1 /* Extended regular expression matching and search library,
3 (Implements POSIX draft P10003.2/D11.2, except for
4 internationalization features.)
6 Copyright (C) 1993 Free Software Foundation, Inc.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22 /* AIX requires this to be the first thing in the file. */
23 #if defined (_AIX) && !defined (REGEX_MALLOC)
30 #if defined (CONFIG_BROKETS)
31 /* We use <config.h> instead of "config.h" so that a compilation
32 using -I. -I$srcdir will use ./config.h rather than $srcdir/config.h
33 (which it would do because it found this file in $srcdir). */
40 /* We need this for `regex.h', and perhaps for the Emacs include files. */
41 #include <sys/types.h>
47 /* The `emacs' switch turns on certain matching commands
48 that make sense only in Emacs. */
55 /* Emacs uses `NULL' as a predicate. */
68 /* We used to test for `BSTRING' here, but only GCC and Emacs define
69 `BSTRING', as far as I know, and neither of them use this code. */
70 #if HAVE_STRING_H || STDC_HEADERS
73 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
76 #define bcopy(s, d, n) memcpy ((d), (s), (n))
79 #define bzero(s, n) memset ((s), 0, (n))
85 /* Define the syntax stuff for \<, \>, etc. */
87 /* This must be nonzero for the wordchar and notwordchar pattern
88 commands in re_match_2. */
95 extern char *re_syntax_table
;
97 #else /* not SYNTAX_TABLE */
99 /* How many characters in the character set. */
100 #define CHAR_SET_SIZE 256
102 static char re_syntax_table
[CHAR_SET_SIZE
];
113 bzero (re_syntax_table
, sizeof re_syntax_table
);
115 for (c
= 'a'; c
<= 'z'; c
++)
116 re_syntax_table
[c
] = Sword
;
118 for (c
= 'A'; c
<= 'Z'; c
++)
119 re_syntax_table
[c
] = Sword
;
121 for (c
= '0'; c
<= '9'; c
++)
122 re_syntax_table
[c
] = Sword
;
124 re_syntax_table
['_'] = Sword
;
129 #endif /* not SYNTAX_TABLE */
131 #define SYNTAX(c) re_syntax_table[c]
133 #endif /* not emacs */
135 /* Get the interface, including the syntax bits. */
138 /* isalpha etc. are used for the character classes. */
141 /* Jim Meyering writes:
143 "... Some ctype macros are valid only for character codes that
144 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
145 using /bin/cc or gcc but without giving an ansi option). So, all
146 ctype uses should be through macros like ISPRINT... If
147 STDC_HEADERS is defined, then autoconf has verified that the ctype
148 macros don't need to be guarded with references to isascii. ...
149 Defining isascii to 1 should let any compiler worth its salt
150 eliminate the && through constant folding." */
152 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
155 #define ISASCII(c) isascii(c)
159 #define ISBLANK(c) (ISASCII (c) && isblank (c))
161 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
164 #define ISGRAPH(c) (ISASCII (c) && isgraph (c))
166 #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
169 #define ISPRINT(c) (ISASCII (c) && isprint (c))
170 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
171 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
172 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
173 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
174 #define ISLOWER(c) (ISASCII (c) && islower (c))
175 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
176 #define ISSPACE(c) (ISASCII (c) && isspace (c))
177 #define ISUPPER(c) (ISASCII (c) && isupper (c))
178 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
184 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
185 since ours (we hope) works properly with all combinations of
186 machines, compilers, `char' and `unsigned char' argument types.
187 (Per Bothner suggested the basic approach.) */
188 #undef SIGN_EXTEND_CHAR
190 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
191 #else /* not __STDC__ */
192 /* As in Harbison and Steele. */
193 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
196 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
197 use `alloca' instead of `malloc'. This is because using malloc in
198 re_search* or re_match* could cause memory leaks when C-g is used in
199 Emacs; also, malloc is slower and causes storage fragmentation. On
200 the other hand, malloc is more portable, and easier to debug.
202 Because we sometimes use alloca, some routines have to be macros,
203 not functions -- `alloca'-allocated space disappears at the end of the
204 function it is called in. */
208 #define REGEX_ALLOCATE malloc
209 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
211 #else /* not REGEX_MALLOC */
213 /* Emacs already defines alloca, sometimes. */
216 /* Make alloca work the best possible way. */
218 #define alloca __builtin_alloca
219 #else /* not __GNUC__ */
222 #else /* not __GNUC__ or HAVE_ALLOCA_H */
223 #ifndef _AIX /* Already did AIX, up at the top. */
225 #endif /* not _AIX */
226 #endif /* not HAVE_ALLOCA_H */
227 #endif /* not __GNUC__ */
229 #endif /* not alloca */
231 #define REGEX_ALLOCATE alloca
233 /* Assumes a `char *destination' variable. */
234 #define REGEX_REALLOCATE(source, osize, nsize) \
235 (destination = (char *) alloca (nsize), \
236 bcopy (source, destination, osize), \
239 #endif /* not REGEX_MALLOC */
242 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
243 `string1' or just past its end. This works if PTR is NULL, which is
245 #define FIRST_STRING_P(ptr) \
246 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
248 /* (Re)Allocate N items of type T using malloc, or fail. */
249 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
250 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
251 #define RETALLOC_IF(addr, n, t) \
252 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
253 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
255 #define BYTEWIDTH 8 /* In bits. */
257 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
259 #define MAX(a, b) ((a) > (b) ? (a) : (b))
260 #define MIN(a, b) ((a) < (b) ? (a) : (b))
262 typedef char boolean
;
266 /* These are the command codes that appear in compiled regular
267 expressions. Some opcodes are followed by argument bytes. A
268 command code can specify any interpretation whatsoever for its
269 arguments. Zero bytes may appear in the compiled regular expression.
271 The value of `exactn' is needed in search.c (search_buffer) in Emacs.
272 So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
273 `exactn' we use here must also be 1. */
279 /* Followed by one byte giving n, then by n literal bytes. */
282 /* Matches any (more or less) character. */
285 /* Matches any one char belonging to specified set. First
286 following byte is number of bitmap bytes. Then come bytes
287 for a bitmap saying which chars are in. Bits in each byte
288 are ordered low-bit-first. A character is in the set if its
289 bit is 1. A character too large to have a bit in the map is
290 automatically not in the set. */
293 /* Same parameters as charset, but match any character that is
294 not one of those specified. */
297 /* Start remembering the text that is matched, for storing in a
298 register. Followed by one byte with the register number, in
299 the range 0 to one less than the pattern buffer's re_nsub
300 field. Then followed by one byte with the number of groups
301 inner to this one. (This last has to be part of the
302 start_memory only because we need it in the on_failure_jump
306 /* Stop remembering the text that is matched and store it in a
307 memory register. Followed by one byte with the register
308 number, in the range 0 to one less than `re_nsub' in the
309 pattern buffer, and one byte with the number of inner groups,
310 just like `start_memory'. (We need the number of inner
311 groups here because we don't have any easy way of finding the
312 corresponding start_memory when we're at a stop_memory.) */
315 /* Match a duplicate of something remembered. Followed by one
316 byte containing the register number. */
319 /* Fail unless at beginning of line. */
322 /* Fail unless at end of line. */
325 /* Succeeds if at beginning of buffer (if emacs) or at beginning
326 of string to be matched (if not). */
329 /* Analogously, for end of buffer/string. */
332 /* Followed by two byte relative address to which to jump. */
335 /* Same as jump, but marks the end of an alternative. */
338 /* Followed by two-byte relative address of place to resume at
339 in case of failure. */
342 /* Like on_failure_jump, but pushes a placeholder instead of the
343 current string position when executed. */
344 on_failure_keep_string_jump
,
346 /* Throw away latest failure point and then jump to following
347 two-byte relative address. */
350 /* Change to pop_failure_jump if know won't have to backtrack to
351 match; otherwise change to jump. This is used to jump
352 back to the beginning of a repeat. If what follows this jump
353 clearly won't match what the repeat does, such that we can be
354 sure that there is no use backtracking out of repetitions
355 already matched, then we change it to a pop_failure_jump.
356 Followed by two-byte address. */
359 /* Jump to following two-byte address, and push a dummy failure
360 point. This failure point will be thrown away if an attempt
361 is made to use it for a failure. A `+' construct makes this
362 before the first repeat. Also used as an intermediary kind
363 of jump when compiling an alternative. */
366 /* Push a dummy failure point and continue. Used at the end of
370 /* Followed by two-byte relative address and two-byte number n.
371 After matching N times, jump to the address upon failure. */
374 /* Followed by two-byte relative address, and two-byte number n.
375 Jump to the address N times, then fail. */
378 /* Set the following two-byte relative address to the
379 subsequent two-byte number. The address *includes* the two
383 wordchar
, /* Matches any word-constituent character. */
384 notwordchar
, /* Matches any char that is not a word-constituent. */
386 wordbeg
, /* Succeeds if at word beginning. */
387 wordend
, /* Succeeds if at word end. */
389 wordbound
, /* Succeeds if at a word boundary. */
390 notwordbound
/* Succeeds if not at a word boundary. */
393 ,before_dot
, /* Succeeds if before point. */
394 at_dot
, /* Succeeds if at point. */
395 after_dot
, /* Succeeds if after point. */
397 /* Matches any character whose syntax is specified. Followed by
398 a byte which contains a syntax code, e.g., Sword. */
401 /* Matches any character whose syntax is not that specified. */
406 /* Common operations on the compiled pattern. */
408 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
410 #define STORE_NUMBER(destination, number) \
412 (destination)[0] = (number) & 0377; \
413 (destination)[1] = (number) >> 8; \
416 /* Same as STORE_NUMBER, except increment DESTINATION to
417 the byte after where the number is stored. Therefore, DESTINATION
418 must be an lvalue. */
420 #define STORE_NUMBER_AND_INCR(destination, number) \
422 STORE_NUMBER (destination, number); \
423 (destination) += 2; \
426 /* Put into DESTINATION a number stored in two contiguous bytes starting
429 #define EXTRACT_NUMBER(destination, source) \
431 (destination) = *(source) & 0377; \
432 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
437 extract_number (dest
, source
)
439 unsigned char *source
;
441 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
442 *dest
= *source
& 0377;
446 #ifndef EXTRACT_MACROS /* To debug the macros. */
447 #undef EXTRACT_NUMBER
448 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
449 #endif /* not EXTRACT_MACROS */
453 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
454 SOURCE must be an lvalue. */
456 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
458 EXTRACT_NUMBER (destination, source); \
464 extract_number_and_incr (destination
, source
)
466 unsigned char **source
;
468 extract_number (destination
, *source
);
472 #ifndef EXTRACT_MACROS
473 #undef EXTRACT_NUMBER_AND_INCR
474 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
475 extract_number_and_incr (&dest, &src)
476 #endif /* not EXTRACT_MACROS */
480 /* If DEBUG is defined, Regex prints many voluminous messages about what
481 it is doing (if the variable `debug' is nonzero). If linked with the
482 main program in `iregex.c', you can enter patterns and strings
483 interactively. And if linked with the main program in `main.c' and
484 the other test files, you can run the already-written tests. */
488 /* We use standard I/O for debugging. */
491 /* It is useful to test things that ``must'' be true when debugging. */
494 static int debug
= 0;
496 #define DEBUG_STATEMENT(e) e
497 #define DEBUG_PRINT1(x) if (debug) printf (x)
498 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
499 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
500 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
501 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
502 if (debug) print_partial_compiled_pattern (s, e)
503 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
504 if (debug) print_double_string (w, s1, sz1, s2, sz2)
507 extern void printchar ();
509 /* Print the fastmap in human-readable form. */
512 print_fastmap (fastmap
)
515 unsigned was_a_range
= 0;
518 while (i
< (1 << BYTEWIDTH
))
524 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
540 /* Print a compiled pattern string in human-readable form, starting at
541 the START pointer into it and ending just before the pointer END. */
544 print_partial_compiled_pattern (start
, end
)
545 unsigned char *start
;
549 unsigned char *p
= start
;
550 unsigned char *pend
= end
;
558 /* Loop over pattern commands. */
561 printf ("%d:\t", p
- start
);
563 switch ((re_opcode_t
) *p
++)
571 printf ("/exactn/%d", mcnt
);
582 printf ("/start_memory/%d/%d", mcnt
, *p
++);
587 printf ("/stop_memory/%d/%d", mcnt
, *p
++);
591 printf ("/duplicate/%d", *p
++);
601 register int c
, last
= -100;
602 register int in_range
= 0;
604 printf ("/charset [%s",
605 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
607 assert (p
+ *p
< pend
);
609 for (c
= 0; c
< 256; c
++)
611 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
613 /* Are we starting a range? */
614 if (last
+ 1 == c
&& ! in_range
)
619 /* Have we broken a range? */
620 else if (last
+ 1 != c
&& in_range
)
649 case on_failure_jump
:
650 extract_number_and_incr (&mcnt
, &p
);
651 printf ("/on_failure_jump to %d", p
+ mcnt
- start
);
654 case on_failure_keep_string_jump
:
655 extract_number_and_incr (&mcnt
, &p
);
656 printf ("/on_failure_keep_string_jump to %d", p
+ mcnt
- start
);
659 case dummy_failure_jump
:
660 extract_number_and_incr (&mcnt
, &p
);
661 printf ("/dummy_failure_jump to %d", p
+ mcnt
- start
);
664 case push_dummy_failure
:
665 printf ("/push_dummy_failure");
669 extract_number_and_incr (&mcnt
, &p
);
670 printf ("/maybe_pop_jump to %d", p
+ mcnt
- start
);
673 case pop_failure_jump
:
674 extract_number_and_incr (&mcnt
, &p
);
675 printf ("/pop_failure_jump to %d", p
+ mcnt
- start
);
679 extract_number_and_incr (&mcnt
, &p
);
680 printf ("/jump_past_alt to %d", p
+ mcnt
- start
);
684 extract_number_and_incr (&mcnt
, &p
);
685 printf ("/jump to %d", p
+ mcnt
- start
);
689 extract_number_and_incr (&mcnt
, &p
);
690 extract_number_and_incr (&mcnt2
, &p
);
691 printf ("/succeed_n to %d, %d times", p
+ mcnt
- start
, mcnt2
);
695 extract_number_and_incr (&mcnt
, &p
);
696 extract_number_and_incr (&mcnt2
, &p
);
697 printf ("/jump_n to %d, %d times", p
+ mcnt
- start
, mcnt2
);
701 extract_number_and_incr (&mcnt
, &p
);
702 extract_number_and_incr (&mcnt2
, &p
);
703 printf ("/set_number_at location %d to %d", p
+ mcnt
- start
, mcnt2
);
707 printf ("/wordbound");
711 printf ("/notwordbound");
723 printf ("/before_dot");
731 printf ("/after_dot");
735 printf ("/syntaxspec");
737 printf ("/%d", mcnt
);
741 printf ("/notsyntaxspec");
743 printf ("/%d", mcnt
);
748 printf ("/wordchar");
752 printf ("/notwordchar");
764 printf ("?%d", *(p
-1));
770 printf ("%d:\tend of pattern.\n", p
- start
);
775 print_compiled_pattern (bufp
)
776 struct re_pattern_buffer
*bufp
;
778 unsigned char *buffer
= bufp
->buffer
;
780 print_partial_compiled_pattern (buffer
, buffer
+ bufp
->used
);
781 printf ("%d bytes used/%d bytes allocated.\n", bufp
->used
, bufp
->allocated
);
783 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
785 printf ("fastmap: ");
786 print_fastmap (bufp
->fastmap
);
789 printf ("re_nsub: %d\t", bufp
->re_nsub
);
790 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
791 printf ("can_be_null: %d\t", bufp
->can_be_null
);
792 printf ("newline_anchor: %d\n", bufp
->newline_anchor
);
793 printf ("no_sub: %d\t", bufp
->no_sub
);
794 printf ("not_bol: %d\t", bufp
->not_bol
);
795 printf ("not_eol: %d\t", bufp
->not_eol
);
796 printf ("syntax: %d\n", bufp
->syntax
);
797 /* Perhaps we should print the translate table? */
802 print_double_string (where
, string1
, size1
, string2
, size2
)
815 if (FIRST_STRING_P (where
))
817 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
818 printchar (string1
[this_char
]);
823 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
824 printchar (string2
[this_char
]);
828 #else /* not DEBUG */
833 #define DEBUG_STATEMENT(e)
834 #define DEBUG_PRINT1(x)
835 #define DEBUG_PRINT2(x1, x2)
836 #define DEBUG_PRINT3(x1, x2, x3)
837 #define DEBUG_PRINT4(x1, x2, x3, x4)
838 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
839 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
841 #endif /* not DEBUG */
843 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
844 also be assigned to arbitrarily: each pattern buffer stores its own
845 syntax, so it can be changed between regex compilations. */
846 reg_syntax_t re_syntax_options
= RE_SYNTAX_EMACS
;
849 /* Specify the precise syntax of regexps for compilation. This provides
850 for compatibility for various utilities which historically have
851 different, incompatible syntaxes.
