1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2013 Free Software
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
23 #define LISP_INLINE EXTERN_INLINE
26 #include <limits.h> /* For CHAR_BIT. */
28 #ifdef ENABLE_CHECKING
29 #include <signal.h> /* For SIGABRT. */
38 #include "intervals.h"
40 #include "character.h"
45 #include "blockinput.h"
46 #include "termhooks.h" /* For struct terminal. */
50 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
51 Doable only if GC_MARK_STACK. */
53 # undef GC_CHECK_MARKED_OBJECTS
56 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c and if not checking
60 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
61 || defined GC_CHECK_MARKED_OBJECTS)
62 #undef GC_MALLOC_CHECK
73 #include "w32heap.h" /* for sbrk */
76 #ifdef DOUG_LEA_MALLOC
80 /* Specify maximum number of areas to mmap. It would be nice to use a
81 value that explicitly means "no limit". */
83 #define MMAP_MAX_AREAS 100000000
85 #endif /* not DOUG_LEA_MALLOC */
87 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
88 to a struct Lisp_String. */
90 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
91 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
92 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
94 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
95 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
96 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
98 /* Default value of gc_cons_threshold (see below). */
100 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
102 /* Global variables. */
103 struct emacs_globals globals
;
105 /* Number of bytes of consing done since the last gc. */
107 EMACS_INT consing_since_gc
;
109 /* Similar minimum, computed from Vgc_cons_percentage. */
111 EMACS_INT gc_relative_threshold
;
113 /* Minimum number of bytes of consing since GC before next GC,
114 when memory is full. */
116 EMACS_INT memory_full_cons_threshold
;
118 /* True during GC. */
122 /* True means abort if try to GC.
123 This is for code which is written on the assumption that
124 no GC will happen, so as to verify that assumption. */
128 /* Number of live and free conses etc. */
130 static EMACS_INT total_conses
, total_markers
, total_symbols
, total_buffers
;
131 static EMACS_INT total_free_conses
, total_free_markers
, total_free_symbols
;
132 static EMACS_INT total_free_floats
, total_floats
;
134 /* Points to memory space allocated as "spare", to be freed if we run
135 out of memory. We keep one large block, four cons-blocks, and
136 two string blocks. */
138 static char *spare_memory
[7];
140 /* Amount of spare memory to keep in large reserve block, or to see
141 whether this much is available when malloc fails on a larger request. */
143 #define SPARE_MEMORY (1 << 14)
145 /* Initialize it to a nonzero value to force it into data space
146 (rather than bss space). That way unexec will remap it into text
147 space (pure), on some systems. We have not implemented the
148 remapping on more recent systems because this is less important
149 nowadays than in the days of small memories and timesharing. */
151 EMACS_INT pure
[(PURESIZE
+ sizeof (EMACS_INT
) - 1) / sizeof (EMACS_INT
)] = {1,};
152 #define PUREBEG (char *) pure
154 /* Pointer to the pure area, and its size. */
156 static char *purebeg
;
157 static ptrdiff_t pure_size
;
159 /* Number of bytes of pure storage used before pure storage overflowed.
160 If this is non-zero, this implies that an overflow occurred. */
162 static ptrdiff_t pure_bytes_used_before_overflow
;
164 /* True if P points into pure space. */
166 #define PURE_POINTER_P(P) \
167 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
169 /* Index in pure at which next pure Lisp object will be allocated.. */
171 static ptrdiff_t pure_bytes_used_lisp
;
173 /* Number of bytes allocated for non-Lisp objects in pure storage. */
175 static ptrdiff_t pure_bytes_used_non_lisp
;
177 /* If nonzero, this is a warning delivered by malloc and not yet
180 const char *pending_malloc_warning
;
182 /* Maximum amount of C stack to save when a GC happens. */
184 #ifndef MAX_SAVE_STACK
185 #define MAX_SAVE_STACK 16000
188 /* Buffer in which we save a copy of the C stack at each GC. */
190 #if MAX_SAVE_STACK > 0
191 static char *stack_copy
;
192 static ptrdiff_t stack_copy_size
;
195 static Lisp_Object Qconses
;
196 static Lisp_Object Qsymbols
;
197 static Lisp_Object Qmiscs
;
198 static Lisp_Object Qstrings
;
199 static Lisp_Object Qvectors
;
200 static Lisp_Object Qfloats
;
201 static Lisp_Object Qintervals
;
202 static Lisp_Object Qbuffers
;
203 static Lisp_Object Qstring_bytes
, Qvector_slots
, Qheap
;
204 static Lisp_Object Qgc_cons_threshold
;
205 Lisp_Object Qautomatic_gc
;
206 Lisp_Object Qchar_table_extra_slots
;
208 /* Hook run after GC has finished. */
210 static Lisp_Object Qpost_gc_hook
;
212 static void free_save_value (Lisp_Object
);
213 static void mark_terminals (void);
214 static void gc_sweep (void);
215 static Lisp_Object
make_pure_vector (ptrdiff_t);
216 static void mark_buffer (struct buffer
*);
218 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
219 static void refill_memory_reserve (void);
221 static void compact_small_strings (void);
222 static void free_large_strings (void);
223 extern Lisp_Object
which_symbols (Lisp_Object
, EMACS_INT
) EXTERNALLY_VISIBLE
;
225 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
226 what memory allocated via lisp_malloc and lisp_align_malloc is intended
227 for what purpose. This enumeration specifies the type of memory. */
238 /* Since all non-bool pseudovectors are small enough to be
239 allocated from vector blocks, this memory type denotes
240 large regular vectors and large bool pseudovectors. */
242 /* Special type to denote vector blocks. */
243 MEM_TYPE_VECTOR_BLOCK
,
244 /* Special type to denote reserved memory. */
248 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
250 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
251 #include <stdio.h> /* For fprintf. */
254 /* A unique object in pure space used to make some Lisp objects
255 on free lists recognizable in O(1). */
257 static Lisp_Object Vdead
;
258 #define DEADP(x) EQ (x, Vdead)
260 #ifdef GC_MALLOC_CHECK
262 enum mem_type allocated_mem_type
;
264 #endif /* GC_MALLOC_CHECK */
266 /* A node in the red-black tree describing allocated memory containing
267 Lisp data. Each such block is recorded with its start and end
268 address when it is allocated, and removed from the tree when it
271 A red-black tree is a balanced binary tree with the following
274 1. Every node is either red or black.
275 2. Every leaf is black.
276 3. If a node is red, then both of its children are black.
277 4. Every simple path from a node to a descendant leaf contains
278 the same number of black nodes.
279 5. The root is always black.
281 When nodes are inserted into the tree, or deleted from the tree,
282 the tree is "fixed" so that these properties are always true.
284 A red-black tree with N internal nodes has height at most 2
285 log(N+1). Searches, insertions and deletions are done in O(log N).
286 Please see a text book about data structures for a detailed
287 description of red-black trees. Any book worth its salt should
292 /* Children of this node. These pointers are never NULL. When there
293 is no child, the value is MEM_NIL, which points to a dummy node. */
294 struct mem_node
*left
, *right
;
296 /* The parent of this node. In the root node, this is NULL. */
297 struct mem_node
*parent
;
299 /* Start and end of allocated region. */
303 enum {MEM_BLACK
, MEM_RED
} color
;
309 /* Base address of stack. Set in main. */
311 Lisp_Object
*stack_base
;
313 /* Root of the tree describing allocated Lisp memory. */
315 static struct mem_node
*mem_root
;
317 /* Lowest and highest known address in the heap. */
319 static void *min_heap_address
, *max_heap_address
;
321 /* Sentinel node of the tree. */
323 static struct mem_node mem_z
;
324 #define MEM_NIL &mem_z
326 static struct Lisp_Vector
*allocate_vectorlike (ptrdiff_t);
327 static void lisp_free (void *);
328 static void mark_stack (void);
329 static bool live_vector_p (struct mem_node
*, void *);
330 static bool live_buffer_p (struct mem_node
*, void *);
331 static bool live_string_p (struct mem_node
*, void *);
332 static bool live_cons_p (struct mem_node
*, void *);
333 static bool live_symbol_p (struct mem_node
*, void *);
334 static bool live_float_p (struct mem_node
*, void *);
335 static bool live_misc_p (struct mem_node
*, void *);
336 static void mark_maybe_object (Lisp_Object
);
337 static void mark_memory (void *, void *);
338 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
339 static void mem_init (void);
340 static struct mem_node
*mem_insert (void *, void *, enum mem_type
);
341 static void mem_insert_fixup (struct mem_node
*);
342 static void mem_rotate_left (struct mem_node
*);
343 static void mem_rotate_right (struct mem_node
*);
344 static void mem_delete (struct mem_node
*);
345 static void mem_delete_fixup (struct mem_node
*);
346 static struct mem_node
*mem_find (void *);
350 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
351 static void check_gcpros (void);
354 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
360 /* Recording what needs to be marked for gc. */
362 struct gcpro
*gcprolist
;
364 /* Addresses of staticpro'd variables. Initialize it to a nonzero
365 value; otherwise some compilers put it into BSS. */
367 #define NSTATICS 0x800
368 static Lisp_Object
*staticvec
[NSTATICS
] = {&Vpurify_flag
};
370 /* Index of next unused slot in staticvec. */
372 static int staticidx
;
374 static void *pure_alloc (size_t, int);
377 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
378 ALIGNMENT must be a power of 2. */
380 #define ALIGN(ptr, ALIGNMENT) \
381 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
382 & ~ ((ALIGNMENT) - 1)))
386 /************************************************************************
388 ************************************************************************/
390 /* Function malloc calls this if it finds we are near exhausting storage. */
393 malloc_warning (const char *str
)
395 pending_malloc_warning
= str
;
399 /* Display an already-pending malloc warning. */
402 display_malloc_warning (void)
404 call3 (intern ("display-warning"),
406 build_string (pending_malloc_warning
),
407 intern ("emergency"));
408 pending_malloc_warning
= 0;
411 /* Called if we can't allocate relocatable space for a buffer. */
414 buffer_memory_full (ptrdiff_t nbytes
)
416 /* If buffers use the relocating allocator, no need to free
417 spare_memory, because we may have plenty of malloc space left
418 that we could get, and if we don't, the malloc that fails will
419 itself cause spare_memory to be freed. If buffers don't use the
420 relocating allocator, treat this like any other failing
424 memory_full (nbytes
);
427 /* This used to call error, but if we've run out of memory, we could
428 get infinite recursion trying to build the string. */
429 xsignal (Qnil
, Vmemory_signal_data
);
432 /* A common multiple of the positive integers A and B. Ideally this
433 would be the least common multiple, but there's no way to do that
434 as a constant expression in C, so do the best that we can easily do. */
435 #define COMMON_MULTIPLE(a, b) \
436 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
438 #ifndef XMALLOC_OVERRUN_CHECK
439 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
442 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
445 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
446 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
447 block size in little-endian order. The trailer consists of
448 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
450 The header is used to detect whether this block has been allocated
451 through these functions, as some low-level libc functions may
452 bypass the malloc hooks. */
454 #define XMALLOC_OVERRUN_CHECK_SIZE 16
455 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
456 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
458 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
459 hold a size_t value and (2) the header size is a multiple of the
460 alignment that Emacs needs for C types and for USE_LSB_TAG. */
461 #define XMALLOC_BASE_ALIGNMENT \
462 alignof (union { long double d; intmax_t i; void *p; })
465 # define XMALLOC_HEADER_ALIGNMENT \
466 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
468 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
470 #define XMALLOC_OVERRUN_SIZE_SIZE \
471 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
472 + XMALLOC_HEADER_ALIGNMENT - 1) \
473 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
474 - XMALLOC_OVERRUN_CHECK_SIZE)
476 static char const xmalloc_overrun_check_header
[XMALLOC_OVERRUN_CHECK_SIZE
] =
477 { '\x9a', '\x9b', '\xae', '\xaf',
478 '\xbf', '\xbe', '\xce', '\xcf',
479 '\xea', '\xeb', '\xec', '\xed',
480 '\xdf', '\xde', '\x9c', '\x9d' };
482 static char const xmalloc_overrun_check_trailer
[XMALLOC_OVERRUN_CHECK_SIZE
] =
483 { '\xaa', '\xab', '\xac', '\xad',
484 '\xba', '\xbb', '\xbc', '\xbd',
485 '\xca', '\xcb', '\xcc', '\xcd',
486 '\xda', '\xdb', '\xdc', '\xdd' };
488 /* Insert and extract the block size in the header. */
491 xmalloc_put_size (unsigned char *ptr
, size_t size
)
494 for (i
= 0; i
< XMALLOC_OVERRUN_SIZE_SIZE
; i
++)
496 *--ptr
= size
& ((1 << CHAR_BIT
) - 1);
502 xmalloc_get_size (unsigned char *ptr
)
506 ptr
-= XMALLOC_OVERRUN_SIZE_SIZE
;
507 for (i
= 0; i
< XMALLOC_OVERRUN_SIZE_SIZE
; i
++)
516 /* Like malloc, but wraps allocated block with header and trailer. */
519 overrun_check_malloc (size_t size
)
521 register unsigned char *val
;
522 if (SIZE_MAX
- XMALLOC_OVERRUN_CHECK_OVERHEAD
< size
)
525 val
= malloc (size
+ XMALLOC_OVERRUN_CHECK_OVERHEAD
);
528 memcpy (val
, xmalloc_overrun_check_header
, XMALLOC_OVERRUN_CHECK_SIZE
);
529 val
+= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
530 xmalloc_put_size (val
, size
);
531 memcpy (val
+ size
, xmalloc_overrun_check_trailer
,
532 XMALLOC_OVERRUN_CHECK_SIZE
);
538 /* Like realloc, but checks old block for overrun, and wraps new block
539 with header and trailer. */
542 overrun_check_realloc (void *block
, size_t size
)
544 register unsigned char *val
= (unsigned char *) block
;
545 if (SIZE_MAX
- XMALLOC_OVERRUN_CHECK_OVERHEAD
< size
)
549 && memcmp (xmalloc_overrun_check_header
,
550 val
- XMALLOC_OVERRUN_CHECK_SIZE
- XMALLOC_OVERRUN_SIZE_SIZE
,
551 XMALLOC_OVERRUN_CHECK_SIZE
) == 0)
553 size_t osize
= xmalloc_get_size (val
);
554 if (memcmp (xmalloc_overrun_check_trailer
, val
+ osize
,
555 XMALLOC_OVERRUN_CHECK_SIZE
))
557 memset (val
+ osize
, 0, XMALLOC_OVERRUN_CHECK_SIZE
);
558 val
-= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
559 memset (val
, 0, XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
);
562 val
= realloc (val
, size
+ XMALLOC_OVERRUN_CHECK_OVERHEAD
);
566 memcpy (val
, xmalloc_overrun_check_header
, XMALLOC_OVERRUN_CHECK_SIZE
);
567 val
+= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
568 xmalloc_put_size (val
, size
);
569 memcpy (val
+ size
, xmalloc_overrun_check_trailer
,
570 XMALLOC_OVERRUN_CHECK_SIZE
);
575 /* Like free, but checks block for overrun. */
578 overrun_check_free (void *block
)
580 unsigned char *val
= (unsigned char *) block
;
583 && memcmp (xmalloc_overrun_check_header
,
584 val
- XMALLOC_OVERRUN_CHECK_SIZE
- XMALLOC_OVERRUN_SIZE_SIZE
,
585 XMALLOC_OVERRUN_CHECK_SIZE
) == 0)
587 size_t osize
= xmalloc_get_size (val
);
588 if (memcmp (xmalloc_overrun_check_trailer
, val
+ osize
,
589 XMALLOC_OVERRUN_CHECK_SIZE
))
591 #ifdef XMALLOC_CLEAR_FREE_MEMORY
592 val
-= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
593 memset (val
, 0xff, osize
+ XMALLOC_OVERRUN_CHECK_OVERHEAD
);
595 memset (val
+ osize
, 0, XMALLOC_OVERRUN_CHECK_SIZE
);
596 val
-= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
597 memset (val
, 0, XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
);
607 #define malloc overrun_check_malloc
608 #define realloc overrun_check_realloc
609 #define free overrun_check_free
612 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
613 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
614 If that variable is set, block input while in one of Emacs's memory
615 allocation functions. There should be no need for this debugging
616 option, since signal handlers do not allocate memory, but Emacs
617 formerly allocated memory in signal handlers and this compile-time
618 option remains as a way to help debug the issue should it rear its
620 #ifdef XMALLOC_BLOCK_INPUT_CHECK
621 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE
;
623 malloc_block_input (void)
625 if (block_input_in_memory_allocators
)
629 malloc_unblock_input (void)
631 if (block_input_in_memory_allocators
)
634 # define MALLOC_BLOCK_INPUT malloc_block_input ()
635 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
637 # define MALLOC_BLOCK_INPUT ((void) 0)
638 # define MALLOC_UNBLOCK_INPUT ((void) 0)
641 #define MALLOC_PROBE(size) \
643 if (profiler_memory_running) \
644 malloc_probe (size); \
648 /* Like malloc but check for no memory and block interrupt input.. */
651 xmalloc (size_t size
)
657 MALLOC_UNBLOCK_INPUT
;
665 /* Like the above, but zeroes out the memory just allocated. */
668 xzalloc (size_t size
)
674 MALLOC_UNBLOCK_INPUT
;
678 memset (val
, 0, size
);
683 /* Like realloc but check for no memory and block interrupt input.. */
686 xrealloc (void *block
, size_t size
)
691 /* We must call malloc explicitly when BLOCK is 0, since some
692 reallocs don't do this. */
696 val
= realloc (block
, size
);
697 MALLOC_UNBLOCK_INPUT
;
706 /* Like free but block interrupt input. */
715 MALLOC_UNBLOCK_INPUT
;
716 /* We don't call refill_memory_reserve here
717 because in practice the call in r_alloc_free seems to suffice. */
721 /* Other parts of Emacs pass large int values to allocator functions
722 expecting ptrdiff_t. This is portable in practice, but check it to
724 verify (INT_MAX
<= PTRDIFF_MAX
);
727 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
728 Signal an error on memory exhaustion, and block interrupt input. */
731 xnmalloc (ptrdiff_t nitems
, ptrdiff_t item_size
)
733 eassert (0 <= nitems
&& 0 < item_size
);
734 if (min (PTRDIFF_MAX
, SIZE_MAX
) / item_size
< nitems
)
735 memory_full (SIZE_MAX
);
736 return xmalloc (nitems
* item_size
);
740 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
741 Signal an error on memory exhaustion, and block interrupt input. */
744 xnrealloc (void *pa
, ptrdiff_t nitems
, ptrdiff_t item_size
)
746 eassert (0 <= nitems
&& 0 < item_size
);
747 if (min (PTRDIFF_MAX
, SIZE_MAX
) / item_size
< nitems
)
748 memory_full (SIZE_MAX
);
749 return xrealloc (pa
, nitems
* item_size
);
753 /* Grow PA, which points to an array of *NITEMS items, and return the
754 location of the reallocated array, updating *NITEMS to reflect its
755 new size. The new array will contain at least NITEMS_INCR_MIN more
756 items, but will not contain more than NITEMS_MAX items total.
757 ITEM_SIZE is the size of each item, in bytes.
759 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
760 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
763 If PA is null, then allocate a new array instead of reallocating
766 Block interrupt input as needed. If memory exhaustion occurs, set
767 *NITEMS to zero if PA is null, and signal an error (i.e., do not
770 Thus, to grow an array A without saving its old contents, do
771 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
772 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
773 and signals an error, and later this code is reexecuted and
774 attempts to free A. */
777 xpalloc (void *pa
, ptrdiff_t *nitems
, ptrdiff_t nitems_incr_min
,
778 ptrdiff_t nitems_max
, ptrdiff_t item_size
)
780 /* The approximate size to use for initial small allocation
781 requests. This is the largest "small" request for the GNU C
783 enum { DEFAULT_MXFAST
= 64 * sizeof (size_t) / 4 };
785 /* If the array is tiny, grow it to about (but no greater than)
786 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
787 ptrdiff_t n
= *nitems
;
788 ptrdiff_t tiny_max
= DEFAULT_MXFAST
/ item_size
- n
;
789 ptrdiff_t half_again
= n
>> 1;
790 ptrdiff_t incr_estimate
= max (tiny_max
, half_again
);
792 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
793 NITEMS_MAX, and what the C language can represent safely. */
794 ptrdiff_t C_language_max
= min (PTRDIFF_MAX
, SIZE_MAX
) / item_size
;
795 ptrdiff_t n_max
= (0 <= nitems_max
&& nitems_max
< C_language_max
796 ? nitems_max
: C_language_max
);
797 ptrdiff_t nitems_incr_max
= n_max
- n
;
798 ptrdiff_t incr
= max (nitems_incr_min
, min (incr_estimate
, nitems_incr_max
));
800 eassert (0 < item_size
&& 0 < nitems_incr_min
&& 0 <= n
&& -1 <= nitems_max
);
803 if (nitems_incr_max
< incr
)
804 memory_full (SIZE_MAX
);
806 pa
= xrealloc (pa
, n
* item_size
);
812 /* Like strdup, but uses xmalloc. */
815 xstrdup (const char *s
)
817 size_t len
= strlen (s
) + 1;
818 char *p
= xmalloc (len
);
823 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
824 argument is a const pointer. */
827 xputenv (char const *string
)
829 if (putenv ((char *) string
) != 0)
833 /* Unwind for SAFE_ALLOCA */
836 safe_alloca_unwind (Lisp_Object arg
)
838 free_save_value (arg
);
842 /* Return a newly allocated memory block of SIZE bytes, remembering
843 to free it when unwinding. */
845 record_xmalloc (size_t size
)
847 void *p
= xmalloc (size
);
848 record_unwind_protect (safe_alloca_unwind
, make_save_pointer (p
));
853 /* Like malloc but used for allocating Lisp data. NBYTES is the
854 number of bytes to allocate, TYPE describes the intended use of the
855 allocated memory block (for strings, for conses, ...). */
858 void *lisp_malloc_loser EXTERNALLY_VISIBLE
;
862 lisp_malloc (size_t nbytes
, enum mem_type type
)
868 #ifdef GC_MALLOC_CHECK
869 allocated_mem_type
= type
;
872 val
= malloc (nbytes
);
875 /* If the memory just allocated cannot be addressed thru a Lisp
876 object's pointer, and it needs to be,
877 that's equivalent to running out of memory. */
878 if (val
&& type
!= MEM_TYPE_NON_LISP
)
881 XSETCONS (tem
, (char *) val
+ nbytes
- 1);
882 if ((char *) XCONS (tem
) != (char *) val
+ nbytes
- 1)
884 lisp_malloc_loser
= val
;
891 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
892 if (val
&& type
!= MEM_TYPE_NON_LISP
)
893 mem_insert (val
, (char *) val
+ nbytes
, type
);
896 MALLOC_UNBLOCK_INPUT
;
898 memory_full (nbytes
);
899 MALLOC_PROBE (nbytes
);
903 /* Free BLOCK. This must be called to free memory allocated with a
904 call to lisp_malloc. */
907 lisp_free (void *block
)
911 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
912 mem_delete (mem_find (block
));
914 MALLOC_UNBLOCK_INPUT
;
917 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
919 /* The entry point is lisp_align_malloc which returns blocks of at most
920 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
922 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
923 #define USE_POSIX_MEMALIGN 1
926 /* BLOCK_ALIGN has to be a power of 2. */
927 #define BLOCK_ALIGN (1 << 10)
929 /* Padding to leave at the end of a malloc'd block. This is to give
930 malloc a chance to minimize the amount of memory wasted to alignment.
