* src/xdisp.c (safe_eval_handler): Distinguish symbols and strings.
[emacs.git] / src / alloc.c
blobd5c9f307cbcfe6aac5ab305a6eb29949be53669e
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2011
3 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20 #include <config.h>
21 #include <stdio.h>
22 #include <limits.h> /* For CHAR_BIT. */
23 #include <setjmp.h>
25 #ifdef ALLOC_DEBUG
26 #undef INLINE
27 #endif
29 #include <signal.h>
31 #ifdef HAVE_GTK_AND_PTHREAD
32 #include <pthread.h>
33 #endif
35 /* This file is part of the core Lisp implementation, and thus must
36 deal with the real data structures. If the Lisp implementation is
37 replaced, this file likely will not be used. */
39 #undef HIDE_LISP_IMPLEMENTATION
40 #include "lisp.h"
41 #include "process.h"
42 #include "intervals.h"
43 #include "puresize.h"
44 #include "buffer.h"
45 #include "window.h"
46 #include "keyboard.h"
47 #include "frame.h"
48 #include "blockinput.h"
49 #include "character.h"
50 #include "syssignal.h"
51 #include "termhooks.h" /* For struct terminal. */
52 #include <setjmp.h>
54 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
55 memory. Can do this only if using gmalloc.c. */
57 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
58 #undef GC_MALLOC_CHECK
59 #endif
61 #include <unistd.h>
62 #ifndef HAVE_UNISTD_H
63 extern POINTER_TYPE *sbrk ();
64 #endif
66 #include <fcntl.h>
68 #ifdef WINDOWSNT
69 #include "w32.h"
70 #endif
72 #ifdef DOUG_LEA_MALLOC
74 #include <malloc.h>
75 /* malloc.h #defines this as size_t, at least in glibc2. */
76 #ifndef __malloc_size_t
77 #define __malloc_size_t int
78 #endif
80 /* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
83 #define MMAP_MAX_AREAS 100000000
85 #else /* not DOUG_LEA_MALLOC */
87 /* The following come from gmalloc.c. */
89 #define __malloc_size_t size_t
90 extern __malloc_size_t _bytes_used;
91 extern __malloc_size_t __malloc_extra_blocks;
93 #endif /* not DOUG_LEA_MALLOC */
95 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
97 /* When GTK uses the file chooser dialog, different backends can be loaded
98 dynamically. One such a backend is the Gnome VFS backend that gets loaded
99 if you run Gnome. That backend creates several threads and also allocates
100 memory with malloc.
102 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
103 functions below are called from malloc, there is a chance that one
104 of these threads preempts the Emacs main thread and the hook variables
105 end up in an inconsistent state. So we have a mutex to prevent that (note
106 that the backend handles concurrent access to malloc within its own threads
107 but Emacs code running in the main thread is not included in that control).
109 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
110 happens in one of the backend threads we will have two threads that tries
111 to run Emacs code at once, and the code is not prepared for that.
112 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
114 static pthread_mutex_t alloc_mutex;
116 #define BLOCK_INPUT_ALLOC \
117 do \
119 if (pthread_equal (pthread_self (), main_thread)) \
120 BLOCK_INPUT; \
121 pthread_mutex_lock (&alloc_mutex); \
123 while (0)
124 #define UNBLOCK_INPUT_ALLOC \
125 do \
127 pthread_mutex_unlock (&alloc_mutex); \
128 if (pthread_equal (pthread_self (), main_thread)) \
129 UNBLOCK_INPUT; \
131 while (0)
133 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
135 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
136 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
138 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
140 /* Value of _bytes_used, when spare_memory was freed. */
142 static __malloc_size_t bytes_used_when_full;
144 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
145 to a struct Lisp_String. */
147 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
148 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
149 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
151 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
152 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
153 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
155 /* Value is the number of bytes/chars of S, a pointer to a struct
156 Lisp_String. This must be used instead of STRING_BYTES (S) or
157 S->size during GC, because S->size contains the mark bit for
158 strings. */
160 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
161 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
163 /* Global variables. */
164 struct emacs_globals globals;
166 /* Number of bytes of consing done since the last gc. */
168 int consing_since_gc;
170 /* Similar minimum, computed from Vgc_cons_percentage. */
172 EMACS_INT gc_relative_threshold;
174 /* Minimum number of bytes of consing since GC before next GC,
175 when memory is full. */
177 EMACS_INT memory_full_cons_threshold;
179 /* Nonzero during GC. */
181 int gc_in_progress;
183 /* Nonzero means abort if try to GC.
184 This is for code which is written on the assumption that
185 no GC will happen, so as to verify that assumption. */
187 int abort_on_gc;
189 /* Number of live and free conses etc. */
191 static int total_conses, total_markers, total_symbols, total_vector_size;
192 static int total_free_conses, total_free_markers, total_free_symbols;
193 static int total_free_floats, total_floats;
195 /* Points to memory space allocated as "spare", to be freed if we run
196 out of memory. We keep one large block, four cons-blocks, and
197 two string blocks. */
199 static char *spare_memory[7];
201 /* Amount of spare memory to keep in large reserve block. */
203 #define SPARE_MEMORY (1 << 14)
205 /* Number of extra blocks malloc should get when it needs more core. */
207 static int malloc_hysteresis;
209 /* Initialize it to a nonzero value to force it into data space
210 (rather than bss space). That way unexec will remap it into text
211 space (pure), on some systems. We have not implemented the
212 remapping on more recent systems because this is less important
213 nowadays than in the days of small memories and timesharing. */
215 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
216 #define PUREBEG (char *) pure
218 /* Pointer to the pure area, and its size. */
220 static char *purebeg;
221 static size_t pure_size;
223 /* Number of bytes of pure storage used before pure storage overflowed.
224 If this is non-zero, this implies that an overflow occurred. */
226 static size_t pure_bytes_used_before_overflow;
228 /* Value is non-zero if P points into pure space. */
230 #define PURE_POINTER_P(P) \
231 (((PNTR_COMPARISON_TYPE) (P) \
232 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
233 && ((PNTR_COMPARISON_TYPE) (P) \
234 >= (PNTR_COMPARISON_TYPE) purebeg))
236 /* Index in pure at which next pure Lisp object will be allocated.. */
238 static EMACS_INT pure_bytes_used_lisp;
240 /* Number of bytes allocated for non-Lisp objects in pure storage. */
242 static EMACS_INT pure_bytes_used_non_lisp;
244 /* If nonzero, this is a warning delivered by malloc and not yet
245 displayed. */
247 const char *pending_malloc_warning;
249 /* Maximum amount of C stack to save when a GC happens. */
251 #ifndef MAX_SAVE_STACK
252 #define MAX_SAVE_STACK 16000
253 #endif
255 /* Buffer in which we save a copy of the C stack at each GC. */
257 static char *stack_copy;
258 static int stack_copy_size;
260 /* Non-zero means ignore malloc warnings. Set during initialization.
261 Currently not used. */
263 static int ignore_warnings;
265 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
267 /* Hook run after GC has finished. */
269 Lisp_Object Qpost_gc_hook;
271 static void mark_buffer (Lisp_Object);
272 static void mark_terminals (void);
273 extern void mark_kboards (void);
274 extern void mark_ttys (void);
275 extern void mark_backtrace (void);
276 static void gc_sweep (void);
277 static void mark_glyph_matrix (struct glyph_matrix *);
278 static void mark_face_cache (struct face_cache *);
280 #ifdef HAVE_WINDOW_SYSTEM
281 extern void mark_fringe_data (void);
282 #endif /* HAVE_WINDOW_SYSTEM */
284 static struct Lisp_String *allocate_string (void);
285 static void compact_small_strings (void);
286 static void free_large_strings (void);
287 static void sweep_strings (void);
289 extern int message_enable_multibyte;
291 /* When scanning the C stack for live Lisp objects, Emacs keeps track
292 of what memory allocated via lisp_malloc is intended for what
293 purpose. This enumeration specifies the type of memory. */
295 enum mem_type
297 MEM_TYPE_NON_LISP,
298 MEM_TYPE_BUFFER,
299 MEM_TYPE_CONS,
300 MEM_TYPE_STRING,
301 MEM_TYPE_MISC,
302 MEM_TYPE_SYMBOL,
303 MEM_TYPE_FLOAT,
304 /* We used to keep separate mem_types for subtypes of vectors such as
305 process, hash_table, frame, terminal, and window, but we never made
306 use of the distinction, so it only caused source-code complexity
307 and runtime slowdown. Minor but pointless. */
308 MEM_TYPE_VECTORLIKE
311 static POINTER_TYPE *lisp_align_malloc (size_t, enum mem_type);
312 static POINTER_TYPE *lisp_malloc (size_t, enum mem_type);
315 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
317 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
318 #include <stdio.h> /* For fprintf. */
319 #endif
321 /* A unique object in pure space used to make some Lisp objects
322 on free lists recognizable in O(1). */
324 static Lisp_Object Vdead;
326 #ifdef GC_MALLOC_CHECK
328 enum mem_type allocated_mem_type;
329 static int dont_register_blocks;
331 #endif /* GC_MALLOC_CHECK */
333 /* A node in the red-black tree describing allocated memory containing
334 Lisp data. Each such block is recorded with its start and end
335 address when it is allocated, and removed from the tree when it
336 is freed.
338 A red-black tree is a balanced binary tree with the following
339 properties:
341 1. Every node is either red or black.
342 2. Every leaf is black.
343 3. If a node is red, then both of its children are black.
344 4. Every simple path from a node to a descendant leaf contains
345 the same number of black nodes.
346 5. The root is always black.
348 When nodes are inserted into the tree, or deleted from the tree,
349 the tree is "fixed" so that these properties are always true.
351 A red-black tree with N internal nodes has height at most 2
352 log(N+1). Searches, insertions and deletions are done in O(log N).
353 Please see a text book about data structures for a detailed
354 description of red-black trees. Any book worth its salt should
355 describe them. */
357 struct mem_node
359 /* Children of this node. These pointers are never NULL. When there
360 is no child, the value is MEM_NIL, which points to a dummy node. */
361 struct mem_node *left, *right;
363 /* The parent of this node. In the root node, this is NULL. */
364 struct mem_node *parent;
366 /* Start and end of allocated region. */
367 void *start, *end;
369 /* Node color. */
370 enum {MEM_BLACK, MEM_RED} color;
372 /* Memory type. */
373 enum mem_type type;
376 /* Base address of stack. Set in main. */
378 Lisp_Object *stack_base;
380 /* Root of the tree describing allocated Lisp memory. */
382 static struct mem_node *mem_root;
384 /* Lowest and highest known address in the heap. */
386 static void *min_heap_address, *max_heap_address;
388 /* Sentinel node of the tree. */
390 static struct mem_node mem_z;
391 #define MEM_NIL &mem_z
393 static struct Lisp_Vector *allocate_vectorlike (EMACS_INT);
394 static void lisp_free (POINTER_TYPE *);
395 static void mark_stack (void);
396 static int live_vector_p (struct mem_node *, void *);
397 static int live_buffer_p (struct mem_node *, void *);
398 static int live_string_p (struct mem_node *, void *);
399 static int live_cons_p (struct mem_node *, void *);
400 static int live_symbol_p (struct mem_node *, void *);
401 static int live_float_p (struct mem_node *, void *);
402 static int live_misc_p (struct mem_node *, void *);
403 static void mark_maybe_object (Lisp_Object);
404 static void mark_memory (void *, void *, int);
405 static void mem_init (void);
406 static struct mem_node *mem_insert (void *, void *, enum mem_type);
407 static void mem_insert_fixup (struct mem_node *);
408 static void mem_rotate_left (struct mem_node *);
409 static void mem_rotate_right (struct mem_node *);
410 static void mem_delete (struct mem_node *);
411 static void mem_delete_fixup (struct mem_node *);
412 static INLINE struct mem_node *mem_find (void *);
415 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
416 static void check_gcpros (void);
417 #endif
419 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
421 /* Recording what needs to be marked for gc. */
423 struct gcpro *gcprolist;
425 /* Addresses of staticpro'd variables. Initialize it to a nonzero
426 value; otherwise some compilers put it into BSS. */
428 #define NSTATICS 0x640
429 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
431 /* Index of next unused slot in staticvec. */
433 static int staticidx = 0;
435 static POINTER_TYPE *pure_alloc (size_t, int);
438 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
439 ALIGNMENT must be a power of 2. */
441 #define ALIGN(ptr, ALIGNMENT) \
442 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
443 & ~((ALIGNMENT) - 1)))
447 /************************************************************************
448 Malloc
449 ************************************************************************/
451 /* Function malloc calls this if it finds we are near exhausting storage. */
453 void
454 malloc_warning (const char *str)
456 pending_malloc_warning = str;
460 /* Display an already-pending malloc warning. */
462 void
463 display_malloc_warning (void)
465 call3 (intern ("display-warning"),
466 intern ("alloc"),
467 build_string (pending_malloc_warning),
468 intern ("emergency"));
469 pending_malloc_warning = 0;
473 #ifdef DOUG_LEA_MALLOC
474 # define BYTES_USED (mallinfo ().uordblks)
475 #else
476 # define BYTES_USED _bytes_used
477 #endif
479 /* Called if we can't allocate relocatable space for a buffer. */
481 void
482 buffer_memory_full (void)
484 /* If buffers use the relocating allocator, no need to free
485 spare_memory, because we may have plenty of malloc space left
486 that we could get, and if we don't, the malloc that fails will
487 itself cause spare_memory to be freed. If buffers don't use the
488 relocating allocator, treat this like any other failing
489 malloc. */
491 #ifndef REL_ALLOC
492 memory_full ();
493 #endif
495 /* This used to call error, but if we've run out of memory, we could
496 get infinite recursion trying to build the string. */
497 xsignal (Qnil, Vmemory_signal_data);
501 #ifdef XMALLOC_OVERRUN_CHECK
503 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
504 and a 16 byte trailer around each block.
506 The header consists of 12 fixed bytes + a 4 byte integer contaning the
507 original block size, while the trailer consists of 16 fixed bytes.
509 The header is used to detect whether this block has been allocated
510 through these functions -- as it seems that some low-level libc
511 functions may bypass the malloc hooks.
515 #define XMALLOC_OVERRUN_CHECK_SIZE 16
517 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
518 { 0x9a, 0x9b, 0xae, 0xaf,
519 0xbf, 0xbe, 0xce, 0xcf,
520 0xea, 0xeb, 0xec, 0xed };
522 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
523 { 0xaa, 0xab, 0xac, 0xad,
524 0xba, 0xbb, 0xbc, 0xbd,
525 0xca, 0xcb, 0xcc, 0xcd,
526 0xda, 0xdb, 0xdc, 0xdd };
528 /* Macros to insert and extract the block size in the header. */
530 #define XMALLOC_PUT_SIZE(ptr, size) \
531 (ptr[-1] = (size & 0xff), \
532 ptr[-2] = ((size >> 8) & 0xff), \
533 ptr[-3] = ((size >> 16) & 0xff), \
534 ptr[-4] = ((size >> 24) & 0xff))
536 #define XMALLOC_GET_SIZE(ptr) \
537 (size_t)((unsigned)(ptr[-1]) | \
538 ((unsigned)(ptr[-2]) << 8) | \
539 ((unsigned)(ptr[-3]) << 16) | \
540 ((unsigned)(ptr[-4]) << 24))
543 /* The call depth in overrun_check functions. For example, this might happen:
544 xmalloc()
545 overrun_check_malloc()
546 -> malloc -> (via hook)_-> emacs_blocked_malloc
547 -> overrun_check_malloc
548 call malloc (hooks are NULL, so real malloc is called).
549 malloc returns 10000.
550 add overhead, return 10016.
551 <- (back in overrun_check_malloc)
552 add overhead again, return 10032
553 xmalloc returns 10032.
555 (time passes).
557 xfree(10032)
558 overrun_check_free(10032)
559 decrease overhed
560 free(10016) <- crash, because 10000 is the original pointer. */
562 static int check_depth;
564 /* Like malloc, but wraps allocated block with header and trailer. */
566 POINTER_TYPE *
567 overrun_check_malloc (size)
568 size_t size;
570 register unsigned char *val;
571 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
573 val = (unsigned char *) malloc (size + overhead);
574 if (val && check_depth == 1)
576 memcpy (val, xmalloc_overrun_check_header,
577 XMALLOC_OVERRUN_CHECK_SIZE - 4);
578 val += XMALLOC_OVERRUN_CHECK_SIZE;
579 XMALLOC_PUT_SIZE(val, size);
580 memcpy (val + size, xmalloc_overrun_check_trailer,
581 XMALLOC_OVERRUN_CHECK_SIZE);
583 --check_depth;
584 return (POINTER_TYPE *)val;
588 /* Like realloc, but checks old block for overrun, and wraps new block
589 with header and trailer. */
591 POINTER_TYPE *
592 overrun_check_realloc (block, size)
593 POINTER_TYPE *block;
594 size_t size;
596 register unsigned char *val = (unsigned char *)block;
597 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
599 if (val
600 && check_depth == 1
601 && memcmp (xmalloc_overrun_check_header,
602 val - XMALLOC_OVERRUN_CHECK_SIZE,
603 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
605 size_t osize = XMALLOC_GET_SIZE (val);
606 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
607 XMALLOC_OVERRUN_CHECK_SIZE))
608 abort ();
609 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
610 val -= XMALLOC_OVERRUN_CHECK_SIZE;
611 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
614 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
616 if (val && check_depth == 1)
618 memcpy (val, xmalloc_overrun_check_header,
619 XMALLOC_OVERRUN_CHECK_SIZE - 4);
620 val += XMALLOC_OVERRUN_CHECK_SIZE;
621 XMALLOC_PUT_SIZE(val, size);
622 memcpy (val + size, xmalloc_overrun_check_trailer,
623 XMALLOC_OVERRUN_CHECK_SIZE);
625 --check_depth;
626 return (POINTER_TYPE *)val;
629 /* Like free, but checks block for overrun. */
631 void
632 overrun_check_free (block)
633 POINTER_TYPE *block;
635 unsigned char *val = (unsigned char *)block;
637 ++check_depth;
638 if (val
639 && check_depth == 1
640 && memcmp (xmalloc_overrun_check_header,
641 val - XMALLOC_OVERRUN_CHECK_SIZE,
642 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
644 size_t osize = XMALLOC_GET_SIZE (val);
645 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
646 XMALLOC_OVERRUN_CHECK_SIZE))
647 abort ();
648 #ifdef XMALLOC_CLEAR_FREE_MEMORY
649 val -= XMALLOC_OVERRUN_CHECK_SIZE;
650 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
651 #else
652 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
653 val -= XMALLOC_OVERRUN_CHECK_SIZE;
654 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE);
655 #endif
658 free (val);
659 --check_depth;
662 #undef malloc
663 #undef realloc
664 #undef free
665 #define malloc overrun_check_malloc
666 #define realloc overrun_check_realloc
667 #define free overrun_check_free
668 #endif
670 #ifdef SYNC_INPUT
671 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
672 there's no need to block input around malloc. */
673 #define MALLOC_BLOCK_INPUT ((void)0)
674 #define MALLOC_UNBLOCK_INPUT ((void)0)
675 #else
676 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
677 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
678 #endif
680 /* Like malloc but check for no memory and block interrupt input.. */
682 POINTER_TYPE *
683 xmalloc (size_t size)
685 register POINTER_TYPE *val;
687 MALLOC_BLOCK_INPUT;
688 val = (POINTER_TYPE *) malloc (size);
689 MALLOC_UNBLOCK_INPUT;
691 if (!val && size)
692 memory_full ();
693 return val;
697 /* Like realloc but check for no memory and block interrupt input.. */
699 POINTER_TYPE *
700 xrealloc (POINTER_TYPE *block, size_t size)
702 register POINTER_TYPE *val;
704 MALLOC_BLOCK_INPUT;
705 /* We must call malloc explicitly when BLOCK is 0, since some
706 reallocs don't do this. */
707 if (! block)
708 val = (POINTER_TYPE *) malloc (size);
709 else
710 val = (POINTER_TYPE *) realloc (block, size);
711 MALLOC_UNBLOCK_INPUT;
713 if (!val && size) memory_full ();
714 return val;
718 /* Like free but block interrupt input. */
720 void
721 xfree (POINTER_TYPE *block)
723 if (!block)
724 return;
725 MALLOC_BLOCK_INPUT;
726 free (block);
727 MALLOC_UNBLOCK_INPUT;
728 /* We don't call refill_memory_reserve here
729 because that duplicates doing so in emacs_blocked_free
730 and the criterion should go there. */
734 /* Like strdup, but uses xmalloc. */
736 char *
737 xstrdup (const char *s)
739 size_t len = strlen (s) + 1;
740 char *p = (char *) xmalloc (len);
741 memcpy (p, s, len);
742 return p;
746 /* Unwind for SAFE_ALLOCA */
748 Lisp_Object
749 safe_alloca_unwind (Lisp_Object arg)
751 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
753 p->dogc = 0;
754 xfree (p->pointer);
755 p->pointer = 0;
756 free_misc (arg);
757 return Qnil;
761 /* Like malloc but used for allocating Lisp data. NBYTES is the
762 number of bytes to allocate, TYPE describes the intended use of the
763 allcated memory block (for strings, for conses, ...). */
765 #ifndef USE_LSB_TAG
766 static void *lisp_malloc_loser;
767 #endif
769 static POINTER_TYPE *
770 lisp_malloc (size_t nbytes, enum mem_type type)
772 register void *val;
774 MALLOC_BLOCK_INPUT;
776 #ifdef GC_MALLOC_CHECK
777 allocated_mem_type = type;
778 #endif
780 val = (void *) malloc (nbytes);
782 #ifndef USE_LSB_TAG
783 /* If the memory just allocated cannot be addressed thru a Lisp
784 object's pointer, and it needs to be,
785 that's equivalent to running out of memory. */
786 if (val && type != MEM_TYPE_NON_LISP)
788 Lisp_Object tem;
789 XSETCONS (tem, (char *) val + nbytes - 1);
790 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
792 lisp_malloc_loser = val;
793 free (val);
794 val = 0;
797 #endif
799 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
800 if (val && type != MEM_TYPE_NON_LISP)
801 mem_insert (val, (char *) val + nbytes, type);
802 #endif
804 MALLOC_UNBLOCK_INPUT;
805 if (!val && nbytes)
806 memory_full ();
807 return val;
810 /* Free BLOCK. This must be called to free memory allocated with a
811 call to lisp_malloc. */
813 static void
814 lisp_free (POINTER_TYPE *block)
816 MALLOC_BLOCK_INPUT;
817 free (block);
818 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
819 mem_delete (mem_find (block));
820 #endif
821 MALLOC_UNBLOCK_INPUT;
824 /* Allocation of aligned blocks of memory to store Lisp data. */
825 /* The entry point is lisp_align_malloc which returns blocks of at most */
826 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
828 /* Use posix_memalloc if the system has it and we're using the system's
829 malloc (because our gmalloc.c routines don't have posix_memalign although
830 its memalloc could be used). */
831 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
832 #define USE_POSIX_MEMALIGN 1
833 #endif
835 /* BLOCK_ALIGN has to be a power of 2. */
836 #define BLOCK_ALIGN (1 << 10)
838 /* Padding to leave at the end of a malloc'd block. This is to give
839 malloc a chance to minimize the amount of memory wasted to alignment.
