Add etags test for the new -Q option
[emacs.git] / doc / misc / calc.texi
blob034f42b1a1651b97cc83a66b5d3d2bd83b162ebb
1 \input texinfo @c -*- mode: texinfo; coding: utf-8 -*-
2 @comment %**start of header (This is for running Texinfo on a region.)
3 @c smallbook
4 @setfilename ../../info/calc.info
5 @c [title]
6 @settitle GNU Emacs Calc Manual
7 @include docstyle.texi
8 @setchapternewpage odd
9 @comment %**end of header (This is for running Texinfo on a region.)
11 @include emacsver.texi
13 @c The following macros are used for conditional output for single lines.
14 @c @texline foo
15 @c    'foo' will appear only in TeX output
16 @c @infoline foo
17 @c    'foo' will appear only in non-TeX output
19 @c @expr{expr} will typeset an expression;
20 @c $x$ in TeX, @samp{x} otherwise.
22 @iftex
23 @macro texline
24 @end macro
25 @alias infoline=comment
26 @alias expr=math
27 @alias tfn=code
28 @alias mathit=expr
29 @alias summarykey=key
30 @macro cpi{}
31 @math{@pi{}}
32 @end macro
33 @macro cpiover{den}
34 @math{@pi/\den\}
35 @end macro
36 @end iftex
38 @ifnottex
39 @alias texline=comment
40 @macro infoline{stuff}
41 \stuff\
42 @end macro
43 @alias expr=samp
44 @alias tfn=t
45 @alias mathit=i
46 @macro summarykey{ky}
47 \ky\
48 @end macro
49 @macro cpi{}
50 @expr{pi}
51 @end macro
52 @macro cpiover{den}
53 @expr{pi/\den\}
54 @end macro
55 @end ifnottex
58 @tex
59 % Suggested by Karl Berry <karl@@freefriends.org>
60 \gdef\!{\mskip-\thinmuskip}
61 @end tex
63 @c Fix some other things specifically for this manual.
64 @iftex
65 @finalout
66 @mathcode`@:=`@:  @c Make Calc fractions come out right in math mode
67 @tex
68 \gdef\coloneq{\mathrel{\mathord:\mathord=}}
70 \gdef\beforedisplay{\vskip-10pt}
71 \gdef\afterdisplay{\vskip-5pt}
72 \gdef\beforedisplayh{\vskip-25pt}
73 \gdef\afterdisplayh{\vskip-10pt}
74 @end tex
75 @newdimen@kyvpos @kyvpos=0pt
76 @newdimen@kyhpos @kyhpos=0pt
77 @newcount@calcclubpenalty @calcclubpenalty=1000
78 @ignore
79 @newcount@calcpageno
80 @newtoks@calcoldeverypar @calcoldeverypar=@everypar
81 @everypar={@calceverypar@the@calcoldeverypar}
82 @ifx@ninett@undefinedzzz@font@ninett=cmtt9@fi
83 @catcode`@\=0 \catcode`\@=11
84 \r@ggedbottomtrue
85 \catcode`\@=0 @catcode`@\=@active
86 @end ignore
87 @end iftex
89 @copying
90 @ifinfo
91 This file documents Calc, the GNU Emacs calculator.
92 @end ifinfo
93 @ifnotinfo
94 This file documents Calc, the GNU Emacs calculator, included with
95 GNU Emacs @value{EMACSVER}.
96 @end ifnotinfo
98 Copyright @copyright{} 1990--1991, 2001--2015 Free Software Foundation, Inc.
100 @quotation
101 Permission is granted to copy, distribute and/or modify this document
102 under the terms of the GNU Free Documentation License, Version 1.3 or
103 any later version published by the Free Software Foundation; with the
104 Invariant Sections being just ``GNU GENERAL PUBLIC LICENSE'', with the
105 Front-Cover Texts being ``A GNU Manual,'' and with the Back-Cover
106 Texts as in (a) below.  A copy of the license is included in the section
107 entitled ``GNU Free Documentation License.''
109 (a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
110 modify this GNU manual.''
111 @end quotation
112 @end copying
114 @dircategory Emacs misc features
115 @direntry
116 * Calc: (calc).                 Advanced desk calculator and mathematical tool.
117 @end direntry
119 @titlepage
120 @sp 6
121 @center @titlefont{Calc Manual}
122 @sp 4
123 @center GNU Emacs Calc
124 @c [volume]
125 @sp 5
126 @center Dave Gillespie
127 @center daveg@@synaptics.com
128 @page
130 @vskip 0pt plus 1filll
131 @insertcopying
132 @end titlepage
135 @summarycontents
137 @c [end]
139 @contents
141 @c [begin]
142 @ifnottex
143 @node Top, Getting Started, (dir), (dir)
144 @top The GNU Emacs Calculator
146 @noindent
147 @dfn{Calc} is an advanced desk calculator and mathematical tool
148 written by Dave Gillespie that runs as part of the GNU Emacs environment.
150 This manual, also written (mostly) by Dave Gillespie, is divided into
151 three major parts: ``Getting Started,'' the ``Calc Tutorial,'' and the
152 ``Calc Reference.''  The Tutorial introduces all the major aspects of
153 Calculator use in an easy, hands-on way.  The remainder of the manual is
154 a complete reference to the features of the Calculator.
155 @end ifnottex
157 @ifinfo
158 For help in the Emacs Info system (which you are using to read this
159 file), type @kbd{?}.  (You can also type @kbd{h} to run through a
160 longer Info tutorial.)
161 @end ifinfo
163 @insertcopying
165 @menu
166 * Getting Started::       General description and overview.
167 @ifinfo
168 * Interactive Tutorial::
169 @end ifinfo
170 * Tutorial::              A step-by-step introduction for beginners.
172 * Introduction::          Introduction to the Calc reference manual.
173 * Data Types::            Types of objects manipulated by Calc.
174 * Stack and Trail::       Manipulating the stack and trail buffers.
175 * Mode Settings::         Adjusting display format and other modes.
176 * Arithmetic::            Basic arithmetic functions.
177 * Scientific Functions::  Transcendentals and other scientific functions.
178 * Matrix Functions::      Operations on vectors and matrices.
179 * Algebra::               Manipulating expressions algebraically.
180 * Units::                 Operations on numbers with units.
181 * Store and Recall::      Storing and recalling variables.
182 * Graphics::              Commands for making graphs of data.
183 * Kill and Yank::         Moving data into and out of Calc.
184 * Keypad Mode::           Operating Calc from a keypad.
185 * Embedded Mode::         Working with formulas embedded in a file.
186 * Programming::           Calc as a programmable calculator.
188 * Copying::               How you can copy and share Calc.
189 * GNU Free Documentation License:: The license for this documentation.
190 * Customizing Calc::      Customizing Calc.
191 * Reporting Bugs::        How to report bugs and make suggestions.
193 * Summary::               Summary of Calc commands and functions.
195 * Key Index::             The standard Calc key sequences.
196 * Command Index::         The interactive Calc commands.
197 * Function Index::        Functions (in algebraic formulas).
198 * Concept Index::         General concepts.
199 * Variable Index::        Variables used by Calc (both user and internal).
200 * Lisp Function Index::   Internal Lisp math functions.
201 @end menu
203 @ifinfo
204 @node Getting Started, Interactive Tutorial, Top, Top
205 @end ifinfo
206 @ifnotinfo
207 @node Getting Started, Tutorial, Top, Top
208 @end ifnotinfo
209 @chapter Getting Started
210 @noindent
211 This chapter provides a general overview of Calc, the GNU Emacs
212 Calculator:  What it is, how to start it and how to exit from it,
213 and what are the various ways that it can be used.
215 @menu
216 * What is Calc::
217 * About This Manual::
218 * Notations Used in This Manual::
219 * Demonstration of Calc::
220 * Using Calc::
221 * History and Acknowledgments::
222 @end menu
224 @node What is Calc, About This Manual, Getting Started, Getting Started
225 @section What is Calc?
227 @noindent
228 @dfn{Calc} is an advanced calculator and mathematical tool that runs as
229 part of the GNU Emacs environment.  Very roughly based on the HP-28/48
230 series of calculators, its many features include:
232 @itemize @bullet
233 @item
234 Choice of algebraic or RPN (stack-based) entry of calculations.
236 @item
237 Arbitrary precision integers and floating-point numbers.
239 @item
240 Arithmetic on rational numbers, complex numbers (rectangular and polar),
241 error forms with standard deviations, open and closed intervals, vectors
242 and matrices, dates and times, infinities, sets, quantities with units,
243 and algebraic formulas.
245 @item
246 Mathematical operations such as logarithms and trigonometric functions.
248 @item
249 Programmer's features (bitwise operations, non-decimal numbers).
251 @item
252 Financial functions such as future value and internal rate of return.
254 @item
255 Number theoretical features such as prime factorization and arithmetic
256 modulo @var{m} for any @var{m}.
258 @item
259 Algebraic manipulation features, including symbolic calculus.
261 @item
262 Moving data to and from regular editing buffers.
264 @item
265 Embedded mode for manipulating Calc formulas and data directly
266 inside any editing buffer.
268 @item
269 Graphics using GNUPLOT, a versatile (and free) plotting program.
271 @item
272 Easy programming using keyboard macros, algebraic formulas,
273 algebraic rewrite rules, or extended Emacs Lisp.
274 @end itemize
276 Calc tries to include a little something for everyone; as a result it is
277 large and might be intimidating to the first-time user.  If you plan to
278 use Calc only as a traditional desk calculator, all you really need to
279 read is the ``Getting Started'' chapter of this manual and possibly the
280 first few sections of the tutorial.  As you become more comfortable with
281 the program you can learn its additional features.  Calc does not
282 have the scope and depth of a fully-functional symbolic math package,
283 but Calc has the advantages of convenience, portability, and freedom.
285 @node About This Manual, Notations Used in This Manual, What is Calc, Getting Started
286 @section About This Manual
288 @noindent
289 This document serves as a complete description of the GNU Emacs
290 Calculator.  It works both as an introduction for novices and as
291 a reference for experienced users.  While it helps to have some
292 experience with GNU Emacs in order to get the most out of Calc,
293 this manual ought to be readable even if you don't know or use Emacs
294 regularly.
296 This manual is divided into three major parts: the ``Getting
297 Started'' chapter you are reading now, the Calc tutorial, and the Calc
298 reference manual.
299 @c [when-split]
300 @c This manual has been printed in two volumes, the @dfn{Tutorial} and the
301 @c @dfn{Reference}.  Both volumes include a copy of the ``Getting Started''
302 @c chapter.
304 If you are in a hurry to use Calc, there is a brief ``demonstration''
305 below which illustrates the major features of Calc in just a couple of
306 pages.  If you don't have time to go through the full tutorial, this
307 will show you everything you need to know to begin.
308 @xref{Demonstration of Calc}.
310 The tutorial chapter walks you through the various parts of Calc
311 with lots of hands-on examples and explanations.  If you are new
312 to Calc and you have some time, try going through at least the
313 beginning of the tutorial.  The tutorial includes about 70 exercises
314 with answers.  These exercises give you some guided practice with
315 Calc, as well as pointing out some interesting and unusual ways
316 to use its features.
318 The reference section discusses Calc in complete depth.  You can read
319 the reference from start to finish if you want to learn every aspect
320 of Calc.  Or, you can look in the table of contents or the Concept
321 Index to find the parts of the manual that discuss the things you
322 need to know.
324 @c @cindex Marginal notes
325 Every Calc keyboard command is listed in the Calc Summary, and also
326 in the Key Index.  Algebraic functions, @kbd{M-x} commands, and
327 variables also have their own indices.
328 @c @texline Each
329 @c @infoline In the printed manual, each
330 @c paragraph that is referenced in the Key or Function Index is marked
331 @c in the margin with its index entry.
333 @c [fix-ref Help Commands]
334 You can access this manual on-line at any time within Calc by pressing
335 the @kbd{h i} key sequence.  Outside of the Calc window, you can press
336 @kbd{C-x * i} to read the manual on-line.  From within Calc the command
337 @kbd{h t} will jump directly to the Tutorial; from outside of Calc the
338 command @kbd{C-x * t} will jump to the Tutorial and start Calc if
339 necessary.  Pressing @kbd{h s} or @kbd{C-x * s} will take you directly
340 to the Calc Summary.  Within Calc, you can also go to the part of the
341 manual describing any Calc key, function, or variable using
342 @w{@kbd{h k}}, @kbd{h f}, or @kbd{h v}, respectively.  @xref{Help Commands}.
344 @ifnottex
345 The Calc manual can be printed, but because the manual is so large, you
346 should only make a printed copy if you really need it.  To print the
347 manual, you will need the @TeX{} typesetting program (this is a free
348 program by Donald Knuth at Stanford University) as well as the
349 @file{texindex} program and @file{texinfo.tex} file, both of which can
350 be obtained from the FSF as part of the @code{texinfo} package.
351 To print the Calc manual in one huge tome, you will need the
352 Emacs source, which contains the source code to this manual,
353 @file{calc.texi}.  Change to the @file{doc/misc} subdirectory of the
354 Emacs source distribution, which contains source code for this manual,
355 and type @kbd{make calc.pdf}. (Don't worry if you get some ``overfull
356 box'' warnings while @TeX{} runs.)   The result will be this entire
357 manual as a pdf file.
358 @end ifnottex
359 @c Printed copies of this manual are also available from the Free Software
360 @c Foundation.
362 @node Notations Used in This Manual, Demonstration of Calc, About This Manual, Getting Started
363 @section Notations Used in This Manual
365 @noindent
366 This section describes the various notations that are used
367 throughout the Calc manual.
369 In keystroke sequences, uppercase letters mean you must hold down
370 the shift key while typing the letter.  Keys pressed with Control
371 held down are shown as @kbd{C-x}.  Keys pressed with Meta held down
372 are shown as @kbd{M-x}.  Other notations are @key{RET} for the
373 Return key, @key{SPC} for the space bar, @key{TAB} for the Tab key,
374 @key{DEL} for the Delete key, and @key{LFD} for the Line-Feed key.
375 The @key{DEL} key is called Backspace on some keyboards, it is
376 whatever key you would use to correct a simple typing error when
377 regularly using Emacs.
379 (If you don't have the @key{LFD} or @key{TAB} keys on your keyboard,
380 the @kbd{C-j} and @kbd{C-i} keys are equivalent to them, respectively.
381 If you don't have a Meta key, look for Alt or Extend Char.  You can
382 also press @key{ESC} or @kbd{C-[} first to get the same effect, so
383 that @kbd{M-x}, @kbd{@key{ESC} x}, and @kbd{C-[ x} are all equivalent.)
385 Sometimes the @key{RET} key is not shown when it is ``obvious''
386 that you must press @key{RET} to proceed.  For example, the @key{RET}
387 is usually omitted in key sequences like @kbd{M-x calc-keypad @key{RET}}.
389 Commands are generally shown like this:  @kbd{p} (@code{calc-precision})
390 or @kbd{C-x * k} (@code{calc-keypad}).  This means that the command is
391 normally used by pressing the @kbd{p} key or @kbd{C-x * k} key sequence,
392 but it also has the full-name equivalent shown, e.g., @kbd{M-x calc-precision}.
394 Commands that correspond to functions in algebraic notation
395 are written:  @kbd{C} (@code{calc-cos}) [@code{cos}].  This means
396 the @kbd{C} key is equivalent to @kbd{M-x calc-cos}, and that
397 the corresponding function in an algebraic-style formula would
398 be @samp{cos(@var{x})}.
400 A few commands don't have key equivalents:  @code{calc-sincos}
401 [@code{sincos}].
403 @node Demonstration of Calc, Using Calc, Notations Used in This Manual, Getting Started
404 @section A Demonstration of Calc
406 @noindent
407 @cindex Demonstration of Calc
408 This section will show some typical small problems being solved with
409 Calc.  The focus is more on demonstration than explanation, but
410 everything you see here will be covered more thoroughly in the
411 Tutorial.
413 To begin, start Emacs if necessary (usually the command @code{emacs}
414 does this), and type @kbd{C-x * c} to start the
415 Calculator.  (You can also use @kbd{M-x calc} if this doesn't work.
416 @xref{Starting Calc}, for various ways of starting the Calculator.)
418 Be sure to type all the sample input exactly, especially noting the
419 difference between lower-case and upper-case letters.  Remember,
420 @key{RET}, @key{TAB}, @key{DEL}, and @key{SPC} are the Return, Tab,
421 Delete, and Space keys.
423 @strong{RPN calculation.}  In RPN, you type the input number(s) first,
424 then the command to operate on the numbers.
426 @noindent
427 Type @kbd{2 @key{RET} 3 + Q} to compute
428 @texline @math{\sqrt{2+3} = 2.2360679775}.
429 @infoline the square root of 2+3, which is 2.2360679775.
431 @noindent
432 Type @kbd{P 2 ^} to compute
433 @texline @math{\pi^2 = 9.86960440109}.
434 @infoline the value of @cpi{} squared, 9.86960440109.
436 @noindent
437 Type @key{TAB} to exchange the order of these two results.
439 @noindent
440 Type @kbd{- I H S} to subtract these results and compute the Inverse
441 Hyperbolic sine of the difference, 2.72996136574.
443 @noindent
444 Type @key{DEL} to erase this result.
446 @strong{Algebraic calculation.}  You can also enter calculations using
447 conventional ``algebraic'' notation.  To enter an algebraic formula,
448 use the apostrophe key.
450 @noindent
451 Type @kbd{' sqrt(2+3) @key{RET}} to compute
452 @texline @math{\sqrt{2+3}}.
453 @infoline the square root of 2+3.
455 @noindent
456 Type @kbd{' pi^2 @key{RET}} to enter
457 @texline @math{\pi^2}.
458 @infoline @cpi{} squared.
459 To evaluate this symbolic formula as a number, type @kbd{=}.
461 @noindent
462 Type @kbd{' arcsinh($ - $$) @key{RET}} to subtract the second-most-recent
463 result from the most-recent and compute the Inverse Hyperbolic sine.
465 @strong{Keypad mode.}  If you are using the X window system, press
466 @w{@kbd{C-x * k}} to get Keypad mode.  (If you don't use X, skip to
467 the next section.)
469 @noindent
470 Click on the @key{2}, @key{ENTER}, @key{3}, @key{+}, and @key{SQRT}
471 ``buttons'' using your left mouse button.
473 @noindent
474 Click on @key{PI}, @key{2}, and @tfn{y^x}.
476 @noindent
477 Click on @key{INV}, then @key{ENTER} to swap the two results.
479 @noindent
480 Click on @key{-}, @key{INV}, @key{HYP}, and @key{SIN}.
482 @noindent
483 Click on @key{<-} to erase the result, then click @key{OFF} to turn
484 the Keypad Calculator off.
486 @strong{Grabbing data.}  Type @kbd{C-x * x} if necessary to exit Calc.
487 Now select the following numbers as an Emacs region:  ``Mark'' the
488 front of the list by typing @kbd{C-@key{SPC}} or @kbd{C-@@} there,
489 then move to the other end of the list.  (Either get this list from
490 the on-line copy of this manual, accessed by @w{@kbd{C-x * i}}, or just
491 type these numbers into a scratch file.)  Now type @kbd{C-x * g} to
492 ``grab'' these numbers into Calc.
494 @example
495 @group
496 1.23  1.97
497 1.6   2
498 1.19  1.08
499 @end group
500 @end example
502 @noindent
503 The result @samp{[1.23, 1.97, 1.6, 2, 1.19, 1.08]} is a Calc ``vector.''
504 Type @w{@kbd{V R +}} to compute the sum of these numbers.
506 @noindent
507 Type @kbd{U} to Undo this command, then type @kbd{V R *} to compute
508 the product of the numbers.
510 @noindent
511 You can also grab data as a rectangular matrix.  Place the cursor on
512 the upper-leftmost @samp{1} and set the mark, then move to just after
513 the lower-right @samp{8} and press @kbd{C-x * r}.
515 @noindent
516 Type @kbd{v t} to transpose this
517 @texline @math{3\times2}
518 @infoline 3x2
519 matrix into a
520 @texline @math{2\times3}
521 @infoline 2x3
522 matrix.  Type @w{@kbd{v u}} to unpack the rows into two separate
523 vectors.  Now type @w{@kbd{V R + @key{TAB} V R +}} to compute the sums
524 of the two original columns. (There is also a special
525 grab-and-sum-columns command, @kbd{C-x * :}.)
527 @strong{Units conversion.}  Units are entered algebraically.
528 Type @w{@kbd{' 43 mi/hr @key{RET}}} to enter the quantity 43 miles-per-hour.
529 Type @w{@kbd{u c km/hr @key{RET}}}.  Type @w{@kbd{u c m/s @key{RET}}}.
531 @strong{Date arithmetic.}  Type @kbd{t N} to get the current date and
532 time.  Type @kbd{90 +} to find the date 90 days from now.  Type
533 @kbd{' <25 dec 87> @key{RET}} to enter a date, then @kbd{- 7 /} to see how
534 many weeks have passed since then.
536 @strong{Algebra.}  Algebraic entries can also include formulas
537 or equations involving variables.  Type @kbd{@w{' [x + y} = a, x y = 1] @key{RET}}
538 to enter a pair of equations involving three variables.
539 (Note the leading apostrophe in this example; also, note that the space
540 in @samp{x y} is required.)  Type @w{@kbd{a S x,y @key{RET}}} to solve
541 these equations for the variables @expr{x} and @expr{y}.
543 @noindent
544 Type @kbd{d B} to view the solutions in more readable notation.
545 Type @w{@kbd{d C}} to view them in C language notation, @kbd{d T}
546 to view them in the notation for the @TeX{} typesetting system,
547 and @kbd{d L} to view them in the notation for the @LaTeX{} typesetting
548 system.  Type @kbd{d N} to return to normal notation.
550 @noindent
551 Type @kbd{7.5}, then @kbd{s l a @key{RET}} to let @expr{a = 7.5} in these formulas.
552 (That's the letter @kbd{l}, not the numeral @kbd{1}.)
554 @ifnotinfo
555 @strong{Help functions.}  You can read about any command in the on-line
556 manual.  Type @kbd{C-x * c} to return to Calc after each of these
557 commands: @kbd{h k t N} to read about the @kbd{t N} command,
558 @kbd{h f sqrt @key{RET}} to read about the @code{sqrt} function, and
559 @kbd{h s} to read the Calc summary.
560 @end ifnotinfo
561 @ifinfo
562 @strong{Help functions.}  You can read about any command in the on-line
563 manual.  Remember to type the letter @kbd{l}, then @kbd{C-x * c}, to
564 return here after each of these commands: @w{@kbd{h k t N}} to read
565 about the @w{@kbd{t N}} command, @kbd{h f sqrt @key{RET}} to read about the
566 @code{sqrt} function, and @kbd{h s} to read the Calc summary.
567 @end ifinfo
569 Press @key{DEL} repeatedly to remove any leftover results from the stack.
570 To exit from Calc, press @kbd{q} or @kbd{C-x * c} again.
572 @node Using Calc, History and Acknowledgments, Demonstration of Calc, Getting Started
573 @section Using Calc
575 @noindent
576 Calc has several user interfaces that are specialized for
577 different kinds of tasks.  As well as Calc's standard interface,
578 there are Quick mode, Keypad mode, and Embedded mode.
580 @menu
581 * Starting Calc::
582 * The Standard Interface::
583 * Quick Mode Overview::
584 * Keypad Mode Overview::
585 * Standalone Operation::
586 * Embedded Mode Overview::
587 * Other C-x * Commands::
588 @end menu
590 @node Starting Calc, The Standard Interface, Using Calc, Using Calc
591 @subsection Starting Calc
593 @noindent
594 On most systems, you can type @kbd{C-x *} to start the Calculator.
595 The key sequence @kbd{C-x *} is bound to the command @code{calc-dispatch},
596 which can be rebound if convenient (@pxref{Customizing Calc}).
598 When you press @kbd{C-x *}, Emacs waits for you to press a second key to
599 complete the command.  In this case, you will follow @kbd{C-x *} with a
600 letter (upper- or lower-case, it doesn't matter for @kbd{C-x *}) that says
601 which Calc interface you want to use.
603 To get Calc's standard interface, type @kbd{C-x * c}.  To get
604 Keypad mode, type @kbd{C-x * k}.  Type @kbd{C-x * ?} to get a brief
605 list of the available options, and type a second @kbd{?} to get
606 a complete list.
608 To ease typing, @kbd{C-x * *} also works to start Calc.  It starts the
609 same interface (either @kbd{C-x * c} or @w{@kbd{C-x * k}}) that you last
610 used, selecting the @kbd{C-x * c} interface by default.
612 If @kbd{C-x *} doesn't work for you, you can always type explicit
613 commands like @kbd{M-x calc} (for the standard user interface) or
614 @w{@kbd{M-x calc-keypad}} (for Keypad mode).  First type @kbd{M-x}
615 (that's Meta with the letter @kbd{x}), then, at the prompt,
616 type the full command (like @kbd{calc-keypad}) and press Return.
618 The same commands (like @kbd{C-x * c} or @kbd{C-x * *}) that start
619 the Calculator also turn it off if it is already on.
621 @node The Standard Interface, Quick Mode Overview, Starting Calc, Using Calc
622 @subsection The Standard Calc Interface
624 @noindent
625 @cindex Standard user interface
626 Calc's standard interface acts like a traditional RPN calculator,
627 operated by the normal Emacs keyboard.  When you type @kbd{C-x * c}
628 to start the Calculator, the Emacs screen splits into two windows
629 with the file you were editing on top and Calc on the bottom.
631 @smallexample
632 @group
635 --**-Emacs: myfile             (Fundamental)----All----------------------
636 --- Emacs Calculator Mode ---                   |Emacs Calculator Trail
637 2:  17.3                                        |    17.3
638 1:  -5                                          |    3
639     .                                           |    2
640                                                 |    4
641                                                 |  * 8
642                                                 |  ->-5
643                                                 |
644 --%*-Calc: 12 Deg       (Calculator)----All----- --%*- *Calc Trail*
645 @end group
646 @end smallexample
648 In this figure, the mode-line for @file{myfile} has moved up and the
649 ``Calculator'' window has appeared below it.  As you can see, Calc
650 actually makes two windows side-by-side.  The lefthand one is
651 called the @dfn{stack window} and the righthand one is called the
652 @dfn{trail window.}  The stack holds the numbers involved in the
653 calculation you are currently performing.  The trail holds a complete
654 record of all calculations you have done.  In a desk calculator with
655 a printer, the trail corresponds to the paper tape that records what
656 you do.
658 In this case, the trail shows that four numbers (17.3, 3, 2, and 4)
659 were first entered into the Calculator, then the 2 and 4 were
660 multiplied to get 8, then the 3 and 8 were subtracted to get @mathit{-5}.
661 (The @samp{>} symbol shows that this was the most recent calculation.)
662 The net result is the two numbers 17.3 and @mathit{-5} sitting on the stack.
664 Most Calculator commands deal explicitly with the stack only, but
665 there is a set of commands that allow you to search back through
666 the trail and retrieve any previous result.
668 Calc commands use the digits, letters, and punctuation keys.
669 Shifted (i.e., upper-case) letters are different from lowercase
670 letters.  Some letters are @dfn{prefix} keys that begin two-letter
671 commands.  For example, @kbd{e} means ``enter exponent'' and shifted
672 @kbd{E} means @expr{e^x}.  With the @kbd{d} (``display modes'') prefix
673 the letter ``e'' takes on very different meanings:  @kbd{d e} means
674 ``engineering notation'' and @kbd{d E} means ``@dfn{eqn} language mode.''
676 There is nothing stopping you from switching out of the Calc
677 window and back into your editing window, say by using the Emacs
678 @w{@kbd{C-x o}} (@code{other-window}) command.  When the cursor is
679 inside a regular window, Emacs acts just like normal.  When the
680 cursor is in the Calc stack or trail windows, keys are interpreted
681 as Calc commands.
683 When you quit by pressing @kbd{C-x * c} a second time, the Calculator
684 windows go away but the actual Stack and Trail are not gone, just
685 hidden.  When you press @kbd{C-x * c} once again you will get the
686 same stack and trail contents you had when you last used the
687 Calculator.
689 The Calculator does not remember its state between Emacs sessions.
690 Thus if you quit Emacs and start it again, @kbd{C-x * c} will give you
691 a fresh stack and trail.  There is a command (@kbd{m m}) that lets
692 you save your favorite mode settings between sessions, though.
693 One of the things it saves is which user interface (standard or
694 Keypad) you last used; otherwise, a freshly started Emacs will
695 always treat @kbd{C-x * *} the same as @kbd{C-x * c}.
697 The @kbd{q} key is another equivalent way to turn the Calculator off.
699 If you type @kbd{C-x * b} first and then @kbd{C-x * c}, you get a
700 full-screen version of Calc (@code{full-calc}) in which the stack and
701 trail windows are still side-by-side but are now as tall as the whole
702 Emacs screen.  When you press @kbd{q} or @kbd{C-x * c} again to quit,
703 the file you were editing before reappears.  The @kbd{C-x * b} key
704 switches back and forth between ``big'' full-screen mode and the
705 normal partial-screen mode.
707 Finally, @kbd{C-x * o} (@code{calc-other-window}) is like @kbd{C-x * c}
708 except that the Calc window is not selected.  The buffer you were
709 editing before remains selected instead.  If you are in a Calc window,
710 then @kbd{C-x * o} will switch you out of it, being careful not to
711 switch you to the Calc Trail window.  So @kbd{C-x * o} is a handy
712 way to switch out of Calc momentarily to edit your file; you can then
713 type @kbd{C-x * c} to switch back into Calc when you are done.
715 @node Quick Mode Overview, Keypad Mode Overview, The Standard Interface, Using Calc
716 @subsection Quick Mode (Overview)
718 @noindent
719 @dfn{Quick mode} is a quick way to use Calc when you don't need the
720 full complexity of the stack and trail.  To use it, type @kbd{C-x * q}
721 (@code{quick-calc}) in any regular editing buffer.
723 Quick mode is very simple:  It prompts you to type any formula in
724 standard algebraic notation (like @samp{4 - 2/3}) and then displays
725 the result at the bottom of the Emacs screen (@mathit{3.33333333333}
726 in this case).  You are then back in the same editing buffer you
727 were in before, ready to continue editing or to type @kbd{C-x * q}
728 again to do another quick calculation.  The result of the calculation
729 will also be in the Emacs ``kill ring'' so that a @kbd{C-y} command
730 at this point will yank the result into your editing buffer.
732 Calc mode settings affect Quick mode, too, though you will have to
733 go into regular Calc (with @kbd{C-x * c}) to change the mode settings.
735 @c [fix-ref Quick Calculator mode]
736 @xref{Quick Calculator}, for further information.
738 @node Keypad Mode Overview, Standalone Operation, Quick Mode Overview, Using Calc
739 @subsection Keypad Mode (Overview)
741 @noindent
742 @dfn{Keypad mode} is a mouse-based interface to the Calculator.
743 It is designed for use with terminals that support a mouse.  If you
744 don't have a mouse, you will have to operate Keypad mode with your
745 arrow keys (which is probably more trouble than it's worth).
747 Type @kbd{C-x * k} to turn Keypad mode on or off.  Once again you
748 get two new windows, this time on the righthand side of the screen
749 instead of at the bottom.  The upper window is the familiar Calc
750 Stack; the lower window is a picture of a typical calculator keypad.
752 @tex
753 \dimen0=\pagetotal%
754 \advance \dimen0 by 24\baselineskip%
755 \ifdim \dimen0>\pagegoal \vfill\eject \fi%
756 \medskip
757 @end tex
758 @smallexample
759 @group
760 |--- Emacs Calculator Mode ---
761 |2:  17.3
762 |1:  -5
763 |    .
764 |--%*-Calc: 12 Deg       (Calcul
765 |----+----+--Calc---+----+----1
766 |FLR |CEIL|RND |TRNC|CLN2|FLT |
767 |----+----+----+----+----+----|
768 | LN |EXP |    |ABS |IDIV|MOD |
769 |----+----+----+----+----+----|
770 |SIN |COS |TAN |SQRT|y^x |1/x |
771 |----+----+----+----+----+----|
772 |  ENTER  |+/- |EEX |UNDO| <- |
773 |-----+---+-+--+--+-+---++----|
774 | INV |  7  |  8  |  9  |  /  |
775 |-----+-----+-----+-----+-----|
776 | HYP |  4  |  5  |  6  |  *  |
777 |-----+-----+-----+-----+-----|
778 |EXEC |  1  |  2  |  3  |  -  |
779 |-----+-----+-----+-----+-----|
780 | OFF |  0  |  .  | PI  |  +  |
781 |-----+-----+-----+-----+-----+
782 @end group
783 @end smallexample
785 Keypad mode is much easier for beginners to learn, because there
786 is no need to memorize lots of obscure key sequences.  But not all
787 commands in regular Calc are available on the Keypad.  You can
788 always switch the cursor into the Calc stack window to use
789 standard Calc commands if you need.  Serious Calc users, though,
790 often find they prefer the standard interface over Keypad mode.
792 To operate the Calculator, just click on the ``buttons'' of the
793 keypad using your left mouse button.  To enter the two numbers
794 shown here you would click @w{@kbd{1 7 .@: 3 ENTER 5 +/- ENTER}}; to
795 add them together you would then click @kbd{+} (to get 12.3 on
796 the stack).
798 If you click the right mouse button, the top three rows of the
799 keypad change to show other sets of commands, such as advanced
800 math functions, vector operations, and operations on binary
801 numbers.
803 Because Keypad mode doesn't use the regular keyboard, Calc leaves
804 the cursor in your original editing buffer.  You can type in
805 this buffer in the usual way while also clicking on the Calculator
806 keypad.  One advantage of Keypad mode is that you don't need an
807 explicit command to switch between editing and calculating.
809 If you press @kbd{C-x * b} first, you get a full-screen Keypad mode
810 (@code{full-calc-keypad}) with three windows:  The keypad in the lower
811 left, the stack in the lower right, and the trail on top.
813 @c [fix-ref Keypad Mode]
814 @xref{Keypad Mode}, for further information.
816 @node Standalone Operation, Embedded Mode Overview, Keypad Mode Overview, Using Calc
817 @subsection Standalone Operation
819 @noindent
820 @cindex Standalone Operation
821 If you are not in Emacs at the moment but you wish to use Calc,
822 you must start Emacs first.  If all you want is to run Calc, you
823 can give the commands:
825 @example
826 emacs -f full-calc
827 @end example
829 @noindent
832 @example
833 emacs -f full-calc-keypad
834 @end example
836 @noindent
837 which run a full-screen Calculator (as if by @kbd{C-x * b C-x * c}) or
838 a full-screen X-based Calculator (as if by @kbd{C-x * b C-x * k}).
839 In standalone operation, quitting the Calculator (by pressing
840 @kbd{q} or clicking on the keypad @key{EXIT} button) quits Emacs
841 itself.
843 @node Embedded Mode Overview, Other C-x * Commands, Standalone Operation, Using Calc
844 @subsection Embedded Mode (Overview)
846 @noindent
847 @dfn{Embedded mode} is a way to use Calc directly from inside an
848 editing buffer.  Suppose you have a formula written as part of a
849 document like this:
851 @smallexample
852 @group
853 The derivative of
855                                    ln(ln(x))
858 @end group
859 @end smallexample
861 @noindent
862 and you wish to have Calc compute and format the derivative for
863 you and store this derivative in the buffer automatically.  To
864 do this with Embedded mode, first copy the formula down to where
865 you want the result to be, leaving a blank line before and after the
866 formula:
868 @smallexample
869 @group
870 The derivative of
872                                    ln(ln(x))
876                                    ln(ln(x))
877 @end group
878 @end smallexample
880 Now, move the cursor onto this new formula and press @kbd{C-x * e}.
881 Calc will read the formula (using the surrounding blank lines to tell
882 how much text to read), then push this formula (invisibly) onto the Calc
883 stack.  The cursor will stay on the formula in the editing buffer, but
884 the line with the formula will now appear as it would on the Calc stack
885 (in this case, it will be left-aligned) and the buffer's mode line will
886 change to look like the Calc mode line (with mode indicators like
887 @samp{12 Deg} and so on).  Even though you are still in your editing
888 buffer, the keyboard now acts like the Calc keyboard, and any new result
889 you get is copied from the stack back into the buffer.  To take the
890 derivative, you would type @kbd{a d x @key{RET}}.
892 @smallexample
893 @group
894 The derivative of
896                                    ln(ln(x))
900 1 / x ln(x)
901 @end group
902 @end smallexample
904 (Note that by default, Calc gives division lower precedence than multiplication,
905 so that @samp{1 / x ln(x)} is equivalent to @samp{1 / (x ln(x))}.)
907 To make this look nicer, you might want to press @kbd{d =} to center
908 the formula, and even @kbd{d B} to use Big display mode.
910 @smallexample
911 @group
912 The derivative of
914                                    ln(ln(x))
917 % [calc-mode: justify: center]
918 % [calc-mode: language: big]
920                                        1
921                                     -------
922                                     x ln(x)
923 @end group
924 @end smallexample
926 Calc has added annotations to the file to help it remember the modes
927 that were used for this formula.  They are formatted like comments
928 in the @TeX{} typesetting language, just in case you are using @TeX{} or
929 @LaTeX{}. (In this example @TeX{} is not being used, so you might want
930 to move these comments up to the top of the file or otherwise put them
931 out of the way.)
933 As an extra flourish, we can add an equation number using a
934 righthand label:  Type @kbd{d @} (1) @key{RET}}.
936 @smallexample
937 @group
938 % [calc-mode: justify: center]
939 % [calc-mode: language: big]
940 % [calc-mode: right-label: " (1)"]
942                                        1
943                                     -------                      (1)
944                                     ln(x) x
945 @end group
946 @end smallexample
948 To leave Embedded mode, type @kbd{C-x * e} again.  The mode line
949 and keyboard will revert to the way they were before.
951 The related command @kbd{C-x * w} operates on a single word, which
952 generally means a single number, inside text.  It searches for an
953 expression which ``looks'' like a number containing the point.
954 Here's an example of its use (before you try this, remove the Calc
955 annotations or use a new buffer so that the extra settings in the
956 annotations don't take effect):
958 @smallexample
959 A slope of one-third corresponds to an angle of 1 degrees.
960 @end smallexample
962 Place the cursor on the @samp{1}, then type @kbd{C-x * w} to enable
963 Embedded mode on that number.  Now type @kbd{3 /} (to get one-third),
964 and @kbd{I T} (the Inverse Tangent converts a slope into an angle),
965 then @w{@kbd{C-x * w}} again to exit Embedded mode.
967 @smallexample
968 A slope of one-third corresponds to an angle of 18.4349488229 degrees.
969 @end smallexample
971 @c [fix-ref Embedded Mode]
972 @xref{Embedded Mode}, for full details.
974 @node Other C-x * Commands,  , Embedded Mode Overview, Using Calc
975 @subsection Other @kbd{C-x *} Commands
977 @noindent
978 Two more Calc-related commands are @kbd{C-x * g} and @kbd{C-x * r},
979 which ``grab'' data from a selected region of a buffer into the
980 Calculator.  The region is defined in the usual Emacs way, by
981 a ``mark'' placed at one end of the region, and the Emacs
982 cursor or ``point'' placed at the other.
984 The @kbd{C-x * g} command reads the region in the usual left-to-right,
985 top-to-bottom order.  The result is packaged into a Calc vector
986 of numbers and placed on the stack.  Calc (in its standard
987 user interface) is then started.  Type @kbd{v u} if you want
988 to unpack this vector into separate numbers on the stack.  Also,
989 @kbd{C-u C-x * g} interprets the region as a single number or
990 formula.
992 The @kbd{C-x * r} command reads a rectangle, with the point and
993 mark defining opposite corners of the rectangle.  The result
994 is a matrix of numbers on the Calculator stack.
996 Complementary to these is @kbd{C-x * y}, which ``yanks'' the
997 value at the top of the Calc stack back into an editing buffer.
998 If you type @w{@kbd{C-x * y}} while in such a buffer, the value is
999 yanked at the current position.  If you type @kbd{C-x * y} while
1000 in the Calc buffer, Calc makes an educated guess as to which
1001 editing buffer you want to use.  The Calc window does not have
1002 to be visible in order to use this command, as long as there
1003 is something on the Calc stack.
1005 Here, for reference, is the complete list of @kbd{C-x *} commands.
1006 The shift, control, and meta keys are ignored for the keystroke
1007 following @kbd{C-x *}.
1009 @noindent
1010 Commands for turning Calc on and off:
1012 @table @kbd
1013 @item *
1014 Turn Calc on or off, employing the same user interface as last time.
1016 @item =, +, -, /, \, &, #
1017 Alternatives for @kbd{*}.
1019 @item C
1020 Turn Calc on or off using its standard bottom-of-the-screen
1021 interface.  If Calc is already turned on but the cursor is not
1022 in the Calc window, move the cursor into the window.
1024 @item O
1025 Same as @kbd{C}, but don't select the new Calc window.  If
1026 Calc is already turned on and the cursor is in the Calc window,
1027 move it out of that window.
1029 @item B
1030 Control whether @kbd{C-x * c} and @kbd{C-x * k} use the full screen.
1032 @item Q
1033 Use Quick mode for a single short calculation.
1035 @item K
1036 Turn Calc Keypad mode on or off.
1038 @item E
1039 Turn Calc Embedded mode on or off at the current formula.
1041 @item J
1042 Turn Calc Embedded mode on or off, select the interesting part.
1044 @item W
1045 Turn Calc Embedded mode on or off at the current word (number).
1047 @item Z
1048 Turn Calc on in a user-defined way, as defined by a @kbd{Z I} command.
1050 @item X
1051 Quit Calc; turn off standard, Keypad, or Embedded mode if on.
1052 (This is like @kbd{q} or @key{OFF} inside of Calc.)
1053 @end table
1054 @iftex
1055 @sp 2
1056 @end iftex
1058 @noindent
1059 Commands for moving data into and out of the Calculator:
1061 @table @kbd
1062 @item G
1063 Grab the region into the Calculator as a vector.
1065 @item R
1066 Grab the rectangular region into the Calculator as a matrix.
1068 @item :
1069 Grab the rectangular region and compute the sums of its columns.
1071 @item _
1072 Grab the rectangular region and compute the sums of its rows.
1074 @item Y
1075 Yank a value from the Calculator into the current editing buffer.
1076 @end table
1077 @iftex
1078 @sp 2
1079 @end iftex
1081 @noindent
1082 Commands for use with Embedded mode:
1084 @table @kbd
1085 @item A
1086 ``Activate'' the current buffer.  Locate all formulas that
1087 contain @samp{:=} or @samp{=>} symbols and record their locations
1088 so that they can be updated automatically as variables are changed.
1090 @item D
1091 Duplicate the current formula immediately below and select
1092 the duplicate.
1094 @item F
1095 Insert a new formula at the current point.
1097 @item N
1098 Move the cursor to the next active formula in the buffer.
1100 @item P
1101 Move the cursor to the previous active formula in the buffer.
1103 @item U
1104 Update (i.e., as if by the @kbd{=} key) the formula at the current point.
1106 @item `
1107 Edit (as if by @code{calc-edit}) the formula at the current point.
1108 @end table
1109 @iftex
1110 @sp 2
1111 @end iftex
1113 @noindent
1114 Miscellaneous commands:
1116 @table @kbd
1117 @item I
1118 Run the Emacs Info system to read the Calc manual.
1119 (This is the same as @kbd{h i} inside of Calc.)
1121 @item T
1122 Run the Emacs Info system to read the Calc Tutorial.
1124 @item S
1125 Run the Emacs Info system to read the Calc Summary.
1127 @item L
1128 Load Calc entirely into memory.  (Normally the various parts
1129 are loaded only as they are needed.)
1131 @item M
1132 Read a region of written keystroke names (like @kbd{C-n a b c @key{RET}})
1133 and record them as the current keyboard macro.
1135 @item 0
1136 (This is the ``zero'' digit key.)  Reset the Calculator to
1137 its initial state:  Empty stack, and initial mode settings.
1138 @end table
1140 @node History and Acknowledgments,  , Using Calc, Getting Started
1141 @section History and Acknowledgments
1143 @noindent
1144 Calc was originally started as a two-week project to occupy a lull
1145 in the author's schedule.  Basically, a friend asked if I remembered
1146 the value of
1147 @texline @math{2^{32}}.
1148 @infoline @expr{2^32}.
1149 I didn't offhand, but I said, ``that's easy, just call up an
1150 @code{xcalc}.''  @code{Xcalc} duly reported that the answer to our
1151 question was @samp{4.294967e+09}---with no way to see the full ten
1152 digits even though we knew they were there in the program's memory!  I
1153 was so annoyed, I vowed to write a calculator of my own, once and for
1154 all.
1156 I chose Emacs Lisp, a) because I had always been curious about it
1157 and b) because, being only a text editor extension language after
1158 all, Emacs Lisp would surely reach its limits long before the project
1159 got too far out of hand.
1161 To make a long story short, Emacs Lisp turned out to be a distressingly
1162 solid implementation of Lisp, and the humble task of calculating
1163 turned out to be more open-ended than one might have expected.
1165 Emacs Lisp didn't have built-in floating point math (now it does), so
1166 this had to be simulated in software.  In fact, Emacs integers would
1167 only comfortably fit six decimal digits or so (at the time)---not
1168 enough for a decent calculator.  So I had to write my own
1169 high-precision integer code as well, and once I had this I figured
1170 that arbitrary-size integers were just as easy as large integers.
1171 Arbitrary floating-point precision was the logical next step.  Also,
1172 since the large integer arithmetic was there anyway it seemed only
1173 fair to give the user direct access to it, which in turn made it
1174 practical to support fractions as well as floats. All these features
1175 inspired me to look around for other data types that might be worth
1176 having.
1178 Around this time, my friend Rick Koshi showed me his nifty new HP-28
1179 calculator.  It allowed the user to manipulate formulas as well as
1180 numerical quantities, and it could also operate on matrices.  I
1181 decided that these would be good for Calc to have, too.  And once
1182 things had gone this far, I figured I might as well take a look at
1183 serious algebra systems for further ideas.  Since these systems did
1184 far more than I could ever hope to implement, I decided to focus on
1185 rewrite rules and other programming features so that users could
1186 implement what they needed for themselves.
1188 Rick complained that matrices were hard to read, so I put in code to
1189 format them in a 2D style.  Once these routines were in place, Big mode
1190 was obligatory.  Gee, what other language modes would be useful?
1192 Scott Hemphill and Allen Knutson, two friends with a strong mathematical
1193 bent, contributed ideas and algorithms for a number of Calc features
1194 including modulo forms, primality testing, and float-to-fraction conversion.
1196 Units were added at the eager insistence of Mass Sivilotti.  Later,
1197 Ulrich Mueller at CERN and Przemek Klosowski at NIST provided invaluable
1198 expert assistance with the units table.  As far as I can remember, the
1199 idea of using algebraic formulas and variables to represent units dates
1200 back to an ancient article in Byte magazine about muMath, an early
1201 algebra system for microcomputers.
1203 Many people have contributed to Calc by reporting bugs and suggesting
1204 features, large and small.  A few deserve special mention:  Tim Peters,
1205 who helped develop the ideas that led to the selection commands, rewrite
1206 rules, and many other algebra features; François
1207 Pinard, who contributed an early prototype of the Calc Summary appendix
1208 as well as providing valuable suggestions in many other areas of Calc;
1209 Carl Witty, whose eagle eyes discovered many typographical and factual
1210 errors in the Calc manual; Tim Kay, who drove the development of
1211 Embedded mode; Ove Ewerlid, who made many suggestions relating to the
1212 algebra commands and contributed some code for polynomial operations;
1213 Randal Schwartz, who suggested the @code{calc-eval} function; Juha
1214 Sarlin, who first worked out how to split Calc into quickly-loading
1215 parts; Bob Weiner, who helped immensely with the Lucid Emacs port; and
1216 Robert J. Chassell, who suggested the Calc Tutorial and exercises as
1217 well as many other things.
1219 @cindex Bibliography
1220 @cindex Knuth, Art of Computer Programming
1221 @cindex Numerical Recipes
1222 @c Should these be expanded into more complete references?
1223 Among the books used in the development of Calc were Knuth's @emph{Art
1224 of Computer Programming} (especially volume II, @emph{Seminumerical
1225 Algorithms}); @emph{Numerical Recipes} by Press, Flannery, Teukolsky,
1226 and Vetterling; Bevington's @emph{Data Reduction and Error Analysis
1227 for the Physical Sciences}; @emph{Concrete Mathematics} by Graham,
1228 Knuth, and Patashnik; Steele's @emph{Common Lisp, the Language}; the
1229 @emph{CRC Standard Math Tables} (William H. Beyer, ed.); and
1230 Abramowitz and Stegun's venerable @emph{Handbook of Mathematical
1231 Functions}.  Also, of course, Calc could not have been written without
1232 the excellent @emph{GNU Emacs Lisp Reference Manual}, by Bil Lewis and
1233 Dan LaLiberte.
1235 Final thanks go to Richard Stallman, without whose fine implementations
1236 of the Emacs editor, language, and environment, Calc would have been
1237 finished in two weeks.
1239 @c [tutorial]
1241 @ifinfo
1242 @c This node is accessed by the 'C-x * t' command.
1243 @node Interactive Tutorial, Tutorial, Getting Started, Top
1244 @chapter Tutorial
1246 @noindent
1247 Some brief instructions on using the Emacs Info system for this tutorial:
1249 Press the space bar and Delete keys to go forward and backward in a
1250 section by screenfuls (or use the regular Emacs scrolling commands
1251 for this).
1253 Press @kbd{n} or @kbd{p} to go to the Next or Previous section.
1254 If the section has a @dfn{menu}, press a digit key like @kbd{1}
1255 or @kbd{2} to go to a sub-section from the menu.  Press @kbd{u} to
1256 go back up from a sub-section to the menu it is part of.
1258 Exercises in the tutorial all have cross-references to the
1259 appropriate page of the ``answers'' section.  Press @kbd{f}, then
1260 the exercise number, to see the answer to an exercise.  After
1261 you have followed a cross-reference, you can press the letter
1262 @kbd{l} to return to where you were before.
1264 You can press @kbd{?} at any time for a brief summary of Info commands.
1266 Press the number @kbd{1} now to enter the first section of the Tutorial.
1268 @menu
1269 * Tutorial::
1270 @end menu
1272 @node Tutorial, Introduction, Interactive Tutorial, Top
1273 @end ifinfo
1274 @ifnotinfo
1275 @node Tutorial, Introduction, Getting Started, Top
1276 @end ifnotinfo
1277 @chapter Tutorial
1279 @noindent
1280 This chapter explains how to use Calc and its many features, in
1281 a step-by-step, tutorial way.  You are encouraged to run Calc and
1282 work along with the examples as you read (@pxref{Starting Calc}).
1283 If you are already familiar with advanced calculators, you may wish
1284 @c [not-split]
1285 to skip on to the rest of this manual.
1286 @c [when-split]
1287 @c to skip on to volume II of this manual, the @dfn{Calc Reference}.
1289 @c [fix-ref Embedded Mode]
1290 This tutorial describes the standard user interface of Calc only.
1291 The Quick mode and Keypad mode interfaces are fairly
1292 self-explanatory.  @xref{Embedded Mode}, for a description of
1293 the Embedded mode interface.
1295 The easiest way to read this tutorial on-line is to have two windows on
1296 your Emacs screen, one with Calc and one with the Info system.  Press
1297 @kbd{C-x * t} to set this up; the on-line tutorial will be opened in the
1298 current window and Calc will be started in another window.  From the
1299 Info window, the command @kbd{C-x * c} can be used to switch to the Calc
1300 window and @kbd{C-x * o} can be used to switch back to the Info window.
