1 /* Unexec for Siemens machines running Sinix (modified SVR4).
2 Copyright (C) 1985, 1986, 1987, 1988, 1990, 1992, 1993, 1994, 1995, 2001,
3 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs; see the file COPYING. If not, write to
20 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA.
23 In other words, you are welcome to use, share and improve this program.
24 You are forbidden to forbid anyone else to use, share and improve
25 what you give them. Help stamp out software-hoarding! */
28 * unexec.c - Convert a running program into an a.out file.
30 * Author: Spencer W. Thomas
31 * Computer Science Dept.
33 * Date: Tue Mar 2 1982
34 * Modified heavily since then.
37 * unexec (new_name, a_name, data_start, bss_start, entry_address)
38 * char *new_name, *a_name;
39 * unsigned data_start, bss_start, entry_address;
41 * Takes a snapshot of the program and makes an a.out format file in the
42 * file named by the string argument new_name.
43 * If a_name is non-NULL, the symbol table will be taken from the given file.
44 * On some machines, an existing a_name file is required.
46 * The boundaries within the a.out file may be adjusted with the data_start
47 * and bss_start arguments. Either or both may be given as 0 for defaults.
49 * Data_start gives the boundary between the text segment and the data
50 * segment of the program. The text segment can contain shared, read-only
51 * program code and literal data, while the data segment is always unshared
52 * and unprotected. Data_start gives the lowest unprotected address.
53 * The value you specify may be rounded down to a suitable boundary
54 * as required by the machine you are using.
56 * Specifying zero for data_start means the boundary between text and data
57 * should not be the same as when the program was loaded.
58 * If NO_REMAP is defined, the argument data_start is ignored and the
59 * segment boundaries are never changed.
61 * Bss_start indicates how much of the data segment is to be saved in the
62 * a.out file and restored when the program is executed. It gives the lowest
63 * unsaved address, and is rounded up to a page boundary. The default when 0
64 * is given assumes that the entire data segment is to be stored, including
65 * the previous data and bss as well as any additional storage allocated with
68 * The new file is set up to start at entry_address.
70 * If you make improvements I'd like to get them too.
71 * harpo!utah-cs!thomas, thomas@Utah-20
75 /* Even more heavily modified by james@bigtex.cactus.org of Dell Computer Co.
78 * Basic theory: the data space of the running process needs to be
79 * dumped to the output file. Normally we would just enlarge the size
80 * of .data, scooting everything down. But we can't do that in ELF,
81 * because there is often something between the .data space and the
84 * In the temacs dump below, notice that the Global Offset Table
85 * (.got) and the Dynamic link data (.dynamic) come between .data1 and
86 * .bss. It does not work to overlap .data with these fields.
88 * The solution is to create a new .data segment. This segment is
89 * filled with data from the current process. Since the contents of
90 * various sections refer to sections by index, the new .data segment
91 * is made the last in the table to avoid changing any existing index.
94 /* Modified by wtien@urbana.mcd.mot.com of Motorola Inc.
96 * The above mechanism does not work if the unexeced ELF file is being
97 * re-layout by other applications (such as `strip'). All the applications
98 * that re-layout the internal of ELF will layout all sections in ascending
99 * order of their file offsets. After the re-layout, the data2 section will
100 * still be the LAST section in the section header vector, but its file offset
101 * is now being pushed far away down, and causes part of it not to be mapped
102 * in (ie. not covered by the load segment entry in PHDR vector), therefore
103 * causes the new binary to fail.
105 * The solution is to modify the unexec algorithm to insert the new data2
106 * section header right before the new bss section header, so their file
107 * offsets will be in the ascending order. Since some of the section's (all
108 * sections AFTER the bss section) indexes are now changed, we also need to
109 * modify some fields to make them point to the right sections. This is done
110 * by macro PATCH_INDEX. All the fields that need to be patched are:
112 * 1. ELF header e_shstrndx field.
113 * 2. section header sh_link and sh_info field.
114 * 3. symbol table entry st_shndx field.
118 * New modifications for Siemens Nixdorf's MIPS-based machines.
119 * Marco.Walther@mch.sni.de
122 * The problem: Before the bss segment we have a so called sbss segment
123 * (small bss) and maybe an sdata segment. These segments
124 * must also be handled correct.