840 It should be tuned to the particular malloc library used.
841 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
842 posix_memalign on the other hand would ideally prefer a value of 4
843 because otherwise, there's 1020 bytes wasted between each ablocks.
844 In Emacs, testing shows that those 1020 can most of the time be
845 efficiently used by malloc to place other objects, so a value of 0 can
846 still preferable unless you have a lot of aligned blocks and virtually
847 nothing else. */
848 #define BLOCK_PADDING 0
849 #define BLOCK_BYTES \
850 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
852 /* Internal data structures and constants. */
854 #define ABLOCKS_SIZE 16
856 /* An aligned block of memory. */
857 struct ablock
859 union
861 char payload[BLOCK_BYTES];
862 struct ablock *next_free;
863 } x;
864 /* `abase' is the aligned base of the ablocks. */
865 /* It is overloaded to hold the virtual `busy' field that counts
866 the number of used ablock in the parent ablocks.
867 The first ablock has the `busy' field, the others have the `abase'
868 field. To tell the difference, we assume that pointers will have
869 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
870 is used to tell whether the real base of the parent ablocks is `abase'
871 (if not, the word before the first ablock holds a pointer to the
872 real base). */
873 struct ablocks *abase;
874 /* The padding of all but the last ablock is unused. The padding of
875 the last ablock in an ablocks is not allocated. */
876 #if BLOCK_PADDING
877 char padding[BLOCK_PADDING];
878 #endif
881 /* A bunch of consecutive aligned blocks. */
882 struct ablocks
884 struct ablock blocks[ABLOCKS_SIZE];
887 /* Size of the block requested from malloc or memalign. */
888 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
890 #define ABLOCK_ABASE(block) \
891 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
892 ? (struct ablocks *)(block) \
893 : (block)->abase)
895 /* Virtual `busy' field. */
896 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
898 /* Pointer to the (not necessarily aligned) malloc block. */
899 #ifdef USE_POSIX_MEMALIGN
900 #define ABLOCKS_BASE(abase) (abase)
901 #else
902 #define ABLOCKS_BASE(abase) \
903 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
904 #endif
906 /* The list of free ablock. */
907 static struct ablock *free_ablock;
909 /* Allocate an aligned block of nbytes.
910 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
911 smaller or equal to BLOCK_BYTES. */
912 static POINTER_TYPE *
913 lisp_align_malloc (size_t nbytes, enum mem_type type)
915 void *base, *val;
916 struct ablocks *abase;
918 eassert (nbytes <= BLOCK_BYTES);
920 MALLOC_BLOCK_INPUT;
922 #ifdef GC_MALLOC_CHECK
923 allocated_mem_type = type;
924 #endif
926 if (!free_ablock)
928 int i;
929 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
931 #ifdef DOUG_LEA_MALLOC
932 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
933 because mapped region contents are not preserved in
934 a dumped Emacs. */
935 mallopt (M_MMAP_MAX, 0);
936 #endif
938 #ifdef USE_POSIX_MEMALIGN
940 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
941 if (err)
942 base = NULL;
943 abase = base;
945 #else
946 base = malloc (ABLOCKS_BYTES);
947 abase = ALIGN (base, BLOCK_ALIGN);
948 #endif
950 if (base == 0)
952 MALLOC_UNBLOCK_INPUT;
953 memory_full ();
956 aligned = (base == abase);
957 if (!aligned)
958 ((void**)abase)[-1] = base;
960 #ifdef DOUG_LEA_MALLOC
961 /* Back to a reasonable maximum of mmap'ed areas. */
962 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
963 #endif
965 #ifndef USE_LSB_TAG
966 /* If the memory just allocated cannot be addressed thru a Lisp
967 object's pointer, and it needs to be, that's equivalent to
968 running out of memory. */
969 if (type != MEM_TYPE_NON_LISP)
971 Lisp_Object tem;
972 char *end = (char *) base + ABLOCKS_BYTES - 1;
973 XSETCONS (tem, end);
974 if ((char *) XCONS (tem) != end)
976 lisp_malloc_loser = base;
977 free (base);
978 MALLOC_UNBLOCK_INPUT;
979 memory_full ();
982 #endif
984 /* Initialize the blocks and put them on the free list.
985 Is `base' was not properly aligned, we can't use the last block. */
986 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
988 abase->blocks[i].abase = abase;
989 abase->blocks[i].x.next_free = free_ablock;
990 free_ablock = &abase->blocks[i];
992 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
994 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
995 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
996 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
997 eassert (ABLOCKS_BASE (abase) == base);
998 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1001 abase = ABLOCK_ABASE (free_ablock);
1002 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1003 val = free_ablock;
1004 free_ablock = free_ablock->x.next_free;
1006 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1007 if (val && type != MEM_TYPE_NON_LISP)
1008 mem_insert (val, (char *) val + nbytes, type);
1009 #endif
1011 MALLOC_UNBLOCK_INPUT;
1012 if (!val && nbytes)
1013 memory_full ();
1015 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1016 return val;
1019 static void
1020 lisp_align_free (POINTER_TYPE *block)
1022 struct ablock *ablock = block;
1023 struct ablocks *abase = ABLOCK_ABASE (ablock);
1025 MALLOC_BLOCK_INPUT;
1026 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1027 mem_delete (mem_find (block));
1028 #endif
1029 /* Put on free list. */
1030 ablock->x.next_free = free_ablock;
1031 free_ablock = ablock;
1032 /* Update busy count. */
1033 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1035 if (2 > (long) ABLOCKS_BUSY (abase))
1036 { /* All the blocks are free. */
1037 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1038 struct ablock **tem = &free_ablock;
1039 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1041 while (*tem)
1043 if (*tem >= (struct ablock *) abase && *tem < atop)
1045 i++;
1046 *tem = (*tem)->x.next_free;
1048 else
1049 tem = &(*tem)->x.next_free;
1051 eassert ((aligned & 1) == aligned);
1052 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1053 #ifdef USE_POSIX_MEMALIGN
1054 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1055 #endif
1056 free (ABLOCKS_BASE (abase));
1058 MALLOC_UNBLOCK_INPUT;
1061 /* Return a new buffer structure allocated from the heap with
1062 a call to lisp_malloc. */
1064 struct buffer *
1065 allocate_buffer (void)
1067 struct buffer *b
1068 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1069 MEM_TYPE_BUFFER);
1070 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1071 XSETPVECTYPE (b, PVEC_BUFFER);
1072 return b;
1076 #ifndef SYSTEM_MALLOC
1078 /* Arranging to disable input signals while we're in malloc.
1080 This only works with GNU malloc. To help out systems which can't
1081 use GNU malloc, all the calls to malloc, realloc, and free
1082 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1083 pair; unfortunately, we have no idea what C library functions
1084 might call malloc, so we can't really protect them unless you're
1085 using GNU malloc. Fortunately, most of the major operating systems
1086 can use GNU malloc. */
1088 #ifndef SYNC_INPUT
1089 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1090 there's no need to block input around malloc. */
1092 #ifndef DOUG_LEA_MALLOC
1093 extern void * (*__malloc_hook) (size_t, const void *);
1094 extern void * (*__realloc_hook) (void *, size_t, const void *);
1095 extern void (*__free_hook) (void *, const void *);
1096 /* Else declared in malloc.h, perhaps with an extra arg. */
1097 #endif /* DOUG_LEA_MALLOC */
1098 static void * (*old_malloc_hook) (size_t, const void *);
1099 static void * (*old_realloc_hook) (void *, size_t, const void*);
1100 static void (*old_free_hook) (void*, const void*);
1102 static __malloc_size_t bytes_used_when_reconsidered;
1104 /* This function is used as the hook for free to call. */
1106 static void
1107 emacs_blocked_free (void *ptr, const void *ptr2)
1109 BLOCK_INPUT_ALLOC;
1111 #ifdef GC_MALLOC_CHECK
1112 if (ptr)
1114 struct mem_node *m;
1116 m = mem_find (ptr);
1117 if (m == MEM_NIL || m->start != ptr)
1119 fprintf (stderr,
1120 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1121 abort ();
1123 else
1125 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1126 mem_delete (m);
1129 #endif /* GC_MALLOC_CHECK */
1131 __free_hook = old_free_hook;
1132 free (ptr);
1134 /* If we released our reserve (due to running out of memory),
1135 and we have a fair amount free once again,
1136 try to set aside another reserve in case we run out once more. */
1137 if (! NILP (Vmemory_full)
1138 /* Verify there is enough space that even with the malloc
1139 hysteresis this call won't run out again.
1140 The code here is correct as long as SPARE_MEMORY
1141 is substantially larger than the block size malloc uses. */
1142 && (bytes_used_when_full
1143 > ((bytes_used_when_reconsidered = BYTES_USED)
1144 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1145 refill_memory_reserve ();
1147 __free_hook = emacs_blocked_free;
1148 UNBLOCK_INPUT_ALLOC;
1152 /* This function is the malloc hook that Emacs uses. */
1154 static void *
1155 emacs_blocked_malloc (size_t size, const void *ptr)
1157 void *value;
1159 BLOCK_INPUT_ALLOC;
1160 __malloc_hook = old_malloc_hook;
1161 #ifdef DOUG_LEA_MALLOC
1162 /* Segfaults on my system. --lorentey */
1163 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1164 #else
1165 __malloc_extra_blocks = malloc_hysteresis;
1166 #endif
1168 value = (void *) malloc (size);
1170 #ifdef GC_MALLOC_CHECK
1172 struct mem_node *m = mem_find (value);
1173 if (m != MEM_NIL)
1175 fprintf (stderr, "Malloc returned %p which is already in use\n",
1176 value);
1177 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1178 m->start, m->end, (char *) m->end - (char *) m->start,
1179 m->type);
1180 abort ();
1183 if (!dont_register_blocks)
1185 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1186 allocated_mem_type = MEM_TYPE_NON_LISP;
1189 #endif /* GC_MALLOC_CHECK */
1191 __malloc_hook = emacs_blocked_malloc;
1192 UNBLOCK_INPUT_ALLOC;
1194 /* fprintf (stderr, "%p malloc\n", value); */
1195 return value;
1199 /* This function is the realloc hook that Emacs uses. */
1201 static void *
1202 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1204 void *value;
1206 BLOCK_INPUT_ALLOC;
1207 __realloc_hook = old_realloc_hook;
1209 #ifdef GC_MALLOC_CHECK
1210 if (ptr)
1212 struct mem_node *m = mem_find (ptr);
1213 if (m == MEM_NIL || m->start != ptr)
1215 fprintf (stderr,
1216 "Realloc of %p which wasn't allocated with malloc\n",
1217 ptr);
1218 abort ();
1221 mem_delete (m);
1224 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1226 /* Prevent malloc from registering blocks. */
1227 dont_register_blocks = 1;
1228 #endif /* GC_MALLOC_CHECK */
1230 value = (void *) realloc (ptr, size);
1232 #ifdef GC_MALLOC_CHECK
1233 dont_register_blocks = 0;
1236 struct mem_node *m = mem_find (value);
1237 if (m != MEM_NIL)
1239 fprintf (stderr, "Realloc returns memory that is already in use\n");
1240 abort ();
1243 /* Can't handle zero size regions in the red-black tree. */
1244 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1247 /* fprintf (stderr, "%p <- realloc\n", value); */
1248 #endif /* GC_MALLOC_CHECK */
1250 __realloc_hook = emacs_blocked_realloc;
1251 UNBLOCK_INPUT_ALLOC;
1253 return value;
1257 #ifdef HAVE_GTK_AND_PTHREAD
1258 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1259 normal malloc. Some thread implementations need this as they call
1260 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1261 calls malloc because it is the first call, and we have an endless loop. */
1263 void
1264 reset_malloc_hooks ()
1266 __free_hook = old_free_hook;
1267 __malloc_hook = old_malloc_hook;
1268 __realloc_hook = old_realloc_hook;
1270 #endif /* HAVE_GTK_AND_PTHREAD */
1273 /* Called from main to set up malloc to use our hooks. */
1275 void
1276 uninterrupt_malloc (void)
1278 #ifdef HAVE_GTK_AND_PTHREAD
1279 #ifdef DOUG_LEA_MALLOC
1280 pthread_mutexattr_t attr;
1282 /* GLIBC has a faster way to do this, but lets keep it portable.
1283 This is according to the Single UNIX Specification. */
1284 pthread_mutexattr_init (&attr);
1285 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1286 pthread_mutex_init (&alloc_mutex, &attr);
1287 #else /* !DOUG_LEA_MALLOC */
1288 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1289 and the bundled gmalloc.c doesn't require it. */
1290 pthread_mutex_init (&alloc_mutex, NULL);
1291 #endif /* !DOUG_LEA_MALLOC */
1292 #endif /* HAVE_GTK_AND_PTHREAD */
1294 if (__free_hook != emacs_blocked_free)
1295 old_free_hook = __free_hook;
1296 __free_hook = emacs_blocked_free;
1298 if (__malloc_hook != emacs_blocked_malloc)
1299 old_malloc_hook = __malloc_hook;
1300 __malloc_hook = emacs_blocked_malloc;
1302 if (__realloc_hook != emacs_blocked_realloc)
1303 old_realloc_hook = __realloc_hook;
1304 __realloc_hook = emacs_blocked_realloc;
1307 #endif /* not SYNC_INPUT */
1308 #endif /* not SYSTEM_MALLOC */
1312 /***********************************************************************
1313 Interval Allocation
1314 ***********************************************************************/
1316 /* Number of intervals allocated in an interval_block structure.
1317 The 1020 is 1024 minus malloc overhead. */
1319 #define INTERVAL_BLOCK_SIZE \
1320 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1322 /* Intervals are allocated in chunks in form of an interval_block
1323 structure. */
1325 struct interval_block
1327 /* Place `intervals' first, to preserve alignment. */
1328 struct interval intervals[INTERVAL_BLOCK_SIZE];
1329 struct interval_block *next;
1332 /* Current interval block. Its `next' pointer points to older
1333 blocks. */
1335 static struct interval_block *interval_block;
1337 /* Index in interval_block above of the next unused interval
1338 structure. */
1340 static int interval_block_index;
1342 /* Number of free and live intervals. */
1344 static int total_free_intervals, total_intervals;
1346 /* List of free intervals. */
1348 INTERVAL interval_free_list;
1350 /* Total number of interval blocks now in use. */
1352 static int n_interval_blocks;
1355 /* Initialize interval allocation. */
1357 static void
1358 init_intervals (void)
1360 interval_block = NULL;
1361 interval_block_index = INTERVAL_BLOCK_SIZE;
1362 interval_free_list = 0;
1363 n_interval_blocks = 0;
1367 /* Return a new interval. */
1369 INTERVAL
1370 make_interval (void)
1372 INTERVAL val;
1374 /* eassert (!handling_signal); */
1376 MALLOC_BLOCK_INPUT;
1378 if (interval_free_list)
1380 val = interval_free_list;
1381 interval_free_list = INTERVAL_PARENT (interval_free_list);
1383 else
1385 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1387 register struct interval_block *newi;
1389 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1390 MEM_TYPE_NON_LISP);
1392 newi->next = interval_block;
1393 interval_block = newi;
1394 interval_block_index = 0;
1395 n_interval_blocks++;
1397 val = &interval_block->intervals[interval_block_index++];
1400 MALLOC_UNBLOCK_INPUT;
1402 consing_since_gc += sizeof (struct interval);
1403 intervals_consed++;
1404 RESET_INTERVAL (val);
1405 val->gcmarkbit = 0;
1406 return val;
1410 /* Mark Lisp objects in interval I. */
1412 static void
1413 mark_interval (register INTERVAL i, Lisp_Object dummy)
1415 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1416 i->gcmarkbit = 1;
1417 mark_object (i->plist);
1421 /* Mark the interval tree rooted in TREE. Don't call this directly;
1422 use the macro MARK_INTERVAL_TREE instead. */
1424 static void
1425 mark_interval_tree (register INTERVAL tree)
1427 /* No need to test if this tree has been marked already; this
1428 function is always called through the MARK_INTERVAL_TREE macro,
1429 which takes care of that. */
1431 traverse_intervals_noorder (tree, mark_interval, Qnil);
1435 /* Mark the interval tree rooted in I. */
1437 #define MARK_INTERVAL_TREE(i) \
1438 do { \
1439 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1440 mark_interval_tree (i); \
1441 } while (0)
1444 #define UNMARK_BALANCE_INTERVALS(i) \
1445 do { \
1446 if (! NULL_INTERVAL_P (i)) \
1447 (i) = balance_intervals (i); \
1448 } while (0)
1451 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1452 can't create number objects in macros. */
1453 #ifndef make_number
1454 Lisp_Object
1455 make_number (EMACS_INT n)
1457 Lisp_Object obj;
1458 obj.s.val = n;
1459 obj.s.type = Lisp_Int;
1460 return obj;
1462 #endif
1464 /***********************************************************************
1465 String Allocation
1466 ***********************************************************************/
1468 /* Lisp_Strings are allocated in string_block structures. When a new
1469 string_block is allocated, all the Lisp_Strings it contains are
1470 added to a free-list string_free_list. When a new Lisp_String is
1471 needed, it is taken from that list. During the sweep phase of GC,
1472 string_blocks that are entirely free are freed, except two which
1473 we keep.
1475 String data is allocated from sblock structures. Strings larger
1476 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1477 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1479 Sblocks consist internally of sdata structures, one for each
1480 Lisp_String. The sdata structure points to the Lisp_String it
1481 belongs to. The Lisp_String points back to the `u.data' member of
1482 its sdata structure.
