(ewoc-location): New function.
[emacs.git] / src / alloc.c
blob85b9d42f1a30ff6e0353c60a66c08e27d5085732
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 86, 88, 93, 94, 95, 97, 98, 1999, 2000
3 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #include <config.h>
23 #include <stdio.h>
25 /* Note that this declares bzero on OSF/1. How dumb. */
27 #include <signal.h>
29 /* Define this temporarily to hunt a bug. If defined, the size of
30 strings is always recorded in sdata structures so that it can be
31 compared to the sizes recorded in Lisp strings. */
33 #define GC_CHECK_STRING_BYTES 1
35 /* This file is part of the core Lisp implementation, and thus must
36 deal with the real data structures. If the Lisp implementation is
37 replaced, this file likely will not be used. */
39 #undef HIDE_LISP_IMPLEMENTATION
40 #include "lisp.h"
41 #include "intervals.h"
42 #include "puresize.h"
43 #include "buffer.h"
44 #include "window.h"
45 #include "keyboard.h"
46 #include "frame.h"
47 #include "blockinput.h"
48 #include "charset.h"
49 #include "syssignal.h"
50 #include <setjmp.h>
52 #ifdef HAVE_UNISTD_H
53 #include <unistd.h>
54 #else
55 extern POINTER_TYPE *sbrk ();
56 #endif
58 #ifdef DOUG_LEA_MALLOC
60 #include <malloc.h>
61 /* malloc.h #defines this as size_t, at least in glibc2. */
62 #ifndef __malloc_size_t
63 #define __malloc_size_t int
64 #endif
66 /* Specify maximum number of areas to mmap. It would be nice to use a
67 value that explicitly means "no limit". */
69 #define MMAP_MAX_AREAS 100000000
71 #else /* not DOUG_LEA_MALLOC */
73 /* The following come from gmalloc.c. */
75 #define __malloc_size_t size_t
76 extern __malloc_size_t _bytes_used;
77 extern __malloc_size_t __malloc_extra_blocks;
79 #endif /* not DOUG_LEA_MALLOC */
81 #define max(A,B) ((A) > (B) ? (A) : (B))
82 #define min(A,B) ((A) < (B) ? (A) : (B))
84 /* Macro to verify that storage intended for Lisp objects is not
85 out of range to fit in the space for a pointer.
86 ADDRESS is the start of the block, and SIZE
87 is the amount of space within which objects can start. */
89 #define VALIDATE_LISP_STORAGE(address, size) \
90 do \
91 { \
92 Lisp_Object val; \
93 XSETCONS (val, (char *) address + size); \
94 if ((char *) XCONS (val) != (char *) address + size) \
95 { \
96 xfree (address); \
97 memory_full (); \
98 } \
99 } while (0)
101 /* Value of _bytes_used, when spare_memory was freed. */
103 static __malloc_size_t bytes_used_when_full;
105 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
106 to a struct Lisp_String. */
108 #define MARK_STRING(S) ((S)->size |= MARKBIT)
109 #define UNMARK_STRING(S) ((S)->size &= ~MARKBIT)
110 #define STRING_MARKED_P(S) ((S)->size & MARKBIT)
112 /* Value is the number of bytes/chars of S, a pointer to a struct
113 Lisp_String. This must be used instead of STRING_BYTES (S) or
114 S->size during GC, because S->size contains the mark bit for
115 strings. */
117 #define GC_STRING_BYTES(S) (STRING_BYTES (S) & ~MARKBIT)
118 #define GC_STRING_CHARS(S) ((S)->size & ~MARKBIT)
120 /* Number of bytes of consing done since the last gc. */
122 int consing_since_gc;
124 /* Count the amount of consing of various sorts of space. */
126 int cons_cells_consed;
127 int floats_consed;
128 int vector_cells_consed;
129 int symbols_consed;
130 int string_chars_consed;
131 int misc_objects_consed;
132 int intervals_consed;
133 int strings_consed;
135 /* Number of bytes of consing since GC before another GC should be done. */
137 int gc_cons_threshold;
139 /* Nonzero during GC. */
141 int gc_in_progress;
143 /* Nonzero means display messages at beginning and end of GC. */
145 int garbage_collection_messages;
147 #ifndef VIRT_ADDR_VARIES
148 extern
149 #endif /* VIRT_ADDR_VARIES */
150 int malloc_sbrk_used;
152 #ifndef VIRT_ADDR_VARIES
153 extern
154 #endif /* VIRT_ADDR_VARIES */
155 int malloc_sbrk_unused;
157 /* Two limits controlling how much undo information to keep. */
159 int undo_limit;
160 int undo_strong_limit;
162 /* Number of live and free conses etc. */
164 static int total_conses, total_markers, total_symbols, total_vector_size;
165 static int total_free_conses, total_free_markers, total_free_symbols;
166 static int total_free_floats, total_floats;
168 /* Points to memory space allocated as "spare", to be freed if we run
169 out of memory. */
171 static char *spare_memory;
173 /* Amount of spare memory to keep in reserve. */
175 #define SPARE_MEMORY (1 << 14)
177 /* Number of extra blocks malloc should get when it needs more core. */
179 static int malloc_hysteresis;
181 /* Non-nil means defun should do purecopy on the function definition. */
183 Lisp_Object Vpurify_flag;
185 #ifndef HAVE_SHM
187 /* Force it into data space! */
189 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {0,};
190 #define PUREBEG (char *) pure
192 #else /* not HAVE_SHM */
194 #define pure PURE_SEG_BITS /* Use shared memory segment */
195 #define PUREBEG (char *)PURE_SEG_BITS
197 /* This variable is used only by the XPNTR macro when HAVE_SHM is
198 defined. If we used the PURESIZE macro directly there, that would
199 make most of Emacs dependent on puresize.h, which we don't want -
200 you should be able to change that without too much recompilation.
201 So map_in_data initializes pure_size, and the dependencies work
202 out. */
204 EMACS_INT pure_size;
206 #endif /* not HAVE_SHM */
208 /* Value is non-zero if P points into pure space. */
210 #define PURE_POINTER_P(P) \
211 (((PNTR_COMPARISON_TYPE) (P) \
212 < (PNTR_COMPARISON_TYPE) ((char *) pure + PURESIZE)) \
213 && ((PNTR_COMPARISON_TYPE) (P) \
214 >= (PNTR_COMPARISON_TYPE) pure))
216 /* Index in pure at which next pure object will be allocated.. */
218 int pureptr;
220 /* If nonzero, this is a warning delivered by malloc and not yet
221 displayed. */
223 char *pending_malloc_warning;
225 /* Pre-computed signal argument for use when memory is exhausted. */
227 Lisp_Object memory_signal_data;
229 /* Maximum amount of C stack to save when a GC happens. */
231 #ifndef MAX_SAVE_STACK
232 #define MAX_SAVE_STACK 16000
233 #endif
235 /* Buffer in which we save a copy of the C stack at each GC. */
237 char *stack_copy;
238 int stack_copy_size;
240 /* Non-zero means ignore malloc warnings. Set during initialization.
241 Currently not used. */
243 int ignore_warnings;
245 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
247 static void mark_buffer P_ ((Lisp_Object));
248 static void mark_kboards P_ ((void));
249 static void gc_sweep P_ ((void));
250 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
251 static void mark_face_cache P_ ((struct face_cache *));
253 #ifdef HAVE_WINDOW_SYSTEM
254 static void mark_image P_ ((struct image *));
255 static void mark_image_cache P_ ((struct frame *));
256 #endif /* HAVE_WINDOW_SYSTEM */
258 static struct Lisp_String *allocate_string P_ ((void));
259 static void compact_small_strings P_ ((void));
260 static void free_large_strings P_ ((void));
261 static void sweep_strings P_ ((void));
263 extern int message_enable_multibyte;
265 /* When scanning the C stack for live Lisp objects, Emacs keeps track
266 of what memory allocated via lisp_malloc is intended for what
267 purpose. This enumeration specifies the type of memory. */
269 enum mem_type
271 MEM_TYPE_NON_LISP,
272 MEM_TYPE_BUFFER,
273 MEM_TYPE_CONS,
274 MEM_TYPE_STRING,
275 MEM_TYPE_MISC,
276 MEM_TYPE_SYMBOL,
277 MEM_TYPE_FLOAT,
278 MEM_TYPE_VECTOR
281 #if GC_MARK_STACK
283 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
284 #include <stdio.h> /* For fprintf. */
285 #endif
287 /* A unique object in pure space used to make some Lisp objects
288 on free lists recognizable in O(1). */
290 Lisp_Object Vdead;
292 struct mem_node;
293 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
294 static void lisp_free P_ ((POINTER_TYPE *));
295 static void mark_stack P_ ((void));
296 static void init_stack P_ ((Lisp_Object *));
297 static int live_vector_p P_ ((struct mem_node *, void *));
298 static int live_buffer_p P_ ((struct mem_node *, void *));
299 static int live_string_p P_ ((struct mem_node *, void *));
300 static int live_cons_p P_ ((struct mem_node *, void *));
301 static int live_symbol_p P_ ((struct mem_node *, void *));
302 static int live_float_p P_ ((struct mem_node *, void *));
303 static int live_misc_p P_ ((struct mem_node *, void *));
304 static void mark_maybe_object P_ ((Lisp_Object));
305 static void mark_memory P_ ((void *, void *));
306 static void mem_init P_ ((void));
307 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
308 static void mem_insert_fixup P_ ((struct mem_node *));
309 static void mem_rotate_left P_ ((struct mem_node *));
310 static void mem_rotate_right P_ ((struct mem_node *));
311 static void mem_delete P_ ((struct mem_node *));
312 static void mem_delete_fixup P_ ((struct mem_node *));
313 static INLINE struct mem_node *mem_find P_ ((void *));
315 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
316 static void check_gcpros P_ ((void));
317 #endif
319 #endif /* GC_MARK_STACK != 0 */
322 /************************************************************************
323 Malloc
324 ************************************************************************/
326 /* Write STR to Vstandard_output plus some advice on how to free some
327 memory. Called when memory gets low. */
329 Lisp_Object
330 malloc_warning_1 (str)
331 Lisp_Object str;
333 Fprinc (str, Vstandard_output);
334 write_string ("\nKilling some buffers may delay running out of memory.\n", -1);
335 write_string ("However, certainly by the time you receive the 95% warning,\n", -1);
336 write_string ("you should clean up, kill this Emacs, and start a new one.", -1);
337 return Qnil;
341 /* Function malloc calls this if it finds we are near exhausting
342 storage. */
344 void
345 malloc_warning (str)
346 char *str;
348 pending_malloc_warning = str;
352 /* Display a malloc warning in buffer *Danger*. */
354 void
355 display_malloc_warning ()
357 register Lisp_Object val;
359 val = build_string (pending_malloc_warning);
360 pending_malloc_warning = 0;
361 internal_with_output_to_temp_buffer (" *Danger*", malloc_warning_1, val);
365 #ifdef DOUG_LEA_MALLOC
366 # define BYTES_USED (mallinfo ().arena)
367 #else
368 # define BYTES_USED _bytes_used
369 #endif
372 /* Called if malloc returns zero. */
374 void
375 memory_full ()
377 #ifndef SYSTEM_MALLOC
378 bytes_used_when_full = BYTES_USED;
379 #endif
381 /* The first time we get here, free the spare memory. */
382 if (spare_memory)
384 free (spare_memory);
385 spare_memory = 0;
388 /* This used to call error, but if we've run out of memory, we could
389 get infinite recursion trying to build the string. */
390 while (1)
391 Fsignal (Qnil, memory_signal_data);
395 /* Called if we can't allocate relocatable space for a buffer. */
397 void
398 buffer_memory_full ()
400 /* If buffers use the relocating allocator, no need to free
401 spare_memory, because we may have plenty of malloc space left
402 that we could get, and if we don't, the malloc that fails will
403 itself cause spare_memory to be freed. If buffers don't use the
404 relocating allocator, treat this like any other failing
405 malloc. */
407 #ifndef REL_ALLOC
408 memory_full ();
409 #endif
411 /* This used to call error, but if we've run out of memory, we could
412 get infinite recursion trying to build the string. */
413 while (1)
414 Fsignal (Qerror, memory_signal_data);
418 /* Like malloc but check for no memory and block interrupt input.. */
420 POINTER_TYPE *
421 xmalloc (size)
422 size_t size;
424 register POINTER_TYPE *val;
426 BLOCK_INPUT;
427 val = (POINTER_TYPE *) malloc (size);
428 UNBLOCK_INPUT;
430 if (!val && size)
431 memory_full ();
432 return val;
436 /* Like realloc but check for no memory and block interrupt input.. */
438 POINTER_TYPE *
439 xrealloc (block, size)
440 POINTER_TYPE *block;
441 size_t size;
443 register POINTER_TYPE *val;
445 BLOCK_INPUT;
446 /* We must call malloc explicitly when BLOCK is 0, since some
447 reallocs don't do this. */
448 if (! block)
449 val = (POINTER_TYPE *) malloc (size);
450 else
451 val = (POINTER_TYPE *) realloc (block, size);
452 UNBLOCK_INPUT;
454 if (!val && size) memory_full ();
455 return val;
459 /* Like free but block interrupt input.. */
461 void
462 xfree (block)
463 POINTER_TYPE *block;
465 BLOCK_INPUT;
466 free (block);
467 UNBLOCK_INPUT;
471 /* Like strdup, but uses xmalloc. */
473 char *
474 xstrdup (s)
475 char *s;
477 size_t len = strlen (s) + 1;
478 char *p = (char *) xmalloc (len);
479 bcopy (s, p, len);
480 return p;
484 /* Like malloc but used for allocating Lisp data. NBYTES is the
485 number of bytes to allocate, TYPE describes the intended use of the
486 allcated memory block (for strings, for conses, ...). */
488 static POINTER_TYPE *
489 lisp_malloc (nbytes, type)
490 size_t nbytes;
491 enum mem_type type;
493 register void *val;
495 BLOCK_INPUT;
496 val = (void *) malloc (nbytes);
498 #if GC_MARK_STACK
499 if (val && type != MEM_TYPE_NON_LISP)
500 mem_insert (val, (char *) val + nbytes, type);
501 #endif
503 UNBLOCK_INPUT;
504 if (!val && nbytes)
505 memory_full ();
506 return val;
510 /* Return a new buffer structure allocated from the heap with
511 a call to lisp_malloc. */
513 struct buffer *
514 allocate_buffer ()
516 return (struct buffer *) lisp_malloc (sizeof (struct buffer),
517 MEM_TYPE_BUFFER);
521 /* Free BLOCK. This must be called to free memory allocated with a
522 call to lisp_malloc. */
524 static void
525 lisp_free (block)
526 POINTER_TYPE *block;
528 BLOCK_INPUT;
529 free (block);
530 #if GC_MARK_STACK
531 mem_delete (mem_find (block));
532 #endif
533 UNBLOCK_INPUT;
537 /* Arranging to disable input signals while we're in malloc.
539 This only works with GNU malloc. To help out systems which can't
540 use GNU malloc, all the calls to malloc, realloc, and free
541 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
542 pairs; unfortunately, we have no idea what C library functions
543 might call malloc, so we can't really protect them unless you're
544 using GNU malloc. Fortunately, most of the major operating can use
545 GNU malloc. */
547 #ifndef SYSTEM_MALLOC
548 #ifndef DOUG_LEA_MALLOC
549 extern void * (*__malloc_hook) P_ ((size_t));
550 extern void * (*__realloc_hook) P_ ((void *, size_t));
551 extern void (*__free_hook) P_ ((void *));
552 /* Else declared in malloc.h, perhaps with an extra arg. */
553 #endif /* DOUG_LEA_MALLOC */
554 static void * (*old_malloc_hook) ();
555 static void * (*old_realloc_hook) ();
556 static void (*old_free_hook) ();
558 /* This function is used as the hook for free to call. */
560 static void
561 emacs_blocked_free (ptr)
562 void *ptr;
564 BLOCK_INPUT;
565 __free_hook = old_free_hook;
566 free (ptr);
567 /* If we released our reserve (due to running out of memory),
568 and we have a fair amount free once again,
569 try to set aside another reserve in case we run out once more. */
570 if (spare_memory == 0
571 /* Verify there is enough space that even with the malloc
572 hysteresis this call won't run out again.
573 The code here is correct as long as SPARE_MEMORY
574 is substantially larger than the block size malloc uses. */
575 && (bytes_used_when_full
576 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
577 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
579 __free_hook = emacs_blocked_free;
580 UNBLOCK_INPUT;
584 /* If we released our reserve (due to running out of memory),
585 and we have a fair amount free once again,
586 try to set aside another reserve in case we run out once more.
