2 @c This is part of the GNU Emacs Lisp Reference Manual.
3 @c Copyright (C) 1990-1995, 1998-1999, 2001-2014 Free Software
5 @c See the file elisp.texi for copying conditions.
9 @cindex element (of list)
11 A @dfn{list} represents a sequence of zero or more elements (which may
12 be any Lisp objects). The important difference between lists and
13 vectors is that two or more lists can share part of their structure; in
14 addition, you can insert or delete elements in a list without copying
18 * Cons Cells:: How lists are made out of cons cells.
19 * List-related Predicates:: Is this object a list? Comparing two lists.
20 * List Elements:: Extracting the pieces of a list.
21 * Building Lists:: Creating list structure.
22 * List Variables:: Modifying lists stored in variables.
23 * Modifying Lists:: Storing new pieces into an existing list.
24 * Sets And Lists:: A list can represent a finite mathematical set.
25 * Association Lists:: A list can represent a finite relation or mapping.
26 * Property Lists:: A list of paired elements.
30 @section Lists and Cons Cells
31 @cindex lists and cons cells
33 Lists in Lisp are not a primitive data type; they are built up from
34 @dfn{cons cells} (@pxref{Cons Cell Type}). A cons cell is a data
35 object that represents an ordered pair. That is, it has two slots,
36 and each slot @dfn{holds}, or @dfn{refers to}, some Lisp object. One
37 slot is known as the @sc{car}, and the other is known as the @sc{cdr}.
38 (These names are traditional; see @ref{Cons Cell Type}.) @sc{cdr} is
39 pronounced ``could-er''.
41 We say that ``the @sc{car} of this cons cell is'' whatever object
42 its @sc{car} slot currently holds, and likewise for the @sc{cdr}.
44 A list is a series of cons cells ``chained together'', so that each
45 cell refers to the next one. There is one cons cell for each element
46 of the list. By convention, the @sc{car}s of the cons cells hold the
47 elements of the list, and the @sc{cdr}s are used to chain the list
48 (this asymmetry between @sc{car} and @sc{cdr} is entirely a matter of
49 convention; at the level of cons cells, the @sc{car} and @sc{cdr}
50 slots have similar properties). Hence, the @sc{cdr} slot of each cons
51 cell in a list refers to the following cons cell.
54 Also by convention, the @sc{cdr} of the last cons cell in a list is
55 @code{nil}. We call such a @code{nil}-terminated structure a
56 @dfn{true list}. In Emacs Lisp, the symbol @code{nil} is both a
57 symbol and a list with no elements. For convenience, the symbol
58 @code{nil} is considered to have @code{nil} as its @sc{cdr} (and also
61 Hence, the @sc{cdr} of a true list is always a true list. The
62 @sc{cdr} of a nonempty true list is a true list containing all the
63 elements except the first.
67 If the @sc{cdr} of a list's last cons cell is some value other than
68 @code{nil}, we call the structure a @dfn{dotted list}, since its
69 printed representation would use dotted pair notation (@pxref{Dotted
70 Pair Notation}). There is one other possibility: some cons cell's
71 @sc{cdr} could point to one of the previous cons cells in the list.
72 We call that structure a @dfn{circular list}.
74 For some purposes, it does not matter whether a list is true,
75 circular or dotted. If a program doesn't look far enough down the
76 list to see the @sc{cdr} of the final cons cell, it won't care.
77 However, some functions that operate on lists demand true lists and
78 signal errors if given a dotted list. Most functions that try to find
79 the end of a list enter infinite loops if given a circular list.
81 @cindex list structure
82 Because most cons cells are used as part of lists, we refer to any
83 structure made out of cons cells as a @dfn{list structure}.
85 @node List-related Predicates
86 @section Predicates on Lists
88 The following predicates test whether a Lisp object is an atom,
89 whether it is a cons cell or is a list, or whether it is the
90 distinguished object @code{nil}. (Many of these predicates can be
91 defined in terms of the others, but they are used so often that it is
95 This function returns @code{t} if @var{object} is a cons cell, @code{nil}
96 otherwise. @code{nil} is not a cons cell, although it @emph{is} a list.
100 This function returns @code{t} if @var{object} is an atom, @code{nil}
101 otherwise. All objects except cons cells are atoms. The symbol
102 @code{nil} is an atom and is also a list; it is the only Lisp object
106 (atom @var{object}) @equiv{} (not (consp @var{object}))
111 This function returns @code{t} if @var{object} is a cons cell or
112 @code{nil}. Otherwise, it returns @code{nil}.
127 This function is the opposite of @code{listp}: it returns @code{t} if
128 @var{object} is not a list. Otherwise, it returns @code{nil}.
131 (listp @var{object}) @equiv{} (not (nlistp @var{object}))
136 This function returns @code{t} if @var{object} is @code{nil}, and
137 returns @code{nil} otherwise. This function is identical to @code{not},
138 but as a matter of clarity we use @code{null} when @var{object} is
139 considered a list and @code{not} when it is considered a truth value
140 (see @code{not} in @ref{Combining Conditions}).
156 @section Accessing Elements of Lists
157 @cindex list elements
160 This function returns the value referred to by the first slot of the
161 cons cell @var{cons-cell}. In other words, it returns the @sc{car} of
164 As a special case, if @var{cons-cell} is @code{nil}, this function
165 returns @code{nil}. Therefore, any list is a valid argument. An
166 error is signaled if the argument is not a cons cell or @code{nil}.
181 This function returns the value referred to by the second slot of the
182 cons cell @var{cons-cell}. In other words, it returns the @sc{cdr} of
185 As a special case, if @var{cons-cell} is @code{nil}, this function
186 returns @code{nil}; therefore, any list is a valid argument. An error
187 is signaled if the argument is not a cons cell or @code{nil}.
201 @defun car-safe object
202 This function lets you take the @sc{car} of a cons cell while avoiding
203 errors for other data types. It returns the @sc{car} of @var{object} if
204 @var{object} is a cons cell, @code{nil} otherwise. This is in contrast
205 to @code{car}, which signals an error if @var{object} is not a list.
209 (car-safe @var{object})
211 (let ((x @var{object}))
219 @defun cdr-safe object
220 This function lets you take the @sc{cdr} of a cons cell while
221 avoiding errors for other data types. It returns the @sc{cdr} of
222 @var{object} if @var{object} is a cons cell, @code{nil} otherwise.
223 This is in contrast to @code{cdr}, which signals an error if
224 @var{object} is not a list.
