1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
23 #define LISP_INLINE EXTERN_INLINE
26 #include <limits.h> /* For CHAR_BIT. */
28 #ifdef ENABLE_CHECKING
29 #include <signal.h> /* For SIGABRT. */
38 #include "intervals.h"
40 #include "character.h"
45 #include "blockinput.h"
46 #include "termhooks.h" /* For struct terminal. */
50 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
51 Doable only if GC_MARK_STACK. */
53 # undef GC_CHECK_MARKED_OBJECTS
56 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c and if not checking
60 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
61 || defined GC_CHECK_MARKED_OBJECTS)
62 #undef GC_MALLOC_CHECK
73 #include "w32heap.h" /* for sbrk */
76 #ifdef DOUG_LEA_MALLOC
80 /* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
83 #define MMAP_MAX_AREAS 100000000
85 #endif /* not DOUG_LEA_MALLOC */
87 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
88 to a struct Lisp_String. */
90 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
91 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
92 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
94 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
95 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
96 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
98 /* Default value of gc_cons_threshold (see below). */
100 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
102 /* Global variables. */
103 struct emacs_globals globals
;
105 /* Number of bytes of consing done since the last gc. */
107 EMACS_INT consing_since_gc
;
109 /* Similar minimum, computed from Vgc_cons_percentage. */
111 EMACS_INT gc_relative_threshold
;
113 /* Minimum number of bytes of consing since GC before next GC,
114 when memory is full. */
116 EMACS_INT memory_full_cons_threshold
;
118 /* True during GC. */
122 /* True means abort if try to GC.
123 This is for code which is written on the assumption that
124 no GC will happen, so as to verify that assumption. */
128 /* Number of live and free conses etc. */
130 static EMACS_INT total_conses
, total_markers
, total_symbols
, total_buffers
;
131 static EMACS_INT total_free_conses
, total_free_markers
, total_free_symbols
;
132 static EMACS_INT total_free_floats
, total_floats
;
134 /* Points to memory space allocated as "spare", to be freed if we run
135 out of memory. We keep one large block, four cons-blocks, and
136 two string blocks. */
138 static char *spare_memory
[7];
140 /* Amount of spare memory to keep in large reserve block, or to see
141 whether this much is available when malloc fails on a larger request. */
143 #define SPARE_MEMORY (1 << 14)
145 /* Initialize it to a nonzero value to force it into data space
146 (rather than bss space). That way unexec will remap it into text
147 space (pure), on some systems. We have not implemented the
148 remapping on more recent systems because this is less important
149 nowadays than in the days of small memories and timesharing. */
151 EMACS_INT pure
[(PURESIZE
+ sizeof (EMACS_INT
) - 1) / sizeof (EMACS_INT
)] = {1,};
152 #define PUREBEG (char *) pure
154 /* Pointer to the pure area, and its size. */
156 static char *purebeg
;
157 static ptrdiff_t pure_size
;
159 /* Number of bytes of pure storage used before pure storage overflowed.
160 If this is non-zero, this implies that an overflow occurred. */
162 static ptrdiff_t pure_bytes_used_before_overflow
;
164 /* True if P points into pure space. */
166 #define PURE_POINTER_P(P) \
167 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
169 /* Index in pure at which next pure Lisp object will be allocated.. */
171 static ptrdiff_t pure_bytes_used_lisp
;
173 /* Number of bytes allocated for non-Lisp objects in pure storage. */
175 static ptrdiff_t pure_bytes_used_non_lisp
;
177 /* If nonzero, this is a warning delivered by malloc and not yet
180 const char *pending_malloc_warning
;
182 /* Maximum amount of C stack to save when a GC happens. */
184 #ifndef MAX_SAVE_STACK
185 #define MAX_SAVE_STACK 16000
188 /* Buffer in which we save a copy of the C stack at each GC. */
190 #if MAX_SAVE_STACK > 0
191 static char *stack_copy
;
192 static ptrdiff_t stack_copy_size
;
195 static Lisp_Object Qconses
;
196 static Lisp_Object Qsymbols
;
197 static Lisp_Object Qmiscs
;
198 static Lisp_Object Qstrings
;
199 static Lisp_Object Qvectors
;
200 static Lisp_Object Qfloats
;
201 static Lisp_Object Qintervals
;
202 static Lisp_Object Qbuffers
;
203 static Lisp_Object Qstring_bytes
, Qvector_slots
, Qheap
;
204 static Lisp_Object Qgc_cons_threshold
;
205 Lisp_Object Qautomatic_gc
;
206 Lisp_Object Qchar_table_extra_slots
;
208 /* Hook run after GC has finished. */
210 static Lisp_Object Qpost_gc_hook
;
212 static void mark_terminals (void);
213 static void gc_sweep (void);
214 static Lisp_Object
make_pure_vector (ptrdiff_t);
215 static void mark_buffer (struct buffer
*);
217 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
218 static void refill_memory_reserve (void);
220 static void compact_small_strings (void);
221 static void free_large_strings (void);
222 static void free_misc (Lisp_Object
);
223 extern Lisp_Object
which_symbols (Lisp_Object
, EMACS_INT
) EXTERNALLY_VISIBLE
;
225 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
226 what memory allocated via lisp_malloc and lisp_align_malloc is intended
227 for what purpose. This enumeration specifies the type of memory. */
238 /* Since all non-bool pseudovectors are small enough to be
239 allocated from vector blocks, this memory type denotes
240 large regular vectors and large bool pseudovectors. */
242 /* Special type to denote vector blocks. */
243 MEM_TYPE_VECTOR_BLOCK
,
244 /* Special type to denote reserved memory. */
248 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
250 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
251 #include <stdio.h> /* For fprintf. */
254 /* A unique object in pure space used to make some Lisp objects
255 on free lists recognizable in O(1). */
257 static Lisp_Object Vdead
;
258 #define DEADP(x) EQ (x, Vdead)
260 #ifdef GC_MALLOC_CHECK
262 enum mem_type allocated_mem_type
;
264 #endif /* GC_MALLOC_CHECK */
266 /* A node in the red-black tree describing allocated memory containing
267 Lisp data. Each such block is recorded with its start and end
268 address when it is allocated, and removed from the tree when it
271 A red-black tree is a balanced binary tree with the following
274 1. Every node is either red or black.
275 2. Every leaf is black.
276 3. If a node is red, then both of its children are black.
277 4. Every simple path from a node to a descendant leaf contains
278 the same number of black nodes.
279 5. The root is always black.
281 When nodes are inserted into the tree, or deleted from the tree,
282 the tree is "fixed" so that these properties are always true.
284 A red-black tree with N internal nodes has height at most 2
285 log(N+1). Searches, insertions and deletions are done in O(log N).
286 Please see a text book about data structures for a detailed
287 description of red-black trees. Any book worth its salt should
292 /* Children of this node. These pointers are never NULL. When there
293 is no child, the value is MEM_NIL, which points to a dummy node. */
294 struct mem_node
*left
, *right
;
296 /* The parent of this node. In the root node, this is NULL. */
297 struct mem_node
*parent
;
299 /* Start and end of allocated region. */
303 enum {MEM_BLACK
, MEM_RED
} color
;
309 /* Base address of stack. Set in main. */
311 Lisp_Object
*stack_base
;
313 /* Root of the tree describing allocated Lisp memory. */
315 static struct mem_node
*mem_root
;
317 /* Lowest and highest known address in the heap. */
319 static void *min_heap_address
, *max_heap_address
;
321 /* Sentinel node of the tree. */
323 static struct mem_node mem_z
;
324 #define MEM_NIL &mem_z
326 static struct Lisp_Vector
*allocate_vectorlike (ptrdiff_t);
327 static void lisp_free (void *);
328 static void mark_stack (void);
329 static bool live_vector_p (struct mem_node
*, void *);
330 static bool live_buffer_p (struct mem_node
*, void *);
331 static bool live_string_p (struct mem_node
*, void *);
332 static bool live_cons_p (struct mem_node
*, void *);
333 static bool live_symbol_p (struct mem_node
*, void *);
334 static bool live_float_p (struct mem_node
*, void *);
335 static bool live_misc_p (struct mem_node
*, void *);
336 static void mark_maybe_object (Lisp_Object
);
337 static void mark_memory (void *, void *);
338 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
339 static void mem_init (void);
340 static struct mem_node
*mem_insert (void *, void *, enum mem_type
);
341 static void mem_insert_fixup (struct mem_node
*);
342 static void mem_rotate_left (struct mem_node
*);
343 static void mem_rotate_right (struct mem_node
*);
344 static void mem_delete (struct mem_node
*);
345 static void mem_delete_fixup (struct mem_node
*);
346 static struct mem_node
*mem_find (void *);
350 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
351 static void check_gcpros (void);
354 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
360 /* Recording what needs to be marked for gc. */
362 struct gcpro
*gcprolist
;
364 /* Addresses of staticpro'd variables. Initialize it to a nonzero
365 value; otherwise some compilers put it into BSS. */
367 #define NSTATICS 0x800
368 static Lisp_Object
*staticvec
[NSTATICS
] = {&Vpurify_flag
};
370 /* Index of next unused slot in staticvec. */
372 static int staticidx
;
374 static void *pure_alloc (size_t, int);
377 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
378 ALIGNMENT must be a power of 2. */
380 #define ALIGN(ptr, ALIGNMENT) \
381 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
382 & ~ ((ALIGNMENT) - 1)))
386 /************************************************************************
388 ************************************************************************/
390 /* Function malloc calls this if it finds we are near exhausting storage. */
393 malloc_warning (const char *str
)
395 pending_malloc_warning
= str
;
399 /* Display an already-pending malloc warning. */
402 display_malloc_warning (void)
404 call3 (intern ("display-warning"),
406 build_string (pending_malloc_warning
),
407 intern ("emergency"));
408 pending_malloc_warning
= 0;
411 /* Called if we can't allocate relocatable space for a buffer. */
414 buffer_memory_full (ptrdiff_t nbytes
)
416 /* If buffers use the relocating allocator, no need to free
417 spare_memory, because we may have plenty of malloc space left
418 that we could get, and if we don't, the malloc that fails will
419 itself cause spare_memory to be freed. If buffers don't use the
420 relocating allocator, treat this like any other failing
424 memory_full (nbytes
);
427 /* This used to call error, but if we've run out of memory, we could
428 get infinite recursion trying to build the string. */
429 xsignal (Qnil
, Vmemory_signal_data
);
432 /* A common multiple of the positive integers A and B. Ideally this
433 would be the least common multiple, but there's no way to do that
434 as a constant expression in C, so do the best that we can easily do. */
435 #define COMMON_MULTIPLE(a, b) \
436 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
438 #ifndef XMALLOC_OVERRUN_CHECK
439 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
442 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
445 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
446 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
447 block size in little-endian order. The trailer consists of
448 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
450 The header is used to detect whether this block has been allocated
451 through these functions, as some low-level libc functions may
452 bypass the malloc hooks. */
454 #define XMALLOC_OVERRUN_CHECK_SIZE 16
455 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
456 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
458 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
459 hold a size_t value and (2) the header size is a multiple of the
460 alignment that Emacs needs for C types and for USE_LSB_TAG. */
461 #define XMALLOC_BASE_ALIGNMENT \
462 alignof (union { long double d; intmax_t i; void *p; })
465 # define XMALLOC_HEADER_ALIGNMENT \
466 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
468 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
470 #define XMALLOC_OVERRUN_SIZE_SIZE \
471 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
472 + XMALLOC_HEADER_ALIGNMENT - 1) \
473 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
474 - XMALLOC_OVERRUN_CHECK_SIZE)
476 static char const xmalloc_overrun_check_header
[XMALLOC_OVERRUN_CHECK_SIZE
] =
477 { '\x9a', '\x9b', '\xae', '\xaf',
478 '\xbf', '\xbe', '\xce', '\xcf',
479 '\xea', '\xeb', '\xec', '\xed',
480 '\xdf', '\xde', '\x9c', '\x9d' };
482 static char const xmalloc_overrun_check_trailer
[XMALLOC_OVERRUN_CHECK_SIZE
] =
483 { '\xaa', '\xab', '\xac', '\xad',
484 '\xba', '\xbb', '\xbc', '\xbd',
485 '\xca', '\xcb', '\xcc', '\xcd',
486 '\xda', '\xdb', '\xdc', '\xdd' };
488 /* Insert and extract the block size in the header. */
491 xmalloc_put_size (unsigned char *ptr
, size_t size
)
494 for (i
= 0; i
< XMALLOC_OVERRUN_SIZE_SIZE
; i
++)
496 *--ptr
= size
& ((1 << CHAR_BIT
) - 1);
502 xmalloc_get_size (unsigned char *ptr
)
506 ptr
-= XMALLOC_OVERRUN_SIZE_SIZE
;
507 for (i
= 0; i
< XMALLOC_OVERRUN_SIZE_SIZE
; i
++)
516 /* Like malloc, but wraps allocated block with header and trailer. */
519 overrun_check_malloc (size_t size
)
521 register unsigned char *val
;
522 if (SIZE_MAX
- XMALLOC_OVERRUN_CHECK_OVERHEAD
< size
)
525 val
= malloc (size
+ XMALLOC_OVERRUN_CHECK_OVERHEAD
);
528 memcpy (val
, xmalloc_overrun_check_header
, XMALLOC_OVERRUN_CHECK_SIZE
);
529 val
+= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
530 xmalloc_put_size (val
, size
);
531 memcpy (val
+ size
, xmalloc_overrun_check_trailer
,
532 XMALLOC_OVERRUN_CHECK_SIZE
);
538 /* Like realloc, but checks old block for overrun, and wraps new block
539 with header and trailer. */
542 overrun_check_realloc (void *block
, size_t size
)
544 register unsigned char *val
= (unsigned char *) block
;
545 if (SIZE_MAX
- XMALLOC_OVERRUN_CHECK_OVERHEAD
< size
)
549 && memcmp (xmalloc_overrun_check_header
,
550 val
- XMALLOC_OVERRUN_CHECK_SIZE
- XMALLOC_OVERRUN_SIZE_SIZE
,
551 XMALLOC_OVERRUN_CHECK_SIZE
) == 0)
553 size_t osize
= xmalloc_get_size (val
);
554 if (memcmp (xmalloc_overrun_check_trailer
, val
+ osize
,
555 XMALLOC_OVERRUN_CHECK_SIZE
))
557 memset (val
+ osize
, 0, XMALLOC_OVERRUN_CHECK_SIZE
);
558 val
-= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
559 memset (val
, 0, XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
);
562 val
= realloc (val
, size
+ XMALLOC_OVERRUN_CHECK_OVERHEAD
);
566 memcpy (val
, xmalloc_overrun_check_header
, XMALLOC_OVERRUN_CHECK_SIZE
);
567 val
+= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
568 xmalloc_put_size (val
, size
);
569 memcpy (val
+ size
, xmalloc_overrun_check_trailer
,
570 XMALLOC_OVERRUN_CHECK_SIZE
);
575 /* Like free, but checks block for overrun. */
578 overrun_check_free (void *block
)
580 unsigned char *val
= (unsigned char *) block
;
583 && memcmp (xmalloc_overrun_check_header
,
584 val
- XMALLOC_OVERRUN_CHECK_SIZE
- XMALLOC_OVERRUN_SIZE_SIZE
,
585 XMALLOC_OVERRUN_CHECK_SIZE
) == 0)
587 size_t osize
= xmalloc_get_size (val
);
588 if (memcmp (xmalloc_overrun_check_trailer
, val
+ osize
,
589 XMALLOC_OVERRUN_CHECK_SIZE
))
591 #ifdef XMALLOC_CLEAR_FREE_MEMORY
592 val
-= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
593 memset (val
, 0xff, osize
+ XMALLOC_OVERRUN_CHECK_OVERHEAD
);
595 memset (val
+ osize
, 0, XMALLOC_OVERRUN_CHECK_SIZE
);
596 val
-= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
597 memset (val
, 0, XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
);
607 #define malloc overrun_check_malloc
608 #define realloc overrun_check_realloc
609 #define free overrun_check_free
612 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
613 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
614 If that variable is set, block input while in one of Emacs's memory
615 allocation functions. There should be no need for this debugging
616 option, since signal handlers do not allocate memory, but Emacs
617 formerly allocated memory in signal handlers and this compile-time
618 option remains as a way to help debug the issue should it rear its
620 #ifdef XMALLOC_BLOCK_INPUT_CHECK
621 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE
;
623 malloc_block_input (void)
625 if (block_input_in_memory_allocators
)
629 malloc_unblock_input (void)
631 if (block_input_in_memory_allocators
)
634 # define MALLOC_BLOCK_INPUT malloc_block_input ()
635 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
637 # define MALLOC_BLOCK_INPUT ((void) 0)
638 # define MALLOC_UNBLOCK_INPUT ((void) 0)
641 #define MALLOC_PROBE(size) \
643 if (profiler_memory_running) \
644 malloc_probe (size); \
648 /* Like malloc but check for no memory and block interrupt input.. */
651 xmalloc (size_t size
)
657 MALLOC_UNBLOCK_INPUT
;
665 /* Like the above, but zeroes out the memory just allocated. */
668 xzalloc (size_t size
)
674 MALLOC_UNBLOCK_INPUT
;
678 memset (val
, 0, size
);
683 /* Like realloc but check for no memory and block interrupt input.. */
686 xrealloc (void *block
, size_t size
)
691 /* We must call malloc explicitly when BLOCK is 0, since some
692 reallocs don't do this. */
696 val
= realloc (block
, size
);
697 MALLOC_UNBLOCK_INPUT
;
706 /* Like free but block interrupt input. */
715 MALLOC_UNBLOCK_INPUT
;
716 /* We don't call refill_memory_reserve here
717 because in practice the call in r_alloc_free seems to suffice. */
721 /* Other parts of Emacs pass large int values to allocator functions
722 expecting ptrdiff_t. This is portable in practice, but check it to
724 verify (INT_MAX
<= PTRDIFF_MAX
);
727 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
728 Signal an error on memory exhaustion, and block interrupt input. */
731 xnmalloc (ptrdiff_t nitems
, ptrdiff_t item_size
)
733 eassert (0 <= nitems
&& 0 < item_size
);
734 if (min (PTRDIFF_MAX
, SIZE_MAX
) / item_size
< nitems
)
735 memory_full (SIZE_MAX
);
736 return xmalloc (nitems
* item_size
);
740 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
741 Signal an error on memory exhaustion, and block interrupt input. */
744 xnrealloc (void *pa
, ptrdiff_t nitems
, ptrdiff_t item_size
)
746 eassert (0 <= nitems
&& 0 < item_size
);
747 if (min (PTRDIFF_MAX
, SIZE_MAX
) / item_size
< nitems
)
748 memory_full (SIZE_MAX
);
749 return xrealloc (pa
, nitems
* item_size
);
753 /* Grow PA, which points to an array of *NITEMS items, and return the
754 location of the reallocated array, updating *NITEMS to reflect its
755 new size. The new array will contain at least NITEMS_INCR_MIN more
756 items, but will not contain more than NITEMS_MAX items total.
757 ITEM_SIZE is the size of each item, in bytes.
759 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
760 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
763 If PA is null, then allocate a new array instead of reallocating
766 Block interrupt input as needed. If memory exhaustion occurs, set
767 *NITEMS to zero if PA is null, and signal an error (i.e., do not
770 Thus, to grow an array A without saving its old contents, do
771 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
772 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
773 and signals an error, and later this code is reexecuted and
774 attempts to free A. */
777 xpalloc (void *pa
, ptrdiff_t *nitems
, ptrdiff_t nitems_incr_min
,
778 ptrdiff_t nitems_max
, ptrdiff_t item_size
)
780 /* The approximate size to use for initial small allocation
781 requests. This is the largest "small" request for the GNU C
783 enum { DEFAULT_MXFAST
= 64 * sizeof (size_t) / 4 };
785 /* If the array is tiny, grow it to about (but no greater than)
786 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
787 ptrdiff_t n
= *nitems
;
788 ptrdiff_t tiny_max
= DEFAULT_MXFAST
/ item_size
- n
;
789 ptrdiff_t half_again
= n
>> 1;
790 ptrdiff_t incr_estimate
= max (tiny_max
, half_again
);
792 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
793 NITEMS_MAX, and what the C language can represent safely. */
794 ptrdiff_t C_language_max
= min (PTRDIFF_MAX
, SIZE_MAX
) / item_size
;
795 ptrdiff_t n_max
= (0 <= nitems_max
&& nitems_max
< C_language_max
796 ? nitems_max
: C_language_max
);
797 ptrdiff_t nitems_incr_max
= n_max
- n
;
798 ptrdiff_t incr
= max (nitems_incr_min
, min (incr_estimate
, nitems_incr_max
));
800 eassert (0 < item_size
&& 0 < nitems_incr_min
&& 0 <= n
&& -1 <= nitems_max
);
803 if (nitems_incr_max
< incr
)
804 memory_full (SIZE_MAX
);
806 pa
= xrealloc (pa
, n
* item_size
);
812 /* Like strdup, but uses xmalloc. */
815 xstrdup (const char *s
)
817 size_t len
= strlen (s
) + 1;
818 char *p
= xmalloc (len
);
823 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
824 argument is a const pointer. */
827 xputenv (char const *string
)
829 if (putenv ((char *) string
) != 0)
833 /* Unwind for SAFE_ALLOCA */
836 safe_alloca_unwind (Lisp_Object arg
)
838 free_save_value (arg
);
842 /* Return a newly allocated memory block of SIZE bytes, remembering
843 to free it when unwinding. */
845 record_xmalloc (size_t size
)
847 void *p
= xmalloc (size
);
848 record_unwind_protect (safe_alloca_unwind
, make_save_value (p
, 0));
853 /* Like malloc but used for allocating Lisp data. NBYTES is the
854 number of bytes to allocate, TYPE describes the intended use of the
855 allocated memory block (for strings, for conses, ...). */
858 void *lisp_malloc_loser EXTERNALLY_VISIBLE
;
862 lisp_malloc (size_t nbytes
, enum mem_type type
)
868 #ifdef GC_MALLOC_CHECK
869 allocated_mem_type
= type
;
872 val
= malloc (nbytes
);
875 /* If the memory just allocated cannot be addressed thru a Lisp
876 object's pointer, and it needs to be,
877 that's equivalent to running out of memory. */
878 if (val
&& type
!= MEM_TYPE_NON_LISP
)
881 XSETCONS (tem
, (char *) val
+ nbytes
- 1);
882 if ((char *) XCONS (tem
) != (char *) val
+ nbytes
- 1)
884 lisp_malloc_loser
= val
;
891 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
892 if (val
&& type
!= MEM_TYPE_NON_LISP
)
893 mem_insert (val
, (char *) val
+ nbytes
, type
);
896 MALLOC_UNBLOCK_INPUT
;
898 memory_full (nbytes
);
899 MALLOC_PROBE (nbytes
);
903 /* Free BLOCK. This must be called to free memory allocated with a
904 call to lisp_malloc. */
907 lisp_free (void *block
)
911 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
912 mem_delete (mem_find (block
));
914 MALLOC_UNBLOCK_INPUT
;
917 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
919 /* The entry point is lisp_align_malloc which returns blocks of at most
920 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
922 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
923 #define USE_POSIX_MEMALIGN 1
926 /* BLOCK_ALIGN has to be a power of 2. */
927 #define BLOCK_ALIGN (1 << 10)
929 /* Padding to leave at the end of a malloc'd block. This is to give
930 malloc a chance to minimize the amount of memory wasted to alignment.