588 This is called when a relocatable block is freed in ralloc.c. */
590 void
591 refill_memory_reserve ()
593 if (spare_memory == 0)
594 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
598 /* This function is the malloc hook that Emacs uses. */
600 static void *
601 emacs_blocked_malloc (size)
602 size_t size;
604 void *value;
606 BLOCK_INPUT;
607 __malloc_hook = old_malloc_hook;
608 #ifdef DOUG_LEA_MALLOC
609 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
610 #else
611 __malloc_extra_blocks = malloc_hysteresis;
612 #endif
613 value = (void *) malloc (size);
614 __malloc_hook = emacs_blocked_malloc;
615 UNBLOCK_INPUT;
617 return value;
621 /* This function is the realloc hook that Emacs uses. */
623 static void *
624 emacs_blocked_realloc (ptr, size)
625 void *ptr;
626 size_t size;
628 void *value;
630 BLOCK_INPUT;
631 __realloc_hook = old_realloc_hook;
632 value = (void *) realloc (ptr, size);
633 __realloc_hook = emacs_blocked_realloc;
634 UNBLOCK_INPUT;
636 return value;
640 /* Called from main to set up malloc to use our hooks. */
642 void
643 uninterrupt_malloc ()
645 if (__free_hook != emacs_blocked_free)
646 old_free_hook = __free_hook;
647 __free_hook = emacs_blocked_free;
649 if (__malloc_hook != emacs_blocked_malloc)
650 old_malloc_hook = __malloc_hook;
651 __malloc_hook = emacs_blocked_malloc;
653 if (__realloc_hook != emacs_blocked_realloc)
654 old_realloc_hook = __realloc_hook;
655 __realloc_hook = emacs_blocked_realloc;
658 #endif /* not SYSTEM_MALLOC */
662 /***********************************************************************
663 Interval Allocation
664 ***********************************************************************/
666 /* Number of intervals allocated in an interval_block structure.
667 The 1020 is 1024 minus malloc overhead. */
669 #define INTERVAL_BLOCK_SIZE \
670 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
672 /* Intervals are allocated in chunks in form of an interval_block
673 structure. */
675 struct interval_block
677 struct interval_block *next;
678 struct interval intervals[INTERVAL_BLOCK_SIZE];
681 /* Current interval block. Its `next' pointer points to older
682 blocks. */
684 struct interval_block *interval_block;
686 /* Index in interval_block above of the next unused interval
687 structure. */
689 static int interval_block_index;
691 /* Number of free and live intervals. */
693 static int total_free_intervals, total_intervals;
695 /* List of free intervals. */
697 INTERVAL interval_free_list;
699 /* Total number of interval blocks now in use. */
701 int n_interval_blocks;
704 /* Initialize interval allocation. */
706 static void
707 init_intervals ()
709 interval_block
710 = (struct interval_block *) lisp_malloc (sizeof *interval_block,
711 MEM_TYPE_NON_LISP);
712 interval_block->next = 0;
713 bzero ((char *) interval_block->intervals, sizeof interval_block->intervals);
714 interval_block_index = 0;
715 interval_free_list = 0;
716 n_interval_blocks = 1;
720 /* Return a new interval. */
722 INTERVAL
723 make_interval ()
725 INTERVAL val;
727 if (interval_free_list)
729 val = interval_free_list;
730 interval_free_list = INTERVAL_PARENT (interval_free_list);
732 else
734 if (interval_block_index == INTERVAL_BLOCK_SIZE)
736 register struct interval_block *newi;
738 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
739 MEM_TYPE_NON_LISP);
741 VALIDATE_LISP_STORAGE (newi, sizeof *newi);
742 newi->next = interval_block;
743 interval_block = newi;
744 interval_block_index = 0;
745 n_interval_blocks++;
747 val = &interval_block->intervals[interval_block_index++];
749 consing_since_gc += sizeof (struct interval);
750 intervals_consed++;
751 RESET_INTERVAL (val);
752 return val;
756 /* Mark Lisp objects in interval I. */
758 static void
759 mark_interval (i, dummy)
760 register INTERVAL i;
761 Lisp_Object dummy;
763 if (XMARKBIT (i->plist))
764 abort ();
765 mark_object (&i->plist);
766 XMARK (i->plist);
770 /* Mark the interval tree rooted in TREE. Don't call this directly;
771 use the macro MARK_INTERVAL_TREE instead. */
773 static void
774 mark_interval_tree (tree)
775 register INTERVAL tree;
777 /* No need to test if this tree has been marked already; this
778 function is always called through the MARK_INTERVAL_TREE macro,
779 which takes care of that. */
781 /* XMARK expands to an assignment; the LHS of an assignment can't be
782 a cast. */
783 XMARK (tree->up.obj);
785 traverse_intervals (tree, 1, 0, mark_interval, Qnil);
789 /* Mark the interval tree rooted in I. */
791 #define MARK_INTERVAL_TREE(i) \
792 do { \
793 if (!NULL_INTERVAL_P (i) \
794 && ! XMARKBIT (i->up.obj)) \
795 mark_interval_tree (i); \
796 } while (0)
799 /* The oddity in the call to XUNMARK is necessary because XUNMARK
800 expands to an assignment to its argument, and most C compilers
801 don't support casts on the left operand of `='. */
803 #define UNMARK_BALANCE_INTERVALS(i) \
804 do { \
805 if (! NULL_INTERVAL_P (i)) \
807 XUNMARK ((i)->up.obj); \
808 (i) = balance_intervals (i); \
810 } while (0)
813 /* Number support. If NO_UNION_TYPE isn't in effect, we
814 can't create number objects in macros. */
815 #ifndef make_number
816 Lisp_Object
817 make_number (n)
818 int n;
820 Lisp_Object obj;
821 obj.s.val = n;
822 obj.s.type = Lisp_Int;
823 return obj;
825 #endif
827 /***********************************************************************
828 String Allocation
829 ***********************************************************************/
831 /* Lisp_Strings are allocated in string_block structures. When a new
832 string_block is allocated, all the Lisp_Strings it contains are
833 added to a free-list stiing_free_list. When a new Lisp_String is
834 needed, it is taken from that list. During the sweep phase of GC,
835 string_blocks that are entirely free are freed, except two which
836 we keep.
838 String data is allocated from sblock structures. Strings larger
839 than LARGE_STRING_BYTES, get their own sblock, data for smaller
840 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
842 Sblocks consist internally of sdata structures, one for each
843 Lisp_String. The sdata structure points to the Lisp_String it
844 belongs to. The Lisp_String points back to the `u.data' member of
845 its sdata structure.
847 When a Lisp_String is freed during GC, it is put back on
848 string_free_list, and its `data' member and its sdata's `string'
849 pointer is set to null. The size of the string is recorded in the
850 `u.nbytes' member of the sdata. So, sdata structures that are no
851 longer used, can be easily recognized, and it's easy to compact the
852 sblocks of small strings which we do in compact_small_strings. */
854 /* Size in bytes of an sblock structure used for small strings. This
855 is 8192 minus malloc overhead. */
857 #define SBLOCK_SIZE 8188
859 /* Strings larger than this are considered large strings. String data
860 for large strings is allocated from individual sblocks. */
862 #define LARGE_STRING_BYTES 1024
864 /* Structure describing string memory sub-allocated from an sblock.
865 This is where the contents of Lisp strings are stored. */
867 struct sdata
869 /* Back-pointer to the string this sdata belongs to. If null, this
870 structure is free, and the NBYTES member of the union below
871 contains the string's byte size (the same value that STRING_BYTES
872 would return if STRING were non-null). If non-null, STRING_BYTES
873 (STRING) is the size of the data, and DATA contains the string's
874 contents. */
875 struct Lisp_String *string;
877 #ifdef GC_CHECK_STRING_BYTES
879 EMACS_INT nbytes;
880 unsigned char data[1];
882 #define SDATA_NBYTES(S) (S)->nbytes
883 #define SDATA_DATA(S) (S)->data
885 #else /* not GC_CHECK_STRING_BYTES */
887 union
889 /* When STRING in non-null. */
890 unsigned char data[1];
892 /* When STRING is null. */
893 EMACS_INT nbytes;
894 } u;
897 #define SDATA_NBYTES(S) (S)->u.nbytes
898 #define SDATA_DATA(S) (S)->u.data
900 #endif /* not GC_CHECK_STRING_BYTES */
904 /* Structure describing a block of memory which is sub-allocated to
905 obtain string data memory for strings. Blocks for small strings
906 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
907 as large as needed. */
909 struct sblock
911 /* Next in list. */
912 struct sblock *next;
914 /* Pointer to the next free sdata block. This points past the end
915 of the sblock if there isn't any space left in this block. */
916 struct sdata *next_free;
918 /* Start of data. */
919 struct sdata first_data;
922 /* Number of Lisp strings in a string_block structure. The 1020 is
923 1024 minus malloc overhead. */
925 #define STRINGS_IN_STRING_BLOCK \
926 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
928 /* Structure describing a block from which Lisp_String structures
929 are allocated. */
931 struct string_block
933 struct string_block *next;
934 struct Lisp_String strings[STRINGS_IN_STRING_BLOCK];
937 /* Head and tail of the list of sblock structures holding Lisp string
938 data. We always allocate from current_sblock. The NEXT pointers
939 in the sblock structures go from oldest_sblock to current_sblock. */
941 static struct sblock *oldest_sblock, *current_sblock;
943 /* List of sblocks for large strings. */
945 static struct sblock *large_sblocks;
947 /* List of string_block structures, and how many there are. */
949 static struct string_block *string_blocks;
950 static int n_string_blocks;
952 /* Free-list of Lisp_Strings. */
954 static struct Lisp_String *string_free_list;
956 /* Number of live and free Lisp_Strings. */
958 static int total_strings, total_free_strings;
960 /* Number of bytes used by live strings. */
962 static int total_string_size;
964 /* Given a pointer to a Lisp_String S which is on the free-list
965 string_free_list, return a pointer to its successor in the
966 free-list. */
968 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
970 /* Return a pointer to the sdata structure belonging to Lisp string S.
971 S must be live, i.e. S->data must not be null. S->data is actually
972 a pointer to the `u.data' member of its sdata structure; the
973 structure starts at a constant offset in front of that. */
975 #ifdef GC_CHECK_STRING_BYTES
977 #define SDATA_OF_STRING(S) \
978 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
979 - sizeof (EMACS_INT)))
981 #else /* not GC_CHECK_STRING_BYTES */
983 #define SDATA_OF_STRING(S) \
984 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
986 #endif /* not GC_CHECK_STRING_BYTES */
988 /* Value is the size of an sdata structure large enough to hold NBYTES
989 bytes of string data. The value returned includes a terminating
990 NUL byte, the size of the sdata structure, and padding. */
992 #ifdef GC_CHECK_STRING_BYTES
994 #define SDATA_SIZE(NBYTES) \
995 ((sizeof (struct Lisp_String *) \
996 + (NBYTES) + 1 \
997 + sizeof (EMACS_INT) \
998 + sizeof (EMACS_INT) - 1) \
999 & ~(sizeof (EMACS_INT) - 1))
1001 #else /* not GC_CHECK_STRING_BYTES */
1003 #define SDATA_SIZE(NBYTES) \
1004 ((sizeof (struct Lisp_String *) \
1005 + (NBYTES) + 1 \
1006 + sizeof (EMACS_INT) - 1) \
1007 & ~(sizeof (EMACS_INT) - 1))
1009 #endif /* not GC_CHECK_STRING_BYTES */
1011 /* Initialize string allocation. Called from init_alloc_once. */
1013 void
1014 init_strings ()
1016 total_strings = total_free_strings = total_string_size = 0;
1017 oldest_sblock = current_sblock = large_sblocks = NULL;
1018 string_blocks = NULL;
1019 n_string_blocks = 0;
1020 string_free_list = NULL;
1024 /* Return a new Lisp_String. */
1026 static struct Lisp_String *
1027 allocate_string ()
1029 struct Lisp_String *s;
1031 /* If the free-list is empty, allocate a new string_block, and
1032 add all the Lisp_Strings in it to the free-list. */
1033 if (string_free_list == NULL)
1035 struct string_block *b;
1036 int i;
1038 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1039 VALIDATE_LISP_STORAGE (b, sizeof *b);
1040 bzero (b, sizeof *b);
1041 b->next = string_blocks;
1042 string_blocks = b;
1043 ++n_string_blocks;
1045 for (i = STRINGS_IN_STRING_BLOCK - 1; i >= 0; --i)
1047 s = b->strings + i;
1048 NEXT_FREE_LISP_STRING (s) = string_free_list;
1049 string_free_list = s;
1052 total_free_strings += STRINGS_IN_STRING_BLOCK;
1055 /* Pop a Lisp_String off the free-list. */
1056 s = string_free_list;
1057 string_free_list = NEXT_FREE_LISP_STRING (s);
1059 /* Probably not strictly necessary, but play it safe. */
1060 bzero (s, sizeof *s);
1062 --total_free_strings;
1063 ++total_strings;
1064 ++strings_consed;
1065 consing_since_gc += sizeof *s;
1067 return s;
1071 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1072 plus a NUL byte at the end. Allocate an sdata structure for S, and
1073 set S->data to its `u.data' member. Store a NUL byte at the end of
1074 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1075 S->data if it was initially non-null. */
1077 void
1078 allocate_string_data (s, nchars, nbytes)
1079 struct Lisp_String *s;
1080 int nchars, nbytes;
1082 struct sdata *data, *old_data;
1083 struct sblock *b;
1084 int needed, old_nbytes;
1086 /* Determine the number of bytes needed to store NBYTES bytes
1087 of string data. */
1088 needed = SDATA_SIZE (nbytes);
1090 if (nbytes > LARGE_STRING_BYTES)
1092 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1094 #ifdef DOUG_LEA_MALLOC
1095 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1096 because mapped region contents are not preserved in
1097 a dumped Emacs. */
1098 mallopt (M_MMAP_MAX, 0);
1099 #endif
1101 b = (struct sblock *) lisp_malloc (size, MEM_TYPE_NON_LISP);
1103 #ifdef DOUG_LEA_MALLOC
1104 /* Back to a reasonable maximum of mmap'ed areas. */
1105 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1106 #endif
1108 b->next_free = &b->first_data;
1109 b->first_data.string = NULL;
1110 b->next = large_sblocks;
1111 large_sblocks = b;
1113 else if (current_sblock == NULL
1114 || (((char *) current_sblock + SBLOCK_SIZE
1115 - (char *) current_sblock->next_free)
1116 < needed))
1118 /* Not enough room in the current sblock. */
1119 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1120 b->next_free = &b->first_data;
1121 b->first_data.string = NULL;
1122 b->next = NULL;
1124 if (current_sblock)
1125 current_sblock->next = b;
1126 else
1127 oldest_sblock = b;
1128 current_sblock = b;
1130 else
1131 b = current_sblock;
1133 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1134 old_nbytes = GC_STRING_BYTES (s);
1136 data = b->next_free;
1137 data->string = s;
1138 s->data = SDATA_DATA (data);
1139 #ifdef GC_CHECK_STRING_BYTES
1140 SDATA_NBYTES (data) = nbytes;
1141 #endif
1142 s->size = nchars;
1143 s->size_byte = nbytes;
1144 s->data[nbytes] = '\0';
1145 b->next_free = (struct sdata *) ((char *) data + needed);
1147 /* If S had already data assigned, mark that as free by setting its
1148 string back-pointer to null, and recording the size of the data
1149 in it. */
1150 if (old_data)
1152 SDATA_NBYTES (old_data) = old_nbytes;
1153 old_data->string = NULL;
1156 consing_since_gc += needed;
1160 /* Sweep and compact strings. */
1162 static void
1163 sweep_strings ()
1165 struct string_block *b, *next;
1166 struct string_block *live_blocks = NULL;
1168 string_free_list = NULL;
1169 total_strings = total_free_strings = 0;
1170 total_string_size = 0;
1172 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1173 for (b = string_blocks; b; b = next)
1175 int i, nfree = 0;
1176 struct Lisp_String *free_list_before = string_free_list;
1178 next = b->next;
1180 for (i = 0; i < STRINGS_IN_STRING_BLOCK; ++i)
1182 struct Lisp_String *s = b->strings + i;
1184 if (s->data)
1186 /* String was not on free-list before. */
1187 if (STRING_MARKED_P (s))
1189 /* String is live; unmark it and its intervals. */
1190 UNMARK_STRING (s);
1192 if (!NULL_INTERVAL_P (s->intervals))
1193 UNMARK_BALANCE_INTERVALS (s->intervals);
1195 ++total_strings;
1196 total_string_size += STRING_BYTES (s);
1198 else
1200 /* String is dead. Put it on the free-list. */
1201 struct sdata *data = SDATA_OF_STRING (s);
1203 /* Save the size of S in its sdata so that we know
1204 how large that is. Reset the sdata's string
1205 back-pointer so that we know it's free. */
1206 #ifdef GC_CHECK_STRING_BYTES
1207 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
1208 abort ();
1209 #else
1210 data->u.nbytes = GC_STRING_BYTES (s);
1211 #endif
1212 data->string = NULL;
1214 /* Reset the strings's `data' member so that we
1215 know it's free. */
1216 s->data = NULL;
1218 /* Put the string on the free-list. */
1219 NEXT_FREE_LISP_STRING (s) = string_free_list;
1220 string_free_list = s;
1221 ++nfree;
1224 else
1226 /* S was on the free-list before. Put it there again. */
1227 NEXT_FREE_LISP_STRING (s) = string_free_list;
1228 string_free_list = s;
1229 ++nfree;
1233 /* Free blocks that contain free Lisp_Strings only, except
1234 the first two of them. */
1235 if (nfree == STRINGS_IN_STRING_BLOCK
1236 && total_free_strings > STRINGS_IN_STRING_BLOCK)
1238 lisp_free (b);
1239 --n_string_blocks;
1240 string_free_list = free_list_before;
1242 else
1244 total_free_strings += nfree;
1245 b->next = live_blocks;
1246 live_blocks = b;
1250 string_blocks = live_blocks;
1251 free_large_strings ();
1252 compact_small_strings ();
1256 /* Free dead large strings. */
1258 static void
1259 free_large_strings ()
1261 struct sblock *b, *next;
1262 struct sblock *live_blocks = NULL;
1264 for (b = large_sblocks; b; b = next)
1266 next = b->next;
1268 if (b->first_data.string == NULL)
1269 lisp_free (b);
1270 else
1272 b->next = live_blocks;
1273 live_blocks = b;
1277 large_sblocks = live_blocks;
1281 /* Compact data of small strings. Free sblocks that don't contain
1282 data of live strings after compaction. */
1284 static void
1285 compact_small_strings ()
1287 struct sblock *b, *tb, *next;
1288 struct sdata *from, *to, *end, *tb_end;
1289 struct sdata *to_end, *from_end;
1291 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1292 to, and TB_END is the end of TB. */
1293 tb = oldest_sblock;
1294 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1295 to = &tb->first_data;
1297 /* Step through the blocks from the oldest to the youngest. We
1298 expect that old blocks will stabilize over time, so that less
1299 copying will happen this way. */
1300 for (b = oldest_sblock; b; b = b->next)
1302 end = b->next_free;
1303 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1305 for (from = &b->first_data; from < end; from = from_end)
1307 /* Compute the next FROM here because copying below may
1308 overwrite data we need to compute it. */
1309 int nbytes;
1311 #ifdef GC_CHECK_STRING_BYTES
1312 /* Check that the string size recorded in the string is the
1313 same as the one recorded in the sdata structure. */
1314 if (from->string
1315 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
1316 abort ();
1317 #endif /* GC_CHECK_STRING_BYTES */
1319 if (from->string)
1320 nbytes = GC_STRING_BYTES (from->string);
1321 else
1322 nbytes = SDATA_NBYTES (from);
1324 nbytes = SDATA_SIZE (nbytes);
1325 from_end = (struct sdata *) ((char *) from + nbytes);
1327 /* FROM->string non-null means it's alive. Copy its data. */
1328 if (from->string)
1330 /* If TB is full, proceed with the next sblock. */
1331 to_end = (struct sdata *) ((char *) to + nbytes);
1332 if (to_end > tb_end)
1334 tb->next_free = to;
1335 tb = tb->next;
1336 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1337 to = &tb->first_data;
1338 to_end = (struct sdata *) ((char *) to + nbytes);
1341 /* Copy, and update the string's `data' pointer. */
1342 if (from != to)
1344 xassert (tb != b || to <= from);
1345 safe_bcopy ((char *) from, (char *) to, nbytes);
1346 to->string->data = SDATA_DATA (to);
1349 /* Advance past the sdata we copied to. */
1350 to = to_end;
1355 /* The rest of the sblocks following TB don't contain live data, so
1356 we can free them. */
1357 for (b = tb->next; b; b = next)
1359 next = b->next;
1360 lisp_free (b);
1363 tb->next_free = to;
1364 tb->next = NULL;
1365 current_sblock = tb;
1369 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1370 "Return a newly created string of length LENGTH, with each element being INIT.\n\
