1 /* Code for doing intervals.
2 Copyright (C) 1993-1995, 1997-1998, 2001-2011 Free Software Foundation, Inc.
4 This file is part of GNU Emacs.
6 GNU Emacs is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
22 Have to ensure that we can't put symbol nil on a plist, or some
23 functions may work incorrectly.
25 An idea: Have the owner of the tree keep count of splits and/or
26 insertion lengths (in intervals), and balance after every N.
28 Need to call *_left_hook when buffer is killed.
30 Scan for zero-length, or 0-length to see notes about handling
31 zero length interval-markers.
33 There are comments around about freeing intervals. It might be
34 faster to explicitly free them (put them on the free list) than
44 #include "intervals.h"
50 /* Test for membership, allowing for t (actually any non-cons) to mean the
53 #define TMEM(sym, set) (CONSP (set) ? ! NILP (Fmemq (sym, set)) : ! NILP (set))
55 static Lisp_Object
merge_properties_sticky (Lisp_Object
, Lisp_Object
);
56 static INTERVAL
merge_interval_right (INTERVAL
);
57 static INTERVAL
reproduce_tree (INTERVAL
, INTERVAL
);
58 static INTERVAL
reproduce_tree_obj (INTERVAL
, Lisp_Object
);
60 /* Utility functions for intervals. */
63 /* Create the root interval of some object, a buffer or string. */
66 create_root_interval (Lisp_Object parent
)
70 CHECK_IMPURE (parent
);
72 new = make_interval ();
76 new->total_length
= (BUF_Z (XBUFFER (parent
))
77 - BUF_BEG (XBUFFER (parent
)));
78 CHECK_TOTAL_LENGTH (new);
79 BUF_INTERVALS (XBUFFER (parent
)) = new;
82 else if (STRINGP (parent
))
84 new->total_length
= SCHARS (parent
);
85 CHECK_TOTAL_LENGTH (new);
86 STRING_SET_INTERVALS (parent
, new);
90 SET_INTERVAL_OBJECT (new, parent
);
95 /* Make the interval TARGET have exactly the properties of SOURCE */
98 copy_properties (register INTERVAL source
, register INTERVAL target
)
100 if (DEFAULT_INTERVAL_P (source
) && DEFAULT_INTERVAL_P (target
))
103 COPY_INTERVAL_CACHE (source
, target
);
104 target
->plist
= Fcopy_sequence (source
->plist
);
107 /* Merge the properties of interval SOURCE into the properties
108 of interval TARGET. That is to say, each property in SOURCE
109 is added to TARGET if TARGET has no such property as yet. */
112 merge_properties (register INTERVAL source
, register INTERVAL target
)
114 register Lisp_Object o
, sym
, val
;
116 if (DEFAULT_INTERVAL_P (source
) && DEFAULT_INTERVAL_P (target
))
119 MERGE_INTERVAL_CACHE (source
, target
);
129 while (CONSP (val
) && !EQ (XCAR (val
), sym
))
140 target
->plist
= Fcons (sym
, Fcons (val
, target
->plist
));
146 /* Return 1 if the two intervals have the same properties,
150 intervals_equal (INTERVAL i0
, INTERVAL i1
)
152 register Lisp_Object i0_cdr
, i0_sym
;
153 register Lisp_Object i1_cdr
, i1_val
;
155 if (DEFAULT_INTERVAL_P (i0
) && DEFAULT_INTERVAL_P (i1
))
158 if (DEFAULT_INTERVAL_P (i0
) || DEFAULT_INTERVAL_P (i1
))
163 while (CONSP (i0_cdr
) && CONSP (i1_cdr
))
165 i0_sym
= XCAR (i0_cdr
);
166 i0_cdr
= XCDR (i0_cdr
);
168 return 0; /* abort (); */
170 while (CONSP (i1_val
) && !EQ (XCAR (i1_val
), i0_sym
))
172 i1_val
= XCDR (i1_val
);
174 return 0; /* abort (); */
175 i1_val
= XCDR (i1_val
);
178 /* i0 has something i1 doesn't. */
179 if (EQ (i1_val
, Qnil
))
182 /* i0 and i1 both have sym, but it has different values in each. */
184 || (i1_val
= XCDR (i1_val
), !CONSP (i1_val
))
185 || !EQ (XCAR (i1_val
), XCAR (i0_cdr
)))
188 i0_cdr
= XCDR (i0_cdr
);
190 i1_cdr
= XCDR (i1_cdr
);
192 return 0; /* abort (); */
193 i1_cdr
= XCDR (i1_cdr
);
196 /* Lengths of the two plists were equal. */
197 return (NILP (i0_cdr
) && NILP (i1_cdr
));
201 /* Traverse an interval tree TREE, performing FUNCTION on each node.
202 No guarantee is made about the order of traversal.
203 Pass FUNCTION two args: an interval, and ARG. */
206 traverse_intervals_noorder (INTERVAL tree
, void (*function
) (INTERVAL
, Lisp_Object
), Lisp_Object arg
)
208 /* Minimize stack usage. */
209 while (!NULL_INTERVAL_P (tree
))
211 (*function
) (tree
, arg
);
212 if (NULL_INTERVAL_P (tree
->right
))
216 traverse_intervals_noorder (tree
->left
, function
, arg
);
222 /* Traverse an interval tree TREE, performing FUNCTION on each node.
223 Pass FUNCTION two args: an interval, and ARG. */
226 traverse_intervals (INTERVAL tree
, EMACS_INT position
,
227 void (*function
) (INTERVAL
, Lisp_Object
), Lisp_Object arg
)
229 while (!NULL_INTERVAL_P (tree
))
231 traverse_intervals (tree
->left
, position
, function
, arg
);
232 position
+= LEFT_TOTAL_LENGTH (tree
);
233 tree
->position
= position
;
234 (*function
) (tree
, arg
);
235 position
+= LENGTH (tree
); tree
= tree
->right
;
243 static int zero_length
;
245 /* These functions are temporary, for debugging purposes only. */
247 INTERVAL search_interval
, found_interval
;
250 check_for_interval (i
)
253 if (i
== search_interval
)
261 search_for_interval (i
, tree
)
262 register INTERVAL i
, tree
;
266 found_interval
= NULL_INTERVAL
;
267 traverse_intervals_noorder (tree
, &check_for_interval
, Qnil
);
268 return found_interval
;
272 inc_interval_count (i
)
289 traverse_intervals_noorder (i
, &inc_interval_count
, Qnil
);
295 root_interval (interval
)
298 register INTERVAL i
= interval
;
300 while (! ROOT_INTERVAL_P (i
))
301 i
= INTERVAL_PARENT (i
);
307 /* Assuming that a left child exists, perform the following operation:
316 static inline INTERVAL
317 rotate_right (INTERVAL interval
)
320 INTERVAL B
= interval
->left
;
321 EMACS_INT old_total
= interval
->total_length
;
323 /* Deal with any Parent of A; make it point to B. */
324 if (! ROOT_INTERVAL_P (interval
))
326 if (AM_LEFT_CHILD (interval
))
327 INTERVAL_PARENT (interval
)->left
= B
;
329 INTERVAL_PARENT (interval
)->right
= B
;
331 COPY_INTERVAL_PARENT (B
, interval
);
333 /* Make B the parent of A */
336 SET_INTERVAL_PARENT (interval
, B
);
338 /* Make A point to c */
340 if (! NULL_INTERVAL_P (i
))
341 SET_INTERVAL_PARENT (i
, interval
);
343 /* A's total length is decreased by the length of B and its left child. */
344 interval
->total_length
-= B
->total_length
- LEFT_TOTAL_LENGTH (interval
);
345 CHECK_TOTAL_LENGTH (interval
);
347 /* B must have the same total length of A. */
348 B
->total_length
= old_total
;
349 CHECK_TOTAL_LENGTH (B
);
354 /* Assuming that a right child exists, perform the following operation:
363 static inline INTERVAL
364 rotate_left (INTERVAL interval
)
367 INTERVAL B
= interval
->right
;
368 EMACS_INT old_total
= interval
->total_length
;
370 /* Deal with any parent of A; make it point to B. */
371 if (! ROOT_INTERVAL_P (interval
))
373 if (AM_LEFT_CHILD (interval
))
374 INTERVAL_PARENT (interval
)->left
= B
;
376 INTERVAL_PARENT (interval
)->right
= B
;
378 COPY_INTERVAL_PARENT (B
, interval
);
380 /* Make B the parent of A */
383 SET_INTERVAL_PARENT (interval
, B
);
385 /* Make A point to c */
387 if (! NULL_INTERVAL_P (i
))
388 SET_INTERVAL_PARENT (i
, interval
);
390 /* A's total length is decreased by the length of B and its right child. */
391 interval
->total_length
-= B
->total_length
- RIGHT_TOTAL_LENGTH (interval
);
392 CHECK_TOTAL_LENGTH (interval
);
394 /* B must have the same total length of A. */
395 B
->total_length
= old_total
;
396 CHECK_TOTAL_LENGTH (B
);
401 /* Balance an interval tree with the assumption that the subtrees
402 themselves are already balanced. */
405 balance_an_interval (INTERVAL i
)
407 register EMACS_INT old_diff
, new_diff
;
411 old_diff
= LEFT_TOTAL_LENGTH (i
) - RIGHT_TOTAL_LENGTH (i
);
414 /* Since the left child is longer, there must be one. */
415 new_diff
= i
->total_length
- i
->left
->total_length
416 + RIGHT_TOTAL_LENGTH (i
->left
) - LEFT_TOTAL_LENGTH (i
->left
);
417 if (eabs (new_diff
) >= old_diff
)
419 i
= rotate_right (i
);
420 balance_an_interval (i
->right
);
422 else if (old_diff
< 0)
424 /* Since the right child is longer, there must be one. */
425 new_diff
= i
->total_length
- i
->right
->total_length
426 + LEFT_TOTAL_LENGTH (i
->right
) - RIGHT_TOTAL_LENGTH (i
->right
);
427 if (eabs (new_diff
) >= -old_diff
)
430 balance_an_interval (i
->left
);
438 /* Balance INTERVAL, potentially stuffing it back into its parent
441 static inline INTERVAL
442 balance_possible_root_interval (register INTERVAL interval
)
447 if (!INTERVAL_HAS_OBJECT (interval
) && !INTERVAL_HAS_PARENT (interval
))
450 if (INTERVAL_HAS_OBJECT (interval
))
453 GET_INTERVAL_OBJECT (parent
, interval
);
455 interval
= balance_an_interval (interval
);
459 if (BUFFERP (parent
))
460 BUF_INTERVALS (XBUFFER (parent
)) = interval
;
461 else if (STRINGP (parent
))
462 STRING_SET_INTERVALS (parent
, interval
);
468 /* Balance the interval tree TREE. Balancing is by weight
469 (the amount of text). */
472 balance_intervals_internal (register INTERVAL tree
)
474 /* Balance within each side. */
476 balance_intervals_internal (tree
->left
);
478 balance_intervals_internal (tree
->right
);
479 return balance_an_interval (tree
);
482 /* Advertised interface to balance intervals. */
485 balance_intervals (INTERVAL tree
)
487 if (tree
== NULL_INTERVAL
)
488 return NULL_INTERVAL
;
490 return balance_intervals_internal (tree
);
493 /* Split INTERVAL into two pieces, starting the second piece at
494 character position OFFSET (counting from 0), relative to INTERVAL.
