1 /* Code for doing intervals.
2 Copyright (C) 1993, 1994, 1995, 1997, 1998, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
25 Have to ensure that we can't put symbol nil on a plist, or some
26 functions may work incorrectly.
28 An idea: Have the owner of the tree keep count of splits and/or
29 insertion lengths (in intervals), and balance after every N.
31 Need to call *_left_hook when buffer is killed.
33 Scan for zero-length, or 0-length to see notes about handling
34 zero length interval-markers.
36 There are comments around about freeing intervals. It might be
37 faster to explicitly free them (put them on the free list) than
45 #include "intervals.h"
51 /* Test for membership, allowing for t (actually any non-cons) to mean the
54 #define TMEM(sym, set) (CONSP (set) ? ! NILP (Fmemq (sym, set)) : ! NILP (set))
56 Lisp_Object
merge_properties_sticky ();
57 static INTERVAL reproduce_tree
P_ ((INTERVAL
, INTERVAL
));
58 static INTERVAL reproduce_tree_obj
P_ ((INTERVAL
, Lisp_Object
));
60 /* Utility functions for intervals. */
63 /* Create the root interval of some object, a buffer or string. */
66 create_root_interval (parent
)
71 CHECK_IMPURE (parent
);
73 new = make_interval ();
77 new->total_length
= (BUF_Z (XBUFFER (parent
))
78 - BUF_BEG (XBUFFER (parent
)));
79 CHECK_TOTAL_LENGTH (new);
80 BUF_INTERVALS (XBUFFER (parent
)) = new;
83 else if (STRINGP (parent
))
85 new->total_length
= SCHARS (parent
);
86 CHECK_TOTAL_LENGTH (new);
87 STRING_SET_INTERVALS (parent
, new);
91 SET_INTERVAL_OBJECT (new, parent
);
96 /* Make the interval TARGET have exactly the properties of SOURCE */
99 copy_properties (source
, target
)
100 register INTERVAL source
, target
;
102 if (DEFAULT_INTERVAL_P (source
) && DEFAULT_INTERVAL_P (target
))
105 COPY_INTERVAL_CACHE (source
, target
);
106 target
->plist
= Fcopy_sequence (source
->plist
);
109 /* Merge the properties of interval SOURCE into the properties
110 of interval TARGET. That is to say, each property in SOURCE
111 is added to TARGET if TARGET has no such property as yet. */
114 merge_properties (source
, target
)
115 register INTERVAL source
, target
;
117 register Lisp_Object o
, sym
, val
;
119 if (DEFAULT_INTERVAL_P (source
) && DEFAULT_INTERVAL_P (target
))
122 MERGE_INTERVAL_CACHE (source
, target
);
132 while (CONSP (val
) && !EQ (XCAR (val
), sym
))
143 target
->plist
= Fcons (sym
, Fcons (val
, target
->plist
));
149 /* Return 1 if the two intervals have the same properties,
153 intervals_equal (i0
, i1
)
156 register Lisp_Object i0_cdr
, i0_sym
;
157 register Lisp_Object i1_cdr
, i1_val
;
159 if (DEFAULT_INTERVAL_P (i0
) && DEFAULT_INTERVAL_P (i1
))
162 if (DEFAULT_INTERVAL_P (i0
) || DEFAULT_INTERVAL_P (i1
))
167 while (CONSP (i0_cdr
) && CONSP (i1_cdr
))
169 i0_sym
= XCAR (i0_cdr
);
170 i0_cdr
= XCDR (i0_cdr
);
172 return 0; /* abort (); */
174 while (CONSP (i1_val
) && !EQ (XCAR (i1_val
), i0_sym
))
176 i1_val
= XCDR (i1_val
);
178 return 0; /* abort (); */
179 i1_val
= XCDR (i1_val
);
182 /* i0 has something i1 doesn't. */
183 if (EQ (i1_val
, Qnil
))
186 /* i0 and i1 both have sym, but it has different values in each. */
188 || (i1_val
= XCDR (i1_val
), !CONSP (i1_val
))
189 || !EQ (XCAR (i1_val
), XCAR (i0_cdr
)))
192 i0_cdr
= XCDR (i0_cdr
);
194 i1_cdr
= XCDR (i1_cdr
);
196 return 0; /* abort (); */
197 i1_cdr
= XCDR (i1_cdr
);
200 /* Lengths of the two plists were equal. */
201 return (NILP (i0_cdr
) && NILP (i1_cdr
));
205 /* Traverse an interval tree TREE, performing FUNCTION on each node.
206 No guarantee is made about the order of traversal.
207 Pass FUNCTION two args: an interval, and ARG. */
210 traverse_intervals_noorder (tree
, function
, arg
)
212 void (* function
) P_ ((INTERVAL
, Lisp_Object
));
215 /* Minimize stack usage. */
216 while (!NULL_INTERVAL_P (tree
))
218 (*function
) (tree
, arg
);
219 if (NULL_INTERVAL_P (tree
->right
))
223 traverse_intervals_noorder (tree
->left
, function
, arg
);
229 /* Traverse an interval tree TREE, performing FUNCTION on each node.
230 Pass FUNCTION two args: an interval, and ARG. */
233 traverse_intervals (tree
, position
, function
, arg
)
236 void (* function
) P_ ((INTERVAL
, Lisp_Object
));
239 while (!NULL_INTERVAL_P (tree
))
241 traverse_intervals (tree
->left
, position
, function
, arg
);
242 position
+= LEFT_TOTAL_LENGTH (tree
);
243 tree
->position
= position
;
244 (*function
) (tree
, arg
);
245 position
+= LENGTH (tree
); tree
= tree
->right
;
253 static int zero_length
;
255 /* These functions are temporary, for debugging purposes only. */
257 INTERVAL search_interval
, found_interval
;
260 check_for_interval (i
)
263 if (i
== search_interval
)
271 search_for_interval (i
, tree
)
272 register INTERVAL i
, tree
;
276 found_interval
= NULL_INTERVAL
;
277 traverse_intervals_noorder (tree
, &check_for_interval
, Qnil
);
278 return found_interval
;
282 inc_interval_count (i
)
299 traverse_intervals_noorder (i
, &inc_interval_count
, Qnil
);
305 root_interval (interval
)
308 register INTERVAL i
= interval
;
310 while (! ROOT_INTERVAL_P (i
))
311 i
= INTERVAL_PARENT (i
);
317 /* Assuming that a left child exists, perform the following operation:
326 static INLINE INTERVAL
327 rotate_right (interval
)
331 INTERVAL B
= interval
->left
;
332 int old_total
= interval
->total_length
;
334 /* Deal with any Parent of A; make it point to B. */
335 if (! ROOT_INTERVAL_P (interval
))
337 if (AM_LEFT_CHILD (interval
))
338 INTERVAL_PARENT (interval
)->left
= B
;
340 INTERVAL_PARENT (interval
)->right
= B
;
342 COPY_INTERVAL_PARENT (B
, interval
);
344 /* Make B the parent of A */
347 SET_INTERVAL_PARENT (interval
, B
);
349 /* Make A point to c */
351 if (! NULL_INTERVAL_P (i
))
352 SET_INTERVAL_PARENT (i
, interval
);
354 /* A's total length is decreased by the length of B and its left child. */
355 interval
->total_length
-= B
->total_length
- LEFT_TOTAL_LENGTH (interval
);
356 CHECK_TOTAL_LENGTH (interval
);
358 /* B must have the same total length of A. */
359 B
->total_length
= old_total
;
360 CHECK_TOTAL_LENGTH (B
);
365 /* Assuming that a right child exists, perform the following operation:
374 static INLINE INTERVAL
375 rotate_left (interval
)
379 INTERVAL B
= interval
->right
;
380 int old_total
= interval
->total_length
;
382 /* Deal with any parent of A; make it point to B. */
383 if (! ROOT_INTERVAL_P (interval
))
385 if (AM_LEFT_CHILD (interval
))
386 INTERVAL_PARENT (interval
)->left
= B
;
388 INTERVAL_PARENT (interval
)->right
= B
;
390 COPY_INTERVAL_PARENT (B
, interval
);
392 /* Make B the parent of A */
395 SET_INTERVAL_PARENT (interval
, B
);
397 /* Make A point to c */
399 if (! NULL_INTERVAL_P (i
))
400 SET_INTERVAL_PARENT (i
, interval
);
402 /* A's total length is decreased by the length of B and its right child. */
403 interval
->total_length
-= B
->total_length
- RIGHT_TOTAL_LENGTH (interval
);
404 CHECK_TOTAL_LENGTH (interval
);
406 /* B must have the same total length of A. */
407 B
->total_length
= old_total
;
408 CHECK_TOTAL_LENGTH (B
);
413 /* Balance an interval tree with the assumption that the subtrees
414 themselves are already balanced. */
417 balance_an_interval (i
)
420 register int old_diff
, new_diff
;
424 old_diff
= LEFT_TOTAL_LENGTH (i
) - RIGHT_TOTAL_LENGTH (i
);
427 /* Since the left child is longer, there must be one. */
428 new_diff
= i
->total_length
- i
->left
->total_length
429 + RIGHT_TOTAL_LENGTH (i
->left
) - LEFT_TOTAL_LENGTH (i
->left
);
430 if (eabs (new_diff
) >= old_diff
)
432 i
= rotate_right (i
);
433 balance_an_interval (i
->right
);
435 else if (old_diff
< 0)
437 /* Since the right child is longer, there must be one. */
438 new_diff
= i
->total_length
- i
->right
->total_length
439 + LEFT_TOTAL_LENGTH (i
->right
) - RIGHT_TOTAL_LENGTH (i
->right
);
440 if (eabs (new_diff
) >= -old_diff
)
443 balance_an_interval (i
->left
);
451 /* Balance INTERVAL, potentially stuffing it back into its parent
454 static INLINE INTERVAL
455 balance_possible_root_interval (interval
)
456 register INTERVAL interval
;
461 if (!INTERVAL_HAS_OBJECT (interval
) && !INTERVAL_HAS_PARENT (interval
))
464 if (INTERVAL_HAS_OBJECT (interval
))
467 GET_INTERVAL_OBJECT (parent
, interval
);
469 interval
= balance_an_interval (interval
);
473 if (BUFFERP (parent
))
474 BUF_INTERVALS (XBUFFER (parent
)) = interval
;
475 else if (STRINGP (parent
))
476 STRING_SET_INTERVALS (parent
, interval
);
482 /* Balance the interval tree TREE. Balancing is by weight
483 (the amount of text). */
486 balance_intervals_internal (tree
)
487 register INTERVAL tree
;
489 /* Balance within each side. */
491 balance_intervals_internal (tree
->left
);
493 balance_intervals_internal (tree
->right
);
494 return balance_an_interval (tree
);
497 /* Advertised interface to balance intervals. */
500 balance_intervals (tree
)
503 if (tree
== NULL_INTERVAL
)
504 return NULL_INTERVAL
;
506 return balance_intervals_internal (tree
);
509 /* Split INTERVAL into two pieces, starting the second piece at
510 character position OFFSET (counting from 0), relative to INTERVAL.