931 It should be tuned to the particular malloc library used.
932 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
933 posix_memalign on the other hand would ideally prefer a value of 4
934 because otherwise, there's 1020 bytes wasted between each ablocks.
935 In Emacs, testing shows that those 1020 can most of the time be
936 efficiently used by malloc to place other objects, so a value of 0 can
937 still preferable unless you have a lot of aligned blocks and virtually
939 #define BLOCK_PADDING 0
940 #define BLOCK_BYTES \
941 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
943 /* Internal data structures and constants. */
945 #define ABLOCKS_SIZE 16
947 /* An aligned block of memory. */
952 char payload
[BLOCK_BYTES
];
953 struct ablock
*next_free
;
955 /* `abase' is the aligned base of the ablocks. */
956 /* It is overloaded to hold the virtual `busy' field that counts
957 the number of used ablock in the parent ablocks.
958 The first ablock has the `busy' field, the others have the `abase'
959 field. To tell the difference, we assume that pointers will have
960 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
961 is used to tell whether the real base of the parent ablocks is `abase'
962 (if not, the word before the first ablock holds a pointer to the
964 struct ablocks
*abase
;
965 /* The padding of all but the last ablock is unused. The padding of
966 the last ablock in an ablocks is not allocated. */
968 char padding
[BLOCK_PADDING
];
972 /* A bunch of consecutive aligned blocks. */
975 struct ablock blocks
[ABLOCKS_SIZE
];
978 /* Size of the block requested from malloc or posix_memalign. */
979 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
981 #define ABLOCK_ABASE(block) \
982 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
983 ? (struct ablocks *)(block) \
986 /* Virtual `busy' field. */
987 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
989 /* Pointer to the (not necessarily aligned) malloc block. */
990 #ifdef USE_POSIX_MEMALIGN
991 #define ABLOCKS_BASE(abase) (abase)
993 #define ABLOCKS_BASE(abase) \
994 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
997 /* The list of free ablock. */
998 static struct ablock
*free_ablock
;
1000 /* Allocate an aligned block of nbytes.
1001 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1002 smaller or equal to BLOCK_BYTES. */
1004 lisp_align_malloc (size_t nbytes
, enum mem_type type
)
1007 struct ablocks
*abase
;
1009 eassert (nbytes
<= BLOCK_BYTES
);
1013 #ifdef GC_MALLOC_CHECK
1014 allocated_mem_type
= type
;
1020 intptr_t aligned
; /* int gets warning casting to 64-bit pointer. */
1022 #ifdef DOUG_LEA_MALLOC
1023 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1024 because mapped region contents are not preserved in
1026 mallopt (M_MMAP_MAX
, 0);
1029 #ifdef USE_POSIX_MEMALIGN
1031 int err
= posix_memalign (&base
, BLOCK_ALIGN
, ABLOCKS_BYTES
);
1037 base
= malloc (ABLOCKS_BYTES
);
1038 abase
= ALIGN (base
, BLOCK_ALIGN
);
1043 MALLOC_UNBLOCK_INPUT
;
1044 memory_full (ABLOCKS_BYTES
);
1047 aligned
= (base
== abase
);
1049 ((void**)abase
)[-1] = base
;
1051 #ifdef DOUG_LEA_MALLOC
1052 /* Back to a reasonable maximum of mmap'ed areas. */
1053 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
1057 /* If the memory just allocated cannot be addressed thru a Lisp
1058 object's pointer, and it needs to be, that's equivalent to
1059 running out of memory. */
1060 if (type
!= MEM_TYPE_NON_LISP
)
1063 char *end
= (char *) base
+ ABLOCKS_BYTES
- 1;
1064 XSETCONS (tem
, end
);
1065 if ((char *) XCONS (tem
) != end
)
1067 lisp_malloc_loser
= base
;
1069 MALLOC_UNBLOCK_INPUT
;
1070 memory_full (SIZE_MAX
);
1075 /* Initialize the blocks and put them on the free list.
1076 If `base' was not properly aligned, we can't use the last block. */
1077 for (i
= 0; i
< (aligned
? ABLOCKS_SIZE
: ABLOCKS_SIZE
- 1); i
++)
1079 abase
->blocks
[i
].abase
= abase
;
1080 abase
->blocks
[i
].x
.next_free
= free_ablock
;
1081 free_ablock
= &abase
->blocks
[i
];
1083 ABLOCKS_BUSY (abase
) = (struct ablocks
*) aligned
;
1085 eassert (0 == ((uintptr_t) abase
) % BLOCK_ALIGN
);
1086 eassert (ABLOCK_ABASE (&abase
->blocks
[3]) == abase
); /* 3 is arbitrary */
1087 eassert (ABLOCK_ABASE (&abase
->blocks
[0]) == abase
);
1088 eassert (ABLOCKS_BASE (abase
) == base
);
1089 eassert (aligned
== (intptr_t) ABLOCKS_BUSY (abase
));
1092 abase
= ABLOCK_ABASE (free_ablock
);
1093 ABLOCKS_BUSY (abase
) =
1094 (struct ablocks
*) (2 + (intptr_t) ABLOCKS_BUSY (abase
));
1096 free_ablock
= free_ablock
->x
.next_free
;
1098 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1099 if (type
!= MEM_TYPE_NON_LISP
)
1100 mem_insert (val
, (char *) val
+ nbytes
, type
);
1103 MALLOC_UNBLOCK_INPUT
;
1105 MALLOC_PROBE (nbytes
);
1107 eassert (0 == ((uintptr_t) val
) % BLOCK_ALIGN
);
1112 lisp_align_free (void *block
)
1114 struct ablock
*ablock
= block
;
1115 struct ablocks
*abase
= ABLOCK_ABASE (ablock
);
1118 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1119 mem_delete (mem_find (block
));
1121 /* Put on free list. */
1122 ablock
->x
.next_free
= free_ablock
;
1123 free_ablock
= ablock
;
1124 /* Update busy count. */
1125 ABLOCKS_BUSY (abase
)
1126 = (struct ablocks
*) (-2 + (intptr_t) ABLOCKS_BUSY (abase
));
1128 if (2 > (intptr_t) ABLOCKS_BUSY (abase
))
1129 { /* All the blocks are free. */
1130 int i
= 0, aligned
= (intptr_t) ABLOCKS_BUSY (abase
);
1131 struct ablock
**tem
= &free_ablock
;
1132 struct ablock
*atop
= &abase
->blocks
[aligned
? ABLOCKS_SIZE
: ABLOCKS_SIZE
- 1];
1136 if (*tem
>= (struct ablock
*) abase
&& *tem
< atop
)
1139 *tem
= (*tem
)->x
.next_free
;
1142 tem
= &(*tem
)->x
.next_free
;
1144 eassert ((aligned
& 1) == aligned
);
1145 eassert (i
== (aligned
? ABLOCKS_SIZE
: ABLOCKS_SIZE
- 1));
1146 #ifdef USE_POSIX_MEMALIGN
1147 eassert ((uintptr_t) ABLOCKS_BASE (abase
) % BLOCK_ALIGN
== 0);
1149 free (ABLOCKS_BASE (abase
));
1151 MALLOC_UNBLOCK_INPUT
;
1155 /***********************************************************************
1157 ***********************************************************************/
1159 /* Number of intervals allocated in an interval_block structure.
1160 The 1020 is 1024 minus malloc overhead. */
1162 #define INTERVAL_BLOCK_SIZE \
1163 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1165 /* Intervals are allocated in chunks in form of an interval_block
1168 struct interval_block
1170 /* Place `intervals' first, to preserve alignment. */
1171 struct interval intervals
[INTERVAL_BLOCK_SIZE
];
1172 struct interval_block
*next
;
1175 /* Current interval block. Its `next' pointer points to older
1178 static struct interval_block
*interval_block
;
1180 /* Index in interval_block above of the next unused interval
1183 static int interval_block_index
= INTERVAL_BLOCK_SIZE
;
1185 /* Number of free and live intervals. */
1187 static EMACS_INT total_free_intervals
, total_intervals
;
1189 /* List of free intervals. */
1191 static INTERVAL interval_free_list
;
1193 /* Return a new interval. */
1196 make_interval (void)
1202 if (interval_free_list
)
1204 val
= interval_free_list
;
1205 interval_free_list
= INTERVAL_PARENT (interval_free_list
);
1209 if (interval_block_index
== INTERVAL_BLOCK_SIZE
)
1211 struct interval_block
*newi
1212 = lisp_malloc (sizeof *newi
, MEM_TYPE_NON_LISP
);
1214 newi
->next
= interval_block
;
1215 interval_block
= newi
;
1216 interval_block_index
= 0;
1217 total_free_intervals
+= INTERVAL_BLOCK_SIZE
;
1219 val
= &interval_block
->intervals
[interval_block_index
++];
1222 MALLOC_UNBLOCK_INPUT
;
1224 consing_since_gc
+= sizeof (struct interval
);
1226 total_free_intervals
--;
1227 RESET_INTERVAL (val
);
1233 /* Mark Lisp objects in interval I. */
1236 mark_interval (register INTERVAL i
, Lisp_Object dummy
)
1238 /* Intervals should never be shared. So, if extra internal checking is
1239 enabled, GC aborts if it seems to have visited an interval twice. */
1240 eassert (!i
->gcmarkbit
);
1242 mark_object (i
->plist
);
1245 /* Mark the interval tree rooted in I. */
1247 #define MARK_INTERVAL_TREE(i) \
1249 if (i && !i->gcmarkbit) \
1250 traverse_intervals_noorder (i, mark_interval, Qnil); \
1253 /***********************************************************************
1255 ***********************************************************************/
1257 /* Lisp_Strings are allocated in string_block structures. When a new
1258 string_block is allocated, all the Lisp_Strings it contains are
1259 added to a free-list string_free_list. When a new Lisp_String is
1260 needed, it is taken from that list. During the sweep phase of GC,
1261 string_blocks that are entirely free are freed, except two which
1264 String data is allocated from sblock structures. Strings larger
1265 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1266 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1268 Sblocks consist internally of sdata structures, one for each
1269 Lisp_String. The sdata structure points to the Lisp_String it
1270 belongs to. The Lisp_String points back to the `u.data' member of
1271 its sdata structure.
1273 When a Lisp_String is freed during GC, it is put back on
1274 string_free_list, and its `data' member and its sdata's `string'
1275 pointer is set to null. The size of the string is recorded in the
1276 `u.nbytes' member of the sdata. So, sdata structures that are no
1277 longer used, can be easily recognized, and it's easy to compact the
1278 sblocks of small strings which we do in compact_small_strings. */
1280 /* Size in bytes of an sblock structure used for small strings. This
1281 is 8192 minus malloc overhead. */
1283 #define SBLOCK_SIZE 8188
1285 /* Strings larger than this are considered large strings. String data
1286 for large strings is allocated from individual sblocks. */
1288 #define LARGE_STRING_BYTES 1024
1290 /* Structure describing string memory sub-allocated from an sblock.
1291 This is where the contents of Lisp strings are stored. */
1295 /* Back-pointer to the string this sdata belongs to. If null, this
1296 structure is free, and the NBYTES member of the union below
1297 contains the string's byte size (the same value that STRING_BYTES
1298 would return if STRING were non-null). If non-null, STRING_BYTES
1299 (STRING) is the size of the data, and DATA contains the string's
1301 struct Lisp_String
*string
;
1303 #ifdef GC_CHECK_STRING_BYTES
1306 unsigned char data
[1];
1308 #define SDATA_NBYTES(S) (S)->nbytes
1309 #define SDATA_DATA(S) (S)->data
1310 #define SDATA_SELECTOR(member) member
1312 #else /* not GC_CHECK_STRING_BYTES */
1316 /* When STRING is non-null. */
1317 unsigned char data
[1];
1319 /* When STRING is null. */
1323 #define SDATA_NBYTES(S) (S)->u.nbytes
1324 #define SDATA_DATA(S) (S)->u.data
1325 #define SDATA_SELECTOR(member) u.member
1327 #endif /* not GC_CHECK_STRING_BYTES */
1329 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1333 /* Structure describing a block of memory which is sub-allocated to
1334 obtain string data memory for strings. Blocks for small strings
1335 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1336 as large as needed. */
1341 struct sblock
*next
;
1343 /* Pointer to the next free sdata block. This points past the end
1344 of the sblock if there isn't any space left in this block. */
1345 struct sdata
*next_free
;
1347 /* Start of data. */
1348 struct sdata first_data
;
1351 /* Number of Lisp strings in a string_block structure. The 1020 is
1352 1024 minus malloc overhead. */
1354 #define STRING_BLOCK_SIZE \
1355 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1357 /* Structure describing a block from which Lisp_String structures
1362 /* Place `strings' first, to preserve alignment. */
1363 struct Lisp_String strings
[STRING_BLOCK_SIZE
];
1364 struct string_block
*next
;
1367 /* Head and tail of the list of sblock structures holding Lisp string
1368 data. We always allocate from current_sblock. The NEXT pointers
1369 in the sblock structures go from oldest_sblock to current_sblock. */
1371 static struct sblock
*oldest_sblock
, *current_sblock
;
1373 /* List of sblocks for large strings. */
1375 static struct sblock
*large_sblocks
;
1377 /* List of string_block structures. */
1379 static struct string_block
*string_blocks
;
1381 /* Free-list of Lisp_Strings. */
1383 static struct Lisp_String
*string_free_list
;
1385 /* Number of live and free Lisp_Strings. */
1387 static EMACS_INT total_strings
, total_free_strings
;
1389 /* Number of bytes used by live strings. */
1391 static EMACS_INT total_string_bytes
;
1393 /* Given a pointer to a Lisp_String S which is on the free-list
1394 string_free_list, return a pointer to its successor in the
1397 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1399 /* Return a pointer to the sdata structure belonging to Lisp string S.
1400 S must be live, i.e. S->data must not be null. S->data is actually
1401 a pointer to the `u.data' member of its sdata structure; the
1402 structure starts at a constant offset in front of that. */
1404 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1407 #ifdef GC_CHECK_STRING_OVERRUN
1409 /* We check for overrun in string data blocks by appending a small
1410 "cookie" after each allocated string data block, and check for the
1411 presence of this cookie during GC. */
1413 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1414 static char const string_overrun_cookie
[GC_STRING_OVERRUN_COOKIE_SIZE
] =
1415 { '\xde', '\xad', '\xbe', '\xef' };
1418 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1421 /* Value is the size of an sdata structure large enough to hold NBYTES
1422 bytes of string data. The value returned includes a terminating
1423 NUL byte, the size of the sdata structure, and padding. */
1425 #ifdef GC_CHECK_STRING_BYTES
1427 #define SDATA_SIZE(NBYTES) \
1428 ((SDATA_DATA_OFFSET \
1430 + sizeof (ptrdiff_t) - 1) \
1431 & ~(sizeof (ptrdiff_t) - 1))
1433 #else /* not GC_CHECK_STRING_BYTES */
1435 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1436 less than the size of that member. The 'max' is not needed when
1437 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1438 alignment code reserves enough space. */
1440 #define SDATA_SIZE(NBYTES) \
1441 ((SDATA_DATA_OFFSET \
1442 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1444 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1446 + sizeof (ptrdiff_t) - 1) \
1447 & ~(sizeof (ptrdiff_t) - 1))
1449 #endif /* not GC_CHECK_STRING_BYTES */
1451 /* Extra bytes to allocate for each string. */
1453 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1455 /* Exact bound on the number of bytes in a string, not counting the
1456 terminating null. A string cannot contain more bytes than
1457 STRING_BYTES_BOUND, nor can it be so long that the size_t
1458 arithmetic in allocate_string_data would overflow while it is
1459 calculating a value to be passed to malloc. */
1460 static ptrdiff_t const STRING_BYTES_MAX
=
1461 min (STRING_BYTES_BOUND
,
1462 ((SIZE_MAX
- XMALLOC_OVERRUN_CHECK_OVERHEAD
1464 - offsetof (struct sblock
, first_data
)
1465 - SDATA_DATA_OFFSET
)
1466 & ~(sizeof (EMACS_INT
) - 1)));
1468 /* Initialize string allocation. Called from init_alloc_once. */
1473 empty_unibyte_string
= make_pure_string ("", 0, 0, 0);
1474 empty_multibyte_string
= make_pure_string ("", 0, 0, 1);
1478 #ifdef GC_CHECK_STRING_BYTES
1480 static int check_string_bytes_count
;
1482 /* Like STRING_BYTES, but with debugging check. Can be
1483 called during GC, so pay attention to the mark bit. */
1486 string_bytes (struct Lisp_String
*s
)
1489 (s
->size_byte
< 0 ? s
->size
& ~ARRAY_MARK_FLAG
: s
->size_byte
);
1491 if (!PURE_POINTER_P (s
)
1493 && nbytes
!= SDATA_NBYTES (SDATA_OF_STRING (s
)))
1498 /* Check validity of Lisp strings' string_bytes member in B. */
1501 check_sblock (struct sblock
*b
)
1503 struct sdata
*from
, *end
, *from_end
;
1507 for (from
= &b
->first_data
; from
< end
; from
= from_end
)
1509 /* Compute the next FROM here because copying below may
1510 overwrite data we need to compute it. */
1513 /* Check that the string size recorded in the string is the
1514 same as the one recorded in the sdata structure. */
1515 nbytes
= SDATA_SIZE (from
->string
? string_bytes (from
->string
)
1516 : SDATA_NBYTES (from
));
1517 from_end
= (struct sdata
*) ((char *) from
+ nbytes
+ GC_STRING_EXTRA
);
1522 /* Check validity of Lisp strings' string_bytes member. ALL_P
1523 means check all strings, otherwise check only most
1524 recently allocated strings. Used for hunting a bug. */
1527 check_string_bytes (bool all_p
)
1533 for (b
= large_sblocks
; b
; b
= b
->next
)
1535 struct Lisp_String
*s
= b
->first_data
.string
;
1540 for (b
= oldest_sblock
; b
; b
= b
->next
)
1543 else if (current_sblock
)
1544 check_sblock (current_sblock
);
1547 #else /* not GC_CHECK_STRING_BYTES */
1549 #define check_string_bytes(all) ((void) 0)
1551 #endif /* GC_CHECK_STRING_BYTES */
1553 #ifdef GC_CHECK_STRING_FREE_LIST
1555 /* Walk through the string free list looking for bogus next pointers.