126 * /home1/marco/emacs/emacs-19.22/src
131 * **** SECTION HEADER TABLE ****
132 * [No] Type Flags Addr Offset Size Name
133 * Link Info Adralgn Entsize
135 * [1] PBIT -A-- 0x4000f4 0xf4 0x13 .interp
138 * [2] REGI -A-- 0x400108 0x108 0x18 .reginfo
141 * [3] DYNM -A-- 0x400120 0x120 0xb8 .dynamic
144 * [4] HASH -A-- 0x4001d8 0x1d8 0x8a0 .hash
147 * [5] DYNS -A-- 0x400a78 0xa78 0x11f0 .dynsym
150 * [6] STRT -A-- 0x401c68 0x1c68 0xbf9 .dynstr
153 * [7] REL -A-- 0x402864 0x2864 0x18 .rel.dyn
156 * [8] PBIT -AI- 0x402880 0x2880 0x60 .init
159 * [9] PBIT -AI- 0x4028e0 0x28e0 0x1234 .plt
162 * [10] PBIT -AI- 0x403b20 0x3b20 0xee400 .text
165 * [11] PBIT -AI- 0x4f1f20 0xf1f20 0x60 .fini
168 * [12] PBIT -A-- 0x4f1f80 0xf1f80 0xd90 .rdata
171 * [13] PBIT -A-- 0x4f2d10 0xf2d10 0x17e0 .rodata
174 * [14] PBIT WA-- 0x5344f0 0xf44f0 0x4b3e4 .data <<<<<
177 * [15] PBIT WA-G 0x57f8d4 0x13f8d4 0x2a84 .got
180 * [16] PBIT WA-G 0x582360 0x142360 0x10 .sdata <<<<<
183 * [17] NOBI WA-G 0x582370 0x142370 0xb84 .sbss <<<<<
186 * [18] NOBI WA-- 0x582f00 0x142370 0x27ec0 .bss <<<<<
189 * [19] SYMT ---- 0 0x142370 0x10e40 .symtab
192 * [20] STRT ---- 0 0x1531b0 0xed9e .strtab
195 * [21] STRT ---- 0 0x161f4e 0xb5 .shstrtab
198 * [22] PBIT ---- 0 0x162003 0x28e2a .comment
201 * [23] PBIT ---- 0 0x18ae2d 0x592 .debug
204 * [24] PBIT ---- 0 0x18b3bf 0x80 .line
207 * [25] MDBG ---- 0 0x18b440 0x60 .mdebug
215 * **** SECTION HEADER TABLE ****
216 * [No] Type Flags Addr Offset Size Name
217 * Link Info Adralgn Entsize
219 * [1] PBIT -A-- 0x4000f4 0xf4 0x13 .interp
222 * [2] REGI -A-- 0x400108 0x108 0x18 .reginfo
225 * [3] DYNM -A-- 0x400120 0x120 0xb8 .dynamic
228 * [4] HASH -A-- 0x4001d8 0x1d8 0x8a0 .hash
231 * [5] DYNS -A-- 0x400a78 0xa78 0x11f0 .dynsym
234 * [6] STRT -A-- 0x401c68 0x1c68 0xbf9 .dynstr
237 * [7] REL -A-- 0x402864 0x2864 0x18 .rel.dyn
240 * [8] PBIT -AI- 0x402880 0x2880 0x60 .init
243 * [9] PBIT -AI- 0x4028e0 0x28e0 0x1234 .plt
246 * [10] PBIT -AI- 0x403b20 0x3b20 0xee400 .text
249 * [11] PBIT -AI- 0x4f1f20 0xf1f20 0x60 .fini
252 * [12] PBIT -A-- 0x4f1f80 0xf1f80 0xd90 .rdata
255 * [13] PBIT -A-- 0x4f2d10 0xf2d10 0x17e0 .rodata
258 * [14] PBIT WA-- 0x5344f0 0xf44f0 0x4b3e4 .data <<<<<
261 * [15] PBIT WA-G 0x57f8d4 0x13f8d4 0x2a84 .got
264 * [16] PBIT WA-G 0x582360 0x142360 0xb94 .sdata <<<<<
267 * [17] PBIT WA-- 0x582f00 0x142f00 0x94100 .data <<<<<
270 * [18] NOBI WA-G 0x617000 0x1d7000 0 .sbss <<<<<
273 * [19] NOBI WA-- 0x617000 0x1d7000 0 .bss <<<<<
276 * [20] SYMT ---- 0 0x1d7000 0x10e40 .symtab
279 * [21] STRT ---- 0 0x1e7e40 0xed9e .strtab
282 * [22] STRT ---- 0 0x1f6bde 0xb5 .shstrtab
285 * [23] PBIT ---- 0 0x1f6c93 0x28e2a .comment
288 * [24] PBIT ---- 0 0x21fabd 0x592 .debug
291 * [25] PBIT ---- 0 0x22004f 0x80 .line
294 * [26] MDBG ---- 0 0x2200d0 0x60 .mdebug
299 #include <sys/types.h>
301 #include <sys/stat.h>
308 #include <sys/mman.h>
314 #define fatal(a, b, c) fprintf(stderr, a, b, c), exit(1)
316 extern void fatal(char *, ...);
319 /* Get the address of a particular section or program header entry,
320 * accounting for the size of the entries.
