;
1049 __free_hook = emacs_blocked_free;
1051 if (__malloc_hook != emacs_blocked_malloc)
1052 old_malloc_hook = __malloc_hook;
1053 __malloc_hook = emacs_blocked_malloc;
1055 if (__realloc_hook != emacs_blocked_realloc)
1056 old_realloc_hook = __realloc_hook;
1057 __realloc_hook = emacs_blocked_realloc;
1060 #endif /* not SYSTEM_MALLOC */
1064 /***********************************************************************
1065 Interval Allocation
1066 ***********************************************************************/
1068 /* Number of intervals allocated in an interval_block structure.
1069 The 1020 is 1024 minus malloc overhead. */
1071 #define INTERVAL_BLOCK_SIZE \
1072 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1074 /* Intervals are allocated in chunks in form of an interval_block
1075 structure. */
1077 struct interval_block
1079 struct interval_block *next;
1080 struct interval intervals[INTERVAL_BLOCK_SIZE];
1083 /* Current interval block. Its `next' pointer points to older
1084 blocks. */
1086 struct interval_block *interval_block;
1088 /* Index in interval_block above of the next unused interval
1089 structure. */
1091 static int interval_block_index;
1093 /* Number of free and live intervals. */
1095 static int total_free_intervals, total_intervals;
1097 /* List of free intervals. */
1099 INTERVAL interval_free_list;
1101 /* Total number of interval blocks now in use. */
1103 int n_interval_blocks;
1106 /* Initialize interval allocation. */
1108 static void
1109 init_intervals ()
1111 interval_block
1112 = (struct interval_block *) lisp_malloc (sizeof *interval_block,
1113 MEM_TYPE_NON_LISP);
1114 interval_block->next = 0;
1115 bzero ((char *) interval_block->intervals, sizeof interval_block->intervals);
1116 interval_block_index = 0;
1117 interval_free_list = 0;
1118 n_interval_blocks = 1;
1122 /* Return a new interval. */
1124 INTERVAL
1125 make_interval ()
1127 INTERVAL val;
1129 if (interval_free_list)
1131 val = interval_free_list;
1132 interval_free_list = INTERVAL_PARENT (interval_free_list);
1134 else
1136 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1138 register struct interval_block *newi;
1140 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1141 MEM_TYPE_NON_LISP);
1143 newi->next = interval_block;
1144 interval_block = newi;
1145 interval_block_index = 0;
1146 n_interval_blocks++;
1148 val = &interval_block->intervals[interval_block_index++];
1150 consing_since_gc += sizeof (struct interval);
1151 intervals_consed++;
1152 RESET_INTERVAL (val);
1153 val->gcmarkbit = 0;
1154 return val;
1158 /* Mark Lisp objects in interval I. */
1160 static void
1161 mark_interval (i, dummy)
1162 register INTERVAL i;
1163 Lisp_Object dummy;
1165 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1166 i->gcmarkbit = 1;
1167 mark_object (i->plist);
1171 /* Mark the interval tree rooted in TREE. Don't call this directly;
1172 use the macro MARK_INTERVAL_TREE instead. */
1174 static void
1175 mark_interval_tree (tree)
1176 register INTERVAL tree;
1178 /* No need to test if this tree has been marked already; this
1179 function is always called through the MARK_INTERVAL_TREE macro,
1180 which takes care of that. */
1182 traverse_intervals_noorder (tree, mark_interval, Qnil);
1186 /* Mark the interval tree rooted in I. */
1188 #define MARK_INTERVAL_TREE(i) \
1189 do { \
1190 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1191 mark_interval_tree (i); \
1192 } while (0)
1195 #define UNMARK_BALANCE_INTERVALS(i) \
1196 do { \
1197 if (! NULL_INTERVAL_P (i)) \
1198 (i) = balance_intervals (i); \
1199 } while (0)
1202 /* Number support. If NO_UNION_TYPE isn't in effect, we
1203 can't create number objects in macros. */
1204 #ifndef make_number
1205 Lisp_Object
1206 make_number (n)
1207 int n;
1209 Lisp_Object obj;
1210 obj.s.val = n;
1211 obj.s.type = Lisp_Int;
1212 return obj;
1214 #endif
1216 /***********************************************************************
1217 String Allocation
1218 ***********************************************************************/
1220 /* Lisp_Strings are allocated in string_block structures. When a new
1221 string_block is allocated, all the Lisp_Strings it contains are
1222 added to a free-list string_free_list. When a new Lisp_String is
1223 needed, it is taken from that list. During the sweep phase of GC,
1224 string_blocks that are entirely free are freed, except two which
1225 we keep.
1227 String data is allocated from sblock structures. Strings larger
1228 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1229 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1231 Sblocks consist internally of sdata structures, one for each
1232 Lisp_String. The sdata structure points to the Lisp_String it
1233 belongs to. The Lisp_String points back to the `u.data' member of
1234 its sdata structure.
1236 When a Lisp_String is freed during GC, it is put back on
1237 string_free_list, and its `data' member and its sdata's `string'
1238 pointer is set to null. The size of the string is recorded in the
1239 `u.nbytes' member of the sdata. So, sdata structures that are no
1240 longer used, can be easily recognized, and it's easy to compact the
1241 sblocks of small strings which we do in compact_small_strings. */
1243 /* Size in bytes of an sblock structure used for small strings. This
1244 is 8192 minus malloc overhead. */
1246 #define SBLOCK_SIZE 8188
1248 /* Strings larger than this are considered large strings. String data
1249 for large strings is allocated from individual sblocks. */
1251 #define LARGE_STRING_BYTES 1024
1253 /* Structure describing string memory sub-allocated from an sblock.
1254 This is where the contents of Lisp strings are stored. */
1256 struct sdata
1258 /* Back-pointer to the string this sdata belongs to. If null, this
1259 structure is free, and the NBYTES member of the union below
1260 contains the string's byte size (the same value that STRING_BYTES
1261 would return if STRING were non-null). If non-null, STRING_BYTES
1262 (STRING) is the size of the data, and DATA contains the string's
1263 contents. */
1264 struct Lisp_String *string;
1266 #ifdef GC_CHECK_STRING_BYTES
1268 EMACS_INT nbytes;
1269 unsigned char data[1];
1271 #define SDATA_NBYTES(S) (S)->nbytes
1272 #define SDATA_DATA(S) (S)->data
1274 #else /* not GC_CHECK_STRING_BYTES */
1276 union
1278 /* When STRING in non-null. */
1279 unsigned char data[1];
1281 /* When STRING is null. */
1282 EMACS_INT nbytes;
1283 } u;
1286 #define SDATA_NBYTES(S) (S)->u.nbytes
1287 #define SDATA_DATA(S) (S)->u.data
1289 #endif /* not GC_CHECK_STRING_BYTES */
1293 /* Structure describing a block of memory which is sub-allocated to
1294 obtain string data memory for strings. Blocks for small strings
1295 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1296 as large as needed. */
1298 struct sblock
1300 /* Next in list. */
1301 struct sblock *next;
1303 /* Pointer to the next free sdata block. This points past the end
1304 of the sblock if there isn't any space left in this block. */
1305 struct sdata *next_free;
1307 /* Start of data. */
1308 struct sdata first_data;
1311 /* Number of Lisp strings in a string_block structure. The 1020 is
1312 1024 minus malloc overhead. */
1314 #define STRINGS_IN_STRING_BLOCK \
1315 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1317 /* Structure describing a block from which Lisp_String structures
1318 are allocated. */
1320 struct string_block
1322 struct string_block *next;
1323 struct Lisp_String strings[STRINGS_IN_STRING_BLOCK];
1326 /* Head and tail of the list of sblock structures holding Lisp string
1327 data. We always allocate from current_sblock. The NEXT pointers
1328 in the sblock structures go from oldest_sblock to current_sblock. */
1330 static struct sblock *oldest_sblock, *current_sblock;
1332 /* List of sblocks for large strings. */
1334 static struct sblock *large_sblocks;
1336 /* List of string_block structures, and how many there are. */
1338 static struct string_block *string_blocks;
1339 static int n_string_blocks;
1341 /* Free-list of Lisp_Strings. */
1343 static struct Lisp_String *string_free_list;
1345 /* Number of live and free Lisp_Strings. */
1347 static int total_strings, total_free_strings;
1349 /* Number of bytes used by live strings. */
1351 static int total_string_size;
1353 /* Given a pointer to a Lisp_String S which is on the free-list
1354 string_free_list, return a pointer to its successor in the
1355 free-list. */
1357 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1359 /* Return a pointer to the sdata structure belonging to Lisp string S.
1360 S must be live, i.e. S->data must not be null. S->data is actually
1361 a pointer to the `u.data' member of its sdata structure; the
1362 structure starts at a constant offset in front of that. */
1364 #ifdef GC_CHECK_STRING_BYTES
1366 #define SDATA_OF_STRING(S) \
1367 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1368 - sizeof (EMACS_INT)))
1370 #else /* not GC_CHECK_STRING_BYTES */
1372 #define SDATA_OF_STRING(S) \
1373 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1375 #endif /* not GC_CHECK_STRING_BYTES */
1377 /* Value is the size of an sdata structure large enough to hold NBYTES
1378 bytes of string data. The value returned includes a terminating
1379 NUL byte, the size of the sdata structure, and padding. */
1381 #ifdef GC_CHECK_STRING_BYTES
1383 #define SDATA_SIZE(NBYTES) \
1384 ((sizeof (struct Lisp_String *) \
1385 + (NBYTES) + 1 \
1386 + sizeof (EMACS_INT) \
1387 + sizeof (EMACS_INT) - 1) \
1388 & ~(sizeof (EMACS_INT) - 1))
1390 #else /* not GC_CHECK_STRING_BYTES */
1392 #define SDATA_SIZE(NBYTES) \
1393 ((sizeof (struct Lisp_String *) \
1394 + (NBYTES) + 1 \
1395 + sizeof (EMACS_INT) - 1) \
1396 & ~(sizeof (EMACS_INT) - 1))
1398 #endif /* not GC_CHECK_STRING_BYTES */
1400 /* Initialize string allocation. Called from init_alloc_once. */
1402 void
1403 init_strings ()
1405 total_strings = total_free_strings = total_string_size = 0;
1406 oldest_sblock = current_sblock = large_sblocks = NULL;
1407 string_blocks = NULL;
1408 n_string_blocks = 0;
1409 string_free_list = NULL;
1413 #ifdef GC_CHECK_STRING_BYTES
1415 static int check_string_bytes_count;
1417 void check_string_bytes P_ ((int));
1418 void check_sblock P_ ((struct sblock *));
1420 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1423 /* Like GC_STRING_BYTES, but with debugging check. */
1426 string_bytes (s)
1427 struct Lisp_String *s;
1429 int nbytes = (s->size_byte < 0 ? s->size & ~MARKBIT : s->size_byte);
1430 if (!PURE_POINTER_P (s)
1431 && s->data
1432 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1433 abort ();
1434 return nbytes;
1437 /* Check validity of Lisp strings' string_bytes member in B. */
1439 void
1440 check_sblock (b)
1441 struct sblock *b;
1443 struct sdata *from, *end, *from_end;
1445 end = b->next_free;
1447 for (from = &b->first_data; from < end; from = from_end)
1449 /* Compute the next FROM here because copying below may
1450 overwrite data we need to compute it. */
1451 int nbytes;
1453 /* Check that the string size recorded in the string is the
1454 same as the one recorded in the sdata structure. */
1455 if (from->string)
1456 CHECK_STRING_BYTES (from->string);
1458 if (from->string)
1459 nbytes = GC_STRING_BYTES (from->string);
1460 else
1461 nbytes = SDATA_NBYTES (from);
1463 nbytes = SDATA_SIZE (nbytes);
1464 from_end = (struct sdata *) ((char *) from + nbytes);
1469 /* Check validity of Lisp strings' string_bytes member. ALL_P
1470 non-zero means check all strings, otherwise check only most
1471 recently allocated strings. Used for hunting a bug. */
1473 void
1474 check_string_bytes (all_p)
1475 int all_p;
1477 if (all_p)
1479 struct sblock *b;
1481 for (b = large_sblocks; b; b = b->next)
1483 struct Lisp_String *s = b->first_data.string;
1484 if (s)
1485 CHECK_STRING_BYTES (s);
1488 for (b = oldest_sblock; b; b = b->next)
1489 check_sblock (b);
1491 else
1492 check_sblock (current_sblock);
1495 #endif /* GC_CHECK_STRING_BYTES */
1498 /* Return a new Lisp_String. */
1500 static struct Lisp_String *
1501 allocate_string ()
1503 struct Lisp_String *s;
1505 /* If the free-list is empty, allocate a new string_block, and
1506 add all the Lisp_Strings in it to the free-list. */
1507 if (string_free_list == NULL)
1509 struct string_block *b;
1510 int i;
1512 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1513 bzero (b, sizeof *b);
1514 b->next = string_blocks;
1515 string_blocks = b;
1516 ++n_string_blocks;
1518 for (i = STRINGS_IN_STRING_BLOCK - 1; i >= 0; --i)
1520 s = b->strings + i;
1521 NEXT_FREE_LISP_STRING (s) = string_free_list;
1522 string_free_list = s;
1525 total_free_strings += STRINGS_IN_STRING_BLOCK;
1528 /* Pop a Lisp_String off the free-list. */
1529 s = string_free_list;
1530 string_free_list = NEXT_FREE_LISP_STRING (s);
1532 /* Probably not strictly necessary, but play it safe. */
1533 bzero (s, sizeof *s);
1535 --total_free_strings;
1536 ++total_strings;
1537 ++strings_consed;
1538 consing_since_gc += sizeof *s;
1540 #ifdef GC_CHECK_STRING_BYTES
1541 if (!noninteractive
1542 #ifdef MAC_OS8
1543 && current_sblock
1544 #endif
1547 if (++check_string_bytes_count == 200)
1549 check_string_bytes_count = 0;
1550 check_string_bytes (1);
1552 else
1553 check_string_bytes (0);
1555 #endif /* GC_CHECK_STRING_BYTES */
1557 return s;
1561 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1562 plus a NUL byte at the end. Allocate an sdata structure for S, and
1563 set S->data to its `u.data' member. Store a NUL byte at the end of
1564 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1565 S->data if it was initially non-null. */
1567 void
1568 allocate_string_data (s, nchars, nbytes)
1569 struct Lisp_String *s;
1570 int nchars, nbytes;
1572 struct sdata *data, *old_data;
1573 struct sblock *b;
1574 int needed, old_nbytes;
1576 /* Determine the number of bytes needed to store NBYTES bytes
1577 of string data. */
1578 needed = SDATA_SIZE (nbytes);
1580 if (nbytes > LARGE_STRING_BYTES)
1582 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1584 #ifdef DOUG_LEA_MALLOC
1585 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1586 because mapped region contents are not preserved in
1587 a dumped Emacs.