853 The argument SYNTAX is a bit mask comprised of the various bits
854 defined in regex.h. We return the old syntax. */
857 re_set_syntax (syntax
)
860 reg_syntax_t ret
= re_syntax_options
;
862 re_syntax_options
= syntax
;
866 /* This table gives an error message for each of the error codes listed
867 in regex.h. Obviously the order here has to be same as there. */
869 static const char *re_error_msg
[] =
870 { NULL
, /* REG_NOERROR */
871 "No match", /* REG_NOMATCH */
872 "Invalid regular expression", /* REG_BADPAT */
873 "Invalid collation character", /* REG_ECOLLATE */
874 "Invalid character class name", /* REG_ECTYPE */
875 "Trailing backslash", /* REG_EESCAPE */
876 "Invalid back reference", /* REG_ESUBREG */
877 "Unmatched [ or [^", /* REG_EBRACK */
878 "Unmatched ( or \\(", /* REG_EPAREN */
879 "Unmatched \\{", /* REG_EBRACE */
880 "Invalid content of \\{\\}", /* REG_BADBR */
881 "Invalid range end", /* REG_ERANGE */
882 "Memory exhausted", /* REG_ESPACE */
883 "Invalid preceding regular expression", /* REG_BADRPT */
884 "Premature end of regular expression", /* REG_EEND */
885 "Regular expression too big", /* REG_ESIZE */
886 "Unmatched ) or \\)", /* REG_ERPAREN */
889 /* Avoiding alloca during matching, to placate r_alloc. */
891 /* Define MATCH_MAY_ALLOCATE if we need to make sure that the
892 searching and matching functions should not call alloca. On some
893 systems, alloca is implemented in terms of malloc, and if we're
894 using the relocating allocator routines, then malloc could cause a
895 relocation, which might (if the strings being searched are in the
896 ralloc heap) shift the data out from underneath the regexp
899 Here's another reason to avoid allocation: Emacs insists on
900 processing input from X in a signal handler; processing X input may
901 call malloc; if input arrives while a matching routine is calling
902 malloc, then we're scrod. But Emacs can't just block input while
903 calling matching routines; then we don't notice interrupts when
904 they come in. So, Emacs blocks input around all regexp calls
905 except the matching calls, which it leaves unprotected, in the
906 faith that they will not malloc. */
908 /* Normally, this is fine. */
909 #define MATCH_MAY_ALLOCATE
911 /* But under some circumstances, it's not. */
912 #if defined (emacs) || (defined (REL_ALLOC) && defined (C_ALLOCA))
913 #undef MATCH_MAY_ALLOCATE
917 /* Failure stack declarations and macros; both re_compile_fastmap and
918 re_match_2 use a failure stack. These have to be macros because of
922 /* Number of failure points for which to initially allocate space
923 when matching. If this number is exceeded, we allocate more
924 space, so it is not a hard limit. */
925 #ifndef INIT_FAILURE_ALLOC
926 #define INIT_FAILURE_ALLOC 5
929 /* Roughly the maximum number of failure points on the stack. Would be
930 exactly that if always used MAX_FAILURE_SPACE each time we failed.
931 This is a variable only so users of regex can assign to it; we never
932 change it ourselves. */
933 int re_max_failures
= 2000;
935 typedef unsigned char *fail_stack_elt_t
;
939 fail_stack_elt_t
*stack
;
941 unsigned avail
; /* Offset of next open position. */
944 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
945 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
946 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
947 #define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail])
950 /* Initialize `fail_stack'. Do `return -2' if the alloc fails. */
952 #ifdef MATCH_MAY_ALLOCATE
953 #define INIT_FAIL_STACK() \
955 fail_stack.stack = (fail_stack_elt_t *) \
956 REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
958 if (fail_stack.stack == NULL) \
961 fail_stack.size = INIT_FAILURE_ALLOC; \
962 fail_stack.avail = 0; \
965 #define INIT_FAIL_STACK() \
967 fail_stack.avail = 0; \
972 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
974 Return 1 if succeeds, and 0 if either ran out of memory
975 allocating space for it or it was already too large.
977 REGEX_REALLOCATE requires `destination' be declared. */
979 #define DOUBLE_FAIL_STACK(fail_stack) \
980 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
982 : ((fail_stack).stack = (fail_stack_elt_t *) \
983 REGEX_REALLOCATE ((fail_stack).stack, \
984 (fail_stack).size * sizeof (fail_stack_elt_t), \
985 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
987 (fail_stack).stack == NULL \
989 : ((fail_stack).size <<= 1, \
993 /* Push PATTERN_OP on FAIL_STACK.
995 Return 1 if was able to do so and 0 if ran out of memory allocating
997 #define PUSH_PATTERN_OP(pattern_op, fail_stack) \
998 ((FAIL_STACK_FULL () \
999 && !DOUBLE_FAIL_STACK (fail_stack)) \
1001 : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \
1004 /* This pushes an item onto the failure stack. Must be a four-byte
1005 value. Assumes the variable `fail_stack'. Probably should only
1006 be called from within `PUSH_FAILURE_POINT'. */
1007 #define PUSH_FAILURE_ITEM(item) \
1008 fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
1010 /* The complement operation. Assumes `fail_stack' is nonempty. */
1011 #define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
1013 /* Used to omit pushing failure point id's when we're not debugging. */
1015 #define DEBUG_PUSH PUSH_FAILURE_ITEM
1016 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
1018 #define DEBUG_PUSH(item)
1019 #define DEBUG_POP(item_addr)
1023 /* Push the information about the state we will need
1024 if we ever fail back to it.
1026 Requires variables fail_stack, regstart, regend, reg_info, and
1027 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1030 Does `return FAILURE_CODE' if runs out of memory. */
1032 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1034 char *destination; \
1035 /* Must be int, so when we don't save any registers, the arithmetic \
1036 of 0 + -1 isn't done as unsigned. */ \
1039 DEBUG_STATEMENT (failure_id++); \
1040 DEBUG_STATEMENT (nfailure_points_pushed++); \
1041 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1042 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1043 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1045 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
1046 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1048 /* Ensure we have enough space allocated for what we will push. */ \
1049 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1051 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1052 return failure_code; \
1054 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1055 (fail_stack).size); \
1056 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1059 /* Push the info, starting with the registers. */ \
1060 DEBUG_PRINT1 ("\n"); \
1062 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1065 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1066 DEBUG_STATEMENT (num_regs_pushed++); \
1068 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1069 PUSH_FAILURE_ITEM (regstart[this_reg]); \
1071 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1072 PUSH_FAILURE_ITEM (regend[this_reg]); \
1074 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1075 DEBUG_PRINT2 (" match_null=%d", \
1076 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1077 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1078 DEBUG_PRINT2 (" matched_something=%d", \
1079 MATCHED_SOMETHING (reg_info[this_reg])); \
1080 DEBUG_PRINT2 (" ever_matched=%d", \
1081 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1082 DEBUG_PRINT1 ("\n"); \
1083 PUSH_FAILURE_ITEM (reg_info[this_reg].word); \
1086 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1087 PUSH_FAILURE_ITEM (lowest_active_reg); \
1089 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1090 PUSH_FAILURE_ITEM (highest_active_reg); \
1092 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
1093 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1094 PUSH_FAILURE_ITEM (pattern_place); \
1096 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
1097 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1099 DEBUG_PRINT1 ("'\n"); \
1100 PUSH_FAILURE_ITEM (string_place); \
1102 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1103 DEBUG_PUSH (failure_id); \
1106 /* This is the number of items that are pushed and popped on the stack
1107 for each register. */
1108 #define NUM_REG_ITEMS 3
1110 /* Individual items aside from the registers. */
1112 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1114 #define NUM_NONREG_ITEMS 4
1117 /* We push at most this many items on the stack. */
1118 #define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1120 /* We actually push this many items. */
1121 #define NUM_FAILURE_ITEMS \
1122 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
1125 /* How many items can still be added to the stack without overflowing it. */
1126 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1129 /* Pops what PUSH_FAIL_STACK pushes.
1131 We restore into the parameters, all of which should be lvalues:
1132 STR -- the saved data position.
1133 PAT -- the saved pattern position.
1134 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1135 REGSTART, REGEND -- arrays of string positions.
1136 REG_INFO -- array of information about each subexpression.
1138 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1139 `pend', `string1', `size1', `string2', and `size2'. */
1141 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1143 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1145 const unsigned char *string_temp; \
1147 assert (!FAIL_STACK_EMPTY ()); \
1149 /* Remove failure points and point to how many regs pushed. */ \
1150 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1151 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1152 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1154 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1156 DEBUG_POP (&failure_id); \
1157 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1159 /* If the saved string location is NULL, it came from an \
1160 on_failure_keep_string_jump opcode, and we want to throw away the \
1161 saved NULL, thus retaining our current position in the string. */ \
1162 string_temp = POP_FAILURE_ITEM (); \
1163 if (string_temp != NULL) \
1164 str = (const char *) string_temp; \
1166 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1167 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1168 DEBUG_PRINT1 ("'\n"); \
1170 pat = (unsigned char *) POP_FAILURE_ITEM (); \
1171 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
1172 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1174 /* Restore register info. */ \
1175 high_reg = (unsigned) POP_FAILURE_ITEM (); \
1176 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1178 low_reg = (unsigned) POP_FAILURE_ITEM (); \
1179 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1181 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1183 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
1185 reg_info[this_reg].word = POP_FAILURE_ITEM (); \
1186 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
1188 regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \
1189 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1191 regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \
1192 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1195 DEBUG_STATEMENT (nfailure_points_popped++); \
1196 } /* POP_FAILURE_POINT */
1200 /* Structure for per-register (a.k.a. per-group) information.
1201 This must not be longer than one word, because we push this value
1202 onto the failure stack. Other register information, such as the
1203 starting and ending positions (which are addresses), and the list of
1204 inner groups (which is a bits list) are maintained in separate
1207 We are making a (strictly speaking) nonportable assumption here: that
1208 the compiler will pack our bit fields into something that fits into
1209 the type of `word', i.e., is something that fits into one item on the
1213 fail_stack_elt_t word
;
1216 /* This field is one if this group can match the empty string,
1217 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1218 #define MATCH_NULL_UNSET_VALUE 3
1219 unsigned match_null_string_p
: 2;
1220 unsigned is_active
: 1;
1221 unsigned matched_something
: 1;
1222 unsigned ever_matched_something
: 1;
1224 } register_info_type
;
1226 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1227 #define IS_ACTIVE(R) ((R).bits.is_active)
1228 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1229 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1232 /* Call this when have matched a real character; it sets `matched' flags
1233 for the subexpressions which we are currently inside. Also records
1234 that those subexprs have matched. */
1235 #define SET_REGS_MATCHED() \
1239 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1241 MATCHED_SOMETHING (reg_info[r]) \
1242 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1249 /* Registers are set to a sentinel when they haven't yet matched. */
1250 #define REG_UNSET_VALUE ((char *) -1)
1251 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1255 /* How do we implement a missing MATCH_MAY_ALLOCATE?
1256 We make the fail stack a global thing, and then grow it to
1257 re_max_failures when we compile. */
1258 #ifndef MATCH_MAY_ALLOCATE
1259 static fail_stack_type fail_stack
;
1261 static const char ** regstart
, ** regend
;
1262 static const char ** old_regstart
, ** old_regend
;
1263 static const char **best_regstart
, **best_regend
;
1264 static register_info_type
*reg_info
;
1265 static const char **reg_dummy
;
1266 static register_info_type
*reg_info_dummy
;
1270 /* Subroutine declarations and macros for regex_compile. */
1272 static void store_op1 (), store_op2 ();
1273 static void insert_op1 (), insert_op2 ();
1274 static boolean
at_begline_loc_p (), at_endline_loc_p ();
1275 static boolean
group_in_compile_stack ();
1276 static reg_errcode_t
compile_range ();
1278 /* Fetch the next character in the uncompiled pattern---translating it
1279 if necessary. Also cast from a signed character in the constant
1280 string passed to us by the user to an unsigned char that we can use
1281 as an array index (in, e.g., `translate'). */
1282 #define PATFETCH(c) \
1283 do {if (p == pend) return REG_EEND; \
1284 c = (unsigned char) *p++; \
1285 if (translate) c = translate[c]; \
1288 /* Fetch the next character in the uncompiled pattern, with no
1290 #define PATFETCH_RAW(c) \
1291 do {if (p == pend) return REG_EEND; \
1292 c = (unsigned char) *p++; \
1295 /* Go backwards one character in the pattern. */
1296 #define PATUNFETCH p--
1299 /* If `translate' is non-null, return translate[D], else just D. We
1300 cast the subscript to translate because some data is declared as
1301 `char *', to avoid warnings when a string constant is passed. But
1302 when we use a character as a subscript we must make it unsigned. */
1303 #define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
1306 /* Macros for outputting the compiled pattern into `buffer'. */
1308 /* If the buffer isn't allocated when it comes in, use this. */
1309 #define INIT_BUF_SIZE 32
1311 /* Make sure we have at least N more bytes of space in buffer. */
1312 #define GET_BUFFER_SPACE(n) \
1313 while (b - bufp->buffer + (n) > bufp->allocated) \
1316 /* Make sure we have one more byte of buffer space and then add C to it. */
1317 #define BUF_PUSH(c) \
1319 GET_BUFFER_SPACE (1); \
1320 *b++ = (unsigned char) (c); \
1324 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1325 #define BUF_PUSH_2(c1, c2) \
1327 GET_BUFFER_SPACE (2); \
1328 *b++ = (unsigned char) (c1); \
1329 *b++ = (unsigned char) (c2); \
1333 /* As with BUF_PUSH_2, except for three bytes. */
1334 #define BUF_PUSH_3(c1, c2, c3) \
1336 GET_BUFFER_SPACE (3); \
1337 *b++ = (unsigned char) (c1); \
1338 *b++ = (unsigned char) (c2); \
1339 *b++ = (unsigned char) (c3); \
1343 /* Store a jump with opcode OP at LOC to location TO. We store a
1344 relative address offset by the three bytes the jump itself occupies. */
1345 #define STORE_JUMP(op, loc, to) \
1346 store_op1 (op, loc, (to) - (loc) - 3)
1348 /* Likewise, for a two-argument jump. */
1349 #define STORE_JUMP2(op, loc, to, arg) \
1350 store_op2 (op, loc, (to) - (loc) - 3, arg)
1352 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1353 #define INSERT_JUMP(op, loc, to) \
1354 insert_op1 (op, loc, (to) - (loc) - 3, b)
1356 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1357 #define INSERT_JUMP2(op, loc, to, arg) \
1358 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1361 /* This is not an arbitrary limit: the arguments which represent offsets
1362 into the pattern are two bytes long. So if 2^16 bytes turns out to
1363 be too small, many things would have to change. */
1364 #define MAX_BUF_SIZE (1L << 16)
1367 /* Extend the buffer by twice its current size via realloc and
1368 reset the pointers that pointed into the old block to point to the
1369 correct places in the new one. If extending the buffer results in it
1370 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1371 #define EXTEND_BUFFER() \
1373 unsigned char *old_buffer = bufp->buffer; \
1374 if (bufp->allocated == MAX_BUF_SIZE) \
1376 bufp->allocated <<= 1; \
1377 if (bufp->allocated > MAX_BUF_SIZE) \
1378 bufp->allocated = MAX_BUF_SIZE; \
1379 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1380 if (bufp->buffer == NULL) \
1381 return REG_ESPACE; \
1382 /* If the buffer moved, move all the pointers into it. */ \
1383 if (old_buffer != bufp->buffer) \
1385 b = (b - old_buffer) + bufp->buffer; \
1386 begalt = (begalt - old_buffer) + bufp->buffer; \
1387 if (fixup_alt_jump) \
1388 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1390 laststart = (laststart - old_buffer) + bufp->buffer; \
1391 if (pending_exact) \
1392 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1397 /* Since we have one byte reserved for the register number argument to
1398 {start,stop}_memory, the maximum number of groups we can report
1399 things about is what fits in that byte. */
1400 #define MAX_REGNUM 255
1402 /* But patterns can have more than `MAX_REGNUM' registers. We just
1403 ignore the excess. */
1404 typedef unsigned regnum_t
;
1407 /* Macros for the compile stack. */
1409 /* Since offsets can go either forwards or backwards, this type needs to
1410 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1411 typedef int pattern_offset_t
;
1415 pattern_offset_t begalt_offset
;
1416 pattern_offset_t fixup_alt_jump
;
1417 pattern_offset_t inner_group_offset
;
1418 pattern_offset_t laststart_offset
;
1420 } compile_stack_elt_t
;
1425 compile_stack_elt_t
*stack
;
1427 unsigned avail
; /* Offset of next open position. */
1428 } compile_stack_type
;
1431 #define INIT_COMPILE_STACK_SIZE 32
1433 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1434 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1436 /* The next available element. */
1437 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1440 /* Set the bit for character C in a list. */
1441 #define SET_LIST_BIT(c) \
1442 (b[((unsigned char) (c)) / BYTEWIDTH] \
1443 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1446 /* Get the next unsigned number in the uncompiled pattern. */
1447 #define GET_UNSIGNED_NUMBER(num) \
1451 while (ISDIGIT (c)) \
1455 num = num * 10 + c - '0'; \
1463 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1465 #define IS_CHAR_CLASS(string) \
1466 (STREQ (string, "alpha") || STREQ (string, "upper") \
1467 || STREQ (string, "lower") || STREQ (string, "digit") \
1468 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1469 || STREQ (string, "space") || STREQ (string, "print") \
1470 || STREQ (string, "punct") || STREQ (string, "graph") \
1471 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1473 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1474 Returns one of error codes defined in `regex.h', or zero for success.
