1 /* Primitive operations on floating point for GNU Emacs Lisp interpreter.
2 Copyright (C) 1988, 1993, 1994, 1999, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 /* ANSI C requires only these float functions:
22 acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,
23 frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh.
25 Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh.
26 Define HAVE_CBRT if you have cbrt.
27 Define HAVE_RINT if you have a working rint.
28 If you don't define these, then the appropriate routines will be simulated.
30 Define HAVE_MATHERR if on a system supporting the SysV matherr callback.
31 (This should happen automatically.)
33 Define FLOAT_CHECK_ERRNO if the float library routines set errno.
34 This has no effect if HAVE_MATHERR is defined.
36 Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL.
37 (What systems actually do this? Please let us know.)
39 Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by
40 either setting errno, or signaling SIGFPE/SIGILL. Otherwise, domain and
41 range checking will happen before calling the float routines. This has
42 no effect if HAVE_MATHERR is defined (since matherr will be called when
43 a domain error occurs.)
49 #include "syssignal.h"
55 /* If IEEE_FLOATING_POINT isn't defined, default it from FLT_*. */
56 #ifndef IEEE_FLOATING_POINT
57 #if (FLT_RADIX == 2 && FLT_MANT_DIG == 24 \
58 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
59 #define IEEE_FLOATING_POINT 1
61 #define IEEE_FLOATING_POINT 0
65 /* Work around a problem that happens because math.h on hpux 7
66 defines two static variables--which, in Emacs, are not really static,
67 because `static' is defined as nothing. The problem is that they are
68 defined both here and in lread.c.
69 These macros prevent the name conflict. */
70 #if defined (HPUX) && !defined (HPUX8)
71 #define _MAXLDBL floatfns_maxldbl
72 #define _NMAXLDBL floatfns_nmaxldbl
77 /* This declaration is omitted on some systems, like Ultrix. */
78 #if !defined (HPUX) && defined (HAVE_LOGB) && !defined (logb)
79 extern double logb ();
80 #endif /* not HPUX and HAVE_LOGB and no logb macro */
82 #if defined(DOMAIN) && defined(SING) && defined(OVERFLOW)
83 /* If those are defined, then this is probably a `matherr' machine. */
94 # ifdef FLOAT_CHECK_ERRNO
95 # undef FLOAT_CHECK_ERRNO
97 # ifdef FLOAT_CHECK_DOMAIN
98 # undef FLOAT_CHECK_DOMAIN
102 #ifndef NO_FLOAT_CHECK_ERRNO
103 #define FLOAT_CHECK_ERRNO
106 #ifdef FLOAT_CHECK_ERRNO
114 /* Avoid traps on VMS from sinh and cosh.
115 All the other functions set errno instead. */
120 #define cosh(x) ((exp(x)+exp(-x))*0.5)
121 #define sinh(x) ((exp(x)-exp(-x))*0.5)
124 #ifdef FLOAT_CATCH_SIGILL
125 static SIGTYPE
float_error ();
128 /* Nonzero while executing in floating point.
129 This tells float_error what to do. */
133 /* If an argument is out of range for a mathematical function,
134 here is the actual argument value to use in the error message.
135 These variables are used only across the floating point library call
136 so there is no need to staticpro them. */
138 static Lisp_Object float_error_arg
, float_error_arg2
;
140 static char *float_error_fn_name
;
142 /* Evaluate the floating point expression D, recording NUM
143 as the original argument for error messages.