931 It should be tuned to the particular malloc library used.
932 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
933 posix_memalign on the other hand would ideally prefer a value of 4
934 because otherwise, there's 1020 bytes wasted between each ablocks.
935 In Emacs, testing shows that those 1020 can most of the time be
936 efficiently used by malloc to place other objects, so a value of 0 can
937 still preferable unless you have a lot of aligned blocks and virtually
939 #define BLOCK_PADDING 0
940 #define BLOCK_BYTES \
941 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
943 /* Internal data structures and constants. */
945 #define ABLOCKS_SIZE 16
947 /* An aligned block of memory. */
952 char payload
[BLOCK_BYTES
];
953 struct ablock
*next_free
;
955 /* `abase' is the aligned base of the ablocks. */
956 /* It is overloaded to hold the virtual `busy' field that counts
957 the number of used ablock in the parent ablocks.
958 The first ablock has the `busy' field, the others have the `abase'
959 field. To tell the difference, we assume that pointers will have
960 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
961 is used to tell whether the real base of the parent ablocks is `abase'
962 (if not, the word before the first ablock holds a pointer to the
964 struct ablocks
*abase
;
965 /* The padding of all but the last ablock is unused. The padding of
966 the last ablock in an ablocks is not allocated. */
968 char padding
[BLOCK_PADDING
];
972 /* A bunch of consecutive aligned blocks. */
975 struct ablock blocks
[ABLOCKS_SIZE
];
978 /* Size of the block requested from malloc or posix_memalign. */
979 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
981 #define ABLOCK_ABASE(block) \
982 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
983 ? (struct ablocks *)(block) \
986 /* Virtual `busy' field. */
987 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
989 /* Pointer to the (not necessarily aligned) malloc block. */
990 #ifdef USE_POSIX_MEMALIGN
991 #define ABLOCKS_BASE(abase) (abase)
993 #define ABLOCKS_BASE(abase) \
994 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
997 /* The list of free ablock. */
998 static struct ablock
*free_ablock
;
1000 /* Allocate an aligned block of nbytes.
1001 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1002 smaller or equal to BLOCK_BYTES. */
1004 lisp_align_malloc (size_t nbytes
, enum mem_type type
)
1007 struct ablocks
*abase
;
1009 eassert (nbytes
<= BLOCK_BYTES
);
1013 #ifdef GC_MALLOC_CHECK
1014 allocated_mem_type
= type
;
1020 intptr_t aligned
; /* int gets warning casting to 64-bit pointer. */
1022 #ifdef DOUG_LEA_MALLOC
1023 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1024 because mapped region contents are not preserved in
1026 mallopt (M_MMAP_MAX
, 0);
1029 #ifdef USE_POSIX_MEMALIGN
1031 int err
= posix_memalign (&base
, BLOCK_ALIGN
, ABLOCKS_BYTES
);
1037 base
= malloc (ABLOCKS_BYTES
);
1038 abase
= ALIGN (base
, BLOCK_ALIGN
);
1043 MALLOC_UNBLOCK_INPUT
;
1044 memory_full (ABLOCKS_BYTES
);
1047 aligned
= (base
== abase
);
1049 ((void**)abase
)[-1] = base
;
1051 #ifdef DOUG_LEA_MALLOC
1052 /* Back to a reasonable maximum of mmap'ed areas. */
1053 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
1057 /* If the memory just allocated cannot be addressed thru a Lisp
1058 object's pointer, and it needs to be, that's equivalent to
1059 running out of memory. */
1060 if (type
!= MEM_TYPE_NON_LISP
)
1063 char *end
= (char *) base
+ ABLOCKS_BYTES
- 1;
1064 XSETCONS (tem
, end
);
1065 if ((char *) XCONS (tem
) != end
)
1067 lisp_malloc_loser
= base
;
1069 MALLOC_UNBLOCK_INPUT
;
1070 memory_full (SIZE_MAX
);
1075 /* Initialize the blocks and put them on the free list.
1076 If `base' was not properly aligned, we can't use the last block. */
1077 for (i
= 0; i
< (aligned
? ABLOCKS_SIZE
: ABLOCKS_SIZE
- 1); i
++)
1079 abase
->blocks
[i
].abase
= abase
;
1080 abase
->blocks
[i
].x
.next_free
= free_ablock
;
1081 free_ablock
= &abase
->blocks
[i
];
1083 ABLOCKS_BUSY (abase
) = (struct ablocks
*) aligned
;
1085 eassert (0 == ((uintptr_t) abase
) % BLOCK_ALIGN
);
1086 eassert (ABLOCK_ABASE (&abase
->blocks
[3]) == abase
); /* 3 is arbitrary */
1087 eassert (ABLOCK_ABASE (&abase
->blocks
[0]) == abase
);
1088 eassert (ABLOCKS_BASE (abase
) == base
);
1089 eassert (aligned
== (intptr_t) ABLOCKS_BUSY (abase
));
1092 abase
= ABLOCK_ABASE (free_ablock
);
1093 ABLOCKS_BUSY (abase
) =
1094 (struct ablocks
*) (2 + (intptr_t) ABLOCKS_BUSY (abase
));
1096 free_ablock
= free_ablock
->x
.next_free
;
1098 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1099 if (type
!= MEM_TYPE_NON_LISP
)
1100 mem_insert (val
, (char *) val
+ nbytes
, type
);
1103 MALLOC_UNBLOCK_INPUT
;
1105 MALLOC_PROBE (nbytes
);
1107 eassert (0 == ((uintptr_t) val
) % BLOCK_ALIGN
);
1112 lisp_align_free (void *block
)
1114 struct ablock
*ablock
= block
;
1115 struct ablocks
*abase
= ABLOCK_ABASE (ablock
);
1118 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1119 mem_delete (mem_find (block
));
1121 /* Put on free list. */
1122 ablock
->x
.next_free
= free_ablock
;
1123 free_ablock
= ablock
;
1124 /* Update busy count. */
1125 ABLOCKS_BUSY (abase
)
1126 = (struct ablocks
*) (-2 + (intptr_t) ABLOCKS_BUSY (abase
));
1128 if (2 > (intptr_t) ABLOCKS_BUSY (abase
))
1129 { /* All the blocks are free. */
1130 int i
= 0, aligned
= (intptr_t) ABLOCKS_BUSY (abase
);
1131 struct ablock
**tem
= &free_ablock
;
1132 struct ablock
*atop
= &abase
->blocks
[aligned
? ABLOCKS_SIZE
: ABLOCKS_SIZE
- 1];
1136 if (*tem
>= (struct ablock
*) abase
&& *tem
< atop
)
1139 *tem
= (*tem
)->x
.next_free
;
1142 tem
= &(*tem
)->x
.next_free
;
1144 eassert ((aligned
& 1) == aligned
);
1145 eassert (i
== (aligned
? ABLOCKS_SIZE
: ABLOCKS_SIZE
- 1));
1146 #ifdef USE_POSIX_MEMALIGN
1147 eassert ((uintptr_t) ABLOCKS_BASE (abase
) % BLOCK_ALIGN
== 0);
1149 free (ABLOCKS_BASE (abase
));
1151 MALLOC_UNBLOCK_INPUT
;
1155 /***********************************************************************
1157 ***********************************************************************/
1159 /* Number of intervals allocated in an interval_block structure.
1160 The 1020 is 1024 minus malloc overhead. */
1162 #define INTERVAL_BLOCK_SIZE \
1163 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1165 /* Intervals are allocated in chunks in form of an interval_block
1168 struct interval_block
1170 /* Place `intervals' first, to preserve alignment. */
1171 struct interval intervals
[INTERVAL_BLOCK_SIZE
];
1172 struct interval_block
*next
;
1175 /* Current interval block. Its `next' pointer points to older
1178 static struct interval_block
*interval_block
;
1180 /* Index in interval_block above of the next unused interval
1183 static int interval_block_index
= INTERVAL_BLOCK_SIZE
;
1185 /* Number of free and live intervals. */
1187 static EMACS_INT total_free_intervals
, total_intervals
;
1189 /* List of free intervals. */
1191 static INTERVAL interval_free_list
;
1193 /* Return a new interval. */
1196 make_interval (void)
1202 if (interval_free_list
)
1204 val
= interval_free_list
;
1205 interval_free_list
= INTERVAL_PARENT (interval_free_list
);
1209 if (interval_block_index
== INTERVAL_BLOCK_SIZE
)
1211 struct interval_block
*newi
1212 = lisp_malloc (sizeof *newi
, MEM_TYPE_NON_LISP
);
1214 newi
->next
= interval_block
;
1215 interval_block
= newi
;
1216 interval_block_index
= 0;
1217 total_free_intervals
+= INTERVAL_BLOCK_SIZE
;
1219 val
= &interval_block
->intervals
[interval_block_index
++];
1222 MALLOC_UNBLOCK_INPUT
;
1224 consing_since_gc
+= sizeof (struct interval
);
1226 total_free_intervals
--;
1227 RESET_INTERVAL (val
);
1233 /* Mark Lisp objects in interval I. */
1236 mark_interval (register INTERVAL i
, Lisp_Object dummy
)
1238 /* Intervals should never be shared. So, if extra internal checking is
1239 enabled, GC aborts if it seems to have visited an interval twice. */
1240 eassert (!i
->gcmarkbit
);
1242 mark_object (i
->plist
);
1245 /* Mark the interval tree rooted in I. */
1247 #define MARK_INTERVAL_TREE(i) \
1249 if (i && !i->gcmarkbit) \
1250 traverse_intervals_noorder (i, mark_interval, Qnil); \
1253 /***********************************************************************
1255 ***********************************************************************/
1257 /* Lisp_Strings are allocated in string_block structures. When a new
1258 string_block is allocated, all the Lisp_Strings it contains are
1259 added to a free-list string_free_list. When a new Lisp_String is
1260 needed, it is taken from that list. During the sweep phase of GC,
1261 string_blocks that are entirely free are freed, except two which
1264 String data is allocated from sblock structures. Strings larger
1265 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1266 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1268 Sblocks consist internally of sdata structures, one for each
1269 Lisp_String. The sdata structure points to the Lisp_String it
1270 belongs to. The Lisp_String points back to the `u.data' member of
1271 its sdata structure.
1273 When a Lisp_String is freed during GC, it is put back on
1274 string_free_list, and its `data' member and its sdata's `string'
1275 pointer is set to null. The size of the string is recorded in the
1276 `u.nbytes' member of the sdata. So, sdata structures that are no
1277 longer used, can be easily recognized, and it's easy to compact the
1278 sblocks of small strings which we do in compact_small_strings. */
1280 /* Size in bytes of an sblock structure used for small strings. This
1281 is 8192 minus malloc overhead. */
1283 #define SBLOCK_SIZE 8188
1285 /* Strings larger than this are considered large strings. String data
1286 for large strings is allocated from individual sblocks. */
1288 #define LARGE_STRING_BYTES 1024
1290 /* Structure describing string memory sub-allocated from an sblock.
1291 This is where the contents of Lisp strings are stored. */
1295 /* Back-pointer to the string this sdata belongs to. If null, this
1296 structure is free, and the NBYTES member of the union below
1297 contains the string's byte size (the same value that STRING_BYTES
1298 would return if STRING were non-null). If non-null, STRING_BYTES
1299 (STRING) is the size of the data, and DATA contains the string's
1301 struct Lisp_String
*string
;
1303 #ifdef GC_CHECK_STRING_BYTES
1306 unsigned char data
[1];
1308 #define SDATA_NBYTES(S) (S)->nbytes
1309 #define SDATA_DATA(S) (S)->data
1310 #define SDATA_SELECTOR(member) member
1312 #else /* not GC_CHECK_STRING_BYTES */
1316 /* When STRING is non-null. */
1317 unsigned char data
[1];
1319 /* When STRING is null. */
1323 #define SDATA_NBYTES(S) (S)->u.nbytes
1324 #define SDATA_DATA(S) (S)->u.data
1325 #define SDATA_SELECTOR(member) u.member
1327 #endif /* not GC_CHECK_STRING_BYTES */
1329 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1333 /* Structure describing a block of memory which is sub-allocated to
1334 obtain string data memory for strings. Blocks for small strings
1335 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1336 as large as needed. */
1341 struct sblock
*next
;
1343 /* Pointer to the next free sdata block. This points past the end
1344 of the sblock if there isn't any space left in this block. */
1345 struct sdata
*next_free
;
1347 /* Start of data. */
1348 struct sdata first_data
;
1351 /* Number of Lisp strings in a string_block structure. The 1020 is
1352 1024 minus malloc overhead. */
1354 #define STRING_BLOCK_SIZE \
1355 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1357 /* Structure describing a block from which Lisp_String structures
1362 /* Place `strings' first, to preserve alignment. */
1363 struct Lisp_String strings
[STRING_BLOCK_SIZE
];
1364 struct string_block
*next
;
1367 /* Head and tail of the list of sblock structures holding Lisp string
1368 data. We always allocate from current_sblock. The NEXT pointers
1369 in the sblock structures go from oldest_sblock to current_sblock. */
1371 static struct sblock
*oldest_sblock
, *current_sblock
;
1373 /* List of sblocks for large strings. */
1375 static struct sblock
*large_sblocks
;
1377 /* List of string_block structures. */
1379 static struct string_block
*string_blocks
;
1381 /* Free-list of Lisp_Strings. */
1383 static struct Lisp_String
*string_free_list
;
1385 /* Number of live and free Lisp_Strings. */
1387 static EMACS_INT total_strings
, total_free_strings
;
1389 /* Number of bytes used by live strings. */
1391 static EMACS_INT total_string_bytes
;
1393 /* Given a pointer to a Lisp_String S which is on the free-list
1394 string_free_list, return a pointer to its successor in the
1397 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1399 /* Return a pointer to the sdata structure belonging to Lisp string S.
1400 S must be live, i.e. S->data must not be null. S->data is actually
1401 a pointer to the `u.data' member of its sdata structure; the
1402 structure starts at a constant offset in front of that. */
1404 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1407 #ifdef GC_CHECK_STRING_OVERRUN
1409 /* We check for overrun in string data blocks by appending a small
1410 "cookie" after each allocated string data block, and check for the
1411 presence of this cookie during GC. */
1413 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1414 static char const string_overrun_cookie
[GC_STRING_OVERRUN_COOKIE_SIZE
] =
1415 { '\xde', '\xad', '\xbe', '\xef' };
1418 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1421 /* Value is the size of an sdata structure large enough to hold NBYTES
1422 bytes of string data. The value returned includes a terminating
1423 NUL byte, the size of the sdata structure, and padding. */
1425 #ifdef GC_CHECK_STRING_BYTES
1427 #define SDATA_SIZE(NBYTES) \
1428 ((SDATA_DATA_OFFSET \
1430 + sizeof (ptrdiff_t) - 1) \
1431 & ~(sizeof (ptrdiff_t) - 1))
1433 #else /* not GC_CHECK_STRING_BYTES */
1435 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1436 less than the size of that member. The 'max' is not needed when
1437 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1438 alignment code reserves enough space. */
1440 #define SDATA_SIZE(NBYTES) \
1441 ((SDATA_DATA_OFFSET \
1442 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1444 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1446 + sizeof (ptrdiff_t) - 1) \
1447 & ~(sizeof (ptrdiff_t) - 1))
1449 #endif /* not GC_CHECK_STRING_BYTES */
1451 /* Extra bytes to allocate for each string. */
1453 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1455 /* Exact bound on the number of bytes in a string, not counting the
1456 terminating null. A string cannot contain more bytes than
1457 STRING_BYTES_BOUND, nor can it be so long that the size_t
1458 arithmetic in allocate_string_data would overflow while it is
1459 calculating a value to be passed to malloc. */
1460 static ptrdiff_t const STRING_BYTES_MAX
=
1461 min (STRING_BYTES_BOUND
,
1462 ((SIZE_MAX
- XMALLOC_OVERRUN_CHECK_OVERHEAD
1464 - offsetof (struct sblock
, first_data
)
1465 - SDATA_DATA_OFFSET
)
1466 & ~(sizeof (EMACS_INT
) - 1)));
1468 /* Initialize string allocation. Called from init_alloc_once. */
1473 empty_unibyte_string
= make_pure_string ("", 0, 0, 0);
1474 empty_multibyte_string
= make_pure_string ("", 0, 0, 1);
1478 #ifdef GC_CHECK_STRING_BYTES
1480 static int check_string_bytes_count
;
1482 /* Like STRING_BYTES, but with debugging check. Can be
1483 called during GC, so pay attention to the mark bit. */
1486 string_bytes (struct Lisp_String
*s
)
1489 (s
->size_byte
< 0 ? s
->size
& ~ARRAY_MARK_FLAG
: s
->size_byte
);
1491 if (!PURE_POINTER_P (s
)
1493 && nbytes
!= SDATA_NBYTES (SDATA_OF_STRING (s
)))
1498 /* Check validity of Lisp strings' string_bytes member in B. */
1501 check_sblock (struct sblock
*b
)
1503 struct sdata
*from
, *end
, *from_end
;
1507 for (from
= &b
->first_data
; from
< end
; from
= from_end
)
1509 /* Compute the next FROM here because copying below may
1510 overwrite data we need to compute it. */
1513 /* Check that the string size recorded in the string is the
1514 same as the one recorded in the sdata structure. */
1515 nbytes
= SDATA_SIZE (from
->string
? string_bytes (from
->string
)
1516 : SDATA_NBYTES (from
));
1517 from_end
= (struct sdata
*) ((char *) from
+ nbytes
+ GC_STRING_EXTRA
);
1522 /* Check validity of Lisp strings' string_bytes member. ALL_P
1523 means check all strings, otherwise check only most
1524 recently allocated strings. Used for hunting a bug. */
1527 check_string_bytes (bool all_p
)
1533 for (b
= large_sblocks
; b
; b
= b
->next
)
1535 struct Lisp_String
*s
= b
->first_data
.string
;
1540 for (b
= oldest_sblock
; b
; b
= b
->next
)
1543 else if (current_sblock
)
1544 check_sblock (current_sblock
);
1547 #else /* not GC_CHECK_STRING_BYTES */
1549 #define check_string_bytes(all) ((void) 0)
1551 #endif /* GC_CHECK_STRING_BYTES */
1553 #ifdef GC_CHECK_STRING_FREE_LIST
1555 /* Walk through the string free list looking for bogus next pointers.
