Adjust consing_since_gc when objects are explicitly freed.
[emacs.git] / src / alloc.c
blob9f3c2a2ed4bfa0a266bf339ae4ee1c50c163f7bc
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
24 #include <setjmp.h>
26 #include <signal.h>
28 #ifdef HAVE_PTHREAD
29 #include <pthread.h>
30 #endif
32 /* This file is part of the core Lisp implementation, and thus must
33 deal with the real data structures. If the Lisp implementation is
34 replaced, this file likely will not be used. */
36 #undef HIDE_LISP_IMPLEMENTATION
37 #include "lisp.h"
38 #include "process.h"
39 #include "intervals.h"
40 #include "puresize.h"
41 #include "character.h"
42 #include "buffer.h"
43 #include "window.h"
44 #include "keyboard.h"
45 #include "frame.h"
46 #include "blockinput.h"
47 #include "syssignal.h"
48 #include "termhooks.h" /* For struct terminal. */
49 #include <setjmp.h>
50 #include <verify.h>
52 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
53 Doable only if GC_MARK_STACK. */
54 #if ! GC_MARK_STACK
55 # undef GC_CHECK_MARKED_OBJECTS
56 #endif
58 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
59 memory. Can do this only if using gmalloc.c and if not checking
60 marked objects. */
62 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
63 || defined GC_CHECK_MARKED_OBJECTS)
64 #undef GC_MALLOC_CHECK
65 #endif
67 #include <unistd.h>
68 #ifndef HAVE_UNISTD_H
69 extern void *sbrk ();
70 #endif
72 #include <fcntl.h>
74 #ifdef WINDOWSNT
75 #include "w32.h"
76 #endif
78 #ifdef DOUG_LEA_MALLOC
80 #include <malloc.h>
82 /* Specify maximum number of areas to mmap. It would be nice to use a
83 value that explicitly means "no limit". */
85 #define MMAP_MAX_AREAS 100000000
87 #else /* not DOUG_LEA_MALLOC */
89 /* The following come from gmalloc.c. */
91 extern size_t _bytes_used;
92 extern size_t __malloc_extra_blocks;
93 extern void *_malloc_internal (size_t);
94 extern void _free_internal (void *);
96 #endif /* not DOUG_LEA_MALLOC */
98 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
99 #ifdef HAVE_PTHREAD
101 /* When GTK uses the file chooser dialog, different backends can be loaded
102 dynamically. One such a backend is the Gnome VFS backend that gets loaded
103 if you run Gnome. That backend creates several threads and also allocates
104 memory with malloc.
106 Also, gconf and gsettings may create several threads.
108 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
109 functions below are called from malloc, there is a chance that one
110 of these threads preempts the Emacs main thread and the hook variables
111 end up in an inconsistent state. So we have a mutex to prevent that (note
112 that the backend handles concurrent access to malloc within its own threads
113 but Emacs code running in the main thread is not included in that control).
115 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
116 happens in one of the backend threads we will have two threads that tries
117 to run Emacs code at once, and the code is not prepared for that.
118 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
120 static pthread_mutex_t alloc_mutex;
122 #define BLOCK_INPUT_ALLOC \
123 do \
125 if (pthread_equal (pthread_self (), main_thread)) \
126 BLOCK_INPUT; \
127 pthread_mutex_lock (&alloc_mutex); \
129 while (0)
130 #define UNBLOCK_INPUT_ALLOC \
131 do \
133 pthread_mutex_unlock (&alloc_mutex); \
134 if (pthread_equal (pthread_self (), main_thread)) \
135 UNBLOCK_INPUT; \
137 while (0)
139 #else /* ! defined HAVE_PTHREAD */
141 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
142 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
144 #endif /* ! defined HAVE_PTHREAD */
145 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
147 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
148 to a struct Lisp_String. */
150 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
151 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
152 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
154 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
155 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
156 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
158 /* Value is the number of bytes of S, a pointer to a struct Lisp_String.
159 Be careful during GC, because S->size contains the mark bit for
160 strings. */
162 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
164 /* Default value of gc_cons_threshold (see below). */
166 #define GC_DEFAULT_THRESHOLD (100000 * sizeof (Lisp_Object))
168 /* Global variables. */
169 struct emacs_globals globals;
171 /* Number of bytes of consing done since the last gc. */
173 EMACS_INT consing_since_gc;
175 /* Similar minimum, computed from Vgc_cons_percentage. */
177 EMACS_INT gc_relative_threshold;
179 /* Minimum number of bytes of consing since GC before next GC,
180 when memory is full. */
182 EMACS_INT memory_full_cons_threshold;
184 /* Nonzero during GC. */
186 int gc_in_progress;
188 /* Nonzero means abort if try to GC.
189 This is for code which is written on the assumption that
190 no GC will happen, so as to verify that assumption. */
192 int abort_on_gc;
194 /* Number of live and free conses etc. */
196 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
197 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
198 static EMACS_INT total_free_floats, total_floats;
200 /* Points to memory space allocated as "spare", to be freed if we run
201 out of memory. We keep one large block, four cons-blocks, and
202 two string blocks. */
204 static char *spare_memory[7];
206 /* Amount of spare memory to keep in large reserve block, or to see
207 whether this much is available when malloc fails on a larger request. */
209 #define SPARE_MEMORY (1 << 14)
211 /* Number of extra blocks malloc should get when it needs more core. */
213 static int malloc_hysteresis;
215 /* Initialize it to a nonzero value to force it into data space
216 (rather than bss space). That way unexec will remap it into text
217 space (pure), on some systems. We have not implemented the
218 remapping on more recent systems because this is less important
219 nowadays than in the days of small memories and timesharing. */
221 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
222 #define PUREBEG (char *) pure
224 /* Pointer to the pure area, and its size. */
226 static char *purebeg;
227 static ptrdiff_t pure_size;
229 /* Number of bytes of pure storage used before pure storage overflowed.
230 If this is non-zero, this implies that an overflow occurred. */
232 static ptrdiff_t pure_bytes_used_before_overflow;
234 /* Value is non-zero if P points into pure space. */
236 #define PURE_POINTER_P(P) \
237 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
239 /* Index in pure at which next pure Lisp object will be allocated.. */
241 static ptrdiff_t pure_bytes_used_lisp;
243 /* Number of bytes allocated for non-Lisp objects in pure storage. */
245 static ptrdiff_t pure_bytes_used_non_lisp;
247 /* If nonzero, this is a warning delivered by malloc and not yet
248 displayed. */
250 const char *pending_malloc_warning;
252 /* Maximum amount of C stack to save when a GC happens. */
254 #ifndef MAX_SAVE_STACK
255 #define MAX_SAVE_STACK 16000
256 #endif
258 /* Buffer in which we save a copy of the C stack at each GC. */
260 #if MAX_SAVE_STACK > 0
261 static char *stack_copy;
262 static ptrdiff_t stack_copy_size;
263 #endif
265 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
266 static Lisp_Object Qgc_cons_threshold;
267 Lisp_Object Qchar_table_extra_slots;
269 /* Hook run after GC has finished. */
271 static Lisp_Object Qpost_gc_hook;
273 static void mark_terminals (void);
274 static void gc_sweep (void);
275 static Lisp_Object make_pure_vector (ptrdiff_t);
276 static void mark_glyph_matrix (struct glyph_matrix *);
277 static void mark_face_cache (struct face_cache *);
279 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
280 static void refill_memory_reserve (void);
281 #endif
282 static struct Lisp_String *allocate_string (void);
283 static void compact_small_strings (void);
284 static void free_large_strings (void);
285 static void sweep_strings (void);
286 static void free_misc (Lisp_Object);
287 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
289 /* Handy constants for vectorlike objects. */
290 enum
292 header_size = offsetof (struct Lisp_Vector, contents),
293 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
294 word_size = sizeof (Lisp_Object)
297 /* When scanning the C stack for live Lisp objects, Emacs keeps track
298 of what memory allocated via lisp_malloc is intended for what
299 purpose. This enumeration specifies the type of memory. */
301 enum mem_type
303 MEM_TYPE_NON_LISP,
304 MEM_TYPE_BUFFER,
305 MEM_TYPE_CONS,
306 MEM_TYPE_STRING,
307 MEM_TYPE_MISC,
308 MEM_TYPE_SYMBOL,
309 MEM_TYPE_FLOAT,
310 /* We used to keep separate mem_types for subtypes of vectors such as
311 process, hash_table, frame, terminal, and window, but we never made
312 use of the distinction, so it only caused source-code complexity
313 and runtime slowdown. Minor but pointless. */
314 MEM_TYPE_VECTORLIKE,
315 /* Special type to denote vector blocks. */
316 MEM_TYPE_VECTOR_BLOCK
319 static void *lisp_malloc (size_t, enum mem_type);
322 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
324 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
325 #include <stdio.h> /* For fprintf. */
326 #endif
328 /* A unique object in pure space used to make some Lisp objects
329 on free lists recognizable in O(1). */
331 static Lisp_Object Vdead;
332 #define DEADP(x) EQ (x, Vdead)
334 #ifdef GC_MALLOC_CHECK
336 enum mem_type allocated_mem_type;
338 #endif /* GC_MALLOC_CHECK */
340 /* A node in the red-black tree describing allocated memory containing
341 Lisp data. Each such block is recorded with its start and end
342 address when it is allocated, and removed from the tree when it
343 is freed.
345 A red-black tree is a balanced binary tree with the following
346 properties:
348 1. Every node is either red or black.
349 2. Every leaf is black.
350 3. If a node is red, then both of its children are black.
351 4. Every simple path from a node to a descendant leaf contains
352 the same number of black nodes.
353 5. The root is always black.
355 When nodes are inserted into the tree, or deleted from the tree,
356 the tree is "fixed" so that these properties are always true.
358 A red-black tree with N internal nodes has height at most 2
359 log(N+1). Searches, insertions and deletions are done in O(log N).
360 Please see a text book about data structures for a detailed
361 description of red-black trees. Any book worth its salt should
362 describe them. */
364 struct mem_node
366 /* Children of this node. These pointers are never NULL. When there
367 is no child, the value is MEM_NIL, which points to a dummy node. */
368 struct mem_node *left, *right;
370 /* The parent of this node. In the root node, this is NULL. */
371 struct mem_node *parent;
373 /* Start and end of allocated region. */
374 void *start, *end;
376 /* Node color. */
377 enum {MEM_BLACK, MEM_RED} color;
379 /* Memory type. */
380 enum mem_type type;
383 /* Base address of stack. Set in main. */
385 Lisp_Object *stack_base;
387 /* Root of the tree describing allocated Lisp memory. */
389 static struct mem_node *mem_root;
391 /* Lowest and highest known address in the heap. */
393 static void *min_heap_address, *max_heap_address;
395 /* Sentinel node of the tree. */
397 static struct mem_node mem_z;
398 #define MEM_NIL &mem_z
400 static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
401 static void lisp_free (void *);
402 static void mark_stack (void);
403 static int live_vector_p (struct mem_node *, void *);
404 static int live_buffer_p (struct mem_node *, void *);
405 static int live_string_p (struct mem_node *, void *);
406 static int live_cons_p (struct mem_node *, void *);
407 static int live_symbol_p (struct mem_node *, void *);
408 static int live_float_p (struct mem_node *, void *);
409 static int live_misc_p (struct mem_node *, void *);
410 static void mark_maybe_object (Lisp_Object);
411 static void mark_memory (void *, void *);
412 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
413 static void mem_init (void);
414 static struct mem_node *mem_insert (void *, void *, enum mem_type);
415 static void mem_insert_fixup (struct mem_node *);
416 #endif
417 static void mem_rotate_left (struct mem_node *);
418 static void mem_rotate_right (struct mem_node *);
419 static void mem_delete (struct mem_node *);
420 static void mem_delete_fixup (struct mem_node *);
421 static inline struct mem_node *mem_find (void *);
424 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
425 static void check_gcpros (void);
426 #endif
428 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
430 #ifndef DEADP
431 # define DEADP(x) 0
432 #endif
434 /* Recording what needs to be marked for gc. */
436 struct gcpro *gcprolist;
438 /* Addresses of staticpro'd variables. Initialize it to a nonzero
439 value; otherwise some compilers put it into BSS. */
441 #define NSTATICS 0x650
442 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
444 /* Index of next unused slot in staticvec. */
446 static int staticidx;
448 static void *pure_alloc (size_t, int);
451 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
452 ALIGNMENT must be a power of 2. */
454 #define ALIGN(ptr, ALIGNMENT) \
455 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
456 & ~ ((ALIGNMENT) - 1)))
460 /************************************************************************
461 Malloc
462 ************************************************************************/
464 /* Function malloc calls this if it finds we are near exhausting storage. */
466 void
467 malloc_warning (const char *str)
469 pending_malloc_warning = str;
473 /* Display an already-pending malloc warning. */
475 void
476 display_malloc_warning (void)
478 call3 (intern ("display-warning"),
479 intern ("alloc"),
480 build_string (pending_malloc_warning),
481 intern ("emergency"));
482 pending_malloc_warning = 0;
485 /* Called if we can't allocate relocatable space for a buffer. */
487 void
488 buffer_memory_full (ptrdiff_t nbytes)
490 /* If buffers use the relocating allocator, no need to free
491 spare_memory, because we may have plenty of malloc space left
492 that we could get, and if we don't, the malloc that fails will
493 itself cause spare_memory to be freed. If buffers don't use the
494 relocating allocator, treat this like any other failing
495 malloc. */
497 #ifndef REL_ALLOC
498 memory_full (nbytes);
499 #endif
501 /* This used to call error, but if we've run out of memory, we could
502 get infinite recursion trying to build the string. */
503 xsignal (Qnil, Vmemory_signal_data);
506 /* A common multiple of the positive integers A and B. Ideally this
507 would be the least common multiple, but there's no way to do that
508 as a constant expression in C, so do the best that we can easily do. */
509 #define COMMON_MULTIPLE(a, b) \
510 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
512 #ifndef XMALLOC_OVERRUN_CHECK
513 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
514 #else
516 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
517 around each block.
519 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
520 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
521 block size in little-endian order. The trailer consists of
522 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
524 The header is used to detect whether this block has been allocated
525 through these functions, as some low-level libc functions may
526 bypass the malloc hooks. */
528 #define XMALLOC_OVERRUN_CHECK_SIZE 16
529 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
530 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
532 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
533 hold a size_t value and (2) the header size is a multiple of the
534 alignment that Emacs needs for C types and for USE_LSB_TAG. */
535 #define XMALLOC_BASE_ALIGNMENT \
536 offsetof ( \
537 struct { \
538 union { long double d; intmax_t i; void *p; } u; \
539 char c; \
540 }, \
543 #if USE_LSB_TAG
544 # define XMALLOC_HEADER_ALIGNMENT \
545 COMMON_MULTIPLE (1 << GCTYPEBITS, XMALLOC_BASE_ALIGNMENT)
546 #else
547 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
548 #endif
549 #define XMALLOC_OVERRUN_SIZE_SIZE \
550 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
551 + XMALLOC_HEADER_ALIGNMENT - 1) \
552 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
553 - XMALLOC_OVERRUN_CHECK_SIZE)
555 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
556 { '\x9a', '\x9b', '\xae', '\xaf',
557 '\xbf', '\xbe', '\xce', '\xcf',
558 '\xea', '\xeb', '\xec', '\xed',
559 '\xdf', '\xde', '\x9c', '\x9d' };
561 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
562 { '\xaa', '\xab', '\xac', '\xad',
563 '\xba', '\xbb', '\xbc', '\xbd',
564 '\xca', '\xcb', '\xcc', '\xcd',
565 '\xda', '\xdb', '\xdc', '\xdd' };
567 /* Insert and extract the block size in the header. */
569 static void
570 xmalloc_put_size (unsigned char *ptr, size_t size)
572 int i;
573 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
575 *--ptr = size & ((1 << CHAR_BIT) - 1);
576 size >>= CHAR_BIT;
580 static size_t
581 xmalloc_get_size (unsigned char *ptr)
583 size_t size = 0;
584 int i;
585 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
586 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
588 size <<= CHAR_BIT;
589 size += *ptr++;
591 return size;
595 /* The call depth in overrun_check functions. For example, this might happen:
596 xmalloc()
597 overrun_check_malloc()
598 -> malloc -> (via hook)_-> emacs_blocked_malloc
599 -> overrun_check_malloc
600 call malloc (hooks are NULL, so real malloc is called).
601 malloc returns 10000.
602 add overhead, return 10016.
603 <- (back in overrun_check_malloc)
604 add overhead again, return 10032
605 xmalloc returns 10032.
607 (time passes).
609 xfree(10032)
610 overrun_check_free(10032)
611 decrease overhead
612 free(10016) <- crash, because 10000 is the original pointer. */
614 static ptrdiff_t check_depth;
616 /* Like malloc, but wraps allocated block with header and trailer. */
618 static void *
619 overrun_check_malloc (size_t size)
621 register unsigned char *val;
622 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
623 if (SIZE_MAX - overhead < size)
624 abort ();
626 val = malloc (size + overhead);
627 if (val && check_depth == 1)
629 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
630 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
631 xmalloc_put_size (val, size);
632 memcpy (val + size, xmalloc_overrun_check_trailer,
633 XMALLOC_OVERRUN_CHECK_SIZE);
635 --check_depth;
636 return val;
640 /* Like realloc, but checks old block for overrun, and wraps new block
641 with header and trailer. */
643 static void *
644 overrun_check_realloc (void *block, size_t size)
646 register unsigned char *val = (unsigned char *) block;
647 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
648 if (SIZE_MAX - overhead < size)
649 abort ();
651 if (val
652 && check_depth == 1
653 && memcmp (xmalloc_overrun_check_header,
654 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
655 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
657 size_t osize = xmalloc_get_size (val);
658 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
659 XMALLOC_OVERRUN_CHECK_SIZE))
660 abort ();
661 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
662 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
663 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
666 val = realloc (val, size + overhead);
668 if (val && check_depth == 1)
670 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
671 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
672 xmalloc_put_size (val, size);
673 memcpy (val + size, xmalloc_overrun_check_trailer,
674 XMALLOC_OVERRUN_CHECK_SIZE);
676 --check_depth;
677 return val;
680 /* Like free, but checks block for overrun. */
682 static void
683 overrun_check_free (void *block)
685 unsigned char *val = (unsigned char *) block;
687 ++check_depth;
688 if (val
689 && check_depth == 1
690 && memcmp (xmalloc_overrun_check_header,
691 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
692 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
694 size_t osize = xmalloc_get_size (val);
695 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
696 XMALLOC_OVERRUN_CHECK_SIZE))
697 abort ();
698 #ifdef XMALLOC_CLEAR_FREE_MEMORY
699 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
700 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
701 #else
702 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
703 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
704 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
705 #endif
708 free (val);
709 --check_depth;
712 #undef malloc
713 #undef realloc
714 #undef free
715 #define malloc overrun_check_malloc
716 #define realloc overrun_check_realloc
717 #define free overrun_check_free
718 #endif
720 #ifdef SYNC_INPUT
721 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
722 there's no need to block input around malloc. */
723 #define MALLOC_BLOCK_INPUT ((void)0)
724 #define MALLOC_UNBLOCK_INPUT ((void)0)
725 #else
726 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
727 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
728 #endif
730 /* Like malloc but check for no memory and block interrupt input.. */
732 void *
733 xmalloc (size_t size)
735 void *val;
737 MALLOC_BLOCK_INPUT;
738 val = malloc (size);
739 MALLOC_UNBLOCK_INPUT;
741 if (!val && size)
742 memory_full (size);
743 return val;
746 /* Like the above, but zeroes out the memory just allocated. */
748 void *
749 xzalloc (size_t size)
751 void *val;
753 MALLOC_BLOCK_INPUT;
754 val = malloc (size);
755 MALLOC_UNBLOCK_INPUT;
757 if (!val && size)
758 memory_full (size);
759 memset (val, 0, size);
760 return val;
763 /* Like realloc but check for no memory and block interrupt input.. */
765 void *
766 xrealloc (void *block, size_t size)
768 void *val;
770 MALLOC_BLOCK_INPUT;
771 /* We must call malloc explicitly when BLOCK is 0, since some
772 reallocs don't do this. */
773 if (! block)
774 val = malloc (size);
775 else
776 val = realloc (block, size);
777 MALLOC_UNBLOCK_INPUT;
779 if (!val && size)
780 memory_full (size);
781 return val;
785 /* Like free but block interrupt input. */
787 void
788 xfree (void *block)
790 if (!block)
791 return;
792 MALLOC_BLOCK_INPUT;
793 free (block);
794 MALLOC_UNBLOCK_INPUT;
795 /* We don't call refill_memory_reserve here
796 because that duplicates doing so in emacs_blocked_free
797 and the criterion should go there. */
801 /* Other parts of Emacs pass large int values to allocator functions
802 expecting ptrdiff_t. This is portable in practice, but check it to
803 be safe. */
804 verify (INT_MAX <= PTRDIFF_MAX);
807 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
808 Signal an error on memory exhaustion, and block interrupt input. */
810 void *
811 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
813 eassert (0 <= nitems && 0 < item_size);
814 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
815 memory_full (SIZE_MAX);
816 return xmalloc (nitems * item_size);
820 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
821 Signal an error on memory exhaustion, and block interrupt input. */
823 void *
824 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
826 eassert (0 <= nitems && 0 < item_size);
827 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
828 memory_full (SIZE_MAX);
829 return xrealloc (pa, nitems * item_size);
833 /* Grow PA, which points to an array of *NITEMS items, and return the
834 location of the reallocated array, updating *NITEMS to reflect its
835 new size. The new array will contain at least NITEMS_INCR_MIN more
836 items, but will not contain more than NITEMS_MAX items total.
837 ITEM_SIZE is the size of each item, in bytes.
839 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
840 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
841 infinity.
843 If PA is null, then allocate a new array instead of reallocating
844 the old one. Thus, to grow an array A without saving its old
845 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
846 &NITEMS, ...).
