(toplevel symbol-properties): Don't quote lambda.
[emacs.git] / lispref / lists.texi
blob661c8c35308f5fd85519458ea094bd20b5346a48
1 @c -*-texinfo-*-
2 @c This is part of the GNU Emacs Lisp Reference Manual.
3 @c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999
4 @c   Free Software Foundation, Inc. 
5 @c See the file elisp.texi for copying conditions.
6 @setfilename ../info/lists
7 @node Lists, Sequences Arrays Vectors, Strings and Characters, Top
8 @chapter Lists
9 @cindex list
10 @cindex element (of list)
12   A @dfn{list} represents a sequence of zero or more elements (which may
13 be any Lisp objects).  The important difference between lists and
14 vectors is that two or more lists can share part of their structure; in
15 addition, you can insert or delete elements in a list without copying
16 the whole list.
18 @menu
19 * Cons Cells::          How lists are made out of cons cells.
20 * Lists as Boxes::                 Graphical notation to explain lists.
21 * List-related Predicates::        Is this object a list?  Comparing two lists.
22 * List Elements::       Extracting the pieces of a list.
23 * Building Lists::      Creating list structure.
24 * Modifying Lists::     Storing new pieces into an existing list.
25 * Sets And Lists::      A list can represent a finite mathematical set.
26 * Association Lists::   A list can represent a finite relation or mapping.
27 @end menu
29 @node Cons Cells
30 @section Lists and Cons Cells
31 @cindex lists and cons cells
32 @cindex @code{nil} and lists
34   Lists in Lisp are not a primitive data type; they are built up from
35 @dfn{cons cells}.  A cons cell is a data object that represents an
36 ordered pair.  That is, it has two slots, and each slot @dfn{holds}, or
37 @dfn{refers to}, some Lisp object.  One slot is known as the @sc{car},
38 and the other is known as the @sc{cdr}.  (These names are traditional;
39 see @ref{Cons Cell Type}.)  @sc{cdr} is pronounced ``could-er.''
41   We say that ``the @sc{car} of this cons cell is'' whatever object
42 its @sc{car} slot currently holds, and likewise for the @sc{cdr}.
44   A list is a series of cons cells ``chained together,'' so that each
45 cell refers to the next one.  There is one cons cell for each element of
46 the list.  By convention, the @sc{car}s of the cons cells hold the
47 elements of the list, and the @sc{cdr}s are used to chain the list: the
48 @sc{cdr} slot of each cons cell refers to the following cons cell.  The
49 @sc{cdr} of the last cons cell is @code{nil}.  This asymmetry between
50 the @sc{car} and the @sc{cdr} is entirely a matter of convention; at the
51 level of cons cells, the @sc{car} and @sc{cdr} slots have the same
52 characteristics.
54 @cindex list structure
55   Because most cons cells are used as part of lists, the phrase
56 @dfn{list structure} has come to mean any structure made out of cons
57 cells.
59   The symbol @code{nil} is considered a list as well as a symbol; it is
60 the list with no elements.  For convenience, the symbol @code{nil} is
61 considered to have @code{nil} as its @sc{cdr} (and also as its
62 @sc{car}).
64   The @sc{cdr} of any nonempty list @var{l} is a list containing all the
65 elements of @var{l} except the first.
67 @node Lists as Boxes
68 @comment  node-name,  next,  previous,  up
69 @section Lists as Linked Pairs of Boxes
70 @cindex box representation for lists
71 @cindex lists represented as boxes
72 @cindex cons cell as box
74   A cons cell can be illustrated as a pair of boxes.  The first box
75 represents the @sc{car} and the second box represents the @sc{cdr}.
76 Here is an illustration of the two-element list, @code{(tulip lily)},
77 made from two cons cells:
79 @example
80 @group
81  ---------------         ---------------
82 | car   | cdr   |       | car   | cdr   |
83 | tulip |   o---------->| lily  |  nil  |
84 |       |       |       |       |       |
85  ---------------         ---------------
86 @end group
87 @end example
89   Each pair of boxes represents a cons cell.  Each box ``refers to'',
90 ``points to'' or ``holds'' a Lisp object.  (These terms are
91 synonymous.)  The first box, which describes the @sc{car} of the first
92 cons cell, contains the symbol @code{tulip}.  The arrow from the
93 @sc{cdr} box of the first cons cell to the second cons cell indicates
94 that the @sc{cdr} of the first cons cell is the second cons cell.
96   The same list can be illustrated in a different sort of box notation
97 like this:
99 @example
100 @group
101     --- ---      --- ---
102    |   |   |--> |   |   |--> nil
103     --- ---      --- ---
104      |            |
105      |            |
106       --> tulip    --> lily
107 @end group
108 @end example
110   Here is a more complex illustration, showing the three-element list,
111 @code{((pine needles) oak maple)}, the first element of which is a
112 two-element list:
114 @example
115 @group
116     --- ---      --- ---      --- ---
117    |   |   |--> |   |   |--> |   |   |--> nil
118     --- ---      --- ---      --- ---
119      |            |            |
120      |            |            |
121      |             --> oak      --> maple
122      |
123      |     --- ---      --- ---
124       --> |   |   |--> |   |   |--> nil
125            --- ---      --- ---
126             |            |
127             |            |
128              --> pine     --> needles
129 @end group
130 @end example
132   The same list represented in the first box notation looks like this:
134 @example
135 @group
136  --------------       --------------       --------------
137 | car   | cdr  |     | car   | cdr  |     | car   | cdr  |
138 |   o   |   o------->| oak   |   o------->| maple |  nil |
139 |   |   |      |     |       |      |     |       |      |
140  -- | ---------       --------------       --------------
141     |
142     |
143     |        --------------       ----------------
144     |       | car   | cdr  |     | car     | cdr  |
145      ------>| pine  |   o------->| needles |  nil |
146             |       |      |     |         |      |
147              --------------       ----------------
148 @end group
149 @end example
151   @xref{Cons Cell Type}, for the read and print syntax of cons cells and
152 lists, and for more ``box and arrow'' illustrations of lists.
154 @node List-related Predicates
155 @section Predicates on Lists
157   The following predicates test whether a Lisp object is an atom, is a
158 cons cell or is a list, or whether it is the distinguished object
159 @code{nil}.  (Many of these predicates can be defined in terms of the
160 others, but they are used so often that it is worth having all of them.)
162 @defun consp object
163 This function returns @code{t} if @var{object} is a cons cell, @code{nil}
164 otherwise.  @code{nil} is not a cons cell, although it @emph{is} a list.