1556 This may catch buffer overrun from a previous string. */
1559 check_string_free_list (void)
1561 struct Lisp_String
*s
;
1563 /* Pop a Lisp_String off the free-list. */
1564 s
= string_free_list
;
1567 if ((uintptr_t) s
< 1024)
1569 s
= NEXT_FREE_LISP_STRING (s
);
1573 #define check_string_free_list()
1576 /* Return a new Lisp_String. */
1578 static struct Lisp_String
*
1579 allocate_string (void)
1581 struct Lisp_String
*s
;
1585 /* If the free-list is empty, allocate a new string_block, and
1586 add all the Lisp_Strings in it to the free-list. */
1587 if (string_free_list
== NULL
)
1589 struct string_block
*b
= lisp_malloc (sizeof *b
, MEM_TYPE_STRING
);
1592 b
->next
= string_blocks
;
1595 for (i
= STRING_BLOCK_SIZE
- 1; i
>= 0; --i
)
1598 /* Every string on a free list should have NULL data pointer. */
1600 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
1601 string_free_list
= s
;
1604 total_free_strings
+= STRING_BLOCK_SIZE
;
1607 check_string_free_list ();
1609 /* Pop a Lisp_String off the free-list. */
1610 s
= string_free_list
;
1611 string_free_list
= NEXT_FREE_LISP_STRING (s
);
1613 MALLOC_UNBLOCK_INPUT
;
1615 --total_free_strings
;
1618 consing_since_gc
+= sizeof *s
;
1620 #ifdef GC_CHECK_STRING_BYTES
1621 if (!noninteractive
)
1623 if (++check_string_bytes_count
== 200)
1625 check_string_bytes_count
= 0;
1626 check_string_bytes (1);
1629 check_string_bytes (0);
1631 #endif /* GC_CHECK_STRING_BYTES */
1637 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1638 plus a NUL byte at the end. Allocate an sdata structure for S, and
1639 set S->data to its `u.data' member. Store a NUL byte at the end of
1640 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1641 S->data if it was initially non-null. */
1644 allocate_string_data (struct Lisp_String
*s
,
1645 EMACS_INT nchars
, EMACS_INT nbytes
)
1647 struct sdata
*data
, *old_data
;
1649 ptrdiff_t needed
, old_nbytes
;
1651 if (STRING_BYTES_MAX
< nbytes
)
1654 /* Determine the number of bytes needed to store NBYTES bytes
1656 needed
= SDATA_SIZE (nbytes
);
1659 old_data
= SDATA_OF_STRING (s
);
1660 old_nbytes
= STRING_BYTES (s
);
1667 if (nbytes
> LARGE_STRING_BYTES
)
1669 size_t size
= offsetof (struct sblock
, first_data
) + needed
;
1671 #ifdef DOUG_LEA_MALLOC
1672 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1673 because mapped region contents are not preserved in
1676 In case you think of allowing it in a dumped Emacs at the
1677 cost of not being able to re-dump, there's another reason:
1678 mmap'ed data typically have an address towards the top of the
1679 address space, which won't fit into an EMACS_INT (at least on
1680 32-bit systems with the current tagging scheme). --fx */
1681 mallopt (M_MMAP_MAX
, 0);
1684 b
= lisp_malloc (size
+ GC_STRING_EXTRA
, MEM_TYPE_NON_LISP
);
1686 #ifdef DOUG_LEA_MALLOC
1687 /* Back to a reasonable maximum of mmap'ed areas. */
1688 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
1691 b
->next_free
= &b
->first_data
;
1692 b
->first_data
.string
= NULL
;
1693 b
->next
= large_sblocks
;
1696 else if (current_sblock
== NULL
1697 || (((char *) current_sblock
+ SBLOCK_SIZE
1698 - (char *) current_sblock
->next_free
)
1699 < (needed
+ GC_STRING_EXTRA
)))
1701 /* Not enough room in the current sblock. */
1702 b
= lisp_malloc (SBLOCK_SIZE
, MEM_TYPE_NON_LISP
);
1703 b
->next_free
= &b
->first_data
;
1704 b
->first_data
.string
= NULL
;
1708 current_sblock
->next
= b
;
1716 data
= b
->next_free
;
1717 b
->next_free
= (struct sdata
*) ((char *) data
+ needed
+ GC_STRING_EXTRA
);
1719 MALLOC_UNBLOCK_INPUT
;
1722 s
->data
= SDATA_DATA (data
);
1723 #ifdef GC_CHECK_STRING_BYTES
1724 SDATA_NBYTES (data
) = nbytes
;
1727 s
->size_byte
= nbytes
;
1728 s
->data
[nbytes
] = '\0';
1729 #ifdef GC_CHECK_STRING_OVERRUN
1730 memcpy ((char *) data
+ needed
, string_overrun_cookie
,
1731 GC_STRING_OVERRUN_COOKIE_SIZE
);
1734 /* Note that Faset may call to this function when S has already data
1735 assigned. In this case, mark data as free by setting it's string
1736 back-pointer to null, and record the size of the data in it. */
1739 SDATA_NBYTES (old_data
) = old_nbytes
;
1740 old_data
->string
= NULL
;
1743 consing_since_gc
+= needed
;
1747 /* Sweep and compact strings. */
1750 sweep_strings (void)
1752 struct string_block
*b
, *next
;
1753 struct string_block
*live_blocks
= NULL
;
1755 string_free_list
= NULL
;
1756 total_strings
= total_free_strings
= 0;
1757 total_string_bytes
= 0;
1759 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1760 for (b
= string_blocks
; b
; b
= next
)
1763 struct Lisp_String
*free_list_before
= string_free_list
;
1767 for (i
= 0; i
< STRING_BLOCK_SIZE
; ++i
)
1769 struct Lisp_String
*s
= b
->strings
+ i
;
1773 /* String was not on free-list before. */
1774 if (STRING_MARKED_P (s
))
1776 /* String is live; unmark it and its intervals. */
1779 /* Do not use string_(set|get)_intervals here. */
1780 s
->intervals
= balance_intervals (s
->intervals
);
1783 total_string_bytes
+= STRING_BYTES (s
);
1787 /* String is dead. Put it on the free-list. */
1788 struct sdata
*data
= SDATA_OF_STRING (s
);
1790 /* Save the size of S in its sdata so that we know
1791 how large that is. Reset the sdata's string
1792 back-pointer so that we know it's free. */
1793 #ifdef GC_CHECK_STRING_BYTES
1794 if (string_bytes (s
) != SDATA_NBYTES (data
))
1797 data
->u
.nbytes
= STRING_BYTES (s
);
1799 data
->string
= NULL
;
1801 /* Reset the strings's `data' member so that we
1805 /* Put the string on the free-list. */
1806 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
1807 string_free_list
= s
;
1813 /* S was on the free-list before. Put it there again. */
1814 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
1815 string_free_list
= s
;
1820 /* Free blocks that contain free Lisp_Strings only, except
1821 the first two of them. */
1822 if (nfree
== STRING_BLOCK_SIZE
1823 && total_free_strings
> STRING_BLOCK_SIZE
)
1826 string_free_list
= free_list_before
;
1830 total_free_strings
+= nfree
;
1831 b
->next
= live_blocks
;
1836 check_string_free_list ();
1838 string_blocks
= live_blocks
;
1839 free_large_strings ();
1840 compact_small_strings ();
1842 check_string_free_list ();
1846 /* Free dead large strings. */
1849 free_large_strings (void)
1851 struct sblock
*b
, *next
;
1852 struct sblock
*live_blocks
= NULL
;
1854 for (b
= large_sblocks
; b
; b
= next
)
1858 if (b
->first_data
.string
== NULL
)
1862 b
->next
= live_blocks
;
1867 large_sblocks
= live_blocks
;
1871 /* Compact data of small strings. Free sblocks that don't contain
1872 data of live strings after compaction. */
1875 compact_small_strings (void)
1877 struct sblock
*b
, *tb
, *next
;
1878 struct sdata
*from
, *to
, *end
, *tb_end
;
1879 struct sdata
*to_end
, *from_end
;
1881 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1882 to, and TB_END is the end of TB. */
1884 tb_end
= (struct sdata
*) ((char *) tb
+ SBLOCK_SIZE
);
1885 to
= &tb
->first_data
;
1887 /* Step through the blocks from the oldest to the youngest. We
1888 expect that old blocks will stabilize over time, so that less
1889 copying will happen this way. */
1890 for (b
= oldest_sblock
; b
; b
= b
->next
)
1893 eassert ((char *) end
<= (char *) b
+ SBLOCK_SIZE
);
1895 for (from
= &b
->first_data
; from
< end
; from
= from_end
)
1897 /* Compute the next FROM here because copying below may
1898 overwrite data we need to compute it. */
1900 struct Lisp_String
*s
= from
->string
;
1902 #ifdef GC_CHECK_STRING_BYTES
1903 /* Check that the string size recorded in the string is the
1904 same as the one recorded in the sdata structure. */
1905 if (s
&& string_bytes (s
) != SDATA_NBYTES (from
))
1907 #endif /* GC_CHECK_STRING_BYTES */
1909 nbytes
= s
? STRING_BYTES (s
) : SDATA_NBYTES (from
);
1910 eassert (nbytes
<= LARGE_STRING_BYTES
);
1912 nbytes
= SDATA_SIZE (nbytes
);
1913 from_end
= (struct sdata
*) ((char *) from
+ nbytes
+ GC_STRING_EXTRA
);
1915 #ifdef GC_CHECK_STRING_OVERRUN
1916 if (memcmp (string_overrun_cookie
,
1917 (char *) from_end
- GC_STRING_OVERRUN_COOKIE_SIZE
,
1918 GC_STRING_OVERRUN_COOKIE_SIZE
))
1922 /* Non-NULL S means it's alive. Copy its data. */
1925 /* If TB is full, proceed with the next sblock. */
1926 to_end
= (struct sdata
*) ((char *) to
+ nbytes
+ GC_STRING_EXTRA
);
1927 if (to_end
> tb_end
)
1931 tb_end
= (struct sdata
*) ((char *) tb
+ SBLOCK_SIZE
);
1932 to
= &tb
->first_data
;
1933 to_end
= (struct sdata
*) ((char *) to
+ nbytes
+ GC_STRING_EXTRA
);
1936 /* Copy, and update the string's `data' pointer. */
1939 eassert (tb
!= b
|| to
< from
);
1940 memmove (to
, from
, nbytes
+ GC_STRING_EXTRA
);
1941 to
->string
->data
= SDATA_DATA (to
);
1944 /* Advance past the sdata we copied to. */
1950 /* The rest of the sblocks following TB don't contain live data, so
1951 we can free them. */
1952 for (b
= tb
->next
; b
; b
= next
)
1960 current_sblock
= tb
;
1964 string_overflow (void)
1966 error ("Maximum string size exceeded");
1969 DEFUN ("make-string", Fmake_string
, Smake_string
, 2, 2, 0,
1970 doc
: /* Return a newly created string of length LENGTH, with INIT in each element.
1971 LENGTH must be an integer.
1972 INIT must be an integer that represents a character. */)
1973 (Lisp_Object length
, Lisp_Object init
)
1975 register Lisp_Object val
;
1976 register unsigned char *p
, *end
;
1980 CHECK_NATNUM (length
);
1981 CHECK_CHARACTER (init
);
1983 c
= XFASTINT (init
);
1984 if (ASCII_CHAR_P (c
))
1986 nbytes
= XINT (length
);
1987 val
= make_uninit_string (nbytes
);
1989 end
= p
+ SCHARS (val
);
1995 unsigned char str
[MAX_MULTIBYTE_LENGTH
];
1996 int len
= CHAR_STRING (c
, str
);
1997 EMACS_INT string_len
= XINT (length
);
1999 if (string_len
> STRING_BYTES_MAX
/ len
)
2001 nbytes
= len
* string_len
;
2002 val
= make_uninit_multibyte_string (string_len
, nbytes
);
2007 memcpy (p
, str
, len
);
2017 DEFUN ("make-bool-vector", Fmake_bool_vector
, Smake_bool_vector
, 2, 2, 0,
2018 doc
: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2019 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2020 (Lisp_Object length
, Lisp_Object init
)
2022 register Lisp_Object val
;
2023 struct Lisp_Bool_Vector
*p
;
2024 ptrdiff_t length_in_chars
;
2025 EMACS_INT length_in_elts
;
2027 int extra_bool_elts
= ((bool_header_size
- header_size
+ word_size
- 1)
2030 CHECK_NATNUM (length
);
2032 bits_per_value
= sizeof (EMACS_INT
) * BOOL_VECTOR_BITS_PER_CHAR
;
2034 length_in_elts
= (XFASTINT (length
) + bits_per_value
- 1) / bits_per_value
;
2036 val
= Fmake_vector (make_number (length_in_elts
+ extra_bool_elts
), Qnil
);
2038 /* No Lisp_Object to trace in there. */
2039 XSETPVECTYPESIZE (XVECTOR (val
), PVEC_BOOL_VECTOR
, 0, 0);
2041 p
= XBOOL_VECTOR (val
);
2042 p
->size
= XFASTINT (length
);
2044 length_in_chars
= ((XFASTINT (length
) + BOOL_VECTOR_BITS_PER_CHAR
- 1)
2045 / BOOL_VECTOR_BITS_PER_CHAR
);
2046 if (length_in_chars
)
2048 memset (p
->data
, ! NILP (init
) ? -1 : 0, length_in_chars
);
2050 /* Clear any extraneous bits in the last byte. */
2051 p
->data
[length_in_chars
- 1]
2052 &= (1 << ((XFASTINT (length
) - 1) % BOOL_VECTOR_BITS_PER_CHAR
+ 1)) - 1;
2059 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2060 of characters from the contents. This string may be unibyte or
2061 multibyte, depending on the contents. */
2064 make_string (const char *contents
, ptrdiff_t nbytes
)
2066 register Lisp_Object val
;
2067 ptrdiff_t nchars
, multibyte_nbytes
;
2069 parse_str_as_multibyte ((const unsigned char *) contents
, nbytes
,
2070 &nchars
, &multibyte_nbytes
);
2071 if (nbytes
== nchars
|| nbytes
!= multibyte_nbytes
)
2072 /* CONTENTS contains no multibyte sequences or contains an invalid
2073 multibyte sequence. We must make unibyte string. */
2074 val
= make_unibyte_string (contents
, nbytes
);
2076 val
= make_multibyte_string (contents
, nchars
, nbytes
);
2081 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2084 make_unibyte_string (const char *contents
, ptrdiff_t length
)
2086 register Lisp_Object val
;
2087 val
= make_uninit_string (length
);
2088 memcpy (SDATA (val
), contents
, length
);
2093 /* Make a multibyte string from NCHARS characters occupying NBYTES
2094 bytes at CONTENTS. */
2097 make_multibyte_string (const char *contents
,
2098 ptrdiff_t nchars
, ptrdiff_t nbytes
)
2100 register Lisp_Object val
;
2101 val
= make_uninit_multibyte_string (nchars
, nbytes
);
2102 memcpy (SDATA (val
), contents
, nbytes
);
2107 /* Make a string from NCHARS characters occupying NBYTES bytes at
2108 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2111 make_string_from_bytes (const char *contents
,
2112 ptrdiff_t nchars
, ptrdiff_t nbytes
)
2114 register Lisp_Object val
;
2115 val
= make_uninit_multibyte_string (nchars
, nbytes
);
2116 memcpy (SDATA (val
), contents
, nbytes
);
2117 if (SBYTES (val
) == SCHARS (val
))
2118 STRING_SET_UNIBYTE (val
);
2123 /* Make a string from NCHARS characters occupying NBYTES bytes at
2124 CONTENTS. The argument MULTIBYTE controls whether to label the
2125 string as multibyte. If NCHARS is negative, it counts the number of
2126 characters by itself. */
2129 make_specified_string (const char *contents
,
2130 ptrdiff_t nchars
, ptrdiff_t nbytes
, bool multibyte
)
2137 nchars
= multibyte_chars_in_text ((const unsigned char *) contents
,
2142 val
= make_uninit_multibyte_string (nchars
, nbytes
);
2143 memcpy (SDATA (val
), contents
, nbytes
);
2145 STRING_SET_UNIBYTE (val
);
2150 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2151 occupying LENGTH bytes. */
2154 make_uninit_string (EMACS_INT length
)
2159 return empty_unibyte_string
;
2160 val
= make_uninit_multibyte_string (length
, length
);
2161 STRING_SET_UNIBYTE (val
);
2166 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2167 which occupy NBYTES bytes. */
2170 make_uninit_multibyte_string (EMACS_INT nchars
, EMACS_INT nbytes
)
2173 struct Lisp_String
*s
;
2178 return empty_multibyte_string
;
2180 s
= allocate_string ();
2181 s
->intervals
= NULL
;
2182 allocate_string_data (s
, nchars
, nbytes
);
2183 XSETSTRING (string
, s
);
2184 string_chars_consed
+= nbytes
;
2188 /* Print arguments to BUF according to a FORMAT, then return
2189 a Lisp_String initialized with the data from BUF. */
2192 make_formatted_string (char *buf
, const char *format
, ...)
2197 va_start (ap
, format
);
2198 length
= vsprintf (buf
, format
, ap
);
2200 return make_string (buf
, length
);
2204 /***********************************************************************
2206 ***********************************************************************/
2208 /* We store float cells inside of float_blocks, allocating a new
2209 float_block with malloc whenever necessary. Float cells reclaimed
2210 by GC are put on a free list to be reallocated before allocating
2211 any new float cells from the latest float_block. */
2213 #define FLOAT_BLOCK_SIZE \
2214 (((BLOCK_BYTES - sizeof (struct float_block *) \
2215 /* The compiler might add padding at the end. */ \
2216 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2217 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2219 #define GETMARKBIT(block,n) \
2220 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2221 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2224 #define SETMARKBIT(block,n) \
2225 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2226 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2228 #define UNSETMARKBIT(block,n) \
2229 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2230 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2232 #define FLOAT_BLOCK(fptr) \
2233 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2235 #define FLOAT_INDEX(fptr) \
2236 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2240 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2241 struct Lisp_Float floats
[FLOAT_BLOCK_SIZE
];
2242 int gcmarkbits
[1 + FLOAT_BLOCK_SIZE
/ (sizeof (int) * CHAR_BIT
)];
2243 struct float_block
*next
;
2246 #define FLOAT_MARKED_P(fptr) \
2247 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2249 #define FLOAT_MARK(fptr) \
2250 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2252 #define FLOAT_UNMARK(fptr) \
2253 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2255 /* Current float_block. */
2257 static struct float_block
*float_block
;
2259 /* Index of first unused Lisp_Float in the current float_block. */
2261 static int float_block_index
= FLOAT_BLOCK_SIZE
;
2263 /* Free-list of Lisp_Floats. */
2265 static struct Lisp_Float
*float_free_list
;
2267 /* Return a new float object with value FLOAT_VALUE. */
2270 make_float (double float_value
)
2272 register Lisp_Object val
;
2276 if (float_free_list
)
2278 /* We use the data field for chaining the free list
2279 so that we won't use the same field that has the mark bit. */
2280 XSETFLOAT (val
, float_free_list
);
2281 float_free_list
= float_free_list
->u
.chain
;
2285 if (float_block_index
== FLOAT_BLOCK_SIZE
)
2287 struct float_block
*new
2288 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT
);
2289 new->next
= float_block
;
2290 memset (new->gcmarkbits
, 0, sizeof new->gcmarkbits
);
2292 float_block_index
= 0;
2293 total_free_floats
+= FLOAT_BLOCK_SIZE
;
2295 XSETFLOAT (val
, &float_block
->floats
[float_block_index
]);
2296 float_block_index
++;
2299 MALLOC_UNBLOCK_INPUT
;
2301 XFLOAT_INIT (val
, float_value
);
2302 eassert (!FLOAT_MARKED_P (XFLOAT (val
)));
2303 consing_since_gc
+= sizeof (struct Lisp_Float
);
2305 total_free_floats
--;
2311 /***********************************************************************
2313 ***********************************************************************/
2315 /* We store cons cells inside of cons_blocks, allocating a new
2316 cons_block with malloc whenever necessary. Cons cells reclaimed by
2317 GC are put on a free list to be reallocated before allocating
2318 any new cons cells from the latest cons_block. */
2320 #define CONS_BLOCK_SIZE \
2321 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2322 /* The compiler might add padding at the end. */ \
2323 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2324 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2326 #define CONS_BLOCK(fptr) \
2327 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2329 #define CONS_INDEX(fptr) \
2330 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2334 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2335 struct Lisp_Cons conses
[CONS_BLOCK_SIZE
];
2336 int gcmarkbits
[1 + CONS_BLOCK_SIZE
/ (sizeof (int) * CHAR_BIT
)];
2337 struct cons_block
*next
;
2340 #define CONS_MARKED_P(fptr) \
2341 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2343 #define CONS_MARK(fptr) \
2344 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2346 #define CONS_UNMARK(fptr) \
2347 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2349 /* Current cons_block. */
2351 static struct cons_block
*cons_block
;
2353 /* Index of first unused Lisp_Cons in the current block. */
2355 static int cons_block_index
= CONS_BLOCK_SIZE
;
2357 /* Free-list of Lisp_Cons structures. */
2359 static struct Lisp_Cons
*cons_free_list
;
2361 /* Explicitly free a cons cell by putting it on the free-list. */
2364 free_cons (struct Lisp_Cons
*ptr
)
2366 ptr
->u
.chain
= cons_free_list
;
2370 cons_free_list
= ptr
;
2371 consing_since_gc
-= sizeof *ptr
;
2372 total_free_conses
++;
2375 DEFUN ("cons", Fcons
, Scons
, 2, 2, 0,
2376 doc
: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2377 (Lisp_Object car
, Lisp_Object cdr
)
2379 register Lisp_Object val
;
2385 /* We use the cdr for chaining the free list
2386 so that we won't use the same field that has the mark bit. */
2387 XSETCONS (val
, cons_free_list
);
2388 cons_free_list
= cons_free_list
->u
.chain
;
2392 if (cons_block_index
== CONS_BLOCK_SIZE
)
2394 struct cons_block
*new
2395 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS
);
2396 memset (new->gcmarkbits
, 0, sizeof new->gcmarkbits
);
2397 new->next
= cons_block
;
2399 cons_block_index
= 0;
2400 total_free_conses
+= CONS_BLOCK_SIZE
;
2402 XSETCONS (val
, &cons_block
->conses
[cons_block_index
]);
2406 MALLOC_UNBLOCK_INPUT
;
2410 eassert (!CONS_MARKED_P (XCONS (val
)));
2411 consing_since_gc
+= sizeof (struct Lisp_Cons
);
2412 total_free_conses
--;
2413 cons_cells_consed
++;
2417 #ifdef GC_CHECK_CONS_LIST
2418 /* Get an error now if there's any junk in the cons free list. */
2420 check_cons_list (void)
2422 struct Lisp_Cons
*tail
= cons_free_list
;
2425 tail
= tail
->u
.chain
;
2429 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2432 list1 (Lisp_Object arg1
)
2434 return Fcons (arg1
, Qnil
);
2438 list2 (Lisp_Object arg1
, Lisp_Object arg2
)
2440 return Fcons (arg1
, Fcons (arg2
, Qnil
));
2445 list3 (Lisp_Object arg1
, Lisp_Object arg2
, Lisp_Object arg3
)
2447 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Qnil
)));
2452 list4 (Lisp_Object arg1
, Lisp_Object arg2
, Lisp_Object arg3
, Lisp_Object arg4
)
2454 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Fcons (arg4
, Qnil
))));
2459 list5 (Lisp_Object arg1
, Lisp_Object arg2
, Lisp_Object arg3
, Lisp_Object arg4
, Lisp_Object arg5
)
2461 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Fcons (arg4
,
2462 Fcons (arg5
, Qnil
)))));
2465 /* Make a list of COUNT Lisp_Objects, where ARG is the
2466 first one. Allocate conses from pure space if TYPE
2467 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2470 listn (enum constype type
, ptrdiff_t count
, Lisp_Object arg
, ...)
2474 Lisp_Object val
, *objp
;
2476 /* Change to SAFE_ALLOCA if you hit this eassert. */
2477 eassert (count
<= MAX_ALLOCA
/ word_size
);
2479 objp
= alloca (count
* word_size
);
2482 for (i
= 1; i
< count
; i
++)
2483 objp
[i
] = va_arg (ap
, Lisp_Object
);
2486 for (val
= Qnil
, i
= count
- 1; i
>= 0; i
--)
2488 if (type
== CONSTYPE_PURE
)
2489 val
= pure_cons (objp
[i
], val
);
2490 else if (type
== CONSTYPE_HEAP
)
2491 val
= Fcons (objp
[i
], val
);
2498 DEFUN ("list", Flist
, Slist
, 0, MANY
, 0,
2499 doc
: /* Return a newly created list with specified arguments as elements.
2500 Any number of arguments, even zero arguments, are allowed.
2501 usage: (list &rest OBJECTS) */)
2502 (ptrdiff_t nargs
, Lisp_Object
*args
)
2504 register Lisp_Object val
;
2510 val
= Fcons (args
[nargs
], val
);
2516 DEFUN ("make-list", Fmake_list
, Smake_list
, 2, 2, 0,
2517 doc
: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2518 (register Lisp_Object length
, Lisp_Object init
)
2520 register Lisp_Object val
;
2521 register EMACS_INT size
;
2523 CHECK_NATNUM (length
);
2524 size
= XFASTINT (length
);
2529 val
= Fcons (init
, val
);
2534 val
= Fcons (init
, val
);
2539 val
= Fcons (init
, val
);
2544 val
= Fcons (init
, val
);
2549 val
= Fcons (init
, val
);
2564 /***********************************************************************
2566 ***********************************************************************/
2568 /* This value is balanced well enough to avoid too much internal overhead
2569 for the most common cases; it's not required to be a power of two, but
2570 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2572 #define VECTOR_BLOCK_SIZE 4096
2574 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2577 roundup_size
= COMMON_MULTIPLE (word_size
, USE_LSB_TAG
? GCALIGNMENT
: 1)
2580 /* ROUNDUP_SIZE must be a power of 2. */
2581 verify ((roundup_size
& (roundup_size
- 1)) == 0);
2583 /* Verify assumptions described above. */
2584 verify ((VECTOR_BLOCK_SIZE
% roundup_size
) == 0);
2585 verify (VECTOR_BLOCK_SIZE
<= (1 << PSEUDOVECTOR_SIZE_BITS
));
2587 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2589 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2591 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2593 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2595 /* Size of the minimal vector allocated from block. */
2597 #define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2599 /* Size of the largest vector allocated from block. */
2601 #define VBLOCK_BYTES_MAX \
2602 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2604 /* We maintain one free list for each possible block-allocated
2605 vector size, and this is the number of free lists we have. */
2607 #define VECTOR_MAX_FREE_LIST_INDEX \
2608 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2610 /* Common shortcut to advance vector pointer over a block data. */
2612 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2614 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2616 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2618 /* Get and set the next field in block-allocated vectorlike objects on
2619 the free list. Doing it this way respects C's aliasing rules.