144 D is normally an assignment expression.
145 Handle errors which may result in signals or may set errno.
147 Note that float_error may be declared to return void, so you can't
148 just cast the zero after the colon to (SIGTYPE) to make the types
151 #ifdef FLOAT_CHECK_ERRNO
152 #define IN_FLOAT(d, name, num) \
154 float_error_arg = num; \
155 float_error_fn_name = name; \
156 in_float = 1; errno = 0; (d); in_float = 0; \
159 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
160 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
161 default: arith_error (float_error_fn_name, float_error_arg); \
164 #define IN_FLOAT2(d, name, num, num2) \
166 float_error_arg = num; \
167 float_error_arg2 = num2; \
168 float_error_fn_name = name; \
169 in_float = 1; errno = 0; (d); in_float = 0; \
172 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
173 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
174 default: arith_error (float_error_fn_name, float_error_arg); \
178 #define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0)
179 #define IN_FLOAT2(d, name, num, num2) (in_float = 1, (d), in_float = 0)
182 /* Convert float to Lisp_Int if it fits, else signal a range error
183 using the given arguments. */
184 #define FLOAT_TO_INT(x, i, name, num) \
187 if (FIXNUM_OVERFLOW_P (x)) \
188 range_error (name, num); \
189 XSETINT (i, (EMACS_INT)(x)); \
192 #define FLOAT_TO_INT2(x, i, name, num1, num2) \
195 if (FIXNUM_OVERFLOW_P (x)) \
196 range_error2 (name, num1, num2); \
197 XSETINT (i, (EMACS_INT)(x)); \
201 #define arith_error(op,arg) \
202 xsignal2 (Qarith_error, build_string ((op)), (arg))
203 #define range_error(op,arg) \
204 xsignal2 (Qrange_error, build_string ((op)), (arg))
205 #define range_error2(op,a1,a2) \
206 xsignal3 (Qrange_error, build_string ((op)), (a1), (a2))
207 #define domain_error(op,arg) \
208 xsignal2 (Qdomain_error, build_string ((op)), (arg))
209 #define domain_error2(op,a1,a2) \
210 xsignal3 (Qdomain_error, build_string ((op)), (a1), (a2))
212 /* Extract a Lisp number as a `double', or signal an error. */
218 CHECK_NUMBER_OR_FLOAT (num
);
221 return XFLOAT_DATA (num
);
222 return (double) XINT (num
);
225 /* Trig functions. */
227 DEFUN ("acos", Facos
, Sacos
, 1, 1, 0,
228 doc
: /* Return the inverse cosine of ARG. */)
230 register Lisp_Object arg
;
232 double d
= extract_float (arg
);
233 #ifdef FLOAT_CHECK_DOMAIN
234 if (d
> 1.0 || d
< -1.0)
235 domain_error ("acos", arg
);
237 IN_FLOAT (d
= acos (d
), "acos", arg
);
238 return make_float (d
);
241 DEFUN ("asin", Fasin
, Sasin
, 1, 1, 0,
242 doc
: /* Return the inverse sine of ARG. */)
244 register Lisp_Object arg
;
246 double d
= extract_float (arg
);
247 #ifdef FLOAT_CHECK_DOMAIN
248 if (d
> 1.0 || d
< -1.0)
249 domain_error ("asin", arg
);
251 IN_FLOAT (d
= asin (d
), "asin", arg
);
252 return make_float (d
);
255 DEFUN ("atan", Fatan
, Satan
, 1, 2, 0,
256 doc
: /* Return the inverse tangent of the arguments.