511 INTERVAL becomes the left-hand piece, and the right-hand piece
512 (second, lexicographically) is returned.
514 The size and position fields of the two intervals are set based upon
515 those of the original interval. The property list of the new interval
516 is reset, thus it is up to the caller to do the right thing with the
519 Note that this does not change the position of INTERVAL; if it is a root,
520 it is still a root after this operation. */
523 split_interval_right (interval
, offset
)
527 INTERVAL
new = make_interval ();
528 int position
= interval
->position
;
529 int new_length
= LENGTH (interval
) - offset
;
531 new->position
= position
+ offset
;
532 SET_INTERVAL_PARENT (new, interval
);
534 if (NULL_RIGHT_CHILD (interval
))
536 interval
->right
= new;
537 new->total_length
= new_length
;
538 CHECK_TOTAL_LENGTH (new);
542 /* Insert the new node between INTERVAL and its right child. */
543 new->right
= interval
->right
;
544 SET_INTERVAL_PARENT (interval
->right
, new);
545 interval
->right
= new;
546 new->total_length
= new_length
+ new->right
->total_length
;
547 CHECK_TOTAL_LENGTH (new);
548 balance_an_interval (new);
551 balance_possible_root_interval (interval
);
556 /* Split INTERVAL into two pieces, starting the second piece at
557 character position OFFSET (counting from 0), relative to INTERVAL.
558 INTERVAL becomes the right-hand piece, and the left-hand piece
559 (first, lexicographically) is returned.
561 The size and position fields of the two intervals are set based upon
562 those of the original interval. The property list of the new interval
563 is reset, thus it is up to the caller to do the right thing with the
566 Note that this does not change the position of INTERVAL; if it is a root,
567 it is still a root after this operation. */
570 split_interval_left (interval
, offset
)
574 INTERVAL
new = make_interval ();
575 int new_length
= offset
;
577 new->position
= interval
->position
;
578 interval
->position
= interval
->position
+ offset
;
579 SET_INTERVAL_PARENT (new, interval
);
581 if (NULL_LEFT_CHILD (interval
))
583 interval
->left
= new;
584 new->total_length
= new_length
;
585 CHECK_TOTAL_LENGTH (new);
589 /* Insert the new node between INTERVAL and its left child. */
590 new->left
= interval
->left
;
591 SET_INTERVAL_PARENT (new->left
, new);
592 interval
->left
= new;
593 new->total_length
= new_length
+ new->left
->total_length
;
594 CHECK_TOTAL_LENGTH (new);
595 balance_an_interval (new);
598 balance_possible_root_interval (interval
);
603 /* Return the proper position for the first character
604 described by the interval tree SOURCE.
605 This is 1 if the parent is a buffer,
606 0 if the parent is a string or if there is no parent.
608 Don't use this function on an interval which is the child
609 of another interval! */
612 interval_start_pos (source
)
617 if (NULL_INTERVAL_P (source
))
620 if (! INTERVAL_HAS_OBJECT (source
))
622 GET_INTERVAL_OBJECT (parent
, source
);
623 if (BUFFERP (parent
))
624 return BUF_BEG (XBUFFER (parent
));
628 /* Find the interval containing text position POSITION in the text
629 represented by the interval tree TREE. POSITION is a buffer
630 position (starting from 1) or a string index (starting from 0).
631 If POSITION is at the end of the buffer or string,
632 return the interval containing the last character.
634 The `position' field, which is a cache of an interval's position,
635 is updated in the interval found. Other functions (e.g., next_interval)
636 will update this cache based on the result of find_interval. */
639 find_interval (tree
, position
)
640 register INTERVAL tree
;
641 register int position
;
643 /* The distance from the left edge of the subtree at TREE
645 register int relative_position
;
647 if (NULL_INTERVAL_P (tree
))
648 return NULL_INTERVAL
;
650 relative_position
= position
;
651 if (INTERVAL_HAS_OBJECT (tree
))
654 GET_INTERVAL_OBJECT (parent
, tree
);
655 if (BUFFERP (parent
))
656 relative_position
-= BUF_BEG (XBUFFER (parent
));
659 if (relative_position
> TOTAL_LENGTH (tree
))
660 abort (); /* Paranoia */
662 if (!handling_signal
)
663 tree
= balance_possible_root_interval (tree
);
667 if (relative_position
< LEFT_TOTAL_LENGTH (tree
))
671 else if (! NULL_RIGHT_CHILD (tree
)
672 && relative_position
>= (TOTAL_LENGTH (tree
)
673 - RIGHT_TOTAL_LENGTH (tree
)))
675 relative_position
-= (TOTAL_LENGTH (tree
)
676 - RIGHT_TOTAL_LENGTH (tree
));
682 = (position
- relative_position
/* left edge of *tree. */
683 + LEFT_TOTAL_LENGTH (tree
)); /* left edge of this interval. */
690 /* Find the succeeding interval (lexicographically) to INTERVAL.
691 Sets the `position' field based on that of INTERVAL (see
695 next_interval (interval
)
696 register INTERVAL interval
;
698 register INTERVAL i
= interval
;
699 register int next_position
;
701 if (NULL_INTERVAL_P (i
))
702 return NULL_INTERVAL
;
703 next_position
= interval
->position
+ LENGTH (interval
);
705 if (! NULL_RIGHT_CHILD (i
))
708 while (! NULL_LEFT_CHILD (i
))
711 i
->position
= next_position
;
715 while (! NULL_PARENT (i
))
717 if (AM_LEFT_CHILD (i
))
719 i
= INTERVAL_PARENT (i
);
720 i
->position
= next_position
;
724 i
= INTERVAL_PARENT (i
);
727 return NULL_INTERVAL
;
730 /* Find the preceding interval (lexicographically) to INTERVAL.
731 Sets the `position' field based on that of INTERVAL (see
735 previous_interval (interval
)
736 register INTERVAL interval
;
740 if (NULL_INTERVAL_P (interval
))
741 return NULL_INTERVAL
;
743 if (! NULL_LEFT_CHILD (interval
))
746 while (! NULL_RIGHT_CHILD (i
))
749 i
->position
= interval
->position
- LENGTH (i
);
754 while (! NULL_PARENT (i
))
756 if (AM_RIGHT_CHILD (i
))
758 i
= INTERVAL_PARENT (i
);
760 i
->position
= interval
->position
- LENGTH (i
);
763 i
= INTERVAL_PARENT (i
);
766 return NULL_INTERVAL
;
769 /* Find the interval containing POS given some non-NULL INTERVAL
770 in the same tree. Note that we need to update interval->position
771 if we go down the tree.
772 To speed up the process, we assume that the ->position of
773 I and all its parents is already uptodate. */
775 update_interval (i
, pos
)
779 if (NULL_INTERVAL_P (i
))
780 return NULL_INTERVAL
;
784 if (pos
< i
->position
)
787 if (pos
>= i
->position
- TOTAL_LENGTH (i
->left
))
789 i
->left
->position
= i
->position
- TOTAL_LENGTH (i
->left
)
790 + LEFT_TOTAL_LENGTH (i
->left
);
791 i
= i
->left
; /* Move to the left child */
793 else if (NULL_PARENT (i
))
794 error ("Point before start of properties");
796 i
= INTERVAL_PARENT (i
);
799 else if (pos
>= INTERVAL_LAST_POS (i
))
802 if (pos
< INTERVAL_LAST_POS (i
) + TOTAL_LENGTH (i
->right
))
804 i
->right
->position
= INTERVAL_LAST_POS (i
)
805 + LEFT_TOTAL_LENGTH (i
->right
);
806 i
= i
->right
; /* Move to the right child */
808 else if (NULL_PARENT (i
))
809 error ("Point %d after end of properties", pos
);
811 i
= INTERVAL_PARENT (i
);
821 /* Traverse a path down the interval tree TREE to the interval
822 containing POSITION, adjusting all nodes on the path for
823 an addition of LENGTH characters. Insertion between two intervals
824 (i.e., point == i->position, where i is second interval) means
825 text goes into second interval.