1484 When a Lisp_String is freed during GC, it is put back on
1485 string_free_list, and its `data' member and its sdata's `string'
1486 pointer is set to null. The size of the string is recorded in the
1487 `u.nbytes' member of the sdata. So, sdata structures that are no
1488 longer used, can be easily recognized, and it's easy to compact the
1489 sblocks of small strings which we do in compact_small_strings. */
1491 /* Size in bytes of an sblock structure used for small strings. This
1492 is 8192 minus malloc overhead. */
1494 #define SBLOCK_SIZE 8188
1496 /* Strings larger than this are considered large strings. String data
1497 for large strings is allocated from individual sblocks. */
1499 #define LARGE_STRING_BYTES 1024
1501 /* Structure describing string memory sub-allocated from an sblock.
1502 This is where the contents of Lisp strings are stored. */
1504 struct sdata
1506 /* Back-pointer to the string this sdata belongs to. If null, this
1507 structure is free, and the NBYTES member of the union below
1508 contains the string's byte size (the same value that STRING_BYTES
1509 would return if STRING were non-null). If non-null, STRING_BYTES
1510 (STRING) is the size of the data, and DATA contains the string's
1511 contents. */
1512 struct Lisp_String *string;
1514 #ifdef GC_CHECK_STRING_BYTES
1516 EMACS_INT nbytes;
1517 unsigned char data[1];
1519 #define SDATA_NBYTES(S) (S)->nbytes
1520 #define SDATA_DATA(S) (S)->data
1522 #else /* not GC_CHECK_STRING_BYTES */
1524 union
1526 /* When STRING in non-null. */
1527 unsigned char data[1];
1529 /* When STRING is null. */
1530 EMACS_INT nbytes;
1531 } u;
1534 #define SDATA_NBYTES(S) (S)->u.nbytes
1535 #define SDATA_DATA(S) (S)->u.data
1537 #endif /* not GC_CHECK_STRING_BYTES */
1541 /* Structure describing a block of memory which is sub-allocated to
1542 obtain string data memory for strings. Blocks for small strings
1543 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1544 as large as needed. */
1546 struct sblock
1548 /* Next in list. */
1549 struct sblock *next;
1551 /* Pointer to the next free sdata block. This points past the end
1552 of the sblock if there isn't any space left in this block. */
1553 struct sdata *next_free;
1555 /* Start of data. */
1556 struct sdata first_data;
1559 /* Number of Lisp strings in a string_block structure. The 1020 is
1560 1024 minus malloc overhead. */
1562 #define STRING_BLOCK_SIZE \
1563 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1565 /* Structure describing a block from which Lisp_String structures
1566 are allocated. */
1568 struct string_block
1570 /* Place `strings' first, to preserve alignment. */
1571 struct Lisp_String strings[STRING_BLOCK_SIZE];
1572 struct string_block *next;
1575 /* Head and tail of the list of sblock structures holding Lisp string
1576 data. We always allocate from current_sblock. The NEXT pointers
1577 in the sblock structures go from oldest_sblock to current_sblock. */
1579 static struct sblock *oldest_sblock, *current_sblock;
1581 /* List of sblocks for large strings. */
1583 static struct sblock *large_sblocks;
1585 /* List of string_block structures, and how many there are. */
1587 static struct string_block *string_blocks;
1588 static int n_string_blocks;
1590 /* Free-list of Lisp_Strings. */
1592 static struct Lisp_String *string_free_list;
1594 /* Number of live and free Lisp_Strings. */
1596 static int total_strings, total_free_strings;
1598 /* Number of bytes used by live strings. */
1600 static EMACS_INT total_string_size;
1602 /* Given a pointer to a Lisp_String S which is on the free-list
1603 string_free_list, return a pointer to its successor in the
1604 free-list. */
1606 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1608 /* Return a pointer to the sdata structure belonging to Lisp string S.
1609 S must be live, i.e. S->data must not be null. S->data is actually
1610 a pointer to the `u.data' member of its sdata structure; the
1611 structure starts at a constant offset in front of that. */
1613 #ifdef GC_CHECK_STRING_BYTES
1615 #define SDATA_OF_STRING(S) \
1616 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1617 - sizeof (EMACS_INT)))
1619 #else /* not GC_CHECK_STRING_BYTES */
1621 #define SDATA_OF_STRING(S) \
1622 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1624 #endif /* not GC_CHECK_STRING_BYTES */
1627 #ifdef GC_CHECK_STRING_OVERRUN
1629 /* We check for overrun in string data blocks by appending a small
1630 "cookie" after each allocated string data block, and check for the
1631 presence of this cookie during GC. */
1633 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1634 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1635 { 0xde, 0xad, 0xbe, 0xef };
1637 #else
1638 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1639 #endif
1641 /* Value is the size of an sdata structure large enough to hold NBYTES
1642 bytes of string data. The value returned includes a terminating
1643 NUL byte, the size of the sdata structure, and padding. */
1645 #ifdef GC_CHECK_STRING_BYTES
1647 #define SDATA_SIZE(NBYTES) \
1648 ((sizeof (struct Lisp_String *) \
1649 + (NBYTES) + 1 \
1650 + sizeof (EMACS_INT) \
1651 + sizeof (EMACS_INT) - 1) \
1652 & ~(sizeof (EMACS_INT) - 1))
1654 #else /* not GC_CHECK_STRING_BYTES */
1656 #define SDATA_SIZE(NBYTES) \
1657 ((sizeof (struct Lisp_String *) \
1658 + (NBYTES) + 1 \
1659 + sizeof (EMACS_INT) - 1) \
1660 & ~(sizeof (EMACS_INT) - 1))
1662 #endif /* not GC_CHECK_STRING_BYTES */
1664 /* Extra bytes to allocate for each string. */
1666 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1668 /* Initialize string allocation. Called from init_alloc_once. */
1670 static void
1671 init_strings (void)
1673 total_strings = total_free_strings = total_string_size = 0;
1674 oldest_sblock = current_sblock = large_sblocks = NULL;
1675 string_blocks = NULL;
1676 n_string_blocks = 0;
1677 string_free_list = NULL;
1678 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1679 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1683 #ifdef GC_CHECK_STRING_BYTES
1685 static int check_string_bytes_count;
1687 static void check_string_bytes (int);
1688 static void check_sblock (struct sblock *);
1690 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1693 /* Like GC_STRING_BYTES, but with debugging check. */
1695 EMACS_INT
1696 string_bytes (struct Lisp_String *s)
1698 EMACS_INT nbytes =
1699 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1701 if (!PURE_POINTER_P (s)
1702 && s->data
1703 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1704 abort ();
1705 return nbytes;
1708 /* Check validity of Lisp strings' string_bytes member in B. */
1710 static void
1711 check_sblock (b)
1712 struct sblock *b;
1714 struct sdata *from, *end, *from_end;
1716 end = b->next_free;
1718 for (from = &b->first_data; from < end; from = from_end)
1720 /* Compute the next FROM here because copying below may
1721 overwrite data we need to compute it. */
1722 EMACS_INT nbytes;
1724 /* Check that the string size recorded in the string is the
1725 same as the one recorded in the sdata structure. */
1726 if (from->string)
1727 CHECK_STRING_BYTES (from->string);
1729 if (from->string)
1730 nbytes = GC_STRING_BYTES (from->string);
1731 else
1732 nbytes = SDATA_NBYTES (from);
1734 nbytes = SDATA_SIZE (nbytes);
1735 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1740 /* Check validity of Lisp strings' string_bytes member. ALL_P
1741 non-zero means check all strings, otherwise check only most
1742 recently allocated strings. Used for hunting a bug. */
1744 static void
1745 check_string_bytes (all_p)
1746 int all_p;
1748 if (all_p)
1750 struct sblock *b;
1752 for (b = large_sblocks; b; b = b->next)
1754 struct Lisp_String *s = b->first_data.string;
1755 if (s)
1756 CHECK_STRING_BYTES (s);
1759 for (b = oldest_sblock; b; b = b->next)
1760 check_sblock (b);
1762 else
1763 check_sblock (current_sblock);
1766 #endif /* GC_CHECK_STRING_BYTES */
1768 #ifdef GC_CHECK_STRING_FREE_LIST
1770 /* Walk through the string free list looking for bogus next pointers.
1771 This may catch buffer overrun from a previous string. */
1773 static void
1774 check_string_free_list ()
1776 struct Lisp_String *s;
1778 /* Pop a Lisp_String off the free-list. */
1779 s = string_free_list;
1780 while (s != NULL)
1782 if ((unsigned long)s < 1024)
1783 abort();
1784 s = NEXT_FREE_LISP_STRING (s);
1787 #else
1788 #define check_string_free_list()
1789 #endif
1791 /* Return a new Lisp_String. */
1793 static struct Lisp_String *
1794 allocate_string (void)
1796 struct Lisp_String *s;
1798 /* eassert (!handling_signal); */
1800 MALLOC_BLOCK_INPUT;
1802 /* If the free-list is empty, allocate a new string_block, and
1803 add all the Lisp_Strings in it to the free-list. */
1804 if (string_free_list == NULL)
1806 struct string_block *b;
1807 int i;
1809 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1810 memset (b, 0, sizeof *b);
1811 b->next = string_blocks;
1812 string_blocks = b;
1813 ++n_string_blocks;
1815 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1817 s = b->strings + i;
1818 NEXT_FREE_LISP_STRING (s) = string_free_list;
1819 string_free_list = s;
1822 total_free_strings += STRING_BLOCK_SIZE;
1825 check_string_free_list ();
1827 /* Pop a Lisp_String off the free-list. */
1828 s = string_free_list;
1829 string_free_list = NEXT_FREE_LISP_STRING (s);
1831 MALLOC_UNBLOCK_INPUT;
1833 /* Probably not strictly necessary, but play it safe. */
1834 memset (s, 0, sizeof *s);
1836 --total_free_strings;
1837 ++total_strings;
1838 ++strings_consed;
1839 consing_since_gc += sizeof *s;
1841 #ifdef GC_CHECK_STRING_BYTES
1842 if (!noninteractive)
1844 if (++check_string_bytes_count == 200)
1846 check_string_bytes_count = 0;
1847 check_string_bytes (1);
1849 else
1850 check_string_bytes (0);
1852 #endif /* GC_CHECK_STRING_BYTES */
1854 return s;
1858 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1859 plus a NUL byte at the end. Allocate an sdata structure for S, and
1860 set S->data to its `u.data' member. Store a NUL byte at the end of
1861 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1862 S->data if it was initially non-null. */
1864 void
1865 allocate_string_data (struct Lisp_String *s,
1866 EMACS_INT nchars, EMACS_INT nbytes)
1868 struct sdata *data, *old_data;
1869 struct sblock *b;
1870 EMACS_INT needed, old_nbytes;
1872 /* Determine the number of bytes needed to store NBYTES bytes
1873 of string data. */
1874 needed = SDATA_SIZE (nbytes);
1875 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1876 old_nbytes = GC_STRING_BYTES (s);
1878 MALLOC_BLOCK_INPUT;
1880 if (nbytes > LARGE_STRING_BYTES)
1882 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1884 #ifdef DOUG_LEA_MALLOC
1885 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1886 because mapped region contents are not preserved in
1887 a dumped Emacs.
1889 In case you think of allowing it in a dumped Emacs at the
1890 cost of not being able to re-dump, there's another reason:
1891 mmap'ed data typically have an address towards the top of the
1892 address space, which won't fit into an EMACS_INT (at least on
1893 32-bit systems with the current tagging scheme). --fx */
1894 mallopt (M_MMAP_MAX, 0);
1895 #endif
1897 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1899 #ifdef DOUG_LEA_MALLOC
1900 /* Back to a reasonable maximum of mmap'ed areas. */
1901 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1902 #endif
1904 b->next_free = &b->first_data;
1905 b->first_data.string = NULL;
1906 b->next = large_sblocks;
1907 large_sblocks = b;
1909 else if (current_sblock == NULL
1910 || (((char *) current_sblock + SBLOCK_SIZE
1911 - (char *) current_sblock->next_free)
1912 < (needed + GC_STRING_EXTRA)))
1914 /* Not enough room in the current sblock. */
1915 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1916 b->next_free = &b->first_data;
1917 b->first_data.string = NULL;
1918 b->next = NULL;
1920 if (current_sblock)
1921 current_sblock->next = b;
1922 else
1923 oldest_sblock = b;
1924 current_sblock = b;
1926 else
1927 b = current_sblock;
1929 data = b->next_free;
1930 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1932 MALLOC_UNBLOCK_INPUT;
1934 data->string = s;
1935 s->data = SDATA_DATA (data);
1936 #ifdef GC_CHECK_STRING_BYTES
1937 SDATA_NBYTES (data) = nbytes;
1938 #endif
1939 s->size = nchars;
1940 s->size_byte = nbytes;
1941 s->data[nbytes] = '\0';
1942 #ifdef GC_CHECK_STRING_OVERRUN
1943 memcpy (data + needed, string_overrun_cookie, GC_STRING_OVERRUN_COOKIE_SIZE);
1944 #endif
1946 /* If S had already data assigned, mark that as free by setting its
1947 string back-pointer to null, and recording the size of the data
1948 in it. */
1949 if (old_data)
1951 SDATA_NBYTES (old_data) = old_nbytes;
1952 old_data->string = NULL;
1955 consing_since_gc += needed;
1959 /* Sweep and compact strings. */
1961 static void
1962 sweep_strings (void)
1964 struct string_block *b, *next;
1965 struct string_block *live_blocks = NULL;
1967 string_free_list = NULL;
1968 total_strings = total_free_strings = 0;
1969 total_string_size = 0;
1971 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1972 for (b = string_blocks; b; b = next)
1974 int i, nfree = 0;
1975 struct Lisp_String *free_list_before = string_free_list;
1977 next = b->next;
1979 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1981 struct Lisp_String *s = b->strings + i;
1983 if (s->data)
1985 /* String was not on free-list before. */
1986 if (STRING_MARKED_P (s))
1988 /* String is live; unmark it and its intervals. */
1989 UNMARK_STRING (s);
1991 if (!NULL_INTERVAL_P (s->intervals))
1992 UNMARK_BALANCE_INTERVALS (s->intervals);
1994 ++total_strings;
1995 total_string_size += STRING_BYTES (s);
1997 else
1999 /* String is dead. Put it on the free-list. */
2000 struct sdata *data = SDATA_OF_STRING (s);
2002 /* Save the size of S in its sdata so that we know
2003 how large that is. Reset the sdata's string
2004 back-pointer so that we know it's free. */
2005 #ifdef GC_CHECK_STRING_BYTES
2006 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2007 abort ();
2008 #else
2009 data->u.nbytes = GC_STRING_BYTES (s);
2010 #endif
2011 data->string = NULL;
2013 /* Reset the strings's `data' member so that we
2014 know it's free. */
2015 s->data = NULL;
2017 /* Put the string on the free-list. */
2018 NEXT_FREE_LISP_STRING (s) = string_free_list;
2019 string_free_list = s;
2020 ++nfree;
2023 else
2025 /* S was on the free-list before. Put it there again. */
2026 NEXT_FREE_LISP_STRING (s) = string_free_list;
2027 string_free_list = s;
2028 ++nfree;
2032 /* Free blocks that contain free Lisp_Strings only, except
2033 the first two of them. */
2034 if (nfree == STRING_BLOCK_SIZE
2035 && total_free_strings > STRING_BLOCK_SIZE)
2037 lisp_free (b);
2038 --n_string_blocks;
2039 string_free_list = free_list_before;
2041 else
2043 total_free_strings += nfree;
2044 b->next = live_blocks;
2045 live_blocks = b;
2049 check_string_free_list ();
2051 string_blocks = live_blocks;
2052 free_large_strings ();
2053 compact_small_strings ();
2055 check_string_free_list ();
2059 /* Free dead large strings. */
2061 static void
2062 free_large_strings (void)
2064 struct sblock *b, *next;
2065 struct sblock *live_blocks = NULL;
2067 for (b = large_sblocks; b; b = next)
2069 next = b->next;
2071 if (b->first_data.string == NULL)
2072 lisp_free (b);
2073 else
2075 b->next = live_blocks;
2076 live_blocks = b;
2080 large_sblocks = live_blocks;
2084 /* Compact data of small strings. Free sblocks that don't contain
2085 data of live strings after compaction. */
2087 static void
2088 compact_small_strings (void)
2090 struct sblock *b, *tb, *next;
2091 struct sdata *from, *to, *end, *tb_end;
2092 struct sdata *to_end, *from_end;
2094 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2095 to, and TB_END is the end of TB. */
2096 tb = oldest_sblock;
2097 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2098 to = &tb->first_data;
2100 /* Step through the blocks from the oldest to the youngest. We
2101 expect that old blocks will stabilize over time, so that less
2102 copying will happen this way. */
2103 for (b = oldest_sblock; b; b = b->next)
2105 end = b->next_free;
2106 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2108 for (from = &b->first_data; from < end; from = from_end)
2110 /* Compute the next FROM here because copying below may
2111 overwrite data we need to compute it. */
2112 EMACS_INT nbytes;
2114 #ifdef GC_CHECK_STRING_BYTES
2115 /* Check that the string size recorded in the string is the
2116 same as the one recorded in the sdata structure. */
2117 if (from->string
2118 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2119 abort ();
2120 #endif /* GC_CHECK_STRING_BYTES */
2122 if (from->string)
2123 nbytes = GC_STRING_BYTES (from->string);
2124 else
2125 nbytes = SDATA_NBYTES (from);
2127 if (nbytes > LARGE_STRING_BYTES)
2128 abort ();
2130 nbytes = SDATA_SIZE (nbytes);
2131 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2133 #ifdef GC_CHECK_STRING_OVERRUN
2134 if (memcmp (string_overrun_cookie,
2135 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2136 GC_STRING_OVERRUN_COOKIE_SIZE))
2137 abort ();
2138 #endif
2140 /* FROM->string non-null means it's alive. Copy its data. */
2141 if (from->string)
2143 /* If TB is full, proceed with the next sblock. */
2144 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2145 if (to_end > tb_end)
2147 tb->next_free = to;
2148 tb = tb->next;
2149 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2150 to = &tb->first_data;
2151 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2154 /* Copy, and update the string's `data' pointer. */
2155 if (from != to)
2157 xassert (tb != b || to <= from);
2158 memmove (to, from, nbytes + GC_STRING_EXTRA);
2159 to->string->data = SDATA_DATA (to);
2162 /* Advance past the sdata we copied to. */
2163 to = to_end;
2168 /* The rest of the sblocks following TB don't contain live data, so
2169 we can free them. */
2170 for (b = tb->next; b; b = next)
2172 next = b->next;
2173 lisp_free (b);
2176 tb->next_free = to;
2177 tb->next = NULL;
2178 current_sblock = tb;
2182 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2183 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2184 LENGTH must be an integer.