165 @end defun
167 @defun atom object
168 @cindex atoms
169 This function returns @code{t} if @var{object} is an atom, @code{nil}
170 otherwise.  All objects except cons cells are atoms.  The symbol
171 @code{nil} is an atom and is also a list; it is the only Lisp object
172 that is both.
174 @example
175 (atom @var{object}) @equiv{} (not (consp @var{object}))
176 @end example
177 @end defun
179 @defun listp object
180 This function returns @code{t} if @var{object} is a cons cell or
181 @code{nil}.  Otherwise, it returns @code{nil}.
183 @example
184 @group
185 (listp '(1))
186      @result{} t
187 @end group
188 @group
189 (listp '())
190      @result{} t
191 @end group
192 @end example
193 @end defun
195 @defun nlistp object
196 This function is the opposite of @code{listp}: it returns @code{t} if
197 @var{object} is not a list.  Otherwise, it returns @code{nil}.
199 @example
200 (listp @var{object}) @equiv{} (not (nlistp @var{object}))
201 @end example
202 @end defun
204 @defun null object
205 This function returns @code{t} if @var{object} is @code{nil}, and
206 returns @code{nil} otherwise.  This function is identical to @code{not},
207 but as a matter of clarity we use @code{null} when @var{object} is
208 considered a list and @code{not} when it is considered a truth value
209 (see @code{not} in @ref{Combining Conditions}).
211 @example
212 @group
213 (null '(1))
214      @result{} nil
215 @end group
216 @group
217 (null '())
218      @result{} t
219 @end group
220 @end example
221 @end defun
223 @need 2000
225 @node List Elements
226 @section Accessing Elements of Lists
227 @cindex list elements
229 @defun car cons-cell
230 This function returns the value referred to by the first slot of the
231 cons cell @var{cons-cell}.  Expressed another way, this function
232 returns the @sc{car} of @var{cons-cell}.
234 As a special case, if @var{cons-cell} is @code{nil}, then @code{car}
235 is defined to return @code{nil}; therefore, any list is a valid argument
236 for @code{car}.  An error is signaled if the argument is not a cons cell
237 or @code{nil}.
239 @example
240 @group
241 (car '(a b c))
242      @result{} a
243 @end group
244 @group
245 (car '())
246      @result{} nil
247 @end group
248 @end example
249 @end defun
251 @defun cdr cons-cell
252 This function returns the value referred to by the second slot of
253 the cons cell @var{cons-cell}.  Expressed another way, this function
254 returns the @sc{cdr} of @var{cons-cell}.
256 As a special case, if @var{cons-cell} is @code{nil}, then @code{cdr}
257 is defined to return @code{nil}; therefore, any list is a valid argument
258 for @code{cdr}.  An error is signaled if the argument is not a cons cell
259 or @code{nil}.
261 @example
262 @group
263 (cdr '(a b c))
264      @result{} (b c)
265 @end group
266 @group
267 (cdr '())
268      @result{} nil
269 @end group
270 @end example
271 @end defun
273 @defun car-safe object
274 This function lets you take the @sc{car} of a cons cell while avoiding
275 errors for other data types.  It returns the @sc{car} of @var{object} if
276 @var{object} is a cons cell, @code{nil} otherwise.  This is in contrast
277 to @code{car}, which signals an error if @var{object} is not a list.
279 @example
280 @group
281 (car-safe @var{object})
282 @equiv{}
283 (let ((x @var{object}))
284   (if (consp x)
285       (car x)
286     nil))
287 @end group
288 @end example
289 @end defun
291 @defun cdr-safe object
292 This function lets you take the @sc{cdr} of a cons cell while
293 avoiding errors for other data types.  It returns the @sc{cdr} of
294 @var{object} if @var{object} is a cons cell, @code{nil} otherwise.
295 This is in contrast to @code{cdr}, which signals an error if
296 @var{object} is not a list.
298 @example
299 @group
300 (cdr-safe @var{object})
301 @equiv{}
302 (let ((x @var{object}))
303   (if (consp x)
304       (cdr x)
305     nil))
306 @end group
307 @end example
308 @end defun
310 @tindex pop
311 @defmac pop listname
312 This macro is a way of examining the @sc{car} of a list,
313 and taking it off the list, all at once.  It is new in Emacs 21.
315 It operates on the list which is stored in the symbol @var{listname}.
316 It removes this element from the list by setting @var{listname}
317 to the @sc{cdr} of its old value---but it also returns the @sc{car}
318 of that list, which is the element being removed.
320 @example
322      @result{} (a b c)
323 (pop x)
324      @result{} a
326      @result{} (b c)
327 @end example
328 @end defmac
330 @defun nth n list
331 This function returns the @var{n}th element of @var{list}.  Elements
332 are numbered starting with zero, so the @sc{car} of @var{list} is
333 element number zero.  If the length of @var{list} is @var{n} or less,
334 the value is @code{nil}.
336 If @var{n} is negative, @code{nth} returns the first element of
337 @var{list}.
339 @example
340 @group
341 (nth 2 '(1 2 3 4))
342      @result{} 3
343 @end group
344 @group
345 (nth 10 '(1 2 3 4))
346      @result{} nil
347 @end group
348 @group
349 (nth -3 '(1 2 3 4))
350      @result{} 1
352 (nth n x) @equiv{} (car (nthcdr n x))
353 @end group
354 @end example
356 The function @code{elt} is similar, but applies to any kind of sequence.
357 For historical reasons, it takes its arguments in the opposite order.
358 @xref{Sequence Functions}.
359 @end defun
361 @defun nthcdr n list
362 This function returns the @var{n}th @sc{cdr} of @var{list}.  In other
363 words, it skips past the first @var{n} links of @var{list} and returns
364 what follows.
366 If @var{n} is zero or negative, @code{nthcdr} returns all of
367 @var{list}.  If the length of @var{list} is @var{n} or less,
368 @code{nthcdr} returns @code{nil}.
370 @example
371 @group
372 (nthcdr 1 '(1 2 3 4))
373      @result{} (2 3 4)
374 @end group
375 @group
376 (nthcdr 10 '(1 2 3 4))
377      @result{} nil
378 @end group
379 @group
380 (nthcdr -3 '(1 2 3 4))
381      @result{} (1 2 3 4)
382 @end group
383 @end example
384 @end defun
386 @defun safe-length list
387 This function returns the length of @var{list}, with no risk
388 of either an error or an infinite loop.