827 Modifications are needed to handle the hungry bits -- after simply
828 finding the interval at position (don't add length going down),
829 if it's the beginning of the interval, get the previous interval
830 and check the hungry bits of both. Then add the length going back up
834 adjust_intervals_for_insertion (tree
, position
, length
)
836 int position
, length
;
838 register int relative_position
;
839 register INTERVAL
this;
841 if (TOTAL_LENGTH (tree
) == 0) /* Paranoia */
844 /* If inserting at point-max of a buffer, that position
845 will be out of range */
846 if (position
> TOTAL_LENGTH (tree
))
847 position
= TOTAL_LENGTH (tree
);
848 relative_position
= position
;
853 if (relative_position
<= LEFT_TOTAL_LENGTH (this))
855 this->total_length
+= length
;
856 CHECK_TOTAL_LENGTH (this);
859 else if (relative_position
> (TOTAL_LENGTH (this)
860 - RIGHT_TOTAL_LENGTH (this)))
862 relative_position
-= (TOTAL_LENGTH (this)
863 - RIGHT_TOTAL_LENGTH (this));
864 this->total_length
+= length
;
865 CHECK_TOTAL_LENGTH (this);
870 /* If we are to use zero-length intervals as buffer pointers,
871 then this code will have to change. */
872 this->total_length
+= length
;
873 CHECK_TOTAL_LENGTH (this);
874 this->position
= LEFT_TOTAL_LENGTH (this)
875 + position
- relative_position
+ 1;
882 /* Effect an adjustment corresponding to the addition of LENGTH characters
883 of text. Do this by finding the interval containing POSITION in the
884 interval tree TREE, and then adjusting all of its ancestors by adding
887 If POSITION is the first character of an interval, meaning that point
888 is actually between the two intervals, make the new text belong to
889 the interval which is "sticky".
891 If both intervals are "sticky", then make them belong to the left-most
892 interval. Another possibility would be to create a new interval for
893 this text, and make it have the merged properties of both ends. */
896 adjust_intervals_for_insertion (tree
, position
, length
)
898 int position
, length
;
901 register INTERVAL temp
;
906 if (TOTAL_LENGTH (tree
) == 0) /* Paranoia */
909 GET_INTERVAL_OBJECT (parent
, tree
);
910 offset
= (BUFFERP (parent
) ? BUF_BEG (XBUFFER (parent
)) : 0);
912 /* If inserting at point-max of a buffer, that position will be out
913 of range. Remember that buffer positions are 1-based. */
914 if (position
>= TOTAL_LENGTH (tree
) + offset
)
916 position
= TOTAL_LENGTH (tree
) + offset
;
920 i
= find_interval (tree
, position
);
922 /* If in middle of an interval which is not sticky either way,
923 we must not just give its properties to the insertion.
924 So split this interval at the insertion point.
926 Originally, the if condition here was this:
927 (! (position == i->position || eobp)
928 && END_NONSTICKY_P (i)
929 && FRONT_NONSTICKY_P (i))
930 But, these macros are now unreliable because of introduction of
931 Vtext_property_default_nonsticky. So, we always check properties
932 one by one if POSITION is in middle of an interval. */
933 if (! (position
== i
->position
|| eobp
))
936 Lisp_Object front
, rear
;
940 /* Properties font-sticky and rear-nonsticky override
941 Vtext_property_default_nonsticky. So, if they are t, we can
942 skip one by one checking of properties. */
943 rear
= textget (i
->plist
, Qrear_nonsticky
);
944 if (! CONSP (rear
) && ! NILP (rear
))
946 /* All properties are nonsticky. We split the interval. */
949 front
= textget (i
->plist
, Qfront_sticky
);
950 if (! CONSP (front
) && ! NILP (front
))
952 /* All properties are sticky. We don't split the interval. */
957 /* Does any actual property pose an actual problem? We break
958 the loop if we find a nonsticky property. */
959 for (; CONSP (tail
); tail
= Fcdr (XCDR (tail
)))
961 Lisp_Object prop
, tmp
;
964 /* Is this particular property front-sticky? */
965 if (CONSP (front
) && ! NILP (Fmemq (prop
, front
)))
968 /* Is this particular property rear-nonsticky? */
969 if (CONSP (rear
) && ! NILP (Fmemq (prop
, rear
)))
972 /* Is this particular property recorded as sticky or
973 nonsticky in Vtext_property_default_nonsticky? */
974 tmp
= Fassq (prop
, Vtext_property_default_nonsticky
);
982 /* By default, a text property is rear-sticky, thus we
983 continue the loop. */
987 /* If any property is a real problem, split the interval. */
990 temp
= split_interval_right (i
, position
- i
->position
);
991 copy_properties (i
, temp
);
996 /* If we are positioned between intervals, check the stickiness of
997 both of them. We have to do this too, if we are at BEG or Z. */
998 if (position
== i
->position
|| eobp
)
1000 register INTERVAL prev
;
1002 if (position
== BEG
)
1010 prev
= previous_interval (i
);
1012 /* Even if we are positioned between intervals, we default
1013 to the left one if it exists. We extend it now and split
1014 off a part later, if stickiness demands it. */
1015 for (temp
= prev
? prev
: i
; temp
; temp
= INTERVAL_PARENT_OR_NULL (temp
))
1017 temp
->total_length
+= length
;
1018 CHECK_TOTAL_LENGTH (temp
);
1019 temp
= balance_possible_root_interval (temp
);
1022 /* If at least one interval has sticky properties,
1023 we check the stickiness property by property.
1025 Originally, the if condition here was this:
1026 (END_NONSTICKY_P (prev) || FRONT_STICKY_P (i))
1027 But, these macros are now unreliable because of introduction
1028 of Vtext_property_default_nonsticky. So, we always have to
1029 check stickiness of properties one by one. If cache of
1030 stickiness is implemented in the future, we may be able to
1031 use those macros again. */
1034 Lisp_Object pleft
, pright
;
1035 struct interval newi
;
1037 pleft
= NULL_INTERVAL_P (prev
) ? Qnil
: prev
->plist
;
1038 pright
= NULL_INTERVAL_P (i
) ? Qnil
: i
->plist
;
1039 newi
.plist
= merge_properties_sticky (pleft
, pright
);
1041 if (! prev
) /* i.e. position == BEG */
1043 if (! intervals_equal (i
, &newi
))
1045 i
= split_interval_left (i
, length
);
1046 i
->plist
= newi
.plist
;
1049 else if (! intervals_equal (prev
, &newi
))
1051 prev
= split_interval_right (prev
,
1052 position
- prev
->position
);
1053 prev
->plist
= newi
.plist
;
1054 if (! NULL_INTERVAL_P (i
)
1055 && intervals_equal (prev
, i
))
1056 merge_interval_right (prev
);
1059 /* We will need to update the cache here later. */
1061 else if (! prev
&& ! NILP (i
->plist
))
1063 /* Just split off a new interval at the left.
1064 Since I wasn't front-sticky, the empty plist is ok. */
1065 i
= split_interval_left (i
, length
);
1069 /* Otherwise just extend the interval. */
1072 for (temp
= i
; temp
; temp
= INTERVAL_PARENT_OR_NULL (temp
))
1074 temp
->total_length
+= length
;
1075 CHECK_TOTAL_LENGTH (temp
);
1076 temp
= balance_possible_root_interval (temp
);
1083 /* Any property might be front-sticky on the left, rear-sticky on the left,
1084 front-sticky on the right, or rear-sticky on the right; the 16 combinations
1085 can be arranged in a matrix with rows denoting the left conditions and
1086 columns denoting the right conditions:
1094 left-props = '(front-sticky (p8 p9 pa pb pc pd pe pf)
1095 rear-nonsticky (p4 p5 p6 p7 p8 p9 pa pb)
1096 p0 L p1 L p2 L p3 L p4 L p5 L p6 L p7 L
1097 p8 L p9 L pa L pb L pc L pd L pe L pf L)
1098 right-props = '(front-sticky (p2 p3 p6 p7 pa pb pe pf)
1099 rear-nonsticky (p1 p2 p5 p6 p9 pa pd pe)
1100 p0 R p1 R p2 R p3 R p4 R p5 R p6 R p7 R
1101 p8 R p9 R pa R pb R pc R pd R pe R pf R)
1103 We inherit from whoever has a sticky side facing us. If both sides
1104 do (cases 2, 3, E, and F), then we inherit from whichever side has a
1105 non-nil value for the current property. If both sides do, then we take
1108 When we inherit a property, we get its stickiness as well as its value.
1109 So, when we merge the above two lists, we expect to get this:
1111 result = '(front-sticky (p6 p7 pa pb pc pd pe pf)
1112 rear-nonsticky (p6 pa)
1113 p0 L p1 L p2 L p3 L p6 R p7 R
1114 pa R pb R pc L pd L pe L pf L)
1116 The optimizable special cases are:
1117 left rear-nonsticky = nil, right front-sticky = nil (inherit left)
1118 left rear-nonsticky = t, right front-sticky = t (inherit right)
1119 left rear-nonsticky = t, right front-sticky = nil (inherit none)
1123 merge_properties_sticky (pleft
, pright
)
1124 Lisp_Object pleft
, pright
;
1126 register Lisp_Object props
, front
, rear
;
1127 Lisp_Object lfront
, lrear
, rfront
, rrear
;
1128 register Lisp_Object tail1
, tail2
, sym
, lval
, rval
, cat
;
1129 int use_left
, use_right
;
1135 lfront
= textget (pleft
, Qfront_sticky
);
1136 lrear
= textget (pleft
, Qrear_nonsticky
);
1137 rfront
= textget (pright
, Qfront_sticky
);
1138 rrear
= textget (pright
, Qrear_nonsticky
);
1140 /* Go through each element of PRIGHT. */
1141 for (tail1
= pright
; CONSP (tail1
); tail1
= Fcdr (XCDR (tail1
)))
1147 /* Sticky properties get special treatment. */
1148 if (EQ (sym
, Qrear_nonsticky
) || EQ (sym
, Qfront_sticky
))
1151 rval
= Fcar (XCDR (tail1
));
1152 for (tail2
= pleft
; CONSP (tail2
); tail2
= Fcdr (XCDR (tail2
)))
1153 if (EQ (sym
, XCAR (tail2
)))
1156 /* Indicate whether the property is explicitly defined on the left.