228 (cdr-safe @var{object})
230 (let ((x @var{object}))
239 This macro provides a convenient way to examine the @sc{car} of a
240 list, and take it off the list, all at once. It operates on the list
241 stored in @var{listname}. It removes the first element from the list,
242 saves the @sc{cdr} into @var{listname}, then returns the removed
245 In the simplest case, @var{listname} is an unquoted symbol naming a
246 list; in that case, this macro is equivalent to @w{@code{(prog1
247 (car listname) (setq listname (cdr listname)))}}.
258 More generally, @var{listname} can be a generalized variable. In that
259 case, this macro saves into @var{listname} using @code{setf}.
260 @xref{Generalized Variables}.
262 For the @code{push} macro, which adds an element to a list,
263 @xref{List Variables}.
267 @anchor{Definition of nth}
268 This function returns the @var{n}th element of @var{list}. Elements
269 are numbered starting with zero, so the @sc{car} of @var{list} is
270 element number zero. If the length of @var{list} is @var{n} or less,
271 the value is @code{nil}.
273 @c Behavior for -ve n undefined since 2013/08; see bug#15059.
275 If @var{n} is negative, @code{nth} returns the first element of @var{list}.
287 (nth n x) @equiv{} (car (nthcdr n x))
291 The function @code{elt} is similar, but applies to any kind of sequence.
292 For historical reasons, it takes its arguments in the opposite order.
293 @xref{Sequence Functions}.
297 This function returns the @var{n}th @sc{cdr} of @var{list}. In other
298 words, it skips past the first @var{n} links of @var{list} and returns
301 @c "or negative" removed 2013/08; see bug#15059.
302 If @var{n} is zero, @code{nthcdr} returns all of
303 @var{list}. If the length of @var{list} is @var{n} or less,
304 @code{nthcdr} returns @code{nil}.
308 (nthcdr 1 '(1 2 3 4))
312 (nthcdr 10 '(1 2 3 4))
316 (nthcdr 0 '(1 2 3 4))
322 @defun last list &optional n
323 This function returns the last link of @var{list}. The @code{car} of
324 this link is the list's last element. If @var{list} is null,
325 @code{nil} is returned. If @var{n} is non-@code{nil}, the
326 @var{n}th-to-last link is returned instead, or the whole of @var{list}
327 if @var{n} is bigger than @var{list}'s length.
330 @defun safe-length list
331 @anchor{Definition of safe-length}
332 This function returns the length of @var{list}, with no risk of either
333 an error or an infinite loop. It generally returns the number of
334 distinct cons cells in the list. However, for circular lists,
335 the value is just an upper bound; it is often too large.
337 If @var{list} is not @code{nil} or a cons cell, @code{safe-length}
341 The most common way to compute the length of a list, when you are not
342 worried that it may be circular, is with @code{length}. @xref{Sequence
345 @defun caar cons-cell
346 This is the same as @code{(car (car @var{cons-cell}))}.
349 @defun cadr cons-cell
350 This is the same as @code{(car (cdr @var{cons-cell}))}
351 or @code{(nth 1 @var{cons-cell})}.
354 @defun cdar cons-cell
355 This is the same as @code{(cdr (car @var{cons-cell}))}.
358 @defun cddr cons-cell
359 This is the same as @code{(cdr (cdr @var{cons-cell}))}
360 or @code{(nthcdr 2 @var{cons-cell})}.
363 @defun butlast x &optional n
364 This function returns the list @var{x} with the last element,
365 or the last @var{n} elements, removed. If @var{n} is greater
366 than zero it makes a copy of the list so as not to damage the
367 original list. In general, @code{(append (butlast @var{x} @var{n})
368 (last @var{x} @var{n}))} will return a list equal to @var{x}.
371 @defun nbutlast x &optional n
372 This is a version of @code{butlast} that works by destructively
373 modifying the @code{cdr} of the appropriate element, rather than
374 making a copy of the list.
378 @section Building Cons Cells and Lists
380 @cindex building lists
382 Many functions build lists, as lists reside at the very heart of Lisp.
383 @code{cons} is the fundamental list-building function; however, it is
384 interesting to note that @code{list} is used more times in the source
385 code for Emacs than @code{cons}.
387 @defun cons object1 object2
388 This function is the most basic function for building new list
389 structure. It creates a new cons cell, making @var{object1} the
390 @sc{car}, and @var{object2} the @sc{cdr}. It then returns the new
391 cons cell. The arguments @var{object1} and @var{object2} may be any
392 Lisp objects, but most often @var{object2} is a list.
410 @code{cons} is often used to add a single element to the front of a
411 list. This is called @dfn{consing the element onto the list}.
412 @footnote{There is no strictly equivalent way to add an element to
413 the end of a list. You can use @code{(append @var{listname} (list
414 @var{newelt}))}, which creates a whole new list by copying @var{listname}
415 and adding @var{newelt} to its end. Or you can use @code{(nconc
416 @var{listname} (list @var{newelt}))}, which modifies @var{listname}
417 by following all the @sc{cdr}s and then replacing the terminating
418 @code{nil}. Compare this to adding an element to the beginning of a
419 list with @code{cons}, which neither copies nor modifies the list.}
423 (setq list (cons newelt list))
426 Note that there is no conflict between the variable named @code{list}
427 used in this example and the function named @code{list} described below;
428 any symbol can serve both purposes.
431 @defun list &rest objects
432 This function creates a list with @var{objects} as its elements. The
433 resulting list is always @code{nil}-terminated. If no @var{objects}
434 are given, the empty list is returned.
439 @result{} (1 2 3 4 5)
442 (list 1 2 '(3 4 5) 'foo)
443 @result{} (1 2 (3 4 5) foo)
452 @defun make-list length object
453 This function creates a list of @var{length} elements, in which each
454 element is @var{object}. Compare @code{make-list} with
455 @code{make-string} (@pxref{Creating Strings}).
460 @result{} (pigs pigs pigs)
467 (setq l (make-list 3 '(a b)))
468 @result{} ((a b) (a b) (a b))
469 (eq (car l) (cadr l))
475 @defun append &rest sequences
476 @cindex copying lists
477 This function returns a list containing all the elements of
478 @var{sequences}. The @var{sequences} may be lists, vectors,
479 bool-vectors, or strings, but the last one should usually be a list.
480 All arguments except the last one are copied, so none of the arguments
481 is altered. (See @code{nconc} in @ref{Rearrangement}, for a way to join
482 lists with no copying.)