2185 INIT must be an integer that represents a character. */)
2186 (Lisp_Object length, Lisp_Object init)
2188 register Lisp_Object val;
2189 register unsigned char *p, *end;
2190 int c;
2191 EMACS_INT nbytes;
2193 CHECK_NATNUM (length);
2194 CHECK_NUMBER (init);
2196 c = XINT (init);
2197 if (ASCII_CHAR_P (c))
2199 nbytes = XINT (length);
2200 val = make_uninit_string (nbytes);
2201 p = SDATA (val);
2202 end = p + SCHARS (val);
2203 while (p != end)
2204 *p++ = c;
2206 else
2208 unsigned char str[MAX_MULTIBYTE_LENGTH];
2209 int len = CHAR_STRING (c, str);
2210 EMACS_INT string_len = XINT (length);
2212 if (string_len > MOST_POSITIVE_FIXNUM / len)
2213 error ("Maximum string size exceeded");
2214 nbytes = len * string_len;
2215 val = make_uninit_multibyte_string (string_len, nbytes);
2216 p = SDATA (val);
2217 end = p + nbytes;
2218 while (p != end)
2220 memcpy (p, str, len);
2221 p += len;
2225 *p = 0;
2226 return val;
2230 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2231 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2232 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2233 (Lisp_Object length, Lisp_Object init)
2235 register Lisp_Object val;
2236 struct Lisp_Bool_Vector *p;
2237 int real_init, i;
2238 EMACS_INT length_in_chars, length_in_elts;
2239 int bits_per_value;
2241 CHECK_NATNUM (length);
2243 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2245 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2246 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2247 / BOOL_VECTOR_BITS_PER_CHAR);
2249 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2250 slot `size' of the struct Lisp_Bool_Vector. */
2251 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2253 /* Get rid of any bits that would cause confusion. */
2254 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2255 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2256 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2258 p = XBOOL_VECTOR (val);
2259 p->size = XFASTINT (length);
2261 real_init = (NILP (init) ? 0 : -1);
2262 for (i = 0; i < length_in_chars ; i++)
2263 p->data[i] = real_init;
2265 /* Clear the extraneous bits in the last byte. */
2266 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2267 p->data[length_in_chars - 1]
2268 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2270 return val;
2274 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2275 of characters from the contents. This string may be unibyte or
2276 multibyte, depending on the contents. */
2278 Lisp_Object
2279 make_string (const char *contents, EMACS_INT nbytes)
2281 register Lisp_Object val;
2282 EMACS_INT nchars, multibyte_nbytes;
2284 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2285 if (nbytes == nchars || nbytes != multibyte_nbytes)
2286 /* CONTENTS contains no multibyte sequences or contains an invalid
2287 multibyte sequence. We must make unibyte string. */
2288 val = make_unibyte_string (contents, nbytes);
2289 else
2290 val = make_multibyte_string (contents, nchars, nbytes);
2291 return val;
2295 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2297 Lisp_Object
2298 make_unibyte_string (const char *contents, EMACS_INT length)
2300 register Lisp_Object val;
2301 val = make_uninit_string (length);
2302 memcpy (SDATA (val), contents, length);
2303 STRING_SET_UNIBYTE (val);
2304 return val;
2308 /* Make a multibyte string from NCHARS characters occupying NBYTES
2309 bytes at CONTENTS. */
2311 Lisp_Object
2312 make_multibyte_string (const char *contents,
2313 EMACS_INT nchars, EMACS_INT nbytes)
2315 register Lisp_Object val;
2316 val = make_uninit_multibyte_string (nchars, nbytes);
2317 memcpy (SDATA (val), contents, nbytes);
2318 return val;
2322 /* Make a string from NCHARS characters occupying NBYTES bytes at
2323 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2325 Lisp_Object
2326 make_string_from_bytes (const char *contents,
2327 EMACS_INT nchars, EMACS_INT nbytes)
2329 register Lisp_Object val;
2330 val = make_uninit_multibyte_string (nchars, nbytes);
2331 memcpy (SDATA (val), contents, nbytes);
2332 if (SBYTES (val) == SCHARS (val))
2333 STRING_SET_UNIBYTE (val);
2334 return val;
2338 /* Make a string from NCHARS characters occupying NBYTES bytes at
2339 CONTENTS. The argument MULTIBYTE controls whether to label the
2340 string as multibyte. If NCHARS is negative, it counts the number of
2341 characters by itself. */
2343 Lisp_Object
2344 make_specified_string (const char *contents,
2345 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
2347 register Lisp_Object val;
2349 if (nchars < 0)
2351 if (multibyte)
2352 nchars = multibyte_chars_in_text (contents, nbytes);
2353 else
2354 nchars = nbytes;
2356 val = make_uninit_multibyte_string (nchars, nbytes);
2357 memcpy (SDATA (val), contents, nbytes);
2358 if (!multibyte)
2359 STRING_SET_UNIBYTE (val);
2360 return val;
2364 /* Make a string from the data at STR, treating it as multibyte if the
2365 data warrants. */
2367 Lisp_Object
2368 build_string (const char *str)
2370 return make_string (str, strlen (str));
2374 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2375 occupying LENGTH bytes. */
2377 Lisp_Object
2378 make_uninit_string (EMACS_INT length)
2380 Lisp_Object val;
2382 if (!length)
2383 return empty_unibyte_string;
2384 val = make_uninit_multibyte_string (length, length);
2385 STRING_SET_UNIBYTE (val);
2386 return val;
2390 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2391 which occupy NBYTES bytes. */
2393 Lisp_Object
2394 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2396 Lisp_Object string;
2397 struct Lisp_String *s;
2399 if (nchars < 0)
2400 abort ();
2401 if (!nbytes)
2402 return empty_multibyte_string;
2404 s = allocate_string ();
2405 allocate_string_data (s, nchars, nbytes);
2406 XSETSTRING (string, s);
2407 string_chars_consed += nbytes;
2408 return string;
2413 /***********************************************************************
2414 Float Allocation
2415 ***********************************************************************/
2417 /* We store float cells inside of float_blocks, allocating a new
2418 float_block with malloc whenever necessary. Float cells reclaimed
2419 by GC are put on a free list to be reallocated before allocating
2420 any new float cells from the latest float_block. */
2422 #define FLOAT_BLOCK_SIZE \
2423 (((BLOCK_BYTES - sizeof (struct float_block *) \
2424 /* The compiler might add padding at the end. */ \
2425 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2426 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2428 #define GETMARKBIT(block,n) \
2429 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2430 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2431 & 1)
2433 #define SETMARKBIT(block,n) \
2434 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2435 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2437 #define UNSETMARKBIT(block,n) \
2438 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2439 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2441 #define FLOAT_BLOCK(fptr) \
2442 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2444 #define FLOAT_INDEX(fptr) \
2445 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2447 struct float_block
2449 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2450 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2451 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2452 struct float_block *next;
2455 #define FLOAT_MARKED_P(fptr) \
2456 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2458 #define FLOAT_MARK(fptr) \
2459 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2461 #define FLOAT_UNMARK(fptr) \
2462 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2464 /* Current float_block. */
2466 struct float_block *float_block;
2468 /* Index of first unused Lisp_Float in the current float_block. */
2470 int float_block_index;
2472 /* Total number of float blocks now in use. */
2474 int n_float_blocks;
2476 /* Free-list of Lisp_Floats. */
2478 struct Lisp_Float *float_free_list;
2481 /* Initialize float allocation. */
2483 static void
2484 init_float (void)
2486 float_block = NULL;
2487 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2488 float_free_list = 0;
2489 n_float_blocks = 0;
2493 /* Return a new float object with value FLOAT_VALUE. */
2495 Lisp_Object
2496 make_float (double float_value)
2498 register Lisp_Object val;
2500 /* eassert (!handling_signal); */
2502 MALLOC_BLOCK_INPUT;
2504 if (float_free_list)
2506 /* We use the data field for chaining the free list
2507 so that we won't use the same field that has the mark bit. */
2508 XSETFLOAT (val, float_free_list);
2509 float_free_list = float_free_list->u.chain;
2511 else
2513 if (float_block_index == FLOAT_BLOCK_SIZE)
2515 register struct float_block *new;
2517 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2518 MEM_TYPE_FLOAT);
2519 new->next = float_block;
2520 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2521 float_block = new;
2522 float_block_index = 0;
2523 n_float_blocks++;
2525 XSETFLOAT (val, &float_block->floats[float_block_index]);
2526 float_block_index++;
2529 MALLOC_UNBLOCK_INPUT;
2531 XFLOAT_INIT (val, float_value);
2532 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2533 consing_since_gc += sizeof (struct Lisp_Float);
2534 floats_consed++;
2535 return val;
2540 /***********************************************************************
2541 Cons Allocation
2542 ***********************************************************************/
2544 /* We store cons cells inside of cons_blocks, allocating a new
2545 cons_block with malloc whenever necessary. Cons cells reclaimed by
2546 GC are put on a free list to be reallocated before allocating
2547 any new cons cells from the latest cons_block. */
2549 #define CONS_BLOCK_SIZE \
2550 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2551 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2553 #define CONS_BLOCK(fptr) \
2554 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2556 #define CONS_INDEX(fptr) \
2557 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2559 struct cons_block
2561 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2562 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2563 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2564 struct cons_block *next;
2567 #define CONS_MARKED_P(fptr) \
2568 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2570 #define CONS_MARK(fptr) \
2571 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2573 #define CONS_UNMARK(fptr) \
2574 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2576 /* Current cons_block. */
2578 struct cons_block *cons_block;
2580 /* Index of first unused Lisp_Cons in the current block. */
2582 int cons_block_index;
2584 /* Free-list of Lisp_Cons structures. */
2586 struct Lisp_Cons *cons_free_list;
2588 /* Total number of cons blocks now in use. */
2590 static int n_cons_blocks;
2593 /* Initialize cons allocation. */
2595 static void
2596 init_cons (void)
2598 cons_block = NULL;
2599 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2600 cons_free_list = 0;
2601 n_cons_blocks = 0;
2605 /* Explicitly free a cons cell by putting it on the free-list. */
2607 void
2608 free_cons (struct Lisp_Cons *ptr)
2610 ptr->u.chain = cons_free_list;
2611 #if GC_MARK_STACK
2612 ptr->car = Vdead;
2613 #endif
2614 cons_free_list = ptr;
2617 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2618 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2619 (Lisp_Object car, Lisp_Object cdr)
2621 register Lisp_Object val;
2623 /* eassert (!handling_signal); */
2625 MALLOC_BLOCK_INPUT;
2627 if (cons_free_list)
2629 /* We use the cdr for chaining the free list
2630 so that we won't use the same field that has the mark bit. */
2631 XSETCONS (val, cons_free_list);
2632 cons_free_list = cons_free_list->u.chain;
2634 else
2636 if (cons_block_index == CONS_BLOCK_SIZE)
2638 register struct cons_block *new;
2639 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2640 MEM_TYPE_CONS);
2641 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2642 new->next = cons_block;
2643 cons_block = new;
2644 cons_block_index = 0;
2645 n_cons_blocks++;
2647 XSETCONS (val, &cons_block->conses[cons_block_index]);
2648 cons_block_index++;
2651 MALLOC_UNBLOCK_INPUT;
2653 XSETCAR (val, car);
2654 XSETCDR (val, cdr);
2655 eassert (!CONS_MARKED_P (XCONS (val)));
2656 consing_since_gc += sizeof (struct Lisp_Cons);
2657 cons_cells_consed++;
2658 return val;
2661 /* Get an error now if there's any junk in the cons free list. */
2662 void
2663 check_cons_list (void)
2665 #ifdef GC_CHECK_CONS_LIST
2666 struct Lisp_Cons *tail = cons_free_list;
2668 while (tail)
2669 tail = tail->u.chain;
2670 #endif
2673 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2675 Lisp_Object
2676 list1 (Lisp_Object arg1)
2678 return Fcons (arg1, Qnil);
2681 Lisp_Object
2682 list2 (Lisp_Object arg1, Lisp_Object arg2)
2684 return Fcons (arg1, Fcons (arg2, Qnil));
2688 Lisp_Object
2689 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2691 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2695 Lisp_Object
2696 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2698 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2702 Lisp_Object
2703 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2705 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2706 Fcons (arg5, Qnil)))));
2710 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2711 doc: /* Return a newly created list with specified arguments as elements.
2712 Any number of arguments, even zero arguments, are allowed.
2713 usage: (list &rest OBJECTS) */)
2714 (int nargs, register Lisp_Object *args)
2716 register Lisp_Object val;
2717 val = Qnil;
2719 while (nargs > 0)
2721 nargs--;
2722 val = Fcons (args[nargs], val);
2724 return val;
2728 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2729 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2730 (register Lisp_Object length, Lisp_Object init)
2732 register Lisp_Object val;
2733 register EMACS_INT size;
2735 CHECK_NATNUM (length);
2736 size = XFASTINT (length);
2738 val = Qnil;
2739 while (size > 0)
2741 val = Fcons (init, val);
2742 --size;
2744 if (size > 0)
2746 val = Fcons (init, val);
2747 --size;
2749 if (size > 0)
2751 val = Fcons (init, val);
2752 --size;
2754 if (size > 0)
2756 val = Fcons (init, val);
2757 --size;
2759 if (size > 0)
2761 val = Fcons (init, val);
2762 --size;
2768 QUIT;
2771 return val;
2776 /***********************************************************************
2777 Vector Allocation
2778 ***********************************************************************/
2780 /* Singly-linked list of all vectors. */
2782 static struct Lisp_Vector *all_vectors;
2784 /* Total number of vector-like objects now in use. */
2786 static int n_vectors;
2789 /* Value is a pointer to a newly allocated Lisp_Vector structure
2790 with room for LEN Lisp_Objects. */
2792 static struct Lisp_Vector *
2793 allocate_vectorlike (EMACS_INT len)
2795 struct Lisp_Vector *p;
2796 size_t nbytes;
2798 MALLOC_BLOCK_INPUT;
2800 #ifdef DOUG_LEA_MALLOC
2801 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2802 because mapped region contents are not preserved in
2803 a dumped Emacs. */
2804 mallopt (M_MMAP_MAX, 0);
2805 #endif
2807 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2808 /* eassert (!handling_signal); */
2810 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2811 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2813 #ifdef DOUG_LEA_MALLOC
2814 /* Back to a reasonable maximum of mmap'ed areas. */
2815 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2816 #endif
2818 consing_since_gc += nbytes;
2819 vector_cells_consed += len;
2821 p->next = all_vectors;
2822 all_vectors = p;
2824 MALLOC_UNBLOCK_INPUT;
2826 ++n_vectors;
2827 return p;
2831 /* Allocate a vector with NSLOTS slots. */
2833 struct Lisp_Vector *
2834 allocate_vector (EMACS_INT nslots)
2836 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2837 v->size = nslots;
2838 return v;
2842 /* Allocate other vector-like structures. */
2844 struct Lisp_Vector *
2845 allocate_pseudovector (int memlen, int lisplen, EMACS_INT tag)
2847 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2848 EMACS_INT i;
2850 /* Only the first lisplen slots will be traced normally by the GC. */
2851 v->size = lisplen;
2852 for (i = 0; i < lisplen; ++i)
2853 v->contents[i] = Qnil;
2855 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2856 return v;
2859 struct Lisp_Hash_Table *
2860 allocate_hash_table (void)
2862 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2866 struct window *
2867 allocate_window (void)
2869 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2873 struct terminal *
2874 allocate_terminal (void)
2876 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2877 next_terminal, PVEC_TERMINAL);
2878 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2879 memset (&t->next_terminal, 0,
2880 (char*) (t + 1) - (char*) &t->next_terminal);
2882 return t;
2885 struct frame *
2886 allocate_frame (void)
2888 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
2889 face_cache, PVEC_FRAME);
2890 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2891 memset (&f->face_cache, 0,
2892 (char *) (f + 1) - (char *) &f->face_cache);
2893 return f;
2897 struct Lisp_Process *
2898 allocate_process (void)
2900 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
2904 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2905 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2906 See also the function `vector'. */)
2907 (register Lisp_Object length, Lisp_Object init)
2909 Lisp_Object vector;
2910 register EMACS_INT sizei;
2911 register EMACS_INT index;
2912 register struct Lisp_Vector *p;
2914 CHECK_NATNUM (length);
2915 sizei = XFASTINT (length);
2917 p = allocate_vector (sizei);
2918 for (index = 0; index < sizei; index++)
2919 p->contents[index] = init;
2921 XSETVECTOR (vector, p);
2922 return vector;
2926 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2927 doc: /* Return a newly created vector with specified arguments as elements.
2928 Any number of arguments, even zero arguments, are allowed.
2929 usage: (vector &rest OBJECTS) */)
2930 (register int nargs, Lisp_Object *args)
2932 register Lisp_Object len, val;
2933 register int index;
2934 register struct Lisp_Vector *p;
2936 XSETFASTINT (len, nargs);
2937 val = Fmake_vector (len, Qnil);
2938 p = XVECTOR (val);
2939 for (index = 0; index < nargs; index++)
2940 p->contents[index] = args[index];
2941 return val;
2945 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2946 doc: /* Create a byte-code object with specified arguments as elements.
2947 The arguments should be the arglist, bytecode-string, constant vector,
2948 stack size, (optional) doc string, and (optional) interactive spec.
2949 The first four arguments are required; at most six have any
2950 significance.
2951 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2952 (register int nargs, Lisp_Object *args)
2954 register Lisp_Object len, val;
2955 register int index;
2956 register struct Lisp_Vector *p;
2958 XSETFASTINT (len, nargs);
2959 if (!NILP (Vpurify_flag))
2960 val = make_pure_vector ((EMACS_INT) nargs);
2961 else
2962 val = Fmake_vector (len, Qnil);
2964 if (nargs > 1 && STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2965 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2966 earlier because they produced a raw 8-bit string for byte-code
2967 and now such a byte-code string is loaded as multibyte while
2968 raw 8-bit characters converted to multibyte form. Thus, now we
2969 must convert them back to the original unibyte form. */
2970 args[1] = Fstring_as_unibyte (args[1]);
2972 p = XVECTOR (val);
2973 for (index = 0; index < nargs; index++)
2975 if (!NILP (Vpurify_flag))
2976 args[index] = Fpurecopy (args[index]);
2977 p->contents[index] = args[index];
2979 XSETPVECTYPE (p, PVEC_COMPILED);
2980 XSETCOMPILED (val, p);
2981 return val;
2986 /***********************************************************************
2987 Symbol Allocation
2988 ***********************************************************************/
2990 /* Each symbol_block is just under 1020 bytes long, since malloc
2991 really allocates in units of powers of two and uses 4 bytes for its
2992 own overhead. */
2994 #define SYMBOL_BLOCK_SIZE \
2995 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2997 struct symbol_block
2999 /* Place `symbols' first, to preserve alignment. */
3000 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3001 struct symbol_block *next;
3004 /* Current symbol block and index of first unused Lisp_Symbol
3005 structure in it. */
3007 static struct symbol_block *symbol_block;
3008 static int symbol_block_index;
3010 /* List of free symbols. */
3012 static struct Lisp_Symbol *symbol_free_list;
3014 /* Total number of symbol blocks now in use. */
3016 static int n_symbol_blocks;
3019 /* Initialize symbol allocation. */
3021 static void
3022 init_symbol (void)
3024 symbol_block = NULL;
3025 symbol_block_index = SYMBOL_BLOCK_SIZE;
3026 symbol_free_list = 0;
3027 n_symbol_blocks = 0;
3031 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3032 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3033 Its value and function definition are void, and its property list is nil. */)
3034 (Lisp_Object name)
3036 register Lisp_Object val;
3037 register struct Lisp_Symbol *p;
3039 CHECK_STRING (name);
3041 /* eassert (!handling_signal); */
3043 MALLOC_BLOCK_INPUT;
3045 if (symbol_free_list)
3047 XSETSYMBOL (val, symbol_free_list);
3048 symbol_free_list = symbol_free_list->next;
3050 else
3052 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3054 struct symbol_block *new;
3055 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3056 MEM_TYPE_SYMBOL);
3057 new->next = symbol_block;
3058 symbol_block = new;
3059 symbol_block_index = 0;
3060 n_symbol_blocks++;
3062 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3063 symbol_block_index++;
3066 MALLOC_UNBLOCK_INPUT;
3068 p = XSYMBOL (val);
3069 p->xname = name;
3070 p->plist = Qnil;
3071 p->redirect = SYMBOL_PLAINVAL;
3072 SET_SYMBOL_VAL (p, Qunbound);
3073 p->function = Qunbound;
3074 p->next = NULL;
3075 p->gcmarkbit = 0;
3076 p->interned = SYMBOL_UNINTERNED;
3077 p->constant = 0;
3078 consing_since_gc += sizeof (struct Lisp_Symbol);
3079 symbols_consed++;
3080 return val;
3085 /***********************************************************************
3086 Marker (Misc) Allocation
3087 ***********************************************************************/
3089 /* Allocation of markers and other objects that share that structure.
3090 Works like allocation of conses. */
3092 #define MARKER_BLOCK_SIZE \
3093 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3095 struct marker_block
3097 /* Place `markers' first, to preserve alignment. */
3098 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3099 struct marker_block *next;
3102 static struct marker_block *marker_block;
3103 static int marker_block_index;
3105 static union Lisp_Misc *marker_free_list;
3107 /* Total number of marker blocks now in use. */
3109 static int n_marker_blocks;
3111 static void
3112 init_marker (void)
3114 marker_block = NULL;
3115 marker_block_index = MARKER_BLOCK_SIZE;
3116 marker_free_list = 0;
3117 n_marker_blocks = 0;
3120 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3122 Lisp_Object
3123 allocate_misc (void)
3125 Lisp_Object val;
3127 /* eassert (!handling_signal); */
3129 MALLOC_BLOCK_INPUT;
3131 if (marker_free_list)
3133 XSETMISC (val, marker_free_list);
3134 marker_free_list = marker_free_list->u_free.chain;
3136 else
3138 if (marker_block_index == MARKER_BLOCK_SIZE)
3140 struct marker_block *new;
3141 new = (struct marker_block *) lisp_malloc (sizeof *new,
3142 MEM_TYPE_MISC);
3143 new->next = marker_block;
3144 marker_block = new;
3145 marker_block_index = 0;
3146 n_marker_blocks++;
3147 total_free_markers += MARKER_BLOCK_SIZE;
3149 XSETMISC (val, &marker_block->markers[marker_block_index]);
3150 marker_block_index++;
3153 MALLOC_UNBLOCK_INPUT;
3155 --total_free_markers;
3156 consing_since_gc += sizeof (union Lisp_Misc);
3157 misc_objects_consed++;
3158 XMISCANY (val)->gcmarkbit = 0;
3159 return val;
3162 /* Free a Lisp_Misc object */
3164 void
3165 free_misc (Lisp_Object misc)
3167 XMISCTYPE (misc) = Lisp_Misc_Free;
3168 XMISC (misc)->u_free.chain = marker_free_list;
3169 marker_free_list = XMISC (misc);
3171 total_free_markers++;
3174 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3175 INTEGER. This is used to package C values to call record_unwind_protect.