257 If only one argument Y is given, return the inverse tangent of Y.
258 If two arguments Y and X are given, return the inverse tangent of Y
259 divided by X, i.e. the angle in radians between the vector (X, Y)
262 register Lisp_Object y
, x
;
264 double d
= extract_float (y
);
267 IN_FLOAT (d
= atan (d
), "atan", y
);
270 double d2
= extract_float (x
);
272 IN_FLOAT2 (d
= atan2 (d
, d2
), "atan", y
, x
);
274 return make_float (d
);
277 DEFUN ("cos", Fcos
, Scos
, 1, 1, 0,
278 doc
: /* Return the cosine of ARG. */)
280 register Lisp_Object arg
;
282 double d
= extract_float (arg
);
283 IN_FLOAT (d
= cos (d
), "cos", arg
);
284 return make_float (d
);
287 DEFUN ("sin", Fsin
, Ssin
, 1, 1, 0,
288 doc
: /* Return the sine of ARG. */)
290 register Lisp_Object arg
;
292 double d
= extract_float (arg
);
293 IN_FLOAT (d
= sin (d
), "sin", arg
);
294 return make_float (d
);
297 DEFUN ("tan", Ftan
, Stan
, 1, 1, 0,
298 doc
: /* Return the tangent of ARG. */)
300 register Lisp_Object arg
;
302 double d
= extract_float (arg
);
304 #ifdef FLOAT_CHECK_DOMAIN
306 domain_error ("tan", arg
);
308 IN_FLOAT (d
= sin (d
) / c
, "tan", arg
);
309 return make_float (d
);
312 #if 0 /* Leave these out unless we find there's a reason for them. */
314 DEFUN ("bessel-j0", Fbessel_j0
, Sbessel_j0
, 1, 1, 0,
315 doc
: /* Return the bessel function j0 of ARG. */)
317 register Lisp_Object arg
;
319 double d
= extract_float (arg
);
320 IN_FLOAT (d
= j0 (d
), "bessel-j0", arg
);
321 return make_float (d
);
324 DEFUN ("bessel-j1", Fbessel_j1
, Sbessel_j1
, 1, 1, 0,
325 doc
: /* Return the bessel function j1 of ARG. */)
327 register Lisp_Object arg
;
329 double d
= extract_float (arg
);
330 IN_FLOAT (d
= j1 (d
), "bessel-j1", arg
);
331 return make_float (d
);
334 DEFUN ("bessel-jn", Fbessel_jn
, Sbessel_jn
, 2, 2, 0,
335 doc
: /* Return the order N bessel function output jn of ARG.
336 The first arg (the order) is truncated to an integer. */)
338 register Lisp_Object n
, arg
;
340 int i1
= extract_float (n
);
341 double f2
= extract_float (arg
);
343 IN_FLOAT (f2
= jn (i1
, f2
), "bessel-jn", n
);
344 return make_float (f2
);
347 DEFUN ("bessel-y0", Fbessel_y0
, Sbessel_y0
, 1, 1, 0,
348 doc
: /* Return the bessel function y0 of ARG. */)
350 register Lisp_Object arg
;
352 double d
= extract_float (arg
);
353 IN_FLOAT (d
= y0 (d
), "bessel-y0", arg
);
354 return make_float (d
);
357 DEFUN ("bessel-y1", Fbessel_y1
, Sbessel_y1
, 1, 1, 0,
358 doc
: /* Return the bessel function y1 of ARG. */)
360 register Lisp_Object arg
;
362 double d
= extract_float (arg
);
363 IN_FLOAT (d
= y1 (d
), "bessel-y0", arg
);
364 return make_float (d
);
367 DEFUN ("bessel-yn", Fbessel_yn
, Sbessel_yn
, 2, 2, 0,
368 doc
: /* Return the order N bessel function output yn of ARG.