848 Block interrupt input as needed. If memory exhaustion occurs, set
849 *NITEMS to zero if PA is null, and signal an error (i.e., do not
850 return). */
852 void *
853 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
854 ptrdiff_t nitems_max, ptrdiff_t item_size)
856 /* The approximate size to use for initial small allocation
857 requests. This is the largest "small" request for the GNU C
858 library malloc. */
859 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
861 /* If the array is tiny, grow it to about (but no greater than)
862 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
863 ptrdiff_t n = *nitems;
864 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
865 ptrdiff_t half_again = n >> 1;
866 ptrdiff_t incr_estimate = max (tiny_max, half_again);
868 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
869 NITEMS_MAX, and what the C language can represent safely. */
870 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
871 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
872 ? nitems_max : C_language_max);
873 ptrdiff_t nitems_incr_max = n_max - n;
874 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
876 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
877 if (! pa)
878 *nitems = 0;
879 if (nitems_incr_max < incr)
880 memory_full (SIZE_MAX);
881 n += incr;
882 pa = xrealloc (pa, n * item_size);
883 *nitems = n;
884 return pa;
888 /* Like strdup, but uses xmalloc. */
890 char *
891 xstrdup (const char *s)
893 size_t len = strlen (s) + 1;
894 char *p = xmalloc (len);
895 memcpy (p, s, len);
896 return p;
900 /* Unwind for SAFE_ALLOCA */
902 Lisp_Object
903 safe_alloca_unwind (Lisp_Object arg)
905 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
907 p->dogc = 0;
908 xfree (p->pointer);
909 p->pointer = 0;
910 free_misc (arg);
911 return Qnil;
915 /* Like malloc but used for allocating Lisp data. NBYTES is the
916 number of bytes to allocate, TYPE describes the intended use of the
917 allocated memory block (for strings, for conses, ...). */
919 #if ! USE_LSB_TAG
920 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
921 #endif
923 static void *
924 lisp_malloc (size_t nbytes, enum mem_type type)
926 register void *val;
928 MALLOC_BLOCK_INPUT;
930 #ifdef GC_MALLOC_CHECK
931 allocated_mem_type = type;
932 #endif
934 val = malloc (nbytes);
936 #if ! USE_LSB_TAG
937 /* If the memory just allocated cannot be addressed thru a Lisp
938 object's pointer, and it needs to be,
939 that's equivalent to running out of memory. */
940 if (val && type != MEM_TYPE_NON_LISP)
942 Lisp_Object tem;
943 XSETCONS (tem, (char *) val + nbytes - 1);
944 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
946 lisp_malloc_loser = val;
947 free (val);
948 val = 0;
951 #endif
953 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
954 if (val && type != MEM_TYPE_NON_LISP)
955 mem_insert (val, (char *) val + nbytes, type);
956 #endif
958 MALLOC_UNBLOCK_INPUT;
959 if (!val && nbytes)
960 memory_full (nbytes);
961 return val;
964 /* Free BLOCK. This must be called to free memory allocated with a
965 call to lisp_malloc. */
967 static void
968 lisp_free (void *block)
970 MALLOC_BLOCK_INPUT;
971 free (block);
972 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
973 mem_delete (mem_find (block));
974 #endif
975 MALLOC_UNBLOCK_INPUT;
978 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
980 /* The entry point is lisp_align_malloc which returns blocks of at most
981 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
983 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
984 #define USE_POSIX_MEMALIGN 1
985 #endif
987 /* BLOCK_ALIGN has to be a power of 2. */
988 #define BLOCK_ALIGN (1 << 10)
990 /* Padding to leave at the end of a malloc'd block. This is to give
991 malloc a chance to minimize the amount of memory wasted to alignment.
992 It should be tuned to the particular malloc library used.
993 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
994 posix_memalign on the other hand would ideally prefer a value of 4
995 because otherwise, there's 1020 bytes wasted between each ablocks.
996 In Emacs, testing shows that those 1020 can most of the time be
997 efficiently used by malloc to place other objects, so a value of 0 can
998 still preferable unless you have a lot of aligned blocks and virtually
999 nothing else. */
1000 #define BLOCK_PADDING 0
1001 #define BLOCK_BYTES \
1002 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1004 /* Internal data structures and constants. */
1006 #define ABLOCKS_SIZE 16
1008 /* An aligned block of memory. */
1009 struct ablock
1011 union
1013 char payload[BLOCK_BYTES];
1014 struct ablock *next_free;
1015 } x;
1016 /* `abase' is the aligned base of the ablocks. */
1017 /* It is overloaded to hold the virtual `busy' field that counts
1018 the number of used ablock in the parent ablocks.
1019 The first ablock has the `busy' field, the others have the `abase'
1020 field. To tell the difference, we assume that pointers will have
1021 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1022 is used to tell whether the real base of the parent ablocks is `abase'
1023 (if not, the word before the first ablock holds a pointer to the
1024 real base). */
1025 struct ablocks *abase;
1026 /* The padding of all but the last ablock is unused. The padding of
1027 the last ablock in an ablocks is not allocated. */
1028 #if BLOCK_PADDING
1029 char padding[BLOCK_PADDING];
1030 #endif
1033 /* A bunch of consecutive aligned blocks. */
1034 struct ablocks
1036 struct ablock blocks[ABLOCKS_SIZE];
1039 /* Size of the block requested from malloc or posix_memalign. */
1040 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1042 #define ABLOCK_ABASE(block) \
1043 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1044 ? (struct ablocks *)(block) \
1045 : (block)->abase)
1047 /* Virtual `busy' field. */
1048 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1050 /* Pointer to the (not necessarily aligned) malloc block. */
1051 #ifdef USE_POSIX_MEMALIGN
1052 #define ABLOCKS_BASE(abase) (abase)
1053 #else
1054 #define ABLOCKS_BASE(abase) \
1055 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
1056 #endif
1058 /* The list of free ablock. */
1059 static struct ablock *free_ablock;
1061 /* Allocate an aligned block of nbytes.
1062 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1063 smaller or equal to BLOCK_BYTES. */
1064 static void *
1065 lisp_align_malloc (size_t nbytes, enum mem_type type)
1067 void *base, *val;
1068 struct ablocks *abase;
1070 eassert (nbytes <= BLOCK_BYTES);
1072 MALLOC_BLOCK_INPUT;
1074 #ifdef GC_MALLOC_CHECK
1075 allocated_mem_type = type;
1076 #endif
1078 if (!free_ablock)
1080 int i;
1081 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1083 #ifdef DOUG_LEA_MALLOC
1084 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1085 because mapped region contents are not preserved in
1086 a dumped Emacs. */
1087 mallopt (M_MMAP_MAX, 0);
1088 #endif
1090 #ifdef USE_POSIX_MEMALIGN
1092 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1093 if (err)
1094 base = NULL;
1095 abase = base;
1097 #else
1098 base = malloc (ABLOCKS_BYTES);
1099 abase = ALIGN (base, BLOCK_ALIGN);
1100 #endif
1102 if (base == 0)
1104 MALLOC_UNBLOCK_INPUT;
1105 memory_full (ABLOCKS_BYTES);
1108 aligned = (base == abase);
1109 if (!aligned)
1110 ((void**)abase)[-1] = base;
1112 #ifdef DOUG_LEA_MALLOC
1113 /* Back to a reasonable maximum of mmap'ed areas. */
1114 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1115 #endif
1117 #if ! USE_LSB_TAG
1118 /* If the memory just allocated cannot be addressed thru a Lisp
1119 object's pointer, and it needs to be, that's equivalent to
1120 running out of memory. */
1121 if (type != MEM_TYPE_NON_LISP)
1123 Lisp_Object tem;
1124 char *end = (char *) base + ABLOCKS_BYTES - 1;
1125 XSETCONS (tem, end);
1126 if ((char *) XCONS (tem) != end)
1128 lisp_malloc_loser = base;
1129 free (base);
1130 MALLOC_UNBLOCK_INPUT;
1131 memory_full (SIZE_MAX);
1134 #endif
1136 /* Initialize the blocks and put them on the free list.
1137 If `base' was not properly aligned, we can't use the last block. */
1138 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1140 abase->blocks[i].abase = abase;
1141 abase->blocks[i].x.next_free = free_ablock;
1142 free_ablock = &abase->blocks[i];
1144 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1146 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1147 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1148 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1149 eassert (ABLOCKS_BASE (abase) == base);
1150 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1153 abase = ABLOCK_ABASE (free_ablock);
1154 ABLOCKS_BUSY (abase) =
1155 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1156 val = free_ablock;
1157 free_ablock = free_ablock->x.next_free;
1159 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1160 if (type != MEM_TYPE_NON_LISP)
1161 mem_insert (val, (char *) val + nbytes, type);
1162 #endif
1164 MALLOC_UNBLOCK_INPUT;
1166 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1167 return val;
1170 static void
1171 lisp_align_free (void *block)
1173 struct ablock *ablock = block;
1174 struct ablocks *abase = ABLOCK_ABASE (ablock);
1176 MALLOC_BLOCK_INPUT;
1177 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1178 mem_delete (mem_find (block));
1179 #endif
1180 /* Put on free list. */
1181 ablock->x.next_free = free_ablock;
1182 free_ablock = ablock;
1183 /* Update busy count. */
1184 ABLOCKS_BUSY (abase)
1185 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1187 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1188 { /* All the blocks are free. */
1189 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1190 struct ablock **tem = &free_ablock;
1191 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1193 while (*tem)
1195 if (*tem >= (struct ablock *) abase && *tem < atop)
1197 i++;
1198 *tem = (*tem)->x.next_free;
1200 else
1201 tem = &(*tem)->x.next_free;
1203 eassert ((aligned & 1) == aligned);
1204 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1205 #ifdef USE_POSIX_MEMALIGN
1206 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1207 #endif
1208 free (ABLOCKS_BASE (abase));
1210 MALLOC_UNBLOCK_INPUT;
1214 #ifndef SYSTEM_MALLOC
1216 /* Arranging to disable input signals while we're in malloc.
1218 This only works with GNU malloc. To help out systems which can't
1219 use GNU malloc, all the calls to malloc, realloc, and free
1220 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1221 pair; unfortunately, we have no idea what C library functions
1222 might call malloc, so we can't really protect them unless you're
1223 using GNU malloc. Fortunately, most of the major operating systems
1224 can use GNU malloc. */
1226 #ifndef SYNC_INPUT
1227 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1228 there's no need to block input around malloc. */
1230 #ifndef DOUG_LEA_MALLOC
1231 extern void * (*__malloc_hook) (size_t, const void *);
1232 extern void * (*__realloc_hook) (void *, size_t, const void *);
1233 extern void (*__free_hook) (void *, const void *);
1234 /* Else declared in malloc.h, perhaps with an extra arg. */
1235 #endif /* DOUG_LEA_MALLOC */
1236 static void * (*old_malloc_hook) (size_t, const void *);
1237 static void * (*old_realloc_hook) (void *, size_t, const void*);
1238 static void (*old_free_hook) (void*, const void*);
1240 #ifdef DOUG_LEA_MALLOC
1241 # define BYTES_USED (mallinfo ().uordblks)
1242 #else
1243 # define BYTES_USED _bytes_used
1244 #endif
1246 #ifdef GC_MALLOC_CHECK
1247 static int dont_register_blocks;
1248 #endif
1250 static size_t bytes_used_when_reconsidered;
1252 /* Value of _bytes_used, when spare_memory was freed. */
1254 static size_t bytes_used_when_full;
1256 /* This function is used as the hook for free to call. */
1258 static void
1259 emacs_blocked_free (void *ptr, const void *ptr2)
1261 BLOCK_INPUT_ALLOC;
1263 #ifdef GC_MALLOC_CHECK
1264 if (ptr)
1266 struct mem_node *m;
1268 m = mem_find (ptr);
1269 if (m == MEM_NIL || m->start != ptr)
1271 fprintf (stderr,
1272 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1273 abort ();
1275 else
1277 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1278 mem_delete (m);
1281 #endif /* GC_MALLOC_CHECK */
1283 __free_hook = old_free_hook;
1284 free (ptr);
1286 /* If we released our reserve (due to running out of memory),
1287 and we have a fair amount free once again,
1288 try to set aside another reserve in case we run out once more. */
1289 if (! NILP (Vmemory_full)
1290 /* Verify there is enough space that even with the malloc
1291 hysteresis this call won't run out again.
1292 The code here is correct as long as SPARE_MEMORY
1293 is substantially larger than the block size malloc uses. */
1294 && (bytes_used_when_full
1295 > ((bytes_used_when_reconsidered = BYTES_USED)
1296 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1297 refill_memory_reserve ();
1299 __free_hook = emacs_blocked_free;
1300 UNBLOCK_INPUT_ALLOC;
1304 /* This function is the malloc hook that Emacs uses. */
1306 static void *
1307 emacs_blocked_malloc (size_t size, const void *ptr)
1309 void *value;
1311 BLOCK_INPUT_ALLOC;
1312 __malloc_hook = old_malloc_hook;
1313 #ifdef DOUG_LEA_MALLOC
1314 /* Segfaults on my system. --lorentey */
1315 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1316 #else
1317 __malloc_extra_blocks = malloc_hysteresis;
1318 #endif
1320 value = malloc (size);
1322 #ifdef GC_MALLOC_CHECK
1324 struct mem_node *m = mem_find (value);
1325 if (m != MEM_NIL)
1327 fprintf (stderr, "Malloc returned %p which is already in use\n",
1328 value);
1329 fprintf (stderr, "Region in use is %p...%p, %td bytes, type %d\n",
1330 m->start, m->end, (char *) m->end - (char *) m->start,
1331 m->type);
1332 abort ();
1335 if (!dont_register_blocks)
1337 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1338 allocated_mem_type = MEM_TYPE_NON_LISP;
1341 #endif /* GC_MALLOC_CHECK */
1343 __malloc_hook = emacs_blocked_malloc;
1344 UNBLOCK_INPUT_ALLOC;
1346 /* fprintf (stderr, "%p malloc\n", value); */
1347 return value;
1351 /* This function is the realloc hook that Emacs uses. */
1353 static void *
1354 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1356 void *value;
1358 BLOCK_INPUT_ALLOC;
1359 __realloc_hook = old_realloc_hook;
1361 #ifdef GC_MALLOC_CHECK
1362 if (ptr)
1364 struct mem_node *m = mem_find (ptr);
1365 if (m == MEM_NIL || m->start != ptr)
1367 fprintf (stderr,
1368 "Realloc of %p which wasn't allocated with malloc\n",
1369 ptr);
1370 abort ();
1373 mem_delete (m);
1376 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1378 /* Prevent malloc from registering blocks. */
1379 dont_register_blocks = 1;
1380 #endif /* GC_MALLOC_CHECK */
1382 value = realloc (ptr, size);
1384 #ifdef GC_MALLOC_CHECK
1385 dont_register_blocks = 0;
1388 struct mem_node *m = mem_find (value);
1389 if (m != MEM_NIL)
1391 fprintf (stderr, "Realloc returns memory that is already in use\n");
1392 abort ();
1395 /* Can't handle zero size regions in the red-black tree. */
1396 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1399 /* fprintf (stderr, "%p <- realloc\n", value); */
1400 #endif /* GC_MALLOC_CHECK */
1402 __realloc_hook = emacs_blocked_realloc;
1403 UNBLOCK_INPUT_ALLOC;
1405 return value;
1409 #ifdef HAVE_PTHREAD
1410 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1411 normal malloc. Some thread implementations need this as they call
1412 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1413 calls malloc because it is the first call, and we have an endless loop. */
1415 void
1416 reset_malloc_hooks (void)
1418 __free_hook = old_free_hook;
1419 __malloc_hook = old_malloc_hook;
1420 __realloc_hook = old_realloc_hook;
1422 #endif /* HAVE_PTHREAD */
1425 /* Called from main to set up malloc to use our hooks. */
1427 void
1428 uninterrupt_malloc (void)
1430 #ifdef HAVE_PTHREAD
1431 #ifdef DOUG_LEA_MALLOC
1432 pthread_mutexattr_t attr;
1434 /* GLIBC has a faster way to do this, but let's keep it portable.
1435 This is according to the Single UNIX Specification. */
1436 pthread_mutexattr_init (&attr);
1437 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1438 pthread_mutex_init (&alloc_mutex, &attr);
1439 #else /* !DOUG_LEA_MALLOC */
1440 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1441 and the bundled gmalloc.c doesn't require it. */
1442 pthread_mutex_init (&alloc_mutex, NULL);
1443 #endif /* !DOUG_LEA_MALLOC */
1444 #endif /* HAVE_PTHREAD */
1446 if (__free_hook != emacs_blocked_free)
1447 old_free_hook = __free_hook;
1448 __free_hook = emacs_blocked_free;
1450 if (__malloc_hook != emacs_blocked_malloc)
1451 old_malloc_hook = __malloc_hook;
1452 __malloc_hook = emacs_blocked_malloc;
1454 if (__realloc_hook != emacs_blocked_realloc)
1455 old_realloc_hook = __realloc_hook;
1456 __realloc_hook = emacs_blocked_realloc;
1459 #endif /* not SYNC_INPUT */
1460 #endif /* not SYSTEM_MALLOC */
1464 /***********************************************************************
1465 Interval Allocation
1466 ***********************************************************************/
1468 /* Number of intervals allocated in an interval_block structure.
1469 The 1020 is 1024 minus malloc overhead. */
1471 #define INTERVAL_BLOCK_SIZE \
1472 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1474 /* Intervals are allocated in chunks in form of an interval_block
1475 structure. */
1477 struct interval_block
1479 /* Place `intervals' first, to preserve alignment. */
1480 struct interval intervals[INTERVAL_BLOCK_SIZE];
1481 struct interval_block *next;
1484 /* Current interval block. Its `next' pointer points to older
1485 blocks. */
1487 static struct interval_block *interval_block;
1489 /* Index in interval_block above of the next unused interval
1490 structure. */
1492 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1494 /* Number of free and live intervals. */
1496 static EMACS_INT total_free_intervals, total_intervals;
1498 /* List of free intervals. */
1500 static INTERVAL interval_free_list;
1502 /* Return a new interval. */
1504 INTERVAL
1505 make_interval (void)
1507 INTERVAL val;
1509 /* eassert (!handling_signal); */
1511 MALLOC_BLOCK_INPUT;
1513 if (interval_free_list)
1515 val = interval_free_list;
1516 interval_free_list = INTERVAL_PARENT (interval_free_list);
1518 else
1520 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1522 struct interval_block *newi
1523 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1525 newi->next = interval_block;
1526 interval_block = newi;
1527 interval_block_index = 0;
1528 total_free_intervals += INTERVAL_BLOCK_SIZE;
1530 val = &interval_block->intervals[interval_block_index++];
1533 MALLOC_UNBLOCK_INPUT;
1535 consing_since_gc += sizeof (struct interval);
1536 intervals_consed++;
1537 total_free_intervals--;
1538 RESET_INTERVAL (val);
1539 val->gcmarkbit = 0;
1540 return val;
1544 /* Mark Lisp objects in interval I. */
1546 static void
1547 mark_interval (register INTERVAL i, Lisp_Object dummy)
1549 /* Intervals should never be shared. So, if extra internal checking is
1550 enabled, GC aborts if it seems to have visited an interval twice. */
1551 eassert (!i->gcmarkbit);
1552 i->gcmarkbit = 1;
1553 mark_object (i->plist);
1557 /* Mark the interval tree rooted in TREE. Don't call this directly;
1558 use the macro MARK_INTERVAL_TREE instead. */
1560 static void
1561 mark_interval_tree (register INTERVAL tree)
1563 /* No need to test if this tree has been marked already; this
1564 function is always called through the MARK_INTERVAL_TREE macro,
1565 which takes care of that. */
1567 traverse_intervals_noorder (tree, mark_interval, Qnil);
1571 /* Mark the interval tree rooted in I. */
1573 #define MARK_INTERVAL_TREE(i) \
1574 do { \
1575 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1576 mark_interval_tree (i); \
1577 } while (0)
1580 #define UNMARK_BALANCE_INTERVALS(i) \
1581 do { \
1582 if (! NULL_INTERVAL_P (i)) \
1583 (i) = balance_intervals (i); \
1584 } while (0)
1586 /***********************************************************************
1587 String Allocation
1588 ***********************************************************************/
1590 /* Lisp_Strings are allocated in string_block structures. When a new
1591 string_block is allocated, all the Lisp_Strings it contains are
1592 added to a free-list string_free_list. When a new Lisp_String is
1593 needed, it is taken from that list. During the sweep phase of GC,
1594 string_blocks that are entirely free are freed, except two which
1595 we keep.
1597 String data is allocated from sblock structures. Strings larger
1598 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1599 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1601 Sblocks consist internally of sdata structures, one for each
1602 Lisp_String. The sdata structure points to the Lisp_String it
1603 belongs to. The Lisp_String points back to the `u.data' member of
1604 its sdata structure.
1606 When a Lisp_String is freed during GC, it is put back on
1607 string_free_list, and its `data' member and its sdata's `string'
1608 pointer is set to null. The size of the string is recorded in the
1609 `u.nbytes' member of the sdata. So, sdata structures that are no
1610 longer used, can be easily recognized, and it's easy to compact the
1611 sblocks of small strings which we do in compact_small_strings. */
1613 /* Size in bytes of an sblock structure used for small strings. This
1614 is 8192 minus malloc overhead. */
1616 #define SBLOCK_SIZE 8188
1618 /* Strings larger than this are considered large strings. String data
1619 for large strings is allocated from individual sblocks. */
1621 #define LARGE_STRING_BYTES 1024
1623 /* Structure describing string memory sub-allocated from an sblock.
1624 This is where the contents of Lisp strings are stored. */
1626 struct sdata
1628 /* Back-pointer to the string this sdata belongs to. If null, this
1629 structure is free, and the NBYTES member of the union below
1630 contains the string's byte size (the same value that STRING_BYTES
1631 would return if STRING were non-null). If non-null, STRING_BYTES
1632 (STRING) is the size of the data, and DATA contains the string's
1633 contents. */
1634 struct Lisp_String *string;
1636 #ifdef GC_CHECK_STRING_BYTES
1638 ptrdiff_t nbytes;
1639 unsigned char data[1];
1641 #define SDATA_NBYTES(S) (S)->nbytes
1642 #define SDATA_DATA(S) (S)->data
1643 #define SDATA_SELECTOR(member) member
1645 #else /* not GC_CHECK_STRING_BYTES */
1647 union
1649 /* When STRING is non-null. */
1650 unsigned char data[1];
1652 /* When STRING is null. */
1653 ptrdiff_t nbytes;
1654 } u;
1656 #define SDATA_NBYTES(S) (S)->u.nbytes
1657 #define SDATA_DATA(S) (S)->u.data
1658 #define SDATA_SELECTOR(member) u.member
1660 #endif /* not GC_CHECK_STRING_BYTES */
1662 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1666 /* Structure describing a block of memory which is sub-allocated to
1667 obtain string data memory for strings. Blocks for small strings
1668 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1669 as large as needed. */
1671 struct sblock
1673 /* Next in list. */
1674 struct sblock *next;
1676 /* Pointer to the next free sdata block. This points past the end
1677 of the sblock if there isn't any space left in this block. */
1678 struct sdata *next_free;
1680 /* Start of data. */
1681 struct sdata first_data;
1684 /* Number of Lisp strings in a string_block structure. The 1020 is
1685 1024 minus malloc overhead. */
1687 #define STRING_BLOCK_SIZE \
1688 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1690 /* Structure describing a block from which Lisp_String structures
1691 are allocated. */
1693 struct string_block
1695 /* Place `strings' first, to preserve alignment. */
1696 struct Lisp_String strings[STRING_BLOCK_SIZE];
1697 struct string_block *next;
1700 /* Head and tail of the list of sblock structures holding Lisp string
1701 data. We always allocate from current_sblock. The NEXT pointers
1702 in the sblock structures go from oldest_sblock to current_sblock. */
1704 static struct sblock *oldest_sblock, *current_sblock;
1706 /* List of sblocks for large strings. */
1708 static struct sblock *large_sblocks;
1710 /* List of string_block structures. */
1712 static struct string_block *string_blocks;
1714 /* Free-list of Lisp_Strings. */
1716 static struct Lisp_String *string_free_list;
1718 /* Number of live and free Lisp_Strings. */
1720 static EMACS_INT total_strings, total_free_strings;
1722 /* Number of bytes used by live strings. */
1724 static EMACS_INT total_string_bytes;
1726 /* Given a pointer to a Lisp_String S which is on the free-list
1727 string_free_list, return a pointer to its successor in the
1728 free-list. */
1730 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1732 /* Return a pointer to the sdata structure belonging to Lisp string S.