3176 The unwind function can get the C values back using XSAVE_VALUE. */
3178 Lisp_Object
3179 make_save_value (void *pointer, int integer)
3181 register Lisp_Object val;
3182 register struct Lisp_Save_Value *p;
3184 val = allocate_misc ();
3185 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3186 p = XSAVE_VALUE (val);
3187 p->pointer = pointer;
3188 p->integer = integer;
3189 p->dogc = 0;
3190 return val;
3193 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3194 doc: /* Return a newly allocated marker which does not point at any place. */)
3195 (void)
3197 register Lisp_Object val;
3198 register struct Lisp_Marker *p;
3200 val = allocate_misc ();
3201 XMISCTYPE (val) = Lisp_Misc_Marker;
3202 p = XMARKER (val);
3203 p->buffer = 0;
3204 p->bytepos = 0;
3205 p->charpos = 0;
3206 p->next = NULL;
3207 p->insertion_type = 0;
3208 return val;
3211 /* Put MARKER back on the free list after using it temporarily. */
3213 void
3214 free_marker (Lisp_Object marker)
3216 unchain_marker (XMARKER (marker));
3217 free_misc (marker);
3221 /* Return a newly created vector or string with specified arguments as
3222 elements. If all the arguments are characters that can fit
3223 in a string of events, make a string; otherwise, make a vector.
3225 Any number of arguments, even zero arguments, are allowed. */
3227 Lisp_Object
3228 make_event_array (register int nargs, Lisp_Object *args)
3230 int i;
3232 for (i = 0; i < nargs; i++)
3233 /* The things that fit in a string
3234 are characters that are in 0...127,
3235 after discarding the meta bit and all the bits above it. */
3236 if (!INTEGERP (args[i])
3237 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3238 return Fvector (nargs, args);
3240 /* Since the loop exited, we know that all the things in it are
3241 characters, so we can make a string. */
3243 Lisp_Object result;
3245 result = Fmake_string (make_number (nargs), make_number (0));
3246 for (i = 0; i < nargs; i++)
3248 SSET (result, i, XINT (args[i]));
3249 /* Move the meta bit to the right place for a string char. */
3250 if (XINT (args[i]) & CHAR_META)
3251 SSET (result, i, SREF (result, i) | 0x80);
3254 return result;
3260 /************************************************************************
3261 Memory Full Handling
3262 ************************************************************************/
3265 /* Called if malloc returns zero. */
3267 void
3268 memory_full (void)
3270 int i;
3272 Vmemory_full = Qt;
3274 memory_full_cons_threshold = sizeof (struct cons_block);
3276 /* The first time we get here, free the spare memory. */
3277 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3278 if (spare_memory[i])
3280 if (i == 0)
3281 free (spare_memory[i]);
3282 else if (i >= 1 && i <= 4)
3283 lisp_align_free (spare_memory[i]);
3284 else
3285 lisp_free (spare_memory[i]);
3286 spare_memory[i] = 0;
3289 /* Record the space now used. When it decreases substantially,
3290 we can refill the memory reserve. */
3291 #ifndef SYSTEM_MALLOC
3292 bytes_used_when_full = BYTES_USED;
3293 #endif
3295 /* This used to call error, but if we've run out of memory, we could
3296 get infinite recursion trying to build the string. */
3297 xsignal (Qnil, Vmemory_signal_data);
3300 /* If we released our reserve (due to running out of memory),
3301 and we have a fair amount free once again,
3302 try to set aside another reserve in case we run out once more.
3304 This is called when a relocatable block is freed in ralloc.c,
3305 and also directly from this file, in case we're not using ralloc.c. */
3307 void
3308 refill_memory_reserve (void)
3310 #ifndef SYSTEM_MALLOC
3311 if (spare_memory[0] == 0)
3312 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3313 if (spare_memory[1] == 0)
3314 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3315 MEM_TYPE_CONS);
3316 if (spare_memory[2] == 0)
3317 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3318 MEM_TYPE_CONS);
3319 if (spare_memory[3] == 0)
3320 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3321 MEM_TYPE_CONS);
3322 if (spare_memory[4] == 0)
3323 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3324 MEM_TYPE_CONS);
3325 if (spare_memory[5] == 0)
3326 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3327 MEM_TYPE_STRING);
3328 if (spare_memory[6] == 0)
3329 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3330 MEM_TYPE_STRING);
3331 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3332 Vmemory_full = Qnil;
3333 #endif
3336 /************************************************************************
3337 C Stack Marking
3338 ************************************************************************/
3340 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3342 /* Conservative C stack marking requires a method to identify possibly
3343 live Lisp objects given a pointer value. We do this by keeping
3344 track of blocks of Lisp data that are allocated in a red-black tree
3345 (see also the comment of mem_node which is the type of nodes in
3346 that tree). Function lisp_malloc adds information for an allocated
3347 block to the red-black tree with calls to mem_insert, and function
3348 lisp_free removes it with mem_delete. Functions live_string_p etc
3349 call mem_find to lookup information about a given pointer in the
3350 tree, and use that to determine if the pointer points to a Lisp
3351 object or not. */
3353 /* Initialize this part of alloc.c. */
3355 static void
3356 mem_init (void)
3358 mem_z.left = mem_z.right = MEM_NIL;
3359 mem_z.parent = NULL;
3360 mem_z.color = MEM_BLACK;
3361 mem_z.start = mem_z.end = NULL;
3362 mem_root = MEM_NIL;
3366 /* Value is a pointer to the mem_node containing START. Value is
3367 MEM_NIL if there is no node in the tree containing START. */
3369 static INLINE struct mem_node *
3370 mem_find (void *start)
3372 struct mem_node *p;
3374 if (start < min_heap_address || start > max_heap_address)
3375 return MEM_NIL;
3377 /* Make the search always successful to speed up the loop below. */
3378 mem_z.start = start;
3379 mem_z.end = (char *) start + 1;
3381 p = mem_root;
3382 while (start < p->start || start >= p->end)
3383 p = start < p->start ? p->left : p->right;
3384 return p;
3388 /* Insert a new node into the tree for a block of memory with start
3389 address START, end address END, and type TYPE. Value is a
3390 pointer to the node that was inserted. */
3392 static struct mem_node *
3393 mem_insert (void *start, void *end, enum mem_type type)
3395 struct mem_node *c, *parent, *x;
3397 if (min_heap_address == NULL || start < min_heap_address)
3398 min_heap_address = start;
3399 if (max_heap_address == NULL || end > max_heap_address)
3400 max_heap_address = end;
3402 /* See where in the tree a node for START belongs. In this
3403 particular application, it shouldn't happen that a node is already
3404 present. For debugging purposes, let's check that. */
3405 c = mem_root;
3406 parent = NULL;
3408 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3410 while (c != MEM_NIL)
3412 if (start >= c->start && start < c->end)
3413 abort ();
3414 parent = c;
3415 c = start < c->start ? c->left : c->right;
3418 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3420 while (c != MEM_NIL)
3422 parent = c;
3423 c = start < c->start ? c->left : c->right;
3426 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3428 /* Create a new node. */
3429 #ifdef GC_MALLOC_CHECK
3430 x = (struct mem_node *) _malloc_internal (sizeof *x);
3431 if (x == NULL)
3432 abort ();
3433 #else
3434 x = (struct mem_node *) xmalloc (sizeof *x);
3435 #endif
3436 x->start = start;
3437 x->end = end;
3438 x->type = type;
3439 x->parent = parent;
3440 x->left = x->right = MEM_NIL;
3441 x->color = MEM_RED;
3443 /* Insert it as child of PARENT or install it as root. */
3444 if (parent)
3446 if (start < parent->start)
3447 parent->left = x;
3448 else
3449 parent->right = x;
3451 else
3452 mem_root = x;
3454 /* Re-establish red-black tree properties. */
3455 mem_insert_fixup (x);
3457 return x;
3461 /* Re-establish the red-black properties of the tree, and thereby
3462 balance the tree, after node X has been inserted; X is always red. */
3464 static void
3465 mem_insert_fixup (struct mem_node *x)
3467 while (x != mem_root && x->parent->color == MEM_RED)
3469 /* X is red and its parent is red. This is a violation of
3470 red-black tree property #3. */
3472 if (x->parent == x->parent->parent->left)
3474 /* We're on the left side of our grandparent, and Y is our
3475 "uncle". */
3476 struct mem_node *y = x->parent->parent->right;
3478 if (y->color == MEM_RED)
3480 /* Uncle and parent are red but should be black because
3481 X is red. Change the colors accordingly and proceed
3482 with the grandparent. */
3483 x->parent->color = MEM_BLACK;
3484 y->color = MEM_BLACK;
3485 x->parent->parent->color = MEM_RED;
3486 x = x->parent->parent;
3488 else
3490 /* Parent and uncle have different colors; parent is
3491 red, uncle is black. */
3492 if (x == x->parent->right)
3494 x = x->parent;
3495 mem_rotate_left (x);
3498 x->parent->color = MEM_BLACK;
3499 x->parent->parent->color = MEM_RED;
3500 mem_rotate_right (x->parent->parent);
3503 else
3505 /* This is the symmetrical case of above. */
3506 struct mem_node *y = x->parent->parent->left;
3508 if (y->color == MEM_RED)
3510 x->parent->color = MEM_BLACK;
3511 y->color = MEM_BLACK;
3512 x->parent->parent->color = MEM_RED;
3513 x = x->parent->parent;
3515 else
3517 if (x == x->parent->left)
3519 x = x->parent;
3520 mem_rotate_right (x);
3523 x->parent->color = MEM_BLACK;
3524 x->parent->parent->color = MEM_RED;
3525 mem_rotate_left (x->parent->parent);
3530 /* The root may have been changed to red due to the algorithm. Set
3531 it to black so that property #5 is satisfied. */
3532 mem_root->color = MEM_BLACK;
3536 /* (x) (y)
3537 / \ / \
3538 a (y) ===> (x) c
3539 / \ / \
3540 b c a b */
3542 static void
3543 mem_rotate_left (struct mem_node *x)
3545 struct mem_node *y;
3547 /* Turn y's left sub-tree into x's right sub-tree. */
3548 y = x->right;
3549 x->right = y->left;
3550 if (y->left != MEM_NIL)
3551 y->left->parent = x;
3553 /* Y's parent was x's parent. */
3554 if (y != MEM_NIL)
3555 y->parent = x->parent;
3557 /* Get the parent to point to y instead of x. */
3558 if (x->parent)
3560 if (x == x->parent->left)
3561 x->parent->left = y;
3562 else
3563 x->parent->right = y;
3565 else
3566 mem_root = y;
3568 /* Put x on y's left. */
3569 y->left = x;
3570 if (x != MEM_NIL)
3571 x->parent = y;
3575 /* (x) (Y)
3576 / \ / \
3577 (y) c ===> a (x)
3578 / \ / \
3579 a b b c */
3581 static void
3582 mem_rotate_right (struct mem_node *x)
3584 struct mem_node *y = x->left;
3586 x->left = y->right;
3587 if (y->right != MEM_NIL)
3588 y->right->parent = x;
3590 if (y != MEM_NIL)
3591 y->parent = x->parent;
3592 if (x->parent)
3594 if (x == x->parent->right)
3595 x->parent->right = y;
3596 else
3597 x->parent->left = y;
3599 else
3600 mem_root = y;
3602 y->right = x;
3603 if (x != MEM_NIL)
3604 x->parent = y;
3608 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3610 static void
3611 mem_delete (struct mem_node *z)
3613 struct mem_node *x, *y;
3615 if (!z || z == MEM_NIL)
3616 return;
3618 if (z->left == MEM_NIL || z->right == MEM_NIL)
3619 y = z;
3620 else
3622 y = z->right;
3623 while (y->left != MEM_NIL)
3624 y = y->left;
3627 if (y->left != MEM_NIL)
3628 x = y->left;
3629 else
3630 x = y->right;
3632 x->parent = y->parent;
3633 if (y->parent)
3635 if (y == y->parent->left)
3636 y->parent->left = x;
3637 else
3638 y->parent->right = x;
3640 else
3641 mem_root = x;
3643 if (y != z)
3645 z->start = y->start;
3646 z->end = y->end;
3647 z->type = y->type;
3650 if (y->color == MEM_BLACK)
3651 mem_delete_fixup (x);
3653 #ifdef GC_MALLOC_CHECK
3654 _free_internal (y);
3655 #else
3656 xfree (y);
3657 #endif
3661 /* Re-establish the red-black properties of the tree, after a
3662 deletion. */
3664 static void
3665 mem_delete_fixup (struct mem_node *x)
3667 while (x != mem_root && x->color == MEM_BLACK)
3669 if (x == x->parent->left)
3671 struct mem_node *w = x->parent->right;
3673 if (w->color == MEM_RED)
3675 w->color = MEM_BLACK;
3676 x->parent->color = MEM_RED;
3677 mem_rotate_left (x->parent);
3678 w = x->parent->right;
3681 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3683 w->color = MEM_RED;
3684 x = x->parent;
3686 else
3688 if (w->right->color == MEM_BLACK)
3690 w->left->color = MEM_BLACK;
3691 w->color = MEM_RED;
3692 mem_rotate_right (w);
3693 w = x->parent->right;
3695 w->color = x->parent->color;
3696 x->parent->color = MEM_BLACK;
3697 w->right->color = MEM_BLACK;
3698 mem_rotate_left (x->parent);
3699 x = mem_root;
3702 else
3704 struct mem_node *w = x->parent->left;
3706 if (w->color == MEM_RED)
3708 w->color = MEM_BLACK;
3709 x->parent->color = MEM_RED;
3710 mem_rotate_right (x->parent);
3711 w = x->parent->left;
3714 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3716 w->color = MEM_RED;
3717 x = x->parent;
3719 else
3721 if (w->left->color == MEM_BLACK)
3723 w->right->color = MEM_BLACK;
3724 w->color = MEM_RED;
3725 mem_rotate_left (w);
3726 w = x->parent->left;
3729 w->color = x->parent->color;
3730 x->parent->color = MEM_BLACK;
3731 w->left->color = MEM_BLACK;
3732 mem_rotate_right (x->parent);
3733 x = mem_root;
3738 x->color = MEM_BLACK;
3742 /* Value is non-zero if P is a pointer to a live Lisp string on
3743 the heap. M is a pointer to the mem_block for P. */
3745 static INLINE int
3746 live_string_p (struct mem_node *m, void *p)
3748 if (m->type == MEM_TYPE_STRING)
3750 struct string_block *b = (struct string_block *) m->start;
3751 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3753 /* P must point to the start of a Lisp_String structure, and it
3754 must not be on the free-list. */
3755 return (offset >= 0
3756 && offset % sizeof b->strings[0] == 0
3757 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3758 && ((struct Lisp_String *) p)->data != NULL);
3760 else
3761 return 0;
3765 /* Value is non-zero if P is a pointer to a live Lisp cons on
3766 the heap. M is a pointer to the mem_block for P. */
3768 static INLINE int
3769 live_cons_p (struct mem_node *m, void *p)
3771 if (m->type == MEM_TYPE_CONS)
3773 struct cons_block *b = (struct cons_block *) m->start;
3774 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
3776 /* P must point to the start of a Lisp_Cons, not be
3777 one of the unused cells in the current cons block,
3778 and not be on the free-list. */
3779 return (offset >= 0
3780 && offset % sizeof b->conses[0] == 0
3781 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3782 && (b != cons_block
3783 || offset / sizeof b->conses[0] < cons_block_index)
3784 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3786 else
3787 return 0;
3791 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3792 the heap. M is a pointer to the mem_block for P. */
3794 static INLINE int
3795 live_symbol_p (struct mem_node *m, void *p)
3797 if (m->type == MEM_TYPE_SYMBOL)
3799 struct symbol_block *b = (struct symbol_block *) m->start;
3800 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
3802 /* P must point to the start of a Lisp_Symbol, not be
3803 one of the unused cells in the current symbol block,
3804 and not be on the free-list. */
3805 return (offset >= 0
3806 && offset % sizeof b->symbols[0] == 0
3807 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3808 && (b != symbol_block
3809 || offset / sizeof b->symbols[0] < symbol_block_index)
3810 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3812 else
3813 return 0;
3817 /* Value is non-zero if P is a pointer to a live Lisp float on
3818 the heap. M is a pointer to the mem_block for P. */
3820 static INLINE int
3821 live_float_p (struct mem_node *m, void *p)
3823 if (m->type == MEM_TYPE_FLOAT)
3825 struct float_block *b = (struct float_block *) m->start;
3826 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
3828 /* P must point to the start of a Lisp_Float and not be
3829 one of the unused cells in the current float block. */
3830 return (offset >= 0
3831 && offset % sizeof b->floats[0] == 0
3832 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3833 && (b != float_block
3834 || offset / sizeof b->floats[0] < float_block_index));
3836 else
3837 return 0;
3841 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3842 the heap. M is a pointer to the mem_block for P. */
3844 static INLINE int
3845 live_misc_p (struct mem_node *m, void *p)
3847 if (m->type == MEM_TYPE_MISC)
3849 struct marker_block *b = (struct marker_block *) m->start;
3850 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
3852 /* P must point to the start of a Lisp_Misc, not be
3853 one of the unused cells in the current misc block,
3854 and not be on the free-list. */
3855 return (offset >= 0
3856 && offset % sizeof b->markers[0] == 0
3857 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3858 && (b != marker_block
3859 || offset / sizeof b->markers[0] < marker_block_index)
3860 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
3862 else
3863 return 0;
3867 /* Value is non-zero if P is a pointer to a live vector-like object.