1371 Both LENGTH and INIT must be numbers.")
1372 (length, init)
1373 Lisp_Object length, init;
1375 register Lisp_Object val;
1376 register unsigned char *p, *end;
1377 int c, nbytes;
1379 CHECK_NATNUM (length, 0);
1380 CHECK_NUMBER (init, 1);
1382 c = XINT (init);
1383 if (SINGLE_BYTE_CHAR_P (c))
1385 nbytes = XINT (length);
1386 val = make_uninit_string (nbytes);
1387 p = XSTRING (val)->data;
1388 end = p + XSTRING (val)->size;
1389 while (p != end)
1390 *p++ = c;
1392 else
1394 unsigned char str[4];
1395 int len = CHAR_STRING (c, str);
1397 nbytes = len * XINT (length);
1398 val = make_uninit_multibyte_string (XINT (length), nbytes);
1399 p = XSTRING (val)->data;
1400 end = p + nbytes;
1401 while (p != end)
1403 bcopy (str, p, len);
1404 p += len;
1408 *p = 0;
1409 return val;
1413 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
1414 "Return a new bool-vector of length LENGTH, using INIT for as each element.\n\
1415 LENGTH must be a number. INIT matters only in whether it is t or nil.")
1416 (length, init)
1417 Lisp_Object length, init;
1419 register Lisp_Object val;
1420 struct Lisp_Bool_Vector *p;
1421 int real_init, i;
1422 int length_in_chars, length_in_elts, bits_per_value;
1424 CHECK_NATNUM (length, 0);
1426 bits_per_value = sizeof (EMACS_INT) * BITS_PER_CHAR;
1428 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
1429 length_in_chars = ((XFASTINT (length) + BITS_PER_CHAR - 1) / BITS_PER_CHAR);
1431 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1432 slot `size' of the struct Lisp_Bool_Vector. */
1433 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
1434 p = XBOOL_VECTOR (val);
1436 /* Get rid of any bits that would cause confusion. */
1437 p->vector_size = 0;
1438 XSETBOOL_VECTOR (val, p);
1439 p->size = XFASTINT (length);
1441 real_init = (NILP (init) ? 0 : -1);
1442 for (i = 0; i < length_in_chars ; i++)
1443 p->data[i] = real_init;
1445 /* Clear the extraneous bits in the last byte. */
1446 if (XINT (length) != length_in_chars * BITS_PER_CHAR)
1447 XBOOL_VECTOR (val)->data[length_in_chars - 1]
1448 &= (1 << (XINT (length) % BITS_PER_CHAR)) - 1;
1450 return val;
1454 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
1455 of characters from the contents. This string may be unibyte or
1456 multibyte, depending on the contents. */
1458 Lisp_Object
1459 make_string (contents, nbytes)
1460 char *contents;
1461 int nbytes;
1463 register Lisp_Object val;
1464 int nchars, multibyte_nbytes;
1466 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
1467 val = make_uninit_multibyte_string (nchars, nbytes);
1468 bcopy (contents, XSTRING (val)->data, nbytes);
1469 if (nbytes == nchars || nbytes != multibyte_nbytes)
1470 /* CONTENTS contains no multibyte sequences or contains an invalid
1471 multibyte sequence. We must make unibyte string. */
1472 SET_STRING_BYTES (XSTRING (val), -1);
1473 return val;
1477 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
1479 Lisp_Object
1480 make_unibyte_string (contents, length)
1481 char *contents;
1482 int length;
1484 register Lisp_Object val;
1485 val = make_uninit_string (length);
1486 bcopy (contents, XSTRING (val)->data, length);
1487 SET_STRING_BYTES (XSTRING (val), -1);
1488 return val;
1492 /* Make a multibyte string from NCHARS characters occupying NBYTES
1493 bytes at CONTENTS. */
1495 Lisp_Object
1496 make_multibyte_string (contents, nchars, nbytes)
1497 char *contents;
1498 int nchars, nbytes;
1500 register Lisp_Object val;
1501 val = make_uninit_multibyte_string (nchars, nbytes);
1502 bcopy (contents, XSTRING (val)->data, nbytes);
1503 return val;
1507 /* Make a string from NCHARS characters occupying NBYTES bytes at
1508 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
1510 Lisp_Object
1511 make_string_from_bytes (contents, nchars, nbytes)
1512 char *contents;
1513 int nchars, nbytes;
1515 register Lisp_Object val;
1516 val = make_uninit_multibyte_string (nchars, nbytes);
1517 bcopy (contents, XSTRING (val)->data, nbytes);
1518 if (STRING_BYTES (XSTRING (val)) == XSTRING (val)->size)
1519 SET_STRING_BYTES (XSTRING (val), -1);
1520 return val;
1524 /* Make a string from NCHARS characters occupying NBYTES bytes at
1525 CONTENTS. The argument MULTIBYTE controls whether to label the
1526 string as multibyte. */
1528 Lisp_Object
1529 make_specified_string (contents, nchars, nbytes, multibyte)
1530 char *contents;
1531 int nchars, nbytes;
1532 int multibyte;
1534 register Lisp_Object val;
1535 val = make_uninit_multibyte_string (nchars, nbytes);
1536 bcopy (contents, XSTRING (val)->data, nbytes);
1537 if (!multibyte)
1538 SET_STRING_BYTES (XSTRING (val), -1);
1539 return val;
1543 /* Make a string from the data at STR, treating it as multibyte if the
1544 data warrants. */
1546 Lisp_Object
1547 build_string (str)
1548 char *str;
1550 return make_string (str, strlen (str));
1554 /* Return an unibyte Lisp_String set up to hold LENGTH characters
1555 occupying LENGTH bytes. */
1557 Lisp_Object
1558 make_uninit_string (length)
1559 int length;
1561 Lisp_Object val;
1562 val = make_uninit_multibyte_string (length, length);
1563 SET_STRING_BYTES (XSTRING (val), -1);
1564 return val;
1568 /* Return a multibyte Lisp_String set up to hold NCHARS characters
1569 which occupy NBYTES bytes. */
1571 Lisp_Object
1572 make_uninit_multibyte_string (nchars, nbytes)
1573 int nchars, nbytes;
1575 Lisp_Object string;
1576 struct Lisp_String *s;
1578 if (nchars < 0)
1579 abort ();
1581 s = allocate_string ();
1582 allocate_string_data (s, nchars, nbytes);
1583 XSETSTRING (string, s);
1584 string_chars_consed += nbytes;
1585 return string;
1590 /***********************************************************************
1591 Float Allocation
1592 ***********************************************************************/
1594 /* We store float cells inside of float_blocks, allocating a new
1595 float_block with malloc whenever necessary. Float cells reclaimed
1596 by GC are put on a free list to be reallocated before allocating
1597 any new float cells from the latest float_block.
1599 Each float_block is just under 1020 bytes long, since malloc really
1600 allocates in units of powers of two and uses 4 bytes for its own
1601 overhead. */
1603 #define FLOAT_BLOCK_SIZE \
1604 ((1020 - sizeof (struct float_block *)) / sizeof (struct Lisp_Float))
1606 struct float_block
1608 struct float_block *next;
1609 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
1612 /* Current float_block. */
1614 struct float_block *float_block;
1616 /* Index of first unused Lisp_Float in the current float_block. */
1618 int float_block_index;
1620 /* Total number of float blocks now in use. */
1622 int n_float_blocks;
1624 /* Free-list of Lisp_Floats. */
1626 struct Lisp_Float *float_free_list;
1629 /* Initialze float allocation. */
1631 void
1632 init_float ()
1634 float_block = (struct float_block *) lisp_malloc (sizeof *float_block,
1635 MEM_TYPE_FLOAT);
1636 float_block->next = 0;
1637 bzero ((char *) float_block->floats, sizeof float_block->floats);
1638 float_block_index = 0;
1639 float_free_list = 0;
1640 n_float_blocks = 1;
1644 /* Explicitly free a float cell by putting it on the free-list. */
1646 void
1647 free_float (ptr)
1648 struct Lisp_Float *ptr;
1650 *(struct Lisp_Float **)&ptr->data = float_free_list;
1651 #if GC_MARK_STACK
1652 ptr->type = Vdead;
1653 #endif
1654 float_free_list = ptr;
1658 /* Return a new float object with value FLOAT_VALUE. */
1660 Lisp_Object
1661 make_float (float_value)
1662 double float_value;
1664 register Lisp_Object val;
1666 if (float_free_list)
1668 /* We use the data field for chaining the free list
1669 so that we won't use the same field that has the mark bit. */
1670 XSETFLOAT (val, float_free_list);
1671 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
1673 else
1675 if (float_block_index == FLOAT_BLOCK_SIZE)
1677 register struct float_block *new;
1679 new = (struct float_block *) lisp_malloc (sizeof *new,
1680 MEM_TYPE_FLOAT);
1681 VALIDATE_LISP_STORAGE (new, sizeof *new);
1682 new->next = float_block;
1683 float_block = new;
1684 float_block_index = 0;
1685 n_float_blocks++;
1687 XSETFLOAT (val, &float_block->floats[float_block_index++]);
1690 XFLOAT_DATA (val) = float_value;
1691 XSETFASTINT (XFLOAT (val)->type, 0); /* bug chasing -wsr */
1692 consing_since_gc += sizeof (struct Lisp_Float);
1693 floats_consed++;
1694 return val;
1699 /***********************************************************************
1700 Cons Allocation
1701 ***********************************************************************/
1703 /* We store cons cells inside of cons_blocks, allocating a new
1704 cons_block with malloc whenever necessary. Cons cells reclaimed by
1705 GC are put on a free list to be reallocated before allocating
1706 any new cons cells from the latest cons_block.
1708 Each cons_block is just under 1020 bytes long,
1709 since malloc really allocates in units of powers of two
1710 and uses 4 bytes for its own overhead. */
1712 #define CONS_BLOCK_SIZE \
1713 ((1020 - sizeof (struct cons_block *)) / sizeof (struct Lisp_Cons))
1715 struct cons_block
1717 struct cons_block *next;
1718 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
1721 /* Current cons_block. */
1723 struct cons_block *cons_block;
1725 /* Index of first unused Lisp_Cons in the current block. */
1727 int cons_block_index;
1729 /* Free-list of Lisp_Cons structures. */
1731 struct Lisp_Cons *cons_free_list;
1733 /* Total number of cons blocks now in use. */
1735 int n_cons_blocks;
1738 /* Initialize cons allocation. */
1740 void
1741 init_cons ()
1743 cons_block = (struct cons_block *) lisp_malloc (sizeof *cons_block,
1744 MEM_TYPE_CONS);
1745 cons_block->next = 0;
1746 bzero ((char *) cons_block->conses, sizeof cons_block->conses);
1747 cons_block_index = 0;
1748 cons_free_list = 0;
1749 n_cons_blocks = 1;
1753 /* Explicitly free a cons cell by putting it on the free-list. */
1755 void
1756 free_cons (ptr)
1757 struct Lisp_Cons *ptr;
1759 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
1760 #if GC_MARK_STACK
1761 ptr->car = Vdead;
1762 #endif
1763 cons_free_list = ptr;
1767 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
1768 "Create a new cons, give it CAR and CDR as components, and return it.")
1769 (car, cdr)
1770 Lisp_Object car, cdr;
1772 register Lisp_Object val;
1774 if (cons_free_list)
1776 /* We use the cdr for chaining the free list
1777 so that we won't use the same field that has the mark bit. */
1778 XSETCONS (val, cons_free_list);
1779 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
1781 else
1783 if (cons_block_index == CONS_BLOCK_SIZE)
1785 register struct cons_block *new;
1786 new = (struct cons_block *) lisp_malloc (sizeof *new,
1787 MEM_TYPE_CONS);
1788 VALIDATE_LISP_STORAGE (new, sizeof *new);
1789 new->next = cons_block;
1790 cons_block = new;
1791 cons_block_index = 0;
1792 n_cons_blocks++;
1794 XSETCONS (val, &cons_block->conses[cons_block_index++]);
1797 XCAR (val) = car;
1798 XCDR (val) = cdr;
1799 consing_since_gc += sizeof (struct Lisp_Cons);
1800 cons_cells_consed++;
1801 return val;
1805 /* Make a list of 2, 3, 4 or 5 specified objects. */
1807 Lisp_Object
1808 list2 (arg1, arg2)
1809 Lisp_Object arg1, arg2;
1811 return Fcons (arg1, Fcons (arg2, Qnil));
1815 Lisp_Object
1816 list3 (arg1, arg2, arg3)
1817 Lisp_Object arg1, arg2, arg3;
1819 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
1823 Lisp_Object
1824 list4 (arg1, arg2, arg3, arg4)
1825 Lisp_Object arg1, arg2, arg3, arg4;
1827 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
1831 Lisp_Object
1832 list5 (arg1, arg2, arg3, arg4, arg5)
1833 Lisp_Object arg1, arg2, arg3, arg4, arg5;
1835 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
1836 Fcons (arg5, Qnil)))));
1840 DEFUN ("list", Flist, Slist, 0, MANY, 0,
1841 "Return a newly created list with specified arguments as elements.\n\
1842 Any number of arguments, even zero arguments, are allowed.")
1843 (nargs, args)
1844 int nargs;
1845 register Lisp_Object *args;
1847 register Lisp_Object val;
1848 val = Qnil;
1850 while (nargs > 0)
1852 nargs--;
1853 val = Fcons (args[nargs], val);
1855 return val;
1859 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
1860 "Return a newly created list of length LENGTH, with each element being INIT.")