390 If @var{list} is not really a list, @code{safe-length} returns 0.  If
391 @var{list} is circular, it returns a finite value which is at least the
392 number of distinct elements.
393 @end defun
395   The most common way to compute the length of a list, when you are not
396 worried that it may be circular, is with @code{length}.  @xref{Sequence
397 Functions}.
399 @defun caar cons-cell
400 This is the same as @code{(car (car @var{cons-cell}))}.
401 @end defun
403 @defun cadr cons-cell
404 This is the same as @code{(car (cdr @var{cons-cell}))}
405 or @code{(nth 1 @var{cons-cell})}.
406 @end defun
408 @defun cdar cons-cell
409 This is the same as @code{(cdr (car @var{cons-cell}))}.
410 @end defun
412 @defun cddr cons-cell
413 This is the same as @code{(cdr (cdr @var{cons-cell}))}
414 or @code{(nthcdr 2 @var{cons-cell})}.
415 @end defun
417 @node Building Lists
418 @comment  node-name,  next,  previous,  up
419 @section Building Cons Cells and Lists
420 @cindex cons cells
421 @cindex building lists
423   Many functions build lists, as lists reside at the very heart of Lisp.
424 @code{cons} is the fundamental list-building function; however, it is
425 interesting to note that @code{list} is used more times in the source
426 code for Emacs than @code{cons}.
428 @defun cons object1 object2
429 This function is the fundamental function used to build new list
430 structure.  It creates a new cons cell, making @var{object1} the
431 @sc{car}, and @var{object2} the @sc{cdr}.  It then returns the new cons
432 cell.  The arguments @var{object1} and @var{object2} may be any Lisp
433 objects, but most often @var{object2} is a list.
435 @example
436 @group
437 (cons 1 '(2))
438      @result{} (1 2)
439 @end group
440 @group
441 (cons 1 '())
442      @result{} (1)
443 @end group
444 @group
445 (cons 1 2)
446      @result{} (1 . 2)
447 @end group
448 @end example
450 @cindex consing
451 @code{cons} is often used to add a single element to the front of a
452 list.  This is called @dfn{consing the element onto the list}.  For
453 example:
455 @example
456 (setq list (cons newelt list))
457 @end example
459 Note that there is no conflict between the variable named @code{list}
460 used in this example and the function named @code{list} described below;
461 any symbol can serve both purposes.
462 @end defun
464 @tindex push
465 @defmac push newelt listname
466 This macro provides an alternative way to write
467 @code{(setq @var{listname} (cons @var{newelt} @var{listname}))}.
468 It is new in Emacs 21.
469 @end defmac
471 @defun list &rest objects
472 This function creates a list with @var{objects} as its elements.  The
473 resulting list is always @code{nil}-terminated.  If no @var{objects}
474 are given, the empty list is returned.
476 @example
477 @group
478 (list 1 2 3 4 5)
479      @result{} (1 2 3 4 5)
480 @end group
481 @group
482 (list 1 2 '(3 4 5) 'foo)
483      @result{} (1 2 (3 4 5) foo)
484 @end group
485 @group
486 (list)
487      @result{} nil
488 @end group
489 @end example
490 @end defun
492 @defun make-list length object
493 This function creates a list of length @var{length}, in which all the
494 elements have the identical value @var{object}.  Compare
495 @code{make-list} with @code{make-string} (@pxref{Creating Strings}).
497 @example
498 @group
499 (make-list 3 'pigs)
500      @result{} (pigs pigs pigs)
501 @end group
502 @group
503 (make-list 0 'pigs)
504      @result{} nil
505 @end group
506 @end example
507 @end defun
509 @defun append &rest sequences
510 @cindex copying lists
511 This function returns a list containing all the elements of
512 @var{sequences}.  The @var{sequences} may be lists, vectors,
513 bool-vectors, or strings, but the last one should usually be a list.
514 All arguments except the last one are copied, so none of the arguments
515 is altered.  (See @code{nconc} in @ref{Rearrangement}, for a way to join
516 lists with no copying.)
518 More generally, the final argument to @code{append} may be any Lisp
519 object.  The final argument is not copied or converted; it becomes the
520 @sc{cdr} of the last cons cell in the new list.  If the final argument
521 is itself a list, then its elements become in effect elements of the
522 result list.  If the final element is not a list, the result is a
523 ``dotted list'' since its final @sc{cdr} is not @code{nil} as required
524 in a true list.
526 The @code{append} function also allows integers as arguments.  It
527 converts them to strings of digits, making up the decimal print
528 representation of the integer, and then uses the strings instead of the
529 original integers.  @strong{Don't use this feature; we plan to eliminate
530 it.  If you already use this feature, change your programs now!}  The
531 proper way to convert an integer to a decimal number in this way is with
532 @code{format} (@pxref{Formatting Strings}) or @code{number-to-string}
533 (@pxref{String Conversion}).
534 @end defun
536   Here is an example of using @code{append}:
538 @example
539 @group
540 (setq trees '(pine oak))
541      @result{} (pine oak)
542 (setq more-trees (append '(maple birch) trees))
543      @result{} (maple birch pine oak)
544 @end group
546 @group
547 trees
548      @result{} (pine oak)
549 more-trees
550      @result{} (maple birch pine oak)
551 @end group
552 @group
553 (eq trees (cdr (cdr more-trees)))
554      @result{} t
555 @end group
556 @end example
558   You can see how @code{append} works by looking at a box diagram.  The
559 variable @code{trees} is set to the list @code{(pine oak)} and then the
560 variable @code{more-trees} is set to the list @code{(maple birch pine
561 oak)}.  However, the variable @code{trees} continues to refer to the
562 original list:
564 @smallexample
565 @group
566 more-trees                trees
567 |                           |
568 |     --- ---      --- ---   -> --- ---      --- ---
569  --> |   |   |--> |   |   |--> |   |   |--> |   |   |--> nil
570       --- ---      --- ---      --- ---      --- ---
571        |            |            |            |
572        |            |            |            |
573         --> maple    -->birch     --> pine     --> oak
574 @end group
575 @end smallexample
577   An empty sequence contributes nothing to the value returned by
578 @code{append}.  As a consequence of this, a final @code{nil} argument
579 forces a copy of the previous argument:
581 @example
582 @group
583 trees
584      @result{} (pine oak)
585 @end group
586 @group
587 (setq wood (append trees nil))
588      @result{} (pine oak)
589 @end group
590 @group
591 wood
592      @result{} (pine oak)
593 @end group
594 @group
595 (eq wood trees)
596      @result{} nil
597 @end group
598 @end example
600 @noindent
601 This once was the usual way to copy a list, before the function
602 @code{copy-sequence} was invented.  @xref{Sequences Arrays Vectors}.