484 More generally, the final argument to @code{append} may be any Lisp
485 object. The final argument is not copied or converted; it becomes the
486 @sc{cdr} of the last cons cell in the new list. If the final argument
487 is itself a list, then its elements become in effect elements of the
488 result list. If the final element is not a list, the result is a
489 dotted list since its final @sc{cdr} is not @code{nil} as required
493 Here is an example of using @code{append}:
497 (setq trees '(pine oak))
499 (setq more-trees (append '(maple birch) trees))
500 @result{} (maple birch pine oak)
507 @result{} (maple birch pine oak)
510 (eq trees (cdr (cdr more-trees)))
515 You can see how @code{append} works by looking at a box diagram. The
516 variable @code{trees} is set to the list @code{(pine oak)} and then the
517 variable @code{more-trees} is set to the list @code{(maple birch pine
518 oak)}. However, the variable @code{trees} continues to refer to the
525 | --- --- --- --- -> --- --- --- ---
526 --> | | |--> | | |--> | | |--> | | |--> nil
527 --- --- --- --- --- --- --- ---
530 --> maple -->birch --> pine --> oak
534 An empty sequence contributes nothing to the value returned by
535 @code{append}. As a consequence of this, a final @code{nil} argument
536 forces a copy of the previous argument:
544 (setq wood (append trees nil))
558 This once was the usual way to copy a list, before the function
559 @code{copy-sequence} was invented. @xref{Sequences Arrays Vectors}.
561 Here we show the use of vectors and strings as arguments to @code{append}:
565 (append [a b] "cd" nil)
566 @result{} (a b 99 100)
570 With the help of @code{apply} (@pxref{Calling Functions}), we can append
571 all the lists in a list of lists:
575 (apply 'append '((a b c) nil (x y z) nil))
576 @result{} (a b c x y z)
580 If no @var{sequences} are given, @code{nil} is returned:
589 Here are some examples where the final argument is not a list:
595 @result{} (x y . [z])
599 The second example shows that when the final argument is a sequence but
600 not a list, the sequence's elements do not become elements of the
601 resulting list. Instead, the sequence becomes the final @sc{cdr}, like
602 any other non-list final argument.
605 This function creates a new list whose elements are the elements of
606 @var{list}, but in reverse order. The original argument @var{list} is
623 @defun copy-tree tree &optional vecp
624 This function returns a copy of the tree @code{tree}. If @var{tree} is a
625 cons cell, this makes a new cons cell with the same @sc{car} and
626 @sc{cdr}, then recursively copies the @sc{car} and @sc{cdr} in the
629 Normally, when @var{tree} is anything other than a cons cell,
630 @code{copy-tree} simply returns @var{tree}. However, if @var{vecp} is
631 non-@code{nil}, it copies vectors too (and operates recursively on
635 @defun number-sequence from &optional to separation
636 This returns a list of numbers starting with @var{from} and
637 incrementing by @var{separation}, and ending at or just before
638 @var{to}. @var{separation} can be positive or negative and defaults
639 to 1. If @var{to} is @code{nil} or numerically equal to @var{from},
640 the value is the one-element list @code{(@var{from})}. If @var{to} is
641 less than @var{from} with a positive @var{separation}, or greater than
642 @var{from} with a negative @var{separation}, the value is @code{nil}
643 because those arguments specify an empty sequence.
645 If @var{separation} is 0 and @var{to} is neither @code{nil} nor
646 numerically equal to @var{from}, @code{number-sequence} signals an
647 error, since those arguments specify an infinite sequence.
649 All arguments are numbers.
650 Floating-point arguments can be tricky, because floating-point
651 arithmetic is inexact. For instance, depending on the machine, it may
652 quite well happen that @code{(number-sequence 0.4 0.6 0.2)} returns
653 the one element list @code{(0.4)}, whereas
654 @code{(number-sequence 0.4 0.8 0.2)} returns a list with three
655 elements. The @var{n}th element of the list is computed by the exact
656 formula @code{(+ @var{from} (* @var{n} @var{separation}))}. Thus, if
657 one wants to make sure that @var{to} is included in the list, one can
658 pass an expression of this exact type for @var{to}. Alternatively,
659 one can replace @var{to} with a slightly larger value (or a slightly
660 more negative value if @var{separation} is negative).
665 (number-sequence 4 9)
666 @result{} (4 5 6 7 8 9)
667 (number-sequence 9 4 -1)
668 @result{} (9 8 7 6 5 4)
669 (number-sequence 9 4 -2)
673 (number-sequence 8 5)
675 (number-sequence 5 8 -1)
677 (number-sequence 1.5 6 2)
678 @result{} (1.5 3.5 5.5)
683 @section Modifying List Variables
685 These functions, and one macro, provide convenient ways
686 to modify a list which is stored in a variable.
688 @defmac push element listname
689 This macro creates a new list whose @sc{car} is @var{element} and
690 whose @sc{cdr} is the list specified by @var{listname}, and saves that
691 list in @var{listname}. In the simplest case, @var{listname} is an
692 unquoted symbol naming a list, and this macro is equivalent
693 to @w{@code{(setq @var{listname} (cons @var{element} @var{listname}))}}.
704 More generally, @code{listname} can be a generalized variable. In
705 that case, this macro does the equivalent of @w{@code{(setf
706 @var{listname} (cons @var{element} @var{listname}))}}.
707 @xref{Generalized Variables}.
709 For the @code{pop} macro, which removes the first element from a list,
710 @xref{List Elements}.
713 Two functions modify lists that are the values of variables.
715 @defun add-to-list symbol element &optional append compare-fn
716 This function sets the variable @var{symbol} by consing @var{element}
717 onto the old value, if @var{element} is not already a member of that
718 value. It returns the resulting list, whether updated or not. The
719 value of @var{symbol} had better be a list already before the call.
720 @code{add-to-list} uses @var{compare-fn} to compare @var{element}
721 against existing list members; if @var{compare-fn} is @code{nil}, it
724 Normally, if @var{element} is added, it is added to the front of
725 @var{symbol}, but if the optional argument @var{append} is
726 non-@code{nil}, it is added at the end.
728 The argument @var{symbol} is not implicitly quoted; @code{add-to-list}
729 is an ordinary function, like @code{set} and unlike @code{setq}. Quote
730 the argument yourself if that is what you want.
733 Here's a scenario showing how to use @code{add-to-list}:
739 (add-to-list 'foo 'c) ;; @r{Add @code{c}.}
742 (add-to-list 'foo 'b) ;; @r{No effect.}
745 foo ;; @r{@code{foo} was changed.}
749 An equivalent expression for @code{(add-to-list '@var{var}
750 @var{value})} is this:
753 (or (member @var{value} @var{var})
754 (setq @var{var} (cons @var{value} @var{var})))
757 @defun add-to-ordered-list symbol element &optional order
758 This function sets the variable @var{symbol} by inserting
759 @var{element} into the old value, which must be a list, at the
760 position specified by @var{order}. If @var{element} is already a
761 member of the list, its position in the list is adjusted according
762 to @var{order}. Membership is tested using @code{eq}.