1861 (length, init)
1862 register Lisp_Object length, init;
1864 register Lisp_Object val;
1865 register int size;
1867 CHECK_NATNUM (length, 0);
1868 size = XFASTINT (length);
1870 val = Qnil;
1871 while (size-- > 0)
1872 val = Fcons (init, val);
1873 return val;
1878 /***********************************************************************
1879 Vector Allocation
1880 ***********************************************************************/
1882 /* Singly-linked list of all vectors. */
1884 struct Lisp_Vector *all_vectors;
1886 /* Total number of vector-like objects now in use. */
1888 int n_vectors;
1891 /* Value is a pointer to a newly allocated Lisp_Vector structure
1892 with room for LEN Lisp_Objects. */
1894 struct Lisp_Vector *
1895 allocate_vectorlike (len)
1896 EMACS_INT len;
1898 struct Lisp_Vector *p;
1899 size_t nbytes;
1901 #ifdef DOUG_LEA_MALLOC
1902 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1903 because mapped region contents are not preserved in
1904 a dumped Emacs. */
1905 mallopt (M_MMAP_MAX, 0);
1906 #endif
1908 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
1909 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTOR);
1911 #ifdef DOUG_LEA_MALLOC
1912 /* Back to a reasonable maximum of mmap'ed areas. */
1913 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1914 #endif
1916 VALIDATE_LISP_STORAGE (p, 0);
1917 consing_since_gc += nbytes;
1918 vector_cells_consed += len;
1920 p->next = all_vectors;
1921 all_vectors = p;
1922 ++n_vectors;
1923 return p;
1927 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
1928 "Return a newly created vector of length LENGTH, with each element being INIT.\n\
1929 See also the function `vector'.")
1930 (length, init)
1931 register Lisp_Object length, init;
1933 Lisp_Object vector;
1934 register EMACS_INT sizei;
1935 register int index;
1936 register struct Lisp_Vector *p;
1938 CHECK_NATNUM (length, 0);
1939 sizei = XFASTINT (length);
1941 p = allocate_vectorlike (sizei);
1942 p->size = sizei;
1943 for (index = 0; index < sizei; index++)
1944 p->contents[index] = init;
1946 XSETVECTOR (vector, p);
1947 return vector;
1951 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
1952 "Return a newly created char-table, with purpose PURPOSE.\n\
1953 Each element is initialized to INIT, which defaults to nil.\n\
1954 PURPOSE should be a symbol which has a `char-table-extra-slots' property.\n\
1955 The property's value should be an integer between 0 and 10.")
1956 (purpose, init)
1957 register Lisp_Object purpose, init;
1959 Lisp_Object vector;
1960 Lisp_Object n;
1961 CHECK_SYMBOL (purpose, 1);
1962 n = Fget (purpose, Qchar_table_extra_slots);
1963 CHECK_NUMBER (n, 0);
1964 if (XINT (n) < 0 || XINT (n) > 10)
1965 args_out_of_range (n, Qnil);
1966 /* Add 2 to the size for the defalt and parent slots. */
1967 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
1968 init);
1969 XCHAR_TABLE (vector)->top = Qt;
1970 XCHAR_TABLE (vector)->parent = Qnil;
1971 XCHAR_TABLE (vector)->purpose = purpose;
1972 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
1973 return vector;
1977 /* Return a newly created sub char table with default value DEFALT.
1978 Since a sub char table does not appear as a top level Emacs Lisp
1979 object, we don't need a Lisp interface to make it. */
1981 Lisp_Object
1982 make_sub_char_table (defalt)
1983 Lisp_Object defalt;
1985 Lisp_Object vector
1986 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
1987 XCHAR_TABLE (vector)->top = Qnil;
1988 XCHAR_TABLE (vector)->defalt = defalt;
1989 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
1990 return vector;
1994 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
1995 "Return a newly created vector with specified arguments as elements.\n\
1996 Any number of arguments, even zero arguments, are allowed.")
1997 (nargs, args)
1998 register int nargs;
1999 Lisp_Object *args;
2001 register Lisp_Object len, val;
2002 register int index;
2003 register struct Lisp_Vector *p;
2005 XSETFASTINT (len, nargs);
2006 val = Fmake_vector (len, Qnil);
2007 p = XVECTOR (val);
2008 for (index = 0; index < nargs; index++)
2009 p->contents[index] = args[index];
2010 return val;
2014 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2015 "Create a byte-code object with specified arguments as elements.\n\
2016 The arguments should be the arglist, bytecode-string, constant vector,\n\
2017 stack size, (optional) doc string, and (optional) interactive spec.\n\
2018 The first four arguments are required; at most six have any\n\
2019 significance.")
2020 (nargs, args)
2021 register int nargs;
2022 Lisp_Object *args;
2024 register Lisp_Object len, val;
2025 register int index;
2026 register struct Lisp_Vector *p;
2028 XSETFASTINT (len, nargs);
2029 if (!NILP (Vpurify_flag))
2030 val = make_pure_vector ((EMACS_INT) nargs);
2031 else
2032 val = Fmake_vector (len, Qnil);
2034 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2035 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2036 earlier because they produced a raw 8-bit string for byte-code
2037 and now such a byte-code string is loaded as multibyte while
2038 raw 8-bit characters converted to multibyte form. Thus, now we
2039 must convert them back to the original unibyte form. */
2040 args[1] = Fstring_as_unibyte (args[1]);
2042 p = XVECTOR (val);
2043 for (index = 0; index < nargs; index++)
2045 if (!NILP (Vpurify_flag))
2046 args[index] = Fpurecopy (args[index]);
2047 p->contents[index] = args[index];
2049 XSETCOMPILED (val, p);
2050 return val;
2055 /***********************************************************************
2056 Symbol Allocation
2057 ***********************************************************************/
2059 /* Each symbol_block is just under 1020 bytes long, since malloc
2060 really allocates in units of powers of two and uses 4 bytes for its
2061 own overhead. */
2063 #define SYMBOL_BLOCK_SIZE \
2064 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2066 struct symbol_block
2068 struct symbol_block *next;
2069 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
2072 /* Current symbol block and index of first unused Lisp_Symbol
2073 structure in it. */
2075 struct symbol_block *symbol_block;
2076 int symbol_block_index;
2078 /* List of free symbols. */
2080 struct Lisp_Symbol *symbol_free_list;
2082 /* Total number of symbol blocks now in use. */
2084 int n_symbol_blocks;
2087 /* Initialize symbol allocation. */
2089 void
2090 init_symbol ()
2092 symbol_block = (struct symbol_block *) lisp_malloc (sizeof *symbol_block,
2093 MEM_TYPE_SYMBOL);
2094 symbol_block->next = 0;
2095 bzero ((char *) symbol_block->symbols, sizeof symbol_block->symbols);
2096 symbol_block_index = 0;
2097 symbol_free_list = 0;
2098 n_symbol_blocks = 1;
2102 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
2103 "Return a newly allocated uninterned symbol whose name is NAME.\n\
2104 Its value and function definition are void, and its property list is nil.")
2105 (name)
2106 Lisp_Object name;
2108 register Lisp_Object val;
2109 register struct Lisp_Symbol *p;
2111 CHECK_STRING (name, 0);
2113 if (symbol_free_list)
2115 XSETSYMBOL (val, symbol_free_list);
2116 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
2118 else
2120 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
2122 struct symbol_block *new;
2123 new = (struct symbol_block *) lisp_malloc (sizeof *new,
2124 MEM_TYPE_SYMBOL);
2125 VALIDATE_LISP_STORAGE (new, sizeof *new);
2126 new->next = symbol_block;
2127 symbol_block = new;
2128 symbol_block_index = 0;
2129 n_symbol_blocks++;
2131 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index++]);
2134 p = XSYMBOL (val);
2135 p->name = XSTRING (name);
2136 p->obarray = Qnil;
2137 p->plist = Qnil;
2138 p->value = Qunbound;
2139 p->function = Qunbound;
2140 p->next = 0;
2141 consing_since_gc += sizeof (struct Lisp_Symbol);
2142 symbols_consed++;
2143 return val;
2148 /***********************************************************************
2149 Marker (Misc) Allocation
2150 ***********************************************************************/
2152 /* Allocation of markers and other objects that share that structure.
2153 Works like allocation of conses. */
2155 #define MARKER_BLOCK_SIZE \
2156 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2158 struct marker_block
2160 struct marker_block *next;
2161 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
2164 struct marker_block *marker_block;
2165 int marker_block_index;
2167 union Lisp_Misc *marker_free_list;
2169 /* Total number of marker blocks now in use. */
2171 int n_marker_blocks;
2173 void
2174 init_marker ()
2176 marker_block = (struct marker_block *) lisp_malloc (sizeof *marker_block,
2177 MEM_TYPE_MISC);
2178 marker_block->next = 0;
2179 bzero ((char *) marker_block->markers, sizeof marker_block->markers);
2180 marker_block_index = 0;
2181 marker_free_list = 0;
2182 n_marker_blocks = 1;
2185 /* Return a newly allocated Lisp_Misc object, with no substructure. */
2187 Lisp_Object
2188 allocate_misc ()
2190 Lisp_Object val;
2192 if (marker_free_list)
2194 XSETMISC (val, marker_free_list);
2195 marker_free_list = marker_free_list->u_free.chain;
2197 else
2199 if (marker_block_index == MARKER_BLOCK_SIZE)
2201 struct marker_block *new;
2202 new = (struct marker_block *) lisp_malloc (sizeof *new,
2203 MEM_TYPE_MISC);
2204 VALIDATE_LISP_STORAGE (new, sizeof *new);
2205 new->next = marker_block;
2206 marker_block = new;
2207 marker_block_index = 0;
2208 n_marker_blocks++;
2210 XSETMISC (val, &marker_block->markers[marker_block_index++]);
2213 consing_since_gc += sizeof (union Lisp_Misc);
2214 misc_objects_consed++;
2215 return val;
2218 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
2219 "Return a newly allocated marker which does not point at any place.")
2222 register Lisp_Object val;
2223 register struct Lisp_Marker *p;
2225 val = allocate_misc ();
2226 XMISCTYPE (val) = Lisp_Misc_Marker;
2227 p = XMARKER (val);
2228 p->buffer = 0;
2229 p->bytepos = 0;
2230 p->charpos = 0;
2231 p->chain = Qnil;
2232 p->insertion_type = 0;
2233 return val;
2236 /* Put MARKER back on the free list after using it temporarily. */
2238 void
2239 free_marker (marker)
2240 Lisp_Object marker;
2242 unchain_marker (marker);
2244 XMISC (marker)->u_marker.type = Lisp_Misc_Free;
2245 XMISC (marker)->u_free.chain = marker_free_list;
2246 marker_free_list = XMISC (marker);
2248 total_free_markers++;
2252 /* Return a newly created vector or string with specified arguments as
2253 elements. If all the arguments are characters that can fit
2254 in a string of events, make a string; otherwise, make a vector.
2256 Any number of arguments, even zero arguments, are allowed. */
2258 Lisp_Object
2259 make_event_array (nargs, args)
2260 register int nargs;
2261 Lisp_Object *args;
2263 int i;
2265 for (i = 0; i < nargs; i++)
2266 /* The things that fit in a string
2267 are characters that are in 0...127,
2268 after discarding the meta bit and all the bits above it. */
2269 if (!INTEGERP (args[i])
2270 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
2271 return Fvector (nargs, args);
2273 /* Since the loop exited, we know that all the things in it are
2274 characters, so we can make a string. */
2276 Lisp_Object result;
2278 result = Fmake_string (make_number (nargs), make_number (0));
2279 for (i = 0; i < nargs; i++)
2281 XSTRING (result)->data[i] = XINT (args[i]);
2282 /* Move the meta bit to the right place for a string char. */
2283 if (XINT (args[i]) & CHAR_META)
2284 XSTRING (result)->data[i] |= 0x80;
2287 return result;
2293 /************************************************************************
2294 C Stack Marking
2295 ************************************************************************/
2297 #if GC_MARK_STACK
2300 /* Base address of stack. Set in main. */
2302 Lisp_Object *stack_base;
2304 /* A node in the red-black tree describing allocated memory containing
2305 Lisp data. Each such block is recorded with its start and end
2306 address when it is allocated, and removed from the tree when it
2307 is freed.
2309 A red-black tree is a balanced binary tree with the following
2310 properties:
2312 1. Every node is either red or black.
2313 2. Every leaf is black.
2314 3. If a node is red, then both of its children are black.
2315 4. Every simple path from a node to a descendant leaf contains
2316 the same number of black nodes.
2317 5. The root is always black.
2319 When nodes are inserted into the tree, or deleted from the tree,
2320 the tree is "fixed" so that these properties are always true.
2322 A red-black tree with N internal nodes has height at most 2
2323 log(N+1). Searches, insertions and deletions are done in O(log N).
2324 Please see a text book about data structures for a detailed
2325 description of red-black trees. Any book worth its salt should
2326 describe them. */
2328 struct mem_node
2330 struct mem_node *left, *right, *parent;
2332 /* Start and end of allocated region. */
2333 void *start, *end;
2335 /* Node color. */
2336 enum {MEM_BLACK, MEM_RED} color;
2338 /* Memory type. */
2339 enum mem_type type;
2342 /* Root of the tree describing allocated Lisp memory. */
2344 static struct mem_node *mem_root;
2346 /* Sentinel node of the tree. */
2348 static struct mem_node mem_z;
2349 #define MEM_NIL &mem_z
2352 /* Initialize this part of alloc.c. */
2354 static void
2355 mem_init ()
2357 mem_z.left = mem_z.right = MEM_NIL;
2358 mem_z.parent = NULL;
2359 mem_z.color = MEM_BLACK;
2360 mem_z.start = mem_z.end = NULL;
2361 mem_root = MEM_NIL;
2365 /* Value is a pointer to the mem_node containing START. Value is
2366 MEM_NIL if there is no node in the tree containing START. */
2368 static INLINE struct mem_node *
2369 mem_find (start)
2370 void *start;
2372 struct mem_node *p;
2374 /* Make the search always successful to speed up the loop below. */
2375 mem_z.start = start;
2376 mem_z.end = (char *) start + 1;
2378 p = mem_root;
2379 while (start < p->start || start >= p->end)
2380 p = start < p->start ? p->left : p->right;
2381 return p;
2385 /* Insert a new node into the tree for a block of memory with start
2386 address START, end address END, and type TYPE. Value is a
2387 pointer to the node that was inserted. */
2389 static struct mem_node *
2390 mem_insert (start, end, type)
2391 void *start, *end;
2392 enum mem_type type;
2394 struct mem_node *c, *parent, *x;
2396 /* See where in the tree a node for START belongs. In this
2397 particular application, it shouldn't happen that a node is already
2398 present. For debugging purposes, let's check that. */
2399 c = mem_root;
2400 parent = NULL;
2402 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
2404 while (c != MEM_NIL)
2406 if (start >= c->start && start < c->end)
2407 abort ();
2408 parent = c;
2409 c = start < c->start ? c->left : c->right;
2412 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
2414 while (c != MEM_NIL)
2416 parent = c;
2417 c = start < c->start ? c->left : c->right;
2420 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
2422 /* Create a new node. */
2423 x = (struct mem_node *) xmalloc (sizeof *x);
2424 x->start = start;
2425 x->end = end;
2426 x->type = type;
2427 x->parent = parent;
2428 x->left = x->right = MEM_NIL;
2429 x->color = MEM_RED;
2431 /* Insert it as child of PARENT or install it as root. */
2432 if (parent)
2434 if (start < parent->start)
2435 parent->left = x;
2436 else
2437 parent->right = x;
2439 else
2440 mem_root = x;
2442 /* Re-establish red-black tree properties. */
2443 mem_insert_fixup (x);
2444 return x;
2448 /* Re-establish the red-black properties of the tree, and thereby
2449 balance the tree, after node X has been inserted; X is always red. */
2451 static void
2452 mem_insert_fixup (x)
2453 struct mem_node *x;
2455 while (x != mem_root && x->parent->color == MEM_RED)
2457 /* X is red and its parent is red. This is a violation of
2458 red-black tree property #3. */
2460 if (x->parent == x->parent->parent->left)
2462 /* We're on the left side of our grandparent, and Y is our
2463 "uncle". */
2464 struct mem_node *y = x->parent->parent->right;
2466 if (y->color == MEM_RED)
2468 /* Uncle and parent are red but should be black because
2469 X is red. Change the colors accordingly and proceed
2470 with the grandparent. */
2471 x->parent->color = MEM_BLACK;
2472 y->color = MEM_BLACK;
2473 x->parent->parent->color = MEM_RED;
2474 x = x->parent->parent;
2476 else
2478 /* Parent and uncle have different colors; parent is
2479 red, uncle is black. */
2480 if (x == x->parent->right)
2482 x = x->parent;
2483 mem_rotate_left (x);
2486 x->parent->color = MEM_BLACK;