1157 (We know it is defined explicitly on the right
1158 because otherwise we don't get here.) */
1159 lpresent
= ! NILP (tail2
);
1160 lval
= (NILP (tail2
) ? Qnil
: Fcar (Fcdr (tail2
)));
1162 /* Even if lrear or rfront say nothing about the stickiness of
1163 SYM, Vtext_property_default_nonsticky may give default
1164 stickiness to SYM. */
1165 tmp
= Fassq (sym
, Vtext_property_default_nonsticky
);
1166 use_left
= (lpresent
1167 && ! (TMEM (sym
, lrear
)
1168 || (CONSP (tmp
) && ! NILP (XCDR (tmp
)))));
1169 use_right
= (TMEM (sym
, rfront
)
1170 || (CONSP (tmp
) && NILP (XCDR (tmp
))));
1171 if (use_left
&& use_right
)
1175 else if (NILP (rval
))
1180 /* We build props as (value sym ...) rather than (sym value ...)
1181 because we plan to nreverse it when we're done. */
1182 props
= Fcons (lval
, Fcons (sym
, props
));
1183 if (TMEM (sym
, lfront
))
1184 front
= Fcons (sym
, front
);
1185 if (TMEM (sym
, lrear
))
1186 rear
= Fcons (sym
, rear
);
1190 props
= Fcons (rval
, Fcons (sym
, props
));
1191 if (TMEM (sym
, rfront
))
1192 front
= Fcons (sym
, front
);
1193 if (TMEM (sym
, rrear
))
1194 rear
= Fcons (sym
, rear
);
1198 /* Now go through each element of PLEFT. */
1199 for (tail2
= pleft
; CONSP (tail2
); tail2
= Fcdr (XCDR (tail2
)))
1205 /* Sticky properties get special treatment. */
1206 if (EQ (sym
, Qrear_nonsticky
) || EQ (sym
, Qfront_sticky
))
1209 /* If sym is in PRIGHT, we've already considered it. */
1210 for (tail1
= pright
; CONSP (tail1
); tail1
= Fcdr (XCDR (tail1
)))
1211 if (EQ (sym
, XCAR (tail1
)))
1216 lval
= Fcar (XCDR (tail2
));
1218 /* Even if lrear or rfront say nothing about the stickiness of
1219 SYM, Vtext_property_default_nonsticky may give default
1220 stickiness to SYM. */
1221 tmp
= Fassq (sym
, Vtext_property_default_nonsticky
);
1223 /* Since rval is known to be nil in this loop, the test simplifies. */
1224 if (! (TMEM (sym
, lrear
) || (CONSP (tmp
) && ! NILP (XCDR (tmp
)))))
1226 props
= Fcons (lval
, Fcons (sym
, props
));
1227 if (TMEM (sym
, lfront
))
1228 front
= Fcons (sym
, front
);
1230 else if (TMEM (sym
, rfront
) || (CONSP (tmp
) && NILP (XCDR (tmp
))))
1232 /* The value is nil, but we still inherit the stickiness
1234 front
= Fcons (sym
, front
);
1235 if (TMEM (sym
, rrear
))
1236 rear
= Fcons (sym
, rear
);
1239 props
= Fnreverse (props
);
1241 props
= Fcons (Qrear_nonsticky
, Fcons (Fnreverse (rear
), props
));
1243 cat
= textget (props
, Qcategory
);
1246 /* If we have inherited a front-stick category property that is t,
1247 we don't need to set up a detailed one. */
1248 ! (! NILP (cat
) && SYMBOLP (cat
)
1249 && EQ (Fget (cat
, Qfront_sticky
), Qt
)))
1250 props
= Fcons (Qfront_sticky
, Fcons (Fnreverse (front
), props
));
1255 /* Delete a node I from its interval tree by merging its subtrees
1256 into one subtree which is then returned. Caller is responsible for
1257 storing the resulting subtree into its parent. */
1261 register INTERVAL i
;
1263 register INTERVAL migrate
, this;
1264 register int migrate_amt
;
1266 if (NULL_INTERVAL_P (i
->left
))
1268 if (NULL_INTERVAL_P (i
->right
))
1272 migrate_amt
= i
->left
->total_length
;
1274 this->total_length
+= migrate_amt
;
1275 while (! NULL_INTERVAL_P (this->left
))
1278 this->total_length
+= migrate_amt
;
1280 CHECK_TOTAL_LENGTH (this);
1281 this->left
= migrate
;
1282 SET_INTERVAL_PARENT (migrate
, this);
1287 /* Delete interval I from its tree by calling `delete_node'
1288 and properly connecting the resultant subtree.
1290 I is presumed to be empty; that is, no adjustments are made
1291 for the length of I. */
1295 register INTERVAL i
;
1297 register INTERVAL parent
;
1298 int amt
= LENGTH (i
);
1300 if (amt
> 0) /* Only used on zero-length intervals now. */
1303 if (ROOT_INTERVAL_P (i
))
1306 GET_INTERVAL_OBJECT (owner
, i
);
1307 parent
= delete_node (i
);
1308 if (! NULL_INTERVAL_P (parent
))
1309 SET_INTERVAL_OBJECT (parent
, owner
);
1311 if (BUFFERP (owner
))
1312 BUF_INTERVALS (XBUFFER (owner
)) = parent
;
1313 else if (STRINGP (owner
))
1314 STRING_SET_INTERVALS (owner
, parent
);
1321 parent
= INTERVAL_PARENT (i
);
1322 if (AM_LEFT_CHILD (i
))
1324 parent
->left
= delete_node (i
);
1325 if (! NULL_INTERVAL_P (parent
->left
))
1326 SET_INTERVAL_PARENT (parent
->left
, parent
);
1330 parent
->right
= delete_node (i
);
1331 if (! NULL_INTERVAL_P (parent
->right
))
1332 SET_INTERVAL_PARENT (parent
->right
, parent
);
1336 /* Find the interval in TREE corresponding to the relative position
1337 FROM and delete as much as possible of AMOUNT from that interval.
1338 Return the amount actually deleted, and if the interval was
1339 zeroed-out, delete that interval node from the tree.
1341 Note that FROM is actually origin zero, aka relative to the
1342 leftmost edge of tree. This is appropriate since we call ourselves
1343 recursively on subtrees.
1345 Do this by recursing down TREE to the interval in question, and
1346 deleting the appropriate amount of text. */
1349 interval_deletion_adjustment (tree
, from
, amount
)
1350 register INTERVAL tree
;
1351 register int from
, amount
;
1353 register int relative_position
= from
;
1355 if (NULL_INTERVAL_P (tree
))
1359 if (relative_position
< LEFT_TOTAL_LENGTH (tree
))
1361 int subtract
= interval_deletion_adjustment (tree
->left
,
1364 tree
->total_length
-= subtract
;
1365 CHECK_TOTAL_LENGTH (tree
);
1369 else if (relative_position
>= (TOTAL_LENGTH (tree
)
1370 - RIGHT_TOTAL_LENGTH (tree
)))
1374 relative_position
-= (tree
->total_length
1375 - RIGHT_TOTAL_LENGTH (tree
));
1376 subtract
= interval_deletion_adjustment (tree
->right
,
1379 tree
->total_length
-= subtract
;
1380 CHECK_TOTAL_LENGTH (tree
);
1383 /* Here -- this node. */
1386 /* How much can we delete from this interval? */
1387 int my_amount
= ((tree
->total_length
1388 - RIGHT_TOTAL_LENGTH (tree
))
1389 - relative_position
);
1391 if (amount
> my_amount
)
1394 tree
->total_length
-= amount
;
1395 CHECK_TOTAL_LENGTH (tree
);
1396 if (LENGTH (tree
) == 0)
1397 delete_interval (tree
);
1402 /* Never reach here. */
1405 /* Effect the adjustments necessary to the interval tree of BUFFER to
1406 correspond to the deletion of LENGTH characters from that buffer
1407 text. The deletion is effected at position START (which is a
1408 buffer position, i.e. origin 1). */
1411 adjust_intervals_for_deletion (buffer
, start
, length
)
1412 struct buffer
*buffer
;
1415 register int left_to_delete
= length
;
1416 register INTERVAL tree
= BUF_INTERVALS (buffer
);
1420 GET_INTERVAL_OBJECT (parent
, tree
);
1421 offset
= (BUFFERP (parent
) ? BUF_BEG (XBUFFER (parent
)) : 0);
1423 if (NULL_INTERVAL_P (tree
))
1426 if (start
> offset
+ TOTAL_LENGTH (tree
)
1427 || start
+ length
> offset
+ TOTAL_LENGTH (tree
))
1430 if (length
== TOTAL_LENGTH (tree
))
1432 BUF_INTERVALS (buffer
) = NULL_INTERVAL
;
1436 if (ONLY_INTERVAL_P (tree
))
1438 tree
->total_length
-= length
;
1439 CHECK_TOTAL_LENGTH (tree
);
1443 if (start
> offset
+ TOTAL_LENGTH (tree
))
1444 start
= offset
+ TOTAL_LENGTH (tree
);
1445 while (left_to_delete
> 0)
1447 left_to_delete
-= interval_deletion_adjustment (tree
, start
- offset
,
1449 tree
= BUF_INTERVALS (buffer
);
1450 if (left_to_delete
== tree
->total_length
)
1452 BUF_INTERVALS (buffer
) = NULL_INTERVAL
;
1458 /* Make the adjustments necessary to the interval tree of BUFFER to
1459 represent an addition or deletion of LENGTH characters starting
1460 at position START. Addition or deletion is indicated by the sign
1464 offset_intervals (buffer
, start
, length
)
1465 struct buffer
*buffer
;
1468 if (NULL_INTERVAL_P (BUF_INTERVALS (buffer
)) || length
== 0)
1472 adjust_intervals_for_insertion (BUF_INTERVALS (buffer
), start
, length
);
1474 adjust_intervals_for_deletion (buffer
, start
, -length
);
1477 /* Merge interval I with its lexicographic successor. The resulting
1478 interval is returned, and has the properties of the original
1479 successor. The properties of I are lost. I is removed from the
1483 The caller must verify that this is not the last (rightmost)
1487 merge_interval_right (i
)
1488 register INTERVAL i
;
1490 register int absorb
= LENGTH (i
);
1491 register INTERVAL successor
;
1493 /* Zero out this interval. */
1494 i
->total_length
-= absorb
;
1495 CHECK_TOTAL_LENGTH (i
);
1497 /* Find the succeeding interval. */
1498 if (! NULL_RIGHT_CHILD (i
)) /* It's below us. Add absorb
1501 successor
= i
->right
;
1502 while (! NULL_LEFT_CHILD (successor
))
1504 successor
->total_length
+= absorb
;
1505 CHECK_TOTAL_LENGTH (successor
);
1506 successor
= successor
->left
;
1509 successor
->total_length
+= absorb
;
1510 CHECK_TOTAL_LENGTH (successor
);
1511 delete_interval (i
);
1516 while (! NULL_PARENT (successor
)) /* It's above us. Subtract as
1519 if (AM_LEFT_CHILD (successor
))
1521 successor
= INTERVAL_PARENT (successor
);
1522 delete_interval (i
);
1526 successor
= INTERVAL_PARENT (successor
);
1527 successor
->total_length
-= absorb
;
1528 CHECK_TOTAL_LENGTH (successor
);
1531 /* This must be the rightmost or last interval and cannot
1532 be merged right. The caller should have known. */
1536 /* Merge interval I with its lexicographic predecessor. The resulting
1537 interval is returned, and has the properties of the original predecessor.