604   Here we show the use of vectors and strings as arguments to @code{append}:
606 @example
607 @group
608 (append [a b] "cd" nil)
609      @result{} (a b 99 100)
610 @end group
611 @end example
613   With the help of @code{apply} (@pxref{Calling Functions}), we can append
614 all the lists in a list of lists:
616 @example
617 @group
618 (apply 'append '((a b c) nil (x y z) nil))
619      @result{} (a b c x y z)
620 @end group
621 @end example
623   If no @var{sequences} are given, @code{nil} is returned:
625 @example
626 @group
627 (append)
628      @result{} nil
629 @end group
630 @end example
632   Here are some examples where the final argument is not a list:
634 @example
635 (append '(x y) 'z)
636      @result{} (x y . z)
637 (append '(x y) [z])
638      @result{} (x y . [z])
639 @end example
641 @noindent
642 The second example shows that when the final argument is a sequence but
643 not a list, the sequence's elements do not become elements of the
644 resulting list.  Instead, the sequence becomes the final @sc{cdr}, like
645 any other non-list final argument.
647 @defun reverse list
648 This function creates a new list whose elements are the elements of
649 @var{list}, but in reverse order.  The original argument @var{list} is
650 @emph{not} altered.
652 @example
653 @group
654 (setq x '(1 2 3 4))
655      @result{} (1 2 3 4)
656 @end group
657 @group
658 (reverse x)
659      @result{} (4 3 2 1)
661      @result{} (1 2 3 4)
662 @end group
663 @end example
664 @end defun
666 @node Modifying Lists
667 @section Modifying Existing List Structure
668 @cindex destructive list operations
670   You can modify the @sc{car} and @sc{cdr} contents of a cons cell with the
671 primitives @code{setcar} and @code{setcdr}.  We call these ``destructive'' 
672 operations because they change existing list structure.
674 @cindex CL note---@code{rplaca} vrs @code{setcar}
675 @quotation
676 @findex rplaca
677 @findex rplacd
678 @b{Common Lisp note:} Common Lisp uses functions @code{rplaca} and
679 @code{rplacd} to alter list structure; they change structure the same
680 way as @code{setcar} and @code{setcdr}, but the Common Lisp functions
681 return the cons cell while @code{setcar} and @code{setcdr} return the
682 new @sc{car} or @sc{cdr}.
683 @end quotation
685 @menu
686 * Setcar::          Replacing an element in a list.
687 * Setcdr::          Replacing part of the list backbone.
688                       This can be used to remove or add elements.
689 * Rearrangement::   Reordering the elements in a list; combining lists.
690 @end menu
692 @node Setcar
693 @subsection Altering List Elements with @code{setcar}
695   Changing the @sc{car} of a cons cell is done with @code{setcar}.  When
696 used on a list, @code{setcar} replaces one element of a list with a
697 different element.
699 @defun setcar cons object
700 This function stores @var{object} as the new @sc{car} of @var{cons},
701 replacing its previous @sc{car}.  In other words, it changes the
702 @sc{car} slot of @var{cons} to refer to @var{object}.  It returns the
703 value @var{object}.  For example:
705 @example
706 @group
707 (setq x '(1 2))
708      @result{} (1 2)
709 @end group
710 @group
711 (setcar x 4)
712      @result{} 4
713 @end group
714 @group
716      @result{} (4 2)
717 @end group
718 @end example
719 @end defun
721   When a cons cell is part of the shared structure of several lists,
722 storing a new @sc{car} into the cons changes one element of each of
723 these lists.  Here is an example:
725 @example
726 @group
727 ;; @r{Create two lists that are partly shared.}
728 (setq x1 '(a b c))
729      @result{} (a b c)
730 (setq x2 (cons 'z (cdr x1)))
731      @result{} (z b c)
732 @end group
734 @group
735 ;; @r{Replace the @sc{car} of a shared link.}
736 (setcar (cdr x1) 'foo)
737      @result{} foo
738 x1                           ; @r{Both lists are changed.}
739      @result{} (a foo c)
741      @result{} (z foo c)
742 @end group
744 @group
745 ;; @r{Replace the @sc{car} of a link that is not shared.}
746 (setcar x1 'baz)
747      @result{} baz
748 x1                           ; @r{Only one list is changed.}
749      @result{} (baz foo c)
751      @result{} (z foo c)
752 @end group
753 @end example
755   Here is a graphical depiction of the shared structure of the two lists
756 in the variables @code{x1} and @code{x2}, showing why replacing @code{b}
757 changes them both:
759 @example
760 @group
761         --- ---        --- ---      --- ---
762 x1---> |   |   |----> |   |   |--> |   |   |--> nil
763         --- ---        --- ---      --- ---
764          |        -->   |            |
765          |       |      |            |
766           --> a  |       --> b        --> c
767                  |
768        --- ---   |
769 x2--> |   |   |--
770        --- ---
771         |
772         |
773          --> z
774 @end group
775 @end example
777   Here is an alternative form of box diagram, showing the same relationship:
779 @example
780 @group
782  --------------       --------------       --------------
783 | car   | cdr  |     | car   | cdr  |     | car   | cdr  |
784 |   a   |   o------->|   b   |   o------->|   c   |  nil |
785 |       |      |  -->|       |      |     |       |      |
786  --------------  |    --------------       --------------
787                  |
788 x2:              |
789  --------------  |
790 | car   | cdr  | |
791 |   z   |   o----
792 |       |      |
793  --------------
794 @end group
795 @end example
797 @node Setcdr
798 @subsection Altering the CDR of a List
800   The lowest-level primitive for modifying a @sc{cdr} is @code{setcdr}:
802 @defun setcdr cons object
803 This function stores @var{object} as the new @sc{cdr} of @var{cons},
804 replacing its previous @sc{cdr}.  In other words, it changes the
805 @sc{cdr} slot of @var{cons} to refer to @var{object}.  It returns the
806 value @var{object}.
807 @end defun
809   Here is an example of replacing the @sc{cdr} of a list with a
810 different list.  All but the first element of the list are removed in
811 favor of a different sequence of elements.  The first element is
812 unchanged, because it resides in the @sc{car} of the list, and is not
813 reached via the @sc{cdr}.