2487 x->parent->parent->color = MEM_RED;
2488 mem_rotate_right (x->parent->parent);
2491 else
2493 /* This is the symmetrical case of above. */
2494 struct mem_node *y = x->parent->parent->left;
2496 if (y->color == MEM_RED)
2498 x->parent->color = MEM_BLACK;
2499 y->color = MEM_BLACK;
2500 x->parent->parent->color = MEM_RED;
2501 x = x->parent->parent;
2503 else
2505 if (x == x->parent->left)
2507 x = x->parent;
2508 mem_rotate_right (x);
2511 x->parent->color = MEM_BLACK;
2512 x->parent->parent->color = MEM_RED;
2513 mem_rotate_left (x->parent->parent);
2518 /* The root may have been changed to red due to the algorithm. Set
2519 it to black so that property #5 is satisfied. */
2520 mem_root->color = MEM_BLACK;
2524 /* (x) (y)
2525 / \ / \
2526 a (y) ===> (x) c
2527 / \ / \
2528 b c a b */
2530 static void
2531 mem_rotate_left (x)
2532 struct mem_node *x;
2534 struct mem_node *y;
2536 /* Turn y's left sub-tree into x's right sub-tree. */
2537 y = x->right;
2538 x->right = y->left;
2539 if (y->left != MEM_NIL)
2540 y->left->parent = x;
2542 /* Y's parent was x's parent. */
2543 if (y != MEM_NIL)
2544 y->parent = x->parent;
2546 /* Get the parent to point to y instead of x. */
2547 if (x->parent)
2549 if (x == x->parent->left)
2550 x->parent->left = y;
2551 else
2552 x->parent->right = y;
2554 else
2555 mem_root = y;
2557 /* Put x on y's left. */
2558 y->left = x;
2559 if (x != MEM_NIL)
2560 x->parent = y;
2564 /* (x) (Y)
2565 / \ / \
2566 (y) c ===> a (x)
2567 / \ / \
2568 a b b c */
2570 static void
2571 mem_rotate_right (x)
2572 struct mem_node *x;
2574 struct mem_node *y = x->left;
2576 x->left = y->right;
2577 if (y->right != MEM_NIL)
2578 y->right->parent = x;
2580 if (y != MEM_NIL)
2581 y->parent = x->parent;
2582 if (x->parent)
2584 if (x == x->parent->right)
2585 x->parent->right = y;
2586 else
2587 x->parent->left = y;
2589 else
2590 mem_root = y;
2592 y->right = x;
2593 if (x != MEM_NIL)
2594 x->parent = y;
2598 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
2600 static void
2601 mem_delete (z)
2602 struct mem_node *z;
2604 struct mem_node *x, *y;
2606 if (!z || z == MEM_NIL)
2607 return;
2609 if (z->left == MEM_NIL || z->right == MEM_NIL)
2610 y = z;
2611 else
2613 y = z->right;
2614 while (y->left != MEM_NIL)
2615 y = y->left;
2618 if (y->left != MEM_NIL)
2619 x = y->left;
2620 else
2621 x = y->right;
2623 x->parent = y->parent;
2624 if (y->parent)
2626 if (y == y->parent->left)
2627 y->parent->left = x;
2628 else
2629 y->parent->right = x;
2631 else
2632 mem_root = x;
2634 if (y != z)
2636 z->start = y->start;
2637 z->end = y->end;
2638 z->type = y->type;
2641 if (y->color == MEM_BLACK)
2642 mem_delete_fixup (x);
2643 xfree (y);
2647 /* Re-establish the red-black properties of the tree, after a
2648 deletion. */
2650 static void
2651 mem_delete_fixup (x)
2652 struct mem_node *x;
2654 while (x != mem_root && x->color == MEM_BLACK)
2656 if (x == x->parent->left)
2658 struct mem_node *w = x->parent->right;
2660 if (w->color == MEM_RED)
2662 w->color = MEM_BLACK;
2663 x->parent->color = MEM_RED;
2664 mem_rotate_left (x->parent);
2665 w = x->parent->right;
2668 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
2670 w->color = MEM_RED;
2671 x = x->parent;
2673 else
2675 if (w->right->color == MEM_BLACK)
2677 w->left->color = MEM_BLACK;
2678 w->color = MEM_RED;
2679 mem_rotate_right (w);
2680 w = x->parent->right;
2682 w->color = x->parent->color;
2683 x->parent->color = MEM_BLACK;
2684 w->right->color = MEM_BLACK;
2685 mem_rotate_left (x->parent);
2686 x = mem_root;
2689 else
2691 struct mem_node *w = x->parent->left;
2693 if (w->color == MEM_RED)
2695 w->color = MEM_BLACK;
2696 x->parent->color = MEM_RED;
2697 mem_rotate_right (x->parent);
2698 w = x->parent->left;
2701 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
2703 w->color = MEM_RED;
2704 x = x->parent;
2706 else
2708 if (w->left->color == MEM_BLACK)
2710 w->right->color = MEM_BLACK;
2711 w->color = MEM_RED;
2712 mem_rotate_left (w);
2713 w = x->parent->left;
2716 w->color = x->parent->color;
2717 x->parent->color = MEM_BLACK;
2718 w->left->color = MEM_BLACK;
2719 mem_rotate_right (x->parent);
2720 x = mem_root;
2725 x->color = MEM_BLACK;
2729 /* Value is non-zero if P is a pointer to a live Lisp string on
2730 the heap. M is a pointer to the mem_block for P. */
2732 static INLINE int
2733 live_string_p (m, p)
2734 struct mem_node *m;
2735 void *p;
2737 if (m->type == MEM_TYPE_STRING)
2739 struct string_block *b = (struct string_block *) m->start;
2740 int offset = (char *) p - (char *) &b->strings[0];
2742 /* P must point to the start of a Lisp_String structure, and it
2743 must not be on the free-list. */
2744 return (offset % sizeof b->strings[0] == 0
2745 && ((struct Lisp_String *) p)->data != NULL);
2747 else
2748 return 0;
2752 /* Value is non-zero if P is a pointer to a live Lisp cons on
2753 the heap. M is a pointer to the mem_block for P. */
2755 static INLINE int
2756 live_cons_p (m, p)
2757 struct mem_node *m;
2758 void *p;
2760 if (m->type == MEM_TYPE_CONS)
2762 struct cons_block *b = (struct cons_block *) m->start;
2763 int offset = (char *) p - (char *) &b->conses[0];
2765 /* P must point to the start of a Lisp_Cons, not be
2766 one of the unused cells in the current cons block,
2767 and not be on the free-list. */
2768 return (offset % sizeof b->conses[0] == 0
2769 && (b != cons_block
2770 || offset / sizeof b->conses[0] < cons_block_index)
2771 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
2773 else
2774 return 0;
2778 /* Value is non-zero if P is a pointer to a live Lisp symbol on
2779 the heap. M is a pointer to the mem_block for P. */
2781 static INLINE int
2782 live_symbol_p (m, p)
2783 struct mem_node *m;
2784 void *p;
2786 if (m->type == MEM_TYPE_SYMBOL)
2788 struct symbol_block *b = (struct symbol_block *) m->start;
2789 int offset = (char *) p - (char *) &b->symbols[0];
2791 /* P must point to the start of a Lisp_Symbol, not be
2792 one of the unused cells in the current symbol block,
2793 and not be on the free-list. */
2794 return (offset % sizeof b->symbols[0] == 0
2795 && (b != symbol_block
2796 || offset / sizeof b->symbols[0] < symbol_block_index)
2797 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
2799 else
2800 return 0;
2804 /* Value is non-zero if P is a pointer to a live Lisp float on
2805 the heap. M is a pointer to the mem_block for P. */
2807 static INLINE int
2808 live_float_p (m, p)
2809 struct mem_node *m;
2810 void *p;
2812 if (m->type == MEM_TYPE_FLOAT)
2814 struct float_block *b = (struct float_block *) m->start;
2815 int offset = (char *) p - (char *) &b->floats[0];
2817 /* P must point to the start of a Lisp_Float, not be
2818 one of the unused cells in the current float block,
2819 and not be on the free-list. */
2820 return (offset % sizeof b->floats[0] == 0
2821 && (b != float_block
2822 || offset / sizeof b->floats[0] < float_block_index)
2823 && !EQ (((struct Lisp_Float *) p)->type, Vdead));
2825 else
2826 return 0;
2830 /* Value is non-zero if P is a pointer to a live Lisp Misc on
2831 the heap. M is a pointer to the mem_block for P. */
2833 static INLINE int
2834 live_misc_p (m, p)
2835 struct mem_node *m;
2836 void *p;
2838 if (m->type == MEM_TYPE_MISC)
2840 struct marker_block *b = (struct marker_block *) m->start;
2841 int offset = (char *) p - (char *) &b->markers[0];
2843 /* P must point to the start of a Lisp_Misc, not be
2844 one of the unused cells in the current misc block,
2845 and not be on the free-list. */
2846 return (offset % sizeof b->markers[0] == 0
2847 && (b != marker_block
2848 || offset / sizeof b->markers[0] < marker_block_index)
2849 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
2851 else
2852 return 0;
2856 /* Value is non-zero if P is a pointer to a live vector-like object.
2857 M is a pointer to the mem_block for P. */
2859 static INLINE int
2860 live_vector_p (m, p)
2861 struct mem_node *m;
2862 void *p;
2864 return m->type == MEM_TYPE_VECTOR && p == m->start;
2868 /* Value is non-zero of P is a pointer to a live buffer. M is a
2869 pointer to the mem_block for P. */
2871 static INLINE int
2872 live_buffer_p (m, p)
2873 struct mem_node *m;
2874 void *p;
2876 /* P must point to the start of the block, and the buffer
2877 must not have been killed. */
2878 return (m->type == MEM_TYPE_BUFFER
2879 && p == m->start
2880 && !NILP (((struct buffer *) p)->name));
2884 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
2886 /* Array of objects that are kept alive because the C stack contains
2887 a pattern that looks like a reference to them . */
2889 #define MAX_ZOMBIES 10
2890 static Lisp_Object zombies[MAX_ZOMBIES];
2892 /* Number of zombie objects. */
2894 static int nzombies;
2896 /* Number of garbage collections. */
2898 static int ngcs;
2900 /* Average percentage of zombies per collection. */
2902 static double avg_zombies;
2904 /* Max. number of live and zombie objects. */
2906 static int max_live, max_zombies;
2908 /* Average number of live objects per GC. */
2910 static double avg_live;
2912 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
2913 "Show information about live and zombie objects.")
2916 Lisp_Object args[7];
2917 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d");
2918 args[1] = make_number (ngcs);
2919 args[2] = make_float (avg_live);
2920 args[3] = make_float (avg_zombies);
2921 args[4] = make_float (avg_zombies / avg_live / 100);
2922 args[5] = make_number (max_live);
2923 args[6] = make_number (max_zombies);
2924 return Fmessage (7, args);
2927 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
2930 /* Mark OBJ if we can prove it's a Lisp_Object. */
2932 static INLINE void
2933 mark_maybe_object (obj)
2934 Lisp_Object obj;
2936 void *po = (void *) XPNTR (obj);
2937 struct mem_node *m = mem_find (po);
2939 if (m != MEM_NIL)
2941 int mark_p = 0;
2943 switch (XGCTYPE (obj))
2945 case Lisp_String:
2946 mark_p = (live_string_p (m, po)
2947 && !STRING_MARKED_P ((struct Lisp_String *) po));
2948 break;
2950 case Lisp_Cons:
2951 mark_p = (live_cons_p (m, po)
2952 && !XMARKBIT (XCONS (obj)->car));
2953 break;
2955 case Lisp_Symbol:
2956 mark_p = (live_symbol_p (m, po)
2957 && !XMARKBIT (XSYMBOL (obj)->plist));
2958 break;
2960 case Lisp_Float:
2961 mark_p = (live_float_p (m, po)
2962 && !XMARKBIT (XFLOAT (obj)->type));
2963 break;
2965 case Lisp_Vectorlike:
2966 /* Note: can't check GC_BUFFERP before we know it's a
2967 buffer because checking that dereferences the pointer
2968 PO which might point anywhere. */
2969 if (live_vector_p (m, po))
2970 mark_p = (!GC_SUBRP (obj)
2971 && !(XVECTOR (obj)->size & ARRAY_MARK_FLAG));
2972 else if (live_buffer_p (m, po))
2973 mark_p = GC_BUFFERP (obj) && !XMARKBIT (XBUFFER (obj)->name);
2974 break;
2976 case Lisp_Misc:
2977 if (live_misc_p (m, po))
2979 switch (XMISCTYPE (obj))
2981 case Lisp_Misc_Marker:
2982 mark_p = !XMARKBIT (XMARKER (obj)->chain);
2983 break;
2985 case Lisp_Misc_Buffer_Local_Value:
2986 case Lisp_Misc_Some_Buffer_Local_Value:
2987 mark_p = !XMARKBIT (XBUFFER_LOCAL_VALUE (obj)->realvalue);
2988 break;
2990 case Lisp_Misc_Overlay:
2991 mark_p = !XMARKBIT (XOVERLAY (obj)->plist);
2992 break;
2995 break;
2997 case Lisp_Int:
2998 case Lisp_Type_Limit:
2999 break;
3002 if (mark_p)
3004 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3005 if (nzombies < MAX_ZOMBIES)
3006 zombies[nzombies] = *p;
3007 ++nzombies;
3008 #endif
3009 mark_object (&obj);
3014 /* Mark Lisp objects in the address range START..END. */
3016 static void
3017 mark_memory (start, end)
3018 void *start, *end;
3020 Lisp_Object *p;
3022 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3023 nzombies = 0;
3024 #endif
3026 /* Make START the pointer to the start of the memory region,
3027 if it isn't already. */
3028 if (end < start)
3030 void *tem = start;
3031 start = end;
3032 end = tem;
3035 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
3036 mark_maybe_object (*p);
3040 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
3042 static int setjmp_tested_p, longjmps_done;
3044 #define SETJMP_WILL_LIKELY_WORK "\
3046 Emacs garbage collector has been changed to use conservative stack\n\
3047 marking. Emacs has determined that the method it uses to do the\n\
3048 marking will likely work on your system, but this isn't sure.\n\
3050 If you are a system-programmer, or can get the help of a local wizard\n\
3051 who is, please take a look at the function mark_stack in alloc.c, and\n\
3052 verify that the methods used are appropriate for your system.\n\
3054 Please mail the result to <gerd@gnu.org>.\n\
3057 #define SETJMP_WILL_NOT_WORK "\
3059 Emacs garbage collector has been changed to use conservative stack\n\
3060 marking. Emacs has determined that the default method it uses to do the\n\
3061 marking will not work on your system. We will need a system-dependent\n\
3062 solution for your system.\n\
3064 Please take a look at the function mark_stack in alloc.c, and\n\
3065 try to find a way to make it work on your system.\n\
3066 Please mail the result to <gerd@gnu.org>.\n\
3070 /* Perform a quick check if it looks like setjmp saves registers in a
3071 jmp_buf. Print a message to stderr saying so. When this test
3072 succeeds, this is _not_ a proof that setjmp is sufficient for
3073 conservative stack marking. Only the sources or a disassembly
3074 can prove that. */
3076 static void
3077 test_setjmp ()
3079 char buf[10];
3080 register int x;
3081 jmp_buf jbuf;
3082 int result = 0;
3084 /* Arrange for X to be put in a register. */
3085 sprintf (buf, "1");
3086 x = strlen (buf);
3087 x = 2 * x - 1;
3089 setjmp (jbuf);
3090 if (longjmps_done == 1)
3092 /* Came here after the longjmp at the end of the function.
3094 If x == 1, the longjmp has restored the register to its
3095 value before the setjmp, and we can hope that setjmp
3096 saves all such registers in the jmp_buf, although that
3097 isn't sure.
3099 For other values of X, either something really strange is
3100 taking place, or the setjmp just didn't save the register. */
3102 if (x == 1)
3103 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
3104 else
3106 fprintf (stderr, SETJMP_WILL_NOT_WORK);
3107 exit (1);
3111 ++longjmps_done;
3112 x = 2;
3113 if (longjmps_done == 1)
3114 longjmp (jbuf, 1);
3117 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3120 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3122 /* Abort if anything GCPRO'd doesn't survive the GC. */
3124 static void
3125 check_gcpros ()
3127 struct gcpro *p;
3128 int i;
3130 for (p = gcprolist; p; p = p->next)
3131 for (i = 0; i < p->nvars; ++i)
3132 if (!survives_gc_p (p->var[i]))
3133 abort ();
3136 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3138 static void
3139 dump_zombies ()
3141 int i;
3143 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
3144 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
3146 fprintf (stderr, " %d = ", i);
3147 debug_print (zombies[i]);
3151 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3154 /* Mark live Lisp objects on the C stack.
3156 There are several system-dependent problems to consider when
3157 porting this to new architectures:
3159 Processor Registers
3161 We have to mark Lisp objects in CPU registers that can hold local
3162 variables or are used to pass parameters.
3164 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
3165 something that either saves relevant registers on the stack, or
3166 calls mark_maybe_object passing it each register's contents.
3168 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
3169 implementation assumes that calling setjmp saves registers we need
3170 to see in a jmp_buf which itself lies on the stack. This doesn't
3171 have to be true! It must be verified for each system, possibly
3172 by taking a look at the source code of setjmp.
3174 Stack Layout
3176 Architectures differ in the way their processor stack is organized.
3177 For example, the stack might look like this
3179 +----------------+
3180 | Lisp_Object | size = 4
3181 +----------------+
3182 | something else | size = 2
3183 +----------------+
3184 | Lisp_Object | size = 4
3185 +----------------+
3186 | ... |
3188 In such a case, not every Lisp_Object will be aligned equally. To
3189 find all Lisp_Object on the stack it won't be sufficient to walk
3190 the stack in steps of 4 bytes. Instead, two passes will be
3191 necessary, one starting at the start of the stack, and a second
3192 pass starting at the start of the stack + 2. Likewise, if the
3193 minimal alignment of Lisp_Objects on the stack is 1, four passes
3194 would be necessary, each one starting with one byte more offset
3195 from the stack start.