2620 We could instead make 'contents' a union, but that would mean
2621 changes everywhere that the code uses 'contents'. */
2622 static struct Lisp_Vector
*
2623 next_in_free_list (struct Lisp_Vector
*v
)
2625 intptr_t i
= XLI (v
->contents
[0]);
2626 return (struct Lisp_Vector
*) i
;
2629 set_next_in_free_list (struct Lisp_Vector
*v
, struct Lisp_Vector
*next
)
2631 v
->contents
[0] = XIL ((intptr_t) next
);
2634 /* Common shortcut to setup vector on a free list. */
2636 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2638 (tmp) = ((nbytes - header_size) / word_size); \
2639 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2640 eassert ((nbytes) % roundup_size == 0); \
2641 (tmp) = VINDEX (nbytes); \
2642 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2643 set_next_in_free_list (v, vector_free_lists[tmp]); \
2644 vector_free_lists[tmp] = (v); \
2645 total_free_vector_slots += (nbytes) / word_size; \
2648 /* This internal type is used to maintain the list of large vectors
2649 which are allocated at their own, e.g. outside of vector blocks. */
2654 struct large_vector
*vector
;
2656 /* We need to maintain ROUNDUP_SIZE alignment for the vector member. */
2657 unsigned char c
[vroundup (sizeof (struct large_vector
*))];
2660 struct Lisp_Vector v
;
2663 /* This internal type is used to maintain an underlying storage
2664 for small vectors. */
2668 char data
[VECTOR_BLOCK_BYTES
];
2669 struct vector_block
*next
;
2672 /* Chain of vector blocks. */
2674 static struct vector_block
*vector_blocks
;
2676 /* Vector free lists, where NTH item points to a chain of free
2677 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2679 static struct Lisp_Vector
*vector_free_lists
[VECTOR_MAX_FREE_LIST_INDEX
];
2681 /* Singly-linked list of large vectors. */
2683 static struct large_vector
*large_vectors
;
2685 /* The only vector with 0 slots, allocated from pure space. */
2687 Lisp_Object zero_vector
;
2689 /* Number of live vectors. */
2691 static EMACS_INT total_vectors
;
2693 /* Total size of live and free vectors, in Lisp_Object units. */
2695 static EMACS_INT total_vector_slots
, total_free_vector_slots
;
2697 /* Get a new vector block. */
2699 static struct vector_block
*
2700 allocate_vector_block (void)
2702 struct vector_block
*block
= xmalloc (sizeof *block
);
2704 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2705 mem_insert (block
->data
, block
->data
+ VECTOR_BLOCK_BYTES
,
2706 MEM_TYPE_VECTOR_BLOCK
);
2709 block
->next
= vector_blocks
;
2710 vector_blocks
= block
;
2714 /* Called once to initialize vector allocation. */
2719 zero_vector
= make_pure_vector (0);
2722 /* Allocate vector from a vector block. */
2724 static struct Lisp_Vector
*
2725 allocate_vector_from_block (size_t nbytes
)
2727 struct Lisp_Vector
*vector
;
2728 struct vector_block
*block
;
2729 size_t index
, restbytes
;
2731 eassert (VBLOCK_BYTES_MIN
<= nbytes
&& nbytes
<= VBLOCK_BYTES_MAX
);
2732 eassert (nbytes
% roundup_size
== 0);
2734 /* First, try to allocate from a free list
2735 containing vectors of the requested size. */
2736 index
= VINDEX (nbytes
);
2737 if (vector_free_lists
[index
])
2739 vector
= vector_free_lists
[index
];
2740 vector_free_lists
[index
] = next_in_free_list (vector
);
2741 total_free_vector_slots
-= nbytes
/ word_size
;
2745 /* Next, check free lists containing larger vectors. Since
2746 we will split the result, we should have remaining space
2747 large enough to use for one-slot vector at least. */
2748 for (index
= VINDEX (nbytes
+ VBLOCK_BYTES_MIN
);
2749 index
< VECTOR_MAX_FREE_LIST_INDEX
; index
++)
2750 if (vector_free_lists
[index
])
2752 /* This vector is larger than requested. */
2753 vector
= vector_free_lists
[index
];
2754 vector_free_lists
[index
] = next_in_free_list (vector
);
2755 total_free_vector_slots
-= nbytes
/ word_size
;
2757 /* Excess bytes are used for the smaller vector,
2758 which should be set on an appropriate free list. */
2759 restbytes
= index
* roundup_size
+ VBLOCK_BYTES_MIN
- nbytes
;
2760 eassert (restbytes
% roundup_size
== 0);
2761 SETUP_ON_FREE_LIST (ADVANCE (vector
, nbytes
), restbytes
, index
);
2765 /* Finally, need a new vector block. */
2766 block
= allocate_vector_block ();
2768 /* New vector will be at the beginning of this block. */
2769 vector
= (struct Lisp_Vector
*) block
->data
;
2771 /* If the rest of space from this block is large enough
2772 for one-slot vector at least, set up it on a free list. */
2773 restbytes
= VECTOR_BLOCK_BYTES
- nbytes
;
2774 if (restbytes
>= VBLOCK_BYTES_MIN
)
2776 eassert (restbytes
% roundup_size
== 0);
2777 SETUP_ON_FREE_LIST (ADVANCE (vector
, nbytes
), restbytes
, index
);
2782 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2784 #define VECTOR_IN_BLOCK(vector, block) \
2785 ((char *) (vector) <= (block)->data \
2786 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2788 /* Return the memory footprint of V in bytes. */
2791 vector_nbytes (struct Lisp_Vector
*v
)
2793 ptrdiff_t size
= v
->header
.size
& ~ARRAY_MARK_FLAG
;
2795 if (size
& PSEUDOVECTOR_FLAG
)
2797 if (PSEUDOVECTOR_TYPEP (&v
->header
, PVEC_BOOL_VECTOR
))
2798 size
= (bool_header_size
2799 + (((struct Lisp_Bool_Vector
*) v
)->size
2800 + BOOL_VECTOR_BITS_PER_CHAR
- 1)
2801 / BOOL_VECTOR_BITS_PER_CHAR
);
2804 + ((size
& PSEUDOVECTOR_SIZE_MASK
)
2805 + ((size
& PSEUDOVECTOR_REST_MASK
)
2806 >> PSEUDOVECTOR_SIZE_BITS
)) * word_size
);
2809 size
= header_size
+ size
* word_size
;
2810 return vroundup (size
);
2813 /* Reclaim space used by unmarked vectors. */
2816 sweep_vectors (void)
2818 struct vector_block
*block
= vector_blocks
, **bprev
= &vector_blocks
;
2819 struct large_vector
*lv
, **lvprev
= &large_vectors
;
2820 struct Lisp_Vector
*vector
, *next
;
2822 total_vectors
= total_vector_slots
= total_free_vector_slots
= 0;
2823 memset (vector_free_lists
, 0, sizeof (vector_free_lists
));
2825 /* Looking through vector blocks. */
2827 for (block
= vector_blocks
; block
; block
= *bprev
)
2829 bool free_this_block
= 0;
2832 for (vector
= (struct Lisp_Vector
*) block
->data
;
2833 VECTOR_IN_BLOCK (vector
, block
); vector
= next
)
2835 if (VECTOR_MARKED_P (vector
))
2837 VECTOR_UNMARK (vector
);
2839 nbytes
= vector_nbytes (vector
);
2840 total_vector_slots
+= nbytes
/ word_size
;
2841 next
= ADVANCE (vector
, nbytes
);
2845 ptrdiff_t total_bytes
;
2847 nbytes
= vector_nbytes (vector
);
2848 total_bytes
= nbytes
;
2849 next
= ADVANCE (vector
, nbytes
);
2851 /* While NEXT is not marked, try to coalesce with VECTOR,
2852 thus making VECTOR of the largest possible size. */
2854 while (VECTOR_IN_BLOCK (next
, block
))
2856 if (VECTOR_MARKED_P (next
))
2858 nbytes
= vector_nbytes (next
);
2859 total_bytes
+= nbytes
;
2860 next
= ADVANCE (next
, nbytes
);
2863 eassert (total_bytes
% roundup_size
== 0);
2865 if (vector
== (struct Lisp_Vector
*) block
->data
2866 && !VECTOR_IN_BLOCK (next
, block
))
2867 /* This block should be freed because all of it's
2868 space was coalesced into the only free vector. */
2869 free_this_block
= 1;
2873 SETUP_ON_FREE_LIST (vector
, total_bytes
, tmp
);
2878 if (free_this_block
)
2880 *bprev
= block
->next
;
2881 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2882 mem_delete (mem_find (block
->data
));
2887 bprev
= &block
->next
;
2890 /* Sweep large vectors. */
2892 for (lv
= large_vectors
; lv
; lv
= *lvprev
)
2895 if (VECTOR_MARKED_P (vector
))
2897 VECTOR_UNMARK (vector
);
2899 if (vector
->header
.size
& PSEUDOVECTOR_FLAG
)
2901 struct Lisp_Bool_Vector
*b
= (struct Lisp_Bool_Vector
*) vector
;
2903 /* All non-bool pseudovectors are small enough to be allocated
2904 from vector blocks. This code should be redesigned if some
2905 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2906 eassert (PSEUDOVECTOR_TYPEP (&vector
->header
, PVEC_BOOL_VECTOR
));
2909 += (bool_header_size
2910 + ((b
->size
+ BOOL_VECTOR_BITS_PER_CHAR
- 1)
2911 / BOOL_VECTOR_BITS_PER_CHAR
)) / word_size
;
2915 += header_size
/ word_size
+ vector
->header
.size
;
2916 lvprev
= &lv
->next
.vector
;
2920 *lvprev
= lv
->next
.vector
;
2926 /* Value is a pointer to a newly allocated Lisp_Vector structure
2927 with room for LEN Lisp_Objects. */
2929 static struct Lisp_Vector
*
2930 allocate_vectorlike (ptrdiff_t len
)
2932 struct Lisp_Vector
*p
;
2937 p
= XVECTOR (zero_vector
);
2940 size_t nbytes
= header_size
+ len
* word_size
;
2942 #ifdef DOUG_LEA_MALLOC
2943 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2944 because mapped region contents are not preserved in
2946 mallopt (M_MMAP_MAX
, 0);
2949 if (nbytes
<= VBLOCK_BYTES_MAX
)
2950 p
= allocate_vector_from_block (vroundup (nbytes
));
2953 struct large_vector
*lv
2954 = lisp_malloc (sizeof (*lv
) + (len
- 1) * word_size
,
2955 MEM_TYPE_VECTORLIKE
);
2956 lv
->next
.vector
= large_vectors
;
2961 #ifdef DOUG_LEA_MALLOC
2962 /* Back to a reasonable maximum of mmap'ed areas. */
2963 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
2966 consing_since_gc
+= nbytes
;
2967 vector_cells_consed
+= len
;
2970 MALLOC_UNBLOCK_INPUT
;
2976 /* Allocate a vector with LEN slots. */
2978 struct Lisp_Vector
*
2979 allocate_vector (EMACS_INT len
)
2981 struct Lisp_Vector
*v
;
2982 ptrdiff_t nbytes_max
= min (PTRDIFF_MAX
, SIZE_MAX
);
2984 if (min ((nbytes_max
- header_size
) / word_size
, MOST_POSITIVE_FIXNUM
) < len
)
2985 memory_full (SIZE_MAX
);
2986 v
= allocate_vectorlike (len
);
2987 v
->header
.size
= len
;
2992 /* Allocate other vector-like structures. */
2994 struct Lisp_Vector
*
2995 allocate_pseudovector (int memlen
, int lisplen
, enum pvec_type tag
)
2997 struct Lisp_Vector
*v
= allocate_vectorlike (memlen
);
3000 /* Catch bogus values. */
3001 eassert (tag
<= PVEC_FONT
);
3002 eassert (memlen
- lisplen
<= (1 << PSEUDOVECTOR_REST_BITS
) - 1);
3003 eassert (lisplen
<= (1 << PSEUDOVECTOR_SIZE_BITS
) - 1);
3005 /* Only the first lisplen slots will be traced normally by the GC. */
3006 for (i
= 0; i
< lisplen
; ++i
)
3007 v
->contents
[i
] = Qnil
;
3009 XSETPVECTYPESIZE (v
, tag
, lisplen
, memlen
- lisplen
);
3014 allocate_buffer (void)
3016 struct buffer
*b
= lisp_malloc (sizeof *b
, MEM_TYPE_BUFFER
);
3018 BUFFER_PVEC_INIT (b
);
3019 /* Put B on the chain of all buffers including killed ones. */
3020 b
->next
= all_buffers
;
3022 /* Note that the rest fields of B are not initialized. */
3026 struct Lisp_Hash_Table
*
3027 allocate_hash_table (void)
3029 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table
, count
, PVEC_HASH_TABLE
);
3033 allocate_window (void)
3037 w
= ALLOCATE_PSEUDOVECTOR (struct window
, current_matrix
, PVEC_WINDOW
);
3038 /* Users assumes that non-Lisp data is zeroed. */
3039 memset (&w
->current_matrix
, 0,
3040 sizeof (*w
) - offsetof (struct window
, current_matrix
));
3045 allocate_terminal (void)
3049 t
= ALLOCATE_PSEUDOVECTOR (struct terminal
, next_terminal
, PVEC_TERMINAL
);
3050 /* Users assumes that non-Lisp data is zeroed. */
3051 memset (&t
->next_terminal
, 0,
3052 sizeof (*t
) - offsetof (struct terminal
, next_terminal
));
3057 allocate_frame (void)
3061 f
= ALLOCATE_PSEUDOVECTOR (struct frame
, face_cache
, PVEC_FRAME
);
3062 /* Users assumes that non-Lisp data is zeroed. */
3063 memset (&f
->face_cache
, 0,
3064 sizeof (*f
) - offsetof (struct frame
, face_cache
));
3068 struct Lisp_Process
*
3069 allocate_process (void)
3071 struct Lisp_Process
*p
;
3073 p
= ALLOCATE_PSEUDOVECTOR (struct Lisp_Process
, pid
, PVEC_PROCESS
);
3074 /* Users assumes that non-Lisp data is zeroed. */
3076 sizeof (*p
) - offsetof (struct Lisp_Process
, pid
));
3080 DEFUN ("make-vector", Fmake_vector
, Smake_vector
, 2, 2, 0,
3081 doc
: /* Return a newly created vector of length LENGTH, with each element being INIT.
3082 See also the function `vector'. */)
3083 (register Lisp_Object length
, Lisp_Object init
)
3086 register ptrdiff_t sizei
;
3087 register ptrdiff_t i
;
3088 register struct Lisp_Vector
*p
;
3090 CHECK_NATNUM (length
);
3092 p
= allocate_vector (XFASTINT (length
));
3093 sizei
= XFASTINT (length
);
3094 for (i
= 0; i
< sizei
; i
++)
3095 p
->contents
[i
] = init
;
3097 XSETVECTOR (vector
, p
);
3102 DEFUN ("vector", Fvector
, Svector
, 0, MANY
, 0,
3103 doc
: /* Return a newly created vector with specified arguments as elements.
3104 Any number of arguments, even zero arguments, are allowed.
3105 usage: (vector &rest OBJECTS) */)
3106 (ptrdiff_t nargs
, Lisp_Object
*args
)
3109 register Lisp_Object val
= make_uninit_vector (nargs
);
3110 register struct Lisp_Vector
*p
= XVECTOR (val
);
3112 for (i
= 0; i
< nargs
; i
++)
3113 p
->contents
[i
] = args
[i
];
3118 make_byte_code (struct Lisp_Vector
*v
)
3120 if (v
->header
.size
> 1 && STRINGP (v
->contents
[1])
3121 && STRING_MULTIBYTE (v
->contents
[1]))
3122 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3123 earlier because they produced a raw 8-bit string for byte-code
3124 and now such a byte-code string is loaded as multibyte while
3125 raw 8-bit characters converted to multibyte form. Thus, now we
3126 must convert them back to the original unibyte form. */
3127 v
->contents
[1] = Fstring_as_unibyte (v
->contents
[1]);
3128 XSETPVECTYPE (v
, PVEC_COMPILED
);
3131 DEFUN ("make-byte-code", Fmake_byte_code
, Smake_byte_code
, 4, MANY
, 0,
3132 doc
: /* Create a byte-code object with specified arguments as elements.
3133 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3134 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3135 and (optional) INTERACTIVE-SPEC.
3136 The first four arguments are required; at most six have any
3138 The ARGLIST can be either like the one of `lambda', in which case the arguments
3139 will be dynamically bound before executing the byte code, or it can be an
3140 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3141 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3142 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3143 argument to catch the left-over arguments. If such an integer is used, the
3144 arguments will not be dynamically bound but will be instead pushed on the
3145 stack before executing the byte-code.
3146 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3147 (ptrdiff_t nargs
, Lisp_Object
*args
)
3150 register Lisp_Object val
= make_uninit_vector (nargs
);
3151 register struct Lisp_Vector
*p
= XVECTOR (val
);
3153 /* We used to purecopy everything here, if purify-flag was set. This worked
3154 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3155 dangerous, since make-byte-code is used during execution to build
3156 closures, so any closure built during the preload phase would end up
3157 copied into pure space, including its free variables, which is sometimes
3158 just wasteful and other times plainly wrong (e.g. those free vars may want
3161 for (i
= 0; i
< nargs
; i
++)
3162 p
->contents
[i
] = args
[i
];
3164 XSETCOMPILED (val
, p
);
3170 /***********************************************************************
3172 ***********************************************************************/
3174 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3175 of the required alignment if LSB tags are used. */
3177 union aligned_Lisp_Symbol
3179 struct Lisp_Symbol s
;
3181 unsigned char c
[(sizeof (struct Lisp_Symbol
) + GCALIGNMENT
- 1)
3186 /* Each symbol_block is just under 1020 bytes long, since malloc
3187 really allocates in units of powers of two and uses 4 bytes for its
3190 #define SYMBOL_BLOCK_SIZE \
3191 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3195 /* Place `symbols' first, to preserve alignment. */
3196 union aligned_Lisp_Symbol symbols
[SYMBOL_BLOCK_SIZE
];
3197 struct symbol_block
*next
;
3200 /* Current symbol block and index of first unused Lisp_Symbol
3203 static struct symbol_block
*symbol_block
;
3204 static int symbol_block_index
= SYMBOL_BLOCK_SIZE
;
3206 /* List of free symbols. */
3208 static struct Lisp_Symbol
*symbol_free_list
;
3210 DEFUN ("make-symbol", Fmake_symbol
, Smake_symbol
, 1, 1, 0,
3211 doc
: /* Return a newly allocated uninterned symbol whose name is NAME.
3212 Its value is void, and its function definition and property list are nil. */)
3215 register Lisp_Object val
;
3216 register struct Lisp_Symbol
*p
;
3218 CHECK_STRING (name
);
3222 if (symbol_free_list
)
3224 XSETSYMBOL (val
, symbol_free_list
);
3225 symbol_free_list
= symbol_free_list
->next
;
3229 if (symbol_block_index
== SYMBOL_BLOCK_SIZE
)
3231 struct symbol_block
*new
3232 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL
);
3233 new->next
= symbol_block
;
3235 symbol_block_index
= 0;
3236 total_free_symbols
+= SYMBOL_BLOCK_SIZE
;
3238 XSETSYMBOL (val
, &symbol_block
->symbols
[symbol_block_index
].s
);
3239 symbol_block_index
++;
3242 MALLOC_UNBLOCK_INPUT
;
3245 set_symbol_name (val
, name
);
3246 set_symbol_plist (val
, Qnil
);
3247 p
->redirect
= SYMBOL_PLAINVAL
;
3248 SET_SYMBOL_VAL (p
, Qunbound
);
3249 set_symbol_function (val
, Qnil
);
3250 set_symbol_next (val
, NULL
);
3252 p
->interned
= SYMBOL_UNINTERNED
;
3254 p
->declared_special
= 0;
3255 consing_since_gc
+= sizeof (struct Lisp_Symbol
);
3257 total_free_symbols
--;
3263 /***********************************************************************
3264 Marker (Misc) Allocation
3265 ***********************************************************************/
3267 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3268 the required alignment when LSB tags are used. */
3270 union aligned_Lisp_Misc
3274 unsigned char c
[(sizeof (union Lisp_Misc
) + GCALIGNMENT
- 1)
3279 /* Allocation of markers and other objects that share that structure.
3280 Works like allocation of conses. */
3282 #define MARKER_BLOCK_SIZE \
3283 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3287 /* Place `markers' first, to preserve alignment. */
3288 union aligned_Lisp_Misc markers
[MARKER_BLOCK_SIZE
];
3289 struct marker_block
*next
;
3292 static struct marker_block
*marker_block
;
3293 static int marker_block_index
= MARKER_BLOCK_SIZE
;
3295 static union Lisp_Misc
*marker_free_list
;
3297 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3300 allocate_misc (enum Lisp_Misc_Type type
)
3306 if (marker_free_list
)
3308 XSETMISC (val
, marker_free_list
);
3309 marker_free_list
= marker_free_list
->u_free
.chain
;
3313 if (marker_block_index
== MARKER_BLOCK_SIZE
)
3315 struct marker_block
*new = lisp_malloc (sizeof *new, MEM_TYPE_MISC
);
3316 new->next
= marker_block
;
3318 marker_block_index
= 0;
3319 total_free_markers
+= MARKER_BLOCK_SIZE
;
3321 XSETMISC (val
, &marker_block
->markers
[marker_block_index
].m
);
3322 marker_block_index
++;
3325 MALLOC_UNBLOCK_INPUT
;
3327 --total_free_markers
;
3328 consing_since_gc
+= sizeof (union Lisp_Misc
);
3329 misc_objects_consed
++;
3330 XMISCTYPE (val
) = type
;
3331 XMISCANY (val
)->gcmarkbit
= 0;
3335 /* Free a Lisp_Misc object. */
3338 free_misc (Lisp_Object misc
)
3340 XMISCTYPE (misc
) = Lisp_Misc_Free
;
3341 XMISC (misc
)->u_free
.chain
= marker_free_list
;
3342 marker_free_list
= XMISC (misc
);
3343 consing_since_gc
-= sizeof (union Lisp_Misc
);
3344 total_free_markers
++;
3347 /* Return a Lisp_Save_Value object with the data saved according to
3348 FMT. Format specifiers are `i' for an integer, `p' for a pointer
3349 and `o' for Lisp_Object. Up to 4 objects can be specified. */
3352 make_save_value (const char *fmt
, ...)