1589 In case you think of allowing it in a dumped Emacs at the
1590 cost of not being able to re-dump, there's another reason:
1591 mmap'ed data typically have an address towards the top of the
1592 address space, which won't fit into an EMACS_INT (at least on
1593 32-bit systems with the current tagging scheme). --fx */
1594 mallopt (M_MMAP_MAX, 0);
1595 #endif
1597 b = (struct sblock *) lisp_malloc (size, MEM_TYPE_NON_LISP);
1599 #ifdef DOUG_LEA_MALLOC
1600 /* Back to a reasonable maximum of mmap'ed areas. */
1601 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1602 #endif
1604 b->next_free = &b->first_data;
1605 b->first_data.string = NULL;
1606 b->next = large_sblocks;
1607 large_sblocks = b;
1609 else if (current_sblock == NULL
1610 || (((char *) current_sblock + SBLOCK_SIZE
1611 - (char *) current_sblock->next_free)
1612 < needed))
1614 /* Not enough room in the current sblock. */
1615 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1616 b->next_free = &b->first_data;
1617 b->first_data.string = NULL;
1618 b->next = NULL;
1620 if (current_sblock)
1621 current_sblock->next = b;
1622 else
1623 oldest_sblock = b;
1624 current_sblock = b;
1626 else
1627 b = current_sblock;
1629 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1630 old_nbytes = GC_STRING_BYTES (s);
1632 data = b->next_free;
1633 data->string = s;
1634 s->data = SDATA_DATA (data);
1635 #ifdef GC_CHECK_STRING_BYTES
1636 SDATA_NBYTES (data) = nbytes;
1637 #endif
1638 s->size = nchars;
1639 s->size_byte = nbytes;
1640 s->data[nbytes] = '\0';
1641 b->next_free = (struct sdata *) ((char *) data + needed);
1643 /* If S had already data assigned, mark that as free by setting its
1644 string back-pointer to null, and recording the size of the data
1645 in it. */
1646 if (old_data)
1648 SDATA_NBYTES (old_data) = old_nbytes;
1649 old_data->string = NULL;
1652 consing_since_gc += needed;
1656 /* Sweep and compact strings. */
1658 static void
1659 sweep_strings ()
1661 struct string_block *b, *next;
1662 struct string_block *live_blocks = NULL;
1664 string_free_list = NULL;
1665 total_strings = total_free_strings = 0;
1666 total_string_size = 0;
1668 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1669 for (b = string_blocks; b; b = next)
1671 int i, nfree = 0;
1672 struct Lisp_String *free_list_before = string_free_list;
1674 next = b->next;
1676 for (i = 0; i < STRINGS_IN_STRING_BLOCK; ++i)
1678 struct Lisp_String *s = b->strings + i;
1680 if (s->data)
1682 /* String was not on free-list before. */
1683 if (STRING_MARKED_P (s))
1685 /* String is live; unmark it and its intervals. */
1686 UNMARK_STRING (s);
1688 if (!NULL_INTERVAL_P (s->intervals))
1689 UNMARK_BALANCE_INTERVALS (s->intervals);
1691 ++total_strings;
1692 total_string_size += STRING_BYTES (s);
1694 else
1696 /* String is dead. Put it on the free-list. */
1697 struct sdata *data = SDATA_OF_STRING (s);
1699 /* Save the size of S in its sdata so that we know
1700 how large that is. Reset the sdata's string
1701 back-pointer so that we know it's free. */
1702 #ifdef GC_CHECK_STRING_BYTES
1703 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
1704 abort ();
1705 #else
1706 data->u.nbytes = GC_STRING_BYTES (s);
1707 #endif
1708 data->string = NULL;
1710 /* Reset the strings's `data' member so that we
1711 know it's free. */
1712 s->data = NULL;
1714 /* Put the string on the free-list. */
1715 NEXT_FREE_LISP_STRING (s) = string_free_list;
1716 string_free_list = s;
1717 ++nfree;
1720 else
1722 /* S was on the free-list before. Put it there again. */
1723 NEXT_FREE_LISP_STRING (s) = string_free_list;
1724 string_free_list = s;
1725 ++nfree;
1729 /* Free blocks that contain free Lisp_Strings only, except
1730 the first two of them. */
1731 if (nfree == STRINGS_IN_STRING_BLOCK
1732 && total_free_strings > STRINGS_IN_STRING_BLOCK)
1734 lisp_free (b);
1735 --n_string_blocks;
1736 string_free_list = free_list_before;
1738 else
1740 total_free_strings += nfree;
1741 b->next = live_blocks;
1742 live_blocks = b;
1746 string_blocks = live_blocks;
1747 free_large_strings ();
1748 compact_small_strings ();
1752 /* Free dead large strings. */
1754 static void
1755 free_large_strings ()
1757 struct sblock *b, *next;
1758 struct sblock *live_blocks = NULL;
1760 for (b = large_sblocks; b; b = next)
1762 next = b->next;
1764 if (b->first_data.string == NULL)
1765 lisp_free (b);
1766 else
1768 b->next = live_blocks;
1769 live_blocks = b;
1773 large_sblocks = live_blocks;
1777 /* Compact data of small strings. Free sblocks that don't contain
1778 data of live strings after compaction. */
1780 static void
1781 compact_small_strings ()
1783 struct sblock *b, *tb, *next;
1784 struct sdata *from, *to, *end, *tb_end;
1785 struct sdata *to_end, *from_end;
1787 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1788 to, and TB_END is the end of TB. */
1789 tb = oldest_sblock;
1790 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1791 to = &tb->first_data;
1793 /* Step through the blocks from the oldest to the youngest. We
1794 expect that old blocks will stabilize over time, so that less
1795 copying will happen this way. */
1796 for (b = oldest_sblock; b; b = b->next)
1798 end = b->next_free;
1799 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1801 for (from = &b->first_data; from < end; from = from_end)
1803 /* Compute the next FROM here because copying below may
1804 overwrite data we need to compute it. */
1805 int nbytes;
1807 #ifdef GC_CHECK_STRING_BYTES
1808 /* Check that the string size recorded in the string is the
1809 same as the one recorded in the sdata structure. */
1810 if (from->string
1811 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
1812 abort ();
1813 #endif /* GC_CHECK_STRING_BYTES */
1815 if (from->string)
1816 nbytes = GC_STRING_BYTES (from->string);
1817 else
1818 nbytes = SDATA_NBYTES (from);
1820 nbytes = SDATA_SIZE (nbytes);
1821 from_end = (struct sdata *) ((char *) from + nbytes);
1823 /* FROM->string non-null means it's alive. Copy its data. */
1824 if (from->string)
1826 /* If TB is full, proceed with the next sblock. */
1827 to_end = (struct sdata *) ((char *) to + nbytes);
1828 if (to_end > tb_end)
1830 tb->next_free = to;
1831 tb = tb->next;
1832 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1833 to = &tb->first_data;
1834 to_end = (struct sdata *) ((char *) to + nbytes);
1837 /* Copy, and update the string's `data' pointer. */
1838 if (from != to)
1840 xassert (tb != b || to <= from);
1841 safe_bcopy ((char *) from, (char *) to, nbytes);
1842 to->string->data = SDATA_DATA (to);
1845 /* Advance past the sdata we copied to. */
1846 to = to_end;
1851 /* The rest of the sblocks following TB don't contain live data, so
1852 we can free them. */
1853 for (b = tb->next; b; b = next)
1855 next = b->next;
1856 lisp_free (b);
1859 tb->next_free = to;
1860 tb->next = NULL;
1861 current_sblock = tb;
1865 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1866 doc: /* Return a newly created string of length LENGTH, with each element being INIT.
1867 Both LENGTH and INIT must be numbers. */)
1868 (length, init)
1869 Lisp_Object length, init;
1871 register Lisp_Object val;
1872 register unsigned char *p, *end;
1873 int c, nbytes;
1875 CHECK_NATNUM (length);
1876 CHECK_NUMBER (init);
1878 c = XINT (init);
1879 if (SINGLE_BYTE_CHAR_P (c))
1881 nbytes = XINT (length);
1882 val = make_uninit_string (nbytes);
1883 p = SDATA (val);
1884 end = p + SCHARS (val);
1885 while (p != end)
1886 *p++ = c;
1888 else
1890 unsigned char str[MAX_MULTIBYTE_LENGTH];
1891 int len = CHAR_STRING (c, str);
1893 nbytes = len * XINT (length);
1894 val = make_uninit_multibyte_string (XINT (length), nbytes);
1895 p = SDATA (val);
1896 end = p + nbytes;
1897 while (p != end)
1899 bcopy (str, p, len);
1900 p += len;
1904 *p = 0;
1905 return val;
1909 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
1910 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
1911 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
1912 (length, init)
1913 Lisp_Object length, init;
1915 register Lisp_Object val;
1916 struct Lisp_Bool_Vector *p;
1917 int real_init, i;
1918 int length_in_chars, length_in_elts, bits_per_value;
1920 CHECK_NATNUM (length);
1922 bits_per_value = sizeof (EMACS_INT) * BITS_PER_CHAR;
1924 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
1925 length_in_chars = ((XFASTINT (length) + BITS_PER_CHAR - 1) / BITS_PER_CHAR);
1927 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1928 slot `size' of the struct Lisp_Bool_Vector. */
1929 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
1930 p = XBOOL_VECTOR (val);
1932 /* Get rid of any bits that would cause confusion. */
1933 p->vector_size = 0;
1934 XSETBOOL_VECTOR (val, p);
1935 p->size = XFASTINT (length);
1937 real_init = (NILP (init) ? 0 : -1);
1938 for (i = 0; i < length_in_chars ; i++)
1939 p->data[i] = real_init;
1941 /* Clear the extraneous bits in the last byte. */
1942 if (XINT (length) != length_in_chars * BITS_PER_CHAR)
1943 XBOOL_VECTOR (val)->data[length_in_chars - 1]
1944 &= (1 << (XINT (length) % BITS_PER_CHAR)) - 1;
1946 return val;
1950 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
1951 of characters from the contents. This string may be unibyte or
1952 multibyte, depending on the contents. */
1954 Lisp_Object
1955 make_string (contents, nbytes)
1956 const char *contents;
1957 int nbytes;
1959 register Lisp_Object val;
1960 int nchars, multibyte_nbytes;
1962 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
1963 if (nbytes == nchars || nbytes != multibyte_nbytes)
1964 /* CONTENTS contains no multibyte sequences or contains an invalid
1965 multibyte sequence. We must make unibyte string. */
1966 val = make_unibyte_string (contents, nbytes);
1967 else
1968 val = make_multibyte_string (contents, nchars, nbytes);
1969 return val;
1973 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
1975 Lisp_Object
1976 make_unibyte_string (contents, length)
1977 const char *contents;
1978 int length;
1980 register Lisp_Object val;
1981 val = make_uninit_string (length);
1982 bcopy (contents, SDATA (val), length);
1983 STRING_SET_UNIBYTE (val);
1984 return val;
1988 /* Make a multibyte string from NCHARS characters occupying NBYTES
1989 bytes at CONTENTS. */
1991 Lisp_Object
1992 make_multibyte_string (contents, nchars, nbytes)
1993 const char *contents;
1994 int nchars, nbytes;
1996 register Lisp_Object val;
1997 val = make_uninit_multibyte_string (nchars, nbytes);
1998 bcopy (contents, SDATA (val), nbytes);
1999 return val;
2003 /* Make a string from NCHARS characters occupying NBYTES bytes at
2004 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2006 Lisp_Object
2007 make_string_from_bytes (contents, nchars, nbytes)
2008 const char *contents;
2009 int nchars, nbytes;
2011 register Lisp_Object val;
2012 val = make_uninit_multibyte_string (nchars, nbytes);
2013 bcopy (contents, SDATA (val), nbytes);
2014 if (SBYTES (val) == SCHARS (val))
2015 STRING_SET_UNIBYTE (val);
2016 return val;
2020 /* Make a string from NCHARS characters occupying NBYTES bytes at
2021 CONTENTS. The argument MULTIBYTE controls whether to label the
2022 string as multibyte. If NCHARS is negative, it counts the number of
2023 characters by itself. */
2025 Lisp_Object
2026 make_specified_string (contents, nchars, nbytes, multibyte)
2027 const char *contents;
2028 int nchars, nbytes;
2029 int multibyte;
2031 register Lisp_Object val;
2033 if (nchars < 0)
2035 if (multibyte)
2036 nchars = multibyte_chars_in_text (contents, nbytes);
2037 else
2038 nchars = nbytes;
2040 val = make_uninit_multibyte_string (nchars, nbytes);
2041 bcopy (contents, SDATA (val), nbytes);
2042 if (!multibyte)
2043 STRING_SET_UNIBYTE (val);
2044 return val;
2048 /* Make a string from the data at STR, treating it as multibyte if the
2049 data warrants. */
2051 Lisp_Object
2052 build_string (str)
2053 const char *str;
2055 return make_string (str, strlen (str));
2059 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2060 occupying LENGTH bytes. */
2062 Lisp_Object
2063 make_uninit_string (length)
2064 int length;
2066 Lisp_Object val;
2067 val = make_uninit_multibyte_string (length, length);
2068 STRING_SET_UNIBYTE (val);
2069 return val;
2073 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2074 which occupy NBYTES bytes. */
2076 Lisp_Object
2077 make_uninit_multibyte_string (nchars, nbytes)
2078 int nchars, nbytes;
2080 Lisp_Object string;
2081 struct Lisp_String *s;
2083 if (nchars < 0)
2084 abort ();
2086 s = allocate_string ();
2087 allocate_string_data (s, nchars, nbytes);
2088 XSETSTRING (string, s);
2089 string_chars_consed += nbytes;
2090 return string;
2095 /***********************************************************************
2096 Float Allocation
2097 ***********************************************************************/
2099 /* We store float cells inside of float_blocks, allocating a new
2100 float_block with malloc whenever necessary. Float cells reclaimed
2101 by GC are put on a free list to be reallocated before allocating
2102 any new float cells from the latest float_block. */
2104 #define FLOAT_BLOCK_SIZE \
2105 (((BLOCK_BYTES - sizeof (struct float_block *)) * CHAR_BIT) \
2106 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2108 #define GETMARKBIT(block,n) \
2109 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2110 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2111 & 1)
2113 #define SETMARKBIT(block,n) \
2114 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2115 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2117 #define UNSETMARKBIT(block,n) \
2118 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2119 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2121 #define FLOAT_BLOCK(fptr) \
2122 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2124 #define FLOAT_INDEX(fptr) \
2125 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2127 struct float_block
2129 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2130 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2131 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2132 struct float_block *next;
2135 #define FLOAT_MARKED_P(fptr) \
2136 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2138 #define FLOAT_MARK(fptr) \
2139 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2141 #define FLOAT_UNMARK(fptr) \
2142 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2144 /* Current float_block. */
2146 struct float_block *float_block;
2148 /* Index of first unused Lisp_Float in the current float_block. */
2150 int float_block_index;
2152 /* Total number of float blocks now in use. */
2154 int n_float_blocks;
2156 /* Free-list of Lisp_Floats. */
2158 struct Lisp_Float *float_free_list;
2161 /* Initialize float allocation. */
2163 void
2164 init_float ()
2166 float_block = (struct float_block *) lisp_align_malloc (sizeof *float_block,
2167 MEM_TYPE_FLOAT);
2168 float_block->next = 0;
2169 bzero ((char *) float_block->floats, sizeof float_block->floats);
2170 bzero ((char *) float_block->gcmarkbits, sizeof float_block->gcmarkbits);
2171 float_block_index = 0;
2172 float_free_list = 0;
2173 n_float_blocks = 1;
2177 /* Explicitly free a float cell by putting it on the free-list. */
2179 void
2180 free_float (ptr)
2181 struct Lisp_Float *ptr;
2183 *(struct Lisp_Float **)&ptr->data = float_free_list;
2184 float_free_list = ptr;
2188 /* Return a new float object with value FLOAT_VALUE. */
2190 Lisp_Object
2191 make_float (float_value)
2192 double float_value;
2194 register Lisp_Object val;
2196 if (float_free_list)
2198 /* We use the data field for chaining the free list
2199 so that we won't use the same field that has the mark bit. */
2200 XSETFLOAT (val, float_free_list);
2201 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2203 else
2205 if (float_block_index == FLOAT_BLOCK_SIZE)
2207 register struct float_block *new;
2209 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2210 MEM_TYPE_FLOAT);
2211 new->next = float_block;
2212 float_block = new;
2213 float_block_index = 0;
2214 n_float_blocks++;
2216 XSETFLOAT (val, &float_block->floats[float_block_index++]);
2219 XFLOAT_DATA (val) = float_value;
2220 FLOAT_UNMARK (XFLOAT (val));
2221 consing_since_gc += sizeof (struct Lisp_Float);
2222 floats_consed++;
2223 return val;
2228 /***********************************************************************
2229 Cons Allocation
2230 ***********************************************************************/
2232 /* We store cons cells inside of cons_blocks, allocating a new
2233 cons_block with malloc whenever necessary. Cons cells reclaimed by
2234 GC are put on a free list to be reallocated before allocating
2235 any new cons cells from the latest cons_block.