763 This function returns the resulting list, whether updated or not.
765 The @var{order} is typically a number (integer or float), and the
766 elements of the list are sorted in non-decreasing numerical order.
768 @var{order} may also be omitted or @code{nil}. Then the numeric order
769 of @var{element} stays unchanged if it already has one; otherwise,
770 @var{element} has no numeric order. Elements without a numeric list
771 order are placed at the end of the list, in no particular order.
773 Any other value for @var{order} removes the numeric order of @var{element}
774 if it already has one; otherwise, it is equivalent to @code{nil}.
776 The argument @var{symbol} is not implicitly quoted;
777 @code{add-to-ordered-list} is an ordinary function, like @code{set}
778 and unlike @code{setq}. Quote the argument yourself if necessary.
780 The ordering information is stored in a hash table on @var{symbol}'s
781 @code{list-order} property.
784 Here's a scenario showing how to use @code{add-to-ordered-list}:
790 (add-to-ordered-list 'foo 'a 1) ;; @r{Add @code{a}.}
793 (add-to-ordered-list 'foo 'c 3) ;; @r{Add @code{c}.}
796 (add-to-ordered-list 'foo 'b 2) ;; @r{Add @code{b}.}
799 (add-to-ordered-list 'foo 'b 4) ;; @r{Move @code{b}.}
802 (add-to-ordered-list 'foo 'd) ;; @r{Append @code{d}.}
805 (add-to-ordered-list 'foo 'e) ;; @r{Add @code{e}}.
806 @result{} (a c b e d)
808 foo ;; @r{@code{foo} was changed.}
809 @result{} (a c b e d)
812 @node Modifying Lists
813 @section Modifying Existing List Structure
814 @cindex destructive list operations
816 You can modify the @sc{car} and @sc{cdr} contents of a cons cell with the
817 primitives @code{setcar} and @code{setcdr}. We call these ``destructive''
818 operations because they change existing list structure.
820 @cindex CL note---@code{rplaca} vs @code{setcar}
824 @b{Common Lisp note:} Common Lisp uses functions @code{rplaca} and
825 @code{rplacd} to alter list structure; they change structure the same
826 way as @code{setcar} and @code{setcdr}, but the Common Lisp functions
827 return the cons cell while @code{setcar} and @code{setcdr} return the
828 new @sc{car} or @sc{cdr}.
832 * Setcar:: Replacing an element in a list.
833 * Setcdr:: Replacing part of the list backbone.
834 This can be used to remove or add elements.
835 * Rearrangement:: Reordering the elements in a list; combining lists.
839 @subsection Altering List Elements with @code{setcar}
841 Changing the @sc{car} of a cons cell is done with @code{setcar}. When
842 used on a list, @code{setcar} replaces one element of a list with a
845 @defun setcar cons object
846 This function stores @var{object} as the new @sc{car} of @var{cons},
847 replacing its previous @sc{car}. In other words, it changes the
848 @sc{car} slot of @var{cons} to refer to @var{object}. It returns the
849 value @var{object}. For example:
867 When a cons cell is part of the shared structure of several lists,
868 storing a new @sc{car} into the cons changes one element of each of
869 these lists. Here is an example:
873 ;; @r{Create two lists that are partly shared.}
876 (setq x2 (cons 'z (cdr x1)))
881 ;; @r{Replace the @sc{car} of a shared link.}
882 (setcar (cdr x1) 'foo)
884 x1 ; @r{Both lists are changed.}
891 ;; @r{Replace the @sc{car} of a link that is not shared.}
894 x1 ; @r{Only one list is changed.}
895 @result{} (baz foo c)
901 Here is a graphical depiction of the shared structure of the two lists
902 in the variables @code{x1} and @code{x2}, showing why replacing @code{b}
907 --- --- --- --- --- ---
908 x1---> | | |----> | | |--> | | |--> nil
909 --- --- --- --- --- ---
923 Here is an alternative form of box diagram, showing the same relationship:
928 -------------- -------------- --------------
929 | car | cdr | | car | cdr | | car | cdr |
930 | a | o------->| b | o------->| c | nil |
932 -------------- | -------------- --------------
944 @subsection Altering the CDR of a List
946 The lowest-level primitive for modifying a @sc{cdr} is @code{setcdr}:
948 @defun setcdr cons object
949 This function stores @var{object} as the new @sc{cdr} of @var{cons},
950 replacing its previous @sc{cdr}. In other words, it changes the
951 @sc{cdr} slot of @var{cons} to refer to @var{object}. It returns the
955 Here is an example of replacing the @sc{cdr} of a list with a
956 different list. All but the first element of the list are removed in
957 favor of a different sequence of elements. The first element is
958 unchanged, because it resides in the @sc{car} of the list, and is not
959 reached via the @sc{cdr}.
976 You can delete elements from the middle of a list by altering the
977 @sc{cdr}s of the cons cells in the list. For example, here we delete
978 the second element, @code{b}, from the list @code{(a b c)}, by changing
979 the @sc{cdr} of the first cons cell:
985 (setcdr x1 (cdr (cdr x1)))
992 Here is the result in box notation:
998 -------------- | -------------- | --------------
999 | car | cdr | | | car | cdr | -->| car | cdr |
1000 | a | o----- | b | o-------->| c | nil |
1002 -------------- -------------- --------------
1007 The second cons cell, which previously held the element @code{b}, still
1008 exists and its @sc{car} is still @code{b}, but it no longer forms part
1011 It is equally easy to insert a new element by changing @sc{cdr}s:
1017 (setcdr x1 (cons 'd (cdr x1)))
1024 Here is this result in box notation:
1028 -------------- ------------- -------------
1029 | car | cdr | | car | cdr | | car | cdr |
1030 | a | o | -->| b | o------->| c | nil |
1031 | | | | | | | | | | |
1032 --------- | -- | ------------- -------------
1045 @subsection Functions that Rearrange Lists
1046 @cindex rearrangement of lists
1047 @cindex reordering, of elements in lists
1048 @cindex modification of lists
1050 Here are some functions that rearrange lists ``destructively'' by
1051 modifying the @sc{cdr}s of their component cons cells. We call these
1052 functions ``destructive'' because they chew up the original lists passed
1053 to them as arguments, relinking their cons cells to form a new list that
1054 is the returned value.
1057 See @code{delq}, in @ref{Sets And Lists}, for another function
1058 that modifies cons cells.
1061 The function @code{delq} in the following section is another example
1062 of destructive list manipulation.