495 INTERVAL becomes the left-hand piece, and the right-hand piece
496 (second, lexicographically) is returned.
498 The size and position fields of the two intervals are set based upon
499 those of the original interval. The property list of the new interval
500 is reset, thus it is up to the caller to do the right thing with the
503 Note that this does not change the position of INTERVAL; if it is a root,
504 it is still a root after this operation. */
507 split_interval_right (INTERVAL interval
, EMACS_INT offset
)
509 INTERVAL
new = make_interval ();
510 EMACS_INT position
= interval
->position
;
511 EMACS_INT new_length
= LENGTH (interval
) - offset
;
513 new->position
= position
+ offset
;
514 SET_INTERVAL_PARENT (new, interval
);
516 if (NULL_RIGHT_CHILD (interval
))
518 interval
->right
= new;
519 new->total_length
= new_length
;
520 CHECK_TOTAL_LENGTH (new);
524 /* Insert the new node between INTERVAL and its right child. */
525 new->right
= interval
->right
;
526 SET_INTERVAL_PARENT (interval
->right
, new);
527 interval
->right
= new;
528 new->total_length
= new_length
+ new->right
->total_length
;
529 CHECK_TOTAL_LENGTH (new);
530 balance_an_interval (new);
533 balance_possible_root_interval (interval
);
538 /* Split INTERVAL into two pieces, starting the second piece at
539 character position OFFSET (counting from 0), relative to INTERVAL.
540 INTERVAL becomes the right-hand piece, and the left-hand piece
541 (first, lexicographically) is returned.
543 The size and position fields of the two intervals are set based upon
544 those of the original interval. The property list of the new interval
545 is reset, thus it is up to the caller to do the right thing with the
548 Note that this does not change the position of INTERVAL; if it is a root,
549 it is still a root after this operation. */
552 split_interval_left (INTERVAL interval
, EMACS_INT offset
)
554 INTERVAL
new = make_interval ();
555 EMACS_INT new_length
= offset
;
557 new->position
= interval
->position
;
558 interval
->position
= interval
->position
+ offset
;
559 SET_INTERVAL_PARENT (new, interval
);
561 if (NULL_LEFT_CHILD (interval
))
563 interval
->left
= new;
564 new->total_length
= new_length
;
565 CHECK_TOTAL_LENGTH (new);
569 /* Insert the new node between INTERVAL and its left child. */
570 new->left
= interval
->left
;
571 SET_INTERVAL_PARENT (new->left
, new);
572 interval
->left
= new;
573 new->total_length
= new_length
+ new->left
->total_length
;
574 CHECK_TOTAL_LENGTH (new);
575 balance_an_interval (new);
578 balance_possible_root_interval (interval
);
583 /* Return the proper position for the first character
584 described by the interval tree SOURCE.
585 This is 1 if the parent is a buffer,
586 0 if the parent is a string or if there is no parent.
588 Don't use this function on an interval which is the child
589 of another interval! */
592 interval_start_pos (INTERVAL source
)
596 if (NULL_INTERVAL_P (source
))
599 if (! INTERVAL_HAS_OBJECT (source
))
601 GET_INTERVAL_OBJECT (parent
, source
);
602 if (BUFFERP (parent
))
603 return BUF_BEG (XBUFFER (parent
));
607 /* Find the interval containing text position POSITION in the text
608 represented by the interval tree TREE. POSITION is a buffer
609 position (starting from 1) or a string index (starting from 0).
610 If POSITION is at the end of the buffer or string,
611 return the interval containing the last character.
613 The `position' field, which is a cache of an interval's position,
614 is updated in the interval found. Other functions (e.g., next_interval)
615 will update this cache based on the result of find_interval. */
618 find_interval (register INTERVAL tree
, register EMACS_INT position
)
620 /* The distance from the left edge of the subtree at TREE
622 register EMACS_INT relative_position
;
624 if (NULL_INTERVAL_P (tree
))
625 return NULL_INTERVAL
;
627 relative_position
= position
;
628 if (INTERVAL_HAS_OBJECT (tree
))
631 GET_INTERVAL_OBJECT (parent
, tree
);
632 if (BUFFERP (parent
))
633 relative_position
-= BUF_BEG (XBUFFER (parent
));
636 if (relative_position
> TOTAL_LENGTH (tree
))
637 abort (); /* Paranoia */
639 if (!handling_signal
)
640 tree
= balance_possible_root_interval (tree
);
644 if (relative_position
< LEFT_TOTAL_LENGTH (tree
))
648 else if (! NULL_RIGHT_CHILD (tree
)
649 && relative_position
>= (TOTAL_LENGTH (tree
)
650 - RIGHT_TOTAL_LENGTH (tree
)))
652 relative_position
-= (TOTAL_LENGTH (tree
)
653 - RIGHT_TOTAL_LENGTH (tree
));
659 = (position
- relative_position
/* left edge of *tree. */
660 + LEFT_TOTAL_LENGTH (tree
)); /* left edge of this interval. */
667 /* Find the succeeding interval (lexicographically) to INTERVAL.
668 Sets the `position' field based on that of INTERVAL (see
672 next_interval (register INTERVAL interval
)
674 register INTERVAL i
= interval
;
675 register EMACS_INT next_position
;
677 if (NULL_INTERVAL_P (i
))
678 return NULL_INTERVAL
;
679 next_position
= interval
->position
+ LENGTH (interval
);
681 if (! NULL_RIGHT_CHILD (i
))
684 while (! NULL_LEFT_CHILD (i
))
687 i
->position
= next_position
;
691 while (! NULL_PARENT (i
))
693 if (AM_LEFT_CHILD (i
))
695 i
= INTERVAL_PARENT (i
);
696 i
->position
= next_position
;
700 i
= INTERVAL_PARENT (i
);
703 return NULL_INTERVAL
;
706 /* Find the preceding interval (lexicographically) to INTERVAL.
707 Sets the `position' field based on that of INTERVAL (see
711 previous_interval (register INTERVAL interval
)
715 if (NULL_INTERVAL_P (interval
))
716 return NULL_INTERVAL
;
718 if (! NULL_LEFT_CHILD (interval
))
721 while (! NULL_RIGHT_CHILD (i
))
724 i
->position
= interval
->position
- LENGTH (i
);
729 while (! NULL_PARENT (i
))
731 if (AM_RIGHT_CHILD (i
))
733 i
= INTERVAL_PARENT (i
);
735 i
->position
= interval
->position
- LENGTH (i
);
738 i
= INTERVAL_PARENT (i
);
741 return NULL_INTERVAL
;
744 /* Find the interval containing POS given some non-NULL INTERVAL
745 in the same tree. Note that we need to update interval->position
746 if we go down the tree.
747 To speed up the process, we assume that the ->position of
748 I and all its parents is already uptodate. */
750 update_interval (register INTERVAL i
, EMACS_INT pos
)
752 if (NULL_INTERVAL_P (i
))
753 return NULL_INTERVAL
;
757 if (pos
< i
->position
)
760 if (pos
>= i
->position
- TOTAL_LENGTH (i
->left
))
762 i
->left
->position
= i
->position
- TOTAL_LENGTH (i
->left
)
763 + LEFT_TOTAL_LENGTH (i
->left
);
764 i
= i
->left
; /* Move to the left child */
766 else if (NULL_PARENT (i
))
767 error ("Point before start of properties");
769 i
= INTERVAL_PARENT (i
);
772 else if (pos
>= INTERVAL_LAST_POS (i
))
775 if (pos
< INTERVAL_LAST_POS (i
) + TOTAL_LENGTH (i
->right
))
777 i
->right
->position
= INTERVAL_LAST_POS (i
)
778 + LEFT_TOTAL_LENGTH (i
->right
);
779 i
= i
->right
; /* Move to the right child */
781 else if (NULL_PARENT (i
))
782 error ("Point %"pI
"d after end of properties", pos
);
784 i
= INTERVAL_PARENT (i
);
794 /* Traverse a path down the interval tree TREE to the interval
795 containing POSITION, adjusting all nodes on the path for
796 an addition of LENGTH characters. Insertion between two intervals
797 (i.e., point == i->position, where i is second interval) means
798 text goes into second interval.