2237 Each cons_block is just under 1020 bytes long,
2238 since malloc really allocates in units of powers of two
2239 and uses 4 bytes for its own overhead. */
2241 #define CONS_BLOCK_SIZE \
2242 ((1020 - sizeof (struct cons_block *)) / sizeof (struct Lisp_Cons))
2244 struct cons_block
2246 struct cons_block *next;
2247 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2250 /* Current cons_block. */
2252 struct cons_block *cons_block;
2254 /* Index of first unused Lisp_Cons in the current block. */
2256 int cons_block_index;
2258 /* Free-list of Lisp_Cons structures. */
2260 struct Lisp_Cons *cons_free_list;
2262 /* Total number of cons blocks now in use. */
2264 int n_cons_blocks;
2267 /* Initialize cons allocation. */
2269 void
2270 init_cons ()
2272 cons_block = (struct cons_block *) lisp_malloc (sizeof *cons_block,
2273 MEM_TYPE_CONS);
2274 cons_block->next = 0;
2275 bzero ((char *) cons_block->conses, sizeof cons_block->conses);
2276 cons_block_index = 0;
2277 cons_free_list = 0;
2278 n_cons_blocks = 1;
2282 /* Explicitly free a cons cell by putting it on the free-list. */
2284 void
2285 free_cons (ptr)
2286 struct Lisp_Cons *ptr;
2288 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2289 #if GC_MARK_STACK
2290 ptr->car = Vdead;
2291 #endif
2292 cons_free_list = ptr;
2296 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2297 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2298 (car, cdr)
2299 Lisp_Object car, cdr;
2301 register Lisp_Object val;
2303 if (cons_free_list)
2305 /* We use the cdr for chaining the free list
2306 so that we won't use the same field that has the mark bit. */
2307 XSETCONS (val, cons_free_list);
2308 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2310 else
2312 if (cons_block_index == CONS_BLOCK_SIZE)
2314 register struct cons_block *new;
2315 new = (struct cons_block *) lisp_malloc (sizeof *new,
2316 MEM_TYPE_CONS);
2317 new->next = cons_block;
2318 cons_block = new;
2319 cons_block_index = 0;
2320 n_cons_blocks++;
2322 XSETCONS (val, &cons_block->conses[cons_block_index++]);
2325 XSETCAR (val, car);
2326 XSETCDR (val, cdr);
2327 consing_since_gc += sizeof (struct Lisp_Cons);
2328 cons_cells_consed++;
2329 return val;
2333 /* Make a list of 2, 3, 4 or 5 specified objects. */
2335 Lisp_Object
2336 list2 (arg1, arg2)
2337 Lisp_Object arg1, arg2;
2339 return Fcons (arg1, Fcons (arg2, Qnil));
2343 Lisp_Object
2344 list3 (arg1, arg2, arg3)
2345 Lisp_Object arg1, arg2, arg3;
2347 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2351 Lisp_Object
2352 list4 (arg1, arg2, arg3, arg4)
2353 Lisp_Object arg1, arg2, arg3, arg4;
2355 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2359 Lisp_Object
2360 list5 (arg1, arg2, arg3, arg4, arg5)
2361 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2363 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2364 Fcons (arg5, Qnil)))));
2368 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2369 doc: /* Return a newly created list with specified arguments as elements.
2370 Any number of arguments, even zero arguments, are allowed.
2371 usage: (list &rest OBJECTS) */)
2372 (nargs, args)
2373 int nargs;
2374 register Lisp_Object *args;
2376 register Lisp_Object val;
2377 val = Qnil;
2379 while (nargs > 0)
2381 nargs--;
2382 val = Fcons (args[nargs], val);
2384 return val;
2388 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2389 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2390 (length, init)
2391 register Lisp_Object length, init;
2393 register Lisp_Object val;
2394 register int size;
2396 CHECK_NATNUM (length);
2397 size = XFASTINT (length);
2399 val = Qnil;
2400 while (size > 0)
2402 val = Fcons (init, val);
2403 --size;
2405 if (size > 0)
2407 val = Fcons (init, val);
2408 --size;
2410 if (size > 0)
2412 val = Fcons (init, val);
2413 --size;
2415 if (size > 0)
2417 val = Fcons (init, val);
2418 --size;
2420 if (size > 0)
2422 val = Fcons (init, val);
2423 --size;
2429 QUIT;
2432 return val;
2437 /***********************************************************************
2438 Vector Allocation
2439 ***********************************************************************/
2441 /* Singly-linked list of all vectors. */
2443 struct Lisp_Vector *all_vectors;
2445 /* Total number of vector-like objects now in use. */
2447 int n_vectors;
2450 /* Value is a pointer to a newly allocated Lisp_Vector structure
2451 with room for LEN Lisp_Objects. */
2453 static struct Lisp_Vector *
2454 allocate_vectorlike (len, type)
2455 EMACS_INT len;
2456 enum mem_type type;
2458 struct Lisp_Vector *p;
2459 size_t nbytes;
2461 #ifdef DOUG_LEA_MALLOC
2462 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2463 because mapped region contents are not preserved in
2464 a dumped Emacs. */
2465 mallopt (M_MMAP_MAX, 0);
2466 #endif
2468 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2469 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2471 #ifdef DOUG_LEA_MALLOC
2472 /* Back to a reasonable maximum of mmap'ed areas. */
2473 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2474 #endif
2476 consing_since_gc += nbytes;
2477 vector_cells_consed += len;
2479 p->next = all_vectors;
2480 all_vectors = p;
2481 ++n_vectors;
2482 return p;
2486 /* Allocate a vector with NSLOTS slots. */
2488 struct Lisp_Vector *
2489 allocate_vector (nslots)
2490 EMACS_INT nslots;
2492 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2493 v->size = nslots;
2494 return v;
2498 /* Allocate other vector-like structures. */
2500 struct Lisp_Hash_Table *
2501 allocate_hash_table ()
2503 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2504 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2505 EMACS_INT i;
2507 v->size = len;
2508 for (i = 0; i < len; ++i)
2509 v->contents[i] = Qnil;
2511 return (struct Lisp_Hash_Table *) v;
2515 struct window *
2516 allocate_window ()
2518 EMACS_INT len = VECSIZE (struct window);
2519 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2520 EMACS_INT i;
2522 for (i = 0; i < len; ++i)
2523 v->contents[i] = Qnil;
2524 v->size = len;
2526 return (struct window *) v;
2530 struct frame *
2531 allocate_frame ()
2533 EMACS_INT len = VECSIZE (struct frame);
2534 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2535 EMACS_INT i;
2537 for (i = 0; i < len; ++i)
2538 v->contents[i] = make_number (0);
2539 v->size = len;
2540 return (struct frame *) v;
2544 struct Lisp_Process *
2545 allocate_process ()
2547 EMACS_INT len = VECSIZE (struct Lisp_Process);
2548 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2549 EMACS_INT i;
2551 for (i = 0; i < len; ++i)
2552 v->contents[i] = Qnil;
2553 v->size = len;
2555 return (struct Lisp_Process *) v;
2559 struct Lisp_Vector *
2560 allocate_other_vector (len)
2561 EMACS_INT len;
2563 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2564 EMACS_INT i;
2566 for (i = 0; i < len; ++i)
2567 v->contents[i] = Qnil;
2568 v->size = len;
2570 return v;
2574 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2575 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2576 See also the function `vector'. */)
2577 (length, init)
2578 register Lisp_Object length, init;
2580 Lisp_Object vector;
2581 register EMACS_INT sizei;
2582 register int index;
2583 register struct Lisp_Vector *p;
2585 CHECK_NATNUM (length);
2586 sizei = XFASTINT (length);
2588 p = allocate_vector (sizei);
2589 for (index = 0; index < sizei; index++)
2590 p->contents[index] = init;
2592 XSETVECTOR (vector, p);
2593 return vector;
2597 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
2598 doc: /* Return a newly created char-table, with purpose PURPOSE.
2599 Each element is initialized to INIT, which defaults to nil.
2600 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
2601 The property's value should be an integer between 0 and 10. */)
2602 (purpose, init)
2603 register Lisp_Object purpose, init;
2605 Lisp_Object vector;
2606 Lisp_Object n;
2607 CHECK_SYMBOL (purpose);
2608 n = Fget (purpose, Qchar_table_extra_slots);
2609 CHECK_NUMBER (n);
2610 if (XINT (n) < 0 || XINT (n) > 10)
2611 args_out_of_range (n, Qnil);
2612 /* Add 2 to the size for the defalt and parent slots. */
2613 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
2614 init);
2615 XCHAR_TABLE (vector)->top = Qt;
2616 XCHAR_TABLE (vector)->parent = Qnil;
2617 XCHAR_TABLE (vector)->purpose = purpose;
2618 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2619 return vector;
2623 /* Return a newly created sub char table with default value DEFALT.
2624 Since a sub char table does not appear as a top level Emacs Lisp
2625 object, we don't need a Lisp interface to make it. */
2627 Lisp_Object
2628 make_sub_char_table (defalt)
2629 Lisp_Object defalt;
2631 Lisp_Object vector
2632 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
2633 XCHAR_TABLE (vector)->top = Qnil;
2634 XCHAR_TABLE (vector)->defalt = defalt;
2635 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2636 return vector;
2640 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2641 doc: /* Return a newly created vector with specified arguments as elements.
2642 Any number of arguments, even zero arguments, are allowed.
2643 usage: (vector &rest OBJECTS) */)
2644 (nargs, args)
2645 register int nargs;
2646 Lisp_Object *args;
2648 register Lisp_Object len, val;
2649 register int index;
2650 register struct Lisp_Vector *p;
2652 XSETFASTINT (len, nargs);
2653 val = Fmake_vector (len, Qnil);
2654 p = XVECTOR (val);
2655 for (index = 0; index < nargs; index++)
2656 p->contents[index] = args[index];
2657 return val;
2661 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2662 doc: /* Create a byte-code object with specified arguments as elements.
2663 The arguments should be the arglist, bytecode-string, constant vector,
2664 stack size, (optional) doc string, and (optional) interactive spec.
2665 The first four arguments are required; at most six have any
2666 significance.
2667 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2668 (nargs, args)
2669 register int nargs;
2670 Lisp_Object *args;
2672 register Lisp_Object len, val;
2673 register int index;
2674 register struct Lisp_Vector *p;
2676 XSETFASTINT (len, nargs);
2677 if (!NILP (Vpurify_flag))
2678 val = make_pure_vector ((EMACS_INT) nargs);
2679 else
2680 val = Fmake_vector (len, Qnil);
2682 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2683 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2684 earlier because they produced a raw 8-bit string for byte-code
2685 and now such a byte-code string is loaded as multibyte while
2686 raw 8-bit characters converted to multibyte form. Thus, now we
2687 must convert them back to the original unibyte form. */
2688 args[1] = Fstring_as_unibyte (args[1]);
2690 p = XVECTOR (val);
2691 for (index = 0; index < nargs; index++)
2693 if (!NILP (Vpurify_flag))
2694 args[index] = Fpurecopy (args[index]);
2695 p->contents[index] = args[index];
2697 XSETCOMPILED (val, p);
2698 return val;
2703 /***********************************************************************
2704 Symbol Allocation
2705 ***********************************************************************/
2707 /* Each symbol_block is just under 1020 bytes long, since malloc
2708 really allocates in units of powers of two and uses 4 bytes for its
2709 own overhead. */
2711 #define SYMBOL_BLOCK_SIZE \
2712 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2714 struct symbol_block
2716 struct symbol_block *next;
2717 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
2720 /* Current symbol block and index of first unused Lisp_Symbol
2721 structure in it. */
2723 struct symbol_block *symbol_block;
2724 int symbol_block_index;
2726 /* List of free symbols. */
2728 struct Lisp_Symbol *symbol_free_list;
2730 /* Total number of symbol blocks now in use. */
2732 int n_symbol_blocks;
2735 /* Initialize symbol allocation. */
2737 void
2738 init_symbol ()
2740 symbol_block = (struct symbol_block *) lisp_malloc (sizeof *symbol_block,
2741 MEM_TYPE_SYMBOL);
2742 symbol_block->next = 0;
2743 bzero ((char *) symbol_block->symbols, sizeof symbol_block->symbols);
2744 symbol_block_index = 0;
2745 symbol_free_list = 0;
2746 n_symbol_blocks = 1;
2750 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
2751 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
2752 Its value and function definition are void, and its property list is nil. */)
2753 (name)
2754 Lisp_Object name;
2756 register Lisp_Object val;
2757 register struct Lisp_Symbol *p;
2759 CHECK_STRING (name);
2761 if (symbol_free_list)
2763 XSETSYMBOL (val, symbol_free_list);
2764 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
2766 else
2768 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
2770 struct symbol_block *new;
2771 new = (struct symbol_block *) lisp_malloc (sizeof *new,
2772 MEM_TYPE_SYMBOL);
2773 new->next = symbol_block;
2774 symbol_block = new;
2775 symbol_block_index = 0;
2776 n_symbol_blocks++;
2778 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index++]);
2781 p = XSYMBOL (val);
2782 p->xname = name;
2783 p->plist = Qnil;
2784 p->value = Qunbound;
2785 p->function = Qunbound;
2786 p->next = NULL;
2787 p->gcmarkbit = 0;
2788 p->interned = SYMBOL_UNINTERNED;
2789 p->constant = 0;
2790 p->indirect_variable = 0;
2791 consing_since_gc += sizeof (struct Lisp_Symbol);
2792 symbols_consed++;
2793 return val;
2798 /***********************************************************************
2799 Marker (Misc) Allocation
2800 ***********************************************************************/
2802 /* Allocation of markers and other objects that share that structure.