1301 (If you have a printed copy of the manual you can use that instead; in
1302 that case you only need to press @kbd{C-x * c} to start Calc.)
1304 This tutorial is designed to be done in sequence.  But the rest of this
1305 manual does not assume you have gone through the tutorial.  The tutorial
1306 does not cover everything in the Calculator, but it touches on most
1307 general areas.
1309 @ifnottex
1310 You may wish to print out a copy of the Calc Summary and keep notes on
1311 it as you learn Calc.  @xref{About This Manual}, to see how to make a
1312 printed summary.  @xref{Summary}.
1313 @end ifnottex
1314 @iftex
1315 The Calc Summary at the end of the reference manual includes some blank
1316 space for your own use.  You may wish to keep notes there as you learn
1317 Calc.
1318 @end iftex
1320 @menu
1321 * Basic Tutorial::
1322 * Arithmetic Tutorial::
1323 * Vector/Matrix Tutorial::
1324 * Types Tutorial::
1325 * Algebra Tutorial::
1326 * Programming Tutorial::
1328 * Answers to Exercises::
1329 @end menu
1331 @node Basic Tutorial, Arithmetic Tutorial, Tutorial, Tutorial
1332 @section Basic Tutorial
1334 @noindent
1335 In this section, we learn how RPN and algebraic-style calculations
1336 work, how to undo and redo an operation done by mistake, and how
1337 to control various modes of the Calculator.
1339 @menu
1340 * RPN Tutorial::            Basic operations with the stack.
1341 * Algebraic Tutorial::      Algebraic entry; variables.
1342 * Undo Tutorial::           If you make a mistake: Undo and the trail.
1343 * Modes Tutorial::          Common mode-setting commands.
1344 @end menu
1346 @node RPN Tutorial, Algebraic Tutorial, Basic Tutorial, Basic Tutorial
1347 @subsection RPN Calculations and the Stack
1349 @cindex RPN notation
1350 @noindent
1351 @ifnottex
1352 Calc normally uses RPN notation.  You may be familiar with the RPN
1353 system from Hewlett-Packard calculators, FORTH, or PostScript.
1354 (Reverse Polish Notation, RPN, is named after the Polish mathematician
1355 Jan Lukasiewicz.)
1356 @end ifnottex
1357 @tex
1358 Calc normally uses RPN notation.  You may be familiar with the RPN
1359 system from Hewlett-Packard calculators, FORTH, or PostScript.
1360 (Reverse Polish Notation, RPN, is named after the Polish mathematician
1361 Jan \L ukasiewicz.)
1362 @end tex
1364 The central component of an RPN calculator is the @dfn{stack}.  A
1365 calculator stack is like a stack of dishes.  New dishes (numbers) are
1366 added at the top of the stack, and numbers are normally only removed
1367 from the top of the stack.
1369 @cindex Operators
1370 @cindex Operands
1371 In an operation like @expr{2+3}, the 2 and 3 are called the @dfn{operands}
1372 and the @expr{+} is the @dfn{operator}.  In an RPN calculator you always
1373 enter the operands first, then the operator.  Each time you type a
1374 number, Calc adds or @dfn{pushes} it onto the top of the Stack.
1375 When you press an operator key like @kbd{+}, Calc @dfn{pops} the appropriate
1376 number of operands from the stack and pushes back the result.
1378 Thus we could add the numbers 2 and 3 in an RPN calculator by typing:
1379 @kbd{2 @key{RET} 3 @key{RET} +}.  (The @key{RET} key, Return, corresponds to
1380 the @key{ENTER} key on traditional RPN calculators.)  Try this now if
1381 you wish; type @kbd{C-x * c} to switch into the Calc window (you can type
1382 @kbd{C-x * c} again or @kbd{C-x * o} to switch back to the Tutorial window).
1383 The first four keystrokes ``push'' the numbers 2 and 3 onto the stack.
1384 The @kbd{+} key ``pops'' the top two numbers from the stack, adds them,
1385 and pushes the result (5) back onto the stack.  Here's how the stack
1386 will look at various points throughout the calculation:
1388 @smallexample
1389 @group
1390     .          1:  2          2:  2          1:  5              .
1391                    .          1:  3              .
1392                                   .
1394   C-x * c          2 @key{RET}          3 @key{RET}            +             @key{DEL}
1395 @end group
1396 @end smallexample
1398 The @samp{.} symbol is a marker that represents the top of the stack.
1399 Note that the ``top'' of the stack is really shown at the bottom of
1400 the Stack window.  This may seem backwards, but it turns out to be
1401 less distracting in regular use.
1403 @cindex Stack levels
1404 @cindex Levels of stack
1405 The numbers @samp{1:} and @samp{2:} on the left are @dfn{stack level
1406 numbers}.  Old RPN calculators always had four stack levels called
1407 @expr{x}, @expr{y}, @expr{z}, and @expr{t}.  Calc's stack can grow
1408 as large as you like, so it uses numbers instead of letters.  Some
1409 stack-manipulation commands accept a numeric argument that says
1410 which stack level to work on.  Normal commands like @kbd{+} always
1411 work on the top few levels of the stack.
1413 @c [fix-ref Truncating the Stack]
1414 The Stack buffer is just an Emacs buffer, and you can move around in
1415 it using the regular Emacs motion commands.  But no matter where the
1416 cursor is, even if you have scrolled the @samp{.} marker out of
1417 view, most Calc commands always move the cursor back down to level 1
1418 before doing anything.  It is possible to move the @samp{.} marker
1419 upwards through the stack, temporarily ``hiding'' some numbers from
1420 commands like @kbd{+}.  This is called @dfn{stack truncation} and
1421 we will not cover it in this tutorial; @pxref{Truncating the Stack},
1422 if you are interested.
1424 You don't really need the second @key{RET} in @kbd{2 @key{RET} 3
1425 @key{RET} +}.  That's because if you type any operator name or
1426 other non-numeric key when you are entering a number, the Calculator
1427 automatically enters that number and then does the requested command.
1428 Thus @kbd{2 @key{RET} 3 +} will work just as well.
1430 Examples in this tutorial will often omit @key{RET} even when the
1431 stack displays shown would only happen if you did press @key{RET}:
1433 @smallexample
1434 @group
1435 1:  2          2:  2          1:  5
1436     .          1:  3              .
1437                    .
1439   2 @key{RET}            3              +
1440 @end group
1441 @end smallexample
1443 @noindent
1444 Here, after pressing @kbd{3} the stack would really show @samp{1:  2}
1445 with @samp{Calc:@: 3} in the minibuffer.  In these situations, you can
1446 press the optional @key{RET} to see the stack as the figure shows.
1448 (@bullet{}) @strong{Exercise 1.}  (This tutorial will include exercises
1449 at various points.  Try them if you wish.  Answers to all the exercises
1450 are located at the end of the Tutorial chapter.  Each exercise will
1451 include a cross-reference to its particular answer.  If you are
1452 reading with the Emacs Info system, press @kbd{f} and the
1453 exercise number to go to the answer, then the letter @kbd{l} to
1454 return to where you were.)
1456 @noindent
1457 Here's the first exercise:  What will the keystrokes @kbd{1 @key{RET} 2
1458 @key{RET} 3 @key{RET} 4 + * -} compute?  (@samp{*} is the symbol for
1459 multiplication.)  Figure it out by hand, then try it with Calc to see
1460 if you're right.  @xref{RPN Answer 1, 1}. (@bullet{})
1462 (@bullet{}) @strong{Exercise 2.}  Compute
1463 @texline @math{(2\times4) + (7\times9.5) + {5\over4}}
1464 @infoline @expr{2*4 + 7*9.5 + 5/4}
1465 using the stack.  @xref{RPN Answer 2, 2}. (@bullet{})
1467 The @key{DEL} key is called Backspace on some keyboards.  It is
1468 whatever key you would use to correct a simple typing error when
1469 regularly using Emacs.  The @key{DEL} key pops and throws away the
1470 top value on the stack.  (You can still get that value back from
1471 the Trail if you should need it later on.)  There are many places
1472 in this tutorial where we assume you have used @key{DEL} to erase the
1473 results of the previous example at the beginning of a new example.
1474 In the few places where it is really important to use @key{DEL} to
1475 clear away old results, the text will remind you to do so.
1477 (It won't hurt to let things accumulate on the stack, except that
1478 whenever you give a display-mode-changing command Calc will have to
1479 spend a long time reformatting such a large stack.)
1481 Since the @kbd{-} key is also an operator (it subtracts the top two
1482 stack elements), how does one enter a negative number?  Calc uses
1483 the @kbd{_} (underscore) key to act like the minus sign in a number.
1484 So, typing @kbd{-5 @key{RET}} won't work because the @kbd{-} key
1485 will try to do a subtraction, but @kbd{_5 @key{RET}} works just fine.
1487 You can also press @kbd{n}, which means ``change sign.''  It changes
1488 the number at the top of the stack (or the number being entered)
1489 from positive to negative or vice-versa:  @kbd{5 n @key{RET}}.
1491 @cindex Duplicating a stack entry
1492 If you press @key{RET} when you're not entering a number, the effect
1493 is to duplicate the top number on the stack.  Consider this calculation:
1495 @smallexample
1496 @group
1497 1:  3          2:  3          1:  9          2:  9          1:  81
1498     .          1:  3              .          1:  9              .
1499                    .                             .
1501   3 @key{RET}           @key{RET}             *             @key{RET}             *
1502 @end group
1503 @end smallexample
1505 @noindent
1506 (Of course, an easier way to do this would be @kbd{3 @key{RET} 4 ^},
1507 to raise 3 to the fourth power.)
1509 The space-bar key (denoted @key{SPC} here) performs the same function
1510 as @key{RET}; you could replace all three occurrences of @key{RET} in
1511 the above example with @key{SPC} and the effect would be the same.
1513 @cindex Exchanging stack entries
1514 Another stack manipulation key is @key{TAB}.  This exchanges the top
1515 two stack entries.  Suppose you have computed @kbd{2 @key{RET} 3 +}
1516 to get 5, and then you realize what you really wanted to compute
1517 was @expr{20 / (2+3)}.
1519 @smallexample
1520 @group
1521 1:  5          2:  5          2:  20         1:  4
1522     .          1:  20         1:  5              .
1523                    .              .
1525  2 @key{RET} 3 +         20            @key{TAB}             /
1526 @end group
1527 @end smallexample
1529 @noindent
1530 Planning ahead, the calculation would have gone like this:
1532 @smallexample
1533 @group
1534 1:  20         2:  20         3:  20         2:  20         1:  4
1535     .          1:  2          2:  2          1:  5              .
1536                    .          1:  3              .
1537                                   .
1539   20 @key{RET}         2 @key{RET}            3              +              /
1540 @end group
1541 @end smallexample
1543 A related stack command is @kbd{M-@key{TAB}} (hold @key{META} and type
1544 @key{TAB}).  It rotates the top three elements of the stack upward,
1545 bringing the object in level 3 to the top.
1547 @smallexample
1548 @group
1549 1:  10         2:  10         3:  10         3:  20         3:  30
1550     .          1:  20         2:  20         2:  30         2:  10
1551                    .          1:  30         1:  10         1:  20
1552                                   .              .              .
1554   10 @key{RET}         20 @key{RET}         30 @key{RET}         M-@key{TAB}          M-@key{TAB}
1555 @end group
1556 @end smallexample
1558 (@bullet{}) @strong{Exercise 3.} Suppose the numbers 10, 20, and 30 are
1559 on the stack.  Figure out how to add one to the number in level 2
1560 without affecting the rest of the stack.  Also figure out how to add
1561 one to the number in level 3.  @xref{RPN Answer 3, 3}. (@bullet{})
1563 Operations like @kbd{+}, @kbd{-}, @kbd{*}, @kbd{/}, and @kbd{^} pop two
1564 arguments from the stack and push a result.  Operations like @kbd{n} and
1565 @kbd{Q} (square root) pop a single number and push the result.  You can
1566 think of them as simply operating on the top element of the stack.
1568 @smallexample
1569 @group
1570 1:  3          1:  9          2:  9          1:  25         1:  5
1571     .              .          1:  16             .              .
1572                                   .
1574   3 @key{RET}          @key{RET} *        4 @key{RET} @key{RET} *        +              Q
1575 @end group
1576 @end smallexample
1578 @noindent
1579 (Note that capital @kbd{Q} means to hold down the Shift key while
1580 typing @kbd{q}.  Remember, plain unshifted @kbd{q} is the Quit command.)
1582 @cindex Pythagorean Theorem
1583 Here we've used the Pythagorean Theorem to determine the hypotenuse of a
1584 right triangle.  Calc actually has a built-in command for that called
1585 @kbd{f h}, but let's suppose we can't remember the necessary keystrokes.
1586 We can still enter it by its full name using @kbd{M-x} notation:
1588 @smallexample
1589 @group
1590 1:  3          2:  3          1:  5
1591     .          1:  4              .
1592                    .
1594   3 @key{RET}          4 @key{RET}      M-x calc-hypot
1595 @end group
1596 @end smallexample
1598 All Calculator commands begin with the word @samp{calc-}.  Since it
1599 gets tiring to type this, Calc provides an @kbd{x} key which is just
1600 like the regular Emacs @kbd{M-x} key except that it types the @samp{calc-}
1601 prefix for you:
1603 @smallexample
1604 @group
1605 1:  3          2:  3          1:  5
1606     .          1:  4              .
1607                    .
1609   3 @key{RET}          4 @key{RET}         x hypot
1610 @end group
1611 @end smallexample
1613 What happens if you take the square root of a negative number?
1615 @smallexample
1616 @group
1617 1:  4          1:  -4         1:  (0, 2)
1618     .              .              .
1620   4 @key{RET}            n              Q
1621 @end group
1622 @end smallexample
1624 @noindent
1625 The notation @expr{(a, b)} represents a complex number.
1626 Complex numbers are more traditionally written @expr{a + b i};
1627 Calc can display in this format, too, but for now we'll stick to the
1628 @expr{(a, b)} notation.
1630 If you don't know how complex numbers work, you can safely ignore this
1631 feature.  Complex numbers only arise from operations that would be
1632 errors in a calculator that didn't have complex numbers.  (For example,
1633 taking the square root or logarithm of a negative number produces a
1634 complex result.)
1636 Complex numbers are entered in the notation shown.  The @kbd{(} and
1637 @kbd{,} and @kbd{)} keys manipulate ``incomplete complex numbers.''
1639 @smallexample
1640 @group
1641 1:  ( ...      2:  ( ...      1:  (2, ...    1:  (2, ...    1:  (2, 3)
1642     .          1:  2              .              3              .
1643                    .                             .
1645     (              2              ,              3              )
1646 @end group
1647 @end smallexample
1649 You can perform calculations while entering parts of incomplete objects.
1650 However, an incomplete object cannot actually participate in a calculation:
1652 @smallexample
1653 @group
1654 1:  ( ...      2:  ( ...      3:  ( ...      1:  ( ...      1:  ( ...
1655     .          1:  2          2:  2              5              5
1656                    .          1:  3              .              .
1657                                   .
1658                                                              (error)
1659     (             2 @key{RET}           3              +              +
1660 @end group
1661 @end smallexample
1663 @noindent
1664 Adding 5 to an incomplete object makes no sense, so the last command
1665 produces an error message and leaves the stack the same.
1667 Incomplete objects can't participate in arithmetic, but they can be
1668 moved around by the regular stack commands.
1670 @smallexample
1671 @group
1672 2:  2          3:  2          3:  3          1:  ( ...      1:  (2, 3)
1673 1:  3          2:  3          2:  ( ...          2              .
1674     .          1:  ( ...      1:  2              3
1675                    .              .              .
1677 2 @key{RET} 3 @key{RET}        (            M-@key{TAB}          M-@key{TAB}            )
1678 @end group
1679 @end smallexample
1681 @noindent
1682 Note that the @kbd{,} (comma) key did not have to be used here.
1683 When you press @kbd{)} all the stack entries between the incomplete
1684 entry and the top are collected, so there's never really a reason
1685 to use the comma.  It's up to you.
1687 (@bullet{}) @strong{Exercise 4.}  To enter the complex number @expr{(2, 3)},
1688 your friend Joe typed @kbd{( 2 , @key{SPC} 3 )}.  What happened?
1689 (Joe thought of a clever way to correct his mistake in only two
1690 keystrokes, but it didn't quite work.  Try it to find out why.)
1691 @xref{RPN Answer 4, 4}. (@bullet{})
1693 Vectors are entered the same way as complex numbers, but with square
1694 brackets in place of parentheses.  We'll meet vectors again later in
1695 the tutorial.
1697 Any Emacs command can be given a @dfn{numeric prefix argument} by
1698 typing a series of @key{META}-digits beforehand.  If @key{META} is
1699 awkward for you, you can instead type @kbd{C-u} followed by the
1700 necessary digits.  Numeric prefix arguments can be negative, as in
1701 @kbd{M-- M-3 M-5} or @w{@kbd{C-u - 3 5}}.  Calc commands use numeric
1702 prefix arguments in a variety of ways.  For example, a numeric prefix
1703 on the @kbd{+} operator adds any number of stack entries at once:
1705 @smallexample
1706 @group
1707 1:  10         2:  10         3:  10         3:  10         1:  60
1708     .          1:  20         2:  20         2:  20             .
1709                    .          1:  30         1:  30
1710                                   .              .
1712   10 @key{RET}         20 @key{RET}         30 @key{RET}         C-u 3            +
1713 @end group
1714 @end smallexample
1716 For stack manipulation commands like @key{RET}, a positive numeric
1717 prefix argument operates on the top @var{n} stack entries at once.  A
1718 negative argument operates on the entry in level @var{n} only.  An
1719 argument of zero operates on the entire stack.  In this example, we copy
1720 the second-to-top element of the stack:
1722 @smallexample
1723 @group
1724 1:  10         2:  10         3:  10         3:  10         4:  10
1725     .          1:  20         2:  20         2:  20         3:  20
1726                    .          1:  30         1:  30         2:  30
1727                                   .              .          1:  20
1728                                                                 .
1730   10 @key{RET}         20 @key{RET}         30 @key{RET}         C-u -2          @key{RET}
1731 @end group
1732 @end smallexample
1734 @cindex Clearing the stack
1735 @cindex Emptying the stack
1736 Another common idiom is @kbd{M-0 @key{DEL}}, which clears the stack.
1737 (The @kbd{M-0} numeric prefix tells @key{DEL} to operate on the
1738 entire stack.)
1740 @node Algebraic Tutorial, Undo Tutorial, RPN Tutorial, Basic Tutorial
1741 @subsection Algebraic-Style Calculations
1743 @noindent
1744 If you are not used to RPN notation, you may prefer to operate the
1745 Calculator in Algebraic mode, which is closer to the way
1746 non-RPN calculators work.  In Algebraic mode, you enter formulas
1747 in traditional @expr{2+3} notation.
1749 @strong{Notice:} Calc gives @samp{/} lower precedence than @samp{*}, so
1750 that @samp{a/b*c} is interpreted as @samp{a/(b*c)}; this is not
1751 standard across all computer languages.  See below for details.
1753 You don't really need any special ``mode'' to enter algebraic formulas.
1754 You can enter a formula at any time by pressing the apostrophe (@kbd{'})
1755 key.  Answer the prompt with the desired formula, then press @key{RET}.
1756 The formula is evaluated and the result is pushed onto the RPN stack.
1757 If you don't want to think in RPN at all, you can enter your whole
1758 computation as a formula, read the result from the stack, then press
1759 @key{DEL} to delete it from the stack.
1761 Try pressing the apostrophe key, then @kbd{2+3+4}, then @key{RET}.
1762 The result should be the number 9.
1764 Algebraic formulas use the operators @samp{+}, @samp{-}, @samp{*},
1765 @samp{/}, and @samp{^}.  You can use parentheses to make the order
1766 of evaluation clear.  In the absence of parentheses, @samp{^} is
1767 evaluated first, then @samp{*}, then @samp{/}, then finally
1768 @samp{+} and @samp{-}.  For example, the expression
1770 @example
1771 2 + 3*4*5 / 6*7^8 - 9
1772 @end example
1774 @noindent
1775 is equivalent to
1777 @example
1778 2 + ((3*4*5) / (6*(7^8)) - 9
1779 @end example
1781 @noindent
1782 or, in large mathematical notation,
1784 @ifnottex
1785 @example
1786 @group
1787     3 * 4 * 5
1788 2 + --------- - 9
1789           8
1790      6 * 7
1791 @end group
1792 @end example
1793 @end ifnottex
1794 @tex
1795 \beforedisplay
1796 $$ 2 + { 3 \times 4 \times 5 \over 6 \times 7^8 } - 9 $$
1797 \afterdisplay
1798 @end tex
1800 @noindent
1801 The result of this expression will be the number @mathit{-6.99999826533}.
1803 Calc's order of evaluation is the same as for most computer languages,
1804 except that @samp{*} binds more strongly than @samp{/}, as the above
1805 example shows.  As in normal mathematical notation, the @samp{*} symbol
1806 can often be omitted:  @samp{2 a} is the same as @samp{2*a}.
1808 Operators at the same level are evaluated from left to right, except
1809 that @samp{^} is evaluated from right to left.  Thus, @samp{2-3-4} is
1810 equivalent to @samp{(2-3)-4} or @mathit{-5}, whereas @samp{2^3^4} is equivalent
1811 to @samp{2^(3^4)} (a very large integer; try it!).
1813 If you tire of typing the apostrophe all the time, there is
1814 Algebraic mode, where Calc automatically senses
1815 when you are about to type an algebraic expression.  To enter this
1816 mode, press the two letters @w{@kbd{m a}}.  (An @samp{Alg} indicator
1817 should appear in the Calc window's mode line.)
1819 Press @kbd{m a}, then @kbd{2+3+4} with no apostrophe, then @key{RET}.
1821 In Algebraic mode, when you press any key that would normally begin
1822 entering a number (such as a digit, a decimal point, or the @kbd{_}
1823 key), or if you press @kbd{(} or @kbd{[}, Calc automatically begins
1824 an algebraic entry.
1826 Functions which do not have operator symbols like @samp{+} and @samp{*}
1827 must be entered in formulas using function-call notation.  For example,
1828 the function name corresponding to the square-root key @kbd{Q} is
1829 @code{sqrt}.  To compute a square root in a formula, you would use
1830 the notation @samp{sqrt(@var{x})}.
1832 Press the apostrophe, then type @kbd{sqrt(5*2) - 3}.  The result should
1833 be @expr{0.16227766017}.
1835 Note that if the formula begins with a function name, you need to use
1836 the apostrophe even if you are in Algebraic mode.  If you type @kbd{arcsin}
1837 out of the blue, the @kbd{a r} will be taken as an Algebraic Rewrite
1838 command, and the @kbd{csin} will be taken as the name of the rewrite
1839 rule to use!
1841 Some people prefer to enter complex numbers and vectors in algebraic
1842 form because they find RPN entry with incomplete objects to be too
1843 distracting, even though they otherwise use Calc as an RPN calculator.
1845 Still in Algebraic mode, type:
1847 @smallexample
1848 @group
1849 1:  (2, 3)     2:  (2, 3)     1:  (8, -1)    2:  (8, -1)    1:  (9, -1)
1850     .          1:  (1, -2)        .          1:  1              .
1851                    .                             .
1853  (2,3) @key{RET}      (1,-2) @key{RET}        *              1 @key{RET}          +
1854 @end group
1855 @end smallexample
1857 Algebraic mode allows us to enter complex numbers without pressing
1858 an apostrophe first, but it also means we need to press @key{RET}
1859 after every entry, even for a simple number like @expr{1}.
1861 (You can type @kbd{C-u m a} to enable a special Incomplete Algebraic
1862 mode in which the @kbd{(} and @kbd{[} keys use algebraic entry even
1863 though regular numeric keys still use RPN numeric entry.  There is also
1864 Total Algebraic mode, started by typing @kbd{m t}, in which all
1865 normal keys begin algebraic entry.  You must then use the @key{META} key
1866 to type Calc commands:  @kbd{M-m t} to get back out of Total Algebraic
1867 mode, @kbd{M-q} to quit, etc.)
1869 If you're still in Algebraic mode, press @kbd{m a} again to turn it off.
1871 Actual non-RPN calculators use a mixture of algebraic and RPN styles.
1872 In general, operators of two numbers (like @kbd{+} and @kbd{*})
1873 use algebraic form, but operators of one number (like @kbd{n} and @kbd{Q})
1874 use RPN form.  Also, a non-RPN calculator allows you to see the
1875 intermediate results of a calculation as you go along.  You can
1876 accomplish this in Calc by performing your calculation as a series
1877 of algebraic entries, using the @kbd{$} sign to tie them together.
1878 In an algebraic formula, @kbd{$} represents the number on the top
1879 of the stack.  Here, we perform the calculation
1880 @texline @math{\sqrt{2\times4+1}},
1881 @infoline @expr{sqrt(2*4+1)},
1882 which on a traditional calculator would be done by pressing
1883 @kbd{2 * 4 + 1 =} and then the square-root key.
1885 @smallexample
1886 @group
1887 1:  8          1:  9          1:  3
1888     .              .              .
1890   ' 2*4 @key{RET}        $+1 @key{RET}        Q
1891 @end group
1892 @end smallexample
1894 @noindent
1895 Notice that we didn't need to press an apostrophe for the @kbd{$+1},
1896 because the dollar sign always begins an algebraic entry.
1898 (@bullet{}) @strong{Exercise 1.}  How could you get the same effect as
1899 pressing @kbd{Q} but using an algebraic entry instead?  How about
1900 if the @kbd{Q} key on your keyboard were broken?
1901 @xref{Algebraic Answer 1, 1}. (@bullet{})
1903 The notations @kbd{$$}, @kbd{$$$}, and so on stand for higher stack
1904 entries.  For example, @kbd{' $$+$ @key{RET}} is just like typing @kbd{+}.
1906 Algebraic formulas can include @dfn{variables}.  To store in a
1907 variable, press @kbd{s s}, then type the variable name, then press
1908 @key{RET}.  (There are actually two flavors of store command:
1909 @kbd{s s} stores a number in a variable but also leaves the number
1910 on the stack, while @w{@kbd{s t}} removes a number from the stack and
1911 stores it in the variable.)  A variable name should consist of one
1912 or more letters or digits, beginning with a letter.
1914 @smallexample
1915 @group
1916 1:  17             .          1:  a + a^2    1:  306
1917     .                             .              .
1919     17          s t a @key{RET}      ' a+a^2 @key{RET}       =
1920 @end group
1921 @end smallexample
1923 @noindent
1924 The @kbd{=} key @dfn{evaluates} a formula by replacing all its
1925 variables by the values that were stored in them.
1927 For RPN calculations, you can recall a variable's value on the
1928 stack either by entering its name as a formula and pressing @kbd{=},
1929 or by using the @kbd{s r} command.
1931 @smallexample
1932 @group
1933 1:  17         2:  17         3:  17         2:  17         1:  306
1934     .          1:  17         2:  17         1:  289            .
1935                    .          1:  2              .
1936                                   .
1938   s r a @key{RET}     ' a @key{RET} =         2              ^              +
1939 @end group
1940 @end smallexample
1942 If you press a single digit for a variable name (as in @kbd{s t 3}, you
1943 get one of ten @dfn{quick variables} @code{q0} through @code{q9}.
1944 They are ``quick'' simply because you don't have to type the letter
1945 @code{q} or the @key{RET} after their names.  In fact, you can type
1946 simply @kbd{s 3} as a shorthand for @kbd{s s 3}, and likewise for
1947 @kbd{t 3} and @w{@kbd{r 3}}.
1949 Any variables in an algebraic formula for which you have not stored
1950 values are left alone, even when you evaluate the formula.
1952 @smallexample
1953 @group
1954 1:  2 a + 2 b     1:  2 b + 34
1955     .                 .
1957  ' 2a+2b @key{RET}          =
1958 @end group
1959 @end smallexample
1961 Calls to function names which are undefined in Calc are also left
1962 alone, as are calls for which the value is undefined.
1964 @smallexample
1965 @group
1966 1:  log10(0) + log10(x) + log10(5, 6) + foo(3) + 2
1967     .
1969  ' log10(100) + log10(0) + log10(x) + log10(5,6) + foo(3) @key{RET}
1970 @end group
1971 @end smallexample
1973 @noindent
1974 In this example, the first call to @code{log10} works, but the other
1975 calls are not evaluated.  In the second call, the logarithm is
1976 undefined for that value of the argument; in the third, the argument
1977 is symbolic, and in the fourth, there are too many arguments.  In the
1978 fifth case, there is no function called @code{foo}.  You will see a
1979 ``Wrong number of arguments'' message referring to @samp{log10(5,6)}.
1980 Press the @kbd{w} (``why'') key to see any other messages that may
1981 have arisen from the last calculation.  In this case you will get
1982 ``logarithm of zero,'' then ``number expected: @code{x}''.  Calc
1983 automatically displays the first message only if the message is
1984 sufficiently important; for example, Calc considers ``wrong number
1985 of arguments'' and ``logarithm of zero'' to be important enough to
1986 report automatically, while a message like ``number expected: @code{x}''
1987 will only show up if you explicitly press the @kbd{w} key.
1989 (@bullet{}) @strong{Exercise 2.}  Joe entered the formula @samp{2 x y},
1990 stored 5 in @code{x}, pressed @kbd{=}, and got the expected result,
1991 @samp{10 y}.  He then tried the same for the formula @samp{2 x (1+y)},
1992 expecting @samp{10 (1+y)}, but it didn't work.  Why not?
1993 @xref{Algebraic Answer 2, 2}. (@bullet{})
1995 (@bullet{}) @strong{Exercise 3.}  What result would you expect
1996 @kbd{1 @key{RET} 0 /} to give?  What if you then type @kbd{0 *}?
1997 @xref{Algebraic Answer 3, 3}. (@bullet{})
1999 One interesting way to work with variables is to use the
2000 @dfn{evaluates-to} (@samp{=>}) operator.  It works like this:
2001 Enter a formula algebraically in the usual way, but follow
2002 the formula with an @samp{=>} symbol.  (There is also an @kbd{s =}
2003 command which builds an @samp{=>} formula using the stack.)  On
2004 the stack, you will see two copies of the formula with an @samp{=>}
2005 between them.  The lefthand formula is exactly like you typed it;
2006 the righthand formula has been evaluated as if by typing @kbd{=}.
2008 @smallexample
2009 @group
2010 2:  2 + 3 => 5                     2:  2 + 3 => 5
2011 1:  2 a + 2 b => 34 + 2 b          1:  2 a + 2 b => 20 + 2 b
2012     .                                  .
2014 ' 2+3 => @key{RET}  ' 2a+2b @key{RET} s =          10 s t a @key{RET}
2015 @end group
2016 @end smallexample
2018 @noindent
2019 Notice that the instant we stored a new value in @code{a}, all
2020 @samp{=>} operators already on the stack that referred to @expr{a}
2021 were updated to use the new value.  With @samp{=>}, you can push a
2022 set of formulas on the stack, then change the variables experimentally
2023 to see the effects on the formulas' values.
2025 You can also ``unstore'' a variable when you are through with it:
2027 @smallexample
2028 @group
2029 2:  2 + 5 => 5
2030 1:  2 a + 2 b => 2 a + 2 b
2031     .
2033     s u a @key{RET}
2034 @end group
2035 @end smallexample
2037 We will encounter formulas involving variables and functions again
2038 when we discuss the algebra and calculus features of the Calculator.
2040 @node Undo Tutorial, Modes Tutorial, Algebraic Tutorial, Basic Tutorial
2041 @subsection Undo and Redo
2043 @noindent
2044 If you make a mistake, you can usually correct it by pressing shift-@kbd{U},
2045 the ``undo'' command.  First, clear the stack (@kbd{M-0 @key{DEL}}) and exit
2046 and restart Calc (@kbd{C-x * * C-x * *}) to make sure things start off
2047 with a clean slate.  Now:
2049 @smallexample
2050 @group
2051 1:  2          2:  2          1:  8          2:  2          1:  6
2052     .          1:  3              .          1:  3              .
2053                    .                             .
2055    2 @key{RET}           3              ^              U              *
2056 @end group
2057 @end smallexample
2059 You can undo any number of times.  Calc keeps a complete record of
2060 all you have done since you last opened the Calc window.  After the
2061 above example, you could type:
2063 @smallexample
2064 @group
2065 1:  6          2:  2          1:  2              .              .
2066     .          1:  3              .
2067                    .
2068                                                              (error)
2069                    U              U              U              U
2070 @end group
2071 @end smallexample
2073 You can also type @kbd{D} to ``redo'' a command that you have undone
2074 mistakenly.
2076 @smallexample
2077 @group
2078     .          1:  2          2:  2          1:  6          1:  6
2079                    .          1:  3              .              .
2080                                   .
2081                                                              (error)
2082                    D              D              D              D
2083 @end group
2084 @end smallexample
2086 @noindent
2087 It was not possible to redo past the @expr{6}, since that was placed there
2088 by something other than an undo command.
2090 @cindex Time travel
2091 You can think of undo and redo as a sort of ``time machine.''  Press
2092 @kbd{U} to go backward in time, @kbd{D} to go forward.  If you go
2093 backward and do something (like @kbd{*}) then, as any science fiction
2094 reader knows, you have changed your future and you cannot go forward
2095 again.  Thus, the inability to redo past the @expr{6} even though there
2096 was an earlier undo command.
2098 You can always recall an earlier result using the Trail.  We've ignored
2099 the trail so far, but it has been faithfully recording everything we
2100 did since we loaded the Calculator.  If the Trail is not displayed,
2101 press @kbd{t d} now to turn it on.
2103 Let's try grabbing an earlier result.  The @expr{8} we computed was
2104 undone by a @kbd{U} command, and was lost even to Redo when we pressed
2105 @kbd{*}, but it's still there in the trail.  There should be a little
2106 @samp{>} arrow (the @dfn{trail pointer}) resting on the last trail
2107 entry.  If there isn't, press @kbd{t ]} to reset the trail pointer.
2108 Now, press @w{@kbd{t p}} to move the arrow onto the line containing
2109 @expr{8}, and press @w{@kbd{t y}} to ``yank'' that number back onto the
2110 stack.
2112 If you press @kbd{t ]} again, you will see that even our Yank command
2113 went into the trail.
2115 Let's go further back in time.  Earlier in the tutorial we computed
2116 a huge integer using the formula @samp{2^3^4}.  We don't remember
2117 what it was, but the first digits were ``241''.  Press @kbd{t r}
2118 (which stands for trail-search-reverse), then type @kbd{241}.
2119 The trail cursor will jump back to the next previous occurrence of
2120 the string ``241'' in the trail.  This is just a regular Emacs
2121 incremental search; you can now press @kbd{C-s} or @kbd{C-r} to
2122 continue the search forwards or backwards as you like.
2124 To finish the search, press @key{RET}.  This halts the incremental
2125 search and leaves the trail pointer at the thing we found.  Now we
2126 can type @kbd{t y} to yank that number onto the stack.  If we hadn't
2127 remembered the ``241'', we could simply have searched for @kbd{2^3^4},
2128 then pressed @kbd{@key{RET} t n} to halt and then move to the next item.
2130 You may have noticed that all the trail-related commands begin with
2131 the letter @kbd{t}.  (The store-and-recall commands, on the other hand,
2132 all began with @kbd{s}.)  Calc has so many commands that there aren't
2133 enough keys for all of them, so various commands are grouped into
2134 two-letter sequences where the first letter is called the @dfn{prefix}
2135 key.  If you type a prefix key by accident, you can press @kbd{C-g}
2136 to cancel it.  (In fact, you can press @kbd{C-g} to cancel almost
2137 anything in Emacs.)  To get help on a prefix key, press that key
2138 followed by @kbd{?}.  Some prefixes have several lines of help,
2139 so you need to press @kbd{?} repeatedly to see them all.
2140 You can also type @kbd{h h} to see all the help at once.
2142 Try pressing @kbd{t ?} now.  You will see a line of the form,
2144 @smallexample
2145 trail/time: Display; Fwd, Back; Next, Prev, Here, [, ]; Yank:  [MORE]  t-
2146 @end smallexample
2148 @noindent
2149 The word ``trail'' indicates that the @kbd{t} prefix key contains
2150 trail-related commands.  Each entry on the line shows one command,
2151 with a single capital letter showing which letter you press to get
2152 that command.  We have used @kbd{t n}, @kbd{t p}, @kbd{t ]}, and
2153 @kbd{t y} so far.  The @samp{[MORE]} means you can press @kbd{?}
2154 again to see more @kbd{t}-prefix commands.  Notice that the commands
2155 are roughly divided (by semicolons) into related groups.
2157 When you are in the help display for a prefix key, the prefix is
2158 still active.  If you press another key, like @kbd{y} for example,
2159 it will be interpreted as a @kbd{t y} command.  If all you wanted
2160 was to look at the help messages, press @kbd{C-g} afterwards to cancel
2161 the prefix.
2163 One more way to correct an error is by editing the stack entries.
2164 The actual Stack buffer is marked read-only and must not be edited
2165 directly, but you can press @kbd{`} (grave accent)
2166 to edit a stack entry.
2168 Try entering @samp{3.141439} now.  If this is supposed to represent
2169 @cpi{}, it's got several errors.  Press @kbd{`} to edit this number.
2170 Now use the normal Emacs cursor motion and editing keys to change
2171 the second 4 to a 5, and to transpose the 3 and the 9.  When you
2172 press @key{RET}, the number on the stack will be replaced by your
2173 new number.  This works for formulas, vectors, and all other types
2174 of values you can put on the stack.  The @kbd{`} key also works
2175 during entry of a number or algebraic formula.
2177 @node Modes Tutorial,  , Undo Tutorial, Basic Tutorial
2178 @subsection Mode-Setting Commands
2180 @noindent
2181 Calc has many types of @dfn{modes} that affect the way it interprets
2182 your commands or the way it displays data.  We have already seen one
2183 mode, namely Algebraic mode.  There are many others, too; we'll
2184 try some of the most common ones here.
2186 Perhaps the most fundamental mode in Calc is the current @dfn{precision}.
2187 Notice the @samp{12} on the Calc window's mode line:
2189 @smallexample
2190 --%*-Calc: 12 Deg       (Calculator)----All------
2191 @end smallexample
2193 @noindent
2194 Most of the symbols there are Emacs things you don't need to worry
2195 about, but the @samp{12} and the @samp{Deg} are mode indicators.
2196 The @samp{12} means that calculations should always be carried to
2197 12 significant figures.  That is why, when we type @kbd{1 @key{RET} 7 /},
2198 we get @expr{0.142857142857} with exactly 12 digits, not counting
2199 leading and trailing zeros.
2201 You can set the precision to anything you like by pressing @kbd{p},
2202 then entering a suitable number.  Try pressing @kbd{p 30 @key{RET}},
2203 then doing @kbd{1 @key{RET} 7 /} again:
2205 @smallexample
2206 @group
2207 1:  0.142857142857
2208 2:  0.142857142857142857142857142857
2209     .
2210 @end group
2211 @end smallexample
2213 Although the precision can be set arbitrarily high, Calc always
2214 has to have @emph{some} value for the current precision.  After
2215 all, the true value @expr{1/7} is an infinitely repeating decimal;
2216 Calc has to stop somewhere.
2218 Of course, calculations are slower the more digits you request.
2219 Press @w{@kbd{p 12}} now to set the precision back down to the default.
2221 Calculations always use the current precision.  For example, even
2222 though we have a 30-digit value for @expr{1/7} on the stack, if
2223 we use it in a calculation in 12-digit mode it will be rounded
2224 down to 12 digits before it is used.  Try it; press @key{RET} to
2225 duplicate the number, then @w{@kbd{1 +}}.  Notice that the @key{RET}
2226 key didn't round the number, because it doesn't do any calculation.
2227 But the instant we pressed @kbd{+}, the number was rounded down.
2229 @smallexample
2230 @group
2231 1:  0.142857142857
2232 2:  0.142857142857142857142857142857
2233 3:  1.14285714286
2234     .
2235 @end group
2236 @end smallexample
2238 @noindent
2239 In fact, since we added a digit on the left, we had to lose one
2240 digit on the right from even the 12-digit value of @expr{1/7}.
2242 How did we get more than 12 digits when we computed @samp{2^3^4}?  The
2243 answer is that Calc makes a distinction between @dfn{integers} and
2244 @dfn{floating-point} numbers, or @dfn{floats}.  An integer is a number
2245 that does not contain a decimal point.  There is no such thing as an
2246 ``infinitely repeating fraction integer,'' so Calc doesn't have to limit
2247 itself.  If you asked for @samp{2^10000} (don't try this!), you would
2248 have to wait a long time but you would eventually get an exact answer.
2249 If you ask for @samp{2.^10000}, you will quickly get an answer which is
2250 correct only to 12 places.  The decimal point tells Calc that it should
2251 use floating-point arithmetic to get the answer, not exact integer
2252 arithmetic.
2254 You can use the @kbd{F} (@code{calc-floor}) command to convert a
2255 floating-point value to an integer, and @kbd{c f} (@code{calc-float})
2256 to convert an integer to floating-point form.
2258 Let's try entering that last calculation:
2260 @smallexample
2261 @group
2262 1:  2.         2:  2.         1:  1.99506311689e3010
2263     .          1:  10000          .
2264                    .
2266   2.0 @key{RET}          10000 @key{RET}      ^
2267 @end group
2268 @end smallexample
2270 @noindent
2271 @cindex Scientific notation, entry of
2272 Notice the letter @samp{e} in there.  It represents ``times ten to the
2273 power of,'' and is used by Calc automatically whenever writing the
2274 number out fully would introduce more extra zeros than you probably
2275 want to see.  You can enter numbers in this notation, too.
2277 @smallexample
2278 @group
2279 1:  2.         2:  2.         1:  1.99506311678e3010
2280     .          1:  10000.         .
2281                    .
2283   2.0 @key{RET}          1e4 @key{RET}        ^
2284 @end group
2285 @end smallexample
2287 @cindex Round-off errors
2288 @noindent
2289 Hey, the answer is different!  Look closely at the middle columns
2290 of the two examples.  In the first, the stack contained the
2291 exact integer @expr{10000}, but in the second it contained
2292 a floating-point value with a decimal point.  When you raise a
2293 number to an integer power, Calc uses repeated squaring and
2294 multiplication to get the answer.  When you use a floating-point
2295 power, Calc uses logarithms and exponentials.  As you can see,
2296 a slight error crept in during one of these methods.  Which
2297 one should we trust?  Let's raise the precision a bit and find
2298 out:
2300 @smallexample
2301 @group
2302     .          1:  2.         2:  2.         1:  1.995063116880828e3010
2303                    .          1:  10000.         .
2304                                   .
2306  p 16 @key{RET}        2. @key{RET}           1e4            ^    p 12 @key{RET}
2307 @end group
2308 @end smallexample
2310 @noindent
2311 @cindex Guard digits
2312 Presumably, it doesn't matter whether we do this higher-precision
2313 calculation using an integer or floating-point power, since we
2314 have added enough ``guard digits'' to trust the first 12 digits
2315 no matter what.  And the verdict is@dots{}  Integer powers were more
2316 accurate; in fact, the result was only off by one unit in the
2317 last place.
2319 @cindex Guard digits
2320 Calc does many of its internal calculations to a slightly higher
2321 precision, but it doesn't always bump the precision up enough.
2322 In each case, Calc added about two digits of precision during
2323 its calculation and then rounded back down to 12 digits
2324 afterward.  In one case, it was enough; in the other, it
2325 wasn't.  If you really need @var{x} digits of precision, it
2326 never hurts to do the calculation with a few extra guard digits.
2328 What if we want guard digits but don't want to look at them?
2329 We can set the @dfn{float format}.  Calc supports four major
2330 formats for floating-point numbers, called @dfn{normal},
2331 @dfn{fixed-point}, @dfn{scientific notation}, and @dfn{engineering
2332 notation}.  You get them by pressing @w{@kbd{d n}}, @kbd{d f},
2333 @kbd{d s}, and @kbd{d e}, respectively.  In each case, you can
2334 supply a numeric prefix argument which says how many digits
2335 should be displayed.  As an example, let's put a few numbers
2336 onto the stack and try some different display modes.  First,
2337 use @kbd{M-0 @key{DEL}} to clear the stack, then enter the four
2338 numbers shown here:
2340 @smallexample
2341 @group
2342 4:  12345      4:  12345      4:  12345      4:  12345      4:  12345
2343 3:  12345.     3:  12300.     3:  1.2345e4   3:  1.23e4     3:  12345.000
2344 2:  123.45     2:  123.       2:  1.2345e2   2:  1.23e2     2:  123.450
2345 1:  12.345     1:  12.3       1:  1.2345e1   1:  1.23e1     1:  12.345
2346     .              .              .              .              .
2348    d n          M-3 d n          d s          M-3 d s        M-3 d f
2349 @end group
2350 @end smallexample
2352 @noindent
2353 Notice that when we typed @kbd{M-3 d n}, the numbers were rounded down
2354 to three significant digits, but then when we typed @kbd{d s} all
2355 five significant figures reappeared.  The float format does not
2356 affect how numbers are stored, it only affects how they are
2357 displayed.  Only the current precision governs the actual rounding
2358 of numbers in the Calculator's memory.
2360 Engineering notation, not shown here, is like scientific notation
2361 except the exponent (the power-of-ten part) is always adjusted to be
2362 a multiple of three (as in ``kilo,'' ``micro,'' etc.).  As a result
2363 there will be one, two, or three digits before the decimal point.
2365 Whenever you change a display-related mode, Calc redraws everything
2366 in the stack.  This may be slow if there are many things on the stack,
2367 so Calc allows you to type shift-@kbd{H} before any mode command to
2368 prevent it from updating the stack.  Anything Calc displays after the
2369 mode-changing command will appear in the new format.
2371 @smallexample
2372 @group
2373 4:  12345      4:  12345      4:  12345      4:  12345      4:  12345
2374 3:  12345.000  3:  12345.000  3:  12345.000  3:  1.2345e4   3:  12345.
2375 2:  123.450    2:  123.450    2:  1.2345e1   2:  1.2345e1   2:  123.45
2376 1:  12.345     1:  1.2345e1   1:  1.2345e2   1:  1.2345e2   1:  12.345
2377     .              .              .              .              .
2379     H d s          @key{DEL} U          @key{TAB}            d @key{SPC}          d n
2380 @end group
2381 @end smallexample
2383 @noindent
2384 Here the @kbd{H d s} command changes to scientific notation but without
2385 updating the screen.  Deleting the top stack entry and undoing it back
2386 causes it to show up in the new format; swapping the top two stack
2387 entries reformats both entries.  The @kbd{d @key{SPC}} command refreshes the
2388 whole stack.  The @kbd{d n} command changes back to the normal float
2389 format; since it doesn't have an @kbd{H} prefix, it also updates all
2390 the stack entries to be in @kbd{d n} format.
2392 Notice that the integer @expr{12345} was not affected by any
2393 of the float formats.  Integers are integers, and are always
2394 displayed exactly.
2396 @cindex Large numbers, readability
2397 Large integers have their own problems.  Let's look back at
2398 the result of @kbd{2^3^4}.
2400 @example
2401 2417851639229258349412352
2402 @end example
2404 @noindent
2405 Quick---how many digits does this have?  Try typing @kbd{d g}:
2407 @example
2408 2,417,851,639,229,258,349,412,352
2409 @end example
2411 @noindent
2412 Now how many digits does this have?  It's much easier to tell!
2413 We can actually group digits into clumps of any size.  Some
2414 people prefer @kbd{M-5 d g}:
2416 @example
2417 24178,51639,22925,83494,12352
2418 @end example
2420 Let's see what happens to floating-point numbers when they are grouped.
2421 First, type @kbd{p 25 @key{RET}} to make sure we have enough precision
2422 to get ourselves into trouble.  Now, type @kbd{1e13 /}:
2424 @example
2425 24,17851,63922.9258349412352
2426 @end example
2428 @noindent
2429 The integer part is grouped but the fractional part isn't.  Now try
2430 @kbd{M-- M-5 d g} (that's meta-minus-sign, meta-five):
2432 @example
2433 24,17851,63922.92583,49412,352
2434 @end example
2436 If you find it hard to tell the decimal point from the commas, try
2437 changing the grouping character to a space with @kbd{d , @key{SPC}}:
2439 @example
2440 24 17851 63922.92583 49412 352
2441 @end example
2443 Type @kbd{d , ,} to restore the normal grouping character, then
2444 @kbd{d g} again to turn grouping off.  Also, press @kbd{p 12} to
2445 restore the default precision.
2447 Press @kbd{U} enough times to get the original big integer back.
2448 (Notice that @kbd{U} does not undo each mode-setting command; if
2449 you want to undo a mode-setting command, you have to do it yourself.)
2450 Now, type @kbd{d r 16 @key{RET}}:
2452 @example
2453 16#200000000000000000000
2454 @end example
2456 @noindent
2457 The number is now displayed in @dfn{hexadecimal}, or ``base-16'' form.
2458 Suddenly it looks pretty simple; this should be no surprise, since we
2459 got this number by computing a power of two, and 16 is a power of 2.
2460 In fact, we can use @w{@kbd{d r 2 @key{RET}}} to see it in actual binary
2461 form:
2463 @example
2464 2#1000000000000000000000000000000000000000000000000000000 @dots{}
2465 @end example
2467 @noindent
2468 We don't have enough space here to show all the zeros!  They won't
2469 fit on a typical screen, either, so you will have to use horizontal
2470 scrolling to see them all.  Press @kbd{<} and @kbd{>} to scroll the
2471 stack window left and right by half its width.  Another way to view
2472 something large is to press @kbd{`} (grave accent) to edit the top of
2473 stack in a separate window.  (Press @kbd{C-c C-c} when you are done.)
2475 You can enter non-decimal numbers using the @kbd{#} symbol, too.
2476 Let's see what the hexadecimal number @samp{5FE} looks like in
2477 binary.  Type @kbd{16#5FE} (the letters can be typed in upper or
2478 lower case; they will always appear in upper case).  It will also
2479 help to turn grouping on with @kbd{d g}:
2481 @example
2482 2#101,1111,1110
2483 @end example
2485 Notice that @kbd{d g} groups by fours by default if the display radix
2486 is binary or hexadecimal, but by threes if it is decimal, octal, or any
2487 other radix.
2489 Now let's see that number in decimal; type @kbd{d r 10}:
2491 @example
2492 1,534
2493 @end example
2495 Numbers are not @emph{stored} with any particular radix attached.  They're
2496 just numbers; they can be entered in any radix, and are always displayed
2497 in whatever radix you've chosen with @kbd{d r}.  The current radix applies
2498 to integers, fractions, and floats.
2500 @cindex Roundoff errors, in non-decimal numbers
2501 (@bullet{}) @strong{Exercise 1.}  Your friend Joe tried to enter one-third
2502 as @samp{3#0.1} in @kbd{d r 3} mode with a precision of 12.  He got
2503 @samp{3#0.0222222...} (with 25 2's) in the display.  When he multiplied
2504 that by three, he got @samp{3#0.222222...} instead of the expected
2505 @samp{3#1}.  Next, Joe entered @samp{3#0.2} and, to his great relief,
2506 saw @samp{3#0.2} on the screen.  But when he typed @kbd{2 /}, he got
2507 @samp{3#0.10000001} (some zeros omitted).  What's going on here?