3868 M is a pointer to the mem_block for P. */
3870 static INLINE int
3871 live_vector_p (struct mem_node *m, void *p)
3873 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
3877 /* Value is non-zero if P is a pointer to a live buffer. M is a
3878 pointer to the mem_block for P. */
3880 static INLINE int
3881 live_buffer_p (struct mem_node *m, void *p)
3883 /* P must point to the start of the block, and the buffer
3884 must not have been killed. */
3885 return (m->type == MEM_TYPE_BUFFER
3886 && p == m->start
3887 && !NILP (((struct buffer *) p)->name));
3890 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3892 #if GC_MARK_STACK
3894 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3896 /* Array of objects that are kept alive because the C stack contains
3897 a pattern that looks like a reference to them . */
3899 #define MAX_ZOMBIES 10
3900 static Lisp_Object zombies[MAX_ZOMBIES];
3902 /* Number of zombie objects. */
3904 static int nzombies;
3906 /* Number of garbage collections. */
3908 static int ngcs;
3910 /* Average percentage of zombies per collection. */
3912 static double avg_zombies;
3914 /* Max. number of live and zombie objects. */
3916 static int max_live, max_zombies;
3918 /* Average number of live objects per GC. */
3920 static double avg_live;
3922 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3923 doc: /* Show information about live and zombie objects. */)
3924 (void)
3926 Lisp_Object args[8], zombie_list = Qnil;
3927 int i;
3928 for (i = 0; i < nzombies; i++)
3929 zombie_list = Fcons (zombies[i], zombie_list);
3930 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3931 args[1] = make_number (ngcs);
3932 args[2] = make_float (avg_live);
3933 args[3] = make_float (avg_zombies);
3934 args[4] = make_float (avg_zombies / avg_live / 100);
3935 args[5] = make_number (max_live);
3936 args[6] = make_number (max_zombies);
3937 args[7] = zombie_list;
3938 return Fmessage (8, args);
3941 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3944 /* Mark OBJ if we can prove it's a Lisp_Object. */
3946 static INLINE void
3947 mark_maybe_object (Lisp_Object obj)
3949 void *po;
3950 struct mem_node *m;
3952 if (INTEGERP (obj))
3953 return;
3955 po = (void *) XPNTR (obj);
3956 m = mem_find (po);
3958 if (m != MEM_NIL)
3960 int mark_p = 0;
3962 switch (XTYPE (obj))
3964 case Lisp_String:
3965 mark_p = (live_string_p (m, po)
3966 && !STRING_MARKED_P ((struct Lisp_String *) po));
3967 break;
3969 case Lisp_Cons:
3970 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3971 break;
3973 case Lisp_Symbol:
3974 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3975 break;
3977 case Lisp_Float:
3978 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3979 break;
3981 case Lisp_Vectorlike:
3982 /* Note: can't check BUFFERP before we know it's a
3983 buffer because checking that dereferences the pointer
3984 PO which might point anywhere. */
3985 if (live_vector_p (m, po))
3986 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3987 else if (live_buffer_p (m, po))
3988 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3989 break;
3991 case Lisp_Misc:
3992 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
3993 break;
3995 default:
3996 break;
3999 if (mark_p)
4001 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4002 if (nzombies < MAX_ZOMBIES)
4003 zombies[nzombies] = obj;
4004 ++nzombies;
4005 #endif
4006 mark_object (obj);
4012 /* If P points to Lisp data, mark that as live if it isn't already
4013 marked. */
4015 static INLINE void
4016 mark_maybe_pointer (void *p)
4018 struct mem_node *m;
4020 /* Quickly rule out some values which can't point to Lisp data. */
4021 if ((EMACS_INT) p %
4022 #ifdef USE_LSB_TAG
4023 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4024 #else
4025 2 /* We assume that Lisp data is aligned on even addresses. */
4026 #endif
4028 return;
4030 m = mem_find (p);
4031 if (m != MEM_NIL)
4033 Lisp_Object obj = Qnil;
4035 switch (m->type)
4037 case MEM_TYPE_NON_LISP:
4038 /* Nothing to do; not a pointer to Lisp memory. */
4039 break;
4041 case MEM_TYPE_BUFFER:
4042 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4043 XSETVECTOR (obj, p);
4044 break;
4046 case MEM_TYPE_CONS:
4047 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4048 XSETCONS (obj, p);
4049 break;
4051 case MEM_TYPE_STRING:
4052 if (live_string_p (m, p)
4053 && !STRING_MARKED_P ((struct Lisp_String *) p))
4054 XSETSTRING (obj, p);
4055 break;
4057 case MEM_TYPE_MISC:
4058 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4059 XSETMISC (obj, p);
4060 break;
4062 case MEM_TYPE_SYMBOL:
4063 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4064 XSETSYMBOL (obj, p);
4065 break;
4067 case MEM_TYPE_FLOAT:
4068 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4069 XSETFLOAT (obj, p);
4070 break;
4072 case MEM_TYPE_VECTORLIKE:
4073 if (live_vector_p (m, p))
4075 Lisp_Object tem;
4076 XSETVECTOR (tem, p);
4077 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4078 obj = tem;
4080 break;
4082 default:
4083 abort ();
4086 if (!NILP (obj))
4087 mark_object (obj);
4092 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4093 or END+OFFSET..START. */
4095 static void
4096 mark_memory (void *start, void *end, int offset)
4098 Lisp_Object *p;
4099 void **pp;
4101 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4102 nzombies = 0;
4103 #endif
4105 /* Make START the pointer to the start of the memory region,
4106 if it isn't already. */
4107 if (end < start)
4109 void *tem = start;
4110 start = end;
4111 end = tem;
4114 /* Mark Lisp_Objects. */
4115 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4116 mark_maybe_object (*p);
4118 /* Mark Lisp data pointed to. This is necessary because, in some
4119 situations, the C compiler optimizes Lisp objects away, so that
4120 only a pointer to them remains. Example:
4122 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4125 Lisp_Object obj = build_string ("test");
4126 struct Lisp_String *s = XSTRING (obj);
4127 Fgarbage_collect ();
4128 fprintf (stderr, "test `%s'\n", s->data);
4129 return Qnil;
4132 Here, `obj' isn't really used, and the compiler optimizes it
4133 away. The only reference to the life string is through the
4134 pointer `s'. */
4136 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4137 mark_maybe_pointer (*pp);
4140 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4141 the GCC system configuration. In gcc 3.2, the only systems for
4142 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4143 by others?) and ns32k-pc532-min. */
4145 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4147 static int setjmp_tested_p, longjmps_done;
4149 #define SETJMP_WILL_LIKELY_WORK "\
4151 Emacs garbage collector has been changed to use conservative stack\n\
4152 marking. Emacs has determined that the method it uses to do the\n\
4153 marking will likely work on your system, but this isn't sure.\n\
4155 If you are a system-programmer, or can get the help of a local wizard\n\
4156 who is, please take a look at the function mark_stack in alloc.c, and\n\
4157 verify that the methods used are appropriate for your system.\n\
4159 Please mail the result to <emacs-devel@gnu.org>.\n\
4162 #define SETJMP_WILL_NOT_WORK "\
4164 Emacs garbage collector has been changed to use conservative stack\n\
4165 marking. Emacs has determined that the default method it uses to do the\n\
4166 marking will not work on your system. We will need a system-dependent\n\
4167 solution for your system.\n\
4169 Please take a look at the function mark_stack in alloc.c, and\n\
4170 try to find a way to make it work on your system.\n\
4172 Note that you may get false negatives, depending on the compiler.\n\
4173 In particular, you need to use -O with GCC for this test.\n\
4175 Please mail the result to <emacs-devel@gnu.org>.\n\
4179 /* Perform a quick check if it looks like setjmp saves registers in a
4180 jmp_buf. Print a message to stderr saying so. When this test
4181 succeeds, this is _not_ a proof that setjmp is sufficient for
4182 conservative stack marking. Only the sources or a disassembly
4183 can prove that. */
4185 static void
4186 test_setjmp (void)
4188 char buf[10];
4189 register int x;
4190 jmp_buf jbuf;
4191 int result = 0;
4193 /* Arrange for X to be put in a register. */
4194 sprintf (buf, "1");
4195 x = strlen (buf);
4196 x = 2 * x - 1;
4198 setjmp (jbuf);
4199 if (longjmps_done == 1)
4201 /* Came here after the longjmp at the end of the function.
4203 If x == 1, the longjmp has restored the register to its
4204 value before the setjmp, and we can hope that setjmp
4205 saves all such registers in the jmp_buf, although that
4206 isn't sure.
4208 For other values of X, either something really strange is
4209 taking place, or the setjmp just didn't save the register. */
4211 if (x == 1)
4212 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4213 else
4215 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4216 exit (1);
4220 ++longjmps_done;
4221 x = 2;
4222 if (longjmps_done == 1)
4223 longjmp (jbuf, 1);
4226 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4229 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4231 /* Abort if anything GCPRO'd doesn't survive the GC. */
4233 static void
4234 check_gcpros (void)
4236 struct gcpro *p;
4237 int i;
4239 for (p = gcprolist; p; p = p->next)
4240 for (i = 0; i < p->nvars; ++i)
4241 if (!survives_gc_p (p->var[i]))
4242 /* FIXME: It's not necessarily a bug. It might just be that the
4243 GCPRO is unnecessary or should release the object sooner. */
4244 abort ();
4247 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4249 static void
4250 dump_zombies (void)
4252 int i;
4254 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4255 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4257 fprintf (stderr, " %d = ", i);
4258 debug_print (zombies[i]);
4262 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4265 /* Mark live Lisp objects on the C stack.
4267 There are several system-dependent problems to consider when
4268 porting this to new architectures:
4270 Processor Registers
4272 We have to mark Lisp objects in CPU registers that can hold local
4273 variables or are used to pass parameters.
4275 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4276 something that either saves relevant registers on the stack, or
4277 calls mark_maybe_object passing it each register's contents.
4279 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4280 implementation assumes that calling setjmp saves registers we need
4281 to see in a jmp_buf which itself lies on the stack. This doesn't
4282 have to be true! It must be verified for each system, possibly
4283 by taking a look at the source code of setjmp.
4285 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4286 can use it as a machine independent method to store all registers
4287 to the stack. In this case the macros described in the previous
4288 two paragraphs are not used.
4290 Stack Layout
4292 Architectures differ in the way their processor stack is organized.
4293 For example, the stack might look like this
4295 +----------------+
4296 | Lisp_Object | size = 4
4297 +----------------+
4298 | something else | size = 2
4299 +----------------+
4300 | Lisp_Object | size = 4
4301 +----------------+
4302 | ... |
4304 In such a case, not every Lisp_Object will be aligned equally. To
4305 find all Lisp_Object on the stack it won't be sufficient to walk
4306 the stack in steps of 4 bytes. Instead, two passes will be
4307 necessary, one starting at the start of the stack, and a second
4308 pass starting at the start of the stack + 2. Likewise, if the
4309 minimal alignment of Lisp_Objects on the stack is 1, four passes
4310 would be necessary, each one starting with one byte more offset
4311 from the stack start.
4313 The current code assumes by default that Lisp_Objects are aligned
4314 equally on the stack. */
4316 static void
4317 mark_stack (void)
4319 int i;
4320 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4321 union aligned_jmpbuf {
4322 Lisp_Object o;
4323 jmp_buf j;
4324 } j;
4325 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4326 void *end;
4328 #ifdef HAVE___BUILTIN_UNWIND_INIT
4329 /* Force callee-saved registers and register windows onto the stack.
4330 This is the preferred method if available, obviating the need for
4331 machine dependent methods. */
4332 __builtin_unwind_init ();
4333 end = &end;
4334 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4335 /* This trick flushes the register windows so that all the state of
4336 the process is contained in the stack. */
4337 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4338 needed on ia64 too. See mach_dep.c, where it also says inline
4339 assembler doesn't work with relevant proprietary compilers. */
4340 #ifdef __sparc__
4341 #if defined (__sparc64__) && defined (__FreeBSD__)
4342 /* FreeBSD does not have a ta 3 handler. */
4343 asm ("flushw");
4344 #else
4345 asm ("ta 3");
4346 #endif
4347 #endif
4349 /* Save registers that we need to see on the stack. We need to see
4350 registers used to hold register variables and registers used to
4351 pass parameters. */
4352 #ifdef GC_SAVE_REGISTERS_ON_STACK
4353 GC_SAVE_REGISTERS_ON_STACK (end);
4354 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4356 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4357 setjmp will definitely work, test it
4358 and print a message with the result
4359 of the test. */
4360 if (!setjmp_tested_p)
4362 setjmp_tested_p = 1;
4363 test_setjmp ();
4365 #endif /* GC_SETJMP_WORKS */
4367 setjmp (j.j);
4368 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4369 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4370 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4372 /* This assumes that the stack is a contiguous region in memory. If
4373 that's not the case, something has to be done here to iterate
4374 over the stack segments. */
4375 #ifndef GC_LISP_OBJECT_ALIGNMENT
4376 #ifdef __GNUC__
4377 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4378 #else
4379 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4380 #endif
4381 #endif
4382 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4383 mark_memory (stack_base, end, i);
4384 /* Allow for marking a secondary stack, like the register stack on the
4385 ia64. */
4386 #ifdef GC_MARK_SECONDARY_STACK
4387 GC_MARK_SECONDARY_STACK ();
4388 #endif
4390 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4391 check_gcpros ();
4392 #endif
4395 #endif /* GC_MARK_STACK != 0 */
4398 /* Determine whether it is safe to access memory at address P. */
4399 static int
4400 valid_pointer_p (void *p)
4402 #ifdef WINDOWSNT
4403 return w32_valid_pointer_p (p, 16);
4404 #else
4405 int fd;
4407 /* Obviously, we cannot just access it (we would SEGV trying), so we
4408 trick the o/s to tell us whether p is a valid pointer.
4409 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4410 not validate p in that case. */
4412 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4414 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4415 emacs_close (fd);
4416 unlink ("__Valid__Lisp__Object__");
4417 return valid;
4420 return -1;
4421 #endif
4424 /* Return 1 if OBJ is a valid lisp object.
4425 Return 0 if OBJ is NOT a valid lisp object.
4426 Return -1 if we cannot validate OBJ.
4427 This function can be quite slow,
4428 so it should only be used in code for manual debugging. */
4431 valid_lisp_object_p (Lisp_Object obj)
4433 void *p;
4434 #if GC_MARK_STACK
4435 struct mem_node *m;
4436 #endif
4438 if (INTEGERP (obj))
4439 return 1;
4441 p = (void *) XPNTR (obj);
4442 if (PURE_POINTER_P (p))
4443 return 1;
4445 #if !GC_MARK_STACK
4446 return valid_pointer_p (p);
4447 #else
4449 m = mem_find (p);
4451 if (m == MEM_NIL)
4453 int valid = valid_pointer_p (p);
4454 if (valid <= 0)
4455 return valid;
4457 if (SUBRP (obj))
4458 return 1;
4460 return 0;
4463 switch (m->type)
4465 case MEM_TYPE_NON_LISP:
4466 return 0;
4468 case MEM_TYPE_BUFFER:
4469 return live_buffer_p (m, p);
4471 case MEM_TYPE_CONS:
4472 return live_cons_p (m, p);
4474 case MEM_TYPE_STRING:
4475 return live_string_p (m, p);
4477 case MEM_TYPE_MISC:
4478 return live_misc_p (m, p);
4480 case MEM_TYPE_SYMBOL:
4481 return live_symbol_p (m, p);
4483 case MEM_TYPE_FLOAT:
4484 return live_float_p (m, p);
4486 case MEM_TYPE_VECTORLIKE:
4487 return live_vector_p (m, p);
4489 default:
4490 break;
4493 return 0;
4494 #endif
4500 /***********************************************************************
4501 Pure Storage Management
4502 ***********************************************************************/
4504 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4505 pointer to it. TYPE is the Lisp type for which the memory is
4506 allocated. TYPE < 0 means it's not used for a Lisp object. */
4508 static POINTER_TYPE *
4509 pure_alloc (size_t size, int type)
4511 POINTER_TYPE *result;
4512 #ifdef USE_LSB_TAG
4513 size_t alignment = (1 << GCTYPEBITS);
4514 #else
4515 size_t alignment = sizeof (EMACS_INT);
4517 /* Give Lisp_Floats an extra alignment. */
4518 if (type == Lisp_Float)
4520 #if defined __GNUC__ && __GNUC__ >= 2
4521 alignment = __alignof (struct Lisp_Float);
4522 #else
4523 alignment = sizeof (struct Lisp_Float);
4524 #endif
4526 #endif
4528 again:
4529 if (type >= 0)
4531 /* Allocate space for a Lisp object from the beginning of the free
4532 space with taking account of alignment. */
4533 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4534 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4536 else
4538 /* Allocate space for a non-Lisp object from the end of the free
4539 space. */
4540 pure_bytes_used_non_lisp += size;
4541 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4543 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4545 if (pure_bytes_used <= pure_size)
4546 return result;
4548 /* Don't allocate a large amount here,
4549 because it might get mmap'd and then its address
4550 might not be usable. */
4551 purebeg = (char *) xmalloc (10000);
4552 pure_size = 10000;
4553 pure_bytes_used_before_overflow += pure_bytes_used - size;
4554 pure_bytes_used = 0;
4555 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4556 goto again;
4560 /* Print a warning if PURESIZE is too small. */
4562 void
4563 check_pure_size (void)
4565 if (pure_bytes_used_before_overflow)
4566 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4567 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4571 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4572 the non-Lisp data pool of the pure storage, and return its start
4573 address. Return NULL if not found. */
4575 static char *
4576 find_string_data_in_pure (const char *data, EMACS_INT nbytes)
4578 int i;
4579 EMACS_INT skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4580 const unsigned char *p;
4581 char *non_lisp_beg;
4583 if (pure_bytes_used_non_lisp < nbytes + 1)
4584 return NULL;
4586 /* Set up the Boyer-Moore table. */
4587 skip = nbytes + 1;
4588 for (i = 0; i < 256; i++)
4589 bm_skip[i] = skip;
4591 p = (const unsigned char *) data;
4592 while (--skip > 0)
4593 bm_skip[*p++] = skip;
4595 last_char_skip = bm_skip['\0'];
4597 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4598 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4600 /* See the comments in the function `boyer_moore' (search.c) for the
4601 use of `infinity'. */
4602 infinity = pure_bytes_used_non_lisp + 1;
4603 bm_skip['\0'] = infinity;
4605 p = (const unsigned char *) non_lisp_beg + nbytes;
4606 start = 0;
4609 /* Check the last character (== '\0'). */
4612 start += bm_skip[*(p + start)];
4614 while (start <= start_max);
4616 if (start < infinity)
4617 /* Couldn't find the last character. */
4618 return NULL;
4620 /* No less than `infinity' means we could find the last
4621 character at `p[start - infinity]'. */
4622 start -= infinity;
4624 /* Check the remaining characters. */
4625 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4626 /* Found. */
4627 return non_lisp_beg + start;
4629 start += last_char_skip;
4631 while (start <= start_max);
4633 return NULL;
4637 /* Return a string allocated in pure space. DATA is a buffer holding
4638 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4639 non-zero means make the result string multibyte.
4641 Must get an error if pure storage is full, since if it cannot hold
4642 a large string it may be able to hold conses that point to that
4643 string; then the string is not protected from gc. */
4645 Lisp_Object
4646 make_pure_string (const char *data,
4647 EMACS_INT nchars, EMACS_INT nbytes, int multibyte)
4649 Lisp_Object string;
4650 struct Lisp_String *s;
4652 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4653 s->data = find_string_data_in_pure (data, nbytes);
4654 if (s->data == NULL)
4656 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4657 memcpy (s->data, data, nbytes);
4658 s->data[nbytes] = '\0';
4660 s->size = nchars;
4661 s->size_byte = multibyte ? nbytes : -1;
4662 s->intervals = NULL_INTERVAL;
4663 XSETSTRING (string, s);
4664 return string;
4667 /* Return a string a string allocated in pure space. Do not allocate
4668 the string data, just point to DATA. */
4670 Lisp_Object
4671 make_pure_c_string (const char *data)
4673 Lisp_Object string;
4674 struct Lisp_String *s;
4675 EMACS_INT nchars = strlen (data);
4677 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4678 s->size = nchars;
4679 s->size_byte = -1;
4680 s->data = (unsigned char *) data;
4681 s->intervals = NULL_INTERVAL;
4682 XSETSTRING (string, s);
4683 return string;
4686 /* Return a cons allocated from pure space. Give it pure copies
4687 of CAR as car and CDR as cdr. */
4689 Lisp_Object
4690 pure_cons (Lisp_Object car, Lisp_Object cdr)
4692 register Lisp_Object new;
4693 struct Lisp_Cons *p;
4695 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4696 XSETCONS (new, p);
4697 XSETCAR (new, Fpurecopy (car));
4698 XSETCDR (new, Fpurecopy (cdr));
4699 return new;
4703 /* Value is a float object with value NUM allocated from pure space. */
4705 static Lisp_Object
4706 make_pure_float (double num)
4708 register Lisp_Object new;
4709 struct Lisp_Float *p;
4711 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4712 XSETFLOAT (new, p);
4713 XFLOAT_INIT (new, num);
4714 return new;
4718 /* Return a vector with room for LEN Lisp_Objects allocated from
4719 pure space. */
4721 Lisp_Object
4722 make_pure_vector (EMACS_INT len)
4724 Lisp_Object new;
4725 struct Lisp_Vector *p;
4726 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4728 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4729 XSETVECTOR (new, p);
4730 XVECTOR (new)->size = len;
4731 return new;
4735 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4736 doc: /* Make a copy of object OBJ in pure storage.