1065 @defun nconc &rest lists
1066 @cindex concatenating lists
1067 @cindex joining lists
1068 This function returns a list containing all the elements of @var{lists}.
1069 Unlike @code{append} (@pxref{Building Lists}), the @var{lists} are
1070 @emph{not} copied. Instead, the last @sc{cdr} of each of the
1071 @var{lists} is changed to refer to the following list. The last of the
1072 @var{lists} is not altered. For example:
1081 @result{} (1 2 3 4 5)
1085 @result{} (1 2 3 4 5)
1089 Since the last argument of @code{nconc} is not itself modified, it is
1090 reasonable to use a constant list, such as @code{'(4 5)}, as in the
1091 above example. For the same reason, the last argument need not be a
1101 @result{} (1 2 3 . z)
1105 @result{} (1 2 3 . z)
1109 However, the other arguments (all but the last) must be lists.
1111 A common pitfall is to use a quoted constant list as a non-last
1112 argument to @code{nconc}. If you do this, your program will change
1113 each time you run it! Here is what happens:
1117 (defun add-foo (x) ; @r{We want this function to add}
1118 (nconc '(foo) x)) ; @r{@code{foo} to the front of its arg.}
1122 (symbol-function 'add-foo)
1123 @result{} (lambda (x) (nconc (quote (foo)) x))
1127 (setq xx (add-foo '(1 2))) ; @r{It seems to work.}
1131 (setq xy (add-foo '(3 4))) ; @r{What happened?}
1132 @result{} (foo 1 2 3 4)
1140 (symbol-function 'add-foo)
1141 @result{} (lambda (x) (nconc (quote (foo 1 2 3 4) x)))
1146 @defun nreverse list
1147 @cindex reversing a list
1148 This function reverses the order of the elements of @var{list}.
1149 Unlike @code{reverse}, @code{nreverse} alters its argument by reversing
1150 the @sc{cdr}s in the cons cells forming the list. The cons cell that
1151 used to be the last one in @var{list} becomes the first cons cell of the
1168 ;; @r{The cons cell that was first is now last.}
1174 To avoid confusion, we usually store the result of @code{nreverse}
1175 back in the same variable which held the original list:
1178 (setq x (nreverse x))
1181 Here is the @code{nreverse} of our favorite example, @code{(a b c)},
1182 presented graphically:
1186 @r{Original list head:} @r{Reversed list:}
1187 ------------- ------------- ------------
1188 | car | cdr | | car | cdr | | car | cdr |
1189 | a | nil |<-- | b | o |<-- | c | o |
1190 | | | | | | | | | | | | |
1191 ------------- | --------- | - | -------- | -
1193 ------------- ------------
1198 @defun sort list predicate
1200 @cindex sorting lists
1201 This function sorts @var{list} stably, though destructively, and
1202 returns the sorted list. It compares elements using @var{predicate}. A
1203 stable sort is one in which elements with equal sort keys maintain their
1204 relative order before and after the sort. Stability is important when
1205 successive sorts are used to order elements according to different
1208 The argument @var{predicate} must be a function that accepts two
1209 arguments. It is called with two elements of @var{list}. To get an
1210 increasing order sort, the @var{predicate} should return non-@code{nil} if the
1211 first element is ``less than'' the second, or @code{nil} if not.
1213 The comparison function @var{predicate} must give reliable results for
1214 any given pair of arguments, at least within a single call to
1215 @code{sort}. It must be @dfn{antisymmetric}; that is, if @var{a} is
1216 less than @var{b}, @var{b} must not be less than @var{a}. It must be
1217 @dfn{transitive}---that is, if @var{a} is less than @var{b}, and @var{b}
1218 is less than @var{c}, then @var{a} must be less than @var{c}. If you
1219 use a comparison function which does not meet these requirements, the
1220 result of @code{sort} is unpredictable.
1222 The destructive aspect of @code{sort} is that it rearranges the cons
1223 cells forming @var{list} by changing @sc{cdr}s. A nondestructive sort
1224 function would create new cons cells to store the elements in their
1225 sorted order. If you wish to make a sorted copy without destroying the
1226 original, copy it first with @code{copy-sequence} and then sort.
1228 Sorting does not change the @sc{car}s of the cons cells in @var{list};
1229 the cons cell that originally contained the element @code{a} in
1230 @var{list} still has @code{a} in its @sc{car} after sorting, but it now
1231 appears in a different position in the list due to the change of
1232 @sc{cdr}s. For example:
1236 (setq nums '(1 3 2 6 5 4 0))
1237 @result{} (1 3 2 6 5 4 0)
1241 @result{} (0 1 2 3 4 5 6)
1245 @result{} (1 2 3 4 5 6)
1250 @strong{Warning}: Note that the list in @code{nums} no longer contains
1251 0; this is the same cons cell that it was before, but it is no longer
1252 the first one in the list. Don't assume a variable that formerly held
1253 the argument now holds the entire sorted list! Instead, save the result
1254 of @code{sort} and use that. Most often we store the result back into
1255 the variable that held the original list:
1258 (setq nums (sort nums '<))
1261 @xref{Sorting}, for more functions that perform sorting.
1262 See @code{documentation} in @ref{Accessing Documentation}, for a
1263 useful example of @code{sort}.
1266 @node Sets And Lists
1267 @section Using Lists as Sets
1268 @cindex lists as sets
1271 A list can represent an unordered mathematical set---simply consider a
1272 value an element of a set if it appears in the list, and ignore the
1273 order of the list. To form the union of two sets, use @code{append} (as
1274 long as you don't mind having duplicate elements). You can remove
1275 @code{equal} duplicates using @code{delete-dups}. Other useful
1276 functions for sets include @code{memq} and @code{delq}, and their
1277 @code{equal} versions, @code{member} and @code{delete}.
1279 @cindex CL note---lack @code{union}, @code{intersection}
1281 @b{Common Lisp note:} Common Lisp has functions @code{union} (which
1282 avoids duplicate elements) and @code{intersection} for set operations.
1283 Although standard GNU Emacs Lisp does not have them, the @file{cl-lib}
1284 library provides versions.
1285 @xref{Lists as Sets,,, cl, Common Lisp Extensions}.
1288 @defun memq object list
1289 @cindex membership in a list
1290 This function tests to see whether @var{object} is a member of
1291 @var{list}. If it is, @code{memq} returns a list starting with the
1292 first occurrence of @var{object}. Otherwise, it returns @code{nil}.