323 #define OLD_SECTION_H(n) \
324 (*(Elf32_Shdr *) ((byte *) old_section_h + old_file_h->e_shentsize * (n)))
325 #define NEW_SECTION_H(n) \
326 (*(Elf32_Shdr *) ((byte *) new_section_h + new_file_h->e_shentsize * (n)))
327 #define OLD_PROGRAM_H(n) \
328 (*(Elf32_Phdr *) ((byte *) old_program_h + old_file_h->e_phentsize * (n)))
329 #define NEW_PROGRAM_H(n) \
330 (*(Elf32_Phdr *) ((byte *) new_program_h + new_file_h->e_phentsize * (n)))
332 #define PATCH_INDEX(n) \
334 if ((n) >= old_sbss_index) \
335 (n) += 1 + (old_sdata_index ? 0 : 1); } while (0)
337 typedef unsigned char byte
;
339 /* Round X up to a multiple of Y. */
351 /* ****************************************************************
356 * In ELF, this works by replacing the old .bss section with a new
357 * .data section, and inserting an empty .bss immediately afterwards.
361 unexec (new_name
, old_name
, data_start
, bss_start
, entry_address
)
362 char *new_name
, *old_name
;
363 unsigned data_start
, bss_start
, entry_address
;
365 extern unsigned int bss_end
;
366 int new_file
, old_file
, new_file_size
;
368 /* Pointers to the base of the image of the two files. */
369 caddr_t old_base
, new_base
;
371 /* Pointers to the file, program and section headers for the old and new
374 Elf32_Ehdr
*old_file_h
, *new_file_h
;
375 Elf32_Phdr
*old_program_h
, *new_program_h
;
376 Elf32_Shdr
*old_section_h
, *new_section_h
;
378 /* Point to the section name table in the old file */
379 char *old_section_names
;
381 Elf32_Addr old_bss_addr
, new_bss_addr
;
382 Elf32_Addr old_sbss_addr
;
383 Elf32_Word old_bss_size
, new_data2_size
;
384 Elf32_Word old_sbss_size
, new_data3_size
;
385 Elf32_Off new_data2_offset
;
386 Elf32_Off new_data3_offset
;
387 Elf32_Addr new_data2_addr
;
388 Elf32_Addr new_data3_addr
;
391 Elf32_Addr old_rel_dyn_addr
;
392 Elf32_Word old_rel_dyn_size
;
393 int old_rel_dyn_index
;
395 Elf32_Word old_sdata_size
, new_sdata_size
;
396 int old_sdata_index
= 0;
398 int n
, nn
, old_data_index
, new_data2_align
;
402 struct stat stat_buf
;
404 /* Open the old file & map it into the address space. */
406 old_file
= open (old_name
, O_RDONLY
);
409 fatal ("Can't open %s for reading: errno %d\n", old_name
, errno
);
411 if (fstat (old_file
, &stat_buf
) == -1)
412 fatal ("Can't fstat(%s): errno %d\n", old_name
, errno
);
414 old_base
= mmap (0, stat_buf
.st_size
, PROT_READ
, MAP_SHARED
, old_file
, 0);
416 if (old_base
== (caddr_t
) -1)
417 fatal ("Can't mmap(%s): errno %d\n", old_name
, errno
);
420 fprintf (stderr
, "mmap(%s, %x) -> %x\n", old_name
, stat_buf
.st_size
,
424 /* Get pointers to headers & section names */
426 old_file_h
= (Elf32_Ehdr
*) old_base
;
427 old_program_h
= (Elf32_Phdr
*) ((byte
*) old_base
+ old_file_h
->e_phoff
);
428 old_section_h
= (Elf32_Shdr
*) ((byte
*) old_base
+ old_file_h
->e_shoff
);
429 old_section_names
= (char *) old_base
430 + OLD_SECTION_H(old_file_h
->e_shstrndx
).sh_offset
;
432 /* Find the old .sbss section.