369 The first arg (the order) is truncated to an integer. */)
371 register Lisp_Object n
, arg
;
373 int i1
= extract_float (n
);
374 double f2
= extract_float (arg
);
376 IN_FLOAT (f2
= yn (i1
, f2
), "bessel-yn", n
);
377 return make_float (f2
);
382 #if 0 /* Leave these out unless we see they are worth having. */
384 DEFUN ("erf", Ferf
, Serf
, 1, 1, 0,
385 doc
: /* Return the mathematical error function of ARG. */)
387 register Lisp_Object arg
;
389 double d
= extract_float (arg
);
390 IN_FLOAT (d
= erf (d
), "erf", arg
);
391 return make_float (d
);
394 DEFUN ("erfc", Ferfc
, Serfc
, 1, 1, 0,
395 doc
: /* Return the complementary error function of ARG. */)
397 register Lisp_Object arg
;
399 double d
= extract_float (arg
);
400 IN_FLOAT (d
= erfc (d
), "erfc", arg
);
401 return make_float (d
);
404 DEFUN ("log-gamma", Flog_gamma
, Slog_gamma
, 1, 1, 0,
405 doc
: /* Return the log gamma of ARG. */)
407 register Lisp_Object arg
;
409 double d
= extract_float (arg
);
410 IN_FLOAT (d
= lgamma (d
), "log-gamma", arg
);
411 return make_float (d
);
414 DEFUN ("cube-root", Fcube_root
, Scube_root
, 1, 1, 0,
415 doc
: /* Return the cube root of ARG. */)
417 register Lisp_Object arg
;
419 double d
= extract_float (arg
);
421 IN_FLOAT (d
= cbrt (d
), "cube-root", arg
);
424 IN_FLOAT (d
= pow (d
, 1.0/3.0), "cube-root", arg
);
426 IN_FLOAT (d
= -pow (-d
, 1.0/3.0), "cube-root", arg
);
428 return make_float (d
);
433 DEFUN ("exp", Fexp
, Sexp
, 1, 1, 0,
434 doc
: /* Return the exponential base e of ARG. */)
436 register Lisp_Object arg
;
438 double d
= extract_float (arg
);
439 #ifdef FLOAT_CHECK_DOMAIN
440 if (d
> 709.7827) /* Assume IEEE doubles here */
441 range_error ("exp", arg
);
443 return make_float (0.0);
446 IN_FLOAT (d
= exp (d
), "exp", arg
);
447 return make_float (d
);
450 DEFUN ("expt", Fexpt
, Sexpt
, 2, 2, 0,
451 doc
: /* Return the exponential ARG1 ** ARG2. */)
453 register Lisp_Object arg1
, arg2
;
457 CHECK_NUMBER_OR_FLOAT (arg1
);
458 CHECK_NUMBER_OR_FLOAT (arg2
);
459 if (INTEGERP (arg1
) /* common lisp spec */
460 && INTEGERP (arg2
) /* don't promote, if both are ints, and */
461 && 0 <= XINT (arg2
)) /* we are sure the result is not fractional */
462 { /* this can be improved by pre-calculating */
463 EMACS_INT acc
, x
, y
; /* some binary powers of x then accumulating */
475 acc
= (y
& 1) ? -1 : 1;
486 y
= (unsigned)y
>> 1;
492 f1
= FLOATP (arg1
) ? XFLOAT_DATA (arg1
) : XINT (arg1
);
493 f2
= FLOATP (arg2
) ? XFLOAT_DATA (arg2
) : XINT (arg2
);
494 /* Really should check for overflow, too */
495 if (f1
== 0.0 && f2
== 0.0)
497 #ifdef FLOAT_CHECK_DOMAIN
498 else if ((f1
== 0.0 && f2
< 0.0) || (f1
< 0 && f2
!= floor(f2
)))
499 domain_error2 ("expt", arg1
, arg2
);
501 IN_FLOAT2 (f3
= pow (f1
, f2
), "expt", arg1
, arg2
);
502 /* Check for overflow in the result. */
503 if (f1
!= 0.0 && f3
== 0.0)
504 range_error ("expt", arg1
);
505 return make_float (f3
);
508 DEFUN ("log", Flog
, Slog
, 1, 2, 0,
509 doc
: /* Return the natural logarithm of ARG.