1293 The letter @samp{q} in @code{memq} says that it uses @code{eq} to
1294 compare @var{object} against the elements of the list. For example:
1298 (memq 'b '(a b c b a))
1302 (memq '(2) '((1) (2))) ; @r{@code{(2)} and @code{(2)} are not @code{eq}.}
1308 @defun delq object list
1309 @cindex deleting list elements
1310 This function destructively removes all elements @code{eq} to
1311 @var{object} from @var{list}, and returns the resulting list. The
1312 letter @samp{q} in @code{delq} says that it uses @code{eq} to compare
1313 @var{object} against the elements of the list, like @code{memq} and
1316 Typically, when you invoke @code{delq}, you should use the return
1317 value by assigning it to the variable which held the original list.
1318 The reason for this is explained below.
1321 The @code{delq} function deletes elements from the front of the list
1322 by simply advancing down the list, and returning a sublist that starts
1323 after those elements. For example:
1327 (delq 'a '(a b c)) @equiv{} (cdr '(a b c))
1332 When an element to be deleted appears in the middle of the list,
1333 removing it involves changing the @sc{cdr}s (@pxref{Setcdr}).
1337 (setq sample-list '(a b c (4)))
1338 @result{} (a b c (4))
1341 (delq 'a sample-list)
1346 @result{} (a b c (4))
1349 (delq 'c sample-list)
1358 Note that @code{(delq 'c sample-list)} modifies @code{sample-list} to
1359 splice out the third element, but @code{(delq 'a sample-list)} does not
1360 splice anything---it just returns a shorter list. Don't assume that a
1361 variable which formerly held the argument @var{list} now has fewer
1362 elements, or that it still holds the original list! Instead, save the
1363 result of @code{delq} and use that. Most often we store the result back
1364 into the variable that held the original list:
1367 (setq flowers (delq 'rose flowers))
1370 In the following example, the @code{(4)} that @code{delq} attempts to match
1371 and the @code{(4)} in the @code{sample-list} are not @code{eq}:
1375 (delq '(4) sample-list)
1380 If you want to delete elements that are @code{equal} to a given value,
1381 use @code{delete} (see below).
1383 @defun remq object list
1384 This function returns a copy of @var{list}, with all elements removed
1385 which are @code{eq} to @var{object}. The letter @samp{q} in @code{remq}
1386 says that it uses @code{eq} to compare @var{object} against the elements
1391 (setq sample-list '(a b c a b c))
1392 @result{} (a b c a b c)
1395 (remq 'a sample-list)
1400 @result{} (a b c a b c)
1405 @defun memql object list
1406 The function @code{memql} tests to see whether @var{object} is a member
1407 of @var{list}, comparing members with @var{object} using @code{eql},
1408 so floating-point elements are compared by value.
1409 If @var{object} is a member, @code{memql} returns a list starting with
1410 its first occurrence in @var{list}. Otherwise, it returns @code{nil}.
1412 Compare this with @code{memq}:
1416 (memql 1.2 '(1.1 1.2 1.3)) ; @r{@code{1.2} and @code{1.2} are @code{eql}.}
1420 (memq 1.2 '(1.1 1.2 1.3)) ; @r{@code{1.2} and @code{1.2} are not @code{eq}.}
1426 The following three functions are like @code{memq}, @code{delq} and
1427 @code{remq}, but use @code{equal} rather than @code{eq} to compare
1428 elements. @xref{Equality Predicates}.
1430 @defun member object list
1431 The function @code{member} tests to see whether @var{object} is a member
1432 of @var{list}, comparing members with @var{object} using @code{equal}.
1433 If @var{object} is a member, @code{member} returns a list starting with
1434 its first occurrence in @var{list}. Otherwise, it returns @code{nil}.
1436 Compare this with @code{memq}:
1440 (member '(2) '((1) (2))) ; @r{@code{(2)} and @code{(2)} are @code{equal}.}
1444 (memq '(2) '((1) (2))) ; @r{@code{(2)} and @code{(2)} are not @code{eq}.}
1448 ;; @r{Two strings with the same contents are @code{equal}.}
1449 (member "foo" '("foo" "bar"))
1450 @result{} ("foo" "bar")
1455 @defun delete object sequence
1456 This function removes all elements @code{equal} to @var{object} from
1457 @var{sequence}, and returns the resulting sequence.
1459 If @var{sequence} is a list, @code{delete} is to @code{delq} as
1460 @code{member} is to @code{memq}: it uses @code{equal} to compare
1461 elements with @var{object}, like @code{member}; when it finds an
1462 element that matches, it cuts the element out just as @code{delq}
1463 would. As with @code{delq}, you should typically use the return value
1464 by assigning it to the variable which held the original list.
1466 If @code{sequence} is a vector or string, @code{delete} returns a copy
1467 of @code{sequence} with all elements @code{equal} to @code{object}
1474 (setq l '((2) (1) (2)))
1479 ;; @r{If you want to change @code{l} reliably,}
1480 ;; @r{write @code{(setq l (delete '(2) l))}.}
1483 (setq l '((2) (1) (2)))
1488 ;; @r{In this case, it makes no difference whether you set @code{l},}
1489 ;; @r{but you should do so for the sake of the other case.}
1492 (delete '(2) [(2) (1) (2)])
1498 @defun remove object sequence
1499 This function is the non-destructive counterpart of @code{delete}. It
1500 returns a copy of @code{sequence}, a list, vector, or string, with
1501 elements @code{equal} to @code{object} removed. For example:
1505 (remove '(2) '((2) (1) (2)))
1509 (remove '(2) [(2) (1) (2)])
1516 @b{Common Lisp note:} The functions @code{member}, @code{delete} and
1517 @code{remove} in GNU Emacs Lisp are derived from Maclisp, not Common
1518 Lisp. The Common Lisp versions do not use @code{equal} to compare
1522 @defun member-ignore-case object list
1523 This function is like @code{member}, except that @var{object} should
1524 be a string and that it ignores differences in letter-case and text
1525 representation: upper-case and lower-case letters are treated as
1526 equal, and unibyte strings are converted to multibyte prior to
1530 @defun delete-dups list
1531 This function destructively removes all @code{equal} duplicates from
1532 @var{list}, stores the result in @var{list} and returns it. Of
1533 several @code{equal} occurrences of an element in @var{list},
1534 @code{delete-dups} keeps the first one.
1537 See also the function @code{add-to-list}, in @ref{List Variables},
1538 for a way to add an element to a list stored in a variable and used as a
1541 @node Association Lists
1542 @section Association Lists
1543 @cindex association list
1546 An @dfn{association list}, or @dfn{alist} for short, records a mapping
1547 from keys to values. It is a list of cons cells called
1548 @dfn{associations}: the @sc{car} of each cons cell is the @dfn{key}, and the
1549 @sc{cdr} is the @dfn{associated value}.@footnote{This usage of ``key''
1550 is not related to the term ``key sequence''; it means a value used to
1551 look up an item in a table. In this case, the table is the alist, and
1552 the alist associations are the items.}
1554 Here is an example of an alist. The key @code{pine} is associated with
1555 the value @code{cones}; the key @code{oak} is associated with
1556 @code{acorns}; and the key @code{maple} is associated with @code{seeds}.