3355 int len
= strlen (fmt
);
3356 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3357 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3359 eassert (0 < len
&& len
< 5);
3362 #define INITX(index) \
3365 p->type ## index = SAVE_UNUSED; \
3368 if (fmt[index] == 'i') \
3370 p->type ## index = SAVE_INTEGER; \
3371 p->data[index].integer = va_arg (ap, ptrdiff_t); \
3373 else if (fmt[index] == 'p') \
3375 p->type ## index = SAVE_POINTER; \
3376 p->data[index].pointer = va_arg (ap, void *); \
3378 else if (fmt[index] == 'o') \
3380 p->type ## index = SAVE_OBJECT; \
3381 p->data[index].object = va_arg (ap, Lisp_Object); \
3400 /* The most common task it to save just one C pointer. */
3403 make_save_pointer (void *pointer
)
3405 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3406 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3409 p
->type0
= SAVE_POINTER
;
3410 p
->data
[0].pointer
= pointer
;
3411 p
->type1
= p
->type2
= p
->type3
= SAVE_UNUSED
;
3415 /* Free a Lisp_Save_Value object. Do not use this function
3416 if SAVE contains pointer other than returned by xmalloc. */
3419 free_save_value (Lisp_Object save
)
3421 xfree (XSAVE_POINTER (save
, 0));
3425 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3428 build_overlay (Lisp_Object start
, Lisp_Object end
, Lisp_Object plist
)
3430 register Lisp_Object overlay
;
3432 overlay
= allocate_misc (Lisp_Misc_Overlay
);
3433 OVERLAY_START (overlay
) = start
;
3434 OVERLAY_END (overlay
) = end
;
3435 set_overlay_plist (overlay
, plist
);
3436 XOVERLAY (overlay
)->next
= NULL
;
3440 DEFUN ("make-marker", Fmake_marker
, Smake_marker
, 0, 0, 0,
3441 doc
: /* Return a newly allocated marker which does not point at any place. */)
3444 register Lisp_Object val
;
3445 register struct Lisp_Marker
*p
;
3447 val
= allocate_misc (Lisp_Misc_Marker
);
3453 p
->insertion_type
= 0;
3457 /* Return a newly allocated marker which points into BUF
3458 at character position CHARPOS and byte position BYTEPOS. */
3461 build_marker (struct buffer
*buf
, ptrdiff_t charpos
, ptrdiff_t bytepos
)
3464 struct Lisp_Marker
*m
;
3466 /* No dead buffers here. */
3467 eassert (BUFFER_LIVE_P (buf
));
3469 /* Every character is at least one byte. */
3470 eassert (charpos
<= bytepos
);
3472 obj
= allocate_misc (Lisp_Misc_Marker
);
3475 m
->charpos
= charpos
;
3476 m
->bytepos
= bytepos
;
3477 m
->insertion_type
= 0;
3478 m
->next
= BUF_MARKERS (buf
);
3479 BUF_MARKERS (buf
) = m
;
3483 /* Put MARKER back on the free list after using it temporarily. */
3486 free_marker (Lisp_Object marker
)
3488 unchain_marker (XMARKER (marker
));
3493 /* Return a newly created vector or string with specified arguments as
3494 elements. If all the arguments are characters that can fit
3495 in a string of events, make a string; otherwise, make a vector.
3497 Any number of arguments, even zero arguments, are allowed. */
3500 make_event_array (register int nargs
, Lisp_Object
*args
)
3504 for (i
= 0; i
< nargs
; i
++)
3505 /* The things that fit in a string
3506 are characters that are in 0...127,
3507 after discarding the meta bit and all the bits above it. */
3508 if (!INTEGERP (args
[i
])
3509 || (XINT (args
[i
]) & ~(-CHAR_META
)) >= 0200)
3510 return Fvector (nargs
, args
);
3512 /* Since the loop exited, we know that all the things in it are
3513 characters, so we can make a string. */
3517 result
= Fmake_string (make_number (nargs
), make_number (0));
3518 for (i
= 0; i
< nargs
; i
++)
3520 SSET (result
, i
, XINT (args
[i
]));
3521 /* Move the meta bit to the right place for a string char. */
3522 if (XINT (args
[i
]) & CHAR_META
)
3523 SSET (result
, i
, SREF (result
, i
) | 0x80);
3532 /************************************************************************
3533 Memory Full Handling
3534 ************************************************************************/
3537 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3538 there may have been size_t overflow so that malloc was never
3539 called, or perhaps malloc was invoked successfully but the
3540 resulting pointer had problems fitting into a tagged EMACS_INT. In
3541 either case this counts as memory being full even though malloc did
3545 memory_full (size_t nbytes
)
3547 /* Do not go into hysterics merely because a large request failed. */
3548 bool enough_free_memory
= 0;
3549 if (SPARE_MEMORY
< nbytes
)
3554 p
= malloc (SPARE_MEMORY
);
3558 enough_free_memory
= 1;
3560 MALLOC_UNBLOCK_INPUT
;
3563 if (! enough_free_memory
)
3569 memory_full_cons_threshold
= sizeof (struct cons_block
);
3571 /* The first time we get here, free the spare memory. */
3572 for (i
= 0; i
< sizeof (spare_memory
) / sizeof (char *); i
++)
3573 if (spare_memory
[i
])
3576 free (spare_memory
[i
]);
3577 else if (i
>= 1 && i
<= 4)
3578 lisp_align_free (spare_memory
[i
]);
3580 lisp_free (spare_memory
[i
]);
3581 spare_memory
[i
] = 0;
3585 /* This used to call error, but if we've run out of memory, we could
3586 get infinite recursion trying to build the string. */
3587 xsignal (Qnil
, Vmemory_signal_data
);
3590 /* If we released our reserve (due to running out of memory),
3591 and we have a fair amount free once again,
3592 try to set aside another reserve in case we run out once more.
3594 This is called when a relocatable block is freed in ralloc.c,
3595 and also directly from this file, in case we're not using ralloc.c. */
3598 refill_memory_reserve (void)
3600 #ifndef SYSTEM_MALLOC
3601 if (spare_memory
[0] == 0)
3602 spare_memory
[0] = malloc (SPARE_MEMORY
);
3603 if (spare_memory
[1] == 0)
3604 spare_memory
[1] = lisp_align_malloc (sizeof (struct cons_block
),
3606 if (spare_memory
[2] == 0)
3607 spare_memory
[2] = lisp_align_malloc (sizeof (struct cons_block
),
3609 if (spare_memory
[3] == 0)
3610 spare_memory
[3] = lisp_align_malloc (sizeof (struct cons_block
),
3612 if (spare_memory
[4] == 0)
3613 spare_memory
[4] = lisp_align_malloc (sizeof (struct cons_block
),
3615 if (spare_memory
[5] == 0)
3616 spare_memory
[5] = lisp_malloc (sizeof (struct string_block
),
3618 if (spare_memory
[6] == 0)
3619 spare_memory
[6] = lisp_malloc (sizeof (struct string_block
),
3621 if (spare_memory
[0] && spare_memory
[1] && spare_memory
[5])
3622 Vmemory_full
= Qnil
;
3626 /************************************************************************
3628 ************************************************************************/
3630 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3632 /* Conservative C stack marking requires a method to identify possibly
3633 live Lisp objects given a pointer value. We do this by keeping
3634 track of blocks of Lisp data that are allocated in a red-black tree
3635 (see also the comment of mem_node which is the type of nodes in
3636 that tree). Function lisp_malloc adds information for an allocated
3637 block to the red-black tree with calls to mem_insert, and function
3638 lisp_free removes it with mem_delete. Functions live_string_p etc
3639 call mem_find to lookup information about a given pointer in the
3640 tree, and use that to determine if the pointer points to a Lisp
3643 /* Initialize this part of alloc.c. */
3648 mem_z
.left
= mem_z
.right
= MEM_NIL
;
3649 mem_z
.parent
= NULL
;
3650 mem_z
.color
= MEM_BLACK
;
3651 mem_z
.start
= mem_z
.end
= NULL
;
3656 /* Value is a pointer to the mem_node containing START. Value is
3657 MEM_NIL if there is no node in the tree containing START. */
3659 static struct mem_node
*
3660 mem_find (void *start
)
3664 if (start
< min_heap_address
|| start
> max_heap_address
)
3667 /* Make the search always successful to speed up the loop below. */
3668 mem_z
.start
= start
;
3669 mem_z
.end
= (char *) start
+ 1;
3672 while (start
< p
->start
|| start
>= p
->end
)
3673 p
= start
< p
->start
? p
->left
: p
->right
;
3678 /* Insert a new node into the tree for a block of memory with start
3679 address START, end address END, and type TYPE. Value is a
3680 pointer to the node that was inserted. */
3682 static struct mem_node
*
3683 mem_insert (void *start
, void *end
, enum mem_type type
)
3685 struct mem_node
*c
, *parent
, *x
;
3687 if (min_heap_address
== NULL
|| start
< min_heap_address
)
3688 min_heap_address
= start
;
3689 if (max_heap_address
== NULL
|| end
> max_heap_address
)
3690 max_heap_address
= end
;
3692 /* See where in the tree a node for START belongs. In this
3693 particular application, it shouldn't happen that a node is already
3694 present. For debugging purposes, let's check that. */
3698 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3700 while (c
!= MEM_NIL
)
3702 if (start
>= c
->start
&& start
< c
->end
)
3705 c
= start
< c
->start
? c
->left
: c
->right
;
3708 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3710 while (c
!= MEM_NIL
)
3713 c
= start
< c
->start
? c
->left
: c
->right
;
3716 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3718 /* Create a new node. */
3719 #ifdef GC_MALLOC_CHECK
3720 x
= malloc (sizeof *x
);
3724 x
= xmalloc (sizeof *x
);
3730 x
->left
= x
->right
= MEM_NIL
;
3733 /* Insert it as child of PARENT or install it as root. */
3736 if (start
< parent
->start
)
3744 /* Re-establish red-black tree properties. */
3745 mem_insert_fixup (x
);
3751 /* Re-establish the red-black properties of the tree, and thereby
3752 balance the tree, after node X has been inserted; X is always red. */
3755 mem_insert_fixup (struct mem_node
*x
)
3757 while (x
!= mem_root
&& x
->parent
->color
== MEM_RED
)
3759 /* X is red and its parent is red. This is a violation of
3760 red-black tree property #3. */
3762 if (x
->parent
== x
->parent
->parent
->left
)
3764 /* We're on the left side of our grandparent, and Y is our
3766 struct mem_node
*y
= x
->parent
->parent
->right
;
3768 if (y
->color
== MEM_RED
)
3770 /* Uncle and parent are red but should be black because
3771 X is red. Change the colors accordingly and proceed
3772 with the grandparent. */
3773 x
->parent
->color
= MEM_BLACK
;
3774 y
->color
= MEM_BLACK
;
3775 x
->parent
->parent
->color
= MEM_RED
;
3776 x
= x
->parent
->parent
;
3780 /* Parent and uncle have different colors; parent is
3781 red, uncle is black. */
3782 if (x
== x
->parent
->right
)
3785 mem_rotate_left (x
);
3788 x
->parent
->color
= MEM_BLACK
;
3789 x
->parent
->parent
->color
= MEM_RED
;
3790 mem_rotate_right (x
->parent
->parent
);
3795 /* This is the symmetrical case of above. */
3796 struct mem_node
*y
= x
->parent
->parent
->left
;
3798 if (y
->color
== MEM_RED
)
3800 x
->parent
->color
= MEM_BLACK
;
3801 y
->color
= MEM_BLACK
;
3802 x
->parent
->parent
->color
= MEM_RED
;
3803 x
= x
->parent
->parent
;
3807 if (x
== x
->parent
->left
)
3810 mem_rotate_right (x
);
3813 x
->parent
->color
= MEM_BLACK
;
3814 x
->parent
->parent
->color
= MEM_RED
;
3815 mem_rotate_left (x
->parent
->parent
);
3820 /* The root may have been changed to red due to the algorithm. Set
3821 it to black so that property #5 is satisfied. */
3822 mem_root
->color
= MEM_BLACK
;
3833 mem_rotate_left (struct mem_node
*x
)
3837 /* Turn y's left sub-tree into x's right sub-tree. */
3840 if (y
->left
!= MEM_NIL
)
3841 y
->left
->parent
= x
;
3843 /* Y's parent was x's parent. */
3845 y
->parent
= x
->parent
;
3847 /* Get the parent to point to y instead of x. */
3850 if (x
== x
->parent
->left
)
3851 x
->parent
->left
= y
;
3853 x
->parent
->right
= y
;
3858 /* Put x on y's left. */
3872 mem_rotate_right (struct mem_node
*x
)
3874 struct mem_node
*y
= x
->left
;
3877 if (y
->right
!= MEM_NIL
)
3878 y
->right
->parent
= x
;
3881 y
->parent
= x
->parent
;
3884 if (x
== x
->parent
->right
)
3885 x
->parent
->right
= y
;
3887 x
->parent
->left
= y
;
3898 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3901 mem_delete (struct mem_node
*z
)
3903 struct mem_node
*x
, *y
;
3905 if (!z
|| z
== MEM_NIL
)
3908 if (z
->left
== MEM_NIL
|| z
->right
== MEM_NIL
)
3913 while (y
->left
!= MEM_NIL
)
3917 if (y
->left
!= MEM_NIL
)
3922 x
->parent
= y
->parent
;
3925 if (y
== y
->parent
->left
)
3926 y
->parent
->left
= x
;
3928 y
->parent
->right
= x
;
3935 z
->start
= y
->start
;
3940 if (y
->color
== MEM_BLACK
)
3941 mem_delete_fixup (x
);
3943 #ifdef GC_MALLOC_CHECK
3951 /* Re-establish the red-black properties of the tree, after a
3955 mem_delete_fixup (struct mem_node
*x
)
3957 while (x
!= mem_root
&& x
->color
== MEM_BLACK
)
3959 if (x
== x
->parent
->left
)
3961 struct mem_node
*w
= x
->parent
->right
;
3963 if (w
->color
== MEM_RED
)
3965 w
->color
= MEM_BLACK
;
3966 x
->parent
->color
= MEM_RED
;
3967 mem_rotate_left (x
->parent
);
3968 w
= x
->parent
->right
;
3971 if (w
->left
->color
== MEM_BLACK
&& w
->right
->color
== MEM_BLACK
)
3978 if (w
->right
->color
== MEM_BLACK
)
3980 w
->left
->color
= MEM_BLACK
;
3982 mem_rotate_right (w
);
3983 w
= x
->parent
->right
;
3985 w
->color
= x
->parent
->color
;
3986 x
->parent
->color
= MEM_BLACK
;
3987 w
->right
->color
= MEM_BLACK
;
3988 mem_rotate_left (x
->parent
);
3994 struct mem_node
*w
= x
->parent
->left
;
3996 if (w
->color
== MEM_RED
)
3998 w
->color
= MEM_BLACK
;
3999 x
->parent
->color
= MEM_RED
;
4000 mem_rotate_right (x
->parent
);
4001 w
= x
->parent
->left
;
4004 if (w
->right
->color
== MEM_BLACK
&& w
->left
->color
== MEM_BLACK
)
4011 if (w
->left
->color
== MEM_BLACK
)
4013 w
->right
->color
= MEM_BLACK
;
4015 mem_rotate_left (w
);
4016 w
= x
->parent
->left
;
4019 w
->color
= x
->parent
->color
;
4020 x
->parent
->color
= MEM_BLACK
;
4021 w
->left
->color
= MEM_BLACK
;
4022 mem_rotate_right (x
->parent
);
4028 x
->color
= MEM_BLACK
;
4032 /* Value is non-zero if P is a pointer to a live Lisp string on
4033 the heap. M is a pointer to the mem_block for P. */
4036 live_string_p (struct mem_node
*m
, void *p
)
4038 if (m
->type
== MEM_TYPE_STRING
)
4040 struct string_block
*b
= (struct string_block
*) m
->start
;
4041 ptrdiff_t offset
= (char *) p
- (char *) &b
->strings
[0];
4043 /* P must point to the start of a Lisp_String structure, and it
4044 must not be on the free-list. */
4046 && offset
% sizeof b
->strings
[0] == 0
4047 && offset
< (STRING_BLOCK_SIZE
* sizeof b
->strings
[0])
4048 && ((struct Lisp_String
*) p
)->data
!= NULL
);
4055 /* Value is non-zero if P is a pointer to a live Lisp cons on
4056 the heap. M is a pointer to the mem_block for P. */
4059 live_cons_p (struct mem_node
*m
, void *p
)
4061 if (m
->type
== MEM_TYPE_CONS
)
4063 struct cons_block
*b
= (struct cons_block
*) m
->start
;
4064 ptrdiff_t offset
= (char *) p
- (char *) &b
->conses
[0];
4066 /* P must point to the start of a Lisp_Cons, not be
4067 one of the unused cells in the current cons block,
4068 and not be on the free-list. */
4070 && offset
% sizeof b
->conses
[0] == 0
4071 && offset
< (CONS_BLOCK_SIZE
* sizeof b
->conses
[0])
4073 || offset
/ sizeof b
->conses
[0] < cons_block_index
)
4074 && !EQ (((struct Lisp_Cons
*) p
)->car
, Vdead
));
4081 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4082 the heap. M is a pointer to the mem_block for P. */
4085 live_symbol_p (struct mem_node
*m
, void *p
)
4087 if (m
->type
== MEM_TYPE_SYMBOL
)
4089 struct symbol_block
*b
= (struct symbol_block
*) m
->start
;
4090 ptrdiff_t offset
= (char *) p
- (char *) &b
->symbols
[0];
4092 /* P must point to the start of a Lisp_Symbol, not be
4093 one of the unused cells in the current symbol block,
4094 and not be on the free-list. */
4096 && offset
% sizeof b
->symbols
[0] == 0
4097 && offset
< (SYMBOL_BLOCK_SIZE
* sizeof b
->symbols
[0])
4098 && (b
!= symbol_block
4099 || offset
/ sizeof b
->symbols
[0] < symbol_block_index
)
4100 && !EQ (((struct Lisp_Symbol
*)p
)->function
, Vdead
));
4107 /* Value is non-zero if P is a pointer to a live Lisp float on
4108 the heap. M is a pointer to the mem_block for P. */
4111 live_float_p (struct mem_node
*m
, void *p
)
4113 if (m
->type
== MEM_TYPE_FLOAT
)
4115 struct float_block
*b
= (struct float_block
*) m
->start
;
4116 ptrdiff_t offset
= (char *) p
- (char *) &b
->floats
[0];
4118 /* P must point to the start of a Lisp_Float and not be
4119 one of the unused cells in the current float block. */
4121 && offset
% sizeof b
->floats
[0] == 0
4122 && offset
< (FLOAT_BLOCK_SIZE
* sizeof b
->floats
[0])
4123 && (b
!= float_block
4124 || offset
/ sizeof b
->floats
[0] < float_block_index
));
4131 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4132 the heap. M is a pointer to the mem_block for P. */
4135 live_misc_p (struct mem_node
*m
, void *p
)
4137 if (m
->type
== MEM_TYPE_MISC
)
4139 struct marker_block
*b
= (struct marker_block
*) m
->start
;
4140 ptrdiff_t offset
= (char *) p
- (char *) &b
->markers
[0];
4142 /* P must point to the start of a Lisp_Misc, not be
4143 one of the unused cells in the current misc block,
4144 and not be on the free-list. */
4146 && offset
% sizeof b
->markers
[0] == 0
4147 && offset
< (MARKER_BLOCK_SIZE
* sizeof b
->markers
[0])
4148 && (b
!= marker_block
4149 || offset
/ sizeof b
->markers
[0] < marker_block_index
)
4150 && ((union Lisp_Misc
*) p
)->u_any
.type
!= Lisp_Misc_Free
);
4157 /* Value is non-zero if P is a pointer to a live vector-like object.
4158 M is a pointer to the mem_block for P. */
4161 live_vector_p (struct mem_node
*m
, void *p
)
4163 if (m
->type
== MEM_TYPE_VECTOR_BLOCK
)
4165 /* This memory node corresponds to a vector block. */
4166 struct vector_block
*block
= (struct vector_block
*) m
->start
;
4167 struct Lisp_Vector
*vector
= (struct Lisp_Vector
*) block
->data
;
4169 /* P is in the block's allocation range. Scan the block
4170 up to P and see whether P points to the start of some
4171 vector which is not on a free list. FIXME: check whether
4172 some allocation patterns (probably a lot of short vectors)
4173 may cause a substantial overhead of this loop. */
4174 while (VECTOR_IN_BLOCK (vector
, block
)
4175 && vector
<= (struct Lisp_Vector
*) p
)
4177 if (!PSEUDOVECTOR_TYPEP (&vector
->header
, PVEC_FREE
) && vector
== p
)
4180 vector
= ADVANCE (vector
, vector_nbytes (vector
));
4183 else if (m
->type
== MEM_TYPE_VECTORLIKE
4184 && (char *) p
== ((char *) m
->start
4185 + offsetof (struct large_vector
, v
)))
4186 /* This memory node corresponds to a large vector. */
4192 /* Value is non-zero if P is a pointer to a live buffer. M is a
4193 pointer to the mem_block for P. */
4196 live_buffer_p (struct mem_node
*m
, void *p
)
4198 /* P must point to the start of the block, and the buffer
4199 must not have been killed. */
4200 return (m
->type
== MEM_TYPE_BUFFER
4202 && !NILP (((struct buffer
*) p
)->INTERNAL_FIELD (name
)));
4205 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4209 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4211 /* Array of objects that are kept alive because the C stack contains
4212 a pattern that looks like a reference to them . */
4214 #define MAX_ZOMBIES 10
4215 static Lisp_Object zombies
[MAX_ZOMBIES
];
4217 /* Number of zombie objects. */
4219 static EMACS_INT nzombies
;
4221 /* Number of garbage collections. */
4223 static EMACS_INT ngcs
;
4225 /* Average percentage of zombies per collection. */
4227 static double avg_zombies
;
4229 /* Max. number of live and zombie objects. */
4231 static EMACS_INT max_live
, max_zombies
;
4233 /* Average number of live objects per GC. */
4235 static double avg_live
;
4237 DEFUN ("gc-status", Fgc_status
, Sgc_status
, 0, 0, "",
4238 doc
: /* Show information about live and zombie objects. */)
4241 Lisp_Object args
[8], zombie_list
= Qnil
;
4243 for (i
= 0; i
< min (MAX_ZOMBIES
, nzombies
); i
++)
4244 zombie_list
= Fcons (zombies
[i
], zombie_list
);
4245 args
[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4246 args
[1] = make_number (ngcs
);
4247 args
[2] = make_float (avg_live
);
4248 args
[3] = make_float (avg_zombies
);
4249 args
[4] = make_float (avg_zombies
/ avg_live
/ 100);
4250 args
[5] = make_number (max_live
);
4251 args
[6] = make_number (max_zombies
);
4252 args
[7] = zombie_list
;
4253 return Fmessage (8, args
);
4256 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4259 /* Mark OBJ if we can prove it's a Lisp_Object. */
4262 mark_maybe_object (Lisp_Object obj
)
4270 po
= (void *) XPNTR (obj
);
4277 switch (XTYPE (obj
))
4280 mark_p
= (live_string_p (m
, po
)
4281 && !STRING_MARKED_P ((struct Lisp_String
*) po
));
4285 mark_p
= (live_cons_p (m
, po
) && !CONS_MARKED_P (XCONS (obj
)));
4289 mark_p
= (live_symbol_p (m
, po
) && !XSYMBOL (obj
)->gcmarkbit
);
4293 mark_p
= (live_float_p (m
, po
) && !FLOAT_MARKED_P (XFLOAT (obj
)));
4296 case Lisp_Vectorlike
:
4297 /* Note: can't check BUFFERP before we know it's a
4298 buffer because checking that dereferences the pointer
4299 PO which might point anywhere. */
4300 if (live_vector_p (m
, po
))
4301 mark_p
= !SUBRP (obj
) && !VECTOR_MARKED_P (XVECTOR (obj
));
4302 else if (live_buffer_p (m
, po
))
4303 mark_p
= BUFFERP (obj
) && !VECTOR_MARKED_P (XBUFFER (obj
));
4307 mark_p
= (live_misc_p (m
, po
) && !XMISCANY (obj
)->gcmarkbit
);
4316 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4317 if (nzombies
< MAX_ZOMBIES
)
4318 zombies
[nzombies
] = obj
;
4327 /* If P points to Lisp data, mark that as live if it isn't already
4331 mark_maybe_pointer (void *p
)
4335 /* Quickly rule out some values which can't point to Lisp data.