2803 Works like allocation of conses. */
2805 #define MARKER_BLOCK_SIZE \
2806 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2808 struct marker_block
2810 struct marker_block *next;
2811 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
2814 struct marker_block *marker_block;
2815 int marker_block_index;
2817 union Lisp_Misc *marker_free_list;
2819 /* Total number of marker blocks now in use. */
2821 int n_marker_blocks;
2823 void
2824 init_marker ()
2826 marker_block = (struct marker_block *) lisp_malloc (sizeof *marker_block,
2827 MEM_TYPE_MISC);
2828 marker_block->next = 0;
2829 bzero ((char *) marker_block->markers, sizeof marker_block->markers);
2830 marker_block_index = 0;
2831 marker_free_list = 0;
2832 n_marker_blocks = 1;
2835 /* Return a newly allocated Lisp_Misc object, with no substructure. */
2837 Lisp_Object
2838 allocate_misc ()
2840 Lisp_Object val;
2842 if (marker_free_list)
2844 XSETMISC (val, marker_free_list);
2845 marker_free_list = marker_free_list->u_free.chain;
2847 else
2849 if (marker_block_index == MARKER_BLOCK_SIZE)
2851 struct marker_block *new;
2852 new = (struct marker_block *) lisp_malloc (sizeof *new,
2853 MEM_TYPE_MISC);
2854 new->next = marker_block;
2855 marker_block = new;
2856 marker_block_index = 0;
2857 n_marker_blocks++;
2859 XSETMISC (val, &marker_block->markers[marker_block_index++]);
2862 consing_since_gc += sizeof (union Lisp_Misc);
2863 misc_objects_consed++;
2864 XMARKER (val)->gcmarkbit = 0;
2865 return val;
2868 /* Return a Lisp_Misc_Save_Value object containing POINTER and
2869 INTEGER. This is used to package C values to call record_unwind_protect.
2870 The unwind function can get the C values back using XSAVE_VALUE. */
2872 Lisp_Object
2873 make_save_value (pointer, integer)
2874 void *pointer;
2875 int integer;
2877 register Lisp_Object val;
2878 register struct Lisp_Save_Value *p;
2880 val = allocate_misc ();
2881 XMISCTYPE (val) = Lisp_Misc_Save_Value;
2882 p = XSAVE_VALUE (val);
2883 p->pointer = pointer;
2884 p->integer = integer;
2885 return val;
2888 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
2889 doc: /* Return a newly allocated marker which does not point at any place. */)
2892 register Lisp_Object val;
2893 register struct Lisp_Marker *p;
2895 val = allocate_misc ();
2896 XMISCTYPE (val) = Lisp_Misc_Marker;
2897 p = XMARKER (val);
2898 p->buffer = 0;
2899 p->bytepos = 0;
2900 p->charpos = 0;
2901 p->next = NULL;
2902 p->insertion_type = 0;
2903 return val;
2906 /* Put MARKER back on the free list after using it temporarily. */
2908 void
2909 free_marker (marker)
2910 Lisp_Object marker;
2912 unchain_marker (XMARKER (marker));
2914 XMISC (marker)->u_marker.type = Lisp_Misc_Free;
2915 XMISC (marker)->u_free.chain = marker_free_list;
2916 marker_free_list = XMISC (marker);
2918 total_free_markers++;
2922 /* Return a newly created vector or string with specified arguments as
2923 elements. If all the arguments are characters that can fit
2924 in a string of events, make a string; otherwise, make a vector.
2926 Any number of arguments, even zero arguments, are allowed. */
2928 Lisp_Object
2929 make_event_array (nargs, args)
2930 register int nargs;
2931 Lisp_Object *args;
2933 int i;
2935 for (i = 0; i < nargs; i++)
2936 /* The things that fit in a string
2937 are characters that are in 0...127,
2938 after discarding the meta bit and all the bits above it. */
2939 if (!INTEGERP (args[i])
2940 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
2941 return Fvector (nargs, args);
2943 /* Since the loop exited, we know that all the things in it are
2944 characters, so we can make a string. */
2946 Lisp_Object result;
2948 result = Fmake_string (make_number (nargs), make_number (0));
2949 for (i = 0; i < nargs; i++)
2951 SSET (result, i, XINT (args[i]));
2952 /* Move the meta bit to the right place for a string char. */
2953 if (XINT (args[i]) & CHAR_META)
2954 SSET (result, i, SREF (result, i) | 0x80);
2957 return result;
2963 /************************************************************************
2964 C Stack Marking
2965 ************************************************************************/
2967 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
2969 /* Conservative C stack marking requires a method to identify possibly
2970 live Lisp objects given a pointer value. We do this by keeping
2971 track of blocks of Lisp data that are allocated in a red-black tree
2972 (see also the comment of mem_node which is the type of nodes in
2973 that tree). Function lisp_malloc adds information for an allocated
2974 block to the red-black tree with calls to mem_insert, and function
2975 lisp_free removes it with mem_delete. Functions live_string_p etc
2976 call mem_find to lookup information about a given pointer in the
2977 tree, and use that to determine if the pointer points to a Lisp
2978 object or not. */
2980 /* Initialize this part of alloc.c. */
2982 static void
2983 mem_init ()
2985 mem_z.left = mem_z.right = MEM_NIL;
2986 mem_z.parent = NULL;
2987 mem_z.color = MEM_BLACK;
2988 mem_z.start = mem_z.end = NULL;
2989 mem_root = MEM_NIL;
2993 /* Value is a pointer to the mem_node containing START. Value is
2994 MEM_NIL if there is no node in the tree containing START. */
2996 static INLINE struct mem_node *
2997 mem_find (start)
2998 void *start;
3000 struct mem_node *p;
3002 if (start < min_heap_address || start > max_heap_address)
3003 return MEM_NIL;
3005 /* Make the search always successful to speed up the loop below. */
3006 mem_z.start = start;
3007 mem_z.end = (char *) start + 1;
3009 p = mem_root;
3010 while (start < p->start || start >= p->end)
3011 p = start < p->start ? p->left : p->right;
3012 return p;
3016 /* Insert a new node into the tree for a block of memory with start
3017 address START, end address END, and type TYPE. Value is a
3018 pointer to the node that was inserted. */
3020 static struct mem_node *
3021 mem_insert (start, end, type)
3022 void *start, *end;
3023 enum mem_type type;
3025 struct mem_node *c, *parent, *x;
3027 if (start < min_heap_address)
3028 min_heap_address = start;
3029 if (end > max_heap_address)
3030 max_heap_address = end;
3032 /* See where in the tree a node for START belongs. In this
3033 particular application, it shouldn't happen that a node is already
3034 present. For debugging purposes, let's check that. */
3035 c = mem_root;
3036 parent = NULL;
3038 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3040 while (c != MEM_NIL)
3042 if (start >= c->start && start < c->end)
3043 abort ();
3044 parent = c;
3045 c = start < c->start ? c->left : c->right;
3048 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3050 while (c != MEM_NIL)
3052 parent = c;
3053 c = start < c->start ? c->left : c->right;
3056 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3058 /* Create a new node. */
3059 #ifdef GC_MALLOC_CHECK
3060 x = (struct mem_node *) _malloc_internal (sizeof *x);
3061 if (x == NULL)
3062 abort ();
3063 #else
3064 x = (struct mem_node *) xmalloc (sizeof *x);
3065 #endif
3066 x->start = start;
3067 x->end = end;
3068 x->type = type;
3069 x->parent = parent;
3070 x->left = x->right = MEM_NIL;
3071 x->color = MEM_RED;
3073 /* Insert it as child of PARENT or install it as root. */
3074 if (parent)
3076 if (start < parent->start)
3077 parent->left = x;
3078 else
3079 parent->right = x;
3081 else
3082 mem_root = x;
3084 /* Re-establish red-black tree properties. */
3085 mem_insert_fixup (x);
3087 return x;
3091 /* Re-establish the red-black properties of the tree, and thereby
3092 balance the tree, after node X has been inserted; X is always red. */
3094 static void
3095 mem_insert_fixup (x)
3096 struct mem_node *x;
3098 while (x != mem_root && x->parent->color == MEM_RED)
3100 /* X is red and its parent is red. This is a violation of
3101 red-black tree property #3. */
3103 if (x->parent == x->parent->parent->left)
3105 /* We're on the left side of our grandparent, and Y is our
3106 "uncle". */
3107 struct mem_node *y = x->parent->parent->right;
3109 if (y->color == MEM_RED)
3111 /* Uncle and parent are red but should be black because
3112 X is red. Change the colors accordingly and proceed
3113 with the grandparent. */
3114 x->parent->color = MEM_BLACK;
3115 y->color = MEM_BLACK;
3116 x->parent->parent->color = MEM_RED;
3117 x = x->parent->parent;
3119 else
3121 /* Parent and uncle have different colors; parent is
3122 red, uncle is black. */
3123 if (x == x->parent->right)
3125 x = x->parent;
3126 mem_rotate_left (x);
3129 x->parent->color = MEM_BLACK;
3130 x->parent->parent->color = MEM_RED;
3131 mem_rotate_right (x->parent->parent);
3134 else
3136 /* This is the symmetrical case of above. */
3137 struct mem_node *y = x->parent->parent->left;
3139 if (y->color == MEM_RED)
3141 x->parent->color = MEM_BLACK;
3142 y->color = MEM_BLACK;
3143 x->parent->parent->color = MEM_RED;
3144 x = x->parent->parent;
3146 else
3148 if (x == x->parent->left)
3150 x = x->parent;
3151 mem_rotate_right (x);
3154 x->parent->color = MEM_BLACK;
3155 x->parent->parent->color = MEM_RED;
3156 mem_rotate_left (x->parent->parent);
3161 /* The root may have been changed to red due to the algorithm. Set
3162 it to black so that property #5 is satisfied. */
3163 mem_root->color = MEM_BLACK;
3167 /* (x) (y)
3168 / \ / \
3169 a (y) ===> (x) c
3170 / \ / \
3171 b c a b */
3173 static void
3174 mem_rotate_left (x)
3175 struct mem_node *x;
3177 struct mem_node *y;
3179 /* Turn y's left sub-tree into x's right sub-tree. */
3180 y = x->right;
3181 x->right = y->left;
3182 if (y->left != MEM_NIL)
3183 y->left->parent = x;
3185 /* Y's parent was x's parent. */
3186 if (y != MEM_NIL)
3187 y->parent = x->parent;
3189 /* Get the parent to point to y instead of x. */
3190 if (x->parent)
3192 if (x == x->parent->left)
3193 x->parent->left = y;
3194 else
3195 x->parent->right = y;
3197 else
3198 mem_root = y;
3200 /* Put x on y's left. */
3201 y->left = x;
3202 if (x != MEM_NIL)
3203 x->parent = y;
3207 /* (x) (Y)
3208 / \ / \
3209 (y) c ===> a (x)
3210 / \ / \
3211 a b b c */
3213 static void
3214 mem_rotate_right (x)
3215 struct mem_node *x;
3217 struct mem_node *y = x->left;
3219 x->left = y->right;
3220 if (y->right != MEM_NIL)
3221 y->right->parent = x;
3223 if (y != MEM_NIL)
3224 y->parent = x->parent;
3225 if (x->parent)
3227 if (x == x->parent->right)
3228 x->parent->right = y;
3229 else
3230 x->parent->left = y;
3232 else
3233 mem_root = y;
3235 y->right = x;
3236 if (x != MEM_NIL)
3237 x->parent = y;
3241 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3243 static void
3244 mem_delete (z)
3245 struct mem_node *z;
3247 struct mem_node *x, *y;
3249 if (!z || z == MEM_NIL)
3250 return;
3252 if (z->left == MEM_NIL || z->right == MEM_NIL)
3253 y = z;
3254 else
3256 y = z->right;
3257 while (y->left != MEM_NIL)
3258 y = y->left;
3261 if (y->left != MEM_NIL)
3262 x = y->left;
3263 else
3264 x = y->right;
3266 x->parent = y->parent;
3267 if (y->parent)
3269 if (y == y->parent->left)
3270 y->parent->left = x;
3271 else
3272 y->parent->right = x;
3274 else
3275 mem_root = x;
3277 if (y != z)
3279 z->start = y->start;
3280 z->end = y->end;
3281 z->type = y->type;
3284 if (y->color == MEM_BLACK)
3285 mem_delete_fixup (x);
3287 #ifdef GC_MALLOC_CHECK
3288 _free_internal (y);
3289 #else
3290 xfree (y);
3291 #endif
3295 /* Re-establish the red-black properties of the tree, after a
3296 deletion. */
3298 static void
3299 mem_delete_fixup (x)
3300 struct mem_node *x;
3302 while (x != mem_root && x->color == MEM_BLACK)
3304 if (x == x->parent->left)
3306 struct mem_node *w = x->parent->right;
3308 if (w->color == MEM_RED)
3310 w->color = MEM_BLACK;
3311 x->parent->color = MEM_RED;
3312 mem_rotate_left (x->parent);
3313 w = x->parent->right;
3316 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3318 w->color = MEM_RED;
3319 x = x->parent;
3321 else
3323 if (w->right->color == MEM_BLACK)
3325 w->left->color = MEM_BLACK;
3326 w->color = MEM_RED;
3327 mem_rotate_right (w);
3328 w = x->parent->right;
3330 w->color = x->parent->color;
3331 x->parent->color = MEM_BLACK;
3332 w->right->color = MEM_BLACK;
3333 mem_rotate_left (x->parent);
3334 x = mem_root;
3337 else
3339 struct mem_node *w = x->parent->left;
3341 if (w->color == MEM_RED)
3343 w->color = MEM_BLACK;
3344 x->parent->color = MEM_RED;
3345 mem_rotate_right (x->parent);
3346 w = x->parent->left;
3349 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3351 w->color = MEM_RED;
3352 x = x->parent;
3354 else
3356 if (w->left->color == MEM_BLACK)
3358 w->right->color = MEM_BLACK;
3359 w->color = MEM_RED;
3360 mem_rotate_left (w);
3361 w = x->parent->left;
3364 w->color = x->parent->color;
3365 x->parent->color = MEM_BLACK;
3366 w->left->color = MEM_BLACK;
3367 mem_rotate_right (x->parent);
3368 x = mem_root;
3373 x->color = MEM_BLACK;
3377 /* Value is non-zero if P is a pointer to a live Lisp string on
3378 the heap. M is a pointer to the mem_block for P. */
3380 static INLINE int
3381 live_string_p (m, p)
3382 struct mem_node *m;
3383 void *p;
3385 if (m->type == MEM_TYPE_STRING)
3387 struct string_block *b = (struct string_block *) m->start;
3388 int offset = (char *) p - (char *) &b->strings[0];
3390 /* P must point to the start of a Lisp_String structure, and it
3391 must not be on the free-list. */
3392 return (offset >= 0
3393 && offset % sizeof b->strings[0] == 0
3394 && ((struct Lisp_String *) p)->data != NULL);
3396 else
3397 return 0;
3401 /* Value is non-zero if P is a pointer to a live Lisp cons on
3402 the heap. M is a pointer to the mem_block for P. */
3404 static INLINE int
3405 live_cons_p (m, p)
3406 struct mem_node *m;
3407 void *p;
3409 if (m->type == MEM_TYPE_CONS)
3411 struct cons_block *b = (struct cons_block *) m->start;
3412 int offset = (char *) p - (char *) &b->conses[0];
3414 /* P must point to the start of a Lisp_Cons, not be
3415 one of the unused cells in the current cons block,
3416 and not be on the free-list. */
3417 return (offset >= 0
3418 && offset % sizeof b->conses[0] == 0
3419 && (b != cons_block
3420 || offset / sizeof b->conses[0] < cons_block_index)
3421 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3423 else
3424 return 0;
3428 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3429 the heap. M is a pointer to the mem_block for P. */
3431 static INLINE int
3432 live_symbol_p (m, p)
3433 struct mem_node *m;
3434 void *p;
3436 if (m->type == MEM_TYPE_SYMBOL)
3438 struct symbol_block *b = (struct symbol_block *) m->start;
3439 int offset = (char *) p - (char *) &b->symbols[0];
3441 /* P must point to the start of a Lisp_Symbol, not be
3442 one of the unused cells in the current symbol block,
3443 and not be on the free-list. */
3444 return (offset >= 0
3445 && offset % sizeof b->symbols[0] == 0
3446 && (b != symbol_block
3447 || offset / sizeof b->symbols[0] < symbol_block_index)
3448 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3450 else
3451 return 0;
3455 /* Value is non-zero if P is a pointer to a live Lisp float on
3456 the heap. M is a pointer to the mem_block for P. */
3458 static INLINE int
3459 live_float_p (m, p)
3460 struct mem_node *m;
3461 void *p;
3463 if (m->type == MEM_TYPE_FLOAT)
3465 struct float_block *b = (struct float_block *) m->start;
3466 int offset = (char *) p - (char *) &b->floats[0];
3468 /* P must point to the start of a Lisp_Float and not be
3469 one of the unused cells in the current float block. */
3470 return (offset >= 0
3471 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3472 && offset % sizeof b->floats[0] == 0
3473 && (b != float_block
3474 || offset / sizeof b->floats[0] < float_block_index));
3476 else
3477 return 0;
3481 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3482 the heap. M is a pointer to the mem_block for P. */
3484 static INLINE int
3485 live_misc_p (m, p)
3486 struct mem_node *m;
3487 void *p;
3489 if (m->type == MEM_TYPE_MISC)
3491 struct marker_block *b = (struct marker_block *) m->start;
3492 int offset = (char *) p - (char *) &b->markers[0];
3494 /* P must point to the start of a Lisp_Misc, not be
3495 one of the unused cells in the current misc block,
3496 and not be on the free-list. */
3497 return (offset >= 0
3498 && offset % sizeof b->markers[0] == 0
3499 && (b != marker_block
3500 || offset / sizeof b->markers[0] < marker_block_index)
3501 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3503 else
3504 return 0;
3508 /* Value is non-zero if P is a pointer to a live vector-like object.