1476 Assumes the `allocated' (and perhaps `buffer') and `translate'
1477 fields are set in BUFP on entry.
1479 If it succeeds, results are put in BUFP (if it returns an error, the
1480 contents of BUFP are undefined):
1481 `buffer' is the compiled pattern;
1482 `syntax' is set to SYNTAX;
1483 `used' is set to the length of the compiled pattern;
1484 `fastmap_accurate' is zero;
1485 `re_nsub' is the number of subexpressions in PATTERN;
1486 `not_bol' and `not_eol' are zero;
1488 The `fastmap' and `newline_anchor' fields are neither
1489 examined nor set. */
1491 static reg_errcode_t
1492 regex_compile (pattern
, size
, syntax
, bufp
)
1493 const char *pattern
;
1495 reg_syntax_t syntax
;
1496 struct re_pattern_buffer
*bufp
;
1498 /* We fetch characters from PATTERN here. Even though PATTERN is
1499 `char *' (i.e., signed), we declare these variables as unsigned, so
1500 they can be reliably used as array indices. */
1501 register unsigned char c
, c1
;
1503 /* A random tempory spot in PATTERN. */
1506 /* Points to the end of the buffer, where we should append. */
1507 register unsigned char *b
;
1509 /* Keeps track of unclosed groups. */
1510 compile_stack_type compile_stack
;
1512 /* Points to the current (ending) position in the pattern. */
1513 const char *p
= pattern
;
1514 const char *pend
= pattern
+ size
;
1516 /* How to translate the characters in the pattern. */
1517 char *translate
= bufp
->translate
;
1519 /* Address of the count-byte of the most recently inserted `exactn'
1520 command. This makes it possible to tell if a new exact-match
1521 character can be added to that command or if the character requires
1522 a new `exactn' command. */
1523 unsigned char *pending_exact
= 0;
1525 /* Address of start of the most recently finished expression.
1526 This tells, e.g., postfix * where to find the start of its
1527 operand. Reset at the beginning of groups and alternatives. */
1528 unsigned char *laststart
= 0;
1530 /* Address of beginning of regexp, or inside of last group. */
1531 unsigned char *begalt
;
1533 /* Place in the uncompiled pattern (i.e., the {) to
1534 which to go back if the interval is invalid. */
1535 const char *beg_interval
;
1537 /* Address of the place where a forward jump should go to the end of
1538 the containing expression. Each alternative of an `or' -- except the
1539 last -- ends with a forward jump of this sort. */
1540 unsigned char *fixup_alt_jump
= 0;
1542 /* Counts open-groups as they are encountered. Remembered for the
1543 matching close-group on the compile stack, so the same register
1544 number is put in the stop_memory as the start_memory. */
1545 regnum_t regnum
= 0;
1548 DEBUG_PRINT1 ("\nCompiling pattern: ");
1551 unsigned debug_count
;
1553 for (debug_count
= 0; debug_count
< size
; debug_count
++)
1554 printchar (pattern
[debug_count
]);
1559 /* Initialize the compile stack. */
1560 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
1561 if (compile_stack
.stack
== NULL
)
1564 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
1565 compile_stack
.avail
= 0;
1567 /* Initialize the pattern buffer. */
1568 bufp
->syntax
= syntax
;
1569 bufp
->fastmap_accurate
= 0;
1570 bufp
->not_bol
= bufp
->not_eol
= 0;
1572 /* Set `used' to zero, so that if we return an error, the pattern
1573 printer (for debugging) will think there's no pattern. We reset it
1577 /* Always count groups, whether or not bufp->no_sub is set. */
1580 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1581 /* Initialize the syntax table. */
1582 init_syntax_once ();
1585 if (bufp
->allocated
== 0)
1588 { /* If zero allocated, but buffer is non-null, try to realloc
1589 enough space. This loses if buffer's address is bogus, but
1590 that is the user's responsibility. */
1591 RETALLOC (bufp
->buffer
, INIT_BUF_SIZE
, unsigned char);
1594 { /* Caller did not allocate a buffer. Do it for them. */
1595 bufp
->buffer
= TALLOC (INIT_BUF_SIZE
, unsigned char);
1597 if (!bufp
->buffer
) return REG_ESPACE
;
1599 bufp
->allocated
= INIT_BUF_SIZE
;
1602 begalt
= b
= bufp
->buffer
;
1604 /* Loop through the uncompiled pattern until we're at the end. */
1613 if ( /* If at start of pattern, it's an operator. */
1615 /* If context independent, it's an operator. */
1616 || syntax
& RE_CONTEXT_INDEP_ANCHORS
1617 /* Otherwise, depends on what's come before. */
1618 || at_begline_loc_p (pattern
, p
, syntax
))
1628 if ( /* If at end of pattern, it's an operator. */
1630 /* If context independent, it's an operator. */
1631 || syntax
& RE_CONTEXT_INDEP_ANCHORS
1632 /* Otherwise, depends on what's next. */
1633 || at_endline_loc_p (p
, pend
, syntax
))
1643 if ((syntax
& RE_BK_PLUS_QM
)
1644 || (syntax
& RE_LIMITED_OPS
))
1648 /* If there is no previous pattern... */
1651 if (syntax
& RE_CONTEXT_INVALID_OPS
)
1653 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
1658 /* Are we optimizing this jump? */
1659 boolean keep_string_p
= false;
1661 /* 1 means zero (many) matches is allowed. */
1662 char zero_times_ok
= 0, many_times_ok
= 0;
1664 /* If there is a sequence of repetition chars, collapse it
1665 down to just one (the right one). We can't combine
1666 interval operators with these because of, e.g., `a{2}*',
1667 which should only match an even number of `a's. */
1671 zero_times_ok
|= c
!= '+';
1672 many_times_ok
|= c
!= '?';
1680 || (!(syntax
& RE_BK_PLUS_QM
) && (c
== '+' || c
== '?')))
1683 else if (syntax
& RE_BK_PLUS_QM
&& c
== '\\')
1685 if (p
== pend
) return REG_EESCAPE
;
1688 if (!(c1
== '+' || c1
== '?'))
1703 /* If we get here, we found another repeat character. */
1706 /* Star, etc. applied to an empty pattern is equivalent
1707 to an empty pattern. */
1711 /* Now we know whether or not zero matches is allowed
1712 and also whether or not two or more matches is allowed. */
1714 { /* More than one repetition is allowed, so put in at the
1715 end a backward relative jump from `b' to before the next
1716 jump we're going to put in below (which jumps from
1717 laststart to after this jump).
1719 But if we are at the `*' in the exact sequence `.*\n',
1720 insert an unconditional jump backwards to the .,
1721 instead of the beginning of the loop. This way we only
1722 push a failure point once, instead of every time
1723 through the loop. */
1724 assert (p
- 1 > pattern
);
1726 /* Allocate the space for the jump. */
1727 GET_BUFFER_SPACE (3);
1729 /* We know we are not at the first character of the pattern,
1730 because laststart was nonzero. And we've already
1731 incremented `p', by the way, to be the character after
1732 the `*'. Do we have to do something analogous here
1733 for null bytes, because of RE_DOT_NOT_NULL? */
1734 if (TRANSLATE (*(p
- 2)) == TRANSLATE ('.')
1736 && p
< pend
&& TRANSLATE (*p
) == TRANSLATE ('\n')
1737 && !(syntax
& RE_DOT_NEWLINE
))
1738 { /* We have .*\n. */
1739 STORE_JUMP (jump
, b
, laststart
);
1740 keep_string_p
= true;
1743 /* Anything else. */
1744 STORE_JUMP (maybe_pop_jump
, b
, laststart
- 3);
1746 /* We've added more stuff to the buffer. */
1750 /* On failure, jump from laststart to b + 3, which will be the
1751 end of the buffer after this jump is inserted. */
1752 GET_BUFFER_SPACE (3);
1753 INSERT_JUMP (keep_string_p
? on_failure_keep_string_jump
1761 /* At least one repetition is required, so insert a
1762 `dummy_failure_jump' before the initial
1763 `on_failure_jump' instruction of the loop. This
1764 effects a skip over that instruction the first time
1765 we hit that loop. */
1766 GET_BUFFER_SPACE (3);
1767 INSERT_JUMP (dummy_failure_jump
, laststart
, laststart
+ 6);
1782 boolean had_char_class
= false;
1784 if (p
== pend
) return REG_EBRACK
;
1786 /* Ensure that we have enough space to push a charset: the
1787 opcode, the length count, and the bitset; 34 bytes in all. */
1788 GET_BUFFER_SPACE (34);
1792 /* We test `*p == '^' twice, instead of using an if
1793 statement, so we only need one BUF_PUSH. */
1794 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
1798 /* Remember the first position in the bracket expression. */
1801 /* Push the number of bytes in the bitmap. */
1802 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
1804 /* Clear the whole map. */
1805 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
1807 /* charset_not matches newline according to a syntax bit. */
1808 if ((re_opcode_t
) b
[-2] == charset_not
1809 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
1810 SET_LIST_BIT ('\n');
1812 /* Read in characters and ranges, setting map bits. */
1815 if (p
== pend
) return REG_EBRACK
;
1819 /* \ might escape characters inside [...] and [^...]. */
1820 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
1822 if (p
== pend
) return REG_EESCAPE
;
1829 /* Could be the end of the bracket expression. If it's
1830 not (i.e., when the bracket expression is `[]' so
1831 far), the ']' character bit gets set way below. */
1832 if (c
== ']' && p
!= p1
+ 1)
1835 /* Look ahead to see if it's a range when the last thing
1836 was a character class. */
1837 if (had_char_class
&& c
== '-' && *p
!= ']')
1840 /* Look ahead to see if it's a range when the last thing
1841 was a character: if this is a hyphen not at the
1842 beginning or the end of a list, then it's the range
1845 && !(p
- 2 >= pattern
&& p
[-2] == '[')
1846 && !(p
- 3 >= pattern
&& p
[-3] == '[' && p
[-2] == '^')
1850 = compile_range (&p
, pend
, translate
, syntax
, b
);
1851 if (ret
!= REG_NOERROR
) return ret
;
1854 else if (p
[0] == '-' && p
[1] != ']')
1855 { /* This handles ranges made up of characters only. */
1858 /* Move past the `-'. */
1861 ret
= compile_range (&p
, pend
, translate
, syntax
, b
);
1862 if (ret
!= REG_NOERROR
) return ret
;
1865 /* See if we're at the beginning of a possible character
1868 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
1869 { /* Leave room for the null. */
1870 char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
1875 /* If pattern is `[[:'. */
1876 if (p
== pend
) return REG_EBRACK
;
1881 if (c
== ':' || c
== ']' || p
== pend
1882 || c1
== CHAR_CLASS_MAX_LENGTH
)
1888 /* If isn't a word bracketed by `[:' and:`]':
1889 undo the ending character, the letters, and leave
1890 the leading `:' and `[' (but set bits for them). */
1891 if (c
== ':' && *p
== ']')
1894 boolean is_alnum
= STREQ (str
, "alnum");
1895 boolean is_alpha
= STREQ (str
, "alpha");
1896 boolean is_blank
= STREQ (str
, "blank");
1897 boolean is_cntrl
= STREQ (str
, "cntrl");
1898 boolean is_digit
= STREQ (str
, "digit");
1899 boolean is_graph
= STREQ (str
, "graph");
1900 boolean is_lower
= STREQ (str
, "lower");
1901 boolean is_print
= STREQ (str
, "print");
1902 boolean is_punct
= STREQ (str
, "punct");
1903 boolean is_space
= STREQ (str
, "space");
1904 boolean is_upper
= STREQ (str
, "upper");
1905 boolean is_xdigit
= STREQ (str
, "xdigit");
1907 if (!IS_CHAR_CLASS (str
)) return REG_ECTYPE
;
1909 /* Throw away the ] at the end of the character
1913 if (p
== pend
) return REG_EBRACK
;
1915 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ch
++)
1917 if ( (is_alnum
&& ISALNUM (ch
))
1918 || (is_alpha
&& ISALPHA (ch
))
1919 || (is_blank
&& ISBLANK (ch
))
1920 || (is_cntrl
&& ISCNTRL (ch
))
1921 || (is_digit
&& ISDIGIT (ch
))
1922 || (is_graph
&& ISGRAPH (ch
))
1923 || (is_lower
&& ISLOWER (ch
))
1924 || (is_print
&& ISPRINT (ch
))
1925 || (is_punct
&& ISPUNCT (ch
))
1926 || (is_space
&& ISSPACE (ch
))
1927 || (is_upper
&& ISUPPER (ch
))
1928 || (is_xdigit
&& ISXDIGIT (ch
)))
1931 had_char_class
= true;
1940 had_char_class
= false;
1945 had_char_class
= false;
1950 /* Discard any (non)matching list bytes that are all 0 at the
1951 end of the map. Decrease the map-length byte too. */
1952 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
1960 if (syntax
& RE_NO_BK_PARENS
)
1967 if (syntax
& RE_NO_BK_PARENS
)
1974 if (syntax
& RE_NEWLINE_ALT
)
1981 if (syntax
& RE_NO_BK_VBAR
)
1988 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
1989 goto handle_interval
;
1995 if (p
== pend
) return REG_EESCAPE
;
1997 /* Do not translate the character after the \, so that we can
1998 distinguish, e.g., \B from \b, even if we normally would
1999 translate, e.g., B to b. */
2005 if (syntax
& RE_NO_BK_PARENS
)
2006 goto normal_backslash
;
2012 if (COMPILE_STACK_FULL
)
2014 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
2015 compile_stack_elt_t
);
2016 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
2018 compile_stack
.size
<<= 1;
2021 /* These are the values to restore when we hit end of this
2022 group. They are all relative offsets, so that if the
2023 whole pattern moves because of realloc, they will still
2025 COMPILE_STACK_TOP
.begalt_offset
= begalt
- bufp
->buffer
;
2026 COMPILE_STACK_TOP
.fixup_alt_jump
2027 = fixup_alt_jump
? fixup_alt_jump
- bufp
->buffer
+ 1 : 0;
2028 COMPILE_STACK_TOP
.laststart_offset
= b
- bufp
->buffer
;
2029 COMPILE_STACK_TOP
.regnum
= regnum
;
2031 /* We will eventually replace the 0 with the number of
2032 groups inner to this one. But do not push a
2033 start_memory for groups beyond the last one we can
2034 represent in the compiled pattern. */
2035 if (regnum
<= MAX_REGNUM
)
2037 COMPILE_STACK_TOP
.inner_group_offset
= b
- bufp
->buffer
+ 2;
2038 BUF_PUSH_3 (start_memory
, regnum
, 0);
2041 compile_stack
.avail
++;
2046 /* If we've reached MAX_REGNUM groups, then this open