3197 The current code assumes by default that Lisp_Objects are aligned
3198 equally on the stack. */
3200 static void
3201 mark_stack ()
3203 jmp_buf j;
3204 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
3205 void *end;
3207 /* This trick flushes the register windows so that all the state of
3208 the process is contained in the stack. */
3209 #ifdef sparc
3210 asm ("ta 3");
3211 #endif
3213 /* Save registers that we need to see on the stack. We need to see
3214 registers used to hold register variables and registers used to
3215 pass parameters. */
3216 #ifdef GC_SAVE_REGISTERS_ON_STACK
3217 GC_SAVE_REGISTERS_ON_STACK (end);
3218 #else /* not GC_SAVE_REGISTERS_ON_STACK */
3220 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
3221 setjmp will definitely work, test it
3222 and print a message with the result
3223 of the test. */
3224 if (!setjmp_tested_p)
3226 setjmp_tested_p = 1;
3227 test_setjmp ();
3229 #endif /* GC_SETJMP_WORKS */
3231 setjmp (j);
3232 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
3233 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
3235 /* This assumes that the stack is a contiguous region in memory. If
3236 that's not the case, something has to be done here to iterate
3237 over the stack segments. */
3238 #if GC_LISP_OBJECT_ALIGNMENT == 1
3239 mark_memory (stack_base, end);
3240 mark_memory ((char *) stack_base + 1, end);
3241 mark_memory ((char *) stack_base + 2, end);
3242 mark_memory ((char *) stack_base + 3, end);
3243 #elif GC_LISP_OBJECT_ALIGNMENT == 2
3244 mark_memory (stack_base, end);
3245 mark_memory ((char *) stack_base + 2, end);
3246 #else
3247 mark_memory (stack_base, end);
3248 #endif
3250 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3251 check_gcpros ();
3252 #endif
3256 #endif /* GC_MARK_STACK != 0 */
3260 /***********************************************************************
3261 Pure Storage Management
3262 ***********************************************************************/
3264 /* Return a string allocated in pure space. DATA is a buffer holding
3265 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
3266 non-zero means make the result string multibyte.
3268 Must get an error if pure storage is full, since if it cannot hold
3269 a large string it may be able to hold conses that point to that
3270 string; then the string is not protected from gc. */
3272 Lisp_Object
3273 make_pure_string (data, nchars, nbytes, multibyte)
3274 char *data;
3275 int nchars, nbytes;
3276 int multibyte;
3278 Lisp_Object string;
3279 struct Lisp_String *s;
3280 int string_size, data_size;
3282 #define PAD(SZ) (((SZ) + sizeof (EMACS_INT) - 1) & ~(sizeof (EMACS_INT) - 1))
3284 string_size = PAD (sizeof (struct Lisp_String));
3285 data_size = PAD (nbytes + 1);
3287 #undef PAD
3289 if (pureptr + string_size + data_size > PURESIZE)
3290 error ("Pure Lisp storage exhausted");
3292 s = (struct Lisp_String *) (PUREBEG + pureptr);
3293 pureptr += string_size;
3294 s->data = (unsigned char *) (PUREBEG + pureptr);
3295 pureptr += data_size;
3297 s->size = nchars;
3298 s->size_byte = multibyte ? nbytes : -1;
3299 bcopy (data, s->data, nbytes);
3300 s->data[nbytes] = '\0';
3301 s->intervals = NULL_INTERVAL;
3303 XSETSTRING (string, s);
3304 return string;
3308 /* Return a cons allocated from pure space. Give it pure copies
3309 of CAR as car and CDR as cdr. */
3311 Lisp_Object
3312 pure_cons (car, cdr)
3313 Lisp_Object car, cdr;
3315 register Lisp_Object new;
3317 if (pureptr + sizeof (struct Lisp_Cons) > PURESIZE)
3318 error ("Pure Lisp storage exhausted");
3319 XSETCONS (new, PUREBEG + pureptr);
3320 pureptr += sizeof (struct Lisp_Cons);
3321 XCAR (new) = Fpurecopy (car);
3322 XCDR (new) = Fpurecopy (cdr);
3323 return new;
3327 /* Value is a float object with value NUM allocated from pure space. */
3329 Lisp_Object
3330 make_pure_float (num)
3331 double num;
3333 register Lisp_Object new;
3335 /* Make sure that PUREBEG + pureptr is aligned on at least a sizeof
3336 (double) boundary. Some architectures (like the sparc) require
3337 this, and I suspect that floats are rare enough that it's no
3338 tragedy for those that do. */
3340 size_t alignment;
3341 char *p = PUREBEG + pureptr;
3343 #ifdef __GNUC__
3344 #if __GNUC__ >= 2
3345 alignment = __alignof (struct Lisp_Float);
3346 #else
3347 alignment = sizeof (struct Lisp_Float);
3348 #endif
3349 #else
3350 alignment = sizeof (struct Lisp_Float);
3351 #endif
3352 p = (char *) (((unsigned long) p + alignment - 1) & - alignment);
3353 pureptr = p - PUREBEG;
3356 if (pureptr + sizeof (struct Lisp_Float) > PURESIZE)
3357 error ("Pure Lisp storage exhausted");
3358 XSETFLOAT (new, PUREBEG + pureptr);
3359 pureptr += sizeof (struct Lisp_Float);
3360 XFLOAT_DATA (new) = num;
3361 XSETFASTINT (XFLOAT (new)->type, 0); /* bug chasing -wsr */
3362 return new;
3366 /* Return a vector with room for LEN Lisp_Objects allocated from
3367 pure space. */
3369 Lisp_Object
3370 make_pure_vector (len)
3371 EMACS_INT len;
3373 register Lisp_Object new;
3374 register EMACS_INT size = (sizeof (struct Lisp_Vector)
3375 + (len - 1) * sizeof (Lisp_Object));
3377 if (pureptr + size > PURESIZE)
3378 error ("Pure Lisp storage exhausted");
3380 XSETVECTOR (new, PUREBEG + pureptr);
3381 pureptr += size;
3382 XVECTOR (new)->size = len;
3383 return new;
3387 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
3388 "Make a copy of OBJECT in pure storage.\n\
3389 Recursively copies contents of vectors and cons cells.\n\
3390 Does not copy symbols. Copies strings without text properties.")
3391 (obj)
3392 register Lisp_Object obj;
3394 if (NILP (Vpurify_flag))
3395 return obj;
3397 if ((PNTR_COMPARISON_TYPE) XPNTR (obj) < (PNTR_COMPARISON_TYPE) ((char *) pure + PURESIZE)
3398 && (PNTR_COMPARISON_TYPE) XPNTR (obj) >= (PNTR_COMPARISON_TYPE) pure)
3399 return obj;
3401 if (CONSP (obj))
3402 return pure_cons (XCAR (obj), XCDR (obj));
3403 else if (FLOATP (obj))
3404 return make_pure_float (XFLOAT_DATA (obj));
3405 else if (STRINGP (obj))
3406 return make_pure_string (XSTRING (obj)->data, XSTRING (obj)->size,
3407 STRING_BYTES (XSTRING (obj)),
3408 STRING_MULTIBYTE (obj));
3409 else if (COMPILEDP (obj) || VECTORP (obj))
3411 register struct Lisp_Vector *vec;
3412 register int i, size;
3414 size = XVECTOR (obj)->size;
3415 if (size & PSEUDOVECTOR_FLAG)
3416 size &= PSEUDOVECTOR_SIZE_MASK;
3417 vec = XVECTOR (make_pure_vector ((EMACS_INT) size));
3418 for (i = 0; i < size; i++)
3419 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
3420 if (COMPILEDP (obj))
3421 XSETCOMPILED (obj, vec);
3422 else
3423 XSETVECTOR (obj, vec);
3424 return obj;
3426 else if (MARKERP (obj))
3427 error ("Attempt to copy a marker to pure storage");
3429 return obj;
3434 /***********************************************************************
3435 Protection from GC
3436 ***********************************************************************/
3438 /* Recording what needs to be marked for gc. */
3440 struct gcpro *gcprolist;
3442 /* Addresses of staticpro'd variables. */
3444 #define NSTATICS 1024
3445 Lisp_Object *staticvec[NSTATICS] = {0};
3447 /* Index of next unused slot in staticvec. */
3449 int staticidx = 0;
3452 /* Put an entry in staticvec, pointing at the variable with address
3453 VARADDRESS. */
3455 void
3456 staticpro (varaddress)
3457 Lisp_Object *varaddress;
3459 staticvec[staticidx++] = varaddress;
3460 if (staticidx >= NSTATICS)
3461 abort ();
3464 struct catchtag
3466 Lisp_Object tag;
3467 Lisp_Object val;
3468 struct catchtag *next;
3471 struct backtrace
3473 struct backtrace *next;
3474 Lisp_Object *function;
3475 Lisp_Object *args; /* Points to vector of args. */
3476 int nargs; /* Length of vector. */
3477 /* If nargs is UNEVALLED, args points to slot holding list of
3478 unevalled args. */
3479 char evalargs;
3484 /***********************************************************************
3485 Protection from GC
3486 ***********************************************************************/
3488 /* Temporarily prevent garbage collection. */
3491 inhibit_garbage_collection ()
3493 int count = specpdl_ptr - specpdl;
3494 Lisp_Object number;
3495 int nbits = min (VALBITS, BITS_PER_INT);
3497 XSETINT (number, ((EMACS_INT) 1 << (nbits - 1)) - 1);
3499 specbind (Qgc_cons_threshold, number);
3501 return count;
3505 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
3506 "Reclaim storage for Lisp objects no longer needed.\n\
3507 Returns info on amount of space in use:\n\
3508 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)\n\
3509 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS\n\
3510 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS\n\
3511 (USED-STRINGS . FREE-STRINGS))\n\
3512 Garbage collection happens automatically if you cons more than\n\
3513 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.")
3516 register struct gcpro *tail;
3517 register struct specbinding *bind;
3518 struct catchtag *catch;
3519 struct handler *handler;
3520 register struct backtrace *backlist;
3521 char stack_top_variable;
3522 register int i;
3523 int message_p;
3524 Lisp_Object total[7];
3526 /* In case user calls debug_print during GC,
3527 don't let that cause a recursive GC. */
3528 consing_since_gc = 0;
3530 /* Save what's currently displayed in the echo area. */
3531 message_p = push_message ();
3533 /* Save a copy of the contents of the stack, for debugging. */
3534 #if MAX_SAVE_STACK > 0
3535 if (NILP (Vpurify_flag))
3537 i = &stack_top_variable - stack_bottom;
3538 if (i < 0) i = -i;
3539 if (i < MAX_SAVE_STACK)
3541 if (stack_copy == 0)
3542 stack_copy = (char *) xmalloc (stack_copy_size = i);
3543 else if (stack_copy_size < i)
3544 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
3545 if (stack_copy)
3547 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
3548 bcopy (stack_bottom, stack_copy, i);
3549 else
3550 bcopy (&stack_top_variable, stack_copy, i);
3554 #endif /* MAX_SAVE_STACK > 0 */
3556 if (garbage_collection_messages)
3557 message1_nolog ("Garbage collecting...");
3559 BLOCK_INPUT;
3561 shrink_regexp_cache ();
3563 /* Don't keep undo information around forever. */
3565 register struct buffer *nextb = all_buffers;
3567 while (nextb)
3569 /* If a buffer's undo list is Qt, that means that undo is
3570 turned off in that buffer. Calling truncate_undo_list on
3571 Qt tends to return NULL, which effectively turns undo back on.
3572 So don't call truncate_undo_list if undo_list is Qt. */
3573 if (! EQ (nextb->undo_list, Qt))
3574 nextb->undo_list
3575 = truncate_undo_list (nextb->undo_list, undo_limit,
3576 undo_strong_limit);
3577 nextb = nextb->next;
3581 gc_in_progress = 1;
3583 /* clear_marks (); */
3585 /* Mark all the special slots that serve as the roots of accessibility.
3587 Usually the special slots to mark are contained in particular structures.
3588 Then we know no slot is marked twice because the structures don't overlap.
3589 In some cases, the structures point to the slots to be marked.
3590 For these, we use MARKBIT to avoid double marking of the slot. */
3592 for (i = 0; i < staticidx; i++)
3593 mark_object (staticvec[i]);
3595 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
3596 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
3597 mark_stack ();
3598 #else
3599 for (tail = gcprolist; tail; tail = tail->next)
3600 for (i = 0; i < tail->nvars; i++)
3601 if (!XMARKBIT (tail->var[i]))
3603 /* Explicit casting prevents compiler warning about
3604 discarding the `volatile' qualifier. */
3605 mark_object ((Lisp_Object *)&tail->var[i]);
3606 XMARK (tail->var[i]);
3608 #endif
3610 mark_byte_stack ();
3611 for (bind = specpdl; bind != specpdl_ptr; bind++)
3613 mark_object (&bind->symbol);
3614 mark_object (&bind->old_value);
3616 for (catch = catchlist; catch; catch = catch->next)
3618 mark_object (&catch->tag);
3619 mark_object (&catch->val);
3621 for (handler = handlerlist; handler; handler = handler->next)
3623 mark_object (&handler->handler);
3624 mark_object (&handler->var);
3626 for (backlist = backtrace_list; backlist; backlist = backlist->next)
3628 if (!XMARKBIT (*backlist->function))
3630 mark_object (backlist->function);
3631 XMARK (*backlist->function);
3633 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
3634 i = 0;
3635 else
3636 i = backlist->nargs - 1;
3637 for (; i >= 0; i--)
3638 if (!XMARKBIT (backlist->args[i]))
3640 mark_object (&backlist->args[i]);
3641 XMARK (backlist->args[i]);
3644 mark_kboards ();
3646 /* Look thru every buffer's undo list
3647 for elements that update markers that were not marked,
3648 and delete them. */
3650 register struct buffer *nextb = all_buffers;
3652 while (nextb)
3654 /* If a buffer's undo list is Qt, that means that undo is
3655 turned off in that buffer. Calling truncate_undo_list on
3656 Qt tends to return NULL, which effectively turns undo back on.
3657 So don't call truncate_undo_list if undo_list is Qt. */
3658 if (! EQ (nextb->undo_list, Qt))
3660 Lisp_Object tail, prev;
3661 tail = nextb->undo_list;
3662 prev = Qnil;
3663 while (CONSP (tail))
3665 if (GC_CONSP (XCAR (tail))
3666 && GC_MARKERP (XCAR (XCAR (tail)))
3667 && ! XMARKBIT (XMARKER (XCAR (XCAR (tail)))->chain))
3669 if (NILP (prev))
3670 nextb->undo_list = tail = XCDR (tail);
3671 else
3672 tail = XCDR (prev) = XCDR (tail);
3674 else
3676 prev = tail;
3677 tail = XCDR (tail);
3682 nextb = nextb->next;
3686 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3687 mark_stack ();
3688 #endif
3690 gc_sweep ();
3692 /* Clear the mark bits that we set in certain root slots. */
3694 #if (GC_MARK_STACK == GC_USE_GCPROS_AS_BEFORE \
3695 || GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES)
3696 for (tail = gcprolist; tail; tail = tail->next)
3697 for (i = 0; i < tail->nvars; i++)
3698 XUNMARK (tail->var[i]);
3699 #endif
3701 unmark_byte_stack ();
3702 for (backlist = backtrace_list; backlist; backlist = backlist->next)
3704 XUNMARK (*backlist->function);
3705 if (backlist->nargs == UNEVALLED || backlist->nargs == MANY)
3706 i = 0;
3707 else
3708 i = backlist->nargs - 1;
3709 for (; i >= 0; i--)
3710 XUNMARK (backlist->args[i]);
3712 XUNMARK (buffer_defaults.name);
3713 XUNMARK (buffer_local_symbols.name);
3715 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
3716 dump_zombies ();
3717 #endif
3719 UNBLOCK_INPUT;
3721 /* clear_marks (); */
3722 gc_in_progress = 0;
3724 consing_since_gc = 0;
3725 if (gc_cons_threshold < 10000)
3726 gc_cons_threshold = 10000;
3728 if (garbage_collection_messages)
3730 if (message_p || minibuf_level > 0)
3731 restore_message ();
3732 else
3733 message1_nolog ("Garbage collecting...done");
3736 pop_message ();
3738 total[0] = Fcons (make_number (total_conses),
3739 make_number (total_free_conses));
3740 total[1] = Fcons (make_number (total_symbols),
3741 make_number (total_free_symbols));
3742 total[2] = Fcons (make_number (total_markers),
3743 make_number (total_free_markers));
3744 total[3] = Fcons (make_number (total_string_size),
3745 make_number (total_vector_size));
3746 total[4] = Fcons (make_number (total_floats),
3747 make_number (total_free_floats));
3748 total[5] = Fcons (make_number (total_intervals),
3749 make_number (total_free_intervals));
3750 total[6] = Fcons (make_number (total_strings),
3751 make_number (total_free_strings));
3753 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3755 /* Compute average percentage of zombies. */
3756 double nlive = 0;
3758 for (i = 0; i < 7; ++i)
3759 nlive += XFASTINT (XCAR (total[i]));
3761 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
3762 max_live = max (nlive, max_live);
3763 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
3764 max_zombies = max (nzombies, max_zombies);
3765 ++ngcs;
3767 #endif
3769 return Flist (7, total);
3773 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
3774 only interesting objects referenced from glyphs are strings. */
3776 static void
3777 mark_glyph_matrix (matrix)
3778 struct glyph_matrix *matrix;
3780 struct glyph_row *row = matrix->rows;
3781 struct glyph_row *end = row + matrix->nrows;
3783 for (; row < end; ++row)
3784 if (row->enabled_p)
3786 int area;
3787 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
3789 struct glyph *glyph = row->glyphs[area];
3790 struct glyph *end_glyph = glyph + row->used[area];
3792 for (; glyph < end_glyph; ++glyph)
3793 if (GC_STRINGP (glyph->object)
3794 && !STRING_MARKED_P (XSTRING (glyph->object)))
3795 mark_object (&glyph->object);
3801 /* Mark Lisp faces in the face cache C. */
3803 static void
3804 mark_face_cache (c)
3805 struct face_cache *c;
3807 if (c)
3809 int i, j;
3810 for (i = 0; i < c->used; ++i)
3812 struct face *face = FACE_FROM_ID (c->f, i);
3814 if (face)
3816 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
3817 mark_object (&face->lface[j]);
3824 #ifdef HAVE_WINDOW_SYSTEM
3826 /* Mark Lisp objects in image IMG. */
3828 static void
3829 mark_image (img)
3830 struct image *img;
3832 mark_object (&img->spec);
3834 if (!NILP (img->data.lisp_val))
3835 mark_object (&img->data.lisp_val);
3839 /* Mark Lisp objects in image cache of frame F. It's done this way so
3840 that we don't have to include xterm.h here. */
3842 static void
3843 mark_image_cache (f)
3844 struct frame *f;
3846 forall_images_in_image_cache (f, mark_image);
3849 #endif /* HAVE_X_WINDOWS */
3853 /* Mark reference to a Lisp_Object.