1556 This may catch buffer overrun from a previous string. */
1559 check_string_free_list (void)
1561 struct Lisp_String
*s
;
1563 /* Pop a Lisp_String off the free-list. */
1564 s
= string_free_list
;
1567 if ((uintptr_t) s
< 1024)
1569 s
= NEXT_FREE_LISP_STRING (s
);
1573 #define check_string_free_list()
1576 /* Return a new Lisp_String. */
1578 static struct Lisp_String
*
1579 allocate_string (void)
1581 struct Lisp_String
*s
;
1585 /* If the free-list is empty, allocate a new string_block, and
1586 add all the Lisp_Strings in it to the free-list. */
1587 if (string_free_list
== NULL
)
1589 struct string_block
*b
= lisp_malloc (sizeof *b
, MEM_TYPE_STRING
);
1592 b
->next
= string_blocks
;
1595 for (i
= STRING_BLOCK_SIZE
- 1; i
>= 0; --i
)
1598 /* Every string on a free list should have NULL data pointer. */
1600 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
1601 string_free_list
= s
;
1604 total_free_strings
+= STRING_BLOCK_SIZE
;
1607 check_string_free_list ();
1609 /* Pop a Lisp_String off the free-list. */
1610 s
= string_free_list
;
1611 string_free_list
= NEXT_FREE_LISP_STRING (s
);
1613 MALLOC_UNBLOCK_INPUT
;
1615 --total_free_strings
;
1618 consing_since_gc
+= sizeof *s
;
1620 #ifdef GC_CHECK_STRING_BYTES
1621 if (!noninteractive
)
1623 if (++check_string_bytes_count
== 200)
1625 check_string_bytes_count
= 0;
1626 check_string_bytes (1);
1629 check_string_bytes (0);
1631 #endif /* GC_CHECK_STRING_BYTES */
1637 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1638 plus a NUL byte at the end. Allocate an sdata structure for S, and
1639 set S->data to its `u.data' member. Store a NUL byte at the end of
1640 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1641 S->data if it was initially non-null. */
1644 allocate_string_data (struct Lisp_String
*s
,
1645 EMACS_INT nchars
, EMACS_INT nbytes
)
1647 struct sdata
*data
, *old_data
;
1649 ptrdiff_t needed
, old_nbytes
;
1651 if (STRING_BYTES_MAX
< nbytes
)
1654 /* Determine the number of bytes needed to store NBYTES bytes
1656 needed
= SDATA_SIZE (nbytes
);
1659 old_data
= SDATA_OF_STRING (s
);
1660 old_nbytes
= STRING_BYTES (s
);
1667 if (nbytes
> LARGE_STRING_BYTES
)
1669 size_t size
= offsetof (struct sblock
, first_data
) + needed
;
1671 #ifdef DOUG_LEA_MALLOC
1672 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1673 because mapped region contents are not preserved in
1676 In case you think of allowing it in a dumped Emacs at the
1677 cost of not being able to re-dump, there's another reason:
1678 mmap'ed data typically have an address towards the top of the
1679 address space, which won't fit into an EMACS_INT (at least on
1680 32-bit systems with the current tagging scheme). --fx */
1681 mallopt (M_MMAP_MAX
, 0);
1684 b
= lisp_malloc (size
+ GC_STRING_EXTRA
, MEM_TYPE_NON_LISP
);
1686 #ifdef DOUG_LEA_MALLOC
1687 /* Back to a reasonable maximum of mmap'ed areas. */
1688 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
1691 b
->next_free
= &b
->first_data
;
1692 b
->first_data
.string
= NULL
;
1693 b
->next
= large_sblocks
;
1696 else if (current_sblock
== NULL
1697 || (((char *) current_sblock
+ SBLOCK_SIZE
1698 - (char *) current_sblock
->next_free
)
1699 < (needed
+ GC_STRING_EXTRA
)))
1701 /* Not enough room in the current sblock. */
1702 b
= lisp_malloc (SBLOCK_SIZE
, MEM_TYPE_NON_LISP
);
1703 b
->next_free
= &b
->first_data
;
1704 b
->first_data
.string
= NULL
;
1708 current_sblock
->next
= b
;
1716 data
= b
->next_free
;
1717 b
->next_free
= (struct sdata
*) ((char *) data
+ needed
+ GC_STRING_EXTRA
);
1719 MALLOC_UNBLOCK_INPUT
;
1722 s
->data
= SDATA_DATA (data
);
1723 #ifdef GC_CHECK_STRING_BYTES
1724 SDATA_NBYTES (data
) = nbytes
;
1727 s
->size_byte
= nbytes
;
1728 s
->data
[nbytes
] = '\0';
1729 #ifdef GC_CHECK_STRING_OVERRUN
1730 memcpy ((char *) data
+ needed
, string_overrun_cookie
,
1731 GC_STRING_OVERRUN_COOKIE_SIZE
);
1734 /* Note that Faset may call to this function when S has already data
1735 assigned. In this case, mark data as free by setting it's string
1736 back-pointer to null, and record the size of the data in it. */
1739 SDATA_NBYTES (old_data
) = old_nbytes
;
1740 old_data
->string
= NULL
;
1743 consing_since_gc
+= needed
;
1747 /* Sweep and compact strings. */
1750 sweep_strings (void)
1752 struct string_block
*b
, *next
;
1753 struct string_block
*live_blocks
= NULL
;
1755 string_free_list
= NULL
;
1756 total_strings
= total_free_strings
= 0;
1757 total_string_bytes
= 0;
1759 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1760 for (b
= string_blocks
; b
; b
= next
)
1763 struct Lisp_String
*free_list_before
= string_free_list
;
1767 for (i
= 0; i
< STRING_BLOCK_SIZE
; ++i
)
1769 struct Lisp_String
*s
= b
->strings
+ i
;
1773 /* String was not on free-list before. */
1774 if (STRING_MARKED_P (s
))
1776 /* String is live; unmark it and its intervals. */
1779 /* Do not use string_(set|get)_intervals here. */
1780 s
->intervals
= balance_intervals (s
->intervals
);
1783 total_string_bytes
+= STRING_BYTES (s
);
1787 /* String is dead. Put it on the free-list. */
1788 struct sdata
*data
= SDATA_OF_STRING (s
);
1790 /* Save the size of S in its sdata so that we know
1791 how large that is. Reset the sdata's string
1792 back-pointer so that we know it's free. */
1793 #ifdef GC_CHECK_STRING_BYTES
1794 if (string_bytes (s
) != SDATA_NBYTES (data
))
1797 data
->u
.nbytes
= STRING_BYTES (s
);
1799 data
->string
= NULL
;
1801 /* Reset the strings's `data' member so that we
1805 /* Put the string on the free-list. */
1806 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
1807 string_free_list
= s
;
1813 /* S was on the free-list before. Put it there again. */
1814 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
1815 string_free_list
= s
;
1820 /* Free blocks that contain free Lisp_Strings only, except
1821 the first two of them. */
1822 if (nfree
== STRING_BLOCK_SIZE
1823 && total_free_strings
> STRING_BLOCK_SIZE
)
1826 string_free_list
= free_list_before
;
1830 total_free_strings
+= nfree
;
1831 b
->next
= live_blocks
;
1836 check_string_free_list ();
1838 string_blocks
= live_blocks
;
1839 free_large_strings ();
1840 compact_small_strings ();
1842 check_string_free_list ();
1846 /* Free dead large strings. */
1849 free_large_strings (void)
1851 struct sblock
*b
, *next
;
1852 struct sblock
*live_blocks
= NULL
;
1854 for (b
= large_sblocks
; b
; b
= next
)
1858 if (b
->first_data
.string
== NULL
)
1862 b
->next
= live_blocks
;
1867 large_sblocks
= live_blocks
;
1871 /* Compact data of small strings. Free sblocks that don't contain
1872 data of live strings after compaction. */
1875 compact_small_strings (void)
1877 struct sblock
*b
, *tb
, *next
;
1878 struct sdata
*from
, *to
, *end
, *tb_end
;
1879 struct sdata
*to_end
, *from_end
;
1881 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1882 to, and TB_END is the end of TB. */
1884 tb_end
= (struct sdata
*) ((char *) tb
+ SBLOCK_SIZE
);
1885 to
= &tb
->first_data
;
1887 /* Step through the blocks from the oldest to the youngest. We
1888 expect that old blocks will stabilize over time, so that less
1889 copying will happen this way. */
1890 for (b
= oldest_sblock
; b
; b
= b
->next
)
1893 eassert ((char *) end
<= (char *) b
+ SBLOCK_SIZE
);
1895 for (from
= &b
->first_data
; from
< end
; from
= from_end
)
1897 /* Compute the next FROM here because copying below may
1898 overwrite data we need to compute it. */
1900 struct Lisp_String
*s
= from
->string
;
1902 #ifdef GC_CHECK_STRING_BYTES
1903 /* Check that the string size recorded in the string is the
1904 same as the one recorded in the sdata structure. */
1905 if (s
&& string_bytes (s
) != SDATA_NBYTES (from
))
1907 #endif /* GC_CHECK_STRING_BYTES */
1909 nbytes
= s
? STRING_BYTES (s
) : SDATA_NBYTES (from
);
1910 eassert (nbytes
<= LARGE_STRING_BYTES
);
1912 nbytes
= SDATA_SIZE (nbytes
);
1913 from_end
= (struct sdata
*) ((char *) from
+ nbytes
+ GC_STRING_EXTRA
);
1915 #ifdef GC_CHECK_STRING_OVERRUN
1916 if (memcmp (string_overrun_cookie
,
1917 (char *) from_end
- GC_STRING_OVERRUN_COOKIE_SIZE
,
1918 GC_STRING_OVERRUN_COOKIE_SIZE
))
1922 /* Non-NULL S means it's alive. Copy its data. */
1925 /* If TB is full, proceed with the next sblock. */
1926 to_end
= (struct sdata
*) ((char *) to
+ nbytes
+ GC_STRING_EXTRA
);
1927 if (to_end
> tb_end
)
1931 tb_end
= (struct sdata
*) ((char *) tb
+ SBLOCK_SIZE
);
1932 to
= &tb
->first_data
;
1933 to_end
= (struct sdata
*) ((char *) to
+ nbytes
+ GC_STRING_EXTRA
);
1936 /* Copy, and update the string's `data' pointer. */
1939 eassert (tb
!= b
|| to
< from
);
1940 memmove (to
, from
, nbytes
+ GC_STRING_EXTRA
);
1941 to
->string
->data
= SDATA_DATA (to
);
1944 /* Advance past the sdata we copied to. */
1950 /* The rest of the sblocks following TB don't contain live data, so
1951 we can free them. */
1952 for (b
= tb
->next
; b
; b
= next
)
1960 current_sblock
= tb
;
1964 string_overflow (void)
1966 error ("Maximum string size exceeded");
1969 DEFUN ("make-string", Fmake_string
, Smake_string
, 2, 2, 0,
1970 doc
: /* Return a newly created string of length LENGTH, with INIT in each element.
1971 LENGTH must be an integer.
1972 INIT must be an integer that represents a character. */)
1973 (Lisp_Object length
, Lisp_Object init
)
1975 register Lisp_Object val
;
1976 register unsigned char *p
, *end
;
1980 CHECK_NATNUM (length
);
1981 CHECK_CHARACTER (init
);
1983 c
= XFASTINT (init
);
1984 if (ASCII_CHAR_P (c
))
1986 nbytes
= XINT (length
);
1987 val
= make_uninit_string (nbytes
);
1989 end
= p
+ SCHARS (val
);
1995 unsigned char str
[MAX_MULTIBYTE_LENGTH
];
1996 int len
= CHAR_STRING (c
, str
);
1997 EMACS_INT string_len
= XINT (length
);
1999 if (string_len
> STRING_BYTES_MAX
/ len
)
2001 nbytes
= len
* string_len
;
2002 val
= make_uninit_multibyte_string (string_len
, nbytes
);
2007 memcpy (p
, str
, len
);
2017 DEFUN ("make-bool-vector", Fmake_bool_vector
, Smake_bool_vector
, 2, 2, 0,
2018 doc
: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2019 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2020 (Lisp_Object length
, Lisp_Object init
)
2022 register Lisp_Object val
;
2023 struct Lisp_Bool_Vector
*p
;
2024 ptrdiff_t length_in_chars
;
2025 EMACS_INT length_in_elts
;
2027 int extra_bool_elts
= ((bool_header_size
- header_size
+ word_size
- 1)
2030 CHECK_NATNUM (length
);
2032 bits_per_value
= sizeof (EMACS_INT
) * BOOL_VECTOR_BITS_PER_CHAR
;
2034 length_in_elts
= (XFASTINT (length
) + bits_per_value
- 1) / bits_per_value
;
2036 val
= Fmake_vector (make_number (length_in_elts
+ extra_bool_elts
), Qnil
);
2038 /* No Lisp_Object to trace in there. */
2039 XSETPVECTYPESIZE (XVECTOR (val
), PVEC_BOOL_VECTOR
, 0, 0);
2041 p
= XBOOL_VECTOR (val
);
2042 p
->size
= XFASTINT (length
);
2044 length_in_chars
= ((XFASTINT (length
) + BOOL_VECTOR_BITS_PER_CHAR
- 1)
2045 / BOOL_VECTOR_BITS_PER_CHAR
);
2046 if (length_in_chars
)
2048 memset (p
->data
, ! NILP (init
) ? -1 : 0, length_in_chars
);
2050 /* Clear any extraneous bits in the last byte. */
2051 p
->data
[length_in_chars
- 1]
2052 &= (1 << ((XFASTINT (length
) - 1) % BOOL_VECTOR_BITS_PER_CHAR
+ 1)) - 1;
2059 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2060 of characters from the contents. This string may be unibyte or
2061 multibyte, depending on the contents. */
2064 make_string (const char *contents
, ptrdiff_t nbytes
)
2066 register Lisp_Object val
;
2067 ptrdiff_t nchars
, multibyte_nbytes
;
2069 parse_str_as_multibyte ((const unsigned char *) contents
, nbytes
,
2070 &nchars
, &multibyte_nbytes
);
2071 if (nbytes
== nchars
|| nbytes
!= multibyte_nbytes
)
2072 /* CONTENTS contains no multibyte sequences or contains an invalid
2073 multibyte sequence. We must make unibyte string. */
2074 val
= make_unibyte_string (contents
, nbytes
);
2076 val
= make_multibyte_string (contents
, nchars
, nbytes
);
2081 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2084 make_unibyte_string (const char *contents
, ptrdiff_t length
)
2086 register Lisp_Object val
;
2087 val
= make_uninit_string (length
);
2088 memcpy (SDATA (val
), contents
, length
);
2093 /* Make a multibyte string from NCHARS characters occupying NBYTES
2094 bytes at CONTENTS. */
2097 make_multibyte_string (const char *contents
,
2098 ptrdiff_t nchars
, ptrdiff_t nbytes
)
2100 register Lisp_Object val
;
2101 val
= make_uninit_multibyte_string (nchars
, nbytes
);
2102 memcpy (SDATA (val
), contents
, nbytes
);
2107 /* Make a string from NCHARS characters occupying NBYTES bytes at
2108 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2111 make_string_from_bytes (const char *contents
,
2112 ptrdiff_t nchars
, ptrdiff_t nbytes
)
2114 register Lisp_Object val
;
2115 val
= make_uninit_multibyte_string (nchars
, nbytes
);
2116 memcpy (SDATA (val
), contents
, nbytes
);
2117 if (SBYTES (val
) == SCHARS (val
))
2118 STRING_SET_UNIBYTE (val
);
2123 /* Make a string from NCHARS characters occupying NBYTES bytes at
2124 CONTENTS. The argument MULTIBYTE controls whether to label the
2125 string as multibyte. If NCHARS is negative, it counts the number of
2126 characters by itself. */
2129 make_specified_string (const char *contents
,
2130 ptrdiff_t nchars
, ptrdiff_t nbytes
, bool multibyte
)
2137 nchars
= multibyte_chars_in_text ((const unsigned char *) contents
,
2142 val
= make_uninit_multibyte_string (nchars
, nbytes
);
2143 memcpy (SDATA (val
), contents
, nbytes
);
2145 STRING_SET_UNIBYTE (val
);
2150 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2151 occupying LENGTH bytes. */
2154 make_uninit_string (EMACS_INT length
)
2159 return empty_unibyte_string
;
2160 val
= make_uninit_multibyte_string (length
, length
);
2161 STRING_SET_UNIBYTE (val
);
2166 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2167 which occupy NBYTES bytes. */
2170 make_uninit_multibyte_string (EMACS_INT nchars
, EMACS_INT nbytes
)
2173 struct Lisp_String
*s
;
2178 return empty_multibyte_string
;
2180 s
= allocate_string ();
2181 s
->intervals
= NULL
;
2182 allocate_string_data (s
, nchars
, nbytes
);
2183 XSETSTRING (string
, s
);
2184 string_chars_consed
+= nbytes
;
2188 /* Print arguments to BUF according to a FORMAT, then return
2189 a Lisp_String initialized with the data from BUF. */
2192 make_formatted_string (char *buf
, const char *format
, ...)
2197 va_start (ap
, format
);
2198 length
= vsprintf (buf
, format
, ap
);
2200 return make_string (buf
, length
);
2204 /***********************************************************************
2206 ***********************************************************************/
2208 /* We store float cells inside of float_blocks, allocating a new
2209 float_block with malloc whenever necessary. Float cells reclaimed
2210 by GC are put on a free list to be reallocated before allocating
2211 any new float cells from the latest float_block. */
2213 #define FLOAT_BLOCK_SIZE \
2214 (((BLOCK_BYTES - sizeof (struct float_block *) \
2215 /* The compiler might add padding at the end. */ \
2216 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2217 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2219 #define GETMARKBIT(block,n) \
2220 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2221 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2224 #define SETMARKBIT(block,n) \
2225 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2226 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2228 #define UNSETMARKBIT(block,n) \
2229 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2230 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2232 #define FLOAT_BLOCK(fptr) \
2233 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2235 #define FLOAT_INDEX(fptr) \
2236 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2240 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2241 struct Lisp_Float floats
[FLOAT_BLOCK_SIZE
];
2242 int gcmarkbits
[1 + FLOAT_BLOCK_SIZE
/ (sizeof (int) * CHAR_BIT
)];
2243 struct float_block
*next
;
2246 #define FLOAT_MARKED_P(fptr) \
2247 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2249 #define FLOAT_MARK(fptr) \
2250 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2252 #define FLOAT_UNMARK(fptr) \
2253 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2255 /* Current float_block. */
2257 static struct float_block
*float_block
;
2259 /* Index of first unused Lisp_Float in the current float_block. */
2261 static int float_block_index
= FLOAT_BLOCK_SIZE
;
2263 /* Free-list of Lisp_Floats. */
2265 static struct Lisp_Float
*float_free_list
;
2267 /* Return a new float object with value FLOAT_VALUE. */
2270 make_float (double float_value
)
2272 register Lisp_Object val
;
2276 if (float_free_list
)
2278 /* We use the data field for chaining the free list
2279 so that we won't use the same field that has the mark bit. */
2280 XSETFLOAT (val
, float_free_list
);
2281 float_free_list
= float_free_list
->u
.chain
;
2285 if (float_block_index
== FLOAT_BLOCK_SIZE
)
2287 struct float_block
*new
2288 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT
);
2289 new->next
= float_block
;
2290 memset (new->gcmarkbits
, 0, sizeof new->gcmarkbits
);
2292 float_block_index
= 0;
2293 total_free_floats
+= FLOAT_BLOCK_SIZE
;
2295 XSETFLOAT (val
, &float_block
->floats
[float_block_index
]);
2296 float_block_index
++;
2299 MALLOC_UNBLOCK_INPUT
;
2301 XFLOAT_INIT (val
, float_value
);
2302 eassert (!FLOAT_MARKED_P (XFLOAT (val
)));
2303 consing_since_gc
+= sizeof (struct Lisp_Float
);
2305 total_free_floats
--;
2311 /***********************************************************************
2313 ***********************************************************************/
2315 /* We store cons cells inside of cons_blocks, allocating a new
2316 cons_block with malloc whenever necessary. Cons cells reclaimed by
2317 GC are put on a free list to be reallocated before allocating
2318 any new cons cells from the latest cons_block. */
2320 #define CONS_BLOCK_SIZE \
2321 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2322 /* The compiler might add padding at the end. */ \
2323 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2324 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2326 #define CONS_BLOCK(fptr) \
2327 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2329 #define CONS_INDEX(fptr) \
2330 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2334 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2335 struct Lisp_Cons conses
[CONS_BLOCK_SIZE
];
2336 int gcmarkbits
[1 + CONS_BLOCK_SIZE
/ (sizeof (int) * CHAR_BIT
)];
2337 struct cons_block
*next
;
2340 #define CONS_MARKED_P(fptr) \
2341 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2343 #define CONS_MARK(fptr) \
2344 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2346 #define CONS_UNMARK(fptr) \
2347 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2349 /* Current cons_block. */
2351 static struct cons_block
*cons_block
;
2353 /* Index of first unused Lisp_Cons in the current block. */
2355 static int cons_block_index
= CONS_BLOCK_SIZE
;
2357 /* Free-list of Lisp_Cons structures. */
2359 static struct Lisp_Cons
*cons_free_list
;
2361 /* Explicitly free a cons cell by putting it on the free-list. */
2364 free_cons (struct Lisp_Cons
*ptr
)
2366 ptr
->u
.chain
= cons_free_list
;
2370 cons_free_list
= ptr
;
2371 consing_since_gc
-= sizeof *ptr
;
2372 total_free_conses
++;
2375 DEFUN ("cons", Fcons
, Scons
, 2, 2, 0,
2376 doc
: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2377 (Lisp_Object car
, Lisp_Object cdr
)
2379 register Lisp_Object val
;
2385 /* We use the cdr for chaining the free list
2386 so that we won't use the same field that has the mark bit. */
2387 XSETCONS (val
, cons_free_list
);
2388 cons_free_list
= cons_free_list
->u
.chain
;
2392 if (cons_block_index
== CONS_BLOCK_SIZE
)
2394 struct cons_block
*new
2395 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS
);
2396 memset (new->gcmarkbits
, 0, sizeof new->gcmarkbits
);
2397 new->next
= cons_block
;
2399 cons_block_index
= 0;
2400 total_free_conses
+= CONS_BLOCK_SIZE
;
2402 XSETCONS (val
, &cons_block
->conses
[cons_block_index
]);
2406 MALLOC_UNBLOCK_INPUT
;
2410 eassert (!CONS_MARKED_P (XCONS (val
)));
2411 consing_since_gc
+= sizeof (struct Lisp_Cons
);
2412 total_free_conses
--;
2413 cons_cells_consed
++;
2417 #ifdef GC_CHECK_CONS_LIST
2418 /* Get an error now if there's any junk in the cons free list. */
2420 check_cons_list (void)
2422 struct Lisp_Cons
*tail
= cons_free_list
;
2425 tail
= tail
->u
.chain
;
2429 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2432 list1 (Lisp_Object arg1
)
2434 return Fcons (arg1
, Qnil
);
2438 list2 (Lisp_Object arg1
, Lisp_Object arg2
)
2440 return Fcons (arg1
, Fcons (arg2
, Qnil
));
2445 list3 (Lisp_Object arg1
, Lisp_Object arg2
, Lisp_Object arg3
)
2447 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Qnil
)));
2452 list4 (Lisp_Object arg1
, Lisp_Object arg2
, Lisp_Object arg3
, Lisp_Object arg4
)
2454 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Fcons (arg4
, Qnil
))));
2459 list5 (Lisp_Object arg1
, Lisp_Object arg2
, Lisp_Object arg3
, Lisp_Object arg4
, Lisp_Object arg5
)
2461 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Fcons (arg4
,
2462 Fcons (arg5
, Qnil
)))));
2465 /* Make a list of COUNT Lisp_Objects, where ARG is the
2466 first one. Allocate conses from pure space if TYPE
2467 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2470 listn (enum constype type
, ptrdiff_t count
, Lisp_Object arg
, ...)
2474 Lisp_Object val
, *objp
;
2476 /* Change to SAFE_ALLOCA if you hit this eassert. */
2477 eassert (count
<= MAX_ALLOCA
/ word_size
);
2479 objp
= alloca (count
* word_size
);
2482 for (i
= 1; i
< count
; i
++)
2483 objp
[i
] = va_arg (ap
, Lisp_Object
);
2486 for (val
= Qnil
, i
= count
- 1; i
>= 0; i
--)
2488 if (type
== CONSTYPE_PURE
)
2489 val
= pure_cons (objp
[i
], val
);
2490 else if (type
== CONSTYPE_HEAP
)
2491 val
= Fcons (objp
[i
], val
);
2498 DEFUN ("list", Flist
, Slist
, 0, MANY
, 0,
2499 doc
: /* Return a newly created list with specified arguments as elements.
2500 Any number of arguments, even zero arguments, are allowed.
2501 usage: (list &rest OBJECTS) */)
2502 (ptrdiff_t nargs
, Lisp_Object
*args
)
2504 register Lisp_Object val
;
2510 val
= Fcons (args
[nargs
], val
);
2516 DEFUN ("make-list", Fmake_list
, Smake_list
, 2, 2, 0,
2517 doc
: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2518 (register Lisp_Object length
, Lisp_Object init
)
2520 register Lisp_Object val
;
2521 register EMACS_INT size
;
2523 CHECK_NATNUM (length
);
2524 size
= XFASTINT (length
);
2529 val
= Fcons (init
, val
);
2534 val
= Fcons (init
, val
);
2539 val
= Fcons (init
, val
);
2544 val
= Fcons (init
, val
);
2549 val
= Fcons (init
, val
);
2564 /***********************************************************************
2566 ***********************************************************************/
2568 /* This value is balanced well enough to avoid too much internal overhead
2569 for the most common cases; it's not required to be a power of two, but
2570 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2572 #define VECTOR_BLOCK_SIZE 4096
2574 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2577 roundup_size
= COMMON_MULTIPLE (word_size
, USE_LSB_TAG
? GCALIGNMENT
: 1)
2580 /* ROUNDUP_SIZE must be a power of 2. */
2581 verify ((roundup_size
& (roundup_size
- 1)) == 0);
2583 /* Verify assumptions described above. */
2584 verify ((VECTOR_BLOCK_SIZE
% roundup_size
) == 0);
2585 verify (VECTOR_BLOCK_SIZE
<= (1 << PSEUDOVECTOR_SIZE_BITS
));
2587 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2589 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2591 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2593 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2595 /* Size of the minimal vector allocated from block. */
2597 #define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2599 /* Size of the largest vector allocated from block. */
2601 #define VBLOCK_BYTES_MAX \
2602 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2604 /* We maintain one free list for each possible block-allocated
2605 vector size, and this is the number of free lists we have. */
2607 #define VECTOR_MAX_FREE_LIST_INDEX \
2608 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2610 /* Common shortcut to advance vector pointer over a block data. */
2612 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2614 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2616 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2618 /* Get and set the next field in block-allocated vectorlike objects on
2619 the free list. Doing it this way respects C's aliasing rules.