2508 @xref{Modes Answer 1, 1}. (@bullet{})
2510 @cindex Scientific notation, in non-decimal numbers
2511 (@bullet{}) @strong{Exercise 2.}  Scientific notation works in non-decimal
2512 modes in the natural way (the exponent is a power of the radix instead of
2513 a power of ten, although the exponent itself is always written in decimal).
2514 Thus @samp{8#1.23e3 = 8#1230.0}.  Suppose we have the hexadecimal number
2515 @samp{f.e8f} times 16 to the 15th power:  We write @samp{16#f.e8fe15}.
2516 What is wrong with this picture?  What could we write instead that would
2517 work better?  @xref{Modes Answer 2, 2}. (@bullet{})
2519 The @kbd{m} prefix key has another set of modes, relating to the way
2520 Calc interprets your inputs and does computations.  Whereas @kbd{d}-prefix
2521 modes generally affect the way things look, @kbd{m}-prefix modes affect
2522 the way they are actually computed.
2524 The most popular @kbd{m}-prefix mode is the @dfn{angular mode}.  Notice
2525 the @samp{Deg} indicator in the mode line.  This means that if you use
2526 a command that interprets a number as an angle, it will assume the
2527 angle is measured in degrees.  For example,
2529 @smallexample
2530 @group
2531 1:  45         1:  0.707106781187   1:  0.500000000001    1:  0.5
2532     .              .                    .                     .
2534     45             S                    2 ^                   c 1
2535 @end group
2536 @end smallexample
2538 @noindent
2539 The shift-@kbd{S} command computes the sine of an angle.  The sine
2540 of 45 degrees is
2541 @texline @math{\sqrt{2}/2};
2542 @infoline @expr{sqrt(2)/2};
2543 squaring this yields @expr{2/4 = 0.5}.  However, there has been a slight
2544 roundoff error because the representation of
2545 @texline @math{\sqrt{2}/2}
2546 @infoline @expr{sqrt(2)/2}
2547 wasn't exact.  The @kbd{c 1} command is a handy way to clean up numbers
2548 in this case; it temporarily reduces the precision by one digit while it
2549 re-rounds the number on the top of the stack.
2551 @cindex Roundoff errors, examples
2552 (@bullet{}) @strong{Exercise 3.}  Your friend Joe computed the sine
2553 of 45 degrees as shown above, then, hoping to avoid an inexact
2554 result, he increased the precision to 16 digits before squaring.
2555 What happened?  @xref{Modes Answer 3, 3}. (@bullet{})
2557 To do this calculation in radians, we would type @kbd{m r} first.
2558 (The indicator changes to @samp{Rad}.)  45 degrees corresponds to
2559 @cpiover{4} radians.  To get @cpi{}, press the @kbd{P} key.  (Once
2560 again, this is a shifted capital @kbd{P}.  Remember, unshifted
2561 @kbd{p} sets the precision.)
2563 @smallexample
2564 @group
2565 1:  3.14159265359   1:  0.785398163398   1:  0.707106781187
2566     .                   .                .
2568     P                   4 /       m r    S
2569 @end group
2570 @end smallexample
2572 Likewise, inverse trigonometric functions generate results in
2573 either radians or degrees, depending on the current angular mode.
2575 @smallexample
2576 @group
2577 1:  0.707106781187   1:  0.785398163398   1:  45.
2578     .                    .                    .
2580     .5 Q        m r      I S        m d       U I S
2581 @end group
2582 @end smallexample
2584 @noindent
2585 Here we compute the Inverse Sine of
2586 @texline @math{\sqrt{0.5}},
2587 @infoline @expr{sqrt(0.5)},
2588 first in radians, then in degrees.
2590 Use @kbd{c d} and @kbd{c r} to convert a number from radians to degrees
2591 and vice-versa.
2593 @smallexample
2594 @group
2595 1:  45         1:  0.785398163397     1:  45.
2596     .              .                      .
2598     45             c r                    c d
2599 @end group
2600 @end smallexample
2602 Another interesting mode is @dfn{Fraction mode}.  Normally,
2603 dividing two integers produces a floating-point result if the
2604 quotient can't be expressed as an exact integer.  Fraction mode
2605 causes integer division to produce a fraction, i.e., a rational
2606 number, instead.
2608 @smallexample
2609 @group
2610 2:  12         1:  1.33333333333    1:  4:3
2611 1:  9              .                    .
2612     .
2614  12 @key{RET} 9          /          m f       U /      m f
2615 @end group
2616 @end smallexample
2618 @noindent
2619 In the first case, we get an approximate floating-point result.
2620 In the second case, we get an exact fractional result (four-thirds).
2622 You can enter a fraction at any time using @kbd{:} notation.
2623 (Calc uses @kbd{:} instead of @kbd{/} as the fraction separator
2624 because @kbd{/} is already used to divide the top two stack
2625 elements.)  Calculations involving fractions will always
2626 produce exact fractional results; Fraction mode only says
2627 what to do when dividing two integers.
2629 @cindex Fractions vs. floats
2630 @cindex Floats vs. fractions
2631 (@bullet{}) @strong{Exercise 4.}  If fractional arithmetic is exact,
2632 why would you ever use floating-point numbers instead?
2633 @xref{Modes Answer 4, 4}. (@bullet{})
2635 Typing @kbd{m f} doesn't change any existing values in the stack.
2636 In the above example, we had to Undo the division and do it over
2637 again when we changed to Fraction mode.  But if you use the
2638 evaluates-to operator you can get commands like @kbd{m f} to
2639 recompute for you.
2641 @smallexample
2642 @group
2643 1:  12 / 9 => 1.33333333333    1:  12 / 9 => 1.333    1:  12 / 9 => 4:3
2644     .                              .                      .
2646    ' 12/9 => @key{RET}                   p 4 @key{RET}                m f
2647 @end group
2648 @end smallexample
2650 @noindent
2651 In this example, the righthand side of the @samp{=>} operator
2652 on the stack is recomputed when we change the precision, then
2653 again when we change to Fraction mode.  All @samp{=>} expressions
2654 on the stack are recomputed every time you change any mode that
2655 might affect their values.
2657 @node Arithmetic Tutorial, Vector/Matrix Tutorial, Basic Tutorial, Tutorial
2658 @section Arithmetic Tutorial
2660 @noindent
2661 In this section, we explore the arithmetic and scientific functions
2662 available in the Calculator.
2664 The standard arithmetic commands are @kbd{+}, @kbd{-}, @kbd{*}, @kbd{/},
2665 and @kbd{^}.  Each normally takes two numbers from the top of the stack
2666 and pushes back a result.  The @kbd{n} and @kbd{&} keys perform
2667 change-sign and reciprocal operations, respectively.
2669 @smallexample
2670 @group
2671 1:  5          1:  0.2        1:  5.         1:  -5.        1:  5.
2672     .              .              .              .              .
2674     5              &              &              n              n
2675 @end group
2676 @end smallexample
2678 @cindex Binary operators
2679 You can apply a ``binary operator'' like @kbd{+} across any number of
2680 stack entries by giving it a numeric prefix.  You can also apply it
2681 pairwise to several stack elements along with the top one if you use
2682 a negative prefix.
2684 @smallexample
2685 @group
2686 3:  2          1:  9          3:  2          4:  2          3:  12
2687 2:  3              .          2:  3          3:  3          2:  13
2688 1:  4                         1:  4          2:  4          1:  14
2689     .                             .          1:  10             .
2690                                                  .
2692 2 @key{RET} 3 @key{RET} 4     M-3 +           U              10          M-- M-3 +
2693 @end group
2694 @end smallexample
2696 @cindex Unary operators
2697 You can apply a ``unary operator'' like @kbd{&} to the top @var{n}
2698 stack entries with a numeric prefix, too.
2700 @smallexample
2701 @group
2702 3:  2          3:  0.5                3:  0.5
2703 2:  3          2:  0.333333333333     2:  3.
2704 1:  4          1:  0.25               1:  4.
2705     .              .                      .
2707 2 @key{RET} 3 @key{RET} 4      M-3 &                  M-2 &
2708 @end group
2709 @end smallexample
2711 Notice that the results here are left in floating-point form.
2712 We can convert them back to integers by pressing @kbd{F}, the
2713 ``floor'' function.  This function rounds down to the next lower
2714 integer.  There is also @kbd{R}, which rounds to the nearest
2715 integer.
2717 @smallexample
2718 @group
2719 7:  2.         7:  2          7:  2
2720 6:  2.4        6:  2          6:  2
2721 5:  2.5        5:  2          5:  3
2722 4:  2.6        4:  2          4:  3
2723 3:  -2.        3:  -2         3:  -2
2724 2:  -2.4       2:  -3         2:  -2
2725 1:  -2.6       1:  -3         1:  -3
2726     .              .              .
2728                   M-7 F        U M-7 R
2729 @end group
2730 @end smallexample
2732 Since dividing-and-flooring (i.e., ``integer quotient'') is such a
2733 common operation, Calc provides a special command for that purpose, the
2734 backslash @kbd{\}.  Another common arithmetic operator is @kbd{%}, which
2735 computes the remainder that would arise from a @kbd{\} operation, i.e.,
2736 the ``modulo'' of two numbers.  For example,
2738 @smallexample
2739 @group
2740 2:  1234       1:  12         2:  1234       1:  34
2741 1:  100            .          1:  100            .
2742     .                             .
2744 1234 @key{RET} 100       \              U              %
2745 @end group
2746 @end smallexample
2748 These commands actually work for any real numbers, not just integers.
2750 @smallexample
2751 @group
2752 2:  3.1415     1:  3          2:  3.1415     1:  0.1415
2753 1:  1              .          1:  1              .
2754     .                             .
2756 3.1415 @key{RET} 1       \              U              %
2757 @end group
2758 @end smallexample
2760 (@bullet{}) @strong{Exercise 1.}  The @kbd{\} command would appear to be a
2761 frill, since you could always do the same thing with @kbd{/ F}.  Think
2762 of a situation where this is not true---@kbd{/ F} would be inadequate.
2763 Now think of a way you could get around the problem if Calc didn't
2764 provide a @kbd{\} command.  @xref{Arithmetic Answer 1, 1}. (@bullet{})
2766 We've already seen the @kbd{Q} (square root) and @kbd{S} (sine)
2767 commands.  Other commands along those lines are @kbd{C} (cosine),
2768 @kbd{T} (tangent), @kbd{E} (@expr{e^x}) and @kbd{L} (natural
2769 logarithm).  These can be modified by the @kbd{I} (inverse) and
2770 @kbd{H} (hyperbolic) prefix keys.
2772 Let's compute the sine and cosine of an angle, and verify the
2773 identity
2774 @texline @math{\sin^2x + \cos^2x = 1}.
2775 @infoline @expr{sin(x)^2 + cos(x)^2 = 1}.
2776 We'll arbitrarily pick @mathit{-64} degrees as a good value for @expr{x}.
2777 With the angular mode set to degrees (type @w{@kbd{m d}}), do:
2779 @smallexample
2780 @group
2781 2:  -64        2:  -64        2:  -0.89879   2:  -0.89879   1:  1.
2782 1:  -64        1:  -0.89879   1:  -64        1:  0.43837        .
2783     .              .              .              .
2785  64 n @key{RET} @key{RET}      S              @key{TAB}            C              f h
2786 @end group
2787 @end smallexample
2789 @noindent
2790 (For brevity, we're showing only five digits of the results here.
2791 You can of course do these calculations to any precision you like.)
2793 Remember, @kbd{f h} is the @code{calc-hypot}, or square-root of sum
2794 of squares, command.
2796 Another identity is
2797 @texline @math{\displaystyle\tan x = {\sin x \over \cos x}}.
2798 @infoline @expr{tan(x) = sin(x) / cos(x)}.
2799 @smallexample
2800 @group
2802 2:  -0.89879   1:  -2.0503    1:  -64.
2803 1:  0.43837        .              .
2804     .
2806     U              /              I T
2807 @end group
2808 @end smallexample
2810 A physical interpretation of this calculation is that if you move
2811 @expr{0.89879} units downward and @expr{0.43837} units to the right,
2812 your direction of motion is @mathit{-64} degrees from horizontal.  Suppose
2813 we move in the opposite direction, up and to the left:
2815 @smallexample
2816 @group
2817 2:  -0.89879   2:  0.89879    1:  -2.0503    1:  -64.
2818 1:  0.43837    1:  -0.43837       .              .
2819     .              .
2821     U U            M-2 n          /              I T
2822 @end group
2823 @end smallexample
2825 @noindent
2826 How can the angle be the same?  The answer is that the @kbd{/} operation
2827 loses information about the signs of its inputs.  Because the quotient
2828 is negative, we know exactly one of the inputs was negative, but we
2829 can't tell which one.  There is an @kbd{f T} [@code{arctan2}] function which
2830 computes the inverse tangent of the quotient of a pair of numbers.
2831 Since you feed it the two original numbers, it has enough information
2832 to give you a full 360-degree answer.
2834 @smallexample
2835 @group
2836 2:  0.89879    1:  116.       3:  116.       2:  116.       1:  180.
2837 1:  -0.43837       .          2:  -0.89879   1:  -64.           .
2838     .                         1:  0.43837        .
2839                                   .
2841     U U            f T         M-@key{RET} M-2 n       f T            -
2842 @end group
2843 @end smallexample
2845 @noindent
2846 The resulting angles differ by 180 degrees; in other words, they
2847 point in opposite directions, just as we would expect.
2849 The @key{META}-@key{RET} we used in the third step is the
2850 ``last-arguments'' command.  It is sort of like Undo, except that it
2851 restores the arguments of the last command to the stack without removing
2852 the command's result.  It is useful in situations like this one,
2853 where we need to do several operations on the same inputs.  We could
2854 have accomplished the same thing by using @kbd{M-2 @key{RET}} to duplicate
2855 the top two stack elements right after the @kbd{U U}, then a pair of
2856 @kbd{M-@key{TAB}} commands to cycle the 116 up around the duplicates.
2858 A similar identity is supposed to hold for hyperbolic sines and cosines,
2859 except that it is the @emph{difference}
2860 @texline @math{\cosh^2x - \sinh^2x}
2861 @infoline @expr{cosh(x)^2 - sinh(x)^2}
2862 that always equals one.  Let's try to verify this identity.
2864 @smallexample
2865 @group
2866 2:  -64        2:  -64        2:  -64        2:  9.7192e54  2:  9.7192e54
2867 1:  -64        1:  -3.1175e27 1:  9.7192e54  1:  -64        1:  9.7192e54
2868     .              .              .              .              .
2870  64 n @key{RET} @key{RET}      H C            2 ^            @key{TAB}            H S 2 ^
2871 @end group
2872 @end smallexample
2874 @noindent
2875 @cindex Roundoff errors, examples
2876 Something's obviously wrong, because when we subtract these numbers
2877 the answer will clearly be zero!  But if you think about it, if these
2878 numbers @emph{did} differ by one, it would be in the 55th decimal
2879 place.  The difference we seek has been lost entirely to roundoff
2880 error.
2882 We could verify this hypothesis by doing the actual calculation with,
2883 say, 60 decimal places of precision.  This will be slow, but not
2884 enormously so.  Try it if you wish; sure enough, the answer is
2885 0.99999, reasonably close to 1.
2887 Of course, a more reasonable way to verify the identity is to use
2888 a more reasonable value for @expr{x}!
2890 @cindex Common logarithm
2891 Some Calculator commands use the Hyperbolic prefix for other purposes.
2892 The logarithm and exponential functions, for example, work to the base
2893 @expr{e} normally but use base-10 instead if you use the Hyperbolic
2894 prefix.
2896 @smallexample
2897 @group
2898 1:  1000       1:  6.9077     1:  1000       1:  3
2899     .              .              .              .
2901     1000           L              U              H L
2902 @end group
2903 @end smallexample
2905 @noindent
2906 First, we mistakenly compute a natural logarithm.  Then we undo
2907 and compute a common logarithm instead.
2909 The @kbd{B} key computes a general base-@var{b} logarithm for any
2910 value of @var{b}.
2912 @smallexample
2913 @group
2914 2:  1000       1:  3          1:  1000.      2:  1000.      1:  6.9077
2915 1:  10             .              .          1:  2.71828        .
2916     .                                            .
2918  1000 @key{RET} 10       B              H E            H P            B
2919 @end group
2920 @end smallexample
2922 @noindent
2923 Here we first use @kbd{B} to compute the base-10 logarithm, then use
2924 the ``hyperbolic'' exponential as a cheap hack to recover the number
2925 1000, then use @kbd{B} again to compute the natural logarithm.  Note
2926 that @kbd{P} with the hyperbolic prefix pushes the constant @expr{e}
2927 onto the stack.
2929 You may have noticed that both times we took the base-10 logarithm
2930 of 1000, we got an exact integer result.  Calc always tries to give
2931 an exact rational result for calculations involving rational numbers
2932 where possible.  But when we used @kbd{H E}, the result was a
2933 floating-point number for no apparent reason.  In fact, if we had
2934 computed @kbd{10 @key{RET} 3 ^} we @emph{would} have gotten an
2935 exact integer 1000.  But the @kbd{H E} command is rigged to generate
2936 a floating-point result all of the time so that @kbd{1000 H E} will
2937 not waste time computing a thousand-digit integer when all you
2938 probably wanted was @samp{1e1000}.
2940 (@bullet{}) @strong{Exercise 2.}  Find a pair of integer inputs to
2941 the @kbd{B} command for which Calc could find an exact rational
2942 result but doesn't.  @xref{Arithmetic Answer 2, 2}. (@bullet{})
2944 The Calculator also has a set of functions relating to combinatorics
2945 and statistics.  You may be familiar with the @dfn{factorial} function,
2946 which computes the product of all the integers up to a given number.
2948 @smallexample
2949 @group
2950 1:  100        1:  93326215443...    1:  100.       1:  9.3326e157
2951     .              .                     .              .
2953     100            !                     U c f          !
2954 @end group
2955 @end smallexample
2957 @noindent
2958 Recall, the @kbd{c f} command converts the integer or fraction at the
2959 top of the stack to floating-point format.  If you take the factorial
2960 of a floating-point number, you get a floating-point result
2961 accurate to the current precision.  But if you give @kbd{!} an
2962 exact integer, you get an exact integer result (158 digits long
2963 in this case).
2965 If you take the factorial of a non-integer, Calc uses a generalized
2966 factorial function defined in terms of Euler's Gamma function
2967 @texline @math{\Gamma(n)}
2968 @infoline @expr{gamma(n)}
2969 (which is itself available as the @kbd{f g} command).
2971 @smallexample
2972 @group
2973 3:  4.         3:  24.               1:  5.5        1:  52.342777847
2974 2:  4.5        2:  52.3427777847         .              .
2975 1:  5.         1:  120.
2976     .              .
2978                    M-3 !              M-0 @key{DEL} 5.5       f g
2979 @end group
2980 @end smallexample
2982 @noindent
2983 Here we verify the identity
2984 @texline @math{n! = \Gamma(n+1)}.
2985 @infoline @expr{@var{n}!@: = gamma(@var{n}+1)}.
2987 The binomial coefficient @var{n}-choose-@var{m}
2988 @texline or @math{\displaystyle {n \choose m}}
2989 is defined by
2990 @texline @math{\displaystyle {n! \over m! \, (n-m)!}}
2991 @infoline @expr{n!@: / m!@: (n-m)!}
2992 for all reals @expr{n} and @expr{m}.  The intermediate results in this
2993 formula can become quite large even if the final result is small; the
2994 @kbd{k c} command computes a binomial coefficient in a way that avoids
2995 large intermediate values.
2997 The @kbd{k} prefix key defines several common functions out of
2998 combinatorics and number theory.  Here we compute the binomial
2999 coefficient 30-choose-20, then determine its prime factorization.
3001 @smallexample
3002 @group
3003 2:  30         1:  30045015   1:  [3, 3, 5, 7, 11, 13, 23, 29]
3004 1:  20             .              .
3005     .
3007  30 @key{RET} 20         k c            k f
3008 @end group
3009 @end smallexample
3011 @noindent
3012 You can verify these prime factors by using @kbd{V R *} to multiply
3013 together the elements of this vector.  The result is the original
3014 number, 30045015.
3016 @cindex Hash tables
3017 Suppose a program you are writing needs a hash table with at least
3018 10000 entries.  It's best to use a prime number as the actual size
3019 of a hash table.  Calc can compute the next prime number after 10000:
3021 @smallexample
3022 @group
3023 1:  10000      1:  10007      1:  9973
3024     .              .              .
3026     10000          k n            I k n
3027 @end group
3028 @end smallexample
3030 @noindent
3031 Just for kicks we've also computed the next prime @emph{less} than
3032 10000.
3034 @c [fix-ref Financial Functions]
3035 @xref{Financial Functions}, for a description of the Calculator
3036 commands that deal with business and financial calculations (functions
3037 like @code{pv}, @code{rate}, and @code{sln}).
3039 @c [fix-ref Binary Number Functions]
3040 @xref{Binary Functions}, to read about the commands for operating
3041 on binary numbers (like @code{and}, @code{xor}, and @code{lsh}).
3043 @node Vector/Matrix Tutorial, Types Tutorial, Arithmetic Tutorial, Tutorial
3044 @section Vector/Matrix Tutorial
3046 @noindent
3047 A @dfn{vector} is a list of numbers or other Calc data objects.
3048 Calc provides a large set of commands that operate on vectors.  Some
3049 are familiar operations from vector analysis.  Others simply treat
3050 a vector as a list of objects.
3052 @menu
3053 * Vector Analysis Tutorial::
3054 * Matrix Tutorial::
3055 * List Tutorial::
3056 @end menu
3058 @node Vector Analysis Tutorial, Matrix Tutorial, Vector/Matrix Tutorial, Vector/Matrix Tutorial
3059 @subsection Vector Analysis
3061 @noindent
3062 If you add two vectors, the result is a vector of the sums of the
3063 elements, taken pairwise.
3065 @smallexample
3066 @group
3067 1:  [1, 2, 3]     2:  [1, 2, 3]     1:  [8, 8, 3]
3068     .             1:  [7, 6, 0]         .
3069                       .
3071     [1,2,3]  s 1      [7 6 0]  s 2      +
3072 @end group
3073 @end smallexample
3075 @noindent
3076 Note that we can separate the vector elements with either commas or
3077 spaces.  This is true whether we are using incomplete vectors or
3078 algebraic entry.  The @kbd{s 1} and @kbd{s 2} commands save these
3079 vectors so we can easily reuse them later.
3081 If you multiply two vectors, the result is the sum of the products
3082 of the elements taken pairwise.  This is called the @dfn{dot product}
3083 of the vectors.
3085 @smallexample
3086 @group
3087 2:  [1, 2, 3]     1:  19
3088 1:  [7, 6, 0]         .
3089     .
3091     r 1 r 2           *
3092 @end group
3093 @end smallexample
3095 @cindex Dot product
3096 The dot product of two vectors is equal to the product of their
3097 lengths times the cosine of the angle between them.  (Here the vector
3098 is interpreted as a line from the origin @expr{(0,0,0)} to the
3099 specified point in three-dimensional space.)  The @kbd{A}
3100 (absolute value) command can be used to compute the length of a
3101 vector.
3103 @smallexample
3104 @group
3105 3:  19            3:  19          1:  0.550782    1:  56.579
3106 2:  [1, 2, 3]     2:  3.741657        .               .
3107 1:  [7, 6, 0]     1:  9.219544
3108     .                 .
3110     M-@key{RET}             M-2 A          * /             I C
3111 @end group
3112 @end smallexample
3114 @noindent
3115 First we recall the arguments to the dot product command, then
3116 we compute the absolute values of the top two stack entries to
3117 obtain the lengths of the vectors, then we divide the dot product
3118 by the product of the lengths to get the cosine of the angle.
3119 The inverse cosine finds that the angle between the vectors
3120 is about 56 degrees.
3122 @cindex Cross product
3123 @cindex Perpendicular vectors
3124 The @dfn{cross product} of two vectors is a vector whose length
3125 is the product of the lengths of the inputs times the sine of the
3126 angle between them, and whose direction is perpendicular to both
3127 input vectors.  Unlike the dot product, the cross product is
3128 defined only for three-dimensional vectors.  Let's double-check
3129 our computation of the angle using the cross product.
3131 @smallexample
3132 @group
3133 2:  [1, 2, 3]  3:  [-18, 21, -8]  1:  [-0.52, 0.61, -0.23]  1:  56.579
3134 1:  [7, 6, 0]  2:  [1, 2, 3]          .                         .
3135     .          1:  [7, 6, 0]
3136                    .
3138     r 1 r 2        V C  s 3  M-@key{RET}    M-2 A * /                 A I S
3139 @end group
3140 @end smallexample
3142 @noindent
3143 First we recall the original vectors and compute their cross product,
3144 which we also store for later reference.  Now we divide the vector
3145 by the product of the lengths of the original vectors.  The length of
3146 this vector should be the sine of the angle; sure enough, it is!
3148 @c [fix-ref General Mode Commands]
3149 Vector-related commands generally begin with the @kbd{v} prefix key.
3150 Some are uppercase letters and some are lowercase.  To make it easier
3151 to type these commands, the shift-@kbd{V} prefix key acts the same as
3152 the @kbd{v} key.  (@xref{General Mode Commands}, for a way to make all
3153 prefix keys have this property.)
3155 If we take the dot product of two perpendicular vectors we expect
3156 to get zero, since the cosine of 90 degrees is zero.  Let's check
3157 that the cross product is indeed perpendicular to both inputs:
3159 @smallexample
3160 @group
3161 2:  [1, 2, 3]      1:  0          2:  [7, 6, 0]      1:  0
3162 1:  [-18, 21, -8]      .          1:  [-18, 21, -8]      .
3163     .                                 .
3165     r 1 r 3            *          @key{DEL} r 2 r 3            *
3166 @end group
3167 @end smallexample
3169 @cindex Normalizing a vector
3170 @cindex Unit vectors
3171 (@bullet{}) @strong{Exercise 1.}  Given a vector on the top of the
3172 stack, what keystrokes would you use to @dfn{normalize} the
3173 vector, i.e., to reduce its length to one without changing its
3174 direction?  @xref{Vector Answer 1, 1}. (@bullet{})
3176 (@bullet{}) @strong{Exercise 2.}  Suppose a certain particle can be
3177 at any of several positions along a ruler.  You have a list of
3178 those positions in the form of a vector, and another list of the
3179 probabilities for the particle to be at the corresponding positions.
3180 Find the average position of the particle.
3181 @xref{Vector Answer 2, 2}. (@bullet{})
3183 @node Matrix Tutorial, List Tutorial, Vector Analysis Tutorial, Vector/Matrix Tutorial
3184 @subsection Matrices
3186 @noindent
3187 A @dfn{matrix} is just a vector of vectors, all the same length.
3188 This means you can enter a matrix using nested brackets.  You can
3189 also use the semicolon character to enter a matrix.  We'll show
3190 both methods here:
3192 @smallexample
3193 @group
3194 1:  [ [ 1, 2, 3 ]             1:  [ [ 1, 2, 3 ]
3195       [ 4, 5, 6 ] ]                 [ 4, 5, 6 ] ]
3196     .                             .
3198   [[1 2 3] [4 5 6]]             ' [1 2 3; 4 5 6] @key{RET}
3199 @end group
3200 @end smallexample
3202 @noindent
3203 We'll be using this matrix again, so type @kbd{s 4} to save it now.
3205 Note that semicolons work with incomplete vectors, but they work
3206 better in algebraic entry.  That's why we use the apostrophe in
3207 the second example.
3209 When two matrices are multiplied, the lefthand matrix must have
3210 the same number of columns as the righthand matrix has rows.
3211 Row @expr{i}, column @expr{j} of the result is effectively the
3212 dot product of row @expr{i} of the left matrix by column @expr{j}
3213 of the right matrix.
3215 If we try to duplicate this matrix and multiply it by itself,
3216 the dimensions are wrong and the multiplication cannot take place:
3218 @smallexample
3219 @group
3220 1:  [ [ 1, 2, 3 ]   * [ [ 1, 2, 3 ]
3221       [ 4, 5, 6 ] ]     [ 4, 5, 6 ] ]
3222     .
3224     @key{RET} *
3225 @end group
3226 @end smallexample
3228 @noindent
3229 Though rather hard to read, this is a formula which shows the product
3230 of two matrices.  The @samp{*} function, having invalid arguments, has
3231 been left in symbolic form.
3233 We can multiply the matrices if we @dfn{transpose} one of them first.
3235 @smallexample
3236 @group
3237 2:  [ [ 1, 2, 3 ]       1:  [ [ 14, 32 ]      1:  [ [ 17, 22, 27 ]
3238       [ 4, 5, 6 ] ]           [ 32, 77 ] ]          [ 22, 29, 36 ]
3239 1:  [ [ 1, 4 ]              .                       [ 27, 36, 45 ] ]
3240       [ 2, 5 ]                                    .
3241       [ 3, 6 ] ]
3242     .
3244     U v t                   *                     U @key{TAB} *
3245 @end group
3246 @end smallexample
3248 Matrix multiplication is not commutative; indeed, switching the
3249 order of the operands can even change the dimensions of the result
3250 matrix, as happened here!
3252 If you multiply a plain vector by a matrix, it is treated as a
3253 single row or column depending on which side of the matrix it is
3254 on.  The result is a plain vector which should also be interpreted
3255 as a row or column as appropriate.
3257 @smallexample
3258 @group
3259 2:  [ [ 1, 2, 3 ]      1:  [14, 32]
3260       [ 4, 5, 6 ] ]        .
3261 1:  [1, 2, 3]
3262     .
3264     r 4 r 1                *
3265 @end group
3266 @end smallexample
3268 Multiplying in the other order wouldn't work because the number of
3269 rows in the matrix is different from the number of elements in the
3270 vector.
3272 (@bullet{}) @strong{Exercise 1.}  Use @samp{*} to sum along the rows
3273 of the above
3274 @texline @math{2\times3}
3275 @infoline 2x3
3276 matrix to get @expr{[6, 15]}.  Now use @samp{*} to sum along the columns
3277 to get @expr{[5, 7, 9]}.
3278 @xref{Matrix Answer 1, 1}. (@bullet{})
3280 @cindex Identity matrix
3281 An @dfn{identity matrix} is a square matrix with ones along the
3282 diagonal and zeros elsewhere.  It has the property that multiplication
3283 by an identity matrix, on the left or on the right, always produces
3284 the original matrix.
3286 @smallexample
3287 @group
3288 1:  [ [ 1, 2, 3 ]      2:  [ [ 1, 2, 3 ]      1:  [ [ 1, 2, 3 ]
3289       [ 4, 5, 6 ] ]          [ 4, 5, 6 ] ]          [ 4, 5, 6 ] ]
3290     .                  1:  [ [ 1, 0, 0 ]          .
3291                              [ 0, 1, 0 ]
3292                              [ 0, 0, 1 ] ]
3293                            .
3295     r 4                    v i 3 @key{RET}              *
3296 @end group
3297 @end smallexample
3299 If a matrix is square, it is often possible to find its @dfn{inverse},
3300 that is, a matrix which, when multiplied by the original matrix, yields
3301 an identity matrix.  The @kbd{&} (reciprocal) key also computes the
3302 inverse of a matrix.
3304 @smallexample
3305 @group
3306 1:  [ [ 1, 2, 3 ]      1:  [ [   -2.4,     1.2,   -0.2 ]
3307       [ 4, 5, 6 ]            [    2.8,    -1.4,    0.4 ]
3308       [ 7, 6, 0 ] ]          [ -0.73333, 0.53333, -0.2 ] ]
3309     .                      .
3311     r 4 r 2 |  s 5         &
3312 @end group
3313 @end smallexample
3315 @noindent
3316 The vertical bar @kbd{|} @dfn{concatenates} numbers, vectors, and
3317 matrices together.  Here we have used it to add a new row onto
3318 our matrix to make it square.
3320 We can multiply these two matrices in either order to get an identity.
3322 @smallexample
3323 @group
3324 1:  [ [ 1., 0., 0. ]      1:  [ [ 1., 0., 0. ]
3325       [ 0., 1., 0. ]            [ 0., 1., 0. ]
3326       [ 0., 0., 1. ] ]          [ 0., 0., 1. ] ]
3327     .                         .
3329     M-@key{RET}  *                  U @key{TAB} *
3330 @end group
3331 @end smallexample
3333 @cindex Systems of linear equations
3334 @cindex Linear equations, systems of
3335 Matrix inverses are related to systems of linear equations in algebra.
3336 Suppose we had the following set of equations:
3338 @ifnottex
3339 @group
3340 @example
3341     a + 2b + 3c = 6
3342    4a + 5b + 6c = 2
3343    7a + 6b      = 3
3344 @end example
3345 @end group
3346 @end ifnottex
3347 @tex
3348 \beforedisplayh
3349 $$ \openup1\jot \tabskip=0pt plus1fil
3350 \halign to\displaywidth{\tabskip=0pt
3351    $\hfil#$&$\hfil{}#{}$&
3352    $\hfil#$&$\hfil{}#{}$&
3353    $\hfil#$&${}#\hfil$\tabskip=0pt plus1fil\cr
3354   a&+&2b&+&3c&=6 \cr
3355  4a&+&5b&+&6c&=2 \cr
3356  7a&+&6b& &  &=3 \cr}
3358 \afterdisplayh
3359 @end tex
3361 @noindent
3362 This can be cast into the matrix equation,
3364 @ifnottex
3365 @group
3366 @example
3367    [ [ 1, 2, 3 ]     [ [ a ]     [ [ 6 ]
3368      [ 4, 5, 6 ]   *   [ b ]   =   [ 2 ]
3369      [ 7, 6, 0 ] ]     [ c ] ]     [ 3 ] ]
3370 @end example
3371 @end group
3372 @end ifnottex
3373 @tex
3374 \beforedisplay
3375 $$ \pmatrix{ 1 & 2 & 3 \cr 4 & 5 & 6 \cr 7 & 6 & 0 }
3376    \times
3377    \pmatrix{ a \cr b \cr c } = \pmatrix{ 6 \cr 2 \cr 3 }
3379 \afterdisplay
3380 @end tex
3382 We can solve this system of equations by multiplying both sides by the
3383 inverse of the matrix.  Calc can do this all in one step:
3385 @smallexample
3386 @group
3387 2:  [6, 2, 3]          1:  [-12.6, 15.2, -3.93333]
3388 1:  [ [ 1, 2, 3 ]          .
3389       [ 4, 5, 6 ]
3390       [ 7, 6, 0 ] ]
3391     .
3393     [6,2,3] r 5            /
3394 @end group
3395 @end smallexample
3397 @noindent
3398 The result is the @expr{[a, b, c]} vector that solves the equations.
3399 (Dividing by a square matrix is equivalent to multiplying by its
3400 inverse.)
3402 Let's verify this solution:
3404 @smallexample
3405 @group
3406 2:  [ [ 1, 2, 3 ]                1:  [6., 2., 3.]
3407       [ 4, 5, 6 ]                    .
3408       [ 7, 6, 0 ] ]
3409 1:  [-12.6, 15.2, -3.93333]
3410     .
3412     r 5  @key{TAB}                         *
3413 @end group
3414 @end smallexample
3416 @noindent
3417 Note that we had to be careful about the order in which we multiplied
3418 the matrix and vector.  If we multiplied in the other order, Calc would
3419 assume the vector was a row vector in order to make the dimensions
3420 come out right, and the answer would be incorrect.  If you
3421 don't feel safe letting Calc take either interpretation of your
3422 vectors, use explicit
3423 @texline @math{N\times1}
3424 @infoline Nx1
3426 @texline @math{1\times N}
3427 @infoline 1xN
3428 matrices instead.  In this case, you would enter the original column
3429 vector as @samp{[[6], [2], [3]]} or @samp{[6; 2; 3]}.
3431 (@bullet{}) @strong{Exercise 2.}  Algebraic entry allows you to make
3432 vectors and matrices that include variables.  Solve the following
3433 system of equations to get expressions for @expr{x} and @expr{y}
3434 in terms of @expr{a} and @expr{b}.
3436 @ifnottex
3437 @group
3438 @example
3439    x + a y = 6
3440    x + b y = 10
3441 @end example
3442 @end group
3443 @end ifnottex
3444 @tex
3445 \beforedisplay
3446 $$ \eqalign{ x &+ a y = 6 \cr
3447              x &+ b y = 10}
3449 \afterdisplay
3450 @end tex
3452 @noindent
3453 @xref{Matrix Answer 2, 2}. (@bullet{})
3455 @cindex Least-squares for over-determined systems
3456 @cindex Over-determined systems of equations
3457 (@bullet{}) @strong{Exercise 3.}  A system of equations is ``over-determined''
3458 if it has more equations than variables.  It is often the case that
3459 there are no values for the variables that will satisfy all the
3460 equations at once, but it is still useful to find a set of values
3461 which ``nearly'' satisfy all the equations.  In terms of matrix equations,
3462 you can't solve @expr{A X = B} directly because the matrix @expr{A}
3463 is not square for an over-determined system.  Matrix inversion works
3464 only for square matrices.  One common trick is to multiply both sides
3465 on the left by the transpose of @expr{A}:
3466 @ifnottex
3467 @samp{trn(A)*A*X = trn(A)*B}.
3468 @end ifnottex
3469 @tex
3470 $A^T A \, X = A^T B$, where $A^T$ is the transpose \samp{trn(A)}.
3471 @end tex
3473 @texline @math{A^T A}
3474 @infoline @expr{trn(A)*A}
3475 is a square matrix so a solution is possible.  It turns out that the
3476 @expr{X} vector you compute in this way will be a ``least-squares''
3477 solution, which can be regarded as the ``closest'' solution to the set
3478 of equations.  Use Calc to solve the following over-determined
3479 system:
3481 @ifnottex
3482 @group
3483 @example
3484     a + 2b + 3c = 6
3485    4a + 5b + 6c = 2
3486    7a + 6b      = 3
3487    2a + 4b + 6c = 11
3488 @end example
3489 @end group
3490 @end ifnottex
3491 @tex
3492 \beforedisplayh
3493 $$ \openup1\jot \tabskip=0pt plus1fil
3494 \halign to\displaywidth{\tabskip=0pt
3495    $\hfil#$&$\hfil{}#{}$&
3496    $\hfil#$&$\hfil{}#{}$&
3497    $\hfil#$&${}#\hfil$\tabskip=0pt plus1fil\cr
3498   a&+&2b&+&3c&=6 \cr
3499  4a&+&5b&+&6c&=2 \cr
3500  7a&+&6b& &  &=3 \cr
3501  2a&+&4b&+&6c&=11 \cr}
3503 \afterdisplayh
3504 @end tex
3506 @noindent
3507 @xref{Matrix Answer 3, 3}. (@bullet{})
3509 @node List Tutorial,  , Matrix Tutorial, Vector/Matrix Tutorial
3510 @subsection Vectors as Lists
3512 @noindent
3513 @cindex Lists
3514 Although Calc has a number of features for manipulating vectors and
3515 matrices as mathematical objects, you can also treat vectors as
3516 simple lists of values.  For example, we saw that the @kbd{k f}
3517 command returns a vector which is a list of the prime factors of a
3518 number.
3520 You can pack and unpack stack entries into vectors:
3522 @smallexample
3523 @group
3524 3:  10         1:  [10, 20, 30]     3:  10
3525 2:  20             .                2:  20
3526 1:  30                              1:  30
3527     .                                   .
3529                    M-3 v p              v u
3530 @end group
3531 @end smallexample
3533 You can also build vectors out of consecutive integers, or out
3534 of many copies of a given value:
3536 @smallexample
3537 @group
3538 1:  [1, 2, 3, 4]    2:  [1, 2, 3, 4]    2:  [1, 2, 3, 4]
3539     .               1:  17              1:  [17, 17, 17, 17]
3540                         .                   .
3542     v x 4 @key{RET}           17                  v b 4 @key{RET}
3543 @end group
3544 @end smallexample
3546 You can apply an operator to every element of a vector using the
3547 @dfn{map} command.
3549 @smallexample
3550 @group
3551 1:  [17, 34, 51, 68]   1:  [289, 1156, 2601, 4624]  1:  [17, 34, 51, 68]
3552     .                      .                            .
3554     V M *                  2 V M ^                      V M Q
3555 @end group
3556 @end smallexample
3558 @noindent
3559 In the first step, we multiply the vector of integers by the vector
3560 of 17's elementwise.  In the second step, we raise each element to
3561 the power two.  (The general rule is that both operands must be
3562 vectors of the same length, or else one must be a vector and the
3563 other a plain number.)  In the final step, we take the square root
3564 of each element.
3566 (@bullet{}) @strong{Exercise 1.}  Compute a vector of powers of two
3567 from
3568 @texline @math{2^{-4}}
3569 @infoline @expr{2^-4}
3570 to @expr{2^4}.  @xref{List Answer 1, 1}. (@bullet{})
3572 You can also @dfn{reduce} a binary operator across a vector.
3573 For example, reducing @samp{*} computes the product of all the
3574 elements in the vector:
3576 @smallexample
3577 @group
3578 1:  123123     1:  [3, 7, 11, 13, 41]      1:  123123
3579     .              .                           .
3581     123123         k f                         V R *
3582 @end group
3583 @end smallexample
3585 @noindent
3586 In this example, we decompose 123123 into its prime factors, then
3587 multiply those factors together again to yield the original number.
3589 We could compute a dot product ``by hand'' using mapping and
3590 reduction:
3592 @smallexample
3593 @group
3594 2:  [1, 2, 3]     1:  [7, 12, 0]     1:  19
3595 1:  [7, 6, 0]         .                  .
3596     .
3598     r 1 r 2           V M *              V R +
3599 @end group
3600 @end smallexample
3602 @noindent
3603 Recalling two vectors from the previous section, we compute the
3604 sum of pairwise products of the elements to get the same answer
3605 for the dot product as before.
3607 A slight variant of vector reduction is the @dfn{accumulate} operation,
3608 @kbd{V U}.  This produces a vector of the intermediate results from
3609 a corresponding reduction.  Here we compute a table of factorials:
3611 @smallexample
3612 @group
3613 1:  [1, 2, 3, 4, 5, 6]    1:  [1, 2, 6, 24, 120, 720]
3614     .                         .
3616     v x 6 @key{RET}                 V U *
3617 @end group
3618 @end smallexample
3620 Calc allows vectors to grow as large as you like, although it gets
3621 rather slow if vectors have more than about a hundred elements.
3622 Actually, most of the time is spent formatting these large vectors
3623 for display, not calculating on them.  Try the following experiment
3624 (if your computer is very fast you may need to substitute a larger
3625 vector size).
3627 @smallexample
3628 @group
3629 1:  [1, 2, 3, 4, ...      1:  [2, 3, 4, 5, ...
3630     .                         .
3632     v x 500 @key{RET}               1 V M +
3633 @end group
3634 @end smallexample
3636 Now press @kbd{v .} (the letter @kbd{v}, then a period) and try the
3637 experiment again.  In @kbd{v .} mode, long vectors are displayed
3638 ``abbreviated'' like this:
3640 @smallexample
3641 @group
3642 1:  [1, 2, 3, ..., 500]   1:  [2, 3, 4, ..., 501]
3643     .                         .
3645     v x 500 @key{RET}               1 V M +
3646 @end group
3647 @end smallexample
3649 @noindent
3650 (where now the @samp{...} is actually part of the Calc display).
3651 You will find both operations are now much faster.  But notice that
3652 even in @w{@kbd{v .}} mode, the full vectors are still shown in the Trail.
3653 Type @w{@kbd{t .}} to cause the trail to abbreviate as well, and try the
3654 experiment one more time.  Operations on long vectors are now quite
3655 fast!  (But of course if you use @kbd{t .} you will lose the ability
3656 to get old vectors back using the @kbd{t y} command.)
3658 An easy way to view a full vector when @kbd{v .} mode is active is
3659 to press @kbd{`} (grave accent) to edit the vector; editing always works
3660 with the full, unabbreviated value.
3662 @cindex Least-squares for fitting a straight line
3663 @cindex Fitting data to a line
3664 @cindex Line, fitting data to
3665 @cindex Data, extracting from buffers
3666 @cindex Columns of data, extracting
3667 As a larger example, let's try to fit a straight line to some data,
3668 using the method of least squares.  (Calc has a built-in command for
3669 least-squares curve fitting, but we'll do it by hand here just to
3670 practice working with vectors.)  Suppose we have the following list
3671 of values in a file we have loaded into Emacs:
3673 @smallexample
3674   x        y
3675  ---      ---
3676  1.34    0.234
3677  1.41    0.298
3678  1.49    0.402
3679  1.56    0.412
3680  1.64    0.466
3681  1.73    0.473
3682  1.82    0.601
3683  1.91    0.519
3684  2.01    0.603
3685  2.11    0.637
3686  2.22    0.645
3687  2.33    0.705
3688  2.45    0.917
3689  2.58    1.009
3690  2.71    0.971
3691  2.85    1.062
3692  3.00    1.148
3693  3.15    1.157
3694  3.32    1.354
3695 @end smallexample
3697 @noindent
3698 If you are reading this tutorial in printed form, you will find it
3699 easiest to press @kbd{C-x * i} to enter the on-line Info version of
3700 the manual and find this table there.  (Press @kbd{g}, then type
3701 @kbd{List Tutorial}, to jump straight to this section.)
3703 Position the cursor at the upper-left corner of this table, just
3704 to the left of the @expr{1.34}.  Press @kbd{C-@@} to set the mark.
3705 (On your system this may be @kbd{C-2}, @kbd{C-@key{SPC}}, or @kbd{NUL}.)
3706 Now position the cursor to the lower-right, just after the @expr{1.354}.
3707 You have now defined this region as an Emacs ``rectangle.''  Still
3708 in the Info buffer, type @kbd{C-x * r}.  This command
3709 (@code{calc-grab-rectangle}) will pop you back into the Calculator, with
3710 the contents of the rectangle you specified in the form of a matrix.
3712 @smallexample
3713 @group
3714 1:  [ [ 1.34, 0.234 ]
3715       [ 1.41, 0.298 ]
3716       @dots{}
3717 @end group
3718 @end smallexample
3720 @noindent
3721 (You may wish to use @kbd{v .} mode to abbreviate the display of this
3722 large matrix.)
3724 We want to treat this as a pair of lists.  The first step is to
3725 transpose this matrix into a pair of rows.  Remember, a matrix is
3726 just a vector of vectors.  So we can unpack the matrix into a pair
3727 of row vectors on the stack.
3729 @smallexample
3730 @group
3731 1:  [ [ 1.34,  1.41,  1.49,  ... ]     2:  [1.34, 1.41, 1.49, ... ]
3732       [ 0.234, 0.298, 0.402, ... ] ]   1:  [0.234, 0.298, 0.402, ... ]
3733     .                                      .
3735     v t                                    v u
3736 @end group
3737 @end smallexample
3739 @noindent
3740 Let's store these in quick variables 1 and 2, respectively.
3742 @smallexample
3743 @group
3744 1:  [1.34, 1.41, 1.49, ... ]        .
3745     .
3747     t 2                             t 1
3748 @end group
3749 @end smallexample
3751 @noindent
3752 (Recall that @kbd{t 2} is a variant of @kbd{s 2} that removes the
3753 stored value from the stack.)
3755 In a least squares fit, the slope @expr{m} is given by the formula
3757 @ifnottex
3758 @example
3759 m = (N sum(x y) - sum(x) sum(y)) / (N sum(x^2) - sum(x)^2)
3760 @end example
3761 @end ifnottex
3762 @tex
3763 \beforedisplay
3764 $$ m = {N \sum x y - \sum x \sum y  \over
3765         N \sum x^2 - \left( \sum x \right)^2} $$
3766 \afterdisplay
3767 @end tex
3769 @noindent
3770 where
3771 @texline @math{\sum x}
3772 @infoline @expr{sum(x)}
3773 represents the sum of all the values of @expr{x}.  While there is an
3774 actual @code{sum} function in Calc, it's easier to sum a vector using a
3775 simple reduction.  First, let's compute the four different sums that
3776 this formula uses.
3778 @smallexample
3779 @group
3780 1:  41.63                 1:  98.0003
3781     .                         .
3783  r 1 V R +   t 3           r 1 2 V M ^ V R +   t 4
3785 @end group
3786 @end smallexample
3787 @noindent
3788 @smallexample
3789 @group
3790 1:  13.613                1:  33.36554
3791     .                         .
3793  r 2 V R +   t 5           r 1 r 2 V M * V R +   t 6
3794 @end group
3795 @end smallexample
3797 @ifnottex
3798 @noindent
3799 These are @samp{sum(x)}, @samp{sum(x^2)}, @samp{sum(y)}, and @samp{sum(x y)},
3800 respectively.  (We could have used @kbd{*} to compute @samp{sum(x^2)} and
3801 @samp{sum(x y)}.)
3802 @end ifnottex
3803 @tex
3804 These are $\sum x$, $\sum x^2$, $\sum y$, and $\sum x y$,
3805 respectively.  (We could have used \kbd{*} to compute $\sum x^2$ and
3806 $\sum x y$.)
3807 @end tex
3809 Finally, we also need @expr{N}, the number of data points.  This is just
3810 the length of either of our lists.
3812 @smallexample
3813 @group
3814 1:  19
3815     .
3817  r 1 v l   t 7
3818 @end group
3819 @end smallexample
3821 @noindent
3822 (That's @kbd{v} followed by a lower-case @kbd{l}.)
3824 Now we grind through the formula:
3826 @smallexample
3827 @group
3828 1:  633.94526  2:  633.94526  1:  67.23607
3829     .          1:  566.70919      .
3830                    .
3832  r 7 r 6 *      r 3 r 5 *         -
3834 @end group
3835 @end smallexample
3836 @noindent
3837 @smallexample
3838 @group
3839 2:  67.23607   3:  67.23607   2:  67.23607   1:  0.52141679
3840 1:  1862.0057  2:  1862.0057  1:  128.9488       .
3841     .          1:  1733.0569      .
3842                    .
3844  r 7 r 4 *      r 3 2 ^           -              /   t 8
3845 @end group
3846 @end smallexample
3848 That gives us the slope @expr{m}.  The y-intercept @expr{b} can now
3849 be found with the simple formula,
3851 @ifnottex
3852 @example
3853 b = (sum(y) - m sum(x)) / N
3854 @end example
3855 @end ifnottex
3856 @tex
3857 \beforedisplay
3858 $$ b = {\sum y - m \sum x \over N} $$
3859 \afterdisplay
3860 \vskip10pt
3861 @end tex
3863 @smallexample
3864 @group
3865 1:  13.613     2:  13.613     1:  -8.09358   1:  -0.425978
3866     .          1:  21.70658       .              .
3867                    .
3869    r 5            r 8 r 3 *       -              r 7 /   t 9
3870 @end group
3871 @end smallexample
3873 Let's ``plot'' this straight line approximation,
3874 @texline @math{y \approx m x + b},
3875 @infoline @expr{m x + b},
3876 and compare it with the original data.
3878 @smallexample
3879 @group
3880 1:  [0.699, 0.735, ... ]    1:  [0.273, 0.309, ... ]
3881     .                           .
3883     r 1 r 8 *                   r 9 +    s 0
3884 @end group
3885 @end smallexample
3887 @noindent
3888 Notice that multiplying a vector by a constant, and adding a constant
3889 to a vector, can be done without mapping commands since these are
3890 common operations from vector algebra.  As far as Calc is concerned,
3891 we've just been doing geometry in 19-dimensional space!
3893 We can subtract this vector from our original @expr{y} vector to get
3894 a feel for the error of our fit.  Let's find the maximum error:
3896 @smallexample
3897 @group
3898 1:  [0.0387, 0.0112, ... ]   1:  [0.0387, 0.0112, ... ]   1:  0.0897
3899     .                            .                            .
