Fix encoding of I/O in net-utils.el for MS-Windows. (Bug#19458)
[emacs.git] / lib / sha1.c
blob90faa4e43572931215237822e2e3aba1c0edfedc
1 /* sha1.c - Functions to compute SHA1 message digest of files or
2 memory blocks according to the NIST specification FIPS-180-1.
4 Copyright (C) 2000-2001, 2003-2006, 2008-2015 Free Software
5 Foundation, Inc.
7 This program is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, see <http://www.gnu.org/licenses/>. */
20 /* Written by Scott G. Miller
21 Credits:
22 Robert Klep <robert@ilse.nl> -- Expansion function fix
25 #include <config.h>
27 #if HAVE_OPENSSL_SHA1
28 # define GL_OPENSSL_INLINE _GL_EXTERN_INLINE
29 #endif
30 #include "sha1.h"
32 #include <stdalign.h>
33 #include <stdint.h>
34 #include <stdlib.h>
35 #include <string.h>
37 #if USE_UNLOCKED_IO
38 # include "unlocked-io.h"
39 #endif
41 #ifdef WORDS_BIGENDIAN
42 # define SWAP(n) (n)
43 #else
44 # define SWAP(n) \
45 (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
46 #endif
48 #define BLOCKSIZE 32768
49 #if BLOCKSIZE % 64 != 0
50 # error "invalid BLOCKSIZE"
51 #endif
53 #if ! HAVE_OPENSSL_SHA1
54 /* This array contains the bytes used to pad the buffer to the next
55 64-byte boundary. (RFC 1321, 3.1: Step 1) */
56 static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
59 /* Take a pointer to a 160 bit block of data (five 32 bit ints) and
60 initialize it to the start constants of the SHA1 algorithm. This
61 must be called before using hash in the call to sha1_hash. */
62 void
63 sha1_init_ctx (struct sha1_ctx *ctx)
65 ctx->A = 0x67452301;
66 ctx->B = 0xefcdab89;
67 ctx->C = 0x98badcfe;
68 ctx->D = 0x10325476;
69 ctx->E = 0xc3d2e1f0;
71 ctx->total[0] = ctx->total[1] = 0;
72 ctx->buflen = 0;
75 /* Copy the 4 byte value from v into the memory location pointed to by *cp,
76 If your architecture allows unaligned access this is equivalent to
77 * (uint32_t *) cp = v */
78 static void
79 set_uint32 (char *cp, uint32_t v)
81 memcpy (cp, &v, sizeof v);
84 /* Put result from CTX in first 20 bytes following RESBUF. The result
85 must be in little endian byte order. */
86 void *
87 sha1_read_ctx (const struct sha1_ctx *ctx, void *resbuf)
89 char *r = resbuf;
90 set_uint32 (r + 0 * sizeof ctx->A, SWAP (ctx->A));
91 set_uint32 (r + 1 * sizeof ctx->B, SWAP (ctx->B));
92 set_uint32 (r + 2 * sizeof ctx->C, SWAP (ctx->C));
93 set_uint32 (r + 3 * sizeof ctx->D, SWAP (ctx->D));
94 set_uint32 (r + 4 * sizeof ctx->E, SWAP (ctx->E));
96 return resbuf;
99 /* Process the remaining bytes in the internal buffer and the usual
100 prolog according to the standard and write the result to RESBUF. */
101 void *
102 sha1_finish_ctx (struct sha1_ctx *ctx, void *resbuf)
104 /* Take yet unprocessed bytes into account. */
105 uint32_t bytes = ctx->buflen;
106 size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
108 /* Now count remaining bytes. */
109 ctx->total[0] += bytes;
110 if (ctx->total[0] < bytes)
111 ++ctx->total[1];
113 /* Put the 64-bit file length in *bits* at the end of the buffer. */
114 ctx->buffer[size - 2] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29));
115 ctx->buffer[size - 1] = SWAP (ctx->total[0] << 3);
117 memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes);
119 /* Process last bytes. */
120 sha1_process_block (ctx->buffer, size * 4, ctx);
122 return sha1_read_ctx (ctx, resbuf);
124 #endif
126 /* Compute SHA1 message digest for bytes read from STREAM. The
127 resulting message digest number will be written into the 16 bytes
128 beginning at RESBLOCK. */
130 sha1_stream (FILE *stream, void *resblock)
132 struct sha1_ctx ctx;
133 size_t sum;
135 char *buffer = malloc (BLOCKSIZE + 72);
136 if (!buffer)
137 return 1;
139 /* Initialize the computation context. */
140 sha1_init_ctx (&ctx);
142 /* Iterate over full file contents. */
143 while (1)
145 /* We read the file in blocks of BLOCKSIZE bytes. One call of the