1566 Both the values and the keys in an alist may be any Lisp objects.
1567 For example, in the following alist, the symbol @code{a} is
1568 associated with the number @code{1}, and the string @code{"b"} is
1569 associated with the @emph{list} @code{(2 3)}, which is the @sc{cdr} of
1576 Sometimes it is better to design an alist to store the associated
1577 value in the @sc{car} of the @sc{cdr} of the element. Here is an
1578 example of such an alist:
1581 ((rose red) (lily white) (buttercup yellow))
1585 Here we regard @code{red} as the value associated with @code{rose}. One
1586 advantage of this kind of alist is that you can store other related
1587 information---even a list of other items---in the @sc{cdr} of the
1588 @sc{cdr}. One disadvantage is that you cannot use @code{rassq} (see
1589 below) to find the element containing a given value. When neither of
1590 these considerations is important, the choice is a matter of taste, as
1591 long as you are consistent about it for any given alist.
1593 The same alist shown above could be regarded as having the
1594 associated value in the @sc{cdr} of the element; the value associated
1595 with @code{rose} would be the list @code{(red)}.
1597 Association lists are often used to record information that you might
1598 otherwise keep on a stack, since new associations may be added easily to
1599 the front of the list. When searching an association list for an
1600 association with a given key, the first one found is returned, if there
1603 In Emacs Lisp, it is @emph{not} an error if an element of an
1604 association list is not a cons cell. The alist search functions simply
1605 ignore such elements. Many other versions of Lisp signal errors in such
1608 Note that property lists are similar to association lists in several
1609 respects. A property list behaves like an association list in which
1610 each key can occur only once. @xref{Property Lists}, for a comparison
1611 of property lists and association lists.
1613 @defun assoc key alist
1614 This function returns the first association for @var{key} in
1615 @var{alist}, comparing @var{key} against the alist elements using
1616 @code{equal} (@pxref{Equality Predicates}). It returns @code{nil} if no
1617 association in @var{alist} has a @sc{car} @code{equal} to @var{key}.
1621 (setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1622 @result{} ((pine . cones) (oak . acorns) (maple . seeds))
1624 @result{} (oak . acorns)
1625 (cdr (assoc 'oak trees))
1627 (assoc 'birch trees)
1631 Here is another example, in which the keys and values are not symbols:
1634 (setq needles-per-cluster
1635 '((2 "Austrian Pine" "Red Pine")
1639 (cdr (assoc 3 needles-per-cluster))
1640 @result{} ("Pitch Pine")
1641 (cdr (assoc 2 needles-per-cluster))
1642 @result{} ("Austrian Pine" "Red Pine")
1646 The function @code{assoc-string} is much like @code{assoc} except
1647 that it ignores certain differences between strings. @xref{Text
1650 @defun rassoc value alist
1651 This function returns the first association with value @var{value} in
1652 @var{alist}. It returns @code{nil} if no association in @var{alist} has
1653 a @sc{cdr} @code{equal} to @var{value}.
1655 @code{rassoc} is like @code{assoc} except that it compares the @sc{cdr} of
1656 each @var{alist} association instead of the @sc{car}. You can think of
1657 this as ``reverse @code{assoc}'', finding the key for a given value.
1660 @defun assq key alist
1661 This function is like @code{assoc} in that it returns the first
1662 association for @var{key} in @var{alist}, but it makes the comparison
1663 using @code{eq} instead of @code{equal}. @code{assq} returns @code{nil}
1664 if no association in @var{alist} has a @sc{car} @code{eq} to @var{key}.
1665 This function is used more often than @code{assoc}, since @code{eq} is
1666 faster than @code{equal} and most alists use symbols as keys.
1667 @xref{Equality Predicates}.
1670 (setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1671 @result{} ((pine . cones) (oak . acorns) (maple . seeds))
1673 @result{} (pine . cones)
1676 On the other hand, @code{assq} is not usually useful in alists where the
1677 keys may not be symbols:
1681 '(("simple leaves" . oak)
1682 ("compound leaves" . horsechestnut)))
1684 (assq "simple leaves" leaves)
1686 (assoc "simple leaves" leaves)
1687 @result{} ("simple leaves" . oak)
1691 @defun rassq value alist
1692 This function returns the first association with value @var{value} in
1693 @var{alist}. It returns @code{nil} if no association in @var{alist} has
1694 a @sc{cdr} @code{eq} to @var{value}.
1696 @code{rassq} is like @code{assq} except that it compares the @sc{cdr} of
1697 each @var{alist} association instead of the @sc{car}. You can think of
1698 this as ``reverse @code{assq}'', finding the key for a given value.
1703 (setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1705 (rassq 'acorns trees)
1706 @result{} (oak . acorns)
1707 (rassq 'spores trees)
1711 @code{rassq} cannot search for a value stored in the @sc{car}
1712 of the @sc{cdr} of an element:
1715 (setq colors '((rose red) (lily white) (buttercup yellow)))
1717 (rassq 'white colors)
1721 In this case, the @sc{cdr} of the association @code{(lily white)} is not
1722 the symbol @code{white}, but rather the list @code{(white)}. This
1723 becomes clearer if the association is written in dotted pair notation:
1726 (lily white) @equiv{} (lily . (white))
1730 @defun assoc-default key alist &optional test default
1731 This function searches @var{alist} for a match for @var{key}. For each
1732 element of @var{alist}, it compares the element (if it is an atom) or
1733 the element's @sc{car} (if it is a cons) against @var{key}, by calling
1734 @var{test} with two arguments: the element or its @sc{car}, and
1735 @var{key}. The arguments are passed in that order so that you can get
1736 useful results using @code{string-match} with an alist that contains
1737 regular expressions (@pxref{Regexp Search}). If @var{test} is omitted
1738 or @code{nil}, @code{equal} is used for comparison.
1740 If an alist element matches @var{key} by this criterion,
1741 then @code{assoc-default} returns a value based on this element.
1742 If the element is a cons, then the value is the element's @sc{cdr}.
1743 Otherwise, the return value is @var{default}.
1745 If no alist element matches @var{key}, @code{assoc-default} returns
1749 @defun copy-alist alist
1750 @cindex copying alists
1751 This function returns a two-level deep copy of @var{alist}: it creates a
1752 new copy of each association, so that you can alter the associations of
1753 the new alist without changing the old one.