1733 S must be live, i.e. S->data must not be null. S->data is actually
1734 a pointer to the `u.data' member of its sdata structure; the
1735 structure starts at a constant offset in front of that. */
1737 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1740 #ifdef GC_CHECK_STRING_OVERRUN
1742 /* We check for overrun in string data blocks by appending a small
1743 "cookie" after each allocated string data block, and check for the
1744 presence of this cookie during GC. */
1746 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1747 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1748 { '\xde', '\xad', '\xbe', '\xef' };
1750 #else
1751 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1752 #endif
1754 /* Value is the size of an sdata structure large enough to hold NBYTES
1755 bytes of string data. The value returned includes a terminating
1756 NUL byte, the size of the sdata structure, and padding. */
1758 #ifdef GC_CHECK_STRING_BYTES
1760 #define SDATA_SIZE(NBYTES) \
1761 ((SDATA_DATA_OFFSET \
1762 + (NBYTES) + 1 \
1763 + sizeof (ptrdiff_t) - 1) \
1764 & ~(sizeof (ptrdiff_t) - 1))
1766 #else /* not GC_CHECK_STRING_BYTES */
1768 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1769 less than the size of that member. The 'max' is not needed when
1770 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1771 alignment code reserves enough space. */
1773 #define SDATA_SIZE(NBYTES) \
1774 ((SDATA_DATA_OFFSET \
1775 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1776 ? NBYTES \
1777 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1778 + 1 \
1779 + sizeof (ptrdiff_t) - 1) \
1780 & ~(sizeof (ptrdiff_t) - 1))
1782 #endif /* not GC_CHECK_STRING_BYTES */
1784 /* Extra bytes to allocate for each string. */
1786 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1788 /* Exact bound on the number of bytes in a string, not counting the
1789 terminating null. A string cannot contain more bytes than
1790 STRING_BYTES_BOUND, nor can it be so long that the size_t
1791 arithmetic in allocate_string_data would overflow while it is
1792 calculating a value to be passed to malloc. */
1793 #define STRING_BYTES_MAX \
1794 min (STRING_BYTES_BOUND, \
1795 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD \
1796 - GC_STRING_EXTRA \
1797 - offsetof (struct sblock, first_data) \
1798 - SDATA_DATA_OFFSET) \
1799 & ~(sizeof (EMACS_INT) - 1)))
1801 /* Initialize string allocation. Called from init_alloc_once. */
1803 static void
1804 init_strings (void)
1806 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1807 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1811 #ifdef GC_CHECK_STRING_BYTES
1813 static int check_string_bytes_count;
1815 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1818 /* Like GC_STRING_BYTES, but with debugging check. */
1820 ptrdiff_t
1821 string_bytes (struct Lisp_String *s)
1823 ptrdiff_t nbytes =
1824 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1826 if (!PURE_POINTER_P (s)
1827 && s->data
1828 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1829 abort ();
1830 return nbytes;
1833 /* Check validity of Lisp strings' string_bytes member in B. */
1835 static void
1836 check_sblock (struct sblock *b)
1838 struct sdata *from, *end, *from_end;
1840 end = b->next_free;
1842 for (from = &b->first_data; from < end; from = from_end)
1844 /* Compute the next FROM here because copying below may
1845 overwrite data we need to compute it. */
1846 ptrdiff_t nbytes;
1848 /* Check that the string size recorded in the string is the
1849 same as the one recorded in the sdata structure. */
1850 if (from->string)
1851 CHECK_STRING_BYTES (from->string);
1853 if (from->string)
1854 nbytes = GC_STRING_BYTES (from->string);
1855 else
1856 nbytes = SDATA_NBYTES (from);
1858 nbytes = SDATA_SIZE (nbytes);
1859 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1864 /* Check validity of Lisp strings' string_bytes member. ALL_P
1865 non-zero means check all strings, otherwise check only most
1866 recently allocated strings. Used for hunting a bug. */
1868 static void
1869 check_string_bytes (int all_p)
1871 if (all_p)
1873 struct sblock *b;
1875 for (b = large_sblocks; b; b = b->next)
1877 struct Lisp_String *s = b->first_data.string;
1878 if (s)
1879 CHECK_STRING_BYTES (s);
1882 for (b = oldest_sblock; b; b = b->next)
1883 check_sblock (b);
1885 else if (current_sblock)
1886 check_sblock (current_sblock);
1889 #endif /* GC_CHECK_STRING_BYTES */
1891 #ifdef GC_CHECK_STRING_FREE_LIST
1893 /* Walk through the string free list looking for bogus next pointers.
1894 This may catch buffer overrun from a previous string. */
1896 static void
1897 check_string_free_list (void)
1899 struct Lisp_String *s;
1901 /* Pop a Lisp_String off the free-list. */
1902 s = string_free_list;
1903 while (s != NULL)
1905 if ((uintptr_t) s < 1024)
1906 abort ();
1907 s = NEXT_FREE_LISP_STRING (s);
1910 #else
1911 #define check_string_free_list()
1912 #endif
1914 /* Return a new Lisp_String. */
1916 static struct Lisp_String *
1917 allocate_string (void)
1919 struct Lisp_String *s;
1921 /* eassert (!handling_signal); */
1923 MALLOC_BLOCK_INPUT;
1925 /* If the free-list is empty, allocate a new string_block, and
1926 add all the Lisp_Strings in it to the free-list. */
1927 if (string_free_list == NULL)
1929 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1930 int i;
1932 b->next = string_blocks;
1933 string_blocks = b;
1935 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1937 s = b->strings + i;
1938 /* Every string on a free list should have NULL data pointer. */
1939 s->data = NULL;
1940 NEXT_FREE_LISP_STRING (s) = string_free_list;
1941 string_free_list = s;
1944 total_free_strings += STRING_BLOCK_SIZE;
1947 check_string_free_list ();
1949 /* Pop a Lisp_String off the free-list. */
1950 s = string_free_list;
1951 string_free_list = NEXT_FREE_LISP_STRING (s);
1953 MALLOC_UNBLOCK_INPUT;
1955 --total_free_strings;
1956 ++total_strings;
1957 ++strings_consed;
1958 consing_since_gc += sizeof *s;
1960 #ifdef GC_CHECK_STRING_BYTES
1961 if (!noninteractive)
1963 if (++check_string_bytes_count == 200)
1965 check_string_bytes_count = 0;
1966 check_string_bytes (1);
1968 else
1969 check_string_bytes (0);
1971 #endif /* GC_CHECK_STRING_BYTES */
1973 return s;
1977 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1978 plus a NUL byte at the end. Allocate an sdata structure for S, and
1979 set S->data to its `u.data' member. Store a NUL byte at the end of
1980 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1981 S->data if it was initially non-null. */
1983 void
1984 allocate_string_data (struct Lisp_String *s,
1985 EMACS_INT nchars, EMACS_INT nbytes)
1987 struct sdata *data, *old_data;
1988 struct sblock *b;
1989 ptrdiff_t needed, old_nbytes;
1991 if (STRING_BYTES_MAX < nbytes)
1992 string_overflow ();
1994 /* Determine the number of bytes needed to store NBYTES bytes
1995 of string data. */
1996 needed = SDATA_SIZE (nbytes);
1997 if (s->data)
1999 old_data = SDATA_OF_STRING (s);
2000 old_nbytes = GC_STRING_BYTES (s);
2002 else
2003 old_data = NULL;
2005 MALLOC_BLOCK_INPUT;
2007 if (nbytes > LARGE_STRING_BYTES)
2009 size_t size = offsetof (struct sblock, first_data) + needed;
2011 #ifdef DOUG_LEA_MALLOC
2012 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2013 because mapped region contents are not preserved in
2014 a dumped Emacs.
2016 In case you think of allowing it in a dumped Emacs at the
2017 cost of not being able to re-dump, there's another reason:
2018 mmap'ed data typically have an address towards the top of the
2019 address space, which won't fit into an EMACS_INT (at least on
2020 32-bit systems with the current tagging scheme). --fx */
2021 mallopt (M_MMAP_MAX, 0);
2022 #endif
2024 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
2026 #ifdef DOUG_LEA_MALLOC
2027 /* Back to a reasonable maximum of mmap'ed areas. */
2028 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2029 #endif
2031 b->next_free = &b->first_data;
2032 b->first_data.string = NULL;
2033 b->next = large_sblocks;
2034 large_sblocks = b;
2036 else if (current_sblock == NULL
2037 || (((char *) current_sblock + SBLOCK_SIZE
2038 - (char *) current_sblock->next_free)
2039 < (needed + GC_STRING_EXTRA)))
2041 /* Not enough room in the current sblock. */
2042 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2043 b->next_free = &b->first_data;
2044 b->first_data.string = NULL;
2045 b->next = NULL;
2047 if (current_sblock)
2048 current_sblock->next = b;
2049 else
2050 oldest_sblock = b;
2051 current_sblock = b;
2053 else
2054 b = current_sblock;
2056 data = b->next_free;
2057 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2059 MALLOC_UNBLOCK_INPUT;
2061 data->string = s;
2062 s->data = SDATA_DATA (data);
2063 #ifdef GC_CHECK_STRING_BYTES
2064 SDATA_NBYTES (data) = nbytes;
2065 #endif
2066 s->size = nchars;
2067 s->size_byte = nbytes;
2068 s->data[nbytes] = '\0';
2069 #ifdef GC_CHECK_STRING_OVERRUN
2070 memcpy ((char *) data + needed, string_overrun_cookie,
2071 GC_STRING_OVERRUN_COOKIE_SIZE);
2072 #endif
2074 /* Note that Faset may call to this function when S has already data
2075 assigned. In this case, mark data as free by setting it's string
2076 back-pointer to null, and record the size of the data in it. */
2077 if (old_data)
2079 SDATA_NBYTES (old_data) = old_nbytes;
2080 old_data->string = NULL;
2083 consing_since_gc += needed;
2087 /* Sweep and compact strings. */
2089 static void
2090 sweep_strings (void)
2092 struct string_block *b, *next;
2093 struct string_block *live_blocks = NULL;
2095 string_free_list = NULL;
2096 total_strings = total_free_strings = 0;
2097 total_string_bytes = 0;
2099 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2100 for (b = string_blocks; b; b = next)
2102 int i, nfree = 0;
2103 struct Lisp_String *free_list_before = string_free_list;
2105 next = b->next;
2107 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2109 struct Lisp_String *s = b->strings + i;
2111 if (s->data)
2113 /* String was not on free-list before. */
2114 if (STRING_MARKED_P (s))
2116 /* String is live; unmark it and its intervals. */
2117 UNMARK_STRING (s);
2119 if (!NULL_INTERVAL_P (s->intervals))
2120 UNMARK_BALANCE_INTERVALS (s->intervals);
2122 ++total_strings;
2123 total_string_bytes += STRING_BYTES (s);
2125 else
2127 /* String is dead. Put it on the free-list. */
2128 struct sdata *data = SDATA_OF_STRING (s);
2130 /* Save the size of S in its sdata so that we know
2131 how large that is. Reset the sdata's string
2132 back-pointer so that we know it's free. */
2133 #ifdef GC_CHECK_STRING_BYTES
2134 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2135 abort ();
2136 #else
2137 data->u.nbytes = GC_STRING_BYTES (s);
2138 #endif
2139 data->string = NULL;
2141 /* Reset the strings's `data' member so that we
2142 know it's free. */
2143 s->data = NULL;
2145 /* Put the string on the free-list. */
2146 NEXT_FREE_LISP_STRING (s) = string_free_list;
2147 string_free_list = s;
2148 ++nfree;
2151 else
2153 /* S was on the free-list before. Put it there again. */
2154 NEXT_FREE_LISP_STRING (s) = string_free_list;
2155 string_free_list = s;
2156 ++nfree;
2160 /* Free blocks that contain free Lisp_Strings only, except
2161 the first two of them. */
2162 if (nfree == STRING_BLOCK_SIZE
2163 && total_free_strings > STRING_BLOCK_SIZE)
2165 lisp_free (b);
2166 string_free_list = free_list_before;
2168 else
2170 total_free_strings += nfree;
2171 b->next = live_blocks;
2172 live_blocks = b;
2176 check_string_free_list ();
2178 string_blocks = live_blocks;
2179 free_large_strings ();
2180 compact_small_strings ();
2182 check_string_free_list ();
2186 /* Free dead large strings. */
2188 static void
2189 free_large_strings (void)
2191 struct sblock *b, *next;
2192 struct sblock *live_blocks = NULL;
2194 for (b = large_sblocks; b; b = next)
2196 next = b->next;
2198 if (b->first_data.string == NULL)
2199 lisp_free (b);
2200 else
2202 b->next = live_blocks;
2203 live_blocks = b;
2207 large_sblocks = live_blocks;
2211 /* Compact data of small strings. Free sblocks that don't contain
2212 data of live strings after compaction. */
2214 static void
2215 compact_small_strings (void)
2217 struct sblock *b, *tb, *next;
2218 struct sdata *from, *to, *end, *tb_end;
2219 struct sdata *to_end, *from_end;
2221 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2222 to, and TB_END is the end of TB. */
2223 tb = oldest_sblock;
2224 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2225 to = &tb->first_data;
2227 /* Step through the blocks from the oldest to the youngest. We
2228 expect that old blocks will stabilize over time, so that less
2229 copying will happen this way. */
2230 for (b = oldest_sblock; b; b = b->next)
2232 end = b->next_free;
2233 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2235 for (from = &b->first_data; from < end; from = from_end)
2237 /* Compute the next FROM here because copying below may
2238 overwrite data we need to compute it. */
2239 ptrdiff_t nbytes;
2241 #ifdef GC_CHECK_STRING_BYTES
2242 /* Check that the string size recorded in the string is the
2243 same as the one recorded in the sdata structure. */
2244 if (from->string
2245 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2246 abort ();
2247 #endif /* GC_CHECK_STRING_BYTES */
2249 if (from->string)
2250 nbytes = GC_STRING_BYTES (from->string);
2251 else
2252 nbytes = SDATA_NBYTES (from);
2254 if (nbytes > LARGE_STRING_BYTES)
2255 abort ();
2257 nbytes = SDATA_SIZE (nbytes);
2258 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2260 #ifdef GC_CHECK_STRING_OVERRUN
2261 if (memcmp (string_overrun_cookie,
2262 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2263 GC_STRING_OVERRUN_COOKIE_SIZE))
2264 abort ();
2265 #endif
2267 /* FROM->string non-null means it's alive. Copy its data. */
2268 if (from->string)
2270 /* If TB is full, proceed with the next sblock. */
2271 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2272 if (to_end > tb_end)
2274 tb->next_free = to;
2275 tb = tb->next;
2276 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2277 to = &tb->first_data;
2278 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2281 /* Copy, and update the string's `data' pointer. */
2282 if (from != to)
2284 eassert (tb != b || to < from);
2285 memmove (to, from, nbytes + GC_STRING_EXTRA);
2286 to->string->data = SDATA_DATA (to);
2289 /* Advance past the sdata we copied to. */
2290 to = to_end;
2295 /* The rest of the sblocks following TB don't contain live data, so
2296 we can free them. */
2297 for (b = tb->next; b; b = next)
2299 next = b->next;
2300 lisp_free (b);
2303 tb->next_free = to;
2304 tb->next = NULL;
2305 current_sblock = tb;
2308 void
2309 string_overflow (void)
2311 error ("Maximum string size exceeded");
2314 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2315 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2316 LENGTH must be an integer.
2317 INIT must be an integer that represents a character. */)
2318 (Lisp_Object length, Lisp_Object init)
2320 register Lisp_Object val;
2321 register unsigned char *p, *end;
2322 int c;
2323 EMACS_INT nbytes;
2325 CHECK_NATNUM (length);
2326 CHECK_CHARACTER (init);
2328 c = XFASTINT (init);
2329 if (ASCII_CHAR_P (c))
2331 nbytes = XINT (length);
2332 val = make_uninit_string (nbytes);
2333 p = SDATA (val);
2334 end = p + SCHARS (val);
2335 while (p != end)
2336 *p++ = c;
2338 else
2340 unsigned char str[MAX_MULTIBYTE_LENGTH];
2341 int len = CHAR_STRING (c, str);
2342 EMACS_INT string_len = XINT (length);
2344 if (string_len > STRING_BYTES_MAX / len)
2345 string_overflow ();
2346 nbytes = len * string_len;
2347 val = make_uninit_multibyte_string (string_len, nbytes);
2348 p = SDATA (val);
2349 end = p + nbytes;
2350 while (p != end)
2352 memcpy (p, str, len);
2353 p += len;
2357 *p = 0;
2358 return val;
2362 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2363 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2364 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2365 (Lisp_Object length, Lisp_Object init)
2367 register Lisp_Object val;
2368 struct Lisp_Bool_Vector *p;
2369 ptrdiff_t length_in_chars;
2370 EMACS_INT length_in_elts;
2371 int bits_per_value;
2372 int extra_bool_elts = ((bool_header_size - header_size + word_size - 1)
2373 / word_size);
2375 CHECK_NATNUM (length);
2377 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2379 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2381 val = Fmake_vector (make_number (length_in_elts + extra_bool_elts), Qnil);
2383 /* No Lisp_Object to trace in there. */
2384 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
2386 p = XBOOL_VECTOR (val);
2387 p->size = XFASTINT (length);
2389 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2390 / BOOL_VECTOR_BITS_PER_CHAR);
2391 if (length_in_chars)
2393 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2395 /* Clear any extraneous bits in the last byte. */
2396 p->data[length_in_chars - 1]
2397 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
2400 return val;
2404 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2405 of characters from the contents. This string may be unibyte or
2406 multibyte, depending on the contents. */
2408 Lisp_Object
2409 make_string (const char *contents, ptrdiff_t nbytes)
2411 register Lisp_Object val;
2412 ptrdiff_t nchars, multibyte_nbytes;
2414 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2415 &nchars, &multibyte_nbytes);
2416 if (nbytes == nchars || nbytes != multibyte_nbytes)
2417 /* CONTENTS contains no multibyte sequences or contains an invalid
2418 multibyte sequence. We must make unibyte string. */
2419 val = make_unibyte_string (contents, nbytes);
2420 else
2421 val = make_multibyte_string (contents, nchars, nbytes);
2422 return val;
2426 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2428 Lisp_Object
2429 make_unibyte_string (const char *contents, ptrdiff_t length)
2431 register Lisp_Object val;
2432 val = make_uninit_string (length);
2433 memcpy (SDATA (val), contents, length);
2434 return val;
2438 /* Make a multibyte string from NCHARS characters occupying NBYTES
2439 bytes at CONTENTS. */
2441 Lisp_Object
2442 make_multibyte_string (const char *contents,
2443 ptrdiff_t nchars, ptrdiff_t nbytes)
2445 register Lisp_Object val;
2446 val = make_uninit_multibyte_string (nchars, nbytes);
2447 memcpy (SDATA (val), contents, nbytes);
2448 return val;
2452 /* Make a string from NCHARS characters occupying NBYTES bytes at
2453 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2455 Lisp_Object
2456 make_string_from_bytes (const char *contents,
2457 ptrdiff_t nchars, ptrdiff_t nbytes)
2459 register Lisp_Object val;
2460 val = make_uninit_multibyte_string (nchars, nbytes);
2461 memcpy (SDATA (val), contents, nbytes);
2462 if (SBYTES (val) == SCHARS (val))
2463 STRING_SET_UNIBYTE (val);
2464 return val;
2468 /* Make a string from NCHARS characters occupying NBYTES bytes at
2469 CONTENTS. The argument MULTIBYTE controls whether to label the
2470 string as multibyte. If NCHARS is negative, it counts the number of
2471 characters by itself. */
2473 Lisp_Object
2474 make_specified_string (const char *contents,
2475 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
2477 register Lisp_Object val;
2479 if (nchars < 0)
2481 if (multibyte)
2482 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2483 nbytes);
2484 else
2485 nchars = nbytes;
2487 val = make_uninit_multibyte_string (nchars, nbytes);
2488 memcpy (SDATA (val), contents, nbytes);
2489 if (!multibyte)
2490 STRING_SET_UNIBYTE (val);
2491 return val;
2495 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2496 occupying LENGTH bytes. */
2498 Lisp_Object
2499 make_uninit_string (EMACS_INT length)
2501 Lisp_Object val;
2503 if (!length)
2504 return empty_unibyte_string;
2505 val = make_uninit_multibyte_string (length, length);
2506 STRING_SET_UNIBYTE (val);
2507 return val;
2511 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2512 which occupy NBYTES bytes. */
2514 Lisp_Object
2515 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2517 Lisp_Object string;
2518 struct Lisp_String *s;
2520 if (nchars < 0)
2521 abort ();
2522 if (!nbytes)
2523 return empty_multibyte_string;
2525 s = allocate_string ();
2526 s->intervals = NULL_INTERVAL;
2527 allocate_string_data (s, nchars, nbytes);
2528 XSETSTRING (string, s);
2529 string_chars_consed += nbytes;
2530 return string;
2533 /* Print arguments to BUF according to a FORMAT, then return
2534 a Lisp_String initialized with the data from BUF. */
2536 Lisp_Object
2537 make_formatted_string (char *buf, const char *format, ...)