2620 We could instead make 'contents' a union, but that would mean
2621 changes everywhere that the code uses 'contents'. */
2622 static struct Lisp_Vector
*
2623 next_in_free_list (struct Lisp_Vector
*v
)
2625 intptr_t i
= XLI (v
->contents
[0]);
2626 return (struct Lisp_Vector
*) i
;
2629 set_next_in_free_list (struct Lisp_Vector
*v
, struct Lisp_Vector
*next
)
2631 v
->contents
[0] = XIL ((intptr_t) next
);
2634 /* Common shortcut to setup vector on a free list. */
2636 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2638 (tmp) = ((nbytes - header_size) / word_size); \
2639 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2640 eassert ((nbytes) % roundup_size == 0); \
2641 (tmp) = VINDEX (nbytes); \
2642 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2643 set_next_in_free_list (v, vector_free_lists[tmp]); \
2644 vector_free_lists[tmp] = (v); \
2645 total_free_vector_slots += (nbytes) / word_size; \
2648 /* This internal type is used to maintain the list of large vectors
2649 which are allocated at their own, e.g. outside of vector blocks. */
2654 struct large_vector
*vector
;
2656 /* We need to maintain ROUNDUP_SIZE alignment for the vector member. */
2657 unsigned char c
[vroundup (sizeof (struct large_vector
*))];
2660 struct Lisp_Vector v
;
2663 /* This internal type is used to maintain an underlying storage
2664 for small vectors. */
2668 char data
[VECTOR_BLOCK_BYTES
];
2669 struct vector_block
*next
;
2672 /* Chain of vector blocks. */
2674 static struct vector_block
*vector_blocks
;
2676 /* Vector free lists, where NTH item points to a chain of free
2677 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2679 static struct Lisp_Vector
*vector_free_lists
[VECTOR_MAX_FREE_LIST_INDEX
];
2681 /* Singly-linked list of large vectors. */
2683 static struct large_vector
*large_vectors
;
2685 /* The only vector with 0 slots, allocated from pure space. */
2687 Lisp_Object zero_vector
;
2689 /* Number of live vectors. */
2691 static EMACS_INT total_vectors
;
2693 /* Total size of live and free vectors, in Lisp_Object units. */
2695 static EMACS_INT total_vector_slots
, total_free_vector_slots
;
2697 /* Get a new vector block. */
2699 static struct vector_block
*
2700 allocate_vector_block (void)
2702 struct vector_block
*block
= xmalloc (sizeof *block
);
2704 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2705 mem_insert (block
->data
, block
->data
+ VECTOR_BLOCK_BYTES
,
2706 MEM_TYPE_VECTOR_BLOCK
);
2709 block
->next
= vector_blocks
;
2710 vector_blocks
= block
;
2714 /* Called once to initialize vector allocation. */
2719 zero_vector
= make_pure_vector (0);
2722 /* Allocate vector from a vector block. */
2724 static struct Lisp_Vector
*
2725 allocate_vector_from_block (size_t nbytes
)
2727 struct Lisp_Vector
*vector
;
2728 struct vector_block
*block
;
2729 size_t index
, restbytes
;
2731 eassert (VBLOCK_BYTES_MIN
<= nbytes
&& nbytes
<= VBLOCK_BYTES_MAX
);
2732 eassert (nbytes
% roundup_size
== 0);
2734 /* First, try to allocate from a free list
2735 containing vectors of the requested size. */
2736 index
= VINDEX (nbytes
);
2737 if (vector_free_lists
[index
])
2739 vector
= vector_free_lists
[index
];
2740 vector_free_lists
[index
] = next_in_free_list (vector
);
2741 total_free_vector_slots
-= nbytes
/ word_size
;
2745 /* Next, check free lists containing larger vectors. Since
2746 we will split the result, we should have remaining space
2747 large enough to use for one-slot vector at least. */
2748 for (index
= VINDEX (nbytes
+ VBLOCK_BYTES_MIN
);
2749 index
< VECTOR_MAX_FREE_LIST_INDEX
; index
++)
2750 if (vector_free_lists
[index
])
2752 /* This vector is larger than requested. */
2753 vector
= vector_free_lists
[index
];
2754 vector_free_lists
[index
] = next_in_free_list (vector
);
2755 total_free_vector_slots
-= nbytes
/ word_size
;
2757 /* Excess bytes are used for the smaller vector,
2758 which should be set on an appropriate free list. */
2759 restbytes
= index
* roundup_size
+ VBLOCK_BYTES_MIN
- nbytes
;
2760 eassert (restbytes
% roundup_size
== 0);
2761 SETUP_ON_FREE_LIST (ADVANCE (vector
, nbytes
), restbytes
, index
);
2765 /* Finally, need a new vector block. */
2766 block
= allocate_vector_block ();
2768 /* New vector will be at the beginning of this block. */
2769 vector
= (struct Lisp_Vector
*) block
->data
;
2771 /* If the rest of space from this block is large enough
2772 for one-slot vector at least, set up it on a free list. */
2773 restbytes
= VECTOR_BLOCK_BYTES
- nbytes
;
2774 if (restbytes
>= VBLOCK_BYTES_MIN
)
2776 eassert (restbytes
% roundup_size
== 0);
2777 SETUP_ON_FREE_LIST (ADVANCE (vector
, nbytes
), restbytes
, index
);
2782 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2784 #define VECTOR_IN_BLOCK(vector, block) \
2785 ((char *) (vector) <= (block)->data \
2786 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2788 /* Return the memory footprint of V in bytes. */
2791 vector_nbytes (struct Lisp_Vector
*v
)
2793 ptrdiff_t size
= v
->header
.size
& ~ARRAY_MARK_FLAG
;
2795 if (size
& PSEUDOVECTOR_FLAG
)
2797 if (PSEUDOVECTOR_TYPEP (&v
->header
, PVEC_BOOL_VECTOR
))
2798 size
= (bool_header_size
2799 + (((struct Lisp_Bool_Vector
*) v
)->size
2800 + BOOL_VECTOR_BITS_PER_CHAR
- 1)
2801 / BOOL_VECTOR_BITS_PER_CHAR
);
2804 + ((size
& PSEUDOVECTOR_SIZE_MASK
)
2805 + ((size
& PSEUDOVECTOR_REST_MASK
)
2806 >> PSEUDOVECTOR_SIZE_BITS
)) * word_size
);
2809 size
= header_size
+ size
* word_size
;
2810 return vroundup (size
);
2813 /* Reclaim space used by unmarked vectors. */
2816 sweep_vectors (void)
2818 struct vector_block
*block
= vector_blocks
, **bprev
= &vector_blocks
;
2819 struct large_vector
*lv
, **lvprev
= &large_vectors
;
2820 struct Lisp_Vector
*vector
, *next
;
2822 total_vectors
= total_vector_slots
= total_free_vector_slots
= 0;
2823 memset (vector_free_lists
, 0, sizeof (vector_free_lists
));
2825 /* Looking through vector blocks. */
2827 for (block
= vector_blocks
; block
; block
= *bprev
)
2829 bool free_this_block
= 0;
2832 for (vector
= (struct Lisp_Vector
*) block
->data
;
2833 VECTOR_IN_BLOCK (vector
, block
); vector
= next
)
2835 if (VECTOR_MARKED_P (vector
))
2837 VECTOR_UNMARK (vector
);
2839 nbytes
= vector_nbytes (vector
);
2840 total_vector_slots
+= nbytes
/ word_size
;
2841 next
= ADVANCE (vector
, nbytes
);
2845 ptrdiff_t total_bytes
;
2847 nbytes
= vector_nbytes (vector
);
2848 total_bytes
= nbytes
;
2849 next
= ADVANCE (vector
, nbytes
);
2851 /* While NEXT is not marked, try to coalesce with VECTOR,
2852 thus making VECTOR of the largest possible size. */
2854 while (VECTOR_IN_BLOCK (next
, block
))
2856 if (VECTOR_MARKED_P (next
))
2858 nbytes
= vector_nbytes (next
);
2859 total_bytes
+= nbytes
;
2860 next
= ADVANCE (next
, nbytes
);
2863 eassert (total_bytes
% roundup_size
== 0);
2865 if (vector
== (struct Lisp_Vector
*) block
->data
2866 && !VECTOR_IN_BLOCK (next
, block
))
2867 /* This block should be freed because all of it's
2868 space was coalesced into the only free vector. */
2869 free_this_block
= 1;
2873 SETUP_ON_FREE_LIST (vector
, total_bytes
, tmp
);
2878 if (free_this_block
)
2880 *bprev
= block
->next
;
2881 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2882 mem_delete (mem_find (block
->data
));
2887 bprev
= &block
->next
;
2890 /* Sweep large vectors. */
2892 for (lv
= large_vectors
; lv
; lv
= *lvprev
)
2895 if (VECTOR_MARKED_P (vector
))
2897 VECTOR_UNMARK (vector
);
2899 if (vector
->header
.size
& PSEUDOVECTOR_FLAG
)
2901 struct Lisp_Bool_Vector
*b
= (struct Lisp_Bool_Vector
*) vector
;
2903 /* All non-bool pseudovectors are small enough to be allocated
2904 from vector blocks. This code should be redesigned if some
2905 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2906 eassert (PSEUDOVECTOR_TYPEP (&vector
->header
, PVEC_BOOL_VECTOR
));
2909 += (bool_header_size
2910 + ((b
->size
+ BOOL_VECTOR_BITS_PER_CHAR
- 1)
2911 / BOOL_VECTOR_BITS_PER_CHAR
)) / word_size
;
2915 += header_size
/ word_size
+ vector
->header
.size
;
2916 lvprev
= &lv
->next
.vector
;
2920 *lvprev
= lv
->next
.vector
;
2926 /* Value is a pointer to a newly allocated Lisp_Vector structure
2927 with room for LEN Lisp_Objects. */
2929 static struct Lisp_Vector
*
2930 allocate_vectorlike (ptrdiff_t len
)
2932 struct Lisp_Vector
*p
;
2937 p
= XVECTOR (zero_vector
);
2940 size_t nbytes
= header_size
+ len
* word_size
;
2942 #ifdef DOUG_LEA_MALLOC
2943 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2944 because mapped region contents are not preserved in
2946 mallopt (M_MMAP_MAX
, 0);
2949 if (nbytes
<= VBLOCK_BYTES_MAX
)
2950 p
= allocate_vector_from_block (vroundup (nbytes
));
2953 struct large_vector
*lv
2954 = lisp_malloc (sizeof (*lv
) + (len
- 1) * word_size
,
2955 MEM_TYPE_VECTORLIKE
);
2956 lv
->next
.vector
= large_vectors
;
2961 #ifdef DOUG_LEA_MALLOC
2962 /* Back to a reasonable maximum of mmap'ed areas. */
2963 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
2966 consing_since_gc
+= nbytes
;
2967 vector_cells_consed
+= len
;
2970 MALLOC_UNBLOCK_INPUT
;
2976 /* Allocate a vector with LEN slots. */
2978 struct Lisp_Vector
*
2979 allocate_vector (EMACS_INT len
)
2981 struct Lisp_Vector
*v
;
2982 ptrdiff_t nbytes_max
= min (PTRDIFF_MAX
, SIZE_MAX
);
2984 if (min ((nbytes_max
- header_size
) / word_size
, MOST_POSITIVE_FIXNUM
) < len
)
2985 memory_full (SIZE_MAX
);
2986 v
= allocate_vectorlike (len
);
2987 v
->header
.size
= len
;
2992 /* Allocate other vector-like structures. */
2994 struct Lisp_Vector
*
2995 allocate_pseudovector (int memlen
, int lisplen
, enum pvec_type tag
)
2997 struct Lisp_Vector
*v
= allocate_vectorlike (memlen
);
3000 /* Catch bogus values. */
3001 eassert (tag
<= PVEC_FONT
);
3002 eassert (memlen
- lisplen
<= (1 << PSEUDOVECTOR_REST_BITS
) - 1);
3003 eassert (lisplen
<= (1 << PSEUDOVECTOR_SIZE_BITS
) - 1);
3005 /* Only the first lisplen slots will be traced normally by the GC. */
3006 for (i
= 0; i
< lisplen
; ++i
)
3007 v
->contents
[i
] = Qnil
;
3009 XSETPVECTYPESIZE (v
, tag
, lisplen
, memlen
- lisplen
);
3014 allocate_buffer (void)
3016 struct buffer
*b
= lisp_malloc (sizeof *b
, MEM_TYPE_BUFFER
);
3018 BUFFER_PVEC_INIT (b
);
3019 /* Put B on the chain of all buffers including killed ones. */
3020 b
->next
= all_buffers
;
3022 /* Note that the rest fields of B are not initialized. */
3026 struct Lisp_Hash_Table
*
3027 allocate_hash_table (void)
3029 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table
, count
, PVEC_HASH_TABLE
);
3033 allocate_window (void)
3037 w
= ALLOCATE_PSEUDOVECTOR (struct window
, current_matrix
, PVEC_WINDOW
);
3038 /* Users assumes that non-Lisp data is zeroed. */
3039 memset (&w
->current_matrix
, 0,
3040 sizeof (*w
) - offsetof (struct window
, current_matrix
));
3045 allocate_terminal (void)
3049 t
= ALLOCATE_PSEUDOVECTOR (struct terminal
, next_terminal
, PVEC_TERMINAL
);
3050 /* Users assumes that non-Lisp data is zeroed. */
3051 memset (&t
->next_terminal
, 0,
3052 sizeof (*t
) - offsetof (struct terminal
, next_terminal
));
3057 allocate_frame (void)
3061 f
= ALLOCATE_PSEUDOVECTOR (struct frame
, face_cache
, PVEC_FRAME
);
3062 /* Users assumes that non-Lisp data is zeroed. */
3063 memset (&f
->face_cache
, 0,
3064 sizeof (*f
) - offsetof (struct frame
, face_cache
));
3068 struct Lisp_Process
*
3069 allocate_process (void)
3071 struct Lisp_Process
*p
;
3073 p
= ALLOCATE_PSEUDOVECTOR (struct Lisp_Process
, pid
, PVEC_PROCESS
);
3074 /* Users assumes that non-Lisp data is zeroed. */
3076 sizeof (*p
) - offsetof (struct Lisp_Process
, pid
));
3080 DEFUN ("make-vector", Fmake_vector
, Smake_vector
, 2, 2, 0,
3081 doc
: /* Return a newly created vector of length LENGTH, with each element being INIT.
3082 See also the function `vector'. */)
3083 (register Lisp_Object length
, Lisp_Object init
)
3086 register ptrdiff_t sizei
;
3087 register ptrdiff_t i
;
3088 register struct Lisp_Vector
*p
;
3090 CHECK_NATNUM (length
);
3092 p
= allocate_vector (XFASTINT (length
));
3093 sizei
= XFASTINT (length
);
3094 for (i
= 0; i
< sizei
; i
++)
3095 p
->contents
[i
] = init
;
3097 XSETVECTOR (vector
, p
);
3102 DEFUN ("vector", Fvector
, Svector
, 0, MANY
, 0,
3103 doc
: /* Return a newly created vector with specified arguments as elements.
3104 Any number of arguments, even zero arguments, are allowed.
3105 usage: (vector &rest OBJECTS) */)
3106 (ptrdiff_t nargs
, Lisp_Object
*args
)
3108 register Lisp_Object len
, val
;
3110 register struct Lisp_Vector
*p
;
3112 XSETFASTINT (len
, nargs
);
3113 val
= Fmake_vector (len
, Qnil
);
3115 for (i
= 0; i
< nargs
; i
++)
3116 p
->contents
[i
] = args
[i
];
3121 make_byte_code (struct Lisp_Vector
*v
)
3123 if (v
->header
.size
> 1 && STRINGP (v
->contents
[1])
3124 && STRING_MULTIBYTE (v
->contents
[1]))
3125 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3126 earlier because they produced a raw 8-bit string for byte-code
3127 and now such a byte-code string is loaded as multibyte while
3128 raw 8-bit characters converted to multibyte form. Thus, now we
3129 must convert them back to the original unibyte form. */
3130 v
->contents
[1] = Fstring_as_unibyte (v
->contents
[1]);
3131 XSETPVECTYPE (v
, PVEC_COMPILED
);
3134 DEFUN ("make-byte-code", Fmake_byte_code
, Smake_byte_code
, 4, MANY
, 0,
3135 doc
: /* Create a byte-code object with specified arguments as elements.
3136 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3137 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3138 and (optional) INTERACTIVE-SPEC.
3139 The first four arguments are required; at most six have any
3141 The ARGLIST can be either like the one of `lambda', in which case the arguments
3142 will be dynamically bound before executing the byte code, or it can be an
3143 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3144 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3145 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3146 argument to catch the left-over arguments. If such an integer is used, the
3147 arguments will not be dynamically bound but will be instead pushed on the
3148 stack before executing the byte-code.
3149 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3150 (ptrdiff_t nargs
, Lisp_Object
*args
)
3152 register Lisp_Object len
, val
;
3154 register struct Lisp_Vector
*p
;
3156 /* We used to purecopy everything here, if purify-flag was set. This worked
3157 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3158 dangerous, since make-byte-code is used during execution to build
3159 closures, so any closure built during the preload phase would end up
3160 copied into pure space, including its free variables, which is sometimes
3161 just wasteful and other times plainly wrong (e.g. those free vars may want
3164 XSETFASTINT (len
, nargs
);
3165 val
= Fmake_vector (len
, Qnil
);
3168 for (i
= 0; i
< nargs
; i
++)
3169 p
->contents
[i
] = args
[i
];
3171 XSETCOMPILED (val
, p
);
3177 /***********************************************************************
3179 ***********************************************************************/
3181 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3182 of the required alignment if LSB tags are used. */
3184 union aligned_Lisp_Symbol
3186 struct Lisp_Symbol s
;
3188 unsigned char c
[(sizeof (struct Lisp_Symbol
) + GCALIGNMENT
- 1)
3193 /* Each symbol_block is just under 1020 bytes long, since malloc
3194 really allocates in units of powers of two and uses 4 bytes for its
3197 #define SYMBOL_BLOCK_SIZE \
3198 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3202 /* Place `symbols' first, to preserve alignment. */
3203 union aligned_Lisp_Symbol symbols
[SYMBOL_BLOCK_SIZE
];
3204 struct symbol_block
*next
;
3207 /* Current symbol block and index of first unused Lisp_Symbol
3210 static struct symbol_block
*symbol_block
;
3211 static int symbol_block_index
= SYMBOL_BLOCK_SIZE
;
3213 /* List of free symbols. */
3215 static struct Lisp_Symbol
*symbol_free_list
;
3217 DEFUN ("make-symbol", Fmake_symbol
, Smake_symbol
, 1, 1, 0,
3218 doc
: /* Return a newly allocated uninterned symbol whose name is NAME.
3219 Its value is void, and its function definition and property list are nil. */)
3222 register Lisp_Object val
;
3223 register struct Lisp_Symbol
*p
;
3225 CHECK_STRING (name
);
3229 if (symbol_free_list
)
3231 XSETSYMBOL (val
, symbol_free_list
);
3232 symbol_free_list
= symbol_free_list
->next
;
3236 if (symbol_block_index
== SYMBOL_BLOCK_SIZE
)
3238 struct symbol_block
*new
3239 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL
);
3240 new->next
= symbol_block
;
3242 symbol_block_index
= 0;
3243 total_free_symbols
+= SYMBOL_BLOCK_SIZE
;
3245 XSETSYMBOL (val
, &symbol_block
->symbols
[symbol_block_index
].s
);
3246 symbol_block_index
++;
3249 MALLOC_UNBLOCK_INPUT
;
3252 set_symbol_name (val
, name
);
3253 set_symbol_plist (val
, Qnil
);
3254 p
->redirect
= SYMBOL_PLAINVAL
;
3255 SET_SYMBOL_VAL (p
, Qunbound
);
3256 set_symbol_function (val
, Qnil
);
3257 set_symbol_next (val
, NULL
);
3259 p
->interned
= SYMBOL_UNINTERNED
;
3261 p
->declared_special
= 0;
3262 consing_since_gc
+= sizeof (struct Lisp_Symbol
);
3264 total_free_symbols
--;
3270 /***********************************************************************
3271 Marker (Misc) Allocation
3272 ***********************************************************************/
3274 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3275 the required alignment when LSB tags are used. */
3277 union aligned_Lisp_Misc
3281 unsigned char c
[(sizeof (union Lisp_Misc
) + GCALIGNMENT
- 1)
3286 /* Allocation of markers and other objects that share that structure.
3287 Works like allocation of conses. */
3289 #define MARKER_BLOCK_SIZE \
3290 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3294 /* Place `markers' first, to preserve alignment. */
3295 union aligned_Lisp_Misc markers
[MARKER_BLOCK_SIZE
];
3296 struct marker_block
*next
;
3299 static struct marker_block
*marker_block
;
3300 static int marker_block_index
= MARKER_BLOCK_SIZE
;
3302 static union Lisp_Misc
*marker_free_list
;
3304 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3307 allocate_misc (enum Lisp_Misc_Type type
)
3313 if (marker_free_list
)
3315 XSETMISC (val
, marker_free_list
);
3316 marker_free_list
= marker_free_list
->u_free
.chain
;
3320 if (marker_block_index
== MARKER_BLOCK_SIZE
)
3322 struct marker_block
*new = lisp_malloc (sizeof *new, MEM_TYPE_MISC
);
3323 new->next
= marker_block
;
3325 marker_block_index
= 0;
3326 total_free_markers
+= MARKER_BLOCK_SIZE
;
3328 XSETMISC (val
, &marker_block
->markers
[marker_block_index
].m
);
3329 marker_block_index
++;
3332 MALLOC_UNBLOCK_INPUT
;
3334 --total_free_markers
;
3335 consing_since_gc
+= sizeof (union Lisp_Misc
);
3336 misc_objects_consed
++;
3337 XMISCTYPE (val
) = type
;
3338 XMISCANY (val
)->gcmarkbit
= 0;
3342 /* Free a Lisp_Misc object */
3345 free_misc (Lisp_Object misc
)
3347 XMISCTYPE (misc
) = Lisp_Misc_Free
;
3348 XMISC (misc
)->u_free
.chain
= marker_free_list
;
3349 marker_free_list
= XMISC (misc
);
3350 consing_since_gc
-= sizeof (union Lisp_Misc
);
3351 total_free_markers
++;
3354 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3355 INTEGER. This is used to package C values to call record_unwind_protect.
