1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 86, 88, 93, 94, 95, 97, 98, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
24 #include <limits.h> /* For CHAR_BIT. */
30 /* Note that this declares bzero on OSF/1. How dumb. */
34 /* This file is part of the core Lisp implementation, and thus must
35 deal with the real data structures. If the Lisp implementation is
36 replaced, this file likely will not be used. */
38 #undef HIDE_LISP_IMPLEMENTATION
41 #include "intervals.h"
47 #include "blockinput.h"
49 #include "syssignal.h"
52 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
53 memory. Can do this only if using gmalloc.c. */
55 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
56 #undef GC_MALLOC_CHECK
62 extern POINTER_TYPE
*sbrk ();
65 #ifdef DOUG_LEA_MALLOC
68 /* malloc.h #defines this as size_t, at least in glibc2. */
69 #ifndef __malloc_size_t
70 #define __malloc_size_t int
73 /* Specify maximum number of areas to mmap. It would be nice to use a
74 value that explicitly means "no limit". */
76 #define MMAP_MAX_AREAS 100000000
78 #else /* not DOUG_LEA_MALLOC */
80 /* The following come from gmalloc.c. */
82 #define __malloc_size_t size_t
83 extern __malloc_size_t _bytes_used
;
84 extern __malloc_size_t __malloc_extra_blocks
;
86 #endif /* not DOUG_LEA_MALLOC */
88 /* Value of _bytes_used, when spare_memory was freed. */
90 static __malloc_size_t bytes_used_when_full
;
92 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
93 to a struct Lisp_String. */
95 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
96 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
97 #define STRING_MARKED_P(S) ((S)->size & ARRAY_MARK_FLAG)
99 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
100 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
101 #define VECTOR_MARKED_P(V) ((V)->size & ARRAY_MARK_FLAG)
103 /* Value is the number of bytes/chars of S, a pointer to a struct
104 Lisp_String. This must be used instead of STRING_BYTES (S) or
105 S->size during GC, because S->size contains the mark bit for
108 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
109 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
111 /* Number of bytes of consing done since the last gc. */
113 int consing_since_gc
;
115 /* Count the amount of consing of various sorts of space. */
117 EMACS_INT cons_cells_consed
;
118 EMACS_INT floats_consed
;
119 EMACS_INT vector_cells_consed
;
120 EMACS_INT symbols_consed
;
121 EMACS_INT string_chars_consed
;
122 EMACS_INT misc_objects_consed
;
123 EMACS_INT intervals_consed
;
124 EMACS_INT strings_consed
;
126 /* Number of bytes of consing since GC before another GC should be done. */
128 EMACS_INT gc_cons_threshold
;
130 /* Nonzero during GC. */
134 /* Nonzero means abort if try to GC.
135 This is for code which is written on the assumption that
136 no GC will happen, so as to verify that assumption. */
140 /* Nonzero means display messages at beginning and end of GC. */
142 int garbage_collection_messages
;
144 #ifndef VIRT_ADDR_VARIES
146 #endif /* VIRT_ADDR_VARIES */
147 int malloc_sbrk_used
;
149 #ifndef VIRT_ADDR_VARIES
151 #endif /* VIRT_ADDR_VARIES */
152 int malloc_sbrk_unused
;
154 /* Two limits controlling how much undo information to keep. */
156 EMACS_INT undo_limit
;
157 EMACS_INT undo_strong_limit
;
159 /* Number of live and free conses etc. */
161 static int total_conses
, total_markers
, total_symbols
, total_vector_size
;
162 static int total_free_conses
, total_free_markers
, total_free_symbols
;
163 static int total_free_floats
, total_floats
;
165 /* Points to memory space allocated as "spare", to be freed if we run
168 static char *spare_memory
;
170 /* Amount of spare memory to keep in reserve. */
172 #define SPARE_MEMORY (1 << 14)
174 /* Number of extra blocks malloc should get when it needs more core. */
176 static int malloc_hysteresis
;
178 /* Non-nil means defun should do purecopy on the function definition. */
180 Lisp_Object Vpurify_flag
;
182 /* Non-nil means we are handling a memory-full error. */
184 Lisp_Object Vmemory_full
;
188 /* Force it into data space! Initialize it to a nonzero value;
189 otherwise some compilers put it into BSS. */
191 EMACS_INT pure
[PURESIZE
/ sizeof (EMACS_INT
)] = {1,};
192 #define PUREBEG (char *) pure
196 #define pure PURE_SEG_BITS /* Use shared memory segment */
197 #define PUREBEG (char *)PURE_SEG_BITS
199 #endif /* HAVE_SHM */
201 /* Pointer to the pure area, and its size. */
203 static char *purebeg
;
204 static size_t pure_size
;
206 /* Number of bytes of pure storage used before pure storage overflowed.
207 If this is non-zero, this implies that an overflow occurred. */
209 static size_t pure_bytes_used_before_overflow
;
211 /* Value is non-zero if P points into pure space. */
213 #define PURE_POINTER_P(P) \
214 (((PNTR_COMPARISON_TYPE) (P) \
215 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
216 && ((PNTR_COMPARISON_TYPE) (P) \
217 >= (PNTR_COMPARISON_TYPE) purebeg))
219 /* Index in pure at which next pure object will be allocated.. */
221 EMACS_INT pure_bytes_used
;
223 /* If nonzero, this is a warning delivered by malloc and not yet
226 char *pending_malloc_warning
;
228 /* Pre-computed signal argument for use when memory is exhausted. */
230 Lisp_Object Vmemory_signal_data
;
232 /* Maximum amount of C stack to save when a GC happens. */
234 #ifndef MAX_SAVE_STACK
235 #define MAX_SAVE_STACK 16000
238 /* Buffer in which we save a copy of the C stack at each GC. */
243 /* Non-zero means ignore malloc warnings. Set during initialization.
244 Currently not used. */
248 Lisp_Object Qgc_cons_threshold
, Qchar_table_extra_slots
;
250 /* Hook run after GC has finished. */
252 Lisp_Object Vpost_gc_hook
, Qpost_gc_hook
;
254 Lisp_Object Vgc_elapsed
; /* accumulated elapsed time in GC */
255 EMACS_INT gcs_done
; /* accumulated GCs */
257 static void mark_buffer
P_ ((Lisp_Object
));
258 extern void mark_kboards
P_ ((void));
259 static void gc_sweep
P_ ((void));
260 static void mark_glyph_matrix
P_ ((struct glyph_matrix
*));
261 static void mark_face_cache
P_ ((struct face_cache
*));
263 #ifdef HAVE_WINDOW_SYSTEM
264 static void mark_image
P_ ((struct image
*));
265 static void mark_image_cache
P_ ((struct frame
*));
266 #endif /* HAVE_WINDOW_SYSTEM */
268 static struct Lisp_String
*allocate_string
P_ ((void));
269 static void compact_small_strings
P_ ((void));
270 static void free_large_strings
P_ ((void));
271 static void sweep_strings
P_ ((void));
273 extern int message_enable_multibyte
;
275 /* When scanning the C stack for live Lisp objects, Emacs keeps track
276 of what memory allocated via lisp_malloc is intended for what
277 purpose. This enumeration specifies the type of memory. */
288 /* Keep the following vector-like types together, with
289 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
290 first. Or change the code of live_vector_p, for instance. */
298 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
300 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
301 #include <stdio.h> /* For fprintf. */
304 /* A unique object in pure space used to make some Lisp objects
305 on free lists recognizable in O(1). */
309 #ifdef GC_MALLOC_CHECK
311 enum mem_type allocated_mem_type
;
312 int dont_register_blocks
;
314 #endif /* GC_MALLOC_CHECK */
316 /* A node in the red-black tree describing allocated memory containing
317 Lisp data. Each such block is recorded with its start and end
318 address when it is allocated, and removed from the tree when it
321 A red-black tree is a balanced binary tree with the following
324 1. Every node is either red or black.
325 2. Every leaf is black.
326 3. If a node is red, then both of its children are black.
327 4. Every simple path from a node to a descendant leaf contains
328 the same number of black nodes.
329 5. The root is always black.
331 When nodes are inserted into the tree, or deleted from the tree,
332 the tree is "fixed" so that these properties are always true.
334 A red-black tree with N internal nodes has height at most 2
335 log(N+1). Searches, insertions and deletions are done in O(log N).
336 Please see a text book about data structures for a detailed
337 description of red-black trees. Any book worth its salt should
342 /* Children of this node. These pointers are never NULL. When there
343 is no child, the value is MEM_NIL, which points to a dummy node. */
344 struct mem_node
*left
, *right
;
346 /* The parent of this node. In the root node, this is NULL. */
347 struct mem_node
*parent
;
349 /* Start and end of allocated region. */
353 enum {MEM_BLACK
, MEM_RED
} color
;
359 /* Base address of stack. Set in main. */
361 Lisp_Object
*stack_base
;
363 /* Root of the tree describing allocated Lisp memory. */
365 static struct mem_node
*mem_root
;
367 /* Lowest and highest known address in the heap. */
369 static void *min_heap_address
, *max_heap_address
;
371 /* Sentinel node of the tree. */
373 static struct mem_node mem_z
;
374 #define MEM_NIL &mem_z
376 static POINTER_TYPE
*lisp_malloc
P_ ((size_t, enum mem_type
));
377 static struct Lisp_Vector
*allocate_vectorlike
P_ ((EMACS_INT
, enum mem_type
));
378 static void lisp_free
P_ ((POINTER_TYPE
*));
379 static void mark_stack
P_ ((void));
380 static int live_vector_p
P_ ((struct mem_node
*, void *));
381 static int live_buffer_p
P_ ((struct mem_node
*, void *));
382 static int live_string_p
P_ ((struct mem_node
*, void *));
383 static int live_cons_p
P_ ((struct mem_node
*, void *));
384 static int live_symbol_p
P_ ((struct mem_node
*, void *));
385 static int live_float_p
P_ ((struct mem_node
*, void *));
386 static int live_misc_p
P_ ((struct mem_node
*, void *));
387 static void mark_maybe_object
P_ ((Lisp_Object
));
388 static void mark_memory
P_ ((void *, void *));
389 static void mem_init
P_ ((void));
390 static struct mem_node
*mem_insert
P_ ((void *, void *, enum mem_type
));
391 static void mem_insert_fixup
P_ ((struct mem_node
*));
392 static void mem_rotate_left
P_ ((struct mem_node
*));
393 static void mem_rotate_right
P_ ((struct mem_node
*));
394 static void mem_delete
P_ ((struct mem_node
*));
395 static void mem_delete_fixup
P_ ((struct mem_node
*));
396 static INLINE
struct mem_node
*mem_find
P_ ((void *));
398 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
399 static void check_gcpros
P_ ((void));
402 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
404 /* Recording what needs to be marked for gc. */
406 struct gcpro
*gcprolist
;
408 /* Addresses of staticpro'd variables. Initialize it to a nonzero
409 value; otherwise some compilers put it into BSS. */
411 #define NSTATICS 1280
412 Lisp_Object
*staticvec
[NSTATICS
] = {&Vpurify_flag
};
414 /* Index of next unused slot in staticvec. */
418 static POINTER_TYPE
*pure_alloc
P_ ((size_t, int));
421 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
422 ALIGNMENT must be a power of 2. */
424 #define ALIGN(ptr, ALIGNMENT) \
425 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
426 & ~((ALIGNMENT) - 1)))
430 /************************************************************************
432 ************************************************************************/
434 /* Function malloc calls this if it finds we are near exhausting storage. */
440 pending_malloc_warning
= str
;
444 /* Display an already-pending malloc warning. */
447 display_malloc_warning ()
449 call3 (intern ("display-warning"),
451 build_string (pending_malloc_warning
),
452 intern ("emergency"));
453 pending_malloc_warning
= 0;
457 #ifdef DOUG_LEA_MALLOC
458 # define BYTES_USED (mallinfo ().arena)
460 # define BYTES_USED _bytes_used
464 /* Called if malloc returns zero. */
471 #ifndef SYSTEM_MALLOC
472 bytes_used_when_full
= BYTES_USED
;
475 /* The first time we get here, free the spare memory. */
482 /* This used to call error, but if we've run out of memory, we could
483 get infinite recursion trying to build the string. */
485 Fsignal (Qnil
, Vmemory_signal_data
);
489 /* Called if we can't allocate relocatable space for a buffer. */
492 buffer_memory_full ()
494 /* If buffers use the relocating allocator, no need to free
495 spare_memory, because we may have plenty of malloc space left
496 that we could get, and if we don't, the malloc that fails will
497 itself cause spare_memory to be freed. If buffers don't use the
498 relocating allocator, treat this like any other failing
507 /* This used to call error, but if we've run out of memory, we could
508 get infinite recursion trying to build the string. */
510 Fsignal (Qnil
, Vmemory_signal_data
);
514 /* Like malloc but check for no memory and block interrupt input.. */
520 register POINTER_TYPE
*val
;
523 val
= (POINTER_TYPE
*) malloc (size
);
532 /* Like realloc but check for no memory and block interrupt input.. */
535 xrealloc (block
, size
)
539 register POINTER_TYPE
*val
;
542 /* We must call malloc explicitly when BLOCK is 0, since some
543 reallocs don't do this. */
545 val
= (POINTER_TYPE
*) malloc (size
);
547 val
= (POINTER_TYPE
*) realloc (block
, size
);
550 if (!val
&& size
) memory_full ();
555 /* Like free but block interrupt input. */
567 /* Like strdup, but uses xmalloc. */
573 size_t len
= strlen (s
) + 1;
574 char *p
= (char *) xmalloc (len
);
580 /* Like malloc but used for allocating Lisp data. NBYTES is the
581 number of bytes to allocate, TYPE describes the intended use of the
582 allcated memory block (for strings, for conses, ...). */
584 static void *lisp_malloc_loser
;
586 static POINTER_TYPE
*
587 lisp_malloc (nbytes
, type
)
595 #ifdef GC_MALLOC_CHECK
596 allocated_mem_type
= type
;
599 val
= (void *) malloc (nbytes
);
601 /* If the memory just allocated cannot be addressed thru a Lisp
602 object's pointer, and it needs to be,
603 that's equivalent to running out of memory. */
604 if (val
&& type
!= MEM_TYPE_NON_LISP
)
607 XSETCONS (tem
, (char *) val
+ nbytes
- 1);
608 if ((char *) XCONS (tem
) != (char *) val
+ nbytes
- 1)
610 lisp_malloc_loser
= val
;
616 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
617 if (val
&& type
!= MEM_TYPE_NON_LISP
)
618 mem_insert (val
, (char *) val
+ nbytes
, type
);
627 /* Free BLOCK. This must be called to free memory allocated with a
628 call to lisp_malloc. */
636 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
637 mem_delete (mem_find (block
));
642 /* Allocation of aligned blocks of memory to store Lisp data. */
643 /* The entry point is lisp_align_malloc which returns blocks of at most */
644 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
647 /* BLOCK_ALIGN has to be a power of 2. */
648 #define BLOCK_ALIGN (1 << 10)
650 /* Padding to leave at the end of a malloc'd block. This is to give
651 malloc a chance to minimize the amount of memory wasted to alignment.
652 It should be tuned to the particular malloc library used.
653 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
654 posix_memalign on the other hand would ideally prefer a value of 4
655 because otherwise, there's 1020 bytes wasted between each ablocks.
656 But testing shows that those 1020 will most of the time be efficiently
657 used by malloc to place other objects, so a value of 0 is still preferable
658 unless you have a lot of cons&floats and virtually nothing else. */
659 #define BLOCK_PADDING 0
660 #define BLOCK_BYTES \
661 (BLOCK_ALIGN - sizeof (struct aligned_block *) - BLOCK_PADDING)
663 /* Internal data structures and constants. */
665 #define ABLOCKS_SIZE 16
667 /* An aligned block of memory. */
672 char payload
[BLOCK_BYTES
];
673 struct ablock
*next_free
;
675 /* `abase' is the aligned base of the ablocks. */
676 /* It is overloaded to hold the virtual `busy' field that counts
677 the number of used ablock in the parent ablocks.
678 The first ablock has the `busy' field, the others have the `abase'
679 field. To tell the difference, we assume that pointers will have
680 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
681 is used to tell whether the real base of the parent ablocks is `abase'
682 (if not, the word before the first ablock holds a pointer to the
684 struct ablocks
*abase
;
685 /* The padding of all but the last ablock is unused. The padding of
686 the last ablock in an ablocks is not allocated. */
688 char padding
[BLOCK_PADDING
];
692 /* A bunch of consecutive aligned blocks. */
695 struct ablock blocks
[ABLOCKS_SIZE
];
698 /* Size of the block requested from malloc or memalign. */
699 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
701 #define ABLOCK_ABASE(block) \
702 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
703 ? (struct ablocks *)(block) \
706 /* Virtual `busy' field. */
707 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
709 /* Pointer to the (not necessarily aligned) malloc block. */
710 #ifdef HAVE_POSIX_MEMALIGN
711 #define ABLOCKS_BASE(abase) (abase)
713 #define ABLOCKS_BASE(abase) \
714 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
717 /* The list of free ablock. */
718 static struct ablock
*free_ablock
;
720 /* Allocate an aligned block of nbytes.
721 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
722 smaller or equal to BLOCK_BYTES. */
723 static POINTER_TYPE
*
724 lisp_align_malloc (nbytes
, type
)
729 struct ablocks
*abase
;
731 eassert (nbytes
<= BLOCK_BYTES
);
735 #ifdef GC_MALLOC_CHECK
736 allocated_mem_type
= type
;
742 EMACS_INT aligned
; /* int gets warning casting to 64-bit pointer. */
744 #ifdef DOUG_LEA_MALLOC
745 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
746 because mapped region contents are not preserved in
748 mallopt (M_MMAP_MAX
, 0);
751 #ifdef HAVE_POSIX_MEMALIGN
753 int err
= posix_memalign (&base
, BLOCK_ALIGN
, ABLOCKS_BYTES
);
754 abase
= err
? (base
= NULL
) : base
;
757 base
= malloc (ABLOCKS_BYTES
);
758 abase
= ALIGN (base
, BLOCK_ALIGN
);
766 aligned
= (base
== abase
);
768 ((void**)abase
)[-1] = base
;
770 #ifdef DOUG_LEA_MALLOC
771 /* Back to a reasonable maximum of mmap'ed areas. */
772 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
775 /* If the memory just allocated cannot be addressed thru a Lisp
776 object's pointer, and it needs to be, that's equivalent to
777 running out of memory. */
778 if (type
!= MEM_TYPE_NON_LISP
)
781 char *end
= (char *) base
+ ABLOCKS_BYTES
- 1;
783 if ((char *) XCONS (tem
) != end
)
785 lisp_malloc_loser
= base
;
792 /* Initialize the blocks and put them on the free list.