4336 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4337 Otherwise, assume that Lisp data is aligned on even addresses. */
4338 if ((intptr_t) p
% (USE_LSB_TAG
? GCALIGNMENT
: 2))
4344 Lisp_Object obj
= Qnil
;
4348 case MEM_TYPE_NON_LISP
:
4349 case MEM_TYPE_SPARE
:
4350 /* Nothing to do; not a pointer to Lisp memory. */
4353 case MEM_TYPE_BUFFER
:
4354 if (live_buffer_p (m
, p
) && !VECTOR_MARKED_P ((struct buffer
*)p
))
4355 XSETVECTOR (obj
, p
);
4359 if (live_cons_p (m
, p
) && !CONS_MARKED_P ((struct Lisp_Cons
*) p
))
4363 case MEM_TYPE_STRING
:
4364 if (live_string_p (m
, p
)
4365 && !STRING_MARKED_P ((struct Lisp_String
*) p
))
4366 XSETSTRING (obj
, p
);
4370 if (live_misc_p (m
, p
) && !((struct Lisp_Free
*) p
)->gcmarkbit
)
4374 case MEM_TYPE_SYMBOL
:
4375 if (live_symbol_p (m
, p
) && !((struct Lisp_Symbol
*) p
)->gcmarkbit
)
4376 XSETSYMBOL (obj
, p
);
4379 case MEM_TYPE_FLOAT
:
4380 if (live_float_p (m
, p
) && !FLOAT_MARKED_P (p
))
4384 case MEM_TYPE_VECTORLIKE
:
4385 case MEM_TYPE_VECTOR_BLOCK
:
4386 if (live_vector_p (m
, p
))
4389 XSETVECTOR (tem
, p
);
4390 if (!SUBRP (tem
) && !VECTOR_MARKED_P (XVECTOR (tem
)))
4405 /* Alignment of pointer values. Use alignof, as it sometimes returns
4406 a smaller alignment than GCC's __alignof__ and mark_memory might
4407 miss objects if __alignof__ were used. */
4408 #define GC_POINTER_ALIGNMENT alignof (void *)
4410 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4411 not suffice, which is the typical case. A host where a Lisp_Object is
4412 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4413 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4414 suffice to widen it to to a Lisp_Object and check it that way. */
4415 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4416 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4417 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4418 nor mark_maybe_object can follow the pointers. This should not occur on
4419 any practical porting target. */
4420 # error "MSB type bits straddle pointer-word boundaries"
4422 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4423 pointer words that hold pointers ORed with type bits. */
4424 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4426 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4427 words that hold unmodified pointers. */
4428 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4431 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4432 or END+OFFSET..START. */
4435 mark_memory (void *start
, void *end
)
4436 #if defined (__clang__) && defined (__has_feature)
4437 #if __has_feature(address_sanitizer)
4438 /* Do not allow -faddress-sanitizer to check this function, since it
4439 crosses the function stack boundary, and thus would yield many
4441 __attribute__((no_address_safety_analysis
))
4448 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4452 /* Make START the pointer to the start of the memory region,
4453 if it isn't already. */
4461 /* Mark Lisp data pointed to. This is necessary because, in some
4462 situations, the C compiler optimizes Lisp objects away, so that
4463 only a pointer to them remains. Example:
4465 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4468 Lisp_Object obj = build_string ("test");
4469 struct Lisp_String *s = XSTRING (obj);
4470 Fgarbage_collect ();
4471 fprintf (stderr, "test `%s'\n", s->data);
4475 Here, `obj' isn't really used, and the compiler optimizes it
4476 away. The only reference to the life string is through the
4479 for (pp
= start
; (void *) pp
< end
; pp
++)
4480 for (i
= 0; i
< sizeof *pp
; i
+= GC_POINTER_ALIGNMENT
)
4482 void *p
= *(void **) ((char *) pp
+ i
);
4483 mark_maybe_pointer (p
);
4484 if (POINTERS_MIGHT_HIDE_IN_OBJECTS
)
4485 mark_maybe_object (XIL ((intptr_t) p
));
4489 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4491 static bool setjmp_tested_p
;
4492 static int longjmps_done
;
4494 #define SETJMP_WILL_LIKELY_WORK "\
4496 Emacs garbage collector has been changed to use conservative stack\n\
4497 marking. Emacs has determined that the method it uses to do the\n\
4498 marking will likely work on your system, but this isn't sure.\n\
4500 If you are a system-programmer, or can get the help of a local wizard\n\
4501 who is, please take a look at the function mark_stack in alloc.c, and\n\
4502 verify that the methods used are appropriate for your system.\n\
4504 Please mail the result to <emacs-devel@gnu.org>.\n\
4507 #define SETJMP_WILL_NOT_WORK "\
4509 Emacs garbage collector has been changed to use conservative stack\n\
4510 marking. Emacs has determined that the default method it uses to do the\n\
4511 marking will not work on your system. We will need a system-dependent\n\
4512 solution for your system.\n\
4514 Please take a look at the function mark_stack in alloc.c, and\n\
4515 try to find a way to make it work on your system.\n\
4517 Note that you may get false negatives, depending on the compiler.\n\
4518 In particular, you need to use -O with GCC for this test.\n\
4520 Please mail the result to <emacs-devel@gnu.org>.\n\
4524 /* Perform a quick check if it looks like setjmp saves registers in a
4525 jmp_buf. Print a message to stderr saying so. When this test
4526 succeeds, this is _not_ a proof that setjmp is sufficient for
4527 conservative stack marking. Only the sources or a disassembly
4537 /* Arrange for X to be put in a register. */
4543 if (longjmps_done
== 1)
4545 /* Came here after the longjmp at the end of the function.
4547 If x == 1, the longjmp has restored the register to its
4548 value before the setjmp, and we can hope that setjmp
4549 saves all such registers in the jmp_buf, although that
4552 For other values of X, either something really strange is
4553 taking place, or the setjmp just didn't save the register. */
4556 fprintf (stderr
, SETJMP_WILL_LIKELY_WORK
);
4559 fprintf (stderr
, SETJMP_WILL_NOT_WORK
);
4566 if (longjmps_done
== 1)
4567 sys_longjmp (jbuf
, 1);
4570 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4573 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4575 /* Abort if anything GCPRO'd doesn't survive the GC. */
4583 for (p
= gcprolist
; p
; p
= p
->next
)
4584 for (i
= 0; i
< p
->nvars
; ++i
)
4585 if (!survives_gc_p (p
->var
[i
]))
4586 /* FIXME: It's not necessarily a bug. It might just be that the
4587 GCPRO is unnecessary or should release the object sooner. */
4591 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4598 fprintf (stderr
, "\nZombies kept alive = %"pI
"d:\n", nzombies
);
4599 for (i
= 0; i
< min (MAX_ZOMBIES
, nzombies
); ++i
)
4601 fprintf (stderr
, " %d = ", i
);
4602 debug_print (zombies
[i
]);
4606 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4609 /* Mark live Lisp objects on the C stack.
4611 There are several system-dependent problems to consider when
4612 porting this to new architectures:
4616 We have to mark Lisp objects in CPU registers that can hold local
4617 variables or are used to pass parameters.
4619 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4620 something that either saves relevant registers on the stack, or
4621 calls mark_maybe_object passing it each register's contents.
4623 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4624 implementation assumes that calling setjmp saves registers we need
4625 to see in a jmp_buf which itself lies on the stack. This doesn't
4626 have to be true! It must be verified for each system, possibly
4627 by taking a look at the source code of setjmp.
4629 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4630 can use it as a machine independent method to store all registers
4631 to the stack. In this case the macros described in the previous
4632 two paragraphs are not used.
4636 Architectures differ in the way their processor stack is organized.
4637 For example, the stack might look like this
4640 | Lisp_Object | size = 4
4642 | something else | size = 2
4644 | Lisp_Object | size = 4
4648 In such a case, not every Lisp_Object will be aligned equally. To
4649 find all Lisp_Object on the stack it won't be sufficient to walk
4650 the stack in steps of 4 bytes. Instead, two passes will be
4651 necessary, one starting at the start of the stack, and a second
4652 pass starting at the start of the stack + 2. Likewise, if the
4653 minimal alignment of Lisp_Objects on the stack is 1, four passes
4654 would be necessary, each one starting with one byte more offset
4655 from the stack start. */
4662 #ifdef HAVE___BUILTIN_UNWIND_INIT
4663 /* Force callee-saved registers and register windows onto the stack.
4664 This is the preferred method if available, obviating the need for
4665 machine dependent methods. */
4666 __builtin_unwind_init ();
4668 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4669 #ifndef GC_SAVE_REGISTERS_ON_STACK
4670 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4671 union aligned_jmpbuf
{
4675 volatile bool stack_grows_down_p
= (char *) &j
> (char *) stack_base
;
4677 /* This trick flushes the register windows so that all the state of
4678 the process is contained in the stack. */
4679 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4680 needed on ia64 too. See mach_dep.c, where it also says inline
4681 assembler doesn't work with relevant proprietary compilers. */
4683 #if defined (__sparc64__) && defined (__FreeBSD__)
4684 /* FreeBSD does not have a ta 3 handler. */
4691 /* Save registers that we need to see on the stack. We need to see
4692 registers used to hold register variables and registers used to
4694 #ifdef GC_SAVE_REGISTERS_ON_STACK
4695 GC_SAVE_REGISTERS_ON_STACK (end
);
4696 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4698 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4699 setjmp will definitely work, test it
4700 and print a message with the result
4702 if (!setjmp_tested_p
)
4704 setjmp_tested_p
= 1;
4707 #endif /* GC_SETJMP_WORKS */
4710 end
= stack_grows_down_p
? (char *) &j
+ sizeof j
: (char *) &j
;
4711 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4712 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4714 /* This assumes that the stack is a contiguous region in memory. If
4715 that's not the case, something has to be done here to iterate
4716 over the stack segments. */
4717 mark_memory (stack_base
, end
);
4719 /* Allow for marking a secondary stack, like the register stack on the
4721 #ifdef GC_MARK_SECONDARY_STACK
4722 GC_MARK_SECONDARY_STACK ();
4725 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4730 #endif /* GC_MARK_STACK != 0 */
4733 /* Determine whether it is safe to access memory at address P. */
4735 valid_pointer_p (void *p
)
4738 return w32_valid_pointer_p (p
, 16);
4742 /* Obviously, we cannot just access it (we would SEGV trying), so we
4743 trick the o/s to tell us whether p is a valid pointer.
4744 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4745 not validate p in that case. */
4749 bool valid
= emacs_write (fd
[1], (char *) p
, 16) == 16;
4750 emacs_close (fd
[1]);
4751 emacs_close (fd
[0]);
4759 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4760 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4761 cannot validate OBJ. This function can be quite slow, so its primary
4762 use is the manual debugging. The only exception is print_object, where
4763 we use it to check whether the memory referenced by the pointer of
4764 Lisp_Save_Value object contains valid objects. */
4767 valid_lisp_object_p (Lisp_Object obj
)
4777 p
= (void *) XPNTR (obj
);
4778 if (PURE_POINTER_P (p
))
4781 if (p
== &buffer_defaults
|| p
== &buffer_local_symbols
)
4785 return valid_pointer_p (p
);
4792 int valid
= valid_pointer_p (p
);
4804 case MEM_TYPE_NON_LISP
:
4805 case MEM_TYPE_SPARE
:
4808 case MEM_TYPE_BUFFER
:
4809 return live_buffer_p (m
, p
) ? 1 : 2;
4812 return live_cons_p (m
, p
);
4814 case MEM_TYPE_STRING
:
4815 return live_string_p (m
, p
);
4818 return live_misc_p (m
, p
);
4820 case MEM_TYPE_SYMBOL
:
4821 return live_symbol_p (m
, p
);
4823 case MEM_TYPE_FLOAT
:
4824 return live_float_p (m
, p
);
4826 case MEM_TYPE_VECTORLIKE
:
4827 case MEM_TYPE_VECTOR_BLOCK
:
4828 return live_vector_p (m
, p
);
4841 /***********************************************************************
4842 Pure Storage Management
4843 ***********************************************************************/
4845 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4846 pointer to it. TYPE is the Lisp type for which the memory is
4847 allocated. TYPE < 0 means it's not used for a Lisp object. */
4850 pure_alloc (size_t size
, int type
)
4854 size_t alignment
= GCALIGNMENT
;
4856 size_t alignment
= alignof (EMACS_INT
);
4858 /* Give Lisp_Floats an extra alignment. */
4859 if (type
== Lisp_Float
)
4860 alignment
= alignof (struct Lisp_Float
);
4866 /* Allocate space for a Lisp object from the beginning of the free
4867 space with taking account of alignment. */
4868 result
= ALIGN (purebeg
+ pure_bytes_used_lisp
, alignment
);
4869 pure_bytes_used_lisp
= ((char *)result
- (char *)purebeg
) + size
;
4873 /* Allocate space for a non-Lisp object from the end of the free
4875 pure_bytes_used_non_lisp
+= size
;
4876 result
= purebeg
+ pure_size
- pure_bytes_used_non_lisp
;
4878 pure_bytes_used
= pure_bytes_used_lisp
+ pure_bytes_used_non_lisp
;
4880 if (pure_bytes_used
<= pure_size
)
4883 /* Don't allocate a large amount here,
4884 because it might get mmap'd and then its address
4885 might not be usable. */
4886 purebeg
= xmalloc (10000);
4888 pure_bytes_used_before_overflow
+= pure_bytes_used
- size
;
4889 pure_bytes_used
= 0;
4890 pure_bytes_used_lisp
= pure_bytes_used_non_lisp
= 0;
4895 /* Print a warning if PURESIZE is too small. */
4898 check_pure_size (void)
4900 if (pure_bytes_used_before_overflow
)
4901 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI
"d"
4903 pure_bytes_used
+ pure_bytes_used_before_overflow
);
4907 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4908 the non-Lisp data pool of the pure storage, and return its start
4909 address. Return NULL if not found. */
4912 find_string_data_in_pure (const char *data
, ptrdiff_t nbytes
)
4915 ptrdiff_t skip
, bm_skip
[256], last_char_skip
, infinity
, start
, start_max
;
4916 const unsigned char *p
;
4919 if (pure_bytes_used_non_lisp
<= nbytes
)
4922 /* Set up the Boyer-Moore table. */
4924 for (i
= 0; i
< 256; i
++)
4927 p
= (const unsigned char *) data
;
4929 bm_skip
[*p
++] = skip
;
4931 last_char_skip
= bm_skip
['\0'];
4933 non_lisp_beg
= purebeg
+ pure_size
- pure_bytes_used_non_lisp
;
4934 start_max
= pure_bytes_used_non_lisp
- (nbytes
+ 1);
4936 /* See the comments in the function `boyer_moore' (search.c) for the
4937 use of `infinity'. */
4938 infinity
= pure_bytes_used_non_lisp
+ 1;
4939 bm_skip
['\0'] = infinity
;
4941 p
= (const unsigned char *) non_lisp_beg
+ nbytes
;
4945 /* Check the last character (== '\0'). */
4948 start
+= bm_skip
[*(p
+ start
)];
4950 while (start
<= start_max
);
4952 if (start
< infinity
)
4953 /* Couldn't find the last character. */
4956 /* No less than `infinity' means we could find the last
4957 character at `p[start - infinity]'. */
4960 /* Check the remaining characters. */
4961 if (memcmp (data
, non_lisp_beg
+ start
, nbytes
) == 0)
4963 return non_lisp_beg
+ start
;
4965 start
+= last_char_skip
;
4967 while (start
<= start_max
);
4973 /* Return a string allocated in pure space. DATA is a buffer holding
4974 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4975 means make the result string multibyte.
4977 Must get an error if pure storage is full, since if it cannot hold
4978 a large string it may be able to hold conses that point to that
4979 string; then the string is not protected from gc. */
4982 make_pure_string (const char *data
,
4983 ptrdiff_t nchars
, ptrdiff_t nbytes
, bool multibyte
)
4986 struct Lisp_String
*s
= pure_alloc (sizeof *s
, Lisp_String
);
4987 s
->data
= (unsigned char *) find_string_data_in_pure (data
, nbytes
);
4988 if (s
->data
== NULL
)
4990 s
->data
= pure_alloc (nbytes
+ 1, -1);
4991 memcpy (s
->data
, data
, nbytes
);
4992 s
->data
[nbytes
] = '\0';
4995 s
->size_byte
= multibyte
? nbytes
: -1;
4996 s
->intervals
= NULL
;
4997 XSETSTRING (string
, s
);
5001 /* Return a string allocated in pure space. Do not
5002 allocate the string data, just point to DATA. */
5005 make_pure_c_string (const char *data
, ptrdiff_t nchars
)
5008 struct Lisp_String
*s
= pure_alloc (sizeof *s
, Lisp_String
);
5011 s
->data
= (unsigned char *) data
;
5012 s
->intervals
= NULL
;
5013 XSETSTRING (string
, s
);
5017 /* Return a cons allocated from pure space. Give it pure copies
5018 of CAR as car and CDR as cdr. */
5021 pure_cons (Lisp_Object car
, Lisp_Object cdr
)
5024 struct Lisp_Cons
*p
= pure_alloc (sizeof *p
, Lisp_Cons
);
5026 XSETCAR (new, Fpurecopy (car
));
5027 XSETCDR (new, Fpurecopy (cdr
));
5032 /* Value is a float object with value NUM allocated from pure space. */
5035 make_pure_float (double num
)
5038 struct Lisp_Float
*p
= pure_alloc (sizeof *p
, Lisp_Float
);
5040 XFLOAT_INIT (new, num
);
5045 /* Return a vector with room for LEN Lisp_Objects allocated from
5049 make_pure_vector (ptrdiff_t len
)
5052 size_t size
= header_size
+ len
* word_size
;
5053 struct Lisp_Vector
*p
= pure_alloc (size
, Lisp_Vectorlike
);
5054 XSETVECTOR (new, p
);
5055 XVECTOR (new)->header
.size
= len
;
5060 DEFUN ("purecopy", Fpurecopy
, Spurecopy
, 1, 1, 0,
5061 doc
: /* Make a copy of object OBJ in pure storage.
5062 Recursively copies contents of vectors and cons cells.
5063 Does not copy symbols. Copies strings without text properties. */)
5064 (register Lisp_Object obj
)
5066 if (NILP (Vpurify_flag
))
5069 if (PURE_POINTER_P (XPNTR (obj
)))
5072 if (HASH_TABLE_P (Vpurify_flag
)) /* Hash consing. */
5074 Lisp_Object tmp
= Fgethash (obj
, Vpurify_flag
, Qnil
);
5080 obj
= pure_cons (XCAR (obj
), XCDR (obj
));
5081 else if (FLOATP (obj
))
5082 obj
= make_pure_float (XFLOAT_DATA (obj
));
5083 else if (STRINGP (obj
))
5084 obj
= make_pure_string (SSDATA (obj
), SCHARS (obj
),
5086 STRING_MULTIBYTE (obj
));
5087 else if (COMPILEDP (obj
) || VECTORP (obj
))
5089 register struct Lisp_Vector
*vec
;
5090 register ptrdiff_t i
;
5094 if (size
& PSEUDOVECTOR_FLAG
)
5095 size
&= PSEUDOVECTOR_SIZE_MASK
;
5096 vec
= XVECTOR (make_pure_vector (size
));
5097 for (i
= 0; i
< size
; i
++)
5098 vec
->contents
[i
] = Fpurecopy (AREF (obj
, i
));
5099 if (COMPILEDP (obj
))
5101 XSETPVECTYPE (vec
, PVEC_COMPILED
);
5102 XSETCOMPILED (obj
, vec
);
5105 XSETVECTOR (obj
, vec
);
5107 else if (MARKERP (obj
))
5108 error ("Attempt to copy a marker to pure storage");
5110 /* Not purified, don't hash-cons. */
5113 if (HASH_TABLE_P (Vpurify_flag
)) /* Hash consing. */
5114 Fputhash (obj
, obj
, Vpurify_flag
);
5121 /***********************************************************************
5123 ***********************************************************************/
5125 /* Put an entry in staticvec, pointing at the variable with address
5129 staticpro (Lisp_Object
*varaddress
)
5131 staticvec
[staticidx
++] = varaddress
;
5132 if (staticidx
>= NSTATICS
)
5133 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5137 /***********************************************************************
5139 ***********************************************************************/
5141 /* Temporarily prevent garbage collection. */
5144 inhibit_garbage_collection (void)
5146 ptrdiff_t count
= SPECPDL_INDEX ();
5148 specbind (Qgc_cons_threshold
, make_number (MOST_POSITIVE_FIXNUM
));
5152 /* Used to avoid possible overflows when
5153 converting from C to Lisp integers. */
5156 bounded_number (EMACS_INT number
)
5158 return make_number (min (MOST_POSITIVE_FIXNUM
, number
));
5161 /* Calculate total bytes of live objects. */
5164 total_bytes_of_live_objects (void)
5167 tot
+= total_conses
* sizeof (struct Lisp_Cons
);
5168 tot
+= total_symbols
* sizeof (struct Lisp_Symbol
);
5169 tot
+= total_markers
* sizeof (union Lisp_Misc
);
5170 tot
+= total_string_bytes
;
5171 tot
+= total_vector_slots
* word_size
;
5172 tot
+= total_floats
* sizeof (struct Lisp_Float
);
5173 tot
+= total_intervals
* sizeof (struct interval
);
5174 tot
+= total_strings
* sizeof (struct Lisp_String
);
5178 DEFUN ("garbage-collect", Fgarbage_collect
, Sgarbage_collect
, 0, 0, "",
5179 doc
: /* Reclaim storage for Lisp objects no longer needed.
5180 Garbage collection happens automatically if you cons more than
5181 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5182 `garbage-collect' normally returns a list with info on amount of space in use,
5183 where each entry has the form (NAME SIZE USED FREE), where:
5184 - NAME is a symbol describing the kind of objects this entry represents,
5185 - SIZE is the number of bytes used by each one,
5186 - USED is the number of those objects that were found live in the heap,
5187 - FREE is the number of those objects that are not live but that Emacs
5188 keeps around for future allocations (maybe because it does not know how
5189 to return them to the OS).