800 Modifications are needed to handle the hungry bits -- after simply
801 finding the interval at position (don't add length going down),
802 if it's the beginning of the interval, get the previous interval
803 and check the hungry bits of both. Then add the length going back up
807 adjust_intervals_for_insertion (tree
, position
, length
)
809 EMACS_INT position
, length
;
811 register EMACS_INT relative_position
;
812 register INTERVAL
this;
814 if (TOTAL_LENGTH (tree
) == 0) /* Paranoia */
817 /* If inserting at point-max of a buffer, that position
818 will be out of range */
819 if (position
> TOTAL_LENGTH (tree
))
820 position
= TOTAL_LENGTH (tree
);
821 relative_position
= position
;
826 if (relative_position
<= LEFT_TOTAL_LENGTH (this))
828 this->total_length
+= length
;
829 CHECK_TOTAL_LENGTH (this);
832 else if (relative_position
> (TOTAL_LENGTH (this)
833 - RIGHT_TOTAL_LENGTH (this)))
835 relative_position
-= (TOTAL_LENGTH (this)
836 - RIGHT_TOTAL_LENGTH (this));
837 this->total_length
+= length
;
838 CHECK_TOTAL_LENGTH (this);
843 /* If we are to use zero-length intervals as buffer pointers,
844 then this code will have to change. */
845 this->total_length
+= length
;
846 CHECK_TOTAL_LENGTH (this);
847 this->position
= LEFT_TOTAL_LENGTH (this)
848 + position
- relative_position
+ 1;
855 /* Effect an adjustment corresponding to the addition of LENGTH characters
856 of text. Do this by finding the interval containing POSITION in the
857 interval tree TREE, and then adjusting all of its ancestors by adding
860 If POSITION is the first character of an interval, meaning that point
861 is actually between the two intervals, make the new text belong to
862 the interval which is "sticky".
864 If both intervals are "sticky", then make them belong to the left-most
865 interval. Another possibility would be to create a new interval for
866 this text, and make it have the merged properties of both ends. */
869 adjust_intervals_for_insertion (INTERVAL tree
,
870 EMACS_INT position
, EMACS_INT length
)
873 register INTERVAL temp
;
878 if (TOTAL_LENGTH (tree
) == 0) /* Paranoia */
881 GET_INTERVAL_OBJECT (parent
, tree
);
882 offset
= (BUFFERP (parent
) ? BUF_BEG (XBUFFER (parent
)) : 0);
884 /* If inserting at point-max of a buffer, that position will be out
885 of range. Remember that buffer positions are 1-based. */
886 if (position
>= TOTAL_LENGTH (tree
) + offset
)
888 position
= TOTAL_LENGTH (tree
) + offset
;
892 i
= find_interval (tree
, position
);
894 /* If in middle of an interval which is not sticky either way,
895 we must not just give its properties to the insertion.
896 So split this interval at the insertion point.
898 Originally, the if condition here was this:
899 (! (position == i->position || eobp)
900 && END_NONSTICKY_P (i)
901 && FRONT_NONSTICKY_P (i))
902 But, these macros are now unreliable because of introduction of
903 Vtext_property_default_nonsticky. So, we always check properties
904 one by one if POSITION is in middle of an interval. */
905 if (! (position
== i
->position
|| eobp
))
908 Lisp_Object front
, rear
;
912 /* Properties font-sticky and rear-nonsticky override
913 Vtext_property_default_nonsticky. So, if they are t, we can
914 skip one by one checking of properties. */
915 rear
= textget (i
->plist
, Qrear_nonsticky
);
916 if (! CONSP (rear
) && ! NILP (rear
))
918 /* All properties are nonsticky. We split the interval. */
921 front
= textget (i
->plist
, Qfront_sticky
);
922 if (! CONSP (front
) && ! NILP (front
))
924 /* All properties are sticky. We don't split the interval. */
929 /* Does any actual property pose an actual problem? We break
930 the loop if we find a nonsticky property. */
931 for (; CONSP (tail
); tail
= Fcdr (XCDR (tail
)))
933 Lisp_Object prop
, tmp
;
936 /* Is this particular property front-sticky? */
937 if (CONSP (front
) && ! NILP (Fmemq (prop
, front
)))
940 /* Is this particular property rear-nonsticky? */
941 if (CONSP (rear
) && ! NILP (Fmemq (prop
, rear
)))
944 /* Is this particular property recorded as sticky or
945 nonsticky in Vtext_property_default_nonsticky? */
946 tmp
= Fassq (prop
, Vtext_property_default_nonsticky
);
954 /* By default, a text property is rear-sticky, thus we
955 continue the loop. */
959 /* If any property is a real problem, split the interval. */
962 temp
= split_interval_right (i
, position
- i
->position
);
963 copy_properties (i
, temp
);
968 /* If we are positioned between intervals, check the stickiness of
969 both of them. We have to do this too, if we are at BEG or Z. */
970 if (position
== i
->position
|| eobp
)
972 register INTERVAL prev
;
982 prev
= previous_interval (i
);
984 /* Even if we are positioned between intervals, we default
985 to the left one if it exists. We extend it now and split
986 off a part later, if stickiness demands it. */
987 for (temp
= prev
? prev
: i
; temp
; temp
= INTERVAL_PARENT_OR_NULL (temp
))
989 temp
->total_length
+= length
;
990 CHECK_TOTAL_LENGTH (temp
);
991 temp
= balance_possible_root_interval (temp
);
994 /* If at least one interval has sticky properties,
995 we check the stickiness property by property.
997 Originally, the if condition here was this:
998 (END_NONSTICKY_P (prev) || FRONT_STICKY_P (i))
999 But, these macros are now unreliable because of introduction
1000 of Vtext_property_default_nonsticky. So, we always have to
1001 check stickiness of properties one by one. If cache of
1002 stickiness is implemented in the future, we may be able to
1003 use those macros again. */
1006 Lisp_Object pleft
, pright
;
1007 struct interval newi
;
1009 pleft
= NULL_INTERVAL_P (prev
) ? Qnil
: prev
->plist
;
1010 pright
= NULL_INTERVAL_P (i
) ? Qnil
: i
->plist
;
1011 newi
.plist
= merge_properties_sticky (pleft
, pright
);
1013 if (! prev
) /* i.e. position == BEG */
1015 if (! intervals_equal (i
, &newi
))
1017 i
= split_interval_left (i
, length
);
1018 i
->plist
= newi
.plist
;
1021 else if (! intervals_equal (prev
, &newi
))
1023 prev
= split_interval_right (prev
,
1024 position
- prev
->position
);
1025 prev
->plist
= newi
.plist
;
1026 if (! NULL_INTERVAL_P (i
)
1027 && intervals_equal (prev
, i
))
1028 merge_interval_right (prev
);
1031 /* We will need to update the cache here later. */
1033 else if (! prev
&& ! NILP (i
->plist
))
1035 /* Just split off a new interval at the left.
1036 Since I wasn't front-sticky, the empty plist is ok. */
1037 i
= split_interval_left (i
, length
);
1041 /* Otherwise just extend the interval. */
1044 for (temp
= i
; temp
; temp
= INTERVAL_PARENT_OR_NULL (temp
))
1046 temp
->total_length
+= length
;
1047 CHECK_TOTAL_LENGTH (temp
);
1048 temp
= balance_possible_root_interval (temp
);
1055 /* Any property might be front-sticky on the left, rear-sticky on the left,
1056 front-sticky on the right, or rear-sticky on the right; the 16 combinations
1057 can be arranged in a matrix with rows denoting the left conditions and
1058 columns denoting the right conditions:
1066 left-props = '(front-sticky (p8 p9 pa pb pc pd pe pf)
1067 rear-nonsticky (p4 p5 p6 p7 p8 p9 pa pb)
1068 p0 L p1 L p2 L p3 L p4 L p5 L p6 L p7 L
1069 p8 L p9 L pa L pb L pc L pd L pe L pf L)
1070 right-props = '(front-sticky (p2 p3 p6 p7 pa pb pe pf)
1071 rear-nonsticky (p1 p2 p5 p6 p9 pa pd pe)
1072 p0 R p1 R p2 R p3 R p4 R p5 R p6 R p7 R
1073 p8 R p9 R pa R pb R pc R pd R pe R pf R)
1075 We inherit from whoever has a sticky side facing us. If both sides
1076 do (cases 2, 3, E, and F), then we inherit from whichever side has a
1077 non-nil value for the current property. If both sides do, then we take
1080 When we inherit a property, we get its stickiness as well as its value.
1081 So, when we merge the above two lists, we expect to get this:
1083 result = '(front-sticky (p6 p7 pa pb pc pd pe pf)
1084 rear-nonsticky (p6 pa)
1085 p0 L p1 L p2 L p3 L p6 R p7 R
1086 pa R pb R pc L pd L pe L pf L)
1088 The optimizable special cases are:
1089 left rear-nonsticky = nil, right front-sticky = nil (inherit left)
1090 left rear-nonsticky = t, right front-sticky = t (inherit right)
1091 left rear-nonsticky = t, right front-sticky = nil (inherit none)
1095 merge_properties_sticky (Lisp_Object pleft
, Lisp_Object pright
)
1097 register Lisp_Object props
, front
, rear
;
1098 Lisp_Object lfront
, lrear
, rfront
, rrear
;
1099 register Lisp_Object tail1
, tail2
, sym
, lval
, rval
, cat
;
1100 int use_left
, use_right
;
1106 lfront
= textget (pleft
, Qfront_sticky
);
1107 lrear
= textget (pleft
, Qrear_nonsticky
);
1108 rfront
= textget (pright
, Qfront_sticky
);
1109 rrear
= textget (pright
, Qrear_nonsticky
);
1111 /* Go through each element of PRIGHT. */
1112 for (tail1
= pright
; CONSP (tail1
); tail1
= Fcdr (XCDR (tail1
)))
1118 /* Sticky properties get special treatment. */
1119 if (EQ (sym
, Qrear_nonsticky
) || EQ (sym
, Qfront_sticky
))
1122 rval
= Fcar (XCDR (tail1
));
1123 for (tail2
= pleft
; CONSP (tail2
); tail2
= Fcdr (XCDR (tail2
)))
1124 if (EQ (sym
, XCAR (tail2
)))
1127 /* Indicate whether the property is explicitly defined on the left.