815 @example
816 @group
817 (setq x '(1 2 3))
818      @result{} (1 2 3)
819 @end group
820 @group
821 (setcdr x '(4))
822      @result{} (4)
823 @end group
824 @group
826      @result{} (1 4)
827 @end group
828 @end example
830   You can delete elements from the middle of a list by altering the
831 @sc{cdr}s of the cons cells in the list.  For example, here we delete
832 the second element, @code{b}, from the list @code{(a b c)}, by changing
833 the @sc{cdr} of the first cons cell:
835 @example
836 @group
837 (setq x1 '(a b c))
838      @result{} (a b c)
839 (setcdr x1 (cdr (cdr x1)))
840      @result{} (c)
842      @result{} (a c)
843 @end group
844 @end example
846 @need 4000
847   Here is the result in box notation:
849 @example
850 @group
851                    --------------------
852                   |                    |
853  --------------   |   --------------   |    --------------
854 | car   | cdr  |  |  | car   | cdr  |   -->| car   | cdr  |
855 |   a   |   o-----   |   b   |   o-------->|   c   |  nil |
856 |       |      |     |       |      |      |       |      |
857  --------------       --------------        --------------
858 @end group
859 @end example
861 @noindent
862 The second cons cell, which previously held the element @code{b}, still
863 exists and its @sc{car} is still @code{b}, but it no longer forms part
864 of this list.
866   It is equally easy to insert a new element by changing @sc{cdr}s:
868 @example
869 @group
870 (setq x1 '(a b c))
871      @result{} (a b c)
872 (setcdr x1 (cons 'd (cdr x1)))
873      @result{} (d b c)
875      @result{} (a d b c)
876 @end group
877 @end example
879   Here is this result in box notation:
881 @smallexample
882 @group
883  --------------        -------------       -------------
884 | car  | cdr   |      | car  | cdr  |     | car  | cdr  |
885 |   a  |   o   |   -->|   b  |   o------->|   c  |  nil |
886 |      |   |   |  |   |      |      |     |      |      |
887  --------- | --   |    -------------       -------------
888            |      |
889      -----         --------
890     |                      |
891     |    ---------------   |
892     |   | car   | cdr   |  |
893      -->|   d   |   o------
894         |       |       |
895          ---------------
896 @end group
897 @end smallexample
899 @node Rearrangement
900 @subsection Functions that Rearrange Lists
901 @cindex rearrangement of lists
902 @cindex modification of lists
904   Here are some functions that rearrange lists ``destructively'' by
905 modifying the @sc{cdr}s of their component cons cells.  We call these
906 functions ``destructive'' because they chew up the original lists passed
907 to them as arguments, relinking their cons cells to form a new list that
908 is the returned value.
910 @ifnottex
911   See @code{delq}, in @ref{Sets And Lists}, for another function
912 that modifies cons cells.
913 @end ifnottex
914 @iftex
915    The function @code{delq} in the following section is another example
916 of destructive list manipulation.
917 @end iftex
919 @defun nconc &rest lists
920 @cindex concatenating lists
921 @cindex joining lists
922 This function returns a list containing all the elements of @var{lists}.
923 Unlike @code{append} (@pxref{Building Lists}), the @var{lists} are
924 @emph{not} copied.  Instead, the last @sc{cdr} of each of the
925 @var{lists} is changed to refer to the following list.  The last of the
926 @var{lists} is not altered.  For example:
928 @example
929 @group
930 (setq x '(1 2 3))
931      @result{} (1 2 3)
932 @end group
933 @group
934 (nconc x '(4 5))
935      @result{} (1 2 3 4 5)
936 @end group
937 @group
939      @result{} (1 2 3 4 5)
940 @end group
941 @end example
943    Since the last argument of @code{nconc} is not itself modified, it is
944 reasonable to use a constant list, such as @code{'(4 5)}, as in the
945 above example.  For the same reason, the last argument need not be a
946 list:
948 @example
949 @group
950 (setq x '(1 2 3))
951      @result{} (1 2 3)
952 @end group
953 @group
954 (nconc x 'z)
955      @result{} (1 2 3 . z)
956 @end group
957 @group
959      @result{} (1 2 3 . z)
960 @end group
961 @end example
963 However, the other arguments (all but the last) must be lists.
965 A common pitfall is to use a quoted constant list as a non-last
966 argument to @code{nconc}.  If you do this, your program will change
967 each time you run it!  Here is what happens:
969 @smallexample
970 @group
971 (defun add-foo (x)            ; @r{We want this function to add}
972   (nconc '(foo) x))           ;   @r{@code{foo} to the front of its arg.}
973 @end group
975 @group
976 (symbol-function 'add-foo)
977      @result{} (lambda (x) (nconc (quote (foo)) x))
978 @end group
980 @group
981 (setq xx (add-foo '(1 2)))    ; @r{It seems to work.}
982      @result{} (foo 1 2)
983 @end group
984 @group
985 (setq xy (add-foo '(3 4)))    ; @r{What happened?}
986      @result{} (foo 1 2 3 4)
987 @end group
988 @group
989 (eq xx xy)
990      @result{} t
991 @end group
993 @group
994 (symbol-function 'add-foo)
995      @result{} (lambda (x) (nconc (quote (foo 1 2 3 4) x)))
996 @end group
997 @end smallexample
998 @end defun
1000 @defun nreverse list
1001 @cindex reversing a list
1002   This function reverses the order of the elements of @var{list}.
1003 Unlike @code{reverse}, @code{nreverse} alters its argument by reversing
1004 the @sc{cdr}s in the cons cells forming the list.  The cons cell that
1005 used to be the last one in @var{list} becomes the first cons cell of the
1006 value.
1008   For example:
1010 @example
1011 @group
1012 (setq x '(1 2 3 4))
1013      @result{} (1 2 3 4)
1014 @end group
1015 @group
1017      @result{} (1 2 3 4)
1018 (nreverse x)
1019      @result{} (4 3 2 1)
1020 @end group
1021 @group
1022 ;; @r{The cons cell that was first is now last.}
1024      @result{} (1)
1025 @end group
1026 @end example
1028   To avoid confusion, we usually store the result of @code{nreverse}
1029 back in the same variable which held the original list:
1031 @example
1032 (setq x (nreverse x))
1033 @end example
1035   Here is the @code{nreverse} of our favorite example, @code{(a b c)},
1036 presented graphically:
1038 @smallexample
1039 @group
1040 @r{Original list head:}                       @r{Reversed list:}
1041  -------------        -------------        ------------
1042 | car  | cdr  |      | car  | cdr  |      | car | cdr  |
1043 |   a  |  nil |<--   |   b  |   o  |<--   |   c |   o  |
1044 |      |      |   |  |      |   |  |   |  |     |   |  |
1045  -------------    |   --------- | -    |   -------- | -
1046                   |             |      |            |
1047                    -------------        ------------
1048 @end group
1049 @end smallexample
1050 @end defun
1052 @defun sort list predicate
1053 @cindex stable sort
1054 @cindex sorting lists
1055 This function sorts @var{list} stably, though destructively, and
1056 returns the sorted list.  It compares elements using @var{predicate}.  A
1057 stable sort is one in which elements with equal sort keys maintain their
1058 relative order before and after the sort.  Stability is important when
1059 successive sorts are used to order elements according to different
1060 criteria.