146 computation function processes the whole buffer so that with the
147 next round of the loop another block can be read. */
148 size_t n;
149 sum = 0;
151 /* Read block. Take care for partial reads. */
152 while (1)
154 n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
156 sum += n;
158 if (sum == BLOCKSIZE)
159 break;
161 if (n == 0)
163 /* Check for the error flag IFF N == 0, so that we don't
164 exit the loop after a partial read due to e.g., EAGAIN
165 or EWOULDBLOCK. */
166 if (ferror (stream))
168 free (buffer);
169 return 1;
171 goto process_partial_block;
174 /* We've read at least one byte, so ignore errors. But always
175 check for EOF, since feof may be true even though N > 0.
176 Otherwise, we could end up calling fread after EOF. */
177 if (feof (stream))
178 goto process_partial_block;
181 /* Process buffer with BLOCKSIZE bytes. Note that
182 BLOCKSIZE % 64 == 0
184 sha1_process_block (buffer, BLOCKSIZE, &ctx);
187 process_partial_block:;
189 /* Process any remaining bytes. */
190 if (sum > 0)
191 sha1_process_bytes (buffer, sum, &ctx);
193 /* Construct result in desired memory. */
194 sha1_finish_ctx (&ctx, resblock);
195 free (buffer);
196 return 0;
199 #if ! HAVE_OPENSSL_SHA1
200 /* Compute SHA1 message digest for LEN bytes beginning at BUFFER. The
201 result is always in little endian byte order, so that a byte-wise
202 output yields to the wanted ASCII representation of the message
203 digest. */
204 void *
205 sha1_buffer (const char *buffer, size_t len, void *resblock)
207 struct sha1_ctx ctx;
209 /* Initialize the computation context. */
210 sha1_init_ctx (&ctx);
212 /* Process whole buffer but last len % 64 bytes. */
213 sha1_process_bytes (buffer, len, &ctx);
215 /* Put result in desired memory area. */
216 return sha1_finish_ctx (&ctx, resblock);
219 void
220 sha1_process_bytes (const void *buffer, size_t len, struct sha1_ctx *ctx)
222 /* When we already have some bits in our internal buffer concatenate
223 both inputs first. */
224 if (ctx->buflen != 0)
226 size_t left_over = ctx->buflen;
227 size_t add = 128 - left_over > len ? len : 128 - left_over;
229 memcpy (&((char *) ctx->buffer)[left_over], buffer, add);
230 ctx->buflen += add;
232 if (ctx->buflen > 64)
234 sha1_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
236 ctx->buflen &= 63;
237 /* The regions in the following copy operation cannot overlap. */
238 memcpy (ctx->buffer,
239 &((char *) ctx->buffer)[(left_over + add) & ~63],
240 ctx->buflen);
243 buffer = (const char *) buffer + add;
244 len -= add;
247 /* Process available complete blocks. */
248 if (len >= 64)
250 #if !_STRING_ARCH_unaligned
251 # define UNALIGNED_P(p) ((uintptr_t) (p) % alignof (uint32_t) != 0)
252 if (UNALIGNED_P (buffer))
253 while (len > 64)
255 sha1_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
256 buffer = (const char *) buffer + 64;
257 len -= 64;
259 else
260 #endif
262 sha1_process_block (buffer, len & ~63, ctx);
263 buffer = (const char *) buffer + (len & ~63);
264 len &= 63;
268 /* Move remaining bytes in internal buffer. */
269 if (len > 0)
271 size_t left_over = ctx->buflen;
273 memcpy (&((char *) ctx->buffer)[left_over], buffer, len);
274 left_over += len;
275 if (left_over >= 64)
277 sha1_process_block (ctx->buffer, 64, ctx);
278 left_over -= 64;
279 memcpy (ctx->buffer, &ctx->buffer[16], left_over);
281 ctx->buflen = left_over;
285 /* --- Code below is the primary difference between md5.c and sha1.c --- */
287 /* SHA1 round constants */
288 #define K1 0x5a827999
289 #define K2 0x6ed9eba1
290 #define K3 0x8f1bbcdc
291 #define K4 0xca62c1d6
293 /* Round functions. Note that F2 is the same as F4. */
294 #define F1(B,C,D) ( D ^ ( B & ( C ^ D ) ) )
295 #define F2(B,C,D) (B ^ C ^ D)
296 #define F3(B,C,D) ( ( B & C ) | ( D & ( B | C ) ) )
297 #define F4(B,C,D) (B ^ C ^ D)
299 /* Process LEN bytes of BUFFER, accumulating context into CTX.