1538 The properties of I are lost. Interval node I is removed from the tree.
1541 The caller must verify that this is not the first (leftmost) interval. */
1544 merge_interval_left (i
)
1545 register INTERVAL i
;
1547 register int absorb
= LENGTH (i
);
1548 register INTERVAL predecessor
;
1550 /* Zero out this interval. */
1551 i
->total_length
-= absorb
;
1552 CHECK_TOTAL_LENGTH (i
);
1554 /* Find the preceding interval. */
1555 if (! NULL_LEFT_CHILD (i
)) /* It's below us. Go down,
1556 adding ABSORB as we go. */
1558 predecessor
= i
->left
;
1559 while (! NULL_RIGHT_CHILD (predecessor
))
1561 predecessor
->total_length
+= absorb
;
1562 CHECK_TOTAL_LENGTH (predecessor
);
1563 predecessor
= predecessor
->right
;
1566 predecessor
->total_length
+= absorb
;
1567 CHECK_TOTAL_LENGTH (predecessor
);
1568 delete_interval (i
);
1573 while (! NULL_PARENT (predecessor
)) /* It's above us. Go up,
1574 subtracting ABSORB. */
1576 if (AM_RIGHT_CHILD (predecessor
))
1578 predecessor
= INTERVAL_PARENT (predecessor
);
1579 delete_interval (i
);
1583 predecessor
= INTERVAL_PARENT (predecessor
);
1584 predecessor
->total_length
-= absorb
;
1585 CHECK_TOTAL_LENGTH (predecessor
);
1588 /* This must be the leftmost or first interval and cannot
1589 be merged left. The caller should have known. */
1593 /* Make an exact copy of interval tree SOURCE which descends from
1594 PARENT. This is done by recursing through SOURCE, copying
1595 the current interval and its properties, and then adjusting
1596 the pointers of the copy. */
1599 reproduce_tree (source
, parent
)
1600 INTERVAL source
, parent
;
1602 register INTERVAL t
= make_interval ();
1604 bcopy (source
, t
, INTERVAL_SIZE
);
1605 copy_properties (source
, t
);
1606 SET_INTERVAL_PARENT (t
, parent
);
1607 if (! NULL_LEFT_CHILD (source
))
1608 t
->left
= reproduce_tree (source
->left
, t
);
1609 if (! NULL_RIGHT_CHILD (source
))
1610 t
->right
= reproduce_tree (source
->right
, t
);
1616 reproduce_tree_obj (source
, parent
)
1620 register INTERVAL t
= make_interval ();
1622 bcopy (source
, t
, INTERVAL_SIZE
);
1623 copy_properties (source
, t
);
1624 SET_INTERVAL_OBJECT (t
, parent
);
1625 if (! NULL_LEFT_CHILD (source
))
1626 t
->left
= reproduce_tree (source
->left
, t
);
1627 if (! NULL_RIGHT_CHILD (source
))
1628 t
->right
= reproduce_tree (source
->right
, t
);
1634 /* Nobody calls this. Perhaps it's a vestige of an earlier design. */
1636 /* Make a new interval of length LENGTH starting at START in the
1637 group of intervals INTERVALS, which is actually an interval tree.
1638 Returns the new interval.
1640 Generate an error if the new positions would overlap an existing
1644 make_new_interval (intervals
, start
, length
)
1650 slot
= find_interval (intervals
, start
);
1651 if (start
+ length
> slot
->position
+ LENGTH (slot
))
1652 error ("Interval would overlap");
1654 if (start
== slot
->position
&& length
== LENGTH (slot
))
1657 if (slot
->position
== start
)
1659 /* New right node. */
1660 split_interval_right (slot
, length
);
1664 if (slot
->position
+ LENGTH (slot
) == start
+ length
)
1666 /* New left node. */
1667 split_interval_left (slot
, LENGTH (slot
) - length
);
1671 /* Convert interval SLOT into three intervals. */
1672 split_interval_left (slot
, start
- slot
->position
);
1673 split_interval_right (slot
, length
);
1678 /* Insert the intervals of SOURCE into BUFFER at POSITION.
1679 LENGTH is the length of the text in SOURCE.
1681 The `position' field of the SOURCE intervals is assumed to be
1682 consistent with its parent; therefore, SOURCE must be an
1683 interval tree made with copy_interval or must be the whole
1684 tree of a buffer or a string.
1686 This is used in insdel.c when inserting Lisp_Strings into the
1687 buffer. The text corresponding to SOURCE is already in the buffer
1688 when this is called. The intervals of new tree are a copy of those
1689 belonging to the string being inserted; intervals are never
1692 If the inserted text had no intervals associated, and we don't
1693 want to inherit the surrounding text's properties, this function
1694 simply returns -- offset_intervals should handle placing the
1695 text in the correct interval, depending on the sticky bits.
1697 If the inserted text had properties (intervals), then there are two
1698 cases -- either insertion happened in the middle of some interval,
1699 or between two intervals.
1701 If the text goes into the middle of an interval, then new
1702 intervals are created in the middle with only the properties of
1703 the new text, *unless* the macro MERGE_INSERTIONS is true, in
1704 which case the new text has the union of its properties and those
1705 of the text into which it was inserted.
1707 If the text goes between two intervals, then if neither interval
1708 had its appropriate sticky property set (front_sticky, rear_sticky),
1709 the new text has only its properties. If one of the sticky properties
1710 is set, then the new text "sticks" to that region and its properties
1711 depend on merging as above. If both the preceding and succeeding
1712 intervals to the new text are "sticky", then the new text retains
1713 only its properties, as if neither sticky property were set. Perhaps
1714 we should consider merging all three sets of properties onto the new
1718 graft_intervals_into_buffer (source
, position
, length
, buffer
, inherit
)
1720 int position
, length
;
1721 struct buffer
*buffer
;
1724 register INTERVAL under
, over
, this, prev
;
1725 register INTERVAL tree
;
1728 tree
= BUF_INTERVALS (buffer
);
1730 /* If the new text has no properties, then with inheritance it
1731 becomes part of whatever interval it was inserted into.