3509 M is a pointer to the mem_block for P. */
3511 static INLINE int
3512 live_vector_p (m, p)
3513 struct mem_node *m;
3514 void *p;
3516 return (p == m->start
3517 && m->type >= MEM_TYPE_VECTOR
3518 && m->type <= MEM_TYPE_WINDOW);
3522 /* Value is non-zero if P is a pointer to a live buffer. M is a
3523 pointer to the mem_block for P. */
3525 static INLINE int
3526 live_buffer_p (m, p)
3527 struct mem_node *m;
3528 void *p;
3530 /* P must point to the start of the block, and the buffer
3531 must not have been killed. */
3532 return (m->type == MEM_TYPE_BUFFER
3533 && p == m->start
3534 && !NILP (((struct buffer *) p)->name));
3537 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3539 #if GC_MARK_STACK
3541 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3543 /* Array of objects that are kept alive because the C stack contains
3544 a pattern that looks like a reference to them . */
3546 #define MAX_ZOMBIES 10
3547 static Lisp_Object zombies[MAX_ZOMBIES];
3549 /* Number of zombie objects. */
3551 static int nzombies;
3553 /* Number of garbage collections. */
3555 static int ngcs;
3557 /* Average percentage of zombies per collection. */
3559 static double avg_zombies;
3561 /* Max. number of live and zombie objects. */
3563 static int max_live, max_zombies;
3565 /* Average number of live objects per GC. */
3567 static double avg_live;
3569 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3570 doc: /* Show information about live and zombie objects. */)
3573 Lisp_Object args[8], zombie_list = Qnil;
3574 int i;
3575 for (i = 0; i < nzombies; i++)
3576 zombie_list = Fcons (zombies[i], zombie_list);
3577 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3578 args[1] = make_number (ngcs);
3579 args[2] = make_float (avg_live);
3580 args[3] = make_float (avg_zombies);
3581 args[4] = make_float (avg_zombies / avg_live / 100);
3582 args[5] = make_number (max_live);
3583 args[6] = make_number (max_zombies);
3584 args[7] = zombie_list;
3585 return Fmessage (8, args);
3588 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3591 /* Mark OBJ if we can prove it's a Lisp_Object. */
3593 static INLINE void
3594 mark_maybe_object (obj)
3595 Lisp_Object obj;
3597 void *po = (void *) XPNTR (obj);
3598 struct mem_node *m = mem_find (po);
3600 if (m != MEM_NIL)
3602 int mark_p = 0;
3604 switch (XGCTYPE (obj))
3606 case Lisp_String:
3607 mark_p = (live_string_p (m, po)
3608 && !STRING_MARKED_P ((struct Lisp_String *) po));
3609 break;
3611 case Lisp_Cons:
3612 mark_p = (live_cons_p (m, po)
3613 && !XMARKBIT (XCONS (obj)->car));
3614 break;
3616 case Lisp_Symbol:
3617 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3618 break;
3620 case Lisp_Float:
3621 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3622 break;
3624 case Lisp_Vectorlike:
3625 /* Note: can't check GC_BUFFERP before we know it's a
3626 buffer because checking that dereferences the pointer
3627 PO which might point anywhere. */
3628 if (live_vector_p (m, po))
3629 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3630 else if (live_buffer_p (m, po))
3631 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3632 break;
3634 case Lisp_Misc:
3635 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
3636 break;
3638 case Lisp_Int:
3639 case Lisp_Type_Limit:
3640 break;
3643 if (mark_p)
3645 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3646 if (nzombies < MAX_ZOMBIES)
3647 zombies[nzombies] = obj;
3648 ++nzombies;
3649 #endif
3650 mark_object (obj);
3656 /* If P points to Lisp data, mark that as live if it isn't already
3657 marked. */
3659 static INLINE void
3660 mark_maybe_pointer (p)
3661 void *p;
3663 struct mem_node *m;
3665 /* Quickly rule out some values which can't point to Lisp data. We
3666 assume that Lisp data is aligned on even addresses. */
3667 if ((EMACS_INT) p & 1)
3668 return;
3670 m = mem_find (p);
3671 if (m != MEM_NIL)
3673 Lisp_Object obj = Qnil;
3675 switch (m->type)
3677 case MEM_TYPE_NON_LISP:
3678 /* Nothing to do; not a pointer to Lisp memory. */
3679 break;
3681 case MEM_TYPE_BUFFER:
3682 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
3683 XSETVECTOR (obj, p);
3684 break;
3686 case MEM_TYPE_CONS:
3687 if (live_cons_p (m, p)
3688 && !XMARKBIT (((struct Lisp_Cons *) p)->car))
3689 XSETCONS (obj, p);
3690 break;
3692 case MEM_TYPE_STRING:
3693 if (live_string_p (m, p)
3694 && !STRING_MARKED_P ((struct Lisp_String *) p))
3695 XSETSTRING (obj, p);
3696 break;
3698 case MEM_TYPE_MISC:
3699 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
3700 XSETMISC (obj, p);
3701 break;
3703 case MEM_TYPE_SYMBOL:
3704 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
3705 XSETSYMBOL (obj, p);
3706 break;
3708 case MEM_TYPE_FLOAT:
3709 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
3710 XSETFLOAT (obj, p);
3711 break;
3713 case MEM_TYPE_VECTOR:
3714 case MEM_TYPE_PROCESS:
3715 case MEM_TYPE_HASH_TABLE:
3716 case MEM_TYPE_FRAME:
3717 case MEM_TYPE_WINDOW:
3718 if (live_vector_p (m, p))
3720 Lisp_Object tem;
3721 XSETVECTOR (tem, p);
3722 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
3723 obj = tem;
3725 break;
3727 default:
3728 abort ();
3731 if (!GC_NILP (obj))
3732 mark_object (obj);
3737 /* Mark Lisp objects referenced from the address range START..END. */
3739 static void
3740 mark_memory (start, end)
3741 void *start, *end;
3743 Lisp_Object *p;
3744 void **pp;
3746 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3747 nzombies = 0;
3748 #endif
3750 /* Make START the pointer to the start of the memory region,
3751 if it isn't already. */
3752 if (end < start)
3754 void *tem = start;
3755 start = end;
3756 end = tem;
3759 /* Mark Lisp_Objects. */
3760 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
3761 mark_maybe_object (*p);
3763 /* Mark Lisp data pointed to. This is necessary because, in some
3764 situations, the C compiler optimizes Lisp objects away, so that
3765 only a pointer to them remains. Example:
3767 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
3770 Lisp_Object obj = build_string ("test");
3771 struct Lisp_String *s = XSTRING (obj);
3772 Fgarbage_collect ();
3773 fprintf (stderr, "test `%s'\n", s->data);
3774 return Qnil;
3777 Here, `obj' isn't really used, and the compiler optimizes it
3778 away. The only reference to the life string is through the
3779 pointer `s'. */
3781 for (pp = (void **) start; (void *) pp < end; ++pp)
3782 mark_maybe_pointer (*pp);
3785 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
3786 the GCC system configuration. In gcc 3.2, the only systems for
3787 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
3788 by others?) and ns32k-pc532-min. */
3790 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
3792 static int setjmp_tested_p, longjmps_done;
3794 #define SETJMP_WILL_LIKELY_WORK "\
3796 Emacs garbage collector has been changed to use conservative stack\n\
3797 marking. Emacs has determined that the method it uses to do the\n\
3798 marking will likely work on your system, but this isn't sure.\n\
3800 If you are a system-programmer, or can get the help of a local wizard\n\
3801 who is, please take a look at the function mark_stack in alloc.c, and\n\
3802 verify that the methods used are appropriate for your system.\n\
3804 Please mail the result to <emacs-devel@gnu.org>.\n\
3807 #define SETJMP_WILL_NOT_WORK "\
3809 Emacs garbage collector has been changed to use conservative stack\n\
3810 marking. Emacs has determined that the default method it uses to do the\n\
3811 marking will not work on your system. We will need a system-dependent\n\
3812 solution for your system.\n\
3814 Please take a look at the function mark_stack in alloc.c, and\n\
3815 try to find a way to make it work on your system.\n\
3817 Note that you may get false negatives, depending on the compiler.\n\
3818 In particular, you need to use -O with GCC for this test.\n\
3820 Please mail the result to <emacs-devel@gnu.org>.\n\
3824 /* Perform a quick check if it looks like setjmp saves registers in a
3825 jmp_buf. Print a message to stderr saying so. When this test
3826 succeeds, this is _not_ a proof that setjmp is sufficient for
3827 conservative stack marking. Only the sources or a disassembly
3828 can prove that. */
3830 static void
3831 test_setjmp ()
3833 char buf[10];
3834 register int x;
3835 jmp_buf jbuf;
3836 int result = 0;
3838 /* Arrange for X to be put in a register. */
3839 sprintf (buf, "1");
3840 x = strlen (buf);
3841 x = 2 * x - 1;
3843 setjmp (jbuf);
3844 if (longjmps_done == 1)
3846 /* Came here after the longjmp at the end of the function.
3848 If x == 1, the longjmp has restored the register to its
3849 value before the setjmp, and we can hope that setjmp
3850 saves all such registers in the jmp_buf, although that
3851 isn't sure.
3853 For other values of X, either something really strange is
3854 taking place, or the setjmp just didn't save the register. */
3856 if (x == 1)
3857 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
3858 else
3860 fprintf (stderr, SETJMP_WILL_NOT_WORK);
3861 exit (1);
3865 ++longjmps_done;
3866 x = 2;
3867 if (longjmps_done == 1)
3868 longjmp (jbuf, 1);
3871 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3874 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3876 /* Abort if anything GCPRO'd doesn't survive the GC. */
3878 static void
3879 check_gcpros ()
3881 struct gcpro *p;
3882 int i;
3884 for (p = gcprolist; p; p = p->next)
3885 for (i = 0; i < p->nvars; ++i)
3886 if (!survives_gc_p (p->var[i]))
3887 /* FIXME: It's not necessarily a bug. It might just be that the
3888 GCPRO is unnecessary or should release the object sooner. */
3889 abort ();
3892 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3894 static void
3895 dump_zombies ()
3897 int i;
3899 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
3900 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
3902 fprintf (stderr, " %d = ", i);
3903 debug_print (zombies[i]);
3907 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3910 /* Mark live Lisp objects on the C stack.
3912 There are several system-dependent problems to consider when
3913 porting this to new architectures:
3915 Processor Registers
3917 We have to mark Lisp objects in CPU registers that can hold local
3918 variables or are used to pass parameters.
3920 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
3921 something that either saves relevant registers on the stack, or
3922 calls mark_maybe_object passing it each register's contents.
3924 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
3925 implementation assumes that calling setjmp saves registers we need
3926 to see in a jmp_buf which itself lies on the stack. This doesn't
3927 have to be true! It must be verified for each system, possibly
3928 by taking a look at the source code of setjmp.
3930 Stack Layout
3932 Architectures differ in the way their processor stack is organized.
3933 For example, the stack might look like this
3935 +----------------+
3936 | Lisp_Object | size = 4
3937 +----------------+
3938 | something else | size = 2
3939 +----------------+
3940 | Lisp_Object | size = 4
3941 +----------------+
3942 | ... |
3944 In such a case, not every Lisp_Object will be aligned equally. To
3945 find all Lisp_Object on the stack it won't be sufficient to walk
3946 the stack in steps of 4 bytes. Instead, two passes will be
3947 necessary, one starting at the start of the stack, and a second
3948 pass starting at the start of the stack + 2. Likewise, if the
3949 minimal alignment of Lisp_Objects on the stack is 1, four passes
3950 would be necessary, each one starting with one byte more offset
3951 from the stack start.
3953 The current code assumes by default that Lisp_Objects are aligned
3954 equally on the stack. */
3956 static void
3957 mark_stack ()
3959 int i;
3960 jmp_buf j;
3961 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
3962 void *end;
3964 /* This trick flushes the register windows so that all the state of
3965 the process is contained in the stack. */
3966 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
3967 needed on ia64 too. See mach_dep.c, where it also says inline
3968 assembler doesn't work with relevant proprietary compilers. */
3969 #ifdef sparc
3970 asm ("ta 3");
3971 #endif
3973 /* Save registers that we need to see on the stack. We need to see
3974 registers used to hold register variables and registers used to
3975 pass parameters. */
3976 #ifdef GC_SAVE_REGISTERS_ON_STACK
3977 GC_SAVE_REGISTERS_ON_STACK (end);
3978 #else /* not GC_SAVE_REGISTERS_ON_STACK */
3980 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
3981 setjmp will definitely work, test it
3982 and print a message with the result
3983 of the test. */
3984 if (!setjmp_tested_p)
3986 setjmp_tested_p = 1;
3987 test_setjmp ();
3989 #endif /* GC_SETJMP_WORKS */
3991 setjmp (j);
3992 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
3993 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
3995 /* This assumes that the stack is a contiguous region in memory. If
3996 that's not the case, something has to be done here to iterate
3997 over the stack segments. */
3998 #ifndef GC_LISP_OBJECT_ALIGNMENT
3999 #ifdef __GNUC__
4000 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4001 #else
4002 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4003 #endif
4004 #endif
4005 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4006 mark_memory ((char *) stack_base + i, end);
4008 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4009 check_gcpros ();
4010 #endif
4014 #endif /* GC_MARK_STACK != 0 */
4018 /***********************************************************************
4019 Pure Storage Management
4020 ***********************************************************************/
4022 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4023 pointer to it. TYPE is the Lisp type for which the memory is
4024 allocated. TYPE < 0 means it's not used for a Lisp object.
4026 If store_pure_type_info is set and TYPE is >= 0, the type of
4027 the allocated object is recorded in pure_types. */
4029 static POINTER_TYPE *
4030 pure_alloc (size, type)
4031 size_t size;
4032 int type;
4034 POINTER_TYPE *result;
4035 size_t alignment = sizeof (EMACS_INT);
4037 /* Give Lisp_Floats an extra alignment. */
4038 if (type == Lisp_Float)
4040 #if defined __GNUC__ && __GNUC__ >= 2
4041 alignment = __alignof (struct Lisp_Float);
4042 #else
4043 alignment = sizeof (struct Lisp_Float);
4044 #endif
4047 again:
4048 result = ALIGN (purebeg + pure_bytes_used, alignment);
4049 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4051 if (pure_bytes_used <= pure_size)
4052 return result;
4054 /* Don't allocate a large amount here,
4055 because it might get mmap'd and then its address
4056 might not be usable. */
4057 purebeg = (char *) xmalloc (10000);
4058 pure_size = 10000;
4059 pure_bytes_used_before_overflow += pure_bytes_used - size;
4060 pure_bytes_used = 0;
4061 goto again;
4065 /* Print a warning if PURESIZE is too small. */
4067 void
4068 check_pure_size ()
4070 if (pure_bytes_used_before_overflow)
4071 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4072 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4076 /* Return a string allocated in pure space. DATA is a buffer holding
4077 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4078 non-zero means make the result string multibyte.
