1 /* Primitive operations on floating point for GNU Emacs Lisp interpreter.
3 Copyright (C) 1988, 1993-1994, 1999, 2001-2017 Free Software Foundation,
6 Author: Wolfgang Rupprecht (according to ack.texi)
8 This file is part of GNU Emacs.
10 GNU Emacs is free software: you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation, either version 3 of the License, or (at
13 your option) any later version.
15 GNU Emacs is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
24 /* C89 requires only the following math.h functions, and Emacs omits
25 the starred functions since we haven't found a use for them:
26 acos, asin, atan, atan2, ceil, cos, *cosh, exp, fabs, floor, fmod,
27 frexp, ldexp, log, log10 [via (log X 10)], *modf, pow, sin, *sinh,
30 C99 and C11 require the following math.h functions in addition to
31 the C89 functions. Of these, Emacs currently exports only the
32 starred ones to Lisp, since we haven't found a use for the others:
33 acosh, atanh, cbrt, *copysign, erf, erfc, exp2, expm1, fdim, fma,
34 fmax, fmin, fpclassify, hypot, ilogb, isfinite, isgreater,
35 isgreaterequal, isinf, isless, islessequal, islessgreater, *isnan,
36 isnormal, isunordered, lgamma, log1p, *log2 [via (log X 2)], *logb
37 (approximately), lrint/llrint, lround/llround, nan, nearbyint,
38 nextafter, nexttoward, remainder, remquo, *rint, round, scalbln,
39 scalbn, signbit, tgamma, *trunc.
48 #include <count-leading-zeros.h>
50 /* 'isfinite' and 'isnan' cause build failures on Solaris 10 with the
51 bundled GCC in c99 mode. Work around the bugs with simple
52 implementations that are good enough. */
54 #define isfinite(x) ((x) - (x) == 0)
56 #define isnan(x) ((x) != (x))
58 /* Check that X is a floating point number. */
61 CHECK_FLOAT (Lisp_Object x
)
63 CHECK_TYPE (FLOATP (x
), Qfloatp
, x
);
66 /* Extract a Lisp number as a `double', or signal an error. */
69 extract_float (Lisp_Object num
)
71 CHECK_NUMBER_OR_FLOAT (num
);
72 return XFLOATINT (num
);
77 DEFUN ("acos", Facos
, Sacos
, 1, 1, 0,
78 doc
: /* Return the inverse cosine of ARG. */)
81 double d
= extract_float (arg
);
83 return make_float (d
);
86 DEFUN ("asin", Fasin
, Sasin
, 1, 1, 0,
87 doc
: /* Return the inverse sine of ARG. */)
90 double d
= extract_float (arg
);
92 return make_float (d
);
95 DEFUN ("atan", Fatan
, Satan
, 1, 2, 0,
96 doc
: /* Return the inverse tangent of the arguments.
97 If only one argument Y is given, return the inverse tangent of Y.
98 If two arguments Y and X are given, return the inverse tangent of Y
99 divided by X, i.e. the angle in radians between the vector (X, Y)
101 (Lisp_Object y
, Lisp_Object x
)
103 double d
= extract_float (y
);
109 double d2
= extract_float (x
);
112 return make_float (d
);
115 DEFUN ("cos", Fcos
, Scos
, 1, 1, 0,
116 doc
: /* Return the cosine of ARG. */)
119 double d
= extract_float (arg
);
121 return make_float (d
);
124 DEFUN ("sin", Fsin
, Ssin
, 1, 1, 0,
125 doc
: /* Return the sine of ARG. */)
128 double d
= extract_float (arg
);
130 return make_float (d
);
133 DEFUN ("tan", Ftan
, Stan
, 1, 1, 0,
134 doc
: /* Return the tangent of ARG. */)
137 double d
= extract_float (arg
);
139 return make_float (d
);
142 DEFUN ("isnan", Fisnan
, Sisnan
, 1, 1, 0,
143 doc
: /* Return non nil if argument X is a NaN. */)
147 return isnan (XFLOAT_DATA (x
)) ? Qt
: Qnil
;
150 /* Although the substitute does not work on NaNs, it is good enough
151 for platforms lacking the signbit macro. */
153 # define signbit(x) ((x) < 0 || (IEEE_FLOATING_POINT && !(x) && 1 / (x) < 0))
156 DEFUN ("copysign", Fcopysign
, Scopysign
, 2, 2, 0,
157 doc
: /* Copy sign of X2 to value of X1, and return the result.