793 Is `base' was not properly aligned, we can't use the last block. */
794 for (i
= 0; i
< (aligned
? ABLOCKS_SIZE
: ABLOCKS_SIZE
- 1); i
++)
796 abase
->blocks
[i
].abase
= abase
;
797 abase
->blocks
[i
].x
.next_free
= free_ablock
;
798 free_ablock
= &abase
->blocks
[i
];
800 ABLOCKS_BUSY (abase
) = (struct ablocks
*) (long) aligned
;
802 eassert (0 == ((EMACS_UINT
)abase
) % BLOCK_ALIGN
);
803 eassert (ABLOCK_ABASE (&abase
->blocks
[3]) == abase
); /* 3 is arbitrary */
804 eassert (ABLOCK_ABASE (&abase
->blocks
[0]) == abase
);
805 eassert (ABLOCKS_BASE (abase
) == base
);
806 eassert (aligned
== (long) ABLOCKS_BUSY (abase
));
809 abase
= ABLOCK_ABASE (free_ablock
);
810 ABLOCKS_BUSY (abase
) = (struct ablocks
*) (2 + (long) ABLOCKS_BUSY (abase
));
812 free_ablock
= free_ablock
->x
.next_free
;
814 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
815 if (val
&& type
!= MEM_TYPE_NON_LISP
)
816 mem_insert (val
, (char *) val
+ nbytes
, type
);
823 eassert (0 == ((EMACS_UINT
)val
) % BLOCK_ALIGN
);
828 lisp_align_free (block
)
831 struct ablock
*ablock
= block
;
832 struct ablocks
*abase
= ABLOCK_ABASE (ablock
);
835 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
836 mem_delete (mem_find (block
));
838 /* Put on free list. */
839 ablock
->x
.next_free
= free_ablock
;
840 free_ablock
= ablock
;
841 /* Update busy count. */
842 ABLOCKS_BUSY (abase
) = (struct ablocks
*) (-2 + (long) ABLOCKS_BUSY (abase
));
844 if (2 > (long) ABLOCKS_BUSY (abase
))
845 { /* All the blocks are free. */
846 int i
= 0, aligned
= (long) ABLOCKS_BUSY (abase
);
847 struct ablock
**tem
= &free_ablock
;
848 struct ablock
*atop
= &abase
->blocks
[aligned
? ABLOCKS_SIZE
: ABLOCKS_SIZE
- 1];
852 if (*tem
>= (struct ablock
*) abase
&& *tem
< atop
)
855 *tem
= (*tem
)->x
.next_free
;
858 tem
= &(*tem
)->x
.next_free
;
860 eassert ((aligned
& 1) == aligned
);
861 eassert (i
== (aligned
? ABLOCKS_SIZE
: ABLOCKS_SIZE
- 1));
862 free (ABLOCKS_BASE (abase
));
867 /* Return a new buffer structure allocated from the heap with
868 a call to lisp_malloc. */
874 = (struct buffer
*) lisp_malloc (sizeof (struct buffer
),
880 /* Arranging to disable input signals while we're in malloc.
882 This only works with GNU malloc. To help out systems which can't
883 use GNU malloc, all the calls to malloc, realloc, and free
884 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
885 pairs; unfortunately, we have no idea what C library functions
886 might call malloc, so we can't really protect them unless you're
887 using GNU malloc. Fortunately, most of the major operating systems
888 can use GNU malloc. */
890 #ifndef SYSTEM_MALLOC
891 #ifndef DOUG_LEA_MALLOC
892 extern void * (*__malloc_hook
) P_ ((size_t));
893 extern void * (*__realloc_hook
) P_ ((void *, size_t));
894 extern void (*__free_hook
) P_ ((void *));
895 /* Else declared in malloc.h, perhaps with an extra arg. */
896 #endif /* DOUG_LEA_MALLOC */
897 static void * (*old_malloc_hook
) ();
898 static void * (*old_realloc_hook
) ();
899 static void (*old_free_hook
) ();
901 /* This function is used as the hook for free to call. */
904 emacs_blocked_free (ptr
)
909 #ifdef GC_MALLOC_CHECK
915 if (m
== MEM_NIL
|| m
->start
!= ptr
)
918 "Freeing `%p' which wasn't allocated with malloc\n", ptr
);
923 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
927 #endif /* GC_MALLOC_CHECK */
929 __free_hook
= old_free_hook
;
932 /* If we released our reserve (due to running out of memory),
933 and we have a fair amount free once again,
934 try to set aside another reserve in case we run out once more. */
935 if (spare_memory
== 0
936 /* Verify there is enough space that even with the malloc
937 hysteresis this call won't run out again.
938 The code here is correct as long as SPARE_MEMORY
939 is substantially larger than the block size malloc uses. */
940 && (bytes_used_when_full
941 > BYTES_USED
+ max (malloc_hysteresis
, 4) * SPARE_MEMORY
))
942 spare_memory
= (char *) malloc ((size_t) SPARE_MEMORY
);
944 __free_hook
= emacs_blocked_free
;
949 /* If we released our reserve (due to running out of memory),
950 and we have a fair amount free once again,
951 try to set aside another reserve in case we run out once more.
953 This is called when a relocatable block is freed in ralloc.c. */
956 refill_memory_reserve ()
958 if (spare_memory
== 0)
959 spare_memory
= (char *) malloc ((size_t) SPARE_MEMORY
);
963 /* This function is the malloc hook that Emacs uses. */
966 emacs_blocked_malloc (size
)
972 __malloc_hook
= old_malloc_hook
;
973 #ifdef DOUG_LEA_MALLOC
974 mallopt (M_TOP_PAD
, malloc_hysteresis
* 4096);
976 __malloc_extra_blocks
= malloc_hysteresis
;
979 value
= (void *) malloc (size
);
981 #ifdef GC_MALLOC_CHECK
983 struct mem_node
*m
= mem_find (value
);
986 fprintf (stderr
, "Malloc returned %p which is already in use\n",
988 fprintf (stderr
, "Region in use is %p...%p, %u bytes, type %d\n",
989 m
->start
, m
->end
, (char *) m
->end
- (char *) m
->start
,
994 if (!dont_register_blocks
)
996 mem_insert (value
, (char *) value
+ max (1, size
), allocated_mem_type
);
997 allocated_mem_type
= MEM_TYPE_NON_LISP
;
1000 #endif /* GC_MALLOC_CHECK */
1002 __malloc_hook
= emacs_blocked_malloc
;
1005 /* fprintf (stderr, "%p malloc\n", value); */
1010 /* This function is the realloc hook that Emacs uses. */
1013 emacs_blocked_realloc (ptr
, size
)
1020 __realloc_hook
= old_realloc_hook
;
1022 #ifdef GC_MALLOC_CHECK
1025 struct mem_node
*m
= mem_find (ptr
);
1026 if (m
== MEM_NIL
|| m
->start
!= ptr
)
1029 "Realloc of %p which wasn't allocated with malloc\n",
1037 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1039 /* Prevent malloc from registering blocks. */
1040 dont_register_blocks
= 1;
1041 #endif /* GC_MALLOC_CHECK */
1043 value
= (void *) realloc (ptr
, size
);
1045 #ifdef GC_MALLOC_CHECK
1046 dont_register_blocks
= 0;
1049 struct mem_node
*m
= mem_find (value
);
1052 fprintf (stderr
, "Realloc returns memory that is already in use\n");
1056 /* Can't handle zero size regions in the red-black tree. */
1057 mem_insert (value
, (char *) value
+ max (size
, 1), MEM_TYPE_NON_LISP
);
1060 /* fprintf (stderr, "%p <- realloc\n", value); */
1061 #endif /* GC_MALLOC_CHECK */
1063 __realloc_hook
= emacs_blocked_realloc
;
1070 /* Called from main to set up malloc to use our hooks. */
1073 uninterrupt_malloc ()
1075 if (__free_hook
!= emacs_blocked_free
)
1076 old_free_hook
= __free_hook
;
1077 __free_hook
= emacs_blocked_free
;
1079 if (__malloc_hook
!= emacs_blocked_malloc
)
1080 old_malloc_hook
= __malloc_hook
;
1081 __malloc_hook
= emacs_blocked_malloc
;
1083 if (__realloc_hook
!= emacs_blocked_realloc
)
1084 old_realloc_hook
= __realloc_hook
;
1085 __realloc_hook
= emacs_blocked_realloc
;
1088 #endif /* not SYSTEM_MALLOC */
1092 /***********************************************************************
1094 ***********************************************************************/
1096 /* Number of intervals allocated in an interval_block structure.
1097 The 1020 is 1024 minus malloc overhead. */
1099 #define INTERVAL_BLOCK_SIZE \
1100 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1102 /* Intervals are allocated in chunks in form of an interval_block
1105 struct interval_block
1107 struct interval_block
*next
;
1108 struct interval intervals
[INTERVAL_BLOCK_SIZE
];
1111 /* Current interval block. Its `next' pointer points to older
1114 struct interval_block
*interval_block
;
1116 /* Index in interval_block above of the next unused interval
1119 static int interval_block_index
;
1121 /* Number of free and live intervals. */
1123 static int total_free_intervals
, total_intervals
;
1125 /* List of free intervals. */
1127 INTERVAL interval_free_list
;
1129 /* Total number of interval blocks now in use. */
1131 int n_interval_blocks
;
1134 /* Initialize interval allocation. */
1139 interval_block
= NULL
;
1140 interval_block_index
= INTERVAL_BLOCK_SIZE
;
1141 interval_free_list
= 0;
1142 n_interval_blocks
= 0;
1146 /* Return a new interval. */
1153 if (interval_free_list
)
1155 val
= interval_free_list
;
1156 interval_free_list
= INTERVAL_PARENT (interval_free_list
);
1160 if (interval_block_index
== INTERVAL_BLOCK_SIZE
)
1162 register struct interval_block
*newi
;
1164 newi
= (struct interval_block
*) lisp_malloc (sizeof *newi
,
1167 newi
->next
= interval_block
;
1168 interval_block
= newi
;
1169 interval_block_index
= 0;
1170 n_interval_blocks
++;
1172 val
= &interval_block
->intervals
[interval_block_index
++];
1174 consing_since_gc
+= sizeof (struct interval
);
1176 RESET_INTERVAL (val
);
1182 /* Mark Lisp objects in interval I. */
1185 mark_interval (i
, dummy
)
1186 register INTERVAL i
;
1189 eassert (!i
->gcmarkbit
); /* Intervals are never shared. */
1191 mark_object (i
->plist
);
1195 /* Mark the interval tree rooted in TREE. Don't call this directly;
1196 use the macro MARK_INTERVAL_TREE instead. */
1199 mark_interval_tree (tree
)
1200 register INTERVAL tree
;
1202 /* No need to test if this tree has been marked already; this
1203 function is always called through the MARK_INTERVAL_TREE macro,
1204 which takes care of that. */
1206 traverse_intervals_noorder (tree
, mark_interval
, Qnil
);
1210 /* Mark the interval tree rooted in I. */
1212 #define MARK_INTERVAL_TREE(i) \
1214 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1215 mark_interval_tree (i); \
1219 #define UNMARK_BALANCE_INTERVALS(i) \
1221 if (! NULL_INTERVAL_P (i)) \
1222 (i) = balance_intervals (i); \
1226 /* Number support. If NO_UNION_TYPE isn't in effect, we
1227 can't create number objects in macros. */
1235 obj
.s
.type
= Lisp_Int
;
1240 /***********************************************************************
1242 ***********************************************************************/
1244 /* Lisp_Strings are allocated in string_block structures. When a new
1245 string_block is allocated, all the Lisp_Strings it contains are
1246 added to a free-list string_free_list. When a new Lisp_String is
1247 needed, it is taken from that list. During the sweep phase of GC,
1248 string_blocks that are entirely free are freed, except two which
1251 String data is allocated from sblock structures. Strings larger
1252 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1253 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1255 Sblocks consist internally of sdata structures, one for each
1256 Lisp_String. The sdata structure points to the Lisp_String it
1257 belongs to. The Lisp_String points back to the `u.data' member of
1258 its sdata structure.
1260 When a Lisp_String is freed during GC, it is put back on
1261 string_free_list, and its `data' member and its sdata's `string'
1262 pointer is set to null. The size of the string is recorded in the
1263 `u.nbytes' member of the sdata. So, sdata structures that are no
1264 longer used, can be easily recognized, and it's easy to compact the
1265 sblocks of small strings which we do in compact_small_strings. */
1267 /* Size in bytes of an sblock structure used for small strings. This
1268 is 8192 minus malloc overhead. */
1270 #define SBLOCK_SIZE 8188
1272 /* Strings larger than this are considered large strings. String data
1273 for large strings is allocated from individual sblocks. */
1275 #define LARGE_STRING_BYTES 1024
1277 /* Structure describing string memory sub-allocated from an sblock.
1278 This is where the contents of Lisp strings are stored. */
1282 /* Back-pointer to the string this sdata belongs to. If null, this
1283 structure is free, and the NBYTES member of the union below
1284 contains the string's byte size (the same value that STRING_BYTES
1285 would return if STRING were non-null). If non-null, STRING_BYTES
1286 (STRING) is the size of the data, and DATA contains the string's
1288 struct Lisp_String
*string
;
1290 #ifdef GC_CHECK_STRING_BYTES
1293 unsigned char data
[1];
1295 #define SDATA_NBYTES(S) (S)->nbytes
1296 #define SDATA_DATA(S) (S)->data
1298 #else /* not GC_CHECK_STRING_BYTES */
1302 /* When STRING in non-null. */
1303 unsigned char data
[1];
1305 /* When STRING is null. */
1310 #define SDATA_NBYTES(S) (S)->u.nbytes
1311 #define SDATA_DATA(S) (S)->u.data
1313 #endif /* not GC_CHECK_STRING_BYTES */
1317 /* Structure describing a block of memory which is sub-allocated to
1318 obtain string data memory for strings. Blocks for small strings
1319 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1320 as large as needed. */
1325 struct sblock
*next
;
1327 /* Pointer to the next free sdata block. This points past the end
1328 of the sblock if there isn't any space left in this block. */
1329 struct sdata
*next_free
;
1331 /* Start of data. */
1332 struct sdata first_data
;
1335 /* Number of Lisp strings in a string_block structure. The 1020 is
1336 1024 minus malloc overhead. */
1338 #define STRING_BLOCK_SIZE \
1339 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1341 /* Structure describing a block from which Lisp_String structures
1346 struct string_block
*next
;
1347 struct Lisp_String strings
[STRING_BLOCK_SIZE
];
1350 /* Head and tail of the list of sblock structures holding Lisp string
1351 data. We always allocate from current_sblock. The NEXT pointers
1352 in the sblock structures go from oldest_sblock to current_sblock. */
1354 static struct sblock
*oldest_sblock
, *current_sblock
;
1356 /* List of sblocks for large strings. */
1358 static struct sblock
*large_sblocks
;
1360 /* List of string_block structures, and how many there are. */
1362 static struct string_block
*string_blocks
;
1363 static int n_string_blocks
;
1365 /* Free-list of Lisp_Strings. */
1367 static struct Lisp_String
*string_free_list
;
1369 /* Number of live and free Lisp_Strings. */
1371 static int total_strings
, total_free_strings
;
1373 /* Number of bytes used by live strings. */
1375 static int total_string_size
;
1377 /* Given a pointer to a Lisp_String S which is on the free-list
1378 string_free_list, return a pointer to its successor in the
1381 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1383 /* Return a pointer to the sdata structure belonging to Lisp string S.