1062 The argument @var{predicate} must be a function that accepts two
1063 arguments.  It is called with two elements of @var{list}.  To get an
1064 increasing order sort, the @var{predicate} should return @code{t} if the
1065 first element is ``less than'' the second, or @code{nil} if not.
1067 The comparison function @var{predicate} must give reliable results for
1068 any given pair of arguments, at least within a single call to
1069 @code{sort}.  It must be @dfn{antisymmetric}; that is, if @var{a} is
1070 less than @var{b}, @var{b} must not be less than @var{a}.  It must be
1071 @dfn{transitive}---that is, if @var{a} is less than @var{b}, and @var{b}
1072 is less than @var{c}, then @var{a} must be less than @var{c}.  If you
1073 use a comparison function which does not meet these requirements, the
1074 result of @code{sort} is unpredictable.
1076 The destructive aspect of @code{sort} is that it rearranges the cons
1077 cells forming @var{list} by changing @sc{cdr}s.  A nondestructive sort
1078 function would create new cons cells to store the elements in their
1079 sorted order.  If you wish to make a sorted copy without destroying the
1080 original, copy it first with @code{copy-sequence} and then sort.
1082 Sorting does not change the @sc{car}s of the cons cells in @var{list};
1083 the cons cell that originally contained the element @code{a} in
1084 @var{list} still has @code{a} in its @sc{car} after sorting, but it now
1085 appears in a different position in the list due to the change of
1086 @sc{cdr}s.  For example:
1088 @example
1089 @group
1090 (setq nums '(1 3 2 6 5 4 0))
1091      @result{} (1 3 2 6 5 4 0)
1092 @end group
1093 @group
1094 (sort nums '<)
1095      @result{} (0 1 2 3 4 5 6)
1096 @end group
1097 @group
1098 nums
1099      @result{} (1 2 3 4 5 6)
1100 @end group
1101 @end example
1103 @noindent
1104 @strong{Warning}: Note that the list in @code{nums} no longer contains
1105 0; this is the same cons cell that it was before, but it is no longer
1106 the first one in the list.  Don't assume a variable that formerly held
1107 the argument now holds the entire sorted list!  Instead, save the result
1108 of @code{sort} and use that.  Most often we store the result back into
1109 the variable that held the original list:
1111 @example
1112 (setq nums (sort nums '<))
1113 @end example
1115 @xref{Sorting}, for more functions that perform sorting.
1116 See @code{documentation} in @ref{Accessing Documentation}, for a
1117 useful example of @code{sort}.
1118 @end defun
1120 @node Sets And Lists
1121 @section Using Lists as Sets
1122 @cindex lists as sets
1123 @cindex sets
1125   A list can represent an unordered mathematical set---simply consider a
1126 value an element of a set if it appears in the list, and ignore the
1127 order of the list.  To form the union of two sets, use @code{append} (as
1128 long as you don't mind having duplicate elements).  Other useful
1129 functions for sets include @code{memq} and @code{delq}, and their
1130 @code{equal} versions, @code{member} and @code{delete}.
1132 @cindex CL note---lack @code{union}, @code{intersection}
1133 @quotation
1134 @b{Common Lisp note:} Common Lisp has functions @code{union} (which
1135 avoids duplicate elements) and @code{intersection} for set operations,
1136 but GNU Emacs Lisp does not have them.  You can write them in Lisp if
1137 you wish.
1138 @end quotation
1140 @defun memq object list
1141 @cindex membership in a list
1142 This function tests to see whether @var{object} is a member of
1143 @var{list}.  If it is, @code{memq} returns a list starting with the
1144 first occurrence of @var{object}.  Otherwise, it returns @code{nil}.
1145 The letter @samp{q} in @code{memq} says that it uses @code{eq} to
1146 compare @var{object} against the elements of the list.  For example:
1148 @example
1149 @group
1150 (memq 'b '(a b c b a))
1151      @result{} (b c b a)
1152 @end group
1153 @group
1154 (memq '(2) '((1) (2)))    ; @r{@code{(2)} and @code{(2)} are not @code{eq}.}
1155      @result{} nil
1156 @end group
1157 @end example
1158 @end defun
1160 @defun delq object list
1161 @cindex deletion of elements
1162 This function destructively removes all elements @code{eq} to
1163 @var{object} from @var{list}.  The letter @samp{q} in @code{delq} says
1164 that it uses @code{eq} to compare @var{object} against the elements of
1165 the list, like @code{memq}.
1166 @end defun
1168 When @code{delq} deletes elements from the front of the list, it does so
1169 simply by advancing down the list and returning a sublist that starts
1170 after those elements:
1172 @example
1173 @group
1174 (delq 'a '(a b c)) @equiv{} (cdr '(a b c))
1175 @end group
1176 @end example
1178 When an element to be deleted appears in the middle of the list,
1179 removing it involves changing the @sc{cdr}s (@pxref{Setcdr}).