4080 Must get an error if pure storage is full, since if it cannot hold
4081 a large string it may be able to hold conses that point to that
4082 string; then the string is not protected from gc. */
4084 Lisp_Object
4085 make_pure_string (data, nchars, nbytes, multibyte)
4086 char *data;
4087 int nchars, nbytes;
4088 int multibyte;
4090 Lisp_Object string;
4091 struct Lisp_String *s;
4093 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4094 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4095 s->size = nchars;
4096 s->size_byte = multibyte ? nbytes : -1;
4097 bcopy (data, s->data, nbytes);
4098 s->data[nbytes] = '\0';
4099 s->intervals = NULL_INTERVAL;
4100 XSETSTRING (string, s);
4101 return string;
4105 /* Return a cons allocated from pure space. Give it pure copies
4106 of CAR as car and CDR as cdr. */
4108 Lisp_Object
4109 pure_cons (car, cdr)
4110 Lisp_Object car, cdr;
4112 register Lisp_Object new;
4113 struct Lisp_Cons *p;
4115 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4116 XSETCONS (new, p);
4117 XSETCAR (new, Fpurecopy (car));
4118 XSETCDR (new, Fpurecopy (cdr));
4119 return new;
4123 /* Value is a float object with value NUM allocated from pure space. */
4125 Lisp_Object
4126 make_pure_float (num)
4127 double num;
4129 register Lisp_Object new;
4130 struct Lisp_Float *p;
4132 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4133 XSETFLOAT (new, p);
4134 XFLOAT_DATA (new) = num;
4135 return new;
4139 /* Return a vector with room for LEN Lisp_Objects allocated from
4140 pure space. */
4142 Lisp_Object
4143 make_pure_vector (len)
4144 EMACS_INT len;
4146 Lisp_Object new;
4147 struct Lisp_Vector *p;
4148 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4150 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4151 XSETVECTOR (new, p);
4152 XVECTOR (new)->size = len;
4153 return new;
4157 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4158 doc: /* Make a copy of OBJECT in pure storage.
4159 Recursively copies contents of vectors and cons cells.
4160 Does not copy symbols. Copies strings without text properties. */)
4161 (obj)
4162 register Lisp_Object obj;
4164 if (NILP (Vpurify_flag))
4165 return obj;
4167 if (PURE_POINTER_P (XPNTR (obj)))
4168 return obj;
4170 if (CONSP (obj))
4171 return pure_cons (XCAR (obj), XCDR (obj));
4172 else if (FLOATP (obj))
4173 return make_pure_float (XFLOAT_DATA (obj));
4174 else if (STRINGP (obj))
4175 return make_pure_string (SDATA (obj), SCHARS (obj),
4176 SBYTES (obj),
4177 STRING_MULTIBYTE (obj));
4178 else if (COMPILEDP (obj) || VECTORP (obj))
4180 register struct Lisp_Vector *vec;
4181 register int i, size;
4183 size = XVECTOR (obj)->size;
4184 if (size & PSEUDOVECTOR_FLAG)
4185 size &= PSEUDOVECTOR_SIZE_MASK;
4186 vec = XVECTOR (make_pure_vector ((EMACS_INT) size));
4187 for (i = 0; i < size; i++)
4188 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4189 if (COMPILEDP (obj))
4190 XSETCOMPILED (obj, vec);
4191 else
4192 XSETVECTOR (obj, vec);
4193 return obj;
4195 else if (MARKERP (obj))
4196 error ("Attempt to copy a marker to pure storage");
4198 return obj;
4203 /***********************************************************************
4204 Protection from GC
4205 ***********************************************************************/
4207 /* Put an entry in staticvec, pointing at the variable with address
4208 VARADDRESS. */
4210 void
4211 staticpro (varaddress)
4212 Lisp_Object *varaddress;
4214 staticvec[staticidx++] = varaddress;
4215 if (staticidx >= NSTATICS)
4216 abort ();
4219 struct catchtag
4221 Lisp_Object tag;
4222 Lisp_Object val;
4223 struct catchtag *next;
4226 struct backtrace
4228 struct backtrace *next;
4229 Lisp_Object *function;
4230 Lisp_Object *args; /* Points to vector of args. */
4231 int nargs; /* Length of vector. */
4232 /* If nargs is UNEVALLED, args points to slot holding list of
4233 unevalled args. */
4234 char evalargs;
4239 /***********************************************************************
4240 Protection from GC
4241 ***********************************************************************/
4243 /* Temporarily prevent garbage collection. */
4246 inhibit_garbage_collection ()
4248 int count = SPECPDL_INDEX ();
4249 int nbits = min (VALBITS, BITS_PER_INT);
4251 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4252 return count;
4256 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4257 doc: /* Reclaim storage for Lisp objects no longer needed.
4258 Garbage collection happens automatically if you cons more than
4259 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4260 `garbage-collect' normally returns a list with info on amount of space in use:
4261 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4262 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4263 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4264 (USED-STRINGS . FREE-STRINGS))
4265 However, if there was overflow in pure space, `garbage-collect'
4266 returns nil, because real GC can't be done. */)
4269 register struct specbinding *bind;
4270 struct catchtag *catch;
4271 struct handler *handler;
4272 register struct backtrace *backlist;
4273 char stack_top_variable;
4274 register int i;
4275 int message_p;
4276 Lisp_Object total[8];
4277 int count = SPECPDL_INDEX ();
4278 EMACS_TIME t1, t2, t3;
4280 if (abort_on_gc)
4281 abort ();
4283 EMACS_GET_TIME (t1);
4285 /* Can't GC if pure storage overflowed because we can't determine
4286 if something is a pure object or not. */
4287 if (pure_bytes_used_before_overflow)
4288 return Qnil;
4290 /* In case user calls debug_print during GC,
4291 don't let that cause a recursive GC. */
4292 consing_since_gc = 0;
4294 /* Save what's currently displayed in the echo area. */
4295 message_p = push_message ();
4296 record_unwind_protect (pop_message_unwind, Qnil);
4298 /* Save a copy of the contents of the stack, for debugging. */
4299 #if MAX_SAVE_STACK > 0
4300 if (NILP (Vpurify_flag))
4302 i = &stack_top_variable - stack_bottom;
4303 if (i < 0) i = -i;
4304 if (i < MAX_SAVE_STACK)
4306 if (stack_copy == 0)
4307 stack_copy = (char *) xmalloc (stack_copy_size = i);
4308 else if (stack_copy_size < i)
4309 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4310 if (stack_copy)
4312 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4313 bcopy (stack_bottom, stack_copy, i);
4314 else
4315 bcopy (&stack_top_variable, stack_copy, i);
4319 #endif /* MAX_SAVE_STACK > 0 */
4321 if (garbage_collection_messages)
4322 message1_nolog ("Garbage collecting...");
4324 BLOCK_INPUT;
4326 shrink_regexp_cache ();
4328 /* Don't keep undo information around forever. */
4330 register struct buffer *nextb = all_buffers;
4332 while (nextb)
4334 /* If a buffer's undo list is Qt, that means that undo is
4335 turned off in that buffer. Calling truncate_undo_list on
4336 Qt tends to return NULL, which effectively turns undo back on.
4337 So don't call truncate_undo_list if undo_list is Qt. */
4338 if (! EQ (nextb->undo_list, Qt))
4339 nextb->undo_list
4340 = truncate_undo_list (nextb->undo_list, undo_limit,
4341 undo_strong_limit);
4343 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4344 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4346 /* If a buffer's gap size is more than 10% of the buffer
4347 size, or larger than 2000 bytes, then shrink it
4348 accordingly. Keep a minimum size of 20 bytes. */
4349 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4351 if (nextb->text->gap_size > size)
4353 struct buffer *save_current = current_buffer;
4354 current_buffer = nextb;
4355 make_gap (-(nextb->text->gap_size - size));
4356 current_buffer = save_current;
4360 nextb = nextb->next;
4364 gc_in_progress = 1;
4366 /* clear_marks (); */
4368 /* Mark all the special slots that serve as the roots of accessibility.
4370 Usually the special slots to mark are contained in particular structures.
4371 Then we know no slot is marked twice because the structures don't overlap.
4372 In some cases, the structures point to the slots to be marked.
4373 For these, we use MARKBIT to avoid double marking of the slot. */
4375 for (i = 0; i < staticidx; i++)
4376 mark_object (*staticvec[i]);
4378 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4379 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4380 mark_stack ();
4381 #else
4383 register struct gcpro *tail;
4384 for (tail = gcprolist; tail; tail = tail->next)
4385 for (i = 0; i < tail->nvars; i++)
4386 if (!XMARKBIT (tail->var[i]))
4388 /* Explicit casting prevents compiler warning about
4389 discarding the `volatile' qualifier. */
4390 mark_object (tail->var[i]);
4391 XMARK (tail->var[i]);
4394 #endif
4396 mark_byte_stack ();
4397 for (bind = specpdl; bind != specpdl_ptr; bind++)
4399 /* These casts avoid a warning for discarding `volatile'. */
4400 mark_object (bind->symbol);
4401 mark_object (bind->old_value);
4403 for (catch = catchlist; catch; catch = catch->next)
4405 mark_object (catch->tag);
4406 mark_object (catch->val);
4408 for (handler = handlerlist; handler; handler = handler->next)
4410 mark_object (handler->handler);
4411 mark_object (handler->var);
4413 for (backlist = backtrace_list; backlist; backlist = backlist->next)
4415 if (!XMARKBIT (*backlist->function))
4417 mark_object (*backlist->function);
4418 XMARK (*backlist->function);
4420 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
4421 i = 0;
4422 else
4423 i = backlist->nargs - 1;
4424 for (; i >= 0; i--)
4425 if (!XMARKBIT (backlist->args[i]))
4427 mark_object (backlist->args[i]);
4428 XMARK (backlist->args[i]);
4431 mark_kboards ();
4433 /* Look thru every buffer's undo list
4434 for elements that update markers that were not marked,
4435 and delete them. */
4437 register struct buffer *nextb = all_buffers;
4439 while (nextb)
4441 /* If a buffer's undo list is Qt, that means that undo is
4442 turned off in that buffer. Calling truncate_undo_list on
4443 Qt tends to return NULL, which effectively turns undo back on.
4444 So don't call truncate_undo_list if undo_list is Qt. */
4445 if (! EQ (nextb->undo_list, Qt))
4447 Lisp_Object tail, prev;
4448 tail = nextb->undo_list;
4449 prev = Qnil;
4450 while (CONSP (tail))
4452 if (GC_CONSP (XCAR (tail))
4453 && GC_MARKERP (XCAR (XCAR (tail)))
4454 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4456 if (NILP (prev))
4457 nextb->undo_list = tail = XCDR (tail);
4458 else
4460 tail = XCDR (tail);
4461 XSETCDR (prev, tail);
4464 else
4466 prev = tail;
4467 tail = XCDR (tail);
4472 nextb = nextb->next;
4476 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4477 mark_stack ();
4478 #endif
4480 #ifdef USE_GTK
4482 extern void xg_mark_data ();
4483 xg_mark_data ();
4485 #endif
4487 gc_sweep ();
4489 /* Clear the mark bits that we set in certain root slots. */
4491 #if (GC_MARK_STACK == GC_USE_GCPROS_AS_BEFORE \
4492 || GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES)
4494 register struct gcpro *tail;
4496 for (tail = gcprolist; tail; tail = tail->next)
4497 for (i = 0; i < tail->nvars; i++)
4498 XUNMARK (tail->var[i]);
4500 #endif
4502 unmark_byte_stack ();
4503 for (backlist = backtrace_list; backlist; backlist = backlist->next)
4505 XUNMARK (*backlist->function);
4506 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
4507 i = 0;
4508 else
4509 i = backlist->nargs - 1;
4510 for (; i >= 0; i--)
4511 XUNMARK (backlist->args[i]);
4513 VECTOR_UNMARK (&buffer_defaults);
4514 VECTOR_UNMARK (&buffer_local_symbols);
4516 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4517 dump_zombies ();
4518 #endif
4520 UNBLOCK_INPUT;
4522 /* clear_marks (); */
4523 gc_in_progress = 0;
4525 consing_since_gc = 0;
4526 if (gc_cons_threshold < 10000)
4527 gc_cons_threshold = 10000;
4529 if (garbage_collection_messages)
4531 if (message_p || minibuf_level > 0)
4532 restore_message ();
4533 else
4534 message1_nolog ("Garbage collecting...done");
4537 unbind_to (count, Qnil);
4539 total[0] = Fcons (make_number (total_conses),
4540 make_number (total_free_conses));
4541 total[1] = Fcons (make_number (total_symbols),
4542 make_number (total_free_symbols));
4543 total[2] = Fcons (make_number (total_markers),
4544 make_number (total_free_markers));
4545 total[3] = make_number (total_string_size);
4546 total[4] = make_number (total_vector_size);
4547 total[5] = Fcons (make_number (total_floats),
4548 make_number (total_free_floats));
4549 total[6] = Fcons (make_number (total_intervals),
4550 make_number (total_free_intervals));
4551 total[7] = Fcons (make_number (total_strings),
4552 make_number (total_free_strings));
4554 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4556 /* Compute average percentage of zombies. */
4557 double nlive = 0;
4559 for (i = 0; i < 7; ++i)
4560 if (CONSP (total[i]))
4561 nlive += XFASTINT (XCAR (total[i]));
4563 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4564 max_live = max (nlive, max_live);
4565 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4566 max_zombies = max (nzombies, max_zombies);
4567 ++ngcs;
4569 #endif
4571 if (!NILP (Vpost_gc_hook))
4573 int count = inhibit_garbage_collection ();
4574 safe_run_hooks (Qpost_gc_hook);
4575 unbind_to (count, Qnil);
4578 /* Accumulate statistics. */
4579 EMACS_GET_TIME (t2);
4580 EMACS_SUB_TIME (t3, t2, t1);
4581 if (FLOATP (Vgc_elapsed))
4582 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4583 EMACS_SECS (t3) +
4584 EMACS_USECS (t3) * 1.0e-6);
4585 gcs_done++;
4587 return Flist (sizeof total / sizeof *total, total);
4591 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4592 only interesting objects referenced from glyphs are strings. */
4594 static void
4595 mark_glyph_matrix (matrix)
4596 struct glyph_matrix *matrix;
4598 struct glyph_row *row = matrix->rows;
4599 struct glyph_row *end = row + matrix->nrows;
4601 for (; row < end; ++row)
4602 if (row->enabled_p)
4604 int area;
4605 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4607 struct glyph *glyph = row->glyphs[area];
4608 struct glyph *end_glyph = glyph + row->used[area];
4610 for (; glyph < end_glyph; ++glyph)
4611 if (GC_STRINGP (glyph->object)
4612 && !STRING_MARKED_P (XSTRING (glyph->object)))
4613 mark_object (glyph->object);
4619 /* Mark Lisp faces in the face cache C. */
4621 static void
4622 mark_face_cache (c)
4623 struct face_cache *c;
4625 if (c)
4627 int i, j;
4628 for (i = 0; i < c->used; ++i)
4630 struct face *face = FACE_FROM_ID (c->f, i);
4632 if (face)
4634 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
4635 mark_object (face->lface[j]);
4642 #ifdef HAVE_WINDOW_SYSTEM
4644 /* Mark Lisp objects in image IMG. */
4646 static void
4647 mark_image (img)
4648 struct image *img;
4650 mark_object (img->spec);
4652 if (!NILP (img->data.lisp_val))
4653 mark_object (img->data.lisp_val);
4657 /* Mark Lisp objects in image cache of frame F. It's done this way so
4658 that we don't have to include xterm.h here. */
4660 static void
4661 mark_image_cache (f)
4662 struct frame *f;
4664 forall_images_in_image_cache (f, mark_image);
4667 #endif /* HAVE_X_WINDOWS */
4671 /* Mark reference to a Lisp_Object.