1128 (We know it is defined explicitly on the right
1129 because otherwise we don't get here.) */
1130 lpresent
= ! NILP (tail2
);
1131 lval
= (NILP (tail2
) ? Qnil
: Fcar (Fcdr (tail2
)));
1133 /* Even if lrear or rfront say nothing about the stickiness of
1134 SYM, Vtext_property_default_nonsticky may give default
1135 stickiness to SYM. */
1136 tmp
= Fassq (sym
, Vtext_property_default_nonsticky
);
1137 use_left
= (lpresent
1138 && ! (TMEM (sym
, lrear
)
1139 || (CONSP (tmp
) && ! NILP (XCDR (tmp
)))));
1140 use_right
= (TMEM (sym
, rfront
)
1141 || (CONSP (tmp
) && NILP (XCDR (tmp
))));
1142 if (use_left
&& use_right
)
1146 else if (NILP (rval
))
1151 /* We build props as (value sym ...) rather than (sym value ...)
1152 because we plan to nreverse it when we're done. */
1153 props
= Fcons (lval
, Fcons (sym
, props
));
1154 if (TMEM (sym
, lfront
))
1155 front
= Fcons (sym
, front
);
1156 if (TMEM (sym
, lrear
))
1157 rear
= Fcons (sym
, rear
);
1161 props
= Fcons (rval
, Fcons (sym
, props
));
1162 if (TMEM (sym
, rfront
))
1163 front
= Fcons (sym
, front
);
1164 if (TMEM (sym
, rrear
))
1165 rear
= Fcons (sym
, rear
);
1169 /* Now go through each element of PLEFT. */
1170 for (tail2
= pleft
; CONSP (tail2
); tail2
= Fcdr (XCDR (tail2
)))
1176 /* Sticky properties get special treatment. */
1177 if (EQ (sym
, Qrear_nonsticky
) || EQ (sym
, Qfront_sticky
))
1180 /* If sym is in PRIGHT, we've already considered it. */
1181 for (tail1
= pright
; CONSP (tail1
); tail1
= Fcdr (XCDR (tail1
)))
1182 if (EQ (sym
, XCAR (tail1
)))
1187 lval
= Fcar (XCDR (tail2
));
1189 /* Even if lrear or rfront say nothing about the stickiness of
1190 SYM, Vtext_property_default_nonsticky may give default
1191 stickiness to SYM. */
1192 tmp
= Fassq (sym
, Vtext_property_default_nonsticky
);
1194 /* Since rval is known to be nil in this loop, the test simplifies. */
1195 if (! (TMEM (sym
, lrear
) || (CONSP (tmp
) && ! NILP (XCDR (tmp
)))))
1197 props
= Fcons (lval
, Fcons (sym
, props
));
1198 if (TMEM (sym
, lfront
))
1199 front
= Fcons (sym
, front
);
1201 else if (TMEM (sym
, rfront
) || (CONSP (tmp
) && NILP (XCDR (tmp
))))
1203 /* The value is nil, but we still inherit the stickiness
1205 front
= Fcons (sym
, front
);
1206 if (TMEM (sym
, rrear
))
1207 rear
= Fcons (sym
, rear
);
1210 props
= Fnreverse (props
);
1212 props
= Fcons (Qrear_nonsticky
, Fcons (Fnreverse (rear
), props
));
1214 cat
= textget (props
, Qcategory
);
1217 /* If we have inherited a front-stick category property that is t,
1218 we don't need to set up a detailed one. */
1219 ! (! NILP (cat
) && SYMBOLP (cat
)
1220 && EQ (Fget (cat
, Qfront_sticky
), Qt
)))
1221 props
= Fcons (Qfront_sticky
, Fcons (Fnreverse (front
), props
));
1226 /* Delete a node I from its interval tree by merging its subtrees
1227 into one subtree which is then returned. Caller is responsible for
1228 storing the resulting subtree into its parent. */
1231 delete_node (register INTERVAL i
)
1233 register INTERVAL migrate
, this;
1234 register EMACS_INT migrate_amt
;
1236 if (NULL_INTERVAL_P (i
->left
))
1238 if (NULL_INTERVAL_P (i
->right
))
1242 migrate_amt
= i
->left
->total_length
;
1244 this->total_length
+= migrate_amt
;
1245 while (! NULL_INTERVAL_P (this->left
))
1248 this->total_length
+= migrate_amt
;
1250 CHECK_TOTAL_LENGTH (this);
1251 this->left
= migrate
;
1252 SET_INTERVAL_PARENT (migrate
, this);
1257 /* Delete interval I from its tree by calling `delete_node'
1258 and properly connecting the resultant subtree.
1260 I is presumed to be empty; that is, no adjustments are made
1261 for the length of I. */
1264 delete_interval (register INTERVAL i
)
1266 register INTERVAL parent
;
1267 EMACS_INT amt
= LENGTH (i
);
1269 if (amt
> 0) /* Only used on zero-length intervals now. */
1272 if (ROOT_INTERVAL_P (i
))
1275 GET_INTERVAL_OBJECT (owner
, i
);
1276 parent
= delete_node (i
);
1277 if (! NULL_INTERVAL_P (parent
))
1278 SET_INTERVAL_OBJECT (parent
, owner
);
1280 if (BUFFERP (owner
))
1281 BUF_INTERVALS (XBUFFER (owner
)) = parent
;
1282 else if (STRINGP (owner
))
1283 STRING_SET_INTERVALS (owner
, parent
);
1290 parent
= INTERVAL_PARENT (i
);
1291 if (AM_LEFT_CHILD (i
))
1293 parent
->left
= delete_node (i
);
1294 if (! NULL_INTERVAL_P (parent
->left
))
1295 SET_INTERVAL_PARENT (parent
->left
, parent
);
1299 parent
->right
= delete_node (i
);
1300 if (! NULL_INTERVAL_P (parent
->right
))
1301 SET_INTERVAL_PARENT (parent
->right
, parent
);
1305 /* Find the interval in TREE corresponding to the relative position
1306 FROM and delete as much as possible of AMOUNT from that interval.
1307 Return the amount actually deleted, and if the interval was
1308 zeroed-out, delete that interval node from the tree.
1310 Note that FROM is actually origin zero, aka relative to the
1311 leftmost edge of tree. This is appropriate since we call ourselves
1312 recursively on subtrees.