2047 won't actually generate any code, so we'll have to
2048 clear pending_exact explicitly. */
2054 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
2056 if (COMPILE_STACK_EMPTY
)
2057 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2058 goto normal_backslash
;
2064 { /* Push a dummy failure point at the end of the
2065 alternative for a possible future
2066 `pop_failure_jump' to pop. See comments at
2067 `push_dummy_failure' in `re_match_2'. */
2068 BUF_PUSH (push_dummy_failure
);
2070 /* We allocated space for this jump when we assigned
2071 to `fixup_alt_jump', in the `handle_alt' case below. */
2072 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
- 1);
2075 /* See similar code for backslashed left paren above. */
2076 if (COMPILE_STACK_EMPTY
)
2077 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2082 /* Since we just checked for an empty stack above, this
2083 ``can't happen''. */
2084 assert (compile_stack
.avail
!= 0);
2086 /* We don't just want to restore into `regnum', because
2087 later groups should continue to be numbered higher,
2088 as in `(ab)c(de)' -- the second group is #2. */
2089 regnum_t this_group_regnum
;
2091 compile_stack
.avail
--;
2092 begalt
= bufp
->buffer
+ COMPILE_STACK_TOP
.begalt_offset
;
2094 = COMPILE_STACK_TOP
.fixup_alt_jump
2095 ? bufp
->buffer
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
2097 laststart
= bufp
->buffer
+ COMPILE_STACK_TOP
.laststart_offset
;
2098 this_group_regnum
= COMPILE_STACK_TOP
.regnum
;
2099 /* If we've reached MAX_REGNUM groups, then this open
2100 won't actually generate any code, so we'll have to
2101 clear pending_exact explicitly. */
2104 /* We're at the end of the group, so now we know how many
2105 groups were inside this one. */
2106 if (this_group_regnum
<= MAX_REGNUM
)
2108 unsigned char *inner_group_loc
2109 = bufp
->buffer
+ COMPILE_STACK_TOP
.inner_group_offset
;
2111 *inner_group_loc
= regnum
- this_group_regnum
;
2112 BUF_PUSH_3 (stop_memory
, this_group_regnum
,
2113 regnum
- this_group_regnum
);
2119 case '|': /* `\|'. */
2120 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
2121 goto normal_backslash
;
2123 if (syntax
& RE_LIMITED_OPS
)
2126 /* Insert before the previous alternative a jump which
2127 jumps to this alternative if the former fails. */
2128 GET_BUFFER_SPACE (3);
2129 INSERT_JUMP (on_failure_jump
, begalt
, b
+ 6);
2133 /* The alternative before this one has a jump after it
2134 which gets executed if it gets matched. Adjust that
2135 jump so it will jump to this alternative's analogous
2136 jump (put in below, which in turn will jump to the next
2137 (if any) alternative's such jump, etc.). The last such
2138 jump jumps to the correct final destination. A picture:
2144 If we are at `b', then fixup_alt_jump right now points to a
2145 three-byte space after `a'. We'll put in the jump, set
2146 fixup_alt_jump to right after `b', and leave behind three
2147 bytes which we'll fill in when we get to after `c'. */
2150 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
2152 /* Mark and leave space for a jump after this alternative,
2153 to be filled in later either by next alternative or
2154 when know we're at the end of a series of alternatives. */
2156 GET_BUFFER_SPACE (3);
2165 /* If \{ is a literal. */
2166 if (!(syntax
& RE_INTERVALS
)
2167 /* If we're at `\{' and it's not the open-interval
2169 || ((syntax
& RE_INTERVALS
) && (syntax
& RE_NO_BK_BRACES
))
2170 || (p
- 2 == pattern
&& p
== pend
))
2171 goto normal_backslash
;
2175 /* If got here, then the syntax allows intervals. */
2177 /* At least (most) this many matches must be made. */
2178 int lower_bound
= -1, upper_bound
= -1;
2180 beg_interval
= p
- 1;
2184 if (syntax
& RE_NO_BK_BRACES
)
2185 goto unfetch_interval
;
2190 GET_UNSIGNED_NUMBER (lower_bound
);
2194 GET_UNSIGNED_NUMBER (upper_bound
);
2195 if (upper_bound
< 0) upper_bound
= RE_DUP_MAX
;
2198 /* Interval such as `{1}' => match exactly once. */
2199 upper_bound
= lower_bound
;
2201 if (lower_bound
< 0 || upper_bound
> RE_DUP_MAX
2202 || lower_bound
> upper_bound
)
2204 if (syntax
& RE_NO_BK_BRACES
)
2205 goto unfetch_interval
;
2210 if (!(syntax
& RE_NO_BK_BRACES
))
2212 if (c
!= '\\') return REG_EBRACE
;
2219 if (syntax
& RE_NO_BK_BRACES
)
2220 goto unfetch_interval
;
2225 /* We just parsed a valid interval. */
2227 /* If it's invalid to have no preceding re. */
2230 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2232 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
2235 goto unfetch_interval
;
2238 /* If the upper bound is zero, don't want to succeed at
2239 all; jump from `laststart' to `b + 3', which will be
2240 the end of the buffer after we insert the jump. */
2241 if (upper_bound
== 0)
2243 GET_BUFFER_SPACE (3);
2244 INSERT_JUMP (jump
, laststart
, b
+ 3);
2248 /* Otherwise, we have a nontrivial interval. When
2249 we're all done, the pattern will look like:
2250 set_number_at <jump count> <upper bound>
2251 set_number_at <succeed_n count> <lower bound>
2252 succeed_n <after jump addr> <succed_n count>
2254 jump_n <succeed_n addr> <jump count>
2255 (The upper bound and `jump_n' are omitted if
2256 `upper_bound' is 1, though.) */
2258 { /* If the upper bound is > 1, we need to insert
2259 more at the end of the loop. */
2260 unsigned nbytes
= 10 + (upper_bound
> 1) * 10;
2262 GET_BUFFER_SPACE (nbytes
);
2264 /* Initialize lower bound of the `succeed_n', even
2265 though it will be set during matching by its
2266 attendant `set_number_at' (inserted next),
2267 because `re_compile_fastmap' needs to know.
2268 Jump to the `jump_n' we might insert below. */
2269 INSERT_JUMP2 (succeed_n
, laststart
,
2270 b
+ 5 + (upper_bound
> 1) * 5,
2274 /* Code to initialize the lower bound. Insert
2275 before the `succeed_n'. The `5' is the last two
2276 bytes of this `set_number_at', plus 3 bytes of
2277 the following `succeed_n'. */
2278 insert_op2 (set_number_at
, laststart
, 5, lower_bound
, b
);
2281 if (upper_bound
> 1)
2282 { /* More than one repetition is allowed, so
2283 append a backward jump to the `succeed_n'
2284 that starts this interval.
2286 When we've reached this during matching,
2287 we'll have matched the interval once, so
2288 jump back only `upper_bound - 1' times. */
2289 STORE_JUMP2 (jump_n
, b
, laststart
+ 5,
2293 /* The location we want to set is the second
2294 parameter of the `jump_n'; that is `b-2' as
2295 an absolute address. `laststart' will be
2296 the `set_number_at' we're about to insert;
2297 `laststart+3' the number to set, the source
2298 for the relative address. But we are
2299 inserting into the middle of the pattern --
2300 so everything is getting moved up by 5.
2301 Conclusion: (b - 2) - (laststart + 3) + 5,
2302 i.e., b - laststart.
2304 We insert this at the beginning of the loop
2305 so that if we fail during matching, we'll
2306 reinitialize the bounds. */
2307 insert_op2 (set_number_at
, laststart
, b
- laststart
,
2308 upper_bound
- 1, b
);
2313 beg_interval
= NULL
;
2318 /* If an invalid interval, match the characters as literals. */
2319 assert (beg_interval
);
2321 beg_interval
= NULL
;
2323 /* normal_char and normal_backslash need `c'. */
2326 if (!(syntax
& RE_NO_BK_BRACES
))
2328 if (p
> pattern
&& p
[-1] == '\\')
2329 goto normal_backslash
;
2334 /* There is no way to specify the before_dot and after_dot
2335 operators. rms says this is ok. --karl */
2343 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
2349 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
2356 BUF_PUSH (wordchar
);
2362 BUF_PUSH (notwordchar
);
2375 BUF_PUSH (wordbound
);
2379 BUF_PUSH (notwordbound
);
2390 case '1': case '2': case '3': case '4': case '5':
2391 case '6': case '7': case '8': case '9':
2392 if (syntax
& RE_NO_BK_REFS
)
2400 /* Can't back reference to a subexpression if inside of it. */
2401 if (group_in_compile_stack (compile_stack
, c1
))
2405 BUF_PUSH_2 (duplicate
, c1
);
2411 if (syntax
& RE_BK_PLUS_QM
)
2414 goto normal_backslash
;
2418 /* You might think it would be useful for \ to mean
2419 not to translate; but if we don't translate it
2420 it will never match anything. */
2428 /* Expects the character in `c'. */
2430 /* If no exactn currently being built. */
2433 /* If last exactn not at current position. */
2434 || pending_exact
+ *pending_exact
+ 1 != b
2436 /* We have only one byte following the exactn for the count. */
2437 || *pending_exact
== (1 << BYTEWIDTH
) - 1
2439 /* If followed by a repetition operator. */
2440 || *p
== '*' || *p
== '^'
2441 || ((syntax
& RE_BK_PLUS_QM
)
2442 ? *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
2443 : (*p
== '+' || *p
== '?'))
2444 || ((syntax
& RE_INTERVALS
)
2445 && ((syntax
& RE_NO_BK_BRACES
)
2447 : (p
[0] == '\\' && p
[1] == '{'))))
2449 /* Start building a new exactn. */
2453 BUF_PUSH_2 (exactn
, 0);
2454 pending_exact
= b
- 1;
2461 } /* while p != pend */
2464 /* Through the pattern now. */
2467 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
2469 if (!COMPILE_STACK_EMPTY
)
2472 free (compile_stack
.stack
);
2474 /* We have succeeded; set the length of the buffer. */
2475 bufp
->used
= b
- bufp
->buffer
;
2480 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2481 print_compiled_pattern (bufp
);
2485 #ifndef MATCH_MAY_ALLOCATE
2486 /* Initialize the failure stack to the largest possible stack. This
2487 isn't necessary unless we're trying to avoid calling alloca in
2488 the search and match routines. */
2490 int num_regs
= bufp
->re_nsub
+ 1;
2492 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2493 is strictly greater than re_max_failures, the largest possible stack
2494 is 2 * re_max_failures failure points. */
2495 fail_stack
.size
= (2 * re_max_failures
* MAX_FAILURE_ITEMS
);
2496 if (fail_stack
.stack
)
2498 (fail_stack_elt_t
*) realloc (fail_stack
.stack
,
2500 * sizeof (fail_stack_elt_t
)));
2503 (fail_stack_elt_t
*) malloc (fail_stack
.size
2504 * sizeof (fail_stack_elt_t
));
2506 /* Initialize some other variables the matcher uses. */
2507 RETALLOC_IF (regstart
, num_regs
, const char *);
2508 RETALLOC_IF (regend
, num_regs
, const char *);
2509 RETALLOC_IF (old_regstart
, num_regs
, const char *);
2510 RETALLOC_IF (old_regend
, num_regs
, const char *);
2511 RETALLOC_IF (best_regstart
, num_regs
, const char *);
2512 RETALLOC_IF (best_regend
, num_regs
, const char *);
2513 RETALLOC_IF (reg_info
, num_regs
, register_info_type
);
2514 RETALLOC_IF (reg_dummy
, num_regs
, const char *);
2515 RETALLOC_IF (reg_info_dummy
, num_regs
, register_info_type
);
2520 } /* regex_compile */
2522 /* Subroutines for `regex_compile'. */
2524 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2527 store_op1 (op
, loc
, arg
)
2532 *loc
= (unsigned char) op
;
2533 STORE_NUMBER (loc
+ 1, arg
);
2537 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2540 store_op2 (op
, loc
, arg1
, arg2
)
2545 *loc
= (unsigned char) op
;
2546 STORE_NUMBER (loc
+ 1, arg1
);
2547 STORE_NUMBER (loc
+ 3, arg2
);
2551 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2552 for OP followed by two-byte integer parameter ARG. */
2555 insert_op1 (op
, loc
, arg
, end
)
2561 register unsigned char *pfrom
= end
;
2562 register unsigned char *pto
= end
+ 3;
2564 while (pfrom
!= loc
)
2567 store_op1 (op
, loc
, arg
);
2571 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2574 insert_op2 (op
, loc
, arg1
, arg2
, end
)
2580 register unsigned char *pfrom
= end
;
2581 register unsigned char *pto
= end
+ 5;
2583 while (pfrom
!= loc
)
2586 store_op2 (op
, loc
, arg1
, arg2
);
2590 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2591 after an alternative or a begin-subexpression. We assume there is at
2592 least one character before the ^. */
2595 at_begline_loc_p (pattern
, p
, syntax
)
2596 const char *pattern
, *p
;
2597 reg_syntax_t syntax
;
2599 const char *prev
= p
- 2;
2600 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
2603 /* After a subexpression? */
2604 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
2605 /* After an alternative? */
2606 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
));
2610 /* The dual of at_begline_loc_p. This one is for $. We assume there is
2611 at least one character after the $, i.e., `P < PEND'. */
2614 at_endline_loc_p (p
, pend
, syntax
)
2615 const char *p
, *pend
;
2618 const char *next
= p
;
2619 boolean next_backslash
= *next
== '\\';
2620 const char *next_next
= p
+ 1 < pend
? p
+ 1 : NULL
;
2623 /* Before a subexpression? */
2624 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
2625 : next_backslash
&& next_next
&& *next_next
== ')')
2626 /* Before an alternative? */
2627 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
2628 : next_backslash
&& next_next
&& *next_next
== '|');
2632 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2633 false if it's not. */
2636 group_in_compile_stack (compile_stack
, regnum
)
2637 compile_stack_type compile_stack
;
2642 for (this_element
= compile_stack
.avail
- 1;
2645 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
2652 /* Read the ending character of a range (in a bracket expression) from the
2653 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2654 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2655 Then we set the translation of all bits between the starting and
2656 ending characters (inclusive) in the compiled pattern B.