435 for (old_sbss_index
= 1; old_sbss_index
< old_file_h
->e_shnum
;
439 fprintf (stderr
, "Looking for .sbss - found %s\n",
440 old_section_names
+ OLD_SECTION_H(old_sbss_index
).sh_name
);
442 if (!strcmp (old_section_names
+ OLD_SECTION_H(old_sbss_index
).sh_name
,
446 if (old_sbss_index
== old_file_h
->e_shnum
)
447 fatal ("Can't find .sbss in %s.\n", old_name
, 0);
449 if (!strcmp(old_section_names
+ OLD_SECTION_H(old_sbss_index
- 1).sh_name
,
452 old_sdata_index
= old_sbss_index
- 1;
456 /* Find the old .bss section.
459 for (old_bss_index
= 1; old_bss_index
< old_file_h
->e_shnum
; old_bss_index
++)
462 fprintf (stderr
, "Looking for .bss - found %s\n",
463 old_section_names
+ OLD_SECTION_H(old_bss_index
).sh_name
);
465 if (!strcmp (old_section_names
+ OLD_SECTION_H(old_bss_index
).sh_name
,
469 if (old_bss_index
== old_file_h
->e_shnum
)
470 fatal ("Can't find .bss in %s.\n", old_name
, 0);
472 if (old_sbss_index
!= (old_bss_index
- 1))
473 fatal (".sbss should come immediately before .bss in %s.\n", old_name
, 0);
475 /* Find the old .rel.dyn section.
478 for (old_rel_dyn_index
= 1; old_rel_dyn_index
< old_file_h
->e_shnum
;
482 fprintf (stderr
, "Looking for .rel.dyn - found %s\n",
483 old_section_names
+ OLD_SECTION_H(old_rel_dyn_index
).sh_name
);
485 if (!strcmp (old_section_names
+ OLD_SECTION_H(old_rel_dyn_index
).sh_name
,
489 if (old_rel_dyn_index
== old_file_h
->e_shnum
)
490 fatal ("Can't find .rel_dyn in %s.\n", old_name
, 0);
492 old_rel_dyn_addr
= OLD_SECTION_H(old_rel_dyn_index
).sh_addr
;
493 old_rel_dyn_size
= OLD_SECTION_H(old_rel_dyn_index
).sh_size
;
495 /* Figure out parameters of the new data3 and data2 sections.
496 * Change the sbss and bss sections.
499 old_bss_addr
= OLD_SECTION_H(old_bss_index
).sh_addr
;
500 old_bss_size
= OLD_SECTION_H(old_bss_index
).sh_size
;
502 old_sbss_addr
= OLD_SECTION_H(old_sbss_index
).sh_addr
;
503 old_sbss_size
= OLD_SECTION_H(old_sbss_index
).sh_size
;
507 old_sdata_size
= OLD_SECTION_H(old_sdata_index
).sh_size
;
510 #if defined(emacs) || !defined(DEBUG)
511 bss_end
= (unsigned int) sbrk (0);
512 new_bss_addr
= (Elf32_Addr
) bss_end
;
514 new_bss_addr
= old_bss_addr
+ old_bss_size
+ 0x1234;
518 new_sdata_size
= OLD_SECTION_H(old_sbss_index
).sh_offset
-
519 OLD_SECTION_H(old_sdata_index
).sh_offset
+ old_sbss_size
;
522 new_data3_addr
= old_sbss_addr
;
523 new_data3_size
= old_sbss_size
;
524 new_data3_offset
= OLD_SECTION_H(old_sbss_index
).sh_offset
;
526 new_data2_addr
= old_bss_addr
;
527 new_data2_size
= new_bss_addr
- old_bss_addr
;
528 new_data2_align
= (new_data3_offset
+ old_sbss_size
) %
529 OLD_SECTION_H(old_bss_index
).sh_addralign
;
530 new_data2_align
= new_data2_align
?