1732 To prevent inheritance, we must clear out the properties
1733 of the newly inserted text. */
1734 if (NULL_INTERVAL_P (source
))
1737 if (!inherit
&& !NULL_INTERVAL_P (tree
) && length
> 0)
1739 XSETBUFFER (buf
, buffer
);
1740 set_text_properties_1 (make_number (position
),
1741 make_number (position
+ length
),
1744 if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer
)))
1745 /* Shouldn't be necessary. -stef */
1746 BUF_INTERVALS (buffer
) = balance_an_interval (BUF_INTERVALS (buffer
));
1750 if (NULL_INTERVAL_P (tree
))
1752 /* The inserted text constitutes the whole buffer, so
1753 simply copy over the interval structure. */
1754 if ((BUF_Z (buffer
) - BUF_BEG (buffer
)) == TOTAL_LENGTH (source
))
1757 XSETBUFFER (buf
, buffer
);
1758 BUF_INTERVALS (buffer
) = reproduce_tree_obj (source
, buf
);
1759 BUF_INTERVALS (buffer
)->position
= BEG
;
1760 BUF_INTERVALS (buffer
)->up_obj
= 1;
1762 /* Explicitly free the old tree here? */
1767 /* Create an interval tree in which to place a copy
1768 of the intervals of the inserted string. */
1771 XSETBUFFER (buf
, buffer
);
1772 tree
= create_root_interval (buf
);
1775 else if (TOTAL_LENGTH (tree
) == TOTAL_LENGTH (source
))
1776 /* If the buffer contains only the new string, but
1777 there was already some interval tree there, then it may be
1778 some zero length intervals. Eventually, do something clever
1779 about inserting properly. For now, just waste the old intervals. */
1781 BUF_INTERVALS (buffer
) = reproduce_tree (source
, INTERVAL_PARENT (tree
));
1782 BUF_INTERVALS (buffer
)->position
= BEG
;
1783 BUF_INTERVALS (buffer
)->up_obj
= 1;
1784 /* Explicitly free the old tree here. */
1788 /* Paranoia -- the text has already been added, so this buffer
1789 should be of non-zero length. */
1790 else if (TOTAL_LENGTH (tree
) == 0)
1793 this = under
= find_interval (tree
, position
);
1794 if (NULL_INTERVAL_P (under
)) /* Paranoia */
1796 over
= find_interval (source
, interval_start_pos (source
));
1798 /* Here for insertion in the middle of an interval.
1799 Split off an equivalent interval to the right,
1800 then don't bother with it any more. */
1802 if (position
> under
->position
)
1804 INTERVAL end_unchanged
1805 = split_interval_left (this, position
- under
->position
);
1806 copy_properties (under
, end_unchanged
);
1807 under
->position
= position
;
1811 /* This call may have some effect because previous_interval may
1812 update `position' fields of intervals. Thus, don't ignore it
1813 for the moment. Someone please tell me the truth (K.Handa). */
1814 prev
= previous_interval (under
);
1816 /* But, this code surely has no effect. And, anyway,
1817 END_NONSTICKY_P is unreliable now. */
1818 if (prev
&& !END_NONSTICKY_P (prev
))
1823 /* Insertion is now at beginning of UNDER. */
1825 /* The inserted text "sticks" to the interval `under',
1826 which means it gets those properties.
1827 The properties of under are the result of
1828 adjust_intervals_for_insertion, so stickiness has
1829 already been taken care of. */
1831 /* OVER is the interval we are copying from next.
1832 OVER_USED says how many characters' worth of OVER
1833 have already been copied into target intervals.
1834 UNDER is the next interval in the target. */
1836 while (! NULL_INTERVAL_P (over
))
1838 /* If UNDER is longer than OVER, split it. */
1839 if (LENGTH (over
) - over_used
< LENGTH (under
))
1841 this = split_interval_left (under
, LENGTH (over
) - over_used
);
1842 copy_properties (under
, this);
1847 /* THIS is now the interval to copy or merge into.
1848 OVER covers all of it. */
1850 merge_properties (over
, this);
1852 copy_properties (over
, this);
1854 /* If THIS and OVER end at the same place,
1855 advance OVER to a new source interval. */
1856 if (LENGTH (this) == LENGTH (over
) - over_used
)
1858 over
= next_interval (over
);
1862 /* Otherwise just record that more of OVER has been used. */
1863 over_used
+= LENGTH (this);
1865 /* Always advance to a new target interval. */
1866 under
= next_interval (this);
1869 if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer
)))
1870 BUF_INTERVALS (buffer
) = balance_an_interval (BUF_INTERVALS (buffer
));
1874 /* Get the value of property PROP from PLIST,
1875 which is the plist of an interval.
1876 We check for direct properties, for categories with property PROP,
1877 and for PROP appearing on the default-text-properties list. */
1880 textget (plist
, prop
)
1882 register Lisp_Object prop
;
1884 return lookup_char_property (plist
, prop
, 1);
1888 lookup_char_property (plist
, prop
, textprop
)
1890 register Lisp_Object prop
;
1893 register Lisp_Object tail
, fallback
= Qnil
;
1895 for (tail
= plist
; CONSP (tail
); tail
= Fcdr (XCDR (tail
)))
1897 register Lisp_Object tem
;
1900 return Fcar (XCDR (tail
));
1901 if (EQ (tem
, Qcategory
))
1903 tem
= Fcar (XCDR (tail
));
1905 fallback
= Fget (tem
, prop
);
1909 if (! NILP (fallback
))
1911 /* Check for alternative properties */
1912 tail
= Fassq (prop
, Vchar_property_alias_alist
);
1916 for (; NILP (fallback
) && CONSP (tail
); tail
= XCDR (tail
))
1917 fallback
= Fplist_get (plist
, XCAR (tail
));
1920 if (textprop
&& NILP (fallback
) && CONSP (Vdefault_text_properties
))
1921 fallback
= Fplist_get (Vdefault_text_properties
, prop
);
1926 /* Set point "temporarily", without checking any text properties. */
1929 temp_set_point (buffer
, charpos
)
1930 struct buffer
*buffer
;
1933 temp_set_point_both (buffer
, charpos
,
1934 buf_charpos_to_bytepos (buffer
, charpos
));
1937 /* Set point in BUFFER "temporarily" to CHARPOS, which corresponds to
1938 byte position BYTEPOS. */
1941 temp_set_point_both (buffer
, charpos
, bytepos
)
1942 int charpos
, bytepos
;
1943 struct buffer
*buffer
;
1945 /* In a single-byte buffer, the two positions must be equal. */
1946 if (BUF_ZV (buffer
) == BUF_ZV_BYTE (buffer
)
1947 && charpos
!= bytepos
)
1950 if (charpos
> bytepos
)
1953 if (charpos
> BUF_ZV (buffer
) || charpos
< BUF_BEGV (buffer
))
1956 BUF_PT_BYTE (buffer
) = bytepos
;
1957 BUF_PT (buffer
) = charpos
;
1960 /* Set point in BUFFER to CHARPOS. If the target position is
1961 before an intangible character, move to an ok place. */
1964 set_point (buffer
, charpos
)
1965 register struct buffer
*buffer
;
1966 register int charpos
;
1968 set_point_both (buffer
, charpos
, buf_charpos_to_bytepos (buffer
, charpos
));
1971 /* If there's an invisible character at position POS + TEST_OFFS in the
1972 current buffer, and the invisible property has a `stickiness' such that
1973 inserting a character at position POS would inherit the property it,
1974 return POS + ADJ, otherwise return POS. If TEST_INTANG is non-zero,
1975 then intangibility is required as well as invisibleness.
1977 TEST_OFFS should be either 0 or -1, and ADJ should be either 1 or -1.
1979 Note that `stickiness' is determined by overlay marker insertion types,
1980 if the invisible property comes from an overlay. */
1983 adjust_for_invis_intang (pos
, test_offs
, adj
, test_intang
)
1984 int pos
, test_offs
, adj
, test_intang
;
1986 Lisp_Object invis_propval
, invis_overlay
;
1987 Lisp_Object test_pos
;
1989 if ((adj
< 0 && pos
+ adj
< BEGV
) || (adj
> 0 && pos
+ adj
> ZV
))
1990 /* POS + ADJ would be beyond the buffer bounds, so do no adjustment. */
1993 test_pos
= make_number (pos
+ test_offs
);
1996 = get_char_property_and_overlay (test_pos
, Qinvisible
, Qnil
,
2000 || ! NILP (Fget_char_property (test_pos
, Qintangible
, Qnil
)))
2001 && TEXT_PROP_MEANS_INVISIBLE (invis_propval
)
2002 /* This next test is true if the invisible property has a stickiness
2003 such that an insertion at POS would inherit it. */
2004 && (NILP (invis_overlay
)
2005 /* Invisible property is from a text-property. */
2006 ? (text_property_stickiness (Qinvisible
, make_number (pos
), Qnil
)
2007 == (test_offs
== 0 ? 1 : -1))
2008 /* Invisible property is from an overlay. */
2010 ? XMARKER (OVERLAY_START (invis_overlay
))->insertion_type
== 0
2011 : XMARKER (OVERLAY_END (invis_overlay
))->insertion_type
== 1)))
2017 /* Set point in BUFFER to CHARPOS, which corresponds to byte
2018 position BYTEPOS. If the target position is
2019 before an intangible character, move to an ok place. */
2022 set_point_both (buffer
, charpos
, bytepos
)
2023 register struct buffer
*buffer
;
2024 register int charpos
, bytepos
;
2026 register INTERVAL to
, from
, toprev
, fromprev
;
2028 int old_position
= BUF_PT (buffer
);
2029 /* This ensures that we move forward past intangible text when the
2030 initial position is the same as the destination, in the rare
2031 instances where this is important, e.g. in line-move-finish
2033 int backwards
= (charpos
< old_position
? 1 : 0);
2035 int original_position
;
2037 buffer
->point_before_scroll
= Qnil
;
2039 if (charpos
== BUF_PT (buffer
))
2042 /* In a single-byte buffer, the two positions must be equal. */
2043 if (BUF_ZV (buffer
) == BUF_ZV_BYTE (buffer
)
2044 && charpos
!= bytepos
)
2047 /* Check this now, before checking if the buffer has any intervals.
2048 That way, we can catch conditions which break this sanity check
2049 whether or not there are intervals in the buffer. */
2050 if (charpos
> BUF_ZV (buffer
) || charpos
< BUF_BEGV (buffer
))
2053 have_overlays
= (buffer
->overlays_before
|| buffer
->overlays_after
);
2055 /* If we have no text properties and overlays,
2056 then we can do it quickly. */
2057 if (NULL_INTERVAL_P (BUF_INTERVALS (buffer
)) && ! have_overlays
)
2059 temp_set_point_both (buffer
, charpos
, bytepos
);
2063 /* Set TO to the interval containing the char after CHARPOS,
2064 and TOPREV to the interval containing the char before CHARPOS.