510 If the optional argument BASE is given, return log ARG using that base. */)
512 register Lisp_Object arg
, base
;
514 double d
= extract_float (arg
);
516 #ifdef FLOAT_CHECK_DOMAIN
518 domain_error2 ("log", arg
, base
);
521 IN_FLOAT (d
= log (d
), "log", arg
);
524 double b
= extract_float (base
);
526 #ifdef FLOAT_CHECK_DOMAIN
527 if (b
<= 0.0 || b
== 1.0)
528 domain_error2 ("log", arg
, base
);
531 IN_FLOAT2 (d
= log10 (d
), "log", arg
, base
);
533 IN_FLOAT2 (d
= log (d
) / log (b
), "log", arg
, base
);
535 return make_float (d
);
538 DEFUN ("log10", Flog10
, Slog10
, 1, 1, 0,
539 doc
: /* Return the logarithm base 10 of ARG. */)
541 register Lisp_Object arg
;
543 double d
= extract_float (arg
);
544 #ifdef FLOAT_CHECK_DOMAIN
546 domain_error ("log10", arg
);
548 IN_FLOAT (d
= log10 (d
), "log10", arg
);
549 return make_float (d
);
552 DEFUN ("sqrt", Fsqrt
, Ssqrt
, 1, 1, 0,
553 doc
: /* Return the square root of ARG. */)
555 register Lisp_Object arg
;
557 double d
= extract_float (arg
);
558 #ifdef FLOAT_CHECK_DOMAIN
560 domain_error ("sqrt", arg
);
562 IN_FLOAT (d
= sqrt (d
), "sqrt", arg
);
563 return make_float (d
);
566 #if 0 /* Not clearly worth adding. */
568 DEFUN ("acosh", Facosh
, Sacosh
, 1, 1, 0,
569 doc
: /* Return the inverse hyperbolic cosine of ARG. */)
571 register Lisp_Object arg
;
573 double d
= extract_float (arg
);
574 #ifdef FLOAT_CHECK_DOMAIN
576 domain_error ("acosh", arg
);
578 #ifdef HAVE_INVERSE_HYPERBOLIC
579 IN_FLOAT (d
= acosh (d
), "acosh", arg
);
581 IN_FLOAT (d
= log (d
+ sqrt (d
*d
- 1.0)), "acosh", arg
);
583 return make_float (d
);
586 DEFUN ("asinh", Fasinh
, Sasinh
, 1, 1, 0,
587 doc
: /* Return the inverse hyperbolic sine of ARG. */)
589 register Lisp_Object arg
;
591 double d
= extract_float (arg
);
592 #ifdef HAVE_INVERSE_HYPERBOLIC
593 IN_FLOAT (d
= asinh (d
), "asinh", arg
);
595 IN_FLOAT (d
= log (d
+ sqrt (d
*d
+ 1.0)), "asinh", arg
);
597 return make_float (d
);
600 DEFUN ("atanh", Fatanh
, Satanh
, 1, 1, 0,
601 doc
: /* Return the inverse hyperbolic tangent of ARG. */)
603 register Lisp_Object arg
;
605 double d
= extract_float (arg
);
606 #ifdef FLOAT_CHECK_DOMAIN
607 if (d
>= 1.0 || d
<= -1.0)
608 domain_error ("atanh", arg
);
610 #ifdef HAVE_INVERSE_HYPERBOLIC
611 IN_FLOAT (d
= atanh (d
), "atanh", arg
);
613 IN_FLOAT (d
= 0.5 * log ((1.0 + d
) / (1.0 - d
)), "atanh", arg
);
615 return make_float (d
);
618 DEFUN ("cosh", Fcosh
, Scosh
, 1, 1, 0,
619 doc
: /* Return the hyperbolic cosine of ARG. */)
621 register Lisp_Object arg
;
623 double d
= extract_float (arg
);
624 #ifdef FLOAT_CHECK_DOMAIN
625 if (d
> 710.0 || d
< -710.0)
626 range_error ("cosh", arg
);
628 IN_FLOAT (d
= cosh (d
), "cosh", arg
);
629 return make_float (d
);
632 DEFUN ("sinh", Fsinh
, Ssinh
, 1, 1, 0,
633 doc