531 OLD_SECTION_H(old_bss_index
).sh_addralign
- new_data2_align
:
533 new_data2_offset
= new_data3_offset
+ old_sbss_size
+ new_data2_align
;
535 old_bss_padding
= OLD_SECTION_H(old_bss_index
).sh_offset
-
536 OLD_SECTION_H(old_sbss_index
).sh_offset
;
538 fprintf (stderr
, "old_bss_index %d\n", old_bss_index
);
539 fprintf (stderr
, "old_bss_addr %x\n", old_bss_addr
);
540 fprintf (stderr
, "old_bss_size %x\n", old_bss_size
);
541 fprintf (stderr
, "new_bss_addr %x\n", new_bss_addr
);
542 fprintf (stderr
, "new_data2_addr %x\n", new_data2_addr
);
543 fprintf (stderr
, "new_data2_size %x\n", new_data2_size
);
544 fprintf (stderr
, "new_data2_offset %x\n", new_data2_offset
);
545 fprintf (stderr
, "old_sbss_index %d\n", old_sbss_index
);
546 fprintf (stderr
, "old_sbss_addr %x\n", old_sbss_addr
);
547 fprintf (stderr
, "old_sbss_size %x\n", old_sbss_size
);
548 fprintf (stderr
, "old_rel_dyn_addr %x\n", old_rel_dyn_addr
);
549 fprintf (stderr
, "old_rel_dyn_size %x\n", old_rel_dyn_size
);
552 fprintf (stderr
, "old_sdata_size %x\n", old_sdata_size
);
553 fprintf (stderr
, "new_sdata_size %x\n", new_sdata_size
);
557 fprintf (stderr
, "new_data3_addr %x\n", new_data3_addr
);
558 fprintf (stderr
, "new_data3_size %x\n", new_data3_size
);
559 fprintf (stderr
, "new_data3_offset %x\n", new_data3_offset
);
563 if ((unsigned) new_bss_addr
< (unsigned) old_bss_addr
+ old_bss_size
)
564 fatal (".bss shrank when undumping???\n", 0, 0);
566 /* Set the output file to the right size and mmap(2) it. Set
567 * pointers to various interesting objects. stat_buf still has
571 new_file
= open (new_name
, O_RDWR
| O_CREAT
, 0666);
573 fatal ("Can't creat(%s): errno %d\n", new_name
, errno
);
575 new_file_size
= stat_buf
.st_size
+
576 ((1 + (old_sdata_index
? 0 : 1)) * old_file_h
->e_shentsize
) +
577 new_data2_size
+ new_data3_size
+ new_data2_align
;
579 if (ftruncate (new_file
, new_file_size
))
580 fatal ("Can't ftruncate(%s): errno %d\n", new_name
, errno
);
582 new_base
= mmap (0, new_file_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
585 if (new_base
== (caddr_t
) -1)
586 fatal ("Can't mmap(%s): errno %d\n", new_name
, errno
);
588 new_file_h
= (Elf32_Ehdr
*) new_base
;
589 new_program_h
= (Elf32_Phdr
*) ((byte
*) new_base
+ old_file_h
->e_phoff
);
590 new_section_h
= (Elf32_Shdr
*) ((byte
*) new_base
+
591 old_file_h
->e_shoff
+
596 /* Make our new file, program and section headers as copies of the
600 memcpy (new_file_h
, old_file_h
, old_file_h
->e_ehsize
);
601 memcpy (new_program_h
, old_program_h
,
602 old_file_h
->e_phnum
* old_file_h
->e_phentsize
);
604 /* Modify the e_shstrndx if necessary. */
605 PATCH_INDEX (new_file_h
->e_shstrndx
);
607 /* Fix up file header. We'll add one section. Section header is
611 new_file_h
->e_shoff
+= new_data2_size
+ new_data2_align
+ new_data3_size
;
612 new_file_h
->e_shnum
+= 1 + (old_sdata_index
? 0 : 1);
615 fprintf (stderr
, "Old section offset %x\n", old_file_h
->e_shoff
);
616 fprintf (stderr
, "Old section count %d\n", old_file_h
->e_shnum
);
617 fprintf (stderr
, "New section offset %x\n", new_file_h
->e_shoff
);
618 fprintf (stderr
, "New section count %d\n", new_file_h
->e_shnum
);
621 /* Fix up a new program header. Extend the writable data segment so
622 * that the bss area is covered too. Find that segment by looking
623 * for a segment that ends just before the .bss area. Make sure
624 * that no segments are above the new .data2. Put a loop at the end
625 * to adjust the offset and address of any segment that is above
626 * data2, just in case we decide to allow this later.