1384 S must be live, i.e. S->data must not be null. S->data is actually
1385 a pointer to the `u.data' member of its sdata structure; the
1386 structure starts at a constant offset in front of that. */
1388 #ifdef GC_CHECK_STRING_BYTES
1390 #define SDATA_OF_STRING(S) \
1391 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1392 - sizeof (EMACS_INT)))
1394 #else /* not GC_CHECK_STRING_BYTES */
1396 #define SDATA_OF_STRING(S) \
1397 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1399 #endif /* not GC_CHECK_STRING_BYTES */
1401 /* Value is the size of an sdata structure large enough to hold NBYTES
1402 bytes of string data. The value returned includes a terminating
1403 NUL byte, the size of the sdata structure, and padding. */
1405 #ifdef GC_CHECK_STRING_BYTES
1407 #define SDATA_SIZE(NBYTES) \
1408 ((sizeof (struct Lisp_String *) \
1410 + sizeof (EMACS_INT) \
1411 + sizeof (EMACS_INT) - 1) \
1412 & ~(sizeof (EMACS_INT) - 1))
1414 #else /* not GC_CHECK_STRING_BYTES */
1416 #define SDATA_SIZE(NBYTES) \
1417 ((sizeof (struct Lisp_String *) \
1419 + sizeof (EMACS_INT) - 1) \
1420 & ~(sizeof (EMACS_INT) - 1))
1422 #endif /* not GC_CHECK_STRING_BYTES */
1424 /* Initialize string allocation. Called from init_alloc_once. */
1429 total_strings
= total_free_strings
= total_string_size
= 0;
1430 oldest_sblock
= current_sblock
= large_sblocks
= NULL
;
1431 string_blocks
= NULL
;
1432 n_string_blocks
= 0;
1433 string_free_list
= NULL
;
1437 #ifdef GC_CHECK_STRING_BYTES
1439 static int check_string_bytes_count
;
1441 void check_string_bytes
P_ ((int));
1442 void check_sblock
P_ ((struct sblock
*));
1444 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1447 /* Like GC_STRING_BYTES, but with debugging check. */
1451 struct Lisp_String
*s
;
1453 int nbytes
= (s
->size_byte
< 0 ? s
->size
& ~ARRAY_MARK_FLAG
: s
->size_byte
);
1454 if (!PURE_POINTER_P (s
)
1456 && nbytes
!= SDATA_NBYTES (SDATA_OF_STRING (s
)))
1461 /* Check validity of Lisp strings' string_bytes member in B. */
1467 struct sdata
*from
, *end
, *from_end
;
1471 for (from
= &b
->first_data
; from
< end
; from
= from_end
)
1473 /* Compute the next FROM here because copying below may
1474 overwrite data we need to compute it. */
1477 /* Check that the string size recorded in the string is the
1478 same as the one recorded in the sdata structure. */
1480 CHECK_STRING_BYTES (from
->string
);
1483 nbytes
= GC_STRING_BYTES (from
->string
);
1485 nbytes
= SDATA_NBYTES (from
);
1487 nbytes
= SDATA_SIZE (nbytes
);
1488 from_end
= (struct sdata
*) ((char *) from
+ nbytes
);
1493 /* Check validity of Lisp strings' string_bytes member. ALL_P
1494 non-zero means check all strings, otherwise check only most
1495 recently allocated strings. Used for hunting a bug. */
1498 check_string_bytes (all_p
)
1505 for (b
= large_sblocks
; b
; b
= b
->next
)
1507 struct Lisp_String
*s
= b
->first_data
.string
;
1509 CHECK_STRING_BYTES (s
);
1512 for (b
= oldest_sblock
; b
; b
= b
->next
)
1516 check_sblock (current_sblock
);
1519 #endif /* GC_CHECK_STRING_BYTES */
1522 /* Return a new Lisp_String. */
1524 static struct Lisp_String
*
1527 struct Lisp_String
*s
;
1529 /* If the free-list is empty, allocate a new string_block, and
1530 add all the Lisp_Strings in it to the free-list. */
1531 if (string_free_list
== NULL
)
1533 struct string_block
*b
;
1536 b
= (struct string_block
*) lisp_malloc (sizeof *b
, MEM_TYPE_STRING
);
1537 bzero (b
, sizeof *b
);
1538 b
->next
= string_blocks
;
1542 for (i
= STRING_BLOCK_SIZE
- 1; i
>= 0; --i
)
1545 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
1546 string_free_list
= s
;
1549 total_free_strings
+= STRING_BLOCK_SIZE
;
1552 /* Pop a Lisp_String off the free-list. */
1553 s
= string_free_list
;
1554 string_free_list
= NEXT_FREE_LISP_STRING (s
);
1556 /* Probably not strictly necessary, but play it safe. */
1557 bzero (s
, sizeof *s
);
1559 --total_free_strings
;
1562 consing_since_gc
+= sizeof *s
;
1564 #ifdef GC_CHECK_STRING_BYTES
1571 if (++check_string_bytes_count
== 200)
1573 check_string_bytes_count
= 0;
1574 check_string_bytes (1);
1577 check_string_bytes (0);
1579 #endif /* GC_CHECK_STRING_BYTES */
1585 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1586 plus a NUL byte at the end. Allocate an sdata structure for S, and
1587 set S->data to its `u.data' member. Store a NUL byte at the end of
1588 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1589 S->data if it was initially non-null. */
1592 allocate_string_data (s
, nchars
, nbytes
)
1593 struct Lisp_String
*s
;
1596 struct sdata
*data
, *old_data
;
1598 int needed
, old_nbytes
;
1600 /* Determine the number of bytes needed to store NBYTES bytes
1602 needed
= SDATA_SIZE (nbytes
);
1604 if (nbytes
> LARGE_STRING_BYTES
)
1606 size_t size
= sizeof *b
- sizeof (struct sdata
) + needed
;
1608 #ifdef DOUG_LEA_MALLOC
1609 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1610 because mapped region contents are not preserved in
1613 In case you think of allowing it in a dumped Emacs at the
1614 cost of not being able to re-dump, there's another reason:
1615 mmap'ed data typically have an address towards the top of the
1616 address space, which won't fit into an EMACS_INT (at least on
1617 32-bit systems with the current tagging scheme). --fx */
1618 mallopt (M_MMAP_MAX
, 0);
1621 b
= (struct sblock
*) lisp_malloc (size
, MEM_TYPE_NON_LISP
);
1623 #ifdef DOUG_LEA_MALLOC
1624 /* Back to a reasonable maximum of mmap'ed areas. */
1625 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
1628 b
->next_free
= &b
->first_data
;
1629 b
->first_data
.string
= NULL
;
1630 b
->next
= large_sblocks
;
1633 else if (current_sblock
== NULL
1634 || (((char *) current_sblock
+ SBLOCK_SIZE
1635 - (char *) current_sblock
->next_free
)
1638 /* Not enough room in the current sblock. */
1639 b
= (struct sblock
*) lisp_malloc (SBLOCK_SIZE
, MEM_TYPE_NON_LISP
);
1640 b
->next_free
= &b
->first_data
;
1641 b
->first_data
.string
= NULL
;
1645 current_sblock
->next
= b
;
1653 old_data
= s
->data
? SDATA_OF_STRING (s
) : NULL
;
1654 old_nbytes
= GC_STRING_BYTES (s
);
1656 data
= b
->next_free
;
1658 s
->data
= SDATA_DATA (data
);
1659 #ifdef GC_CHECK_STRING_BYTES
1660 SDATA_NBYTES (data
) = nbytes
;
1663 s
->size_byte
= nbytes
;
1664 s
->data
[nbytes
] = '\0';
1665 b
->next_free
= (struct sdata
*) ((char *) data
+ needed
);
1667 /* If S had already data assigned, mark that as free by setting its
1668 string back-pointer to null, and recording the size of the data
1672 SDATA_NBYTES (old_data
) = old_nbytes
;
1673 old_data
->string
= NULL
;
1676 consing_since_gc
+= needed
;
1680 /* Sweep and compact strings. */
1685 struct string_block
*b
, *next
;
1686 struct string_block
*live_blocks
= NULL
;
1688 string_free_list
= NULL
;
1689 total_strings
= total_free_strings
= 0;
1690 total_string_size
= 0;
1692 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1693 for (b
= string_blocks
; b
; b
= next
)
1696 struct Lisp_String
*free_list_before
= string_free_list
;
1700 for (i
= 0; i
< STRING_BLOCK_SIZE
; ++i
)
1702 struct Lisp_String
*s
= b
->strings
+ i
;
1706 /* String was not on free-list before. */
1707 if (STRING_MARKED_P (s
))
1709 /* String is live; unmark it and its intervals. */
1712 if (!NULL_INTERVAL_P (s
->intervals
))
1713 UNMARK_BALANCE_INTERVALS (s
->intervals
);
1716 total_string_size
+= STRING_BYTES (s
);
1720 /* String is dead. Put it on the free-list. */
1721 struct sdata
*data
= SDATA_OF_STRING (s
);
1723 /* Save the size of S in its sdata so that we know
1724 how large that is. Reset the sdata's string
1725 back-pointer so that we know it's free. */
1726 #ifdef GC_CHECK_STRING_BYTES
1727 if (GC_STRING_BYTES (s
) != SDATA_NBYTES (data
))
1730 data
->u
.nbytes
= GC_STRING_BYTES (s
);
1732 data
->string
= NULL
;
1734 /* Reset the strings's `data' member so that we
1738 /* Put the string on the free-list. */
1739 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
1740 string_free_list
= s
;
1746 /* S was on the free-list before. Put it there again. */
1747 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
1748 string_free_list
= s
;
1753 /* Free blocks that contain free Lisp_Strings only, except
1754 the first two of them. */
1755 if (nfree
== STRING_BLOCK_SIZE
1756 && total_free_strings
> STRING_BLOCK_SIZE
)
1760 string_free_list
= free_list_before
;
1764 total_free_strings
+= nfree
;
1765 b
->next
= live_blocks
;
1770 string_blocks
= live_blocks
;
1771 free_large_strings ();
1772 compact_small_strings ();
1776 /* Free dead large strings. */
1779 free_large_strings ()
1781 struct sblock
*b
, *next
;
1782 struct sblock
*live_blocks
= NULL
;
1784 for (b
= large_sblocks
; b
; b
= next
)
1788 if (b
->first_data
.string
== NULL
)
1792 b
->next
= live_blocks
;
1797 large_sblocks
= live_blocks
;
1801 /* Compact data of small strings. Free sblocks that don't contain
1802 data of live strings after compaction. */
1805 compact_small_strings ()
1807 struct sblock
*b
, *tb
, *next
;
1808 struct sdata
*from
, *to
, *end
, *tb_end
;
1809 struct sdata
*to_end
, *from_end
;
1811 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1812 to, and TB_END is the end of TB. */
1814 tb_end
= (struct sdata
*) ((char *) tb
+ SBLOCK_SIZE
);
1815 to
= &tb
->first_data
;
1817 /* Step through the blocks from the oldest to the youngest. We
1818 expect that old blocks will stabilize over time, so that less
1819 copying will happen this way. */
1820 for (b
= oldest_sblock
; b
; b
= b
->next
)
1823 xassert ((char *) end
<= (char *) b
+ SBLOCK_SIZE
);
1825 for (from
= &b
->first_data
; from
< end
; from
= from_end
)
1827 /* Compute the next FROM here because copying below may
1828 overwrite data we need to compute it. */
1831 #ifdef GC_CHECK_STRING_BYTES
1832 /* Check that the string size recorded in the string is the
1833 same as the one recorded in the sdata structure. */
1835 && GC_STRING_BYTES (from
->string
) != SDATA_NBYTES (from
))
1837 #endif /* GC_CHECK_STRING_BYTES */
1840 nbytes
= GC_STRING_BYTES (from
->string
);
1842 nbytes
= SDATA_NBYTES (from
);
1844 nbytes
= SDATA_SIZE (nbytes
);
1845 from_end
= (struct sdata
*) ((char *) from
+ nbytes
);
1847 /* FROM->string non-null means it's alive. Copy its data. */
1850 /* If TB is full, proceed with the next sblock. */
1851 to_end
= (struct sdata
*) ((char *) to
+ nbytes
);
1852 if (to_end
> tb_end
)
1856 tb_end
= (struct sdata
*) ((char *) tb
+ SBLOCK_SIZE
);
1857 to
= &tb
->first_data
;
1858 to_end
= (struct sdata
*) ((char *) to
+ nbytes
);
1861 /* Copy, and update the string's `data' pointer. */
1864 xassert (tb
!= b
|| to
<= from
);
1865 safe_bcopy ((char *) from
, (char *) to
, nbytes
);
1866 to
->string
->data
= SDATA_DATA (to
);
1869 /* Advance past the sdata we copied to. */
1875 /* The rest of the sblocks following TB don't contain live data, so
1876 we can free them. */
1877 for (b
= tb
->next
; b
; b
= next
)
1885 current_sblock
= tb
;
1889 DEFUN ("make-string", Fmake_string
, Smake_string
, 2, 2, 0,
1890 doc
: /* Return a newly created string of length LENGTH, with each element being INIT.
1891 Both LENGTH and INIT must be numbers. */)
1893 Lisp_Object length
, init
;
1895 register Lisp_Object val
;
1896 register unsigned char *p
, *end
;
1899 CHECK_NATNUM (length
);
1900 CHECK_NUMBER (init
);
1903 if (SINGLE_BYTE_CHAR_P (c
))
1905 nbytes
= XINT (length
);
1906 val
= make_uninit_string (nbytes
);
1908 end
= p
+ SCHARS (val
);
1914 unsigned char str
[MAX_MULTIBYTE_LENGTH
];
1915 int len
= CHAR_STRING (c
, str
);
1917 nbytes
= len
* XINT (length
);
1918 val
= make_uninit_multibyte_string (XINT (length
), nbytes
);
1923 bcopy (str
, p
, len
);
1933 DEFUN ("make-bool-vector", Fmake_bool_vector
, Smake_bool_vector
, 2, 2, 0,
1934 doc
: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
1935 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
1937 Lisp_Object length
, init
;
1939 register Lisp_Object val
;
1940 struct Lisp_Bool_Vector
*p
;
1942 int length_in_chars
, length_in_elts
, bits_per_value
;
1944 CHECK_NATNUM (length
);
1946 bits_per_value
= sizeof (EMACS_INT
) * BITS_PER_CHAR
;
1948 length_in_elts
= (XFASTINT (length
) + bits_per_value
- 1) / bits_per_value
;
1949 length_in_chars
= ((XFASTINT (length
) + BITS_PER_CHAR
- 1) / BITS_PER_CHAR
);
1951 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1952 slot `size' of the struct Lisp_Bool_Vector. */
1953 val
= Fmake_vector (make_number (length_in_elts
+ 1), Qnil
);
1954 p
= XBOOL_VECTOR (val
);
1956 /* Get rid of any bits that would cause confusion. */
1958 XSETBOOL_VECTOR (val
, p
);
1959 p
->size
= XFASTINT (length
);
1961 real_init
= (NILP (init
) ? 0 : -1);
1962 for (i
= 0; i
< length_in_chars
; i
++)
1963 p
->data
[i
] = real_init
;
1965 /* Clear the extraneous bits in the last byte. */
1966 if (XINT (length
) != length_in_chars
* BITS_PER_CHAR
)
1967 XBOOL_VECTOR (val
)->data
[length_in_chars
- 1]
1968 &= (1 << (XINT (length
) % BITS_PER_CHAR
)) - 1;
1974 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
1975 of characters from the contents. This string may be unibyte or
1976 multibyte, depending on the contents. */
1979 make_string (contents
, nbytes
)
1980 const char *contents
;
1983 register Lisp_Object val
;
1984 int nchars
, multibyte_nbytes
;
1986 parse_str_as_multibyte (contents
, nbytes
, &nchars
, &multibyte_nbytes
);
1987 if (nbytes
== nchars
|| nbytes
!= multibyte_nbytes
)
1988 /* CONTENTS contains no multibyte sequences or contains an invalid
1989 multibyte sequence. We must make unibyte string. */
1990 val
= make_unibyte_string (contents
, nbytes
);
1992 val
= make_multibyte_string (contents
, nchars
, nbytes
);
1997 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2000 make_unibyte_string (contents
, length
)
2001 const char *contents
;
2004 register Lisp_Object val
;
2005 val
= make_uninit_string (length
);
2006 bcopy (contents
, SDATA (val
), length
);
2007 STRING_SET_UNIBYTE (val
);
2012 /* Make a multibyte string from NCHARS characters occupying NBYTES
2013 bytes at CONTENTS. */
2016 make_multibyte_string (contents
, nchars
, nbytes
)
2017 const char *contents
;
2020 register Lisp_Object val
;
2021 val
= make_uninit_multibyte_string (nchars
, nbytes
);
2022 bcopy (contents
, SDATA (val
), nbytes
);
2027 /* Make a string from NCHARS characters occupying NBYTES bytes at
2028 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2031 make_string_from_bytes (contents
, nchars
, nbytes
)
2032 const char *contents
;
2035 register Lisp_Object val
;
2036 val
= make_uninit_multibyte_string (nchars
, nbytes
);
2037 bcopy (contents
, SDATA (val
), nbytes
);
2038 if (SBYTES (val
) == SCHARS (val
))
2039 STRING_SET_UNIBYTE (val
);
2044 /* Make a string from NCHARS characters occupying NBYTES bytes at
2045 CONTENTS. The argument MULTIBYTE controls whether to label the
2046 string as multibyte. If NCHARS is negative, it counts the number of
2047 characters by itself. */
2050 make_specified_string (contents
, nchars
, nbytes
, multibyte
)
2051 const char *contents
;
2055 register Lisp_Object val
;
2060 nchars
= multibyte_chars_in_text (contents
, nbytes
);
2064 val
= make_uninit_multibyte_string (nchars
, nbytes
);
2065 bcopy (contents
, SDATA (val
), nbytes
);
2067 STRING_SET_UNIBYTE (val
);
2072 /* Make a string from the data at STR, treating it as multibyte if the
2079 return make_string (str
, strlen (str
));
2083 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2084 occupying LENGTH bytes. */
2087 make_uninit_string (length
)
2091 val
= make_uninit_multibyte_string (length
, length
);
2092 STRING_SET_UNIBYTE (val
);
2097 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2098 which occupy NBYTES bytes. */
2101 make_uninit_multibyte_string (nchars
, nbytes
)
2105 struct Lisp_String
*s
;
2110 s
= allocate_string ();
2111 allocate_string_data (s
, nchars
, nbytes
);
2112 XSETSTRING (string
, s
);
2113 string_chars_consed
+= nbytes
;
2119 /***********************************************************************
2121 ***********************************************************************/
2123 /* We store float cells inside of float_blocks, allocating a new
2124 float_block with malloc whenever necessary. Float cells reclaimed
2125 by GC are put on a free list to be reallocated before allocating
2126 any new float cells from the latest float_block. */
2128 #define FLOAT_BLOCK_SIZE \
2129 (((BLOCK_BYTES - sizeof (struct float_block *)) * CHAR_BIT) \
2130 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2132 #define GETMARKBIT(block,n) \
2133 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2134 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2137 #define SETMARKBIT(block,n) \
2138 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2139 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2141 #define UNSETMARKBIT(block,n) \
2142 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2143 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2145 #define FLOAT_BLOCK(fptr) \
2146 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2148 #define FLOAT_INDEX(fptr) \
2149 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2153 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2154 struct Lisp_Float floats
[FLOAT_BLOCK_SIZE
];
2155 int gcmarkbits
[1 + FLOAT_BLOCK_SIZE
/ (sizeof(int) * CHAR_BIT
)];
2156 struct float_block
*next
;
2159 #define FLOAT_MARKED_P(fptr) \
2160 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2162 #define FLOAT_MARK(fptr) \
2163 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2165 #define FLOAT_UNMARK(fptr) \
2166 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2168 /* Current float_block. */
2170 struct float_block
*float_block
;
2172 /* Index of first unused Lisp_Float in the current float_block. */
2174 int float_block_index
;
2176 /* Total number of float blocks now in use. */
2180 /* Free-list of Lisp_Floats. */
2182 struct Lisp_Float
*float_free_list
;
2185 /* Initialize float allocation. */
2191 float_block_index
= FLOAT_BLOCK_SIZE
; /* Force alloc of new float_block. */
2192 float_free_list
= 0;
2197 /* Explicitly free a float cell by putting it on the free-list. */
2201 struct Lisp_Float
*ptr
;
2203 *(struct Lisp_Float
**)&ptr
->data
= float_free_list
;
2204 float_free_list
= ptr
;
2208 /* Return a new float object with value FLOAT_VALUE. */
2211 make_float (float_value
)
2214 register Lisp_Object val
;
2216 if (float_free_list
)
2218 /* We use the data field for chaining the free list
2219 so that we won't use the same field that has the mark bit. */
2220 XSETFLOAT (val
, float_free_list
);
2221 float_free_list
= *(struct Lisp_Float
**)&float_free_list
->data
;
2225 if (float_block_index
== FLOAT_BLOCK_SIZE
)
2227 register struct float_block
*new;
2229 new = (struct float_block
*) lisp_align_malloc (sizeof *new,
2231 new->next
= float_block
;
2232 bzero ((char *) new->gcmarkbits
, sizeof new->gcmarkbits
);
2234 float_block_index
= 0;
2237 XSETFLOAT (val
, &float_block
->floats
[float_block_index
]);
2238 float_block_index
++;
2241 XFLOAT_DATA (val
) = float_value
;
2242 eassert (!FLOAT_MARKED_P (XFLOAT (val
)));
2243 consing_since_gc
+= sizeof (struct Lisp_Float
);
2250 /***********************************************************************
2252 ***********************************************************************/
2254 /* We store cons cells inside of cons_blocks, allocating a new
2255 cons_block with malloc whenever necessary. Cons cells reclaimed by
2256 GC are put on a free list to be reallocated before allocating
2257 any new cons cells from the latest cons_block. */
2259 #define CONS_BLOCK_SIZE \
2260 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2261 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2263 #define CONS_BLOCK(fptr) \
2264 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2266 #define CONS_INDEX(fptr) \
2267 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2271 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2272 struct Lisp_Cons conses
[CONS_BLOCK_SIZE
];
2273 int gcmarkbits
[1 + CONS_BLOCK_SIZE
/ (sizeof(int) * CHAR_BIT
)];
2274 struct cons_block
*next
;
2277 #define CONS_MARKED_P(fptr) \
2278 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2280 #define CONS_MARK(fptr) \
2281 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2283 #define CONS_UNMARK(fptr) \
2284 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2286 /* Current cons_block. */
2288 struct cons_block
*cons_block
;
2290 /* Index of first unused Lisp_Cons in the current block. */
2292 int cons_block_index
;
2294 /* Free-list of Lisp_Cons structures. */
2296 struct Lisp_Cons
*cons_free_list
;
2298 /* Total number of cons blocks now in use. */
2303 /* Initialize cons allocation. */
2309 cons_block_index
= CONS_BLOCK_SIZE
; /* Force alloc of new cons_block. */
2315 /* Explicitly free a cons cell by putting it on the free-list. */
2319 struct Lisp_Cons
*ptr
;
2321 *(struct Lisp_Cons
**)&ptr
->cdr
= cons_free_list
;
2325 cons_free_list
= ptr
;
2329 DEFUN ("cons", Fcons
, Scons
, 2, 2, 0,
2330 doc
: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2332 Lisp_Object car
, cdr
;
2334 register Lisp_Object val
;
2338 /* We use the cdr for chaining the free list
2339 so that we won't use the same field that has the mark bit. */
2340 XSETCONS (val
, cons_free_list
);
2341 cons_free_list
= *(struct Lisp_Cons
**)&cons_free_list
->cdr
;
2345 if (cons_block_index
== CONS_BLOCK_SIZE
)
2347 register struct cons_block
*new;
2348 new = (struct cons_block
*) lisp_align_malloc (sizeof *new,
2350 bzero ((char *) new->gcmarkbits
, sizeof new->gcmarkbits
);
2351 new->next
= cons_block
;
2353 cons_block_index
= 0;
2356 XSETCONS (val
, &cons_block
->conses
[cons_block_index
]);
2362 eassert (!CONS_MARKED_P (XCONS (val
)));
2363 consing_since_gc
+= sizeof (struct Lisp_Cons
);
2364 cons_cells_consed
++;
2369 /* Make a list of 2, 3, 4 or 5 specified objects. */
2373 Lisp_Object arg1
, arg2
;
2375 return Fcons (arg1
, Fcons (arg2
, Qnil
));
2380 list3 (arg1
, arg2
, arg3
)
2381 Lisp_Object arg1
, arg2
, arg3
;
2383 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Qnil
)));
2388 list4 (arg1
, arg2
, arg3
, arg4
)
2389 Lisp_Object arg1
, arg2
, arg3
, arg4
;
2391 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Fcons (arg4
, Qnil
))));
2396 list5 (arg1
, arg2
, arg3
, arg4
, arg5
)
2397 Lisp_Object arg1
, arg2
, arg3
, arg4
, arg5
;
2399 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Fcons (arg4
,
2400 Fcons (arg5
, Qnil
)))));
2404 DEFUN ("list", Flist
, Slist
, 0, MANY
, 0,
2405 doc
: /* Return a newly created list with specified arguments as elements.