2065 Either one may be null. They may be equal. */
2066 to
= find_interval (BUF_INTERVALS (buffer
), charpos
);
2067 if (charpos
== BUF_BEGV (buffer
))
2069 else if (to
&& to
->position
== charpos
)
2070 toprev
= previous_interval (to
);
2074 buffer_point
= (BUF_PT (buffer
) == BUF_ZV (buffer
)
2075 ? BUF_ZV (buffer
) - 1
2078 /* Set FROM to the interval containing the char after PT,
2079 and FROMPREV to the interval containing the char before PT.
2080 Either one may be null. They may be equal. */
2081 /* We could cache this and save time. */
2082 from
= find_interval (BUF_INTERVALS (buffer
), buffer_point
);
2083 if (buffer_point
== BUF_BEGV (buffer
))
2085 else if (from
&& from
->position
== BUF_PT (buffer
))
2086 fromprev
= previous_interval (from
);
2087 else if (buffer_point
!= BUF_PT (buffer
))
2088 fromprev
= from
, from
= 0;
2092 /* Moving within an interval. */
2093 if (to
== from
&& toprev
== fromprev
&& INTERVAL_VISIBLE_P (to
)
2096 temp_set_point_both (buffer
, charpos
, bytepos
);
2100 original_position
= charpos
;
2102 /* If the new position is between two intangible characters
2103 with the same intangible property value,
2104 move forward or backward until a change in that property. */
2105 if (NILP (Vinhibit_point_motion_hooks
)
2106 && ((! NULL_INTERVAL_P (to
) && ! NULL_INTERVAL_P (toprev
))
2108 /* Intangibility never stops us from positioning at the beginning
2109 or end of the buffer, so don't bother checking in that case. */
2110 && charpos
!= BEGV
&& charpos
!= ZV
)
2113 Lisp_Object intangible_propval
;
2117 /* If the preceding character is both intangible and invisible,
2118 and the invisible property is `rear-sticky', perturb it so
2119 that the search starts one character earlier -- this ensures
2120 that point can never move to the end of an invisible/
2121 intangible/rear-sticky region. */
2122 charpos
= adjust_for_invis_intang (charpos
, -1, -1, 1);
2124 XSETINT (pos
, charpos
);
2126 /* If following char is intangible,
2127 skip back over all chars with matching intangible property. */
2129 intangible_propval
= Fget_char_property (pos
, Qintangible
, Qnil
);
2131 if (! NILP (intangible_propval
))
2133 while (XINT (pos
) > BUF_BEGV (buffer
)
2134 && EQ (Fget_char_property (make_number (XINT (pos
) - 1),
2136 intangible_propval
))
2137 pos
= Fprevious_char_property_change (pos
, Qnil
);
2139 /* Set CHARPOS from POS, and if the final intangible character
2140 that we skipped over is also invisible, and the invisible
2141 property is `front-sticky', perturb it to be one character
2142 earlier -- this ensures that point can never move to the
2143 beginning of an invisible/intangible/front-sticky region. */
2144 charpos
= adjust_for_invis_intang (XINT (pos
), 0, -1, 0);
2149 /* If the following character is both intangible and invisible,
2150 and the invisible property is `front-sticky', perturb it so
2151 that the search starts one character later -- this ensures
2152 that point can never move to the beginning of an
2153 invisible/intangible/front-sticky region. */
2154 charpos
= adjust_for_invis_intang (charpos
, 0, 1, 1);
2156 XSETINT (pos
, charpos
);
2158 /* If preceding char is intangible,
2159 skip forward over all chars with matching intangible property. */
2161 intangible_propval
= Fget_char_property (make_number (charpos
- 1),
2164 if (! NILP (intangible_propval
))
2166 while (XINT (pos
) < BUF_ZV (buffer
)
2167 && EQ (Fget_char_property (pos
, Qintangible
, Qnil
),
2168 intangible_propval
))
2169 pos
= Fnext_char_property_change (pos
, Qnil
);
2171 /* Set CHARPOS from POS, and if the final intangible character
2172 that we skipped over is also invisible, and the invisible
2173 property is `rear-sticky', perturb it to be one character
2174 later -- this ensures that point can never move to the
2175 end of an invisible/intangible/rear-sticky region. */
2176 charpos
= adjust_for_invis_intang (XINT (pos
), -1, 1, 0);
2180 bytepos
= buf_charpos_to_bytepos (buffer
, charpos
);
2183 if (charpos
!= original_position
)
2185 /* Set TO to the interval containing the char after CHARPOS,
2186 and TOPREV to the interval containing the char before CHARPOS.
2187 Either one may be null. They may be equal. */
2188 to
= find_interval (BUF_INTERVALS (buffer
), charpos
);
2189 if (charpos
== BUF_BEGV (buffer
))
2191 else if (to
&& to
->position
== charpos
)
2192 toprev
= previous_interval (to
);
2197 /* Here TO is the interval after the stopping point
2198 and TOPREV is the interval before the stopping point.
2199 One or the other may be null. */
2201 temp_set_point_both (buffer
, charpos
, bytepos
);
2203 /* We run point-left and point-entered hooks here, if the
2204 two intervals are not equivalent. These hooks take
2205 (old_point, new_point) as arguments. */
2206 if (NILP (Vinhibit_point_motion_hooks
)
2207 && (! intervals_equal (from
, to
)
2208 || ! intervals_equal (fromprev
, toprev
)))
2210 Lisp_Object leave_after
, leave_before
, enter_after
, enter_before
;
2213 leave_before
= textget (fromprev
->plist
, Qpoint_left
);
2215 leave_before
= Qnil
;
2218 leave_after
= textget (from
->plist
, Qpoint_left
);
2223 enter_before
= textget (toprev
->plist
, Qpoint_entered
);
2225 enter_before
= Qnil
;
2228 enter_after
= textget (to
->plist
, Qpoint_entered
);
2232 if (! EQ (leave_before
, enter_before
) && !NILP (leave_before
))
2233 call2 (leave_before
, make_number (old_position
),
2234 make_number (charpos
));
2235 if (! EQ (leave_after
, enter_after
) && !NILP (leave_after
))
2236 call2 (leave_after
, make_number (old_position
),
2237 make_number (charpos
));
2239 if (! EQ (enter_before
, leave_before
) && !NILP (enter_before
))
2240 call2 (enter_before
, make_number (old_position
),
2241 make_number (charpos
));
2242 if (! EQ (enter_after
, leave_after
) && !NILP (enter_after
))
2243 call2 (enter_after
, make_number (old_position
),
2244 make_number (charpos
));
2248 /* Move point to POSITION, unless POSITION is inside an intangible
2249 segment that reaches all the way to point. */
2252 move_if_not_intangible (position
)
2256 Lisp_Object intangible_propval
;
2258 XSETINT (pos
, position
);
2260 if (! NILP (Vinhibit_point_motion_hooks
))
2261 /* If intangible is inhibited, always move point to POSITION. */
2263 else if (PT
< position
&& XINT (pos
) < ZV
)
2265 /* We want to move forward, so check the text before POSITION. */
2267 intangible_propval
= Fget_char_property (pos
,
2270 /* If following char is intangible,
2271 skip back over all chars with matching intangible property. */
2272 if (! NILP (intangible_propval
))
2273 while (XINT (pos
) > BEGV
2274 && EQ (Fget_char_property (make_number (XINT (pos
) - 1),
2276 intangible_propval
))
2277 pos
= Fprevious_char_property_change (pos
, Qnil
);
2279 else if (XINT (pos
) > BEGV
)
2281 /* We want to move backward, so check the text after POSITION. */
2283 intangible_propval
= Fget_char_property (make_number (XINT (pos
) - 1),
2286 /* If following char is intangible,
2287 skip forward over all chars with matching intangible property. */
2288 if (! NILP (intangible_propval
))
2289 while (XINT (pos
) < ZV
2290 && EQ (Fget_char_property (pos
, Qintangible
, Qnil
),
2291 intangible_propval
))
2292 pos
= Fnext_char_property_change (pos
, Qnil
);
2295 else if (position
< BEGV
)
2297 else if (position
> ZV
)
2300 /* If the whole stretch between PT and POSITION isn't intangible,
2301 try moving to POSITION (which means we actually move farther
2302 if POSITION is inside of intangible text). */
2304 if (XINT (pos
) != PT
)
2308 /* If text at position POS has property PROP, set *VAL to the property
2309 value, *START and *END to the beginning and end of a region that
2310 has the same property, and return 1. Otherwise return 0.
2312 OBJECT is the string or buffer to look for the property in;
2313 nil means the current buffer. */
2316 get_property_and_range (pos
, prop
, val
, start
, end
, object
)
2318 Lisp_Object prop
, *val
;
2322 INTERVAL i
, prev
, next
;
2325 i
= find_interval (BUF_INTERVALS (current_buffer
), pos
);
2326 else if (BUFFERP (object
))
2327 i
= find_interval (BUF_INTERVALS (XBUFFER (object
)), pos
);
2328 else if (STRINGP (object
))
2329 i
= find_interval (STRING_INTERVALS (object
), pos
);
2333 if (NULL_INTERVAL_P (i
) || (i
->position
+ LENGTH (i
) <= pos
))
2335 *val
= textget (i
->plist
, prop
);
2339 next
= i
; /* remember it in advance */
2340 prev
= previous_interval (i
);
2341 while (! NULL_INTERVAL_P (prev
)
2342 && EQ (*val
, textget (prev
->plist
, prop
)))
2343 i
= prev
, prev
= previous_interval (prev
);
2344 *start
= i
->position
;
2346 next
= next_interval (i
);
2347 while (! NULL_INTERVAL_P (next
)
2348 && EQ (*val
, textget (next
->plist
, prop
)))
2349 i
= next
, next
= next_interval (next
);
2350 *end
= i
->position
+ LENGTH (i
);
2355 /* Return the proper local keymap TYPE for position POSITION in
2356 BUFFER; TYPE should be one of `keymap' or `local-map'. Use the map
2357 specified by the PROP property, if any. Otherwise, if TYPE is
2358 `local-map' use BUFFER's local map.