1314 Do this by recursing down TREE to the interval in question, and
1315 deleting the appropriate amount of text. */
1318 interval_deletion_adjustment (register INTERVAL tree
, register EMACS_INT from
,
1319 register EMACS_INT amount
)
1321 register EMACS_INT relative_position
= from
;
1323 if (NULL_INTERVAL_P (tree
))
1327 if (relative_position
< LEFT_TOTAL_LENGTH (tree
))
1329 EMACS_INT subtract
= interval_deletion_adjustment (tree
->left
,
1332 tree
->total_length
-= subtract
;
1333 CHECK_TOTAL_LENGTH (tree
);
1337 else if (relative_position
>= (TOTAL_LENGTH (tree
)
1338 - RIGHT_TOTAL_LENGTH (tree
)))
1342 relative_position
-= (tree
->total_length
1343 - RIGHT_TOTAL_LENGTH (tree
));
1344 subtract
= interval_deletion_adjustment (tree
->right
,
1347 tree
->total_length
-= subtract
;
1348 CHECK_TOTAL_LENGTH (tree
);
1351 /* Here -- this node. */
1354 /* How much can we delete from this interval? */
1355 EMACS_INT my_amount
= ((tree
->total_length
1356 - RIGHT_TOTAL_LENGTH (tree
))
1357 - relative_position
);
1359 if (amount
> my_amount
)
1362 tree
->total_length
-= amount
;
1363 CHECK_TOTAL_LENGTH (tree
);
1364 if (LENGTH (tree
) == 0)
1365 delete_interval (tree
);
1370 /* Never reach here. */
1373 /* Effect the adjustments necessary to the interval tree of BUFFER to
1374 correspond to the deletion of LENGTH characters from that buffer
1375 text. The deletion is effected at position START (which is a
1376 buffer position, i.e. origin 1). */
1379 adjust_intervals_for_deletion (struct buffer
*buffer
,
1380 EMACS_INT start
, EMACS_INT length
)
1382 register EMACS_INT left_to_delete
= length
;
1383 register INTERVAL tree
= BUF_INTERVALS (buffer
);
1387 GET_INTERVAL_OBJECT (parent
, tree
);
1388 offset
= (BUFFERP (parent
) ? BUF_BEG (XBUFFER (parent
)) : 0);
1390 if (NULL_INTERVAL_P (tree
))
1393 if (start
> offset
+ TOTAL_LENGTH (tree
)
1394 || start
+ length
> offset
+ TOTAL_LENGTH (tree
))
1397 if (length
== TOTAL_LENGTH (tree
))
1399 BUF_INTERVALS (buffer
) = NULL_INTERVAL
;
1403 if (ONLY_INTERVAL_P (tree
))
1405 tree
->total_length
-= length
;
1406 CHECK_TOTAL_LENGTH (tree
);
1410 if (start
> offset
+ TOTAL_LENGTH (tree
))
1411 start
= offset
+ TOTAL_LENGTH (tree
);
1412 while (left_to_delete
> 0)
1414 left_to_delete
-= interval_deletion_adjustment (tree
, start
- offset
,
1416 tree
= BUF_INTERVALS (buffer
);
1417 if (left_to_delete
== tree
->total_length
)
1419 BUF_INTERVALS (buffer
) = NULL_INTERVAL
;
1425 /* Make the adjustments necessary to the interval tree of BUFFER to
1426 represent an addition or deletion of LENGTH characters starting
1427 at position START. Addition or deletion is indicated by the sign
1430 The two inline functions (one static) pacify Sun C 5.8, a pre-C99
1431 compiler that does not allow calling a static function (here,
1432 adjust_intervals_for_deletion) from a non-static inline function. */
1435 static_offset_intervals (struct buffer
*buffer
, EMACS_INT start
,
1438 if (NULL_INTERVAL_P (BUF_INTERVALS (buffer
)) || length
== 0)
1442 adjust_intervals_for_insertion (BUF_INTERVALS (buffer
), start
, length
);
1445 IF_LINT (if (length
< - TYPE_MAXIMUM (EMACS_INT
)) abort ();)
1446 adjust_intervals_for_deletion (buffer
, start
, -length
);
1451 offset_intervals (struct buffer
*buffer
, EMACS_INT start
, EMACS_INT length
)
1453 static_offset_intervals (buffer
, start
, length
);
1456 /* Merge interval I with its lexicographic successor. The resulting
1457 interval is returned, and has the properties of the original
1458 successor. The properties of I are lost. I is removed from the
1462 The caller must verify that this is not the last (rightmost)
1466 merge_interval_right (register INTERVAL i
)
1468 register EMACS_INT absorb
= LENGTH (i
);
1469 register INTERVAL successor
;
1471 /* Zero out this interval. */
1472 i
->total_length
-= absorb
;
1473 CHECK_TOTAL_LENGTH (i
);
1475 /* Find the succeeding interval. */
1476 if (! NULL_RIGHT_CHILD (i
)) /* It's below us. Add absorb
1479 successor
= i
->right
;
1480 while (! NULL_LEFT_CHILD (successor
))
1482 successor
->total_length
+= absorb
;
1483 CHECK_TOTAL_LENGTH (successor
);
1484 successor
= successor
->left
;
1487 successor
->total_length
+= absorb
;
1488 CHECK_TOTAL_LENGTH (successor
);
1489 delete_interval (i
);
1494 while (! NULL_PARENT (successor
)) /* It's above us. Subtract as
1497 if (AM_LEFT_CHILD (successor
))
1499 successor
= INTERVAL_PARENT (successor
);
1500 delete_interval (i
);
1504 successor
= INTERVAL_PARENT (successor
);
1505 successor
->total_length
-= absorb
;
1506 CHECK_TOTAL_LENGTH (successor
);
1509 /* This must be the rightmost or last interval and cannot
1510 be merged right. The caller should have known. */
1514 /* Merge interval I with its lexicographic predecessor. The resulting
1515 interval is returned, and has the properties of the original predecessor.
1516 The properties of I are lost. Interval node I is removed from the tree.
1519 The caller must verify that this is not the first (leftmost) interval. */
1522 merge_interval_left (register INTERVAL i
)
1524 register EMACS_INT absorb
= LENGTH (i
);
1525 register INTERVAL predecessor
;
1527 /* Zero out this interval. */
1528 i
->total_length
-= absorb
;
1529 CHECK_TOTAL_LENGTH (i
);
1531 /* Find the preceding interval. */
1532 if (! NULL_LEFT_CHILD (i
)) /* It's below us. Go down,
1533 adding ABSORB as we go. */
1535 predecessor
= i
->left
;
1536 while (! NULL_RIGHT_CHILD (predecessor
))
1538 predecessor
->total_length
+= absorb
;
1539 CHECK_TOTAL_LENGTH (predecessor
);
1540 predecessor
= predecessor
->right
;
1543 predecessor
->total_length
+= absorb
;
1544 CHECK_TOTAL_LENGTH (predecessor
);
1545 delete_interval (i
);
1550 while (! NULL_PARENT (predecessor
)) /* It's above us. Go up,
1551 subtracting ABSORB. */
1553 if (AM_RIGHT_CHILD (predecessor
))
1555 predecessor
= INTERVAL_PARENT (predecessor
);
1556 delete_interval (i
);
1560 predecessor
= INTERVAL_PARENT (predecessor
);
1561 predecessor
->total_length
-= absorb
;
1562 CHECK_TOTAL_LENGTH (predecessor
);
1565 /* This must be the leftmost or first interval and cannot
1566 be merged left. The caller should have known. */
1570 /* Make an exact copy of interval tree SOURCE which descends from
1571 PARENT. This is done by recursing through SOURCE, copying
1572 the current interval and its properties, and then adjusting
1573 the pointers of the copy. */
1576 reproduce_tree (INTERVAL source
, INTERVAL parent
)
1578 register INTERVAL t
= make_interval ();
1580 memcpy (t
, source
, INTERVAL_SIZE
);
1581 copy_properties (source
, t
);
1582 SET_INTERVAL_PARENT (t
, parent
);
1583 if (! NULL_LEFT_CHILD (source
))
1584 t
->left
= reproduce_tree (source
->left
, t
);
1585 if (! NULL_RIGHT_CHILD (source
))
1586 t
->right
= reproduce_tree (source
->right
, t
);
1592 reproduce_tree_obj (INTERVAL source
, Lisp_Object parent
)
1594 register INTERVAL t
= make_interval ();
1596 memcpy (t
, source
, INTERVAL_SIZE
);
1597 copy_properties (source
, t
);
1598 SET_INTERVAL_OBJECT (t
, parent
);
1599 if (! NULL_LEFT_CHILD (source
))
1600 t
->left
= reproduce_tree (source
->left
, t
);
1601 if (! NULL_RIGHT_CHILD (source
))
1602 t
->right
= reproduce_tree (source
->right
, t
);
1608 /* Nobody calls this. Perhaps it's a vestige of an earlier design. */
1610 /* Make a new interval of length LENGTH starting at START in the
1611 group of intervals INTERVALS, which is actually an interval tree.
1612 Returns the new interval.
1614 Generate an error if the new positions would overlap an existing
1618 make_new_interval (intervals
, start
, length
)
1620 EMACS_INT start
, length
;
1624 slot
= find_interval (intervals
, start
);
1625 if (start
+ length
> slot
->position
+ LENGTH (slot
))
1626 error ("Interval would overlap");
1628 if (start
== slot
->position
&& length
== LENGTH (slot
))
1631 if (slot
->position
== start
)
1633 /* New right node. */
1634 split_interval_right (slot
, length
);
1638 if (slot
->position
+ LENGTH (slot
) == start
+ length
)
1640 /* New left node. */
1641 split_interval_left (slot
, LENGTH (slot
) - length
);
1645 /* Convert interval SLOT into three intervals. */
1646 split_interval_left (slot
, start
- slot
->position
);
1647 split_interval_right (slot
, length
);
1652 /* Insert the intervals of SOURCE into BUFFER at POSITION.
1653 LENGTH is the length of the text in SOURCE.
1655 The `position' field of the SOURCE intervals is assumed to be
1656 consistent with its parent; therefore, SOURCE must be an
1657 interval tree made with copy_interval or must be the whole
1658 tree of a buffer or a string.
1660 This is used in insdel.c when inserting Lisp_Strings into the
1661 buffer. The text corresponding to SOURCE is already in the buffer
1662 when this is called. The intervals of new tree are a copy of those
1663 belonging to the string being inserted; intervals are never
1666 If the inserted text had no intervals associated, and we don't
1667 want to inherit the surrounding text's properties, this function
1668 simply returns -- offset_intervals should handle placing the
1669 text in the correct interval, depending on the sticky bits.
1671 If the inserted text had properties (intervals), then there are two
1672 cases -- either insertion happened in the middle of some interval,
1673 or between two intervals.
1675 If the text goes into the middle of an interval, then new
1676 intervals are created in the middle with only the properties of
1677 the new text, *unless* the macro MERGE_INSERTIONS is true, in
1678 which case the new text has the union of its properties and those
1679 of the text into which it was inserted.
1681 If the text goes between two intervals, then if neither interval
1682 had its appropriate sticky property set (front_sticky, rear_sticky),
1683 the new text has only its properties. If one of the sticky properties
1684 is set, then the new text "sticks" to that region and its properties
1685 depend on merging as above. If both the preceding and succeeding
1686 intervals to the new text are "sticky", then the new text retains
1687 only its properties, as if neither sticky property were set. Perhaps
1688 we should consider merging all three sets of properties onto the new
1692 graft_intervals_into_buffer (INTERVAL source
, EMACS_INT position
,
1693 EMACS_INT length
, struct buffer
*buffer
,
1696 register INTERVAL under
, over
, this;
1697 register INTERVAL tree
;
1698 EMACS_INT over_used
;
1700 tree
= BUF_INTERVALS (buffer
);
1702 /* If the new text has no properties, then with inheritance it
1703 becomes part of whatever interval it was inserted into.