3854 If the object referred to has not been seen yet, recursively mark
3855 all the references contained in it. */
3857 #define LAST_MARKED_SIZE 500
3858 Lisp_Object *last_marked[LAST_MARKED_SIZE];
3859 int last_marked_index;
3861 void
3862 mark_object (argptr)
3863 Lisp_Object *argptr;
3865 Lisp_Object *objptr = argptr;
3866 register Lisp_Object obj;
3867 #ifdef GC_CHECK_MARKED_OBJECTS
3868 void *po;
3869 struct mem_node *m;
3870 #endif
3872 loop:
3873 obj = *objptr;
3874 loop2:
3875 XUNMARK (obj);
3877 if (PURE_POINTER_P ((PNTR_COMPARISON_TYPE) XPNTR (obj)))
3878 return;
3880 last_marked[last_marked_index++] = objptr;
3881 if (last_marked_index == LAST_MARKED_SIZE)
3882 last_marked_index = 0;
3884 /* Perform some sanity checks on the objects marked here. Abort if
3885 we encounter an object we know is bogus. This increases GC time
3886 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
3887 #ifdef GC_CHECK_MARKED_OBJECTS
3889 po = (void *) XPNTR (obj);
3891 /* Check that the object pointed to by PO is known to be a Lisp
3892 structure allocated from the heap. */
3893 #define CHECK_ALLOCATED() \
3894 do { \
3895 m = mem_find (po); \
3896 if (m == MEM_NIL) \
3897 abort (); \
3898 } while (0)
3900 /* Check that the object pointed to by PO is live, using predicate
3901 function LIVEP. */
3902 #define CHECK_LIVE(LIVEP) \
3903 do { \
3904 if (!LIVEP (m, po)) \
3905 abort (); \
3906 } while (0)
3908 /* Check both of the above conditions. */
3909 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
3910 do { \
3911 CHECK_ALLOCATED (); \
3912 CHECK_LIVE (LIVEP); \
3913 } while (0) \
3915 #else /* not GC_CHECK_MARKED_OBJECTS */
3917 #define CHECK_ALLOCATED() (void) 0
3918 #define CHECK_LIVE(LIVEP) (void) 0
3919 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
3921 #endif /* not GC_CHECK_MARKED_OBJECTS */
3923 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
3925 case Lisp_String:
3927 register struct Lisp_String *ptr = XSTRING (obj);
3928 CHECK_ALLOCATED_AND_LIVE (live_string_p);
3929 MARK_INTERVAL_TREE (ptr->intervals);
3930 MARK_STRING (ptr);
3932 break;
3934 case Lisp_Vectorlike:
3935 #ifdef GC_CHECK_MARKED_OBJECTS
3936 m = mem_find (po);
3937 if (m == MEM_NIL && !GC_SUBRP (obj)
3938 && po != &buffer_defaults
3939 && po != &buffer_local_symbols)
3940 abort ();
3941 #endif /* GC_CHECK_MARKED_OBJECTS */
3943 if (GC_BUFFERP (obj))
3945 if (!XMARKBIT (XBUFFER (obj)->name))
3947 #ifdef GC_CHECK_MARKED_OBJECTS
3948 if (po != &buffer_defaults && po != &buffer_local_symbols)
3950 struct buffer *b;
3951 for (b = all_buffers; b && b != po; b = b->next)
3953 if (b == NULL)
3954 abort ();
3956 #endif /* GC_CHECK_MARKED_OBJECTS */
3957 mark_buffer (obj);
3960 else if (GC_SUBRP (obj))
3961 break;
3962 else if (GC_COMPILEDP (obj))
3963 /* We could treat this just like a vector, but it is better to
3964 save the COMPILED_CONSTANTS element for last and avoid
3965 recursion there. */
3967 register struct Lisp_Vector *ptr = XVECTOR (obj);
3968 register EMACS_INT size = ptr->size;
3969 register int i;
3971 if (size & ARRAY_MARK_FLAG)
3972 break; /* Already marked */
3974 CHECK_LIVE (live_vector_p);
3975 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
3976 size &= PSEUDOVECTOR_SIZE_MASK;
3977 for (i = 0; i < size; i++) /* and then mark its elements */
3979 if (i != COMPILED_CONSTANTS)
3980 mark_object (&ptr->contents[i]);
3982 /* This cast should be unnecessary, but some Mips compiler complains
3983 (MIPS-ABI + SysVR4, DC/OSx, etc). */
3984 objptr = (Lisp_Object *) &ptr->contents[COMPILED_CONSTANTS];
3985 goto loop;
3987 else if (GC_FRAMEP (obj))
3989 register struct frame *ptr = XFRAME (obj);
3990 register EMACS_INT size = ptr->size;
3992 if (size & ARRAY_MARK_FLAG) break; /* Already marked */
3993 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
3995 CHECK_LIVE (live_vector_p);
3996 mark_object (&ptr->name);
3997 mark_object (&ptr->icon_name);
3998 mark_object (&ptr->title);
3999 mark_object (&ptr->focus_frame);
4000 mark_object (&ptr->selected_window);
4001 mark_object (&ptr->minibuffer_window);
4002 mark_object (&ptr->param_alist);
4003 mark_object (&ptr->scroll_bars);
4004 mark_object (&ptr->condemned_scroll_bars);
4005 mark_object (&ptr->menu_bar_items);
4006 mark_object (&ptr->face_alist);
4007 mark_object (&ptr->menu_bar_vector);
4008 mark_object (&ptr->buffer_predicate);
4009 mark_object (&ptr->buffer_list);
4010 mark_object (&ptr->menu_bar_window);
4011 mark_object (&ptr->tool_bar_window);
4012 mark_face_cache (ptr->face_cache);
4013 #ifdef HAVE_WINDOW_SYSTEM
4014 mark_image_cache (ptr);
4015 mark_object (&ptr->desired_tool_bar_items);
4016 mark_object (&ptr->current_tool_bar_items);
4017 mark_object (&ptr->desired_tool_bar_string);
4018 mark_object (&ptr->current_tool_bar_string);
4019 #endif /* HAVE_WINDOW_SYSTEM */
4021 else if (GC_BOOL_VECTOR_P (obj))
4023 register struct Lisp_Vector *ptr = XVECTOR (obj);
4025 if (ptr->size & ARRAY_MARK_FLAG)
4026 break; /* Already marked */
4027 CHECK_LIVE (live_vector_p);
4028 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
4030 else if (GC_WINDOWP (obj))
4032 register struct Lisp_Vector *ptr = XVECTOR (obj);
4033 struct window *w = XWINDOW (obj);
4034 register EMACS_INT size = ptr->size;
4035 register int i;
4037 /* Stop if already marked. */
4038 if (size & ARRAY_MARK_FLAG)
4039 break;
4041 /* Mark it. */
4042 CHECK_LIVE (live_vector_p);
4043 ptr->size |= ARRAY_MARK_FLAG;
4045 /* There is no Lisp data above The member CURRENT_MATRIX in
4046 struct WINDOW. Stop marking when that slot is reached. */
4047 for (i = 0;
4048 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
4049 i++)
4050 mark_object (&ptr->contents[i]);
4052 /* Mark glyphs for leaf windows. Marking window matrices is
4053 sufficient because frame matrices use the same glyph
4054 memory. */
4055 if (NILP (w->hchild)
4056 && NILP (w->vchild)
4057 && w->current_matrix)
4059 mark_glyph_matrix (w->current_matrix);
4060 mark_glyph_matrix (w->desired_matrix);
4063 else if (GC_HASH_TABLE_P (obj))
4065 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
4066 EMACS_INT size = h->size;
4068 /* Stop if already marked. */
4069 if (size & ARRAY_MARK_FLAG)
4070 break;
4072 /* Mark it. */
4073 CHECK_LIVE (live_vector_p);
4074 h->size |= ARRAY_MARK_FLAG;
4076 /* Mark contents. */
4077 mark_object (&h->test);
4078 mark_object (&h->weak);
4079 mark_object (&h->rehash_size);
4080 mark_object (&h->rehash_threshold);
4081 mark_object (&h->hash);
4082 mark_object (&h->next);
4083 mark_object (&h->index);
4084 mark_object (&h->user_hash_function);
4085 mark_object (&h->user_cmp_function);
4087 /* If hash table is not weak, mark all keys and values.
4088 For weak tables, mark only the vector. */
4089 if (GC_NILP (h->weak))
4090 mark_object (&h->key_and_value);
4091 else
4092 XVECTOR (h->key_and_value)->size |= ARRAY_MARK_FLAG;
4095 else
4097 register struct Lisp_Vector *ptr = XVECTOR (obj);
4098 register EMACS_INT size = ptr->size;
4099 register int i;
4101 if (size & ARRAY_MARK_FLAG) break; /* Already marked */
4102 CHECK_LIVE (live_vector_p);
4103 ptr->size |= ARRAY_MARK_FLAG; /* Else mark it */
4104 if (size & PSEUDOVECTOR_FLAG)
4105 size &= PSEUDOVECTOR_SIZE_MASK;
4107 for (i = 0; i < size; i++) /* and then mark its elements */
4108 mark_object (&ptr->contents[i]);
4110 break;
4112 case Lisp_Symbol:
4114 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
4115 struct Lisp_Symbol *ptrx;
4117 if (XMARKBIT (ptr->plist)) break;
4118 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
4119 XMARK (ptr->plist);
4120 mark_object ((Lisp_Object *) &ptr->value);
4121 mark_object (&ptr->function);
4122 mark_object (&ptr->plist);
4124 if (!PURE_POINTER_P (ptr->name))
4125 MARK_STRING (ptr->name);
4126 MARK_INTERVAL_TREE (ptr->name->intervals);
4128 /* Note that we do not mark the obarray of the symbol.
4129 It is safe not to do so because nothing accesses that
4130 slot except to check whether it is nil. */
4131 ptr = ptr->next;
4132 if (ptr)
4134 /* For the benefit of the last_marked log. */
4135 objptr = (Lisp_Object *)&XSYMBOL (obj)->next;
4136 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
4137 XSETSYMBOL (obj, ptrx);
4138 /* We can't goto loop here because *objptr doesn't contain an
4139 actual Lisp_Object with valid datatype field. */
4140 goto loop2;
4143 break;
4145 case Lisp_Misc:
4146 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
4147 switch (XMISCTYPE (obj))
4149 case Lisp_Misc_Marker:
4150 XMARK (XMARKER (obj)->chain);
4151 /* DO NOT mark thru the marker's chain.
4152 The buffer's markers chain does not preserve markers from gc;
4153 instead, markers are removed from the chain when freed by gc. */
4154 break;
4156 case Lisp_Misc_Buffer_Local_Value:
4157 case Lisp_Misc_Some_Buffer_Local_Value:
4159 register struct Lisp_Buffer_Local_Value *ptr
4160 = XBUFFER_LOCAL_VALUE (obj);
4161 if (XMARKBIT (ptr->realvalue)) break;
4162 XMARK (ptr->realvalue);
4163 /* If the cdr is nil, avoid recursion for the car. */
4164 if (EQ (ptr->cdr, Qnil))
4166 objptr = &ptr->realvalue;
4167 goto loop;
4169 mark_object (&ptr->realvalue);
4170 mark_object (&ptr->buffer);
4171 mark_object (&ptr->frame);
4172 objptr = &ptr->cdr;
4173 goto loop;
4176 case Lisp_Misc_Intfwd:
4177 case Lisp_Misc_Boolfwd:
4178 case Lisp_Misc_Objfwd:
4179 case Lisp_Misc_Buffer_Objfwd:
4180 case Lisp_Misc_Kboard_Objfwd:
4181 /* Don't bother with Lisp_Buffer_Objfwd,
4182 since all markable slots in current buffer marked anyway. */
4183 /* Don't need to do Lisp_Objfwd, since the places they point
4184 are protected with staticpro. */
4185 break;
4187 case Lisp_Misc_Overlay:
4189 struct Lisp_Overlay *ptr = XOVERLAY (obj);
4190 if (!XMARKBIT (ptr->plist))
4192 XMARK (ptr->plist);
4193 mark_object (&ptr->start);
4194 mark_object (&ptr->end);
4195 objptr = &ptr->plist;
4196 goto loop;
4199 break;
4201 default:
4202 abort ();
4204 break;
4206 case Lisp_Cons:
4208 register struct Lisp_Cons *ptr = XCONS (obj);
4209 if (XMARKBIT (ptr->car)) break;
4210 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
4211 XMARK (ptr->car);
4212 /* If the cdr is nil, avoid recursion for the car. */
4213 if (EQ (ptr->cdr, Qnil))
4215 objptr = &ptr->car;
4216 goto loop;
4218 mark_object (&ptr->car);
4219 objptr = &ptr->cdr;
4220 goto loop;
4223 case Lisp_Float:
4224 CHECK_ALLOCATED_AND_LIVE (live_float_p);
4225 XMARK (XFLOAT (obj)->type);
4226 break;
4228 case Lisp_Int:
4229 break;
4231 default:
4232 abort ();
4235 #undef CHECK_LIVE
4236 #undef CHECK_ALLOCATED
4237 #undef CHECK_ALLOCATED_AND_LIVE
4240 /* Mark the pointers in a buffer structure. */
4242 static void
4243 mark_buffer (buf)
4244 Lisp_Object buf;
4246 register struct buffer *buffer = XBUFFER (buf);
4247 register Lisp_Object *ptr;
4248 Lisp_Object base_buffer;
4250 /* This is the buffer's markbit */
4251 mark_object (&buffer->name);
4252 XMARK (buffer->name);
4254 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
4256 if (CONSP (buffer->undo_list))
4258 Lisp_Object tail;
4259 tail = buffer->undo_list;
4261 while (CONSP (tail))
4263 register struct Lisp_Cons *ptr = XCONS (tail);
4265 if (XMARKBIT (ptr->car))
4266 break;
4267 XMARK (ptr->car);
4268 if (GC_CONSP (ptr->car)
4269 && ! XMARKBIT (XCAR (ptr->car))
4270 && GC_MARKERP (XCAR (ptr->car)))
4272 XMARK (XCAR (ptr->car));
4273 mark_object (&XCDR (ptr->car));
4275 else
4276 mark_object (&ptr->car);
4278 if (CONSP (ptr->cdr))
4279 tail = ptr->cdr;
4280 else
4281 break;
4284 mark_object (&XCDR (tail));
4286 else
4287 mark_object (&buffer->undo_list);
4289 for (ptr = &buffer->name + 1;
4290 (char *)ptr < (char *)buffer + sizeof (struct buffer);
4291 ptr++)
4292 mark_object (ptr);
4294 /* If this is an indirect buffer, mark its base buffer. */
4295 if (buffer->base_buffer && !XMARKBIT (buffer->base_buffer->name))
4297 XSETBUFFER (base_buffer, buffer->base_buffer);
4298 mark_buffer (base_buffer);
4303 /* Mark the pointers in the kboard objects. */
4305 static void
4306 mark_kboards ()
4308 KBOARD *kb;
4309 Lisp_Object *p;
4310 for (kb = all_kboards; kb; kb = kb->next_kboard)
4312 if (kb->kbd_macro_buffer)
4313 for (p = kb->kbd_macro_buffer; p < kb->kbd_macro_ptr; p++)
4314 mark_object (p);
4315 mark_object (&kb->Voverriding_terminal_local_map);
4316 mark_object (&kb->Vlast_command);
4317 mark_object (&kb->Vreal_last_command);
4318 mark_object (&kb->Vprefix_arg);
4319 mark_object (&kb->Vlast_prefix_arg);
4320 mark_object (&kb->kbd_queue);
4321 mark_object (&kb->defining_kbd_macro);
4322 mark_object (&kb->Vlast_kbd_macro);
4323 mark_object (&kb->Vsystem_key_alist);
4324 mark_object (&kb->system_key_syms);
4325 mark_object (&kb->Vdefault_minibuffer_frame);
4330 /* Value is non-zero if OBJ will survive the current GC because it's
4331 either marked or does not need to be marked to survive. */
4334 survives_gc_p (obj)
4335 Lisp_Object obj;
4337 int survives_p;
4339 switch (XGCTYPE (obj))
4341 case Lisp_Int:
4342 survives_p = 1;
4343 break;
4345 case Lisp_Symbol:
4346 survives_p = XMARKBIT (XSYMBOL (obj)->plist);
4347 break;
4349 case Lisp_Misc:
4350 switch (XMISCTYPE (obj))
4352 case Lisp_Misc_Marker:
4353 survives_p = XMARKBIT (obj);
4354 break;
4356 case Lisp_Misc_Buffer_Local_Value:
4357 case Lisp_Misc_Some_Buffer_Local_Value:
4358 survives_p = XMARKBIT (XBUFFER_LOCAL_VALUE (obj)->realvalue);
4359 break;
4361 case Lisp_Misc_Intfwd:
4362 case Lisp_Misc_Boolfwd:
4363 case Lisp_Misc_Objfwd:
4364 case Lisp_Misc_Buffer_Objfwd:
4365 case Lisp_Misc_Kboard_Objfwd:
4366 survives_p = 1;
4367 break;
4369 case Lisp_Misc_Overlay:
4370 survives_p = XMARKBIT (XOVERLAY (obj)->plist);
4371 break;
4373 default:
4374 abort ();
4376 break;
4378 case Lisp_String:
4380 struct Lisp_String *s = XSTRING (obj);
4381 survives_p = STRING_MARKED_P (s);
4383 break;
4385 case Lisp_Vectorlike:
4386 if (GC_BUFFERP (obj))
4387 survives_p = XMARKBIT (XBUFFER (obj)->name);
4388 else if (GC_SUBRP (obj))
4389 survives_p = 1;
4390 else
4391 survives_p = XVECTOR (obj)->size & ARRAY_MARK_FLAG;
4392 break;
4394 case Lisp_Cons:
4395 survives_p = XMARKBIT (XCAR (obj));
4396 break;
4398 case Lisp_Float:
4399 survives_p = XMARKBIT (XFLOAT (obj)->type);
4400 break;
4402 default:
4403 abort ();
4406 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
4411 /* Sweep: find all structures not marked, and free them. */
4413 static void
4414 gc_sweep ()
4416 /* Remove or mark entries in weak hash tables.