4672 If the object referred to has not been seen yet, recursively mark
4673 all the references contained in it. */
4675 #define LAST_MARKED_SIZE 500
4676 Lisp_Object last_marked[LAST_MARKED_SIZE];
4677 int last_marked_index;
4679 /* For debugging--call abort when we cdr down this many
4680 links of a list, in mark_object. In debugging,
4681 the call to abort will hit a breakpoint.
4682 Normally this is zero and the check never goes off. */
4683 int mark_object_loop_halt;
4685 void
4686 mark_object (arg)
4687 Lisp_Object arg;
4689 register Lisp_Object obj = arg;
4690 #ifdef GC_CHECK_MARKED_OBJECTS
4691 void *po;
4692 struct mem_node *m;
4693 #endif
4694 int cdr_count = 0;
4696 loop:
4697 XUNMARK (obj);
4699 if (PURE_POINTER_P (XPNTR (obj)))
4700 return;
4702 last_marked[last_marked_index++] = obj;
4703 if (last_marked_index == LAST_MARKED_SIZE)
4704 last_marked_index = 0;
4706 /* Perform some sanity checks on the objects marked here. Abort if
4707 we encounter an object we know is bogus. This increases GC time
4708 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
4709 #ifdef GC_CHECK_MARKED_OBJECTS
4711 po = (void *) XPNTR (obj);
4713 /* Check that the object pointed to by PO is known to be a Lisp
4714 structure allocated from the heap. */
4715 #define CHECK_ALLOCATED() \
4716 do { \
4717 m = mem_find (po); \
4718 if (m == MEM_NIL) \
4719 abort (); \
4720 } while (0)
4722 /* Check that the object pointed to by PO is live, using predicate
4723 function LIVEP. */
4724 #define CHECK_LIVE(LIVEP) \
4725 do { \
4726 if (!LIVEP (m, po)) \
4727 abort (); \
4728 } while (0)
4730 /* Check both of the above conditions. */
4731 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
4732 do { \
4733 CHECK_ALLOCATED (); \
4734 CHECK_LIVE (LIVEP); \
4735 } while (0) \
4737 #else /* not GC_CHECK_MARKED_OBJECTS */
4739 #define CHECK_ALLOCATED() (void) 0
4740 #define CHECK_LIVE(LIVEP) (void) 0
4741 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
4743 #endif /* not GC_CHECK_MARKED_OBJECTS */
4745 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
4747 case Lisp_String:
4749 register struct Lisp_String *ptr = XSTRING (obj);
4750 CHECK_ALLOCATED_AND_LIVE (live_string_p);
4751 MARK_INTERVAL_TREE (ptr->intervals);
4752 MARK_STRING (ptr);
4753 #ifdef GC_CHECK_STRING_BYTES
4754 /* Check that the string size recorded in the string is the
4755 same as the one recorded in the sdata structure. */
4756 CHECK_STRING_BYTES (ptr);
4757 #endif /* GC_CHECK_STRING_BYTES */
4759 break;
4761 case Lisp_Vectorlike:
4762 #ifdef GC_CHECK_MARKED_OBJECTS
4763 m = mem_find (po);
4764 if (m == MEM_NIL && !GC_SUBRP (obj)
4765 && po != &buffer_defaults
4766 && po != &buffer_local_symbols)
4767 abort ();
4768 #endif /* GC_CHECK_MARKED_OBJECTS */
4770 if (GC_BUFFERP (obj))
4772 if (!VECTOR_MARKED_P (XBUFFER (obj)))
4774 #ifdef GC_CHECK_MARKED_OBJECTS
4775 if (po != &buffer_defaults && po != &buffer_local_symbols)
4777 struct buffer *b;
4778 for (b = all_buffers; b && b != po; b = b->next)
4780 if (b == NULL)
4781 abort ();
4783 #endif /* GC_CHECK_MARKED_OBJECTS */
4784 mark_buffer (obj);
4787 else if (GC_SUBRP (obj))
4788 break;
4789 else if (GC_COMPILEDP (obj))
4790 /* We could treat this just like a vector, but it is better to
4791 save the COMPILED_CONSTANTS element for last and avoid
4792 recursion there. */
4794 register struct Lisp_Vector *ptr = XVECTOR (obj);
4795 register EMACS_INT size = ptr->size;
4796 register int i;
4798 if (VECTOR_MARKED_P (ptr))
4799 break; /* Already marked */
4801 CHECK_LIVE (live_vector_p);
4802 VECTOR_MARK (ptr); /* Else mark it */
4803 size &= PSEUDOVECTOR_SIZE_MASK;
4804 for (i = 0; i < size; i++) /* and then mark its elements */
4806 if (i != COMPILED_CONSTANTS)
4807 mark_object (ptr->contents[i]);
4809 obj = ptr->contents[COMPILED_CONSTANTS];
4810 goto loop;
4812 else if (GC_FRAMEP (obj))
4814 register struct frame *ptr = XFRAME (obj);
4816 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4817 VECTOR_MARK (ptr); /* Else mark it */
4819 CHECK_LIVE (live_vector_p);
4820 mark_object (ptr->name);
4821 mark_object (ptr->icon_name);
4822 mark_object (ptr->title);
4823 mark_object (ptr->focus_frame);
4824 mark_object (ptr->selected_window);
4825 mark_object (ptr->minibuffer_window);
4826 mark_object (ptr->param_alist);
4827 mark_object (ptr->scroll_bars);
4828 mark_object (ptr->condemned_scroll_bars);
4829 mark_object (ptr->menu_bar_items);
4830 mark_object (ptr->face_alist);
4831 mark_object (ptr->menu_bar_vector);
4832 mark_object (ptr->buffer_predicate);
4833 mark_object (ptr->buffer_list);
4834 mark_object (ptr->menu_bar_window);
4835 mark_object (ptr->tool_bar_window);
4836 mark_face_cache (ptr->face_cache);
4837 #ifdef HAVE_WINDOW_SYSTEM
4838 mark_image_cache (ptr);
4839 mark_object (ptr->tool_bar_items);
4840 mark_object (ptr->desired_tool_bar_string);
4841 mark_object (ptr->current_tool_bar_string);
4842 #endif /* HAVE_WINDOW_SYSTEM */
4844 else if (GC_BOOL_VECTOR_P (obj))
4846 register struct Lisp_Vector *ptr = XVECTOR (obj);
4848 if (VECTOR_MARKED_P (ptr))
4849 break; /* Already marked */
4850 CHECK_LIVE (live_vector_p);
4851 VECTOR_MARK (ptr); /* Else mark it */
4853 else if (GC_WINDOWP (obj))
4855 register struct Lisp_Vector *ptr = XVECTOR (obj);
4856 struct window *w = XWINDOW (obj);
4857 register int i;
4859 /* Stop if already marked. */
4860 if (VECTOR_MARKED_P (ptr))
4861 break;
4863 /* Mark it. */
4864 CHECK_LIVE (live_vector_p);
4865 VECTOR_MARK (ptr);
4867 /* There is no Lisp data above The member CURRENT_MATRIX in
4868 struct WINDOW. Stop marking when that slot is reached. */
4869 for (i = 0;
4870 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
4871 i++)
4872 mark_object (ptr->contents[i]);
4874 /* Mark glyphs for leaf windows. Marking window matrices is
4875 sufficient because frame matrices use the same glyph
4876 memory. */
4877 if (NILP (w->hchild)
4878 && NILP (w->vchild)
4879 && w->current_matrix)
4881 mark_glyph_matrix (w->current_matrix);
4882 mark_glyph_matrix (w->desired_matrix);
4885 else if (GC_HASH_TABLE_P (obj))
4887 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
4889 /* Stop if already marked. */
4890 if (VECTOR_MARKED_P (h))
4891 break;
4893 /* Mark it. */
4894 CHECK_LIVE (live_vector_p);
4895 VECTOR_MARK (h);
4897 /* Mark contents. */
4898 /* Do not mark next_free or next_weak.
4899 Being in the next_weak chain
4900 should not keep the hash table alive.
4901 No need to mark `count' since it is an integer. */
4902 mark_object (h->test);
4903 mark_object (h->weak);
4904 mark_object (h->rehash_size);
4905 mark_object (h->rehash_threshold);
4906 mark_object (h->hash);
4907 mark_object (h->next);
4908 mark_object (h->index);
4909 mark_object (h->user_hash_function);
4910 mark_object (h->user_cmp_function);
4912 /* If hash table is not weak, mark all keys and values.
4913 For weak tables, mark only the vector. */
4914 if (GC_NILP (h->weak))
4915 mark_object (h->key_and_value);
4916 else
4917 VECTOR_MARK (XVECTOR (h->key_and_value));
4919 else
4921 register struct Lisp_Vector *ptr = XVECTOR (obj);
4922 register EMACS_INT size = ptr->size;
4923 register int i;
4925 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4926 CHECK_LIVE (live_vector_p);
4927 VECTOR_MARK (ptr); /* Else mark it */
4928 if (size & PSEUDOVECTOR_FLAG)
4929 size &= PSEUDOVECTOR_SIZE_MASK;
4931 for (i = 0; i < size; i++) /* and then mark its elements */
4932 mark_object (ptr->contents[i]);
4934 break;
4936 case Lisp_Symbol:
4938 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
4939 struct Lisp_Symbol *ptrx;
4941 if (ptr->gcmarkbit) break;
4942 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
4943 ptr->gcmarkbit = 1;
4944 mark_object (ptr->value);
4945 mark_object (ptr->function);
4946 mark_object (ptr->plist);
4948 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
4949 MARK_STRING (XSTRING (ptr->xname));
4950 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
4952 /* Note that we do not mark the obarray of the symbol.
4953 It is safe not to do so because nothing accesses that
4954 slot except to check whether it is nil. */
4955 ptr = ptr->next;
4956 if (ptr)
4958 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
4959 XSETSYMBOL (obj, ptrx);
4960 goto loop;
4963 break;
4965 case Lisp_Misc:
4966 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
4967 if (XMARKER (obj)->gcmarkbit)
4968 break;
4969 XMARKER (obj)->gcmarkbit = 1;
4970 switch (XMISCTYPE (obj))
4972 case Lisp_Misc_Buffer_Local_Value:
4973 case Lisp_Misc_Some_Buffer_Local_Value:
4975 register struct Lisp_Buffer_Local_Value *ptr
4976 = XBUFFER_LOCAL_VALUE (obj);
4977 /* If the cdr is nil, avoid recursion for the car. */
4978 if (EQ (ptr->cdr, Qnil))
4980 obj = ptr->realvalue;
4981 goto loop;
4983 mark_object (ptr->realvalue);
4984 mark_object (ptr->buffer);
4985 mark_object (ptr->frame);
4986 obj = ptr->cdr;
4987 goto loop;
4990 case Lisp_Misc_Marker:
4991 /* DO NOT mark thru the marker's chain.
4992 The buffer's markers chain does not preserve markers from gc;
4993 instead, markers are removed from the chain when freed by gc. */
4994 case Lisp_Misc_Intfwd:
4995 case Lisp_Misc_Boolfwd:
4996 case Lisp_Misc_Objfwd:
4997 case Lisp_Misc_Buffer_Objfwd:
4998 case Lisp_Misc_Kboard_Objfwd:
4999 /* Don't bother with Lisp_Buffer_Objfwd,
5000 since all markable slots in current buffer marked anyway. */
5001 /* Don't need to do Lisp_Objfwd, since the places they point
5002 are protected with staticpro. */
5003 break;
5005 case Lisp_Misc_Overlay:
5007 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5008 mark_object (ptr->start);
5009 mark_object (ptr->end);
5010 mark_object (ptr->plist);
5011 if (ptr->next)
5013 XSETMISC (obj, ptr->next);
5014 goto loop;
5017 break;
5019 default:
5020 abort ();
5022 break;
5024 case Lisp_Cons:
5026 register struct Lisp_Cons *ptr = XCONS (obj);
5027 if (XMARKBIT (ptr->car)) break;
5028 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5029 XMARK (ptr->car);
5030 /* If the cdr is nil, avoid recursion for the car. */
5031 if (EQ (ptr->cdr, Qnil))
5033 obj = ptr->car;
5034 cdr_count = 0;
5035 goto loop;
5037 mark_object (ptr->car);
5038 obj = ptr->cdr;
5039 cdr_count++;
5040 if (cdr_count == mark_object_loop_halt)
5041 abort ();
5042 goto loop;
5045 case Lisp_Float:
5046 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5047 FLOAT_MARK (XFLOAT (obj));
5048 break;
5050 case Lisp_Int:
5051 break;
5053 default:
5054 abort ();
5057 #undef CHECK_LIVE
5058 #undef CHECK_ALLOCATED
5059 #undef CHECK_ALLOCATED_AND_LIVE
5062 /* Mark the pointers in a buffer structure. */
5064 static void
5065 mark_buffer (buf)
5066 Lisp_Object buf;
5068 register struct buffer *buffer = XBUFFER (buf);
5069 register Lisp_Object *ptr, tmp;
5070 Lisp_Object base_buffer;
5072 VECTOR_MARK (buffer);
5074 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5076 if (CONSP (buffer->undo_list))
5078 Lisp_Object tail;
5079 tail = buffer->undo_list;
5081 /* We mark the undo list specially because
5082 its pointers to markers should be weak. */
5084 while (CONSP (tail))
5086 register struct Lisp_Cons *ptr = XCONS (tail);
5088 if (XMARKBIT (ptr->car))
5089 break;
5090 XMARK (ptr->car);
5091 if (GC_CONSP (ptr->car)
5092 && ! XMARKBIT (XCAR (ptr->car))
5093 && GC_MARKERP (XCAR (ptr->car)))
5095 XMARK (XCAR_AS_LVALUE (ptr->car));
5096 mark_object (XCDR (ptr->car));
5098 else
5099 mark_object (ptr->car);
5101 if (CONSP (ptr->cdr))
5102 tail = ptr->cdr;
5103 else
5104 break;
5107 mark_object (XCDR (tail));
5109 else
5110 mark_object (buffer->undo_list);
5112 if (buffer->overlays_before)
5114 XSETMISC (tmp, buffer->overlays_before);
5115 mark_object (tmp);
5117 if (buffer->overlays_after)
5119 XSETMISC (tmp, buffer->overlays_after);
5120 mark_object (tmp);
5123 for (ptr = &buffer->name;
5124 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5125 ptr++)
5126 mark_object (*ptr);
5128 /* If this is an indirect buffer, mark its base buffer. */
5129 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5131 XSETBUFFER (base_buffer, buffer->base_buffer);
5132 mark_buffer (base_buffer);
5137 /* Value is non-zero if OBJ will survive the current GC because it's
5138 either marked or does not need to be marked to survive. */
5141 survives_gc_p (obj)
5142 Lisp_Object obj;
5144 int survives_p;
5146 switch (XGCTYPE (obj))
5148 case Lisp_Int:
5149 survives_p = 1;
5150 break;
5152 case Lisp_Symbol:
5153 survives_p = XSYMBOL (obj)->gcmarkbit;
5154 break;
5156 case Lisp_Misc:
5157 survives_p = XMARKER (obj)->gcmarkbit;
5158 break;
5160 case Lisp_String:
5162 struct Lisp_String *s = XSTRING (obj);
5163 survives_p = STRING_MARKED_P (s);
5165 break;
5167 case Lisp_Vectorlike:
5168 if (GC_BUFFERP (obj))
5169 survives_p = VECTOR_MARKED_P (XBUFFER (obj));
5170 else if (GC_SUBRP (obj))
5171 survives_p = 1;
5172 else
5173 survives_p = VECTOR_MARKED_P (XVECTOR (obj));
5174 break;
5176 case Lisp_Cons:
5177 survives_p = XMARKBIT (XCAR (obj));
5178 break;
5180 case Lisp_Float:
5181 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5182 break;
5184 default:
5185 abort ();
5188 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5193 /* Sweep: find all structures not marked, and free them. */
5195 static void
5196 gc_sweep ()
5198 /* Remove or mark entries in weak hash tables.