3901     r 2 -                        V M A                        V R X
3902 @end group
3903 @end smallexample
3905 @noindent
3906 First we compute a vector of differences, then we take the absolute
3907 values of these differences, then we reduce the @code{max} function
3908 across the vector.  (The @code{max} function is on the two-key sequence
3909 @kbd{f x}; because it is so common to use @code{max} in a vector
3910 operation, the letters @kbd{X} and @kbd{N} are also accepted for
3911 @code{max} and @code{min} in this context.  In general, you answer
3912 the @kbd{V M} or @kbd{V R} prompt with the actual key sequence that
3913 invokes the function you want.  You could have typed @kbd{V R f x} or
3914 even @kbd{V R x max @key{RET}} if you had preferred.)
3916 If your system has the GNUPLOT program, you can see graphs of your
3917 data and your straight line to see how well they match.  (If you have
3918 GNUPLOT 3.0 or higher, the following instructions will work regardless
3919 of the kind of display you have.  Some GNUPLOT 2.0, non-X-windows systems
3920 may require additional steps to view the graphs.)
3922 Let's start by plotting the original data.  Recall the ``@var{x}'' and ``@var{y}''
3923 vectors onto the stack and press @kbd{g f}.  This ``fast'' graphing
3924 command does everything you need to do for simple, straightforward
3925 plotting of data.
3927 @smallexample
3928 @group
3929 2:  [1.34, 1.41, 1.49, ... ]
3930 1:  [0.234, 0.298, 0.402, ... ]
3931     .
3933     r 1 r 2    g f
3934 @end group
3935 @end smallexample
3937 If all goes well, you will shortly get a new window containing a graph
3938 of the data.  (If not, contact your GNUPLOT or Calc installer to find
3939 out what went wrong.)  In the X window system, this will be a separate
3940 graphics window.  For other kinds of displays, the default is to
3941 display the graph in Emacs itself using rough character graphics.
3942 Press @kbd{q} when you are done viewing the character graphics.
3944 Next, let's add the line we got from our least-squares fit.
3945 @ifinfo
3946 (If you are reading this tutorial on-line while running Calc, typing
3947 @kbd{g a} may cause the tutorial to disappear from its window and be
3948 replaced by a buffer named @file{*Gnuplot Commands*}.  The tutorial
3949 will reappear when you terminate GNUPLOT by typing @kbd{g q}.)
3950 @end ifinfo
3952 @smallexample
3953 @group
3954 2:  [1.34, 1.41, 1.49, ... ]
3955 1:  [0.273, 0.309, 0.351, ... ]
3956     .
3958     @key{DEL} r 0    g a  g p
3959 @end group
3960 @end smallexample
3962 It's not very useful to get symbols to mark the data points on this
3963 second curve; you can type @kbd{g S g p} to remove them.  Type @kbd{g q}
3964 when you are done to remove the X graphics window and terminate GNUPLOT.
3966 (@bullet{}) @strong{Exercise 2.}  An earlier exercise showed how to do
3967 least squares fitting to a general system of equations.  Our 19 data
3968 points are really 19 equations of the form @expr{y_i = m x_i + b} for
3969 different pairs of @expr{(x_i,y_i)}.  Use the matrix-transpose method
3970 to solve for @expr{m} and @expr{b}, duplicating the above result.
3971 @xref{List Answer 2, 2}. (@bullet{})
3973 @cindex Geometric mean
3974 (@bullet{}) @strong{Exercise 3.}  If the input data do not form a
3975 rectangle, you can use @w{@kbd{C-x * g}} (@code{calc-grab-region})
3976 to grab the data the way Emacs normally works with regions---it reads
3977 left-to-right, top-to-bottom, treating line breaks the same as spaces.
3978 Use this command to find the geometric mean of the following numbers.
3979 (The geometric mean is the @var{n}th root of the product of @var{n} numbers.)
3981 @example
3982 2.3  6  22  15.1  7
3983   15  14  7.5
3984   2.5
3985 @end example
3987 @noindent
3988 The @kbd{C-x * g} command accepts numbers separated by spaces or commas,
3989 with or without surrounding vector brackets.
3990 @xref{List Answer 3, 3}. (@bullet{})
3992 @ifnottex
3993 As another example, a theorem about binomial coefficients tells
3994 us that the alternating sum of binomial coefficients
3995 @var{n}-choose-0 minus @var{n}-choose-1 plus @var{n}-choose-2, and so
3996 on up to @var{n}-choose-@var{n},
3997 always comes out to zero.  Let's verify this
3998 for @expr{n=6}.
3999 @end ifnottex
4000 @tex
4001 As another example, a theorem about binomial coefficients tells
4002 us that the alternating sum of binomial coefficients
4003 ${n \choose 0} - {n \choose 1} + {n \choose 2} - \cdots \pm {n \choose n}$
4004 always comes out to zero.  Let's verify this
4005 for \cite{n=6}.
4006 @end tex
4008 @smallexample
4009 @group
4010 1:  [1, 2, 3, 4, 5, 6, 7]     1:  [0, 1, 2, 3, 4, 5, 6]
4011     .                             .
4013     v x 7 @key{RET}                     1 -
4015 @end group
4016 @end smallexample
4017 @noindent
4018 @smallexample
4019 @group
4020 1:  [1, -6, 15, -20, 15, -6, 1]          1:  0
4021     .                                        .
4023     V M ' (-1)^$ choose(6,$) @key{RET}             V R +
4024 @end group
4025 @end smallexample
4027 The @kbd{V M '} command prompts you to enter any algebraic expression
4028 to define the function to map over the vector.  The symbol @samp{$}
4029 inside this expression represents the argument to the function.
4030 The Calculator applies this formula to each element of the vector,
4031 substituting each element's value for the @samp{$} sign(s) in turn.
4033 To define a two-argument function, use @samp{$$} for the first
4034 argument and @samp{$} for the second:  @kbd{V M ' $$-$ @key{RET}} is
4035 equivalent to @kbd{V M -}.  This is analogous to regular algebraic
4036 entry, where @samp{$$} would refer to the next-to-top stack entry
4037 and @samp{$} would refer to the top stack entry, and @kbd{' $$-$ @key{RET}}
4038 would act exactly like @kbd{-}.
4040 Notice that the @kbd{V M '} command has recorded two things in the
4041 trail:  The result, as usual, and also a funny-looking thing marked
4042 @samp{oper} that represents the operator function you typed in.
4043 The function is enclosed in @samp{< >} brackets, and the argument is
4044 denoted by a @samp{#} sign.  If there were several arguments, they
4045 would be shown as @samp{#1}, @samp{#2}, and so on.  (For example,
4046 @kbd{V M ' $$-$} will put the function @samp{<#1 - #2>} on the
4047 trail.)  This object is a ``nameless function''; you can use nameless
4048 @w{@samp{< >}} notation to answer the @kbd{V M '} prompt if you like.
4049 Nameless function notation has the interesting, occasionally useful
4050 property that a nameless function is not actually evaluated until
4051 it is used.  For example, @kbd{V M ' $+random(2.0)} evaluates
4052 @samp{random(2.0)} once and adds that random number to all elements
4053 of the vector, but @kbd{V M ' <#+random(2.0)>} evaluates the
4054 @samp{random(2.0)} separately for each vector element.
4056 Another group of operators that are often useful with @kbd{V M} are
4057 the relational operators:  @kbd{a =}, for example, compares two numbers
4058 and gives the result 1 if they are equal, or 0 if not.  Similarly,
4059 @w{@kbd{a <}} checks for one number being less than another.
4061 Other useful vector operations include @kbd{v v}, to reverse a
4062 vector end-for-end; @kbd{V S}, to sort the elements of a vector
4063 into increasing order; and @kbd{v r} and @w{@kbd{v c}}, to extract
4064 one row or column of a matrix, or (in both cases) to extract one
4065 element of a plain vector.  With a negative argument, @kbd{v r}
4066 and @kbd{v c} instead delete one row, column, or vector element.
4068 @cindex Divisor functions
4069 (@bullet{}) @strong{Exercise 4.}  The @expr{k}th @dfn{divisor function}
4070 @tex
4071 $\sigma_k(n)$
4072 @end tex
4073 is the sum of the @expr{k}th powers of all the divisors of an
4074 integer @expr{n}.  Figure out a method for computing the divisor
4075 function for reasonably small values of @expr{n}.  As a test,
4076 the 0th and 1st divisor functions of 30 are 8 and 72, respectively.
4077 @xref{List Answer 4, 4}. (@bullet{})
4079 @cindex Square-free numbers
4080 @cindex Duplicate values in a list
4081 (@bullet{}) @strong{Exercise 5.}  The @kbd{k f} command produces a
4082 list of prime factors for a number.  Sometimes it is important to
4083 know that a number is @dfn{square-free}, i.e., that no prime occurs
4084 more than once in its list of prime factors.  Find a sequence of
4085 keystrokes to tell if a number is square-free; your method should
4086 leave 1 on the stack if it is, or 0 if it isn't.
4087 @xref{List Answer 5, 5}. (@bullet{})
4089 @cindex Triangular lists
4090 (@bullet{}) @strong{Exercise 6.}  Build a list of lists that looks
4091 like the following diagram.  (You may wish to use the @kbd{v /}
4092 command to enable multi-line display of vectors.)
4094 @smallexample
4095 @group
4096 1:  [ [1],
4097       [1, 2],
4098       [1, 2, 3],
4099       [1, 2, 3, 4],
4100       [1, 2, 3, 4, 5],
4101       [1, 2, 3, 4, 5, 6] ]
4102 @end group
4103 @end smallexample
4105 @noindent
4106 @xref{List Answer 6, 6}. (@bullet{})
4108 (@bullet{}) @strong{Exercise 7.}  Build the following list of lists.
4110 @smallexample
4111 @group
4112 1:  [ [0],
4113       [1, 2],
4114       [3, 4, 5],
4115       [6, 7, 8, 9],
4116       [10, 11, 12, 13, 14],
4117       [15, 16, 17, 18, 19, 20] ]
4118 @end group
4119 @end smallexample
4121 @noindent
4122 @xref{List Answer 7, 7}. (@bullet{})
4124 @cindex Maximizing a function over a list of values
4125 @c [fix-ref Numerical Solutions]
4126 (@bullet{}) @strong{Exercise 8.}  Compute a list of values of Bessel's
4127 @texline @math{J_1(x)}
4128 @infoline @expr{J1}
4129 function @samp{besJ(1,x)} for @expr{x} from 0 to 5 in steps of 0.25.
4130 Find the value of @expr{x} (from among the above set of values) for
4131 which @samp{besJ(1,x)} is a maximum.  Use an ``automatic'' method,
4132 i.e., just reading along the list by hand to find the largest value
4133 is not allowed!  (There is an @kbd{a X} command which does this kind
4134 of thing automatically; @pxref{Numerical Solutions}.)
4135 @xref{List Answer 8, 8}. (@bullet{})
4137 @cindex Digits, vectors of
4138 (@bullet{}) @strong{Exercise 9.}  You are given an integer in the range
4139 @texline @math{0 \le N < 10^m}
4140 @infoline @expr{0 <= N < 10^m}
4141 for @expr{m=12} (i.e., an integer of less than
4142 twelve digits).  Convert this integer into a vector of @expr{m}
4143 digits, each in the range from 0 to 9.  In vector-of-digits notation,
4144 add one to this integer to produce a vector of @expr{m+1} digits
4145 (since there could be a carry out of the most significant digit).
4146 Convert this vector back into a regular integer.  A good integer
4147 to try is 25129925999.  @xref{List Answer 9, 9}. (@bullet{})
4149 (@bullet{}) @strong{Exercise 10.}  Your friend Joe tried to use
4150 @kbd{V R a =} to test if all numbers in a list were equal.  What
4151 happened?  How would you do this test?  @xref{List Answer 10, 10}. (@bullet{})
4153 (@bullet{}) @strong{Exercise 11.}  The area of a circle of radius one
4154 is @cpi{}.  The area of the
4155 @texline @math{2\times2}
4156 @infoline 2x2
4157 square that encloses that circle is 4.  So if we throw @var{n} darts at
4158 random points in the square, about @cpiover{4} of them will land inside
4159 the circle.  This gives us an entertaining way to estimate the value of
4160 @cpi{}.  The @w{@kbd{k r}}
4161 command picks a random number between zero and the value on the stack.
4162 We could get a random floating-point number between @mathit{-1} and 1 by typing
4163 @w{@kbd{2.0 k r 1 -}}.  Build a vector of 100 random @expr{(x,y)} points in
4164 this square, then use vector mapping and reduction to count how many
4165 points lie inside the unit circle.  Hint:  Use the @kbd{v b} command.
4166 @xref{List Answer 11, 11}. (@bullet{})
4168 @cindex Matchstick problem
4169 (@bullet{}) @strong{Exercise 12.}  The @dfn{matchstick problem} provides
4170 another way to calculate @cpi{}.  Say you have an infinite field
4171 of vertical lines with a spacing of one inch.  Toss a one-inch matchstick
4172 onto the field.  The probability that the matchstick will land crossing
4173 a line turns out to be
4174 @texline @math{2/\pi}.
4175 @infoline @expr{2/pi}.
4176 Toss 100 matchsticks to estimate @cpi{}.  (If you want still more fun,
4177 the probability that the GCD (@w{@kbd{k g}}) of two large integers is
4178 one turns out to be
4179 @texline @math{6/\pi^2}.
4180 @infoline @expr{6/pi^2}.
4181 That provides yet another way to estimate @cpi{}.)
4182 @xref{List Answer 12, 12}. (@bullet{})
4184 (@bullet{}) @strong{Exercise 13.}  An algebraic entry of a string in
4185 double-quote marks, @samp{"hello"}, creates a vector of the numerical
4186 (ASCII) codes of the characters (here, @expr{[104, 101, 108, 108, 111]}).
4187 Sometimes it is convenient to compute a @dfn{hash code} of a string,
4188 which is just an integer that represents the value of that string.
4189 Two equal strings have the same hash code; two different strings
4190 @dfn{probably} have different hash codes.  (For example, Calc has
4191 over 400 function names, but Emacs can quickly find the definition for
4192 any given name because it has sorted the functions into ``buckets'' by
4193 their hash codes.  Sometimes a few names will hash into the same bucket,
4194 but it is easier to search among a few names than among all the names.)
4195 One popular hash function is computed as follows:  First set @expr{h = 0}.
4196 Then, for each character from the string in turn, set @expr{h = 3h + c_i}
4197 where @expr{c_i} is the character's ASCII code.  If we have 511 buckets,
4198 we then take the hash code modulo 511 to get the bucket number.  Develop a
4199 simple command or commands for converting string vectors into hash codes.
4200 The hash code for @samp{"Testing, 1, 2, 3"} is 1960915098, which modulo
4201 511 is 121.  @xref{List Answer 13, 13}. (@bullet{})
4203 (@bullet{}) @strong{Exercise 14.}  The @kbd{H V R} and @kbd{H V U}
4204 commands do nested function evaluations.  @kbd{H V U} takes a starting
4205 value and a number of steps @var{n} from the stack; it then applies the
4206 function you give to the starting value 0, 1, 2, up to @var{n} times
4207 and returns a vector of the results.  Use this command to create a
4208 ``random walk'' of 50 steps.  Start with the two-dimensional point
4209 @expr{(0,0)}; then take one step a random distance between @mathit{-1} and 1
4210 in both @expr{x} and @expr{y}; then take another step, and so on.  Use the
4211 @kbd{g f} command to display this random walk.  Now modify your random
4212 walk to walk a unit distance, but in a random direction, at each step.
4213 (Hint:  The @code{sincos} function returns a vector of the cosine and
4214 sine of an angle.)  @xref{List Answer 14, 14}. (@bullet{})
4216 @node Types Tutorial, Algebra Tutorial, Vector/Matrix Tutorial, Tutorial
4217 @section Types Tutorial
4219 @noindent
4220 Calc understands a variety of data types as well as simple numbers.
4221 In this section, we'll experiment with each of these types in turn.
4223 The numbers we've been using so far have mainly been either @dfn{integers}
4224 or @dfn{floats}.  We saw that floats are usually a good approximation to
4225 the mathematical concept of real numbers, but they are only approximations
4226 and are susceptible to roundoff error.  Calc also supports @dfn{fractions},
4227 which can exactly represent any rational number.
4229 @smallexample
4230 @group
4231 1:  3628800    2:  3628800    1:  518400:7   1:  518414:7   1:  7:518414
4232     .          1:  49             .              .              .
4233                    .
4235     10 !           49 @key{RET}         :              2 +            &
4236 @end group
4237 @end smallexample
4239 @noindent
4240 The @kbd{:} command divides two integers to get a fraction; @kbd{/}
4241 would normally divide integers to get a floating-point result.
4242 Notice we had to type @key{RET} between the @kbd{49} and the @kbd{:}
4243 since the @kbd{:} would otherwise be interpreted as part of a
4244 fraction beginning with 49.
4246 You can convert between floating-point and fractional format using
4247 @kbd{c f} and @kbd{c F}:
4249 @smallexample
4250 @group
4251 1:  1.35027217629e-5    1:  7:518414
4252     .                       .
4254     c f                     c F
4255 @end group
4256 @end smallexample
4258 The @kbd{c F} command replaces a floating-point number with the
4259 ``simplest'' fraction whose floating-point representation is the
4260 same, to within the current precision.
4262 @smallexample
4263 @group
4264 1:  3.14159265359   1:  1146408:364913   1:  3.1416   1:  355:113
4265     .                   .                    .            .
4267     P                   c F      @key{DEL}       p 5 @key{RET} P      c F
4268 @end group
4269 @end smallexample
4271 (@bullet{}) @strong{Exercise 1.}  A calculation has produced the
4272 result 1.26508260337.  You suspect it is the square root of the
4273 product of @cpi{} and some rational number.  Is it?  (Be sure
4274 to allow for roundoff error!)  @xref{Types Answer 1, 1}. (@bullet{})
4276 @dfn{Complex numbers} can be stored in both rectangular and polar form.
4278 @smallexample
4279 @group
4280 1:  -9     1:  (0, 3)    1:  (3; 90.)   1:  (6; 90.)   1:  (2.4495; 45.)
4281     .          .             .              .              .
4283     9 n        Q             c p            2 *            Q
4284 @end group
4285 @end smallexample
4287 @noindent
4288 The square root of @mathit{-9} is by default rendered in rectangular form
4289 (@w{@expr{0 + 3i}}), but we can convert it to polar form (3 with a
4290 phase angle of 90 degrees).  All the usual arithmetic and scientific
4291 operations are defined on both types of complex numbers.
4293 Another generalized kind of number is @dfn{infinity}.  Infinity
4294 isn't really a number, but it can sometimes be treated like one.
4295 Calc uses the symbol @code{inf} to represent positive infinity,
4296 i.e., a value greater than any real number.  Naturally, you can
4297 also write @samp{-inf} for minus infinity, a value less than any
4298 real number.  The word @code{inf} can only be input using
4299 algebraic entry.
4301 @smallexample
4302 @group
4303 2:  inf        2:  -inf       2:  -inf       2:  -inf       1:  nan
4304 1:  -17        1:  -inf       1:  -inf       1:  inf            .
4305     .              .              .              .
4307 ' inf @key{RET} 17 n     *  @key{RET}         72 +           A              +
4308 @end group
4309 @end smallexample
4311 @noindent
4312 Since infinity is infinitely large, multiplying it by any finite
4313 number (like @mathit{-17}) has no effect, except that since @mathit{-17}
4314 is negative, it changes a plus infinity to a minus infinity.
4315 (``A huge positive number, multiplied by @mathit{-17}, yields a huge
4316 negative number.'')  Adding any finite number to infinity also
4317 leaves it unchanged.  Taking an absolute value gives us plus
4318 infinity again.  Finally, we add this plus infinity to the minus
4319 infinity we had earlier.  If you work it out, you might expect
4320 the answer to be @mathit{-72} for this.  But the 72 has been completely
4321 lost next to the infinities; by the time we compute @w{@samp{inf - inf}}
4322 the finite difference between them, if any, is undetectable.
4323 So we say the result is @dfn{indeterminate}, which Calc writes
4324 with the symbol @code{nan} (for Not A Number).
4326 Dividing by zero is normally treated as an error, but you can get
4327 Calc to write an answer in terms of infinity by pressing @kbd{m i}
4328 to turn on Infinite mode.
4330 @smallexample
4331 @group
4332 3:  nan        2:  nan        2:  nan        2:  nan        1:  nan
4333 2:  1          1:  1 / 0      1:  uinf       1:  uinf           .
4334 1:  0              .              .              .
4335     .
4337   1 @key{RET} 0          /       m i    U /            17 n *         +
4338 @end group
4339 @end smallexample
4341 @noindent
4342 Dividing by zero normally is left unevaluated, but after @kbd{m i}
4343 it instead gives an infinite result.  The answer is actually
4344 @code{uinf}, ``undirected infinity.''  If you look at a graph of
4345 @expr{1 / x} around @w{@expr{x = 0}}, you'll see that it goes toward
4346 plus infinity as you approach zero from above, but toward minus
4347 infinity as you approach from below.  Since we said only @expr{1 / 0},
4348 Calc knows that the answer is infinite but not in which direction.
4349 That's what @code{uinf} means.  Notice that multiplying @code{uinf}
4350 by a negative number still leaves plain @code{uinf}; there's no
4351 point in saying @samp{-uinf} because the sign of @code{uinf} is
4352 unknown anyway.  Finally, we add @code{uinf} to our @code{nan},
4353 yielding @code{nan} again.  It's easy to see that, because
4354 @code{nan} means ``totally unknown'' while @code{uinf} means
4355 ``unknown sign but known to be infinite,'' the more mysterious
4356 @code{nan} wins out when it is combined with @code{uinf}, or, for
4357 that matter, with anything else.
4359 (@bullet{}) @strong{Exercise 2.}  Predict what Calc will answer
4360 for each of these formulas:  @samp{inf / inf}, @samp{exp(inf)},
4361 @samp{exp(-inf)}, @samp{sqrt(-inf)}, @samp{sqrt(uinf)},
4362 @samp{abs(uinf)}, @samp{ln(0)}.
4363 @xref{Types Answer 2, 2}. (@bullet{})
4365 (@bullet{}) @strong{Exercise 3.}  We saw that @samp{inf - inf = nan},
4366 which stands for an unknown value.  Can @code{nan} stand for
4367 a complex number?  Can it stand for infinity?
4368 @xref{Types Answer 3, 3}. (@bullet{})
4370 @dfn{HMS forms} represent a value in terms of hours, minutes, and
4371 seconds.
4373 @smallexample
4374 @group
4375 1:  2@@ 30' 0"     1:  3@@ 30' 0"     2:  3@@ 30' 0"     1:  2.
4376     .                 .             1:  1@@ 45' 0."        .
4377                                         .
4379   2@@ 30' @key{RET}          1 +               @key{RET} 2 /           /
4380 @end group
4381 @end smallexample
4383 HMS forms can also be used to hold angles in degrees, minutes, and
4384 seconds.
4386 @smallexample
4387 @group
4388 1:  0.5        1:  26.56505   1:  26@@ 33' 54.18"    1:  0.44721
4389     .              .              .                     .
4391     0.5            I T            c h                   S
4392 @end group
4393 @end smallexample
4395 @noindent
4396 First we convert the inverse tangent of 0.5 to degrees-minutes-seconds
4397 form, then we take the sine of that angle.  Note that the trigonometric
4398 functions will accept HMS forms directly as input.
4400 @cindex Beatles
4401 (@bullet{}) @strong{Exercise 4.}  The Beatles' @emph{Abbey Road} is
4402 47 minutes and 26 seconds long, and contains 17 songs.  What is the
4403 average length of a song on @emph{Abbey Road}?  If the Extended Disco
4404 Version of @emph{Abbey Road} added 20 seconds to the length of each
4405 song, how long would the album be?  @xref{Types Answer 4, 4}. (@bullet{})
4407 A @dfn{date form} represents a date, or a date and time.  Dates must
4408 be entered using algebraic entry.  Date forms are surrounded by
4409 @samp{< >} symbols; most standard formats for dates are recognized.
4411 @smallexample
4412 @group
4413 2:  <Sun Jan 13, 1991>                    1:  2.25
4414 1:  <6:00pm Thu Jan 10, 1991>                 .
4415     .
4417 ' <13 Jan 1991>, <1/10/91, 6pm> @key{RET}           -
4418 @end group
4419 @end smallexample
4421 @noindent
4422 In this example, we enter two dates, then subtract to find the
4423 number of days between them.  It is also possible to add an
4424 HMS form or a number (of days) to a date form to get another
4425 date form.
4427 @smallexample
4428 @group
4429 1:  <4:45:59pm Mon Jan 14, 1991>     1:  <2:50:59am Thu Jan 17, 1991>
4430     .                                    .
4432     t N                                  2 + 10@@ 5' +
4433 @end group
4434 @end smallexample
4436 @c [fix-ref Date Arithmetic]
4437 @noindent
4438 The @kbd{t N} (``now'') command pushes the current date and time on the
4439 stack; then we add two days, ten hours and five minutes to the date and
4440 time.  Other date-and-time related commands include @kbd{t J}, which
4441 does Julian day conversions, @kbd{t W}, which finds the beginning of
4442 the week in which a date form lies, and @kbd{t I}, which increments a
4443 date by one or several months.  @xref{Date Arithmetic}, for more.
4445 (@bullet{}) @strong{Exercise 5.}  How many days until the next
4446 Friday the 13th?  @xref{Types Answer 5, 5}. (@bullet{})
4448 (@bullet{}) @strong{Exercise 6.}  How many leap years will there be
4449 between now and the year 10001 AD@?  @xref{Types Answer 6, 6}. (@bullet{})
4451 @cindex Slope and angle of a line
4452 @cindex Angle and slope of a line
4453 An @dfn{error form} represents a mean value with an attached standard
4454 deviation, or error estimate.  Suppose our measurements indicate that
4455 a certain telephone pole is about 30 meters away, with an estimated
4456 error of 1 meter, and 8 meters tall, with an estimated error of 0.2
4457 meters.  What is the slope of a line from here to the top of the
4458 pole, and what is the equivalent angle in degrees?
4460 @smallexample
4461 @group
4462 1:  8 +/- 0.2    2:  8 +/- 0.2   1:  0.266 +/- 0.011   1:  14.93 +/- 0.594
4463     .            1:  30 +/- 1        .                     .
4464                      .
4466     8 p .2 @key{RET}       30 p 1          /                     I T
4467 @end group
4468 @end smallexample
4470 @noindent
4471 This means that the angle is about 15 degrees, and, assuming our
4472 original error estimates were valid standard deviations, there is about
4473 a 60% chance that the result is correct within 0.59 degrees.
4475 @cindex Torus, volume of
4476 (@bullet{}) @strong{Exercise 7.}  The volume of a torus (a donut shape) is
4477 @texline @math{2 \pi^2 R r^2}
4478 @infoline @w{@expr{2 pi^2 R r^2}}
4479 where @expr{R} is the radius of the circle that
4480 defines the center of the tube and @expr{r} is the radius of the tube
4481 itself.  Suppose @expr{R} is 20 cm and @expr{r} is 4 cm, each known to
4482 within 5 percent.  What is the volume and the relative uncertainty of
4483 the volume?  @xref{Types Answer 7, 7}. (@bullet{})
4485 An @dfn{interval form} represents a range of values.  While an
4486 error form is best for making statistical estimates, intervals give
4487 you exact bounds on an answer.  Suppose we additionally know that
4488 our telephone pole is definitely between 28 and 31 meters away,
4489 and that it is between 7.7 and 8.1 meters tall.
4491 @smallexample
4492 @group
4493 1:  [7.7 .. 8.1]  2:  [7.7 .. 8.1]  1:  [0.24 .. 0.28]  1:  [13.9 .. 16.1]
4494     .             1:  [28 .. 31]        .                   .
4495                       .
4497   [ 7.7 .. 8.1 ]    [ 28 .. 31 ]        /                   I T
4498 @end group
4499 @end smallexample
4501 @noindent
4502 If our bounds were correct, then the angle to the top of the pole
4503 is sure to lie in the range shown.
4505 The square brackets around these intervals indicate that the endpoints
4506 themselves are allowable values.  In other words, the distance to the
4507 telephone pole is between 28 and 31, @emph{inclusive}.  You can also
4508 make an interval that is exclusive of its endpoints by writing
4509 parentheses instead of square brackets.  You can even make an interval
4510 which is inclusive (``closed'') on one end and exclusive (``open'') on
4511 the other.
4513 @smallexample
4514 @group
4515 1:  [1 .. 10)    1:  (0.1 .. 1]   2:  (0.1 .. 1]   1:  (0.2 .. 3)
4516     .                .            1:  [2 .. 3)         .
4517                                       .
4519   [ 1 .. 10 )        &              [ 2 .. 3 )         *
4520 @end group
4521 @end smallexample
4523 @noindent
4524 The Calculator automatically keeps track of which end values should
4525 be open and which should be closed.  You can also make infinite or
4526 semi-infinite intervals by using @samp{-inf} or @samp{inf} for one
4527 or both endpoints.
4529 (@bullet{}) @strong{Exercise 8.}  What answer would you expect from
4530 @samp{@w{1 /} @w{(0 .. 10)}}?  What about @samp{@w{1 /} @w{(-10 .. 0)}}?  What
4531 about @samp{@w{1 /} @w{[0 .. 10]}} (where the interval actually includes
4532 zero)?  What about @samp{@w{1 /} @w{(-10 .. 10)}}?
4533 @xref{Types Answer 8, 8}. (@bullet{})
4535 (@bullet{}) @strong{Exercise 9.}  Two easy ways of squaring a number
4536 are @kbd{@key{RET} *} and @w{@kbd{2 ^}}.  Normally these produce the same
4537 answer.  Would you expect this still to hold true for interval forms?
4538 If not, which of these will result in a larger interval?
4539 @xref{Types Answer 9, 9}. (@bullet{})
4541 A @dfn{modulo form} is used for performing arithmetic modulo @var{m}.
4542 For example, arithmetic involving time is generally done modulo 12
4543 or 24 hours.
4545 @smallexample
4546 @group
4547 1:  17 mod 24    1:  3 mod 24     1:  21 mod 24    1:  9 mod 24
4548     .                .                .                .
4550     17 M 24 @key{RET}      10 +             n                5 /
4551 @end group
4552 @end smallexample
4554 @noindent
4555 In this last step, Calc has divided by 5 modulo 24; i.e., it has found a
4556 new number which, when multiplied by 5 modulo 24, produces the original
4557 number, 21.  If @var{m} is prime and the divisor is not a multiple of
4558 @var{m}, it is always possible to find such a number.  For non-prime
4559 @var{m} like 24, it is only sometimes possible.
4561 @smallexample
4562 @group
4563 1:  10 mod 24    1:  16 mod 24    1:  1000000...   1:  16
4564     .                .                .                .
4566     10 M 24 @key{RET}      100 ^            10 @key{RET} 100 ^     24 %
4567 @end group
4568 @end smallexample
4570 @noindent
4571 These two calculations get the same answer, but the first one is
4572 much more efficient because it avoids the huge intermediate value
4573 that arises in the second one.
4575 @cindex Fermat, primality test of
4576 (@bullet{}) @strong{Exercise 10.}  A theorem of Pierre de Fermat
4577 says that
4578 @texline @math{x^{n-1} \bmod n = 1}
4579 @infoline @expr{x^(n-1) mod n = 1}
4580 if @expr{n} is a prime number and @expr{x} is an integer less than
4581 @expr{n}.  If @expr{n} is @emph{not} a prime number, this will
4582 @emph{not} be true for most values of @expr{x}.  Thus we can test
4583 informally if a number is prime by trying this formula for several
4584 values of @expr{x}.  Use this test to tell whether the following numbers
4585 are prime: 811749613, 15485863.  @xref{Types Answer 10, 10}. (@bullet{})
4587 It is possible to use HMS forms as parts of error forms, intervals,
4588 modulo forms, or as the phase part of a polar complex number.
4589 For example, the @code{calc-time} command pushes the current time
4590 of day on the stack as an HMS/modulo form.
4592 @smallexample
4593 @group
4594 1:  17@@ 34' 45" mod 24@@ 0' 0"     1:  6@@ 22' 15" mod 24@@ 0' 0"
4595     .                                 .
4597     x time @key{RET}                        n
4598 @end group
4599 @end smallexample
4601 @noindent
4602 This calculation tells me it is six hours and 22 minutes until midnight.
4604 (@bullet{}) @strong{Exercise 11.}  A rule of thumb is that one year
4605 is about
4606 @texline @math{\pi \times 10^7}
4607 @infoline @w{@expr{pi * 10^7}}
4608 seconds.  What time will it be that many seconds from right now?
4609 @xref{Types Answer 11, 11}. (@bullet{})
4611 (@bullet{}) @strong{Exercise 12.}  You are preparing to order packaging
4612 for the CD release of the Extended Disco Version of @emph{Abbey Road}.
4613 You are told that the songs will actually be anywhere from 20 to 60
4614 seconds longer than the originals.  One CD can hold about 75 minutes
4615 of music.  Should you order single or double packages?
4616 @xref{Types Answer 12, 12}. (@bullet{})
4618 Another kind of data the Calculator can manipulate is numbers with
4619 @dfn{units}.  This isn't strictly a new data type; it's simply an
4620 application of algebraic expressions, where we use variables with
4621 suggestive names like @samp{cm} and @samp{in} to represent units
4622 like centimeters and inches.
4624 @smallexample
4625 @group
4626 1:  2 in        1:  5.08 cm      1:  0.027778 fath   1:  0.0508 m
4627     .               .                .                   .
4629     ' 2in @key{RET}       u c cm @key{RET}       u c fath @key{RET}        u b
4630 @end group
4631 @end smallexample
4633 @noindent
4634 We enter the quantity ``2 inches'' (actually an algebraic expression
4635 which means two times the variable @samp{in}), then we convert it
4636 first to centimeters, then to fathoms, then finally to ``base'' units,
4637 which in this case means meters.
4639 @smallexample
4640 @group
4641 1:  9 acre     1:  3 sqrt(acre)   1:  190.84 m   1:  190.84 m + 30 cm
4642     .              .                  .              .
4644  ' 9 acre @key{RET}      Q                  u s            ' $+30 cm @key{RET}
4646 @end group
4647 @end smallexample
4648 @noindent
4649 @smallexample
4650 @group
4651 1:  191.14 m     1:  36536.3046 m^2    1:  365363046 cm^2
4652     .                .                     .
4654     u s              2 ^                   u c cgs
4655 @end group
4656 @end smallexample
4658 @noindent
4659 Since units expressions are really just formulas, taking the square
4660 root of @samp{acre} is undefined.  After all, @code{acre} might be an
4661 algebraic variable that you will someday assign a value.  We use the
4662 ``units-simplify'' command to simplify the expression with variables
4663 being interpreted as unit names.
4665 In the final step, we have converted not to a particular unit, but to a
4666 units system.  The ``cgs'' system uses centimeters instead of meters
4667 as its standard unit of length.
4669 There is a wide variety of units defined in the Calculator.
4671 @smallexample
4672 @group
4673 1:  55 mph     1:  88.5139 kph   1:   88.5139 km / hr   1:  8.201407e-8 c
4674     .              .                  .                     .
4676  ' 55 mph @key{RET}      u c kph @key{RET}        u c km/hr @key{RET}         u c c @key{RET}
4677 @end group
4678 @end smallexample
4680 @noindent
4681 We express a speed first in miles per hour, then in kilometers per
4682 hour, then again using a slightly more explicit notation, then
4683 finally in terms of fractions of the speed of light.
4685 Temperature conversions are a bit more tricky.  There are two ways to
4686 interpret ``20 degrees Fahrenheit''---it could mean an actual
4687 temperature, or it could mean a change in temperature.  For normal
4688 units there is no difference, but temperature units have an offset
4689 as well as a scale factor and so there must be two explicit commands
4690 for them.
4692 @smallexample
4693 @group
4694 1:  20 degF       1:  11.1111 degC     1:  -6.666 degC
4695     .                 .                    .                 .
4697   ' 20 degF @key{RET}       u c degC @key{RET}         U u t degC @key{RET}
4698 @end group
4699 @end smallexample
4701 @noindent
4702 First we convert a change of 20 degrees Fahrenheit into an equivalent
4703 change in degrees Celsius (or Centigrade).  Then, we convert the
4704 absolute temperature 20 degrees Fahrenheit into Celsius.
4706 For simple unit conversions, you can put a plain number on the stack.
4707 Then @kbd{u c} and @kbd{u t} will prompt for both old and new units.
4708 When you use this method, you're responsible for remembering which
4709 numbers are in which units:
4711 @smallexample
4712 @group
4713 1:  55         1:  88.5139              1:  8.201407e-8
4714     .              .                        .
4716     55             u c mph @key{RET} kph @key{RET}      u c km/hr @key{RET} c @key{RET}
4717 @end group
4718 @end smallexample
4720 To see a complete list of built-in units, type @kbd{u v}.  Press
4721 @w{@kbd{C-x * c}} again to re-enter the Calculator when you're done looking
4722 at the units table.
4724 (@bullet{}) @strong{Exercise 13.}  How many seconds are there really
4725 in a year?  @xref{Types Answer 13, 13}. (@bullet{})
4727 @cindex Speed of light
4728 (@bullet{}) @strong{Exercise 14.}  Supercomputer designs are limited by
4729 the speed of light (and of electricity, which is nearly as fast).
4730 Suppose a computer has a 4.1 ns (nanosecond) clock cycle, and its
4731 cabinet is one meter across.  Is speed of light going to be a
4732 significant factor in its design?  @xref{Types Answer 14, 14}. (@bullet{})
4734 (@bullet{}) @strong{Exercise 15.}  Sam the Slug normally travels about
4735 five yards in an hour.  He has obtained a supply of Power Pills; each
4736 Power Pill he eats doubles his speed.  How many Power Pills can he
4737 swallow and still travel legally on most US highways?
4738 @xref{Types Answer 15, 15}. (@bullet{})
4740 @node Algebra Tutorial, Programming Tutorial, Types Tutorial, Tutorial
4741 @section Algebra and Calculus Tutorial
4743 @noindent
4744 This section shows how to use Calc's algebra facilities to solve
4745 equations, do simple calculus problems, and manipulate algebraic
4746 formulas.
4748 @menu
4749 * Basic Algebra Tutorial::
4750 * Rewrites Tutorial::
4751 @end menu
4753 @node Basic Algebra Tutorial, Rewrites Tutorial, Algebra Tutorial, Algebra Tutorial
4754 @subsection Basic Algebra
4756 @noindent
4757 If you enter a formula in Algebraic mode that refers to variables,
4758 the formula itself is pushed onto the stack.  You can manipulate
4759 formulas as regular data objects.
4761 @smallexample
4762 @group
4763 1:  2 x^2 - 6       1:  6 - 2 x^2       1:  (3 x^2 + y) (6 - 2 x^2)
4764     .                   .                   .
4766     ' 2x^2-6 @key{RET}        n                   ' 3x^2+y @key{RET} *
4767 @end group
4768 @end smallexample
4770 (@bullet{}) @strong{Exercise 1.}  Do @kbd{' x @key{RET} Q 2 ^} and
4771 @kbd{' x @key{RET} 2 ^ Q} both wind up with the same result (@samp{x})?
4772 Why or why not?  @xref{Algebra Answer 1, 1}. (@bullet{})
4774 There are also commands for doing common algebraic operations on
4775 formulas.  Continuing with the formula from the last example,
4777 @smallexample
4778 @group
4779 1:  18 x^2 - 6 x^4 + 6 y - 2 y x^2    1:  (18 - 2 y) x^2 - 6 x^4 + 6 y
4780     .                                     .
4782     a x                                   a c x @key{RET}
4783 @end group
4784 @end smallexample
4786 @noindent
4787 First we ``expand'' using the distributive law, then we ``collect''
4788 terms involving like powers of @expr{x}.
4790 Let's find the value of this expression when @expr{x} is 2 and @expr{y}
4791 is one-half.
4793 @smallexample
4794 @group
4795 1:  17 x^2 - 6 x^4 + 3      1:  -25
4796     .                           .
4798     1:2 s l y @key{RET}               2 s l x @key{RET}
4799 @end group
4800 @end smallexample
4802 @noindent
4803 The @kbd{s l} command means ``let''; it takes a number from the top of
4804 the stack and temporarily assigns it as the value of the variable
4805 you specify.  It then evaluates (as if by the @kbd{=} key) the
4806 next expression on the stack.  After this command, the variable goes
4807 back to its original value, if any.
4809 (An earlier exercise in this tutorial involved storing a value in the
4810 variable @code{x}; if this value is still there, you will have to
4811 unstore it with @kbd{s u x @key{RET}} before the above example will work
4812 properly.)
4814 @cindex Maximum of a function using Calculus
4815 Let's find the maximum value of our original expression when @expr{y}
4816 is one-half and @expr{x} ranges over all possible values.  We can
4817 do this by taking the derivative with respect to @expr{x} and examining
4818 values of @expr{x} for which the derivative is zero.  If the second
4819 derivative of the function at that value of @expr{x} is negative,
4820 the function has a local maximum there.
4822 @smallexample
4823 @group
4824 1:  17 x^2 - 6 x^4 + 3      1:  34 x - 24 x^3
4825     .                           .
4827     U @key{DEL}  s 1                  a d x @key{RET}   s 2
4828 @end group
4829 @end smallexample
4831 @noindent
4832 Well, the derivative is clearly zero when @expr{x} is zero.  To find
4833 the other root(s), let's divide through by @expr{x} and then solve:
4835 @smallexample
4836 @group
4837 1:  (34 x - 24 x^3) / x    1:  34 - 24 x^2
4838     .                          .
4840     ' x @key{RET} /                  a x
4842 @end group
4843 @end smallexample
4844 @noindent
4845 @smallexample
4846 @group
4847 1:  0.70588 x^2 = 1        1:  x = 1.19023
4848     .                          .
4850     0 a =  s 3                 a S x @key{RET}
4851 @end group
4852 @end smallexample
4854 @noindent
4855 Now we compute the second derivative and plug in our values of @expr{x}:
4857 @smallexample
4858 @group
4859 1:  1.19023        2:  1.19023         2:  1.19023
4860     .              1:  34 x - 24 x^3   1:  34 - 72 x^2
4861                        .                   .
4863     a .                r 2                 a d x @key{RET} s 4
4864 @end group
4865 @end smallexample
4867 @noindent
4868 (The @kbd{a .} command extracts just the righthand side of an equation.
4869 Another method would have been to use @kbd{v u} to unpack the equation
4870 @w{@samp{x = 1.19}} to @samp{x} and @samp{1.19}, then use @kbd{M-- M-2 @key{DEL}}
4871 to delete the @samp{x}.)
4873 @smallexample
4874 @group
4875 2:  34 - 72 x^2   1:  -68.         2:  34 - 72 x^2     1:  34
4876 1:  1.19023           .            1:  0                   .
4877     .                                  .
4879     @key{TAB}               s l x @key{RET}        U @key{DEL} 0             s l x @key{RET}
4880 @end group
4881 @end smallexample
4883 @noindent
4884 The first of these second derivatives is negative, so we know the function
4885 has a maximum value at @expr{x = 1.19023}.  (The function also has a
4886 local @emph{minimum} at @expr{x = 0}.)
4888 When we solved for @expr{x}, we got only one value even though
4889 @expr{0.70588 x^2 = 1} is a quadratic equation that ought to have
4890 two solutions.  The reason is that @w{@kbd{a S}} normally returns a
4891 single ``principal'' solution.  If it needs to come up with an
4892 arbitrary sign (as occurs in the quadratic formula) it picks @expr{+}.
4893 If it needs an arbitrary integer, it picks zero.  We can get a full
4894 solution by pressing @kbd{H} (the Hyperbolic flag) before @kbd{a S}.
4896 @smallexample
4897 @group
4898 1:  0.70588 x^2 = 1    1:  x = 1.19023 s1      1:  x = -1.19023
4899     .                      .                       .
4901     r 3                    H a S x @key{RET}  s 5        1 n  s l s1 @key{RET}
4902 @end group
4903 @end smallexample
4905 @noindent
4906 Calc has invented the variable @samp{s1} to represent an unknown sign;
4907 it is supposed to be either @mathit{+1} or @mathit{-1}.  Here we have used
4908 the ``let'' command to evaluate the expression when the sign is negative.
4909 If we plugged this into our second derivative we would get the same,
4910 negative, answer, so @expr{x = -1.19023} is also a maximum.
4912 To find the actual maximum value, we must plug our two values of @expr{x}
4913 into the original formula.
4915 @smallexample
4916 @group
4917 2:  17 x^2 - 6 x^4 + 3    1:  24.08333 s1^2 - 12.04166 s1^4 + 3
4918 1:  x = 1.19023 s1            .
4919     .
4921     r 1 r 5                   s l @key{RET}
4922 @end group
4923 @end smallexample
4925 @noindent
4926 (Here we see another way to use @kbd{s l}; if its input is an equation
4927 with a variable on the lefthand side, then @kbd{s l} treats the equation
4928 like an assignment to that variable if you don't give a variable name.)
4930 It's clear that this will have the same value for either sign of
4931 @code{s1}, but let's work it out anyway, just for the exercise:
4933 @smallexample
4934 @group
4935 2:  [-1, 1]              1:  [15.04166, 15.04166]
4936 1:  24.08333 s1^2 ...        .
4937     .
4939   [ 1 n , 1 ] @key{TAB}            V M $ @key{RET}
4940 @end group
4941 @end smallexample
4943 @noindent
4944 Here we have used a vector mapping operation to evaluate the function
4945 at several values of @samp{s1} at once.  @kbd{V M $} is like @kbd{V M '}
4946 except that it takes the formula from the top of the stack.  The
4947 formula is interpreted as a function to apply across the vector at the
4948 next-to-top stack level.  Since a formula on the stack can't contain
4949 @samp{$} signs, Calc assumes the variables in the formula stand for
4950 different arguments.  It prompts you for an @dfn{argument list}, giving
4951 the list of all variables in the formula in alphabetical order as the
4952 default list.  In this case the default is @samp{(s1)}, which is just
4953 what we want so we simply press @key{RET} at the prompt.
4955 If there had been several different values, we could have used
4956 @w{@kbd{V R X}} to find the global maximum.
4958 Calc has a built-in @kbd{a P} command that solves an equation using
4959 @w{@kbd{H a S}} and returns a vector of all the solutions.  It simply
4960 automates the job we just did by hand.  Applied to our original
4961 cubic polynomial, it would produce the vector of solutions
4962 @expr{[1.19023, -1.19023, 0]}.  (There is also an @kbd{a X} command
4963 which finds a local maximum of a function.  It uses a numerical search
4964 method rather than examining the derivatives, and thus requires you
4965 to provide some kind of initial guess to show it where to look.)
4967 (@bullet{}) @strong{Exercise 2.}  Given a vector of the roots of a
4968 polynomial (such as the output of an @kbd{a P} command), what
4969 sequence of commands would you use to reconstruct the original
4970 polynomial?  (The answer will be unique to within a constant
4971 multiple; choose the solution where the leading coefficient is one.)
4972 @xref{Algebra Answer 2, 2}. (@bullet{})
4974 The @kbd{m s} command enables Symbolic mode, in which formulas
4975 like @samp{sqrt(5)} that can't be evaluated exactly are left in
4976 symbolic form rather than giving a floating-point approximate answer.
4977 Fraction mode (@kbd{m f}) is also useful when doing algebra.
4979 @smallexample
4980 @group
4981 2:  34 x - 24 x^3        2:  34 x - 24 x^3
4982 1:  34 x - 24 x^3        1:  [sqrt(51) / 6, sqrt(51) / -6, 0]
4983     .                        .
4985     r 2  @key{RET}     m s  m f    a P x @key{RET}
4986 @end group
4987 @end smallexample
4989 One more mode that makes reading formulas easier is Big mode.
4991 @smallexample
4992 @group
4993                3
4994 2:  34 x - 24 x
4996       ____   ____
4997      V 51   V 51
4998 1:  [-----, -----, 0]
4999        6     -6
5001     .
5003     d B
5004 @end group
5005 @end smallexample
5007 Here things like powers, square roots, and quotients and fractions
5008 are displayed in a two-dimensional pictorial form.  Calc has other
5009 language modes as well, such as C mode, FORTRAN mode, @TeX{} mode
5010 and @LaTeX{} mode.
5012 @smallexample
5013 @group
5014 2:  34*x - 24*pow(x, 3)               2:  34*x - 24*x**3
5015 1:  @{sqrt(51) / 6, sqrt(51) / -6, 0@}  1:  /sqrt(51) / 6, sqrt(51) / -6, 0/
5016     .                                     .
5018     d C                                   d F
5020 @end group
5021 @end smallexample
5022 @noindent
5023 @smallexample
5024 @group
5025 3:  34 x - 24 x^3
5026 2:  [@{\sqrt@{51@} \over 6@}, @{\sqrt@{51@} \over -6@}, 0]
5027 1:  @{2 \over 3@} \sqrt@{5@}
5028     .
5030     d T   ' 2 \sqrt@{5@} \over 3 @key{RET}
5031 @end group
5032 @end smallexample
5034 @noindent
5035 As you can see, language modes affect both entry and display of
5036 formulas.  They affect such things as the names used for built-in
5037 functions, the set of arithmetic operators and their precedences,
5038 and notations for vectors and matrices.
5040 Notice that @samp{sqrt(51)} may cause problems with older
5041 implementations of C and FORTRAN, which would require something more
5042 like @samp{sqrt(51.0)}.  It is always wise to check over the formulas
5043 produced by the various language modes to make sure they are fully
5044 correct.
5046 Type @kbd{m s}, @kbd{m f}, and @kbd{d N} to reset these modes.  (You
5047 may prefer to remain in Big mode, but all the examples in the tutorial
5048 are shown in normal mode.)
5050 @cindex Area under a curve
5051 What is the area under the portion of this curve from @expr{x = 1} to @expr{2}?
5052 This is simply the integral of the function:
5054 @smallexample
5055 @group
5056 1:  17 x^2 - 6 x^4 + 3     1:  5.6666 x^3 - 1.2 x^5 + 3 x
5057     .                          .
5059     r 1                        a i x
5060 @end group
5061 @end smallexample
5063 @noindent
5064 We want to evaluate this at our two values for @expr{x} and subtract.
5065 One way to do it is again with vector mapping and reduction:
5067 @smallexample
5068 @group
5069 2:  [2, 1]            1:  [12.93333, 7.46666]    1:  5.46666
5070 1:  5.6666 x^3 ...        .                          .
5072    [ 2 , 1 ] @key{TAB}          V M $ @key{RET}                  V R -
5073 @end group
5074 @end smallexample
5076 (@bullet{}) @strong{Exercise 3.}  Find the integral from 1 to @expr{y}
5078 @texline @math{x \sin \pi x}
5079 @infoline @w{@expr{x sin(pi x)}}
5080 (where the sine is calculated in radians).  Find the values of the
5081 integral for integers @expr{y} from 1 to 5.  @xref{Algebra Answer 3,
5082 3}. (@bullet{})
5084 Calc's integrator can do many simple integrals symbolically, but many
5085 others are beyond its capabilities.  Suppose we wish to find the area
5086 under the curve
5087 @texline @math{\sin x \ln x}
5088 @infoline @expr{sin(x) ln(x)}
5089 over the same range of @expr{x}.  If you entered this formula and typed
5090 @kbd{a i x @key{RET}} (don't bother to try this), Calc would work for a
5091 long time but would be unable to find a solution.  In fact, there is no
5092 closed-form solution to this integral.  Now what do we do?