158 Cause an error if X1 or X2 is not a float. */)
159 (Lisp_Object x1
, Lisp_Object x2
)
166 f1
= XFLOAT_DATA (x1
);
167 f2
= XFLOAT_DATA (x2
);
169 /* Use signbit instead of copysign, to avoid calling make_float when
171 return signbit (f1
) != signbit (f2
) ? make_float (-f1
) : x1
;
174 DEFUN ("frexp", Ffrexp
, Sfrexp
, 1, 1, 0,
175 doc
: /* Get significand and exponent of a floating point number.
176 Breaks the floating point number X into its binary significand SGNFCAND
177 \(a floating point value between 0.5 (included) and 1.0 (excluded))
178 and an integral exponent EXP for 2, such that:
182 The function returns the cons cell (SGNFCAND . EXP).
183 If X is zero, both parts (SGNFCAND and EXP) are zero. */)
186 double f
= extract_float (x
);
188 double sgnfcand
= frexp (f
, &exponent
);
189 return Fcons (make_float (sgnfcand
), make_number (exponent
));
192 DEFUN ("ldexp", Fldexp
, Sldexp
, 2, 2, 0,
193 doc
: /* Return SGNFCAND * 2**EXPONENT, as a floating point number.
194 EXPONENT must be an integer. */)
195 (Lisp_Object sgnfcand
, Lisp_Object exponent
)
197 CHECK_NUMBER (exponent
);
198 int e
= min (max (INT_MIN
, XINT (exponent
)), INT_MAX
);
199 return make_float (ldexp (extract_float (sgnfcand
), e
));
202 DEFUN ("exp", Fexp
, Sexp
, 1, 1, 0,
203 doc
: /* Return the exponential base e of ARG. */)
206 double d
= extract_float (arg
);
208 return make_float (d
);
211 DEFUN ("expt", Fexpt
, Sexpt
, 2, 2, 0,
212 doc
: /* Return the exponential ARG1 ** ARG2. */)
213 (Lisp_Object arg1
, Lisp_Object arg2
)
215 CHECK_NUMBER_OR_FLOAT (arg1
);
216 CHECK_NUMBER_OR_FLOAT (arg2
);
217 if (INTEGERP (arg1
) /* common lisp spec */
218 && INTEGERP (arg2
) /* don't promote, if both are ints, and */
219 && XINT (arg2
) >= 0) /* we are sure the result is not fractional */
220 { /* this can be improved by pre-calculating */
221 EMACS_INT y
; /* some binary powers of x then accumulating */
222 EMACS_UINT acc
, x
; /* Unsigned so that overflow is well defined. */
227 acc
= (y
& 1 ? x
: 1);
229 while ((y
>>= 1) != 0)
238 return make_float (pow (XFLOATINT (arg1
), XFLOATINT (arg2
)));
241 DEFUN ("log", Flog
, Slog
, 1, 2, 0,
242 doc
: /* Return the natural logarithm of ARG.