2406 Any number of arguments, even zero arguments, are allowed.
2407 usage: (list &rest OBJECTS) */)
2410 register Lisp_Object
*args
;
2412 register Lisp_Object val
;
2418 val
= Fcons (args
[nargs
], val
);
2424 DEFUN ("make-list", Fmake_list
, Smake_list
, 2, 2, 0,
2425 doc
: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2427 register Lisp_Object length
, init
;
2429 register Lisp_Object val
;
2432 CHECK_NATNUM (length
);
2433 size
= XFASTINT (length
);
2438 val
= Fcons (init
, val
);
2443 val
= Fcons (init
, val
);
2448 val
= Fcons (init
, val
);
2453 val
= Fcons (init
, val
);
2458 val
= Fcons (init
, val
);
2473 /***********************************************************************
2475 ***********************************************************************/
2477 /* Singly-linked list of all vectors. */
2479 struct Lisp_Vector
*all_vectors
;
2481 /* Total number of vector-like objects now in use. */
2486 /* Value is a pointer to a newly allocated Lisp_Vector structure
2487 with room for LEN Lisp_Objects. */
2489 static struct Lisp_Vector
*
2490 allocate_vectorlike (len
, type
)
2494 struct Lisp_Vector
*p
;
2497 #ifdef DOUG_LEA_MALLOC
2498 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2499 because mapped region contents are not preserved in
2502 mallopt (M_MMAP_MAX
, 0);
2506 nbytes
= sizeof *p
+ (len
- 1) * sizeof p
->contents
[0];
2507 p
= (struct Lisp_Vector
*) lisp_malloc (nbytes
, type
);
2509 #ifdef DOUG_LEA_MALLOC
2510 /* Back to a reasonable maximum of mmap'ed areas. */
2512 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
2516 consing_since_gc
+= nbytes
;
2517 vector_cells_consed
+= len
;
2519 p
->next
= all_vectors
;
2526 /* Allocate a vector with NSLOTS slots. */
2528 struct Lisp_Vector
*
2529 allocate_vector (nslots
)
2532 struct Lisp_Vector
*v
= allocate_vectorlike (nslots
, MEM_TYPE_VECTOR
);
2538 /* Allocate other vector-like structures. */
2540 struct Lisp_Hash_Table
*
2541 allocate_hash_table ()
2543 EMACS_INT len
= VECSIZE (struct Lisp_Hash_Table
);
2544 struct Lisp_Vector
*v
= allocate_vectorlike (len
, MEM_TYPE_HASH_TABLE
);
2548 for (i
= 0; i
< len
; ++i
)
2549 v
->contents
[i
] = Qnil
;
2551 return (struct Lisp_Hash_Table
*) v
;
2558 EMACS_INT len
= VECSIZE (struct window
);
2559 struct Lisp_Vector
*v
= allocate_vectorlike (len
, MEM_TYPE_WINDOW
);
2562 for (i
= 0; i
< len
; ++i
)
2563 v
->contents
[i
] = Qnil
;
2566 return (struct window
*) v
;
2573 EMACS_INT len
= VECSIZE (struct frame
);
2574 struct Lisp_Vector
*v
= allocate_vectorlike (len
, MEM_TYPE_FRAME
);
2577 for (i
= 0; i
< len
; ++i
)
2578 v
->contents
[i
] = make_number (0);
2580 return (struct frame
*) v
;
2584 struct Lisp_Process
*
2587 EMACS_INT len
= VECSIZE (struct Lisp_Process
);
2588 struct Lisp_Vector
*v
= allocate_vectorlike (len
, MEM_TYPE_PROCESS
);
2591 for (i
= 0; i
< len
; ++i
)
2592 v
->contents
[i
] = Qnil
;
2595 return (struct Lisp_Process
*) v
;
2599 struct Lisp_Vector
*
2600 allocate_other_vector (len
)
2603 struct Lisp_Vector
*v
= allocate_vectorlike (len
, MEM_TYPE_VECTOR
);
2606 for (i
= 0; i
< len
; ++i
)
2607 v
->contents
[i
] = Qnil
;
2614 DEFUN ("make-vector", Fmake_vector
, Smake_vector
, 2, 2, 0,
2615 doc
: /* Return a newly created vector of length LENGTH, with each element being INIT.
2616 See also the function `vector'. */)
2618 register Lisp_Object length
, init
;
2621 register EMACS_INT sizei
;
2623 register struct Lisp_Vector
*p
;
2625 CHECK_NATNUM (length
);
2626 sizei
= XFASTINT (length
);
2628 p
= allocate_vector (sizei
);
2629 for (index
= 0; index
< sizei
; index
++)
2630 p
->contents
[index
] = init
;
2632 XSETVECTOR (vector
, p
);
2637 DEFUN ("make-char-table", Fmake_char_table
, Smake_char_table
, 1, 2, 0,
2638 doc
: /* Return a newly created char-table, with purpose PURPOSE.
2639 Each element is initialized to INIT, which defaults to nil.
2640 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
2641 The property's value should be an integer between 0 and 10. */)
2643 register Lisp_Object purpose
, init
;
2647 CHECK_SYMBOL (purpose
);
2648 n
= Fget (purpose
, Qchar_table_extra_slots
);
2650 if (XINT (n
) < 0 || XINT (n
) > 10)
2651 args_out_of_range (n
, Qnil
);
2652 /* Add 2 to the size for the defalt and parent slots. */
2653 vector
= Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS
+ XINT (n
)),
2655 XCHAR_TABLE (vector
)->top
= Qt
;
2656 XCHAR_TABLE (vector
)->parent
= Qnil
;
2657 XCHAR_TABLE (vector
)->purpose
= purpose
;
2658 XSETCHAR_TABLE (vector
, XCHAR_TABLE (vector
));
2663 /* Return a newly created sub char table with default value DEFALT.
2664 Since a sub char table does not appear as a top level Emacs Lisp
2665 object, we don't need a Lisp interface to make it. */
2668 make_sub_char_table (defalt
)
2672 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS
), Qnil
);
2673 XCHAR_TABLE (vector
)->top
= Qnil
;
2674 XCHAR_TABLE (vector
)->defalt
= defalt
;
2675 XSETCHAR_TABLE (vector
, XCHAR_TABLE (vector
));
2680 DEFUN ("vector", Fvector
, Svector
, 0, MANY
, 0,
2681 doc
: /* Return a newly created vector with specified arguments as elements.
2682 Any number of arguments, even zero arguments, are allowed.
2683 usage: (vector &rest OBJECTS) */)
2688 register Lisp_Object len
, val
;
2690 register struct Lisp_Vector
*p
;
2692 XSETFASTINT (len
, nargs
);
2693 val
= Fmake_vector (len
, Qnil
);
2695 for (index
= 0; index
< nargs
; index
++)
2696 p
->contents
[index
] = args
[index
];
2701 DEFUN ("make-byte-code", Fmake_byte_code
, Smake_byte_code
, 4, MANY
, 0,
2702 doc
: /* Create a byte-code object with specified arguments as elements.
2703 The arguments should be the arglist, bytecode-string, constant vector,
2704 stack size, (optional) doc string, and (optional) interactive spec.
2705 The first four arguments are required; at most six have any
2707 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2712 register Lisp_Object len
, val
;
2714 register struct Lisp_Vector
*p
;
2716 XSETFASTINT (len
, nargs
);
2717 if (!NILP (Vpurify_flag
))
2718 val
= make_pure_vector ((EMACS_INT
) nargs
);
2720 val
= Fmake_vector (len
, Qnil
);
2722 if (STRINGP (args
[1]) && STRING_MULTIBYTE (args
[1]))
2723 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2724 earlier because they produced a raw 8-bit string for byte-code
2725 and now such a byte-code string is loaded as multibyte while
2726 raw 8-bit characters converted to multibyte form. Thus, now we
2727 must convert them back to the original unibyte form. */
2728 args
[1] = Fstring_as_unibyte (args
[1]);
2731 for (index
= 0; index
< nargs
; index
++)
2733 if (!NILP (Vpurify_flag
))
2734 args
[index
] = Fpurecopy (args
[index
]);
2735 p
->contents
[index
] = args
[index
];
2737 XSETCOMPILED (val
, p
);
2743 /***********************************************************************
2745 ***********************************************************************/
2747 /* Each symbol_block is just under 1020 bytes long, since malloc
2748 really allocates in units of powers of two and uses 4 bytes for its
2751 #define SYMBOL_BLOCK_SIZE \
2752 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2756 struct symbol_block
*next
;
2757 struct Lisp_Symbol symbols
[SYMBOL_BLOCK_SIZE
];
2760 /* Current symbol block and index of first unused Lisp_Symbol
2763 struct symbol_block
*symbol_block
;
2764 int symbol_block_index
;
2766 /* List of free symbols. */
2768 struct Lisp_Symbol
*symbol_free_list
;
2770 /* Total number of symbol blocks now in use. */
2772 int n_symbol_blocks
;
2775 /* Initialize symbol allocation. */
2780 symbol_block
= NULL
;
2781 symbol_block_index
= SYMBOL_BLOCK_SIZE
;
2782 symbol_free_list
= 0;
2783 n_symbol_blocks
= 0;
2787 DEFUN ("make-symbol", Fmake_symbol
, Smake_symbol
, 1, 1, 0,
2788 doc
: /* Return a newly allocated uninterned symbol whose name is NAME.
2789 Its value and function definition are void, and its property list is nil. */)
2793 register Lisp_Object val
;
2794 register struct Lisp_Symbol
*p
;
2796 CHECK_STRING (name
);
2798 if (symbol_free_list
)
2800 XSETSYMBOL (val
, symbol_free_list
);
2801 symbol_free_list
= *(struct Lisp_Symbol
**)&symbol_free_list
->value
;
2805 if (symbol_block_index
== SYMBOL_BLOCK_SIZE
)
2807 struct symbol_block
*new;
2808 new = (struct symbol_block
*) lisp_malloc (sizeof *new,
2810 new->next
= symbol_block
;
2812 symbol_block_index
= 0;
2815 XSETSYMBOL (val
, &symbol_block
->symbols
[symbol_block_index
]);
2816 symbol_block_index
++;
2822 p
->value
= Qunbound
;
2823 p
->function
= Qunbound
;
2826 p
->interned
= SYMBOL_UNINTERNED
;
2828 p
->indirect_variable
= 0;
2829 consing_since_gc
+= sizeof (struct Lisp_Symbol
);
2836 /***********************************************************************
2837 Marker (Misc) Allocation
2838 ***********************************************************************/
2840 /* Allocation of markers and other objects that share that structure.
2841 Works like allocation of conses. */
2843 #define MARKER_BLOCK_SIZE \
2844 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2848 struct marker_block
*next
;
2849 union Lisp_Misc markers
[MARKER_BLOCK_SIZE
];
2852 struct marker_block
*marker_block
;
2853 int marker_block_index
;
2855 union Lisp_Misc
*marker_free_list
;
2857 /* Total number of marker blocks now in use. */
2859 int n_marker_blocks
;
2864 marker_block
= NULL
;
2865 marker_block_index
= MARKER_BLOCK_SIZE
;
2866 marker_free_list
= 0;
2867 n_marker_blocks
= 0;
2870 /* Return a newly allocated Lisp_Misc object, with no substructure. */
2877 if (marker_free_list
)
2879 XSETMISC (val
, marker_free_list
);
2880 marker_free_list
= marker_free_list
->u_free
.chain
;
2884 if (marker_block_index
== MARKER_BLOCK_SIZE
)
2886 struct marker_block
*new;
2887 new = (struct marker_block
*) lisp_malloc (sizeof *new,
2889 new->next
= marker_block
;
2891 marker_block_index
= 0;
2894 XSETMISC (val
, &marker_block
->markers
[marker_block_index
]);
2895 marker_block_index
++;
2898 consing_since_gc
+= sizeof (union Lisp_Misc
);
2899 misc_objects_consed
++;
2900 XMARKER (val
)->gcmarkbit
= 0;
2904 /* Return a Lisp_Misc_Save_Value object containing POINTER and
2905 INTEGER. This is used to package C values to call record_unwind_protect.
2906 The unwind function can get the C values back using XSAVE_VALUE. */
2909 make_save_value (pointer
, integer
)
2913 register Lisp_Object val
;
2914 register struct Lisp_Save_Value
*p
;
2916 val
= allocate_misc ();
2917 XMISCTYPE (val
) = Lisp_Misc_Save_Value
;
2918 p
= XSAVE_VALUE (val
);
2919 p
->pointer
= pointer
;
2920 p
->integer
= integer
;
2924 DEFUN ("make-marker", Fmake_marker
, Smake_marker
, 0, 0, 0,
2925 doc
: /* Return a newly allocated marker which does not point at any place. */)
2928 register Lisp_Object val
;
2929 register struct Lisp_Marker
*p
;
2931 val
= allocate_misc ();
2932 XMISCTYPE (val
) = Lisp_Misc_Marker
;
2938 p
->insertion_type
= 0;
2942 /* Put MARKER back on the free list after using it temporarily. */
2945 free_marker (marker
)
2948 unchain_marker (XMARKER (marker
));
2950 XMISC (marker
)->u_marker
.type
= Lisp_Misc_Free
;
2951 XMISC (marker
)->u_free
.chain
= marker_free_list
;
2952 marker_free_list
= XMISC (marker
);
2954 total_free_markers
++;
2958 /* Return a newly created vector or string with specified arguments as
2959 elements. If all the arguments are characters that can fit
2960 in a string of events, make a string; otherwise, make a vector.