: /* Return the hyperbolic sine of ARG. */)
635 register Lisp_Object arg
;
637 double d
= extract_float (arg
);
638 #ifdef FLOAT_CHECK_DOMAIN
639 if (d
> 710.0 || d
< -710.0)
640 range_error ("sinh", arg
);
642 IN_FLOAT (d
= sinh (d
), "sinh", arg
);
643 return make_float (d
);
646 DEFUN ("tanh", Ftanh
, Stanh
, 1, 1, 0,
647 doc
: /* Return the hyperbolic tangent of ARG. */)
649 register Lisp_Object arg
;
651 double d
= extract_float (arg
);
652 IN_FLOAT (d
= tanh (d
), "tanh", arg
);
653 return make_float (d
);
657 DEFUN ("abs", Fabs
, Sabs
, 1, 1, 0,
658 doc
: /* Return the absolute value of ARG. */)
660 register Lisp_Object arg
;
662 CHECK_NUMBER_OR_FLOAT (arg
);
665 IN_FLOAT (arg
= make_float (fabs (XFLOAT_DATA (arg
))), "abs", arg
);
666 else if (XINT (arg
) < 0)
667 XSETINT (arg
, - XINT (arg
));
672 DEFUN ("float", Ffloat
, Sfloat
, 1, 1, 0,
673 doc
: /* Return the floating point number equal to ARG. */)
675 register Lisp_Object arg
;
677 CHECK_NUMBER_OR_FLOAT (arg
);
680 return make_float ((double) XINT (arg
));
681 else /* give 'em the same float back */
685 DEFUN ("logb", Flogb
, Slogb
, 1, 1, 0,
686 doc
: /* Returns largest integer <= the base 2 log of the magnitude of ARG.
687 This is the same as the exponent of a float. */)
693 double f
= extract_float (arg
);
696 value
= MOST_NEGATIVE_FIXNUM
;
700 IN_FLOAT (value
= logb (f
), "logb", arg
);
704 IN_FLOAT (frexp (f
, &ivalue
), "logb", arg
);
714 for (i
= 1, d
= 0.5; d
* d
>= f
; i
+= i
)
721 for (i
= 1, d
= 2.0; d
* d
<= f
; i
+= i
)
729 XSETINT (val
, value
);
734 /* the rounding functions */
737 rounding_driver (arg
, divisor
, double_round
, int_round2
, name
)
738 register Lisp_Object arg
, divisor
;
739 double (*double_round
) ();
740 EMACS_INT (*int_round2
) ();
743 CHECK_NUMBER_OR_FLOAT (arg
);
745 if (! NILP (divisor
))
749 CHECK_NUMBER_OR_FLOAT (divisor
);
751 if (FLOATP (arg
) || FLOATP (divisor
))
755 f1
= FLOATP (arg
) ? XFLOAT_DATA (arg
) : XINT (arg
);
756 f2
= (FLOATP (divisor
) ? XFLOAT_DATA (divisor
) : XINT (divisor
));
757 if (! IEEE_FLOATING_POINT
&& f2
== 0)
758 xsignal0 (Qarith_error
);
760 IN_FLOAT2 (f1
= (*double_round
) (f1
/ f2
), name
, arg
, divisor
);
761 FLOAT_TO_INT2 (f1
, arg
, name
, arg
, divisor
);
769 xsignal0 (Qarith_error
);
771 XSETINT (arg
, (*int_round2
) (i1
, i2
));
779 IN_FLOAT (d
= (*double_round
) (XFLOAT_DATA (arg
)), name
, arg
);
780 FLOAT_TO_INT (d
, arg
, name
, arg
);
786 /* With C's /, the result is implementation-defined if either operand
787 is negative, so take care with negative operands in the following
788 integer functions. */
795 ? (i1
< 0 ? ((-1 - i1
) / -i2
) + 1 : - (i1
/ -i2
))
796 : (i1
<= 0 ? - (-i1
/ i2
) : ((i1
- 1) / i2
) + 1));
804 ? (i1
<= 0 ? -i1
/ -i2
: -1 - ((i1
- 1) / -i2
))
805 : (i1
< 0 ? -1 - ((-1 - i1
) / i2
) : i1
/ i2
));
813 ? (i1