1704 To prevent inheritance, we must clear out the properties
1705 of the newly inserted text. */
1706 if (NULL_INTERVAL_P (source
))
1709 if (!inherit
&& !NULL_INTERVAL_P (tree
) && length
> 0)
1711 XSETBUFFER (buf
, buffer
);
1712 set_text_properties_1 (make_number (position
),
1713 make_number (position
+ length
),
1716 if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer
)))
1717 /* Shouldn't be necessary. -stef */
1718 BUF_INTERVALS (buffer
) = balance_an_interval (BUF_INTERVALS (buffer
));
1722 if (NULL_INTERVAL_P (tree
))
1724 /* The inserted text constitutes the whole buffer, so
1725 simply copy over the interval structure. */
1726 if ((BUF_Z (buffer
) - BUF_BEG (buffer
)) == TOTAL_LENGTH (source
))
1729 XSETBUFFER (buf
, buffer
);
1730 BUF_INTERVALS (buffer
) = reproduce_tree_obj (source
, buf
);
1731 BUF_INTERVALS (buffer
)->position
= BEG
;
1732 BUF_INTERVALS (buffer
)->up_obj
= 1;
1734 /* Explicitly free the old tree here? */
1739 /* Create an interval tree in which to place a copy
1740 of the intervals of the inserted string. */
1743 XSETBUFFER (buf
, buffer
);
1744 tree
= create_root_interval (buf
);
1747 else if (TOTAL_LENGTH (tree
) == TOTAL_LENGTH (source
))
1748 /* If the buffer contains only the new string, but
1749 there was already some interval tree there, then it may be
1750 some zero length intervals. Eventually, do something clever
1751 about inserting properly. For now, just waste the old intervals. */
1753 BUF_INTERVALS (buffer
) = reproduce_tree (source
, INTERVAL_PARENT (tree
));
1754 BUF_INTERVALS (buffer
)->position
= BEG
;
1755 BUF_INTERVALS (buffer
)->up_obj
= 1;
1756 /* Explicitly free the old tree here. */
1760 /* Paranoia -- the text has already been added, so this buffer
1761 should be of non-zero length. */
1762 else if (TOTAL_LENGTH (tree
) == 0)
1765 this = under
= find_interval (tree
, position
);
1766 if (NULL_INTERVAL_P (under
)) /* Paranoia */
1768 over
= find_interval (source
, interval_start_pos (source
));
1770 /* Here for insertion in the middle of an interval.
1771 Split off an equivalent interval to the right,
1772 then don't bother with it any more. */
1774 if (position
> under
->position
)
1776 INTERVAL end_unchanged
1777 = split_interval_left (this, position
- under
->position
);
1778 copy_properties (under
, end_unchanged
);
1779 under
->position
= position
;
1783 /* This call may have some effect because previous_interval may
1784 update `position' fields of intervals. Thus, don't ignore it
1785 for the moment. Someone please tell me the truth (K.Handa). */
1786 INTERVAL prev
= previous_interval (under
);
1789 /* But, this code surely has no effect. And, anyway,
1790 END_NONSTICKY_P is unreliable now. */
1791 if (prev
&& !END_NONSTICKY_P (prev
))
1796 /* Insertion is now at beginning of UNDER. */
1798 /* The inserted text "sticks" to the interval `under',
1799 which means it gets those properties.
1800 The properties of under are the result of
1801 adjust_intervals_for_insertion, so stickiness has
1802 already been taken care of. */
1804 /* OVER is the interval we are copying from next.
1805 OVER_USED says how many characters' worth of OVER
1806 have already been copied into target intervals.
1807 UNDER is the next interval in the target. */
1809 while (! NULL_INTERVAL_P (over
))
1811 /* If UNDER is longer than OVER, split it. */
1812 if (LENGTH (over
) - over_used
< LENGTH (under
))
1814 this = split_interval_left (under
, LENGTH (over
) - over_used
);
1815 copy_properties (under
, this);
1820 /* THIS is now the interval to copy or merge into.
1821 OVER covers all of it. */
1823 merge_properties (over
, this);
1825 copy_properties (over
, this);
1827 /* If THIS and OVER end at the same place,
1828 advance OVER to a new source interval. */
1829 if (LENGTH (this) == LENGTH (over
) - over_used
)
1831 over
= next_interval (over
);
1835 /* Otherwise just record that more of OVER has been used. */
1836 over_used
+= LENGTH (this);
1838 /* Always advance to a new target interval. */
1839 under
= next_interval (this);
1842 if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer
)))
1843 BUF_INTERVALS (buffer
) = balance_an_interval (BUF_INTERVALS (buffer
));
1847 /* Get the value of property PROP from PLIST,
1848 which is the plist of an interval.
1849 We check for direct properties, for categories with property PROP,
1850 and for PROP appearing on the default-text-properties list. */
1853 textget (Lisp_Object plist
, register Lisp_Object prop
)
1855 return lookup_char_property (plist
, prop
, 1);
1859 lookup_char_property (Lisp_Object plist
, register Lisp_Object prop
, int textprop
)
1861 register Lisp_Object tail
, fallback
= Qnil
;
1863 for (tail
= plist
; CONSP (tail
); tail
= Fcdr (XCDR (tail
)))
1865 register Lisp_Object tem
;
1868 return Fcar (XCDR (tail
));
1869 if (EQ (tem
, Qcategory
))
1871 tem
= Fcar (XCDR (tail
));
1873 fallback
= Fget (tem
, prop
);
1877 if (! NILP (fallback
))
1879 /* Check for alternative properties */
1880 tail
= Fassq (prop
, Vchar_property_alias_alist
);
1884 for (; NILP (fallback
) && CONSP (tail
); tail
= XCDR (tail
))
1885 fallback
= Fplist_get (plist
, XCAR (tail
));
1888 if (textprop
&& NILP (fallback
) && CONSP (Vdefault_text_properties
))
1889 fallback
= Fplist_get (Vdefault_text_properties
, prop
);
1894 /* Set point in BUFFER "temporarily" to CHARPOS, which corresponds to
1895 byte position BYTEPOS. */
1898 temp_set_point_both (struct buffer
*buffer
,
1899 EMACS_INT charpos
, EMACS_INT bytepos
)
1901 /* In a single-byte buffer, the two positions must be equal. */
1902 if (BUF_ZV (buffer
) == BUF_ZV_BYTE (buffer
)
1903 && charpos
!= bytepos
)
1906 if (charpos
> bytepos
)
1909 if (charpos
> BUF_ZV (buffer
) || charpos
< BUF_BEGV (buffer
))
1912 SET_BUF_PT_BOTH (buffer
, charpos
, bytepos
);
1915 /* Set point "temporarily", without checking any text properties. */
1918 temp_set_point (struct buffer
*buffer
, EMACS_INT charpos
)
1920 temp_set_point_both (buffer
, charpos
,
1921 buf_charpos_to_bytepos (buffer
, charpos
));
1924 /* Set point in BUFFER to CHARPOS. If the target position is
1925 before an intangible character, move to an ok place. */
1928 set_point (EMACS_INT charpos
)
1930 set_point_both (charpos
, buf_charpos_to_bytepos (current_buffer
, charpos
));
1933 /* If there's an invisible character at position POS + TEST_OFFS in the
1934 current buffer, and the invisible property has a `stickiness' such that
1935 inserting a character at position POS would inherit the property it,
1936 return POS + ADJ, otherwise return POS. If TEST_INTANG is non-zero,
1937 then intangibility is required as well as invisibleness.
1939 TEST_OFFS should be either 0 or -1, and ADJ should be either 1 or -1.
1941 Note that `stickiness' is determined by overlay marker insertion types,
1942 if the invisible property comes from an overlay. */
1945 adjust_for_invis_intang (EMACS_INT pos
, EMACS_INT test_offs
, EMACS_INT adj
,
1948 Lisp_Object invis_propval
, invis_overlay
;
1949 Lisp_Object test_pos
;
1951 if ((adj
< 0 && pos
+ adj
< BEGV
) || (adj
> 0 && pos
+ adj
> ZV
))
1952 /* POS + ADJ would be beyond the buffer bounds, so do no adjustment. */
1955 test_pos
= make_number (pos
+ test_offs
);
1958 = get_char_property_and_overlay (test_pos
, Qinvisible
, Qnil
,
1962 || ! NILP (Fget_char_property (test_pos
, Qintangible
, Qnil
)))
1963 && TEXT_PROP_MEANS_INVISIBLE (invis_propval
)
1964 /* This next test is true if the invisible property has a stickiness
1965 such that an insertion at POS would inherit it. */
1966 && (NILP (invis_overlay
)
1967 /* Invisible property is from a text-property. */
1968 ? (text_property_stickiness (Qinvisible
, make_number (pos
), Qnil
)
1969 == (test_offs
== 0 ? 1 : -1))
1970 /* Invisible property is from an overlay. */
1972 ? XMARKER (OVERLAY_START (invis_overlay
))->insertion_type
== 0
1973 : XMARKER (OVERLAY_END (invis_overlay
))->insertion_type
== 1)))
1979 /* Set point in BUFFER to CHARPOS, which corresponds to byte
1980 position BYTEPOS. If the target position is
1981 before an intangible character, move to an ok place. */
1984 set_point_both (EMACS_INT charpos
, EMACS_INT bytepos
)
1986 register INTERVAL to
, from
, toprev
, fromprev
;
1987 EMACS_INT buffer_point
;
1988 EMACS_INT old_position
= PT
;
1989 /* This ensures that we move forward past intangible text when the
1990 initial position is the same as the destination, in the rare
1991 instances where this is important, e.g. in line-move-finish
1993 int backwards
= (charpos
< old_position
? 1 : 0);
1995 EMACS_INT original_position
;
1997 BVAR (current_buffer
, point_before_scroll
) = Qnil
;
2002 /* In a single-byte buffer, the two positions must be equal. */
2003 eassert (ZV
!= ZV_BYTE
|| charpos
== bytepos
);
2005 /* Check this now, before checking if the buffer has any intervals.