2658 Return an error code.
2660 We use these short variable names so we can use the same macros as
2661 `regex_compile' itself. */
2663 static reg_errcode_t
2664 compile_range (p_ptr
, pend
, translate
, syntax
, b
)
2665 const char **p_ptr
, *pend
;
2667 reg_syntax_t syntax
;
2672 const char *p
= *p_ptr
;
2673 int range_start
, range_end
;
2678 /* Even though the pattern is a signed `char *', we need to fetch
2679 with unsigned char *'s; if the high bit of the pattern character
2680 is set, the range endpoints will be negative if we fetch using a
2683 We also want to fetch the endpoints without translating them; the
2684 appropriate translation is done in the bit-setting loop below. */
2685 range_start
= ((unsigned char *) p
)[-2];
2686 range_end
= ((unsigned char *) p
)[0];
2688 /* Have to increment the pointer into the pattern string, so the
2689 caller isn't still at the ending character. */
2692 /* If the start is after the end, the range is empty. */
2693 if (range_start
> range_end
)
2694 return syntax
& RE_NO_EMPTY_RANGES
? REG_ERANGE
: REG_NOERROR
;
2696 /* Here we see why `this_char' has to be larger than an `unsigned
2697 char' -- the range is inclusive, so if `range_end' == 0xff
2698 (assuming 8-bit characters), we would otherwise go into an infinite
2699 loop, since all characters <= 0xff. */
2700 for (this_char
= range_start
; this_char
<= range_end
; this_char
++)
2702 SET_LIST_BIT (TRANSLATE (this_char
));
2708 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2709 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2710 characters can start a string that matches the pattern. This fastmap
2711 is used by re_search to skip quickly over impossible starting points.
2713 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2714 area as BUFP->fastmap.
2716 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2719 Returns 0 if we succeed, -2 if an internal error. */
2722 re_compile_fastmap (bufp
)
2723 struct re_pattern_buffer
*bufp
;
2726 #ifdef MATCH_MAY_ALLOCATE
2727 fail_stack_type fail_stack
;
2729 #ifndef REGEX_MALLOC
2732 /* We don't push any register information onto the failure stack. */
2733 unsigned num_regs
= 0;
2735 register char *fastmap
= bufp
->fastmap
;
2736 unsigned char *pattern
= bufp
->buffer
;
2737 unsigned long size
= bufp
->used
;
2738 unsigned char *p
= pattern
;
2739 register unsigned char *pend
= pattern
+ size
;
2741 /* Assume that each path through the pattern can be null until
2742 proven otherwise. We set this false at the bottom of switch
2743 statement, to which we get only if a particular path doesn't
2744 match the empty string. */
2745 boolean path_can_be_null
= true;
2747 /* We aren't doing a `succeed_n' to begin with. */
2748 boolean succeed_n_p
= false;
2750 assert (fastmap
!= NULL
&& p
!= NULL
);
2753 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
2754 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
2755 bufp
->can_be_null
= 0;
2757 while (p
!= pend
|| !FAIL_STACK_EMPTY ())
2761 bufp
->can_be_null
|= path_can_be_null
;
2763 /* Reset for next path. */
2764 path_can_be_null
= true;
2766 p
= fail_stack
.stack
[--fail_stack
.avail
];
2769 /* We should never be about to go beyond the end of the pattern. */
2772 #ifdef SWITCH_ENUM_BUG
2773 switch ((int) ((re_opcode_t
) *p
++))
2775 switch ((re_opcode_t
) *p
++)
2779 /* I guess the idea here is to simply not bother with a fastmap
2780 if a backreference is used, since it's too hard to figure out
2781 the fastmap for the corresponding group. Setting
2782 `can_be_null' stops `re_search_2' from using the fastmap, so
2783 that is all we do. */
2785 bufp
->can_be_null
= 1;
2789 /* Following are the cases which match a character. These end
2798 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
2799 if (p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
)))
2805 /* Chars beyond end of map must be allowed. */
2806 for (j
= *p
* BYTEWIDTH
; j
< (1 << BYTEWIDTH
); j
++)
2809 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
2810 if (!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))))
2816 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
2817 if (SYNTAX (j
) == Sword
)
2823 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
2824 if (SYNTAX (j
) != Sword
)
2830 /* `.' matches anything ... */
2831 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
2834 /* ... except perhaps newline. */
2835 if (!(bufp
->syntax
& RE_DOT_NEWLINE
))
2838 /* Return if we have already set `can_be_null'; if we have,
2839 then the fastmap is irrelevant. Something's wrong here. */
2840 else if (bufp
->can_be_null
)
2843 /* Otherwise, have to check alternative paths. */
2850 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
2851 if (SYNTAX (j
) == (enum syntaxcode
) k
)
2858 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
2859 if (SYNTAX (j
) != (enum syntaxcode
) k
)
2864 /* All cases after this match the empty string. These end with
2872 #endif /* not emacs */
2884 case push_dummy_failure
:
2889 case pop_failure_jump
:
2890 case maybe_pop_jump
:
2893 case dummy_failure_jump
:
2894 EXTRACT_NUMBER_AND_INCR (j
, p
);
2899 /* Jump backward implies we just went through the body of a
2900 loop and matched nothing. Opcode jumped to should be
2901 `on_failure_jump' or `succeed_n'. Just treat it like an
2902 ordinary jump. For a * loop, it has pushed its failure
2903 point already; if so, discard that as redundant. */
2904 if ((re_opcode_t
) *p
!= on_failure_jump
2905 && (re_opcode_t
) *p
!= succeed_n
)
2909 EXTRACT_NUMBER_AND_INCR (j
, p
);
2912 /* If what's on the stack is where we are now, pop it. */
2913 if (!FAIL_STACK_EMPTY ()
2914 && fail_stack
.stack
[fail_stack
.avail
- 1] == p
)
2920 case on_failure_jump
:
2921 case on_failure_keep_string_jump
:
2922 handle_on_failure_jump
:
2923 EXTRACT_NUMBER_AND_INCR (j
, p
);
2925 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
2926 end of the pattern. We don't want to push such a point,
2927 since when we restore it above, entering the switch will
2928 increment `p' past the end of the pattern. We don't need
2929 to push such a point since we obviously won't find any more
2930 fastmap entries beyond `pend'. Such a pattern can match
2931 the null string, though. */
2934 if (!PUSH_PATTERN_OP (p
+ j
, fail_stack
))
2938 bufp
->can_be_null
= 1;
2942 EXTRACT_NUMBER_AND_INCR (k
, p
); /* Skip the n. */
2943 succeed_n_p
= false;
2950 /* Get to the number of times to succeed. */
2953 /* Increment p past the n for when k != 0. */
2954 EXTRACT_NUMBER_AND_INCR (k
, p
);
2958 succeed_n_p
= true; /* Spaghetti code alert. */
2959 goto handle_on_failure_jump
;
2976 abort (); /* We have listed all the cases. */
2979 /* Getting here means we have found the possible starting
2980 characters for one path of the pattern -- and that the empty
2981 string does not match. We need not follow this path further.
2982 Instead, look at the next alternative (remembered on the
2983 stack), or quit if no more. The test at the top of the loop
2984 does these things. */
2985 path_can_be_null
= false;
2989 /* Set `can_be_null' for the last path (also the first path, if the
2990 pattern is empty). */
2991 bufp
->can_be_null
|= path_can_be_null
;
2993 } /* re_compile_fastmap */
2995 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
2996 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
2997 this memory for recording register information. STARTS and ENDS
2998 must be allocated using the malloc library routine, and must each
2999 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3001 If NUM_REGS == 0, then subsequent matches should allocate their own
3004 Unless this function is called, the first search or match using
3005 PATTERN_BUFFER will allocate its own register data, without
3006 freeing the old data. */
3009 re_set_registers (bufp
, regs
, num_regs
, starts
, ends
)
3010 struct re_pattern_buffer
*bufp
;
3011 struct re_registers
*regs
;
3013 regoff_t
*starts
, *ends
;
3017 bufp
->regs_allocated
= REGS_REALLOCATE
;
3018 regs
->num_regs
= num_regs
;
3019 regs
->start
= starts
;
3024 bufp
->regs_allocated
= REGS_UNALLOCATED
;
3026 regs
->start
= regs
->end
= (regoff_t
*) 0;
3030 /* Searching routines. */
3032 /* Like re_search_2, below, but only one string is specified, and
3033 doesn't let you say where to stop matching. */
3036 re_search (bufp
, string
, size
, startpos
, range
, regs
)
3037 struct re_pattern_buffer
*bufp
;
3039 int size
, startpos
, range
;
3040 struct re_registers
*regs
;
3042 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
3047 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3048 virtual concatenation of STRING1 and STRING2, starting first at index
3049 STARTPOS, then at STARTPOS + 1, and so on.
3051 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3053 RANGE is how far to scan while trying to match. RANGE = 0 means try
3054 only at STARTPOS; in general, the last start tried is STARTPOS +
3057 In REGS, return the indices of the virtual concatenation of STRING1
3058 and STRING2 that matched the entire BUFP->buffer and its contained
3061 Do not consider matching one past the index STOP in the virtual
3062 concatenation of STRING1 and STRING2.
3064 We return either the position in the strings at which the match was
3065 found, -1 if no match, or -2 if error (such as failure
3069 re_search_2 (bufp
, string1
, size1
, string2
, size2
, startpos
, range
, regs
, stop
)
3070 struct re_pattern_buffer
*bufp
;
3071 const char *string1
, *string2
;
3075 struct re_registers
*regs
;
3079 register char *fastmap
= bufp
->fastmap
;
3080 register char *translate
= bufp
->translate
;
3081 int total_size
= size1
+ size2
;
3082 int endpos
= startpos
+ range
;
3084 /* Check for out-of-range STARTPOS. */
3085 if (startpos
< 0 || startpos
> total_size
)
3088 /* Fix up RANGE if it might eventually take us outside
3089 the virtual concatenation of STRING1 and STRING2. */
3091 range
= -1 - startpos
;
3092 else if (endpos
> total_size
)
3093 range
= total_size
- startpos
;
3095 /* If the search isn't to be a backwards one, don't waste time in a
3096 search for a pattern that must be anchored. */
3097 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == begbuf
&& range
> 0)
3105 /* Update the fastmap now if not correct already. */
3106 if (fastmap
&& !bufp
->fastmap_accurate
)
3107 if (re_compile_fastmap (bufp
) == -2)
3110 /* Loop through the string, looking for a place to start matching. */
3113 /* If a fastmap is supplied, skip quickly over characters that
3114 cannot be the start of a match. If the pattern can match the
3115 null string, however, we don't need to skip characters; we want
3116 the first null string. */
3117 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
3119 if (range
> 0) /* Searching forwards. */
3121 register const char *d
;
3122 register int lim
= 0;
3125 if (startpos
< size1
&& startpos
+ range
>= size1
)
3126 lim
= range
- (size1
- startpos
);
3128 d
= (startpos
>= size1
? string2
- size1
: string1
) + startpos
;
3130 /* Written out as an if-else to avoid testing `translate'
3134 && !fastmap
[(unsigned char)
3135 translate
[(unsigned char) *d
++]])
3138 while (range
> lim
&& !fastmap
[(unsigned char) *d
++])
3141 startpos
+= irange
- range
;
3143 else /* Searching backwards. */
3145 register char c
= (size1
== 0 || startpos
>= size1
3146 ? string2
[startpos
- size1
]
3147 : string1
[startpos
]);
3149 if (!fastmap
[(unsigned char) TRANSLATE (c
)])
3154 /* If can't match the null string, and that's all we have left, fail. */
3155 if (range
>= 0 && startpos
== total_size
&& fastmap
3156 && !bufp
->can_be_null
)
3159 val
= re_match_2 (bufp
, string1
, size1
, string2
, size2
,
3160 startpos
, regs
, stop
);
3184 /* Declarations and macros for re_match_2. */
3186 static int bcmp_translate ();
3187 static boolean
alt_match_null_string_p (),
3188 common_op_match_null_string_p (),
3189 group_match_null_string_p ();
3191 /* This converts PTR, a pointer into one of the search strings `string1'
3192 and `string2' into an offset from the beginning of that string. */
3193 #define POINTER_TO_OFFSET(ptr) \
3194 (FIRST_STRING_P (ptr) \
3195 ? ((regoff_t) ((ptr) - string1)) \
3196 : ((regoff_t) ((ptr) - string2 + size1)))
3198 /* Macros for dealing with the split strings in re_match_2. */
3200 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3202 /* Call before fetching a character with *d. This switches over to
3203 string2 if necessary. */
3204 #define PREFETCH() \
3207 /* End of string2 => fail. */ \
3208 if (dend == end_match_2) \
3210 /* End of string1 => advance to string2. */ \
3212 dend = end_match_2; \
3216 /* Test if at very beginning or at very end of the virtual concatenation
3217 of `string1' and `string2'. If only one string, it's `string2'. */
3218 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3219 #define AT_STRINGS_END(d) ((d) == end2)
3222 /* Test if D points to a character which is word-constituent. We have
3223 two special cases to check for: if past the end of string1, look at
3224 the first character in string2; and if before the beginning of
3225 string2, look at the last character in string1. */
3226 #define WORDCHAR_P(d) \
3227 (SYNTAX ((d) == end1 ? *string2 \
3228 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3231 /* Test if the character before D and the one at D differ with respect
3232 to being word-constituent. */
3233 #define AT_WORD_BOUNDARY(d) \
3234 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3235 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3238 /* Free everything we malloc. */
3239 #ifdef MATCH_MAY_ALLOCATE
3241 #define FREE_VAR(var) if (var) free (var); var = NULL
3242 #define FREE_VARIABLES() \
3244 FREE_VAR (fail_stack.stack); \
3245 FREE_VAR (regstart); \
3246 FREE_VAR (regend); \
3247 FREE_VAR (old_regstart); \
3248 FREE_VAR (old_regend); \
3249 FREE_VAR (best_regstart); \
3250 FREE_VAR (best_regend); \
3251 FREE_VAR (reg_info); \
3252 FREE_VAR (reg_dummy); \
3253 FREE_VAR (reg_info_dummy); \
3255 #else /* not REGEX_MALLOC */
3256 /* Some MIPS systems (at least) want this to free alloca'd storage. */
3257 #define FREE_VARIABLES() alloca (0)
3258 #endif /* not REGEX_MALLOC */
3260 #define FREE_VARIABLES() /* Do nothing! */
3261 #endif /* not MATCH_MAY_ALLOCATE */
3263 /* These values must meet several constraints. They must not be valid
3264 register values; since we have a limit of 255 registers (because
3265 we use only one byte in the pattern for the register number), we can
3266 use numbers larger than 255. They must differ by 1, because of
3267 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3268 be larger than the value for the highest register, so we do not try
3269 to actually save any registers when none are active. */
3270 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3271 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3273 /* Matching routines. */
3275 #ifndef emacs /* Emacs never uses this. */
3276 /* re_match is like re_match_2 except it takes only a single string. */
3279 re_match (bufp
, string
, size
, pos
, regs
)
3280 struct re_pattern_buffer
*bufp
;
3283 struct re_registers
*regs
;
3285 return re_match_2 (bufp
, NULL
, 0, string
, size
, pos
, regs
, size
);
3287 #endif /* not emacs */
3290 /* re_match_2 matches the compiled pattern in BUFP against the
3291 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3292 and SIZE2, respectively). We start matching at POS, and stop
3295 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3296 store offsets for the substring each group matched in REGS. See the
3297 documentation for exactly how many groups we fill.