2539 va_list ap;
2540 int length;
2542 va_start (ap, format);
2543 length = vsprintf (buf, format, ap);
2544 va_end (ap);
2545 return make_string (buf, length);
2549 /***********************************************************************
2550 Float Allocation
2551 ***********************************************************************/
2553 /* We store float cells inside of float_blocks, allocating a new
2554 float_block with malloc whenever necessary. Float cells reclaimed
2555 by GC are put on a free list to be reallocated before allocating
2556 any new float cells from the latest float_block. */
2558 #define FLOAT_BLOCK_SIZE \
2559 (((BLOCK_BYTES - sizeof (struct float_block *) \
2560 /* The compiler might add padding at the end. */ \
2561 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2562 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2564 #define GETMARKBIT(block,n) \
2565 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2566 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2567 & 1)
2569 #define SETMARKBIT(block,n) \
2570 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2571 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2573 #define UNSETMARKBIT(block,n) \
2574 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2575 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2577 #define FLOAT_BLOCK(fptr) \
2578 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2580 #define FLOAT_INDEX(fptr) \
2581 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2583 struct float_block
2585 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2586 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2587 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2588 struct float_block *next;
2591 #define FLOAT_MARKED_P(fptr) \
2592 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2594 #define FLOAT_MARK(fptr) \
2595 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2597 #define FLOAT_UNMARK(fptr) \
2598 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2600 /* Current float_block. */
2602 static struct float_block *float_block;
2604 /* Index of first unused Lisp_Float in the current float_block. */
2606 static int float_block_index = FLOAT_BLOCK_SIZE;
2608 /* Free-list of Lisp_Floats. */
2610 static struct Lisp_Float *float_free_list;
2612 /* Return a new float object with value FLOAT_VALUE. */
2614 Lisp_Object
2615 make_float (double float_value)
2617 register Lisp_Object val;
2619 /* eassert (!handling_signal); */
2621 MALLOC_BLOCK_INPUT;
2623 if (float_free_list)
2625 /* We use the data field for chaining the free list
2626 so that we won't use the same field that has the mark bit. */
2627 XSETFLOAT (val, float_free_list);
2628 float_free_list = float_free_list->u.chain;
2630 else
2632 if (float_block_index == FLOAT_BLOCK_SIZE)
2634 struct float_block *new
2635 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2636 new->next = float_block;
2637 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2638 float_block = new;
2639 float_block_index = 0;
2640 total_free_floats += FLOAT_BLOCK_SIZE;
2642 XSETFLOAT (val, &float_block->floats[float_block_index]);
2643 float_block_index++;
2646 MALLOC_UNBLOCK_INPUT;
2648 XFLOAT_INIT (val, float_value);
2649 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2650 consing_since_gc += sizeof (struct Lisp_Float);
2651 floats_consed++;
2652 total_free_floats--;
2653 return val;
2658 /***********************************************************************
2659 Cons Allocation
2660 ***********************************************************************/
2662 /* We store cons cells inside of cons_blocks, allocating a new
2663 cons_block with malloc whenever necessary. Cons cells reclaimed by
2664 GC are put on a free list to be reallocated before allocating
2665 any new cons cells from the latest cons_block. */
2667 #define CONS_BLOCK_SIZE \
2668 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2669 /* The compiler might add padding at the end. */ \
2670 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2671 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2673 #define CONS_BLOCK(fptr) \
2674 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2676 #define CONS_INDEX(fptr) \
2677 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2679 struct cons_block
2681 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2682 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2683 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2684 struct cons_block *next;
2687 #define CONS_MARKED_P(fptr) \
2688 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2690 #define CONS_MARK(fptr) \
2691 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2693 #define CONS_UNMARK(fptr) \
2694 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2696 /* Current cons_block. */
2698 static struct cons_block *cons_block;
2700 /* Index of first unused Lisp_Cons in the current block. */
2702 static int cons_block_index = CONS_BLOCK_SIZE;
2704 /* Free-list of Lisp_Cons structures. */
2706 static struct Lisp_Cons *cons_free_list;
2708 /* Explicitly free a cons cell by putting it on the free-list. */
2710 void
2711 free_cons (struct Lisp_Cons *ptr)
2713 ptr->u.chain = cons_free_list;
2714 #if GC_MARK_STACK
2715 ptr->car = Vdead;
2716 #endif
2717 cons_free_list = ptr;
2718 consing_since_gc -= sizeof *ptr;
2719 total_free_conses++;
2722 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2723 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2724 (Lisp_Object car, Lisp_Object cdr)
2726 register Lisp_Object val;
2728 /* eassert (!handling_signal); */
2730 MALLOC_BLOCK_INPUT;
2732 if (cons_free_list)
2734 /* We use the cdr for chaining the free list
2735 so that we won't use the same field that has the mark bit. */
2736 XSETCONS (val, cons_free_list);
2737 cons_free_list = cons_free_list->u.chain;
2739 else
2741 if (cons_block_index == CONS_BLOCK_SIZE)
2743 struct cons_block *new
2744 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2745 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2746 new->next = cons_block;
2747 cons_block = new;
2748 cons_block_index = 0;
2749 total_free_conses += CONS_BLOCK_SIZE;
2751 XSETCONS (val, &cons_block->conses[cons_block_index]);
2752 cons_block_index++;
2755 MALLOC_UNBLOCK_INPUT;
2757 XSETCAR (val, car);
2758 XSETCDR (val, cdr);
2759 eassert (!CONS_MARKED_P (XCONS (val)));
2760 consing_since_gc += sizeof (struct Lisp_Cons);
2761 total_free_conses--;
2762 cons_cells_consed++;
2763 return val;
2766 #ifdef GC_CHECK_CONS_LIST
2767 /* Get an error now if there's any junk in the cons free list. */
2768 void
2769 check_cons_list (void)
2771 struct Lisp_Cons *tail = cons_free_list;
2773 while (tail)
2774 tail = tail->u.chain;
2776 #endif
2778 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2780 Lisp_Object
2781 list1 (Lisp_Object arg1)
2783 return Fcons (arg1, Qnil);
2786 Lisp_Object
2787 list2 (Lisp_Object arg1, Lisp_Object arg2)
2789 return Fcons (arg1, Fcons (arg2, Qnil));
2793 Lisp_Object
2794 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2796 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2800 Lisp_Object
2801 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2803 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2807 Lisp_Object
2808 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2810 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2811 Fcons (arg5, Qnil)))));
2815 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2816 doc: /* Return a newly created list with specified arguments as elements.
2817 Any number of arguments, even zero arguments, are allowed.
2818 usage: (list &rest OBJECTS) */)
2819 (ptrdiff_t nargs, Lisp_Object *args)
2821 register Lisp_Object val;
2822 val = Qnil;
2824 while (nargs > 0)
2826 nargs--;
2827 val = Fcons (args[nargs], val);
2829 return val;
2833 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2834 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2835 (register Lisp_Object length, Lisp_Object init)
2837 register Lisp_Object val;
2838 register EMACS_INT size;
2840 CHECK_NATNUM (length);
2841 size = XFASTINT (length);
2843 val = Qnil;
2844 while (size > 0)
2846 val = Fcons (init, val);
2847 --size;
2849 if (size > 0)
2851 val = Fcons (init, val);
2852 --size;
2854 if (size > 0)
2856 val = Fcons (init, val);
2857 --size;
2859 if (size > 0)
2861 val = Fcons (init, val);
2862 --size;
2864 if (size > 0)
2866 val = Fcons (init, val);
2867 --size;
2873 QUIT;
2876 return val;
2881 /***********************************************************************
2882 Vector Allocation
2883 ***********************************************************************/
2885 /* This value is balanced well enough to avoid too much internal overhead
2886 for the most common cases; it's not required to be a power of two, but
2887 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2889 #define VECTOR_BLOCK_SIZE 4096
2891 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2892 enum
2894 roundup_size = COMMON_MULTIPLE (word_size,
2895 USE_LSB_TAG ? 1 << GCTYPEBITS : 1)
2898 /* ROUNDUP_SIZE must be a power of 2. */
2899 verify ((roundup_size & (roundup_size - 1)) == 0);
2901 /* Verify assumptions described above. */
2902 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2903 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2905 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2907 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2909 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2911 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2913 /* Size of the minimal vector allocated from block. */
2915 #define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2917 /* Size of the largest vector allocated from block. */
2919 #define VBLOCK_BYTES_MAX \
2920 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2922 /* We maintain one free list for each possible block-allocated
2923 vector size, and this is the number of free lists we have. */
2925 #define VECTOR_MAX_FREE_LIST_INDEX \
2926 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2928 /* Common shortcut to advance vector pointer over a block data. */
2930 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2932 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2934 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2936 /* Common shortcut to setup vector on a free list. */
2938 #define SETUP_ON_FREE_LIST(v, nbytes, index) \
2939 do { \
2940 XSETPVECTYPESIZE (v, PVEC_FREE, nbytes); \
2941 eassert ((nbytes) % roundup_size == 0); \
2942 (index) = VINDEX (nbytes); \
2943 eassert ((index) < VECTOR_MAX_FREE_LIST_INDEX); \
2944 (v)->header.next.vector = vector_free_lists[index]; \
2945 vector_free_lists[index] = (v); \
2946 total_free_vector_slots += (nbytes) / word_size; \
2947 } while (0)
2949 struct vector_block
2951 char data[VECTOR_BLOCK_BYTES];
2952 struct vector_block *next;
2955 /* Chain of vector blocks. */
2957 static struct vector_block *vector_blocks;
2959 /* Vector free lists, where NTH item points to a chain of free
2960 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2962 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2964 /* Singly-linked list of large vectors. */
2966 static struct Lisp_Vector *large_vectors;
2968 /* The only vector with 0 slots, allocated from pure space. */
2970 Lisp_Object zero_vector;
2972 /* Number of live vectors. */
2974 static EMACS_INT total_vectors;
2976 /* Total size of live and free vectors, in Lisp_Object units. */
2978 static EMACS_INT total_vector_slots, total_free_vector_slots;
2980 /* Get a new vector block. */
2982 static struct vector_block *
2983 allocate_vector_block (void)
2985 struct vector_block *block = xmalloc (sizeof *block);
2987 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2988 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2989 MEM_TYPE_VECTOR_BLOCK);
2990 #endif
2992 block->next = vector_blocks;
2993 vector_blocks = block;
2994 return block;
2997 /* Called once to initialize vector allocation. */
2999 static void
3000 init_vectors (void)
3002 zero_vector = make_pure_vector (0);
3005 /* Allocate vector from a vector block. */
3007 static struct Lisp_Vector *
3008 allocate_vector_from_block (size_t nbytes)
3010 struct Lisp_Vector *vector, *rest;
3011 struct vector_block *block;
3012 size_t index, restbytes;
3014 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3015 eassert (nbytes % roundup_size == 0);
3017 /* First, try to allocate from a free list
3018 containing vectors of the requested size. */
3019 index = VINDEX (nbytes);
3020 if (vector_free_lists[index])
3022 vector = vector_free_lists[index];
3023 vector_free_lists[index] = vector->header.next.vector;
3024 vector->header.next.nbytes = nbytes;
3025 total_free_vector_slots -= nbytes / word_size;
3026 return vector;
3029 /* Next, check free lists containing larger vectors. Since
3030 we will split the result, we should have remaining space
3031 large enough to use for one-slot vector at least. */
3032 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3033 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3034 if (vector_free_lists[index])
3036 /* This vector is larger than requested. */
3037 vector = vector_free_lists[index];
3038 vector_free_lists[index] = vector->header.next.vector;
3039 vector->header.next.nbytes = nbytes;
3040 total_free_vector_slots -= nbytes / word_size;
3042 /* Excess bytes are used for the smaller vector,
3043 which should be set on an appropriate free list. */
3044 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3045 eassert (restbytes % roundup_size == 0);
3046 rest = ADVANCE (vector, nbytes);
3047 SETUP_ON_FREE_LIST (rest, restbytes, index);
3048 return vector;
3051 /* Finally, need a new vector block. */
3052 block = allocate_vector_block ();
3054 /* New vector will be at the beginning of this block. */
3055 vector = (struct Lisp_Vector *) block->data;
3056 vector->header.next.nbytes = nbytes;
3058 /* If the rest of space from this block is large enough
3059 for one-slot vector at least, set up it on a free list. */
3060 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3061 if (restbytes >= VBLOCK_BYTES_MIN)
3063 eassert (restbytes % roundup_size == 0);
3064 rest = ADVANCE (vector, nbytes);
3065 SETUP_ON_FREE_LIST (rest, restbytes, index);
3067 return vector;
3070 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3072 #define VECTOR_IN_BLOCK(vector, block) \
3073 ((char *) (vector) <= (block)->data \
3074 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3076 /* Number of bytes used by vector-block-allocated object. This is the only
3077 place where we actually use the `nbytes' field of the vector-header.
3078 I.e. we could get rid of the `nbytes' field by computing it based on the
3079 vector-type. */
3081 #define PSEUDOVECTOR_NBYTES(vector) \
3082 (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) \
3083 ? vector->header.size & PSEUDOVECTOR_SIZE_MASK \
3084 : vector->header.next.nbytes)
3086 /* Reclaim space used by unmarked vectors. */
3088 static void
3089 sweep_vectors (void)
3091 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
3092 struct Lisp_Vector *vector, *next, **vprev = &large_vectors;
3094 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3095 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3097 /* Looking through vector blocks. */
3099 for (block = vector_blocks; block; block = *bprev)
3101 int free_this_block = 0;
3103 for (vector = (struct Lisp_Vector *) block->data;
3104 VECTOR_IN_BLOCK (vector, block); vector = next)
3106 if (VECTOR_MARKED_P (vector))
3108 VECTOR_UNMARK (vector);
3109 total_vectors++;
3110 total_vector_slots += vector->header.next.nbytes / word_size;
3111 next = ADVANCE (vector, vector->header.next.nbytes);
3113 else
3115 ptrdiff_t nbytes = PSEUDOVECTOR_NBYTES (vector);
3116 ptrdiff_t total_bytes = nbytes;
3118 next = ADVANCE (vector, nbytes);
3120 /* While NEXT is not marked, try to coalesce with VECTOR,
3121 thus making VECTOR of the largest possible size. */
3123 while (VECTOR_IN_BLOCK (next, block))
3125 if (VECTOR_MARKED_P (next))
3126 break;
3127 nbytes = PSEUDOVECTOR_NBYTES (next);
3128 total_bytes += nbytes;
3129 next = ADVANCE (next, nbytes);
3132 eassert (total_bytes % roundup_size == 0);
3134 if (vector == (struct Lisp_Vector *) block->data
3135 && !VECTOR_IN_BLOCK (next, block))
3136 /* This block should be freed because all of it's
3137 space was coalesced into the only free vector. */
3138 free_this_block = 1;
3139 else
3141 int tmp;
3142 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3147 if (free_this_block)
3149 *bprev = block->next;
3150 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3151 mem_delete (mem_find (block->data));
3152 #endif
3153 xfree (block);
3155 else
3156 bprev = &block->next;
3159 /* Sweep large vectors. */
3161 for (vector = large_vectors; vector; vector = *vprev)
3163 if (VECTOR_MARKED_P (vector))
3165 VECTOR_UNMARK (vector);
3166 total_vectors++;
3167 if (vector->header.size & PSEUDOVECTOR_FLAG)
3169 struct Lisp_Bool_Vector *b = (struct Lisp_Bool_Vector *) vector;
3171 /* All non-bool pseudovectors are small enough to be allocated
3172 from vector blocks. This code should be redesigned if some
3173 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3174 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3176 total_vector_slots
3177 += (bool_header_size
3178 + ((b->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
3179 / BOOL_VECTOR_BITS_PER_CHAR)) / word_size;
3181 else
3182 total_vector_slots
3183 += header_size / word_size + vector->header.size;
3184 vprev = &vector->header.next.vector;
3186 else
3188 *vprev = vector->header.next.vector;
3189 lisp_free (vector);
3194 /* Value is a pointer to a newly allocated Lisp_Vector structure
3195 with room for LEN Lisp_Objects. */
3197 static struct Lisp_Vector *
3198 allocate_vectorlike (ptrdiff_t len)
3200 struct Lisp_Vector *p;
3202 MALLOC_BLOCK_INPUT;
3204 /* This gets triggered by code which I haven't bothered to fix. --Stef */
3205 /* eassert (!handling_signal); */
3207 if (len == 0)
3208 p = XVECTOR (zero_vector);
3209 else
3211 size_t nbytes = header_size + len * word_size;
3213 #ifdef DOUG_LEA_MALLOC
3214 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3215 because mapped region contents are not preserved in
3216 a dumped Emacs. */
3217 mallopt (M_MMAP_MAX, 0);
3218 #endif
3220 if (nbytes <= VBLOCK_BYTES_MAX)
3221 p = allocate_vector_from_block (vroundup (nbytes));
3222 else
3224 p = lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
3225 p->header.next.vector = large_vectors;
3226 large_vectors = p;
3229 #ifdef DOUG_LEA_MALLOC
3230 /* Back to a reasonable maximum of mmap'ed areas. */
3231 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3232 #endif
3234 consing_since_gc += nbytes;
3235 vector_cells_consed += len;
3238 MALLOC_UNBLOCK_INPUT;
3240 return p;
3244 /* Allocate a vector with LEN slots. */
3246 struct Lisp_Vector *
3247 allocate_vector (EMACS_INT len)
3249 struct Lisp_Vector *v;
3250 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3252 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3253 memory_full (SIZE_MAX);
3254 v = allocate_vectorlike (len);
3255 v->header.size = len;
3256 return v;
3260 /* Allocate other vector-like structures. */
3262 struct Lisp_Vector *
3263 allocate_pseudovector (int memlen, int lisplen, int tag)
3265 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3266 int i;
3268 /* Only the first lisplen slots will be traced normally by the GC. */
3269 for (i = 0; i < lisplen; ++i)
3270 v->contents[i] = Qnil;
3272 XSETPVECTYPESIZE (v, tag, lisplen);
3273 return v;
3276 struct buffer *
3277 allocate_buffer (void)
3279 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3281 XSETPVECTYPESIZE (b, PVEC_BUFFER, (offsetof (struct buffer, own_text)
3282 - header_size) / word_size);
3283 /* Note that the fields of B are not initialized. */
3284 return b;
3287 struct Lisp_Hash_Table *
3288 allocate_hash_table (void)
3290 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3293 struct window *
3294 allocate_window (void)
3296 struct window *w;
3298 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3299 /* Users assumes that non-Lisp data is zeroed. */
3300 memset (&w->current_matrix, 0,
3301 sizeof (*w) - offsetof (struct window, current_matrix));
3302 return w;
3305 struct terminal *
3306 allocate_terminal (void)
3308 struct terminal *t;
3310 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3311 /* Users assumes that non-Lisp data is zeroed. */
3312 memset (&t->next_terminal, 0,
3313 sizeof (*t) - offsetof (struct terminal, next_terminal));
3314 return t;
3317 struct frame *
3318 allocate_frame (void)
3320 struct frame *f;
3322 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3323 /* Users assumes that non-Lisp data is zeroed. */
3324 memset (&f->face_cache, 0,
3325 sizeof (*f) - offsetof (struct frame, face_cache));
3326 return f;
3329 struct Lisp_Process *
3330 allocate_process (void)
3332 struct Lisp_Process *p;
3334 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3335 /* Users assumes that non-Lisp data is zeroed. */
3336 memset (&p->pid, 0,
3337 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3338 return p;
3341 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3342 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3343 See also the function `vector'. */)
3344 (register Lisp_Object length, Lisp_Object init)
3346 Lisp_Object vector;
3347 register ptrdiff_t sizei;
3348 register ptrdiff_t i;
3349 register struct Lisp_Vector *p;
3351 CHECK_NATNUM (length);
3353 p = allocate_vector (XFASTINT (length));
3354 sizei = XFASTINT (length);
3355 for (i = 0; i < sizei; i++)
3356 p->contents[i] = init;
3358 XSETVECTOR (vector, p);
3359 return vector;
3363 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3364 doc: /* Return a newly created vector with specified arguments as elements.
3365 Any number of arguments, even zero arguments, are allowed.
3366 usage: (vector &rest OBJECTS) */)
3367 (ptrdiff_t nargs, Lisp_Object *args)
3369 register Lisp_Object len, val;
3370 ptrdiff_t i;
3371 register struct Lisp_Vector *p;
3373 XSETFASTINT (len, nargs);
3374 val = Fmake_vector (len, Qnil);
3375 p = XVECTOR (val);
3376 for (i = 0; i < nargs; i++)
3377 p->contents[i] = args[i];
3378 return val;
3381 void
3382 make_byte_code (struct Lisp_Vector *v)
3384 if (v->header.size > 1 && STRINGP (v->contents[1])
3385 && STRING_MULTIBYTE (v->contents[1]))
3386 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3387 earlier because they produced a raw 8-bit string for byte-code
3388 and now such a byte-code string is loaded as multibyte while
3389 raw 8-bit characters converted to multibyte form. Thus, now we
3390 must convert them back to the original unibyte form. */
3391 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3392 XSETPVECTYPE (v, PVEC_COMPILED);
3395 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3396 doc: /* Create a byte-code object with specified arguments as elements.
3397 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3398 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3399 and (optional) INTERACTIVE-SPEC.
3400 The first four arguments are required; at most six have any
3401 significance.
3402 The ARGLIST can be either like the one of `lambda', in which case the arguments
3403 will be dynamically bound before executing the byte code, or it can be an
3404 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3405 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3406 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3407 argument to catch the left-over arguments. If such an integer is used, the
3408 arguments will not be dynamically bound but will be instead pushed on the
3409 stack before executing the byte-code.