< 0 ? -i1
/ -i2
: - (i1
/ -i2
))
814 : (i1
< 0 ? - (-i1
/ i2
) : i1
/ i2
));
821 /* The C language's division operator gives us one remainder R, but
822 we want the remainder R1 on the other side of 0 if R1 is closer
823 to 0 than R is; because we want to round to even, we also want R1
824 if R and R1 are the same distance from 0 and if C's quotient is
826 EMACS_INT q
= i1
/ i2
;
827 EMACS_INT r
= i1
% i2
;
828 EMACS_INT abs_r
= r
< 0 ? -r
: r
;
829 EMACS_INT abs_r1
= (i2
< 0 ? -i2
: i2
) - abs_r
;
830 return q
+ (abs_r
+ (q
& 1) <= abs_r1
? 0 : (i2
^ r
) < 0 ? -1 : 1);
833 /* The code uses emacs_rint, so that it works to undefine HAVE_RINT
834 if `rint' exists but does not work right. */
836 #define emacs_rint rint
842 return floor (d
+ 0.5);
853 DEFUN ("ceiling", Fceiling
, Sceiling
, 1, 2, 0,
854 doc
: /* Return the smallest integer no less than ARG.
855 This rounds the value towards +inf.
856 With optional DIVISOR, return the smallest integer no less than ARG/DIVISOR. */)
858 Lisp_Object arg
, divisor
;
860 return rounding_driver (arg
, divisor
, ceil
, ceiling2
, "ceiling");
863 DEFUN ("floor", Ffloor
, Sfloor
, 1, 2, 0,
864 doc
: /* Return the largest integer no greater than ARG.
865 This rounds the value towards -inf.
866 With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR. */)
868 Lisp_Object arg
, divisor
;
870 return rounding_driver (arg
, divisor
, floor
, floor2
, "floor");
873 DEFUN ("round", Fround
, Sround
, 1, 2, 0,
874 doc
: /* Return the nearest integer to ARG.
875 With optional DIVISOR, return the nearest integer to ARG/DIVISOR.
877 Rounding a value equidistant between two integers may choose the
878 integer closer to zero, or it may prefer an even integer, depending on
879 your machine. For example, \(round 2.5\) can return 3 on some
880 systems, but 2 on others. */)
882 Lisp_Object arg
, divisor
;
884 return rounding_driver (arg
, divisor
, emacs_rint
, round2
, "round");
887 DEFUN ("truncate", Ftruncate
, Struncate
, 1, 2, 0,
888 doc
: /* Truncate a floating point number to an int.
889 Rounds ARG toward zero.
890 With optional DIVISOR, truncate ARG/DIVISOR. */)
892 Lisp_Object arg
, divisor
;
894 return rounding_driver (arg
, divisor
, double_identity
, truncate2
,
901 register Lisp_Object x
, y
;
905 f1
= FLOATP (x
) ? XFLOAT_DATA (x
) : XINT (x
);
906 f2
= FLOATP (y
) ? XFLOAT_DATA (y
) : XINT (y
);
908 if (! IEEE_FLOATING_POINT
&& f2
== 0)
909 xsignal0 (Qarith_error
);
911 /* If the "remainder" comes out with the wrong sign, fix it. */
912 IN_FLOAT2 ((f1
= fmod (f1
, f2
),
913 f1
= (f2
< 0 ? f1
> 0 : f1
< 0) ? f1
+ f2
: f1
),
915 return make_float (f1
);
918 /* It's not clear these are worth adding. */
920 DEFUN ("fceiling", Ffceiling
, Sfceiling
, 1, 1, 0,
921 doc
: /* Return the smallest integer no less than ARG, as a float.