3299 We return -1 if no match, -2 if an internal error (such as the
3300 failure stack overflowing). Otherwise, we return the length of the
3301 matched substring. */
3304 re_match_2 (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
3305 struct re_pattern_buffer
*bufp
;
3306 const char *string1
, *string2
;
3309 struct re_registers
*regs
;
3312 /* General temporaries. */
3316 /* Just past the end of the corresponding string. */
3317 const char *end1
, *end2
;
3319 /* Pointers into string1 and string2, just past the last characters in
3320 each to consider matching. */
3321 const char *end_match_1
, *end_match_2
;
3323 /* Where we are in the data, and the end of the current string. */
3324 const char *d
, *dend
;
3326 /* Where we are in the pattern, and the end of the pattern. */
3327 unsigned char *p
= bufp
->buffer
;
3328 register unsigned char *pend
= p
+ bufp
->used
;
3330 /* We use this to map every character in the string. */
3331 char *translate
= bufp
->translate
;
3333 /* Failure point stack. Each place that can handle a failure further
3334 down the line pushes a failure point on this stack. It consists of
3335 restart, regend, and reg_info for all registers corresponding to
3336 the subexpressions we're currently inside, plus the number of such
3337 registers, and, finally, two char *'s. The first char * is where
3338 to resume scanning the pattern; the second one is where to resume
3339 scanning the strings. If the latter is zero, the failure point is
3340 a ``dummy''; if a failure happens and the failure point is a dummy,
3341 it gets discarded and the next next one is tried. */
3342 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3343 fail_stack_type fail_stack
;
3346 static unsigned failure_id
= 0;
3347 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
3350 /* We fill all the registers internally, independent of what we
3351 return, for use in backreferences. The number here includes
3352 an element for register zero. */
3353 unsigned num_regs
= bufp
->re_nsub
+ 1;
3355 /* The currently active registers. */
3356 unsigned lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
3357 unsigned highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
3359 /* Information on the contents of registers. These are pointers into
3360 the input strings; they record just what was matched (on this
3361 attempt) by a subexpression part of the pattern, that is, the
3362 regnum-th regstart pointer points to where in the pattern we began
3363 matching and the regnum-th regend points to right after where we
3364 stopped matching the regnum-th subexpression. (The zeroth register
3365 keeps track of what the whole pattern matches.) */
3366 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3367 const char **regstart
, **regend
;
3370 /* If a group that's operated upon by a repetition operator fails to
3371 match anything, then the register for its start will need to be
3372 restored because it will have been set to wherever in the string we
3373 are when we last see its open-group operator. Similarly for a
3375 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3376 const char **old_regstart
, **old_regend
;
3379 /* The is_active field of reg_info helps us keep track of which (possibly
3380 nested) subexpressions we are currently in. The matched_something
3381 field of reg_info[reg_num] helps us tell whether or not we have
3382 matched any of the pattern so far this time through the reg_num-th
3383 subexpression. These two fields get reset each time through any
3384 loop their register is in. */
3385 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3386 register_info_type
*reg_info
;
3389 /* The following record the register info as found in the above
3390 variables when we find a match better than any we've seen before.
3391 This happens as we backtrack through the failure points, which in
3392 turn happens only if we have not yet matched the entire string. */
3393 unsigned best_regs_set
= false;
3394 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3395 const char **best_regstart
, **best_regend
;
3398 /* Logically, this is `best_regend[0]'. But we don't want to have to
3399 allocate space for that if we're not allocating space for anything
3400 else (see below). Also, we never need info about register 0 for
3401 any of the other register vectors, and it seems rather a kludge to
3402 treat `best_regend' differently than the rest. So we keep track of
3403 the end of the best match so far in a separate variable. We
3404 initialize this to NULL so that when we backtrack the first time
3405 and need to test it, it's not garbage. */
3406 const char *match_end
= NULL
;
3408 /* Used when we pop values we don't care about. */
3409 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3410 const char **reg_dummy
;
3411 register_info_type
*reg_info_dummy
;
3415 /* Counts the total number of registers pushed. */
3416 unsigned num_regs_pushed
= 0;
3419 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3423 #ifdef MATCH_MAY_ALLOCATE
3424 /* Do not bother to initialize all the register variables if there are
3425 no groups in the pattern, as it takes a fair amount of time. If
3426 there are groups, we include space for register 0 (the whole
3427 pattern), even though we never use it, since it simplifies the
3428 array indexing. We should fix this. */
3431 regstart
= REGEX_TALLOC (num_regs
, const char *);
3432 regend
= REGEX_TALLOC (num_regs
, const char *);
3433 old_regstart
= REGEX_TALLOC (num_regs
, const char *);
3434 old_regend
= REGEX_TALLOC (num_regs
, const char *);
3435 best_regstart
= REGEX_TALLOC (num_regs
, const char *);
3436 best_regend
= REGEX_TALLOC (num_regs
, const char *);
3437 reg_info
= REGEX_TALLOC (num_regs
, register_info_type
);
3438 reg_dummy
= REGEX_TALLOC (num_regs
, const char *);
3439 reg_info_dummy
= REGEX_TALLOC (num_regs
, register_info_type
);
3441 if (!(regstart
&& regend
&& old_regstart
&& old_regend
&& reg_info
3442 && best_regstart
&& best_regend
&& reg_dummy
&& reg_info_dummy
))
3448 #if defined (REGEX_MALLOC)
3451 /* We must initialize all our variables to NULL, so that
3452 `FREE_VARIABLES' doesn't try to free them. */
3453 regstart
= regend
= old_regstart
= old_regend
= best_regstart
3454 = best_regend
= reg_dummy
= NULL
;
3455 reg_info
= reg_info_dummy
= (register_info_type
*) NULL
;
3457 #endif /* REGEX_MALLOC */
3458 #endif /* MATCH_MAY_ALLOCATE */
3460 /* The starting position is bogus. */
3461 if (pos
< 0 || pos
> size1
+ size2
)
3467 /* Initialize subexpression text positions to -1 to mark ones that no
3468 start_memory/stop_memory has been seen for. Also initialize the
3469 register information struct. */
3470 for (mcnt
= 1; mcnt
< num_regs
; mcnt
++)
3472 regstart
[mcnt
] = regend
[mcnt
]
3473 = old_regstart
[mcnt
] = old_regend
[mcnt
] = REG_UNSET_VALUE
;
3475 REG_MATCH_NULL_STRING_P (reg_info
[mcnt
]) = MATCH_NULL_UNSET_VALUE
;
3476 IS_ACTIVE (reg_info
[mcnt
]) = 0;
3477 MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
3478 EVER_MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
3481 /* We move `string1' into `string2' if the latter's empty -- but not if
3482 `string1' is null. */
3483 if (size2
== 0 && string1
!= NULL
)
3490 end1
= string1
+ size1
;
3491 end2
= string2
+ size2
;
3493 /* Compute where to stop matching, within the two strings. */
3496 end_match_1
= string1
+ stop
;
3497 end_match_2
= string2
;
3502 end_match_2
= string2
+ stop
- size1
;
3505 /* `p' scans through the pattern as `d' scans through the data.
3506 `dend' is the end of the input string that `d' points within. `d'
3507 is advanced into the following input string whenever necessary, but
3508 this happens before fetching; therefore, at the beginning of the
3509 loop, `d' can be pointing at the end of a string, but it cannot
3511 if (size1
> 0 && pos
<= size1
)
3518 d
= string2
+ pos
- size1
;
3522 DEBUG_PRINT1 ("The compiled pattern is: ");
3523 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
3524 DEBUG_PRINT1 ("The string to match is: `");
3525 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
3526 DEBUG_PRINT1 ("'\n");
3528 /* This loops over pattern commands. It exits by returning from the
3529 function if the match is complete, or it drops through if the match
3530 fails at this starting point in the input data. */
3533 DEBUG_PRINT2 ("\n0x%x: ", p
);
3536 { /* End of pattern means we might have succeeded. */
3537 DEBUG_PRINT1 ("end of pattern ... ");
3539 /* If we haven't matched the entire string, and we want the
3540 longest match, try backtracking. */
3541 if (d
!= end_match_2
)
3543 DEBUG_PRINT1 ("backtracking.\n");
3545 if (!FAIL_STACK_EMPTY ())
3546 { /* More failure points to try. */
3547 boolean same_str_p
= (FIRST_STRING_P (match_end
)
3548 == MATCHING_IN_FIRST_STRING
);
3550 /* If exceeds best match so far, save it. */
3552 || (same_str_p
&& d
> match_end
)
3553 || (!same_str_p
&& !MATCHING_IN_FIRST_STRING
))
3555 best_regs_set
= true;
3558 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3560 for (mcnt
= 1; mcnt
< num_regs
; mcnt
++)
3562 best_regstart
[mcnt
] = regstart
[mcnt
];
3563 best_regend
[mcnt
] = regend
[mcnt
];
3569 /* If no failure points, don't restore garbage. */
3570 else if (best_regs_set
)
3573 /* Restore best match. It may happen that `dend ==
3574 end_match_1' while the restored d is in string2.
3575 For example, the pattern `x.*y.*z' against the
3576 strings `x-' and `y-z-', if the two strings are
3577 not consecutive in memory. */
3578 DEBUG_PRINT1 ("Restoring best registers.\n");
3581 dend
= ((d
>= string1
&& d
<= end1
)
3582 ? end_match_1
: end_match_2
);
3584 for (mcnt
= 1; mcnt
< num_regs
; mcnt
++)
3586 regstart
[mcnt
] = best_regstart
[mcnt
];
3587 regend
[mcnt
] = best_regend
[mcnt
];
3590 } /* d != end_match_2 */
3592 DEBUG_PRINT1 ("Accepting match.\n");
3594 /* If caller wants register contents data back, do it. */
3595 if (regs
&& !bufp
->no_sub
)
3597 /* Have the register data arrays been allocated? */
3598 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
3599 { /* No. So allocate them with malloc. We need one
3600 extra element beyond `num_regs' for the `-1' marker
3602 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
3603 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
3604 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
3605 if (regs
->start
== NULL
|| regs
->end
== NULL
)
3607 bufp
->regs_allocated
= REGS_REALLOCATE
;
3609 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
3610 { /* Yes. If we need more elements than were already
3611 allocated, reallocate them. If we need fewer, just
3613 if (regs
->num_regs
< num_regs
+ 1)
3615 regs
->num_regs
= num_regs
+ 1;
3616 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
3617 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
3618 if (regs
->start
== NULL
|| regs
->end
== NULL
)
3624 /* These braces fend off a "empty body in an else-statement"
3625 warning under GCC when assert expands to nothing. */
3626 assert (bufp
->regs_allocated
== REGS_FIXED
);
3629 /* Convert the pointer data in `regstart' and `regend' to
3630 indices. Register zero has to be set differently,
3631 since we haven't kept track of any info for it. */
3632 if (regs
->num_regs
> 0)
3634 regs
->start
[0] = pos
;
3635 regs
->end
[0] = (MATCHING_IN_FIRST_STRING
3636 ? ((regoff_t
) (d
- string1
))
3637 : ((regoff_t
) (d
- string2
+ size1
)));
3640 /* Go through the first `min (num_regs, regs->num_regs)'
3641 registers, since that is all we initialized. */
3642 for (mcnt
= 1; mcnt
< MIN (num_regs
, regs
->num_regs
); mcnt
++)
3644 if (REG_UNSET (regstart
[mcnt
]) || REG_UNSET (regend
[mcnt
]))
3645 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
3649 = (regoff_t
) POINTER_TO_OFFSET (regstart
[mcnt
]);
3651 = (regoff_t
) POINTER_TO_OFFSET (regend
[mcnt
]);
3655 /* If the regs structure we return has more elements than
3656 were in the pattern, set the extra elements to -1. If
3657 we (re)allocated the registers, this is the case,
3658 because we always allocate enough to have at least one
3660 for (mcnt
= num_regs
; mcnt
< regs
->num_regs
; mcnt
++)
3661 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
3662 } /* regs && !bufp->no_sub */
3665 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3666 nfailure_points_pushed
, nfailure_points_popped
,
3667 nfailure_points_pushed
- nfailure_points_popped
);
3668 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
3670 mcnt
= d
- pos
- (MATCHING_IN_FIRST_STRING
3674 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
3679 /* Otherwise match next pattern command. */
3680 #ifdef SWITCH_ENUM_BUG
3681 switch ((int) ((re_opcode_t
) *p
++))
3683 switch ((re_opcode_t
) *p
++)
3686 /* Ignore these. Used to ignore the n of succeed_n's which
3687 currently have n == 0. */
3689 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3693 /* Match the next n pattern characters exactly. The following
3694 byte in the pattern defines n, and the n bytes after that
3695 are the characters to match. */
3698 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
3700 /* This is written out as an if-else so we don't waste time
3701 testing `translate' inside the loop. */
3707 if (translate
[(unsigned char) *d
++] != (char) *p
++)
3717 if (*d
++ != (char) *p
++) goto fail
;
3721 SET_REGS_MATCHED ();
3725 /* Match any character except possibly a newline or a null. */
3727 DEBUG_PRINT1 ("EXECUTING anychar.\n");
3731 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
) && TRANSLATE (*d
) == '\n')
3732 || (bufp
->syntax
& RE_DOT_NOT_NULL
&& TRANSLATE (*d
) == '\000'))
3735 SET_REGS_MATCHED ();
3736 DEBUG_PRINT2 (" Matched `%d'.\n", *d
);
3744 register unsigned char c
;
3745 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
3747 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
3750 c
= TRANSLATE (*d
); /* The character to match. */
3752 /* Cast to `unsigned' instead of `unsigned char' in case the
3753 bit list is a full 32 bytes long. */
3754 if (c
< (unsigned) (*p
* BYTEWIDTH
)
3755 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
3760 if (!not) goto fail
;
3762 SET_REGS_MATCHED ();
3768 /* The beginning of a group is represented by start_memory.
3769 The arguments are the register number in the next byte, and the
3770 number of groups inner to this one in the next. The text
3771 matched within the group is recorded (in the internal
3772 registers data structure) under the register number. */
3774 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p
, p
[1]);
3776 /* Find out if this group can match the empty string. */
3777 p1
= p
; /* To send to group_match_null_string_p. */
3779 if (REG_MATCH_NULL_STRING_P (reg_info
[*p
]) == MATCH_NULL_UNSET_VALUE
)
3780 REG_MATCH_NULL_STRING_P (reg_info
[*p
])
3781 = group_match_null_string_p (&p1
, pend
, reg_info
);
3783 /* Save the position in the string where we were the last time
3784 we were at this open-group operator in case the group is
3785 operated upon by a repetition operator, e.g., with `(a*)*b'
3786 against `ab'; then we want to ignore where we are now in
3787 the string in case this attempt to match fails. */
3788 old_regstart
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
3789 ? REG_UNSET (regstart
[*p
]) ? d
: regstart
[*p
]
3791 DEBUG_PRINT2 (" old_regstart: %d\n",
3792 POINTER_TO_OFFSET (old_regstart
[*p
]));
3795 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
3797 IS_ACTIVE (reg_info
[*p
]) = 1;
3798 MATCHED_SOMETHING (reg_info
[*p
]) = 0;
3800 /* This is the new highest active register. */
3801 highest_active_reg
= *p
;
3803 /* If nothing was active before, this is the new lowest active
3805 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
3806 lowest_active_reg
= *p
;
3808 /* Move past the register number and inner group count. */
3813 /* The stop_memory opcode represents the end of a group. Its
3814 arguments are the same as start_memory's: the register
3815 number, and the number of inner groups. */
3817 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p
, p
[1]);
3819 /* We need to save the string position the last time we were at
3820 this close-group operator in case the group is operated
3821 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
3822 against `aba'; then we want to ignore where we are now in
3823 the string in case this attempt to match fails. */
3824 old_regend
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
3825 ? REG_UNSET (regend
[*p
]) ? d
: regend
[*p
]
3827 DEBUG_PRINT2 (" old_regend: %d\n",
3828 POINTER_TO_OFFSET (old_regend
[*p
]));
3831 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
3833 /* This register isn't active anymore. */
3834 IS_ACTIVE (reg_info
[*p
]) = 0;
3836 /* If this was the only register active, nothing is active
3838 if (lowest_active_reg
== highest_active_reg
)
3840 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
3841 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
3844 { /* We must scan for the new highest active register, since
3845 it isn't necessarily one less than now: consider
3846 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
3847 new highest active register is 1. */
3848 unsigned char r
= *p
- 1;
3849 while (r
> 0 && !IS_ACTIVE (reg_info
[r
]))
3852 /* If we end up at register zero, that means that we saved
3853 the registers as the result of an `on_failure_jump', not
3854 a `start_memory', and we jumped to past the innermost
3855 `stop_memory'. For example, in ((.)*) we save
3856 registers 1 and 2 as a result of the *, but when we pop
3857 back to the second ), we are at the stop_memory 1.