2006 That way, we can catch conditions which break this sanity check
2007 whether or not there are intervals in the buffer. */
2008 eassert (charpos
<= ZV
&& charpos
>= BEGV
);
2010 have_overlays
= (current_buffer
->overlays_before
2011 || current_buffer
->overlays_after
);
2013 /* If we have no text properties and overlays,
2014 then we can do it quickly. */
2015 if (NULL_INTERVAL_P (BUF_INTERVALS (current_buffer
)) && ! have_overlays
)
2017 temp_set_point_both (current_buffer
, charpos
, bytepos
);
2021 /* Set TO to the interval containing the char after CHARPOS,
2022 and TOPREV to the interval containing the char before CHARPOS.
2023 Either one may be null. They may be equal. */
2024 to
= find_interval (BUF_INTERVALS (current_buffer
), charpos
);
2025 if (charpos
== BEGV
)
2027 else if (to
&& to
->position
== charpos
)
2028 toprev
= previous_interval (to
);
2032 buffer_point
= (PT
== ZV
? ZV
- 1 : PT
);
2034 /* Set FROM to the interval containing the char after PT,
2035 and FROMPREV to the interval containing the char before PT.
2036 Either one may be null. They may be equal. */
2037 /* We could cache this and save time. */
2038 from
= find_interval (BUF_INTERVALS (current_buffer
), buffer_point
);
2039 if (buffer_point
== BEGV
)
2041 else if (from
&& from
->position
== PT
)
2042 fromprev
= previous_interval (from
);
2043 else if (buffer_point
!= PT
)
2044 fromprev
= from
, from
= 0;
2048 /* Moving within an interval. */
2049 if (to
== from
&& toprev
== fromprev
&& INTERVAL_VISIBLE_P (to
)
2052 temp_set_point_both (current_buffer
, charpos
, bytepos
);
2056 original_position
= charpos
;
2058 /* If the new position is between two intangible characters
2059 with the same intangible property value,
2060 move forward or backward until a change in that property. */
2061 if (NILP (Vinhibit_point_motion_hooks
)
2062 && ((! NULL_INTERVAL_P (to
) && ! NULL_INTERVAL_P (toprev
))
2064 /* Intangibility never stops us from positioning at the beginning
2065 or end of the buffer, so don't bother checking in that case. */
2066 && charpos
!= BEGV
&& charpos
!= ZV
)
2069 Lisp_Object intangible_propval
;
2073 /* If the preceding character is both intangible and invisible,
2074 and the invisible property is `rear-sticky', perturb it so
2075 that the search starts one character earlier -- this ensures
2076 that point can never move to the end of an invisible/
2077 intangible/rear-sticky region. */
2078 charpos
= adjust_for_invis_intang (charpos
, -1, -1, 1);
2080 XSETINT (pos
, charpos
);
2082 /* If following char is intangible,
2083 skip back over all chars with matching intangible property. */
2085 intangible_propval
= Fget_char_property (pos
, Qintangible
, Qnil
);
2087 if (! NILP (intangible_propval
))
2089 while (XINT (pos
) > BEGV
2090 && EQ (Fget_char_property (make_number (XINT (pos
) - 1),
2092 intangible_propval
))
2093 pos
= Fprevious_char_property_change (pos
, Qnil
);
2095 /* Set CHARPOS from POS, and if the final intangible character
2096 that we skipped over is also invisible, and the invisible
2097 property is `front-sticky', perturb it to be one character
2098 earlier -- this ensures that point can never move to the
2099 beginning of an invisible/intangible/front-sticky region. */
2100 charpos
= adjust_for_invis_intang (XINT (pos
), 0, -1, 0);
2105 /* If the following character is both intangible and invisible,
2106 and the invisible property is `front-sticky', perturb it so
2107 that the search starts one character later -- this ensures
2108 that point can never move to the beginning of an
2109 invisible/intangible/front-sticky region. */
2110 charpos
= adjust_for_invis_intang (charpos
, 0, 1, 1);
2112 XSETINT (pos
, charpos
);
2114 /* If preceding char is intangible,
2115 skip forward over all chars with matching intangible property. */
2117 intangible_propval
= Fget_char_property (make_number (charpos
- 1),
2120 if (! NILP (intangible_propval
))
2122 while (XINT (pos
) < ZV
2123 && EQ (Fget_char_property (pos
, Qintangible
, Qnil
),
2124 intangible_propval
))
2125 pos
= Fnext_char_property_change (pos
, Qnil
);
2127 /* Set CHARPOS from POS, and if the final intangible character
2128 that we skipped over is also invisible, and the invisible
2129 property is `rear-sticky', perturb it to be one character
2130 later -- this ensures that point can never move to the
2131 end of an invisible/intangible/rear-sticky region. */
2132 charpos
= adjust_for_invis_intang (XINT (pos
), -1, 1, 0);
2136 bytepos
= buf_charpos_to_bytepos (current_buffer
, charpos
);
2139 if (charpos
!= original_position
)
2141 /* Set TO to the interval containing the char after CHARPOS,
2142 and TOPREV to the interval containing the char before CHARPOS.
2143 Either one may be null. They may be equal. */
2144 to
= find_interval (BUF_INTERVALS (current_buffer
), charpos
);
2145 if (charpos
== BEGV
)
2147 else if (to
&& to
->position
== charpos
)
2148 toprev
= previous_interval (to
);
2153 /* Here TO is the interval after the stopping point
2154 and TOPREV is the interval before the stopping point.
2155 One or the other may be null. */
2157 temp_set_point_both (current_buffer
, charpos
, bytepos
);
2159 /* We run point-left and point-entered hooks here, if the
2160 two intervals are not equivalent. These hooks take
2161 (old_point, new_point) as arguments. */
2162 if (NILP (Vinhibit_point_motion_hooks
)
2163 && (! intervals_equal (from
, to
)
2164 || ! intervals_equal (fromprev
, toprev
)))
2166 Lisp_Object leave_after
, leave_before
, enter_after
, enter_before
;
2169 leave_before
= textget (fromprev
->plist
, Qpoint_left
);
2171 leave_before
= Qnil
;
2174 leave_after
= textget (from
->plist
, Qpoint_left
);
2179 enter_before
= textget (toprev
->plist
, Qpoint_entered
);
2181 enter_before
= Qnil
;
2184 enter_after
= textget (to
->plist
, Qpoint_entered
);
2188 if (! EQ (leave_before
, enter_before
) && !NILP (leave_before
))
2189 call2 (leave_before
, make_number (old_position
),
2190 make_number (charpos
));
2191 if (! EQ (leave_after
, enter_after
) && !NILP (leave_after
))
2192 call2 (leave_after
, make_number (old_position
),
2193 make_number (charpos
));
2195 if (! EQ (enter_before
, leave_before
) && !NILP (enter_before
))
2196 call2 (enter_before
, make_number (old_position
),
2197 make_number (charpos
));
2198 if (! EQ (enter_after
, leave_after
) && !NILP (enter_after
))
2199 call2 (enter_after
, make_number (old_position
),
2200 make_number (charpos
));
2204 /* Move point to POSITION, unless POSITION is inside an intangible
2205 segment that reaches all the way to point. */
2208 move_if_not_intangible (EMACS_INT position
)
2211 Lisp_Object intangible_propval
;
2213 XSETINT (pos
, position
);
2215 if (! NILP (Vinhibit_point_motion_hooks
))
2216 /* If intangible is inhibited, always move point to POSITION. */
2218 else if (PT
< position
&& XINT (pos
) < ZV
)
2220 /* We want to move forward, so check the text before POSITION. */
2222 intangible_propval
= Fget_char_property (pos
,
2225 /* If following char is intangible,
2226 skip back over all chars with matching intangible property. */
2227 if (! NILP (intangible_propval
))
2228 while (XINT (pos
) > BEGV
2229 && EQ (Fget_char_property (make_number (XINT (pos
) - 1),
2231 intangible_propval
))
2232 pos
= Fprevious_char_property_change (pos
, Qnil
);
2234 else if (XINT (pos
) > BEGV
)
2236 /* We want to move backward, so check the text after POSITION. */
2238 intangible_propval
= Fget_char_property (make_number (XINT (pos
) - 1),
2241 /* If following char is intangible,
2242 skip forward over all chars with matching intangible property. */
2243 if (! NILP (intangible_propval
))
2244 while (XINT (pos
) < ZV
2245 && EQ (Fget_char_property (pos
, Qintangible
, Qnil
),
2246 intangible_propval
))
2247 pos
= Fnext_char_property_change (pos
, Qnil
);
2250 else if (position
< BEGV
)
2252 else if (position
> ZV
)
2255 /* If the whole stretch between PT and POSITION isn't intangible,
2256 try moving to POSITION (which means we actually move farther
2257 if POSITION is inside of intangible text). */
2259 if (XINT (pos
) != PT
)
2263 /* If text at position POS has property PROP, set *VAL to the property
2264 value, *START and *END to the beginning and end of a region that
2265 has the same property, and return 1. Otherwise return 0.
2267 OBJECT is the string or buffer to look for the property in;
2268 nil means the current buffer. */
2271 get_property_and_range (EMACS_INT pos
, Lisp_Object prop
, Lisp_Object
*val
,
2272 EMACS_INT
*start
, EMACS_INT
*end
, Lisp_Object object
)
2274 INTERVAL i
, prev
, next
;
2277 i
= find_interval (BUF_INTERVALS (current_buffer
), pos
);
2278 else if (BUFFERP (object
))
2279 i
= find_interval (BUF_INTERVALS (XBUFFER (object
)), pos
);
2280 else if (STRINGP (object
))
2281 i
= find_interval (STRING_INTERVALS (object
), pos
);
2285 if (NULL_INTERVAL_P (i
) || (i
->position
+ LENGTH (i
) <= pos
))
2287 *val
= textget (i
->plist
, prop
);
2291 next
= i
; /* remember it in advance */
2292 prev
= previous_interval (i
);
2293 while (! NULL_INTERVAL_P (prev
)
2294 && EQ (*val
, textget (prev
->plist
, prop
)))
2295 i
= prev
, prev
= previous_interval (prev
);
2296 *start
= i
->position
;
2298 next
= next_interval (i
);
2299 while (! NULL_INTERVAL_P (next
)
2300 && EQ (*val
, textget (next
->plist
, prop
)))
2301 i
= next
, next
= next_interval (next
);
2302 *end
= i
->position
+ LENGTH (i
);
2307 /* Return the proper local keymap TYPE for position POSITION in
2308 BUFFER; TYPE should be one of `keymap' or `local-map'. Use the map
2309 specified by the PROP property, if any. Otherwise, if TYPE is
2310 `local-map' use BUFFER's local map.