5094 @cindex Integration, numerical
5095 @cindex Numerical integration
5096 One approach would be to do the integral numerically.  It is not hard
5097 to do this by hand using vector mapping and reduction.  It is rather
5098 slow, though, since the sine and logarithm functions take a long time.
5099 We can save some time by reducing the working precision.
5101 @smallexample
5102 @group
5103 3:  10                  1:  [1, 1.1, 1.2,  ...  , 1.8, 1.9]
5104 2:  1                       .
5105 1:  0.1
5106     .
5108  10 @key{RET} 1 @key{RET} .1 @key{RET}        C-u v x
5109 @end group
5110 @end smallexample
5112 @noindent
5113 (Note that we have used the extended version of @kbd{v x}; we could
5114 also have used plain @kbd{v x} as follows:  @kbd{v x 10 @key{RET} 9 + .1 *}.)
5116 @smallexample
5117 @group
5118 2:  [1, 1.1, ... ]              1:  [0., 0.084941, 0.16993, ... ]
5119 1:  ln(x) sin(x)                    .
5120     .
5122     ' sin(x) ln(x) @key{RET}  s 1    m r  p 5 @key{RET}   V M $ @key{RET}
5124 @end group
5125 @end smallexample
5126 @noindent
5127 @smallexample
5128 @group
5129 1:  3.4195     0.34195
5130     .          .
5132     V R +      0.1 *
5133 @end group
5134 @end smallexample
5136 @noindent
5137 (If you got wildly different results, did you remember to switch
5138 to Radians mode?)
5140 Here we have divided the curve into ten segments of equal width;
5141 approximating these segments as rectangular boxes (i.e., assuming
5142 the curve is nearly flat at that resolution), we compute the areas
5143 of the boxes (height times width), then sum the areas.  (It is
5144 faster to sum first, then multiply by the width, since the width
5145 is the same for every box.)
5147 The true value of this integral turns out to be about 0.374, so
5148 we're not doing too well.  Let's try another approach.
5150 @smallexample
5151 @group
5152 1:  ln(x) sin(x)    1:  0.84147 x + 0.11957 (x - 1)^2 - ...
5153     .                   .
5155     r 1                 a t x=1 @key{RET} 4 @key{RET}
5156 @end group
5157 @end smallexample
5159 @noindent
5160 Here we have computed the Taylor series expansion of the function
5161 about the point @expr{x=1}.  We can now integrate this polynomial
5162 approximation, since polynomials are easy to integrate.
5164 @smallexample
5165 @group
5166 1:  0.42074 x^2 + ...    1:  [-0.0446, -0.42073]      1:  0.3761
5167     .                        .                            .
5169     a i x @key{RET}            [ 2 , 1 ] @key{TAB}  V M $ @key{RET}         V R -
5170 @end group
5171 @end smallexample
5173 @noindent
5174 Better!  By increasing the precision and/or asking for more terms
5175 in the Taylor series, we can get a result as accurate as we like.
5176 (Taylor series converge better away from singularities in the
5177 function such as the one at @code{ln(0)}, so it would also help to
5178 expand the series about the points @expr{x=2} or @expr{x=1.5} instead
5179 of @expr{x=1}.)
5181 @cindex Simpson's rule
5182 @cindex Integration by Simpson's rule
5183 (@bullet{}) @strong{Exercise 4.}  Our first method approximated the
5184 curve by stairsteps of width 0.1; the total area was then the sum
5185 of the areas of the rectangles under these stairsteps.  Our second
5186 method approximated the function by a polynomial, which turned out
5187 to be a better approximation than stairsteps.  A third method is
5188 @dfn{Simpson's rule}, which is like the stairstep method except
5189 that the steps are not required to be flat.  Simpson's rule boils
5190 down to the formula,
5192 @ifnottex
5193 @example
5194 (h/3) * (f(a) + 4 f(a+h) + 2 f(a+2h) + 4 f(a+3h) + ...
5195               + 2 f(a+(n-2)*h) + 4 f(a+(n-1)*h) + f(a+n*h))
5196 @end example
5197 @end ifnottex
5198 @tex
5199 \beforedisplay
5200 $$ \displaylines{
5201       \qquad {h \over 3} (f(a) + 4 f(a+h) + 2 f(a+2h) + 4 f(a+3h) + \cdots
5202    \hfill \cr \hfill    {} + 2 f(a+(n-2)h) + 4 f(a+(n-1)h) + f(a+n h)) \qquad
5203 } $$
5204 \afterdisplay
5205 @end tex
5207 @noindent
5208 where @expr{n} (which must be even) is the number of slices and @expr{h}
5209 is the width of each slice.  These are 10 and 0.1 in our example.
5210 For reference, here is the corresponding formula for the stairstep
5211 method:
5213 @ifnottex
5214 @example
5215 h * (f(a) + f(a+h) + f(a+2h) + f(a+3h) + ...
5216           + f(a+(n-2)*h) + f(a+(n-1)*h))
5217 @end example
5218 @end ifnottex
5219 @tex
5220 \beforedisplay
5221 $$ h (f(a) + f(a+h) + f(a+2h) + f(a+3h) + \cdots
5222            + f(a+(n-2)h) + f(a+(n-1)h)) $$
5223 \afterdisplay
5224 @end tex
5226 Compute the integral from 1 to 2 of
5227 @texline @math{\sin x \ln x}
5228 @infoline @expr{sin(x) ln(x)}
5229 using Simpson's rule with 10 slices.
5230 @xref{Algebra Answer 4, 4}. (@bullet{})
5232 Calc has a built-in @kbd{a I} command for doing numerical integration.
5233 It uses @dfn{Romberg's method}, which is a more sophisticated cousin
5234 of Simpson's rule.  In particular, it knows how to keep refining the
5235 result until the current precision is satisfied.
5237 @c [fix-ref Selecting Sub-Formulas]
5238 Aside from the commands we've seen so far, Calc also provides a
5239 large set of commands for operating on parts of formulas.  You
5240 indicate the desired sub-formula by placing the cursor on any part
5241 of the formula before giving a @dfn{selection} command.  Selections won't
5242 be covered in the tutorial; @pxref{Selecting Subformulas}, for
5243 details and examples.
5245 @c hard exercise: simplify (2^(n r) - 2^(r*(n - 1))) / (2^r - 1) 2^(n - 1)
5246 @c                to 2^((n-1)*(r-1)).
5248 @node Rewrites Tutorial,  , Basic Algebra Tutorial, Algebra Tutorial
5249 @subsection Rewrite Rules
5251 @noindent
5252 No matter how many built-in commands Calc provided for doing algebra,
5253 there would always be something you wanted to do that Calc didn't have
5254 in its repertoire.  So Calc also provides a @dfn{rewrite rule} system
5255 that you can use to define your own algebraic manipulations.
5257 Suppose we want to simplify this trigonometric formula:
5259 @smallexample
5260 @group
5261 1:  2 sec(x)^2 / tan(x)^2 - 2 / tan(x)^2
5262     .
5264     ' 2sec(x)^2/tan(x)^2 - 2/tan(x)^2 @key{RET}   s 1
5265 @end group
5266 @end smallexample
5268 @noindent
5269 If we were simplifying this by hand, we'd probably combine over the common
5270 denominator.  The @kbd{a n} algebra command will do this, but we'll do
5271 it with a rewrite rule just for practice.
5273 Rewrite rules are written with the @samp{:=} symbol.
5275 @smallexample
5276 @group
5277 1:  (2 sec(x)^2 - 2) / tan(x)^2
5278     .
5280     a r a/x + b/x := (a+b)/x @key{RET}
5281 @end group
5282 @end smallexample
5284 @noindent
5285 (The ``assignment operator'' @samp{:=} has several uses in Calc.  All
5286 by itself the formula @samp{a/x + b/x := (a+b)/x} doesn't do anything,
5287 but when it is given to the @kbd{a r} command, that command interprets
5288 it as a rewrite rule.)
5290 The lefthand side, @samp{a/x + b/x}, is called the @dfn{pattern} of the
5291 rewrite rule.  Calc searches the formula on the stack for parts that
5292 match the pattern.  Variables in a rewrite pattern are called
5293 @dfn{meta-variables}, and when matching the pattern each meta-variable
5294 can match any sub-formula.  Here, the meta-variable @samp{a} matched
5295 the expression @samp{2 sec(x)^2}, the meta-variable @samp{b} matched
5296 the constant @samp{-2} and the meta-variable @samp{x} matched
5297 the expression @samp{tan(x)^2}.
5299 This rule points out several interesting features of rewrite patterns.
5300 First, if a meta-variable appears several times in a pattern, it must
5301 match the same thing everywhere.  This rule detects common denominators
5302 because the same meta-variable @samp{x} is used in both of the
5303 denominators.
5305 Second, meta-variable names are independent from variables in the
5306 target formula.  Notice that the meta-variable @samp{x} here matches
5307 the subformula @samp{tan(x)^2}; Calc never confuses the two meanings of
5308 @samp{x}.
5310 And third, rewrite patterns know a little bit about the algebraic
5311 properties of formulas.  The pattern called for a sum of two quotients;
5312 Calc was able to match a difference of two quotients by matching
5313 @samp{a = 2 sec(x)^2}, @samp{b = -2}, and @samp{x = tan(x)^2}.
5315 When the pattern part of a rewrite rule matches a part of the formula,
5316 that part is replaced by the righthand side with all the meta-variables
5317 substituted with the things they matched.  So the result is
5318 @samp{(2 sec(x)^2 - 2) / tan(x)^2}.
5320 @c [fix-ref Algebraic Properties of Rewrite Rules]
5321 We could just as easily have written @samp{a/x - b/x := (a-b)/x} for
5322 the rule.  It would have worked just the same in all cases.  (If we
5323 really wanted the rule to apply only to @samp{+} or only to @samp{-},
5324 we could have used the @code{plain} symbol.  @xref{Algebraic Properties
5325 of Rewrite Rules}, for some examples of this.)
5327 One more rewrite will complete the job.  We want to use the identity
5328 @samp{tan(x)^2 + 1 = sec(x)^2}, but of course we must first rearrange
5329 the identity in a way that matches our formula.  The obvious rule
5330 would be @samp{@w{2 sec(x)^2 - 2} := 2 tan(x)^2}, but a little thought shows
5331 that the rule @samp{sec(x)^2 := 1 + tan(x)^2} will also work.  The
5332 latter rule has a more general pattern so it will work in many other
5333 situations, too.
5335 @smallexample
5336 @group
5337 1:  2
5338     .
5340     a r sec(x)^2 := 1 + tan(x)^2 @key{RET}
5341 @end group
5342 @end smallexample
5344 You may ask, what's the point of using the most general rule if you
5345 have to type it in every time anyway?  The answer is that Calc allows
5346 you to store a rewrite rule in a variable, then give the variable
5347 name in the @kbd{a r} command.  In fact, this is the preferred way to
5348 use rewrites.  For one, if you need a rule once you'll most likely
5349 need it again later.  Also, if the rule doesn't work quite right you
5350 can simply Undo, edit the variable, and run the rule again without
5351 having to retype it.
5353 @smallexample
5354 @group
5355 ' a/x + b/x := (a+b)/x @key{RET}          s t merge @key{RET}
5356 ' sec(x)^2 := 1 + tan(x)^2 @key{RET}      s t secsqr @key{RET}
5358 1:  2 sec(x)^2 / tan(x)^2 - 2 / tan(x)^2    1:  2
5359     .                                  .
5361     r 1                  a r merge @key{RET}  a r secsqr @key{RET}
5362 @end group
5363 @end smallexample
5365 To edit a variable, type @kbd{s e} and the variable name, use regular
5366 Emacs editing commands as necessary, then type @kbd{C-c C-c} to store
5367 the edited value back into the variable.
5368 You can also use @w{@kbd{s e}} to create a new variable if you wish.
5370 Notice that the first time you use each rule, Calc puts up a ``compiling''
5371 message briefly.  The pattern matcher converts rules into a special
5372 optimized pattern-matching language rather than using them directly.
5373 This allows @kbd{a r} to apply even rather complicated rules very
5374 efficiently.  If the rule is stored in a variable, Calc compiles it
5375 only once and stores the compiled form along with the variable.  That's
5376 another good reason to store your rules in variables rather than
5377 entering them on the fly.
5379 (@bullet{}) @strong{Exercise 1.}  Type @kbd{m s} to get Symbolic
5380 mode, then enter the formula @samp{@w{(2 + sqrt(2))} / @w{(1 + sqrt(2))}}.
5381 Using a rewrite rule, simplify this formula by multiplying the top and
5382 bottom by the conjugate @w{@samp{1 - sqrt(2)}}.  The result will have
5383 to be expanded by the distributive law; do this with another
5384 rewrite.  @xref{Rewrites Answer 1, 1}. (@bullet{})
5386 The @kbd{a r} command can also accept a vector of rewrite rules, or
5387 a variable containing a vector of rules.
5389 @smallexample
5390 @group
5391 1:  [merge, secsqr]          1:  [a/x + b/x := (a + b)/x, ... ]
5392     .                                 .
5394     ' [merge,sinsqr] @key{RET}          =
5396 @end group
5397 @end smallexample
5398 @noindent
5399 @smallexample
5400 @group
5401 1:  2 sec(x)^2 / tan(x)^2 - 2 / tan(x)^2     1:  2
5402     .                                 .
5404     s t trig @key{RET}  r 1                  a r trig @key{RET}
5405 @end group
5406 @end smallexample
5408 @c [fix-ref Nested Formulas with Rewrite Rules]
5409 Calc tries all the rules you give against all parts of the formula,
5410 repeating until no further change is possible.  (The exact order in
5411 which things are tried is rather complex, but for simple rules like
5412 the ones we've used here the order doesn't really matter.
5413 @xref{Nested Formulas with Rewrite Rules}.)
5415 Calc actually repeats only up to 100 times, just in case your rule set
5416 has gotten into an infinite loop.  You can give a numeric prefix argument
5417 to @kbd{a r} to specify any limit.  In particular, @kbd{M-1 a r} does
5418 only one rewrite at a time.
5420 @smallexample
5421 @group
5422 1:  (2 sec(x)^2 - 2) / tan(x)^2         1:  2
5423     .                                       .
5425     r 1  M-1 a r trig @key{RET}                   M-1 a r trig @key{RET}
5426 @end group
5427 @end smallexample
5429 You can type @kbd{M-0 a r} if you want no limit at all on the number
5430 of rewrites that occur.
5432 Rewrite rules can also be @dfn{conditional}.  Simply follow the rule
5433 with a @samp{::} symbol and the desired condition.  For example,
5435 @smallexample
5436 @group
5437 1:  sin(x + 2 pi) + sin(x + 3 pi) + sin(x + 4 pi)
5438     .
5440     ' sin(x+2pi) + sin(x+3pi) + sin(x+4pi) @key{RET}
5442 @end group
5443 @end smallexample
5444 @noindent
5445 @smallexample
5446 @group
5447 1:  sin(x + 3 pi) + 2 sin(x)
5448     .
5450     a r sin(a + k pi) := sin(a) :: k % 2 = 0 @key{RET}
5451 @end group
5452 @end smallexample
5454 @noindent
5455 (Recall, @samp{k % 2} is the remainder from dividing @samp{k} by 2,
5456 which will be zero only when @samp{k} is an even integer.)
5458 An interesting point is that the variable @samp{pi} was matched
5459 literally rather than acting as a meta-variable.
5460 This is because it is a special-constant variable.  The special
5461 constants @samp{e}, @samp{i}, @samp{phi}, and so on also match literally.
5462 A common error with rewrite
5463 rules is to write, say, @samp{f(a,b,c,d,e) := g(a+b+c+d+e)}, expecting
5464 to match any @samp{f} with five arguments but in fact matching
5465 only when the fifth argument is literally @samp{e}!
5467 @cindex Fibonacci numbers
5468 @ignore
5469 @starindex
5470 @end ignore
5471 @tindex fib
5472 Rewrite rules provide an interesting way to define your own functions.
5473 Suppose we want to define @samp{fib(n)} to produce the @var{n}th
5474 Fibonacci number.  The first two Fibonacci numbers are each 1;
5475 later numbers are formed by summing the two preceding numbers in
5476 the sequence.  This is easy to express in a set of three rules:
5478 @smallexample
5479 @group
5480 ' [fib(1) := 1, fib(2) := 1, fib(n) := fib(n-1) + fib(n-2)] @key{RET}  s t fib
5482 1:  fib(7)               1:  13
5483     .                        .
5485     ' fib(7) @key{RET}             a r fib @key{RET}
5486 @end group
5487 @end smallexample
5489 One thing that is guaranteed about the order that rewrites are tried
5490 is that, for any given subformula, earlier rules in the rule set will
5491 be tried for that subformula before later ones.  So even though the
5492 first and third rules both match @samp{fib(1)}, we know the first will
5493 be used preferentially.
5495 This rule set has one dangerous bug:  Suppose we apply it to the
5496 formula @samp{fib(x)}?  (Don't actually try this.)  The third rule
5497 will match @samp{fib(x)} and replace it with @w{@samp{fib(x-1) + fib(x-2)}}.
5498 Each of these will then be replaced to get @samp{fib(x-2) + 2 fib(x-3) +
5499 fib(x-4)}, and so on, expanding forever.  What we really want is to apply
5500 the third rule only when @samp{n} is an integer greater than two.  Type
5501 @w{@kbd{s e fib @key{RET}}}, then edit the third rule to:
5503 @smallexample
5504 fib(n) := fib(n-1) + fib(n-2) :: integer(n) :: n > 2
5505 @end smallexample
5507 @noindent
5508 Now:
5510 @smallexample
5511 @group
5512 1:  fib(6) + fib(x) + fib(0)      1:  fib(x) + fib(0) + 8
5513     .                                 .
5515     ' fib(6)+fib(x)+fib(0) @key{RET}        a r fib @key{RET}
5516 @end group
5517 @end smallexample
5519 @noindent
5520 We've created a new function, @code{fib}, and a new command,
5521 @w{@kbd{a r fib @key{RET}}}, which means ``evaluate all @code{fib} calls in
5522 this formula.''  To make things easier still, we can tell Calc to
5523 apply these rules automatically by storing them in the special
5524 variable @code{EvalRules}.
5526 @smallexample
5527 @group
5528 1:  [fib(1) := ...]    .                1:  [8, 13]
5529     .                                       .
5531     s r fib @key{RET}        s t EvalRules @key{RET}    ' [fib(6), fib(7)] @key{RET}
5532 @end group
5533 @end smallexample
5535 It turns out that this rule set has the problem that it does far
5536 more work than it needs to when @samp{n} is large.  Consider the
5537 first few steps of the computation of @samp{fib(6)}:
5539 @smallexample
5540 @group
5541 fib(6) =
5542 fib(5)              +               fib(4) =
5543 fib(4)     +      fib(3)     +      fib(3)     +      fib(2) =
5544 fib(3) + fib(2) + fib(2) + fib(1) + fib(2) + fib(1) + 1 = ...
5545 @end group
5546 @end smallexample
5548 @noindent
5549 Note that @samp{fib(3)} appears three times here.  Unless Calc's
5550 algebraic simplifier notices the multiple @samp{fib(3)}s and combines
5551 them (and, as it happens, it doesn't), this rule set does lots of
5552 needless recomputation.  To cure the problem, type @code{s e EvalRules}
5553 to edit the rules (or just @kbd{s E}, a shorthand command for editing
5554 @code{EvalRules}) and add another condition:
5556 @smallexample
5557 fib(n) := fib(n-1) + fib(n-2) :: integer(n) :: n > 2 :: remember
5558 @end smallexample
5560 @noindent
5561 If a @samp{:: remember} condition appears anywhere in a rule, then if
5562 that rule succeeds Calc will add another rule that describes that match
5563 to the front of the rule set.  (Remembering works in any rule set, but
5564 for technical reasons it is most effective in @code{EvalRules}.)  For
5565 example, if the rule rewrites @samp{fib(7)} to something that evaluates
5566 to 13, then the rule @samp{fib(7) := 13} will be added to the rule set.
5568 Type @kbd{' fib(8) @key{RET}} to compute the eighth Fibonacci number, then
5569 type @kbd{s E} again to see what has happened to the rule set.
5571 With the @code{remember} feature, our rule set can now compute
5572 @samp{fib(@var{n})} in just @var{n} steps.  In the process it builds
5573 up a table of all Fibonacci numbers up to @var{n}.  After we have
5574 computed the result for a particular @var{n}, we can get it back
5575 (and the results for all smaller @var{n}) later in just one step.
5577 All Calc operations will run somewhat slower whenever @code{EvalRules}
5578 contains any rules.  You should type @kbd{s u EvalRules @key{RET}} now to
5579 un-store the variable.
5581 (@bullet{}) @strong{Exercise 2.}  Sometimes it is possible to reformulate
5582 a problem to reduce the amount of recursion necessary to solve it.
5583 Create a rule that, in about @var{n} simple steps and without recourse
5584 to the @code{remember} option, replaces @samp{fib(@var{n}, 1, 1)} with
5585 @samp{fib(1, @var{x}, @var{y})} where @var{x} and @var{y} are the
5586 @var{n}th and @var{n+1}st Fibonacci numbers, respectively.  This rule is
5587 rather clunky to use, so add a couple more rules to make the ``user
5588 interface'' the same as for our first version: enter @samp{fib(@var{n})},
5589 get back a plain number.  @xref{Rewrites Answer 2, 2}. (@bullet{})
5591 There are many more things that rewrites can do.  For example, there
5592 are @samp{&&&} and @samp{|||} pattern operators that create ``and''
5593 and ``or'' combinations of rules.  As one really simple example, we
5594 could combine our first two Fibonacci rules thusly:
5596 @example
5597 [fib(1 ||| 2) := 1, fib(n) := ... ]
5598 @end example
5600 @noindent
5601 That means ``@code{fib} of something matching either 1 or 2 rewrites
5602 to 1.''
5604 You can also make meta-variables optional by enclosing them in @code{opt}.
5605 For example, the pattern @samp{a + b x} matches @samp{2 + 3 x} but not
5606 @samp{2 + x} or @samp{3 x} or @samp{x}.  The pattern @samp{opt(a) + opt(b) x}
5607 matches all of these forms, filling in a default of zero for @samp{a}
5608 and one for @samp{b}.
5610 (@bullet{}) @strong{Exercise 3.}  Your friend Joe had @samp{2 + 3 x}
5611 on the stack and tried to use the rule
5612 @samp{opt(a) + opt(b) x := f(a, b, x)}.  What happened?
5613 @xref{Rewrites Answer 3, 3}. (@bullet{})
5615 (@bullet{}) @strong{Exercise 4.}  Starting with a positive integer @expr{a},
5616 divide @expr{a} by two if it is even, otherwise compute @expr{3 a + 1}.
5617 Now repeat this step over and over.  A famous unproved conjecture
5618 is that for any starting @expr{a}, the sequence always eventually
5619 reaches 1.  Given the formula @samp{seq(@var{a}, 0)}, write a set of
5620 rules that convert this into @samp{seq(1, @var{n})} where @var{n}
5621 is the number of steps it took the sequence to reach the value 1.
5622 Now enhance the rules to accept @samp{seq(@var{a})} as a starting
5623 configuration, and to stop with just the number @var{n} by itself.
5624 Now make the result be a vector of values in the sequence, from @var{a}
5625 to 1.  (The formula @samp{@var{x}|@var{y}} appends the vectors @var{x}
5626 and @var{y}.)  For example, rewriting @samp{seq(6)} should yield the
5627 vector @expr{[6, 3, 10, 5, 16, 8, 4, 2, 1]}.
5628 @xref{Rewrites Answer 4, 4}. (@bullet{})
5630 (@bullet{}) @strong{Exercise 5.}  Define, using rewrite rules, a function
5631 @samp{nterms(@var{x})} that returns the number of terms in the sum
5632 @var{x}, or 1 if @var{x} is not a sum.  (A @dfn{sum} for our purposes
5633 is one or more non-sum terms separated by @samp{+} or @samp{-} signs,
5634 so that @expr{2 - 3 (x + y) + x y} is a sum of three terms.)
5635 @xref{Rewrites Answer 5, 5}. (@bullet{})
5637 (@bullet{}) @strong{Exercise 6.}  A Taylor series for a function is an
5638 infinite series that exactly equals the value of that function at
5639 values of @expr{x} near zero.
5641 @ifnottex
5642 @example
5643 cos(x) = 1 - x^2 / 2! + x^4 / 4! - x^6 / 6! + ...
5644 @end example
5645 @end ifnottex
5646 @tex
5647 \beforedisplay
5648 $$ \cos x = 1 - {x^2 \over 2!} + {x^4 \over 4!} - {x^6 \over 6!} + \cdots $$
5649 \afterdisplay
5650 @end tex
5652 The @kbd{a t} command produces a @dfn{truncated Taylor series} which
5653 is obtained by dropping all the terms higher than, say, @expr{x^2}.
5654 Calc represents the truncated Taylor series as a polynomial in @expr{x}.
5655 Mathematicians often write a truncated series using a ``big-O'' notation
5656 that records what was the lowest term that was truncated.
5658 @ifnottex
5659 @example
5660 cos(x) = 1 - x^2 / 2! + O(x^3)
5661 @end example
5662 @end ifnottex
5663 @tex
5664 \beforedisplay
5665 $$ \cos x = 1 - {x^2 \over 2!} + O(x^3) $$
5666 \afterdisplay
5667 @end tex
5669 @noindent
5670 The meaning of @expr{O(x^3)} is ``a quantity which is negligibly small
5671 if @expr{x^3} is considered negligibly small as @expr{x} goes to zero.''
5673 The exercise is to create rewrite rules that simplify sums and products of
5674 power series represented as @samp{@var{polynomial} + O(@var{var}^@var{n})}.
5675 For example, given @samp{1 - x^2 / 2 + O(x^3)} and @samp{x - x^3 / 6 + O(x^4)}
5676 on the stack, we want to be able to type @kbd{*} and get the result
5677 @samp{x - 2:3 x^3 + O(x^4)}.  Don't worry if the terms of the sum are
5678 rearranged.  (This one is rather tricky; the solution at the end of
5679 this chapter uses 6 rewrite rules.  Hint:  The @samp{constant(x)}
5680 condition tests whether @samp{x} is a number.)  @xref{Rewrites Answer
5681 6, 6}. (@bullet{})
5683 Just for kicks, try adding the rule @code{2+3 := 6} to @code{EvalRules}.
5684 What happens?  (Be sure to remove this rule afterward, or you might get
5685 a nasty surprise when you use Calc to balance your checkbook!)
5687 @xref{Rewrite Rules}, for the whole story on rewrite rules.
5689 @node Programming Tutorial, Answers to Exercises, Algebra Tutorial, Tutorial
5690 @section Programming Tutorial
5692 @noindent
5693 The Calculator is written entirely in Emacs Lisp, a highly extensible
5694 language.  If you know Lisp, you can program the Calculator to do
5695 anything you like.  Rewrite rules also work as a powerful programming
5696 system.  But Lisp and rewrite rules take a while to master, and often
5697 all you want to do is define a new function or repeat a command a few
5698 times.  Calc has features that allow you to do these things easily.
5700 One very limited form of programming is defining your own functions.
5701 Calc's @kbd{Z F} command allows you to define a function name and
5702 key sequence to correspond to any formula.  Programming commands use
5703 the shift-@kbd{Z} prefix; the user commands they create use the lower
5704 case @kbd{z} prefix.
5706 @smallexample
5707 @group
5708 1:  x + x^2 / 2 + x^3 / 6 + 1         1:  x + x^2 / 2 + x^3 / 6 + 1
5709     .                                     .
5711     ' 1 + x + x^2/2! + x^3/3! @key{RET}         Z F e myexp @key{RET} @key{RET} @key{RET} y
5712 @end group
5713 @end smallexample
5715 This polynomial is a Taylor series approximation to @samp{exp(x)}.
5716 The @kbd{Z F} command asks a number of questions.  The above answers
5717 say that the key sequence for our function should be @kbd{z e}; the
5718 @kbd{M-x} equivalent should be @code{calc-myexp}; the name of the
5719 function in algebraic formulas should also be @code{myexp}; the
5720 default argument list @samp{(x)} is acceptable; and finally @kbd{y}
5721 answers the question ``leave it in symbolic form for non-constant
5722 arguments?''
5724 @smallexample
5725 @group
5726 1:  1.3495     2:  1.3495     3:  1.3495
5727     .          1:  1.34986    2:  1.34986
5728                    .          1:  myexp(a + 1)
5729                                   .
5731     .3 z e         .3 E           ' a+1 @key{RET} z e
5732 @end group
5733 @end smallexample
5735 @noindent
5736 First we call our new @code{exp} approximation with 0.3 as an
5737 argument, and compare it with the true @code{exp} function.  Then
5738 we note that, as requested, if we try to give @kbd{z e} an
5739 argument that isn't a plain number, it leaves the @code{myexp}
5740 function call in symbolic form.  If we had answered @kbd{n} to the
5741 final question, @samp{myexp(a + 1)} would have evaluated by plugging
5742 in @samp{a + 1} for @samp{x} in the defining formula.
5744 @cindex Sine integral Si(x)
5745 @ignore
5746 @starindex
5747 @end ignore
5748 @tindex Si
5749 (@bullet{}) @strong{Exercise 1.}  The ``sine integral'' function
5750 @texline @math{{\rm Si}(x)}
5751 @infoline @expr{Si(x)}
5752 is defined as the integral of @samp{sin(t)/t} for
5753 @expr{t = 0} to @expr{x} in radians.  (It was invented because this
5754 integral has no solution in terms of basic functions; if you give it
5755 to Calc's @kbd{a i} command, it will ponder it for a long time and then
5756 give up.)  We can use the numerical integration command, however,
5757 which in algebraic notation is written like @samp{ninteg(f(t), t, 0, x)}
5758 with any integrand @samp{f(t)}.  Define a @kbd{z s} command and
5759 @code{Si} function that implement this.  You will need to edit the
5760 default argument list a bit.  As a test, @samp{Si(1)} should return
5761 0.946083. (If you don't get this answer, you might want to check that
5762 Calc is in Radians mode.  Also, @code{ninteg} will run a lot faster if
5763 you reduce the precision to, say, six digits beforehand.)
5764 @xref{Programming Answer 1, 1}. (@bullet{})
5766 The simplest way to do real ``programming'' of Emacs is to define a
5767 @dfn{keyboard macro}.  A keyboard macro is simply a sequence of
5768 keystrokes which Emacs has stored away and can play back on demand.
5769 For example, if you find yourself typing @kbd{H a S x @key{RET}} often,
5770 you may wish to program a keyboard macro to type this for you.
5772 @smallexample
5773 @group
5774 1:  y = sqrt(x)          1:  x = y^2
5775     .                        .
5777     ' y=sqrt(x) @key{RET}       C-x ( H a S x @key{RET} C-x )
5779 1:  y = cos(x)           1:  x = s1 arccos(y) + 2 n1 pi
5780     .                        .
5782     ' y=cos(x) @key{RET}           X
5783 @end group
5784 @end smallexample
5786 @noindent
5787 When you type @kbd{C-x (}, Emacs begins recording.  But it is also
5788 still ready to execute your keystrokes, so you're really ``training''
5789 Emacs by walking it through the procedure once.  When you type
5790 @w{@kbd{C-x )}}, the macro is recorded.  You can now type @kbd{X} to
5791 re-execute the same keystrokes.
5793 You can give a name to your macro by typing @kbd{Z K}.
5795 @smallexample
5796 @group
5797 1:  .              1:  y = x^4         1:  x = s2 sqrt(s1 sqrt(y))
5798                        .                   .
5800   Z K x @key{RET}            ' y=x^4 @key{RET}         z x
5801 @end group
5802 @end smallexample
5804 @noindent
5805 Notice that we use shift-@kbd{Z} to define the command, and lower-case
5806 @kbd{z} to call it up.
5808 Keyboard macros can call other macros.
5810 @smallexample
5811 @group
5812 1:  abs(x)        1:  x = s1 y                1:  2 / x    1:  x = 2 / y
5813     .                 .                           .            .
5815  ' abs(x) @key{RET}   C-x ( ' y @key{RET} a = z x C-x )    ' 2/x @key{RET}       X
5816 @end group
5817 @end smallexample
5819 (@bullet{}) @strong{Exercise 2.}  Define a keyboard macro to negate
5820 the item in level 3 of the stack, without disturbing the rest of
5821 the stack.  @xref{Programming Answer 2, 2}. (@bullet{})
5823 (@bullet{}) @strong{Exercise 3.}  Define keyboard macros to compute
5824 the following functions:
5826 @enumerate
5827 @item
5828 Compute
5829 @texline @math{\displaystyle{\sin x \over x}},
5830 @infoline @expr{sin(x) / x},
5831 where @expr{x} is the number on the top of the stack.
5833 @item
5834 Compute the base-@expr{b} logarithm, just like the @kbd{B} key except
5835 the arguments are taken in the opposite order.
5837 @item
5838 Produce a vector of integers from 1 to the integer on the top of
5839 the stack.
5840 @end enumerate
5841 @noindent
5842 @xref{Programming Answer 3, 3}. (@bullet{})
5844 (@bullet{}) @strong{Exercise 4.}  Define a keyboard macro to compute
5845 the average (mean) value of a list of numbers.
5846 @xref{Programming Answer 4, 4}. (@bullet{})
5848 In many programs, some of the steps must execute several times.
5849 Calc has @dfn{looping} commands that allow this.  Loops are useful
5850 inside keyboard macros, but actually work at any time.
5852 @smallexample
5853 @group
5854 1:  x^6          2:  x^6        1: 360 x^2
5855     .            1:  4             .
5856                      .
5858   ' x^6 @key{RET}          4         Z < a d x @key{RET} Z >
5859 @end group
5860 @end smallexample
5862 @noindent
5863 Here we have computed the fourth derivative of @expr{x^6} by
5864 enclosing a derivative command in a ``repeat loop'' structure.
5865 This structure pops a repeat count from the stack, then
5866 executes the body of the loop that many times.
5868 If you make a mistake while entering the body of the loop,
5869 type @w{@kbd{Z C-g}} to cancel the loop command.
5871 @cindex Fibonacci numbers
5872 Here's another example:
5874 @smallexample
5875 @group
5876 3:  1               2:  10946
5877 2:  1               1:  17711
5878 1:  20                  .
5879     .
5881 1 @key{RET} @key{RET} 20       Z < @key{TAB} C-j + Z >
5882 @end group
5883 @end smallexample
5885 @noindent
5886 The numbers in levels 2 and 1 should be the 21st and 22nd Fibonacci
5887 numbers, respectively.  (To see what's going on, try a few repetitions
5888 of the loop body by hand; @kbd{C-j}, also on the Line-Feed or @key{LFD}
5889 key if you have one, makes a copy of the number in level 2.)
5891 @cindex Golden ratio
5892 @cindex Phi, golden ratio
5893 A fascinating property of the Fibonacci numbers is that the @expr{n}th
5894 Fibonacci number can be found directly by computing
5895 @texline @math{\phi^n / \sqrt{5}}
5896 @infoline @expr{phi^n / sqrt(5)}
5897 and then rounding to the nearest integer, where
5898 @texline @math{\phi} (``phi''),
5899 @infoline @expr{phi},
5900 the ``golden ratio,'' is
5901 @texline @math{(1 + \sqrt{5}) / 2}.
5902 @infoline @expr{(1 + sqrt(5)) / 2}.
5903 (For convenience, this constant is available from the @code{phi}
5904 variable, or the @kbd{I H P} command.)
5906 @smallexample
5907 @group
5908 1:  1.61803         1:  24476.0000409    1:  10945.9999817    1:  10946
5909     .                   .                    .                    .
5911     I H P               21 ^                 5 Q /                R
5912 @end group
5913 @end smallexample
5915 @cindex Continued fractions
5916 (@bullet{}) @strong{Exercise 5.}  The @dfn{continued fraction}
5917 representation of
5918 @texline @math{\phi}
5919 @infoline @expr{phi}
5921 @texline @math{1 + 1/(1 + 1/(1 + 1/( \ldots )))}.
5922 @infoline @expr{1 + 1/(1 + 1/(1 + 1/( ...@: )))}.
5923 We can compute an approximate value by carrying this however far
5924 and then replacing the innermost
5925 @texline @math{1/( \ldots )}
5926 @infoline @expr{1/( ...@: )}
5927 by 1.  Approximate
5928 @texline @math{\phi}
5929 @infoline @expr{phi}
5930 using a twenty-term continued fraction.
5931 @xref{Programming Answer 5, 5}. (@bullet{})
5933 (@bullet{}) @strong{Exercise 6.}  Linear recurrences like the one for
5934 Fibonacci numbers can be expressed in terms of matrices.  Given a
5935 vector @w{@expr{[a, b]}} determine a matrix which, when multiplied by this
5936 vector, produces the vector @expr{[b, c]}, where @expr{a}, @expr{b} and
5937 @expr{c} are three successive Fibonacci numbers.  Now write a program
5938 that, given an integer @expr{n}, computes the @expr{n}th Fibonacci number
5939 using matrix arithmetic.  @xref{Programming Answer 6, 6}. (@bullet{})
5941 @cindex Harmonic numbers
5942 A more sophisticated kind of loop is the @dfn{for} loop.  Suppose
5943 we wish to compute the 20th ``harmonic'' number, which is equal to
5944 the sum of the reciprocals of the integers from 1 to 20.
5946 @smallexample
5947 @group
5948 3:  0               1:  3.597739
5949 2:  1                   .
5950 1:  20
5951     .
5953 0 @key{RET} 1 @key{RET} 20         Z ( & + 1 Z )
5954 @end group
5955 @end smallexample
5957 @noindent
5958 The ``for'' loop pops two numbers, the lower and upper limits, then
5959 repeats the body of the loop as an internal counter increases from
5960 the lower limit to the upper one.  Just before executing the loop
5961 body, it pushes the current loop counter.  When the loop body
5962 finishes, it pops the ``step,'' i.e., the amount by which to
5963 increment the loop counter.  As you can see, our loop always
5964 uses a step of one.
5966 This harmonic number function uses the stack to hold the running
5967 total as well as for the various loop housekeeping functions.  If
5968 you find this disorienting, you can sum in a variable instead:
5970 @smallexample
5971 @group
5972 1:  0         2:  1                  .            1:  3.597739
5973     .         1:  20                                  .
5974                   .
5976     0 t 7       1 @key{RET} 20      Z ( & s + 7 1 Z )       r 7
5977 @end group
5978 @end smallexample
5980 @noindent
5981 The @kbd{s +} command adds the top-of-stack into the value in a
5982 variable (and removes that value from the stack).
5984 It's worth noting that many jobs that call for a ``for'' loop can
5985 also be done more easily by Calc's high-level operations.  Two
5986 other ways to compute harmonic numbers are to use vector mapping
5987 and reduction (@kbd{v x 20}, then @w{@kbd{V M &}}, then @kbd{V R +}),
5988 or to use the summation command @kbd{a +}.  Both of these are
5989 probably easier than using loops.  However, there are some
5990 situations where loops really are the way to go:
5992 (@bullet{}) @strong{Exercise 7.}  Use a ``for'' loop to find the first
5993 harmonic number which is greater than 4.0.
5994 @xref{Programming Answer 7, 7}. (@bullet{})
5996 Of course, if we're going to be using variables in our programs,
5997 we have to worry about the programs clobbering values that the
5998 caller was keeping in those same variables.  This is easy to
5999 fix, though:
6001 @smallexample
6002 @group
6003     .        1:  0.6667       1:  0.6667     3:  0.6667
6004                  .                .          2:  3.597739
6005                                              1:  0.6667
6006                                                  .
6008    Z `    p 4 @key{RET} 2 @key{RET} 3 /   s 7 s s a @key{RET}    Z '  r 7 s r a @key{RET}
6009 @end group
6010 @end smallexample
6012 @noindent
6013 When we type @kbd{Z `} (that's a grave accent), Calc saves
6014 its mode settings and the contents of the ten ``quick variables''
6015 for later reference.  When we type @kbd{Z '} (that's an apostrophe
6016 now), Calc restores those saved values.  Thus the @kbd{p 4} and
6017 @kbd{s 7} commands have no effect outside this sequence.  Wrapping
6018 this around the body of a keyboard macro ensures that it doesn't
6019 interfere with what the user of the macro was doing.  Notice that
6020 the contents of the stack, and the values of named variables,
6021 survive past the @kbd{Z '} command.
6023 @cindex Bernoulli numbers, approximate
6024 The @dfn{Bernoulli numbers} are a sequence with the interesting
6025 property that all of the odd Bernoulli numbers are zero, and the
6026 even ones, while difficult to compute, can be roughly approximated
6027 by the formula
6028 @texline @math{\displaystyle{2 n! \over (2 \pi)^n}}.
6029 @infoline @expr{2 n!@: / (2 pi)^n}.
6030 Let's write a keyboard macro to compute (approximate) Bernoulli numbers.
6031 (Calc has a command, @kbd{k b}, to compute exact Bernoulli numbers, but
6032 this command is very slow for large @expr{n} since the higher Bernoulli
6033 numbers are very large fractions.)
6035 @smallexample
6036 @group
6037 1:  10               1:  0.0756823
6038     .                    .
6040     10     C-x ( @key{RET} 2 % Z [ @key{DEL} 0 Z : ' 2 $! / (2 pi)^$ @key{RET} = Z ] C-x )
6041 @end group
6042 @end smallexample
6044 @noindent
6045 You can read @kbd{Z [} as ``then,'' @kbd{Z :} as ``else,'' and
6046 @kbd{Z ]} as ``end-if.''  There is no need for an explicit ``if''
6047 command.  For the purposes of @w{@kbd{Z [}}, the condition is ``true''
6048 if the value it pops from the stack is a nonzero number, or ``false''
6049 if it pops zero or something that is not a number (like a formula).
6050 Here we take our integer argument modulo 2; this will be nonzero
6051 if we're asking for an odd Bernoulli number.
6053 The actual tenth Bernoulli number is @expr{5/66}.
6055 @smallexample
6056 @group
6057 3:  0.0756823    1:  0          1:  0.25305    1:  0          1:  1.16659
6058 2:  5:66             .              .              .              .
6059 1:  0.0757575
6060     .
6062 10 k b @key{RET} c f   M-0 @key{DEL} 11 X   @key{DEL} 12 X       @key{DEL} 13 X       @key{DEL} 14 X
6063 @end group
6064 @end smallexample
6066 Just to exercise loops a bit more, let's compute a table of even
6067 Bernoulli numbers.
6069 @smallexample
6070 @group
6071 3:  []             1:  [0.10132, 0.03079, 0.02340, 0.033197, ...]
6072 2:  2                  .
6073 1:  30
6074     .
6076  [ ] 2 @key{RET} 30          Z ( X | 2 Z )
6077 @end group
6078 @end smallexample
6080 @noindent
6081 The vertical-bar @kbd{|} is the vector-concatenation command.  When
6082 we execute it, the list we are building will be in stack level 2
6083 (initially this is an empty list), and the next Bernoulli number
6084 will be in level 1.  The effect is to append the Bernoulli number
6085 onto the end of the list.  (To create a table of exact fractional
6086 Bernoulli numbers, just replace @kbd{X} with @kbd{k b} in the above
6087 sequence of keystrokes.)
6089 With loops and conditionals, you can program essentially anything
6090 in Calc.  One other command that makes looping easier is @kbd{Z /},
6091 which takes a condition from the stack and breaks out of the enclosing
6092 loop if the condition is true (non-zero).  You can use this to make
6093 ``while'' and ``until'' style loops.
6095 If you make a mistake when entering a keyboard macro, you can edit
6096 it using @kbd{Z E}.  First, you must attach it to a key with @kbd{Z K}.
6097 One technique is to enter a throwaway dummy definition for the macro,
6098 then enter the real one in the edit command.
6100 @smallexample
6101 @group
6102 1:  3                   1:  3           Calc Macro Edit Mode.
6103     .                       .           Original keys: 1 <return> 2 +
6105                                         1                          ;; calc digits
6106                                         RET                        ;; calc-enter
6107                                         2                          ;; calc digits
6108                                         +                          ;; calc-plus
6110 C-x ( 1 @key{RET} 2 + C-x )    Z K h @key{RET}      Z E h
6111 @end group
6112 @end smallexample
6114 @noindent
6115 A keyboard macro is stored as a pure keystroke sequence.  The
6116 @file{edmacro} package (invoked by @kbd{Z E}) scans along the
6117 macro and tries to decode it back into human-readable steps.
6118 Descriptions of the keystrokes are given as comments, which begin with
6119 @samp{;;}, and which are ignored when the edited macro is saved.
6120 Spaces and line breaks are also ignored when the edited macro is saved.
6121 To enter a space into the macro, type @code{SPC}.  All the special
6122 characters @code{RET}, @code{LFD}, @code{TAB}, @code{SPC}, @code{DEL},
6123 and @code{NUL} must be written in all uppercase, as must the prefixes
6124 @code{C-} and @code{M-}.
6126 Let's edit in a new definition, for computing harmonic numbers.
6127 First, erase the four lines of the old definition.  Then, type
6128 in the new definition (or use Emacs @kbd{M-w} and @kbd{C-y} commands
6129 to copy it from this page of the Info file; you can of course skip
6130 typing the comments, which begin with @samp{;;}).
6132 @smallexample
6133 Z`                      ;; calc-kbd-push     (Save local values)
6134 0                       ;; calc digits       (Push a zero onto the stack)
6135 st                      ;; calc-store-into   (Store it in the following variable)
6136 1                       ;; calc quick variable  (Quick variable q1)
6137 1                       ;; calc digits       (Initial value for the loop)
6138 TAB                     ;; calc-roll-down    (Swap initial and final)
6139 Z(                      ;; calc-kbd-for      (Begin the "for" loop)
6140 &                       ;; calc-inv          (Take the reciprocal)
6141 s+                      ;; calc-store-plus   (Add to the following variable)
6142 1                       ;; calc quick variable  (Quick variable q1)
6143 1                       ;; calc digits       (The loop step is 1)
6144 Z)                      ;; calc-kbd-end-for  (End the "for" loop)
6145 sr                      ;; calc-recall       (Recall the final accumulated value)
6146 1                       ;; calc quick variable (Quick variable q1)
6147 Z'                      ;; calc-kbd-pop      (Restore values)
6148 @end smallexample
6150 @noindent
6151 Press @kbd{C-c C-c} to finish editing and return to the Calculator.
6153 @smallexample
6154 @group
6155 1:  20         1:  3.597739
6156     .              .
6158     20             z h
6159 @end group
6160 @end smallexample
6162 The @file{edmacro} package defines a handy @code{read-kbd-macro} command
6163 which reads the current region of the current buffer as a sequence of
6164 keystroke names, and defines that sequence on the @kbd{X}
6165 (and @kbd{C-x e}) key.  Because this is so useful, Calc puts this
6166 command on the @kbd{C-x * m} key.  Try reading in this macro in the
6167 following form:  Press @kbd{C-@@} (or @kbd{C-@key{SPC}}) at
6168 one end of the text below, then type @kbd{C-x * m} at the other.
6170 @example
6171 @group
6172 Z ` 0 t 1
6173     1 TAB
6174     Z (  & s + 1  1 Z )
6175     r 1
6176 Z '
6177 @end group
6178 @end example
6180 (@bullet{}) @strong{Exercise 8.}  A general algorithm for solving
6181 equations numerically is @dfn{Newton's Method}.  Given the equation
6182 @expr{f(x) = 0} for any function @expr{f}, and an initial guess
6183 @expr{x_0} which is reasonably close to the desired solution, apply
6184 this formula over and over:
6186 @ifnottex
6187 @example
6188 new_x = x - f(x)/f'(x)
6189 @end example
6190 @end ifnottex
6191 @tex
6192 \beforedisplay
6193 $$ x_{\rm new} = x - {f(x) \over f^{\prime}(x)} $$
6194 \afterdisplay
6195 @end tex
6197 @noindent
6198 where @expr{f'(x)} is the derivative of @expr{f}.  The @expr{x}
6199 values will quickly converge to a solution, i.e., eventually
6200 @texline @math{x_{\rm new}}
6201 @infoline @expr{new_x}
6202 and @expr{x} will be equal to within the limits
6203 of the current precision.  Write a program which takes a formula
6204 involving the variable @expr{x}, and an initial guess @expr{x_0},
6205 on the stack, and produces a value of @expr{x} for which the formula
6206 is zero.  Use it to find a solution of
6207 @texline @math{\sin(\cos x) = 0.5}
6208 @infoline @expr{sin(cos(x)) = 0.5}
6209 near @expr{x = 4.5}.  (Use angles measured in radians.)  Note that
6210 the built-in @w{@kbd{a R}} (@code{calc-find-root}) command uses Newton's
6211 method when it is able.  @xref{Programming Answer 8, 8}. (@bullet{})
6213 @cindex Digamma function
6214 @cindex Gamma constant, Euler's
6215 @cindex Euler's gamma constant
6216 (@bullet{}) @strong{Exercise 9.}  The @dfn{digamma} function
6217 @texline @math{\psi(z) (``psi'')}
6218 @infoline @expr{psi(z)}
6219 is defined as the derivative of
6220 @texline @math{\ln \Gamma(z)}.
6221 @infoline @expr{ln(gamma(z))}.
6222 For large values of @expr{z}, it can be approximated by the infinite sum
6224 @ifnottex
6225 @example
6226 psi(z) ~= ln(z) - 1/2z - sum(bern(2 n) / 2 n z^(2 n), n, 1, inf)
6227 @end example
6228 @end ifnottex
6229 @tex
6230 \beforedisplay
6231 $$ \psi(z) \approx \ln z - {1\over2z} -
6232    \sum_{n=1}^\infty {\code{bern}(2 n) \over 2 n z^{2n}}
6234 \afterdisplay
6235 @end tex
6237 @noindent
6238 where
6239 @texline @math{\sum}
6240 @infoline @expr{sum}
6241 represents the sum over @expr{n} from 1 to infinity
6242 (or to some limit high enough to give the desired accuracy), and
6243 the @code{bern} function produces (exact) Bernoulli numbers.
6244 While this sum is not guaranteed to converge, in practice it is safe.
6245 An interesting mathematical constant is Euler's gamma, which is equal
6246 to about 0.5772.  One way to compute it is by the formula,
6247 @texline @math{\gamma = -\psi(1)}.
6248 @infoline @expr{gamma = -psi(1)}.
6249 Unfortunately, 1 isn't a large enough argument
6250 for the above formula to work (5 is a much safer value for @expr{z}).
6251 Fortunately, we can compute
6252 @texline @math{\psi(1)}
6253 @infoline @expr{psi(1)}
6254 from
6255 @texline @math{\psi(5)}
6256 @infoline @expr{psi(5)}
6257 using the recurrence
6258 @texline @math{\psi(z+1) = \psi(z) + {1 \over z}}.
6259 @infoline @expr{psi(z+1) = psi(z) + 1/z}.
6260 Your task:  Develop a program to compute
6261 @texline @math{\psi(z)};
6262 @infoline @expr{psi(z)};
6263 it should ``pump up'' @expr{z}
6264 if necessary to be greater than 5, then use the above summation
6265 formula.  Use looping commands to compute the sum.  Use your function
6266 to compute
6267 @texline @math{\gamma}
6268 @infoline @expr{gamma}
6269 to twelve decimal places.  (Calc has a built-in command
6270 for Euler's constant, @kbd{I P}, which you can use to check your answer.)