2360 POSITION must be in the accessible part of BUFFER. */
2363 get_local_map (position
, buffer
, type
)
2364 register int position
;
2365 register struct buffer
*buffer
;
2368 Lisp_Object prop
, lispy_position
, lispy_buffer
;
2369 int old_begv
, old_zv
, old_begv_byte
, old_zv_byte
;
2371 /* Perhaps we should just change `position' to the limit. */
2372 if (position
> BUF_ZV (buffer
) || position
< BUF_BEGV (buffer
))
2375 /* Ignore narrowing, so that a local map continues to be valid even if
2376 the visible region contains no characters and hence no properties. */
2377 old_begv
= BUF_BEGV (buffer
);
2378 old_zv
= BUF_ZV (buffer
);
2379 old_begv_byte
= BUF_BEGV_BYTE (buffer
);
2380 old_zv_byte
= BUF_ZV_BYTE (buffer
);
2381 BUF_BEGV (buffer
) = BUF_BEG (buffer
);
2382 BUF_ZV (buffer
) = BUF_Z (buffer
);
2383 BUF_BEGV_BYTE (buffer
) = BUF_BEG_BYTE (buffer
);
2384 BUF_ZV_BYTE (buffer
) = BUF_Z_BYTE (buffer
);
2386 XSETFASTINT (lispy_position
, position
);
2387 XSETBUFFER (lispy_buffer
, buffer
);
2388 /* First check if the CHAR has any property. This is because when
2389 we click with the mouse, the mouse pointer is really pointing
2390 to the CHAR after POS. */
2391 prop
= Fget_char_property (lispy_position
, type
, lispy_buffer
);
2392 /* If not, look at the POS's properties. This is necessary because when
2393 editing a field with a `local-map' property, we want insertion at the end
2394 to obey the `local-map' property. */
2396 prop
= get_pos_property (lispy_position
, type
, lispy_buffer
);
2398 BUF_BEGV (buffer
) = old_begv
;
2399 BUF_ZV (buffer
) = old_zv
;
2400 BUF_BEGV_BYTE (buffer
) = old_begv_byte
;
2401 BUF_ZV_BYTE (buffer
) = old_zv_byte
;
2403 /* Use the local map only if it is valid. */
2404 prop
= get_keymap (prop
, 0, 0);
2408 if (EQ (type
, Qkeymap
))
2411 return buffer
->keymap
;
2414 /* Produce an interval tree reflecting the intervals in
2415 TREE from START to START + LENGTH.
2416 The new interval tree has no parent and has a starting-position of 0. */
2419 copy_intervals (tree
, start
, length
)
2423 register INTERVAL i
, new, t
;
2424 register int got
, prevlen
;
2426 if (NULL_INTERVAL_P (tree
) || length
<= 0)
2427 return NULL_INTERVAL
;
2429 i
= find_interval (tree
, start
);
2430 if (NULL_INTERVAL_P (i
) || LENGTH (i
) == 0)
2433 /* If there is only one interval and it's the default, return nil. */
2434 if ((start
- i
->position
+ 1 + length
) < LENGTH (i
)
2435 && DEFAULT_INTERVAL_P (i
))
2436 return NULL_INTERVAL
;
2438 new = make_interval ();
2440 got
= (LENGTH (i
) - (start
- i
->position
));
2441 new->total_length
= length
;
2442 CHECK_TOTAL_LENGTH (new);
2443 copy_properties (i
, new);
2447 while (got
< length
)
2449 i
= next_interval (i
);
2450 t
= split_interval_right (t
, prevlen
);
2451 copy_properties (i
, t
);
2452 prevlen
= LENGTH (i
);
2456 return balance_an_interval (new);
2459 /* Give STRING the properties of BUFFER from POSITION to LENGTH. */
2462 copy_intervals_to_string (string
, buffer
, position
, length
)
2464 struct buffer
*buffer
;
2465 int position
, length
;
2467 INTERVAL interval_copy
= copy_intervals (BUF_INTERVALS (buffer
),
2469 if (NULL_INTERVAL_P (interval_copy
))
2472 SET_INTERVAL_OBJECT (interval_copy
, string
);
2473 STRING_SET_INTERVALS (string
, interval_copy
);
2476 /* Return 1 if strings S1 and S2 have identical properties; 0 otherwise.
2477 Assume they have identical characters. */
2480 compare_string_intervals (s1
, s2
)
2485 int end
= SCHARS (s1
);
2487 i1
= find_interval (STRING_INTERVALS (s1
), 0);
2488 i2
= find_interval (STRING_INTERVALS (s2
), 0);
2492 /* Determine how far we can go before we reach the end of I1 or I2. */
2493 int len1
= (i1
!= 0 ? INTERVAL_LAST_POS (i1
) : end
) - pos
;
2494 int len2
= (i2
!= 0 ? INTERVAL_LAST_POS (i2
) : end
) - pos
;
2495 int distance
= min (len1
, len2
);
2497 /* If we ever find a mismatch between the strings,
2499 if (! intervals_equal (i1
, i2
))
2502 /* Advance POS till the end of the shorter interval,
2503 and advance one or both interval pointers for the new position. */
2505 if (len1
== distance
)
2506 i1
= next_interval (i1
);
2507 if (len2
== distance
)
2508 i2
= next_interval (i2
);
2513 /* Recursively adjust interval I in the current buffer
2514 for setting enable_multibyte_characters to MULTI_FLAG.
2515 The range of interval I is START ... END in characters,
2516 START_BYTE ... END_BYTE in bytes. */
2519 set_intervals_multibyte_1 (i
, multi_flag
, start
, start_byte
, end
, end_byte
)
2522 int start
, start_byte
, end
, end_byte
;
2524 /* Fix the length of this interval. */
2526 i
->total_length
= end
- start
;
2528 i
->total_length
= end_byte
- start_byte
;
2529 CHECK_TOTAL_LENGTH (i
);
2531 if (TOTAL_LENGTH (i
) == 0)
2533 delete_interval (i
);
2537 /* Recursively fix the length of the subintervals. */
2540 int left_end
, left_end_byte
;
2545 left_end_byte
= start_byte
+ LEFT_TOTAL_LENGTH (i
);
2546 left_end
= BYTE_TO_CHAR (left_end_byte
);
2548 temp
= CHAR_TO_BYTE (left_end
);
2550 /* If LEFT_END_BYTE is in the middle of a character,
2551 adjust it and LEFT_END to a char boundary. */
2552 if (left_end_byte
> temp
)
2554 left_end_byte
= temp
;
2556 if (left_end_byte
< temp
)
2559 left_end_byte
= CHAR_TO_BYTE (left_end
);
2564 left_end
= start
+ LEFT_TOTAL_LENGTH (i
);
2565 left_end_byte
= CHAR_TO_BYTE (left_end
);
2568 set_intervals_multibyte_1 (i
->left
, multi_flag
, start
, start_byte
,
2569 left_end
, left_end_byte
);
2573 int right_start_byte
, right_start
;
2579 right_start_byte
= end_byte
- RIGHT_TOTAL_LENGTH (i
);
2580 right_start
= BYTE_TO_CHAR (right_start_byte
);
2582 /* If RIGHT_START_BYTE is in the middle of a character,
2583 adjust it and RIGHT_START to a char boundary. */
2584 temp
= CHAR_TO_BYTE (right_start
);
2586 if (right_start_byte
< temp
)
2588 right_start_byte
= temp
;
2590 if (right_start_byte
> temp
)
2593 right_start_byte
= CHAR_TO_BYTE (right_start
);
2598 right_start
= end
- RIGHT_TOTAL_LENGTH (i
);
2599 right_start_byte
= CHAR_TO_BYTE (right_start
);
2602 set_intervals_multibyte_1 (i
->right
, multi_flag
,
2603 right_start
, right_start_byte
,
2607 /* Rounding to char boundaries can theoretically ake this interval
2608 spurious. If so, delete one child, and copy its property list
2609 to this interval. */
2610 if (LEFT_TOTAL_LENGTH (i
) + RIGHT_TOTAL_LENGTH (i
) >= TOTAL_LENGTH (i
))
2614 (i
)->plist
= (i
)->left
->plist
;
2615 (i
)->left
->total_length
= 0;
2616 delete_interval ((i
)->left
);
2620 (i
)->plist
= (i
)->right
->plist
;
2621 (i
)->right
->total_length
= 0;
2622 delete_interval ((i
)->right
);
2627 /* Update the intervals of the current buffer
2628 to fit the contents as multibyte (if MULTI_FLAG is 1)
2629 or to fit them as non-multibyte (if MULTI_FLAG is 0). */
2632 set_intervals_multibyte (multi_flag
)
2635 if (BUF_INTERVALS (current_buffer
))
2636 set_intervals_multibyte_1 (BUF_INTERVALS (current_buffer
), multi_flag
,
2637 BEG
, BEG_BYTE
, Z
, Z_BYTE
);
2640 /* arch-tag: 3d402b60-083c-4271-b4a3-ebd9a74bfe27
2641 (do not change this comment) */