300 It is assumed that LEN % 64 == 0.
301 Most of this code comes from GnuPG's cipher/sha1.c. */
303 void
304 sha1_process_block (const void *buffer, size_t len, struct sha1_ctx *ctx)
306 const uint32_t *words = buffer;
307 size_t nwords = len / sizeof (uint32_t);
308 const uint32_t *endp = words + nwords;
309 uint32_t x[16];
310 uint32_t a = ctx->A;
311 uint32_t b = ctx->B;
312 uint32_t c = ctx->C;
313 uint32_t d = ctx->D;
314 uint32_t e = ctx->E;
315 uint32_t lolen = len;
317 /* First increment the byte count. RFC 1321 specifies the possible
318 length of the file up to 2^64 bits. Here we only compute the
319 number of bytes. Do a double word increment. */
320 ctx->total[0] += lolen;
321 ctx->total[1] += (len >> 31 >> 1) + (ctx->total[0] < lolen);
323 #define rol(x, n) (((x) << (n)) | ((uint32_t) (x) >> (32 - (n))))
325 #define M(I) ( tm = x[I&0x0f] ^ x[(I-14)&0x0f] \
326 ^ x[(I-8)&0x0f] ^ x[(I-3)&0x0f] \
327 , (x[I&0x0f] = rol(tm, 1)) )
329 #define R(A,B,C,D,E,F,K,M) do { E += rol( A, 5 ) \
330 + F( B, C, D ) \
331 + K \
332 + M; \
333 B = rol( B, 30 ); \
334 } while(0)
336 while (words < endp)
338 uint32_t tm;
339 int t;
340 for (t = 0; t < 16; t++)
342 x[t] = SWAP (*words);
343 words++;
346 R( a, b, c, d, e, F1, K1, x[ 0] );
347 R( e, a, b, c, d, F1, K1, x[ 1] );
348 R( d, e, a, b, c, F1, K1, x[ 2] );
349 R( c, d, e, a, b, F1, K1, x[ 3] );
350 R( b, c, d, e, a, F1, K1, x[ 4] );
351 R( a, b, c, d, e, F1, K1, x[ 5] );
352 R( e, a, b, c, d, F1, K1, x[ 6] );
353 R( d, e, a, b, c, F1, K1, x[ 7] );
354 R( c, d, e, a, b, F1, K1, x[ 8] );
355 R( b, c, d, e, a, F1, K1, x[ 9] );
356 R( a, b, c, d, e, F1, K1, x[10] );
357 R( e, a, b, c, d, F1, K1, x[11] );
358 R( d, e, a, b, c, F1, K1, x[12] );
359 R( c, d, e, a, b, F1, K1, x[13] );
360 R( b, c, d, e, a, F1, K1, x[14] );
361 R( a, b, c, d, e, F1, K1, x[15] );
362 R( e, a, b, c, d, F1, K1, M(16) );
363 R( d, e, a, b, c, F1, K1, M(17) );
364 R( c, d, e, a, b, F1, K1, M(18) );
365 R( b, c, d, e, a, F1, K1, M(19) );
366 R( a, b, c, d, e, F2, K2, M(20) );
367 R( e, a, b, c, d, F2, K2, M(21) );
368 R( d, e, a, b, c, F2, K2, M(22) );
369 R( c, d, e, a, b, F2, K2, M(23) );
370 R( b, c, d, e, a, F2, K2, M(24) );
371 R( a, b, c, d, e, F2, K2, M(25) );