6271 @xref{Programming Answer 9, 9}. (@bullet{})
6273 @cindex Polynomial, list of coefficients
6274 (@bullet{}) @strong{Exercise 10.}  Given a polynomial in @expr{x} and
6275 a number @expr{m} on the stack, where the polynomial is of degree
6276 @expr{m} or less (i.e., does not have any terms higher than @expr{x^m}),
6277 write a program to convert the polynomial into a list-of-coefficients
6278 notation.  For example, @expr{5 x^4 + (x + 1)^2} with @expr{m = 6}
6279 should produce the list @expr{[1, 2, 1, 0, 5, 0, 0]}.  Also develop
6280 a way to convert from this form back to the standard algebraic form.
6281 @xref{Programming Answer 10, 10}. (@bullet{})
6283 @cindex Recursion
6284 (@bullet{}) @strong{Exercise 11.}  The @dfn{Stirling numbers of the
6285 first kind} are defined by the recurrences,
6287 @ifnottex
6288 @example
6289 s(n,n) = 1   for n >= 0,
6290 s(n,0) = 0   for n > 0,
6291 s(n+1,m) = s(n,m-1) - n s(n,m)   for n >= m >= 1.
6292 @end example
6293 @end ifnottex
6294 @tex
6295 \beforedisplay
6296 $$ \eqalign{ s(n,n)   &= 1 \qquad \hbox{for } n \ge 0,  \cr
6297              s(n,0)   &= 0 \qquad \hbox{for } n > 0, \cr
6298              s(n+1,m) &= s(n,m-1) - n \, s(n,m) \qquad
6299                           \hbox{for } n \ge m \ge 1.}
6301 \afterdisplay
6302 \vskip5pt
6303 (These numbers are also sometimes written $\displaystyle{n \brack m}$.)
6304 @end tex
6306 This can be implemented using a @dfn{recursive} program in Calc; the
6307 program must invoke itself in order to calculate the two righthand
6308 terms in the general formula.  Since it always invokes itself with
6309 ``simpler'' arguments, it's easy to see that it must eventually finish
6310 the computation.  Recursion is a little difficult with Emacs keyboard
6311 macros since the macro is executed before its definition is complete.
6312 So here's the recommended strategy:  Create a ``dummy macro'' and assign
6313 it to a key with, e.g., @kbd{Z K s}.  Now enter the true definition,
6314 using the @kbd{z s} command to call itself recursively, then assign it
6315 to the same key with @kbd{Z K s}.  Now the @kbd{z s} command will run
6316 the complete recursive program.  (Another way is to use @w{@kbd{Z E}}
6317 or @kbd{C-x * m} (@code{read-kbd-macro}) to read the whole macro at once,
6318 thus avoiding the ``training'' phase.)  The task:  Write a program
6319 that computes Stirling numbers of the first kind, given @expr{n} and
6320 @expr{m} on the stack.  Test it with @emph{small} inputs like
6321 @expr{s(4,2)}.  (There is a built-in command for Stirling numbers,
6322 @kbd{k s}, which you can use to check your answers.)
6323 @xref{Programming Answer 11, 11}. (@bullet{})
6325 The programming commands we've seen in this part of the tutorial
6326 are low-level, general-purpose operations.  Often you will find
6327 that a higher-level function, such as vector mapping or rewrite
6328 rules, will do the job much more easily than a detailed, step-by-step
6329 program can:
6331 (@bullet{}) @strong{Exercise 12.}  Write another program for
6332 computing Stirling numbers of the first kind, this time using
6333 rewrite rules.  Once again, @expr{n} and @expr{m} should be taken
6334 from the stack.  @xref{Programming Answer 12, 12}. (@bullet{})
6336 @example
6338 @end example
6339 This ends the tutorial section of the Calc manual.  Now you know enough
6340 about Calc to use it effectively for many kinds of calculations.  But
6341 Calc has many features that were not even touched upon in this tutorial.
6342 @c [not-split]
6343 The rest of this manual tells the whole story.
6344 @c [when-split]
6345 @c Volume II of this manual, the @dfn{Calc Reference}, tells the whole story.
6347 @page
6348 @node Answers to Exercises,  , Programming Tutorial, Tutorial
6349 @section Answers to Exercises
6351 @noindent
6352 This section includes answers to all the exercises in the Calc tutorial.
6354 @menu
6355 * RPN Answer 1::           1 @key{RET} 2 @key{RET} 3 @key{RET} 4 + * -
6356 * RPN Answer 2::           2*4 + 7*9.5 + 5/4
6357 * RPN Answer 3::           Operating on levels 2 and 3
6358 * RPN Answer 4::           Joe's complex problems
6359 * Algebraic Answer 1::     Simulating Q command
6360 * Algebraic Answer 2::     Joe's algebraic woes
6361 * Algebraic Answer 3::     1 / 0
6362 * Modes Answer 1::         3#0.1 = 3#0.0222222?
6363 * Modes Answer 2::         16#f.e8fe15
6364 * Modes Answer 3::         Joe's rounding bug
6365 * Modes Answer 4::         Why floating point?
6366 * Arithmetic Answer 1::    Why the \ command?
6367 * Arithmetic Answer 2::    Tripping up the B command
6368 * Vector Answer 1::        Normalizing a vector
6369 * Vector Answer 2::        Average position
6370 * Matrix Answer 1::        Row and column sums
6371 * Matrix Answer 2::        Symbolic system of equations
6372 * Matrix Answer 3::        Over-determined system
6373 * List Answer 1::          Powers of two
6374 * List Answer 2::          Least-squares fit with matrices
6375 * List Answer 3::          Geometric mean
6376 * List Answer 4::          Divisor function
6377 * List Answer 5::          Duplicate factors
6378 * List Answer 6::          Triangular list
6379 * List Answer 7::          Another triangular list
6380 * List Answer 8::          Maximum of Bessel function
6381 * List Answer 9::          Integers the hard way
6382 * List Answer 10::         All elements equal
6383 * List Answer 11::         Estimating pi with darts
6384 * List Answer 12::         Estimating pi with matchsticks
6385 * List Answer 13::         Hash codes
6386 * List Answer 14::         Random walk
6387 * Types Answer 1::         Square root of pi times rational
6388 * Types Answer 2::         Infinities
6389 * Types Answer 3::         What can "nan" be?
6390 * Types Answer 4::         Abbey Road
6391 * Types Answer 5::         Friday the 13th
6392 * Types Answer 6::         Leap years
6393 * Types Answer 7::         Erroneous donut
6394 * Types Answer 8::         Dividing intervals
6395 * Types Answer 9::         Squaring intervals
6396 * Types Answer 10::        Fermat's primality test
6397 * Types Answer 11::        pi * 10^7 seconds
6398 * Types Answer 12::        Abbey Road on CD
6399 * Types Answer 13::        Not quite pi * 10^7 seconds
6400 * Types Answer 14::        Supercomputers and c
6401 * Types Answer 15::        Sam the Slug
6402 * Algebra Answer 1::       Squares and square roots
6403 * Algebra Answer 2::       Building polynomial from roots
6404 * Algebra Answer 3::       Integral of x sin(pi x)
6405 * Algebra Answer 4::       Simpson's rule
6406 * Rewrites Answer 1::      Multiplying by conjugate
6407 * Rewrites Answer 2::      Alternative fib rule
6408 * Rewrites Answer 3::      Rewriting opt(a) + opt(b) x
6409 * Rewrites Answer 4::      Sequence of integers
6410 * Rewrites Answer 5::      Number of terms in sum
6411 * Rewrites Answer 6::      Truncated Taylor series
6412 * Programming Answer 1::   Fresnel's C(x)
6413 * Programming Answer 2::   Negate third stack element
6414 * Programming Answer 3::   Compute sin(x) / x, etc.
6415 * Programming Answer 4::   Average value of a list
6416 * Programming Answer 5::   Continued fraction phi
6417 * Programming Answer 6::   Matrix Fibonacci numbers
6418 * Programming Answer 7::   Harmonic number greater than 4
6419 * Programming Answer 8::   Newton's method
6420 * Programming Answer 9::   Digamma function
6421 * Programming Answer 10::  Unpacking a polynomial
6422 * Programming Answer 11::  Recursive Stirling numbers
6423 * Programming Answer 12::  Stirling numbers with rewrites
6424 @end menu
6426 @c The following kludgery prevents the individual answers from
6427 @c being entered on the table of contents.
6428 @tex
6429 \global\let\oldwrite=\write
6430 \gdef\skipwrite#1#2{\let\write=\oldwrite}
6431 \global\let\oldchapternofonts=\chapternofonts
6432 \gdef\chapternofonts{\let\write=\skipwrite\oldchapternofonts}
6433 @end tex
6435 @node RPN Answer 1, RPN Answer 2, Answers to Exercises, Answers to Exercises
6436 @subsection RPN Tutorial Exercise 1
6438 @noindent
6439 @kbd{1 @key{RET} 2 @key{RET} 3 @key{RET} 4 + * -}
6441 The result is
6442 @texline @math{1 - (2 \times (3 + 4)) = -13}.
6443 @infoline @expr{1 - (2 * (3 + 4)) = -13}.
6445 @node RPN Answer 2, RPN Answer 3, RPN Answer 1, Answers to Exercises
6446 @subsection RPN Tutorial Exercise 2
6448 @noindent
6449 @texline @math{2\times4 + 7\times9.5 + {5\over4} = 75.75}
6450 @infoline @expr{2*4 + 7*9.5 + 5/4 = 75.75}
6452 After computing the intermediate term
6453 @texline @math{2\times4 = 8},
6454 @infoline @expr{2*4 = 8},
6455 you can leave that result on the stack while you compute the second
6456 term.  With both of these results waiting on the stack you can then
6457 compute the final term, then press @kbd{+ +} to add everything up.
6459 @smallexample
6460 @group
6461 2:  2          1:  8          3:  8          2:  8
6462 1:  4              .          2:  7          1:  66.5
6463     .                         1:  9.5            .
6464                                   .
6466   2 @key{RET} 4          *          7 @key{RET} 9.5          *
6468 @end group
6469 @end smallexample
6470 @noindent
6471 @smallexample
6472 @group
6473 4:  8          3:  8          2:  8          1:  75.75
6474 3:  66.5       2:  66.5       1:  67.75          .
6475 2:  5          1:  1.25           .
6476 1:  4              .
6477     .
6479   5 @key{RET} 4          /              +              +
6480 @end group
6481 @end smallexample
6483 Alternatively, you could add the first two terms before going on
6484 with the third term.
6486 @smallexample
6487 @group
6488 2:  8          1:  74.5       3:  74.5       2:  74.5       1:  75.75
6489 1:  66.5           .          2:  5          1:  1.25           .
6490     .                         1:  4              .
6491                                   .
6493    ...             +            5 @key{RET} 4          /              +
6494 @end group
6495 @end smallexample
6497 On an old-style RPN calculator this second method would have the
6498 advantage of using only three stack levels.  But since Calc's stack
6499 can grow arbitrarily large this isn't really an issue.  Which method
6500 you choose is purely a matter of taste.
6502 @node RPN Answer 3, RPN Answer 4, RPN Answer 2, Answers to Exercises
6503 @subsection RPN Tutorial Exercise 3
6505 @noindent
6506 The @key{TAB} key provides a way to operate on the number in level 2.
6508 @smallexample
6509 @group
6510 3:  10         3:  10         4:  10         3:  10         3:  10
6511 2:  20         2:  30         3:  30         2:  30         2:  21
6512 1:  30         1:  20         2:  20         1:  21         1:  30
6513     .              .          1:  1              .              .
6514                                   .
6516                   @key{TAB}             1              +             @key{TAB}
6517 @end group
6518 @end smallexample
6520 Similarly, @kbd{M-@key{TAB}} gives you access to the number in level 3.
6522 @smallexample
6523 @group
6524 3:  10         3:  21         3:  21         3:  30         3:  11
6525 2:  21         2:  30         2:  30         2:  11         2:  21
6526 1:  30         1:  10         1:  11         1:  21         1:  30
6527     .              .              .              .              .
6529                   M-@key{TAB}           1 +           M-@key{TAB}          M-@key{TAB}
6530 @end group
6531 @end smallexample
6533 @node RPN Answer 4, Algebraic Answer 1, RPN Answer 3, Answers to Exercises
6534 @subsection RPN Tutorial Exercise 4
6536 @noindent
6537 Either @kbd{( 2 , 3 )} or @kbd{( 2 @key{SPC} 3 )} would have worked,
6538 but using both the comma and the space at once yields:
6540 @smallexample
6541 @group
6542 1:  ( ...      2:  ( ...      1:  (2, ...    2:  (2, ...    2:  (2, ...
6543     .          1:  2              .          1:  (2, ...    1:  (2, 3)
6544                    .                             .              .
6546     (              2              ,             @key{SPC}            3 )
6547 @end group
6548 @end smallexample
6550 Joe probably tried to type @kbd{@key{TAB} @key{DEL}} to swap the
6551 extra incomplete object to the top of the stack and delete it.
6552 But a feature of Calc is that @key{DEL} on an incomplete object
6553 deletes just one component out of that object, so he had to press
6554 @key{DEL} twice to finish the job.
6556 @smallexample
6557 @group
6558 2:  (2, ...    2:  (2, 3)     2:  (2, 3)     1:  (2, 3)
6559 1:  (2, 3)     1:  (2, ...    1:  ( ...          .
6560     .              .              .
6562                   @key{TAB}            @key{DEL}            @key{DEL}
6563 @end group
6564 @end smallexample
6566 (As it turns out, deleting the second-to-top stack entry happens often
6567 enough that Calc provides a special key, @kbd{M-@key{DEL}}, to do just that.
6568 @kbd{M-@key{DEL}} is just like @kbd{@key{TAB} @key{DEL}}, except that it doesn't exhibit
6569 the ``feature'' that tripped poor Joe.)
6571 @node Algebraic Answer 1, Algebraic Answer 2, RPN Answer 4, Answers to Exercises
6572 @subsection Algebraic Entry Tutorial Exercise 1
6574 @noindent
6575 Type @kbd{' sqrt($) @key{RET}}.
6577 If the @kbd{Q} key is broken, you could use @kbd{' $^0.5 @key{RET}}.
6578 Or, RPN style, @kbd{0.5 ^}.
6580 (Actually, @samp{$^1:2}, using the fraction one-half as the power, is
6581 a closer equivalent, since @samp{9^0.5} yields @expr{3.0} whereas
6582 @samp{sqrt(9)} and @samp{9^1:2} yield the exact integer @expr{3}.)
6584 @node Algebraic Answer 2, Algebraic Answer 3, Algebraic Answer 1, Answers to Exercises
6585 @subsection Algebraic Entry Tutorial Exercise 2
6587 @noindent
6588 In the formula @samp{2 x (1+y)}, @samp{x} was interpreted as a function
6589 name with @samp{1+y} as its argument.  Assigning a value to a variable
6590 has no relation to a function by the same name.  Joe needed to use an
6591 explicit @samp{*} symbol here:  @samp{2 x*(1+y)}.
6593 @node Algebraic Answer 3, Modes Answer 1, Algebraic Answer 2, Answers to Exercises
6594 @subsection Algebraic Entry Tutorial Exercise 3
6596 @noindent
6597 The result from @kbd{1 @key{RET} 0 /} will be the formula @expr{1 / 0}.
6598 The ``function'' @samp{/} cannot be evaluated when its second argument
6599 is zero, so it is left in symbolic form.  When you now type @kbd{0 *},
6600 the result will be zero because Calc uses the general rule that ``zero
6601 times anything is zero.''
6603 @c [fix-ref Infinities]
6604 The @kbd{m i} command enables an @dfn{Infinite mode} in which @expr{1 / 0}
6605 results in a special symbol that represents ``infinity.''  If you
6606 multiply infinity by zero, Calc uses another special new symbol to
6607 show that the answer is ``indeterminate.''  @xref{Infinities}, for
6608 further discussion of infinite and indeterminate values.
6610 @node Modes Answer 1, Modes Answer 2, Algebraic Answer 3, Answers to Exercises
6611 @subsection Modes Tutorial Exercise 1
6613 @noindent
6614 Calc always stores its numbers in decimal, so even though one-third has
6615 an exact base-3 representation (@samp{3#0.1}), it is still stored as
6616 0.3333333 (chopped off after 12 or however many decimal digits) inside
6617 the calculator's memory.  When this inexact number is converted back
6618 to base 3 for display, it may still be slightly inexact.  When we
6619 multiply this number by 3, we get 0.999999, also an inexact value.
6621 When Calc displays a number in base 3, it has to decide how many digits
6622 to show.  If the current precision is 12 (decimal) digits, that corresponds
6623 to @samp{12 / log10(3) = 25.15} base-3 digits.  Because 25.15 is not an
6624 exact integer, Calc shows only 25 digits, with the result that stored
6625 numbers carry a little bit of extra information that may not show up on
6626 the screen.  When Joe entered @samp{3#0.2}, the stored number 0.666666
6627 happened to round to a pleasing value when it lost that last 0.15 of a
6628 digit, but it was still inexact in Calc's memory.  When he divided by 2,
6629 he still got the dreaded inexact value 0.333333.  (Actually, he divided
6630 0.666667 by 2 to get 0.333334, which is why he got something a little
6631 higher than @code{3#0.1} instead of a little lower.)
6633 If Joe didn't want to be bothered with all this, he could have typed
6634 @kbd{M-24 d n} to display with one less digit than the default.  (If
6635 you give @kbd{d n} a negative argument, it uses default-minus-that,
6636 so @kbd{M-- d n} would be an easier way to get the same effect.)  Those
6637 inexact results would still be lurking there, but they would now be
6638 rounded to nice, natural-looking values for display purposes.  (Remember,
6639 @samp{0.022222} in base 3 is like @samp{0.099999} in base 10; rounding
6640 off one digit will round the number up to @samp{0.1}.)  Depending on the
6641 nature of your work, this hiding of the inexactness may be a benefit or
6642 a danger.  With the @kbd{d n} command, Calc gives you the choice.
6644 Incidentally, another consequence of all this is that if you type
6645 @kbd{M-30 d n} to display more digits than are ``really there,''
6646 you'll see garbage digits at the end of the number.  (In decimal
6647 display mode, with decimally-stored numbers, these garbage digits are
6648 always zero so they vanish and you don't notice them.)  Because Calc
6649 rounds off that 0.15 digit, there is the danger that two numbers could
6650 be slightly different internally but still look the same.  If you feel
6651 uneasy about this, set the @kbd{d n} precision to be a little higher
6652 than normal; you'll get ugly garbage digits, but you'll always be able
6653 to tell two distinct numbers apart.
6655 An interesting side note is that most computers store their
6656 floating-point numbers in binary, and convert to decimal for display.
6657 Thus everyday programs have the same problem:  Decimal 0.1 cannot be
6658 represented exactly in binary (try it: @kbd{0.1 d 2}), so @samp{0.1 * 10}
6659 comes out as an inexact approximation to 1 on some machines (though
6660 they generally arrange to hide it from you by rounding off one digit as
6661 we did above).  Because Calc works in decimal instead of binary, you can
6662 be sure that numbers that look exact @emph{are} exact as long as you stay
6663 in decimal display mode.
6665 It's not hard to show that any number that can be represented exactly
6666 in binary, octal, or hexadecimal is also exact in decimal, so the kinds
6667 of problems we saw in this exercise are likely to be severe only when
6668 you use a relatively unusual radix like 3.
6670 @node Modes Answer 2, Modes Answer 3, Modes Answer 1, Answers to Exercises
6671 @subsection Modes Tutorial Exercise 2
6673 If the radix is 15 or higher, we can't use the letter @samp{e} to mark
6674 the exponent because @samp{e} is interpreted as a digit.  When Calc
6675 needs to display scientific notation in a high radix, it writes
6676 @samp{16#F.E8F*16.^15}.  You can enter a number like this as an
6677 algebraic entry.  Also, pressing @kbd{e} without any digits before it
6678 normally types @kbd{1e}, but in a high radix it types @kbd{16.^} and
6679 puts you in algebraic entry:  @kbd{16#f.e8f @key{RET} e 15 @key{RET} *} is another
6680 way to enter this number.
6682 The reason Calc puts a decimal point in the @samp{16.^} is to prevent
6683 huge integers from being generated if the exponent is large (consider
6684 @samp{16#1.23*16^1000}, where we compute @samp{16^1000} as a giant
6685 exact integer and then throw away most of the digits when we multiply
6686 it by the floating-point @samp{16#1.23}).  While this wouldn't normally
6687 matter for display purposes, it could give you a nasty surprise if you
6688 copied that number into a file and later moved it back into Calc.
6690 @node Modes Answer 3, Modes Answer 4, Modes Answer 2, Answers to Exercises
6691 @subsection Modes Tutorial Exercise 3
6693 @noindent
6694 The answer he got was @expr{0.5000000000006399}.
6696 The problem is not that the square operation is inexact, but that the
6697 sine of 45 that was already on the stack was accurate to only 12 places.
6698 Arbitrary-precision calculations still only give answers as good as
6699 their inputs.
6701 The real problem is that there is no 12-digit number which, when
6702 squared, comes out to 0.5 exactly.  The @kbd{f [} and @kbd{f ]}
6703 commands decrease or increase a number by one unit in the last
6704 place (according to the current precision).  They are useful for
6705 determining facts like this.
6707 @smallexample
6708 @group
6709 1:  0.707106781187      1:  0.500000000001
6710     .                       .
6712     45 S                    2 ^
6714 @end group
6715 @end smallexample
6716 @noindent
6717 @smallexample
6718 @group
6719 1:  0.707106781187      1:  0.707106781186      1:  0.499999999999
6720     .                       .                       .
6722     U  @key{DEL}                  f [                     2 ^
6723 @end group
6724 @end smallexample
6726 A high-precision calculation must be carried out in high precision
6727 all the way.  The only number in the original problem which was known
6728 exactly was the quantity 45 degrees, so the precision must be raised
6729 before anything is done after the number 45 has been entered in order
6730 for the higher precision to be meaningful.
6732 @node Modes Answer 4, Arithmetic Answer 1, Modes Answer 3, Answers to Exercises
6733 @subsection Modes Tutorial Exercise 4
6735 @noindent
6736 Many calculations involve real-world quantities, like the width and
6737 height of a piece of wood or the volume of a jar.  Such quantities
6738 can't be measured exactly anyway, and if the data that is input to
6739 a calculation is inexact, doing exact arithmetic on it is a waste
6740 of time.
6742 Fractions become unwieldy after too many calculations have been
6743 done with them.  For example, the sum of the reciprocals of the
6744 integers from 1 to 10 is 7381:2520.  The sum from 1 to 30 is
6745 9304682830147:2329089562800.  After a point it will take a long
6746 time to add even one more term to this sum, but a floating-point
6747 calculation of the sum will not have this problem.
6749 Also, rational numbers cannot express the results of all calculations.
6750 There is no fractional form for the square root of two, so if you type
6751 @w{@kbd{2 Q}}, Calc has no choice but to give you a floating-point answer.
6753 @node Arithmetic Answer 1, Arithmetic Answer 2, Modes Answer 4, Answers to Exercises
6754 @subsection Arithmetic Tutorial Exercise 1
6756 @noindent
6757 Dividing two integers that are larger than the current precision may
6758 give a floating-point result that is inaccurate even when rounded
6759 down to an integer.  Consider @expr{123456789 / 2} when the current
6760 precision is 6 digits.  The true answer is @expr{61728394.5}, but
6761 with a precision of 6 this will be rounded to
6762 @texline @math{12345700.0/2.0 = 61728500.0}.
6763 @infoline @expr{12345700.@: / 2.@: = 61728500.}.
6764 The result, when converted to an integer, will be off by 106.
6766 Here are two solutions:  Raise the precision enough that the
6767 floating-point round-off error is strictly to the right of the
6768 decimal point.  Or, convert to Fraction mode so that @expr{123456789 / 2}
6769 produces the exact fraction @expr{123456789:2}, which can be rounded
6770 down by the @kbd{F} command without ever switching to floating-point
6771 format.
6773 @node Arithmetic Answer 2, Vector Answer 1, Arithmetic Answer 1, Answers to Exercises
6774 @subsection Arithmetic Tutorial Exercise 2
6776 @noindent
6777 @kbd{27 @key{RET} 9 B} could give the exact result @expr{3:2}, but it
6778 does a floating-point calculation instead and produces @expr{1.5}.
6780 Calc will find an exact result for a logarithm if the result is an integer
6781 or (when in Fraction mode) the reciprocal of an integer.  But there is
6782 no efficient way to search the space of all possible rational numbers
6783 for an exact answer, so Calc doesn't try.
6785 @node Vector Answer 1, Vector Answer 2, Arithmetic Answer 2, Answers to Exercises
6786 @subsection Vector Tutorial Exercise 1
6788 @noindent
6789 Duplicate the vector, compute its length, then divide the vector
6790 by its length:  @kbd{@key{RET} A /}.
6792 @smallexample
6793 @group
6794 1:  [1, 2, 3]  2:  [1, 2, 3]      1:  [0.27, 0.53, 0.80]  1:  1.
6795     .          1:  3.74165738677      .                       .
6796                    .
6798     r 1            @key{RET} A              /                       A
6799 @end group
6800 @end smallexample
6802 The final @kbd{A} command shows that the normalized vector does
6803 indeed have unit length.
6805 @node Vector Answer 2, Matrix Answer 1, Vector Answer 1, Answers to Exercises
6806 @subsection Vector Tutorial Exercise 2
6808 @noindent
6809 The average position is equal to the sum of the products of the
6810 positions times their corresponding probabilities.  This is the
6811 definition of the dot product operation.  So all you need to do
6812 is to put the two vectors on the stack and press @kbd{*}.
6814 @node Matrix Answer 1, Matrix Answer 2, Vector Answer 2, Answers to Exercises
6815 @subsection Matrix Tutorial Exercise 1
6817 @noindent
6818 The trick is to multiply by a vector of ones.  Use @kbd{r 4 [1 1 1] *} to
6819 get the row sum.  Similarly, use @kbd{[1 1] r 4 *} to get the column sum.
6821 @node Matrix Answer 2, Matrix Answer 3, Matrix Answer 1, Answers to Exercises
6822 @subsection Matrix Tutorial Exercise 2
6824 @ifnottex
6825 @example
6826 @group
6827    x + a y = 6
6828    x + b y = 10
6829 @end group
6830 @end example
6831 @end ifnottex
6832 @tex
6833 \beforedisplay
6834 $$ \eqalign{ x &+ a y = 6 \cr
6835              x &+ b y = 10}
6837 \afterdisplay
6838 @end tex
6840 Just enter the righthand side vector, then divide by the lefthand side
6841 matrix as usual.
6843 @smallexample
6844 @group
6845 1:  [6, 10]    2:  [6, 10]         1:  [4 a / (a - b) + 6, 4 / (b - a) ]
6846     .          1:  [ [ 1, a ]          .
6847                      [ 1, b ] ]
6848                    .
6850 ' [6 10] @key{RET}     ' [1 a; 1 b] @key{RET}      /
6851 @end group
6852 @end smallexample
6854 This can be made more readable using @kbd{d B} to enable Big display
6855 mode:
6857 @smallexample
6858 @group
6859       4 a         4
6860 1:  [----- + 6, -----]
6861      a - b      b - a
6862 @end group
6863 @end smallexample
6865 Type @kbd{d N} to return to Normal display mode afterwards.
6867 @node Matrix Answer 3, List Answer 1, Matrix Answer 2, Answers to Exercises
6868 @subsection Matrix Tutorial Exercise 3
6870 @noindent
6871 To solve
6872 @texline @math{A^T A \, X = A^T B},
6873 @infoline @expr{trn(A) * A * X = trn(A) * B},
6874 first we compute
6875 @texline @math{A' = A^T A}
6876 @infoline @expr{A2 = trn(A) * A}
6878 @texline @math{B' = A^T B};
6879 @infoline @expr{B2 = trn(A) * B};
6880 now, we have a system
6881 @texline @math{A' X = B'}
6882 @infoline @expr{A2 * X = B2}
6883 which we can solve using Calc's @samp{/} command.
6885 @ifnottex
6886 @example
6887 @group
6888     a + 2b + 3c = 6
6889    4a + 5b + 6c = 2
6890    7a + 6b      = 3
6891    2a + 4b + 6c = 11
6892 @end group
6893 @end example
6894 @end ifnottex
6895 @tex
6896 \beforedisplayh
6897 $$ \openup1\jot \tabskip=0pt plus1fil
6898 \halign to\displaywidth{\tabskip=0pt
6899    $\hfil#$&$\hfil{}#{}$&
6900    $\hfil#$&$\hfil{}#{}$&
6901    $\hfil#$&${}#\hfil$\tabskip=0pt plus1fil\cr
6902   a&+&2b&+&3c&=6 \cr
6903  4a&+&5b&+&6c&=2 \cr
6904  7a&+&6b& &  &=3 \cr
6905  2a&+&4b&+&6c&=11 \cr}
6907 \afterdisplayh
6908 @end tex
6910 The first step is to enter the coefficient matrix.  We'll store it in
6911 quick variable number 7 for later reference.  Next, we compute the
6912 @texline @math{B'}
6913 @infoline @expr{B2}
6914 vector.
6916 @smallexample
6917 @group
6918 1:  [ [ 1, 2, 3 ]             2:  [ [ 1, 4, 7, 2 ]     1:  [57, 84, 96]
6919       [ 4, 5, 6 ]                   [ 2, 5, 6, 4 ]         .
6920       [ 7, 6, 0 ]                   [ 3, 6, 0, 6 ] ]
6921       [ 2, 4, 6 ] ]           1:  [6, 2, 3, 11]
6922     .                             .
6924 ' [1 2 3; 4 5 6; 7 6 0; 2 4 6] @key{RET}  s 7  v t  [6 2 3 11]   *
6925 @end group
6926 @end smallexample
6928 @noindent
6929 Now we compute the matrix
6930 @texline @math{A'}
6931 @infoline @expr{A2}
6932 and divide.
6934 @smallexample
6935 @group
6936 2:  [57, 84, 96]          1:  [-11.64, 14.08, -3.64]
6937 1:  [ [ 70, 72, 39 ]          .
6938       [ 72, 81, 60 ]
6939       [ 39, 60, 81 ] ]
6940     .
6942     r 7 v t r 7 *             /
6943 @end group
6944 @end smallexample
6946 @noindent
6947 (The actual computed answer will be slightly inexact due to
6948 round-off error.)
6950 Notice that the answers are similar to those for the
6951 @texline @math{3\times3}
6952 @infoline 3x3
6953 system solved in the text.  That's because the fourth equation that was
6954 added to the system is almost identical to the first one multiplied
6955 by two.  (If it were identical, we would have gotten the exact same
6956 answer since the
6957 @texline @math{4\times3}
6958 @infoline 4x3
6959 system would be equivalent to the original
6960 @texline @math{3\times3}
6961 @infoline 3x3
6962 system.)
6964 Since the first and fourth equations aren't quite equivalent, they
6965 can't both be satisfied at once.  Let's plug our answers back into
6966 the original system of equations to see how well they match.
6968 @smallexample
6969 @group
6970 2:  [-11.64, 14.08, -3.64]     1:  [5.6, 2., 3., 11.2]
6971 1:  [ [ 1, 2, 3 ]                  .
6972       [ 4, 5, 6 ]
6973       [ 7, 6, 0 ]
6974       [ 2, 4, 6 ] ]
6975     .
6977     r 7                            @key{TAB} *
6978 @end group
6979 @end smallexample
6981 @noindent
6982 This is reasonably close to our original @expr{B} vector,
6983 @expr{[6, 2, 3, 11]}.
6985 @node List Answer 1, List Answer 2, Matrix Answer 3, Answers to Exercises
6986 @subsection List Tutorial Exercise 1
6988 @noindent
6989 We can use @kbd{v x} to build a vector of integers.  This needs to be
6990 adjusted to get the range of integers we desire.  Mapping @samp{-}
6991 across the vector will accomplish this, although it turns out the
6992 plain @samp{-} key will work just as well.
6994 @smallexample
6995 @group
6996 2:  2                              2:  2
6997 1:  [1, 2, 3, 4, 5, 6, 7, 8, 9]    1:  [-4, -3, -2, -1, 0, 1, 2, 3, 4]
6998     .                                  .
7000     2  v x 9 @key{RET}                       5 V M -   or   5 -
7001 @end group
7002 @end smallexample
7004 @noindent
7005 Now we use @kbd{V M ^} to map the exponentiation operator across the
7006 vector.
7008 @smallexample
7009 @group
7010 1:  [0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16]
7011     .
7013     V M ^
7014 @end group
7015 @end smallexample
7017 @node List Answer 2, List Answer 3, List Answer 1, Answers to Exercises
7018 @subsection List Tutorial Exercise 2
7020 @noindent
7021 Given @expr{x} and @expr{y} vectors in quick variables 1 and 2 as before,
7022 the first job is to form the matrix that describes the problem.
7024 @ifnottex
7025 @example
7026    m*x + b*1 = y
7027 @end example
7028 @end ifnottex
7029 @tex
7030 \beforedisplay
7031 $$ m \times x + b \times 1 = y $$
7032 \afterdisplay
7033 @end tex
7035 Thus we want a
7036 @texline @math{19\times2}
7037 @infoline 19x2
7038 matrix with our @expr{x} vector as one column and
7039 ones as the other column.  So, first we build the column of ones, then
7040 we combine the two columns to form our @expr{A} matrix.
7042 @smallexample
7043 @group
7044 2:  [1.34, 1.41, 1.49, ... ]    1:  [ [ 1.34, 1 ]
7045 1:  [1, 1, 1, ...]                    [ 1.41, 1 ]
7046     .                                 [ 1.49, 1 ]
7047                                       @dots{}
7049     r 1 1 v b 19 @key{RET}                M-2 v p v t   s 3
7050 @end group
7051 @end smallexample
7053 @noindent
7054 Now we compute
7055 @texline @math{A^T y}
7056 @infoline @expr{trn(A) * y}
7058 @texline @math{A^T A}
7059 @infoline @expr{trn(A) * A}
7060 and divide.
7062 @smallexample
7063 @group
7064 1:  [33.36554, 13.613]    2:  [33.36554, 13.613]
7065     .                     1:  [ [ 98.0003, 41.63 ]
7066                                 [  41.63,   19   ] ]
7067                               .
7069  v t r 2 *                    r 3 v t r 3 *
7070 @end group
7071 @end smallexample
7073 @noindent
7074 (Hey, those numbers look familiar!)
7076 @smallexample
7077 @group
7078 1:  [0.52141679, -0.425978]
7079     .
7081     /
7082 @end group
7083 @end smallexample
7085 Since we were solving equations of the form
7086 @texline @math{m \times x + b \times 1 = y},
7087 @infoline @expr{m*x + b*1 = y},
7088 these numbers should be @expr{m} and @expr{b}, respectively.  Sure
7089 enough, they agree exactly with the result computed using @kbd{V M} and
7090 @kbd{V R}!
7092 The moral of this story:  @kbd{V M} and @kbd{V R} will probably solve
7093 your problem, but there is often an easier way using the higher-level
7094 arithmetic functions!
7096 @c [fix-ref Curve Fitting]
7097 In fact, there is a built-in @kbd{a F} command that does least-squares
7098 fits.  @xref{Curve Fitting}.
7100 @node List Answer 3, List Answer 4, List Answer 2, Answers to Exercises
7101 @subsection List Tutorial Exercise 3
7103 @noindent
7104 Move to one end of the list and press @kbd{C-@@} (or @kbd{C-@key{SPC}} or
7105 whatever) to set the mark, then move to the other end of the list
7106 and type @w{@kbd{C-x * g}}.
7108 @smallexample
7109 @group
7110 1:  [2.3, 6, 22, 15.1, 7, 15, 14, 7.5, 2.5]
7111     .
7112 @end group
7113 @end smallexample
7115 To make things interesting, let's assume we don't know at a glance
7116 how many numbers are in this list.  Then we could type:
7118 @smallexample
7119 @group
7120 2:  [2.3, 6, 22, ... ]     2:  [2.3, 6, 22, ... ]
7121 1:  [2.3, 6, 22, ... ]     1:  126356422.5
7122     .                          .
7124     @key{RET}                        V R *
7126 @end group
7127 @end smallexample
7128 @noindent
7129 @smallexample
7130 @group
7131 2:  126356422.5            2:  126356422.5     1:  7.94652913734
7132 1:  [2.3, 6, 22, ... ]     1:  9                   .
7133     .                          .
7135     @key{TAB}                        v l                 I ^
7136 @end group
7137 @end smallexample
7139 @noindent
7140 (The @kbd{I ^} command computes the @var{n}th root of a number.
7141 You could also type @kbd{& ^} to take the reciprocal of 9 and
7142 then raise the number to that power.)
7144 @node List Answer 4, List Answer 5, List Answer 3, Answers to Exercises
7145 @subsection List Tutorial Exercise 4
7147 @noindent
7148 A number @expr{j} is a divisor of @expr{n} if
7149 @texline @math{n \mathbin{\hbox{\code{\%}}} j = 0}.
7150 @infoline @samp{n % j = 0}.
7151 The first step is to get a vector that identifies the divisors.
7153 @smallexample
7154 @group
7155 2:  30                  2:  [0, 0, 0, 2, ...]    1:  [1, 1, 1, 0, ...]
7156 1:  [1, 2, 3, 4, ...]   1:  0                        .
7157     .                       .
7159  30 @key{RET} v x 30 @key{RET}   s 1    V M %  0                 V M a =  s 2
7160 @end group
7161 @end smallexample
7163 @noindent
7164 This vector has 1's marking divisors of 30 and 0's marking non-divisors.
7166 The zeroth divisor function is just the total number of divisors.
7167 The first divisor function is the sum of the divisors.
7169 @smallexample
7170 @group
7171 1:  8      3:  8                    2:  8                    2:  8
7172            2:  [1, 2, 3, 4, ...]    1:  [1, 2, 3, 0, ...]    1:  72
7173            1:  [1, 1, 1, 0, ...]        .                        .
7174                .
7176    V R +       r 1 r 2                  V M *                  V R +
7177 @end group
7178 @end smallexample
7180 @noindent
7181 Once again, the last two steps just compute a dot product for which
7182 a simple @kbd{*} would have worked equally well.
7184 @node List Answer 5, List Answer 6, List Answer 4, Answers to Exercises
7185 @subsection List Tutorial Exercise 5
7187 @noindent
7188 The obvious first step is to obtain the list of factors with @kbd{k f}.
7189 This list will always be in sorted order, so if there are duplicates
7190 they will be right next to each other.  A suitable method is to compare
7191 the list with a copy of itself shifted over by one.
7193 @smallexample
7194 @group
7195 1:  [3, 7, 7, 7, 19]   2:  [3, 7, 7, 7, 19]     2:  [3, 7, 7, 7, 19, 0]
7196     .                  1:  [3, 7, 7, 7, 19, 0]  1:  [0, 3, 7, 7, 7, 19]
7197                            .                        .
7199     19551 k f              @key{RET} 0 |                  @key{TAB} 0 @key{TAB} |
7201 @end group
7202 @end smallexample
7203 @noindent
7204 @smallexample
7205 @group
7206 1:  [0, 0, 1, 1, 0, 0]   1:  2          1:  0
7207     .                        .              .
7209     V M a =                  V R +          0 a =
7210 @end group
7211 @end smallexample
7213 @noindent
7214 Note that we have to arrange for both vectors to have the same length
7215 so that the mapping operation works; no prime factor will ever be
7216 zero, so adding zeros on the left and right is safe.  From then on
7217 the job is pretty straightforward.
7219 Incidentally, Calc provides the @dfn{Möbius Î¼}
7220 function which is zero if and only if its argument is square-free.  It
7221 would be a much more convenient way to do the above test in practice.
7223 @node List Answer 6, List Answer 7, List Answer 5, Answers to Exercises
7224 @subsection List Tutorial Exercise 6
7226 @noindent
7227 First use @kbd{v x 6 @key{RET}} to get a list of integers, then @kbd{V M v x}
7228 to get a list of lists of integers!
7230 @node List Answer 7, List Answer 8, List Answer 6, Answers to Exercises
7231 @subsection List Tutorial Exercise 7
7233 @noindent
7234 Here's one solution.  First, compute the triangular list from the previous
7235 exercise and type @kbd{1 -} to subtract one from all the elements.
7237 @smallexample
7238 @group
7239 1:  [ [0],
7240       [0, 1],
7241       [0, 1, 2],
7242       @dots{}
7244     1 -
7245 @end group
7246 @end smallexample
7248 The numbers down the lefthand edge of the list we desire are called
7249 the ``triangular numbers'' (now you know why!).  The @expr{n}th
7250 triangular number is the sum of the integers from 1 to @expr{n}, and
7251 can be computed directly by the formula
7252 @texline @math{n (n+1) \over 2}.
7253 @infoline @expr{n * (n+1) / 2}.
7255 @smallexample
7256 @group
7257 2:  [ [0], [0, 1], ... ]    2:  [ [0], [0, 1], ... ]
7258 1:  [0, 1, 2, 3, 4, 5]      1:  [0, 1, 3, 6, 10, 15]
7259     .                           .
7261     v x 6 @key{RET} 1 -               V M ' $ ($+1)/2 @key{RET}
7262 @end group
7263 @end smallexample
7265 @noindent
7266 Adding this list to the above list of lists produces the desired
7267 result:
7269 @smallexample
7270 @group
7271 1:  [ [0],
7272       [1, 2],
7273       [3, 4, 5],
7274       [6, 7, 8, 9],
7275       [10, 11, 12, 13, 14],
7276       [15, 16, 17, 18, 19, 20] ]
7277       .
7279       V M +
7280 @end group
7281 @end smallexample
7283 If we did not know the formula for triangular numbers, we could have
7284 computed them using a @kbd{V U +} command.  We could also have
7285 gotten them the hard way by mapping a reduction across the original
7286 triangular list.
7288 @smallexample
7289 @group
7290 2:  [ [0], [0, 1], ... ]    2:  [ [0], [0, 1], ... ]
7291 1:  [ [0], [0, 1], ... ]    1:  [0, 1, 3, 6, 10, 15]
7292     .                           .
7294     @key{RET}                         V M V R +
7295 @end group
7296 @end smallexample
7298 @noindent
7299 (This means ``map a @kbd{V R +} command across the vector,'' and
7300 since each element of the main vector is itself a small vector,
7301 @kbd{V R +} computes the sum of its elements.)
7303 @node List Answer 8, List Answer 9, List Answer 7, Answers to Exercises
7304 @subsection List Tutorial Exercise 8
7306 @noindent
7307 The first step is to build a list of values of @expr{x}.
7309 @smallexample
7310 @group
7311 1:  [1, 2, 3, ..., 21]  1:  [0, 1, 2, ..., 20]  1:  [0, 0.25, 0.5, ..., 5]
7312     .                       .                       .
7314     v x 21 @key{RET}              1 -                     4 /  s 1
7315 @end group
7316 @end smallexample
7318 Next, we compute the Bessel function values.
7320 @smallexample
7321 @group
7322 1:  [0., 0.124, 0.242, ..., -0.328]
7323     .
7325     V M ' besJ(1,$) @key{RET}
7326 @end group
7327 @end smallexample
7329 @noindent
7330 (Another way to do this would be @kbd{1 @key{TAB} V M f j}.)
7332 A way to isolate the maximum value is to compute the maximum using
7333 @kbd{V R X}, then compare all the Bessel values with that maximum.
7335 @smallexample
7336 @group
7337 2:  [0., 0.124, 0.242, ... ]   1:  [0, 0, 0, ... ]    2:  [0, 0, 0, ... ]
7338 1:  0.5801562                      .                  1:  1
7339     .                                                     .
7341     @key{RET} V R X                      V M a =                @key{RET} V R +    @key{DEL}
7342 @end group
7343 @end smallexample
7345 @noindent
7346 It's a good idea to verify, as in the last step above, that only
7347 one value is equal to the maximum.  (After all, a plot of
7348 @texline @math{\sin x}
7349 @infoline @expr{sin(x)}
7350 might have many points all equal to the maximum value, 1.)
7352 The vector we have now has a single 1 in the position that indicates
7353 the maximum value of @expr{x}.  Now it is a simple matter to convert
7354 this back into the corresponding value itself.
7356 @smallexample
7357 @group
7358 2:  [0, 0, 0, ... ]         1:  [0, 0., 0., ... ]    1:  1.75
7359 1:  [0, 0.25, 0.5, ... ]        .                        .
7360     .
7362     r 1                         V M *                    V R +
7363 @end group
7364 @end smallexample
7366 If @kbd{a =} had produced more than one @expr{1} value, this method
7367 would have given the sum of all maximum @expr{x} values; not very
7368 useful!  In this case we could have used @kbd{v m} (@code{calc-mask-vector})
7369 instead.  This command deletes all elements of a ``data'' vector that
7370 correspond to zeros in a ``mask'' vector, leaving us with, in this
7371 example, a vector of maximum @expr{x} values.
7373 The built-in @kbd{a X} command maximizes a function using more
7374 efficient methods.  Just for illustration, let's use @kbd{a X}
7375 to maximize @samp{besJ(1,x)} over this same interval.
7377 @smallexample
7378 @group
7379 2:  besJ(1, x)                 1:  [1.84115, 0.581865]
7380 1:  [0 .. 5]                       .
7381     .
7383 ' besJ(1,x), [0..5] @key{RET}            a X x @key{RET}
7384 @end group
7385 @end smallexample
7387 @noindent
7388 The output from @kbd{a X} is a vector containing the value of @expr{x}
7389 that maximizes the function, and the function's value at that maximum.
7390 As you can see, our simple search got quite close to the right answer.
7392 @node List Answer 9, List Answer 10, List Answer 8, Answers to Exercises
7393 @subsection List Tutorial Exercise 9
7395 @noindent
7396 Step one is to convert our integer into vector notation.
7398 @smallexample
7399 @group
7400 1:  25129925999           3:  25129925999
7401     .                     2:  10
7402                           1:  [11, 10, 9, ..., 1, 0]
7403                               .
7405     25129925999 @key{RET}           10 @key{RET} 12 @key{RET} v x 12 @key{RET} -
7407 @end group
7408 @end smallexample
7409 @noindent
7410 @smallexample
7411 @group
7412 1:  25129925999              1:  [0, 2, 25, 251, 2512, ... ]
7413 2:  [100000000000, ... ]         .
7414     .
7416     V M ^   s 1                  V M \
7417 @end group
7418 @end smallexample
7420 @noindent
7421 (Recall, the @kbd{\} command computes an integer quotient.)
7423 @smallexample
7424 @group
7425 1:  [0, 2, 5, 1, 2, 9, 9, 2, 5, 9, 9, 9]
7426     .
7428     10 V M %   s 2
7429 @end group
7430 @end smallexample
7432 Next we must increment this number.  This involves adding one to
7433 the last digit, plus handling carries.  There is a carry to the
7434 left out of a digit if that digit is a nine and all the digits to
7435 the right of it are nines.
7437 @smallexample
7438 @group
7439 1:  [0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1]   1:  [1, 1, 1, 0, 0, 1, ... ]
7440     .                                          .
7442     9 V M a =                                  v v
7444 @end group
7445 @end smallexample
7446 @noindent
7447 @smallexample
7448 @group
7449 1:  [1, 1, 1, 0, 0, 0, ... ]   1:  [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]
7450     .                              .
7452     V U *                          v v 1 |
7453 @end group
7454 @end smallexample
7456 @noindent
7457 Accumulating @kbd{*} across a vector of ones and zeros will preserve
7458 only the initial run of ones.  These are the carries into all digits
7459 except the rightmost digit.  Concatenating a one on the right takes
7460 care of aligning the carries properly, and also adding one to the
7461 rightmost digit.
7463 @smallexample
7464 @group
7465 2:  [0, 0, 0, 0, ... ]     1:  [0, 0, 2, 5, 1, 2, 9, 9, 2, 6, 0, 0, 0]
7466 1:  [0, 0, 2, 5, ... ]         .
7467     .
7469     0 r 2 |                    V M +  10 V M %
7470 @end group
7471 @end smallexample
7473 @noindent
7474 Here we have concatenated 0 to the @emph{left} of the original number;
7475 this takes care of shifting the carries by one with respect to the
7476 digits that generated them.
7478 Finally, we must convert this list back into an integer.
7480 @smallexample
7481 @group
7482 3:  [0, 0, 2, 5, ... ]        2:  [0, 0, 2, 5, ... ]
7483 2:  1000000000000             1:  [1000000000000, 100000000000, ... ]
7484 1:  [100000000000, ... ]          .
7485     .
7487     10 @key{RET} 12 ^  r 1              |
7489 @end group
7490 @end smallexample
7491 @noindent
7492 @smallexample
7493 @group
7494 1:  [0, 0, 20000000000, 5000000000, ... ]    1:  25129926000
7495     .                                            .
7497     V M *                                        V R +
7498 @end group
7499 @end smallexample
7501 @noindent
7502 Another way to do this final step would be to reduce the formula
7503 @w{@samp{10 $$ + $}} across the vector of digits.
7505 @smallexample
7506 @group
7507 1:  [0, 0, 2, 5, ... ]        1:  25129926000
7508     .                             .
7510                                   V R ' 10 $$ + $ @key{RET}
7511 @end group
7512 @end smallexample
7514 @node List Answer 10, List Answer 11, List Answer 9, Answers to Exercises
7515 @subsection List Tutorial Exercise 10
7517 @noindent
7518 For the list @expr{[a, b, c, d]}, the result is @expr{((a = b) = c) = d},
7519 which will compare @expr{a} and @expr{b} to produce a 1 or 0, which is
7520 then compared with @expr{c} to produce another 1 or 0, which is then
7521 compared with @expr{d}.  This is not at all what Joe wanted.
7523 Here's a more correct method:
7525 @smallexample
7526 @group
7527 1:  [7, 7, 7, 8, 7]      2:  [7, 7, 7, 8, 7]
7528     .                    1:  7
7529                              .
7531   ' [7,7,7,8,7] @key{RET}          @key{RET} v r 1 @key{RET}
7533 @end group
7534 @end smallexample
7535 @noindent
7536 @smallexample
7537 @group
7538 1:  [1, 1, 1, 0, 1]      1:  0
7539     .                        .
7541     V M a =                  V R *
7542 @end group
7543 @end smallexample
7545 @node List Answer 11, List Answer 12, List Answer 10, Answers to Exercises
7546 @subsection List Tutorial Exercise 11
7548 @noindent
7549 The circle of unit radius consists of those points @expr{(x,y)} for which
7550 @expr{x^2 + y^2 < 1}.  We start by generating a vector of @expr{x^2}
7551 and a vector of @expr{y^2}.
7553 We can make this go a bit faster by using the @kbd{v .} and @kbd{t .}
7554 commands.
7556 @smallexample
7557 @group
7558 2:  [2., 2., ..., 2.]          2:  [2., 2., ..., 2.]
7559 1:  [2., 2., ..., 2.]          1:  [1.16, 1.98, ..., 0.81]
7560     .                              .
7562  v . t .  2. v b 100 @key{RET} @key{RET}       V M k r
7564 @end group
7565 @end smallexample
7566 @noindent
7567 @smallexample
7568 @group
7569 2:  [2., 2., ..., 2.]          1:  [0.026, 0.96, ..., 0.036]
7570 1:  [0.026, 0.96, ..., 0.036]  2:  [0.53, 0.81, ..., 0.094]
7571     .                              .