1181 @example
1182 @group
1183 (setq sample-list '(a b c (4)))
1184      @result{} (a b c (4))
1185 @end group
1186 @group
1187 (delq 'a sample-list)
1188      @result{} (b c (4))
1189 @end group
1190 @group
1191 sample-list
1192      @result{} (a b c (4))
1193 @end group
1194 @group
1195 (delq 'c sample-list)
1196      @result{} (a b (4))
1197 @end group
1198 @group
1199 sample-list
1200      @result{} (a b (4))
1201 @end group
1202 @end example
1204 Note that @code{(delq 'c sample-list)} modifies @code{sample-list} to
1205 splice out the third element, but @code{(delq 'a sample-list)} does not
1206 splice anything---it just returns a shorter list.  Don't assume that a
1207 variable which formerly held the argument @var{list} now has fewer
1208 elements, or that it still holds the original list!  Instead, save the
1209 result of @code{delq} and use that.  Most often we store the result back
1210 into the variable that held the original list:
1212 @example
1213 (setq flowers (delq 'rose flowers))
1214 @end example
1216 In the following example, the @code{(4)} that @code{delq} attempts to match
1217 and the @code{(4)} in the @code{sample-list} are not @code{eq}:
1219 @example
1220 @group
1221 (delq '(4) sample-list)
1222      @result{} (a c (4))
1223 @end group
1224 @end example
1226 The following two functions are like @code{memq} and @code{delq} but use
1227 @code{equal} rather than @code{eq} to compare elements.  @xref{Equality
1228 Predicates}.
1230 @defun member object list
1231 The function @code{member} tests to see whether @var{object} is a member
1232 of @var{list}, comparing members with @var{object} using @code{equal}.
1233 If @var{object} is a member, @code{member} returns a list starting with
1234 its first occurrence in @var{list}.  Otherwise, it returns @code{nil}.
1236 Compare this with @code{memq}:
1238 @example
1239 @group
1240 (member '(2) '((1) (2)))  ; @r{@code{(2)} and @code{(2)} are @code{equal}.}
1241      @result{} ((2))
1242 @end group
1243 @group
1244 (memq '(2) '((1) (2)))    ; @r{@code{(2)} and @code{(2)} are not @code{eq}.}
1245      @result{} nil
1246 @end group
1247 @group
1248 ;; @r{Two strings with the same contents are @code{equal}.}
1249 (member "foo" '("foo" "bar"))
1250      @result{} ("foo" "bar")
1251 @end group
1252 @end example
1253 @end defun
1255 @defun delete object list
1256 This function destructively removes all elements @code{equal} to
1257 @var{object} from @var{list}.  It is to @code{delq} as @code{member} is
1258 to @code{memq}: it uses @code{equal} to compare elements with
1259 @var{object}, like @code{member}; when it finds an element that matches,
1260 it removes the element just as @code{delq} would.  For example:
1262 @example
1263 @group
1264 (delete '(2) '((2) (1) (2)))
1265      @result{} ((1))
1266 @end group
1267 @end example
1268 @end defun
1270 @quotation
1271 @b{Common Lisp note:} The functions @code{member} and @code{delete} in
1272 GNU Emacs Lisp are derived from Maclisp, not Common Lisp.  The Common
1273 Lisp versions do not use @code{equal} to compare elements.
1274 @end quotation
1276   See also the function @code{add-to-list}, in @ref{Setting Variables},
1277 for another way to add an element to a list stored in a variable.
1279 @node Association Lists
1280 @section Association Lists
1281 @cindex association list
1282 @cindex alist
1284   An @dfn{association list}, or @dfn{alist} for short, records a mapping
1285 from keys to values.  It is a list of cons cells called
1286 @dfn{associations}: the @sc{car} of each cons cell is the @dfn{key}, and the
1287 @sc{cdr} is the @dfn{associated value}.@footnote{This usage of ``key''
1288 is not related to the term ``key sequence''; it means a value used to
1289 look up an item in a table.  In this case, the table is the alist, and
1290 the alist associations are the items.}
1292   Here is an example of an alist.  The key @code{pine} is associated with
1293 the value @code{cones}; the key @code{oak} is associated with
1294 @code{acorns}; and the key @code{maple} is associated with @code{seeds}.
1296 @example
1297 @group
1298 '((pine . cones)
1299   (oak . acorns)
1300   (maple . seeds))
1301 @end group
1302 @end example
1304   The associated values in an alist may be any Lisp objects; so may the
1305 keys.  For example, in the following alist, the symbol @code{a} is
1306 associated with the number @code{1}, and the string @code{"b"} is
1307 associated with the @emph{list} @code{(2 3)}, which is the @sc{cdr} of
1308 the alist element:
1310 @example
1311 ((a . 1) ("b" 2 3))
1312 @end example
1314   Sometimes it is better to design an alist to store the associated
1315 value in the @sc{car} of the @sc{cdr} of the element.  Here is an
1316 example:
1318 @example
1319 '((rose red) (lily white) (buttercup yellow))
1320 @end example
1322 @noindent
1323 Here we regard @code{red} as the value associated with @code{rose}.  One
1324 advantage of this kind of alist is that you can store other related
1325 information---even a list of other items---in the @sc{cdr} of the
1326 @sc{cdr}.  One disadvantage is that you cannot use @code{rassq} (see
1327 below) to find the element containing a given value.  When neither of
1328 these considerations is important, the choice is a matter of taste, as
1329 long as you are consistent about it for any given alist.
1331   Note that the same alist shown above could be regarded as having the
1332 associated value in the @sc{cdr} of the element; the value associated
1333 with @code{rose} would be the list @code{(red)}.
1335   Association lists are often used to record information that you might
1336 otherwise keep on a stack, since new associations may be added easily to
1337 the front of the list.  When searching an association list for an
1338 association with a given key, the first one found is returned, if there
1339 is more than one.
1341   In Emacs Lisp, it is @emph{not} an error if an element of an
1342 association list is not a cons cell.  The alist search functions simply
1343 ignore such elements.  Many other versions of Lisp signal errors in such
1344 cases.
1346   Note that property lists are similar to association lists in several
1347 respects.  A property list behaves like an association list in which
1348 each key can occur only once.  @xref{Property Lists}, for a comparison
1349 of property lists and association lists.
1351 @defun assoc key alist
1352 This function returns the first association for @var{key} in
1353 @var{alist}.  It compares @var{key} against the alist elements using
1354 @code{equal} (@pxref{Equality Predicates}).  It returns @code{nil} if no
1355 association in @var{alist} has a @sc{car} @code{equal} to @var{key}.
1356 For example:
1358 @smallexample
1359 (setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1360      @result{} ((pine . cones) (oak . acorns) (maple . seeds))
1361 (assoc 'oak trees)
1362      @result{} (oak . acorns)
1363 (cdr (assoc 'oak trees))
1364      @result{} acorns
1365 (assoc 'birch trees)
1366      @result{} nil
1367 @end smallexample
1369 Here is another example, in which the keys and values are not symbols:
1371 @smallexample
1372 (setq needles-per-cluster
1373       '((2 "Austrian Pine" "Red Pine")
1374         (3 "Pitch Pine")
1375         (5 "White Pine")))
1377 (cdr (assoc 3 needles-per-cluster))
1378      @result{} ("Pitch Pine")
1379 (cdr (assoc 2 needles-per-cluster))
1380      @result{} ("Austrian Pine" "Red Pine")
1381 @end smallexample
1382 @end defun
1384   The functions @code{assoc-ignore-representation} and
1385 @code{assoc-ignore-case} are much like @code{assoc} except using
1386 @code{compare-strings} to do the comparison.  @xref{Text Comparison}.