3356 The unwind function can get the C values back using XSAVE_VALUE. */
3359 make_save_value (void *pointer
, ptrdiff_t integer
)
3361 register Lisp_Object val
;
3362 register struct Lisp_Save_Value
*p
;
3364 val
= allocate_misc (Lisp_Misc_Save_Value
);
3365 p
= XSAVE_VALUE (val
);
3366 p
->pointer
= pointer
;
3367 p
->integer
= integer
;
3372 /* Free a Lisp_Misc_Save_Value object. */
3375 free_save_value (Lisp_Object save
)
3377 register struct Lisp_Save_Value
*p
= XSAVE_VALUE (save
);
3385 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3388 build_overlay (Lisp_Object start
, Lisp_Object end
, Lisp_Object plist
)
3390 register Lisp_Object overlay
;
3392 overlay
= allocate_misc (Lisp_Misc_Overlay
);
3393 OVERLAY_START (overlay
) = start
;
3394 OVERLAY_END (overlay
) = end
;
3395 set_overlay_plist (overlay
, plist
);
3396 XOVERLAY (overlay
)->next
= NULL
;
3400 DEFUN ("make-marker", Fmake_marker
, Smake_marker
, 0, 0, 0,
3401 doc
: /* Return a newly allocated marker which does not point at any place. */)
3404 register Lisp_Object val
;
3405 register struct Lisp_Marker
*p
;
3407 val
= allocate_misc (Lisp_Misc_Marker
);
3413 p
->insertion_type
= 0;
3417 /* Return a newly allocated marker which points into BUF
3418 at character position CHARPOS and byte position BYTEPOS. */
3421 build_marker (struct buffer
*buf
, ptrdiff_t charpos
, ptrdiff_t bytepos
)
3424 struct Lisp_Marker
*m
;
3426 /* No dead buffers here. */
3427 eassert (BUFFER_LIVE_P (buf
));
3429 /* Every character is at least one byte. */
3430 eassert (charpos
<= bytepos
);
3432 obj
= allocate_misc (Lisp_Misc_Marker
);
3435 m
->charpos
= charpos
;
3436 m
->bytepos
= bytepos
;
3437 m
->insertion_type
= 0;
3438 m
->next
= BUF_MARKERS (buf
);
3439 BUF_MARKERS (buf
) = m
;
3443 /* Put MARKER back on the free list after using it temporarily. */
3446 free_marker (Lisp_Object marker
)
3448 unchain_marker (XMARKER (marker
));
3453 /* Return a newly created vector or string with specified arguments as
3454 elements. If all the arguments are characters that can fit
3455 in a string of events, make a string; otherwise, make a vector.
3457 Any number of arguments, even zero arguments, are allowed. */
3460 make_event_array (register int nargs
, Lisp_Object
*args
)
3464 for (i
= 0; i
< nargs
; i
++)
3465 /* The things that fit in a string
3466 are characters that are in 0...127,
3467 after discarding the meta bit and all the bits above it. */
3468 if (!INTEGERP (args
[i
])
3469 || (XINT (args
[i
]) & ~(-CHAR_META
)) >= 0200)
3470 return Fvector (nargs
, args
);
3472 /* Since the loop exited, we know that all the things in it are
3473 characters, so we can make a string. */
3477 result
= Fmake_string (make_number (nargs
), make_number (0));
3478 for (i
= 0; i
< nargs
; i
++)
3480 SSET (result
, i
, XINT (args
[i
]));
3481 /* Move the meta bit to the right place for a string char. */
3482 if (XINT (args
[i
]) & CHAR_META
)
3483 SSET (result
, i
, SREF (result
, i
) | 0x80);
3492 /************************************************************************
3493 Memory Full Handling
3494 ************************************************************************/
3497 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3498 there may have been size_t overflow so that malloc was never
3499 called, or perhaps malloc was invoked successfully but the
3500 resulting pointer had problems fitting into a tagged EMACS_INT. In
3501 either case this counts as memory being full even though malloc did
3505 memory_full (size_t nbytes
)
3507 /* Do not go into hysterics merely because a large request failed. */
3508 bool enough_free_memory
= 0;
3509 if (SPARE_MEMORY
< nbytes
)
3514 p
= malloc (SPARE_MEMORY
);
3518 enough_free_memory
= 1;
3520 MALLOC_UNBLOCK_INPUT
;
3523 if (! enough_free_memory
)
3529 memory_full_cons_threshold
= sizeof (struct cons_block
);
3531 /* The first time we get here, free the spare memory. */
3532 for (i
= 0; i
< sizeof (spare_memory
) / sizeof (char *); i
++)
3533 if (spare_memory
[i
])
3536 free (spare_memory
[i
]);
3537 else if (i
>= 1 && i
<= 4)
3538 lisp_align_free (spare_memory
[i
]);
3540 lisp_free (spare_memory
[i
]);
3541 spare_memory
[i
] = 0;
3545 /* This used to call error, but if we've run out of memory, we could
3546 get infinite recursion trying to build the string. */
3547 xsignal (Qnil
, Vmemory_signal_data
);
3550 /* If we released our reserve (due to running out of memory),
3551 and we have a fair amount free once again,
3552 try to set aside another reserve in case we run out once more.
3554 This is called when a relocatable block is freed in ralloc.c,
3555 and also directly from this file, in case we're not using ralloc.c. */
3558 refill_memory_reserve (void)
3560 #ifndef SYSTEM_MALLOC
3561 if (spare_memory
[0] == 0)
3562 spare_memory
[0] = malloc (SPARE_MEMORY
);
3563 if (spare_memory
[1] == 0)
3564 spare_memory
[1] = lisp_align_malloc (sizeof (struct cons_block
),
3566 if (spare_memory
[2] == 0)
3567 spare_memory
[2] = lisp_align_malloc (sizeof (struct cons_block
),
3569 if (spare_memory
[3] == 0)
3570 spare_memory
[3] = lisp_align_malloc (sizeof (struct cons_block
),
3572 if (spare_memory
[4] == 0)
3573 spare_memory
[4] = lisp_align_malloc (sizeof (struct cons_block
),
3575 if (spare_memory
[5] == 0)
3576 spare_memory
[5] = lisp_malloc (sizeof (struct string_block
),
3578 if (spare_memory
[6] == 0)
3579 spare_memory
[6] = lisp_malloc (sizeof (struct string_block
),
3581 if (spare_memory
[0] && spare_memory
[1] && spare_memory
[5])
3582 Vmemory_full
= Qnil
;
3586 /************************************************************************
3588 ************************************************************************/
3590 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3592 /* Conservative C stack marking requires a method to identify possibly
3593 live Lisp objects given a pointer value. We do this by keeping
3594 track of blocks of Lisp data that are allocated in a red-black tree
3595 (see also the comment of mem_node which is the type of nodes in
3596 that tree). Function lisp_malloc adds information for an allocated
3597 block to the red-black tree with calls to mem_insert, and function
3598 lisp_free removes it with mem_delete. Functions live_string_p etc
3599 call mem_find to lookup information about a given pointer in the
3600 tree, and use that to determine if the pointer points to a Lisp
3603 /* Initialize this part of alloc.c. */
3608 mem_z
.left
= mem_z
.right
= MEM_NIL
;
3609 mem_z
.parent
= NULL
;
3610 mem_z
.color
= MEM_BLACK
;
3611 mem_z
.start
= mem_z
.end
= NULL
;
3616 /* Value is a pointer to the mem_node containing START. Value is
3617 MEM_NIL if there is no node in the tree containing START. */
3619 static struct mem_node
*
3620 mem_find (void *start
)
3624 if (start
< min_heap_address
|| start
> max_heap_address
)
3627 /* Make the search always successful to speed up the loop below. */
3628 mem_z
.start
= start
;
3629 mem_z
.end
= (char *) start
+ 1;
3632 while (start
< p
->start
|| start
>= p
->end
)
3633 p
= start
< p
->start
? p
->left
: p
->right
;
3638 /* Insert a new node into the tree for a block of memory with start
3639 address START, end address END, and type TYPE. Value is a
3640 pointer to the node that was inserted. */
3642 static struct mem_node
*
3643 mem_insert (void *start
, void *end
, enum mem_type type
)
3645 struct mem_node
*c
, *parent
, *x
;
3647 if (min_heap_address
== NULL
|| start
< min_heap_address
)
3648 min_heap_address
= start
;
3649 if (max_heap_address
== NULL
|| end
> max_heap_address
)
3650 max_heap_address
= end
;
3652 /* See where in the tree a node for START belongs. In this
3653 particular application, it shouldn't happen that a node is already
3654 present. For debugging purposes, let's check that. */
3658 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3660 while (c
!= MEM_NIL
)
3662 if (start
>= c
->start
&& start
< c
->end
)
3665 c
= start
< c
->start
? c
->left
: c
->right
;
3668 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3670 while (c
!= MEM_NIL
)
3673 c
= start
< c
->start
? c
->left
: c
->right
;
3676 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3678 /* Create a new node. */
3679 #ifdef GC_MALLOC_CHECK
3680 x
= malloc (sizeof *x
);
3684 x
= xmalloc (sizeof *x
);
3690 x
->left
= x
->right
= MEM_NIL
;
3693 /* Insert it as child of PARENT or install it as root. */
3696 if (start
< parent
->start
)
3704 /* Re-establish red-black tree properties. */
3705 mem_insert_fixup (x
);
3711 /* Re-establish the red-black properties of the tree, and thereby
3712 balance the tree, after node X has been inserted; X is always red. */
3715 mem_insert_fixup (struct mem_node
*x
)
3717 while (x
!= mem_root
&& x
->parent
->color
== MEM_RED
)
3719 /* X is red and its parent is red. This is a violation of
3720 red-black tree property #3. */
3722 if (x
->parent
== x
->parent
->parent
->left
)
3724 /* We're on the left side of our grandparent, and Y is our
3726 struct mem_node
*y
= x
->parent
->parent
->right
;
3728 if (y
->color
== MEM_RED
)
3730 /* Uncle and parent are red but should be black because
3731 X is red. Change the colors accordingly and proceed
3732 with the grandparent. */
3733 x
->parent
->color
= MEM_BLACK
;
3734 y
->color
= MEM_BLACK
;
3735 x
->parent
->parent
->color
= MEM_RED
;
3736 x
= x
->parent
->parent
;
3740 /* Parent and uncle have different colors; parent is
3741 red, uncle is black. */
3742 if (x
== x
->parent
->right
)
3745 mem_rotate_left (x
);
3748 x
->parent
->color
= MEM_BLACK
;
3749 x
->parent
->parent
->color
= MEM_RED
;
3750 mem_rotate_right (x
->parent
->parent
);
3755 /* This is the symmetrical case of above. */
3756 struct mem_node
*y
= x
->parent
->parent
->left
;
3758 if (y
->color
== MEM_RED
)
3760 x
->parent
->color
= MEM_BLACK
;
3761 y
->color
= MEM_BLACK
;
3762 x
->parent
->parent
->color
= MEM_RED
;
3763 x
= x
->parent
->parent
;
3767 if (x
== x
->parent
->left
)
3770 mem_rotate_right (x
);
3773 x
->parent
->color
= MEM_BLACK
;
3774 x
->parent
->parent
->color
= MEM_RED
;
3775 mem_rotate_left (x
->parent
->parent
);
3780 /* The root may have been changed to red due to the algorithm. Set
3781 it to black so that property #5 is satisfied. */
3782 mem_root
->color
= MEM_BLACK
;
3793 mem_rotate_left (struct mem_node
*x
)
3797 /* Turn y's left sub-tree into x's right sub-tree. */
3800 if (y
->left
!= MEM_NIL
)
3801 y
->left
->parent
= x
;
3803 /* Y's parent was x's parent. */
3805 y
->parent
= x
->parent
;
3807 /* Get the parent to point to y instead of x. */
3810 if (x
== x
->parent
->left
)
3811 x
->parent
->left
= y
;
3813 x
->parent
->right
= y
;
3818 /* Put x on y's left. */
3832 mem_rotate_right (struct mem_node
*x
)
3834 struct mem_node
*y
= x
->left
;
3837 if (y
->right
!= MEM_NIL
)
3838 y
->right
->parent
= x
;
3841 y
->parent
= x
->parent
;
3844 if (x
== x
->parent
->right
)
3845 x
->parent
->right
= y
;
3847 x
->parent
->left
= y
;
3858 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3861 mem_delete (struct mem_node
*z
)
3863 struct mem_node
*x
, *y
;
3865 if (!z
|| z
== MEM_NIL
)
3868 if (z
->left
== MEM_NIL
|| z
->right
== MEM_NIL
)
3873 while (y
->left
!= MEM_NIL
)
3877 if (y
->left
!= MEM_NIL
)
3882 x
->parent
= y
->parent
;
3885 if (y
== y
->parent
->left
)
3886 y
->parent
->left
= x
;
3888 y
->parent
->right
= x
;
3895 z
->start
= y
->start
;
3900 if (y
->color
== MEM_BLACK
)
3901 mem_delete_fixup (x
);
3903 #ifdef GC_MALLOC_CHECK
3911 /* Re-establish the red-black properties of the tree, after a
3915 mem_delete_fixup (struct mem_node
*x
)
3917 while (x
!= mem_root
&& x
->color
== MEM_BLACK
)
3919 if (x
== x
->parent
->left
)
3921 struct mem_node
*w
= x
->parent
->right
;
3923 if (w
->color
== MEM_RED
)
3925 w
->color
= MEM_BLACK
;
3926 x
->parent
->color
= MEM_RED
;
3927 mem_rotate_left (x
->parent
);
3928 w
= x
->parent
->right
;
3931 if (w
->left
->color
== MEM_BLACK
&& w
->right
->color
== MEM_BLACK
)
3938 if (w
->right
->color
== MEM_BLACK
)
3940 w
->left
->color
= MEM_BLACK
;
3942 mem_rotate_right (w
);
3943 w
= x
->parent
->right
;
3945 w
->color
= x
->parent
->color
;
3946 x
->parent
->color
= MEM_BLACK
;
3947 w
->right
->color
= MEM_BLACK
;
3948 mem_rotate_left (x
->parent
);
3954 struct mem_node
*w
= x
->parent
->left
;
3956 if (w
->color
== MEM_RED
)
3958 w
->color
= MEM_BLACK
;
3959 x
->parent
->color
= MEM_RED
;
3960 mem_rotate_right (x
->parent
);
3961 w
= x
->parent
->left
;
3964 if (w
->right
->color
== MEM_BLACK
&& w
->left
->color
== MEM_BLACK
)
3971 if (w
->left
->color
== MEM_BLACK
)
3973 w
->right
->color
= MEM_BLACK
;
3975 mem_rotate_left (w
);
3976 w
= x
->parent
->left
;
3979 w
->color
= x
->parent
->color
;
3980 x
->parent
->color
= MEM_BLACK
;
3981 w
->left
->color
= MEM_BLACK
;
3982 mem_rotate_right (x
->parent
);
3988 x
->color
= MEM_BLACK
;
3992 /* Value is non-zero if P is a pointer to a live Lisp string on
3993 the heap. M is a pointer to the mem_block for P. */
3996 live_string_p (struct mem_node
*m
, void *p
)
3998 if (m
->type
== MEM_TYPE_STRING
)
4000 struct string_block
*b
= (struct string_block
*) m
->start
;
4001 ptrdiff_t offset
= (char *) p
- (char *) &b
->strings
[0];
4003 /* P must point to the start of a Lisp_String structure, and it
4004 must not be on the free-list. */
4006 && offset
% sizeof b
->strings
[0] == 0
4007 && offset
< (STRING_BLOCK_SIZE
* sizeof b
->strings
[0])
4008 && ((struct Lisp_String
*) p
)->data
!= NULL
);
4015 /* Value is non-zero if P is a pointer to a live Lisp cons on
4016 the heap. M is a pointer to the mem_block for P. */
4019 live_cons_p (struct mem_node
*m
, void *p
)
4021 if (m
->type
== MEM_TYPE_CONS
)
4023 struct cons_block
*b
= (struct cons_block
*) m
->start
;
4024 ptrdiff_t offset
= (char *) p
- (char *) &b
->conses
[0];
4026 /* P must point to the start of a Lisp_Cons, not be
4027 one of the unused cells in the current cons block,
4028 and not be on the free-list. */
4030 && offset
% sizeof b
->conses
[0] == 0
4031 && offset
< (CONS_BLOCK_SIZE
* sizeof b
->conses
[0])
4033 || offset
/ sizeof b
->conses
[0] < cons_block_index
)
4034 && !EQ (((struct Lisp_Cons
*) p
)->car
, Vdead
));
4041 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4042 the heap. M is a pointer to the mem_block for P. */
4045 live_symbol_p (struct mem_node
*m
, void *p
)
4047 if (m
->type
== MEM_TYPE_SYMBOL
)
4049 struct symbol_block
*b
= (struct symbol_block
*) m
->start
;
4050 ptrdiff_t offset
= (char *) p
- (char *) &b
->symbols
[0];
4052 /* P must point to the start of a Lisp_Symbol, not be
4053 one of the unused cells in the current symbol block,
4054 and not be on the free-list. */
4056 && offset
% sizeof b
->symbols
[0] == 0
4057 && offset
< (SYMBOL_BLOCK_SIZE
* sizeof b
->symbols
[0])
4058 && (b
!= symbol_block
4059 || offset
/ sizeof b
->symbols
[0] < symbol_block_index
)
4060 && !EQ (((struct Lisp_Symbol
*)p
)->function
, Vdead
));
4067 /* Value is non-zero if P is a pointer to a live Lisp float on
4068 the heap. M is a pointer to the mem_block for P. */
4071 live_float_p (struct mem_node
*m
, void *p
)
4073 if (m
->type
== MEM_TYPE_FLOAT
)
4075 struct float_block
*b
= (struct float_block
*) m
->start
;
4076 ptrdiff_t offset
= (char *) p
- (char *) &b
->floats
[0];
4078 /* P must point to the start of a Lisp_Float and not be
4079 one of the unused cells in the current float block. */
4081 && offset
% sizeof b
->floats
[0] == 0
4082 && offset
< (FLOAT_BLOCK_SIZE
* sizeof b
->floats
[0])
4083 && (b
!= float_block
4084 || offset
/ sizeof b
->floats
[0] < float_block_index
));
4091 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4092 the heap. M is a pointer to the mem_block for P. */
4095 live_misc_p (struct mem_node
*m
, void *p
)
4097 if (m
->type
== MEM_TYPE_MISC
)
4099 struct marker_block
*b
= (struct marker_block
*) m
->start
;
4100 ptrdiff_t offset
= (char *) p
- (char *) &b
->markers
[0];
4102 /* P must point to the start of a Lisp_Misc, not be
4103 one of the unused cells in the current misc block,
4104 and not be on the free-list. */
4106 && offset
% sizeof b
->markers
[0] == 0
4107 && offset
< (MARKER_BLOCK_SIZE
* sizeof b
->markers
[0])
4108 && (b
!= marker_block
4109 || offset
/ sizeof b
->markers
[0] < marker_block_index
)
4110 && ((union Lisp_Misc
*) p
)->u_any
.type
!= Lisp_Misc_Free
);
4117 /* Value is non-zero if P is a pointer to a live vector-like object.
4118 M is a pointer to the mem_block for P. */
4121 live_vector_p (struct mem_node
*m
, void *p
)
4123 if (m
->type
== MEM_TYPE_VECTOR_BLOCK
)
4125 /* This memory node corresponds to a vector block. */
4126 struct vector_block
*block
= (struct vector_block
*) m
->start
;
4127 struct Lisp_Vector
*vector
= (struct Lisp_Vector
*) block
->data
;
4129 /* P is in the block's allocation range. Scan the block
4130 up to P and see whether P points to the start of some
4131 vector which is not on a free list. FIXME: check whether
4132 some allocation patterns (probably a lot of short vectors)
4133 may cause a substantial overhead of this loop. */
4134 while (VECTOR_IN_BLOCK (vector
, block
)
4135 && vector
<= (struct Lisp_Vector
*) p
)
4137 if (!PSEUDOVECTOR_TYPEP (&vector
->header
, PVEC_FREE
) && vector
== p
)
4140 vector
= ADVANCE (vector
, vector_nbytes (vector
));
4143 else if (m
->type
== MEM_TYPE_VECTORLIKE
4144 && (char *) p
== ((char *) m
->start
4145 + offsetof (struct large_vector
, v
)))
4146 /* This memory node corresponds to a large vector. */
4152 /* Value is non-zero if P is a pointer to a live buffer. M is a
4153 pointer to the mem_block for P. */
4156 live_buffer_p (struct mem_node
*m
, void *p
)
4158 /* P must point to the start of the block, and the buffer
4159 must not have been killed. */
4160 return (m
->type
== MEM_TYPE_BUFFER
4162 && !NILP (((struct buffer
*) p
)->INTERNAL_FIELD (name
)));
4165 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4169 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4171 /* Array of objects that are kept alive because the C stack contains
4172 a pattern that looks like a reference to them . */
4174 #define MAX_ZOMBIES 10
4175 static Lisp_Object zombies
[MAX_ZOMBIES
];
4177 /* Number of zombie objects. */
4179 static EMACS_INT nzombies
;
4181 /* Number of garbage collections. */
4183 static EMACS_INT ngcs
;
4185 /* Average percentage of zombies per collection. */
4187 static double avg_zombies
;
4189 /* Max. number of live and zombie objects. */
4191 static EMACS_INT max_live
, max_zombies
;
4193 /* Average number of live objects per GC. */
4195 static double avg_live
;
4197 DEFUN ("gc-status", Fgc_status
, Sgc_status
, 0, 0, "",
4198 doc
: /* Show information about live and zombie objects. */)
4201 Lisp_Object args
[8], zombie_list
= Qnil
;
4203 for (i
= 0; i
< min (MAX_ZOMBIES
, nzombies
); i
++)
4204 zombie_list
= Fcons (zombies
[i
], zombie_list
);
4205 args
[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4206 args
[1] = make_number (ngcs
);
4207 args
[2] = make_float (avg_live
);
4208 args
[3] = make_float (avg_zombies
);
4209 args
[4] = make_float (avg_zombies
/ avg_live
/ 100);
4210 args
[5] = make_number (max_live
);
4211 args
[6] = make_number (max_zombies
);
4212 args
[7] = zombie_list
;
4213 return Fmessage (8, args
);
4216 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4219 /* Mark OBJ if we can prove it's a Lisp_Object. */
4222 mark_maybe_object (Lisp_Object obj
)
4230 po
= (void *) XPNTR (obj
);
4237 switch (XTYPE (obj
))
4240 mark_p
= (live_string_p (m
, po
)
4241 && !STRING_MARKED_P ((struct Lisp_String
*) po
));
4245 mark_p
= (live_cons_p (m
, po
) && !CONS_MARKED_P (XCONS (obj
)));
4249 mark_p
= (live_symbol_p (m
, po
) && !XSYMBOL (obj
)->gcmarkbit
);
4253 mark_p
= (live_float_p (m
, po
) && !FLOAT_MARKED_P (XFLOAT (obj
)));
4256 case Lisp_Vectorlike
:
4257 /* Note: can't check BUFFERP before we know it's a
4258 buffer because checking that dereferences the pointer
4259 PO which might point anywhere. */
4260 if (live_vector_p (m
, po
))
4261 mark_p
= !SUBRP (obj
) && !VECTOR_MARKED_P (XVECTOR (obj
));
4262 else if (live_buffer_p (m
, po
))
4263 mark_p
= BUFFERP (obj
) && !VECTOR_MARKED_P (XBUFFER (obj
));
4267 mark_p
= (live_misc_p (m
, po
) && !XMISCANY (obj
)->gcmarkbit
);
4276 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4277 if (nzombies
< MAX_ZOMBIES
)
4278 zombies
[nzombies
] = obj
;
4287 /* If P points to Lisp data, mark that as live if it isn't already
4291 mark_maybe_pointer (void *p
)
4295 /* Quickly rule out some values which can't point to Lisp data.