3410 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3411 (ptrdiff_t nargs, Lisp_Object *args)
3413 register Lisp_Object len, val;
3414 ptrdiff_t i;
3415 register struct Lisp_Vector *p;
3417 /* We used to purecopy everything here, if purify-flga was set. This worked
3418 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3419 dangerous, since make-byte-code is used during execution to build
3420 closures, so any closure built during the preload phase would end up
3421 copied into pure space, including its free variables, which is sometimes
3422 just wasteful and other times plainly wrong (e.g. those free vars may want
3423 to be setcar'd). */
3425 XSETFASTINT (len, nargs);
3426 val = Fmake_vector (len, Qnil);
3428 p = XVECTOR (val);
3429 for (i = 0; i < nargs; i++)
3430 p->contents[i] = args[i];
3431 make_byte_code (p);
3432 XSETCOMPILED (val, p);
3433 return val;
3438 /***********************************************************************
3439 Symbol Allocation
3440 ***********************************************************************/
3442 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3443 of the required alignment if LSB tags are used. */
3445 union aligned_Lisp_Symbol
3447 struct Lisp_Symbol s;
3448 #if USE_LSB_TAG
3449 unsigned char c[(sizeof (struct Lisp_Symbol) + (1 << GCTYPEBITS) - 1)
3450 & -(1 << GCTYPEBITS)];
3451 #endif
3454 /* Each symbol_block is just under 1020 bytes long, since malloc
3455 really allocates in units of powers of two and uses 4 bytes for its
3456 own overhead. */
3458 #define SYMBOL_BLOCK_SIZE \
3459 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3461 struct symbol_block
3463 /* Place `symbols' first, to preserve alignment. */
3464 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3465 struct symbol_block *next;
3468 /* Current symbol block and index of first unused Lisp_Symbol
3469 structure in it. */
3471 static struct symbol_block *symbol_block;
3472 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3474 /* List of free symbols. */
3476 static struct Lisp_Symbol *symbol_free_list;
3478 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3479 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3480 Its value and function definition are void, and its property list is nil. */)
3481 (Lisp_Object name)
3483 register Lisp_Object val;
3484 register struct Lisp_Symbol *p;
3486 CHECK_STRING (name);
3488 /* eassert (!handling_signal); */
3490 MALLOC_BLOCK_INPUT;
3492 if (symbol_free_list)
3494 XSETSYMBOL (val, symbol_free_list);
3495 symbol_free_list = symbol_free_list->next;
3497 else
3499 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3501 struct symbol_block *new
3502 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3503 new->next = symbol_block;
3504 symbol_block = new;
3505 symbol_block_index = 0;
3506 total_free_symbols += SYMBOL_BLOCK_SIZE;
3508 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3509 symbol_block_index++;
3512 MALLOC_UNBLOCK_INPUT;
3514 p = XSYMBOL (val);
3515 p->xname = name;
3516 p->plist = Qnil;
3517 p->redirect = SYMBOL_PLAINVAL;
3518 SET_SYMBOL_VAL (p, Qunbound);
3519 p->function = Qunbound;
3520 p->next = NULL;
3521 p->gcmarkbit = 0;
3522 p->interned = SYMBOL_UNINTERNED;
3523 p->constant = 0;
3524 p->declared_special = 0;
3525 consing_since_gc += sizeof (struct Lisp_Symbol);
3526 symbols_consed++;
3527 total_free_symbols--;
3528 return val;
3533 /***********************************************************************
3534 Marker (Misc) Allocation
3535 ***********************************************************************/
3537 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3538 the required alignment when LSB tags are used. */
3540 union aligned_Lisp_Misc
3542 union Lisp_Misc m;
3543 #if USE_LSB_TAG
3544 unsigned char c[(sizeof (union Lisp_Misc) + (1 << GCTYPEBITS) - 1)
3545 & -(1 << GCTYPEBITS)];
3546 #endif
3549 /* Allocation of markers and other objects that share that structure.
3550 Works like allocation of conses. */
3552 #define MARKER_BLOCK_SIZE \
3553 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3555 struct marker_block
3557 /* Place `markers' first, to preserve alignment. */
3558 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3559 struct marker_block *next;
3562 static struct marker_block *marker_block;
3563 static int marker_block_index = MARKER_BLOCK_SIZE;
3565 static union Lisp_Misc *marker_free_list;
3567 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3569 Lisp_Object
3570 allocate_misc (void)
3572 Lisp_Object val;
3574 /* eassert (!handling_signal); */
3576 MALLOC_BLOCK_INPUT;
3578 if (marker_free_list)
3580 XSETMISC (val, marker_free_list);
3581 marker_free_list = marker_free_list->u_free.chain;
3583 else
3585 if (marker_block_index == MARKER_BLOCK_SIZE)
3587 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3588 new->next = marker_block;
3589 marker_block = new;
3590 marker_block_index = 0;
3591 total_free_markers += MARKER_BLOCK_SIZE;
3593 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3594 marker_block_index++;
3597 MALLOC_UNBLOCK_INPUT;
3599 --total_free_markers;
3600 consing_since_gc += sizeof (union Lisp_Misc);
3601 misc_objects_consed++;
3602 XMISCANY (val)->gcmarkbit = 0;
3603 return val;
3606 /* Free a Lisp_Misc object */
3608 static void
3609 free_misc (Lisp_Object misc)
3611 XMISCTYPE (misc) = Lisp_Misc_Free;
3612 XMISC (misc)->u_free.chain = marker_free_list;
3613 marker_free_list = XMISC (misc);
3614 consing_since_gc -= sizeof (union Lisp_Misc);
3615 total_free_markers++;
3618 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3619 INTEGER. This is used to package C values to call record_unwind_protect.
3620 The unwind function can get the C values back using XSAVE_VALUE. */
3622 Lisp_Object
3623 make_save_value (void *pointer, ptrdiff_t integer)
3625 register Lisp_Object val;
3626 register struct Lisp_Save_Value *p;
3628 val = allocate_misc ();
3629 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3630 p = XSAVE_VALUE (val);
3631 p->pointer = pointer;
3632 p->integer = integer;
3633 p->dogc = 0;
3634 return val;
3637 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3638 doc: /* Return a newly allocated marker which does not point at any place. */)
3639 (void)
3641 register Lisp_Object val;
3642 register struct Lisp_Marker *p;
3644 val = allocate_misc ();
3645 XMISCTYPE (val) = Lisp_Misc_Marker;
3646 p = XMARKER (val);
3647 p->buffer = 0;
3648 p->bytepos = 0;
3649 p->charpos = 0;
3650 p->next = NULL;
3651 p->insertion_type = 0;
3652 return val;
3655 /* Return a newly allocated marker which points into BUF
3656 at character position CHARPOS and byte position BYTEPOS. */
3658 Lisp_Object
3659 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3661 Lisp_Object obj;
3662 struct Lisp_Marker *m;
3664 /* No dead buffers here. */
3665 eassert (!NILP (BVAR (buf, name)));
3667 /* Every character is at least one byte. */
3668 eassert (charpos <= bytepos);
3670 obj = allocate_misc ();
3671 XMISCTYPE (obj) = Lisp_Misc_Marker;
3672 m = XMARKER (obj);
3673 m->buffer = buf;
3674 m->charpos = charpos;
3675 m->bytepos = bytepos;
3676 m->insertion_type = 0;
3677 m->next = BUF_MARKERS (buf);
3678 BUF_MARKERS (buf) = m;
3679 return obj;
3682 /* Put MARKER back on the free list after using it temporarily. */
3684 void
3685 free_marker (Lisp_Object marker)
3687 unchain_marker (XMARKER (marker));
3688 free_misc (marker);
3692 /* Return a newly created vector or string with specified arguments as
3693 elements. If all the arguments are characters that can fit
3694 in a string of events, make a string; otherwise, make a vector.
3696 Any number of arguments, even zero arguments, are allowed. */
3698 Lisp_Object
3699 make_event_array (register int nargs, Lisp_Object *args)
3701 int i;
3703 for (i = 0; i < nargs; i++)
3704 /* The things that fit in a string
3705 are characters that are in 0...127,
3706 after discarding the meta bit and all the bits above it. */
3707 if (!INTEGERP (args[i])
3708 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3709 return Fvector (nargs, args);
3711 /* Since the loop exited, we know that all the things in it are
3712 characters, so we can make a string. */
3714 Lisp_Object result;
3716 result = Fmake_string (make_number (nargs), make_number (0));
3717 for (i = 0; i < nargs; i++)
3719 SSET (result, i, XINT (args[i]));
3720 /* Move the meta bit to the right place for a string char. */
3721 if (XINT (args[i]) & CHAR_META)
3722 SSET (result, i, SREF (result, i) | 0x80);
3725 return result;
3731 /************************************************************************
3732 Memory Full Handling
3733 ************************************************************************/
3736 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3737 there may have been size_t overflow so that malloc was never
3738 called, or perhaps malloc was invoked successfully but the
3739 resulting pointer had problems fitting into a tagged EMACS_INT. In
3740 either case this counts as memory being full even though malloc did
3741 not fail. */
3743 void
3744 memory_full (size_t nbytes)
3746 /* Do not go into hysterics merely because a large request failed. */
3747 int enough_free_memory = 0;
3748 if (SPARE_MEMORY < nbytes)
3750 void *p;
3752 MALLOC_BLOCK_INPUT;
3753 p = malloc (SPARE_MEMORY);
3754 if (p)
3756 free (p);
3757 enough_free_memory = 1;
3759 MALLOC_UNBLOCK_INPUT;
3762 if (! enough_free_memory)
3764 int i;
3766 Vmemory_full = Qt;
3768 memory_full_cons_threshold = sizeof (struct cons_block);
3770 /* The first time we get here, free the spare memory. */
3771 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3772 if (spare_memory[i])
3774 if (i == 0)
3775 free (spare_memory[i]);
3776 else if (i >= 1 && i <= 4)
3777 lisp_align_free (spare_memory[i]);
3778 else
3779 lisp_free (spare_memory[i]);
3780 spare_memory[i] = 0;
3783 /* Record the space now used. When it decreases substantially,
3784 we can refill the memory reserve. */
3785 #if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
3786 bytes_used_when_full = BYTES_USED;
3787 #endif
3790 /* This used to call error, but if we've run out of memory, we could
3791 get infinite recursion trying to build the string. */
3792 xsignal (Qnil, Vmemory_signal_data);
3795 /* If we released our reserve (due to running out of memory),
3796 and we have a fair amount free once again,
3797 try to set aside another reserve in case we run out once more.
3799 This is called when a relocatable block is freed in ralloc.c,
3800 and also directly from this file, in case we're not using ralloc.c. */
3802 void
3803 refill_memory_reserve (void)
3805 #ifndef SYSTEM_MALLOC
3806 if (spare_memory[0] == 0)
3807 spare_memory[0] = malloc (SPARE_MEMORY);
3808 if (spare_memory[1] == 0)
3809 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3810 MEM_TYPE_CONS);
3811 if (spare_memory[2] == 0)
3812 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3813 MEM_TYPE_CONS);
3814 if (spare_memory[3] == 0)
3815 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3816 MEM_TYPE_CONS);
3817 if (spare_memory[4] == 0)
3818 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3819 MEM_TYPE_CONS);
3820 if (spare_memory[5] == 0)
3821 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3822 MEM_TYPE_STRING);
3823 if (spare_memory[6] == 0)
3824 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3825 MEM_TYPE_STRING);
3826 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3827 Vmemory_full = Qnil;
3828 #endif
3831 /************************************************************************
3832 C Stack Marking
3833 ************************************************************************/
3835 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3837 /* Conservative C stack marking requires a method to identify possibly
3838 live Lisp objects given a pointer value. We do this by keeping
3839 track of blocks of Lisp data that are allocated in a red-black tree
3840 (see also the comment of mem_node which is the type of nodes in
3841 that tree). Function lisp_malloc adds information for an allocated
3842 block to the red-black tree with calls to mem_insert, and function
3843 lisp_free removes it with mem_delete. Functions live_string_p etc
3844 call mem_find to lookup information about a given pointer in the
3845 tree, and use that to determine if the pointer points to a Lisp
3846 object or not. */
3848 /* Initialize this part of alloc.c. */
3850 static void
3851 mem_init (void)
3853 mem_z.left = mem_z.right = MEM_NIL;
3854 mem_z.parent = NULL;
3855 mem_z.color = MEM_BLACK;
3856 mem_z.start = mem_z.end = NULL;
3857 mem_root = MEM_NIL;
3861 /* Value is a pointer to the mem_node containing START. Value is
3862 MEM_NIL if there is no node in the tree containing START. */
3864 static inline struct mem_node *
3865 mem_find (void *start)
3867 struct mem_node *p;
3869 if (start < min_heap_address || start > max_heap_address)
3870 return MEM_NIL;
3872 /* Make the search always successful to speed up the loop below. */
3873 mem_z.start = start;
3874 mem_z.end = (char *) start + 1;
3876 p = mem_root;
3877 while (start < p->start || start >= p->end)
3878 p = start < p->start ? p->left : p->right;
3879 return p;
3883 /* Insert a new node into the tree for a block of memory with start
3884 address START, end address END, and type TYPE. Value is a
3885 pointer to the node that was inserted. */
3887 static struct mem_node *
3888 mem_insert (void *start, void *end, enum mem_type type)
3890 struct mem_node *c, *parent, *x;
3892 if (min_heap_address == NULL || start < min_heap_address)
3893 min_heap_address = start;
3894 if (max_heap_address == NULL || end > max_heap_address)
3895 max_heap_address = end;
3897 /* See where in the tree a node for START belongs. In this
3898 particular application, it shouldn't happen that a node is already
3899 present. For debugging purposes, let's check that. */
3900 c = mem_root;
3901 parent = NULL;
3903 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3905 while (c != MEM_NIL)
3907 if (start >= c->start && start < c->end)
3908 abort ();
3909 parent = c;
3910 c = start < c->start ? c->left : c->right;
3913 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3915 while (c != MEM_NIL)
3917 parent = c;
3918 c = start < c->start ? c->left : c->right;
3921 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3923 /* Create a new node. */
3924 #ifdef GC_MALLOC_CHECK
3925 x = _malloc_internal (sizeof *x);
3926 if (x == NULL)
3927 abort ();
3928 #else
3929 x = xmalloc (sizeof *x);
3930 #endif
3931 x->start = start;
3932 x->end = end;
3933 x->type = type;
3934 x->parent = parent;
3935 x->left = x->right = MEM_NIL;
3936 x->color = MEM_RED;
3938 /* Insert it as child of PARENT or install it as root. */
3939 if (parent)
3941 if (start < parent->start)
3942 parent->left = x;
3943 else
3944 parent->right = x;
3946 else
3947 mem_root = x;
3949 /* Re-establish red-black tree properties. */
3950 mem_insert_fixup (x);
3952 return x;
3956 /* Re-establish the red-black properties of the tree, and thereby
3957 balance the tree, after node X has been inserted; X is always red. */
3959 static void
3960 mem_insert_fixup (struct mem_node *x)
3962 while (x != mem_root && x->parent->color == MEM_RED)
3964 /* X is red and its parent is red. This is a violation of
3965 red-black tree property #3. */
3967 if (x->parent == x->parent->parent->left)
3969 /* We're on the left side of our grandparent, and Y is our
3970 "uncle". */
3971 struct mem_node *y = x->parent->parent->right;
3973 if (y->color == MEM_RED)
3975 /* Uncle and parent are red but should be black because
3976 X is red. Change the colors accordingly and proceed
3977 with the grandparent. */
3978 x->parent->color = MEM_BLACK;
3979 y->color = MEM_BLACK;
3980 x->parent->parent->color = MEM_RED;
3981 x = x->parent->parent;
3983 else
3985 /* Parent and uncle have different colors; parent is
3986 red, uncle is black. */
3987 if (x == x->parent->right)
3989 x = x->parent;
3990 mem_rotate_left (x);
3993 x->parent->color = MEM_BLACK;
3994 x->parent->parent->color = MEM_RED;
3995 mem_rotate_right (x->parent->parent);
3998 else
4000 /* This is the symmetrical case of above. */
4001 struct mem_node *y = x->parent->parent->left;
4003 if (y->color == MEM_RED)
4005 x->parent->color = MEM_BLACK;
4006 y->color = MEM_BLACK;
4007 x->parent->parent->color = MEM_RED;
4008 x = x->parent->parent;
4010 else
4012 if (x == x->parent->left)
4014 x = x->parent;
4015 mem_rotate_right (x);
4018 x->parent->color = MEM_BLACK;
4019 x->parent->parent->color = MEM_RED;
4020 mem_rotate_left (x->parent->parent);
4025 /* The root may have been changed to red due to the algorithm. Set
4026 it to black so that property #5 is satisfied. */
4027 mem_root->color = MEM_BLACK;
4031 /* (x) (y)
4032 / \ / \
4033 a (y) ===> (x) c
4034 / \ / \
4035 b c a b */
4037 static void
4038 mem_rotate_left (struct mem_node *x)
4040 struct mem_node *y;
4042 /* Turn y's left sub-tree into x's right sub-tree. */
4043 y = x->right;
4044 x->right = y->left;
4045 if (y->left != MEM_NIL)
4046 y->left->parent = x;
4048 /* Y's parent was x's parent. */
4049 if (y != MEM_NIL)
4050 y->parent = x->parent;
4052 /* Get the parent to point to y instead of x. */
4053 if (x->parent)
4055 if (x == x->parent->left)
4056 x->parent->left = y;
4057 else
4058 x->parent->right = y;
4060 else
4061 mem_root = y;
4063 /* Put x on y's left. */
4064 y->left = x;
4065 if (x != MEM_NIL)
4066 x->parent = y;
4070 /* (x) (Y)
4071 / \ / \
4072 (y) c ===> a (x)
4073 / \ / \
4074 a b b c */
4076 static void
4077 mem_rotate_right (struct mem_node *x)
4079 struct mem_node *y = x->left;
4081 x->left = y->right;
4082 if (y->right != MEM_NIL)
4083 y->right->parent = x;
4085 if (y != MEM_NIL)
4086 y->parent = x->parent;
4087 if (x->parent)
4089 if (x == x->parent->right)
4090 x->parent->right = y;
4091 else
4092 x->parent->left = y;
4094 else
4095 mem_root = y;
4097 y->right = x;
4098 if (x != MEM_NIL)
4099 x->parent = y;
4103 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4105 static void
4106 mem_delete (struct mem_node *z)
4108 struct mem_node *x, *y;
4110 if (!z || z == MEM_NIL)
4111 return;
4113 if (z->left == MEM_NIL || z->right == MEM_NIL)
4114 y = z;
4115 else
4117 y = z->right;
4118 while (y->left != MEM_NIL)
4119 y = y->left;
4122 if (y->left != MEM_NIL)
4123 x = y->left;
4124 else
4125 x = y->right;
4127 x->parent = y->parent;
4128 if (y->parent)
4130 if (y == y->parent->left)
4131 y->parent->left = x;
4132 else
4133 y->parent->right = x;
4135 else
4136 mem_root = x;
4138 if (y != z)
4140 z->start = y->start;
4141 z->end = y->end;
4142 z->type = y->type;
4145 if (y->color == MEM_BLACK)
4146 mem_delete_fixup (x);
4148 #ifdef GC_MALLOC_CHECK
4149 _free_internal (y);
4150 #else
4151 xfree (y);
4152 #endif
4156 /* Re-establish the red-black properties of the tree, after a
4157 deletion. */
4159 static void
4160 mem_delete_fixup (struct mem_node *x)
4162 while (x != mem_root && x->color == MEM_BLACK)
4164 if (x == x->parent->left)
4166 struct mem_node *w = x->parent->right;
4168 if (w->color == MEM_RED)
4170 w->color = MEM_BLACK;
4171 x->parent->color = MEM_RED;
4172 mem_rotate_left (x->parent);
4173 w = x->parent->right;
4176 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4178 w->color = MEM_RED;
4179 x = x->parent;
4181 else
4183 if (w->right->color == MEM_BLACK)
4185 w->left->color = MEM_BLACK;
4186 w->color = MEM_RED;
4187 mem_rotate_right (w);
4188 w = x->parent->right;
4190 w->color = x->parent->color;
4191 x->parent->color = MEM_BLACK;
4192 w->right->color = MEM_BLACK;
4193 mem_rotate_left (x->parent);
4194 x = mem_root;
4197 else
4199 struct mem_node *w = x->parent->left;
4201 if (w->color == MEM_RED)
4203 w->color = MEM_BLACK;
4204 x->parent->color = MEM_RED;
4205 mem_rotate_right (x->parent);
4206 w = x->parent->left;
4209 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4211 w->color = MEM_RED;
4212 x = x->parent;
4214 else
4216 if (w->left->color == MEM_BLACK)
4218 w->right->color = MEM_BLACK;
4219 w->color = MEM_RED;
4220 mem_rotate_left (w);
4221 w = x->parent->left;
4224 w->color = x->parent->color;
4225 x->parent->color = MEM_BLACK;
4226 w->left->color = MEM_BLACK;
4227 mem_rotate_right (x->parent);
4228 x = mem_root;
4233 x->color = MEM_BLACK;
4237 /* Value is non-zero if P is a pointer to a live Lisp string on
4238 the heap. M is a pointer to the mem_block for P. */
4240 static inline int
4241 live_string_p (struct mem_node *m, void *p)
4243 if (m->type == MEM_TYPE_STRING)
4245 struct string_block *b = (struct string_block *) m->start;
4246 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4248 /* P must point to the start of a Lisp_String structure, and it
4249 must not be on the free-list. */
4250 return (offset >= 0
4251 && offset % sizeof b->strings[0] == 0
4252 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4253 && ((struct Lisp_String *) p)->data != NULL);
4255 else
4256 return 0;
4260 /* Value is non-zero if P is a pointer to a live Lisp cons on
4261 the heap. M is a pointer to the mem_block for P. */
4263 static inline int
4264 live_cons_p (struct mem_node *m, void *p)
4266 if (m->type == MEM_TYPE_CONS)
4268 struct cons_block *b = (struct cons_block *) m->start;
4269 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4271 /* P must point to the start of a Lisp_Cons, not be
4272 one of the unused cells in the current cons block,
4273 and not be on the free-list. */
4274 return (offset >= 0
4275 && offset % sizeof b->conses[0] == 0
4276 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4277 && (b != cons_block
4278 || offset / sizeof b->conses[0] < cons_block_index)
4279 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4281 else
4282 return 0;
4286 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4287 the heap. M is a pointer to the mem_block for P. */
4289 static inline int
4290 live_symbol_p (struct mem_node *m, void *p)
4292 if (m->type == MEM_TYPE_SYMBOL)
4294 struct symbol_block *b = (struct symbol_block *) m->start;
4295 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4297 /* P must point to the start of a Lisp_Symbol, not be
4298 one of the unused cells in the current symbol block,
4299 and not be on the free-list. */
4300 return (offset >= 0
4301 && offset % sizeof b->symbols[0] == 0
4302 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4303 && (b != symbol_block
4304 || offset / sizeof b->symbols[0] < symbol_block_index)
4305 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4307 else
4308 return 0;
4312 /* Value is non-zero if P is a pointer to a live Lisp float on
4313 the heap. M is a pointer to the mem_block for P. */
4315 static inline int
4316 live_float_p (struct mem_node *m, void *p)
4318 if (m->type == MEM_TYPE_FLOAT)
4320 struct float_block *b = (struct float_block *) m->start;
4321 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4323 /* P must point to the start of a Lisp_Float and not be
4324 one of the unused cells in the current float block. */
4325 return (offset >= 0
4326 && offset % sizeof b->floats[0] == 0
4327 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4328 && (b != float_block
4329 || offset / sizeof b->floats[0] < float_block_index));
4331 else
4332 return 0;
4336 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4337 the heap. M is a pointer to the mem_block for P. */
4339 static inline int
4340 live_misc_p (struct mem_node *m, void *p)
4342 if (m->type == MEM_TYPE_MISC)
4344 struct marker_block *b = (struct marker_block *) m->start;
4345 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4347 /* P must point to the start of a Lisp_Misc, not be
4348 one of the unused cells in the current misc block,
4349 and not be on the free-list. */
4350 return (offset >= 0
4351 && offset % sizeof b->markers[0] == 0
4352 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4353 && (b != marker_block
4354 || offset / sizeof b->markers[0] < marker_block_index)
4355 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4357 else
4358 return 0;
4362 /* Value is non-zero if P is a pointer to a live vector-like object.