922 \(Round toward +inf.\) */)
924 register Lisp_Object arg
;
926 double d
= extract_float (arg
);
927 IN_FLOAT (d
= ceil (d
), "fceiling", arg
);
928 return make_float (d
);
931 DEFUN ("ffloor", Fffloor
, Sffloor
, 1, 1, 0,
932 doc
: /* Return the largest integer no greater than ARG, as a float.
933 \(Round towards -inf.\) */)
935 register Lisp_Object arg
;
937 double d
= extract_float (arg
);
938 IN_FLOAT (d
= floor (d
), "ffloor", arg
);
939 return make_float (d
);
942 DEFUN ("fround", Ffround
, Sfround
, 1, 1, 0,
943 doc
: /* Return the nearest integer to ARG, as a float. */)
945 register Lisp_Object arg
;
947 double d
= extract_float (arg
);
948 IN_FLOAT (d
= emacs_rint (d
), "fround", arg
);
949 return make_float (d
);
952 DEFUN ("ftruncate", Fftruncate
, Sftruncate
, 1, 1, 0,
953 doc
: /* Truncate a floating point number to an integral float value.
954 Rounds the value toward zero. */)
956 register Lisp_Object arg
;
958 double d
= extract_float (arg
);
960 IN_FLOAT (d
= floor (d
), "ftruncate", arg
);
962 IN_FLOAT (d
= ceil (d
), "ftruncate", arg
);
963 return make_float (d
);
966 #ifdef FLOAT_CATCH_SIGILL
972 fatal_error_signal (signo
);
977 #else /* not BSD4_1 */
978 sigsetmask (SIGEMPTYMASK
);
979 #endif /* not BSD4_1 */
981 /* Must reestablish handler each time it is called. */
982 signal (SIGILL
, float_error
);
983 #endif /* BSD_SYSTEM */
985 SIGNAL_THREAD_CHECK (signo
);
988 xsignal1 (Qarith_error
, float_error_arg
);
991 /* Another idea was to replace the library function `infnan'
992 where SIGILL is signaled. */
994 #endif /* FLOAT_CATCH_SIGILL */
1003 /* Not called from emacs-lisp float routines; do the default thing. */
1005 if (!strcmp (x
->name
, "pow"))
1009 = Fcons (build_string (x
->name
),
1010 Fcons (make_float (x
->arg1
),
1011 ((!strcmp (x
->name
, "log") || !strcmp (x
->name
, "pow"))
1012 ? Fcons (make_float (x
->arg2
), Qnil
)
1016 case DOMAIN
: xsignal (Qdomain_error
, args
); break;
1017 case SING
: xsignal (Qsingularity_error
, args
); break;
1018 case OVERFLOW
: xsignal (Qoverflow_error
, args
); break;
1019 case UNDERFLOW
: xsignal (Qunderflow_error
, args
); break;
1020 default: xsignal (Qarith_error
, args
); break;
1022 return (1); /* don't set errno or print a message */
1024 #endif /* HAVE_MATHERR */
1029 #ifdef FLOAT_CATCH_SIGILL
1030 signal (SIGILL
, float_error
);
1051 defsubr (&Sbessel_y0
);
1052 defsubr (&Sbessel_y1
);
1053 defsubr (&Sbessel_yn
);
1054 defsubr (&Sbessel_j0
);
1055 defsubr (&Sbessel_j1
);
1056 defsubr (&Sbessel_jn
);
1059 defsubr (&Slog_gamma
);
1060 defsubr (&Scube_root
);
1062 defsubr (&Sfceiling
);
1065 defsubr (&Sftruncate
);
1075 defsubr (&Sceiling
);
1078 defsubr (&Struncate
);
1081 /* arch-tag: be05bf9d-049e-4e31-91b9-e6153d483ae7
1082 (do not change this comment) */