4296 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4297 Otherwise, assume that Lisp data is aligned on even addresses. */
4298 if ((intptr_t) p
% (USE_LSB_TAG
? GCALIGNMENT
: 2))
4304 Lisp_Object obj
= Qnil
;
4308 case MEM_TYPE_NON_LISP
:
4309 case MEM_TYPE_SPARE
:
4310 /* Nothing to do; not a pointer to Lisp memory. */
4313 case MEM_TYPE_BUFFER
:
4314 if (live_buffer_p (m
, p
) && !VECTOR_MARKED_P ((struct buffer
*)p
))
4315 XSETVECTOR (obj
, p
);
4319 if (live_cons_p (m
, p
) && !CONS_MARKED_P ((struct Lisp_Cons
*) p
))
4323 case MEM_TYPE_STRING
:
4324 if (live_string_p (m
, p
)
4325 && !STRING_MARKED_P ((struct Lisp_String
*) p
))
4326 XSETSTRING (obj
, p
);
4330 if (live_misc_p (m
, p
) && !((struct Lisp_Free
*) p
)->gcmarkbit
)
4334 case MEM_TYPE_SYMBOL
:
4335 if (live_symbol_p (m
, p
) && !((struct Lisp_Symbol
*) p
)->gcmarkbit
)
4336 XSETSYMBOL (obj
, p
);
4339 case MEM_TYPE_FLOAT
:
4340 if (live_float_p (m
, p
) && !FLOAT_MARKED_P (p
))
4344 case MEM_TYPE_VECTORLIKE
:
4345 case MEM_TYPE_VECTOR_BLOCK
:
4346 if (live_vector_p (m
, p
))
4349 XSETVECTOR (tem
, p
);
4350 if (!SUBRP (tem
) && !VECTOR_MARKED_P (XVECTOR (tem
)))
4365 /* Alignment of pointer values. Use alignof, as it sometimes returns
4366 a smaller alignment than GCC's __alignof__ and mark_memory might
4367 miss objects if __alignof__ were used. */
4368 #define GC_POINTER_ALIGNMENT alignof (void *)
4370 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4371 not suffice, which is the typical case. A host where a Lisp_Object is
4372 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4373 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4374 suffice to widen it to to a Lisp_Object and check it that way. */
4375 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4376 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4377 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4378 nor mark_maybe_object can follow the pointers. This should not occur on
4379 any practical porting target. */
4380 # error "MSB type bits straddle pointer-word boundaries"
4382 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4383 pointer words that hold pointers ORed with type bits. */
4384 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4386 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4387 words that hold unmodified pointers. */
4388 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4391 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4392 or END+OFFSET..START. */
4395 mark_memory (void *start
, void *end
)
4396 #if defined (__clang__) && defined (__has_feature)
4397 #if __has_feature(address_sanitizer)
4398 /* Do not allow -faddress-sanitizer to check this function, since it
4399 crosses the function stack boundary, and thus would yield many
4401 __attribute__((no_address_safety_analysis
))
4408 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4412 /* Make START the pointer to the start of the memory region,
4413 if it isn't already. */
4421 /* Mark Lisp data pointed to. This is necessary because, in some
4422 situations, the C compiler optimizes Lisp objects away, so that
4423 only a pointer to them remains. Example:
4425 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4428 Lisp_Object obj = build_string ("test");
4429 struct Lisp_String *s = XSTRING (obj);
4430 Fgarbage_collect ();
4431 fprintf (stderr, "test `%s'\n", s->data);
4435 Here, `obj' isn't really used, and the compiler optimizes it
4436 away. The only reference to the life string is through the
4439 for (pp
= start
; (void *) pp
< end
; pp
++)
4440 for (i
= 0; i
< sizeof *pp
; i
+= GC_POINTER_ALIGNMENT
)
4442 void *p
= *(void **) ((char *) pp
+ i
);
4443 mark_maybe_pointer (p
);
4444 if (POINTERS_MIGHT_HIDE_IN_OBJECTS
)
4445 mark_maybe_object (XIL ((intptr_t) p
));
4449 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4450 the GCC system configuration. In gcc 3.2, the only systems for
4451 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4452 by others?) and ns32k-pc532-min. */
4454 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4456 static bool setjmp_tested_p
;
4457 static int longjmps_done
;
4459 #define SETJMP_WILL_LIKELY_WORK "\
4461 Emacs garbage collector has been changed to use conservative stack\n\
4462 marking. Emacs has determined that the method it uses to do the\n\
4463 marking will likely work on your system, but this isn't sure.\n\
4465 If you are a system-programmer, or can get the help of a local wizard\n\
4466 who is, please take a look at the function mark_stack in alloc.c, and\n\
4467 verify that the methods used are appropriate for your system.\n\
4469 Please mail the result to <emacs-devel@gnu.org>.\n\
4472 #define SETJMP_WILL_NOT_WORK "\
4474 Emacs garbage collector has been changed to use conservative stack\n\
4475 marking. Emacs has determined that the default method it uses to do the\n\
4476 marking will not work on your system. We will need a system-dependent\n\
4477 solution for your system.\n\
4479 Please take a look at the function mark_stack in alloc.c, and\n\
4480 try to find a way to make it work on your system.\n\
4482 Note that you may get false negatives, depending on the compiler.\n\
4483 In particular, you need to use -O with GCC for this test.\n\
4485 Please mail the result to <emacs-devel@gnu.org>.\n\
4489 /* Perform a quick check if it looks like setjmp saves registers in a
4490 jmp_buf. Print a message to stderr saying so. When this test
4491 succeeds, this is _not_ a proof that setjmp is sufficient for
4492 conservative stack marking. Only the sources or a disassembly
4502 /* Arrange for X to be put in a register. */
4508 if (longjmps_done
== 1)
4510 /* Came here after the longjmp at the end of the function.
4512 If x == 1, the longjmp has restored the register to its
4513 value before the setjmp, and we can hope that setjmp
4514 saves all such registers in the jmp_buf, although that
4517 For other values of X, either something really strange is
4518 taking place, or the setjmp just didn't save the register. */
4521 fprintf (stderr
, SETJMP_WILL_LIKELY_WORK
);
4524 fprintf (stderr
, SETJMP_WILL_NOT_WORK
);
4531 if (longjmps_done
== 1)
4532 sys_longjmp (jbuf
, 1);
4535 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4538 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4540 /* Abort if anything GCPRO'd doesn't survive the GC. */
4548 for (p
= gcprolist
; p
; p
= p
->next
)
4549 for (i
= 0; i
< p
->nvars
; ++i
)
4550 if (!survives_gc_p (p
->var
[i
]))
4551 /* FIXME: It's not necessarily a bug. It might just be that the
4552 GCPRO is unnecessary or should release the object sooner. */
4556 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4563 fprintf (stderr
, "\nZombies kept alive = %"pI
"d:\n", nzombies
);
4564 for (i
= 0; i
< min (MAX_ZOMBIES
, nzombies
); ++i
)
4566 fprintf (stderr
, " %d = ", i
);
4567 debug_print (zombies
[i
]);
4571 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4574 /* Mark live Lisp objects on the C stack.
4576 There are several system-dependent problems to consider when
4577 porting this to new architectures:
4581 We have to mark Lisp objects in CPU registers that can hold local
4582 variables or are used to pass parameters.
4584 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4585 something that either saves relevant registers on the stack, or
4586 calls mark_maybe_object passing it each register's contents.
4588 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4589 implementation assumes that calling setjmp saves registers we need
4590 to see in a jmp_buf which itself lies on the stack. This doesn't
4591 have to be true! It must be verified for each system, possibly
4592 by taking a look at the source code of setjmp.
4594 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4595 can use it as a machine independent method to store all registers
4596 to the stack. In this case the macros described in the previous
4597 two paragraphs are not used.
4601 Architectures differ in the way their processor stack is organized.
4602 For example, the stack might look like this
4605 | Lisp_Object | size = 4
4607 | something else | size = 2
4609 | Lisp_Object | size = 4
4613 In such a case, not every Lisp_Object will be aligned equally. To
4614 find all Lisp_Object on the stack it won't be sufficient to walk
4615 the stack in steps of 4 bytes. Instead, two passes will be
4616 necessary, one starting at the start of the stack, and a second
4617 pass starting at the start of the stack + 2. Likewise, if the
4618 minimal alignment of Lisp_Objects on the stack is 1, four passes
4619 would be necessary, each one starting with one byte more offset
4620 from the stack start. */
4627 #ifdef HAVE___BUILTIN_UNWIND_INIT
4628 /* Force callee-saved registers and register windows onto the stack.
4629 This is the preferred method if available, obviating the need for
4630 machine dependent methods. */
4631 __builtin_unwind_init ();
4633 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4634 #ifndef GC_SAVE_REGISTERS_ON_STACK
4635 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4636 union aligned_jmpbuf
{
4640 volatile bool stack_grows_down_p
= (char *) &j
> (char *) stack_base
;
4642 /* This trick flushes the register windows so that all the state of
4643 the process is contained in the stack. */
4644 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4645 needed on ia64 too. See mach_dep.c, where it also says inline
4646 assembler doesn't work with relevant proprietary compilers. */
4648 #if defined (__sparc64__) && defined (__FreeBSD__)
4649 /* FreeBSD does not have a ta 3 handler. */
4656 /* Save registers that we need to see on the stack. We need to see
4657 registers used to hold register variables and registers used to
4659 #ifdef GC_SAVE_REGISTERS_ON_STACK
4660 GC_SAVE_REGISTERS_ON_STACK (end
);
4661 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4663 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4664 setjmp will definitely work, test it
4665 and print a message with the result
4667 if (!setjmp_tested_p
)
4669 setjmp_tested_p
= 1;
4672 #endif /* GC_SETJMP_WORKS */
4675 end
= stack_grows_down_p
? (char *) &j
+ sizeof j
: (char *) &j
;
4676 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4677 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4679 /* This assumes that the stack is a contiguous region in memory. If
4680 that's not the case, something has to be done here to iterate
4681 over the stack segments. */
4682 mark_memory (stack_base
, end
);
4684 /* Allow for marking a secondary stack, like the register stack on the
4686 #ifdef GC_MARK_SECONDARY_STACK
4687 GC_MARK_SECONDARY_STACK ();
4690 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4695 #endif /* GC_MARK_STACK != 0 */
4698 /* Determine whether it is safe to access memory at address P. */
4700 valid_pointer_p (void *p
)
4703 return w32_valid_pointer_p (p
, 16);
4707 /* Obviously, we cannot just access it (we would SEGV trying), so we
4708 trick the o/s to tell us whether p is a valid pointer.
4709 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4710 not validate p in that case. */
4714 bool valid
= emacs_write (fd
[1], (char *) p
, 16) == 16;
4715 emacs_close (fd
[1]);
4716 emacs_close (fd
[0]);
4724 /* Return 2 if OBJ is a killed or special buffer object.
4725 Return 1 if OBJ is a valid lisp object.
4726 Return 0 if OBJ is NOT a valid lisp object.
4727 Return -1 if we cannot validate OBJ.
4728 This function can be quite slow,
4729 so it should only be used in code for manual debugging. */
4732 valid_lisp_object_p (Lisp_Object obj
)
4742 p
= (void *) XPNTR (obj
);
4743 if (PURE_POINTER_P (p
))
4746 if (p
== &buffer_defaults
|| p
== &buffer_local_symbols
)
4750 return valid_pointer_p (p
);
4757 int valid
= valid_pointer_p (p
);
4769 case MEM_TYPE_NON_LISP
:
4770 case MEM_TYPE_SPARE
:
4773 case MEM_TYPE_BUFFER
:
4774 return live_buffer_p (m
, p
) ? 1 : 2;
4777 return live_cons_p (m
, p
);
4779 case MEM_TYPE_STRING
:
4780 return live_string_p (m
, p
);
4783 return live_misc_p (m
, p
);
4785 case MEM_TYPE_SYMBOL
:
4786 return live_symbol_p (m
, p
);
4788 case MEM_TYPE_FLOAT
:
4789 return live_float_p (m
, p
);
4791 case MEM_TYPE_VECTORLIKE
:
4792 case MEM_TYPE_VECTOR_BLOCK
:
4793 return live_vector_p (m
, p
);
4806 /***********************************************************************
4807 Pure Storage Management
4808 ***********************************************************************/
4810 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4811 pointer to it. TYPE is the Lisp type for which the memory is
4812 allocated. TYPE < 0 means it's not used for a Lisp object. */
4815 pure_alloc (size_t size
, int type
)
4819 size_t alignment
= GCALIGNMENT
;
4821 size_t alignment
= alignof (EMACS_INT
);
4823 /* Give Lisp_Floats an extra alignment. */
4824 if (type
== Lisp_Float
)
4825 alignment
= alignof (struct Lisp_Float
);
4831 /* Allocate space for a Lisp object from the beginning of the free
4832 space with taking account of alignment. */
4833 result
= ALIGN (purebeg
+ pure_bytes_used_lisp
, alignment
);
4834 pure_bytes_used_lisp
= ((char *)result
- (char *)purebeg
) + size
;
4838 /* Allocate space for a non-Lisp object from the end of the free
4840 pure_bytes_used_non_lisp
+= size
;
4841 result
= purebeg
+ pure_size
- pure_bytes_used_non_lisp
;
4843 pure_bytes_used
= pure_bytes_used_lisp
+ pure_bytes_used_non_lisp
;
4845 if (pure_bytes_used
<= pure_size
)
4848 /* Don't allocate a large amount here,
4849 because it might get mmap'd and then its address
4850 might not be usable. */
4851 purebeg
= xmalloc (10000);
4853 pure_bytes_used_before_overflow
+= pure_bytes_used
- size
;
4854 pure_bytes_used
= 0;
4855 pure_bytes_used_lisp
= pure_bytes_used_non_lisp
= 0;
4860 /* Print a warning if PURESIZE is too small. */
4863 check_pure_size (void)
4865 if (pure_bytes_used_before_overflow
)
4866 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI
"d"
4868 pure_bytes_used
+ pure_bytes_used_before_overflow
);
4872 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4873 the non-Lisp data pool of the pure storage, and return its start
4874 address. Return NULL if not found. */
4877 find_string_data_in_pure (const char *data
, ptrdiff_t nbytes
)
4880 ptrdiff_t skip
, bm_skip
[256], last_char_skip
, infinity
, start
, start_max
;
4881 const unsigned char *p
;
4884 if (pure_bytes_used_non_lisp
<= nbytes
)
4887 /* Set up the Boyer-Moore table. */
4889 for (i
= 0; i
< 256; i
++)
4892 p
= (const unsigned char *) data
;
4894 bm_skip
[*p
++] = skip
;
4896 last_char_skip
= bm_skip
['\0'];
4898 non_lisp_beg
= purebeg
+ pure_size
- pure_bytes_used_non_lisp
;
4899 start_max
= pure_bytes_used_non_lisp
- (nbytes
+ 1);
4901 /* See the comments in the function `boyer_moore' (search.c) for the
4902 use of `infinity'. */
4903 infinity
= pure_bytes_used_non_lisp
+ 1;
4904 bm_skip
['\0'] = infinity
;
4906 p
= (const unsigned char *) non_lisp_beg
+ nbytes
;
4910 /* Check the last character (== '\0'). */
4913 start
+= bm_skip
[*(p
+ start
)];
4915 while (start
<= start_max
);
4917 if (start
< infinity
)
4918 /* Couldn't find the last character. */
4921 /* No less than `infinity' means we could find the last
4922 character at `p[start - infinity]'. */
4925 /* Check the remaining characters. */
4926 if (memcmp (data
, non_lisp_beg
+ start
, nbytes
) == 0)
4928 return non_lisp_beg
+ start
;
4930 start
+= last_char_skip
;
4932 while (start
<= start_max
);
4938 /* Return a string allocated in pure space. DATA is a buffer holding
4939 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4940 means make the result string multibyte.
4942 Must get an error if pure storage is full, since if it cannot hold
4943 a large string it may be able to hold conses that point to that
4944 string; then the string is not protected from gc. */
4947 make_pure_string (const char *data
,
4948 ptrdiff_t nchars
, ptrdiff_t nbytes
, bool multibyte
)
4951 struct Lisp_String
*s
= pure_alloc (sizeof *s
, Lisp_String
);
4952 s
->data
= (unsigned char *) find_string_data_in_pure (data
, nbytes
);
4953 if (s
->data
== NULL
)
4955 s
->data
= pure_alloc (nbytes
+ 1, -1);
4956 memcpy (s
->data
, data
, nbytes
);
4957 s
->data
[nbytes
] = '\0';
4960 s
->size_byte
= multibyte
? nbytes
: -1;
4961 s
->intervals
= NULL
;
4962 XSETSTRING (string
, s
);
4966 /* Return a string allocated in pure space. Do not
4967 allocate the string data, just point to DATA. */
4970 make_pure_c_string (const char *data
, ptrdiff_t nchars
)
4973 struct Lisp_String
*s
= pure_alloc (sizeof *s
, Lisp_String
);
4976 s
->data
= (unsigned char *) data
;
4977 s
->intervals
= NULL
;
4978 XSETSTRING (string
, s
);
4982 /* Return a cons allocated from pure space. Give it pure copies
4983 of CAR as car and CDR as cdr. */
4986 pure_cons (Lisp_Object car
, Lisp_Object cdr
)
4989 struct Lisp_Cons
*p
= pure_alloc (sizeof *p
, Lisp_Cons
);
4991 XSETCAR (new, Fpurecopy (car
));
4992 XSETCDR (new, Fpurecopy (cdr
));
4997 /* Value is a float object with value NUM allocated from pure space. */
5000 make_pure_float (double num
)
5003 struct Lisp_Float
*p
= pure_alloc (sizeof *p
, Lisp_Float
);
5005 XFLOAT_INIT (new, num
);
5010 /* Return a vector with room for LEN Lisp_Objects allocated from
5014 make_pure_vector (ptrdiff_t len
)
5017 size_t size
= header_size
+ len
* word_size
;
5018 struct Lisp_Vector
*p
= pure_alloc (size
, Lisp_Vectorlike
);
5019 XSETVECTOR (new, p
);
5020 XVECTOR (new)->header
.size
= len
;
5025 DEFUN ("purecopy", Fpurecopy
, Spurecopy
, 1, 1, 0,
5026 doc
: /* Make a copy of object OBJ in pure storage.
5027 Recursively copies contents of vectors and cons cells.
5028 Does not copy symbols. Copies strings without text properties. */)
5029 (register Lisp_Object obj
)
5031 if (NILP (Vpurify_flag
))
5034 if (PURE_POINTER_P (XPNTR (obj
)))
5037 if (HASH_TABLE_P (Vpurify_flag
)) /* Hash consing. */
5039 Lisp_Object tmp
= Fgethash (obj
, Vpurify_flag
, Qnil
);
5045 obj
= pure_cons (XCAR (obj
), XCDR (obj
));
5046 else if (FLOATP (obj
))
5047 obj
= make_pure_float (XFLOAT_DATA (obj
));
5048 else if (STRINGP (obj
))
5049 obj
= make_pure_string (SSDATA (obj
), SCHARS (obj
),
5051 STRING_MULTIBYTE (obj
));
5052 else if (COMPILEDP (obj
) || VECTORP (obj
))
5054 register struct Lisp_Vector
*vec
;
5055 register ptrdiff_t i
;
5059 if (size
& PSEUDOVECTOR_FLAG
)
5060 size
&= PSEUDOVECTOR_SIZE_MASK
;
5061 vec
= XVECTOR (make_pure_vector (size
));
5062 for (i
= 0; i
< size
; i
++)
5063 vec
->contents
[i
] = Fpurecopy (AREF (obj
, i
));
5064 if (COMPILEDP (obj
))
5066 XSETPVECTYPE (vec
, PVEC_COMPILED
);
5067 XSETCOMPILED (obj
, vec
);
5070 XSETVECTOR (obj
, vec
);
5072 else if (MARKERP (obj
))
5073 error ("Attempt to copy a marker to pure storage");
5075 /* Not purified, don't hash-cons. */
5078 if (HASH_TABLE_P (Vpurify_flag
)) /* Hash consing. */
5079 Fputhash (obj
, obj
, Vpurify_flag
);
5086 /***********************************************************************
5088 ***********************************************************************/
5090 /* Put an entry in staticvec, pointing at the variable with address
5094 staticpro (Lisp_Object
*varaddress
)
5096 staticvec
[staticidx
++] = varaddress
;
5097 if (staticidx
>= NSTATICS
)
5098 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5102 /***********************************************************************
5104 ***********************************************************************/
5106 /* Temporarily prevent garbage collection. */
5109 inhibit_garbage_collection (void)
5111 ptrdiff_t count
= SPECPDL_INDEX ();
5113 specbind (Qgc_cons_threshold
, make_number (MOST_POSITIVE_FIXNUM
));
5117 /* Used to avoid possible overflows when
5118 converting from C to Lisp integers. */
5121 bounded_number (EMACS_INT number
)
5123 return make_number (min (MOST_POSITIVE_FIXNUM
, number
));
5126 /* Calculate total bytes of live objects. */
5129 total_bytes_of_live_objects (void)
5132 tot
+= total_conses
* sizeof (struct Lisp_Cons
);
5133 tot
+= total_symbols
* sizeof (struct Lisp_Symbol
);
5134 tot
+= total_markers
* sizeof (union Lisp_Misc
);
5135 tot
+= total_string_bytes
;
5136 tot
+= total_vector_slots
* word_size
;
5137 tot
+= total_floats
* sizeof (struct Lisp_Float
);
5138 tot
+= total_intervals
* sizeof (struct interval
);
5139 tot
+= total_strings
* sizeof (struct Lisp_String
);
5143 DEFUN ("garbage-collect", Fgarbage_collect
, Sgarbage_collect
, 0, 0, "",
5144 doc
: /* Reclaim storage for Lisp objects no longer needed.