2962 Any number of arguments, even zero arguments, are allowed. */
2965 make_event_array (nargs
, args
)
2971 for (i
= 0; i
< nargs
; i
++)
2972 /* The things that fit in a string
2973 are characters that are in 0...127,
2974 after discarding the meta bit and all the bits above it. */
2975 if (!INTEGERP (args
[i
])
2976 || (XUINT (args
[i
]) & ~(-CHAR_META
)) >= 0200)
2977 return Fvector (nargs
, args
);
2979 /* Since the loop exited, we know that all the things in it are
2980 characters, so we can make a string. */
2984 result
= Fmake_string (make_number (nargs
), make_number (0));
2985 for (i
= 0; i
< nargs
; i
++)
2987 SSET (result
, i
, XINT (args
[i
]));
2988 /* Move the meta bit to the right place for a string char. */
2989 if (XINT (args
[i
]) & CHAR_META
)
2990 SSET (result
, i
, SREF (result
, i
) | 0x80);
2999 /************************************************************************
3001 ************************************************************************/
3003 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3005 /* Conservative C stack marking requires a method to identify possibly
3006 live Lisp objects given a pointer value. We do this by keeping
3007 track of blocks of Lisp data that are allocated in a red-black tree
3008 (see also the comment of mem_node which is the type of nodes in
3009 that tree). Function lisp_malloc adds information for an allocated
3010 block to the red-black tree with calls to mem_insert, and function
3011 lisp_free removes it with mem_delete. Functions live_string_p etc
3012 call mem_find to lookup information about a given pointer in the
3013 tree, and use that to determine if the pointer points to a Lisp
3016 /* Initialize this part of alloc.c. */
3021 mem_z
.left
= mem_z
.right
= MEM_NIL
;
3022 mem_z
.parent
= NULL
;
3023 mem_z
.color
= MEM_BLACK
;
3024 mem_z
.start
= mem_z
.end
= NULL
;
3029 /* Value is a pointer to the mem_node containing START. Value is
3030 MEM_NIL if there is no node in the tree containing START. */
3032 static INLINE
struct mem_node
*
3038 if (start
< min_heap_address
|| start
> max_heap_address
)
3041 /* Make the search always successful to speed up the loop below. */
3042 mem_z
.start
= start
;
3043 mem_z
.end
= (char *) start
+ 1;
3046 while (start
< p
->start
|| start
>= p
->end
)
3047 p
= start
< p
->start
? p
->left
: p
->right
;
3052 /* Insert a new node into the tree for a block of memory with start
3053 address START, end address END, and type TYPE. Value is a
3054 pointer to the node that was inserted. */
3056 static struct mem_node
*
3057 mem_insert (start
, end
, type
)
3061 struct mem_node
*c
, *parent
, *x
;
3063 if (start
< min_heap_address
)
3064 min_heap_address
= start
;
3065 if (end
> max_heap_address
)
3066 max_heap_address
= end
;
3068 /* See where in the tree a node for START belongs. In this
3069 particular application, it shouldn't happen that a node is already
3070 present. For debugging purposes, let's check that. */
3074 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3076 while (c
!= MEM_NIL
)
3078 if (start
>= c
->start
&& start
< c
->end
)
3081 c
= start
< c
->start
? c
->left
: c
->right
;
3084 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3086 while (c
!= MEM_NIL
)
3089 c
= start
< c
->start
? c
->left
: c
->right
;
3092 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3094 /* Create a new node. */
3095 #ifdef GC_MALLOC_CHECK
3096 x
= (struct mem_node
*) _malloc_internal (sizeof *x
);
3100 x
= (struct mem_node
*) xmalloc (sizeof *x
);
3106 x
->left
= x
->right
= MEM_NIL
;
3109 /* Insert it as child of PARENT or install it as root. */
3112 if (start
< parent
->start
)
3120 /* Re-establish red-black tree properties. */
3121 mem_insert_fixup (x
);
3127 /* Re-establish the red-black properties of the tree, and thereby
3128 balance the tree, after node X has been inserted; X is always red. */
3131 mem_insert_fixup (x
)
3134 while (x
!= mem_root
&& x
->parent
->color
== MEM_RED
)
3136 /* X is red and its parent is red. This is a violation of
3137 red-black tree property #3. */
3139 if (x
->parent
== x
->parent
->parent
->left
)
3141 /* We're on the left side of our grandparent, and Y is our
3143 struct mem_node
*y
= x
->parent
->parent
->right
;
3145 if (y
->color
== MEM_RED
)
3147 /* Uncle and parent are red but should be black because
3148 X is red. Change the colors accordingly and proceed
3149 with the grandparent. */
3150 x
->parent
->color
= MEM_BLACK
;
3151 y
->color
= MEM_BLACK
;
3152 x
->parent
->parent
->color
= MEM_RED
;
3153 x
= x
->parent
->parent
;
3157 /* Parent and uncle have different colors; parent is
3158 red, uncle is black. */
3159 if (x
== x
->parent
->right
)
3162 mem_rotate_left (x
);
3165 x
->parent
->color
= MEM_BLACK
;
3166 x
->parent
->parent
->color
= MEM_RED
;
3167 mem_rotate_right (x
->parent
->parent
);
3172 /* This is the symmetrical case of above. */
3173 struct mem_node
*y
= x
->parent
->parent
->left
;
3175 if (y
->color
== MEM_RED
)
3177 x
->parent
->color
= MEM_BLACK
;
3178 y
->color
= MEM_BLACK
;
3179 x
->parent
->parent
->color
= MEM_RED
;
3180 x
= x
->parent
->parent
;
3184 if (x
== x
->parent
->left
)
3187 mem_rotate_right (x
);
3190 x
->parent
->color
= MEM_BLACK
;
3191 x
->parent
->parent
->color
= MEM_RED
;
3192 mem_rotate_left (x
->parent
->parent
);
3197 /* The root may have been changed to red due to the algorithm. Set
3198 it to black so that property #5 is satisfied. */
3199 mem_root
->color
= MEM_BLACK
;
3215 /* Turn y's left sub-tree into x's right sub-tree. */
3218 if (y
->left
!= MEM_NIL
)
3219 y
->left
->parent
= x
;
3221 /* Y's parent was x's parent. */
3223 y
->parent
= x
->parent
;
3225 /* Get the parent to point to y instead of x. */
3228 if (x
== x
->parent
->left
)
3229 x
->parent
->left
= y
;
3231 x
->parent
->right
= y
;
3236 /* Put x on y's left. */
3250 mem_rotate_right (x
)
3253 struct mem_node
*y
= x
->left
;
3256 if (y
->right
!= MEM_NIL
)
3257 y
->right
->parent
= x
;
3260 y
->parent
= x
->parent
;
3263 if (x
== x
->parent
->right
)
3264 x
->parent
->right
= y
;
3266 x
->parent
->left
= y
;
3277 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3283 struct mem_node
*x
, *y
;
3285 if (!z
|| z
== MEM_NIL
)
3288 if (z
->left
== MEM_NIL
|| z
->right
== MEM_NIL
)
3293 while (y
->left
!= MEM_NIL
)
3297 if (y
->left
!= MEM_NIL
)
3302 x
->parent
= y
->parent
;
3305 if (y
== y
->parent
->left
)
3306 y
->parent
->left
= x
;
3308 y
->parent
->right
= x
;
3315 z
->start
= y
->start
;
3320 if (y
->color
== MEM_BLACK
)
3321 mem_delete_fixup (x
);
3323 #ifdef GC_MALLOC_CHECK
3331 /* Re-establish the red-black properties of the tree, after a
3335 mem_delete_fixup (x
)
3338 while (x
!= mem_root
&& x
->color
== MEM_BLACK
)
3340 if (x
== x
->parent
->left
)
3342 struct mem_node
*w
= x
->parent
->right
;
3344 if (w
->color
== MEM_RED
)
3346 w
->color
= MEM_BLACK
;
3347 x
->parent
->color
= MEM_RED
;
3348 mem_rotate_left (x
->parent
);
3349 w
= x
->parent
->right
;
3352 if (w
->left
->color
== MEM_BLACK
&& w
->right
->color
== MEM_BLACK
)
3359 if (w
->right
->color
== MEM_BLACK
)
3361 w
->left
->color
= MEM_BLACK
;
3363 mem_rotate_right (w
);
3364 w
= x
->parent
->right
;
3366 w
->color
= x
->parent
->color
;
3367 x
->parent
->color
= MEM_BLACK
;
3368 w
->right
->color
= MEM_BLACK
;
3369 mem_rotate_left (x
->parent
);
3375 struct mem_node
*w
= x
->parent
->left
;
3377 if (w
->color
== MEM_RED
)
3379 w
->color
= MEM_BLACK
;
3380 x
->parent
->color
= MEM_RED
;
3381 mem_rotate_right (x
->parent
);
3382 w
= x
->parent
->left
;
3385 if (w
->right
->color
== MEM_BLACK
&& w
->left
->color
== MEM_BLACK
)
3392 if (w
->left
->color
== MEM_BLACK
)
3394 w
->right
->color
= MEM_BLACK
;
3396 mem_rotate_left (w
);
3397 w
= x
->parent
->left
;
3400 w
->color
= x
->parent
->color
;
3401 x
->parent
->color
= MEM_BLACK
;
3402 w
->left
->color
= MEM_BLACK
;
3403 mem_rotate_right (x
->parent
);
3409 x
->color
= MEM_BLACK
;
3413 /* Value is non-zero if P is a pointer to a live Lisp string on
3414 the heap. M is a pointer to the mem_block for P. */
3417 live_string_p (m
, p
)
3421 if (m
->type
== MEM_TYPE_STRING
)
3423 struct string_block
*b
= (struct string_block
*) m
->start
;
3424 int offset
= (char *) p
- (char *) &b
->strings
[0];
3426 /* P must point to the start of a Lisp_String structure, and it
3427 must not be on the free-list. */
3429 && offset
% sizeof b
->strings
[0] == 0
3430 && ((struct Lisp_String
*) p
)->data
!= NULL
);
3437 /* Value is non-zero if P is a pointer to a live Lisp cons on
3438 the heap. M is a pointer to the mem_block for P. */
3445 if (m
->type
== MEM_TYPE_CONS
)
3447 struct cons_block
*b
= (struct cons_block
*) m
->start
;
3448 int offset
= (char *) p
- (char *) &b
->conses
[0];
3450 /* P must point to the start of a Lisp_Cons, not be
3451 one of the unused cells in the current cons block,
3452 and not be on the free-list. */
3454 && offset
< (CONS_BLOCK_SIZE
* sizeof b
->conses
[0])
3455 && offset
% sizeof b
->conses
[0] == 0
3457 || offset
/ sizeof b
->conses
[0] < cons_block_index
)
3458 && !EQ (((struct Lisp_Cons
*) p
)->car
, Vdead
));
3465 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3466 the heap. M is a pointer to the mem_block for P. */
3469 live_symbol_p (m
, p
)
3473 if (m
->type
== MEM_TYPE_SYMBOL
)
3475 struct symbol_block
*b
= (struct symbol_block
*) m
->start
;
3476 int offset
= (char *) p
- (char *) &b
->symbols
[0];
3478 /* P must point to the start of a Lisp_Symbol, not be
3479 one of the unused cells in the current symbol block,
3480 and not be on the free-list. */
3482 && offset
% sizeof b
->symbols
[0] == 0
3483 && (b
!= symbol_block
3484 || offset
/ sizeof b
->symbols
[0] < symbol_block_index
)
3485 && !EQ (((struct Lisp_Symbol
*) p
)->function
, Vdead
));
3492 /* Value is non-zero if P is a pointer to a live Lisp float on
3493 the heap. M is a pointer to the mem_block for P. */
3500 if (m
->type
== MEM_TYPE_FLOAT
)
3502 struct float_block
*b
= (struct float_block
*) m
->start
;
3503 int offset
= (char *) p
- (char *) &b
->floats
[0];
3505 /* P must point to the start of a Lisp_Float and not be
3506 one of the unused cells in the current float block. */
3508 && offset
< (FLOAT_BLOCK_SIZE
* sizeof b
->floats
[0])
3509 && offset
% sizeof b
->floats
[0] == 0
3510 && (b
!= float_block
3511 || offset
/ sizeof b
->floats
[0] < float_block_index
));
3518 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3519 the heap. M is a pointer to the mem_block for P. */
3526 if (m
->type
== MEM_TYPE_MISC
)
3528 struct marker_block
*b
= (struct marker_block
*) m
->start
;
3529 int offset
= (char *) p
- (char *) &b
->markers
[0];
3531 /* P must point to the start of a Lisp_Misc, not be
3532 one of the unused cells in the current misc block,
3533 and not be on the free-list. */
3535 && offset
% sizeof b
->markers
[0] == 0
3536 && (b
!= marker_block
3537 || offset
/ sizeof b
->markers
[0] < marker_block_index
)
3538 && ((union Lisp_Misc
*) p
)->u_marker
.type
!= Lisp_Misc_Free
);
3545 /* Value is non-zero if P is a pointer to a live vector-like object.
3546 M is a pointer to the mem_block for P. */
3549 live_vector_p (m
, p
)
3553 return (p
== m
->start
3554 && m
->type
>= MEM_TYPE_VECTOR
3555 && m
->type
<= MEM_TYPE_WINDOW
);
3559 /* Value is non-zero if P is a pointer to a live buffer. M is a
3560 pointer to the mem_block for P. */
3563 live_buffer_p (m
, p
)
3567 /* P must point to the start of the block, and the buffer
3568 must not have been killed. */
3569 return (m
->type
== MEM_TYPE_BUFFER
3571 && !NILP (((struct buffer
*) p
)->name
));
3574 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3578 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3580 /* Array of objects that are kept alive because the C stack contains
3581 a pattern that looks like a reference to them . */
3583 #define MAX_ZOMBIES 10
3584 static Lisp_Object zombies
[MAX_ZOMBIES
];
3586 /* Number of zombie objects. */
3588 static int nzombies
;
3590 /* Number of garbage collections. */
3594 /* Average percentage of zombies per collection. */
3596 static double avg_zombies
;
3598 /* Max. number of live and zombie objects. */
3600 static int max_live
, max_zombies
;
3602 /* Average number of live objects per GC. */
3604 static double avg_live
;
3606 DEFUN ("gc-status", Fgc_status
, Sgc_status
, 0, 0, "",
3607 doc
: /* Show information about live and zombie objects. */)
3610 Lisp_Object args
[8], zombie_list
= Qnil
;
3612 for (i
= 0; i
< nzombies
; i
++)
3613 zombie_list
= Fcons (zombies
[i
], zombie_list
);
3614 args
[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3615 args
[1] = make_number (ngcs
);
3616 args
[2] = make_float (avg_live
);
3617 args
[3] = make_float (avg_zombies
);
3618 args
[4] = make_float (avg_zombies
/ avg_live
/ 100);
3619 args
[5] = make_number (max_live
);
3620 args
[6] = make_number (max_zombies
);
3621 args
[7] = zombie_list
;
3622 return Fmessage (8, args
);
3625 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3628 /* Mark OBJ if we can prove it's a Lisp_Object. */
3631 mark_maybe_object (obj
)
3634 void *po
= (void *) XPNTR (obj
);
3635 struct mem_node
*m
= mem_find (po
);
3641 switch (XGCTYPE (obj
))
3644 mark_p
= (live_string_p (m
, po
)
3645 && !STRING_MARKED_P ((struct Lisp_String
*) po
));
3649 mark_p
= (live_cons_p (m
, po
) && !CONS_MARKED_P (XCONS (obj
)));
3653 mark_p
= (live_symbol_p (m
, po
) && !XSYMBOL (obj
)->gcmarkbit
);
3657 mark_p
= (live_float_p (m
, po
) && !FLOAT_MARKED_P (XFLOAT (obj
)));
3660 case Lisp_Vectorlike
:
3661 /* Note: can't check GC_BUFFERP before we know it's a
3662 buffer because checking that dereferences the pointer
3663 PO which might point anywhere. */
3664 if (live_vector_p (m
, po
))
3665 mark_p
= !GC_SUBRP (obj
) && !VECTOR_MARKED_P (XVECTOR (obj
));
3666 else if (live_buffer_p (m
, po
))
3667 mark_p
= GC_BUFFERP (obj
) && !VECTOR_MARKED_P (XBUFFER (obj
));
3671 mark_p
= (live_misc_p (m
, po
) && !XMARKER (obj
)->gcmarkbit
);
3675 case Lisp_Type_Limit
:
3681 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3682 if (nzombies
< MAX_ZOMBIES
)
3683 zombies
[nzombies
] = obj
;
3692 /* If P points to Lisp data, mark that as live if it isn't already
3696 mark_maybe_pointer (p
)
3701 /* Quickly rule out some values which can't point to Lisp data. We
3702 assume that Lisp data is aligned on even addresses. */
3703 if ((EMACS_INT
) p
& 1)
3709 Lisp_Object obj
= Qnil
;
3713 case MEM_TYPE_NON_LISP
:
3714 /* Nothing to do; not a pointer to Lisp memory. */
3717 case MEM_TYPE_BUFFER
:
3718 if (live_buffer_p (m
, p
) && !VECTOR_MARKED_P((struct buffer
*)p
))
3719 XSETVECTOR (obj
, p
);
3723 if (live_cons_p (m
, p
) && !CONS_MARKED_P ((struct Lisp_Cons
*) p
))
3727 case MEM_TYPE_STRING
:
3728 if (live_string_p (m
, p
)
3729 && !STRING_MARKED_P ((struct Lisp_String
*) p
))
3730 XSETSTRING (obj
, p
);
3734 if (live_misc_p (m
, p
) && !((struct Lisp_Free
*) p
)->gcmarkbit
)
3738 case MEM_TYPE_SYMBOL
:
3739 if (live_symbol_p (m
, p
) && !((struct Lisp_Symbol
*) p
)->gcmarkbit
)
3740 XSETSYMBOL (obj
, p
);
3743 case MEM_TYPE_FLOAT
:
3744 if (live_float_p (m
, p
) && !FLOAT_MARKED_P (p
))
3748 case MEM_TYPE_VECTOR
:
3749 case MEM_TYPE_PROCESS
:
3750 case MEM_TYPE_HASH_TABLE
:
3751 case MEM_TYPE_FRAME
:
3752 case MEM_TYPE_WINDOW
:
3753 if (live_vector_p (m
, p
))
3756 XSETVECTOR (tem
, p
);
3757 if (!GC_SUBRP (tem
) && !VECTOR_MARKED_P (XVECTOR (tem
)))
3772 /* Mark Lisp objects referenced from the address range START..END. */
3775 mark_memory (start
, end
)
3781 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3785 /* Make START the pointer to the start of the memory region,
3786 if it isn't already. */
3794 /* Mark Lisp_Objects. */
3795 for (p
= (Lisp_Object
*) start
; (void *) p
< end
; ++p
)
3796 mark_maybe_object (*p
);
3798 /* Mark Lisp data pointed to. This is necessary because, in some
3799 situations, the C compiler optimizes Lisp objects away, so that
3800 only a pointer to them remains. Example:
3802 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
3805 Lisp_Object obj = build_string ("test");
3806 struct Lisp_String *s = XSTRING (obj);
3807 Fgarbage_collect ();
3808 fprintf (stderr, "test `%s'\n", s->data);
3812 Here, `obj' isn't really used, and the compiler optimizes it
3813 away. The only reference to the life string is through the
3816 for (pp
= (void **) start
; (void *) pp
< end
; ++pp
)
3817 mark_maybe_pointer (*pp
);
3820 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
3821 the GCC system configuration. In gcc 3.2, the only systems for
3822 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
3823 by others?) and ns32k-pc532-min. */
3825 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
3827 static int setjmp_tested_p
, longjmps_done
;
3829 #define SETJMP_WILL_LIKELY_WORK "\
3831 Emacs garbage collector has been changed to use conservative stack\n\
3832 marking. Emacs has determined that the method it uses to do the\n\
3833 marking will likely work on your system, but this isn't sure.\n\
3835 If you are a system-programmer, or can get the help of a local wizard\n\
3836 who is, please take a look at the function mark_stack in alloc.c, and\n\
3837 verify that the methods used are appropriate for your system.\n\
3839 Please mail the result to <emacs-devel@gnu.org>.\n\
3842 #define SETJMP_WILL_NOT_WORK "\
3844 Emacs garbage collector has been changed to use conservative stack\n\
3845 marking. Emacs has determined that the default method it uses to do the\n\
3846 marking will not work on your system. We will need a system-dependent\n\
3847 solution for your system.\n\
3849 Please take a look at the function mark_stack in alloc.c, and\n\
3850 try to find a way to make it work on your system.\n\
3852 Note that you may get false negatives, depending on the compiler.\n\
3853 In particular, you need to use -O with GCC for this test.\n\
3855 Please mail the result to <emacs-devel@gnu.org>.\n\
3859 /* Perform a quick check if it looks like setjmp saves registers in a
3860 jmp_buf. Print a message to stderr saying so. When this test
3861 succeeds, this is _not_ a proof that setjmp is sufficient for
3862 conservative stack marking. Only the sources or a disassembly
3873 /* Arrange for X to be put in a register. */
3879 if (longjmps_done
== 1)
3881 /* Came here after the longjmp at the end of the function.