4737 Recursively copies contents of vectors and cons cells.
4738 Does not copy symbols. Copies strings without text properties. */)
4739 (register Lisp_Object obj)
4741 if (NILP (Vpurify_flag))
4742 return obj;
4744 if (PURE_POINTER_P (XPNTR (obj)))
4745 return obj;
4747 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4749 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4750 if (!NILP (tmp))
4751 return tmp;
4754 if (CONSP (obj))
4755 obj = pure_cons (XCAR (obj), XCDR (obj));
4756 else if (FLOATP (obj))
4757 obj = make_pure_float (XFLOAT_DATA (obj));
4758 else if (STRINGP (obj))
4759 obj = make_pure_string (SDATA (obj), SCHARS (obj),
4760 SBYTES (obj),
4761 STRING_MULTIBYTE (obj));
4762 else if (COMPILEDP (obj) || VECTORP (obj))
4764 register struct Lisp_Vector *vec;
4765 register EMACS_INT i;
4766 EMACS_INT size;
4768 size = XVECTOR (obj)->size;
4769 if (size & PSEUDOVECTOR_FLAG)
4770 size &= PSEUDOVECTOR_SIZE_MASK;
4771 vec = XVECTOR (make_pure_vector (size));
4772 for (i = 0; i < size; i++)
4773 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4774 if (COMPILEDP (obj))
4776 XSETPVECTYPE (vec, PVEC_COMPILED);
4777 XSETCOMPILED (obj, vec);
4779 else
4780 XSETVECTOR (obj, vec);
4782 else if (MARKERP (obj))
4783 error ("Attempt to copy a marker to pure storage");
4784 else
4785 /* Not purified, don't hash-cons. */
4786 return obj;
4788 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4789 Fputhash (obj, obj, Vpurify_flag);
4791 return obj;
4796 /***********************************************************************
4797 Protection from GC
4798 ***********************************************************************/
4800 /* Put an entry in staticvec, pointing at the variable with address
4801 VARADDRESS. */
4803 void
4804 staticpro (Lisp_Object *varaddress)
4806 staticvec[staticidx++] = varaddress;
4807 if (staticidx >= NSTATICS)
4808 abort ();
4812 /***********************************************************************
4813 Protection from GC
4814 ***********************************************************************/
4816 /* Temporarily prevent garbage collection. */
4819 inhibit_garbage_collection (void)
4821 int count = SPECPDL_INDEX ();
4822 int nbits = min (VALBITS, BITS_PER_INT);
4824 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4825 return count;
4829 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4830 doc: /* Reclaim storage for Lisp objects no longer needed.
4831 Garbage collection happens automatically if you cons more than
4832 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4833 `garbage-collect' normally returns a list with info on amount of space in use:
4834 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4835 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4836 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4837 (USED-STRINGS . FREE-STRINGS))
4838 However, if there was overflow in pure space, `garbage-collect'
4839 returns nil, because real GC can't be done. */)
4840 (void)
4842 register struct specbinding *bind;
4843 struct catchtag *catch;
4844 struct handler *handler;
4845 char stack_top_variable;
4846 register int i;
4847 int message_p;
4848 Lisp_Object total[8];
4849 int count = SPECPDL_INDEX ();
4850 EMACS_TIME t1, t2, t3;
4852 if (abort_on_gc)
4853 abort ();
4855 /* Can't GC if pure storage overflowed because we can't determine
4856 if something is a pure object or not. */
4857 if (pure_bytes_used_before_overflow)
4858 return Qnil;
4860 CHECK_CONS_LIST ();
4862 /* Don't keep undo information around forever.
4863 Do this early on, so it is no problem if the user quits. */
4865 register struct buffer *nextb = all_buffers;
4867 while (nextb)
4869 /* If a buffer's undo list is Qt, that means that undo is
4870 turned off in that buffer. Calling truncate_undo_list on
4871 Qt tends to return NULL, which effectively turns undo back on.
4872 So don't call truncate_undo_list if undo_list is Qt. */
4873 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
4874 truncate_undo_list (nextb);
4876 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4877 if (nextb->base_buffer == 0 && !NILP (nextb->name)
4878 && ! nextb->text->inhibit_shrinking)
4880 /* If a buffer's gap size is more than 10% of the buffer
4881 size, or larger than 2000 bytes, then shrink it
4882 accordingly. Keep a minimum size of 20 bytes. */
4883 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4885 if (nextb->text->gap_size > size)
4887 struct buffer *save_current = current_buffer;
4888 current_buffer = nextb;
4889 make_gap (-(nextb->text->gap_size - size));
4890 current_buffer = save_current;
4894 nextb = nextb->next;
4898 EMACS_GET_TIME (t1);
4900 /* In case user calls debug_print during GC,
4901 don't let that cause a recursive GC. */
4902 consing_since_gc = 0;
4904 /* Save what's currently displayed in the echo area. */
4905 message_p = push_message ();
4906 record_unwind_protect (pop_message_unwind, Qnil);
4908 /* Save a copy of the contents of the stack, for debugging. */
4909 #if MAX_SAVE_STACK > 0
4910 if (NILP (Vpurify_flag))
4912 i = &stack_top_variable - stack_bottom;
4913 if (i < 0) i = -i;
4914 if (i < MAX_SAVE_STACK)
4916 if (stack_copy == 0)
4917 stack_copy = (char *) xmalloc (stack_copy_size = i);
4918 else if (stack_copy_size < i)
4919 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4920 if (stack_copy)
4922 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4923 memcpy (stack_copy, stack_bottom, i);
4924 else
4925 memcpy (stack_copy, &stack_top_variable, i);
4929 #endif /* MAX_SAVE_STACK > 0 */
4931 if (garbage_collection_messages)
4932 message1_nolog ("Garbage collecting...");
4934 BLOCK_INPUT;
4936 shrink_regexp_cache ();
4938 gc_in_progress = 1;
4940 /* clear_marks (); */
4942 /* Mark all the special slots that serve as the roots of accessibility. */
4944 for (i = 0; i < staticidx; i++)
4945 mark_object (*staticvec[i]);
4947 for (bind = specpdl; bind != specpdl_ptr; bind++)
4949 mark_object (bind->symbol);
4950 mark_object (bind->old_value);
4952 mark_terminals ();
4953 mark_kboards ();
4954 mark_ttys ();
4956 #ifdef USE_GTK
4958 extern void xg_mark_data (void);
4959 xg_mark_data ();
4961 #endif
4963 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4964 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4965 mark_stack ();
4966 #else
4968 register struct gcpro *tail;
4969 for (tail = gcprolist; tail; tail = tail->next)
4970 for (i = 0; i < tail->nvars; i++)
4971 mark_object (tail->var[i]);
4973 #endif
4975 mark_byte_stack ();
4976 for (catch = catchlist; catch; catch = catch->next)
4978 mark_object (catch->tag);
4979 mark_object (catch->val);
4981 for (handler = handlerlist; handler; handler = handler->next)
4983 mark_object (handler->handler);
4984 mark_object (handler->var);
4986 mark_backtrace ();
4988 #ifdef HAVE_WINDOW_SYSTEM
4989 mark_fringe_data ();
4990 #endif
4992 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4993 mark_stack ();
4994 #endif
4996 /* Everything is now marked, except for the things that require special
4997 finalization, i.e. the undo_list.
4998 Look thru every buffer's undo list
4999 for elements that update markers that were not marked,
5000 and delete them. */
5002 register struct buffer *nextb = all_buffers;
5004 while (nextb)
5006 /* If a buffer's undo list is Qt, that means that undo is
5007 turned off in that buffer. Calling truncate_undo_list on
5008 Qt tends to return NULL, which effectively turns undo back on.
5009 So don't call truncate_undo_list if undo_list is Qt. */
5010 if (! EQ (nextb->undo_list, Qt))
5012 Lisp_Object tail, prev;
5013 tail = nextb->undo_list;
5014 prev = Qnil;
5015 while (CONSP (tail))
5017 if (CONSP (XCAR (tail))
5018 && MARKERP (XCAR (XCAR (tail)))
5019 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5021 if (NILP (prev))
5022 nextb->undo_list = tail = XCDR (tail);
5023 else
5025 tail = XCDR (tail);
5026 XSETCDR (prev, tail);
5029 else
5031 prev = tail;
5032 tail = XCDR (tail);
5036 /* Now that we have stripped the elements that need not be in the
5037 undo_list any more, we can finally mark the list. */
5038 mark_object (nextb->undo_list);
5040 nextb = nextb->next;
5044 gc_sweep ();
5046 /* Clear the mark bits that we set in certain root slots. */
5048 unmark_byte_stack ();
5049 VECTOR_UNMARK (&buffer_defaults);
5050 VECTOR_UNMARK (&buffer_local_symbols);
5052 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5053 dump_zombies ();
5054 #endif
5056 UNBLOCK_INPUT;
5058 CHECK_CONS_LIST ();
5060 /* clear_marks (); */
5061 gc_in_progress = 0;
5063 consing_since_gc = 0;
5064 if (gc_cons_threshold < 10000)
5065 gc_cons_threshold = 10000;
5067 if (FLOATP (Vgc_cons_percentage))
5068 { /* Set gc_cons_combined_threshold. */
5069 EMACS_INT total = 0;
5071 total += total_conses * sizeof (struct Lisp_Cons);
5072 total += total_symbols * sizeof (struct Lisp_Symbol);
5073 total += total_markers * sizeof (union Lisp_Misc);
5074 total += total_string_size;
5075 total += total_vector_size * sizeof (Lisp_Object);
5076 total += total_floats * sizeof (struct Lisp_Float);
5077 total += total_intervals * sizeof (struct interval);
5078 total += total_strings * sizeof (struct Lisp_String);
5080 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5082 else
5083 gc_relative_threshold = 0;
5085 if (garbage_collection_messages)
5087 if (message_p || minibuf_level > 0)
5088 restore_message ();
5089 else
5090 message1_nolog ("Garbage collecting...done");
5093 unbind_to (count, Qnil);
5095 total[0] = Fcons (make_number (total_conses),
5096 make_number (total_free_conses));
5097 total[1] = Fcons (make_number (total_symbols),
5098 make_number (total_free_symbols));
5099 total[2] = Fcons (make_number (total_markers),
5100 make_number (total_free_markers));
5101 total[3] = make_number (total_string_size);
5102 total[4] = make_number (total_vector_size);
5103 total[5] = Fcons (make_number (total_floats),
5104 make_number (total_free_floats));
5105 total[6] = Fcons (make_number (total_intervals),
5106 make_number (total_free_intervals));
5107 total[7] = Fcons (make_number (total_strings),
5108 make_number (total_free_strings));
5110 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5112 /* Compute average percentage of zombies. */
5113 double nlive = 0;
5115 for (i = 0; i < 7; ++i)
5116 if (CONSP (total[i]))
5117 nlive += XFASTINT (XCAR (total[i]));
5119 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5120 max_live = max (nlive, max_live);
5121 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5122 max_zombies = max (nzombies, max_zombies);
5123 ++ngcs;
5125 #endif
5127 if (!NILP (Vpost_gc_hook))
5129 int count = inhibit_garbage_collection ();
5130 safe_run_hooks (Qpost_gc_hook);
5131 unbind_to (count, Qnil);
5134 /* Accumulate statistics. */
5135 EMACS_GET_TIME (t2);
5136 EMACS_SUB_TIME (t3, t2, t1);
5137 if (FLOATP (Vgc_elapsed))
5138 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5139 EMACS_SECS (t3) +
5140 EMACS_USECS (t3) * 1.0e-6);
5141 gcs_done++;
5143 return Flist (sizeof total / sizeof *total, total);
5147 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5148 only interesting objects referenced from glyphs are strings. */
5150 static void
5151 mark_glyph_matrix (struct glyph_matrix *matrix)
5153 struct glyph_row *row = matrix->rows;
5154 struct glyph_row *end = row + matrix->nrows;
5156 for (; row < end; ++row)
5157 if (row->enabled_p)
5159 int area;
5160 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5162 struct glyph *glyph = row->glyphs[area];
5163 struct glyph *end_glyph = glyph + row->used[area];
5165 for (; glyph < end_glyph; ++glyph)
5166 if (STRINGP (glyph->object)
5167 && !STRING_MARKED_P (XSTRING (glyph->object)))
5168 mark_object (glyph->object);
5174 /* Mark Lisp faces in the face cache C. */
5176 static void
5177 mark_face_cache (struct face_cache *c)
5179 if (c)
5181 int i, j;
5182 for (i = 0; i < c->used; ++i)
5184 struct face *face = FACE_FROM_ID (c->f, i);
5186 if (face)
5188 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5189 mark_object (face->lface[j]);
5197 /* Mark reference to a Lisp_Object.
5198 If the object referred to has not been seen yet, recursively mark
5199 all the references contained in it. */
5201 #define LAST_MARKED_SIZE 500
5202 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5203 int last_marked_index;
5205 /* For debugging--call abort when we cdr down this many
5206 links of a list, in mark_object. In debugging,
5207 the call to abort will hit a breakpoint.
5208 Normally this is zero and the check never goes off. */
5209 static int mark_object_loop_halt;
5211 static void
5212 mark_vectorlike (struct Lisp_Vector *ptr)
5214 register EMACS_UINT size = ptr->size;
5215 register EMACS_UINT i;
5217 eassert (!VECTOR_MARKED_P (ptr));
5218 VECTOR_MARK (ptr); /* Else mark it */
5219 if (size & PSEUDOVECTOR_FLAG)
5220 size &= PSEUDOVECTOR_SIZE_MASK;
5222 /* Note that this size is not the memory-footprint size, but only
5223 the number of Lisp_Object fields that we should trace.
5224 The distinction is used e.g. by Lisp_Process which places extra
5225 non-Lisp_Object fields at the end of the structure. */
5226 for (i = 0; i < size; i++) /* and then mark its elements */
5227 mark_object (ptr->contents[i]);
5230 /* Like mark_vectorlike but optimized for char-tables (and
5231 sub-char-tables) assuming that the contents are mostly integers or
5232 symbols. */
5234 static void
5235 mark_char_table (struct Lisp_Vector *ptr)
5237 register EMACS_UINT size = ptr->size & PSEUDOVECTOR_SIZE_MASK;
5238 register EMACS_UINT i;
5240 eassert (!VECTOR_MARKED_P (ptr));
5241 VECTOR_MARK (ptr);
5242 for (i = 0; i < size; i++)
5244 Lisp_Object val = ptr->contents[i];
5246 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5247 continue;
5248 if (SUB_CHAR_TABLE_P (val))
5250 if (! VECTOR_MARKED_P (XVECTOR (val)))
5251 mark_char_table (XVECTOR (val));
5253 else
5254 mark_object (val);
5258 void
5259 mark_object (Lisp_Object arg)
5261 register Lisp_Object obj = arg;
5262 #ifdef GC_CHECK_MARKED_OBJECTS
5263 void *po;
5264 struct mem_node *m;
5265 #endif
5266 int cdr_count = 0;
5268 loop:
5270 if (PURE_POINTER_P (XPNTR (obj)))
5271 return;
5273 last_marked[last_marked_index++] = obj;
5274 if (last_marked_index == LAST_MARKED_SIZE)
5275 last_marked_index = 0;
5277 /* Perform some sanity checks on the objects marked here. Abort if
5278 we encounter an object we know is bogus. This increases GC time
5279 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5280 #ifdef GC_CHECK_MARKED_OBJECTS
5282 po = (void *) XPNTR (obj);
5284 /* Check that the object pointed to by PO is known to be a Lisp
5285 structure allocated from the heap. */
5286 #define CHECK_ALLOCATED() \
5287 do { \
5288 m = mem_find (po); \
5289 if (m == MEM_NIL) \
5290 abort (); \
5291 } while (0)
5293 /* Check that the object pointed to by PO is live, using predicate
5294 function LIVEP. */
5295 #define CHECK_LIVE(LIVEP) \
5296 do { \
5297 if (!LIVEP (m, po)) \
5298 abort (); \
5299 } while (0)
5301 /* Check both of the above conditions. */
5302 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5303 do { \
5304 CHECK_ALLOCATED (); \
5305 CHECK_LIVE (LIVEP); \
5306 } while (0) \
5308 #else /* not GC_CHECK_MARKED_OBJECTS */
5310 #define CHECK_ALLOCATED() (void) 0
5311 #define CHECK_LIVE(LIVEP) (void) 0
5312 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5314 #endif /* not GC_CHECK_MARKED_OBJECTS */
5316 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5318 case Lisp_String:
5320 register struct Lisp_String *ptr = XSTRING (obj);
5321 if (STRING_MARKED_P (ptr))
5322 break;
5323 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5324 MARK_INTERVAL_TREE (ptr->intervals);
5325 MARK_STRING (ptr);
5326 #ifdef GC_CHECK_STRING_BYTES
5327 /* Check that the string size recorded in the string is the
5328 same as the one recorded in the sdata structure. */
5329 CHECK_STRING_BYTES (ptr);
5330 #endif /* GC_CHECK_STRING_BYTES */
5332 break;
5334 case Lisp_Vectorlike:
5335 if (VECTOR_MARKED_P (XVECTOR (obj)))
5336 break;
5337 #ifdef GC_CHECK_MARKED_OBJECTS
5338 m = mem_find (po);
5339 if (m == MEM_NIL && !SUBRP (obj)
5340 && po != &buffer_defaults
5341 && po != &buffer_local_symbols)
5342 abort ();
5343 #endif /* GC_CHECK_MARKED_OBJECTS */
5345 if (BUFFERP (obj))
5347 #ifdef GC_CHECK_MARKED_OBJECTS
5348 if (po != &buffer_defaults && po != &buffer_local_symbols)
5350 struct buffer *b;
5351 for (b = all_buffers; b && b != po; b = b->next)
5353 if (b == NULL)
5354 abort ();
5356 #endif /* GC_CHECK_MARKED_OBJECTS */
5357 mark_buffer (obj);
5359 else if (SUBRP (obj))
5360 break;
5361 else if (COMPILEDP (obj))
5362 /* We could treat this just like a vector, but it is better to
5363 save the COMPILED_CONSTANTS element for last and avoid
5364 recursion there. */
5366 register struct Lisp_Vector *ptr = XVECTOR (obj);
5367 register EMACS_UINT size = ptr->size;
5368 register EMACS_UINT i;
5370 CHECK_LIVE (live_vector_p);
5371 VECTOR_MARK (ptr); /* Else mark it */
5372 size &= PSEUDOVECTOR_SIZE_MASK;
5373 for (i = 0; i < size; i++) /* and then mark its elements */
5375 if (i != COMPILED_CONSTANTS)
5376 mark_object (ptr->contents[i]);
5378 obj = ptr->contents[COMPILED_CONSTANTS];
5379 goto loop;
5381 else if (FRAMEP (obj))
5383 register struct frame *ptr = XFRAME (obj);
5384 mark_vectorlike (XVECTOR (obj));
5385 mark_face_cache (ptr->face_cache);
5387 else if (WINDOWP (obj))
5389 register struct Lisp_Vector *ptr = XVECTOR (obj);
5390 struct window *w = XWINDOW (obj);
5391 mark_vectorlike (ptr);
5392 /* Mark glyphs for leaf windows. Marking window matrices is
5393 sufficient because frame matrices use the same glyph
5394 memory. */
5395 if (NILP (w->hchild)
5396 && NILP (w->vchild)
5397 && w->current_matrix)
5399 mark_glyph_matrix (w->current_matrix);
5400 mark_glyph_matrix (w->desired_matrix);
5403 else if (HASH_TABLE_P (obj))
5405 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5406 mark_vectorlike ((struct Lisp_Vector *)h);
5407 /* If hash table is not weak, mark all keys and values.
5408 For weak tables, mark only the vector. */
5409 if (NILP (h->weak))
5410 mark_object (h->key_and_value);
5411 else
5412 VECTOR_MARK (XVECTOR (h->key_and_value));
5414 else if (CHAR_TABLE_P (obj))
5415 mark_char_table (XVECTOR (obj));
5416 else
5417 mark_vectorlike (XVECTOR (obj));
5418 break;
5420 case Lisp_Symbol:
5422 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5423 struct Lisp_Symbol *ptrx;
5425 if (ptr->gcmarkbit)
5426 break;
5427 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5428 ptr->gcmarkbit = 1;
5429 mark_object (ptr->function);
5430 mark_object (ptr->plist);
5431 switch (ptr->redirect)
5433 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5434 case SYMBOL_VARALIAS:
5436 Lisp_Object tem;
5437 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5438 mark_object (tem);
5439 break;
5441 case SYMBOL_LOCALIZED:
5443 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5444 /* If the value is forwarded to a buffer or keyboard field,
5445 these are marked when we see the corresponding object.
5446 And if it's forwarded to a C variable, either it's not
5447 a Lisp_Object var, or it's staticpro'd already. */
5448 mark_object (blv->where);
5449 mark_object (blv->valcell);
5450 mark_object (blv->defcell);
5451 break;
5453 case SYMBOL_FORWARDED:
5454 /* If the value is forwarded to a buffer or keyboard field,
5455 these are marked when we see the corresponding object.