629 for (n
= new_file_h
->e_phnum
- 1; n
>= 0; n
--)
631 /* Compute maximum of all requirements for alignment of section. */
632 int alignment
= (NEW_PROGRAM_H (n
)).p_align
;
633 if ((OLD_SECTION_H (old_bss_index
)).sh_addralign
> alignment
)
634 alignment
= OLD_SECTION_H (old_bss_index
).sh_addralign
;
636 if ((OLD_SECTION_H (old_sbss_index
)).sh_addralign
> alignment
)
637 alignment
= OLD_SECTION_H (old_sbss_index
).sh_addralign
;
639 /* Supposedly this condition is okay for the SGI. */
641 if (NEW_PROGRAM_H(n
).p_vaddr
+ NEW_PROGRAM_H(n
).p_filesz
> old_bss_addr
)
642 fatal ("Program segment above .bss in %s\n", old_name
, 0);
645 if (NEW_PROGRAM_H(n
).p_type
== PT_LOAD
646 && (round_up ((NEW_PROGRAM_H (n
)).p_vaddr
647 + (NEW_PROGRAM_H (n
)).p_filesz
,
649 == round_up (old_bss_addr
, alignment
)))
653 fatal ("Couldn't find segment next to .bss in %s\n", old_name
, 0);
655 NEW_PROGRAM_H(n
).p_filesz
+= new_data2_size
+ new_data2_align
+
657 NEW_PROGRAM_H(n
).p_memsz
= NEW_PROGRAM_H(n
).p_filesz
;
659 #if 1 /* Maybe allow section after data2 - does this ever happen? */
660 for (n
= new_file_h
->e_phnum
- 1; n
>= 0; n
--)
662 if (NEW_PROGRAM_H(n
).p_vaddr
663 && NEW_PROGRAM_H(n
).p_vaddr
>= new_data3_addr
)
664 NEW_PROGRAM_H(n
).p_vaddr
+= new_data2_size
- old_bss_size
+
665 new_data3_size
- old_sbss_size
;
667 if (NEW_PROGRAM_H(n
).p_offset
>= new_data3_offset
)
668 NEW_PROGRAM_H(n
).p_offset
+= new_data2_size
+ new_data2_align
+
673 /* Fix up section headers based on new .data2 section. Any section
674 * whose offset or virtual address is after the new .data2 section
675 * gets its value adjusted. .bss size becomes zero and new address
676 * is set. data2 section header gets added by copying the existing
677 * .data header and modifying the offset, address and size.
679 for (old_data_index
= 1; old_data_index
< old_file_h
->e_shnum
;
681 if (!strcmp (old_section_names
+ OLD_SECTION_H(old_data_index
).sh_name
,
684 if (old_data_index
== old_file_h
->e_shnum
)
685 fatal ("Can't find .data in %s.\n", old_name
, 0);
687 /* Walk through all section headers, insert the new data2 section right
688 before the new bss section. */
689 for (n
= 1, nn
= 1; n
< old_file_h
->e_shnum
; n
++, nn
++)
693 if (n
== old_sbss_index
)
695 /* If it is sbss section, insert the new data3 section before it. */
697 /* Steal the data section header for this data3 section. */
698 if (!old_sdata_index
)
700 memcpy (&NEW_SECTION_H(nn
), &OLD_SECTION_H(old_data_index
),
701 new_file_h
->e_shentsize
);
703 NEW_SECTION_H(nn
).sh_addr
= new_data3_addr
;
704 NEW_SECTION_H(nn
).sh_offset
= new_data3_offset
;
705 NEW_SECTION_H(nn
).sh_size
= new_data3_size
;
706 NEW_SECTION_H(nn
).sh_flags
= OLD_SECTION_H(n
).sh_flags
;
707 /* Use the sbss section's alignment. This will assure that the
708 new data3 section always be placed in the same spot as the old
709 sbss section by any other application. */
710 NEW_SECTION_H(nn
).sh_addralign
= OLD_SECTION_H(n
).sh_addralign
;
712 /* Now copy over what we have in the memory now. */
713 memcpy (NEW_SECTION_H(nn
).sh_offset
+ new_base
,
714 (caddr_t
) OLD_SECTION_H(n
).sh_addr
,
716 /* the new .data2 section should also come before the
717 * new .sbss section */
722 /* We always have a .sdata section: append the contents of the