3883 If x == 1, the longjmp has restored the register to its
3884 value before the setjmp, and we can hope that setjmp
3885 saves all such registers in the jmp_buf, although that
3888 For other values of X, either something really strange is
3889 taking place, or the setjmp just didn't save the register. */
3892 fprintf (stderr
, SETJMP_WILL_LIKELY_WORK
);
3895 fprintf (stderr
, SETJMP_WILL_NOT_WORK
);
3902 if (longjmps_done
== 1)
3906 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3909 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3911 /* Abort if anything GCPRO'd doesn't survive the GC. */
3919 for (p
= gcprolist
; p
; p
= p
->next
)
3920 for (i
= 0; i
< p
->nvars
; ++i
)
3921 if (!survives_gc_p (p
->var
[i
]))
3922 /* FIXME: It's not necessarily a bug. It might just be that the
3923 GCPRO is unnecessary or should release the object sooner. */
3927 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3934 fprintf (stderr
, "\nZombies kept alive = %d:\n", nzombies
);
3935 for (i
= 0; i
< min (MAX_ZOMBIES
, nzombies
); ++i
)
3937 fprintf (stderr
, " %d = ", i
);
3938 debug_print (zombies
[i
]);
3942 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3945 /* Mark live Lisp objects on the C stack.
3947 There are several system-dependent problems to consider when
3948 porting this to new architectures:
3952 We have to mark Lisp objects in CPU registers that can hold local
3953 variables or are used to pass parameters.
3955 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
3956 something that either saves relevant registers on the stack, or
3957 calls mark_maybe_object passing it each register's contents.
3959 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
3960 implementation assumes that calling setjmp saves registers we need
3961 to see in a jmp_buf which itself lies on the stack. This doesn't
3962 have to be true! It must be verified for each system, possibly
3963 by taking a look at the source code of setjmp.
3967 Architectures differ in the way their processor stack is organized.
3968 For example, the stack might look like this
3971 | Lisp_Object | size = 4
3973 | something else | size = 2
3975 | Lisp_Object | size = 4
3979 In such a case, not every Lisp_Object will be aligned equally. To
3980 find all Lisp_Object on the stack it won't be sufficient to walk
3981 the stack in steps of 4 bytes. Instead, two passes will be
3982 necessary, one starting at the start of the stack, and a second
3983 pass starting at the start of the stack + 2. Likewise, if the
3984 minimal alignment of Lisp_Objects on the stack is 1, four passes
3985 would be necessary, each one starting with one byte more offset
3986 from the stack start.
3988 The current code assumes by default that Lisp_Objects are aligned
3989 equally on the stack. */
3996 volatile int stack_grows_down_p
= (char *) &j
> (char *) stack_base
;
3999 /* This trick flushes the register windows so that all the state of
4000 the process is contained in the stack. */
4001 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4002 needed on ia64 too. See mach_dep.c, where it also says inline
4003 assembler doesn't work with relevant proprietary compilers. */
4008 /* Save registers that we need to see on the stack. We need to see
4009 registers used to hold register variables and registers used to
4011 #ifdef GC_SAVE_REGISTERS_ON_STACK
4012 GC_SAVE_REGISTERS_ON_STACK (end
);
4013 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4015 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4016 setjmp will definitely work, test it
4017 and print a message with the result
4019 if (!setjmp_tested_p
)
4021 setjmp_tested_p
= 1;
4024 #endif /* GC_SETJMP_WORKS */
4027 end
= stack_grows_down_p
? (char *) &j
+ sizeof j
: (char *) &j
;
4028 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4030 /* This assumes that the stack is a contiguous region in memory. If
4031 that's not the case, something has to be done here to iterate
4032 over the stack segments. */
4033 #ifndef GC_LISP_OBJECT_ALIGNMENT
4035 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4037 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4040 for (i
= 0; i
< sizeof (Lisp_Object
); i
+= GC_LISP_OBJECT_ALIGNMENT
)
4041 mark_memory ((char *) stack_base
+ i
, end
);
4043 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4049 #endif /* GC_MARK_STACK != 0 */
4053 /***********************************************************************
4054 Pure Storage Management
4055 ***********************************************************************/
4057 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4058 pointer to it. TYPE is the Lisp type for which the memory is
4059 allocated. TYPE < 0 means it's not used for a Lisp object.
4061 If store_pure_type_info is set and TYPE is >= 0, the type of
4062 the allocated object is recorded in pure_types. */
4064 static POINTER_TYPE
*
4065 pure_alloc (size
, type
)
4069 POINTER_TYPE
*result
;
4070 size_t alignment
= sizeof (EMACS_INT
);
4072 /* Give Lisp_Floats an extra alignment. */
4073 if (type
== Lisp_Float
)
4075 #if defined __GNUC__ && __GNUC__ >= 2
4076 alignment
= __alignof (struct Lisp_Float
);
4078 alignment
= sizeof (struct Lisp_Float
);
4083 result
= ALIGN (purebeg
+ pure_bytes_used
, alignment
);
4084 pure_bytes_used
= ((char *)result
- (char *)purebeg
) + size
;
4086 if (pure_bytes_used
<= pure_size
)
4089 /* Don't allocate a large amount here,
4090 because it might get mmap'd and then its address
4091 might not be usable. */
4092 purebeg
= (char *) xmalloc (10000);
4094 pure_bytes_used_before_overflow
+= pure_bytes_used
- size
;
4095 pure_bytes_used
= 0;
4100 /* Print a warning if PURESIZE is too small. */
4105 if (pure_bytes_used_before_overflow
)
4106 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4107 (int) (pure_bytes_used
+ pure_bytes_used_before_overflow
));
4111 /* Return a string allocated in pure space. DATA is a buffer holding
4112 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4113 non-zero means make the result string multibyte.
4115 Must get an error if pure storage is full, since if it cannot hold
4116 a large string it may be able to hold conses that point to that
4117 string; then the string is not protected from gc. */
4120 make_pure_string (data
, nchars
, nbytes
, multibyte
)
4126 struct Lisp_String
*s
;
4128 s
= (struct Lisp_String
*) pure_alloc (sizeof *s
, Lisp_String
);
4129 s
->data
= (unsigned char *) pure_alloc (nbytes
+ 1, -1);
4131 s
->size_byte
= multibyte
? nbytes
: -1;
4132 bcopy (data
, s
->data
, nbytes
);
4133 s
->data
[nbytes
] = '\0';
4134 s
->intervals
= NULL_INTERVAL
;
4135 XSETSTRING (string
, s
);
4140 /* Return a cons allocated from pure space. Give it pure copies
4141 of CAR as car and CDR as cdr. */
4144 pure_cons (car
, cdr
)
4145 Lisp_Object car
, cdr
;
4147 register Lisp_Object
new;
4148 struct Lisp_Cons
*p
;
4150 p
= (struct Lisp_Cons
*) pure_alloc (sizeof *p
, Lisp_Cons
);
4152 XSETCAR (new, Fpurecopy (car
));
4153 XSETCDR (new, Fpurecopy (cdr
));
4158 /* Value is a float object with value NUM allocated from pure space. */
4161 make_pure_float (num
)
4164 register Lisp_Object
new;
4165 struct Lisp_Float
*p
;
4167 p
= (struct Lisp_Float
*) pure_alloc (sizeof *p
, Lisp_Float
);
4169 XFLOAT_DATA (new) = num
;
4174 /* Return a vector with room for LEN Lisp_Objects allocated from
4178 make_pure_vector (len
)
4182 struct Lisp_Vector
*p
;
4183 size_t size
= sizeof *p
+ (len
- 1) * sizeof (Lisp_Object
);
4185 p
= (struct Lisp_Vector
*) pure_alloc (size
, Lisp_Vectorlike
);
4186 XSETVECTOR (new, p
);
4187 XVECTOR (new)->size
= len
;
4192 DEFUN ("purecopy", Fpurecopy
, Spurecopy
, 1, 1, 0,
4193 doc
: /* Make a copy of OBJECT in pure storage.
4194 Recursively copies contents of vectors and cons cells.
4195 Does not copy symbols. Copies strings without text properties. */)
4197 register Lisp_Object obj
;
4199 if (NILP (Vpurify_flag
))
4202 if (PURE_POINTER_P (XPNTR (obj
)))
4206 return pure_cons (XCAR (obj
), XCDR (obj
));
4207 else if (FLOATP (obj
))
4208 return make_pure_float (XFLOAT_DATA (obj
));
4209 else if (STRINGP (obj
))
4210 return make_pure_string (SDATA (obj
), SCHARS (obj
),
4212 STRING_MULTIBYTE (obj
));
4213 else if (COMPILEDP (obj
) || VECTORP (obj
))
4215 register struct Lisp_Vector
*vec
;
4216 register int i
, size
;
4218 size
= XVECTOR (obj
)->size
;
4219 if (size
& PSEUDOVECTOR_FLAG
)
4220 size
&= PSEUDOVECTOR_SIZE_MASK
;
4221 vec
= XVECTOR (make_pure_vector ((EMACS_INT
) size
));
4222 for (i
= 0; i
< size
; i
++)
4223 vec
->contents
[i
] = Fpurecopy (XVECTOR (obj
)->contents
[i
]);
4224 if (COMPILEDP (obj
))
4225 XSETCOMPILED (obj
, vec
);
4227 XSETVECTOR (obj
, vec
);
4230 else if (MARKERP (obj
))
4231 error ("Attempt to copy a marker to pure storage");
4238 /***********************************************************************
4240 ***********************************************************************/
4242 /* Put an entry in staticvec, pointing at the variable with address
4246 staticpro (varaddress
)
4247 Lisp_Object
*varaddress
;
4249 staticvec
[staticidx
++] = varaddress
;
4250 if (staticidx
>= NSTATICS
)
4258 struct catchtag
*next
;
4263 struct backtrace
*next
;
4264 Lisp_Object
*function
;
4265 Lisp_Object
*args
; /* Points to vector of args. */
4266 int nargs
; /* Length of vector. */
4267 /* If nargs is UNEVALLED, args points to slot holding list of
4274 /***********************************************************************
4276 ***********************************************************************/
4278 /* Temporarily prevent garbage collection. */
4281 inhibit_garbage_collection ()
4283 int count
= SPECPDL_INDEX ();
4284 int nbits
= min (VALBITS
, BITS_PER_INT
);
4286 specbind (Qgc_cons_threshold
, make_number (((EMACS_INT
) 1 << (nbits
- 1)) - 1));
4291 DEFUN ("garbage-collect", Fgarbage_collect
, Sgarbage_collect
, 0, 0, "",
4292 doc
: /* Reclaim storage for Lisp objects no longer needed.
4293 Garbage collection happens automatically if you cons more than
4294 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4295 `garbage-collect' normally returns a list with info on amount of space in use:
4296 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4297 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4298 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4299 (USED-STRINGS . FREE-STRINGS))
4300 However, if there was overflow in pure space, `garbage-collect'
4301 returns nil, because real GC can't be done. */)
4304 register struct specbinding
*bind
;
4305 struct catchtag
*catch;
4306 struct handler
*handler
;
4307 register struct backtrace
*backlist
;
4308 char stack_top_variable
;
4311 Lisp_Object total
[8];
4312 int count
= SPECPDL_INDEX ();
4313 EMACS_TIME t1
, t2
, t3
;
4318 EMACS_GET_TIME (t1
);
4320 /* Can't GC if pure storage overflowed because we can't determine
4321 if something is a pure object or not. */
4322 if (pure_bytes_used_before_overflow
)
4325 /* In case user calls debug_print during GC,
4326 don't let that cause a recursive GC. */
4327 consing_since_gc
= 0;
4329 /* Save what's currently displayed in the echo area. */
4330 message_p
= push_message ();
4331 record_unwind_protect (pop_message_unwind
, Qnil
);
4333 /* Save a copy of the contents of the stack, for debugging. */
4334 #if MAX_SAVE_STACK > 0
4335 if (NILP (Vpurify_flag
))
4337 i
= &stack_top_variable
- stack_bottom
;
4339 if (i
< MAX_SAVE_STACK
)
4341 if (stack_copy
== 0)
4342 stack_copy
= (char *) xmalloc (stack_copy_size
= i
);
4343 else if (stack_copy_size
< i
)
4344 stack_copy
= (char *) xrealloc (stack_copy
, (stack_copy_size
= i
));
4347 if ((EMACS_INT
) (&stack_top_variable
- stack_bottom
) > 0)
4348 bcopy (stack_bottom
, stack_copy
, i
);
4350 bcopy (&stack_top_variable
, stack_copy
, i
);
4354 #endif /* MAX_SAVE_STACK > 0 */
4356 if (garbage_collection_messages
)
4357 message1_nolog ("Garbage collecting...");
4361 shrink_regexp_cache ();
4363 /* Don't keep undo information around forever. */
4365 register struct buffer
*nextb
= all_buffers
;
4369 /* If a buffer's undo list is Qt, that means that undo is
4370 turned off in that buffer. Calling truncate_undo_list on
4371 Qt tends to return NULL, which effectively turns undo back on.
4372 So don't call truncate_undo_list if undo_list is Qt. */
4373 if (! EQ (nextb
->undo_list
, Qt
))
4375 = truncate_undo_list (nextb
->undo_list
, undo_limit
,
4378 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4379 if (nextb
->base_buffer
== 0 && !NILP (nextb
->name
))
4381 /* If a buffer's gap size is more than 10% of the buffer
4382 size, or larger than 2000 bytes, then shrink it
4383 accordingly. Keep a minimum size of 20 bytes. */
4384 int size
= min (2000, max (20, (nextb
->text
->z_byte
/ 10)));
4386 if (nextb
->text
->gap_size
> size
)
4388 struct buffer
*save_current
= current_buffer
;
4389 current_buffer
= nextb
;
4390 make_gap (-(nextb
->text
->gap_size
- size
));
4391 current_buffer
= save_current
;
4395 nextb
= nextb
->next
;
4401 /* clear_marks (); */
4403 /* Mark all the special slots that serve as the roots of accessibility. */
4405 for (i
= 0; i
< staticidx
; i
++)
4406 mark_object (*staticvec
[i
]);
4408 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4409 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4413 register struct gcpro
*tail
;
4414 for (tail
= gcprolist
; tail
; tail
= tail
->next
)
4415 for (i
= 0; i
< tail
->nvars
; i
++)
4416 mark_object (tail
->var
[i
]);
4421 for (bind
= specpdl
; bind
!= specpdl_ptr
; bind
++)
4423 mark_object (bind
->symbol
);
4424 mark_object (bind
->old_value
);
4426 for (catch = catchlist
; catch; catch = catch->next
)
4428 mark_object (catch->tag
);
4429 mark_object (catch->val
);
4431 for (handler
= handlerlist
; handler
; handler
= handler
->next
)
4433 mark_object (handler
->handler
);
4434 mark_object (handler
->var
);
4436 for (backlist
= backtrace_list
; backlist
; backlist
= backlist
->next
)
4438 mark_object (*backlist
->function
);
4440 if (backlist
->nargs
== UNEVALLED
|| backlist
->nargs
== MANY
)
4443 i
= backlist
->nargs
- 1;
4445 mark_object (backlist
->args
[i
]);
4449 /* Look thru every buffer's undo list
4450 for elements that update markers that were not marked,
4453 register struct buffer
*nextb
= all_buffers
;