372 R( e, a, b, c, d, F2, K2, M(26) );
373 R( d, e, a, b, c, F2, K2, M(27) );
374 R( c, d, e, a, b, F2, K2, M(28) );
375 R( b, c, d, e, a, F2, K2, M(29) );
376 R( a, b, c, d, e, F2, K2, M(30) );
377 R( e, a, b, c, d, F2, K2, M(31) );
378 R( d, e, a, b, c, F2, K2, M(32) );
379 R( c, d, e, a, b, F2, K2, M(33) );
380 R( b, c, d, e, a, F2, K2, M(34) );
381 R( a, b, c, d, e, F2, K2, M(35) );
382 R( e, a, b, c, d, F2, K2, M(36) );
383 R( d, e, a, b, c, F2, K2, M(37) );
384 R( c, d, e, a, b, F2, K2, M(38) );
385 R( b, c, d, e, a, F2, K2, M(39) );
386 R( a, b, c, d, e, F3, K3, M(40) );
387 R( e, a, b, c, d, F3, K3, M(41) );
388 R( d, e, a, b, c, F3, K3, M(42) );
389 R( c, d, e, a, b, F3, K3, M(43) );
390 R( b, c, d, e, a, F3, K3, M(44) );
391 R( a, b, c, d, e, F3, K3, M(45) );
392 R( e, a, b, c, d, F3, K3, M(46) );
393 R( d, e, a, b, c, F3, K3, M(47) );
394 R( c, d, e, a, b, F3, K3, M(48) );
395 R( b, c, d, e, a, F3, K3, M(49) );
396 R( a, b, c, d, e, F3, K3, M(50) );
397 R( e, a, b, c, d, F3, K3, M(51) );
398 R( d, e, a, b, c, F3, K3, M(52) );
399 R( c, d, e, a, b, F3, K3, M(53) );
400 R( b, c, d, e, a, F3, K3, M(54) );
401 R( a, b, c, d, e, F3, K3, M(55) );
402 R( e, a, b, c, d, F3, K3, M(56) );
403 R( d, e, a, b, c, F3, K3, M(57) );
404 R( c, d, e, a, b, F3, K3, M(58) );
405 R( b, c, d, e, a, F3, K3, M(59) );
406 R( a, b, c, d, e, F4, K4, M(60) );
407 R( e, a, b, c, d, F4, K4, M(61) );
408 R( d, e, a, b, c, F4, K4, M(62) );
409 R( c, d, e, a, b, F4, K4, M(63) );
410 R( b, c, d, e, a, F4, K4, M(64) );
411 R( a, b, c, d, e, F4, K4, M(65) );
412 R( e, a, b, c, d, F4, K4, M(66) );
413 R( d, e, a, b, c, F4, K4, M(67) );
414 R( c, d, e, a, b, F4, K4, M(68) );
415 R( b, c, d, e, a, F4, K4, M(69) );
416 R( a, b, c, d, e, F4, K4, M(70) );
417 R( e, a, b, c, d, F4, K4, M(71) );
418 R( d, e, a, b, c, F4, K4, M(72) );
419 R( c, d, e, a, b, F4, K4, M(73) );
420 R( b, c, d, e, a, F4, K4, M(74) );
421 R( a, b, c, d, e, F4, K4, M(75) );
422 R( e, a, b, c, d, F4, K4, M(76) );
423 R( d, e, a, b, c, F4, K4, M(77) );
424 R( c, d, e, a, b, F4, K4, M(78) );
425 R( b, c, d, e, a, F4, K4, M(79) );
427 a = ctx->A += a;
428 b = ctx->B += b;
429 c = ctx->C += c;
430 d = ctx->D += d;
431 e = ctx->E += e;
434 #endif