725 memcpy (new_data3_offset
+ new_base
,
726 (caddr_t
) OLD_SECTION_H(n
).sh_addr
,
731 else if (n
== old_bss_index
)
733 /* If it is bss section, insert the new data2 section before it. */
735 Elf32_Word tmp_align
;
738 tmp_align
= OLD_SECTION_H(n
).sh_addralign
;
739 tmp_addr
= OLD_SECTION_H(n
).sh_addr
;
742 /* Steal the data section header for this data2 section. */
743 memcpy (&NEW_SECTION_H(nn
), &OLD_SECTION_H(old_data_index
),
744 new_file_h
->e_shentsize
);
746 NEW_SECTION_H(nn
).sh_addr
= new_data2_addr
;
747 NEW_SECTION_H(nn
).sh_offset
= new_data2_offset
;
748 NEW_SECTION_H(nn
).sh_size
= new_data2_size
;
749 /* Use the bss section's alignment. This will assure that the
750 new data2 section always be placed in the same spot as the old
751 bss section by any other application. */
752 NEW_SECTION_H(nn
).sh_addralign
= tmp_align
;
754 /* Now copy over what we have in the memory now. */
755 memcpy (NEW_SECTION_H(nn
).sh_offset
+ new_base
,
756 (caddr_t
) tmp_addr
, new_data2_size
);
760 memcpy (&NEW_SECTION_H(nn
), &OLD_SECTION_H(n
),
761 old_file_h
->e_shentsize
);
763 if (old_sdata_index
&& n
== old_sdata_index
)
764 /* The old .sdata section has now a new size */
765 NEW_SECTION_H(nn
).sh_size
= new_sdata_size
;
767 /* The new bss section's size is zero, and its file offset and virtual
768 address should be off by NEW_DATA2_SIZE. */
769 if (n
== old_sbss_index
)
771 /* NN should be `old_sbss_index + 2' at this point. */
772 NEW_SECTION_H(nn
).sh_offset
+= new_data2_size
+ new_data2_align
+
774 NEW_SECTION_H(nn
).sh_addr
+= new_data2_size
+ new_data2_align
+
776 /* Let the new bss section address alignment be the same as the
777 section address alignment followed the old bss section, so
778 this section will be placed in exactly the same place. */
779 NEW_SECTION_H(nn
).sh_addralign
=
780 OLD_SECTION_H(nn
+ (old_sdata_index
? 1 : 0)).sh_addralign
;
781 NEW_SECTION_H(nn
).sh_size
= 0;
783 else if (n
== old_bss_index
)
785 /* NN should be `old_bss_index + 2' at this point. */
786 NEW_SECTION_H(nn
).sh_offset
+= new_data2_size
+ new_data2_align
+
787 new_data3_size
- old_bss_padding
;
788 NEW_SECTION_H(nn
).sh_addr
+= new_data2_size
;
789 /* Let the new bss section address alignment be the same as the
790 section address alignment followed the old bss section, so
791 this section will be placed in exactly the same place. */
792 NEW_SECTION_H(nn
).sh_addralign
=
793 OLD_SECTION_H((nn
- (old_sdata_index
? 0 : 1))).sh_addralign
;
794 NEW_SECTION_H(nn
).sh_size
= 0;
796 /* Any section that was original placed AFTER the bss section should now
797 be off by NEW_DATA2_SIZE. */
798 else if (NEW_SECTION_H(nn
).sh_offset
>= new_data3_offset
)
799 NEW_SECTION_H(nn
).sh_offset
+= new_data2_size
+
804 /* If any section hdr refers to the section after the new .data
805 section, make it refer to next one because we have inserted
806 a new section in between. */
808 PATCH_INDEX(NEW_SECTION_H(nn
).sh_link
);
809 PATCH_INDEX(NEW_SECTION_H(nn
).sh_info
);
811 /* Now, start to copy the content of sections. */
812 if (NEW_SECTION_H(nn
).sh_type
== SHT_NULL
813 || NEW_SECTION_H(nn
).sh_type
== SHT_NOBITS
)
816 /* Write out the sections. .data, .data1 and .sdata get copied from
817 * the current process instead of the old file.