1757 (setq needles-per-cluster
1758 '((2 . ("Austrian Pine" "Red Pine"))
1759 (3 . ("Pitch Pine"))
1761 (5 . ("White Pine"))))
1763 ((2 "Austrian Pine" "Red Pine")
1767 (setq copy (copy-alist needles-per-cluster))
1769 ((2 "Austrian Pine" "Red Pine")
1773 (eq needles-per-cluster copy)
1775 (equal needles-per-cluster copy)
1777 (eq (car needles-per-cluster) (car copy))
1779 (cdr (car (cdr needles-per-cluster)))
1780 @result{} ("Pitch Pine")
1782 (eq (cdr (car (cdr needles-per-cluster)))
1783 (cdr (car (cdr copy))))
1788 This example shows how @code{copy-alist} makes it possible to change
1789 the associations of one copy without affecting the other:
1793 (setcdr (assq 3 copy) '("Martian Vacuum Pine"))
1794 (cdr (assq 3 needles-per-cluster))
1795 @result{} ("Pitch Pine")
1800 @defun assq-delete-all key alist
1801 This function deletes from @var{alist} all the elements whose @sc{car}
1802 is @code{eq} to @var{key}, much as if you used @code{delq} to delete
1803 each such element one by one. It returns the shortened alist, and
1804 often modifies the original list structure of @var{alist}. For
1805 correct results, use the return value of @code{assq-delete-all} rather
1806 than looking at the saved value of @var{alist}.
1809 (setq alist '((foo 1) (bar 2) (foo 3) (lose 4)))
1810 @result{} ((foo 1) (bar 2) (foo 3) (lose 4))
1811 (assq-delete-all 'foo alist)
1812 @result{} ((bar 2) (lose 4))
1814 @result{} ((foo 1) (bar 2) (lose 4))
1818 @defun rassq-delete-all value alist
1819 This function deletes from @var{alist} all the elements whose @sc{cdr}
1820 is @code{eq} to @var{value}. It returns the shortened alist, and
1821 often modifies the original list structure of @var{alist}.
1822 @code{rassq-delete-all} is like @code{assq-delete-all} except that it
1823 compares the @sc{cdr} of each @var{alist} association instead of the
1827 @node Property Lists
1828 @section Property Lists
1829 @cindex property list
1832 A @dfn{property list} (@dfn{plist} for short) is a list of paired
1833 elements. Each of the pairs associates a property name (usually a
1834 symbol) with a property or value. Here is an example of a property
1838 (pine cones numbers (1 2 3) color "blue")
1842 This property list associates @code{pine} with @code{cones},
1843 @code{numbers} with @code{(1 2 3)}, and @code{color} with
1844 @code{"blue"}. The property names and values can be any Lisp objects,
1845 but the names are usually symbols (as they are in this example).
1847 Property lists are used in several contexts. For instance, the
1848 function @code{put-text-property} takes an argument which is a
1849 property list, specifying text properties and associated values which
1850 are to be applied to text in a string or buffer. @xref{Text
1853 Another prominent use of property lists is for storing symbol
1854 properties. Every symbol possesses a list of properties, used to
1855 record miscellaneous information about the symbol; these properties
1856 are stored in the form of a property list. @xref{Symbol Properties}.
1859 * Plists and Alists:: Comparison of the advantages of property
1860 lists and association lists.
1861 * Plist Access:: Accessing property lists stored elsewhere.
1864 @node Plists and Alists
1865 @subsection Property Lists and Association Lists
1866 @cindex plist vs. alist
1867 @cindex alist vs. plist
1869 @cindex property lists vs association lists
1870 Association lists (@pxref{Association Lists}) are very similar to
1871 property lists. In contrast to association lists, the order of the
1872 pairs in the property list is not significant, since the property
1873 names must be distinct.
1875 Property lists are better than association lists for attaching
1876 information to various Lisp function names or variables. If your
1877 program keeps all such information in one association list, it will
1878 typically need to search that entire list each time it checks for an
1879 association for a particular Lisp function name or variable, which
1880 could be slow. By contrast, if you keep the same information in the
1881 property lists of the function names or variables themselves, each
1882 search will scan only the length of one property list, which is
1883 usually short. This is why the documentation for a variable is
1884 recorded in a property named @code{variable-documentation}. The byte
1885 compiler likewise uses properties to record those functions needing
1888 However, association lists have their own advantages. Depending on
1889 your application, it may be faster to add an association to the front of
1890 an association list than to update a property. All properties for a
1891 symbol are stored in the same property list, so there is a possibility
1892 of a conflict between different uses of a property name. (For this
1893 reason, it is a good idea to choose property names that are probably
1894 unique, such as by beginning the property name with the program's usual
1895 name-prefix for variables and functions.) An association list may be
1896 used like a stack where associations are pushed on the front of the list
1897 and later discarded; this is not possible with a property list.
1900 @subsection Property Lists Outside Symbols
1902 The following functions can be used to manipulate property lists.
1903 They all compare property names using @code{eq}.
1905 @defun plist-get plist property
1906 This returns the value of the @var{property} property stored in the
1907 property list @var{plist}. It accepts a malformed @var{plist}
1908 argument. If @var{property} is not found in the @var{plist}, it
1909 returns @code{nil}. For example,
1912 (plist-get '(foo 4) 'foo)
1914 (plist-get '(foo 4 bad) 'foo)
1916 (plist-get '(foo 4 bad) 'bad)
1918 (plist-get '(foo 4 bad) 'bar)
1923 @defun plist-put plist property value
1924 This stores @var{value} as the value of the @var{property} property in
1925 the property list @var{plist}. It may modify @var{plist} destructively,
1926 or it may construct a new list structure without altering the old. The
1927 function returns the modified property list, so you can store that back
1928 in the place where you got @var{plist}. For example,
1931 (setq my-plist '(bar t foo 4))
1932 @result{} (bar t foo 4)
1933 (setq my-plist (plist-put my-plist 'foo 69))
1934 @result{} (bar t foo 69)
1935 (setq my-plist (plist-put my-plist 'quux '(a)))
1936 @result{} (bar t foo 69 quux (a))
1940 @defun lax-plist-get plist property
1941 Like @code{plist-get} except that it compares properties
1942 using @code{equal} instead of @code{eq}.
1945 @defun lax-plist-put plist property value
1946 Like @code{plist-put} except that it compares properties
1947 using @code{equal} instead of @code{eq}.
1950 @defun plist-member plist property
1951 This returns non-@code{nil} if @var{plist} contains the given
1952 @var{property}. Unlike @code{plist-get}, this allows you to distinguish
1953 between a missing property and a property with the value @code{nil}.
1954 The value is actually the tail of @var{plist} whose @code{car} is