5456 And if it's forwarded to a C variable, either it's not
5457 a Lisp_Object var, or it's staticpro'd already. */
5458 break;
5459 default: abort ();
5461 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5462 MARK_STRING (XSTRING (ptr->xname));
5463 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5465 ptr = ptr->next;
5466 if (ptr)
5468 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5469 XSETSYMBOL (obj, ptrx);
5470 goto loop;
5473 break;
5475 case Lisp_Misc:
5476 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5477 if (XMISCANY (obj)->gcmarkbit)
5478 break;
5479 XMISCANY (obj)->gcmarkbit = 1;
5481 switch (XMISCTYPE (obj))
5484 case Lisp_Misc_Marker:
5485 /* DO NOT mark thru the marker's chain.
5486 The buffer's markers chain does not preserve markers from gc;
5487 instead, markers are removed from the chain when freed by gc. */
5488 break;
5490 case Lisp_Misc_Save_Value:
5491 #if GC_MARK_STACK
5493 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5494 /* If DOGC is set, POINTER is the address of a memory
5495 area containing INTEGER potential Lisp_Objects. */
5496 if (ptr->dogc)
5498 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5499 int nelt;
5500 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5501 mark_maybe_object (*p);
5504 #endif
5505 break;
5507 case Lisp_Misc_Overlay:
5509 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5510 mark_object (ptr->start);
5511 mark_object (ptr->end);
5512 mark_object (ptr->plist);
5513 if (ptr->next)
5515 XSETMISC (obj, ptr->next);
5516 goto loop;
5519 break;
5521 default:
5522 abort ();
5524 break;
5526 case Lisp_Cons:
5528 register struct Lisp_Cons *ptr = XCONS (obj);
5529 if (CONS_MARKED_P (ptr))
5530 break;
5531 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5532 CONS_MARK (ptr);
5533 /* If the cdr is nil, avoid recursion for the car. */
5534 if (EQ (ptr->u.cdr, Qnil))
5536 obj = ptr->car;
5537 cdr_count = 0;
5538 goto loop;
5540 mark_object (ptr->car);
5541 obj = ptr->u.cdr;
5542 cdr_count++;
5543 if (cdr_count == mark_object_loop_halt)
5544 abort ();
5545 goto loop;
5548 case Lisp_Float:
5549 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5550 FLOAT_MARK (XFLOAT (obj));
5551 break;
5553 case_Lisp_Int:
5554 break;
5556 default:
5557 abort ();
5560 #undef CHECK_LIVE
5561 #undef CHECK_ALLOCATED
5562 #undef CHECK_ALLOCATED_AND_LIVE
5565 /* Mark the pointers in a buffer structure. */
5567 static void
5568 mark_buffer (Lisp_Object buf)
5570 register struct buffer *buffer = XBUFFER (buf);
5571 register Lisp_Object *ptr, tmp;
5572 Lisp_Object base_buffer;
5574 eassert (!VECTOR_MARKED_P (buffer));
5575 VECTOR_MARK (buffer);
5577 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5579 /* For now, we just don't mark the undo_list. It's done later in
5580 a special way just before the sweep phase, and after stripping
5581 some of its elements that are not needed any more. */
5583 if (buffer->overlays_before)
5585 XSETMISC (tmp, buffer->overlays_before);
5586 mark_object (tmp);
5588 if (buffer->overlays_after)
5590 XSETMISC (tmp, buffer->overlays_after);
5591 mark_object (tmp);
5594 /* buffer-local Lisp variables start at `undo_list',
5595 tho only the ones from `name' on are GC'd normally. */
5596 for (ptr = &buffer->name;
5597 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5598 ptr++)
5599 mark_object (*ptr);
5601 /* If this is an indirect buffer, mark its base buffer. */
5602 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5604 XSETBUFFER (base_buffer, buffer->base_buffer);
5605 mark_buffer (base_buffer);
5609 /* Mark the Lisp pointers in the terminal objects.
5610 Called by the Fgarbage_collector. */
5612 static void
5613 mark_terminals (void)
5615 struct terminal *t;
5616 for (t = terminal_list; t; t = t->next_terminal)
5618 eassert (t->name != NULL);
5619 #ifdef HAVE_WINDOW_SYSTEM
5620 /* If a terminal object is reachable from a stacpro'ed object,
5621 it might have been marked already. Make sure the image cache
5622 gets marked. */
5623 mark_image_cache (t->image_cache);
5624 #endif /* HAVE_WINDOW_SYSTEM */
5625 if (!VECTOR_MARKED_P (t))
5626 mark_vectorlike ((struct Lisp_Vector *)t);
5632 /* Value is non-zero if OBJ will survive the current GC because it's
5633 either marked or does not need to be marked to survive. */
5636 survives_gc_p (Lisp_Object obj)
5638 int survives_p;
5640 switch (XTYPE (obj))
5642 case_Lisp_Int:
5643 survives_p = 1;
5644 break;
5646 case Lisp_Symbol:
5647 survives_p = XSYMBOL (obj)->gcmarkbit;
5648 break;
5650 case Lisp_Misc:
5651 survives_p = XMISCANY (obj)->gcmarkbit;
5652 break;
5654 case Lisp_String:
5655 survives_p = STRING_MARKED_P (XSTRING (obj));
5656 break;
5658 case Lisp_Vectorlike:
5659 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5660 break;
5662 case Lisp_Cons:
5663 survives_p = CONS_MARKED_P (XCONS (obj));
5664 break;
5666 case Lisp_Float:
5667 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5668 break;
5670 default:
5671 abort ();
5674 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5679 /* Sweep: find all structures not marked, and free them. */
5681 static void
5682 gc_sweep (void)
5684 /* Remove or mark entries in weak hash tables.
5685 This must be done before any object is unmarked. */
5686 sweep_weak_hash_tables ();
5688 sweep_strings ();
5689 #ifdef GC_CHECK_STRING_BYTES
5690 if (!noninteractive)
5691 check_string_bytes (1);
5692 #endif
5694 /* Put all unmarked conses on free list */
5696 register struct cons_block *cblk;
5697 struct cons_block **cprev = &cons_block;
5698 register int lim = cons_block_index;
5699 register int num_free = 0, num_used = 0;
5701 cons_free_list = 0;
5703 for (cblk = cons_block; cblk; cblk = *cprev)
5705 register int i = 0;
5706 int this_free = 0;
5707 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5709 /* Scan the mark bits an int at a time. */
5710 for (i = 0; i <= ilim; i++)
5712 if (cblk->gcmarkbits[i] == -1)
5714 /* Fast path - all cons cells for this int are marked. */
5715 cblk->gcmarkbits[i] = 0;
5716 num_used += BITS_PER_INT;
5718 else
5720 /* Some cons cells for this int are not marked.
5721 Find which ones, and free them. */
5722 int start, pos, stop;
5724 start = i * BITS_PER_INT;
5725 stop = lim - start;
5726 if (stop > BITS_PER_INT)
5727 stop = BITS_PER_INT;
5728 stop += start;
5730 for (pos = start; pos < stop; pos++)
5732 if (!CONS_MARKED_P (&cblk->conses[pos]))
5734 this_free++;
5735 cblk->conses[pos].u.chain = cons_free_list;
5736 cons_free_list = &cblk->conses[pos];
5737 #if GC_MARK_STACK
5738 cons_free_list->car = Vdead;
5739 #endif
5741 else
5743 num_used++;
5744 CONS_UNMARK (&cblk->conses[pos]);
5750 lim = CONS_BLOCK_SIZE;
5751 /* If this block contains only free conses and we have already
5752 seen more than two blocks worth of free conses then deallocate
5753 this block. */
5754 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5756 *cprev = cblk->next;
5757 /* Unhook from the free list. */
5758 cons_free_list = cblk->conses[0].u.chain;
5759 lisp_align_free (cblk);
5760 n_cons_blocks--;
5762 else
5764 num_free += this_free;
5765 cprev = &cblk->next;
5768 total_conses = num_used;
5769 total_free_conses = num_free;
5772 /* Put all unmarked floats on free list */
5774 register struct float_block *fblk;
5775 struct float_block **fprev = &float_block;
5776 register int lim = float_block_index;
5777 register int num_free = 0, num_used = 0;
5779 float_free_list = 0;
5781 for (fblk = float_block; fblk; fblk = *fprev)
5783 register int i;
5784 int this_free = 0;
5785 for (i = 0; i < lim; i++)
5786 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5788 this_free++;
5789 fblk->floats[i].u.chain = float_free_list;
5790 float_free_list = &fblk->floats[i];
5792 else
5794 num_used++;
5795 FLOAT_UNMARK (&fblk->floats[i]);
5797 lim = FLOAT_BLOCK_SIZE;
5798 /* If this block contains only free floats and we have already
5799 seen more than two blocks worth of free floats then deallocate
5800 this block. */
5801 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5803 *fprev = fblk->next;
5804 /* Unhook from the free list. */
5805 float_free_list = fblk->floats[0].u.chain;
5806 lisp_align_free (fblk);
5807 n_float_blocks--;
5809 else
5811 num_free += this_free;
5812 fprev = &fblk->next;
5815 total_floats = num_used;
5816 total_free_floats = num_free;
5819 /* Put all unmarked intervals on free list */
5821 register struct interval_block *iblk;
5822 struct interval_block **iprev = &interval_block;
5823 register int lim = interval_block_index;
5824 register int num_free = 0, num_used = 0;
5826 interval_free_list = 0;
5828 for (iblk = interval_block; iblk; iblk = *iprev)
5830 register int i;
5831 int this_free = 0;
5833 for (i = 0; i < lim; i++)
5835 if (!iblk->intervals[i].gcmarkbit)
5837 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5838 interval_free_list = &iblk->intervals[i];
5839 this_free++;
5841 else
5843 num_used++;
5844 iblk->intervals[i].gcmarkbit = 0;
5847 lim = INTERVAL_BLOCK_SIZE;
5848 /* If this block contains only free intervals and we have already
5849 seen more than two blocks worth of free intervals then
5850 deallocate this block. */
5851 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5853 *iprev = iblk->next;
5854 /* Unhook from the free list. */
5855 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5856 lisp_free (iblk);
5857 n_interval_blocks--;
5859 else
5861 num_free += this_free;
5862 iprev = &iblk->next;
5865 total_intervals = num_used;
5866 total_free_intervals = num_free;
5869 /* Put all unmarked symbols on free list */
5871 register struct symbol_block *sblk;
5872 struct symbol_block **sprev = &symbol_block;
5873 register int lim = symbol_block_index;
5874 register int num_free = 0, num_used = 0;
5876 symbol_free_list = NULL;
5878 for (sblk = symbol_block; sblk; sblk = *sprev)
5880 int this_free = 0;
5881 struct Lisp_Symbol *sym = sblk->symbols;
5882 struct Lisp_Symbol *end = sym + lim;
5884 for (; sym < end; ++sym)
5886 /* Check if the symbol was created during loadup. In such a case
5887 it might be pointed to by pure bytecode which we don't trace,
5888 so we conservatively assume that it is live. */
5889 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5891 if (!sym->gcmarkbit && !pure_p)
5893 if (sym->redirect == SYMBOL_LOCALIZED)
5894 xfree (SYMBOL_BLV (sym));
5895 sym->next = symbol_free_list;
5896 symbol_free_list = sym;
5897 #if GC_MARK_STACK
5898 symbol_free_list->function = Vdead;
5899 #endif
5900 ++this_free;
5902 else
5904 ++num_used;
5905 if (!pure_p)
5906 UNMARK_STRING (XSTRING (sym->xname));
5907 sym->gcmarkbit = 0;
5911 lim = SYMBOL_BLOCK_SIZE;
5912 /* If this block contains only free symbols and we have already
5913 seen more than two blocks worth of free symbols then deallocate
5914 this block. */
5915 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5917 *sprev = sblk->next;
5918 /* Unhook from the free list. */
5919 symbol_free_list = sblk->symbols[0].next;
5920 lisp_free (sblk);
5921 n_symbol_blocks--;
5923 else
5925 num_free += this_free;
5926 sprev = &sblk->next;
5929 total_symbols = num_used;
5930 total_free_symbols = num_free;
5933 /* Put all unmarked misc's on free list.
5934 For a marker, first unchain it from the buffer it points into. */
5936 register struct marker_block *mblk;
5937 struct marker_block **mprev = &marker_block;
5938 register int lim = marker_block_index;
5939 register int num_free = 0, num_used = 0;
5941 marker_free_list = 0;
5943 for (mblk = marker_block; mblk; mblk = *mprev)
5945 register int i;
5946 int this_free = 0;
5948 for (i = 0; i < lim; i++)
5950 if (!mblk->markers[i].u_any.gcmarkbit)
5952 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
5953 unchain_marker (&mblk->markers[i].u_marker);
5954 /* Set the type of the freed object to Lisp_Misc_Free.
5955 We could leave the type alone, since nobody checks it,
5956 but this might catch bugs faster. */
5957 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5958 mblk->markers[i].u_free.chain = marker_free_list;
5959 marker_free_list = &mblk->markers[i];
5960 this_free++;
5962 else
5964 num_used++;
5965 mblk->markers[i].u_any.gcmarkbit = 0;
5968 lim = MARKER_BLOCK_SIZE;
5969 /* If this block contains only free markers and we have already
5970 seen more than two blocks worth of free markers then deallocate
5971 this block. */
5972 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5974 *mprev = mblk->next;
5975 /* Unhook from the free list. */
5976 marker_free_list = mblk->markers[0].u_free.chain;
5977 lisp_free (mblk);
5978 n_marker_blocks--;
5980 else
5982 num_free += this_free;
5983 mprev = &mblk->next;
5987 total_markers = num_used;
5988 total_free_markers = num_free;
5991 /* Free all unmarked buffers */
5993 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5995 while (buffer)
5996 if (!VECTOR_MARKED_P (buffer))
5998 if (prev)
5999 prev->next = buffer->next;
6000 else
6001 all_buffers = buffer->next;
6002 next = buffer->next;
6003 lisp_free (buffer);
6004 buffer = next;
6006 else
6008 VECTOR_UNMARK (buffer);
6009 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6010 prev = buffer, buffer = buffer->next;
6014 /* Free all unmarked vectors */
6016 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6017 total_vector_size = 0;
6019 while (vector)
6020 if (!VECTOR_MARKED_P (vector))
6022 if (prev)
6023 prev->next = vector->next;
6024 else
6025 all_vectors = vector->next;
6026 next = vector->next;
6027 lisp_free (vector);
6028 n_vectors--;
6029 vector = next;
6032 else
6034 VECTOR_UNMARK (vector);
6035 if (vector->size & PSEUDOVECTOR_FLAG)
6036 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6037 else
6038 total_vector_size += vector->size;
6039 prev = vector, vector = vector->next;
6043 #ifdef GC_CHECK_STRING_BYTES
6044 if (!noninteractive)
6045 check_string_bytes (1);
6046 #endif
6052 /* Debugging aids. */
6054 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6055 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6056 This may be helpful in debugging Emacs's memory usage.
6057 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6058 (void)
6060 Lisp_Object end;
6062 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6064 return end;
6067 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6068 doc: /* Return a list of counters that measure how much consing there has been.
6069 Each of these counters increments for a certain kind of object.
6070 The counters wrap around from the largest positive integer to zero.
6071 Garbage collection does not decrease them.
6072 The elements of the value are as follows:
6073 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6074 All are in units of 1 = one object consed
6075 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6076 objects consed.
6077 MISCS include overlays, markers, and some internal types.
6078 Frames, windows, buffers, and subprocesses count as vectors
6079 (but the contents of a buffer's text do not count here). */)
6080 (void)
6082 Lisp_Object consed[8];
6084 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6085 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6086 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6087 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6088 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6089 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6090 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6091 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6093 return Flist (8, consed);
6096 int suppress_checking;
6098 void
6099 die (const char *msg, const char *file, int line)
6101 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6102 file, line, msg);
6103 abort ();
6106 /* Initialization */
6108 void
6109 init_alloc_once (void)
6111 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6112 purebeg = PUREBEG;
6113 pure_size = PURESIZE;
6114 pure_bytes_used = 0;
6115 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6116 pure_bytes_used_before_overflow = 0;
6118 /* Initialize the list of free aligned blocks. */
6119 free_ablock = NULL;
6121 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6122 mem_init ();
6123 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6124 #endif
6126 all_vectors = 0;
6127 ignore_warnings = 1;
6128 #ifdef DOUG_LEA_MALLOC
6129 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6130 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6131 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6132 #endif
6133 init_strings ();
6134 init_cons ();
6135 init_symbol ();
6136 init_marker ();
6137 init_float ();
6138 init_intervals ();
6139 init_weak_hash_tables ();
6141 #ifdef REL_ALLOC
6142 malloc_hysteresis = 32;
6143 #else
6144 malloc_hysteresis = 0;
6145 #endif
6147 refill_memory_reserve ();
6149 ignore_warnings = 0;
6150 gcprolist = 0;
6151 byte_stack_list = 0;
6152 staticidx = 0;
6153 consing_since_gc = 0;
6154 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6155 gc_relative_threshold = 0;
6158 void
6159 init_alloc (void)
6161 gcprolist = 0;
6162 byte_stack_list = 0;
6163 #if GC_MARK_STACK
6164 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6165 setjmp_tested_p = longjmps_done = 0;
6166 #endif
6167 #endif
6168 Vgc_elapsed = make_float (0.0);
6169 gcs_done = 0;
6172 void
6173 syms_of_alloc (void)
6175 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6176 doc: /* *Number of bytes of consing between garbage collections.
6177 Garbage collection can happen automatically once this many bytes have been
6178 allocated since the last garbage collection. All data types count.
6180 Garbage collection happens automatically only when `eval' is called.
6182 By binding this temporarily to a large number, you can effectively
6183 prevent garbage collection during a part of the program.
6184 See also `gc-cons-percentage'. */);
6186 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6187 doc: /* *Portion of the heap used for allocation.
6188 Garbage collection can happen automatically once this portion of the heap
6189 has been allocated since the last garbage collection.
6190 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6191 Vgc_cons_percentage = make_float (0.1);
6193 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6194 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6196 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6197 doc: /* Number of cons cells that have been consed so far. */);
6199 DEFVAR_INT ("floats-consed", floats_consed,
6200 doc: /* Number of floats that have been consed so far. */);
6202 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6203 doc: /* Number of vector cells that have been consed so far. */);
6205 DEFVAR_INT ("symbols-consed", symbols_consed,
6206 doc: /* Number of symbols that have been consed so far. */);
6208 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6209 doc: /* Number of string characters that have been consed so far. */);
6211 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6212 doc: /* Number of miscellaneous objects that have been consed so far. */);
6214 DEFVAR_INT ("intervals-consed", intervals_consed,
6215 doc: /* Number of intervals that have been consed so far. */);
6217 DEFVAR_INT ("strings-consed", strings_consed,
6218 doc: /* Number of strings that have been consed so far. */);
6220 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6221 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6222 This means that certain objects should be allocated in shared (pure) space.
6223 It can also be set to a hash-table, in which case this table is used to
6224 do hash-consing of the objects allocated to pure space. */);
6226 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6227 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6228 garbage_collection_messages = 0;
6230 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6231 doc: /* Hook run after garbage collection has finished. */);
6232 Vpost_gc_hook = Qnil;
6233 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6234 staticpro (&Qpost_gc_hook);
6236 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6237 doc: /* Precomputed `signal' argument for memory-full error. */);
6238 /* We build this in advance because if we wait until we need it, we might
6239 not be able to allocate the memory to hold it. */
6240 Vmemory_signal_data
6241 = pure_cons (Qerror,
6242 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6244 DEFVAR_LISP ("memory-full", Vmemory_full,
6245 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6246 Vmemory_full = Qnil;
6248 staticpro (&Qgc_cons_threshold);
6249 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6251 staticpro (&Qchar_table_extra_slots);
6252 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6254 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6255 doc: /* Accumulated time elapsed in garbage collections.
6256 The time is in seconds as a floating point value. */);
6257 DEFVAR_INT ("gcs-done", gcs_done,
6258 doc: /* Accumulated number of garbage collections done. */);
6260 defsubr (&Scons);
6261 defsubr (&Slist);
6262 defsubr (&Svector);
6263 defsubr (&Smake_byte_code);
6264 defsubr (&Smake_list);
6265 defsubr (&Smake_vector);
6266 defsubr (&Smake_string);
6267 defsubr (&Smake_bool_vector);
6268 defsubr (&Smake_symbol);
6269 defsubr (&Smake_marker);
6270 defsubr (&Spurecopy);
6271 defsubr (&Sgarbage_collect);
6272 defsubr (&Smemory_limit);
6273 defsubr (&Smemory_use_counts);
6275 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6276 defsubr (&Sgc_status);
6277 #endif