4363 M is a pointer to the mem_block for P. */
4365 static inline int
4366 live_vector_p (struct mem_node *m, void *p)
4368 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4370 /* This memory node corresponds to a vector block. */
4371 struct vector_block *block = (struct vector_block *) m->start;
4372 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4374 /* P is in the block's allocation range. Scan the block
4375 up to P and see whether P points to the start of some
4376 vector which is not on a free list. FIXME: check whether
4377 some allocation patterns (probably a lot of short vectors)
4378 may cause a substantial overhead of this loop. */
4379 while (VECTOR_IN_BLOCK (vector, block)
4380 && vector <= (struct Lisp_Vector *) p)
4382 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE))
4383 vector = ADVANCE (vector, (vector->header.size
4384 & PSEUDOVECTOR_SIZE_MASK));
4385 else if (vector == p)
4386 return 1;
4387 else
4388 vector = ADVANCE (vector, vector->header.next.nbytes);
4391 else if (m->type == MEM_TYPE_VECTORLIKE && p == m->start)
4392 /* This memory node corresponds to a large vector. */
4393 return 1;
4394 return 0;
4398 /* Value is non-zero if P is a pointer to a live buffer. M is a
4399 pointer to the mem_block for P. */
4401 static inline int
4402 live_buffer_p (struct mem_node *m, void *p)
4404 /* P must point to the start of the block, and the buffer
4405 must not have been killed. */
4406 return (m->type == MEM_TYPE_BUFFER
4407 && p == m->start
4408 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
4411 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4413 #if GC_MARK_STACK
4415 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4417 /* Array of objects that are kept alive because the C stack contains
4418 a pattern that looks like a reference to them . */
4420 #define MAX_ZOMBIES 10
4421 static Lisp_Object zombies[MAX_ZOMBIES];
4423 /* Number of zombie objects. */
4425 static EMACS_INT nzombies;
4427 /* Number of garbage collections. */
4429 static EMACS_INT ngcs;
4431 /* Average percentage of zombies per collection. */
4433 static double avg_zombies;
4435 /* Max. number of live and zombie objects. */
4437 static EMACS_INT max_live, max_zombies;
4439 /* Average number of live objects per GC. */
4441 static double avg_live;
4443 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4444 doc: /* Show information about live and zombie objects. */)
4445 (void)
4447 Lisp_Object args[8], zombie_list = Qnil;
4448 EMACS_INT i;
4449 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4450 zombie_list = Fcons (zombies[i], zombie_list);
4451 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4452 args[1] = make_number (ngcs);
4453 args[2] = make_float (avg_live);
4454 args[3] = make_float (avg_zombies);
4455 args[4] = make_float (avg_zombies / avg_live / 100);
4456 args[5] = make_number (max_live);
4457 args[6] = make_number (max_zombies);
4458 args[7] = zombie_list;
4459 return Fmessage (8, args);
4462 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4465 /* Mark OBJ if we can prove it's a Lisp_Object. */
4467 static inline void
4468 mark_maybe_object (Lisp_Object obj)
4470 void *po;
4471 struct mem_node *m;
4473 if (INTEGERP (obj))
4474 return;
4476 po = (void *) XPNTR (obj);
4477 m = mem_find (po);
4479 if (m != MEM_NIL)
4481 int mark_p = 0;
4483 switch (XTYPE (obj))
4485 case Lisp_String:
4486 mark_p = (live_string_p (m, po)
4487 && !STRING_MARKED_P ((struct Lisp_String *) po));
4488 break;
4490 case Lisp_Cons:
4491 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4492 break;
4494 case Lisp_Symbol:
4495 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4496 break;
4498 case Lisp_Float:
4499 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4500 break;
4502 case Lisp_Vectorlike:
4503 /* Note: can't check BUFFERP before we know it's a
4504 buffer because checking that dereferences the pointer
4505 PO which might point anywhere. */
4506 if (live_vector_p (m, po))
4507 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4508 else if (live_buffer_p (m, po))
4509 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4510 break;
4512 case Lisp_Misc:
4513 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4514 break;
4516 default:
4517 break;
4520 if (mark_p)
4522 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4523 if (nzombies < MAX_ZOMBIES)
4524 zombies[nzombies] = obj;
4525 ++nzombies;
4526 #endif
4527 mark_object (obj);
4533 /* If P points to Lisp data, mark that as live if it isn't already
4534 marked. */
4536 static inline void
4537 mark_maybe_pointer (void *p)
4539 struct mem_node *m;
4541 /* Quickly rule out some values which can't point to Lisp data.
4542 USE_LSB_TAG needs Lisp data to be aligned on multiples of 1 << GCTYPEBITS.
4543 Otherwise, assume that Lisp data is aligned on even addresses. */
4544 if ((intptr_t) p % (USE_LSB_TAG ? 1 << GCTYPEBITS : 2))
4545 return;
4547 m = mem_find (p);
4548 if (m != MEM_NIL)
4550 Lisp_Object obj = Qnil;
4552 switch (m->type)
4554 case MEM_TYPE_NON_LISP:
4555 /* Nothing to do; not a pointer to Lisp memory. */
4556 break;
4558 case MEM_TYPE_BUFFER:
4559 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4560 XSETVECTOR (obj, p);
4561 break;
4563 case MEM_TYPE_CONS:
4564 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4565 XSETCONS (obj, p);
4566 break;
4568 case MEM_TYPE_STRING:
4569 if (live_string_p (m, p)
4570 && !STRING_MARKED_P ((struct Lisp_String *) p))
4571 XSETSTRING (obj, p);
4572 break;
4574 case MEM_TYPE_MISC:
4575 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4576 XSETMISC (obj, p);
4577 break;
4579 case MEM_TYPE_SYMBOL:
4580 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4581 XSETSYMBOL (obj, p);
4582 break;
4584 case MEM_TYPE_FLOAT:
4585 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4586 XSETFLOAT (obj, p);
4587 break;
4589 case MEM_TYPE_VECTORLIKE:
4590 case MEM_TYPE_VECTOR_BLOCK:
4591 if (live_vector_p (m, p))
4593 Lisp_Object tem;
4594 XSETVECTOR (tem, p);
4595 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4596 obj = tem;
4598 break;
4600 default:
4601 abort ();
4604 if (!NILP (obj))
4605 mark_object (obj);
4610 /* Alignment of pointer values. Use offsetof, as it sometimes returns
4611 a smaller alignment than GCC's __alignof__ and mark_memory might
4612 miss objects if __alignof__ were used. */
4613 #define GC_POINTER_ALIGNMENT offsetof (struct {char a; void *b;}, b)
4615 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4616 not suffice, which is the typical case. A host where a Lisp_Object is
4617 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4618 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4619 suffice to widen it to to a Lisp_Object and check it that way. */
4620 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4621 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4622 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4623 nor mark_maybe_object can follow the pointers. This should not occur on
4624 any practical porting target. */
4625 # error "MSB type bits straddle pointer-word boundaries"
4626 # endif
4627 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4628 pointer words that hold pointers ORed with type bits. */
4629 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4630 #else
4631 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4632 words that hold unmodified pointers. */
4633 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4634 #endif
4636 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4637 or END+OFFSET..START. */
4639 static void
4640 mark_memory (void *start, void *end)
4641 #if defined (__clang__) && defined (__has_feature)
4642 #if __has_feature(address_sanitizer)
4643 /* Do not allow -faddress-sanitizer to check this function, since it
4644 crosses the function stack boundary, and thus would yield many
4645 false positives. */
4646 __attribute__((no_address_safety_analysis))
4647 #endif
4648 #endif
4650 void **pp;
4651 int i;
4653 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4654 nzombies = 0;
4655 #endif
4657 /* Make START the pointer to the start of the memory region,
4658 if it isn't already. */
4659 if (end < start)
4661 void *tem = start;
4662 start = end;
4663 end = tem;
4666 /* Mark Lisp data pointed to. This is necessary because, in some
4667 situations, the C compiler optimizes Lisp objects away, so that
4668 only a pointer to them remains. Example:
4670 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4673 Lisp_Object obj = build_string ("test");
4674 struct Lisp_String *s = XSTRING (obj);
4675 Fgarbage_collect ();
4676 fprintf (stderr, "test `%s'\n", s->data);
4677 return Qnil;
4680 Here, `obj' isn't really used, and the compiler optimizes it
4681 away. The only reference to the life string is through the
4682 pointer `s'. */
4684 for (pp = start; (void *) pp < end; pp++)
4685 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4687 void *p = *(void **) ((char *) pp + i);
4688 mark_maybe_pointer (p);
4689 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4690 mark_maybe_object (XIL ((intptr_t) p));
4694 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4695 the GCC system configuration. In gcc 3.2, the only systems for
4696 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4697 by others?) and ns32k-pc532-min. */
4699 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4701 static int setjmp_tested_p, longjmps_done;
4703 #define SETJMP_WILL_LIKELY_WORK "\
4705 Emacs garbage collector has been changed to use conservative stack\n\
4706 marking. Emacs has determined that the method it uses to do the\n\
4707 marking will likely work on your system, but this isn't sure.\n\
4709 If you are a system-programmer, or can get the help of a local wizard\n\
4710 who is, please take a look at the function mark_stack in alloc.c, and\n\
4711 verify that the methods used are appropriate for your system.\n\
4713 Please mail the result to <emacs-devel@gnu.org>.\n\
4716 #define SETJMP_WILL_NOT_WORK "\
4718 Emacs garbage collector has been changed to use conservative stack\n\
4719 marking. Emacs has determined that the default method it uses to do the\n\
4720 marking will not work on your system. We will need a system-dependent\n\
4721 solution for your system.\n\
4723 Please take a look at the function mark_stack in alloc.c, and\n\
4724 try to find a way to make it work on your system.\n\
4726 Note that you may get false negatives, depending on the compiler.\n\
4727 In particular, you need to use -O with GCC for this test.\n\
4729 Please mail the result to <emacs-devel@gnu.org>.\n\
4733 /* Perform a quick check if it looks like setjmp saves registers in a
4734 jmp_buf. Print a message to stderr saying so. When this test
4735 succeeds, this is _not_ a proof that setjmp is sufficient for
4736 conservative stack marking. Only the sources or a disassembly
4737 can prove that. */
4739 static void
4740 test_setjmp (void)
4742 char buf[10];
4743 register int x;
4744 jmp_buf jbuf;
4745 int result = 0;
4747 /* Arrange for X to be put in a register. */
4748 sprintf (buf, "1");
4749 x = strlen (buf);
4750 x = 2 * x - 1;
4752 setjmp (jbuf);
4753 if (longjmps_done == 1)
4755 /* Came here after the longjmp at the end of the function.
4757 If x == 1, the longjmp has restored the register to its
4758 value before the setjmp, and we can hope that setjmp
4759 saves all such registers in the jmp_buf, although that
4760 isn't sure.
4762 For other values of X, either something really strange is
4763 taking place, or the setjmp just didn't save the register. */
4765 if (x == 1)
4766 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4767 else
4769 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4770 exit (1);
4774 ++longjmps_done;
4775 x = 2;
4776 if (longjmps_done == 1)
4777 longjmp (jbuf, 1);
4780 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4783 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4785 /* Abort if anything GCPRO'd doesn't survive the GC. */
4787 static void
4788 check_gcpros (void)
4790 struct gcpro *p;
4791 ptrdiff_t i;
4793 for (p = gcprolist; p; p = p->next)
4794 for (i = 0; i < p->nvars; ++i)
4795 if (!survives_gc_p (p->var[i]))
4796 /* FIXME: It's not necessarily a bug. It might just be that the
4797 GCPRO is unnecessary or should release the object sooner. */
4798 abort ();
4801 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4803 static void
4804 dump_zombies (void)
4806 int i;
4808 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4809 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4811 fprintf (stderr, " %d = ", i);
4812 debug_print (zombies[i]);
4816 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4819 /* Mark live Lisp objects on the C stack.
4821 There are several system-dependent problems to consider when
4822 porting this to new architectures:
4824 Processor Registers
4826 We have to mark Lisp objects in CPU registers that can hold local
4827 variables or are used to pass parameters.
4829 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4830 something that either saves relevant registers on the stack, or
4831 calls mark_maybe_object passing it each register's contents.
4833 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4834 implementation assumes that calling setjmp saves registers we need
4835 to see in a jmp_buf which itself lies on the stack. This doesn't
4836 have to be true! It must be verified for each system, possibly
4837 by taking a look at the source code of setjmp.
4839 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4840 can use it as a machine independent method to store all registers
4841 to the stack. In this case the macros described in the previous
4842 two paragraphs are not used.
4844 Stack Layout
4846 Architectures differ in the way their processor stack is organized.
4847 For example, the stack might look like this
4849 +----------------+
4850 | Lisp_Object | size = 4
4851 +----------------+
4852 | something else | size = 2
4853 +----------------+
4854 | Lisp_Object | size = 4
4855 +----------------+
4856 | ... |
4858 In such a case, not every Lisp_Object will be aligned equally. To
4859 find all Lisp_Object on the stack it won't be sufficient to walk
4860 the stack in steps of 4 bytes. Instead, two passes will be
4861 necessary, one starting at the start of the stack, and a second
4862 pass starting at the start of the stack + 2. Likewise, if the
4863 minimal alignment of Lisp_Objects on the stack is 1, four passes
4864 would be necessary, each one starting with one byte more offset
4865 from the stack start. */
4867 static void
4868 mark_stack (void)
4870 void *end;
4872 #ifdef HAVE___BUILTIN_UNWIND_INIT
4873 /* Force callee-saved registers and register windows onto the stack.
4874 This is the preferred method if available, obviating the need for
4875 machine dependent methods. */
4876 __builtin_unwind_init ();
4877 end = &end;
4878 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4879 #ifndef GC_SAVE_REGISTERS_ON_STACK
4880 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4881 union aligned_jmpbuf {
4882 Lisp_Object o;
4883 jmp_buf j;
4884 } j;
4885 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4886 #endif
4887 /* This trick flushes the register windows so that all the state of
4888 the process is contained in the stack. */
4889 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4890 needed on ia64 too. See mach_dep.c, where it also says inline
4891 assembler doesn't work with relevant proprietary compilers. */
4892 #ifdef __sparc__
4893 #if defined (__sparc64__) && defined (__FreeBSD__)
4894 /* FreeBSD does not have a ta 3 handler. */
4895 asm ("flushw");
4896 #else
4897 asm ("ta 3");
4898 #endif
4899 #endif
4901 /* Save registers that we need to see on the stack. We need to see
4902 registers used to hold register variables and registers used to
4903 pass parameters. */
4904 #ifdef GC_SAVE_REGISTERS_ON_STACK
4905 GC_SAVE_REGISTERS_ON_STACK (end);
4906 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4908 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4909 setjmp will definitely work, test it
4910 and print a message with the result
4911 of the test. */
4912 if (!setjmp_tested_p)
4914 setjmp_tested_p = 1;
4915 test_setjmp ();
4917 #endif /* GC_SETJMP_WORKS */
4919 setjmp (j.j);
4920 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4921 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4922 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4924 /* This assumes that the stack is a contiguous region in memory. If
4925 that's not the case, something has to be done here to iterate
4926 over the stack segments. */
4927 mark_memory (stack_base, end);
4929 /* Allow for marking a secondary stack, like the register stack on the
4930 ia64. */
4931 #ifdef GC_MARK_SECONDARY_STACK
4932 GC_MARK_SECONDARY_STACK ();
4933 #endif
4935 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4936 check_gcpros ();
4937 #endif
4940 #endif /* GC_MARK_STACK != 0 */
4943 /* Determine whether it is safe to access memory at address P. */
4944 static int
4945 valid_pointer_p (void *p)
4947 #ifdef WINDOWSNT
4948 return w32_valid_pointer_p (p, 16);
4949 #else
4950 int fd[2];
4952 /* Obviously, we cannot just access it (we would SEGV trying), so we
4953 trick the o/s to tell us whether p is a valid pointer.
4954 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4955 not validate p in that case. */
4957 if (pipe (fd) == 0)
4959 int valid = (emacs_write (fd[1], (char *) p, 16) == 16);
4960 emacs_close (fd[1]);
4961 emacs_close (fd[0]);
4962 return valid;
4965 return -1;
4966 #endif
4969 /* Return 1 if OBJ is a valid lisp object.
4970 Return 0 if OBJ is NOT a valid lisp object.
4971 Return -1 if we cannot validate OBJ.
4972 This function can be quite slow,
4973 so it should only be used in code for manual debugging. */
4976 valid_lisp_object_p (Lisp_Object obj)
4978 void *p;
4979 #if GC_MARK_STACK
4980 struct mem_node *m;
4981 #endif
4983 if (INTEGERP (obj))
4984 return 1;
4986 p = (void *) XPNTR (obj);
4987 if (PURE_POINTER_P (p))
4988 return 1;
4990 #if !GC_MARK_STACK
4991 return valid_pointer_p (p);
4992 #else
4994 m = mem_find (p);
4996 if (m == MEM_NIL)
4998 int valid = valid_pointer_p (p);
4999 if (valid <= 0)
5000 return valid;
5002 if (SUBRP (obj))
5003 return 1;
5005 return 0;
5008 switch (m->type)
5010 case MEM_TYPE_NON_LISP:
5011 return 0;
5013 case MEM_TYPE_BUFFER:
5014 return live_buffer_p (m, p);
5016 case MEM_TYPE_CONS:
5017 return live_cons_p (m, p);
5019 case MEM_TYPE_STRING:
5020 return live_string_p (m, p);
5022 case MEM_TYPE_MISC:
5023 return live_misc_p (m, p);
5025 case MEM_TYPE_SYMBOL:
5026 return live_symbol_p (m, p);
5028 case MEM_TYPE_FLOAT:
5029 return live_float_p (m, p);
5031 case MEM_TYPE_VECTORLIKE:
5032 case MEM_TYPE_VECTOR_BLOCK:
5033 return live_vector_p (m, p);
5035 default:
5036 break;
5039 return 0;
5040 #endif
5046 /***********************************************************************
5047 Pure Storage Management
5048 ***********************************************************************/
5050 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5051 pointer to it. TYPE is the Lisp type for which the memory is
5052 allocated. TYPE < 0 means it's not used for a Lisp object. */
5054 static void *
5055 pure_alloc (size_t size, int type)
5057 void *result;
5058 #if USE_LSB_TAG
5059 size_t alignment = (1 << GCTYPEBITS);
5060 #else
5061 size_t alignment = sizeof (EMACS_INT);
5063 /* Give Lisp_Floats an extra alignment. */
5064 if (type == Lisp_Float)
5066 #if defined __GNUC__ && __GNUC__ >= 2
5067 alignment = __alignof (struct Lisp_Float);
5068 #else
5069 alignment = sizeof (struct Lisp_Float);
5070 #endif
5072 #endif
5074 again:
5075 if (type >= 0)
5077 /* Allocate space for a Lisp object from the beginning of the free
5078 space with taking account of alignment. */
5079 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5080 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5082 else
5084 /* Allocate space for a non-Lisp object from the end of the free
5085 space. */
5086 pure_bytes_used_non_lisp += size;
5087 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5089 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5091 if (pure_bytes_used <= pure_size)
5092 return result;
5094 /* Don't allocate a large amount here,
5095 because it might get mmap'd and then its address
5096 might not be usable. */
5097 purebeg = xmalloc (10000);
5098 pure_size = 10000;
5099 pure_bytes_used_before_overflow += pure_bytes_used - size;
5100 pure_bytes_used = 0;
5101 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5102 goto again;
5106 /* Print a warning if PURESIZE is too small. */
5108 void
5109 check_pure_size (void)
5111 if (pure_bytes_used_before_overflow)
5112 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5113 " bytes needed)"),
5114 pure_bytes_used + pure_bytes_used_before_overflow);
5118 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5119 the non-Lisp data pool of the pure storage, and return its start
5120 address. Return NULL if not found. */
5122 static char *
5123 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5125 int i;
5126 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5127 const unsigned char *p;
5128 char *non_lisp_beg;
5130 if (pure_bytes_used_non_lisp <= nbytes)
5131 return NULL;
5133 /* Set up the Boyer-Moore table. */
5134 skip = nbytes + 1;
5135 for (i = 0; i < 256; i++)
5136 bm_skip[i] = skip;
5138 p = (const unsigned char *) data;
5139 while (--skip > 0)
5140 bm_skip[*p++] = skip;
5142 last_char_skip = bm_skip['\0'];
5144 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5145 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5147 /* See the comments in the function `boyer_moore' (search.c) for the
5148 use of `infinity'. */
5149 infinity = pure_bytes_used_non_lisp + 1;
5150 bm_skip['\0'] = infinity;
5152 p = (const unsigned char *) non_lisp_beg + nbytes;
5153 start = 0;
5156 /* Check the last character (== '\0'). */
5159 start += bm_skip[*(p + start)];
5161 while (start <= start_max);
5163 if (start < infinity)
5164 /* Couldn't find the last character. */
5165 return NULL;
5167 /* No less than `infinity' means we could find the last
5168 character at `p[start - infinity]'. */
5169 start -= infinity;
5171 /* Check the remaining characters. */
5172 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5173 /* Found. */
5174 return non_lisp_beg + start;
5176 start += last_char_skip;
5178 while (start <= start_max);
5180 return NULL;
5184 /* Return a string allocated in pure space. DATA is a buffer holding
5185 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5186 non-zero means make the result string multibyte.