7573     1 -  2 V M ^                   @key{TAB}  V M k r  1 -  2 V M ^
7574 @end group
7575 @end smallexample
7577 Now we sum the @expr{x^2} and @expr{y^2} values, compare with 1 to
7578 get a vector of 1/0 truth values, then sum the truth values.
7580 @smallexample
7581 @group
7582 1:  [0.56, 1.78, ..., 0.13]    1:  [1, 0, ..., 1]    1:  84
7583     .                              .                     .
7585     +                              1 V M a <             V R +
7586 @end group
7587 @end smallexample
7589 @noindent
7590 The ratio @expr{84/100} should approximate the ratio @cpiover{4}.
7592 @smallexample
7593 @group
7594 1:  0.84       1:  3.36       2:  3.36       1:  1.0695
7595     .              .          1:  3.14159        .
7597     100 /          4 *            P              /
7598 @end group
7599 @end smallexample
7601 @noindent
7602 Our estimate, 3.36, is off by about 7%.  We could get a better estimate
7603 by taking more points (say, 1000), but it's clear that this method is
7604 not very efficient!
7606 (Naturally, since this example uses random numbers your own answer
7607 will be slightly different from the one shown here!)
7609 If you typed @kbd{v .} and @kbd{t .} before, type them again to
7610 return to full-sized display of vectors.
7612 @node List Answer 12, List Answer 13, List Answer 11, Answers to Exercises
7613 @subsection List Tutorial Exercise 12
7615 @noindent
7616 This problem can be made a lot easier by taking advantage of some
7617 symmetries.  First of all, after some thought it's clear that the
7618 @expr{y} axis can be ignored altogether.  Just pick a random @expr{x}
7619 component for one end of the match, pick a random direction
7620 @texline @math{\theta},
7621 @infoline @expr{theta},
7622 and see if @expr{x} and
7623 @texline @math{x + \cos \theta}
7624 @infoline @expr{x + cos(theta)}
7625 (which is the @expr{x} coordinate of the other endpoint) cross a line.
7626 The lines are at integer coordinates, so this happens when the two
7627 numbers surround an integer.
7629 Since the two endpoints are equivalent, we may as well choose the leftmost
7630 of the two endpoints as @expr{x}.  Then @expr{theta} is an angle pointing
7631 to the right, in the range -90 to 90 degrees.  (We could use radians, but
7632 it would feel like cheating to refer to @cpiover{2} radians while trying
7633 to estimate @cpi{}!)
7635 In fact, since the field of lines is infinite we can choose the
7636 coordinates 0 and 1 for the lines on either side of the leftmost
7637 endpoint.  The rightmost endpoint will be between 0 and 1 if the
7638 match does not cross a line, or between 1 and 2 if it does.  So:
7639 Pick random @expr{x} and
7640 @texline @math{\theta},
7641 @infoline @expr{theta},
7642 compute
7643 @texline @math{x + \cos \theta},
7644 @infoline @expr{x + cos(theta)},
7645 and count how many of the results are greater than one.  Simple!
7647 We can make this go a bit faster by using the @kbd{v .} and @kbd{t .}
7648 commands.
7650 @smallexample
7651 @group
7652 1:  [0.52, 0.71, ..., 0.72]    2:  [0.52, 0.71, ..., 0.72]
7653     .                          1:  [78.4, 64.5, ..., -42.9]
7654                                    .
7656 v . t . 1. v b 100 @key{RET}  V M k r    180. v b 100 @key{RET}  V M k r  90 -
7657 @end group
7658 @end smallexample
7660 @noindent
7661 (The next step may be slow, depending on the speed of your computer.)
7663 @smallexample
7664 @group
7665 2:  [0.52, 0.71, ..., 0.72]    1:  [0.72, 1.14, ..., 1.45]
7666 1:  [0.20, 0.43, ..., 0.73]        .
7667     .
7669     m d  V M C                     +
7671 @end group
7672 @end smallexample
7673 @noindent
7674 @smallexample
7675 @group
7676 1:  [0, 1, ..., 1]       1:  0.64            1:  3.125
7677     .                        .                   .
7679     1 V M a >                V R + 100 /         2 @key{TAB} /
7680 @end group
7681 @end smallexample
7683 Let's try the third method, too.  We'll use random integers up to
7684 one million.  The @kbd{k r} command with an integer argument picks
7685 a random integer.
7687 @smallexample
7688 @group
7689 2:  [1000000, 1000000, ..., 1000000]   2:  [78489, 527587, ..., 814975]
7690 1:  [1000000, 1000000, ..., 1000000]   1:  [324014, 358783, ..., 955450]
7691     .                                      .
7693     1000000 v b 100 @key{RET} @key{RET}                V M k r  @key{TAB}  V M k r
7695 @end group
7696 @end smallexample
7697 @noindent
7698 @smallexample
7699 @group
7700 1:  [1, 1, ..., 25]      1:  [1, 1, ..., 0]     1:  0.56
7701     .                        .                      .
7703     V M k g                  1 V M a =              V R + 100 /
7705 @end group
7706 @end smallexample
7707 @noindent
7708 @smallexample
7709 @group
7710 1:  10.714        1:  3.273
7711     .                 .
7713     6 @key{TAB} /           Q
7714 @end group
7715 @end smallexample
7717 For a proof of this property of the GCD function, see section 4.5.2,
7718 exercise 10, of Knuth's @emph{Art of Computer Programming}, volume II.
7720 If you typed @kbd{v .} and @kbd{t .} before, type them again to
7721 return to full-sized display of vectors.
7723 @node List Answer 13, List Answer 14, List Answer 12, Answers to Exercises
7724 @subsection List Tutorial Exercise 13
7726 @noindent
7727 First, we put the string on the stack as a vector of ASCII codes.
7729 @smallexample
7730 @group
7731 1:  [84, 101, 115, ..., 51]
7732     .
7734     "Testing, 1, 2, 3 @key{RET}
7735 @end group
7736 @end smallexample
7738 @noindent
7739 Note that the @kbd{"} key, like @kbd{$}, initiates algebraic entry so
7740 there was no need to type an apostrophe.  Also, Calc didn't mind that
7741 we omitted the closing @kbd{"}.  (The same goes for all closing delimiters
7742 like @kbd{)} and @kbd{]} at the end of a formula.
7744 We'll show two different approaches here.  In the first, we note that
7745 if the input vector is @expr{[a, b, c, d]}, then the hash code is
7746 @expr{3 (3 (3a + b) + c) + d = 27a + 9b + 3c + d}.  In other words,
7747 it's a sum of descending powers of three times the ASCII codes.
7749 @smallexample
7750 @group
7751 2:  [84, 101, 115, ..., 51]    2:  [84, 101, 115, ..., 51]
7752 1:  16                         1:  [15, 14, 13, ..., 0]
7753     .                              .
7755     @key{RET} v l                        v x 16 @key{RET} -
7757 @end group
7758 @end smallexample
7759 @noindent
7760 @smallexample
7761 @group
7762 2:  [84, 101, 115, ..., 51]    1:  1960915098    1:  121
7763 1:  [14348907, ..., 1]             .                 .
7764     .
7766     3 @key{TAB} V M ^                    *                 511 %
7767 @end group
7768 @end smallexample
7770 @noindent
7771 Once again, @kbd{*} elegantly summarizes most of the computation.
7772 But there's an even more elegant approach:  Reduce the formula
7773 @kbd{3 $$ + $} across the vector.  Recall that this represents a
7774 function of two arguments that computes its first argument times three
7775 plus its second argument.
7777 @smallexample
7778 @group
7779 1:  [84, 101, 115, ..., 51]    1:  1960915098
7780     .                              .
7782     "Testing, 1, 2, 3 @key{RET}          V R ' 3$$+$ @key{RET}
7783 @end group
7784 @end smallexample
7786 @noindent
7787 If you did the decimal arithmetic exercise, this will be familiar.
7788 Basically, we're turning a base-3 vector of digits into an integer,
7789 except that our ``digits'' are much larger than real digits.
7791 Instead of typing @kbd{511 %} again to reduce the result, we can be
7792 cleverer still and notice that rather than computing a huge integer
7793 and taking the modulo at the end, we can take the modulo at each step
7794 without affecting the result.  While this means there are more
7795 arithmetic operations, the numbers we operate on remain small so
7796 the operations are faster.
7798 @smallexample
7799 @group
7800 1:  [84, 101, 115, ..., 51]    1:  121
7801     .                              .
7803     "Testing, 1, 2, 3 @key{RET}          V R ' (3$$+$)%511 @key{RET}
7804 @end group
7805 @end smallexample
7807 Why does this work?  Think about a two-step computation:
7808 @w{@expr{3 (3a + b) + c}}.  Taking a result modulo 511 basically means
7809 subtracting off enough 511's to put the result in the desired range.
7810 So the result when we take the modulo after every step is,
7812 @ifnottex
7813 @example
7814 3 (3 a + b - 511 m) + c - 511 n
7815 @end example
7816 @end ifnottex
7817 @tex
7818 \beforedisplay
7819 $$ 3 (3 a + b - 511 m) + c - 511 n $$
7820 \afterdisplay
7821 @end tex
7823 @noindent
7824 for some suitable integers @expr{m} and @expr{n}.  Expanding out by
7825 the distributive law yields
7827 @ifnottex
7828 @example
7829 9 a + 3 b + c - 511*3 m - 511 n
7830 @end example
7831 @end ifnottex
7832 @tex
7833 \beforedisplay
7834 $$ 9 a + 3 b + c - 511\times3 m - 511 n $$
7835 \afterdisplay
7836 @end tex
7838 @noindent
7839 The @expr{m} term in the latter formula is redundant because any
7840 contribution it makes could just as easily be made by the @expr{n}
7841 term.  So we can take it out to get an equivalent formula with
7842 @expr{n' = 3m + n},
7844 @ifnottex
7845 @example
7846 9 a + 3 b + c - 511 n'
7847 @end example
7848 @end ifnottex
7849 @tex
7850 \beforedisplay
7851 $$ 9 a + 3 b + c - 511 n^{\prime} $$
7852 \afterdisplay
7853 @end tex
7855 @noindent
7856 which is just the formula for taking the modulo only at the end of
7857 the calculation.  Therefore the two methods are essentially the same.
7859 Later in the tutorial we will encounter @dfn{modulo forms}, which
7860 basically automate the idea of reducing every intermediate result
7861 modulo some value @var{m}.
7863 @node List Answer 14, Types Answer 1, List Answer 13, Answers to Exercises
7864 @subsection List Tutorial Exercise 14
7866 We want to use @kbd{H V U} to nest a function which adds a random
7867 step to an @expr{(x,y)} coordinate.  The function is a bit long, but
7868 otherwise the problem is quite straightforward.
7870 @smallexample
7871 @group
7872 2:  [0, 0]     1:  [ [    0,       0    ]
7873 1:  50               [  0.4288, -0.1695 ]
7874     .                [ -0.4787, -0.9027 ]
7875                      ...
7877     [0,0] 50       H V U ' <# + [random(2.0)-1, random(2.0)-1]> @key{RET}
7878 @end group
7879 @end smallexample
7881 Just as the text recommended, we used @samp{< >} nameless function
7882 notation to keep the two @code{random} calls from being evaluated
7883 before nesting even begins.
7885 We now have a vector of @expr{[x, y]} sub-vectors, which by Calc's
7886 rules acts like a matrix.  We can transpose this matrix and unpack
7887 to get a pair of vectors, @expr{x} and @expr{y}, suitable for graphing.
7889 @smallexample
7890 @group
7891 2:  [ 0, 0.4288, -0.4787, ... ]
7892 1:  [ 0, -0.1696, -0.9027, ... ]
7893     .
7895     v t  v u  g f
7896 @end group
7897 @end smallexample
7899 Incidentally, because the @expr{x} and @expr{y} are completely
7900 independent in this case, we could have done two separate commands
7901 to create our @expr{x} and @expr{y} vectors of numbers directly.
7903 To make a random walk of unit steps, we note that @code{sincos} of
7904 a random direction exactly gives us an @expr{[x, y]} step of unit
7905 length; in fact, the new nesting function is even briefer, though
7906 we might want to lower the precision a bit for it.
7908 @smallexample
7909 @group
7910 2:  [0, 0]     1:  [ [    0,      0    ]
7911 1:  50               [  0.1318, 0.9912 ]
7912     .                [ -0.5965, 0.3061 ]
7913                      ...
7915     [0,0] 50   m d  p 6 @key{RET}   H V U ' <# + sincos(random(360.0))> @key{RET}
7916 @end group
7917 @end smallexample
7919 Another @kbd{v t v u g f} sequence will graph this new random walk.
7921 An interesting twist on these random walk functions would be to use
7922 complex numbers instead of 2-vectors to represent points on the plane.
7923 In the first example, we'd use something like @samp{random + random*(0,1)},
7924 and in the second we could use polar complex numbers with random phase
7925 angles.  (This exercise was first suggested in this form by Randal
7926 Schwartz.)
7928 @node Types Answer 1, Types Answer 2, List Answer 14, Answers to Exercises
7929 @subsection Types Tutorial Exercise 1
7931 @noindent
7932 If the number is the square root of @cpi{} times a rational number,
7933 then its square, divided by @cpi{}, should be a rational number.
7935 @smallexample
7936 @group
7937 1:  1.26508260337    1:  0.509433962268   1:  2486645810:4881193627
7938     .                    .                    .
7940                          2 ^ P /              c F
7941 @end group
7942 @end smallexample
7944 @noindent
7945 Technically speaking this is a rational number, but not one that is
7946 likely to have arisen in the original problem.  More likely, it just
7947 happens to be the fraction which most closely represents some
7948 irrational number to within 12 digits.
7950 But perhaps our result was not quite exact.  Let's reduce the
7951 precision slightly and try again:
7953 @smallexample
7954 @group
7955 1:  0.509433962268     1:  27:53
7956     .                      .
7958     U p 10 @key{RET}             c F
7959 @end group
7960 @end smallexample
7962 @noindent
7963 Aha!  It's unlikely that an irrational number would equal a fraction
7964 this simple to within ten digits, so our original number was probably
7965 @texline @math{\sqrt{27 \pi / 53}}.
7966 @infoline @expr{sqrt(27 pi / 53)}.
7968 Notice that we didn't need to re-round the number when we reduced the
7969 precision.  Remember, arithmetic operations always round their inputs
7970 to the current precision before they begin.
7972 @node Types Answer 2, Types Answer 3, Types Answer 1, Answers to Exercises
7973 @subsection Types Tutorial Exercise 2
7975 @noindent
7976 @samp{inf / inf = nan}.  Perhaps @samp{1} is the ``obvious'' answer.
7977 But if @w{@samp{17 inf = inf}}, then @samp{17 inf / inf = inf / inf = 17}, too.
7979 @samp{exp(inf) = inf}.  It's tempting to say that the exponential
7980 of infinity must be ``bigger'' than ``regular'' infinity, but as
7981 far as Calc is concerned all infinities are the same size.
7982 In other words, as @expr{x} goes to infinity, @expr{e^x} also goes
7983 to infinity, but the fact the @expr{e^x} grows much faster than
7984 @expr{x} is not relevant here.
7986 @samp{exp(-inf) = 0}.  Here we have a finite answer even though
7987 the input is infinite.
7989 @samp{sqrt(-inf) = (0, 1) inf}.  Remember that @expr{(0, 1)}
7990 represents the imaginary number @expr{i}.  Here's a derivation:
7991 @samp{sqrt(-inf) = @w{sqrt((-1) * inf)} = sqrt(-1) * sqrt(inf)}.
7992 The first part is, by definition, @expr{i}; the second is @code{inf}
7993 because, once again, all infinities are the same size.
7995 @samp{sqrt(uinf) = uinf}.  In fact, we do know something about the
7996 direction because @code{sqrt} is defined to return a value in the
7997 right half of the complex plane.  But Calc has no notation for this,
7998 so it settles for the conservative answer @code{uinf}.
8000 @samp{abs(uinf) = inf}.  No matter which direction @expr{x} points,
8001 @samp{abs(x)} always points along the positive real axis.
8003 @samp{ln(0) = -inf}.  Here we have an infinite answer to a finite
8004 input.  As in the @expr{1 / 0} case, Calc will only use infinities
8005 here if you have turned on Infinite mode.  Otherwise, it will
8006 treat @samp{ln(0)} as an error.
8008 @node Types Answer 3, Types Answer 4, Types Answer 2, Answers to Exercises
8009 @subsection Types Tutorial Exercise 3
8011 @noindent
8012 We can make @samp{inf - inf} be any real number we like, say,
8013 @expr{a}, just by claiming that we added @expr{a} to the first
8014 infinity but not to the second.  This is just as true for complex
8015 values of @expr{a}, so @code{nan} can stand for a complex number.
8016 (And, similarly, @code{uinf} can stand for an infinity that points
8017 in any direction in the complex plane, such as @samp{(0, 1) inf}).
8019 In fact, we can multiply the first @code{inf} by two.  Surely
8020 @w{@samp{2 inf - inf = inf}}, but also @samp{2 inf - inf = inf - inf = nan}.
8021 So @code{nan} can even stand for infinity.  Obviously it's just
8022 as easy to make it stand for minus infinity as for plus infinity.
8024 The moral of this story is that ``infinity'' is a slippery fish
8025 indeed, and Calc tries to handle it by having a very simple model
8026 for infinities (only the direction counts, not the ``size''); but
8027 Calc is careful to write @code{nan} any time this simple model is
8028 unable to tell what the true answer is.
8030 @node Types Answer 4, Types Answer 5, Types Answer 3, Answers to Exercises
8031 @subsection Types Tutorial Exercise 4
8033 @smallexample
8034 @group
8035 2:  0@@ 47' 26"              1:  0@@ 2' 47.411765"
8036 1:  17                          .
8037     .
8039     0@@ 47' 26" @key{RET} 17           /
8040 @end group
8041 @end smallexample
8043 @noindent
8044 The average song length is two minutes and 47.4 seconds.
8046 @smallexample
8047 @group
8048 2:  0@@ 2' 47.411765"     1:  0@@ 3' 7.411765"    1:  0@@ 53' 6.000005"
8049 1:  0@@ 0' 20"                .                      .
8050     .
8052     20"                      +                      17 *
8053 @end group
8054 @end smallexample
8056 @noindent
8057 The album would be 53 minutes and 6 seconds long.
8059 @node Types Answer 5, Types Answer 6, Types Answer 4, Answers to Exercises
8060 @subsection Types Tutorial Exercise 5
8062 @noindent
8063 Let's suppose it's January 14, 1991.  The easiest thing to do is
8064 to keep trying 13ths of months until Calc reports a Friday.
8065 We can do this by manually entering dates, or by using @kbd{t I}:
8067 @smallexample
8068 @group
8069 1:  <Wed Feb 13, 1991>    1:  <Wed Mar 13, 1991>   1:  <Sat Apr 13, 1991>
8070     .                         .                        .
8072     ' <2/13> @key{RET}       @key{DEL}    ' <3/13> @key{RET}             t I
8073 @end group
8074 @end smallexample
8076 @noindent
8077 (Calc assumes the current year if you don't say otherwise.)
8079 This is getting tedious---we can keep advancing the date by typing
8080 @kbd{t I} over and over again, but let's automate the job by using
8081 vector mapping.  The @kbd{t I} command actually takes a second
8082 ``how-many-months'' argument, which defaults to one.  This
8083 argument is exactly what we want to map over:
8085 @smallexample
8086 @group
8087 2:  <Sat Apr 13, 1991>     1:  [<Mon May 13, 1991>, <Thu Jun 13, 1991>,
8088 1:  [1, 2, 3, 4, 5, 6]          <Sat Jul 13, 1991>, <Tue Aug 13, 1991>,
8089     .                           <Fri Sep 13, 1991>, <Sun Oct 13, 1991>]
8090                                .
8092     v x 6 @key{RET}                  V M t I
8093 @end group
8094 @end smallexample
8096 @noindent
8097 Et voilà, September 13, 1991 is a Friday.
8099 @smallexample
8100 @group
8101 1:  242
8102     .
8104 ' <sep 13> - <jan 14> @key{RET}
8105 @end group
8106 @end smallexample
8108 @noindent
8109 And the answer to our original question:  242 days to go.
8111 @node Types Answer 6, Types Answer 7, Types Answer 5, Answers to Exercises
8112 @subsection Types Tutorial Exercise 6
8114 @noindent
8115 The full rule for leap years is that they occur in every year divisible
8116 by four, except that they don't occur in years divisible by 100, except
8117 that they @emph{do} in years divisible by 400.  We could work out the
8118 answer by carefully counting the years divisible by four and the
8119 exceptions, but there is a much simpler way that works even if we
8120 don't know the leap year rule.
8122 Let's assume the present year is 1991.  Years have 365 days, except
8123 that leap years (whenever they occur) have 366 days.  So let's count
8124 the number of days between now and then, and compare that to the
8125 number of years times 365.  The number of extra days we find must be
8126 equal to the number of leap years there were.
8128 @smallexample
8129 @group
8130 1:  <Mon Jan 1, 10001>     2:  <Mon Jan 1, 10001>     1:  2925593
8131     .                      1:  <Tue Jan 1, 1991>          .
8132                                .
8134   ' <jan 1 10001> @key{RET}         ' <jan 1 1991> @key{RET}          -
8136 @end group
8137 @end smallexample
8138 @noindent
8139 @smallexample
8140 @group
8141 3:  2925593       2:  2925593     2:  2925593     1:  1943
8142 2:  10001         1:  8010        1:  2923650         .
8143 1:  1991              .               .
8144     .
8146   10001 @key{RET} 1991      -               365 *           -
8147 @end group
8148 @end smallexample
8150 @c [fix-ref Date Forms]
8151 @noindent
8152 There will be 1943 leap years before the year 10001.  (Assuming,
8153 of course, that the algorithm for computing leap years remains
8154 unchanged for that long.  @xref{Date Forms}, for some interesting
8155 background information in that regard.)
8157 @node Types Answer 7, Types Answer 8, Types Answer 6, Answers to Exercises
8158 @subsection Types Tutorial Exercise 7
8160 @noindent
8161 The relative errors must be converted to absolute errors so that
8162 @samp{+/-} notation may be used.
8164 @smallexample
8165 @group
8166 1:  1.              2:  1.
8167     .               1:  0.2
8168                         .
8170     20 @key{RET} .05 *        4 @key{RET} .05 *
8171 @end group
8172 @end smallexample
8174 Now we simply chug through the formula.
8176 @smallexample
8177 @group
8178 1:  19.7392088022    1:  394.78 +/- 19.739    1:  6316.5 +/- 706.21
8179     .                    .                        .
8181     2 P 2 ^ *            20 p 1 *                 4 p .2 @key{RET} 2 ^ *
8182 @end group
8183 @end smallexample
8185 It turns out the @kbd{v u} command will unpack an error form as
8186 well as a vector.  This saves us some retyping of numbers.
8188 @smallexample
8189 @group
8190 3:  6316.5 +/- 706.21     2:  6316.5 +/- 706.21
8191 2:  6316.5                1:  0.1118
8192 1:  706.21                    .
8193     .
8195     @key{RET} v u                   @key{TAB} /
8196 @end group
8197 @end smallexample
8199 @noindent
8200 Thus the volume is 6316 cubic centimeters, within about 11 percent.
8202 @node Types Answer 8, Types Answer 9, Types Answer 7, Answers to Exercises
8203 @subsection Types Tutorial Exercise 8
8205 @noindent
8206 The first answer is pretty simple:  @samp{1 / (0 .. 10) = (0.1 .. inf)}.
8207 Since a number in the interval @samp{(0 .. 10)} can get arbitrarily
8208 close to zero, its reciprocal can get arbitrarily large, so the answer
8209 is an interval that effectively means, ``any number greater than 0.1''
8210 but with no upper bound.
8212 The second answer, similarly, is @samp{1 / (-10 .. 0) = (-inf .. -0.1)}.
8214 Calc normally treats division by zero as an error, so that the formula
8215 @w{@samp{1 / 0}} is left unsimplified.  Our third problem,
8216 @w{@samp{1 / [0 .. 10]}}, also (potentially) divides by zero because zero
8217 is now a member of the interval.  So Calc leaves this one unevaluated, too.
8219 If you turn on Infinite mode by pressing @kbd{m i}, you will
8220 instead get the answer @samp{[0.1 .. inf]}, which includes infinity
8221 as a possible value.
8223 The fourth calculation, @samp{1 / (-10 .. 10)}, has the same problem.
8224 Zero is buried inside the interval, but it's still a possible value.
8225 It's not hard to see that the actual result of @samp{1 / (-10 .. 10)}
8226 will be either greater than @mathit{0.1}, or less than @mathit{-0.1}.  Thus
8227 the interval goes from minus infinity to plus infinity, with a ``hole''
8228 in it from @mathit{-0.1} to @mathit{0.1}.  Calc doesn't have any way to
8229 represent this, so it just reports @samp{[-inf .. inf]} as the answer.
8230 It may be disappointing to hear ``the answer lies somewhere between
8231 minus infinity and plus infinity, inclusive,'' but that's the best
8232 that interval arithmetic can do in this case.
8234 @node Types Answer 9, Types Answer 10, Types Answer 8, Answers to Exercises
8235 @subsection Types Tutorial Exercise 9
8237 @smallexample
8238 @group
8239 1:  [-3 .. 3]       2:  [-3 .. 3]     2:  [0 .. 9]
8240     .               1:  [0 .. 9]      1:  [-9 .. 9]
8241                         .                 .
8243     [ 3 n .. 3 ]        @key{RET} 2 ^           @key{TAB} @key{RET} *
8244 @end group
8245 @end smallexample
8247 @noindent
8248 In the first case the result says, ``if a number is between @mathit{-3} and
8249 3, its square is between 0 and 9.''  The second case says, ``the product
8250 of two numbers each between @mathit{-3} and 3 is between @mathit{-9} and 9.''
8252 An interval form is not a number; it is a symbol that can stand for
8253 many different numbers.  Two identical-looking interval forms can stand
8254 for different numbers.
8256 The same issue arises when you try to square an error form.
8258 @node Types Answer 10, Types Answer 11, Types Answer 9, Answers to Exercises
8259 @subsection Types Tutorial Exercise 10
8261 @noindent
8262 Testing the first number, we might arbitrarily choose 17 for @expr{x}.
8264 @smallexample
8265 @group
8266 1:  17 mod 811749613   2:  17 mod 811749613   1:  533694123 mod 811749613
8267     .                      811749612              .
8268                            .
8270     17 M 811749613 @key{RET}     811749612              ^
8271 @end group
8272 @end smallexample
8274 @noindent
8275 Since 533694123 is (considerably) different from 1, the number 811749613
8276 must not be prime.
8278 It's awkward to type the number in twice as we did above.  There are
8279 various ways to avoid this, and algebraic entry is one.  In fact, using
8280 a vector mapping operation we can perform several tests at once.  Let's
8281 use this method to test the second number.
8283 @smallexample
8284 @group
8285 2:  [17, 42, 100000]               1:  [1 mod 15485863, 1 mod ... ]
8286 1:  15485863                           .
8287     .
8289  [17 42 100000] 15485863 @key{RET}           V M ' ($$ mod $)^($-1) @key{RET}
8290 @end group
8291 @end smallexample
8293 @noindent
8294 The result is three ones (modulo @expr{n}), so it's very probable that
8295 15485863 is prime.  (In fact, this number is the millionth prime.)
8297 Note that the functions @samp{($$^($-1)) mod $} or @samp{$$^($-1) % $}
8298 would have been hopelessly inefficient, since they would have calculated
8299 the power using full integer arithmetic.
8301 Calc has a @kbd{k p} command that does primality testing.  For small
8302 numbers it does an exact test; for large numbers it uses a variant
8303 of the Fermat test we used here.  You can use @kbd{k p} repeatedly
8304 to prove that a large integer is prime with any desired probability.
8306 @node Types Answer 11, Types Answer 12, Types Answer 10, Answers to Exercises
8307 @subsection Types Tutorial Exercise 11
8309 @noindent
8310 There are several ways to insert a calculated number into an HMS form.
8311 One way to convert a number of seconds to an HMS form is simply to
8312 multiply the number by an HMS form representing one second:
8314 @smallexample
8315 @group
8316 1:  31415926.5359     2:  31415926.5359     1:  8726@@ 38' 46.5359"
8317     .                 1:  0@@ 0' 1"              .
8318                           .
8320     P 1e7 *               0@@ 0' 1"              *
8322 @end group
8323 @end smallexample
8324 @noindent
8325 @smallexample
8326 @group
8327 2:  8726@@ 38' 46.5359"             1:  6@@ 6' 2.5359" mod 24@@ 0' 0"
8328 1:  15@@ 27' 16" mod 24@@ 0' 0"          .
8329     .
8331     x time @key{RET}                         +
8332 @end group
8333 @end smallexample
8335 @noindent
8336 It will be just after six in the morning.
8338 The algebraic @code{hms} function can also be used to build an
8339 HMS form:
8341 @smallexample
8342 @group
8343 1:  hms(0, 0, 10000000. pi)       1:  8726@@ 38' 46.5359"
8344     .                                 .
8346   ' hms(0, 0, 1e7 pi) @key{RET}             =
8347 @end group
8348 @end smallexample
8350 @noindent
8351 The @kbd{=} key is necessary to evaluate the symbol @samp{pi} to
8352 the actual number 3.14159...
8354 @node Types Answer 12, Types Answer 13, Types Answer 11, Answers to Exercises
8355 @subsection Types Tutorial Exercise 12
8357 @noindent
8358 As we recall, there are 17 songs of about 2 minutes and 47 seconds
8359 each.
8361 @smallexample
8362 @group
8363 2:  0@@ 2' 47"                    1:  [0@@ 3' 7" .. 0@@ 3' 47"]
8364 1:  [0@@ 0' 20" .. 0@@ 1' 0"]          .
8365     .
8367     [ 0@@ 20" .. 0@@ 1' ]              +
8369 @end group
8370 @end smallexample
8371 @noindent
8372 @smallexample
8373 @group
8374 1:  [0@@ 52' 59." .. 1@@ 4' 19."]
8375     .
8377     17 *
8378 @end group
8379 @end smallexample
8381 @noindent
8382 No matter how long it is, the album will fit nicely on one CD.
8384 @node Types Answer 13, Types Answer 14, Types Answer 12, Answers to Exercises
8385 @subsection Types Tutorial Exercise 13
8387 @noindent
8388 Type @kbd{' 1 yr @key{RET} u c s @key{RET}}.  The answer is 31557600 seconds.
8390 @node Types Answer 14, Types Answer 15, Types Answer 13, Answers to Exercises
8391 @subsection Types Tutorial Exercise 14
8393 @noindent
8394 How long will it take for a signal to get from one end of the computer
8395 to the other?
8397 @smallexample
8398 @group
8399 1:  m / c         1:  3.3356 ns
8400     .                 .
8402  ' 1 m / c @key{RET}        u c ns @key{RET}
8403 @end group
8404 @end smallexample
8406 @noindent
8407 (Recall, @samp{c} is a ``unit'' corresponding to the speed of light.)
8409 @smallexample
8410 @group
8411 1:  3.3356 ns     1:  0.81356
8412 2:  4.1 ns            .
8413     .
8415   ' 4.1 ns @key{RET}        /
8416 @end group
8417 @end smallexample
8419 @noindent
8420 Thus a signal could take up to 81 percent of a clock cycle just to
8421 go from one place to another inside the computer, assuming the signal
8422 could actually attain the full speed of light.  Pretty tight!
8424 @node Types Answer 15, Algebra Answer 1, Types Answer 14, Answers to Exercises
8425 @subsection Types Tutorial Exercise 15
8427 @noindent
8428 The speed limit is 55 miles per hour on most highways.  We want to
8429 find the ratio of Sam's speed to the US speed limit.
8431 @smallexample
8432 @group
8433 1:  55 mph         2:  55 mph           3:  11 hr mph / yd
8434     .              1:  5 yd / hr            .
8435                        .
8437   ' 55 mph @key{RET}       ' 5 yd/hr @key{RET}          /
8438 @end group
8439 @end smallexample
8441 The @kbd{u s} command cancels out these units to get a plain
8442 number.  Now we take the logarithm base two to find the final
8443 answer, assuming that each successive pill doubles his speed.
8445 @smallexample
8446 @group
8447 1:  19360.       2:  19360.       1:  14.24
8448     .            1:  2                .
8449                      .
8451     u s              2                B
8452 @end group
8453 @end smallexample
8455 @noindent
8456 Thus Sam can take up to 14 pills without a worry.
8458 @node Algebra Answer 1, Algebra Answer 2, Types Answer 15, Answers to Exercises
8459 @subsection Algebra Tutorial Exercise 1
8461 @noindent
8462 @c [fix-ref Declarations]
8463 The result @samp{sqrt(x)^2} is simplified back to @expr{x} by the
8464 Calculator, but @samp{sqrt(x^2)} is not.  (Consider what happens
8465 if @w{@expr{x = -4}}.)  If @expr{x} is real, this formula could be
8466 simplified to @samp{abs(x)}, but for general complex arguments even
8467 that is not safe.  (@xref{Declarations}, for a way to tell Calc
8468 that @expr{x} is known to be real.)
8470 @node Algebra Answer 2, Algebra Answer 3, Algebra Answer 1, Answers to Exercises
8471 @subsection Algebra Tutorial Exercise 2
8473 @noindent
8474 Suppose our roots are @expr{[a, b, c]}.  We want a polynomial which
8475 is zero when @expr{x} is any of these values.  The trivial polynomial
8476 @expr{x-a} is zero when @expr{x=a}, so the product @expr{(x-a)(x-b)(x-c)}
8477 will do the job.  We can use @kbd{a c x} to write this in a more
8478 familiar form.
8480 @smallexample
8481 @group
8482 1:  34 x - 24 x^3          1:  [1.19023, -1.19023, 0]
8483     .                          .
8485     r 2                        a P x @key{RET}
8487 @end group
8488 @end smallexample
8489 @noindent
8490 @smallexample
8491 @group
8492 1:  [x - 1.19023, x + 1.19023, x]     1:  x*(x + 1.19023) (x - 1.19023)
8493     .                                     .
8495     V M ' x-$ @key{RET}                         V R *
8497 @end group
8498 @end smallexample
8499 @noindent
8500 @smallexample
8501 @group
8502 1:  x^3 - 1.41666 x        1:  34 x - 24 x^3
8503     .                          .
8505     a c x @key{RET}                  24 n *  a x
8506 @end group
8507 @end smallexample
8509 @noindent
8510 Sure enough, our answer (multiplied by a suitable constant) is the
8511 same as the original polynomial.
8513 @node Algebra Answer 3, Algebra Answer 4, Algebra Answer 2, Answers to Exercises
8514 @subsection Algebra Tutorial Exercise 3
8516 @smallexample
8517 @group
8518 1:  x sin(pi x)         1:  sin(pi x) / pi^2 - x cos(pi x) / pi
8519     .                       .
8521   ' x sin(pi x) @key{RET}   m r   a i x @key{RET}
8523 @end group
8524 @end smallexample
8525 @noindent
8526 @smallexample
8527 @group
8528 1:  [y, 1]
8529 2:  sin(pi x) / pi^2 - x cos(pi x) / pi
8530     .
8532   ' [y,1] @key{RET} @key{TAB}
8534 @end group
8535 @end smallexample
8536 @noindent
8537 @smallexample
8538 @group
8539 1:  [sin(pi y) / pi^2 - y cos(pi y) / pi, 1 / pi]
8540     .
8542     V M $ @key{RET}
8544 @end group
8545 @end smallexample
8546 @noindent
8547 @smallexample
8548 @group
8549 1:  sin(pi y) / pi^2 - y cos(pi y) / pi - 1 / pi
8550     .
8552     V R -
8554 @end group
8555 @end smallexample
8556 @noindent
8557 @smallexample
8558 @group
8559 1:  sin(3.14159 y) / 9.8696 - y cos(3.14159 y) / 3.14159 - 0.3183
8560     .
8562     =
8564 @end group
8565 @end smallexample
8566 @noindent
8567 @smallexample
8568 @group
8569 1:  [0., -0.95493, 0.63662, -1.5915, 1.2732]
8570     .
8572     v x 5 @key{RET}  @key{TAB}  V M $ @key{RET}
8573 @end group
8574 @end smallexample
8576 @node Algebra Answer 4, Rewrites Answer 1, Algebra Answer 3, Answers to Exercises
8577 @subsection Algebra Tutorial Exercise 4
8579 @noindent
8580 The hard part is that @kbd{V R +} is no longer sufficient to add up all
8581 the contributions from the slices, since the slices have varying
8582 coefficients.  So first we must come up with a vector of these
8583 coefficients.  Here's one way:
8585 @smallexample
8586 @group
8587 2:  -1                 2:  3                    1:  [4, 2, ..., 4]
8588 1:  [1, 2, ..., 9]     1:  [-1, 1, ..., -1]         .
8589     .                      .
8591     1 n v x 9 @key{RET}          V M ^  3 @key{TAB}             -
8593 @end group
8594 @end smallexample
8595 @noindent
8596 @smallexample
8597 @group
8598 1:  [4, 2, ..., 4, 1]      1:  [1, 4, 2, ..., 4, 1]
8599     .                          .
8601     1 |                        1 @key{TAB} |
8602 @end group
8603 @end smallexample
8605 @noindent
8606 Now we compute the function values.  Note that for this method we need
8607 eleven values, including both endpoints of the desired interval.
8609 @smallexample
8610 @group
8611 2:  [1, 4, 2, ..., 4, 1]
8612 1:  [1, 1.1, 1.2,  ...  , 1.8, 1.9, 2.]
8613     .
8615  11 @key{RET} 1 @key{RET} .1 @key{RET}  C-u v x
8617 @end group
8618 @end smallexample
8619 @noindent
8620 @smallexample
8621 @group
8622 2:  [1, 4, 2, ..., 4, 1]
8623 1:  [0., 0.084941, 0.16993, ... ]
8624     .
8626     ' sin(x) ln(x) @key{RET}   m r  p 5 @key{RET}   V M $ @key{RET}
8627 @end group
8628 @end smallexample
8630 @noindent
8631 Once again this calls for @kbd{V M * V R +}; a simple @kbd{*} does the
8632 same thing.
8634 @smallexample
8635 @group
8636 1:  11.22      1:  1.122      1:  0.374
8637     .              .              .
8639     *              .1 *           3 /
8640 @end group
8641 @end smallexample
8643 @noindent
8644 Wow!  That's even better than the result from the Taylor series method.
8646 @node Rewrites Answer 1, Rewrites Answer 2, Algebra Answer 4, Answers to Exercises
8647 @subsection Rewrites Tutorial Exercise 1
8649 @noindent
8650 We'll use Big mode to make the formulas more readable.
8652 @smallexample
8653 @group
8654                                            ___
8655                                           V 2  + 2
8656 1:  (2 + sqrt(2)) / (1 + sqrt(2))     1:  ---------
8657     .                                      ___
8658                                           V 2  + 1
8660                                           .
8662   ' (2+sqrt(2)) / (1+sqrt(2)) @key{RET}         d B
8663 @end group
8664 @end smallexample
8666 @noindent
8667 Multiplying by the conjugate helps because @expr{(a+b) (a-b) = a^2 - b^2}.
8669 @smallexample
8670 @group
8671           ___    ___
8672 1:  (2 + V 2 ) (V 2  - 1)
8673     .
8675   a r a/(b+c) := a*(b-c) / (b^2-c^2) @key{RET}
8677 @end group
8678 @end smallexample
8679 @noindent
8680 @smallexample
8681 @group
8682      ___
8683 1:  V 2
8684     .
8686   a r a*(b+c) := a*b + a*c
8687 @end group
8688 @end smallexample
8690 @noindent
8691 (We could have used @kbd{a x} instead of a rewrite rule for the
8692 second step.)
8694 The multiply-by-conjugate rule turns out to be useful in many
8695 different circumstances, such as when the denominator involves
8696 sines and cosines or the imaginary constant @code{i}.
8698 @node Rewrites Answer 2, Rewrites Answer 3, Rewrites Answer 1, Answers to Exercises
8699 @subsection Rewrites Tutorial Exercise 2
8701 @noindent
8702 Here is the rule set:
8704 @smallexample
8705 @group
8706 [ fib(n) := fib(n, 1, 1) :: integer(n) :: n >= 1,
8707   fib(1, x, y) := x,
8708   fib(n, x, y) := fib(n-1, y, x+y) ]
8709 @end group
8710 @end smallexample
8712 @noindent
8713 The first rule turns a one-argument @code{fib} that people like to write
8714 into a three-argument @code{fib} that makes computation easier.  The
8715 second rule converts back from three-argument form once the computation
8716 is done.  The third rule does the computation itself.  It basically
8717 says that if @expr{x} and @expr{y} are two consecutive Fibonacci numbers,
8718 then @expr{y} and @expr{x+y} are the next (overlapping) pair of Fibonacci
8719 numbers.
8721 Notice that because the number @expr{n} was ``validated'' by the
8722 conditions on the first rule, there is no need to put conditions on
8723 the other rules because the rule set would never get that far unless
8724 the input were valid.  That further speeds computation, since no
8725 extra conditions need to be checked at every step.
8727 Actually, a user with a nasty sense of humor could enter a bad
8728 three-argument @code{fib} call directly, say, @samp{fib(0, 1, 1)},
8729 which would get the rules into an infinite loop.  One thing that would
8730 help keep this from happening by accident would be to use something like
8731 @samp{ZzFib} instead of @code{fib} as the name of the three-argument
8732 function.
8734 @node Rewrites Answer 3, Rewrites Answer 4, Rewrites Answer 2, Answers to Exercises
8735 @subsection Rewrites Tutorial Exercise 3
8737 @noindent
8738 He got an infinite loop.  First, Calc did as expected and rewrote
8739 @w{@samp{2 + 3 x}} to @samp{f(2, 3, x)}.  Then it looked for ways to
8740 apply the rule again, and found that @samp{f(2, 3, x)} looks like
8741 @samp{a + b x} with @w{@samp{a = 0}} and @samp{b = 1}, so it rewrote to
8742 @samp{f(0, 1, f(2, 3, x))}.  It then wrapped another @samp{f(0, 1, ...)}
8743 around that, and so on, ad infinitum.  Joe should have used @kbd{M-1 a r}
8744 to make sure the rule applied only once.
8746 (Actually, even the first step didn't work as he expected.  What Calc
8747 really gives for @kbd{M-1 a r} in this situation is @samp{f(3 x, 1, 2)},
8748 treating 2 as the ``variable,'' and @samp{3 x} as a constant being added
8749 to it.  While this may seem odd, it's just as valid a solution as the
8750 ``obvious'' one.  One way to fix this would be to add the condition
8751 @samp{:: variable(x)} to the rule, to make sure the thing that matches
8752 @samp{x} is indeed a variable, or to change @samp{x} to @samp{quote(x)}
8753 on the lefthand side, so that the rule matches the actual variable
8754 @samp{x} rather than letting @samp{x} stand for something else.)
8756 @node Rewrites Answer 4, Rewrites Answer 5, Rewrites Answer 3, Answers to Exercises
8757 @subsection Rewrites Tutorial Exercise 4
8759 @noindent
8760 @ignore
8761 @starindex
8762 @end ignore
8763 @tindex seq
8764 Here is a suitable set of rules to solve the first part of the problem:
8766 @smallexample
8767 @group
8768 [ seq(n, c) := seq(n/2,  c+1) :: n%2 = 0,
8769   seq(n, c) := seq(3n+1, c+1) :: n%2 = 1 :: n > 1 ]
8770 @end group
8771 @end smallexample
8773 Given the initial formula @samp{seq(6, 0)}, application of these
8774 rules produces the following sequence of formulas:
8776 @example
8777 seq( 3, 1)
8778 seq(10, 2)
8779 seq( 5, 3)
8780 seq(16, 4)
8781 seq( 8, 5)
8782 seq( 4, 6)
8783 seq( 2, 7)
8784 seq( 1, 8)
8785 @end example
8787 @noindent
8788 whereupon neither of the rules match, and rewriting stops.
8790 We can pretty this up a bit with a couple more rules:
8792 @smallexample
8793 @group
8794 [ seq(n) := seq(n, 0),
8795   seq(1, c) := c,
8796   ... ]
8797 @end group
8798 @end smallexample
8800 @noindent
8801 Now, given @samp{seq(6)} as the starting configuration, we get 8
8802 as the result.
8804 The change to return a vector is quite simple:
8806 @smallexample
8807 @group
8808 [ seq(n) := seq(n, []) :: integer(n) :: n > 0,
8809   seq(1, v) := v | 1,
8810   seq(n, v) := seq(n/2,  v | n) :: n%2 = 0,
8811   seq(n, v) := seq(3n+1, v | n) :: n%2 = 1 ]
8812 @end group
8813 @end smallexample
8815 @noindent
8816 Given @samp{seq(6)}, the result is @samp{[6, 3, 10, 5, 16, 8, 4, 2, 1]}.
8818 Notice that the @expr{n > 1} guard is no longer necessary on the last
8819 rule since the @expr{n = 1} case is now detected by another rule.
8820 But a guard has been added to the initial rule to make sure the
8821 initial value is suitable before the computation begins.
8823 While still a good idea, this guard is not as vitally important as it
8824 was for the @code{fib} function, since calling, say, @samp{seq(x, [])}
8825 will not get into an infinite loop.  Calc will not be able to prove
8826 the symbol @samp{x} is either even or odd, so none of the rules will
8827 apply and the rewrites will stop right away.
8829 @node Rewrites Answer 5, Rewrites Answer 6, Rewrites Answer 4, Answers to Exercises
8830 @subsection Rewrites Tutorial Exercise 5
8832 @noindent
8833 @ignore
8834 @starindex
8835 @end ignore
8836 @tindex nterms
8837 If @expr{x} is the sum @expr{a + b}, then `@tfn{nterms(}@var{x}@tfn{)}' must
8838 be `@tfn{nterms(}@var{a}@tfn{)}' plus `@tfn{nterms(}@var{b}@tfn{)}'.  If @expr{x}
8839 is not a sum, then `@tfn{nterms(}@var{x}@tfn{)}' = 1.
8841 @smallexample
8842 @group
8843 [ nterms(a + b) := nterms(a) + nterms(b),
8844   nterms(x)     := 1 ]
8845 @end group
8846 @end smallexample
8848 @noindent
8849 Here we have taken advantage of the fact that earlier rules always
8850 match before later rules; @samp{nterms(x)} will only be tried if we
8851 already know that @samp{x} is not a sum.
8853 @node Rewrites Answer 6, Programming Answer 1, Rewrites Answer 5, Answers to Exercises
8854 @subsection Rewrites Tutorial Exercise 6
8856 @noindent
8857 Here is a rule set that will do the job:
8859 @smallexample
8860 @group
8861 [ a*(b + c) := a*b + a*c,
8862   opt(a) O(x^n) + opt(b) O(x^m) := O(x^n) :: n <= m
8863      :: constant(a) :: constant(b),
8864   opt(a) O(x^n) + opt(b) x^m := O(x^n) :: n <= m
8865      :: constant(a) :: constant(b),
8866   a O(x^n) := O(x^n) :: constant(a),
8867   x^opt(m) O(x^n) := O(x^(n+m)),
8868   O(x^n) O(x^m) := O(x^(n+m)) ]
8869 @end group
8870 @end smallexample
8872 If we really want the @kbd{+} and @kbd{*} keys to operate naturally
8873 on power series, we should put these rules in @code{EvalRules}.  For
8874 testing purposes, it is better to put them in a different variable,
8875 say, @code{O}, first.
8877 The first rule just expands products of sums so that the rest of the
8878 rules can assume they have an expanded-out polynomial to work with.
8879 Note that this rule does not mention @samp{O} at all, so it will
8880 apply to any product-of-sum it encounters---this rule may surprise
8881 you if you put it into @code{EvalRules}!
8883 In the second rule, the sum of two O's is changed to the smaller O@.
8884 The optional constant coefficients are there mostly so that
8885 @samp{O(x^2) - O(x^3)} and @samp{O(x^3) - O(x^2)} are handled
8886 as well as @samp{O(x^2) + O(x^3)}.
8888 The third rule absorbs higher powers of @samp{x} into O's.
8890 The fourth rule says that a constant times a negligible quantity
8891 is still negligible.  (This rule will also match @samp{O(x^3) / 4},
8892 with @samp{a = 1/4}.)
8894 The fifth rule rewrites, for example, @samp{x^2 O(x^3)} to @samp{O(x^5)}.
8895 (It is easy to see that if one of these forms is negligible, the other
8896 is, too.)  Notice the @samp{x^opt(m)} to pick up terms like
8897 @w{@samp{x O(x^3)}}.  Optional powers will match @samp{x} as @samp{x^1}
8898 but not 1 as @samp{x^0}.  This turns out to be exactly what we want here.
8900 The sixth rule is the corresponding rule for products of two O's.
8902 Another way to solve this problem would be to create a new ``data type''
8903 that represents truncated power series.  We might represent these as
8904 function calls @samp{series(@var{coefs}, @var{x})} where @var{coefs} is
8905 a vector of coefficients for @expr{x^0}, @expr{x^1}, @expr{x^2}, and so
8906 on.  Rules would exist for sums and products of such @code{series}
8907 objects, and as an optional convenience could also know how to combine a
8908 @code{series} object with a normal polynomial.  (With this, and with a
8909 rule that rewrites @samp{O(x^n)} to the equivalent @code{series} form,
8910 you could still enter power series in exactly the same notation as
8911 before.)  Operations on such objects would probably be more efficient,
8912 although the objects would be a bit harder to read.
8914 @c [fix-ref Compositions]
8915 Some other symbolic math programs provide a power series data type
8916 similar to this.  Mathematica, for example, has an object that looks
8917 like @samp{PowerSeries[@var{x}, @var{x0}, @var{coefs}, @var{nmin},
8918 @var{nmax}, @var{den}]}, where @var{x0} is the point about which the
8919 power series is taken (we've been assuming this was always zero),
8920 and @var{nmin}, @var{nmax}, and @var{den} allow pseudo-power-series
8921 with fractional or negative powers.  Also, the @code{PowerSeries}
8922 objects have a special display format that makes them look like
8923 @samp{2 x^2 + O(x^4)} when they are printed out.  (@xref{Compositions},
8924 for a way to do this in Calc, although for something as involved as
8925 this it would probably be better to write the formatting routine
8926 in Lisp.)
8928 @node Programming Answer 1, Programming Answer 2, Rewrites Answer 6, Answers to Exercises
8929 @subsection Programming Tutorial Exercise 1
8931 @noindent
8932 Just enter the formula @samp{ninteg(sin(t)/t, t, 0, x)}, type
8933 @kbd{Z F}, and answer the questions.  Since this formula contains two
8934 variables, the default argument list will be @samp{(t x)}.  We want to
8935 change this to @samp{(x)} since @expr{t} is really a dummy variable
8936 to be used within @code{ninteg}.
8938 The exact keystrokes are @kbd{Z F s Si @key{RET} @key{RET} C-b C-b @key{DEL} @key{DEL} @key{RET} y}.
8939 (The @kbd{C-b C-b @key{DEL} @key{DEL}} are what fix the argument list.)
8941 @node Programming Answer 2, Programming Answer 3, Programming Answer 1, Answers to Exercises
8942 @subsection Programming Tutorial Exercise 2
8944 @noindent
8945 One way is to move the number to the top of the stack, operate on
8946 it, then move it back:  @kbd{C-x ( M-@key{TAB} n M-@key{TAB} M-@key{TAB} C-x )}.
8948 Another way is to negate the top three stack entries, then negate
8949 again the top two stack entries:  @kbd{C-x ( M-3 n M-2 n C-x )}.