1388 @defun rassoc value alist
1389 This function returns the first association with value @var{value} in
1390 @var{alist}.  It returns @code{nil} if no association in @var{alist} has
1391 a @sc{cdr} @code{equal} to @var{value}.
1393 @code{rassoc} is like @code{assoc} except that it compares the @sc{cdr} of
1394 each @var{alist} association instead of the @sc{car}.  You can think of
1395 this as ``reverse @code{assoc}'', finding the key for a given value.
1396 @end defun
1398 @defun assq key alist
1399 This function is like @code{assoc} in that it returns the first
1400 association for @var{key} in @var{alist}, but it makes the comparison
1401 using @code{eq} instead of @code{equal}.  @code{assq} returns @code{nil}
1402 if no association in @var{alist} has a @sc{car} @code{eq} to @var{key}.
1403 This function is used more often than @code{assoc}, since @code{eq} is
1404 faster than @code{equal} and most alists use symbols as keys.
1405 @xref{Equality Predicates}.
1407 @smallexample
1408 (setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1409      @result{} ((pine . cones) (oak . acorns) (maple . seeds))
1410 (assq 'pine trees)
1411      @result{} (pine . cones)
1412 @end smallexample
1414 On the other hand, @code{assq} is not usually useful in alists where the
1415 keys may not be symbols:
1417 @smallexample
1418 (setq leaves
1419       '(("simple leaves" . oak)
1420         ("compound leaves" . horsechestnut)))
1422 (assq "simple leaves" leaves)
1423      @result{} nil
1424 (assoc "simple leaves" leaves)
1425      @result{} ("simple leaves" . oak)
1426 @end smallexample
1427 @end defun
1429 @defun rassq value alist
1430 This function returns the first association with value @var{value} in
1431 @var{alist}.  It returns @code{nil} if no association in @var{alist} has
1432 a @sc{cdr} @code{eq} to @var{value}.
1434 @code{rassq} is like @code{assq} except that it compares the @sc{cdr} of
1435 each @var{alist} association instead of the @sc{car}.  You can think of
1436 this as ``reverse @code{assq}'', finding the key for a given value.
1438 For example:
1440 @smallexample
1441 (setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1443 (rassq 'acorns trees)
1444      @result{} (oak . acorns)
1445 (rassq 'spores trees)
1446      @result{} nil
1447 @end smallexample
1449 Note that @code{rassq} cannot search for a value stored in the @sc{car}
1450 of the @sc{cdr} of an element:
1452 @smallexample
1453 (setq colors '((rose red) (lily white) (buttercup yellow)))
1455 (rassq 'white colors)
1456      @result{} nil
1457 @end smallexample
1459 In this case, the @sc{cdr} of the association @code{(lily white)} is not
1460 the symbol @code{white}, but rather the list @code{(white)}.  This
1461 becomes clearer if the association is written in dotted pair notation:
1463 @smallexample
1464 (lily white) @equiv{} (lily . (white))
1465 @end smallexample
1466 @end defun
1468 @defun assoc-default key alist test default
1469 This function searches @var{alist} for a match for @var{key}.  For each
1470 element of @var{alist}, it compares the element (if it is an atom) or
1471 the element's @sc{car} (if it is a cons) against @var{key}, by calling
1472 @var{test} with two arguments: the element or its @sc{car}, and
1473 @var{key}.  The arguments are passed in that order so that you can get
1474 useful results using @code{string-match} with an alist that contains
1475 regular expressions (@pxref{Regexp Search}).  If @var{test} is omitted
1476 or @code{nil}, @code{equal} is used for comparison.
1478 If an alist element matches @var{key} by this criterion,
1479 then @code{assoc-default} returns a value based on this element.
1480 If the element is a cons, then the value is the element's @sc{cdr}.
1481 Otherwise, the return value is @var{default}.
1483 If no alist element matches @var{key}, @code{assoc-default} returns
1484 @code{nil}.
1485 @end defun
1487 @defun copy-alist alist
1488 @cindex copying alists
1489 This function returns a two-level deep copy of @var{alist}: it creates a
1490 new copy of each association, so that you can alter the associations of
1491 the new alist without changing the old one.
1493 @smallexample
1494 @group
1495 (setq needles-per-cluster
1496       '((2 . ("Austrian Pine" "Red Pine"))
1497         (3 . ("Pitch Pine"))
1498 @end group
1499         (5 . ("White Pine"))))
1500 @result{}
1501 ((2 "Austrian Pine" "Red Pine")
1502  (3 "Pitch Pine")
1503  (5 "White Pine"))
1505 (setq copy (copy-alist needles-per-cluster))
1506 @result{}
1507 ((2 "Austrian Pine" "Red Pine")
1508  (3 "Pitch Pine")
1509  (5 "White Pine"))
1511 (eq needles-per-cluster copy)
1512      @result{} nil
1513 (equal needles-per-cluster copy)
1514      @result{} t
1515 (eq (car needles-per-cluster) (car copy))
1516      @result{} nil
1517 (cdr (car (cdr needles-per-cluster)))
1518      @result{} ("Pitch Pine")
1519 @group
1520 (eq (cdr (car (cdr needles-per-cluster)))
1521     (cdr (car (cdr copy))))
1522      @result{} t
1523 @end group
1524 @end smallexample
1526   This example shows how @code{copy-alist} makes it possible to change
1527 the associations of one copy without affecting the other:
1529 @smallexample
1530 @group
1531 (setcdr (assq 3 copy) '("Martian Vacuum Pine"))
1532 (cdr (assq 3 needles-per-cluster))
1533      @result{} ("Pitch Pine")
1534 @end group
1535 @end smallexample
1536 @end defun
1538 @defun assoc-delete-all key alist
1539 @tindex assoc-delete-all
1540 This function deletes from @var{alist} all the elements whose @sc{car}
1541 is @var{key}.  It returns the modified alist.
1543 @example
1544 (assoc-delete-all 'foo
1545                   '((foo 1) (bar 2) (foo 3) (lose 4)))
1546      @result{} ((bar 2) (lose 4))
1547 @end example
1548 @end defun