5145 Garbage collection happens automatically if you cons more than
5146 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5147 `garbage-collect' normally returns a list with info on amount of space in use,
5148 where each entry has the form (NAME SIZE USED FREE), where:
5149 - NAME is a symbol describing the kind of objects this entry represents,
5150 - SIZE is the number of bytes used by each one,
5151 - USED is the number of those objects that were found live in the heap,
5152 - FREE is the number of those objects that are not live but that Emacs
5153 keeps around for future allocations (maybe because it does not know how
5154 to return them to the OS).
5155 However, if there was overflow in pure space, `garbage-collect'
5156 returns nil, because real GC can't be done.
5157 See Info node `(elisp)Garbage Collection'. */)
5160 struct specbinding
*bind
;
5161 struct buffer
*nextb
;
5162 char stack_top_variable
;
5165 ptrdiff_t count
= SPECPDL_INDEX ();
5167 Lisp_Object retval
= Qnil
;
5168 size_t tot_before
= 0;
5169 struct backtrace backtrace
;
5174 /* Can't GC if pure storage overflowed because we can't determine
5175 if something is a pure object or not. */
5176 if (pure_bytes_used_before_overflow
)
5179 /* Record this function, so it appears on the profiler's backtraces. */
5180 backtrace
.next
= backtrace_list
;
5181 backtrace
.function
= Qautomatic_gc
;
5182 backtrace
.args
= &Qnil
;
5183 backtrace
.nargs
= 0;
5184 backtrace
.debug_on_exit
= 0;
5185 backtrace_list
= &backtrace
;
5189 /* Don't keep undo information around forever.
5190 Do this early on, so it is no problem if the user quits. */
5191 FOR_EACH_BUFFER (nextb
)
5192 compact_buffer (nextb
);
5194 if (profiler_memory_running
)
5195 tot_before
= total_bytes_of_live_objects ();
5197 start
= current_emacs_time ();
5199 /* In case user calls debug_print during GC,
5200 don't let that cause a recursive GC. */
5201 consing_since_gc
= 0;
5203 /* Save what's currently displayed in the echo area. */
5204 message_p
= push_message ();
5205 record_unwind_protect (pop_message_unwind
, Qnil
);
5207 /* Save a copy of the contents of the stack, for debugging. */
5208 #if MAX_SAVE_STACK > 0
5209 if (NILP (Vpurify_flag
))
5212 ptrdiff_t stack_size
;
5213 if (&stack_top_variable
< stack_bottom
)
5215 stack
= &stack_top_variable
;
5216 stack_size
= stack_bottom
- &stack_top_variable
;
5220 stack
= stack_bottom
;
5221 stack_size
= &stack_top_variable
- stack_bottom
;
5223 if (stack_size
<= MAX_SAVE_STACK
)
5225 if (stack_copy_size
< stack_size
)
5227 stack_copy
= xrealloc (stack_copy
, stack_size
);
5228 stack_copy_size
= stack_size
;
5230 memcpy (stack_copy
, stack
, stack_size
);
5233 #endif /* MAX_SAVE_STACK > 0 */
5235 if (garbage_collection_messages
)
5236 message1_nolog ("Garbage collecting...");
5240 shrink_regexp_cache ();
5244 /* Mark all the special slots that serve as the roots of accessibility. */
5246 mark_buffer (&buffer_defaults
);
5247 mark_buffer (&buffer_local_symbols
);
5249 for (i
= 0; i
< staticidx
; i
++)
5250 mark_object (*staticvec
[i
]);
5252 for (bind
= specpdl
; bind
!= specpdl_ptr
; bind
++)
5254 mark_object (bind
->symbol
);
5255 mark_object (bind
->old_value
);
5264 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5265 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5269 register struct gcpro
*tail
;
5270 for (tail
= gcprolist
; tail
; tail
= tail
->next
)
5271 for (i
= 0; i
< tail
->nvars
; i
++)
5272 mark_object (tail
->var
[i
]);
5276 struct catchtag
*catch;
5277 struct handler
*handler
;
5279 for (catch = catchlist
; catch; catch = catch->next
)
5281 mark_object (catch->tag
);
5282 mark_object (catch->val
);
5284 for (handler
= handlerlist
; handler
; handler
= handler
->next
)
5286 mark_object (handler
->handler
);
5287 mark_object (handler
->var
);
5293 #ifdef HAVE_WINDOW_SYSTEM
5294 mark_fringe_data ();
5297 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5301 /* Everything is now marked, except for the things that require special
5302 finalization, i.e. the undo_list.
5303 Look thru every buffer's undo list
5304 for elements that update markers that were not marked,
5306 FOR_EACH_BUFFER (nextb
)
5308 /* If a buffer's undo list is Qt, that means that undo is
5309 turned off in that buffer. Calling truncate_undo_list on
5310 Qt tends to return NULL, which effectively turns undo back on.
5311 So don't call truncate_undo_list if undo_list is Qt. */
5312 if (! EQ (nextb
->INTERNAL_FIELD (undo_list
), Qt
))
5314 Lisp_Object tail
, prev
;
5315 tail
= nextb
->INTERNAL_FIELD (undo_list
);
5317 while (CONSP (tail
))
5319 if (CONSP (XCAR (tail
))
5320 && MARKERP (XCAR (XCAR (tail
)))
5321 && !XMARKER (XCAR (XCAR (tail
)))->gcmarkbit
)
5324 nextb
->INTERNAL_FIELD (undo_list
) = tail
= XCDR (tail
);
5328 XSETCDR (prev
, tail
);
5338 /* Now that we have stripped the elements that need not be in the
5339 undo_list any more, we can finally mark the list. */
5340 mark_object (nextb
->INTERNAL_FIELD (undo_list
));
5345 /* Clear the mark bits that we set in certain root slots. */
5347 unmark_byte_stack ();
5348 VECTOR_UNMARK (&buffer_defaults
);
5349 VECTOR_UNMARK (&buffer_local_symbols
);
5351 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5361 consing_since_gc
= 0;
5362 if (gc_cons_threshold
< GC_DEFAULT_THRESHOLD
/ 10)
5363 gc_cons_threshold
= GC_DEFAULT_THRESHOLD
/ 10;
5365 gc_relative_threshold
= 0;
5366 if (FLOATP (Vgc_cons_percentage
))
5367 { /* Set gc_cons_combined_threshold. */
5368 double tot
= total_bytes_of_live_objects ();
5370 tot
*= XFLOAT_DATA (Vgc_cons_percentage
);
5373 if (tot
< TYPE_MAXIMUM (EMACS_INT
))
5374 gc_relative_threshold
= tot
;
5376 gc_relative_threshold
= TYPE_MAXIMUM (EMACS_INT
);
5380 if (garbage_collection_messages
)
5382 if (message_p
|| minibuf_level
> 0)
5385 message1_nolog ("Garbage collecting...done");
5388 unbind_to (count
, Qnil
);
5390 Lisp_Object total
[11];
5391 int total_size
= 10;
5393 total
[0] = list4 (Qconses
, make_number (sizeof (struct Lisp_Cons
)),
5394 bounded_number (total_conses
),
5395 bounded_number (total_free_conses
));
5397 total
[1] = list4 (Qsymbols
, make_number (sizeof (struct Lisp_Symbol
)),
5398 bounded_number (total_symbols
),
5399 bounded_number (total_free_symbols
));
5401 total
[2] = list4 (Qmiscs
, make_number (sizeof (union Lisp_Misc
)),
5402 bounded_number (total_markers
),
5403 bounded_number (total_free_markers
));
5405 total
[3] = list4 (Qstrings
, make_number (sizeof (struct Lisp_String
)),
5406 bounded_number (total_strings
),
5407 bounded_number (total_free_strings
));
5409 total
[4] = list3 (Qstring_bytes
, make_number (1),
5410 bounded_number (total_string_bytes
));
5412 total
[5] = list3 (Qvectors
, make_number (sizeof (struct Lisp_Vector
)),
5413 bounded_number (total_vectors
));
5415 total
[6] = list4 (Qvector_slots
, make_number (word_size
),
5416 bounded_number (total_vector_slots
),
5417 bounded_number (total_free_vector_slots
));
5419 total
[7] = list4 (Qfloats
, make_number (sizeof (struct Lisp_Float
)),
5420 bounded_number (total_floats
),
5421 bounded_number (total_free_floats
));
5423 total
[8] = list4 (Qintervals
, make_number (sizeof (struct interval
)),
5424 bounded_number (total_intervals
),
5425 bounded_number (total_free_intervals
));
5427 total
[9] = list3 (Qbuffers
, make_number (sizeof (struct buffer
)),
5428 bounded_number (total_buffers
));
5430 #ifdef DOUG_LEA_MALLOC
5432 total
[10] = list4 (Qheap
, make_number (1024),
5433 bounded_number ((mallinfo ().uordblks
+ 1023) >> 10),
5434 bounded_number ((mallinfo ().fordblks
+ 1023) >> 10));
5436 retval
= Flist (total_size
, total
);
5439 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5441 /* Compute average percentage of zombies. */
5443 = (total_conses
+ total_symbols
+ total_markers
+ total_strings
5444 + total_vectors
+ total_floats
+ total_intervals
+ total_buffers
);
5446 avg_live
= (avg_live
* ngcs
+ nlive
) / (ngcs
+ 1);
5447 max_live
= max (nlive
, max_live
);
5448 avg_zombies
= (avg_zombies
* ngcs
+ nzombies
) / (ngcs
+ 1);
5449 max_zombies
= max (nzombies
, max_zombies
);
5454 if (!NILP (Vpost_gc_hook
))
5456 ptrdiff_t gc_count
= inhibit_garbage_collection ();
5457 safe_run_hooks (Qpost_gc_hook
);
5458 unbind_to (gc_count
, Qnil
);
5461 /* Accumulate statistics. */
5462 if (FLOATP (Vgc_elapsed
))
5464 EMACS_TIME since_start
= sub_emacs_time (current_emacs_time (), start
);
5465 Vgc_elapsed
= make_float (XFLOAT_DATA (Vgc_elapsed
)
5466 + EMACS_TIME_TO_DOUBLE (since_start
));
5471 /* Collect profiling data. */
5472 if (profiler_memory_running
)
5475 size_t tot_after
= total_bytes_of_live_objects ();
5476 if (tot_before
> tot_after
)
5477 swept
= tot_before
- tot_after
;
5478 malloc_probe (swept
);
5481 backtrace_list
= backtrace
.next
;
5486 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5487 only interesting objects referenced from glyphs are strings. */
5490 mark_glyph_matrix (struct glyph_matrix
*matrix
)
5492 struct glyph_row
*row
= matrix
->rows
;
5493 struct glyph_row
*end
= row
+ matrix
->nrows
;
5495 for (; row
< end
; ++row
)
5499 for (area
= LEFT_MARGIN_AREA
; area
< LAST_AREA
; ++area
)
5501 struct glyph
*glyph
= row
->glyphs
[area
];
5502 struct glyph
*end_glyph
= glyph
+ row
->used
[area
];
5504 for (; glyph
< end_glyph
; ++glyph
)
5505 if (STRINGP (glyph
->object
)
5506 && !STRING_MARKED_P (XSTRING (glyph
->object
)))
5507 mark_object (glyph
->object
);
5513 /* Mark Lisp faces in the face cache C. */
5516 mark_face_cache (struct face_cache
*c
)
5521 for (i
= 0; i
< c
->used
; ++i
)
5523 struct face
*face
= FACE_FROM_ID (c
->f
, i
);
5527 for (j
= 0; j
< LFACE_VECTOR_SIZE
; ++j
)
5528 mark_object (face
->lface
[j
]);
5536 /* Mark reference to a Lisp_Object.
5537 If the object referred to has not been seen yet, recursively mark
5538 all the references contained in it. */
5540 #define LAST_MARKED_SIZE 500
5541 static Lisp_Object last_marked
[LAST_MARKED_SIZE
];
5542 static int last_marked_index
;
5544 /* For debugging--call abort when we cdr down this many
5545 links of a list, in mark_object. In debugging,
5546 the call to abort will hit a breakpoint.
5547 Normally this is zero and the check never goes off. */
5548 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE
;
5551 mark_vectorlike (struct Lisp_Vector
*ptr
)
5553 ptrdiff_t size
= ptr
->header
.size
;
5556 eassert (!VECTOR_MARKED_P (ptr
));
5557 VECTOR_MARK (ptr
); /* Else mark it. */
5558 if (size
& PSEUDOVECTOR_FLAG
)
5559 size
&= PSEUDOVECTOR_SIZE_MASK
;
5561 /* Note that this size is not the memory-footprint size, but only
5562 the number of Lisp_Object fields that we should trace.
5563 The distinction is used e.g. by Lisp_Process which places extra
5564 non-Lisp_Object fields at the end of the structure... */
5565 for (i
= 0; i
< size
; i
++) /* ...and then mark its elements. */
5566 mark_object (ptr
->contents
[i
]);
5569 /* Like mark_vectorlike but optimized for char-tables (and
5570 sub-char-tables) assuming that the contents are mostly integers or
5574 mark_char_table (struct Lisp_Vector
*ptr
)
5576 int size
= ptr
->header
.size
& PSEUDOVECTOR_SIZE_MASK
;
5579 eassert (!VECTOR_MARKED_P (ptr
));
5581 for (i
= 0; i
< size
; i
++)
5583 Lisp_Object val
= ptr
->contents
[i
];
5585 if (INTEGERP (val
) || (SYMBOLP (val
) && XSYMBOL (val
)->gcmarkbit
))
5587 if (SUB_CHAR_TABLE_P (val
))
5589 if (! VECTOR_MARKED_P (XVECTOR (val
)))
5590 mark_char_table (XVECTOR (val
));
5597 /* Mark the chain of overlays starting at PTR. */
5600 mark_overlay (struct Lisp_Overlay
*ptr
)
5602 for (; ptr
&& !ptr
->gcmarkbit
; ptr
= ptr
->next
)
5605 mark_object (ptr
->start
);
5606 mark_object (ptr
->end
);
5607 mark_object (ptr
->plist
);
5611 /* Mark Lisp_Objects and special pointers in BUFFER. */
5614 mark_buffer (struct buffer
*buffer
)
5616 /* This is handled much like other pseudovectors... */
5617 mark_vectorlike ((struct Lisp_Vector
*) buffer
);
5619 /* ...but there are some buffer-specific things. */
5621 MARK_INTERVAL_TREE (buffer_intervals (buffer
));
5623 /* For now, we just don't mark the undo_list. It's done later in
5624 a special way just before the sweep phase, and after stripping
5625 some of its elements that are not needed any more. */
5627 mark_overlay (buffer
->overlays_before
);
5628 mark_overlay (buffer
->overlays_after
);
5630 /* If this is an indirect buffer, mark its base buffer. */
5631 if (buffer
->base_buffer
&& !VECTOR_MARKED_P (buffer
->base_buffer
))
5632 mark_buffer (buffer
->base_buffer
);
5635 /* Remove killed buffers or items whose car is a killed buffer from
5636 LIST, and mark other items. Return changed LIST, which is marked. */
5639 mark_discard_killed_buffers (Lisp_Object list
)
5641 Lisp_Object tail
, *prev
= &list
;
5643 for (tail
= list
; CONSP (tail
) && !CONS_MARKED_P (XCONS (tail
));
5646 Lisp_Object tem
= XCAR (tail
);
5649 if (BUFFERP (tem
) && !BUFFER_LIVE_P (XBUFFER (tem
)))
5650 *prev
= XCDR (tail
);
5653 CONS_MARK (XCONS (tail
));
5654 mark_object (XCAR (tail
));
5655 prev
= &XCDR_AS_LVALUE (tail
);
5662 /* Determine type of generic Lisp_Object and mark it accordingly. */
5665 mark_object (Lisp_Object arg
)
5667 register Lisp_Object obj
= arg
;
5668 #ifdef GC_CHECK_MARKED_OBJECTS
5672 ptrdiff_t cdr_count
= 0;
5676 if (PURE_POINTER_P (XPNTR (obj
)))
5679 last_marked
[last_marked_index
++] = obj
;
5680 if (last_marked_index
== LAST_MARKED_SIZE
)
5681 last_marked_index
= 0;
5683 /* Perform some sanity checks on the objects marked here. Abort if
5684 we encounter an object we know is bogus. This increases GC time
5685 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5686 #ifdef GC_CHECK_MARKED_OBJECTS
5688 po
= (void *) XPNTR (obj
);
5690 /* Check that the object pointed to by PO is known to be a Lisp
5691 structure allocated from the heap. */
5692 #define CHECK_ALLOCATED() \
5694 m = mem_find (po); \
5699 /* Check that the object pointed to by PO is live, using predicate
5701 #define CHECK_LIVE(LIVEP) \
5703 if (!LIVEP (m, po)) \
5707 /* Check both of the above conditions. */
5708 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5710 CHECK_ALLOCATED (); \
5711 CHECK_LIVE (LIVEP); \
5714 #else /* not GC_CHECK_MARKED_OBJECTS */
5716 #define CHECK_LIVE(LIVEP) (void) 0
5717 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5719 #endif /* not GC_CHECK_MARKED_OBJECTS */
5721 switch (XTYPE (obj
))
5725 register struct Lisp_String
*ptr
= XSTRING (obj
);
5726 if (STRING_MARKED_P (ptr
))
5728 CHECK_ALLOCATED_AND_LIVE (live_string_p
);
5730 MARK_INTERVAL_TREE (ptr
->intervals
);
5731 #ifdef GC_CHECK_STRING_BYTES
5732 /* Check that the string size recorded in the string is the
5733 same as the one recorded in the sdata structure. */
5735 #endif /* GC_CHECK_STRING_BYTES */
5739 case Lisp_Vectorlike
:
5741 register struct Lisp_Vector
*ptr
= XVECTOR (obj
);
5742 register ptrdiff_t pvectype
;
5744 if (VECTOR_MARKED_P (ptr
))
5747 #ifdef GC_CHECK_MARKED_OBJECTS
5749 if (m
== MEM_NIL
&& !SUBRP (obj
))
5751 #endif /* GC_CHECK_MARKED_OBJECTS */
5753 if (ptr
->header
.size
& PSEUDOVECTOR_FLAG
)
5754 pvectype
= ((ptr
->header
.size
& PVEC_TYPE_MASK
)
5755 >> PSEUDOVECTOR_AREA_BITS
);
5757 pvectype
= PVEC_NORMAL_VECTOR
;
5759 if (pvectype
!= PVEC_SUBR
&& pvectype
!= PVEC_BUFFER
)
5760 CHECK_LIVE (live_vector_p
);
5765 #ifdef GC_CHECK_MARKED_OBJECTS
5774 #endif /* GC_CHECK_MARKED_OBJECTS */
5775 mark_buffer ((struct buffer
*) ptr
);
5779 { /* We could treat this just like a vector, but it is better
5780 to save the COMPILED_CONSTANTS element for last and avoid
5782 int size
= ptr
->header
.size
& PSEUDOVECTOR_SIZE_MASK
;
5786 for (i
= 0; i
< size
; i
++)
5787 if (i
!= COMPILED_CONSTANTS
)
5788 mark_object (ptr
->contents
[i
]);
5789 if (size
> COMPILED_CONSTANTS
)
5791 obj
= ptr
->contents
[COMPILED_CONSTANTS
];
5798 mark_vectorlike (ptr
);
5799 mark_face_cache (((struct frame
*) ptr
)->face_cache
);
5804 struct window
*w
= (struct window
*) ptr
;
5805 bool leaf
= NILP (w
->hchild
) && NILP (w
->vchild
);
5807 mark_vectorlike (ptr
);
5809 /* Mark glyphs for leaf windows. Marking window
5810 matrices is sufficient because frame matrices
5811 use the same glyph memory. */
5812 if (leaf
&& w
->current_matrix
)
5814 mark_glyph_matrix (w
->current_matrix
);
5815 mark_glyph_matrix (w
->desired_matrix
);
5818 /* Filter out killed buffers from both buffer lists
5819 in attempt to help GC to reclaim killed buffers faster.
5820 We can do it elsewhere for live windows, but this is the
5821 best place to do it for dead windows. */
5823 (w
, mark_discard_killed_buffers (w
->prev_buffers
));
5825 (w
, mark_discard_killed_buffers (w
->next_buffers
));
5829 case PVEC_HASH_TABLE
:
5831 struct Lisp_Hash_Table
*h
= (struct Lisp_Hash_Table
*) ptr
;
5833 mark_vectorlike (ptr
);
5834 mark_object (h
->test
.name
);
5835 mark_object (h
->test
.user_hash_function
);
5836 mark_object (h
->test
.user_cmp_function
);
5837 /* If hash table is not weak, mark all keys and values.
5838 For weak tables, mark only the vector. */
5840 mark_object (h
->key_and_value
);
5842 VECTOR_MARK (XVECTOR (h
->key_and_value
));
5846 case PVEC_CHAR_TABLE
:
5847 mark_char_table (ptr
);
5850 case PVEC_BOOL_VECTOR
:
5851 /* No Lisp_Objects to mark in a bool vector. */
5862 mark_vectorlike (ptr
);
5869 register struct Lisp_Symbol
*ptr
= XSYMBOL (obj
);
5870 struct Lisp_Symbol
*ptrx
;
5874 CHECK_ALLOCATED_AND_LIVE (live_symbol_p
);
5876 mark_object (ptr
->function
);
5877 mark_object (ptr
->plist
);
5878 switch (ptr
->redirect
)
5880 case SYMBOL_PLAINVAL
: mark_object (SYMBOL_VAL (ptr
)); break;
5881 case SYMBOL_VARALIAS
:
5884 XSETSYMBOL (tem
, SYMBOL_ALIAS (ptr
));
5888 case SYMBOL_LOCALIZED
:
5890 struct Lisp_Buffer_Local_Value
*blv
= SYMBOL_BLV (ptr
);
5891 Lisp_Object where
= blv
->where
;
5892 /* If the value is set up for a killed buffer or deleted
5893 frame, restore it's global binding. If the value is
5894 forwarded to a C variable, either it's not a Lisp_Object
5895 var, or it's staticpro'd already. */
5896 if ((BUFFERP (where
) && !BUFFER_LIVE_P (XBUFFER (where
)))
5897 || (FRAMEP (where
) && !FRAME_LIVE_P (XFRAME (where
))))
5898 swap_in_global_binding (ptr
);
5899 mark_object (blv
->where
);
5900 mark_object (blv
->valcell
);
5901 mark_object (blv
->defcell
);
5904 case SYMBOL_FORWARDED
:
5905 /* If the value is forwarded to a buffer or keyboard field,
5906 these are marked when we see the corresponding object.