3858 Thus, nothing is active. */
3861 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
3862 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
3865 highest_active_reg
= r
;
3868 /* If just failed to match something this time around with a
3869 group that's operated on by a repetition operator, try to
3870 force exit from the ``loop'', and restore the register
3871 information for this group that we had before trying this
3873 if ((!MATCHED_SOMETHING (reg_info
[*p
])
3874 || (re_opcode_t
) p
[-3] == start_memory
)
3877 boolean is_a_jump_n
= false;
3881 switch ((re_opcode_t
) *p1
++)
3885 case pop_failure_jump
:
3886 case maybe_pop_jump
:
3888 case dummy_failure_jump
:
3889 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
3899 /* If the next operation is a jump backwards in the pattern
3900 to an on_failure_jump right before the start_memory
3901 corresponding to this stop_memory, exit from the loop
3902 by forcing a failure after pushing on the stack the
3903 on_failure_jump's jump in the pattern, and d. */
3904 if (mcnt
< 0 && (re_opcode_t
) *p1
== on_failure_jump
3905 && (re_opcode_t
) p1
[3] == start_memory
&& p1
[4] == *p
)
3907 /* If this group ever matched anything, then restore
3908 what its registers were before trying this last
3909 failed match, e.g., with `(a*)*b' against `ab' for
3910 regstart[1], and, e.g., with `((a*)*(b*)*)*'
3911 against `aba' for regend[3].
3913 Also restore the registers for inner groups for,
3914 e.g., `((a*)(b*))*' against `aba' (register 3 would
3915 otherwise get trashed). */
3917 if (EVER_MATCHED_SOMETHING (reg_info
[*p
]))
3921 EVER_MATCHED_SOMETHING (reg_info
[*p
]) = 0;
3923 /* Restore this and inner groups' (if any) registers. */
3924 for (r
= *p
; r
< *p
+ *(p
+ 1); r
++)
3926 regstart
[r
] = old_regstart
[r
];
3928 /* xx why this test? */
3929 if ((int) old_regend
[r
] >= (int) regstart
[r
])
3930 regend
[r
] = old_regend
[r
];
3934 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
3935 PUSH_FAILURE_POINT (p1
+ mcnt
, d
, -2);
3941 /* Move past the register number and the inner group count. */
3946 /* \<digit> has been turned into a `duplicate' command which is
3947 followed by the numeric value of <digit> as the register number. */
3950 register const char *d2
, *dend2
;
3951 int regno
= *p
++; /* Get which register to match against. */
3952 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
3954 /* Can't back reference a group which we've never matched. */
3955 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
3958 /* Where in input to try to start matching. */
3959 d2
= regstart
[regno
];
3961 /* Where to stop matching; if both the place to start and
3962 the place to stop matching are in the same string, then
3963 set to the place to stop, otherwise, for now have to use
3964 the end of the first string. */
3966 dend2
= ((FIRST_STRING_P (regstart
[regno
])
3967 == FIRST_STRING_P (regend
[regno
]))
3968 ? regend
[regno
] : end_match_1
);
3971 /* If necessary, advance to next segment in register
3975 if (dend2
== end_match_2
) break;
3976 if (dend2
== regend
[regno
]) break;
3978 /* End of string1 => advance to string2. */
3980 dend2
= regend
[regno
];
3982 /* At end of register contents => success */
3983 if (d2
== dend2
) break;
3985 /* If necessary, advance to next segment in data. */
3988 /* How many characters left in this segment to match. */
3991 /* Want how many consecutive characters we can match in
3992 one shot, so, if necessary, adjust the count. */
3993 if (mcnt
> dend2
- d2
)
3996 /* Compare that many; failure if mismatch, else move
3999 ? bcmp_translate (d
, d2
, mcnt
, translate
)
4000 : bcmp (d
, d2
, mcnt
))
4002 d
+= mcnt
, d2
+= mcnt
;
4008 /* begline matches the empty string at the beginning of the string
4009 (unless `not_bol' is set in `bufp'), and, if
4010 `newline_anchor' is set, after newlines. */
4012 DEBUG_PRINT1 ("EXECUTING begline.\n");
4014 if (AT_STRINGS_BEG (d
))
4016 if (!bufp
->not_bol
) break;
4018 else if (d
[-1] == '\n' && bufp
->newline_anchor
)
4022 /* In all other cases, we fail. */
4026 /* endline is the dual of begline. */
4028 DEBUG_PRINT1 ("EXECUTING endline.\n");
4030 if (AT_STRINGS_END (d
))
4032 if (!bufp
->not_eol
) break;
4035 /* We have to ``prefetch'' the next character. */
4036 else if ((d
== end1
? *string2
: *d
) == '\n'
4037 && bufp
->newline_anchor
)
4044 /* Match at the very beginning of the data. */
4046 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4047 if (AT_STRINGS_BEG (d
))
4052 /* Match at the very end of the data. */
4054 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4055 if (AT_STRINGS_END (d
))
4060 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4061 pushes NULL as the value for the string on the stack. Then
4062 `pop_failure_point' will keep the current value for the
4063 string, instead of restoring it. To see why, consider
4064 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4065 then the . fails against the \n. But the next thing we want
4066 to do is match the \n against the \n; if we restored the
4067 string value, we would be back at the foo.
4069 Because this is used only in specific cases, we don't need to
4070 check all the things that `on_failure_jump' does, to make
4071 sure the right things get saved on the stack. Hence we don't
4072 share its code. The only reason to push anything on the
4073 stack at all is that otherwise we would have to change
4074 `anychar's code to do something besides goto fail in this
4075 case; that seems worse than this. */
4076 case on_failure_keep_string_jump
:
4077 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4079 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4080 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt
, p
+ mcnt
);
4082 PUSH_FAILURE_POINT (p
+ mcnt
, NULL
, -2);
4086 /* Uses of on_failure_jump:
4088 Each alternative starts with an on_failure_jump that points
4089 to the beginning of the next alternative. Each alternative
4090 except the last ends with a jump that in effect jumps past
4091 the rest of the alternatives. (They really jump to the
4092 ending jump of the following alternative, because tensioning
4093 these jumps is a hassle.)
4095 Repeats start with an on_failure_jump that points past both
4096 the repetition text and either the following jump or
4097 pop_failure_jump back to this on_failure_jump. */
4098 case on_failure_jump
:
4100 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4102 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4103 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt
, p
+ mcnt
);
4105 /* If this on_failure_jump comes right before a group (i.e.,
4106 the original * applied to a group), save the information
4107 for that group and all inner ones, so that if we fail back
4108 to this point, the group's information will be correct.
4109 For example, in \(a*\)*\1, we need the preceding group,
4110 and in \(\(a*\)b*\)\2, we need the inner group. */
4112 /* We can't use `p' to check ahead because we push
4113 a failure point to `p + mcnt' after we do this. */
4116 /* We need to skip no_op's before we look for the
4117 start_memory in case this on_failure_jump is happening as
4118 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4120 while (p1
< pend
&& (re_opcode_t
) *p1
== no_op
)
4123 if (p1
< pend
&& (re_opcode_t
) *p1
== start_memory
)
4125 /* We have a new highest active register now. This will
4126 get reset at the start_memory we are about to get to,
4127 but we will have saved all the registers relevant to
4128 this repetition op, as described above. */
4129 highest_active_reg
= *(p1
+ 1) + *(p1
+ 2);
4130 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
4131 lowest_active_reg
= *(p1
+ 1);
4134 DEBUG_PRINT1 (":\n");
4135 PUSH_FAILURE_POINT (p
+ mcnt
, d
, -2);
4139 /* A smart repeat ends with `maybe_pop_jump'.
4140 We change it to either `pop_failure_jump' or `jump'. */
4141 case maybe_pop_jump
:
4142 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4143 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt
);
4145 register unsigned char *p2
= p
;
4147 /* Compare the beginning of the repeat with what in the
4148 pattern follows its end. If we can establish that there
4149 is nothing that they would both match, i.e., that we
4150 would have to backtrack because of (as in, e.g., `a*a')
4151 then we can change to pop_failure_jump, because we'll
4152 never have to backtrack.
4154 This is not true in the case of alternatives: in
4155 `(a|ab)*' we do need to backtrack to the `ab' alternative
4156 (e.g., if the string was `ab'). But instead of trying to
4157 detect that here, the alternative has put on a dummy
4158 failure point which is what we will end up popping. */
4160 /* Skip over open/close-group commands.
4161 If what follows this loop is a ...+ construct,
4162 look at what begins its body, since we will have to
4163 match at least one of that. */
4167 && ((re_opcode_t
) *p2
== stop_memory
4168 || (re_opcode_t
) *p2
== start_memory
))
4170 else if (p2
+ 6 < pend
4171 && (re_opcode_t
) *p2
== dummy_failure_jump
)
4178 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4179 to the `maybe_finalize_jump' of this case. Examine what
4182 /* If we're at the end of the pattern, we can change. */
4185 /* Consider what happens when matching ":\(.*\)"
4186 against ":/". I don't really understand this code
4188 p
[-3] = (unsigned char) pop_failure_jump
;
4190 (" End of pattern: change to `pop_failure_jump'.\n");
4193 else if ((re_opcode_t
) *p2
== exactn
4194 || (bufp
->newline_anchor
&& (re_opcode_t
) *p2
== endline
))
4196 register unsigned char c
4197 = *p2
== (unsigned char) endline
? '\n' : p2
[2];
4199 if ((re_opcode_t
) p1
[3] == exactn
&& p1
[5] != c
)
4201 p
[-3] = (unsigned char) pop_failure_jump
;
4202 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4206 else if ((re_opcode_t
) p1
[3] == charset
4207 || (re_opcode_t
) p1
[3] == charset_not
)
4209 int not = (re_opcode_t
) p1
[3] == charset_not
;
4211 if (c
< (unsigned char) (p1
[4] * BYTEWIDTH
)
4212 && p1
[5 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4215 /* `not' is equal to 1 if c would match, which means
4216 that we can't change to pop_failure_jump. */
4219 p
[-3] = (unsigned char) pop_failure_jump
;
4220 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4224 else if ((re_opcode_t
) *p2
== charset
)
4226 register unsigned char c
4227 = *p2
== (unsigned char) endline
? '\n' : p2
[2];
4229 if ((re_opcode_t
) p1
[3] == exactn
4230 && ! (p2
[1] * BYTEWIDTH
> p1
[4]
4231 && (p2
[1 + p1
[4] / BYTEWIDTH
]
4232 & (1 << (p1
[4] % BYTEWIDTH
)))))
4234 p
[-3] = (unsigned char) pop_failure_jump
;
4235 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4239 else if ((re_opcode_t
) p1
[3] == charset_not
)
4242 /* We win if the charset_not inside the loop
4243 lists every character listed in the charset after. */
4244 for (idx
= 0; idx
< p2
[1]; idx
++)
4245 if (! (p2
[2 + idx
] == 0
4247 && ((p2
[2 + idx
] & ~ p1
[5 + idx
]) == 0))))
4252 p
[-3] = (unsigned char) pop_failure_jump
;
4253 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4256 else if ((re_opcode_t
) p1
[3] == charset
)
4259 /* We win if the charset inside the loop
4260 has no overlap with the one after the loop. */
4261 for (idx
= 0; idx
< p2
[1] && idx
< p1
[4]; idx
++)
4262 if ((p2
[2 + idx
] & p1
[5 + idx
]) != 0)
4265 if (idx
== p2
[1] || idx
== p1
[4])
4267 p
[-3] = (unsigned char) pop_failure_jump
;
4268 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4273 p
-= 2; /* Point at relative address again. */
4274 if ((re_opcode_t
) p
[-1] != pop_failure_jump
)
4276 p
[-1] = (unsigned char) jump
;
4277 DEBUG_PRINT1 (" Match => jump.\n");
4278 goto unconditional_jump
;
4280 /* Note fall through. */
4283 /* The end of a simple repeat has a pop_failure_jump back to
4284 its matching on_failure_jump, where the latter will push a
4285 failure point. The pop_failure_jump takes off failure
4286 points put on by this pop_failure_jump's matching
4287 on_failure_jump; we got through the pattern to here from the
4288 matching on_failure_jump, so didn't fail. */
4289 case pop_failure_jump
:
4291 /* We need to pass separate storage for the lowest and
4292 highest registers, even though we don't care about the
4293 actual values. Otherwise, we will restore only one
4294 register from the stack, since lowest will == highest in
4295 `pop_failure_point'. */
4296 unsigned dummy_low_reg
, dummy_high_reg
;
4297 unsigned char *pdummy
;
4300 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4301 POP_FAILURE_POINT (sdummy
, pdummy
,
4302 dummy_low_reg
, dummy_high_reg
,
4303 reg_dummy
, reg_dummy
, reg_info_dummy
);
4305 /* Note fall through. */
4308 /* Unconditionally jump (without popping any failure points). */
4311 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
4312 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
4313 p
+= mcnt
; /* Do the jump. */
4314 DEBUG_PRINT2 ("(to 0x%x).\n", p
);
4318 /* We need this opcode so we can detect where alternatives end
4319 in `group_match_null_string_p' et al. */
4321 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4322 goto unconditional_jump
;
4325 /* Normally, the on_failure_jump pushes a failure point, which
4326 then gets popped at pop_failure_jump. We will end up at
4327 pop_failure_jump, also, and with a pattern of, say, `a+', we
4328 are skipping over the on_failure_jump, so we have to push
4329 something meaningless for pop_failure_jump to pop. */
4330 case dummy_failure_jump
:
4331 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4332 /* It doesn't matter what we push for the string here. What
4333 the code at `fail' tests is the value for the pattern. */
4334 PUSH_FAILURE_POINT (0, 0, -2);
4335 goto unconditional_jump
;
4338 /* At the end of an alternative, we need to push a dummy failure
4339 point in case we are followed by a `pop_failure_jump', because
4340 we don't want the failure point for the alternative to be
4341 popped. For example, matching `(a|ab)*' against `aab'
4342 requires that we match the `ab' alternative. */
4343 case push_dummy_failure
:
4344 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4345 /* See comments just above at `dummy_failure_jump' about the
4347 PUSH_FAILURE_POINT (0, 0, -2);
4350 /* Have to succeed matching what follows at least n times.