5199 This must be done before any object is unmarked. */
5200 sweep_weak_hash_tables ();
5202 sweep_strings ();
5203 #ifdef GC_CHECK_STRING_BYTES
5204 if (!noninteractive)
5205 check_string_bytes (1);
5206 #endif
5208 /* Put all unmarked conses on free list */
5210 register struct cons_block *cblk;
5211 struct cons_block **cprev = &cons_block;
5212 register int lim = cons_block_index;
5213 register int num_free = 0, num_used = 0;
5215 cons_free_list = 0;
5217 for (cblk = cons_block; cblk; cblk = *cprev)
5219 register int i;
5220 int this_free = 0;
5221 for (i = 0; i < lim; i++)
5222 if (!XMARKBIT (cblk->conses[i].car))
5224 this_free++;
5225 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
5226 cons_free_list = &cblk->conses[i];
5227 #if GC_MARK_STACK
5228 cons_free_list->car = Vdead;
5229 #endif
5231 else
5233 num_used++;
5234 XUNMARK (cblk->conses[i].car);
5236 lim = CONS_BLOCK_SIZE;
5237 /* If this block contains only free conses and we have already
5238 seen more than two blocks worth of free conses then deallocate
5239 this block. */
5240 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5242 *cprev = cblk->next;
5243 /* Unhook from the free list. */
5244 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
5245 lisp_free (cblk);
5246 n_cons_blocks--;
5248 else
5250 num_free += this_free;
5251 cprev = &cblk->next;
5254 total_conses = num_used;
5255 total_free_conses = num_free;
5258 /* Put all unmarked floats on free list */
5260 register struct float_block *fblk;
5261 struct float_block **fprev = &float_block;
5262 register int lim = float_block_index;
5263 register int num_free = 0, num_used = 0;
5265 float_free_list = 0;
5267 for (fblk = float_block; fblk; fblk = *fprev)
5269 register int i;
5270 int this_free = 0;
5271 for (i = 0; i < lim; i++)
5272 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5274 this_free++;
5275 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5276 float_free_list = &fblk->floats[i];
5278 else
5280 num_used++;
5281 FLOAT_UNMARK (&fblk->floats[i]);
5283 lim = FLOAT_BLOCK_SIZE;
5284 /* If this block contains only free floats and we have already
5285 seen more than two blocks worth of free floats then deallocate
5286 this block. */
5287 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5289 *fprev = fblk->next;
5290 /* Unhook from the free list. */
5291 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5292 lisp_align_free (fblk);
5293 n_float_blocks--;
5295 else
5297 num_free += this_free;
5298 fprev = &fblk->next;
5301 total_floats = num_used;
5302 total_free_floats = num_free;
5305 /* Put all unmarked intervals on free list */
5307 register struct interval_block *iblk;
5308 struct interval_block **iprev = &interval_block;
5309 register int lim = interval_block_index;
5310 register int num_free = 0, num_used = 0;
5312 interval_free_list = 0;
5314 for (iblk = interval_block; iblk; iblk = *iprev)
5316 register int i;
5317 int this_free = 0;
5319 for (i = 0; i < lim; i++)
5321 if (!iblk->intervals[i].gcmarkbit)
5323 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5324 interval_free_list = &iblk->intervals[i];
5325 this_free++;
5327 else
5329 num_used++;
5330 iblk->intervals[i].gcmarkbit = 0;
5333 lim = INTERVAL_BLOCK_SIZE;
5334 /* If this block contains only free intervals and we have already
5335 seen more than two blocks worth of free intervals then
5336 deallocate this block. */
5337 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5339 *iprev = iblk->next;
5340 /* Unhook from the free list. */
5341 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5342 lisp_free (iblk);
5343 n_interval_blocks--;
5345 else
5347 num_free += this_free;
5348 iprev = &iblk->next;
5351 total_intervals = num_used;
5352 total_free_intervals = num_free;
5355 /* Put all unmarked symbols on free list */
5357 register struct symbol_block *sblk;
5358 struct symbol_block **sprev = &symbol_block;
5359 register int lim = symbol_block_index;
5360 register int num_free = 0, num_used = 0;
5362 symbol_free_list = NULL;
5364 for (sblk = symbol_block; sblk; sblk = *sprev)
5366 int this_free = 0;
5367 struct Lisp_Symbol *sym = sblk->symbols;
5368 struct Lisp_Symbol *end = sym + lim;
5370 for (; sym < end; ++sym)
5372 /* Check if the symbol was created during loadup. In such a case
5373 it might be pointed to by pure bytecode which we don't trace,
5374 so we conservatively assume that it is live. */
5375 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5377 if (!sym->gcmarkbit && !pure_p)
5379 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5380 symbol_free_list = sym;
5381 #if GC_MARK_STACK
5382 symbol_free_list->function = Vdead;
5383 #endif
5384 ++this_free;
5386 else
5388 ++num_used;
5389 if (!pure_p)
5390 UNMARK_STRING (XSTRING (sym->xname));
5391 sym->gcmarkbit = 0;
5395 lim = SYMBOL_BLOCK_SIZE;
5396 /* If this block contains only free symbols and we have already
5397 seen more than two blocks worth of free symbols then deallocate
5398 this block. */
5399 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5401 *sprev = sblk->next;
5402 /* Unhook from the free list. */
5403 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5404 lisp_free (sblk);
5405 n_symbol_blocks--;
5407 else
5409 num_free += this_free;
5410 sprev = &sblk->next;
5413 total_symbols = num_used;
5414 total_free_symbols = num_free;
5417 /* Put all unmarked misc's on free list.
5418 For a marker, first unchain it from the buffer it points into. */
5420 register struct marker_block *mblk;
5421 struct marker_block **mprev = &marker_block;
5422 register int lim = marker_block_index;
5423 register int num_free = 0, num_used = 0;
5425 marker_free_list = 0;
5427 for (mblk = marker_block; mblk; mblk = *mprev)
5429 register int i;
5430 int this_free = 0;
5432 for (i = 0; i < lim; i++)
5434 if (!mblk->markers[i].u_marker.gcmarkbit)
5436 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5437 unchain_marker (&mblk->markers[i].u_marker);
5438 /* Set the type of the freed object to Lisp_Misc_Free.
5439 We could leave the type alone, since nobody checks it,
5440 but this might catch bugs faster. */
5441 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5442 mblk->markers[i].u_free.chain = marker_free_list;
5443 marker_free_list = &mblk->markers[i];
5444 this_free++;
5446 else
5448 num_used++;
5449 mblk->markers[i].u_marker.gcmarkbit = 0;
5452 lim = MARKER_BLOCK_SIZE;
5453 /* If this block contains only free markers and we have already
5454 seen more than two blocks worth of free markers then deallocate
5455 this block. */
5456 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5458 *mprev = mblk->next;
5459 /* Unhook from the free list. */
5460 marker_free_list = mblk->markers[0].u_free.chain;
5461 lisp_free (mblk);
5462 n_marker_blocks--;
5464 else
5466 num_free += this_free;
5467 mprev = &mblk->next;
5471 total_markers = num_used;
5472 total_free_markers = num_free;
5475 /* Free all unmarked buffers */
5477 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5479 while (buffer)
5480 if (!VECTOR_MARKED_P (buffer))
5482 if (prev)
5483 prev->next = buffer->next;
5484 else
5485 all_buffers = buffer->next;
5486 next = buffer->next;
5487 lisp_free (buffer);
5488 buffer = next;
5490 else
5492 VECTOR_UNMARK (buffer);
5493 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5494 prev = buffer, buffer = buffer->next;
5498 /* Free all unmarked vectors */
5500 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5501 total_vector_size = 0;
5503 while (vector)
5504 if (!VECTOR_MARKED_P (vector))
5506 if (prev)
5507 prev->next = vector->next;
5508 else
5509 all_vectors = vector->next;
5510 next = vector->next;
5511 lisp_free (vector);
5512 n_vectors--;
5513 vector = next;
5516 else
5518 VECTOR_UNMARK (vector);
5519 if (vector->size & PSEUDOVECTOR_FLAG)
5520 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5521 else
5522 total_vector_size += vector->size;
5523 prev = vector, vector = vector->next;
5527 #ifdef GC_CHECK_STRING_BYTES
5528 if (!noninteractive)
5529 check_string_bytes (1);
5530 #endif
5536 /* Debugging aids. */
5538 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5539 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5540 This may be helpful in debugging Emacs's memory usage.
5541 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5544 Lisp_Object end;
5546 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5548 return end;
5551 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5552 doc: /* Return a list of counters that measure how much consing there has been.
5553 Each of these counters increments for a certain kind of object.
5554 The counters wrap around from the largest positive integer to zero.
5555 Garbage collection does not decrease them.
5556 The elements of the value are as follows:
5557 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5558 All are in units of 1 = one object consed
5559 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5560 objects consed.
5561 MISCS include overlays, markers, and some internal types.
5562 Frames, windows, buffers, and subprocesses count as vectors
5563 (but the contents of a buffer's text do not count here). */)
5566 Lisp_Object consed[8];
5568 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5569 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5570 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5571 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5572 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5573 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5574 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5575 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
5577 return Flist (8, consed);
5580 int suppress_checking;
5581 void
5582 die (msg, file, line)
5583 const char *msg;
5584 const char *file;
5585 int line;
5587 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5588 file, line, msg);
5589 abort ();
5592 /* Initialization */
5594 void
5595 init_alloc_once ()
5597 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5598 purebeg = PUREBEG;
5599 pure_size = PURESIZE;
5600 pure_bytes_used = 0;
5601 pure_bytes_used_before_overflow = 0;
5603 /* Initialize the list of free aligned blocks. */
5604 free_ablock = NULL;
5606 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5607 mem_init ();
5608 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5609 #endif
5611 all_vectors = 0;
5612 ignore_warnings = 1;
5613 #ifdef DOUG_LEA_MALLOC
5614 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5615 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
5616 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
5617 #endif
5618 init_strings ();
5619 init_cons ();
5620 init_symbol ();
5621 init_marker ();
5622 init_float ();
5623 init_intervals ();
5625 #ifdef REL_ALLOC
5626 malloc_hysteresis = 32;
5627 #else
5628 malloc_hysteresis = 0;
5629 #endif
5631 spare_memory = (char *) malloc (SPARE_MEMORY);
5633 ignore_warnings = 0;
5634 gcprolist = 0;
5635 byte_stack_list = 0;
5636 staticidx = 0;
5637 consing_since_gc = 0;
5638 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
5639 #ifdef VIRT_ADDR_VARIES
5640 malloc_sbrk_unused = 1<<22; /* A large number */
5641 malloc_sbrk_used = 100000; /* as reasonable as any number */
5642 #endif /* VIRT_ADDR_VARIES */
5645 void
5646 init_alloc ()
5648 gcprolist = 0;
5649 byte_stack_list = 0;
5650 #if GC_MARK_STACK
5651 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5652 setjmp_tested_p = longjmps_done = 0;
5653 #endif
5654 #endif
5655 Vgc_elapsed = make_float (0.0);
5656 gcs_done = 0;
5659 void
5660 syms_of_alloc ()
5662 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
5663 doc: /* *Number of bytes of consing between garbage collections.
5664 Garbage collection can happen automatically once this many bytes have been
5665 allocated since the last garbage collection. All data types count.
5667 Garbage collection happens automatically only when `eval' is called.
5669 By binding this temporarily to a large number, you can effectively
5670 prevent garbage collection during a part of the program. */);
5672 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
5673 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
5675 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
5676 doc: /* Number of cons cells that have been consed so far. */);
5678 DEFVAR_INT ("floats-consed", &floats_consed,
5679 doc: /* Number of floats that have been consed so far. */);
5681 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
5682 doc: /* Number of vector cells that have been consed so far. */);
5684 DEFVAR_INT ("symbols-consed", &symbols_consed,
5685 doc: /* Number of symbols that have been consed so far. */);
5687 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
5688 doc: /* Number of string characters that have been consed so far. */);
5690 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
5691 doc: /* Number of miscellaneous objects that have been consed so far. */);
5693 DEFVAR_INT ("intervals-consed", &intervals_consed,
5694 doc: /* Number of intervals that have been consed so far. */);
5696 DEFVAR_INT ("strings-consed", &strings_consed,
5697 doc: /* Number of strings that have been consed so far. */);
5699 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
5700 doc: /* Non-nil means loading Lisp code in order to dump an executable.
5701 This means that certain objects should be allocated in shared (pure) space. */);
5703 DEFVAR_INT ("undo-limit", &undo_limit,
5704 doc: /* Keep no more undo information once it exceeds this size.
5705 This limit is applied when garbage collection happens.
5706 The size is counted as the number of bytes occupied,
5707 which includes both saved text and other data. */);
5708 undo_limit = 20000;
5710 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
5711 doc: /* Don't keep more than this much size of undo information.
5712 A command which pushes past this size is itself forgotten.
5713 This limit is applied when garbage collection happens.
5714 The size is counted as the number of bytes occupied,
5715 which includes both saved text and other data. */);
5716 undo_strong_limit = 30000;
5718 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
5719 doc: /* Non-nil means display messages at start and end of garbage collection. */);
5720 garbage_collection_messages = 0;
5722 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
5723 doc: /* Hook run after garbage collection has finished. */);
5724 Vpost_gc_hook = Qnil;
5725 Qpost_gc_hook = intern ("post-gc-hook");
5726 staticpro (&Qpost_gc_hook);
5728 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
5729 doc: /* Precomputed `signal' argument for memory-full error. */);
5730 /* We build this in advance because if we wait until we need it, we might
5731 not be able to allocate the memory to hold it. */
5732 Vmemory_signal_data
5733 = list2 (Qerror,
5734 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
5736 DEFVAR_LISP ("memory-full", &Vmemory_full,
5737 doc: /* Non-nil means we are handling a memory-full error. */);
5738 Vmemory_full = Qnil;
5740 staticpro (&Qgc_cons_threshold);
5741 Qgc_cons_threshold = intern ("gc-cons-threshold");
5743 staticpro (&Qchar_table_extra_slots);
5744 Qchar_table_extra_slots = intern ("char-table-extra-slots");
5746 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
5747 doc: /* Accumulated time elapsed in garbage collections.
5748 The time is in seconds as a floating point value.
5749 Programs may reset this to get statistics in a specific period. */);
5750 DEFVAR_INT ("gcs-done", &gcs_done,
5751 doc: /* Accumulated number of garbage collections done.
5752 Programs may reset this to get statistics in a specific period. */);
5754 defsubr (&Scons);
5755 defsubr (&Slist);
5756 defsubr (&Svector);
5757 defsubr (&Smake_byte_code);
5758 defsubr (&Smake_list);
5759 defsubr (&Smake_vector);
5760 defsubr (&Smake_char_table);
5761 defsubr (&Smake_string);
5762 defsubr (&Smake_bool_vector);
5763 defsubr (&Smake_symbol);
5764 defsubr (&Smake_marker);
5765 defsubr (&Spurecopy);
5766 defsubr (&Sgarbage_collect);
5767 defsubr (&Smemory_limit);
5768 defsubr (&Smemory_use_counts);
5770 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5771 defsubr (&Sgc_status);
5772 #endif