5907 And if it's forwarded to a C variable, either it's not
5908 a Lisp_Object var, or it's staticpro'd already. */
5910 default: emacs_abort ();
5912 if (!PURE_POINTER_P (XSTRING (ptr
->name
)))
5913 MARK_STRING (XSTRING (ptr
->name
));
5914 MARK_INTERVAL_TREE (string_intervals (ptr
->name
));
5919 ptrx
= ptr
; /* Use of ptrx avoids compiler bug on Sun. */
5920 XSETSYMBOL (obj
, ptrx
);
5927 CHECK_ALLOCATED_AND_LIVE (live_misc_p
);
5929 if (XMISCANY (obj
)->gcmarkbit
)
5932 switch (XMISCTYPE (obj
))
5934 case Lisp_Misc_Marker
:
5935 /* DO NOT mark thru the marker's chain.
5936 The buffer's markers chain does not preserve markers from gc;
5937 instead, markers are removed from the chain when freed by gc. */
5938 XMISCANY (obj
)->gcmarkbit
= 1;
5941 case Lisp_Misc_Save_Value
:
5942 XMISCANY (obj
)->gcmarkbit
= 1;
5945 register struct Lisp_Save_Value
*ptr
= XSAVE_VALUE (obj
);
5946 /* If DOGC is set, POINTER is the address of a memory
5947 area containing INTEGER potential Lisp_Objects. */
5950 Lisp_Object
*p
= (Lisp_Object
*) ptr
->pointer
;
5952 for (nelt
= ptr
->integer
; nelt
> 0; nelt
--, p
++)
5953 mark_maybe_object (*p
);
5959 case Lisp_Misc_Overlay
:
5960 mark_overlay (XOVERLAY (obj
));
5970 register struct Lisp_Cons
*ptr
= XCONS (obj
);
5971 if (CONS_MARKED_P (ptr
))
5973 CHECK_ALLOCATED_AND_LIVE (live_cons_p
);
5975 /* If the cdr is nil, avoid recursion for the car. */
5976 if (EQ (ptr
->u
.cdr
, Qnil
))
5982 mark_object (ptr
->car
);
5985 if (cdr_count
== mark_object_loop_halt
)
5991 CHECK_ALLOCATED_AND_LIVE (live_float_p
);
5992 FLOAT_MARK (XFLOAT (obj
));
6003 #undef CHECK_ALLOCATED
6004 #undef CHECK_ALLOCATED_AND_LIVE
6006 /* Mark the Lisp pointers in the terminal objects.
6007 Called by Fgarbage_collect. */
6010 mark_terminals (void)
6013 for (t
= terminal_list
; t
; t
= t
->next_terminal
)
6015 eassert (t
->name
!= NULL
);
6016 #ifdef HAVE_WINDOW_SYSTEM
6017 /* If a terminal object is reachable from a stacpro'ed object,
6018 it might have been marked already. Make sure the image cache
6020 mark_image_cache (t
->image_cache
);
6021 #endif /* HAVE_WINDOW_SYSTEM */
6022 if (!VECTOR_MARKED_P (t
))
6023 mark_vectorlike ((struct Lisp_Vector
*)t
);
6029 /* Value is non-zero if OBJ will survive the current GC because it's
6030 either marked or does not need to be marked to survive. */
6033 survives_gc_p (Lisp_Object obj
)
6037 switch (XTYPE (obj
))
6044 survives_p
= XSYMBOL (obj
)->gcmarkbit
;
6048 survives_p
= XMISCANY (obj
)->gcmarkbit
;
6052 survives_p
= STRING_MARKED_P (XSTRING (obj
));
6055 case Lisp_Vectorlike
:
6056 survives_p
= SUBRP (obj
) || VECTOR_MARKED_P (XVECTOR (obj
));
6060 survives_p
= CONS_MARKED_P (XCONS (obj
));
6064 survives_p
= FLOAT_MARKED_P (XFLOAT (obj
));
6071 return survives_p
|| PURE_POINTER_P ((void *) XPNTR (obj
));
6076 /* Sweep: find all structures not marked, and free them. */
6081 /* Remove or mark entries in weak hash tables.
6082 This must be done before any object is unmarked. */
6083 sweep_weak_hash_tables ();
6086 check_string_bytes (!noninteractive
);
6088 /* Put all unmarked conses on free list */
6090 register struct cons_block
*cblk
;
6091 struct cons_block
**cprev
= &cons_block
;
6092 register int lim
= cons_block_index
;
6093 EMACS_INT num_free
= 0, num_used
= 0;
6097 for (cblk
= cons_block
; cblk
; cblk
= *cprev
)
6101 int ilim
= (lim
+ BITS_PER_INT
- 1) / BITS_PER_INT
;
6103 /* Scan the mark bits an int at a time. */
6104 for (i
= 0; i
< ilim
; i
++)
6106 if (cblk
->gcmarkbits
[i
] == -1)
6108 /* Fast path - all cons cells for this int are marked. */
6109 cblk
->gcmarkbits
[i
] = 0;
6110 num_used
+= BITS_PER_INT
;
6114 /* Some cons cells for this int are not marked.
6115 Find which ones, and free them. */
6116 int start
, pos
, stop
;
6118 start
= i
* BITS_PER_INT
;
6120 if (stop
> BITS_PER_INT
)
6121 stop
= BITS_PER_INT
;
6124 for (pos
= start
; pos
< stop
; pos
++)
6126 if (!CONS_MARKED_P (&cblk
->conses
[pos
]))
6129 cblk
->conses
[pos
].u
.chain
= cons_free_list
;
6130 cons_free_list
= &cblk
->conses
[pos
];
6132 cons_free_list
->car
= Vdead
;
6138 CONS_UNMARK (&cblk
->conses
[pos
]);
6144 lim
= CONS_BLOCK_SIZE
;
6145 /* If this block contains only free conses and we have already
6146 seen more than two blocks worth of free conses then deallocate
6148 if (this_free
== CONS_BLOCK_SIZE
&& num_free
> CONS_BLOCK_SIZE
)
6150 *cprev
= cblk
->next
;
6151 /* Unhook from the free list. */
6152 cons_free_list
= cblk
->conses
[0].u
.chain
;
6153 lisp_align_free (cblk
);
6157 num_free
+= this_free
;
6158 cprev
= &cblk
->next
;
6161 total_conses
= num_used
;
6162 total_free_conses
= num_free
;
6165 /* Put all unmarked floats on free list */
6167 register struct float_block
*fblk
;
6168 struct float_block
**fprev
= &float_block
;
6169 register int lim
= float_block_index
;
6170 EMACS_INT num_free
= 0, num_used
= 0;
6172 float_free_list
= 0;
6174 for (fblk
= float_block
; fblk
; fblk
= *fprev
)
6178 for (i
= 0; i
< lim
; i
++)
6179 if (!FLOAT_MARKED_P (&fblk
->floats
[i
]))
6182 fblk
->floats
[i
].u
.chain
= float_free_list
;
6183 float_free_list
= &fblk
->floats
[i
];
6188 FLOAT_UNMARK (&fblk
->floats
[i
]);
6190 lim
= FLOAT_BLOCK_SIZE
;
6191 /* If this block contains only free floats and we have already
6192 seen more than two blocks worth of free floats then deallocate
6194 if (this_free
== FLOAT_BLOCK_SIZE
&& num_free
> FLOAT_BLOCK_SIZE
)
6196 *fprev
= fblk
->next
;
6197 /* Unhook from the free list. */
6198 float_free_list
= fblk
->floats
[0].u
.chain
;
6199 lisp_align_free (fblk
);
6203 num_free
+= this_free
;
6204 fprev
= &fblk
->next
;
6207 total_floats
= num_used
;
6208 total_free_floats
= num_free
;
6211 /* Put all unmarked intervals on free list */
6213 register struct interval_block
*iblk
;
6214 struct interval_block
**iprev
= &interval_block
;
6215 register int lim
= interval_block_index
;
6216 EMACS_INT num_free
= 0, num_used
= 0;
6218 interval_free_list
= 0;
6220 for (iblk
= interval_block
; iblk
; iblk
= *iprev
)
6225 for (i
= 0; i
< lim
; i
++)
6227 if (!iblk
->intervals
[i
].gcmarkbit
)
6229 set_interval_parent (&iblk
->intervals
[i
], interval_free_list
);
6230 interval_free_list
= &iblk
->intervals
[i
];
6236 iblk
->intervals
[i
].gcmarkbit
= 0;
6239 lim
= INTERVAL_BLOCK_SIZE
;
6240 /* If this block contains only free intervals and we have already
6241 seen more than two blocks worth of free intervals then
6242 deallocate this block. */
6243 if (this_free
== INTERVAL_BLOCK_SIZE
&& num_free
> INTERVAL_BLOCK_SIZE
)
6245 *iprev
= iblk
->next
;
6246 /* Unhook from the free list. */
6247 interval_free_list
= INTERVAL_PARENT (&iblk
->intervals
[0]);
6252 num_free
+= this_free
;
6253 iprev
= &iblk
->next
;
6256 total_intervals
= num_used
;
6257 total_free_intervals
= num_free
;
6260 /* Put all unmarked symbols on free list */
6262 register struct symbol_block
*sblk
;
6263 struct symbol_block
**sprev
= &symbol_block
;
6264 register int lim
= symbol_block_index
;
6265 EMACS_INT num_free
= 0, num_used
= 0;
6267 symbol_free_list
= NULL
;
6269 for (sblk
= symbol_block
; sblk
; sblk
= *sprev
)
6272 union aligned_Lisp_Symbol
*sym
= sblk
->symbols
;
6273 union aligned_Lisp_Symbol
*end
= sym
+ lim
;
6275 for (; sym
< end
; ++sym
)
6277 /* Check if the symbol was created during loadup. In such a case
6278 it might be pointed to by pure bytecode which we don't trace,
6279 so we conservatively assume that it is live. */
6280 bool pure_p
= PURE_POINTER_P (XSTRING (sym
->s
.name
));
6282 if (!sym
->s
.gcmarkbit
&& !pure_p
)
6284 if (sym
->s
.redirect
== SYMBOL_LOCALIZED
)
6285 xfree (SYMBOL_BLV (&sym
->s
));
6286 sym
->s
.next
= symbol_free_list
;
6287 symbol_free_list
= &sym
->s
;
6289 symbol_free_list
->function
= Vdead
;
6297 UNMARK_STRING (XSTRING (sym
->s
.name
));
6298 sym
->s
.gcmarkbit
= 0;
6302 lim
= SYMBOL_BLOCK_SIZE
;
6303 /* If this block contains only free symbols and we have already
6304 seen more than two blocks worth of free symbols then deallocate
6306 if (this_free
== SYMBOL_BLOCK_SIZE
&& num_free
> SYMBOL_BLOCK_SIZE
)
6308 *sprev
= sblk
->next
;
6309 /* Unhook from the free list. */
6310 symbol_free_list
= sblk
->symbols
[0].s
.next
;
6315 num_free
+= this_free
;
6316 sprev
= &sblk
->next
;
6319 total_symbols
= num_used
;
6320 total_free_symbols
= num_free
;
6323 /* Put all unmarked misc's on free list.
6324 For a marker, first unchain it from the buffer it points into. */
6326 register struct marker_block
*mblk
;
6327 struct marker_block
**mprev
= &marker_block
;
6328 register int lim
= marker_block_index
;
6329 EMACS_INT num_free
= 0, num_used
= 0;
6331 marker_free_list
= 0;
6333 for (mblk
= marker_block
; mblk
; mblk
= *mprev
)
6338 for (i
= 0; i
< lim
; i
++)
6340 if (!mblk
->markers
[i
].m
.u_any
.gcmarkbit
)
6342 if (mblk
->markers
[i
].m
.u_any
.type
== Lisp_Misc_Marker
)
6343 unchain_marker (&mblk
->markers
[i
].m
.u_marker
);
6344 /* Set the type of the freed object to Lisp_Misc_Free.
6345 We could leave the type alone, since nobody checks it,
6346 but this might catch bugs faster. */
6347 mblk
->markers
[i
].m
.u_marker
.type
= Lisp_Misc_Free
;
6348 mblk
->markers
[i
].m
.u_free
.chain
= marker_free_list
;
6349 marker_free_list
= &mblk
->markers
[i
].m
;
6355 mblk
->markers
[i
].m
.u_any
.gcmarkbit
= 0;
6358 lim
= MARKER_BLOCK_SIZE
;
6359 /* If this block contains only free markers and we have already
6360 seen more than two blocks worth of free markers then deallocate
6362 if (this_free
== MARKER_BLOCK_SIZE
&& num_free
> MARKER_BLOCK_SIZE
)
6364 *mprev
= mblk
->next
;
6365 /* Unhook from the free list. */
6366 marker_free_list
= mblk
->markers
[0].m
.u_free
.chain
;
6371 num_free
+= this_free
;
6372 mprev
= &mblk
->next
;
6376 total_markers
= num_used
;
6377 total_free_markers
= num_free
;
6380 /* Free all unmarked buffers */
6382 register struct buffer
*buffer
, **bprev
= &all_buffers
;
6385 for (buffer
= all_buffers
; buffer
; buffer
= *bprev
)
6386 if (!VECTOR_MARKED_P (buffer
))
6388 *bprev
= buffer
->next
;
6393 VECTOR_UNMARK (buffer
);
6394 /* Do not use buffer_(set|get)_intervals here. */
6395 buffer
->text
->intervals
= balance_intervals (buffer
->text
->intervals
);
6397 bprev
= &buffer
->next
;
6402 check_string_bytes (!noninteractive
);
6408 /* Debugging aids. */
6410 DEFUN ("memory-limit", Fmemory_limit
, Smemory_limit
, 0, 0, 0,
6411 doc
: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6412 This may be helpful in debugging Emacs's memory usage.
6413 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6418 XSETINT (end
, (intptr_t) (char *) sbrk (0) / 1024);
6423 DEFUN ("memory-use-counts", Fmemory_use_counts
, Smemory_use_counts
, 0, 0, 0,
6424 doc
: /* Return a list of counters that measure how much consing there has been.
6425 Each of these counters increments for a certain kind of object.
6426 The counters wrap around from the largest positive integer to zero.
6427 Garbage collection does not decrease them.
6428 The elements of the value are as follows:
6429 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6430 All are in units of 1 = one object consed
6431 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6433 MISCS include overlays, markers, and some internal types.
6434 Frames, windows, buffers, and subprocesses count as vectors
6435 (but the contents of a buffer's text do not count here). */)
6438 return listn (CONSTYPE_HEAP
, 8,
6439 bounded_number (cons_cells_consed
),
6440 bounded_number (floats_consed
),
6441 bounded_number (vector_cells_consed
),
6442 bounded_number (symbols_consed
),
6443 bounded_number (string_chars_consed
),
6444 bounded_number (misc_objects_consed
),
6445 bounded_number (intervals_consed
),
6446 bounded_number (strings_consed
));
6449 /* Find at most FIND_MAX symbols which have OBJ as their value or
6450 function. This is used in gdbinit's `xwhichsymbols' command. */
6453 which_symbols (Lisp_Object obj
, EMACS_INT find_max
)
6455 struct symbol_block
*sblk
;
6456 ptrdiff_t gc_count
= inhibit_garbage_collection ();
6457 Lisp_Object found
= Qnil
;
6461 for (sblk
= symbol_block
; sblk
; sblk
= sblk
->next
)
6463 union aligned_Lisp_Symbol
*aligned_sym
= sblk
->symbols
;
6466 for (bn
= 0; bn
< SYMBOL_BLOCK_SIZE
; bn
++, aligned_sym
++)
6468 struct Lisp_Symbol
*sym
= &aligned_sym
->s
;
6472 if (sblk
== symbol_block
&& bn
>= symbol_block_index
)
6475 XSETSYMBOL (tem
, sym
);
6476 val
= find_symbol_value (tem
);
6478 || EQ (sym
->function
, obj
)
6479 || (!NILP (sym
->function
)
6480 && COMPILEDP (sym
->function
)
6481 && EQ (AREF (sym
->function
, COMPILED_BYTECODE
), obj
))
6484 && EQ (AREF (val
, COMPILED_BYTECODE
), obj
)))
6486 found
= Fcons (tem
, found
);
6487 if (--find_max
== 0)
6495 unbind_to (gc_count
, Qnil
);
6499 #ifdef ENABLE_CHECKING
6501 bool suppress_checking
;
6504 die (const char *msg
, const char *file
, int line
)
6506 fprintf (stderr
, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6508 terminate_due_to_signal (SIGABRT
, INT_MAX
);
6512 /* Initialization */
6515 init_alloc_once (void)
6517 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6519 pure_size
= PURESIZE
;
6521 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6523 Vdead
= make_pure_string ("DEAD", 4, 4, 0);
6526 #ifdef DOUG_LEA_MALLOC
6527 mallopt (M_TRIM_THRESHOLD
, 128*1024); /* trim threshold */
6528 mallopt (M_MMAP_THRESHOLD
, 64*1024); /* mmap threshold */
6529 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
); /* max. number of mmap'ed areas */
6534 refill_memory_reserve ();
6535 gc_cons_threshold
= GC_DEFAULT_THRESHOLD
;
6542 byte_stack_list
= 0;
6544 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6545 setjmp_tested_p
= longjmps_done
= 0;
6548 Vgc_elapsed
= make_float (0.0);
6553 syms_of_alloc (void)
6555 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold
,
6556 doc
: /* Number of bytes of consing between garbage collections.
6557 Garbage collection can happen automatically once this many bytes have been
6558 allocated since the last garbage collection. All data types count.
6560 Garbage collection happens automatically only when `eval' is called.
6562 By binding this temporarily to a large number, you can effectively
6563 prevent garbage collection during a part of the program.
6564 See also `gc-cons-percentage'. */);
6566 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage
,
6567 doc
: /* Portion of the heap used for allocation.
6568 Garbage collection can happen automatically once this portion of the heap
6569 has been allocated since the last garbage collection.
6570 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6571 Vgc_cons_percentage
= make_float (0.1);
6573 DEFVAR_INT ("pure-bytes-used", pure_bytes_used
,
6574 doc
: /* Number of bytes of shareable Lisp data allocated so far. */);
6576 DEFVAR_INT ("cons-cells-consed", cons_cells_consed
,
6577 doc
: /* Number of cons cells that have been consed so far. */);
6579 DEFVAR_INT ("floats-consed", floats_consed
,
6580 doc
: /* Number of floats that have been consed so far. */);
6582 DEFVAR_INT ("vector-cells-consed", vector_cells_consed
,
6583 doc
: /* Number of vector cells that have been consed so far. */);
6585 DEFVAR_INT ("symbols-consed", symbols_consed
,
6586 doc
: /* Number of symbols that have been consed so far. */);
6588 DEFVAR_INT ("string-chars-consed", string_chars_consed
,
6589 doc
: /* Number of string characters that have been consed so far. */);
6591 DEFVAR_INT ("misc-objects-consed", misc_objects_consed
,
6592 doc
: /* Number of miscellaneous objects that have been consed so far.
6593 These include markers and overlays, plus certain objects not visible
6596 DEFVAR_INT ("intervals-consed", intervals_consed
,
6597 doc
: /* Number of intervals that have been consed so far. */);
6599 DEFVAR_INT ("strings-consed", strings_consed
,
6600 doc
: /* Number of strings that have been consed so far. */);
6602 DEFVAR_LISP ("purify-flag", Vpurify_flag
,
6603 doc
: /* Non-nil means loading Lisp code in order to dump an executable.
6604 This means that certain objects should be allocated in shared (pure) space.
6605 It can also be set to a hash-table, in which case this table is used to
6606 do hash-consing of the objects allocated to pure space. */);
6608 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages
,
6609 doc
: /* Non-nil means display messages at start and end of garbage collection. */);
6610 garbage_collection_messages
= 0;
6612 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook
,
6613 doc
: /* Hook run after garbage collection has finished. */);
6614 Vpost_gc_hook
= Qnil
;
6615 DEFSYM (Qpost_gc_hook
, "post-gc-hook");
6617 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data
,
6618 doc
: /* Precomputed `signal' argument for memory-full error. */);
6619 /* We build this in advance because if we wait until we need it, we might
6620 not be able to allocate the memory to hold it. */
6622 = listn (CONSTYPE_PURE
, 2, Qerror
,
6623 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6625 DEFVAR_LISP ("memory-full", Vmemory_full
,
6626 doc
: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6627 Vmemory_full
= Qnil
;
6629 DEFSYM (Qconses
, "conses");
6630 DEFSYM (Qsymbols
, "symbols");
6631 DEFSYM (Qmiscs
, "miscs");
6632 DEFSYM (Qstrings
, "strings");
6633 DEFSYM (Qvectors
, "vectors");
6634 DEFSYM (Qfloats
, "floats");
6635 DEFSYM (Qintervals
, "intervals");
6636 DEFSYM (Qbuffers
, "buffers");
6637 DEFSYM (Qstring_bytes
, "string-bytes");
6638 DEFSYM (Qvector_slots
, "vector-slots");
6639 DEFSYM (Qheap
, "heap");
6640 DEFSYM (Qautomatic_gc
, "Automatic GC");
6642 DEFSYM (Qgc_cons_threshold
, "gc-cons-threshold");
6643 DEFSYM (Qchar_table_extra_slots
, "char-table-extra-slots");
6645 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed
,
6646 doc
: /* Accumulated time elapsed in garbage collections.
6647 The time is in seconds as a floating point value. */);
6648 DEFVAR_INT ("gcs-done", gcs_done
,
6649 doc
: /* Accumulated number of garbage collections done. */);
6654 defsubr (&Smake_byte_code
);
6655 defsubr (&Smake_list
);
6656 defsubr (&Smake_vector
);
6657 defsubr (&Smake_string
);
6658 defsubr (&Smake_bool_vector
);
6659 defsubr (&Smake_symbol
);
6660 defsubr (&Smake_marker
);
6661 defsubr (&Spurecopy
);
6662 defsubr (&Sgarbage_collect
);
6663 defsubr (&Smemory_limit
);
6664 defsubr (&Smemory_use_counts
);
6666 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6667 defsubr (&Sgc_status
);
6671 /* When compiled with GCC, GDB might say "No enum type named
6672 pvec_type" if we don't have at least one symbol with that type, and
6673 then xbacktrace could fail. Similarly for the other enums and
6674 their values. Some non-GCC compilers don't like these constructs. */
6678 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS
;
6679 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS
;
6680 enum char_bits char_bits
;
6681 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE
;
6682 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE
;
6683 enum enum_USE_LSB_TAG enum_USE_LSB_TAG
;
6684 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE
;
6685 enum Lisp_Bits Lisp_Bits
;
6686 enum Lisp_Compiled Lisp_Compiled
;
6687 enum maxargs maxargs
;
6688 enum MAX_ALLOCA MAX_ALLOCA
;
6689 enum More_Lisp_Bits More_Lisp_Bits
;
6690 enum pvec_type pvec_type
;
6692 enum lsb_bits lsb_bits
;
6694 } const EXTERNALLY_VISIBLE gdb_make_enums_visible
= {0};
6695 #endif /* __GNUC__ */