243 If the optional argument BASE is given, return log ARG using that base. */)
244 (Lisp_Object arg
, Lisp_Object base
)
246 double d
= extract_float (arg
);
252 double b
= extract_float (base
);
261 d
= log (d
) / log (b
);
263 return make_float (d
);
266 DEFUN ("sqrt", Fsqrt
, Ssqrt
, 1, 1, 0,
267 doc
: /* Return the square root of ARG. */)
270 double d
= extract_float (arg
);
272 return make_float (d
);
275 DEFUN ("abs", Fabs
, Sabs
, 1, 1, 0,
276 doc
: /* Return the absolute value of ARG. */)
277 (register Lisp_Object arg
)
279 CHECK_NUMBER_OR_FLOAT (arg
);
282 arg
= make_float (fabs (XFLOAT_DATA (arg
)));
283 else if (XINT (arg
) < 0)
284 XSETINT (arg
, - XINT (arg
));
289 DEFUN ("float", Ffloat
, Sfloat
, 1, 1, 0,
290 doc
: /* Return the floating point number equal to ARG. */)
291 (register Lisp_Object arg
)
293 CHECK_NUMBER_OR_FLOAT (arg
);
296 return make_float ((double) XINT (arg
));
297 else /* give 'em the same float back */
302 ecount_leading_zeros (EMACS_UINT x
)
304 return (EMACS_UINT_WIDTH
== UINT_WIDTH
? count_leading_zeros (x
)
305 : EMACS_UINT_WIDTH
== ULONG_WIDTH
? count_leading_zeros_l (x
)
306 : count_leading_zeros_ll (x
));
309 DEFUN ("logb", Flogb
, Slogb
, 1, 1, 0,
310 doc
: /* Returns largest integer <= the base 2 log of the magnitude of ARG.
311 This is the same as the exponent of a float. */)
315 CHECK_NUMBER_OR_FLOAT (arg
);
319 double f
= XFLOAT_DATA (arg
);
322 value
= MOST_NEGATIVE_FIXNUM
;
323 else if (isfinite (f
))
330 value
= MOST_POSITIVE_FIXNUM
;
334 EMACS_INT i
= eabs (XINT (arg
));
336 ? MOST_NEGATIVE_FIXNUM
337 : EMACS_UINT_WIDTH
- 1 - ecount_leading_zeros (i
));
340 return make_number (value
);
344 /* the rounding functions */
347 rounding_driver (Lisp_Object arg
, Lisp_Object divisor
,
348 double (*double_round
) (double),
349 EMACS_INT (*int_round2
) (EMACS_INT
, EMACS_INT
),
352 CHECK_NUMBER_OR_FLOAT (arg
);
359 d
= XFLOAT_DATA (arg
);
363 CHECK_NUMBER_OR_FLOAT (divisor
);
364 if (!FLOATP (arg
) && !FLOATP (divisor
))
366 if (XINT (divisor
) == 0)
367 xsignal0 (Qarith_error
);
368 return make_number (int_round2 (XINT (arg
), XINT (divisor
)));
371 double f1
= FLOATP (arg
) ? XFLOAT_DATA (arg
) : XINT (arg
);
372 double f2
= FLOATP (divisor
) ? XFLOAT_DATA (divisor
) : XINT (divisor
);
373 if (! IEEE_FLOATING_POINT
&& f2
== 0)
374 xsignal0 (Qarith_error
);
378 /* Round, coarsely test for fixnum overflow before converting to
379 EMACS_INT (to avoid undefined C behavior), and then exactly test
380 for overflow after converting (as FIXNUM_OVERFLOW_P is inaccurate
382 double dr
= double_round (d
);
383 if (fabs (dr
) < 2 * (MOST_POSITIVE_FIXNUM
+ 1))
386 if (! FIXNUM_OVERFLOW_P (ir
))
387 return make_number (ir
);
389 xsignal2 (Qrange_error
, build_string (name
), arg
);
393 ceiling2 (EMACS_INT i1
, EMACS_INT i2
)
395 return i1
/ i2
+ ((i1
% i2
!= 0) & ((i1
< 0) == (i2
< 0)));
399 floor2 (EMACS_INT i1
, EMACS_INT i2
)
401 return i1
/ i2
- ((i1
% i2
!= 0) & ((i1
< 0) != (i2
< 0)));
405 truncate2 (EMACS_INT i1
, EMACS_INT i2
)
411 round2 (EMACS_INT i1
, EMACS_INT i2
)
413 /* The C language's division operator gives us one remainder R, but
414 we want the remainder R1 on the other side of 0 if R1 is closer
415 to 0 than R is; because we want to round to even, we also want R1
416 if R and R1 are the same distance from 0 and if C's quotient is
418 EMACS_INT q
= i1
/ i2
;
419 EMACS_INT r
= i1
% i2
;
420 EMACS_INT abs_r
= eabs (r
);
421 EMACS_INT abs_r1
= eabs (i2
) - abs_r
;
422 return q
+ (abs_r
+ (q
& 1) <= abs_r1
? 0 : (i2
^ r
) < 0 ? -1 : 1);
425 /* The code uses emacs_rint, so that it works to undefine HAVE_RINT
426 if `rint' exists but does not work right. */
428 #define emacs_rint rint
431 emacs_rint (double d
)
434 double r
= floor (d1
);
435 return r
- (r
== d1
&& fmod (r
, 2) != 0);
440 #define emacs_trunc trunc
443 emacs_trunc (double d
)
445 return (d
< 0 ? ceil
: floor
) (d
);
449 DEFUN ("ceiling", Fceiling
, Sceiling
, 1, 2, 0,
450 doc
: /* Return the smallest integer no less than ARG.