4417 This must be done before any object is unmarked. */
4418 sweep_weak_hash_tables ();
4420 sweep_strings ();
4422 /* Put all unmarked conses on free list */
4424 register struct cons_block *cblk;
4425 struct cons_block **cprev = &cons_block;
4426 register int lim = cons_block_index;
4427 register int num_free = 0, num_used = 0;
4429 cons_free_list = 0;
4431 for (cblk = cons_block; cblk; cblk = *cprev)
4433 register int i;
4434 int this_free = 0;
4435 for (i = 0; i < lim; i++)
4436 if (!XMARKBIT (cblk->conses[i].car))
4438 this_free++;
4439 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
4440 cons_free_list = &cblk->conses[i];
4441 #if GC_MARK_STACK
4442 cons_free_list->car = Vdead;
4443 #endif
4445 else
4447 num_used++;
4448 XUNMARK (cblk->conses[i].car);
4450 lim = CONS_BLOCK_SIZE;
4451 /* If this block contains only free conses and we have already
4452 seen more than two blocks worth of free conses then deallocate
4453 this block. */
4454 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
4456 *cprev = cblk->next;
4457 /* Unhook from the free list. */
4458 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
4459 lisp_free (cblk);
4460 n_cons_blocks--;
4462 else
4464 num_free += this_free;
4465 cprev = &cblk->next;
4468 total_conses = num_used;
4469 total_free_conses = num_free;
4472 /* Put all unmarked floats on free list */
4474 register struct float_block *fblk;
4475 struct float_block **fprev = &float_block;
4476 register int lim = float_block_index;
4477 register int num_free = 0, num_used = 0;
4479 float_free_list = 0;
4481 for (fblk = float_block; fblk; fblk = *fprev)
4483 register int i;
4484 int this_free = 0;
4485 for (i = 0; i < lim; i++)
4486 if (!XMARKBIT (fblk->floats[i].type))
4488 this_free++;
4489 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
4490 float_free_list = &fblk->floats[i];
4491 #if GC_MARK_STACK
4492 float_free_list->type = Vdead;
4493 #endif
4495 else
4497 num_used++;
4498 XUNMARK (fblk->floats[i].type);
4500 lim = FLOAT_BLOCK_SIZE;
4501 /* If this block contains only free floats and we have already
4502 seen more than two blocks worth of free floats then deallocate
4503 this block. */
4504 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
4506 *fprev = fblk->next;
4507 /* Unhook from the free list. */
4508 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
4509 lisp_free (fblk);
4510 n_float_blocks--;
4512 else
4514 num_free += this_free;
4515 fprev = &fblk->next;
4518 total_floats = num_used;
4519 total_free_floats = num_free;
4522 /* Put all unmarked intervals on free list */
4524 register struct interval_block *iblk;
4525 struct interval_block **iprev = &interval_block;
4526 register int lim = interval_block_index;
4527 register int num_free = 0, num_used = 0;
4529 interval_free_list = 0;
4531 for (iblk = interval_block; iblk; iblk = *iprev)
4533 register int i;
4534 int this_free = 0;
4536 for (i = 0; i < lim; i++)
4538 if (! XMARKBIT (iblk->intervals[i].plist))
4540 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
4541 interval_free_list = &iblk->intervals[i];
4542 this_free++;
4544 else
4546 num_used++;
4547 XUNMARK (iblk->intervals[i].plist);
4550 lim = INTERVAL_BLOCK_SIZE;
4551 /* If this block contains only free intervals and we have already
4552 seen more than two blocks worth of free intervals then
4553 deallocate this block. */
4554 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
4556 *iprev = iblk->next;
4557 /* Unhook from the free list. */
4558 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
4559 lisp_free (iblk);
4560 n_interval_blocks--;
4562 else
4564 num_free += this_free;
4565 iprev = &iblk->next;
4568 total_intervals = num_used;
4569 total_free_intervals = num_free;
4572 /* Put all unmarked symbols on free list */
4574 register struct symbol_block *sblk;
4575 struct symbol_block **sprev = &symbol_block;
4576 register int lim = symbol_block_index;
4577 register int num_free = 0, num_used = 0;
4579 symbol_free_list = 0;
4581 for (sblk = symbol_block; sblk; sblk = *sprev)
4583 register int i;
4584 int this_free = 0;
4585 for (i = 0; i < lim; i++)
4586 if (!XMARKBIT (sblk->symbols[i].plist))
4588 *(struct Lisp_Symbol **)&sblk->symbols[i].value = symbol_free_list;
4589 symbol_free_list = &sblk->symbols[i];
4590 #if GC_MARK_STACK
4591 symbol_free_list->function = Vdead;
4592 #endif
4593 this_free++;
4595 else
4597 num_used++;
4598 if (!PURE_POINTER_P (sblk->symbols[i].name))
4599 UNMARK_STRING (sblk->symbols[i].name);
4600 XUNMARK (sblk->symbols[i].plist);
4602 lim = SYMBOL_BLOCK_SIZE;
4603 /* If this block contains only free symbols and we have already
4604 seen more than two blocks worth of free symbols then deallocate
4605 this block. */
4606 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
4608 *sprev = sblk->next;
4609 /* Unhook from the free list. */
4610 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
4611 lisp_free (sblk);
4612 n_symbol_blocks--;
4614 else
4616 num_free += this_free;
4617 sprev = &sblk->next;
4620 total_symbols = num_used;
4621 total_free_symbols = num_free;
4624 /* Put all unmarked misc's on free list.
4625 For a marker, first unchain it from the buffer it points into. */
4627 register struct marker_block *mblk;
4628 struct marker_block **mprev = &marker_block;
4629 register int lim = marker_block_index;
4630 register int num_free = 0, num_used = 0;
4632 marker_free_list = 0;
4634 for (mblk = marker_block; mblk; mblk = *mprev)
4636 register int i;
4637 int this_free = 0;
4638 EMACS_INT already_free = -1;
4640 for (i = 0; i < lim; i++)
4642 Lisp_Object *markword;
4643 switch (mblk->markers[i].u_marker.type)
4645 case Lisp_Misc_Marker:
4646 markword = &mblk->markers[i].u_marker.chain;
4647 break;
4648 case Lisp_Misc_Buffer_Local_Value:
4649 case Lisp_Misc_Some_Buffer_Local_Value:
4650 markword = &mblk->markers[i].u_buffer_local_value.realvalue;
4651 break;
4652 case Lisp_Misc_Overlay:
4653 markword = &mblk->markers[i].u_overlay.plist;
4654 break;
4655 case Lisp_Misc_Free:
4656 /* If the object was already free, keep it
4657 on the free list. */
4658 markword = (Lisp_Object *) &already_free;
4659 break;
4660 default:
4661 markword = 0;
4662 break;
4664 if (markword && !XMARKBIT (*markword))
4666 Lisp_Object tem;
4667 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
4669 /* tem1 avoids Sun compiler bug */
4670 struct Lisp_Marker *tem1 = &mblk->markers[i].u_marker;
4671 XSETMARKER (tem, tem1);
4672 unchain_marker (tem);
4674 /* Set the type of the freed object to Lisp_Misc_Free.
4675 We could leave the type alone, since nobody checks it,
4676 but this might catch bugs faster. */
4677 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
4678 mblk->markers[i].u_free.chain = marker_free_list;
4679 marker_free_list = &mblk->markers[i];
4680 this_free++;
4682 else
4684 num_used++;
4685 if (markword)
4686 XUNMARK (*markword);
4689 lim = MARKER_BLOCK_SIZE;
4690 /* If this block contains only free markers and we have already
4691 seen more than two blocks worth of free markers then deallocate
4692 this block. */
4693 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
4695 *mprev = mblk->next;
4696 /* Unhook from the free list. */
4697 marker_free_list = mblk->markers[0].u_free.chain;
4698 lisp_free (mblk);
4699 n_marker_blocks--;
4701 else
4703 num_free += this_free;
4704 mprev = &mblk->next;
4708 total_markers = num_used;
4709 total_free_markers = num_free;
4712 /* Free all unmarked buffers */
4714 register struct buffer *buffer = all_buffers, *prev = 0, *next;
4716 while (buffer)
4717 if (!XMARKBIT (buffer->name))
4719 if (prev)
4720 prev->next = buffer->next;
4721 else
4722 all_buffers = buffer->next;
4723 next = buffer->next;
4724 lisp_free (buffer);
4725 buffer = next;
4727 else
4729 XUNMARK (buffer->name);
4730 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
4731 prev = buffer, buffer = buffer->next;
4735 /* Free all unmarked vectors */
4737 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
4738 total_vector_size = 0;
4740 while (vector)
4741 if (!(vector->size & ARRAY_MARK_FLAG))
4743 if (prev)
4744 prev->next = vector->next;
4745 else
4746 all_vectors = vector->next;
4747 next = vector->next;
4748 lisp_free (vector);
4749 n_vectors--;
4750 vector = next;
4753 else
4755 vector->size &= ~ARRAY_MARK_FLAG;
4756 if (vector->size & PSEUDOVECTOR_FLAG)
4757 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
4758 else
4759 total_vector_size += vector->size;
4760 prev = vector, vector = vector->next;
4768 /* Debugging aids. */
4770 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
4771 "Return the address of the last byte Emacs has allocated, divided by 1024.\n\
4772 This may be helpful in debugging Emacs's memory usage.\n\
4773 We divide the value by 1024 to make sure it fits in a Lisp integer.")
4776 Lisp_Object end;
4778 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
4780 return end;
4783 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
4784 "Return a list of counters that measure how much consing there has been.\n\
4785 Each of these counters increments for a certain kind of object.\n\
4786 The counters wrap around from the largest positive integer to zero.\n\
4787 Garbage collection does not decrease them.\n\
4788 The elements of the value are as follows:\n\
4789 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)\n\
4790 All are in units of 1 = one object consed\n\
4791 except for VECTOR-CELLS and STRING-CHARS, which count the total length of\n\
4792 objects consed.\n\
4793 MISCS include overlays, markers, and some internal types.\n\
4794 Frames, windows, buffers, and subprocesses count as vectors\n\
4795 (but the contents of a buffer's text do not count here).")
4798 Lisp_Object consed[8];
4800 XSETINT (consed[0],
4801 cons_cells_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
4802 XSETINT (consed[1],
4803 floats_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
4804 XSETINT (consed[2],
4805 vector_cells_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
4806 XSETINT (consed[3],
4807 symbols_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
4808 XSETINT (consed[4],
4809 string_chars_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
4810 XSETINT (consed[5],
4811 misc_objects_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
4812 XSETINT (consed[6],
4813 intervals_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
4814 XSETINT (consed[7],
4815 strings_consed & ~(((EMACS_INT) 1) << (VALBITS - 1)));
4817 return Flist (8, consed);
4820 int suppress_checking;
4821 void
4822 die (msg, file, line)
4823 const char *msg;
4824 const char *file;
4825 int line;
4827 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
4828 file, line, msg);
4829 abort ();
4832 /* Initialization */
4834 void
4835 init_alloc_once ()
4837 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
4838 pureptr = 0;
4839 #if GC_MARK_STACK
4840 mem_init ();
4841 Vdead = make_pure_string ("DEAD", 4, 4, 0);
4842 #endif
4843 #ifdef HAVE_SHM
4844 pure_size = PURESIZE;
4845 #endif
4846 all_vectors = 0;
4847 ignore_warnings = 1;
4848 #ifdef DOUG_LEA_MALLOC
4849 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
4850 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
4851 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
4852 #endif
4853 init_strings ();
4854 init_cons ();
4855 init_symbol ();
4856 init_marker ();
4857 init_float ();
4858 init_intervals ();
4860 #ifdef REL_ALLOC
4861 malloc_hysteresis = 32;
4862 #else
4863 malloc_hysteresis = 0;
4864 #endif
4866 spare_memory = (char *) malloc (SPARE_MEMORY);
4868 ignore_warnings = 0;
4869 gcprolist = 0;
4870 byte_stack_list = 0;
4871 staticidx = 0;
4872 consing_since_gc = 0;
4873 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
4874 #ifdef VIRT_ADDR_VARIES
4875 malloc_sbrk_unused = 1<<22; /* A large number */
4876 malloc_sbrk_used = 100000; /* as reasonable as any number */
4877 #endif /* VIRT_ADDR_VARIES */
4880 void
4881 init_alloc ()
4883 gcprolist = 0;
4884 byte_stack_list = 0;
4885 #if GC_MARK_STACK
4886 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4887 setjmp_tested_p = longjmps_done = 0;
4888 #endif
4889 #endif
4892 void
4893 syms_of_alloc ()
4895 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
4896 "*Number of bytes of consing between garbage collections.\n\
4897 Garbage collection can happen automatically once this many bytes have been\n\
4898 allocated since the last garbage collection. All data types count.\n\n\
4899 Garbage collection happens automatically only when `eval' is called.\n\n\
4900 By binding this temporarily to a large number, you can effectively\n\
4901 prevent garbage collection during a part of the program.");
4903 DEFVAR_INT ("pure-bytes-used", &pureptr,
4904 "Number of bytes of sharable Lisp data allocated so far.");
4906 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
4907 "Number of cons cells that have been consed so far.");
4909 DEFVAR_INT ("floats-consed", &floats_consed,
4910 "Number of floats that have been consed so far.");
4912 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
4913 "Number of vector cells that have been consed so far.");
4915 DEFVAR_INT ("symbols-consed", &symbols_consed,
4916 "Number of symbols that have been consed so far.");
4918 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
4919 "Number of string characters that have been consed so far.");
4921 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
4922 "Number of miscellaneous objects that have been consed so far.");
4924 DEFVAR_INT ("intervals-consed", &intervals_consed,
4925 "Number of intervals that have been consed so far.");
4927 DEFVAR_INT ("strings-consed", &strings_consed,
4928 "Number of strings that have been consed so far.");
4930 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
4931 "Non-nil means loading Lisp code in order to dump an executable.\n\
4932 This means that certain objects should be allocated in shared (pure) space.");
4934 DEFVAR_INT ("undo-limit", &undo_limit,
4935 "Keep no more undo information once it exceeds this size.\n\
4936 This limit is applied when garbage collection happens.\n\
4937 The size is counted as the number of bytes occupied,\n\
4938 which includes both saved text and other data.");
4939 undo_limit = 20000;
4941 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
4942 "Don't keep more than this much size of undo information.\n\
4943 A command which pushes past this size is itself forgotten.\n\
4944 This limit is applied when garbage collection happens.\n\
4945 The size is counted as the number of bytes occupied,\n\
4946 which includes both saved text and other data.");
4947 undo_strong_limit = 30000;
4949 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
4950 "Non-nil means display messages at start and end of garbage collection.");
4951 garbage_collection_messages = 0;
4953 /* We build this in advance because if we wait until we need it, we might
4954 not be able to allocate the memory to hold it. */
4955 memory_signal_data
4956 = Fcons (Qerror, Fcons (build_string ("Memory exhausted--use M-x save-some-buffers RET"), Qnil));
4957 staticpro (&memory_signal_data);
4959 staticpro (&Qgc_cons_threshold);
4960 Qgc_cons_threshold = intern ("gc-cons-threshold");
4962 staticpro (&Qchar_table_extra_slots);
4963 Qchar_table_extra_slots = intern ("char-table-extra-slots");
4965 defsubr (&Scons);
4966 defsubr (&Slist);
4967 defsubr (&Svector);
4968 defsubr (&Smake_byte_code);
4969 defsubr (&Smake_list);
4970 defsubr (&Smake_vector);
4971 defsubr (&Smake_char_table);
4972 defsubr (&Smake_string);
4973 defsubr (&Smake_bool_vector);
4974 defsubr (&Smake_symbol);
4975 defsubr (&Smake_marker);
4976 defsubr (&Spurecopy);
4977 defsubr (&Sgarbage_collect);
4978 defsubr (&Smemory_limit);
4979 defsubr (&Smemory_use_counts);
4981 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4982 defsubr (&Sgc_status);
4983 #endif