5188 Must get an error if pure storage is full, since if it cannot hold
5189 a large string it may be able to hold conses that point to that
5190 string; then the string is not protected from gc. */
5192 Lisp_Object
5193 make_pure_string (const char *data,
5194 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
5196 Lisp_Object string;
5197 struct Lisp_String *s;
5199 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5200 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5201 if (s->data == NULL)
5203 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
5204 memcpy (s->data, data, nbytes);
5205 s->data[nbytes] = '\0';
5207 s->size = nchars;
5208 s->size_byte = multibyte ? nbytes : -1;
5209 s->intervals = NULL_INTERVAL;
5210 XSETSTRING (string, s);
5211 return string;
5214 /* Return a string allocated in pure space. Do not
5215 allocate the string data, just point to DATA. */
5217 Lisp_Object
5218 make_pure_c_string (const char *data, ptrdiff_t nchars)
5220 Lisp_Object string;
5221 struct Lisp_String *s;
5223 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5224 s->size = nchars;
5225 s->size_byte = -1;
5226 s->data = (unsigned char *) data;
5227 s->intervals = NULL_INTERVAL;
5228 XSETSTRING (string, s);
5229 return string;
5232 /* Return a cons allocated from pure space. Give it pure copies
5233 of CAR as car and CDR as cdr. */
5235 Lisp_Object
5236 pure_cons (Lisp_Object car, Lisp_Object cdr)
5238 register Lisp_Object new;
5239 struct Lisp_Cons *p;
5241 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
5242 XSETCONS (new, p);
5243 XSETCAR (new, Fpurecopy (car));
5244 XSETCDR (new, Fpurecopy (cdr));
5245 return new;
5249 /* Value is a float object with value NUM allocated from pure space. */
5251 static Lisp_Object
5252 make_pure_float (double num)
5254 register Lisp_Object new;
5255 struct Lisp_Float *p;
5257 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
5258 XSETFLOAT (new, p);
5259 XFLOAT_INIT (new, num);
5260 return new;
5264 /* Return a vector with room for LEN Lisp_Objects allocated from
5265 pure space. */
5267 static Lisp_Object
5268 make_pure_vector (ptrdiff_t len)
5270 Lisp_Object new;
5271 struct Lisp_Vector *p;
5272 size_t size = header_size + len * word_size;
5274 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
5275 XSETVECTOR (new, p);
5276 XVECTOR (new)->header.size = len;
5277 return new;
5281 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5282 doc: /* Make a copy of object OBJ in pure storage.
5283 Recursively copies contents of vectors and cons cells.
5284 Does not copy symbols. Copies strings without text properties. */)
5285 (register Lisp_Object obj)
5287 if (NILP (Vpurify_flag))
5288 return obj;
5290 if (PURE_POINTER_P (XPNTR (obj)))
5291 return obj;
5293 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5295 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5296 if (!NILP (tmp))
5297 return tmp;
5300 if (CONSP (obj))
5301 obj = pure_cons (XCAR (obj), XCDR (obj));
5302 else if (FLOATP (obj))
5303 obj = make_pure_float (XFLOAT_DATA (obj));
5304 else if (STRINGP (obj))
5305 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5306 SBYTES (obj),
5307 STRING_MULTIBYTE (obj));
5308 else if (COMPILEDP (obj) || VECTORP (obj))
5310 register struct Lisp_Vector *vec;
5311 register ptrdiff_t i;
5312 ptrdiff_t size;
5314 size = ASIZE (obj);
5315 if (size & PSEUDOVECTOR_FLAG)
5316 size &= PSEUDOVECTOR_SIZE_MASK;
5317 vec = XVECTOR (make_pure_vector (size));
5318 for (i = 0; i < size; i++)
5319 vec->contents[i] = Fpurecopy (AREF (obj, i));
5320 if (COMPILEDP (obj))
5322 XSETPVECTYPE (vec, PVEC_COMPILED);
5323 XSETCOMPILED (obj, vec);
5325 else
5326 XSETVECTOR (obj, vec);
5328 else if (MARKERP (obj))
5329 error ("Attempt to copy a marker to pure storage");
5330 else
5331 /* Not purified, don't hash-cons. */
5332 return obj;
5334 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5335 Fputhash (obj, obj, Vpurify_flag);
5337 return obj;
5342 /***********************************************************************
5343 Protection from GC
5344 ***********************************************************************/
5346 /* Put an entry in staticvec, pointing at the variable with address
5347 VARADDRESS. */
5349 void
5350 staticpro (Lisp_Object *varaddress)
5352 staticvec[staticidx++] = varaddress;
5353 if (staticidx >= NSTATICS)
5354 abort ();
5358 /***********************************************************************
5359 Protection from GC
5360 ***********************************************************************/
5362 /* Temporarily prevent garbage collection. */
5364 ptrdiff_t
5365 inhibit_garbage_collection (void)
5367 ptrdiff_t count = SPECPDL_INDEX ();
5369 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5370 return count;
5373 /* Used to avoid possible overflows when
5374 converting from C to Lisp integers. */
5376 static inline Lisp_Object
5377 bounded_number (EMACS_INT number)
5379 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5382 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5383 doc: /* Reclaim storage for Lisp objects no longer needed.
5384 Garbage collection happens automatically if you cons more than
5385 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5386 `garbage-collect' normally returns a list with info on amount of space in use,
5387 where each entry has the form (NAME SIZE USED FREE), where:
5388 - NAME is a symbol describing the kind of objects this entry represents,
5389 - SIZE is the number of bytes used by each one,
5390 - USED is the number of those objects that were found live in the heap,
5391 - FREE is the number of those objects that are not live but that Emacs
5392 keeps around for future allocations (maybe because it does not know how
5393 to return them to the OS).
5394 However, if there was overflow in pure space, `garbage-collect'
5395 returns nil, because real GC can't be done.
5396 See Info node `(elisp)Garbage Collection'. */)
5397 (void)
5399 register struct specbinding *bind;
5400 register struct buffer *nextb;
5401 char stack_top_variable;
5402 ptrdiff_t i;
5403 int message_p;
5404 Lisp_Object total[11];
5405 ptrdiff_t count = SPECPDL_INDEX ();
5406 EMACS_TIME t1;
5408 if (abort_on_gc)
5409 abort ();
5411 /* Can't GC if pure storage overflowed because we can't determine
5412 if something is a pure object or not. */
5413 if (pure_bytes_used_before_overflow)
5414 return Qnil;
5416 CHECK_CONS_LIST ();
5418 /* Don't keep undo information around forever.
5419 Do this early on, so it is no problem if the user quits. */
5420 FOR_EACH_BUFFER (nextb)
5421 compact_buffer (nextb);
5423 t1 = current_emacs_time ();
5425 /* In case user calls debug_print during GC,
5426 don't let that cause a recursive GC. */
5427 consing_since_gc = 0;
5429 /* Save what's currently displayed in the echo area. */
5430 message_p = push_message ();
5431 record_unwind_protect (pop_message_unwind, Qnil);
5433 /* Save a copy of the contents of the stack, for debugging. */
5434 #if MAX_SAVE_STACK > 0
5435 if (NILP (Vpurify_flag))
5437 char *stack;
5438 ptrdiff_t stack_size;
5439 if (&stack_top_variable < stack_bottom)
5441 stack = &stack_top_variable;
5442 stack_size = stack_bottom - &stack_top_variable;
5444 else
5446 stack = stack_bottom;
5447 stack_size = &stack_top_variable - stack_bottom;
5449 if (stack_size <= MAX_SAVE_STACK)
5451 if (stack_copy_size < stack_size)
5453 stack_copy = xrealloc (stack_copy, stack_size);
5454 stack_copy_size = stack_size;
5456 memcpy (stack_copy, stack, stack_size);
5459 #endif /* MAX_SAVE_STACK > 0 */
5461 if (garbage_collection_messages)
5462 message1_nolog ("Garbage collecting...");
5464 BLOCK_INPUT;
5466 shrink_regexp_cache ();
5468 gc_in_progress = 1;
5470 /* Mark all the special slots that serve as the roots of accessibility. */
5472 for (i = 0; i < staticidx; i++)
5473 mark_object (*staticvec[i]);
5475 for (bind = specpdl; bind != specpdl_ptr; bind++)
5477 mark_object (bind->symbol);
5478 mark_object (bind->old_value);
5480 mark_terminals ();
5481 mark_kboards ();
5482 mark_ttys ();
5484 #ifdef USE_GTK
5486 extern void xg_mark_data (void);
5487 xg_mark_data ();
5489 #endif
5491 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5492 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5493 mark_stack ();
5494 #else
5496 register struct gcpro *tail;
5497 for (tail = gcprolist; tail; tail = tail->next)
5498 for (i = 0; i < tail->nvars; i++)
5499 mark_object (tail->var[i]);
5501 mark_byte_stack ();
5503 struct catchtag *catch;
5504 struct handler *handler;
5506 for (catch = catchlist; catch; catch = catch->next)
5508 mark_object (catch->tag);
5509 mark_object (catch->val);
5511 for (handler = handlerlist; handler; handler = handler->next)
5513 mark_object (handler->handler);
5514 mark_object (handler->var);
5517 mark_backtrace ();
5518 #endif
5520 #ifdef HAVE_WINDOW_SYSTEM
5521 mark_fringe_data ();
5522 #endif
5524 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5525 mark_stack ();
5526 #endif
5528 /* Everything is now marked, except for the things that require special
5529 finalization, i.e. the undo_list.
5530 Look thru every buffer's undo list
5531 for elements that update markers that were not marked,
5532 and delete them. */
5533 FOR_EACH_BUFFER (nextb)
5535 /* If a buffer's undo list is Qt, that means that undo is
5536 turned off in that buffer. Calling truncate_undo_list on
5537 Qt tends to return NULL, which effectively turns undo back on.
5538 So don't call truncate_undo_list if undo_list is Qt. */
5539 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5541 Lisp_Object tail, prev;
5542 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5543 prev = Qnil;
5544 while (CONSP (tail))
5546 if (CONSP (XCAR (tail))
5547 && MARKERP (XCAR (XCAR (tail)))
5548 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5550 if (NILP (prev))
5551 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5552 else
5554 tail = XCDR (tail);
5555 XSETCDR (prev, tail);
5558 else
5560 prev = tail;
5561 tail = XCDR (tail);
5565 /* Now that we have stripped the elements that need not be in the
5566 undo_list any more, we can finally mark the list. */
5567 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5570 gc_sweep ();
5572 /* Clear the mark bits that we set in certain root slots. */
5574 unmark_byte_stack ();
5575 VECTOR_UNMARK (&buffer_defaults);
5576 VECTOR_UNMARK (&buffer_local_symbols);
5578 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5579 dump_zombies ();
5580 #endif
5582 UNBLOCK_INPUT;
5584 CHECK_CONS_LIST ();
5586 gc_in_progress = 0;
5588 consing_since_gc = 0;
5589 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5590 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5592 gc_relative_threshold = 0;
5593 if (FLOATP (Vgc_cons_percentage))
5594 { /* Set gc_cons_combined_threshold. */
5595 double tot = 0;
5597 tot += total_conses * sizeof (struct Lisp_Cons);
5598 tot += total_symbols * sizeof (struct Lisp_Symbol);
5599 tot += total_markers * sizeof (union Lisp_Misc);
5600 tot += total_string_bytes;
5601 tot += total_vector_slots * word_size;
5602 tot += total_floats * sizeof (struct Lisp_Float);
5603 tot += total_intervals * sizeof (struct interval);
5604 tot += total_strings * sizeof (struct Lisp_String);
5606 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5607 if (0 < tot)
5609 if (tot < TYPE_MAXIMUM (EMACS_INT))
5610 gc_relative_threshold = tot;
5611 else
5612 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5616 if (garbage_collection_messages)
5618 if (message_p || minibuf_level > 0)
5619 restore_message ();
5620 else
5621 message1_nolog ("Garbage collecting...done");
5624 unbind_to (count, Qnil);
5626 total[0] = list4 (Qcons, make_number (sizeof (struct Lisp_Cons)),
5627 bounded_number (total_conses),
5628 bounded_number (total_free_conses));
5630 total[1] = list4 (Qsymbol, make_number (sizeof (struct Lisp_Symbol)),
5631 bounded_number (total_symbols),
5632 bounded_number (total_free_symbols));
5634 total[2] = list4 (Qmisc, make_number (sizeof (union Lisp_Misc)),
5635 bounded_number (total_markers),
5636 bounded_number (total_free_markers));
5638 total[3] = list4 (Qstring, make_number (sizeof (struct Lisp_String)),
5639 bounded_number (total_strings),
5640 bounded_number (total_free_strings));
5642 total[4] = list3 (Qstring_bytes, make_number (1),
5643 bounded_number (total_string_bytes));
5645 total[5] = list3 (Qvector, make_number (sizeof (struct Lisp_Vector)),
5646 bounded_number (total_vectors));
5648 total[6] = list4 (Qvector_slots, make_number (word_size),
5649 bounded_number (total_vector_slots),
5650 bounded_number (total_free_vector_slots));
5652 total[7] = list4 (Qfloat, make_number (sizeof (struct Lisp_Float)),
5653 bounded_number (total_floats),
5654 bounded_number (total_free_floats));
5656 total[8] = list4 (Qinterval, make_number (sizeof (struct interval)),
5657 bounded_number (total_intervals),
5658 bounded_number (total_free_intervals));
5660 total[9] = list3 (Qbuffer, make_number (sizeof (struct buffer)),
5661 bounded_number (total_buffers));
5663 total[10] = list4 (Qheap, make_number (1024),
5664 #ifdef DOUG_LEA_MALLOC
5665 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5666 bounded_number ((mallinfo ().fordblks + 1023) >> 10)
5667 #else
5668 Qnil, Qnil
5669 #endif
5672 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5674 /* Compute average percentage of zombies. */
5675 double nlive = 0;
5677 for (i = 0; i < 7; ++i)
5678 if (CONSP (total[i]))
5679 nlive += XFASTINT (XCAR (total[i]));
5681 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5682 max_live = max (nlive, max_live);
5683 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5684 max_zombies = max (nzombies, max_zombies);
5685 ++ngcs;
5687 #endif
5689 if (!NILP (Vpost_gc_hook))
5691 ptrdiff_t gc_count = inhibit_garbage_collection ();
5692 safe_run_hooks (Qpost_gc_hook);
5693 unbind_to (gc_count, Qnil);
5696 /* Accumulate statistics. */
5697 if (FLOATP (Vgc_elapsed))
5699 EMACS_TIME t2 = current_emacs_time ();
5700 EMACS_TIME t3 = sub_emacs_time (t2, t1);
5701 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5702 + EMACS_TIME_TO_DOUBLE (t3));
5705 gcs_done++;
5707 return Flist (sizeof total / sizeof *total, total);
5711 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5712 only interesting objects referenced from glyphs are strings. */
5714 static void
5715 mark_glyph_matrix (struct glyph_matrix *matrix)
5717 struct glyph_row *row = matrix->rows;
5718 struct glyph_row *end = row + matrix->nrows;
5720 for (; row < end; ++row)
5721 if (row->enabled_p)
5723 int area;
5724 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5726 struct glyph *glyph = row->glyphs[area];
5727 struct glyph *end_glyph = glyph + row->used[area];
5729 for (; glyph < end_glyph; ++glyph)
5730 if (STRINGP (glyph->object)
5731 && !STRING_MARKED_P (XSTRING (glyph->object)))
5732 mark_object (glyph->object);
5738 /* Mark Lisp faces in the face cache C. */
5740 static void
5741 mark_face_cache (struct face_cache *c)
5743 if (c)
5745 int i, j;
5746 for (i = 0; i < c->used; ++i)
5748 struct face *face = FACE_FROM_ID (c->f, i);
5750 if (face)
5752 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5753 mark_object (face->lface[j]);
5761 /* Mark reference to a Lisp_Object.
5762 If the object referred to has not been seen yet, recursively mark
5763 all the references contained in it. */
5765 #define LAST_MARKED_SIZE 500
5766 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5767 static int last_marked_index;
5769 /* For debugging--call abort when we cdr down this many
5770 links of a list, in mark_object. In debugging,
5771 the call to abort will hit a breakpoint.
5772 Normally this is zero and the check never goes off. */
5773 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5775 static void
5776 mark_vectorlike (struct Lisp_Vector *ptr)
5778 ptrdiff_t size = ptr->header.size;
5779 ptrdiff_t i;
5781 eassert (!VECTOR_MARKED_P (ptr));
5782 VECTOR_MARK (ptr); /* Else mark it. */
5783 if (size & PSEUDOVECTOR_FLAG)
5784 size &= PSEUDOVECTOR_SIZE_MASK;
5786 /* Note that this size is not the memory-footprint size, but only
5787 the number of Lisp_Object fields that we should trace.
5788 The distinction is used e.g. by Lisp_Process which places extra
5789 non-Lisp_Object fields at the end of the structure... */
5790 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5791 mark_object (ptr->contents[i]);
5794 /* Like mark_vectorlike but optimized for char-tables (and
5795 sub-char-tables) assuming that the contents are mostly integers or
5796 symbols. */
5798 static void
5799 mark_char_table (struct Lisp_Vector *ptr)
5801 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5802 int i;
5804 eassert (!VECTOR_MARKED_P (ptr));
5805 VECTOR_MARK (ptr);
5806 for (i = 0; i < size; i++)
5808 Lisp_Object val = ptr->contents[i];
5810 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5811 continue;
5812 if (SUB_CHAR_TABLE_P (val))
5814 if (! VECTOR_MARKED_P (XVECTOR (val)))
5815 mark_char_table (XVECTOR (val));
5817 else
5818 mark_object (val);
5822 /* Mark the chain of overlays starting at PTR. */
5824 static void
5825 mark_overlay (struct Lisp_Overlay *ptr)
5827 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5829 ptr->gcmarkbit = 1;
5830 mark_object (ptr->start);
5831 mark_object (ptr->end);
5832 mark_object (ptr->plist);
5836 /* Mark Lisp_Objects and special pointers in BUFFER. */
5838 static void
5839 mark_buffer (struct buffer *buffer)
5841 /* This is handled much like other pseudovectors... */
5842 mark_vectorlike ((struct Lisp_Vector *) buffer);
5844 /* ...but there are some buffer-specific things. */
5846 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5848 /* For now, we just don't mark the undo_list. It's done later in
5849 a special way just before the sweep phase, and after stripping
5850 some of its elements that are not needed any more. */
5852 mark_overlay (buffer->overlays_before);
5853 mark_overlay (buffer->overlays_after);
5855 /* If this is an indirect buffer, mark its base buffer. */
5856 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5857 mark_buffer (buffer->base_buffer);
5860 /* Determine type of generic Lisp_Object and mark it accordingly. */
5862 void
5863 mark_object (Lisp_Object arg)
5865 register Lisp_Object obj = arg;
5866 #ifdef GC_CHECK_MARKED_OBJECTS
5867 void *po;
5868 struct mem_node *m;
5869 #endif
5870 ptrdiff_t cdr_count = 0;
5872 loop:
5874 if (PURE_POINTER_P (XPNTR (obj)))
5875 return;
5877 last_marked[last_marked_index++] = obj;
5878 if (last_marked_index == LAST_MARKED_SIZE)
5879 last_marked_index = 0;
5881 /* Perform some sanity checks on the objects marked here. Abort if
5882 we encounter an object we know is bogus. This increases GC time
5883 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5884 #ifdef GC_CHECK_MARKED_OBJECTS
5886 po = (void *) XPNTR (obj);
5888 /* Check that the object pointed to by PO is known to be a Lisp
5889 structure allocated from the heap. */
5890 #define CHECK_ALLOCATED() \
5891 do { \
5892 m = mem_find (po); \
5893 if (m == MEM_NIL) \
5894 abort (); \
5895 } while (0)
5897 /* Check that the object pointed to by PO is live, using predicate
5898 function LIVEP. */
5899 #define CHECK_LIVE(LIVEP) \
5900 do { \
5901 if (!LIVEP (m, po)) \
5902 abort (); \
5903 } while (0)
5905 /* Check both of the above conditions. */
5906 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5907 do { \
5908 CHECK_ALLOCATED (); \
5909 CHECK_LIVE (LIVEP); \
5910 } while (0) \
5912 #else /* not GC_CHECK_MARKED_OBJECTS */
5914 #define CHECK_LIVE(LIVEP) (void) 0
5915 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5917 #endif /* not GC_CHECK_MARKED_OBJECTS */
5919 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5921 case Lisp_String:
5923 register struct Lisp_String *ptr = XSTRING (obj);
5924 if (STRING_MARKED_P (ptr))
5925 break;
5926 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5927 MARK_STRING (ptr);
5928 MARK_INTERVAL_TREE (ptr->intervals);
5929 #ifdef GC_CHECK_STRING_BYTES
5930 /* Check that the string size recorded in the string is the
5931 same as the one recorded in the sdata structure. */
5932 CHECK_STRING_BYTES (ptr);
5933 #endif /* GC_CHECK_STRING_BYTES */
5935 break;
5937 case Lisp_Vectorlike:
5939 register struct Lisp_Vector *ptr = XVECTOR (obj);
5940 register ptrdiff_t pvectype;
5942 if (VECTOR_MARKED_P (ptr))
5943 break;
5945 #ifdef GC_CHECK_MARKED_OBJECTS
5946 m = mem_find (po);
5947 if (m == MEM_NIL && !SUBRP (obj)
5948 && po != &buffer_defaults
5949 && po != &buffer_local_symbols)
5950 abort ();
5951 #endif /* GC_CHECK_MARKED_OBJECTS */
5953 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5954 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5955 >> PSEUDOVECTOR_SIZE_BITS);
5956 else
5957 pvectype = 0;
5959 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5960 CHECK_LIVE (live_vector_p);
5962 switch (pvectype)
5964 case PVEC_BUFFER:
5965 #ifdef GC_CHECK_MARKED_OBJECTS
5966 if (po != &buffer_defaults && po != &buffer_local_symbols)
5968 struct buffer *b;
5969 FOR_EACH_BUFFER (b)
5970 if (b == po)
5971 break;
5972 if (b == NULL)
5973 abort ();
5975 #endif /* GC_CHECK_MARKED_OBJECTS */
5976 mark_buffer ((struct buffer *) ptr);
5977 break;
5979 case PVEC_COMPILED:
5980 { /* We could treat this just like a vector, but it is better
5981 to save the COMPILED_CONSTANTS element for last and avoid
5982 recursion there. */
5983 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5984 int i;
5986 VECTOR_MARK (ptr);
5987 for (i = 0; i < size; i++)
5988 if (i != COMPILED_CONSTANTS)
5989 mark_object (ptr->contents[i]);
5990 if (size > COMPILED_CONSTANTS)
5992 obj = ptr->contents[COMPILED_CONSTANTS];
5993 goto loop;
5996 break;
5998 case PVEC_FRAME:
6000 mark_vectorlike (ptr);
6001 mark_face_cache (((struct frame *) ptr)->face_cache);
6003 break;
6005 case PVEC_WINDOW:
6007 struct window *w = (struct window *) ptr;
6009 mark_vectorlike (ptr);
6010 /* Mark glyphs for leaf windows. Marking window
6011 matrices is sufficient because frame matrices
6012 use the same glyph memory. */
6013 if (NILP (w->hchild) && NILP (w->vchild) && w->current_matrix)
6015 mark_glyph_matrix (w->current_matrix);
6016 mark_glyph_matrix (w->desired_matrix);
6019 break;
6021 case PVEC_HASH_TABLE:
6023 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6025 mark_vectorlike (ptr);
6026 /* If hash table is not weak, mark all keys and values.