2312 POSITION must be in the accessible part of BUFFER. */
2315 get_local_map (register EMACS_INT position
, register struct buffer
*buffer
,
2318 Lisp_Object prop
, lispy_position
, lispy_buffer
;
2319 EMACS_INT old_begv
, old_zv
, old_begv_byte
, old_zv_byte
;
2321 /* Perhaps we should just change `position' to the limit. */
2322 if (position
> BUF_ZV (buffer
) || position
< BUF_BEGV (buffer
))
2325 /* Ignore narrowing, so that a local map continues to be valid even if
2326 the visible region contains no characters and hence no properties. */
2327 old_begv
= BUF_BEGV (buffer
);
2328 old_zv
= BUF_ZV (buffer
);
2329 old_begv_byte
= BUF_BEGV_BYTE (buffer
);
2330 old_zv_byte
= BUF_ZV_BYTE (buffer
);
2332 SET_BUF_BEGV_BOTH (buffer
, BUF_BEG (buffer
), BUF_BEG_BYTE (buffer
));
2333 SET_BUF_ZV_BOTH (buffer
, BUF_Z (buffer
), BUF_Z_BYTE (buffer
));
2335 XSETFASTINT (lispy_position
, position
);
2336 XSETBUFFER (lispy_buffer
, buffer
);
2337 /* First check if the CHAR has any property. This is because when
2338 we click with the mouse, the mouse pointer is really pointing
2339 to the CHAR after POS. */
2340 prop
= Fget_char_property (lispy_position
, type
, lispy_buffer
);
2341 /* If not, look at the POS's properties. This is necessary because when
2342 editing a field with a `local-map' property, we want insertion at the end
2343 to obey the `local-map' property. */
2345 prop
= get_pos_property (lispy_position
, type
, lispy_buffer
);
2347 SET_BUF_BEGV_BOTH (buffer
, old_begv
, old_begv_byte
);
2348 SET_BUF_ZV_BOTH (buffer
, old_zv
, old_zv_byte
);
2350 /* Use the local map only if it is valid. */
2351 prop
= get_keymap (prop
, 0, 0);
2355 if (EQ (type
, Qkeymap
))
2358 return BVAR (buffer
, keymap
);
2361 /* Produce an interval tree reflecting the intervals in
2362 TREE from START to START + LENGTH.
2363 The new interval tree has no parent and has a starting-position of 0. */
2366 copy_intervals (INTERVAL tree
, EMACS_INT start
, EMACS_INT length
)
2368 register INTERVAL i
, new, t
;
2369 register EMACS_INT got
, prevlen
;
2371 if (NULL_INTERVAL_P (tree
) || length
<= 0)
2372 return NULL_INTERVAL
;
2374 i
= find_interval (tree
, start
);
2375 if (NULL_INTERVAL_P (i
) || LENGTH (i
) == 0)
2378 /* If there is only one interval and it's the default, return nil. */
2379 if ((start
- i
->position
+ 1 + length
) < LENGTH (i
)
2380 && DEFAULT_INTERVAL_P (i
))
2381 return NULL_INTERVAL
;
2383 new = make_interval ();
2385 got
= (LENGTH (i
) - (start
- i
->position
));
2386 new->total_length
= length
;
2387 CHECK_TOTAL_LENGTH (new);
2388 copy_properties (i
, new);
2392 while (got
< length
)
2394 i
= next_interval (i
);
2395 t
= split_interval_right (t
, prevlen
);
2396 copy_properties (i
, t
);
2397 prevlen
= LENGTH (i
);
2401 return balance_an_interval (new);
2404 /* Give STRING the properties of BUFFER from POSITION to LENGTH. */
2407 copy_intervals_to_string (Lisp_Object string
, struct buffer
*buffer
,
2408 EMACS_INT position
, EMACS_INT length
)
2410 INTERVAL interval_copy
= copy_intervals (BUF_INTERVALS (buffer
),
2412 if (NULL_INTERVAL_P (interval_copy
))
2415 SET_INTERVAL_OBJECT (interval_copy
, string
);
2416 STRING_SET_INTERVALS (string
, interval_copy
);
2419 /* Return 1 if strings S1 and S2 have identical properties; 0 otherwise.
2420 Assume they have identical characters. */
2423 compare_string_intervals (Lisp_Object s1
, Lisp_Object s2
)
2427 EMACS_INT end
= SCHARS (s1
);
2429 i1
= find_interval (STRING_INTERVALS (s1
), 0);
2430 i2
= find_interval (STRING_INTERVALS (s2
), 0);
2434 /* Determine how far we can go before we reach the end of I1 or I2. */
2435 EMACS_INT len1
= (i1
!= 0 ? INTERVAL_LAST_POS (i1
) : end
) - pos
;
2436 EMACS_INT len2
= (i2
!= 0 ? INTERVAL_LAST_POS (i2
) : end
) - pos
;
2437 EMACS_INT distance
= min (len1
, len2
);
2439 /* If we ever find a mismatch between the strings,
2441 if (! intervals_equal (i1
, i2
))
2444 /* Advance POS till the end of the shorter interval,
2445 and advance one or both interval pointers for the new position. */
2447 if (len1
== distance
)
2448 i1
= next_interval (i1
);
2449 if (len2
== distance
)
2450 i2
= next_interval (i2
);
2455 /* Recursively adjust interval I in the current buffer
2456 for setting enable_multibyte_characters to MULTI_FLAG.
2457 The range of interval I is START ... END in characters,
2458 START_BYTE ... END_BYTE in bytes. */
2461 set_intervals_multibyte_1 (INTERVAL i
, int multi_flag
,
2462 EMACS_INT start
, EMACS_INT start_byte
,
2463 EMACS_INT end
, EMACS_INT end_byte
)
2465 /* Fix the length of this interval. */
2467 i
->total_length
= end
- start
;
2469 i
->total_length
= end_byte
- start_byte
;
2470 CHECK_TOTAL_LENGTH (i
);
2472 if (TOTAL_LENGTH (i
) == 0)
2474 delete_interval (i
);
2478 /* Recursively fix the length of the subintervals. */
2481 EMACS_INT left_end
, left_end_byte
;
2486 left_end_byte
= start_byte
+ LEFT_TOTAL_LENGTH (i
);
2487 left_end
= BYTE_TO_CHAR (left_end_byte
);
2489 temp
= CHAR_TO_BYTE (left_end
);
2491 /* If LEFT_END_BYTE is in the middle of a character,
2492 adjust it and LEFT_END to a char boundary. */
2493 if (left_end_byte
> temp
)
2495 left_end_byte
= temp
;
2497 if (left_end_byte
< temp
)
2500 left_end_byte
= CHAR_TO_BYTE (left_end
);
2505 left_end
= start
+ LEFT_TOTAL_LENGTH (i
);
2506 left_end_byte
= CHAR_TO_BYTE (left_end
);
2509 set_intervals_multibyte_1 (i
->left
, multi_flag
, start
, start_byte
,
2510 left_end
, left_end_byte
);
2514 EMACS_INT right_start_byte
, right_start
;
2520 right_start_byte
= end_byte
- RIGHT_TOTAL_LENGTH (i
);
2521 right_start
= BYTE_TO_CHAR (right_start_byte
);
2523 /* If RIGHT_START_BYTE is in the middle of a character,
2524 adjust it and RIGHT_START to a char boundary. */
2525 temp
= CHAR_TO_BYTE (right_start
);
2527 if (right_start_byte
< temp
)
2529 right_start_byte
= temp
;
2531 if (right_start_byte
> temp
)
2534 right_start_byte
= CHAR_TO_BYTE (right_start
);
2539 right_start
= end
- RIGHT_TOTAL_LENGTH (i
);
2540 right_start_byte
= CHAR_TO_BYTE (right_start
);
2543 set_intervals_multibyte_1 (i
->right
, multi_flag
,
2544 right_start
, right_start_byte
,
2548 /* Rounding to char boundaries can theoretically ake this interval
2549 spurious. If so, delete one child, and copy its property list
2550 to this interval. */
2551 if (LEFT_TOTAL_LENGTH (i
) + RIGHT_TOTAL_LENGTH (i
) >= TOTAL_LENGTH (i
))
2555 (i
)->plist
= (i
)->left
->plist
;
2556 (i
)->left
->total_length
= 0;
2557 delete_interval ((i
)->left
);
2561 (i
)->plist
= (i
)->right
->plist
;
2562 (i
)->right
->total_length
= 0;
2563 delete_interval ((i
)->right
);
2568 /* Update the intervals of the current buffer
2569 to fit the contents as multibyte (if MULTI_FLAG is 1)
2570 or to fit them as non-multibyte (if MULTI_FLAG is 0). */
2573 set_intervals_multibyte (int multi_flag
)
2575 if (BUF_INTERVALS (current_buffer
))
2576 set_intervals_multibyte_1 (BUF_INTERVALS (current_buffer
), multi_flag
,
2577 BEG
, BEG_BYTE
, Z
, Z_BYTE
);