4457 /* If a buffer's undo list is Qt, that means that undo is
4458 turned off in that buffer. Calling truncate_undo_list on
4459 Qt tends to return NULL, which effectively turns undo back on.
4460 So don't call truncate_undo_list if undo_list is Qt. */
4461 if (! EQ (nextb
->undo_list
, Qt
))
4463 Lisp_Object tail
, prev
;
4464 tail
= nextb
->undo_list
;
4466 while (CONSP (tail
))
4468 if (GC_CONSP (XCAR (tail
))
4469 && GC_MARKERP (XCAR (XCAR (tail
)))
4470 && !XMARKER (XCAR (XCAR (tail
)))->gcmarkbit
)
4473 nextb
->undo_list
= tail
= XCDR (tail
);
4477 XSETCDR (prev
, tail
);
4488 nextb
= nextb
->next
;
4492 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4498 extern void xg_mark_data ();
4505 /* Clear the mark bits that we set in certain root slots. */
4507 unmark_byte_stack ();
4508 VECTOR_UNMARK (&buffer_defaults
);
4509 VECTOR_UNMARK (&buffer_local_symbols
);
4511 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4517 /* clear_marks (); */
4520 consing_since_gc
= 0;
4521 if (gc_cons_threshold
< 10000)
4522 gc_cons_threshold
= 10000;
4524 if (garbage_collection_messages
)
4526 if (message_p
|| minibuf_level
> 0)
4529 message1_nolog ("Garbage collecting...done");
4532 unbind_to (count
, Qnil
);
4534 total
[0] = Fcons (make_number (total_conses
),
4535 make_number (total_free_conses
));
4536 total
[1] = Fcons (make_number (total_symbols
),
4537 make_number (total_free_symbols
));
4538 total
[2] = Fcons (make_number (total_markers
),
4539 make_number (total_free_markers
));
4540 total
[3] = make_number (total_string_size
);
4541 total
[4] = make_number (total_vector_size
);
4542 total
[5] = Fcons (make_number (total_floats
),
4543 make_number (total_free_floats
));
4544 total
[6] = Fcons (make_number (total_intervals
),
4545 make_number (total_free_intervals
));
4546 total
[7] = Fcons (make_number (total_strings
),
4547 make_number (total_free_strings
));
4549 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4551 /* Compute average percentage of zombies. */
4554 for (i
= 0; i
< 7; ++i
)
4555 if (CONSP (total
[i
]))
4556 nlive
+= XFASTINT (XCAR (total
[i
]));
4558 avg_live
= (avg_live
* ngcs
+ nlive
) / (ngcs
+ 1);
4559 max_live
= max (nlive
, max_live
);
4560 avg_zombies
= (avg_zombies
* ngcs
+ nzombies
) / (ngcs
+ 1);
4561 max_zombies
= max (nzombies
, max_zombies
);
4566 if (!NILP (Vpost_gc_hook
))
4568 int count
= inhibit_garbage_collection ();
4569 safe_run_hooks (Qpost_gc_hook
);
4570 unbind_to (count
, Qnil
);
4573 /* Accumulate statistics. */
4574 EMACS_GET_TIME (t2
);
4575 EMACS_SUB_TIME (t3
, t2
, t1
);
4576 if (FLOATP (Vgc_elapsed
))
4577 Vgc_elapsed
= make_float (XFLOAT_DATA (Vgc_elapsed
) +
4579 EMACS_USECS (t3
) * 1.0e-6);
4582 return Flist (sizeof total
/ sizeof *total
, total
);
4586 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4587 only interesting objects referenced from glyphs are strings. */
4590 mark_glyph_matrix (matrix
)
4591 struct glyph_matrix
*matrix
;
4593 struct glyph_row
*row
= matrix
->rows
;
4594 struct glyph_row
*end
= row
+ matrix
->nrows
;
4596 for (; row
< end
; ++row
)
4600 for (area
= LEFT_MARGIN_AREA
; area
< LAST_AREA
; ++area
)
4602 struct glyph
*glyph
= row
->glyphs
[area
];
4603 struct glyph
*end_glyph
= glyph
+ row
->used
[area
];
4605 for (; glyph
< end_glyph
; ++glyph
)
4606 if (GC_STRINGP (glyph
->object
)
4607 && !STRING_MARKED_P (XSTRING (glyph
->object
)))
4608 mark_object (glyph
->object
);
4614 /* Mark Lisp faces in the face cache C. */
4618 struct face_cache
*c
;
4623 for (i
= 0; i
< c
->used
; ++i
)
4625 struct face
*face
= FACE_FROM_ID (c
->f
, i
);
4629 for (j
= 0; j
< LFACE_VECTOR_SIZE
; ++j
)
4630 mark_object (face
->lface
[j
]);
4637 #ifdef HAVE_WINDOW_SYSTEM
4639 /* Mark Lisp objects in image IMG. */
4645 mark_object (img
->spec
);
4647 if (!NILP (img
->data
.lisp_val
))
4648 mark_object (img
->data
.lisp_val
);
4652 /* Mark Lisp objects in image cache of frame F. It's done this way so
4653 that we don't have to include xterm.h here. */
4656 mark_image_cache (f
)
4659 forall_images_in_image_cache (f
, mark_image
);
4662 #endif /* HAVE_X_WINDOWS */
4666 /* Mark reference to a Lisp_Object.
4667 If the object referred to has not been seen yet, recursively mark
4668 all the references contained in it. */
4670 #define LAST_MARKED_SIZE 500
4671 Lisp_Object last_marked
[LAST_MARKED_SIZE
];
4672 int last_marked_index
;
4674 /* For debugging--call abort when we cdr down this many
4675 links of a list, in mark_object. In debugging,
4676 the call to abort will hit a breakpoint.
4677 Normally this is zero and the check never goes off. */
4678 int mark_object_loop_halt
;
4684 register Lisp_Object obj
= arg
;
4685 #ifdef GC_CHECK_MARKED_OBJECTS
4693 if (PURE_POINTER_P (XPNTR (obj
)))
4696 last_marked
[last_marked_index
++] = obj
;
4697 if (last_marked_index
== LAST_MARKED_SIZE
)
4698 last_marked_index
= 0;
4700 /* Perform some sanity checks on the objects marked here. Abort if
4701 we encounter an object we know is bogus. This increases GC time
4702 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
4703 #ifdef GC_CHECK_MARKED_OBJECTS
4705 po
= (void *) XPNTR (obj
);
4707 /* Check that the object pointed to by PO is known to be a Lisp
4708 structure allocated from the heap. */
4709 #define CHECK_ALLOCATED() \
4711 m = mem_find (po); \
4716 /* Check that the object pointed to by PO is live, using predicate
4718 #define CHECK_LIVE(LIVEP) \
4720 if (!LIVEP (m, po)) \
4724 /* Check both of the above conditions. */
4725 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
4727 CHECK_ALLOCATED (); \
4728 CHECK_LIVE (LIVEP); \
4731 #else /* not GC_CHECK_MARKED_OBJECTS */
4733 #define CHECK_ALLOCATED() (void) 0
4734 #define CHECK_LIVE(LIVEP) (void) 0
4735 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
4737 #endif /* not GC_CHECK_MARKED_OBJECTS */
4739 switch (SWITCH_ENUM_CAST (XGCTYPE (obj
)))
4743 register struct Lisp_String
*ptr
= XSTRING (obj
);
4744 CHECK_ALLOCATED_AND_LIVE (live_string_p
);
4745 MARK_INTERVAL_TREE (ptr
->intervals
);
4747 #ifdef GC_CHECK_STRING_BYTES
4748 /* Check that the string size recorded in the string is the
4749 same as the one recorded in the sdata structure. */
4750 CHECK_STRING_BYTES (ptr
);
4751 #endif /* GC_CHECK_STRING_BYTES */
4755 case Lisp_Vectorlike
:
4756 #ifdef GC_CHECK_MARKED_OBJECTS
4758 if (m
== MEM_NIL
&& !GC_SUBRP (obj
)
4759 && po
!= &buffer_defaults
4760 && po
!= &buffer_local_symbols
)
4762 #endif /* GC_CHECK_MARKED_OBJECTS */
4764 if (GC_BUFFERP (obj
))
4766 if (!VECTOR_MARKED_P (XBUFFER (obj
)))
4768 #ifdef GC_CHECK_MARKED_OBJECTS
4769 if (po
!= &buffer_defaults
&& po
!= &buffer_local_symbols
)
4772 for (b
= all_buffers
; b
&& b
!= po
; b
= b
->next
)
4777 #endif /* GC_CHECK_MARKED_OBJECTS */
4781 else if (GC_SUBRP (obj
))
4783 else if (GC_COMPILEDP (obj
))
4784 /* We could treat this just like a vector, but it is better to
4785 save the COMPILED_CONSTANTS element for last and avoid
4788 register struct Lisp_Vector
*ptr
= XVECTOR (obj
);
4789 register EMACS_INT size
= ptr
->size
;
4792 if (VECTOR_MARKED_P (ptr
))
4793 break; /* Already marked */
4795 CHECK_LIVE (live_vector_p
);
4796 VECTOR_MARK (ptr
); /* Else mark it */
4797 size
&= PSEUDOVECTOR_SIZE_MASK
;
4798 for (i
= 0; i
< size
; i
++) /* and then mark its elements */
4800 if (i
!= COMPILED_CONSTANTS
)
4801 mark_object (ptr
->contents
[i
]);
4803 obj
= ptr
->contents
[COMPILED_CONSTANTS
];
4806 else if (GC_FRAMEP (obj
))
4808 register struct frame
*ptr
= XFRAME (obj
);
4810 if (VECTOR_MARKED_P (ptr
)) break; /* Already marked */
4811 VECTOR_MARK (ptr
); /* Else mark it */
4813 CHECK_LIVE (live_vector_p
);
4814 mark_object (ptr
->name
);
4815 mark_object (ptr
->icon_name
);
4816 mark_object (ptr
->title
);
4817 mark_object (ptr
->focus_frame
);
4818 mark_object (ptr
->selected_window
);
4819 mark_object (ptr
->minibuffer_window
);
4820 mark_object (ptr
->param_alist
);
4821 mark_object (ptr
->scroll_bars
);
4822 mark_object (ptr
->condemned_scroll_bars
);
4823 mark_object (ptr
->menu_bar_items
);
4824 mark_object (ptr
->face_alist
);
4825 mark_object (ptr
->menu_bar_vector
);
4826 mark_object (ptr
->buffer_predicate
);
4827 mark_object (ptr
->buffer_list
);
4828 mark_object (ptr
->menu_bar_window
);
4829 mark_object (ptr
->tool_bar_window
);
4830 mark_face_cache (ptr
->face_cache
);
4831 #ifdef HAVE_WINDOW_SYSTEM
4832 mark_image_cache (ptr
);
4833 mark_object (ptr
->tool_bar_items
);
4834 mark_object (ptr
->desired_tool_bar_string
);
4835 mark_object (ptr
->current_tool_bar_string
);
4836 #endif /* HAVE_WINDOW_SYSTEM */
4838 else if (GC_BOOL_VECTOR_P (obj
))
4840 register struct Lisp_Vector
*ptr
= XVECTOR (obj
);
4842 if (VECTOR_MARKED_P (ptr
))
4843 break; /* Already marked */
4844 CHECK_LIVE (live_vector_p
);
4845 VECTOR_MARK (ptr
); /* Else mark it */
4847 else if (GC_WINDOWP (obj
))
4849 register struct Lisp_Vector
*ptr
= XVECTOR (obj
);
4850 struct window
*w
= XWINDOW (obj
);
4853 /* Stop if already marked. */
4854 if (VECTOR_MARKED_P (ptr
))
4858 CHECK_LIVE (live_vector_p
);
4861 /* There is no Lisp data above The member CURRENT_MATRIX in
4862 struct WINDOW. Stop marking when that slot is reached. */
4864 (char *) &ptr
->contents
[i
] < (char *) &w
->current_matrix
;
4866 mark_object (ptr
->contents
[i
]);
4868 /* Mark glyphs for leaf windows. Marking window matrices is
4869 sufficient because frame matrices use the same glyph
4871 if (NILP (w
->hchild
)
4873 && w
->current_matrix
)
4875 mark_glyph_matrix (w
->current_matrix
);
4876 mark_glyph_matrix (w
->desired_matrix
);
4879 else if (GC_HASH_TABLE_P (obj
))
4881 struct Lisp_Hash_Table
*h
= XHASH_TABLE (obj
);
4883 /* Stop if already marked. */
4884 if (VECTOR_MARKED_P (h
))
4888 CHECK_LIVE (live_vector_p
);
4891 /* Mark contents. */
4892 /* Do not mark next_free or next_weak.
4893 Being in the next_weak chain
4894 should not keep the hash table alive.
4895 No need to mark `count' since it is an integer. */
4896 mark_object (h
->test
);
4897 mark_object (h
->weak
);
4898 mark_object (h
->rehash_size
);
4899 mark_object (h
->rehash_threshold
);
4900 mark_object (h
->hash
);
4901 mark_object (h
->next
);
4902 mark_object (h
->index
);
4903 mark_object (h
->user_hash_function
);
4904 mark_object (h
->user_cmp_function
);
4906 /* If hash table is not weak, mark all keys and values.
4907 For weak tables, mark only the vector. */
4908 if (GC_NILP (h
->weak
))
4909 mark_object (h
->key_and_value
);
4911 VECTOR_MARK (XVECTOR (h
->key_and_value
));
4915 register struct Lisp_Vector
*ptr
= XVECTOR (obj
);
4916 register EMACS_INT size
= ptr
->size
;
4919 if (VECTOR_MARKED_P (ptr
)) break; /* Already marked */
4920 CHECK_LIVE (live_vector_p
);
4921 VECTOR_MARK (ptr
); /* Else mark it */
4922 if (size
& PSEUDOVECTOR_FLAG
)
4923 size
&= PSEUDOVECTOR_SIZE_MASK
;
4925 for (i
= 0; i
< size
; i
++) /* and then mark its elements */
4926 mark_object (ptr
->contents
[i
]);
4932 register struct Lisp_Symbol
*ptr
= XSYMBOL (obj
);
4933 struct Lisp_Symbol
*ptrx
;
4935 if (ptr
->gcmarkbit
) break;
4936 CHECK_ALLOCATED_AND_LIVE (live_symbol_p
);
4938 mark_object (ptr
->value
);
4939 mark_object (ptr
->function
);
4940 mark_object (ptr
->plist
);
4942 if (!PURE_POINTER_P (XSTRING (ptr
->xname
)))
4943 MARK_STRING (XSTRING (ptr
->xname
));
4944 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr
->xname
));
4946 /* Note that we do not mark the obarray of the symbol.
4947 It is safe not to do so because nothing accesses that
4948 slot except to check whether it is nil. */
4952 ptrx
= ptr
; /* Use of ptrx avoids compiler bug on Sun */
4953 XSETSYMBOL (obj
, ptrx
);
4960 CHECK_ALLOCATED_AND_LIVE (live_misc_p
);
4961 if (XMARKER (obj
)->gcmarkbit
)
4963 XMARKER (obj
)->gcmarkbit
= 1;
4964 switch (XMISCTYPE (obj
))
4966 case Lisp_Misc_Buffer_Local_Value
:
4967 case Lisp_Misc_Some_Buffer_Local_Value
:
4969 register struct Lisp_Buffer_Local_Value
*ptr
4970 = XBUFFER_LOCAL_VALUE (obj
);
4971 /* If the cdr is nil, avoid recursion for the car. */
4972 if (EQ (ptr
->cdr
, Qnil
))
4974 obj
= ptr
->realvalue
;
4977 mark_object (ptr
->realvalue
);
4978 mark_object (ptr
->buffer
);
4979 mark_object (ptr
->frame
);
4984 case Lisp_Misc_Marker
:
4985 /* DO NOT mark thru the marker's chain.
4986 The buffer's markers chain does not preserve markers from gc;
4987 instead, markers are removed from the chain when freed by gc. */
4988 case Lisp_Misc_Intfwd
:
4989 case Lisp_Misc_Boolfwd
:
4990 case Lisp_Misc_Objfwd
:
4991 case Lisp_Misc_Buffer_Objfwd
:
4992 case Lisp_Misc_Kboard_Objfwd
:
4993 /* Don't bother with Lisp_Buffer_Objfwd,
4994 since all markable slots in current buffer marked anyway. */
4995 /* Don't need to do Lisp_Objfwd, since the places they point
4996 are protected with staticpro. */
4997 case Lisp_Misc_Save_Value
:
5000 case Lisp_Misc_Overlay
:
5002 struct Lisp_Overlay
*ptr
= XOVERLAY (obj
);
5003 mark_object (ptr
->start
);
5004 mark_object (ptr
->end
);
5005 mark_object (ptr
->plist
);
5008 XSETMISC (obj
, ptr
->next
);
5021 register struct Lisp_Cons
*ptr
= XCONS (obj
);
5022 if (CONS_MARKED_P (ptr
)) break;
5023 CHECK_ALLOCATED_AND_LIVE (live_cons_p
);
5025 /* If the cdr is nil, avoid recursion for the car. */
5026 if (EQ (ptr
->cdr
, Qnil
))
5032 mark_object (ptr
->car
);
5035 if (cdr_count
== mark_object_loop_halt
)
5041 CHECK_ALLOCATED_AND_LIVE (live_float_p
);
5042 FLOAT_MARK (XFLOAT (obj
));
5053 #undef CHECK_ALLOCATED
5054 #undef CHECK_ALLOCATED_AND_LIVE
5057 /* Mark the pointers in a buffer structure. */
5063 register struct buffer
*buffer
= XBUFFER (buf
);
5064 register Lisp_Object
*ptr
, tmp
;
5065 Lisp_Object base_buffer
;
5067 VECTOR_MARK (buffer
);
5069 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer
));
5071 if (CONSP (buffer
->undo_list
))
5074 tail
= buffer
->undo_list
;
5076 /* We mark the undo list specially because
5077 its pointers to markers should be weak. */
5079 while (CONSP (tail
))
5081 register struct Lisp_Cons
*ptr
= XCONS (tail
);
5083 if (CONS_MARKED_P (ptr
))
5086 if (GC_CONSP (ptr
->car
)
5087 && !CONS_MARKED_P (XCONS (ptr
->car
))
5088 && GC_MARKERP (XCAR (ptr
->car
)))
5090 CONS_MARK (XCONS (ptr
->car
));
5091 mark_object (XCDR (ptr
->car
));
5094 mark_object (ptr
->car
);
5096 if (CONSP (ptr
->cdr
))
5102 mark_object (XCDR (tail
));
5105 mark_object (buffer
->undo_list
);
5107 if (buffer
->overlays_before
)
5109 XSETMISC (tmp
, buffer
->overlays_before
);
5112 if (buffer
->overlays_after
)
5114 XSETMISC (tmp
, buffer
->overlays_after
);
5118 for (ptr
= &buffer
->name
;
5119 (char *)ptr
< (char *)buffer
+ sizeof (struct buffer
);
5123 /* If this is an indirect buffer, mark its base buffer. */
5124 if (buffer
->base_buffer
&& !VECTOR_MARKED_P (buffer
->base_buffer
))
5126 XSETBUFFER (base_buffer
, buffer
->base_buffer
);
5127 mark_buffer (base_buffer
);
5132 /* Value is non-zero if OBJ will survive the current GC because it's
5133 either marked or does not need to be marked to survive. */
5141 switch (XGCTYPE (obj
))
5148 survives_p
= XSYMBOL (obj
)->gcmarkbit
;
5152 survives_p
= XMARKER (obj
)->gcmarkbit
;
5156 survives_p
= STRING_MARKED_P (XSTRING (obj
));
5159 case Lisp_Vectorlike
:
5160 survives_p
= GC_SUBRP (obj
) || VECTOR_MARKED_P (XVECTOR (obj
));
5164 survives_p
= CONS_MARKED_P (XCONS (obj
));
5168 survives_p
= FLOAT_MARKED_P (XFLOAT (obj
));
5175 return survives_p
|| PURE_POINTER_P ((void *) XPNTR (obj
));
5180 /* Sweep: find all structures not marked, and free them. */
5185 /* Remove or mark entries in weak hash tables.