6027 For weak tables, mark only the vector. */
6028 if (NILP (h->weak))
6029 mark_object (h->key_and_value);
6030 else
6031 VECTOR_MARK (XVECTOR (h->key_and_value));
6033 break;
6035 case PVEC_CHAR_TABLE:
6036 mark_char_table (ptr);
6037 break;
6039 case PVEC_BOOL_VECTOR:
6040 /* No Lisp_Objects to mark in a bool vector. */
6041 VECTOR_MARK (ptr);
6042 break;
6044 case PVEC_SUBR:
6045 break;
6047 case PVEC_FREE:
6048 abort ();
6050 default:
6051 mark_vectorlike (ptr);
6054 break;
6056 case Lisp_Symbol:
6058 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6059 struct Lisp_Symbol *ptrx;
6061 if (ptr->gcmarkbit)
6062 break;
6063 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6064 ptr->gcmarkbit = 1;
6065 mark_object (ptr->function);
6066 mark_object (ptr->plist);
6067 switch (ptr->redirect)
6069 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6070 case SYMBOL_VARALIAS:
6072 Lisp_Object tem;
6073 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6074 mark_object (tem);
6075 break;
6077 case SYMBOL_LOCALIZED:
6079 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6080 /* If the value is forwarded to a buffer or keyboard field,
6081 these are marked when we see the corresponding object.
6082 And if it's forwarded to a C variable, either it's not
6083 a Lisp_Object var, or it's staticpro'd already. */
6084 mark_object (blv->where);
6085 mark_object (blv->valcell);
6086 mark_object (blv->defcell);
6087 break;
6089 case SYMBOL_FORWARDED:
6090 /* If the value is forwarded to a buffer or keyboard field,
6091 these are marked when we see the corresponding object.
6092 And if it's forwarded to a C variable, either it's not
6093 a Lisp_Object var, or it's staticpro'd already. */
6094 break;
6095 default: abort ();
6097 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
6098 MARK_STRING (XSTRING (ptr->xname));
6099 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
6101 ptr = ptr->next;
6102 if (ptr)
6104 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
6105 XSETSYMBOL (obj, ptrx);
6106 goto loop;
6109 break;
6111 case Lisp_Misc:
6112 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6114 if (XMISCANY (obj)->gcmarkbit)
6115 break;
6117 switch (XMISCTYPE (obj))
6119 case Lisp_Misc_Marker:
6120 /* DO NOT mark thru the marker's chain.
6121 The buffer's markers chain does not preserve markers from gc;
6122 instead, markers are removed from the chain when freed by gc. */
6123 XMISCANY (obj)->gcmarkbit = 1;
6124 break;
6126 case Lisp_Misc_Save_Value:
6127 XMISCANY (obj)->gcmarkbit = 1;
6128 #if GC_MARK_STACK
6130 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6131 /* If DOGC is set, POINTER is the address of a memory
6132 area containing INTEGER potential Lisp_Objects. */
6133 if (ptr->dogc)
6135 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
6136 ptrdiff_t nelt;
6137 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
6138 mark_maybe_object (*p);
6141 #endif
6142 break;
6144 case Lisp_Misc_Overlay:
6145 mark_overlay (XOVERLAY (obj));
6146 break;
6148 default:
6149 abort ();
6151 break;
6153 case Lisp_Cons:
6155 register struct Lisp_Cons *ptr = XCONS (obj);
6156 if (CONS_MARKED_P (ptr))
6157 break;
6158 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6159 CONS_MARK (ptr);
6160 /* If the cdr is nil, avoid recursion for the car. */
6161 if (EQ (ptr->u.cdr, Qnil))
6163 obj = ptr->car;
6164 cdr_count = 0;
6165 goto loop;
6167 mark_object (ptr->car);
6168 obj = ptr->u.cdr;
6169 cdr_count++;
6170 if (cdr_count == mark_object_loop_halt)
6171 abort ();
6172 goto loop;
6175 case Lisp_Float:
6176 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6177 FLOAT_MARK (XFLOAT (obj));
6178 break;
6180 case_Lisp_Int:
6181 break;
6183 default:
6184 abort ();
6187 #undef CHECK_LIVE
6188 #undef CHECK_ALLOCATED
6189 #undef CHECK_ALLOCATED_AND_LIVE
6191 /* Mark the Lisp pointers in the terminal objects.
6192 Called by Fgarbage_collect. */
6194 static void
6195 mark_terminals (void)
6197 struct terminal *t;
6198 for (t = terminal_list; t; t = t->next_terminal)
6200 eassert (t->name != NULL);
6201 #ifdef HAVE_WINDOW_SYSTEM
6202 /* If a terminal object is reachable from a stacpro'ed object,
6203 it might have been marked already. Make sure the image cache
6204 gets marked. */
6205 mark_image_cache (t->image_cache);
6206 #endif /* HAVE_WINDOW_SYSTEM */
6207 if (!VECTOR_MARKED_P (t))
6208 mark_vectorlike ((struct Lisp_Vector *)t);
6214 /* Value is non-zero if OBJ will survive the current GC because it's
6215 either marked or does not need to be marked to survive. */
6218 survives_gc_p (Lisp_Object obj)
6220 int survives_p;
6222 switch (XTYPE (obj))
6224 case_Lisp_Int:
6225 survives_p = 1;
6226 break;
6228 case Lisp_Symbol:
6229 survives_p = XSYMBOL (obj)->gcmarkbit;
6230 break;
6232 case Lisp_Misc:
6233 survives_p = XMISCANY (obj)->gcmarkbit;
6234 break;
6236 case Lisp_String:
6237 survives_p = STRING_MARKED_P (XSTRING (obj));
6238 break;
6240 case Lisp_Vectorlike:
6241 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6242 break;
6244 case Lisp_Cons:
6245 survives_p = CONS_MARKED_P (XCONS (obj));
6246 break;
6248 case Lisp_Float:
6249 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6250 break;
6252 default:
6253 abort ();
6256 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6261 /* Sweep: find all structures not marked, and free them. */
6263 static void
6264 gc_sweep (void)
6266 /* Remove or mark entries in weak hash tables.
6267 This must be done before any object is unmarked. */
6268 sweep_weak_hash_tables ();
6270 sweep_strings ();
6271 #ifdef GC_CHECK_STRING_BYTES
6272 if (!noninteractive)
6273 check_string_bytes (1);
6274 #endif
6276 /* Put all unmarked conses on free list */
6278 register struct cons_block *cblk;
6279 struct cons_block **cprev = &cons_block;
6280 register int lim = cons_block_index;
6281 EMACS_INT num_free = 0, num_used = 0;
6283 cons_free_list = 0;
6285 for (cblk = cons_block; cblk; cblk = *cprev)
6287 register int i = 0;
6288 int this_free = 0;
6289 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6291 /* Scan the mark bits an int at a time. */
6292 for (i = 0; i < ilim; i++)
6294 if (cblk->gcmarkbits[i] == -1)
6296 /* Fast path - all cons cells for this int are marked. */
6297 cblk->gcmarkbits[i] = 0;
6298 num_used += BITS_PER_INT;
6300 else
6302 /* Some cons cells for this int are not marked.
6303 Find which ones, and free them. */
6304 int start, pos, stop;
6306 start = i * BITS_PER_INT;
6307 stop = lim - start;
6308 if (stop > BITS_PER_INT)
6309 stop = BITS_PER_INT;
6310 stop += start;
6312 for (pos = start; pos < stop; pos++)
6314 if (!CONS_MARKED_P (&cblk->conses[pos]))
6316 this_free++;
6317 cblk->conses[pos].u.chain = cons_free_list;
6318 cons_free_list = &cblk->conses[pos];
6319 #if GC_MARK_STACK
6320 cons_free_list->car = Vdead;
6321 #endif
6323 else
6325 num_used++;
6326 CONS_UNMARK (&cblk->conses[pos]);
6332 lim = CONS_BLOCK_SIZE;
6333 /* If this block contains only free conses and we have already
6334 seen more than two blocks worth of free conses then deallocate
6335 this block. */
6336 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6338 *cprev = cblk->next;
6339 /* Unhook from the free list. */
6340 cons_free_list = cblk->conses[0].u.chain;
6341 lisp_align_free (cblk);
6343 else
6345 num_free += this_free;
6346 cprev = &cblk->next;
6349 total_conses = num_used;
6350 total_free_conses = num_free;
6353 /* Put all unmarked floats on free list */
6355 register struct float_block *fblk;
6356 struct float_block **fprev = &float_block;
6357 register int lim = float_block_index;
6358 EMACS_INT num_free = 0, num_used = 0;
6360 float_free_list = 0;
6362 for (fblk = float_block; fblk; fblk = *fprev)
6364 register int i;
6365 int this_free = 0;
6366 for (i = 0; i < lim; i++)
6367 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6369 this_free++;
6370 fblk->floats[i].u.chain = float_free_list;
6371 float_free_list = &fblk->floats[i];
6373 else
6375 num_used++;
6376 FLOAT_UNMARK (&fblk->floats[i]);
6378 lim = FLOAT_BLOCK_SIZE;
6379 /* If this block contains only free floats and we have already
6380 seen more than two blocks worth of free floats then deallocate
6381 this block. */
6382 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6384 *fprev = fblk->next;
6385 /* Unhook from the free list. */
6386 float_free_list = fblk->floats[0].u.chain;
6387 lisp_align_free (fblk);
6389 else
6391 num_free += this_free;
6392 fprev = &fblk->next;
6395 total_floats = num_used;
6396 total_free_floats = num_free;
6399 /* Put all unmarked intervals on free list */
6401 register struct interval_block *iblk;
6402 struct interval_block **iprev = &interval_block;
6403 register int lim = interval_block_index;
6404 EMACS_INT num_free = 0, num_used = 0;
6406 interval_free_list = 0;
6408 for (iblk = interval_block; iblk; iblk = *iprev)
6410 register int i;
6411 int this_free = 0;
6413 for (i = 0; i < lim; i++)
6415 if (!iblk->intervals[i].gcmarkbit)
6417 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
6418 interval_free_list = &iblk->intervals[i];
6419 this_free++;
6421 else
6423 num_used++;
6424 iblk->intervals[i].gcmarkbit = 0;
6427 lim = INTERVAL_BLOCK_SIZE;
6428 /* If this block contains only free intervals and we have already
6429 seen more than two blocks worth of free intervals then
6430 deallocate this block. */
6431 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6433 *iprev = iblk->next;
6434 /* Unhook from the free list. */
6435 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6436 lisp_free (iblk);
6438 else
6440 num_free += this_free;
6441 iprev = &iblk->next;
6444 total_intervals = num_used;
6445 total_free_intervals = num_free;
6448 /* Put all unmarked symbols on free list */
6450 register struct symbol_block *sblk;
6451 struct symbol_block **sprev = &symbol_block;
6452 register int lim = symbol_block_index;
6453 EMACS_INT num_free = 0, num_used = 0;
6455 symbol_free_list = NULL;
6457 for (sblk = symbol_block; sblk; sblk = *sprev)
6459 int this_free = 0;
6460 union aligned_Lisp_Symbol *sym = sblk->symbols;
6461 union aligned_Lisp_Symbol *end = sym + lim;
6463 for (; sym < end; ++sym)
6465 /* Check if the symbol was created during loadup. In such a case
6466 it might be pointed to by pure bytecode which we don't trace,
6467 so we conservatively assume that it is live. */
6468 int pure_p = PURE_POINTER_P (XSTRING (sym->s.xname));
6470 if (!sym->s.gcmarkbit && !pure_p)
6472 if (sym->s.redirect == SYMBOL_LOCALIZED)
6473 xfree (SYMBOL_BLV (&sym->s));
6474 sym->s.next = symbol_free_list;
6475 symbol_free_list = &sym->s;
6476 #if GC_MARK_STACK
6477 symbol_free_list->function = Vdead;
6478 #endif
6479 ++this_free;
6481 else
6483 ++num_used;
6484 if (!pure_p)
6485 UNMARK_STRING (XSTRING (sym->s.xname));
6486 sym->s.gcmarkbit = 0;
6490 lim = SYMBOL_BLOCK_SIZE;
6491 /* If this block contains only free symbols and we have already
6492 seen more than two blocks worth of free symbols then deallocate
6493 this block. */
6494 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6496 *sprev = sblk->next;
6497 /* Unhook from the free list. */
6498 symbol_free_list = sblk->symbols[0].s.next;
6499 lisp_free (sblk);
6501 else
6503 num_free += this_free;
6504 sprev = &sblk->next;
6507 total_symbols = num_used;
6508 total_free_symbols = num_free;
6511 /* Put all unmarked misc's on free list.
6512 For a marker, first unchain it from the buffer it points into. */
6514 register struct marker_block *mblk;
6515 struct marker_block **mprev = &marker_block;
6516 register int lim = marker_block_index;
6517 EMACS_INT num_free = 0, num_used = 0;
6519 marker_free_list = 0;
6521 for (mblk = marker_block; mblk; mblk = *mprev)
6523 register int i;
6524 int this_free = 0;
6526 for (i = 0; i < lim; i++)
6528 if (!mblk->markers[i].m.u_any.gcmarkbit)
6530 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6531 unchain_marker (&mblk->markers[i].m.u_marker);
6532 /* Set the type of the freed object to Lisp_Misc_Free.
6533 We could leave the type alone, since nobody checks it,
6534 but this might catch bugs faster. */
6535 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6536 mblk->markers[i].m.u_free.chain = marker_free_list;
6537 marker_free_list = &mblk->markers[i].m;
6538 this_free++;
6540 else
6542 num_used++;
6543 mblk->markers[i].m.u_any.gcmarkbit = 0;
6546 lim = MARKER_BLOCK_SIZE;
6547 /* If this block contains only free markers and we have already
6548 seen more than two blocks worth of free markers then deallocate
6549 this block. */
6550 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6552 *mprev = mblk->next;
6553 /* Unhook from the free list. */
6554 marker_free_list = mblk->markers[0].m.u_free.chain;
6555 lisp_free (mblk);
6557 else
6559 num_free += this_free;
6560 mprev = &mblk->next;
6564 total_markers = num_used;
6565 total_free_markers = num_free;
6568 /* Free all unmarked buffers */
6570 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6572 total_buffers = 0;
6573 while (buffer)
6574 if (!VECTOR_MARKED_P (buffer))
6576 if (prev)
6577 prev->header.next = buffer->header.next;
6578 else
6579 all_buffers = buffer->header.next.buffer;
6580 next = buffer->header.next.buffer;
6581 lisp_free (buffer);
6582 buffer = next;
6584 else
6586 VECTOR_UNMARK (buffer);
6587 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6588 total_buffers++;
6589 prev = buffer, buffer = buffer->header.next.buffer;
6593 sweep_vectors ();
6595 #ifdef GC_CHECK_STRING_BYTES
6596 if (!noninteractive)
6597 check_string_bytes (1);
6598 #endif
6604 /* Debugging aids. */
6606 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6607 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6608 This may be helpful in debugging Emacs's memory usage.
6609 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6610 (void)
6612 Lisp_Object end;
6614 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6616 return end;
6619 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6620 doc: /* Return a list of counters that measure how much consing there has been.
6621 Each of these counters increments for a certain kind of object.
6622 The counters wrap around from the largest positive integer to zero.
6623 Garbage collection does not decrease them.
6624 The elements of the value are as follows:
6625 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6626 All are in units of 1 = one object consed
6627 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6628 objects consed.
6629 MISCS include overlays, markers, and some internal types.
6630 Frames, windows, buffers, and subprocesses count as vectors
6631 (but the contents of a buffer's text do not count here). */)
6632 (void)
6634 Lisp_Object consed[8];
6636 consed[0] = bounded_number (cons_cells_consed);
6637 consed[1] = bounded_number (floats_consed);
6638 consed[2] = bounded_number (vector_cells_consed);
6639 consed[3] = bounded_number (symbols_consed);
6640 consed[4] = bounded_number (string_chars_consed);
6641 consed[5] = bounded_number (misc_objects_consed);
6642 consed[6] = bounded_number (intervals_consed);
6643 consed[7] = bounded_number (strings_consed);
6645 return Flist (8, consed);
6648 /* Find at most FIND_MAX symbols which have OBJ as their value or
6649 function. This is used in gdbinit's `xwhichsymbols' command. */
6651 Lisp_Object
6652 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6654 struct symbol_block *sblk;
6655 ptrdiff_t gc_count = inhibit_garbage_collection ();
6656 Lisp_Object found = Qnil;
6658 if (! DEADP (obj))
6660 for (sblk = symbol_block; sblk; sblk = sblk->next)
6662 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6663 int bn;
6665 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6667 struct Lisp_Symbol *sym = &aligned_sym->s;
6668 Lisp_Object val;
6669 Lisp_Object tem;
6671 if (sblk == symbol_block && bn >= symbol_block_index)
6672 break;
6674 XSETSYMBOL (tem, sym);
6675 val = find_symbol_value (tem);
6676 if (EQ (val, obj)
6677 || EQ (sym->function, obj)
6678 || (!NILP (sym->function)
6679 && COMPILEDP (sym->function)
6680 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6681 || (!NILP (val)
6682 && COMPILEDP (val)
6683 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6685 found = Fcons (tem, found);
6686 if (--find_max == 0)
6687 goto out;
6693 out:
6694 unbind_to (gc_count, Qnil);
6695 return found;
6698 #ifdef ENABLE_CHECKING
6699 int suppress_checking;
6701 void
6702 die (const char *msg, const char *file, int line)
6704 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6705 file, line, msg);
6706 abort ();
6708 #endif
6710 /* Initialization */
6712 void
6713 init_alloc_once (void)
6715 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6716 purebeg = PUREBEG;
6717 pure_size = PURESIZE;
6719 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6720 mem_init ();
6721 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6722 #endif
6724 #ifdef DOUG_LEA_MALLOC
6725 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6726 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6727 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6728 #endif
6729 init_strings ();
6730 init_vectors ();
6732 #ifdef REL_ALLOC
6733 malloc_hysteresis = 32;
6734 #else
6735 malloc_hysteresis = 0;
6736 #endif
6738 refill_memory_reserve ();
6739 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6742 void
6743 init_alloc (void)
6745 gcprolist = 0;
6746 byte_stack_list = 0;
6747 #if GC_MARK_STACK
6748 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6749 setjmp_tested_p = longjmps_done = 0;
6750 #endif
6751 #endif
6752 Vgc_elapsed = make_float (0.0);
6753 gcs_done = 0;
6756 void
6757 syms_of_alloc (void)
6759 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6760 doc: /* Number of bytes of consing between garbage collections.
6761 Garbage collection can happen automatically once this many bytes have been
6762 allocated since the last garbage collection. All data types count.
6764 Garbage collection happens automatically only when `eval' is called.
6766 By binding this temporarily to a large number, you can effectively
6767 prevent garbage collection during a part of the program.
6768 See also `gc-cons-percentage'. */);
6770 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6771 doc: /* Portion of the heap used for allocation.
6772 Garbage collection can happen automatically once this portion of the heap
6773 has been allocated since the last garbage collection.
6774 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6775 Vgc_cons_percentage = make_float (0.1);
6777 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6778 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6780 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6781 doc: /* Number of cons cells that have been consed so far. */);
6783 DEFVAR_INT ("floats-consed", floats_consed,
6784 doc: /* Number of floats that have been consed so far. */);
6786 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6787 doc: /* Number of vector cells that have been consed so far. */);
6789 DEFVAR_INT ("symbols-consed", symbols_consed,
6790 doc: /* Number of symbols that have been consed so far. */);
6792 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6793 doc: /* Number of string characters that have been consed so far. */);
6795 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6796 doc: /* Number of miscellaneous objects that have been consed so far.
6797 These include markers and overlays, plus certain objects not visible
6798 to users. */);
6800 DEFVAR_INT ("intervals-consed", intervals_consed,
6801 doc: /* Number of intervals that have been consed so far. */);
6803 DEFVAR_INT ("strings-consed", strings_consed,
6804 doc: /* Number of strings that have been consed so far. */);
6806 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6807 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6808 This means that certain objects should be allocated in shared (pure) space.
6809 It can also be set to a hash-table, in which case this table is used to
6810 do hash-consing of the objects allocated to pure space. */);
6812 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6813 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6814 garbage_collection_messages = 0;
6816 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6817 doc: /* Hook run after garbage collection has finished. */);
6818 Vpost_gc_hook = Qnil;
6819 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6821 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6822 doc: /* Precomputed `signal' argument for memory-full error. */);
6823 /* We build this in advance because if we wait until we need it, we might
6824 not be able to allocate the memory to hold it. */
6825 Vmemory_signal_data
6826 = pure_cons (Qerror,
6827 pure_cons (build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6829 DEFVAR_LISP ("memory-full", Vmemory_full,
6830 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6831 Vmemory_full = Qnil;
6833 DEFSYM (Qstring_bytes, "string-bytes");
6834 DEFSYM (Qvector_slots, "vector-slots");
6835 DEFSYM (Qheap, "heap");
6837 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6838 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6840 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6841 doc: /* Accumulated time elapsed in garbage collections.
6842 The time is in seconds as a floating point value. */);
6843 DEFVAR_INT ("gcs-done", gcs_done,
6844 doc: /* Accumulated number of garbage collections done. */);
6846 defsubr (&Scons);
6847 defsubr (&Slist);
6848 defsubr (&Svector);
6849 defsubr (&Smake_byte_code);
6850 defsubr (&Smake_list);
6851 defsubr (&Smake_vector);
6852 defsubr (&Smake_string);
6853 defsubr (&Smake_bool_vector);
6854 defsubr (&Smake_symbol);
6855 defsubr (&Smake_marker);
6856 defsubr (&Spurecopy);
6857 defsubr (&Sgarbage_collect);
6858 defsubr (&Smemory_limit);
6859 defsubr (&Smemory_use_counts);
6861 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6862 defsubr (&Sgc_status);
6863 #endif