819 if (!strcmp (old_section_names
+ OLD_SECTION_H(n
).sh_name
, ".data") ||
820 !strcmp (old_section_names
+ OLD_SECTION_H(n
).sh_name
, ".data1") ||
821 (old_sdata_index
&& (n
== old_sdata_index
)))
822 src
= (caddr_t
) OLD_SECTION_H(n
).sh_addr
;
824 src
= old_base
+ OLD_SECTION_H(n
).sh_offset
;
826 memcpy (NEW_SECTION_H(nn
).sh_offset
+ new_base
, src
,
827 ((n
== old_sdata_index
) ?
829 NEW_SECTION_H(nn
).sh_size
));
831 /* If it is the symbol table, its st_shndx field needs to be patched. */
832 if (NEW_SECTION_H(nn
).sh_type
== SHT_SYMTAB
833 || NEW_SECTION_H(nn
).sh_type
== SHT_DYNSYM
)
835 Elf32_Shdr
*spt
= &NEW_SECTION_H(nn
);
836 unsigned int num
= spt
->sh_size
/ spt
->sh_entsize
;
837 Elf32_Sym
* sym
= (Elf32_Sym
*) (NEW_SECTION_H(nn
).sh_offset
+
841 if ((sym
->st_shndx
== SHN_UNDEF
)
842 || (sym
->st_shndx
== SHN_ABS
)
843 || (sym
->st_shndx
== SHN_COMMON
))
846 PATCH_INDEX(sym
->st_shndx
);
852 unsigned int old_data_addr_start
;
853 unsigned int old_data_addr_end
;
854 unsigned int old_data_offset
;
855 unsigned int new_data_offset
;
858 rel_p
= (Elf32_Rel
*)OLD_SECTION_H(old_rel_dyn_index
).sh_addr
;
859 old_data_addr_start
= OLD_SECTION_H(old_data_index
).sh_addr
;
860 old_data_addr_end
= old_data_addr_start
+
861 OLD_SECTION_H(old_data_index
).sh_size
;
862 old_data_offset
= (int)OLD_SECTION_H(old_data_index
).sh_offset
+
863 (unsigned int)old_base
;
864 new_data_offset
= (int)NEW_SECTION_H(old_data_index
).sh_offset
+
865 (unsigned int)new_base
;
868 fprintf(stderr
, "old_data.sh_addr= 0x%08x ... 0x%08x\n", old_data_addr_start
,
872 for (i
= 0; i
< old_rel_dyn_size
/sizeof(Elf32_Rel
); i
++)
875 fprintf(stderr
, ".rel.dyn offset= 0x%08x type= %d sym= %d\n",
876 rel_p
->r_offset
, ELF32_R_TYPE(rel_p
->r_info
), ELF32_R_SYM(rel_p
->r_info
));
883 assert(old_data_addr_start
<= rel_p
->r_offset
&&
884 rel_p
->r_offset
<= old_data_addr_end
);
886 offset
= rel_p
->r_offset
- old_data_addr_start
;
889 fprintf(stderr
, "r_offset= 0x%08x *r_offset= 0x%08x\n",
890 rel_p
->r_offset
, *((int *)(rel_p
->r_offset
)));
891 fprintf(stderr
, "old = 0x%08x *old =0x%08x\n",
892 (old_data_offset
+ offset
- (unsigned int)old_base
),
893 *((int *)(old_data_offset
+ offset
)));
894 fprintf(stderr
, "new = 0x%08x *new =0x%08x\n",
895 (new_data_offset
+ offset
- (unsigned int)new_base
),
896 *((int *)(new_data_offset
+ offset
)));
899 *((int *)(new_data_offset
+ offset
)) = *((int *)(old_data_offset
+ offset
));
906 /* Close the files and make the new file executable */
908 if (close (old_file
))
909 fatal ("Can't close(%s): errno %d\n", old_name
, errno
);
911 if (close (new_file
))
912 fatal ("Can't close(%s): errno %d\n", new_name
, errno
);
914 if (stat (new_name
, &stat_buf
) == -1)
915 fatal ("Can't stat(%s): errno %d\n", new_name
, errno
);
919 stat_buf
.st_mode
|= 0111 & ~n
;
920 if (chmod (new_name
, stat_buf
.st_mode
) == -1)
921 fatal ("Can't chmod(%s): errno %d\n", new_name
, errno
);
924 /* arch-tag: c784ead3-7a27-442b-83fe-7af8d08654d3
925 (do not change this comment) */