5186 This must be done before any object is unmarked. */
5187 sweep_weak_hash_tables ();
5190 #ifdef GC_CHECK_STRING_BYTES
5191 if (!noninteractive
)
5192 check_string_bytes (1);
5195 /* Put all unmarked conses on free list */
5197 register struct cons_block
*cblk
;
5198 struct cons_block
**cprev
= &cons_block
;
5199 register int lim
= cons_block_index
;
5200 register int num_free
= 0, num_used
= 0;
5204 for (cblk
= cons_block
; cblk
; cblk
= *cprev
)
5208 for (i
= 0; i
< lim
; i
++)
5209 if (!CONS_MARKED_P (&cblk
->conses
[i
]))
5212 *(struct Lisp_Cons
**)&cblk
->conses
[i
].cdr
= cons_free_list
;
5213 cons_free_list
= &cblk
->conses
[i
];
5215 cons_free_list
->car
= Vdead
;
5221 CONS_UNMARK (&cblk
->conses
[i
]);
5223 lim
= CONS_BLOCK_SIZE
;
5224 /* If this block contains only free conses and we have already
5225 seen more than two blocks worth of free conses then deallocate
5227 if (this_free
== CONS_BLOCK_SIZE
&& num_free
> CONS_BLOCK_SIZE
)
5229 *cprev
= cblk
->next
;
5230 /* Unhook from the free list. */
5231 cons_free_list
= *(struct Lisp_Cons
**) &cblk
->conses
[0].cdr
;
5232 lisp_align_free (cblk
);
5237 num_free
+= this_free
;
5238 cprev
= &cblk
->next
;
5241 total_conses
= num_used
;
5242 total_free_conses
= num_free
;
5245 /* Put all unmarked floats on free list */
5247 register struct float_block
*fblk
;
5248 struct float_block
**fprev
= &float_block
;
5249 register int lim
= float_block_index
;
5250 register int num_free
= 0, num_used
= 0;
5252 float_free_list
= 0;
5254 for (fblk
= float_block
; fblk
; fblk
= *fprev
)
5258 for (i
= 0; i
< lim
; i
++)
5259 if (!FLOAT_MARKED_P (&fblk
->floats
[i
]))
5262 *(struct Lisp_Float
**)&fblk
->floats
[i
].data
= float_free_list
;
5263 float_free_list
= &fblk
->floats
[i
];
5268 FLOAT_UNMARK (&fblk
->floats
[i
]);
5270 lim
= FLOAT_BLOCK_SIZE
;
5271 /* If this block contains only free floats and we have already
5272 seen more than two blocks worth of free floats then deallocate
5274 if (this_free
== FLOAT_BLOCK_SIZE
&& num_free
> FLOAT_BLOCK_SIZE
)
5276 *fprev
= fblk
->next
;
5277 /* Unhook from the free list. */
5278 float_free_list
= *(struct Lisp_Float
**) &fblk
->floats
[0].data
;
5279 lisp_align_free (fblk
);
5284 num_free
+= this_free
;
5285 fprev
= &fblk
->next
;
5288 total_floats
= num_used
;
5289 total_free_floats
= num_free
;
5292 /* Put all unmarked intervals on free list */
5294 register struct interval_block
*iblk
;
5295 struct interval_block
**iprev
= &interval_block
;
5296 register int lim
= interval_block_index
;
5297 register int num_free
= 0, num_used
= 0;
5299 interval_free_list
= 0;
5301 for (iblk
= interval_block
; iblk
; iblk
= *iprev
)
5306 for (i
= 0; i
< lim
; i
++)
5308 if (!iblk
->intervals
[i
].gcmarkbit
)
5310 SET_INTERVAL_PARENT (&iblk
->intervals
[i
], interval_free_list
);
5311 interval_free_list
= &iblk
->intervals
[i
];
5317 iblk
->intervals
[i
].gcmarkbit
= 0;
5320 lim
= INTERVAL_BLOCK_SIZE
;
5321 /* If this block contains only free intervals and we have already
5322 seen more than two blocks worth of free intervals then
5323 deallocate this block. */
5324 if (this_free
== INTERVAL_BLOCK_SIZE
&& num_free
> INTERVAL_BLOCK_SIZE
)
5326 *iprev
= iblk
->next
;
5327 /* Unhook from the free list. */
5328 interval_free_list
= INTERVAL_PARENT (&iblk
->intervals
[0]);
5330 n_interval_blocks
--;
5334 num_free
+= this_free
;
5335 iprev
= &iblk
->next
;
5338 total_intervals
= num_used
;
5339 total_free_intervals
= num_free
;
5342 /* Put all unmarked symbols on free list */
5344 register struct symbol_block
*sblk
;
5345 struct symbol_block
**sprev
= &symbol_block
;
5346 register int lim
= symbol_block_index
;
5347 register int num_free
= 0, num_used
= 0;
5349 symbol_free_list
= NULL
;
5351 for (sblk
= symbol_block
; sblk
; sblk
= *sprev
)
5354 struct Lisp_Symbol
*sym
= sblk
->symbols
;
5355 struct Lisp_Symbol
*end
= sym
+ lim
;
5357 for (; sym
< end
; ++sym
)
5359 /* Check if the symbol was created during loadup. In such a case
5360 it might be pointed to by pure bytecode which we don't trace,
5361 so we conservatively assume that it is live. */
5362 int pure_p
= PURE_POINTER_P (XSTRING (sym
->xname
));
5364 if (!sym
->gcmarkbit
&& !pure_p
)
5366 *(struct Lisp_Symbol
**) &sym
->value
= symbol_free_list
;
5367 symbol_free_list
= sym
;
5369 symbol_free_list
->function
= Vdead
;
5377 UNMARK_STRING (XSTRING (sym
->xname
));
5382 lim
= SYMBOL_BLOCK_SIZE
;
5383 /* If this block contains only free symbols and we have already
5384 seen more than two blocks worth of free symbols then deallocate
5386 if (this_free
== SYMBOL_BLOCK_SIZE
&& num_free
> SYMBOL_BLOCK_SIZE
)
5388 *sprev
= sblk
->next
;
5389 /* Unhook from the free list. */
5390 symbol_free_list
= *(struct Lisp_Symbol
**)&sblk
->symbols
[0].value
;
5396 num_free
+= this_free
;
5397 sprev
= &sblk
->next
;
5400 total_symbols
= num_used
;
5401 total_free_symbols
= num_free
;
5404 /* Put all unmarked misc's on free list.
5405 For a marker, first unchain it from the buffer it points into. */
5407 register struct marker_block
*mblk
;
5408 struct marker_block
**mprev
= &marker_block
;
5409 register int lim
= marker_block_index
;
5410 register int num_free
= 0, num_used
= 0;
5412 marker_free_list
= 0;
5414 for (mblk
= marker_block
; mblk
; mblk
= *mprev
)
5419 for (i
= 0; i
< lim
; i
++)
5421 if (!mblk
->markers
[i
].u_marker
.gcmarkbit
)
5423 if (mblk
->markers
[i
].u_marker
.type
== Lisp_Misc_Marker
)
5424 unchain_marker (&mblk
->markers
[i
].u_marker
);
5425 /* Set the type of the freed object to Lisp_Misc_Free.
5426 We could leave the type alone, since nobody checks it,
5427 but this might catch bugs faster. */
5428 mblk
->markers
[i
].u_marker
.type
= Lisp_Misc_Free
;
5429 mblk
->markers
[i
].u_free
.chain
= marker_free_list
;
5430 marker_free_list
= &mblk
->markers
[i
];
5436 mblk
->markers
[i
].u_marker
.gcmarkbit
= 0;
5439 lim
= MARKER_BLOCK_SIZE
;
5440 /* If this block contains only free markers and we have already
5441 seen more than two blocks worth of free markers then deallocate
5443 if (this_free
== MARKER_BLOCK_SIZE
&& num_free
> MARKER_BLOCK_SIZE
)
5445 *mprev
= mblk
->next
;
5446 /* Unhook from the free list. */
5447 marker_free_list
= mblk
->markers
[0].u_free
.chain
;
5453 num_free
+= this_free
;
5454 mprev
= &mblk
->next
;
5458 total_markers
= num_used
;
5459 total_free_markers
= num_free
;
5462 /* Free all unmarked buffers */
5464 register struct buffer
*buffer
= all_buffers
, *prev
= 0, *next
;
5467 if (!VECTOR_MARKED_P (buffer
))
5470 prev
->next
= buffer
->next
;
5472 all_buffers
= buffer
->next
;
5473 next
= buffer
->next
;
5479 VECTOR_UNMARK (buffer
);
5480 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer
));
5481 prev
= buffer
, buffer
= buffer
->next
;
5485 /* Free all unmarked vectors */
5487 register struct Lisp_Vector
*vector
= all_vectors
, *prev
= 0, *next
;
5488 total_vector_size
= 0;
5491 if (!VECTOR_MARKED_P (vector
))
5494 prev
->next
= vector
->next
;
5496 all_vectors
= vector
->next
;
5497 next
= vector
->next
;
5505 VECTOR_UNMARK (vector
);
5506 if (vector
->size
& PSEUDOVECTOR_FLAG
)
5507 total_vector_size
+= (PSEUDOVECTOR_SIZE_MASK
& vector
->size
);
5509 total_vector_size
+= vector
->size
;
5510 prev
= vector
, vector
= vector
->next
;
5514 #ifdef GC_CHECK_STRING_BYTES
5515 if (!noninteractive
)
5516 check_string_bytes (1);
5523 /* Debugging aids. */
5525 DEFUN ("memory-limit", Fmemory_limit
, Smemory_limit
, 0, 0, 0,
5526 doc
: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5527 This may be helpful in debugging Emacs's memory usage.
5528 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5533 XSETINT (end
, (EMACS_INT
) sbrk (0) / 1024);
5538 DEFUN ("memory-use-counts", Fmemory_use_counts
, Smemory_use_counts
, 0, 0, 0,
5539 doc
: /* Return a list of counters that measure how much consing there has been.
5540 Each of these counters increments for a certain kind of object.
5541 The counters wrap around from the largest positive integer to zero.
5542 Garbage collection does not decrease them.
5543 The elements of the value are as follows:
5544 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5545 All are in units of 1 = one object consed
5546 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5548 MISCS include overlays, markers, and some internal types.
5549 Frames, windows, buffers, and subprocesses count as vectors
5550 (but the contents of a buffer's text do not count here). */)
5553 Lisp_Object consed
[8];
5555 consed
[0] = make_number (min (MOST_POSITIVE_FIXNUM
, cons_cells_consed
));
5556 consed
[1] = make_number (min (MOST_POSITIVE_FIXNUM
, floats_consed
));
5557 consed
[2] = make_number (min (MOST_POSITIVE_FIXNUM
, vector_cells_consed
));
5558 consed
[3] = make_number (min (MOST_POSITIVE_FIXNUM
, symbols_consed
));
5559 consed
[4] = make_number (min (MOST_POSITIVE_FIXNUM
, string_chars_consed
));
5560 consed
[5] = make_number (min (MOST_POSITIVE_FIXNUM
, misc_objects_consed
));
5561 consed
[6] = make_number (min (MOST_POSITIVE_FIXNUM
, intervals_consed
));
5562 consed
[7] = make_number (min (MOST_POSITIVE_FIXNUM
, strings_consed
));
5564 return Flist (8, consed
);
5567 int suppress_checking
;
5569 die (msg
, file
, line
)
5574 fprintf (stderr
, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5579 /* Initialization */
5584 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5586 pure_size
= PURESIZE
;
5587 pure_bytes_used
= 0;
5588 pure_bytes_used_before_overflow
= 0;
5590 /* Initialize the list of free aligned blocks. */
5593 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5595 Vdead
= make_pure_string ("DEAD", 4, 4, 0);
5599 ignore_warnings
= 1;
5600 #ifdef DOUG_LEA_MALLOC
5601 mallopt (M_TRIM_THRESHOLD
, 128*1024); /* trim threshold */
5602 mallopt (M_MMAP_THRESHOLD
, 64*1024); /* mmap threshold */
5603 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
); /* max. number of mmap'ed areas */
5613 malloc_hysteresis
= 32;
5615 malloc_hysteresis
= 0;
5618 spare_memory
= (char *) malloc (SPARE_MEMORY
);
5620 ignore_warnings
= 0;
5622 byte_stack_list
= 0;
5624 consing_since_gc
= 0;
5625 gc_cons_threshold
= 100000 * sizeof (Lisp_Object
);
5626 #ifdef VIRT_ADDR_VARIES
5627 malloc_sbrk_unused
= 1<<22; /* A large number */
5628 malloc_sbrk_used
= 100000; /* as reasonable as any number */
5629 #endif /* VIRT_ADDR_VARIES */
5636 byte_stack_list
= 0;
5638 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5639 setjmp_tested_p
= longjmps_done
= 0;
5642 Vgc_elapsed
= make_float (0.0);
5649 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold
,
5650 doc
: /* *Number of bytes of consing between garbage collections.
5651 Garbage collection can happen automatically once this many bytes have been
5652 allocated since the last garbage collection. All data types count.
5654 Garbage collection happens automatically only when `eval' is called.
5656 By binding this temporarily to a large number, you can effectively
5657 prevent garbage collection during a part of the program. */);
5659 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used
,
5660 doc
: /* Number of bytes of sharable Lisp data allocated so far. */);
5662 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed
,
5663 doc
: /* Number of cons cells that have been consed so far. */);
5665 DEFVAR_INT ("floats-consed", &floats_consed
,
5666 doc
: /* Number of floats that have been consed so far. */);
5668 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed
,
5669 doc
: /* Number of vector cells that have been consed so far. */);
5671 DEFVAR_INT ("symbols-consed", &symbols_consed
,
5672 doc
: /* Number of symbols that have been consed so far. */);
5674 DEFVAR_INT ("string-chars-consed", &string_chars_consed
,
5675 doc
: /* Number of string characters that have been consed so far. */);
5677 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed
,
5678 doc
: /* Number of miscellaneous objects that have been consed so far. */);
5680 DEFVAR_INT ("intervals-consed", &intervals_consed
,
5681 doc
: /* Number of intervals that have been consed so far. */);
5683 DEFVAR_INT ("strings-consed", &strings_consed
,
5684 doc
: /* Number of strings that have been consed so far. */);
5686 DEFVAR_LISP ("purify-flag", &Vpurify_flag
,
5687 doc
: /* Non-nil means loading Lisp code in order to dump an executable.
5688 This means that certain objects should be allocated in shared (pure) space. */);
5690 DEFVAR_INT ("undo-limit", &undo_limit
,
5691 doc
: /* Keep no more undo information once it exceeds this size.
5692 This limit is applied when garbage collection happens.
5693 The size is counted as the number of bytes occupied,
5694 which includes both saved text and other data. */);
5697 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit
,
5698 doc
: /* Don't keep more than this much size of undo information.
5699 A command which pushes past this size is itself forgotten.
5700 This limit is applied when garbage collection happens.
5701 The size is counted as the number of bytes occupied,
5702 which includes both saved text and other data. */);
5703 undo_strong_limit
= 30000;
5705 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages
,
5706 doc
: /* Non-nil means display messages at start and end of garbage collection. */);
5707 garbage_collection_messages
= 0;
5709 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook
,
5710 doc
: /* Hook run after garbage collection has finished. */);
5711 Vpost_gc_hook
= Qnil
;
5712 Qpost_gc_hook
= intern ("post-gc-hook");
5713 staticpro (&Qpost_gc_hook
);
5715 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data
,
5716 doc
: /* Precomputed `signal' argument for memory-full error. */);
5717 /* We build this in advance because if we wait until we need it, we might
5718 not be able to allocate the memory to hold it. */
5721 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
5723 DEFVAR_LISP ("memory-full", &Vmemory_full
,
5724 doc
: /* Non-nil means we are handling a memory-full error. */);
5725 Vmemory_full
= Qnil
;
5727 staticpro (&Qgc_cons_threshold
);
5728 Qgc_cons_threshold
= intern ("gc-cons-threshold");
5730 staticpro (&Qchar_table_extra_slots
);
5731 Qchar_table_extra_slots
= intern ("char-table-extra-slots");
5733 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed
,
5734 doc
: /* Accumulated time elapsed in garbage collections.
5735 The time is in seconds as a floating point value. */);
5736 DEFVAR_INT ("gcs-done", &gcs_done
,
5737 doc
: /* Accumulated number of garbage collections done. */);
5742 defsubr (&Smake_byte_code
);
5743 defsubr (&Smake_list
);
5744 defsubr (&Smake_vector
);
5745 defsubr (&Smake_char_table
);
5746 defsubr (&Smake_string
);
5747 defsubr (&Smake_bool_vector
);
5748 defsubr (&Smake_symbol
);
5749 defsubr (&Smake_marker
);
5750 defsubr (&Spurecopy
);
5751 defsubr (&Sgarbage_collect
);
5752 defsubr (&Smemory_limit
);
5753 defsubr (&Smemory_use_counts
);
5755 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5756 defsubr (&Sgc_status
);
5760 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
5761 (do not change this comment) */