4351 After that, handle like `on_failure_jump'. */
4353 EXTRACT_NUMBER (mcnt
, p
+ 2);
4354 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
4357 /* Originally, this is how many times we HAVE to succeed. */
4362 STORE_NUMBER_AND_INCR (p
, mcnt
);
4363 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
, mcnt
);
4367 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p
+2);
4368 p
[2] = (unsigned char) no_op
;
4369 p
[3] = (unsigned char) no_op
;
4375 EXTRACT_NUMBER (mcnt
, p
+ 2);
4376 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
4378 /* Originally, this is how many times we CAN jump. */
4382 STORE_NUMBER (p
+ 2, mcnt
);
4383 goto unconditional_jump
;
4385 /* If don't have to jump any more, skip over the rest of command. */
4392 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4394 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4396 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4397 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1
, mcnt
);
4398 STORE_NUMBER (p1
, mcnt
);
4403 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4404 if (AT_WORD_BOUNDARY (d
))
4409 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4410 if (AT_WORD_BOUNDARY (d
))
4415 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4416 if (WORDCHAR_P (d
) && (AT_STRINGS_BEG (d
) || !WORDCHAR_P (d
- 1)))
4421 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4422 if (!AT_STRINGS_BEG (d
) && WORDCHAR_P (d
- 1)
4423 && (!WORDCHAR_P (d
) || AT_STRINGS_END (d
)))
4430 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4431 if (PTR_CHAR_POS ((unsigned char *) d
) >= point
)
4436 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4437 if (PTR_CHAR_POS ((unsigned char *) d
) != point
)
4442 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4443 if (PTR_CHAR_POS ((unsigned char *) d
) <= point
)
4446 #else /* not emacs19 */
4448 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4449 if (PTR_CHAR_POS ((unsigned char *) d
) + 1 != point
)
4452 #endif /* not emacs19 */
4455 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt
);
4460 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4464 if (SYNTAX (*d
++) != (enum syntaxcode
) mcnt
)
4466 SET_REGS_MATCHED ();
4470 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt
);
4472 goto matchnotsyntax
;
4475 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4479 if (SYNTAX (*d
++) == (enum syntaxcode
) mcnt
)
4481 SET_REGS_MATCHED ();
4484 #else /* not emacs */
4486 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4488 if (!WORDCHAR_P (d
))
4490 SET_REGS_MATCHED ();
4495 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4499 SET_REGS_MATCHED ();
4502 #endif /* not emacs */
4507 continue; /* Successfully executed one pattern command; keep going. */
4510 /* We goto here if a matching operation fails. */
4512 if (!FAIL_STACK_EMPTY ())
4513 { /* A restart point is known. Restore to that state. */
4514 DEBUG_PRINT1 ("\nFAIL:\n");
4515 POP_FAILURE_POINT (d
, p
,
4516 lowest_active_reg
, highest_active_reg
,
4517 regstart
, regend
, reg_info
);
4519 /* If this failure point is a dummy, try the next one. */
4523 /* If we failed to the end of the pattern, don't examine *p. */
4527 boolean is_a_jump_n
= false;
4529 /* If failed to a backwards jump that's part of a repetition
4530 loop, need to pop this failure point and use the next one. */
4531 switch ((re_opcode_t
) *p
)
4535 case maybe_pop_jump
:
4536 case pop_failure_jump
:
4539 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4542 if ((is_a_jump_n
&& (re_opcode_t
) *p1
== succeed_n
)
4544 && (re_opcode_t
) *p1
== on_failure_jump
))
4552 if (d
>= string1
&& d
<= end1
)
4556 break; /* Matching at this starting point really fails. */
4560 goto restore_best_regs
;
4564 return -1; /* Failure to match. */
4567 /* Subroutine definitions for re_match_2. */
4570 /* We are passed P pointing to a register number after a start_memory.
4572 Return true if the pattern up to the corresponding stop_memory can
4573 match the empty string, and false otherwise.
4575 If we find the matching stop_memory, sets P to point to one past its number.
4576 Otherwise, sets P to an undefined byte less than or equal to END.
4578 We don't handle duplicates properly (yet). */
4581 group_match_null_string_p (p
, end
, reg_info
)
4582 unsigned char **p
, *end
;
4583 register_info_type
*reg_info
;
4586 /* Point to after the args to the start_memory. */
4587 unsigned char *p1
= *p
+ 2;
4591 /* Skip over opcodes that can match nothing, and return true or
4592 false, as appropriate, when we get to one that can't, or to the
4593 matching stop_memory. */
4595 switch ((re_opcode_t
) *p1
)
4597 /* Could be either a loop or a series of alternatives. */
4598 case on_failure_jump
:
4600 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4602 /* If the next operation is not a jump backwards in the
4607 /* Go through the on_failure_jumps of the alternatives,
4608 seeing if any of the alternatives cannot match nothing.
4609 The last alternative starts with only a jump,
4610 whereas the rest start with on_failure_jump and end
4611 with a jump, e.g., here is the pattern for `a|b|c':
4613 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4614 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4617 So, we have to first go through the first (n-1)
4618 alternatives and then deal with the last one separately. */
4621 /* Deal with the first (n-1) alternatives, which start
4622 with an on_failure_jump (see above) that jumps to right
4623 past a jump_past_alt. */
4625 while ((re_opcode_t
) p1
[mcnt
-3] == jump_past_alt
)
4627 /* `mcnt' holds how many bytes long the alternative
4628 is, including the ending `jump_past_alt' and
4631 if (!alt_match_null_string_p (p1
, p1
+ mcnt
- 3,
4635 /* Move to right after this alternative, including the
4639 /* Break if it's the beginning of an n-th alternative
4640 that doesn't begin with an on_failure_jump. */
4641 if ((re_opcode_t
) *p1
!= on_failure_jump
)
4644 /* Still have to check that it's not an n-th
4645 alternative that starts with an on_failure_jump. */
4647 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4648 if ((re_opcode_t
) p1
[mcnt
-3] != jump_past_alt
)
4650 /* Get to the beginning of the n-th alternative. */
4656 /* Deal with the last alternative: go back and get number
4657 of the `jump_past_alt' just before it. `mcnt' contains
4658 the length of the alternative. */
4659 EXTRACT_NUMBER (mcnt
, p1
- 2);
4661 if (!alt_match_null_string_p (p1
, p1
+ mcnt
, reg_info
))
4664 p1
+= mcnt
; /* Get past the n-th alternative. */
4670 assert (p1
[1] == **p
);
4676 if (!common_op_match_null_string_p (&p1
, end
, reg_info
))
4679 } /* while p1 < end */
4682 } /* group_match_null_string_p */
4685 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
4686 It expects P to be the first byte of a single alternative and END one
4687 byte past the last. The alternative can contain groups. */
4690 alt_match_null_string_p (p
, end
, reg_info
)
4691 unsigned char *p
, *end
;
4692 register_info_type
*reg_info
;
4695 unsigned char *p1
= p
;
4699 /* Skip over opcodes that can match nothing, and break when we get
4700 to one that can't. */
4702 switch ((re_opcode_t
) *p1
)
4705 case on_failure_jump
:
4707 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4712 if (!common_op_match_null_string_p (&p1
, end
, reg_info
))
4715 } /* while p1 < end */
4718 } /* alt_match_null_string_p */
4721 /* Deals with the ops common to group_match_null_string_p and
4722 alt_match_null_string_p.
4724 Sets P to one after the op and its arguments, if any. */
4727 common_op_match_null_string_p (p
, end
, reg_info
)
4728 unsigned char **p
, *end
;
4729 register_info_type
*reg_info
;
4734 unsigned char *p1
= *p
;
4736 switch ((re_opcode_t
) *p1
++)
4756 assert (reg_no
> 0 && reg_no
<= MAX_REGNUM
);
4757 ret
= group_match_null_string_p (&p1
, end
, reg_info
);
4759 /* Have to set this here in case we're checking a group which
4760 contains a group and a back reference to it. */
4762 if (REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) == MATCH_NULL_UNSET_VALUE
)
4763 REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) = ret
;
4769 /* If this is an optimized succeed_n for zero times, make the jump. */
4771 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4779 /* Get to the number of times to succeed. */
4781 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4786 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4794 if (!REG_MATCH_NULL_STRING_P (reg_info
[*p1
]))
4802 /* All other opcodes mean we cannot match the empty string. */
4808 } /* common_op_match_null_string_p */
4811 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
4812 bytes; nonzero otherwise. */
4815 bcmp_translate (s1
, s2
, len
, translate
)
4816 unsigned char *s1
, *s2
;
4820 register unsigned char *p1
= s1
, *p2
= s2
;
4823 if (translate
[*p1
++] != translate
[*p2
++]) return 1;
4829 /* Entry points for GNU code. */
4831 /* re_compile_pattern is the GNU regular expression compiler: it
4832 compiles PATTERN (of length SIZE) and puts the result in BUFP.
4833 Returns 0 if the pattern was valid, otherwise an error string.
4835 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
4836 are set in BUFP on entry.
4838 We call regex_compile to do the actual compilation. */
4841 re_compile_pattern (pattern
, length
, bufp
)
4842 const char *pattern
;
4844 struct re_pattern_buffer
*bufp
;
4848 /* GNU code is written to assume at least RE_NREGS registers will be set
4849 (and at least one extra will be -1). */
4850 bufp
->regs_allocated
= REGS_UNALLOCATED
;
4852 /* And GNU code determines whether or not to get register information
4853 by passing null for the REGS argument to re_match, etc., not by
4857 /* Match anchors at newline. */
4858 bufp
->newline_anchor
= 1;
4860 ret
= regex_compile (pattern
, length
, re_syntax_options
, bufp
);
4862 return re_error_msg
[(int) ret
];
4865 /* Entry points compatible with 4.2 BSD regex library. We don't define
4866 them if this is an Emacs or POSIX compilation. */
4868 #if !defined (emacs) && !defined (_POSIX_SOURCE)
4870 /* BSD has one and only one pattern buffer. */
4871 static struct re_pattern_buffer re_comp_buf
;
4881 if (!re_comp_buf
.buffer
)
4882 return "No previous regular expression";
4886 if (!re_comp_buf
.buffer
)
4888 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
4889 if (re_comp_buf
.buffer
== NULL
)
4890 return "Memory exhausted";
4891 re_comp_buf
.allocated
= 200;
4893 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
4894 if (re_comp_buf
.fastmap
== NULL
)
4895 return "Memory exhausted";
4898 /* Since `re_exec' always passes NULL for the `regs' argument, we
4899 don't need to initialize the pattern buffer fields which affect it. */
4901 /* Match anchors at newlines. */
4902 re_comp_buf
.newline_anchor
= 1;
4904 ret
= regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
4906 /* Yes, we're discarding `const' here. */
4907 return (char *) re_error_msg
[(int) ret
];
4915 const int len
= strlen (s
);
4917 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
4919 #endif /* not emacs and not _POSIX_SOURCE */
4921 /* POSIX.2 functions. Don't define these for Emacs. */
4925 /* regcomp takes a regular expression as a string and compiles it.
4927 PREG is a regex_t *. We do not expect any fields to be initialized,
4928 since POSIX says we shouldn't. Thus, we set
4930 `buffer' to the compiled pattern;
4931 `used' to the length of the compiled pattern;
4932 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
4933 REG_EXTENDED bit in CFLAGS is set; otherwise, to
4934 RE_SYNTAX_POSIX_BASIC;
4935 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
4936 `fastmap' and `fastmap_accurate' to zero;
4937 `re_nsub' to the number of subexpressions in PATTERN.
4939 PATTERN is the address of the pattern string.
4941 CFLAGS is a series of bits which affect compilation.
4943 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
4944 use POSIX basic syntax.
4946 If REG_NEWLINE is set, then . and [^...] don't match newline.
4947 Also, regexec will try a match beginning after every newline.
4949 If REG_ICASE is set, then we considers upper- and lowercase
4950 versions of letters to be equivalent when matching.
4952 If REG_NOSUB is set, then when PREG is passed to regexec, that
4953 routine will report only success or failure, and nothing about the
4956 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
4957 the return codes and their meanings.) */
4960 regcomp (preg
, pattern
, cflags
)
4962 const char *pattern
;
4967 = (cflags
& REG_EXTENDED
) ?
4968 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
4970 /* regex_compile will allocate the space for the compiled pattern. */
4972 preg
->allocated
= 0;
4975 /* Don't bother to use a fastmap when searching. This simplifies the
4976 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
4977 characters after newlines into the fastmap. This way, we just try
4981 if (cflags
& REG_ICASE
)
4985 preg
->translate
= (char *) malloc (CHAR_SET_SIZE
);
4986 if (preg
->translate
== NULL
)
4987 return (int) REG_ESPACE
;
4989 /* Map uppercase characters to corresponding lowercase ones. */
4990 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
4991 preg
->translate
[i
] = ISUPPER (i
) ? tolower (i
) : i
;
4994 preg
->translate
= NULL
;
4996 /* If REG_NEWLINE is set, newlines are treated differently. */
4997 if (cflags
& REG_NEWLINE
)
4998 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
4999 syntax
&= ~RE_DOT_NEWLINE
;
5000 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
5001 /* It also changes the matching behavior. */
5002 preg
->newline_anchor
= 1;
5005 preg
->newline_anchor
= 0;
5007 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
5009 /* POSIX says a null character in the pattern terminates it, so we
5010 can use strlen here in compiling the pattern. */
5011 ret
= regex_compile (pattern
, strlen (pattern
), syntax
, preg
);
5013 /* POSIX doesn't distinguish between an unmatched open-group and an
5014 unmatched close-group: both are REG_EPAREN. */
5015 if (ret
== REG_ERPAREN
) ret
= REG_EPAREN
;
5021 /* regexec searches for a given pattern, specified by PREG, in the
5024 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5025 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5026 least NMATCH elements, and we set them to the offsets of the
5027 corresponding matched substrings.
5029 EFLAGS specifies `execution flags' which affect matching: if
5030 REG_NOTBOL is set, then ^ does not match at the beginning of the
5031 string; if REG_NOTEOL is set, then $ does not match at the end.
5033 We return 0 if we find a match and REG_NOMATCH if not. */
5036 regexec (preg
, string
, nmatch
, pmatch
, eflags
)
5037 const regex_t
*preg
;
5040 regmatch_t pmatch
[];
5044 struct re_registers regs
;
5045 regex_t private_preg
;
5046 int len
= strlen (string
);
5047 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0;
5049 private_preg
= *preg
;
5051 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
5052 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
5054 /* The user has told us exactly how many registers to return
5055 information about, via `nmatch'. We have to pass that on to the
5056 matching routines. */
5057 private_preg
.regs_allocated
= REGS_FIXED
;
5061 regs
.num_regs
= nmatch
;
5062 regs
.start
= TALLOC (nmatch
, regoff_t
);
5063 regs
.end
= TALLOC (nmatch
, regoff_t
);
5064 if (regs
.start
== NULL
|| regs
.end
== NULL
)
5065 return (int) REG_NOMATCH
;
5068 /* Perform the searching operation. */
5069 ret
= re_search (&private_preg
, string
, len
,
5070 /* start: */ 0, /* range: */ len
,
5071 want_reg_info
? ®s
: (struct re_registers
*) 0);
5073 /* Copy the register information to the POSIX structure. */
5080 for (r
= 0; r
< nmatch
; r
++)
5082 pmatch
[r
].rm_so
= regs
.start
[r
];
5083 pmatch
[r
].rm_eo
= regs
.end
[r
];
5087 /* If we needed the temporary register info, free the space now. */
5092 /* We want zero return to mean success, unlike `re_search'. */
5093 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
5097 /* Returns a message corresponding to an error code, ERRCODE, returned
5098 from either regcomp or regexec. We don't use PREG here. */
5101 regerror (errcode
, preg
, errbuf
, errbuf_size
)
5103 const regex_t
*preg
;
5111 || errcode
>= (sizeof (re_error_msg
) / sizeof (re_error_msg
[0])))
5112 /* Only error codes returned by the rest of the code should be passed
5113 to this routine. If we are given anything else, or if other regex
5114 code generates an invalid error code, then the program has a bug.
5115 Dump core so we can fix it. */
5118 msg
= re_error_msg
[errcode
];
5120 /* POSIX doesn't require that we do anything in this case, but why
5125 msg_size
= strlen (msg
) + 1; /* Includes the null. */
5127 if (errbuf_size
!= 0)
5129 if (msg_size
> errbuf_size
)
5131 strncpy (errbuf
, msg
, errbuf_size
- 1);
5132 errbuf
[errbuf_size
- 1] = 0;
5135 strcpy (errbuf
, msg
);
5142 /* Free dynamically allocated space used by PREG. */
5148 if (preg
->buffer
!= NULL
)
5149 free (preg
->buffer
);
5150 preg
->buffer
= NULL
;
5152 preg
->allocated
= 0;
5155 if (preg
->fastmap
!= NULL
)
5156 free (preg
->fastmap
);
5157 preg
->fastmap
= NULL
;
5158 preg
->fastmap_accurate
= 0;
5160 if (preg
->translate
!= NULL
)
5161 free (preg
->translate
);
5162 preg
->translate
= NULL
;
5165 #endif /* not emacs */
5169 make-backup-files: t
5171 trim-versions-without-asking: nil