5190 However, if there was overflow in pure space, `garbage-collect'
5191 returns nil, because real GC can't be done.
5192 See Info node `(elisp)Garbage Collection'. */)
5195 struct specbinding
*bind
;
5196 struct buffer
*nextb
;
5197 char stack_top_variable
;
5200 ptrdiff_t count
= SPECPDL_INDEX ();
5202 Lisp_Object retval
= Qnil
;
5203 size_t tot_before
= 0;
5204 struct backtrace backtrace
;
5209 /* Can't GC if pure storage overflowed because we can't determine
5210 if something is a pure object or not. */
5211 if (pure_bytes_used_before_overflow
)
5214 /* Record this function, so it appears on the profiler's backtraces. */
5215 backtrace
.next
= backtrace_list
;
5216 backtrace
.function
= Qautomatic_gc
;
5217 backtrace
.args
= &Qnil
;
5218 backtrace
.nargs
= 0;
5219 backtrace
.debug_on_exit
= 0;
5220 backtrace_list
= &backtrace
;
5224 /* Don't keep undo information around forever.
5225 Do this early on, so it is no problem if the user quits. */
5226 FOR_EACH_BUFFER (nextb
)
5227 compact_buffer (nextb
);
5229 if (profiler_memory_running
)
5230 tot_before
= total_bytes_of_live_objects ();
5232 start
= current_emacs_time ();
5234 /* In case user calls debug_print during GC,
5235 don't let that cause a recursive GC. */
5236 consing_since_gc
= 0;
5238 /* Save what's currently displayed in the echo area. */
5239 message_p
= push_message ();
5240 record_unwind_protect (pop_message_unwind
, Qnil
);
5242 /* Save a copy of the contents of the stack, for debugging. */
5243 #if MAX_SAVE_STACK > 0
5244 if (NILP (Vpurify_flag
))
5247 ptrdiff_t stack_size
;
5248 if (&stack_top_variable
< stack_bottom
)
5250 stack
= &stack_top_variable
;
5251 stack_size
= stack_bottom
- &stack_top_variable
;
5255 stack
= stack_bottom
;
5256 stack_size
= &stack_top_variable
- stack_bottom
;
5258 if (stack_size
<= MAX_SAVE_STACK
)
5260 if (stack_copy_size
< stack_size
)
5262 stack_copy
= xrealloc (stack_copy
, stack_size
);
5263 stack_copy_size
= stack_size
;
5265 memcpy (stack_copy
, stack
, stack_size
);
5268 #endif /* MAX_SAVE_STACK > 0 */
5270 if (garbage_collection_messages
)
5271 message1_nolog ("Garbage collecting...");
5275 shrink_regexp_cache ();
5279 /* Mark all the special slots that serve as the roots of accessibility. */
5281 mark_buffer (&buffer_defaults
);
5282 mark_buffer (&buffer_local_symbols
);
5284 for (i
= 0; i
< staticidx
; i
++)
5285 mark_object (*staticvec
[i
]);
5287 for (bind
= specpdl
; bind
!= specpdl_ptr
; bind
++)
5289 mark_object (bind
->symbol
);
5290 mark_object (bind
->old_value
);
5299 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5300 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5304 register struct gcpro
*tail
;
5305 for (tail
= gcprolist
; tail
; tail
= tail
->next
)
5306 for (i
= 0; i
< tail
->nvars
; i
++)
5307 mark_object (tail
->var
[i
]);
5311 struct catchtag
*catch;
5312 struct handler
*handler
;
5314 for (catch = catchlist
; catch; catch = catch->next
)
5316 mark_object (catch->tag
);
5317 mark_object (catch->val
);
5319 for (handler
= handlerlist
; handler
; handler
= handler
->next
)
5321 mark_object (handler
->handler
);
5322 mark_object (handler
->var
);
5328 #ifdef HAVE_WINDOW_SYSTEM
5329 mark_fringe_data ();
5332 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5336 /* Everything is now marked, except for the things that require special
5337 finalization, i.e. the undo_list.
5338 Look thru every buffer's undo list
5339 for elements that update markers that were not marked,
5341 FOR_EACH_BUFFER (nextb
)
5343 /* If a buffer's undo list is Qt, that means that undo is
5344 turned off in that buffer. Calling truncate_undo_list on
5345 Qt tends to return NULL, which effectively turns undo back on.
5346 So don't call truncate_undo_list if undo_list is Qt. */
5347 if (! EQ (nextb
->INTERNAL_FIELD (undo_list
), Qt
))
5349 Lisp_Object tail
, prev
;
5350 tail
= nextb
->INTERNAL_FIELD (undo_list
);
5352 while (CONSP (tail
))
5354 if (CONSP (XCAR (tail
))
5355 && MARKERP (XCAR (XCAR (tail
)))
5356 && !XMARKER (XCAR (XCAR (tail
)))->gcmarkbit
)
5359 nextb
->INTERNAL_FIELD (undo_list
) = tail
= XCDR (tail
);
5363 XSETCDR (prev
, tail
);
5373 /* Now that we have stripped the elements that need not be in the
5374 undo_list any more, we can finally mark the list. */
5375 mark_object (nextb
->INTERNAL_FIELD (undo_list
));
5380 /* Clear the mark bits that we set in certain root slots. */
5382 unmark_byte_stack ();
5383 VECTOR_UNMARK (&buffer_defaults
);
5384 VECTOR_UNMARK (&buffer_local_symbols
);
5386 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5396 consing_since_gc
= 0;
5397 if (gc_cons_threshold
< GC_DEFAULT_THRESHOLD
/ 10)
5398 gc_cons_threshold
= GC_DEFAULT_THRESHOLD
/ 10;
5400 gc_relative_threshold
= 0;
5401 if (FLOATP (Vgc_cons_percentage
))
5402 { /* Set gc_cons_combined_threshold. */
5403 double tot
= total_bytes_of_live_objects ();
5405 tot
*= XFLOAT_DATA (Vgc_cons_percentage
);
5408 if (tot
< TYPE_MAXIMUM (EMACS_INT
))
5409 gc_relative_threshold
= tot
;
5411 gc_relative_threshold
= TYPE_MAXIMUM (EMACS_INT
);
5415 if (garbage_collection_messages
)
5417 if (message_p
|| minibuf_level
> 0)
5420 message1_nolog ("Garbage collecting...done");
5423 unbind_to (count
, Qnil
);
5425 Lisp_Object total
[11];
5426 int total_size
= 10;
5428 total
[0] = list4 (Qconses
, make_number (sizeof (struct Lisp_Cons
)),
5429 bounded_number (total_conses
),
5430 bounded_number (total_free_conses
));
5432 total
[1] = list4 (Qsymbols
, make_number (sizeof (struct Lisp_Symbol
)),
5433 bounded_number (total_symbols
),
5434 bounded_number (total_free_symbols
));
5436 total
[2] = list4 (Qmiscs
, make_number (sizeof (union Lisp_Misc
)),
5437 bounded_number (total_markers
),
5438 bounded_number (total_free_markers
));
5440 total
[3] = list4 (Qstrings
, make_number (sizeof (struct Lisp_String
)),
5441 bounded_number (total_strings
),
5442 bounded_number (total_free_strings
));
5444 total
[4] = list3 (Qstring_bytes
, make_number (1),
5445 bounded_number (total_string_bytes
));
5447 total
[5] = list3 (Qvectors
, make_number (sizeof (struct Lisp_Vector
)),
5448 bounded_number (total_vectors
));
5450 total
[6] = list4 (Qvector_slots
, make_number (word_size
),
5451 bounded_number (total_vector_slots
),
5452 bounded_number (total_free_vector_slots
));
5454 total
[7] = list4 (Qfloats
, make_number (sizeof (struct Lisp_Float
)),
5455 bounded_number (total_floats
),
5456 bounded_number (total_free_floats
));
5458 total
[8] = list4 (Qintervals
, make_number (sizeof (struct interval
)),
5459 bounded_number (total_intervals
),
5460 bounded_number (total_free_intervals
));
5462 total
[9] = list3 (Qbuffers
, make_number (sizeof (struct buffer
)),
5463 bounded_number (total_buffers
));
5465 #ifdef DOUG_LEA_MALLOC
5467 total
[10] = list4 (Qheap
, make_number (1024),
5468 bounded_number ((mallinfo ().uordblks
+ 1023) >> 10),
5469 bounded_number ((mallinfo ().fordblks
+ 1023) >> 10));
5471 retval
= Flist (total_size
, total
);
5474 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5476 /* Compute average percentage of zombies. */
5478 = (total_conses
+ total_symbols
+ total_markers
+ total_strings
5479 + total_vectors
+ total_floats
+ total_intervals
+ total_buffers
);
5481 avg_live
= (avg_live
* ngcs
+ nlive
) / (ngcs
+ 1);
5482 max_live
= max (nlive
, max_live
);
5483 avg_zombies
= (avg_zombies
* ngcs
+ nzombies
) / (ngcs
+ 1);
5484 max_zombies
= max (nzombies
, max_zombies
);
5489 if (!NILP (Vpost_gc_hook
))
5491 ptrdiff_t gc_count
= inhibit_garbage_collection ();
5492 safe_run_hooks (Qpost_gc_hook
);
5493 unbind_to (gc_count
, Qnil
);
5496 /* Accumulate statistics. */
5497 if (FLOATP (Vgc_elapsed
))
5499 EMACS_TIME since_start
= sub_emacs_time (current_emacs_time (), start
);
5500 Vgc_elapsed
= make_float (XFLOAT_DATA (Vgc_elapsed
)
5501 + EMACS_TIME_TO_DOUBLE (since_start
));
5506 /* Collect profiling data. */
5507 if (profiler_memory_running
)
5510 size_t tot_after
= total_bytes_of_live_objects ();
5511 if (tot_before
> tot_after
)
5512 swept
= tot_before
- tot_after
;
5513 malloc_probe (swept
);
5516 backtrace_list
= backtrace
.next
;
5521 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5522 only interesting objects referenced from glyphs are strings. */
5525 mark_glyph_matrix (struct glyph_matrix
*matrix
)
5527 struct glyph_row
*row
= matrix
->rows
;
5528 struct glyph_row
*end
= row
+ matrix
->nrows
;
5530 for (; row
< end
; ++row
)
5534 for (area
= LEFT_MARGIN_AREA
; area
< LAST_AREA
; ++area
)
5536 struct glyph
*glyph
= row
->glyphs
[area
];
5537 struct glyph
*end_glyph
= glyph
+ row
->used
[area
];
5539 for (; glyph
< end_glyph
; ++glyph
)
5540 if (STRINGP (glyph
->object
)
5541 && !STRING_MARKED_P (XSTRING (glyph
->object
)))
5542 mark_object (glyph
->object
);
5548 /* Mark Lisp faces in the face cache C. */
5551 mark_face_cache (struct face_cache
*c
)
5556 for (i
= 0; i
< c
->used
; ++i
)
5558 struct face
*face
= FACE_FROM_ID (c
->f
, i
);
5562 for (j
= 0; j
< LFACE_VECTOR_SIZE
; ++j
)
5563 mark_object (face
->lface
[j
]);
5571 /* Mark reference to a Lisp_Object.
5572 If the object referred to has not been seen yet, recursively mark
5573 all the references contained in it. */
5575 #define LAST_MARKED_SIZE 500
5576 static Lisp_Object last_marked
[LAST_MARKED_SIZE
];
5577 static int last_marked_index
;
5579 /* For debugging--call abort when we cdr down this many
5580 links of a list, in mark_object. In debugging,
5581 the call to abort will hit a breakpoint.
5582 Normally this is zero and the check never goes off. */
5583 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE
;
5586 mark_vectorlike (struct Lisp_Vector
*ptr
)
5588 ptrdiff_t size
= ptr
->header
.size
;
5591 eassert (!VECTOR_MARKED_P (ptr
));
5592 VECTOR_MARK (ptr
); /* Else mark it. */
5593 if (size
& PSEUDOVECTOR_FLAG
)
5594 size
&= PSEUDOVECTOR_SIZE_MASK
;
5596 /* Note that this size is not the memory-footprint size, but only
5597 the number of Lisp_Object fields that we should trace.
5598 The distinction is used e.g. by Lisp_Process which places extra
5599 non-Lisp_Object fields at the end of the structure... */
5600 for (i
= 0; i
< size
; i
++) /* ...and then mark its elements. */
5601 mark_object (ptr
->contents
[i
]);
5604 /* Like mark_vectorlike but optimized for char-tables (and
5605 sub-char-tables) assuming that the contents are mostly integers or
5609 mark_char_table (struct Lisp_Vector
*ptr
)
5611 int size
= ptr
->header
.size
& PSEUDOVECTOR_SIZE_MASK
;
5614 eassert (!VECTOR_MARKED_P (ptr
));
5616 for (i
= 0; i
< size
; i
++)
5618 Lisp_Object val
= ptr
->contents
[i
];
5620 if (INTEGERP (val
) || (SYMBOLP (val
) && XSYMBOL (val
)->gcmarkbit
))
5622 if (SUB_CHAR_TABLE_P (val
))
5624 if (! VECTOR_MARKED_P (XVECTOR (val
)))
5625 mark_char_table (XVECTOR (val
));
5632 /* Mark the chain of overlays starting at PTR. */
5635 mark_overlay (struct Lisp_Overlay
*ptr
)
5637 for (; ptr
&& !ptr
->gcmarkbit
; ptr
= ptr
->next
)
5640 mark_object (ptr
->start
);
5641 mark_object (ptr
->end
);
5642 mark_object (ptr
->plist
);
5646 /* Mark Lisp_Objects and special pointers in BUFFER. */
5649 mark_buffer (struct buffer
*buffer
)
5651 /* This is handled much like other pseudovectors... */
5652 mark_vectorlike ((struct Lisp_Vector
*) buffer
);
5654 /* ...but there are some buffer-specific things. */
5656 MARK_INTERVAL_TREE (buffer_intervals (buffer
));
5658 /* For now, we just don't mark the undo_list. It's done later in
5659 a special way just before the sweep phase, and after stripping
5660 some of its elements that are not needed any more. */
5662 mark_overlay (buffer
->overlays_before
);
5663 mark_overlay (buffer
->overlays_after
);
5665 /* If this is an indirect buffer, mark its base buffer. */
5666 if (buffer
->base_buffer
&& !VECTOR_MARKED_P (buffer
->base_buffer
))
5667 mark_buffer (buffer
->base_buffer
);
5670 /* Remove killed buffers or items whose car is a killed buffer from
5671 LIST, and mark other items. Return changed LIST, which is marked. */
5674 mark_discard_killed_buffers (Lisp_Object list
)
5676 Lisp_Object tail
, *prev
= &list
;
5678 for (tail
= list
; CONSP (tail
) && !CONS_MARKED_P (XCONS (tail
));
5681 Lisp_Object tem
= XCAR (tail
);
5684 if (BUFFERP (tem
) && !BUFFER_LIVE_P (XBUFFER (tem
)))
5685 *prev
= XCDR (tail
);
5688 CONS_MARK (XCONS (tail
));
5689 mark_object (XCAR (tail
));
5690 prev
= &XCDR_AS_LVALUE (tail
);
5697 /* Determine type of generic Lisp_Object and mark it accordingly. */
5700 mark_object (Lisp_Object arg
)
5702 register Lisp_Object obj
= arg
;
5703 #ifdef GC_CHECK_MARKED_OBJECTS
5707 ptrdiff_t cdr_count
= 0;
5711 if (PURE_POINTER_P (XPNTR (obj
)))
5714 last_marked
[last_marked_index
++] = obj
;
5715 if (last_marked_index
== LAST_MARKED_SIZE
)
5716 last_marked_index
= 0;
5718 /* Perform some sanity checks on the objects marked here. Abort if
5719 we encounter an object we know is bogus. This increases GC time
5720 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5721 #ifdef GC_CHECK_MARKED_OBJECTS
5723 po
= (void *) XPNTR (obj
);
5725 /* Check that the object pointed to by PO is known to be a Lisp
5726 structure allocated from the heap. */
5727 #define CHECK_ALLOCATED() \
5729 m = mem_find (po); \
5734 /* Check that the object pointed to by PO is live, using predicate
5736 #define CHECK_LIVE(LIVEP) \
5738 if (!LIVEP (m, po)) \
5742 /* Check both of the above conditions. */
5743 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5745 CHECK_ALLOCATED (); \
5746 CHECK_LIVE (LIVEP); \
5749 #else /* not GC_CHECK_MARKED_OBJECTS */
5751 #define CHECK_LIVE(LIVEP) (void) 0
5752 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5754 #endif /* not GC_CHECK_MARKED_OBJECTS */
5756 switch (XTYPE (obj
))
5760 register struct Lisp_String
*ptr
= XSTRING (obj
);
5761 if (STRING_MARKED_P (ptr
))
5763 CHECK_ALLOCATED_AND_LIVE (live_string_p
);
5765 MARK_INTERVAL_TREE (ptr
->intervals
);
5766 #ifdef GC_CHECK_STRING_BYTES
5767 /* Check that the string size recorded in the string is the
5768 same as the one recorded in the sdata structure. */
5770 #endif /* GC_CHECK_STRING_BYTES */
5774 case Lisp_Vectorlike
:
5776 register struct Lisp_Vector
*ptr
= XVECTOR (obj
);
5777 register ptrdiff_t pvectype
;
5779 if (VECTOR_MARKED_P (ptr
))
5782 #ifdef GC_CHECK_MARKED_OBJECTS
5784 if (m
== MEM_NIL
&& !SUBRP (obj
))
5786 #endif /* GC_CHECK_MARKED_OBJECTS */
5788 if (ptr
->header
.size
& PSEUDOVECTOR_FLAG
)
5789 pvectype
= ((ptr
->header
.size
& PVEC_TYPE_MASK
)
5790 >> PSEUDOVECTOR_AREA_BITS
);
5792 pvectype
= PVEC_NORMAL_VECTOR
;
5794 if (pvectype
!= PVEC_SUBR
&& pvectype
!= PVEC_BUFFER
)
5795 CHECK_LIVE (live_vector_p
);
5800 #ifdef GC_CHECK_MARKED_OBJECTS
5809 #endif /* GC_CHECK_MARKED_OBJECTS */
5810 mark_buffer ((struct buffer
*) ptr
);
5814 { /* We could treat this just like a vector, but it is better
5815 to save the COMPILED_CONSTANTS element for last and avoid
5817 int size
= ptr
->header
.size
& PSEUDOVECTOR_SIZE_MASK
;
5821 for (i
= 0; i
< size
; i
++)
5822 if (i
!= COMPILED_CONSTANTS
)
5823 mark_object (ptr
->contents
[i
]);
5824 if (size
> COMPILED_CONSTANTS
)
5826 obj
= ptr
->contents
[COMPILED_CONSTANTS
];
5833 mark_vectorlike (ptr
);
5834 mark_face_cache (((struct frame
*) ptr
)->face_cache
);
5839 struct window
*w
= (struct window
*) ptr
;
5840 bool leaf
= NILP (w
->hchild
) && NILP (w
->vchild
);
5842 mark_vectorlike (ptr
);
5844 /* Mark glyphs for leaf windows. Marking window
5845 matrices is sufficient because frame matrices
5846 use the same glyph memory. */
5847 if (leaf
&& w
->current_matrix
)
5849 mark_glyph_matrix (w
->current_matrix
);
5850 mark_glyph_matrix (w
->desired_matrix
);
5853 /* Filter out killed buffers from both buffer lists
5854 in attempt to help GC to reclaim killed buffers faster.
5855 We can do it elsewhere for live windows, but this is the
5856 best place to do it for dead windows. */
5858 (w
, mark_discard_killed_buffers (w
->prev_buffers
));
5860 (w
, mark_discard_killed_buffers (w
->next_buffers
));
5864 case PVEC_HASH_TABLE
:
5866 struct Lisp_Hash_Table
*h
= (struct Lisp_Hash_Table
*) ptr
;
5868 mark_vectorlike (ptr
);
5869 mark_object (h
->test
.name
);
5870 mark_object (h
->test
.user_hash_function
);
5871 mark_object (h
->test
.user_cmp_function
);
5872 /* If hash table is not weak, mark all keys and values.
5873 For weak tables, mark only the vector. */
5875 mark_object (h
->key_and_value
);
5877 VECTOR_MARK (XVECTOR (h
->key_and_value
));
5881 case PVEC_CHAR_TABLE
:
5882 mark_char_table (ptr
);
5885 case PVEC_BOOL_VECTOR
:
5886 /* No Lisp_Objects to mark in a bool vector. */
5897 mark_vectorlike (ptr
);
5904 register struct Lisp_Symbol
*ptr
= XSYMBOL (obj
);
5905 struct Lisp_Symbol
*ptrx
;
5909 CHECK_ALLOCATED_AND_LIVE (live_symbol_p
);
5911 mark_object (ptr
->function
);
5912 mark_object (ptr
->plist
);
5913 switch (ptr
->redirect
)
5915 case SYMBOL_PLAINVAL
: mark_object (SYMBOL_VAL (ptr
)); break;
5916 case SYMBOL_VARALIAS
:
5919 XSETSYMBOL (tem
, SYMBOL_ALIAS (ptr
));
5923 case SYMBOL_LOCALIZED
:
5925 struct Lisp_Buffer_Local_Value
*blv
= SYMBOL_BLV (ptr
);
5926 Lisp_Object where
= blv
->where
;
5927 /* If the value is set up for a killed buffer or deleted
5928 frame, restore it's global binding. If the value is
5929 forwarded to a C variable, either it's not a Lisp_Object
5930 var, or it's staticpro'd already. */
5931 if ((BUFFERP (where
) && !BUFFER_LIVE_P (XBUFFER (where
)))
5932 || (FRAMEP (where
) && !FRAME_LIVE_P (XFRAME (where
))))
5933 swap_in_global_binding (ptr
);
5934 mark_object (blv
->where
);
5935 mark_object (blv
->valcell
);
5936 mark_object (blv
->defcell
);
5939 case SYMBOL_FORWARDED
:
5940 /* If the value is forwarded to a buffer or keyboard field,
5941 these are marked when we see the corresponding object.
5942 And if it's forwarded to a C variable, either it's not
5943 a Lisp_Object var, or it's staticpro'd already. */
5945 default: emacs_abort ();
5947 if (!PURE_POINTER_P (XSTRING (ptr
->name
)))
5948 MARK_STRING (XSTRING (ptr
->name
));
5949 MARK_INTERVAL_TREE (string_intervals (ptr
->name
));
5954 ptrx
= ptr
; /* Use of ptrx avoids compiler bug on Sun. */
5955 XSETSYMBOL (obj
, ptrx
);
5962 CHECK_ALLOCATED_AND_LIVE (live_misc_p
);
5964 if (XMISCANY (obj
)->gcmarkbit
)
5967 switch (XMISCTYPE (obj
))
5969 case Lisp_Misc_Marker
:
5970 /* DO NOT mark thru the marker's chain.