451 This rounds the value towards +inf.
452 With optional DIVISOR, return the smallest integer no less than ARG/DIVISOR. */)
453 (Lisp_Object arg
, Lisp_Object divisor
)
455 return rounding_driver (arg
, divisor
, ceil
, ceiling2
, "ceiling");
458 DEFUN ("floor", Ffloor
, Sfloor
, 1, 2, 0,
459 doc
: /* Return the largest integer no greater than ARG.
460 This rounds the value towards -inf.
461 With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR. */)
462 (Lisp_Object arg
, Lisp_Object divisor
)
464 return rounding_driver (arg
, divisor
, floor
, floor2
, "floor");
467 DEFUN ("round", Fround
, Sround
, 1, 2, 0,
468 doc
: /* Return the nearest integer to ARG.
469 With optional DIVISOR, return the nearest integer to ARG/DIVISOR.
471 Rounding a value equidistant between two integers may choose the
472 integer closer to zero, or it may prefer an even integer, depending on
473 your machine. For example, (round 2.5) can return 3 on some
474 systems, but 2 on others. */)
475 (Lisp_Object arg
, Lisp_Object divisor
)
477 return rounding_driver (arg
, divisor
, emacs_rint
, round2
, "round");
480 DEFUN ("truncate", Ftruncate
, Struncate
, 1, 2, 0,
481 doc
: /* Truncate a floating point number to an int.
482 Rounds ARG toward zero.
483 With optional DIVISOR, truncate ARG/DIVISOR. */)
484 (Lisp_Object arg
, Lisp_Object divisor
)
486 return rounding_driver (arg
, divisor
, emacs_trunc
, truncate2
,
492 fmod_float (Lisp_Object x
, Lisp_Object y
)
496 f1
= FLOATP (x
) ? XFLOAT_DATA (x
) : XINT (x
);
497 f2
= FLOATP (y
) ? XFLOAT_DATA (y
) : XINT (y
);
501 /* If the "remainder" comes out with the wrong sign, fix it. */
502 if (f2
< 0 ? f1
> 0 : f1
< 0)
505 return make_float (f1
);
508 DEFUN ("fceiling", Ffceiling
, Sfceiling
, 1, 1, 0,
509 doc
: /* Return the smallest integer no less than ARG, as a float.
510 \(Round toward +inf.) */)
514 double d
= XFLOAT_DATA (arg
);
516 return make_float (d
);
519 DEFUN ("ffloor", Fffloor
, Sffloor
, 1, 1, 0,
520 doc
: /* Return the largest integer no greater than ARG, as a float.
521 \(Round toward -inf.) */)
525 double d
= XFLOAT_DATA (arg
);
527 return make_float (d
);
530 DEFUN ("fround", Ffround
, Sfround
, 1, 1, 0,
531 doc
: /* Return the nearest integer to ARG, as a float. */)
535 double d
= XFLOAT_DATA (arg
);
537 return make_float (d
);
540 DEFUN ("ftruncate", Fftruncate
, Sftruncate
, 1, 1, 0,
541 doc
: /* Truncate a floating point number to an integral float value.
542 \(Round toward zero.) */)
546 double d
= XFLOAT_DATA (arg
);
548 return make_float (d
);
552 syms_of_floatfns (void)
561 defsubr (&Scopysign
);
564 defsubr (&Sfceiling
);
567 defsubr (&Sftruncate
);
579 defsubr (&Struncate
);