5971 The buffer's markers chain does not preserve markers from gc;
5972 instead, markers are removed from the chain when freed by gc. */
5973 XMISCANY (obj
)->gcmarkbit
= 1;
5976 case Lisp_Misc_Save_Value
:
5977 XMISCANY (obj
)->gcmarkbit
= 1;
5979 register struct Lisp_Save_Value
*ptr
= XSAVE_VALUE (obj
);
5980 /* If `area' is nonzero, `data[0].pointer' is the address
5981 of a memory area containing `data[1].integer' potential
5986 Lisp_Object
*p
= ptr
->data
[0].pointer
;
5988 for (nelt
= ptr
->data
[1].integer
; nelt
> 0; nelt
--, p
++)
5989 mark_maybe_object (*p
);
5992 #endif /* GC_MARK_STACK */
5994 /* Find Lisp_Objects in `data[N]' slots and mark them. */
5995 if (ptr
->type0
== SAVE_OBJECT
)
5996 mark_object (ptr
->data
[0].object
);
5997 if (ptr
->type1
== SAVE_OBJECT
)
5998 mark_object (ptr
->data
[1].object
);
5999 if (ptr
->type2
== SAVE_OBJECT
)
6000 mark_object (ptr
->data
[2].object
);
6001 if (ptr
->type3
== SAVE_OBJECT
)
6002 mark_object (ptr
->data
[3].object
);
6007 case Lisp_Misc_Overlay
:
6008 mark_overlay (XOVERLAY (obj
));
6018 register struct Lisp_Cons
*ptr
= XCONS (obj
);
6019 if (CONS_MARKED_P (ptr
))
6021 CHECK_ALLOCATED_AND_LIVE (live_cons_p
);
6023 /* If the cdr is nil, avoid recursion for the car. */
6024 if (EQ (ptr
->u
.cdr
, Qnil
))
6030 mark_object (ptr
->car
);
6033 if (cdr_count
== mark_object_loop_halt
)
6039 CHECK_ALLOCATED_AND_LIVE (live_float_p
);
6040 FLOAT_MARK (XFLOAT (obj
));
6051 #undef CHECK_ALLOCATED
6052 #undef CHECK_ALLOCATED_AND_LIVE
6054 /* Mark the Lisp pointers in the terminal objects.
6055 Called by Fgarbage_collect. */
6058 mark_terminals (void)
6061 for (t
= terminal_list
; t
; t
= t
->next_terminal
)
6063 eassert (t
->name
!= NULL
);
6064 #ifdef HAVE_WINDOW_SYSTEM
6065 /* If a terminal object is reachable from a stacpro'ed object,
6066 it might have been marked already. Make sure the image cache
6068 mark_image_cache (t
->image_cache
);
6069 #endif /* HAVE_WINDOW_SYSTEM */
6070 if (!VECTOR_MARKED_P (t
))
6071 mark_vectorlike ((struct Lisp_Vector
*)t
);
6077 /* Value is non-zero if OBJ will survive the current GC because it's
6078 either marked or does not need to be marked to survive. */
6081 survives_gc_p (Lisp_Object obj
)
6085 switch (XTYPE (obj
))
6092 survives_p
= XSYMBOL (obj
)->gcmarkbit
;
6096 survives_p
= XMISCANY (obj
)->gcmarkbit
;
6100 survives_p
= STRING_MARKED_P (XSTRING (obj
));
6103 case Lisp_Vectorlike
:
6104 survives_p
= SUBRP (obj
) || VECTOR_MARKED_P (XVECTOR (obj
));
6108 survives_p
= CONS_MARKED_P (XCONS (obj
));
6112 survives_p
= FLOAT_MARKED_P (XFLOAT (obj
));
6119 return survives_p
|| PURE_POINTER_P ((void *) XPNTR (obj
));
6124 /* Sweep: find all structures not marked, and free them. */
6129 /* Remove or mark entries in weak hash tables.
6130 This must be done before any object is unmarked. */
6131 sweep_weak_hash_tables ();
6134 check_string_bytes (!noninteractive
);
6136 /* Put all unmarked conses on free list */
6138 register struct cons_block
*cblk
;
6139 struct cons_block
**cprev
= &cons_block
;
6140 register int lim
= cons_block_index
;
6141 EMACS_INT num_free
= 0, num_used
= 0;
6145 for (cblk
= cons_block
; cblk
; cblk
= *cprev
)
6149 int ilim
= (lim
+ BITS_PER_INT
- 1) / BITS_PER_INT
;
6151 /* Scan the mark bits an int at a time. */
6152 for (i
= 0; i
< ilim
; i
++)
6154 if (cblk
->gcmarkbits
[i
] == -1)
6156 /* Fast path - all cons cells for this int are marked. */
6157 cblk
->gcmarkbits
[i
] = 0;
6158 num_used
+= BITS_PER_INT
;
6162 /* Some cons cells for this int are not marked.
6163 Find which ones, and free them. */
6164 int start
, pos
, stop
;
6166 start
= i
* BITS_PER_INT
;
6168 if (stop
> BITS_PER_INT
)
6169 stop
= BITS_PER_INT
;
6172 for (pos
= start
; pos
< stop
; pos
++)
6174 if (!CONS_MARKED_P (&cblk
->conses
[pos
]))
6177 cblk
->conses
[pos
].u
.chain
= cons_free_list
;
6178 cons_free_list
= &cblk
->conses
[pos
];
6180 cons_free_list
->car
= Vdead
;
6186 CONS_UNMARK (&cblk
->conses
[pos
]);
6192 lim
= CONS_BLOCK_SIZE
;
6193 /* If this block contains only free conses and we have already
6194 seen more than two blocks worth of free conses then deallocate
6196 if (this_free
== CONS_BLOCK_SIZE
&& num_free
> CONS_BLOCK_SIZE
)
6198 *cprev
= cblk
->next
;
6199 /* Unhook from the free list. */
6200 cons_free_list
= cblk
->conses
[0].u
.chain
;
6201 lisp_align_free (cblk
);
6205 num_free
+= this_free
;
6206 cprev
= &cblk
->next
;
6209 total_conses
= num_used
;
6210 total_free_conses
= num_free
;
6213 /* Put all unmarked floats on free list */
6215 register struct float_block
*fblk
;
6216 struct float_block
**fprev
= &float_block
;
6217 register int lim
= float_block_index
;
6218 EMACS_INT num_free
= 0, num_used
= 0;
6220 float_free_list
= 0;
6222 for (fblk
= float_block
; fblk
; fblk
= *fprev
)
6226 for (i
= 0; i
< lim
; i
++)
6227 if (!FLOAT_MARKED_P (&fblk
->floats
[i
]))
6230 fblk
->floats
[i
].u
.chain
= float_free_list
;
6231 float_free_list
= &fblk
->floats
[i
];
6236 FLOAT_UNMARK (&fblk
->floats
[i
]);
6238 lim
= FLOAT_BLOCK_SIZE
;
6239 /* If this block contains only free floats and we have already
6240 seen more than two blocks worth of free floats then deallocate
6242 if (this_free
== FLOAT_BLOCK_SIZE
&& num_free
> FLOAT_BLOCK_SIZE
)
6244 *fprev
= fblk
->next
;
6245 /* Unhook from the free list. */
6246 float_free_list
= fblk
->floats
[0].u
.chain
;
6247 lisp_align_free (fblk
);
6251 num_free
+= this_free
;
6252 fprev
= &fblk
->next
;
6255 total_floats
= num_used
;
6256 total_free_floats
= num_free
;
6259 /* Put all unmarked intervals on free list */
6261 register struct interval_block
*iblk
;
6262 struct interval_block
**iprev
= &interval_block
;
6263 register int lim
= interval_block_index
;
6264 EMACS_INT num_free
= 0, num_used
= 0;
6266 interval_free_list
= 0;
6268 for (iblk
= interval_block
; iblk
; iblk
= *iprev
)
6273 for (i
= 0; i
< lim
; i
++)
6275 if (!iblk
->intervals
[i
].gcmarkbit
)
6277 set_interval_parent (&iblk
->intervals
[i
], interval_free_list
);
6278 interval_free_list
= &iblk
->intervals
[i
];
6284 iblk
->intervals
[i
].gcmarkbit
= 0;
6287 lim
= INTERVAL_BLOCK_SIZE
;
6288 /* If this block contains only free intervals and we have already
6289 seen more than two blocks worth of free intervals then
6290 deallocate this block. */
6291 if (this_free
== INTERVAL_BLOCK_SIZE
&& num_free
> INTERVAL_BLOCK_SIZE
)
6293 *iprev
= iblk
->next
;
6294 /* Unhook from the free list. */
6295 interval_free_list
= INTERVAL_PARENT (&iblk
->intervals
[0]);
6300 num_free
+= this_free
;
6301 iprev
= &iblk
->next
;
6304 total_intervals
= num_used
;
6305 total_free_intervals
= num_free
;
6308 /* Put all unmarked symbols on free list */
6310 register struct symbol_block
*sblk
;
6311 struct symbol_block
**sprev
= &symbol_block
;
6312 register int lim
= symbol_block_index
;
6313 EMACS_INT num_free
= 0, num_used
= 0;
6315 symbol_free_list
= NULL
;
6317 for (sblk
= symbol_block
; sblk
; sblk
= *sprev
)
6320 union aligned_Lisp_Symbol
*sym
= sblk
->symbols
;
6321 union aligned_Lisp_Symbol
*end
= sym
+ lim
;
6323 for (; sym
< end
; ++sym
)
6325 /* Check if the symbol was created during loadup. In such a case
6326 it might be pointed to by pure bytecode which we don't trace,
6327 so we conservatively assume that it is live. */
6328 bool pure_p
= PURE_POINTER_P (XSTRING (sym
->s
.name
));
6330 if (!sym
->s
.gcmarkbit
&& !pure_p
)
6332 if (sym
->s
.redirect
== SYMBOL_LOCALIZED
)
6333 xfree (SYMBOL_BLV (&sym
->s
));
6334 sym
->s
.next
= symbol_free_list
;
6335 symbol_free_list
= &sym
->s
;
6337 symbol_free_list
->function
= Vdead
;
6345 UNMARK_STRING (XSTRING (sym
->s
.name
));
6346 sym
->s
.gcmarkbit
= 0;
6350 lim
= SYMBOL_BLOCK_SIZE
;
6351 /* If this block contains only free symbols and we have already
6352 seen more than two blocks worth of free symbols then deallocate
6354 if (this_free
== SYMBOL_BLOCK_SIZE
&& num_free
> SYMBOL_BLOCK_SIZE
)
6356 *sprev
= sblk
->next
;
6357 /* Unhook from the free list. */
6358 symbol_free_list
= sblk
->symbols
[0].s
.next
;
6363 num_free
+= this_free
;
6364 sprev
= &sblk
->next
;
6367 total_symbols
= num_used
;
6368 total_free_symbols
= num_free
;
6371 /* Put all unmarked misc's on free list.
6372 For a marker, first unchain it from the buffer it points into. */
6374 register struct marker_block
*mblk
;
6375 struct marker_block
**mprev
= &marker_block
;
6376 register int lim
= marker_block_index
;
6377 EMACS_INT num_free
= 0, num_used
= 0;
6379 marker_free_list
= 0;
6381 for (mblk
= marker_block
; mblk
; mblk
= *mprev
)
6386 for (i
= 0; i
< lim
; i
++)
6388 if (!mblk
->markers
[i
].m
.u_any
.gcmarkbit
)
6390 if (mblk
->markers
[i
].m
.u_any
.type
== Lisp_Misc_Marker
)
6391 unchain_marker (&mblk
->markers
[i
].m
.u_marker
);
6392 /* Set the type of the freed object to Lisp_Misc_Free.
6393 We could leave the type alone, since nobody checks it,
6394 but this might catch bugs faster. */
6395 mblk
->markers
[i
].m
.u_marker
.type
= Lisp_Misc_Free
;
6396 mblk
->markers
[i
].m
.u_free
.chain
= marker_free_list
;
6397 marker_free_list
= &mblk
->markers
[i
].m
;
6403 mblk
->markers
[i
].m
.u_any
.gcmarkbit
= 0;
6406 lim
= MARKER_BLOCK_SIZE
;
6407 /* If this block contains only free markers and we have already
6408 seen more than two blocks worth of free markers then deallocate
6410 if (this_free
== MARKER_BLOCK_SIZE
&& num_free
> MARKER_BLOCK_SIZE
)
6412 *mprev
= mblk
->next
;
6413 /* Unhook from the free list. */
6414 marker_free_list
= mblk
->markers
[0].m
.u_free
.chain
;
6419 num_free
+= this_free
;
6420 mprev
= &mblk
->next
;
6424 total_markers
= num_used
;
6425 total_free_markers
= num_free
;
6428 /* Free all unmarked buffers */
6430 register struct buffer
*buffer
, **bprev
= &all_buffers
;
6433 for (buffer
= all_buffers
; buffer
; buffer
= *bprev
)
6434 if (!VECTOR_MARKED_P (buffer
))
6436 *bprev
= buffer
->next
;
6441 VECTOR_UNMARK (buffer
);
6442 /* Do not use buffer_(set|get)_intervals here. */
6443 buffer
->text
->intervals
= balance_intervals (buffer
->text
->intervals
);
6445 bprev
= &buffer
->next
;
6450 check_string_bytes (!noninteractive
);
6456 /* Debugging aids. */
6458 DEFUN ("memory-limit", Fmemory_limit
, Smemory_limit
, 0, 0, 0,
6459 doc
: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6460 This may be helpful in debugging Emacs's memory usage.
6461 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6466 XSETINT (end
, (intptr_t) (char *) sbrk (0) / 1024);
6471 DEFUN ("memory-use-counts", Fmemory_use_counts
, Smemory_use_counts
, 0, 0, 0,
6472 doc
: /* Return a list of counters that measure how much consing there has been.
6473 Each of these counters increments for a certain kind of object.
6474 The counters wrap around from the largest positive integer to zero.
6475 Garbage collection does not decrease them.
6476 The elements of the value are as follows:
6477 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6478 All are in units of 1 = one object consed
6479 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6481 MISCS include overlays, markers, and some internal types.
6482 Frames, windows, buffers, and subprocesses count as vectors
6483 (but the contents of a buffer's text do not count here). */)
6486 return listn (CONSTYPE_HEAP
, 8,
6487 bounded_number (cons_cells_consed
),
6488 bounded_number (floats_consed
),
6489 bounded_number (vector_cells_consed
),
6490 bounded_number (symbols_consed
),
6491 bounded_number (string_chars_consed
),
6492 bounded_number (misc_objects_consed
),
6493 bounded_number (intervals_consed
),
6494 bounded_number (strings_consed
));
6497 /* Find at most FIND_MAX symbols which have OBJ as their value or
6498 function. This is used in gdbinit's `xwhichsymbols' command. */
6501 which_symbols (Lisp_Object obj
, EMACS_INT find_max
)
6503 struct symbol_block
*sblk
;
6504 ptrdiff_t gc_count
= inhibit_garbage_collection ();
6505 Lisp_Object found
= Qnil
;
6509 for (sblk
= symbol_block
; sblk
; sblk
= sblk
->next
)
6511 union aligned_Lisp_Symbol
*aligned_sym
= sblk
->symbols
;
6514 for (bn
= 0; bn
< SYMBOL_BLOCK_SIZE
; bn
++, aligned_sym
++)
6516 struct Lisp_Symbol
*sym
= &aligned_sym
->s
;
6520 if (sblk
== symbol_block
&& bn
>= symbol_block_index
)
6523 XSETSYMBOL (tem
, sym
);
6524 val
= find_symbol_value (tem
);
6526 || EQ (sym
->function
, obj
)
6527 || (!NILP (sym
->function
)
6528 && COMPILEDP (sym
->function
)
6529 && EQ (AREF (sym
->function
, COMPILED_BYTECODE
), obj
))
6532 && EQ (AREF (val
, COMPILED_BYTECODE
), obj
)))
6534 found
= Fcons (tem
, found
);
6535 if (--find_max
== 0)
6543 unbind_to (gc_count
, Qnil
);
6547 #ifdef ENABLE_CHECKING
6549 bool suppress_checking
;
6552 die (const char *msg
, const char *file
, int line
)
6554 fprintf (stderr
, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6556 terminate_due_to_signal (SIGABRT
, INT_MAX
);
6560 /* Initialization. */
6563 init_alloc_once (void)
6565 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6567 pure_size
= PURESIZE
;
6569 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6571 Vdead
= make_pure_string ("DEAD", 4, 4, 0);
6574 #ifdef DOUG_LEA_MALLOC
6575 mallopt (M_TRIM_THRESHOLD
, 128 * 1024); /* Trim threshold. */
6576 mallopt (M_MMAP_THRESHOLD
, 64 * 1024); /* Mmap threshold. */
6577 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
); /* Max. number of mmap'ed areas. */
6582 refill_memory_reserve ();
6583 gc_cons_threshold
= GC_DEFAULT_THRESHOLD
;
6590 byte_stack_list
= 0;
6592 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6593 setjmp_tested_p
= longjmps_done
= 0;
6596 Vgc_elapsed
= make_float (0.0);
6601 syms_of_alloc (void)
6603 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold
,
6604 doc
: /* Number of bytes of consing between garbage collections.
6605 Garbage collection can happen automatically once this many bytes have been
6606 allocated since the last garbage collection. All data types count.
6608 Garbage collection happens automatically only when `eval' is called.
6610 By binding this temporarily to a large number, you can effectively
6611 prevent garbage collection during a part of the program.
6612 See also `gc-cons-percentage'. */);
6614 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage
,
6615 doc
: /* Portion of the heap used for allocation.
6616 Garbage collection can happen automatically once this portion of the heap
6617 has been allocated since the last garbage collection.
6618 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6619 Vgc_cons_percentage
= make_float (0.1);
6621 DEFVAR_INT ("pure-bytes-used", pure_bytes_used
,
6622 doc
: /* Number of bytes of shareable Lisp data allocated so far. */);
6624 DEFVAR_INT ("cons-cells-consed", cons_cells_consed
,
6625 doc
: /* Number of cons cells that have been consed so far. */);
6627 DEFVAR_INT ("floats-consed", floats_consed
,
6628 doc
: /* Number of floats that have been consed so far. */);
6630 DEFVAR_INT ("vector-cells-consed", vector_cells_consed
,
6631 doc
: /* Number of vector cells that have been consed so far. */);
6633 DEFVAR_INT ("symbols-consed", symbols_consed
,
6634 doc
: /* Number of symbols that have been consed so far. */);
6636 DEFVAR_INT ("string-chars-consed", string_chars_consed
,
6637 doc
: /* Number of string characters that have been consed so far. */);
6639 DEFVAR_INT ("misc-objects-consed", misc_objects_consed
,
6640 doc
: /* Number of miscellaneous objects that have been consed so far.
6641 These include markers and overlays, plus certain objects not visible
6644 DEFVAR_INT ("intervals-consed", intervals_consed
,
6645 doc
: /* Number of intervals that have been consed so far. */);
6647 DEFVAR_INT ("strings-consed", strings_consed
,
6648 doc
: /* Number of strings that have been consed so far. */);
6650 DEFVAR_LISP ("purify-flag", Vpurify_flag
,
6651 doc
: /* Non-nil means loading Lisp code in order to dump an executable.
6652 This means that certain objects should be allocated in shared (pure) space.
6653 It can also be set to a hash-table, in which case this table is used to
6654 do hash-consing of the objects allocated to pure space. */);
6656 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages
,
6657 doc
: /* Non-nil means display messages at start and end of garbage collection. */);
6658 garbage_collection_messages
= 0;
6660 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook
,
6661 doc
: /* Hook run after garbage collection has finished. */);
6662 Vpost_gc_hook
= Qnil
;
6663 DEFSYM (Qpost_gc_hook
, "post-gc-hook");
6665 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data
,
6666 doc
: /* Precomputed `signal' argument for memory-full error. */);
6667 /* We build this in advance because if we wait until we need it, we might
6668 not be able to allocate the memory to hold it. */
6670 = listn (CONSTYPE_PURE
, 2, Qerror
,
6671 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6673 DEFVAR_LISP ("memory-full", Vmemory_full
,
6674 doc
: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6675 Vmemory_full
= Qnil
;
6677 DEFSYM (Qconses
, "conses");
6678 DEFSYM (Qsymbols
, "symbols");
6679 DEFSYM (Qmiscs
, "miscs");
6680 DEFSYM (Qstrings
, "strings");
6681 DEFSYM (Qvectors
, "vectors");
6682 DEFSYM (Qfloats
, "floats");
6683 DEFSYM (Qintervals
, "intervals");
6684 DEFSYM (Qbuffers
, "buffers");
6685 DEFSYM (Qstring_bytes
, "string-bytes");
6686 DEFSYM (Qvector_slots
, "vector-slots");
6687 DEFSYM (Qheap
, "heap");
6688 DEFSYM (Qautomatic_gc
, "Automatic GC");
6690 DEFSYM (Qgc_cons_threshold
, "gc-cons-threshold");
6691 DEFSYM (Qchar_table_extra_slots
, "char-table-extra-slots");
6693 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed
,
6694 doc
: /* Accumulated time elapsed in garbage collections.
6695 The time is in seconds as a floating point value. */);
6696 DEFVAR_INT ("gcs-done", gcs_done
,
6697 doc
: /* Accumulated number of garbage collections done. */);
6702 defsubr (&Smake_byte_code
);
6703 defsubr (&Smake_list
);
6704 defsubr (&Smake_vector
);
6705 defsubr (&Smake_string
);
6706 defsubr (&Smake_bool_vector
);
6707 defsubr (&Smake_symbol
);
6708 defsubr (&Smake_marker
);
6709 defsubr (&Spurecopy
);
6710 defsubr (&Sgarbage_collect
);
6711 defsubr (&Smemory_limit
);
6712 defsubr (&Smemory_use_counts
);
6714 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6715 defsubr (&Sgc_status
);
6719 /* When compiled with GCC, GDB might say "No enum type named
6720 pvec_type" if we don't have at least one symbol with that type, and
6721 then xbacktrace could fail. Similarly for the other enums and
6722 their values. Some non-GCC compilers don't like these constructs. */
6726 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS
;
6727 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS
;
6728 enum char_bits char_bits
;
6729 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE
;
6730 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE
;
6731 enum enum_USE_LSB_TAG enum_USE_LSB_TAG
;
6732 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE
;
6733 enum Lisp_Bits Lisp_Bits
;
6734 enum Lisp_Compiled Lisp_Compiled
;
6735 enum maxargs maxargs
;
6736 enum MAX_ALLOCA MAX_ALLOCA
;
6737 enum More_Lisp_Bits More_Lisp_Bits
;
6738 enum pvec_type pvec_type
;
6740 enum lsb_bits lsb_bits
;
6742 } const EXTERNALLY_VISIBLE gdb_make_enums_visible
= {0};
6743 #endif /* __GNUC__ */