8951 Finally, it turns out that a negative prefix argument causes a
8952 command like @kbd{n} to operate on the specified stack entry only,
8953 which is just what we want:  @kbd{C-x ( M-- 3 n C-x )}.
8955 Just for kicks, let's also do it algebraically:
8956 @w{@kbd{C-x ( ' -$$$, $$, $ @key{RET} C-x )}}.
8958 @node Programming Answer 3, Programming Answer 4, Programming Answer 2, Answers to Exercises
8959 @subsection Programming Tutorial Exercise 3
8961 @noindent
8962 Each of these functions can be computed using the stack, or using
8963 algebraic entry, whichever way you prefer:
8965 @noindent
8966 Computing
8967 @texline @math{\displaystyle{\sin x \over x}}:
8968 @infoline @expr{sin(x) / x}:
8970 Using the stack:  @kbd{C-x (  @key{RET} S @key{TAB} /  C-x )}.
8972 Using algebraic entry:  @kbd{C-x (  ' sin($)/$ @key{RET}  C-x )}.
8974 @noindent
8975 Computing the logarithm:
8977 Using the stack:  @kbd{C-x (  @key{TAB} B  C-x )}
8979 Using algebraic entry:  @kbd{C-x (  ' log($,$$) @key{RET}  C-x )}.
8981 @noindent
8982 Computing the vector of integers:
8984 Using the stack:  @kbd{C-x (  1 @key{RET} 1  C-u v x  C-x )}.  (Recall that
8985 @kbd{C-u v x} takes the vector size, starting value, and increment
8986 from the stack.)
8988 Alternatively:  @kbd{C-x (  ~ v x  C-x )}.  (The @kbd{~} key pops a
8989 number from the stack and uses it as the prefix argument for the
8990 next command.)
8992 Using algebraic entry:  @kbd{C-x (  ' index($) @key{RET}  C-x )}.
8994 @node Programming Answer 4, Programming Answer 5, Programming Answer 3, Answers to Exercises
8995 @subsection Programming Tutorial Exercise 4
8997 @noindent
8998 Here's one way:  @kbd{C-x ( @key{RET} V R + @key{TAB} v l / C-x )}.
9000 @node Programming Answer 5, Programming Answer 6, Programming Answer 4, Answers to Exercises
9001 @subsection Programming Tutorial Exercise 5
9003 @smallexample
9004 @group
9005 2:  1              1:  1.61803398502         2:  1.61803398502
9006 1:  20                 .                     1:  1.61803398875
9007     .                                            .
9009    1 @key{RET} 20         Z < & 1 + Z >                I H P
9010 @end group
9011 @end smallexample
9013 @noindent
9014 This answer is quite accurate.
9016 @node Programming Answer 6, Programming Answer 7, Programming Answer 5, Answers to Exercises
9017 @subsection Programming Tutorial Exercise 6
9019 @noindent
9020 Here is the matrix:
9022 @example
9023 [ [ 0, 1 ]   * [a, b] = [b, a + b]
9024   [ 1, 1 ] ]
9025 @end example
9027 @noindent
9028 Thus @samp{[0, 1; 1, 1]^n * [1, 1]} computes Fibonacci numbers @expr{n+1}
9029 and @expr{n+2}.  Here's one program that does the job:
9031 @example
9032 C-x ( ' [0, 1; 1, 1] ^ ($-1) * [1, 1] @key{RET} v u @key{DEL} C-x )
9033 @end example
9035 @noindent
9036 This program is quite efficient because Calc knows how to raise a
9037 matrix (or other value) to the power @expr{n} in only
9038 @texline @math{\log_2 n}
9039 @infoline @expr{log(n,2)}
9040 steps.  For example, this program can compute the 1000th Fibonacci
9041 number (a 209-digit integer!)@: in about 10 steps; even though the
9042 @kbd{Z < ... Z >} solution had much simpler steps, it would have
9043 required so many steps that it would not have been practical.
9045 @node Programming Answer 7, Programming Answer 8, Programming Answer 6, Answers to Exercises
9046 @subsection Programming Tutorial Exercise 7
9048 @noindent
9049 The trick here is to compute the harmonic numbers differently, so that
9050 the loop counter itself accumulates the sum of reciprocals.  We use
9051 a separate variable to hold the integer counter.
9053 @smallexample
9054 @group
9055 1:  1          2:  1       1:  .
9056     .          1:  4
9057                    .
9059     1 t 1       1 @key{RET} 4      Z ( t 2 r 1 1 + s 1 & Z )
9060 @end group
9061 @end smallexample
9063 @noindent
9064 The body of the loop goes as follows:  First save the harmonic sum
9065 so far in variable 2.  Then delete it from the stack; the for loop
9066 itself will take care of remembering it for us.  Next, recall the
9067 count from variable 1, add one to it, and feed its reciprocal to
9068 the for loop to use as the step value.  The for loop will increase
9069 the ``loop counter'' by that amount and keep going until the
9070 loop counter exceeds 4.
9072 @smallexample
9073 @group
9074 2:  31                  3:  31
9075 1:  3.99498713092       2:  3.99498713092
9076     .                   1:  4.02724519544
9077                             .
9079     r 1 r 2                 @key{RET} 31 & +
9080 @end group
9081 @end smallexample
9083 Thus we find that the 30th harmonic number is 3.99, and the 31st
9084 harmonic number is 4.02.
9086 @node Programming Answer 8, Programming Answer 9, Programming Answer 7, Answers to Exercises
9087 @subsection Programming Tutorial Exercise 8
9089 @noindent
9090 The first step is to compute the derivative @expr{f'(x)} and thus
9091 the formula
9092 @texline @math{\displaystyle{x - {f(x) \over f'(x)}}}.
9093 @infoline @expr{x - f(x)/f'(x)}.
9095 (Because this definition is long, it will be repeated in concise form
9096 below.  You can use @w{@kbd{C-x * m}} to load it from there.  While you are
9097 entering a @kbd{Z ` Z '} body in a macro, Calc simply collects
9098 keystrokes without executing them.  In the following diagrams we'll
9099 pretend Calc actually executed the keystrokes as you typed them,
9100 just for purposes of illustration.)
9102 @smallexample
9103 @group
9104 2:  sin(cos(x)) - 0.5            3:  4.5
9105 1:  4.5                          2:  sin(cos(x)) - 0.5
9106     .                            1:  -(sin(x) cos(cos(x)))
9107                                      .
9109 ' sin(cos(x))-0.5 @key{RET} 4.5  m r  C-x ( Z `  @key{TAB} @key{RET} a d x @key{RET}
9111 @end group
9112 @end smallexample
9113 @noindent
9114 @smallexample
9115 @group
9116 2:  4.5
9117 1:  x + (sin(cos(x)) - 0.5) / sin(x) cos(cos(x))
9118     .
9120     /  ' x @key{RET} @key{TAB} -   t 1
9121 @end group
9122 @end smallexample
9124 Now, we enter the loop.  We'll use a repeat loop with a 20-repetition
9125 limit just in case the method fails to converge for some reason.
9126 (Normally, the @w{@kbd{Z /}} command will stop the loop before all 20
9127 repetitions are done.)
9129 @smallexample
9130 @group
9131 1:  4.5         3:  4.5                     2:  4.5
9132     .           2:  x + (sin(cos(x)) ...    1:  5.24196456928
9133                 1:  4.5                         .
9134                     .
9136   20 Z <          @key{RET} r 1 @key{TAB}                 s l x @key{RET}
9137 @end group
9138 @end smallexample
9140 This is the new guess for @expr{x}.  Now we compare it with the
9141 old one to see if we've converged.
9143 @smallexample
9144 @group
9145 3:  5.24196     2:  5.24196     1:  5.24196     1:  5.26345856348
9146 2:  5.24196     1:  0               .               .
9147 1:  4.5             .
9148     .
9150   @key{RET} M-@key{TAB}         a =             Z /             Z > Z ' C-x )
9151 @end group
9152 @end smallexample
9154 The loop converges in just a few steps to this value.  To check
9155 the result, we can simply substitute it back into the equation.
9157 @smallexample
9158 @group
9159 2:  5.26345856348
9160 1:  0.499999999997
9161     .
9163  @key{RET} ' sin(cos($)) @key{RET}
9164 @end group
9165 @end smallexample
9167 Let's test the new definition again:
9169 @smallexample
9170 @group
9171 2:  x^2 - 9           1:  3.
9172 1:  1                     .
9173     .
9175   ' x^2-9 @key{RET} 1           X
9176 @end group
9177 @end smallexample
9179 Once again, here's the full Newton's Method definition:
9181 @example
9182 @group
9183 C-x ( Z `  @key{TAB} @key{RET} a d x @key{RET}  /  ' x @key{RET} @key{TAB} -  t 1
9184            20 Z <  @key{RET} r 1 @key{TAB}  s l x @key{RET}
9185                    @key{RET} M-@key{TAB}  a =  Z /
9186               Z >
9187       Z '
9188 C-x )
9189 @end group
9190 @end example
9192 @c [fix-ref Nesting and Fixed Points]
9193 It turns out that Calc has a built-in command for applying a formula
9194 repeatedly until it converges to a number.  @xref{Nesting and Fixed Points},
9195 to see how to use it.
9197 @c [fix-ref Root Finding]
9198 Also, of course, @kbd{a R} is a built-in command that uses Newton's
9199 method (among others) to look for numerical solutions to any equation.
9200 @xref{Root Finding}.
9202 @node Programming Answer 9, Programming Answer 10, Programming Answer 8, Answers to Exercises
9203 @subsection Programming Tutorial Exercise 9
9205 @noindent
9206 The first step is to adjust @expr{z} to be greater than 5.  A simple
9207 ``for'' loop will do the job here.  If @expr{z} is less than 5, we
9208 reduce the problem using
9209 @texline @math{\psi(z) = \psi(z+1) - 1/z}.
9210 @infoline @expr{psi(z) = psi(z+1) - 1/z}.  We go
9211 on to compute
9212 @texline @math{\psi(z+1)},
9213 @infoline @expr{psi(z+1)},
9214 and remember to add back a factor of @expr{-1/z} when we're done.  This
9215 step is repeated until @expr{z > 5}.
9217 (Because this definition is long, it will be repeated in concise form
9218 below.  You can use @w{@kbd{C-x * m}} to load it from there.  While you are
9219 entering a @kbd{Z ` Z '} body in a macro, Calc simply collects
9220 keystrokes without executing them.  In the following diagrams we'll
9221 pretend Calc actually executed the keystrokes as you typed them,
9222 just for purposes of illustration.)
9224 @smallexample
9225 @group
9226 1:  1.             1:  1.
9227     .                  .
9229  1.0 @key{RET}       C-x ( Z `  s 1  0 t 2
9230 @end group
9231 @end smallexample
9233 Here, variable 1 holds @expr{z} and variable 2 holds the adjustment
9234 factor.  If @expr{z < 5}, we use a loop to increase it.
9236 (By the way, we started with @samp{1.0} instead of the integer 1 because
9237 otherwise the calculation below will try to do exact fractional arithmetic,
9238 and will never converge because fractions compare equal only if they
9239 are exactly equal, not just equal to within the current precision.)
9241 @smallexample
9242 @group
9243 3:  1.      2:  1.       1:  6.
9244 2:  1.      1:  1            .
9245 1:  5           .
9246     .
9248   @key{RET} 5        a <    Z [  5 Z (  & s + 2  1 s + 1  1 Z ) r 1  Z ]
9249 @end group
9250 @end smallexample
9252 Now we compute the initial part of the sum:
9253 @texline @math{\ln z - {1 \over 2z}}
9254 @infoline @expr{ln(z) - 1/2z}
9255 minus the adjustment factor.
9257 @smallexample
9258 @group
9259 2:  1.79175946923      2:  1.7084261359      1:  -0.57490719743
9260 1:  0.0833333333333    1:  2.28333333333         .
9261     .                      .
9263     L  r 1 2 * &           -  r 2                -
9264 @end group
9265 @end smallexample
9267 Now we evaluate the series.  We'll use another ``for'' loop counting
9268 up the value of @expr{2 n}.  (Calc does have a summation command,
9269 @kbd{a +}, but we'll use loops just to get more practice with them.)
9271 @smallexample
9272 @group
9273 3:  -0.5749       3:  -0.5749        4:  -0.5749      2:  -0.5749
9274 2:  2             2:  1:6            3:  1:6          1:  2.3148e-3
9275 1:  40            1:  2              2:  2                .
9276     .                 .              1:  36.
9277                                          .
9279    2 @key{RET} 40        Z ( @key{RET} k b @key{TAB}     @key{RET} r 1 @key{TAB} ^      * /
9281 @end group
9282 @end smallexample
9283 @noindent
9284 @smallexample
9285 @group
9286 3:  -0.5749       3:  -0.5772      2:  -0.5772     1:  -0.577215664892
9287 2:  -0.5749       2:  -0.5772      1:  0               .
9288 1:  2.3148e-3     1:  -0.5749          .
9289     .                 .
9291   @key{TAB} @key{RET} M-@key{TAB}       - @key{RET} M-@key{TAB}      a =     Z /    2  Z )  Z ' C-x )
9292 @end group
9293 @end smallexample
9295 This is the value of
9296 @texline @math{-\gamma},
9297 @infoline @expr{- gamma},
9298 with a slight bit of roundoff error.  To get a full 12 digits, let's use
9299 a higher precision:
9301 @smallexample
9302 @group
9303 2:  -0.577215664892      2:  -0.577215664892
9304 1:  1.                   1:  -0.577215664901532
9306     1. @key{RET}                   p 16 @key{RET} X
9307 @end group
9308 @end smallexample
9310 Here's the complete sequence of keystrokes:
9312 @example
9313 @group
9314 C-x ( Z `  s 1  0 t 2
9315            @key{RET} 5 a <  Z [  5 Z (  & s + 2  1 s + 1  1 Z ) r 1  Z ]
9316            L r 1 2 * & - r 2 -
9317            2 @key{RET} 40  Z (  @key{RET} k b @key{TAB} @key{RET} r 1 @key{TAB} ^ * /
9318                           @key{TAB} @key{RET} M-@key{TAB} - @key{RET} M-@key{TAB} a = Z /
9319                   2  Z )
9320       Z '
9321 C-x )
9322 @end group
9323 @end example
9325 @node Programming Answer 10, Programming Answer 11, Programming Answer 9, Answers to Exercises
9326 @subsection Programming Tutorial Exercise 10
9328 @noindent
9329 Taking the derivative of a term of the form @expr{x^n} will produce
9330 a term like
9331 @texline @math{n x^{n-1}}.
9332 @infoline @expr{n x^(n-1)}.
9333 Taking the derivative of a constant
9334 produces zero.  From this it is easy to see that the @expr{n}th
9335 derivative of a polynomial, evaluated at @expr{x = 0}, will equal the
9336 coefficient on the @expr{x^n} term times @expr{n!}.
9338 (Because this definition is long, it will be repeated in concise form
9339 below.  You can use @w{@kbd{C-x * m}} to load it from there.  While you are
9340 entering a @kbd{Z ` Z '} body in a macro, Calc simply collects
9341 keystrokes without executing them.  In the following diagrams we'll
9342 pretend Calc actually executed the keystrokes as you typed them,
9343 just for purposes of illustration.)
9345 @smallexample
9346 @group
9347 2:  5 x^4 + (x + 1)^2          3:  5 x^4 + (x + 1)^2
9348 1:  6                          2:  0
9349     .                          1:  6
9350                                    .
9352   ' 5 x^4 + (x+1)^2 @key{RET} 6        C-x ( Z `  [ ] t 1  0 @key{TAB}
9353 @end group
9354 @end smallexample
9356 @noindent
9357 Variable 1 will accumulate the vector of coefficients.
9359 @smallexample
9360 @group
9361 2:  0              3:  0                  2:  5 x^4 + ...
9362 1:  5 x^4 + ...    2:  5 x^4 + ...        1:  1
9363     .              1:  1                      .
9364                        .
9366    Z ( @key{TAB}         @key{RET} 0 s l x @key{RET}            M-@key{TAB} ! /  s | 1
9367 @end group
9368 @end smallexample
9370 @noindent
9371 Note that @kbd{s | 1} appends the top-of-stack value to the vector
9372 in a variable; it is completely analogous to @kbd{s + 1}.  We could
9373 have written instead, @kbd{r 1 @key{TAB} | t 1}.
9375 @smallexample
9376 @group
9377 1:  20 x^3 + 2 x + 2      1:  0         1:  [1, 2, 1, 0, 5, 0, 0]
9378     .                         .             .
9380     a d x @key{RET}                 1 Z )         @key{DEL} r 1  Z ' C-x )
9381 @end group
9382 @end smallexample
9384 To convert back, a simple method is just to map the coefficients
9385 against a table of powers of @expr{x}.
9387 @smallexample
9388 @group
9389 2:  [1, 2, 1, 0, 5, 0, 0]    2:  [1, 2, 1, 0, 5, 0, 0]
9390 1:  6                        1:  [0, 1, 2, 3, 4, 5, 6]
9391     .                            .
9393     6 @key{RET}                        1 + 0 @key{RET} 1 C-u v x
9395 @end group
9396 @end smallexample
9397 @noindent
9398 @smallexample
9399 @group
9400 2:  [1, 2, 1, 0, 5, 0, 0]    2:  1 + 2 x + x^2 + 5 x^4
9401 1:  [1, x, x^2, x^3, ... ]       .
9402     .
9404     ' x @key{RET} @key{TAB} V M ^            *
9405 @end group
9406 @end smallexample
9408 Once again, here are the whole polynomial to/from vector programs:
9410 @example
9411 @group
9412 C-x ( Z `  [ ] t 1  0 @key{TAB}
9413            Z (  @key{TAB} @key{RET} 0 s l x @key{RET} M-@key{TAB} ! /  s | 1
9414                 a d x @key{RET}
9415          1 Z ) r 1
9416       Z '
9417 C-x )
9419 C-x (  1 + 0 @key{RET} 1 C-u v x ' x @key{RET} @key{TAB} V M ^ *  C-x )
9420 @end group
9421 @end example
9423 @node Programming Answer 11, Programming Answer 12, Programming Answer 10, Answers to Exercises
9424 @subsection Programming Tutorial Exercise 11
9426 @noindent
9427 First we define a dummy program to go on the @kbd{z s} key.  The true
9428 @w{@kbd{z s}} key is supposed to take two numbers from the stack and
9429 return one number, so @key{DEL} as a dummy definition will make
9430 sure the stack comes out right.
9432 @smallexample
9433 @group
9434 2:  4          1:  4                         2:  4
9435 1:  2              .                         1:  2
9436     .                                            .
9438   4 @key{RET} 2       C-x ( @key{DEL} C-x )  Z K s @key{RET}       2
9439 @end group
9440 @end smallexample
9442 The last step replaces the 2 that was eaten during the creation
9443 of the dummy @kbd{z s} command.  Now we move on to the real
9444 definition.  The recurrence needs to be rewritten slightly,
9445 to the form @expr{s(n,m) = s(n-1,m-1) - (n-1) s(n-1,m)}.
9447 (Because this definition is long, it will be repeated in concise form
9448 below.  You can use @kbd{C-x * m} to load it from there.)
9450 @smallexample
9451 @group
9452 2:  4        4:  4       3:  4       2:  4
9453 1:  2        3:  2       2:  2       1:  2
9454     .        2:  4       1:  0           .
9455              1:  2           .
9456                  .
9458   C-x (       M-2 @key{RET}        a =         Z [  @key{DEL} @key{DEL} 1  Z :
9460 @end group
9461 @end smallexample
9462 @noindent
9463 @smallexample
9464 @group
9465 4:  4       2:  4                     2:  3      4:  3    4:  3    3:  3
9466 3:  2       1:  2                     1:  2      3:  2    3:  2    2:  2
9467 2:  2           .                         .      2:  3    2:  3    1:  3
9468 1:  0                                            1:  2    1:  1        .
9469     .                                                .        .
9471   @key{RET} 0   a = Z [  @key{DEL} @key{DEL} 0  Z :  @key{TAB} 1 - @key{TAB}   M-2 @key{RET}     1 -      z s
9472 @end group
9473 @end smallexample
9475 @noindent
9476 (Note that the value 3 that our dummy @kbd{z s} produces is not correct;
9477 it is merely a placeholder that will do just as well for now.)
9479 @smallexample
9480 @group
9481 3:  3               4:  3           3:  3       2:  3      1:  -6
9482 2:  3               3:  3           2:  3       1:  9          .
9483 1:  2               2:  3           1:  3           .
9484     .               1:  2               .
9485                         .
9487  M-@key{TAB} M-@key{TAB}     @key{TAB} @key{RET} M-@key{TAB}         z s          *          -
9489 @end group
9490 @end smallexample
9491 @noindent
9492 @smallexample
9493 @group
9494 1:  -6                          2:  4          1:  11      2:  11
9495     .                           1:  2              .       1:  11
9496                                     .                          .
9498   Z ] Z ] C-x )   Z K s @key{RET}      @key{DEL} 4 @key{RET} 2       z s      M-@key{RET} k s
9499 @end group
9500 @end smallexample
9502 Even though the result that we got during the definition was highly
9503 bogus, once the definition is complete the @kbd{z s} command gets
9504 the right answers.
9506 Here's the full program once again:
9508 @example
9509 @group
9510 C-x (  M-2 @key{RET} a =
9511        Z [  @key{DEL} @key{DEL} 1
9512        Z :  @key{RET} 0 a =
9513             Z [  @key{DEL} @key{DEL} 0
9514             Z :  @key{TAB} 1 - @key{TAB} M-2 @key{RET} 1 - z s
9515                  M-@key{TAB} M-@key{TAB} @key{TAB} @key{RET} M-@key{TAB} z s * -
9516             Z ]
9517        Z ]
9518 C-x )
9519 @end group
9520 @end example
9522 You can read this definition using @kbd{C-x * m} (@code{read-kbd-macro})
9523 followed by @kbd{Z K s}, without having to make a dummy definition
9524 first, because @code{read-kbd-macro} doesn't need to execute the
9525 definition as it reads it in.  For this reason, @code{C-x * m} is often
9526 the easiest way to create recursive programs in Calc.
9528 @node Programming Answer 12,  , Programming Answer 11, Answers to Exercises
9529 @subsection Programming Tutorial Exercise 12
9531 @noindent
9532 This turns out to be a much easier way to solve the problem.  Let's
9533 denote Stirling numbers as calls of the function @samp{s}.
9535 First, we store the rewrite rules corresponding to the definition of
9536 Stirling numbers in a convenient variable:
9538 @smallexample
9539 s e StirlingRules @key{RET}
9540 [ s(n,n) := 1  :: n >= 0,
9541   s(n,0) := 0  :: n > 0,
9542   s(n,m) := s(n-1,m-1) - (n-1) s(n-1,m) :: n >= m :: m >= 1 ]
9543 C-c C-c
9544 @end smallexample
9546 Now, it's just a matter of applying the rules:
9548 @smallexample
9549 @group
9550 2:  4          1:  s(4, 2)              1:  11
9551 1:  2              .                        .
9552     .
9554   4 @key{RET} 2       C-x (  ' s($$,$) @key{RET}     a r StirlingRules @key{RET}  C-x )
9555 @end group
9556 @end smallexample
9558 As in the case of the @code{fib} rules, it would be useful to put these
9559 rules in @code{EvalRules} and to add a @samp{:: remember} condition to
9560 the last rule.
9562 @c This ends the table-of-contents kludge from above:
9563 @tex
9564 \global\let\chapternofonts=\oldchapternofonts
9565 @end tex
9567 @c [reference]
9569 @node Introduction, Data Types, Tutorial, Top
9570 @chapter Introduction
9572 @noindent
9573 This chapter is the beginning of the Calc reference manual.
9574 It covers basic concepts such as the stack, algebraic and
9575 numeric entry, undo, numeric prefix arguments, etc.
9577 @c [when-split]
9578 @c (Chapter 2, the Tutorial, has been printed in a separate volume.)
9580 @menu
9581 * Basic Commands::
9582 * Help Commands::
9583 * Stack Basics::
9584 * Numeric Entry::
9585 * Algebraic Entry::
9586 * Quick Calculator::
9587 * Prefix Arguments::
9588 * Undo::
9589 * Error Messages::
9590 * Multiple Calculators::
9591 * Troubleshooting Commands::
9592 @end menu
9594 @node Basic Commands, Help Commands, Introduction, Introduction
9595 @section Basic Commands
9597 @noindent
9598 @pindex calc
9599 @pindex calc-mode
9600 @cindex Starting the Calculator
9601 @cindex Running the Calculator
9602 To start the Calculator in its standard interface, type @kbd{M-x calc}.
9603 By default this creates a pair of small windows, @file{*Calculator*}
9604 and @file{*Calc Trail*}.  The former displays the contents of the
9605 Calculator stack and is manipulated exclusively through Calc commands.
9606 It is possible (though not usually necessary) to create several Calc
9607 mode buffers each of which has an independent stack, undo list, and
9608 mode settings.  There is exactly one Calc Trail buffer; it records a
9609 list of the results of all calculations that have been done.  The
9610 Calc Trail buffer uses a variant of Calc mode, so Calculator commands
9611 still work when the trail buffer's window is selected.  It is possible
9612 to turn the trail window off, but the @file{*Calc Trail*} buffer itself
9613 still exists and is updated silently.  @xref{Trail Commands}.
9615 @kindex C-x * c
9616 @kindex C-x * *
9617 @ignore
9618 @mindex @null
9619 @end ignore
9620 In most installations, the @kbd{C-x * c} key sequence is a more
9621 convenient way to start the Calculator.  Also, @kbd{C-x * *}
9622 is a synonym for @kbd{C-x * c} unless you last used Calc
9623 in its Keypad mode.
9625 @kindex x
9626 @kindex M-x
9627 @pindex calc-execute-extended-command
9628 Most Calc commands use one or two keystrokes.  Lower- and upper-case
9629 letters are distinct.  Commands may also be entered in full @kbd{M-x} form;
9630 for some commands this is the only form.  As a convenience, the @kbd{x}
9631 key (@code{calc-execute-extended-command})
9632 is like @kbd{M-x} except that it enters the initial string @samp{calc-}
9633 for you.  For example, the following key sequences are equivalent:
9634 @kbd{S}, @kbd{M-x calc-sin @key{RET}}, @kbd{x sin @key{RET}}.
9636 Although Calc is designed to be used from the keyboard, some of
9637 Calc's more common commands are available from a menu.  In the menu, the
9638 arguments to the functions are given by referring to their stack level
9639 numbers.
9641 @cindex Extensions module
9642 @cindex @file{calc-ext} module
9643 The Calculator exists in many parts.  When you type @kbd{C-x * c}, the
9644 Emacs ``auto-load'' mechanism will bring in only the first part, which
9645 contains the basic arithmetic functions.  The other parts will be
9646 auto-loaded the first time you use the more advanced commands like trig
9647 functions or matrix operations.  This is done to improve the response time
9648 of the Calculator in the common case when all you need to do is a
9649 little arithmetic.  If for some reason the Calculator fails to load an
9650 extension module automatically, you can force it to load all the
9651 extensions by using the @kbd{C-x * L} (@code{calc-load-everything})
9652 command.  @xref{Mode Settings}.
9654 If you type @kbd{M-x calc} or @kbd{C-x * c} with any numeric prefix argument,
9655 the Calculator is loaded if necessary, but it is not actually started.
9656 If the argument is positive, the @file{calc-ext} extensions are also
9657 loaded if necessary.  User-written Lisp code that wishes to make use
9658 of Calc's arithmetic routines can use @samp{(calc 0)} or @samp{(calc 1)}
9659 to auto-load the Calculator.
9661 @kindex C-x * b
9662 @pindex full-calc
9663 If you type @kbd{C-x * b}, then next time you use @kbd{C-x * c} you
9664 will get a Calculator that uses the full height of the Emacs screen.
9665 When full-screen mode is on, @kbd{C-x * c} runs the @code{full-calc}
9666 command instead of @code{calc}.  From the Unix shell you can type
9667 @samp{emacs -f full-calc} to start a new Emacs specifically for use
9668 as a calculator.  When Calc is started from the Emacs command line
9669 like this, Calc's normal ``quit'' commands actually quit Emacs itself.
9671 @kindex C-x * o
9672 @pindex calc-other-window
9673 The @kbd{C-x * o} command is like @kbd{C-x * c} except that the Calc
9674 window is not actually selected.  If you are already in the Calc
9675 window, @kbd{C-x * o} switches you out of it.  (The regular Emacs
9676 @kbd{C-x o} command would also work for this, but it has a
9677 tendency to drop you into the Calc Trail window instead, which
9678 @kbd{C-x * o} takes care not to do.)
9680 @ignore
9681 @mindex C-x * q
9682 @end ignore
9683 For one quick calculation, you can type @kbd{C-x * q} (@code{quick-calc})
9684 which prompts you for a formula (like @samp{2+3/4}).  The result is
9685 displayed at the bottom of the Emacs screen without ever creating
9686 any special Calculator windows.  @xref{Quick Calculator}.
9688 @ignore
9689 @mindex C-x * k
9690 @end ignore
9691 Finally, if you are using the X window system you may want to try
9692 @kbd{C-x * k} (@code{calc-keypad}) which runs Calc with a
9693 ``calculator keypad'' picture as well as a stack display.  Click on
9694 the keys with the mouse to operate the calculator.  @xref{Keypad Mode}.
9696 @kindex q
9697 @pindex calc-quit
9698 @cindex Quitting the Calculator
9699 @cindex Exiting the Calculator
9700 The @kbd{q} key (@code{calc-quit}) exits Calc mode and closes the
9701 Calculator's window(s).  It does not delete the Calculator buffers.
9702 If you type @kbd{M-x calc} again, the Calculator will reappear with the
9703 contents of the stack intact.  Typing @kbd{C-x * c} or @kbd{C-x * *}
9704 again from inside the Calculator buffer is equivalent to executing
9705 @code{calc-quit}; you can think of @kbd{C-x * *} as toggling the
9706 Calculator on and off.
9708 @kindex C-x * x
9709 The @kbd{C-x * x} command also turns the Calculator off, no matter which
9710 user interface (standard, Keypad, or Embedded) is currently active.
9711 It also cancels @code{calc-edit} mode if used from there.
9713 @kindex d @key{SPC}
9714 @pindex calc-refresh
9715 @cindex Refreshing a garbled display
9716 @cindex Garbled displays, refreshing
9717 The @kbd{d @key{SPC}} key sequence (@code{calc-refresh}) redraws the contents
9718 of the Calculator buffer from memory.  Use this if the contents of the
9719 buffer have been damaged somehow.
9721 @ignore
9722 @mindex o
9723 @end ignore
9724 The @kbd{o} key (@code{calc-realign}) moves the cursor back to its
9725 ``home'' position at the bottom of the Calculator buffer.
9727 @kindex <
9728 @kindex >
9729 @pindex calc-scroll-left
9730 @pindex calc-scroll-right
9731 @cindex Horizontal scrolling
9732 @cindex Scrolling
9733 @cindex Wide text, scrolling
9734 The @kbd{<} and @kbd{>} keys are bound to @code{calc-scroll-left} and
9735 @code{calc-scroll-right}.  These are just like the normal horizontal
9736 scrolling commands except that they scroll one half-screen at a time by
9737 default.  (Calc formats its output to fit within the bounds of the
9738 window whenever it can.)
9740 @kindex @{
9741 @kindex @}
9742 @pindex calc-scroll-down
9743 @pindex calc-scroll-up
9744 @cindex Vertical scrolling
9745 The @kbd{@{} and @kbd{@}} keys are bound to @code{calc-scroll-down}
9746 and @code{calc-scroll-up}.  They scroll up or down by one-half the
9747 height of the Calc window.
9749 @kindex C-x * 0
9750 @pindex calc-reset
9751 The @kbd{C-x * 0} command (@code{calc-reset}; that's @kbd{C-x *} followed
9752 by a zero) resets the Calculator to its initial state.  This clears
9753 the stack, resets all the modes to their initial values (the values
9754 that were saved with @kbd{m m} (@code{calc-save-modes})), clears the
9755 caches (@pxref{Caches}), and so on.  (It does @emph{not} erase the
9756 values of any variables.) With an argument of 0, Calc will be reset to
9757 its default state; namely, the modes will be given their default values.
9758 With a positive prefix argument, @kbd{C-x * 0} preserves the contents of
9759 the stack but resets everything else to its initial state; with a
9760 negative prefix argument, @kbd{C-x * 0} preserves the contents of the
9761 stack but resets everything else to its default state.
9763 @node Help Commands, Stack Basics, Basic Commands, Introduction
9764 @section Help Commands
9766 @noindent
9767 @cindex Help commands
9768 @kindex ?
9769 @kindex a ?
9770 @kindex b ?
9771 @kindex c ?
9772 @kindex d ?
9773 @kindex f ?
9774 @kindex g ?
9775 @kindex j ?
9776 @kindex k ?
9777 @kindex m ?
9778 @kindex r ?
9779 @kindex s ?
9780 @kindex t ?
9781 @kindex u ?
9782 @kindex v ?
9783 @kindex V ?
9784 @kindex z ?
9785 @kindex Z ?
9786 @pindex calc-help
9787 The @kbd{?} key (@code{calc-help}) displays a series of brief help messages.
9788 Some keys (such as @kbd{b} and @kbd{d}) are prefix keys, like Emacs's
9789 @key{ESC} and @kbd{C-x} prefixes.  You can type
9790 @kbd{?} after a prefix to see a list of commands beginning with that
9791 prefix.  (If the message includes @samp{[MORE]}, press @kbd{?} again
9792 to see additional commands for that prefix.)
9794 @kindex h h
9795 @pindex calc-full-help
9796 The @kbd{h h} (@code{calc-full-help}) command displays all the @kbd{?}
9797 responses at once.  When printed, this makes a nice, compact (three pages)
9798 summary of Calc keystrokes.
9800 In general, the @kbd{h} key prefix introduces various commands that
9801 provide help within Calc.  Many of the @kbd{h} key functions are
9802 Calc-specific analogues to the @kbd{C-h} functions for Emacs help.
9804 @kindex h i
9805 @kindex C-x * i
9806 @kindex i
9807 @pindex calc-info
9808 The @kbd{h i} (@code{calc-info}) command runs the Emacs Info system
9809 to read this manual on-line.  This is basically the same as typing
9810 @kbd{C-h i} (the regular way to run the Info system), then, if Info
9811 is not already in the Calc manual, selecting the beginning of the
9812 manual.  The @kbd{C-x * i} command is another way to read the Calc
9813 manual; it is different from @kbd{h i} in that it works any time,
9814 not just inside Calc.  The plain @kbd{i} key is also equivalent to
9815 @kbd{h i}, though this key is obsolete and may be replaced with a
9816 different command in a future version of Calc.
9818 @kindex h t
9819 @kindex C-x * t
9820 @pindex calc-tutorial
9821 The @kbd{h t} (@code{calc-tutorial}) command runs the Info system on
9822 the Tutorial section of the Calc manual.  It is like @kbd{h i},
9823 except that it selects the starting node of the tutorial rather
9824 than the beginning of the whole manual.  (It actually selects the
9825 node ``Interactive Tutorial'' which tells a few things about
9826 using the Info system before going on to the actual tutorial.)
9827 The @kbd{C-x * t} key is equivalent to @kbd{h t} (but it works at
9828 all times).
9830 @kindex h s
9831 @kindex C-x * s
9832 @pindex calc-info-summary
9833 The @kbd{h s} (@code{calc-info-summary}) command runs the Info system
9834 on the Summary node of the Calc manual.  @xref{Summary}.  The @kbd{C-x * s}
9835 key is equivalent to @kbd{h s}.
9837 @kindex h k
9838 @pindex calc-describe-key
9839 The @kbd{h k} (@code{calc-describe-key}) command looks up a key
9840 sequence in the Calc manual.  For example, @kbd{h k H a S} looks
9841 up the documentation on the @kbd{H a S} (@code{calc-solve-for})
9842 command.  This works by looking up the textual description of
9843 the key(s) in the Key Index of the manual, then jumping to the
9844 node indicated by the index.
9846 Most Calc commands do not have traditional Emacs documentation
9847 strings, since the @kbd{h k} command is both more convenient and
9848 more instructive.  This means the regular Emacs @kbd{C-h k}
9849 (@code{describe-key}) command will not be useful for Calc keystrokes.
9851 @kindex h c
9852 @pindex calc-describe-key-briefly
9853 The @kbd{h c} (@code{calc-describe-key-briefly}) command reads a
9854 key sequence and displays a brief one-line description of it at
9855 the bottom of the screen.  It looks for the key sequence in the
9856 Summary node of the Calc manual; if it doesn't find the sequence
9857 there, it acts just like its regular Emacs counterpart @kbd{C-h c}
9858 (@code{describe-key-briefly}).  For example, @kbd{h c H a S}
9859 gives the description:
9861 @smallexample
9862 H a S runs calc-solve-for:  a `H a S' v  => fsolve(a,v)  (?=notes)
9863 @end smallexample
9865 @noindent
9866 which means the command @kbd{H a S} or @kbd{H M-x calc-solve-for}
9867 takes a value @expr{a} from the stack, prompts for a value @expr{v},
9868 then applies the algebraic function @code{fsolve} to these values.
9869 The @samp{?=notes} message means you can now type @kbd{?} to see
9870 additional notes from the summary that apply to this command.
9872 @kindex h f
9873 @pindex calc-describe-function
9874 The @kbd{h f} (@code{calc-describe-function}) command looks up an
9875 algebraic function or a command name in the Calc manual.  Enter an
9876 algebraic function name to look up that function in the Function
9877 Index or enter a command name beginning with @samp{calc-} to look it
9878 up in the Command Index.  This command will also look up operator
9879 symbols that can appear in algebraic formulas, like @samp{%} and
9880 @samp{=>}.
9882 @kindex h v
9883 @pindex calc-describe-variable
9884 The @kbd{h v} (@code{calc-describe-variable}) command looks up a
9885 variable in the Calc manual.  Enter a variable name like @code{pi} or
9886 @code{PlotRejects}.
9888 @kindex h b
9889 @pindex describe-bindings
9890 The @kbd{h b} (@code{calc-describe-bindings}) command is just like
9891 @kbd{C-h b}, except that only local (Calc-related) key bindings are
9892 listed.
9894 @kindex h n
9895 The @kbd{h n} or @kbd{h C-n} (@code{calc-view-news}) command displays
9896 the ``news'' or change history of Emacs, and jumps to the most recent
9897 portion concerning Calc (if present).  For older history, see the file
9898 @file{etc/CALC-NEWS} in the Emacs distribution.
9900 @kindex h C-c
9901 @kindex h C-d
9902 @kindex h C-w
9903 The @kbd{h C-c}, @kbd{h C-d}, and @kbd{h C-w} keys display copying,
9904 distribution, and warranty information about Calc.  These work by
9905 pulling up the appropriate parts of the ``Copying'' or ``Reporting
9906 Bugs'' sections of the manual.
9908 @node Stack Basics, Numeric Entry, Help Commands, Introduction
9909 @section Stack Basics
9911 @noindent
9912 @cindex Stack basics
9913 @c [fix-tut RPN Calculations and the Stack]
9914 Calc uses RPN notation.  If you are not familiar with RPN, @pxref{RPN
9915 Tutorial}.
9917 To add the numbers 1 and 2 in Calc you would type the keys:
9918 @kbd{1 @key{RET} 2 +}.
9919 (@key{RET} corresponds to the @key{ENTER} key on most calculators.)
9920 The first three keystrokes ``push'' the numbers 1 and 2 onto the stack.  The
9921 @kbd{+} key always ``pops'' the top two numbers from the stack, adds them,
9922 and pushes the result (3) back onto the stack.  This number is ready for
9923 further calculations:  @kbd{5 -} pushes 5 onto the stack, then pops the
9924 3 and 5, subtracts them, and pushes the result (@mathit{-2}).
9926 Note that the ``top'' of the stack actually appears at the @emph{bottom}
9927 of the buffer.  A line containing a single @samp{.} character signifies
9928 the end of the buffer; Calculator commands operate on the number(s)
9929 directly above this line.  The @kbd{d t} (@code{calc-truncate-stack})
9930 command allows you to move the @samp{.} marker up and down in the stack;
9931 @pxref{Truncating the Stack}.
9933 @kindex d l
9934 @pindex calc-line-numbering
9935 Stack elements are numbered consecutively, with number 1 being the top of
9936 the stack.  These line numbers are ordinarily displayed on the lefthand side
9937 of the window.  The @kbd{d l} (@code{calc-line-numbering}) command controls
9938 whether these numbers appear.  (Line numbers may be turned off since they
9939 slow the Calculator down a bit and also clutter the display.)
9941 @kindex o
9942 @pindex calc-realign
9943 The unshifted letter @kbd{o} (@code{calc-realign}) command repositions
9944 the cursor to its top-of-stack ``home'' position.  It also undoes any
9945 horizontal scrolling in the window.  If you give it a numeric prefix
9946 argument, it instead moves the cursor to the specified stack element.
9948 The @key{RET} (or equivalent @key{SPC}) key is only required to separate
9949 two consecutive numbers.
9950 (After all, if you typed @kbd{1 2} by themselves the Calculator
9951 would enter the number 12.)  If you press @key{RET} or @key{SPC} @emph{not}
9952 right after typing a number, the key duplicates the number on the top of
9953 the stack.  @kbd{@key{RET} *} is thus a handy way to square a number.
9955 The @key{DEL} key pops and throws away the top number on the stack.
9956 The @key{TAB} key swaps the top two objects on the stack.
9957 @xref{Stack and Trail}, for descriptions of these and other stack-related
9958 commands.
9960 @node Numeric Entry, Algebraic Entry, Stack Basics, Introduction
9961 @section Numeric Entry
9963 @noindent
9964 @kindex 0-9
9965 @kindex .
9966 @kindex e
9967 @cindex Numeric entry
9968 @cindex Entering numbers
9969 Pressing a digit or other numeric key begins numeric entry using the
9970 minibuffer.  The number is pushed on the stack when you press the @key{RET}
9971 or @key{SPC} keys.  If you press any other non-numeric key, the number is
9972 pushed onto the stack and the appropriate operation is performed.  If
9973 you press a numeric key which is not valid, the key is ignored.
9975 @cindex Minus signs
9976 @cindex Negative numbers, entering
9977 @kindex _
9978 There are three different concepts corresponding to the word ``minus,''
9979 typified by @expr{a-b} (subtraction), @expr{-x}
9980 (change-sign), and @expr{-5} (negative number).  Calc uses three
9981 different keys for these operations, respectively:
9982 @kbd{-}, @kbd{n}, and @kbd{_} (the underscore).  The @kbd{-} key subtracts
9983 the two numbers on the top of the stack.  The @kbd{n} key changes the sign
9984 of the number on the top of the stack or the number currently being entered.
9985 The @kbd{_} key begins entry of a negative number or changes the sign of
9986 the number currently being entered.  The following sequences all enter the
9987 number @mathit{-5} onto the stack:  @kbd{0 @key{RET} 5 -}, @kbd{5 n @key{RET}},
9988 @kbd{5 @key{RET} n}, @kbd{_ 5 @key{RET}}, @kbd{5 _ @key{RET}}.
9990 Some other keys are active during numeric entry, such as @kbd{#} for
9991 non-decimal numbers, @kbd{:} for fractions, and @kbd{@@} for HMS forms.
9992 These notations are described later in this manual with the corresponding
9993 data types.  @xref{Data Types}.
9995 During numeric entry, the only editing key available is @key{DEL}.
9997 @node Algebraic Entry, Quick Calculator, Numeric Entry, Introduction
9998 @section Algebraic Entry
10000 @noindent
10001 @kindex '
10002 @pindex calc-algebraic-entry
10003 @cindex Algebraic notation
10004 @cindex Formulas, entering
10005 The @kbd{'} (@code{calc-algebraic-entry}) command can be used to enter
10006 calculations in algebraic form.  This is accomplished by typing the
10007 apostrophe key, ', followed by the expression in standard format:
10009 @example
10010 ' 2+3*4 @key{RET}.
10011 @end example
10013 @noindent
10014 This will compute
10015 @texline @math{2+(3\times4) = 14}
10016 @infoline @expr{2+(3*4) = 14}
10017 and push it on the stack.  If you wish you can
10018 ignore the RPN aspect of Calc altogether and simply enter algebraic
10019 expressions in this way.  You may want to use @key{DEL} every so often to
10020 clear previous results off the stack.
10022 You can press the apostrophe key during normal numeric entry to switch
10023 the half-entered number into Algebraic entry mode.  One reason to do
10024 this would be to fix a typo, as the full Emacs cursor motion and editing
10025 keys are available during algebraic entry but not during numeric entry.
10027 In the same vein, during either numeric or algebraic entry you can
10028 press @kbd{`} (grave accent) to switch to @code{calc-edit} mode, where
10029 you complete your half-finished entry in a separate buffer.
10030 @xref{Editing Stack Entries}.
10032 @kindex m a
10033 @pindex calc-algebraic-mode
10034 @cindex Algebraic Mode
10035 If you prefer algebraic entry, you can use the command @kbd{m a}
10036 (@code{calc-algebraic-mode}) to set Algebraic mode.  In this mode,
10037 digits and other keys that would normally start numeric entry instead
10038 start full algebraic entry; as long as your formula begins with a digit
10039 you can omit the apostrophe.  Open parentheses and square brackets also
10040 begin algebraic entry.  You can still do RPN calculations in this mode,
10041 but you will have to press @key{RET} to terminate every number:
10042 @kbd{2 @key{RET} 3 @key{RET} * 4 @key{RET} +} would accomplish the same
10043 thing as @kbd{2*3+4 @key{RET}}.
10045 @cindex Incomplete Algebraic Mode
10046 If you give a numeric prefix argument like @kbd{C-u} to the @kbd{m a}
10047 command, it enables Incomplete Algebraic mode; this is like regular
10048 Algebraic mode except that it applies to the @kbd{(} and @kbd{[} keys
10049 only.  Numeric keys still begin a numeric entry in this mode.
10051 @kindex m t
10052 @pindex calc-total-algebraic-mode
10053 @cindex Total Algebraic Mode
10054 The @kbd{m t} (@code{calc-total-algebraic-mode}) gives you an even
10055 stronger algebraic-entry mode, in which @emph{all} regular letter and
10056 punctuation keys begin algebraic entry.  Use this if you prefer typing
10057 @w{@kbd{sqrt( )}} instead of @kbd{Q}, @w{@kbd{factor( )}} instead of
10058 @kbd{a f}, and so on.  To type regular Calc commands when you are in
10059 Total Algebraic mode, hold down the @key{META} key.  Thus @kbd{M-q}
10060 is the command to quit Calc, @kbd{M-p} sets the precision, and
10061 @kbd{M-m t} (or @kbd{M-m M-t}, if you prefer) turns Total Algebraic
10062 mode back off again.  Meta keys also terminate algebraic entry, so
10063 that @kbd{2+3 M-S} is equivalent to @kbd{2+3 @key{RET} M-S}.  The symbol
10064 @samp{Alg*} will appear in the mode line whenever you are in this mode.
10066 Pressing @kbd{'} (the apostrophe) a second time re-enters the previous
10067 algebraic formula.  You can then use the normal Emacs editing keys to
10068 modify this formula to your liking before pressing @key{RET}.
10070 @kindex $
10071 @cindex Formulas, referring to stack
10072 Within a formula entered from the keyboard, the symbol @kbd{$}
10073 represents the number on the top of the stack.  If an entered formula
10074 contains any @kbd{$} characters, the Calculator replaces the top of
10075 stack with that formula rather than simply pushing the formula onto the
10076 stack.  Thus, @kbd{' 1+2 @key{RET}} pushes 3 on the stack, and @kbd{$*2
10077 @key{RET}} replaces it with 6.  Note that the @kbd{$} key always
10078 initiates algebraic entry; the @kbd{'} is unnecessary if @kbd{$} is the
10079 first character in the new formula.
10081 Higher stack elements can be accessed from an entered formula with the
10082 symbols @kbd{$$}, @kbd{$$$}, and so on.  The number of stack elements
10083 removed (to be replaced by the entered values) equals the number of dollar
10084 signs in the longest such symbol in the formula.  For example, @samp{$$+$$$}
10085 adds the second and third stack elements, replacing the top three elements
10086 with the answer.  (All information about the top stack element is thus lost
10087 since no single @samp{$} appears in this formula.)
10089 A slightly different way to refer to stack elements is with a dollar
10090 sign followed by a number:  @samp{$1}, @samp{$2}, and so on are much
10091 like @samp{$}, @samp{$$}, etc., except that stack entries referred
10092 to numerically are not replaced by the algebraic entry.  That is, while
10093 @samp{$+1} replaces 5 on the stack with 6, @samp{$1+1} leaves the 5
10094 on the stack and pushes an additional 6.
10096 If a sequence of formulas are entered separated by commas, each formula
10097 is pushed onto the stack in turn.  For example, @samp{1,2,3} pushes
10098 those three numbers onto the stack (leaving the 3 at the top), and
10099 @samp{$+1,$-1} replaces a 5 on the stack with 4 followed by 6.  Also,
10100 @samp{$,$$} exchanges the top two elements of the stack, just like the
10101 @key{TAB} key.
10103 You can finish an algebraic entry with @kbd{M-=} or @kbd{M-@key{RET}} instead
10104 of @key{RET}.  This uses @kbd{=} to evaluate the variables in each
10105 formula that goes onto the stack.  (Thus @kbd{' pi @key{RET}} pushes
10106 the variable @samp{pi}, but @kbd{' pi M-@key{RET}} pushes 3.1415.)
10108 If you finish your algebraic entry by pressing @key{LFD} (or @kbd{C-j})
10109 instead of @key{RET}, Calc disables simplification
10110 (as if by @kbd{m O}; @pxref{Simplification Modes}) while the entry
10111 is being pushed on the stack.  Thus @kbd{' 1+2 @key{RET}} pushes 3
10112 on the stack, but @kbd{' 1+2 @key{LFD}} pushes the formula @expr{1+2};
10113 you might then press @kbd{=} when it is time to evaluate this formula.
10115 @node Quick Calculator, Prefix Arguments, Algebraic Entry, Introduction
10116 @section ``Quick Calculator'' Mode
10118 @noindent
10119 @kindex C-x * q
10120 @pindex quick-calc
10121 @cindex Quick Calculator
10122 There is another way to invoke the Calculator if all you need to do
10123 is make one or two quick calculations.  Type @kbd{C-x * q} (or
10124 @kbd{M-x quick-calc}), then type any formula as an algebraic entry.
10125 The Calculator will compute the result and display it in the echo
10126 area, without ever actually putting up a Calc window.
10128 You can use the @kbd{$} character in a Quick Calculator formula to
10129 refer to the previous Quick Calculator result.  Older results are
10130 not retained; the Quick Calculator has no effect on the full
10131 Calculator's stack or trail.  If you compute a result and then
10132 forget what it was, just run @code{C-x * q} again and enter
10133 @samp{$} as the formula.
10135 If this is the first time you have used the Calculator in this Emacs
10136 session, the @kbd{C-x * q} command will create the @file{*Calculator*}
10137 buffer and perform all the usual initializations; it simply will
10138 refrain from putting that buffer up in a new window.  The Quick
10139 Calculator refers to the @file{*Calculator*} buffer for all mode
10140 settings.  Thus, for example, to set the precision that the Quick
10141 Calculator uses, simply run the full Calculator momentarily and use
10142 the regular @kbd{p} command.
10144 If you use @code{C-x * q} from inside the Calculator buffer, the
10145 effect is the same as pressing the apostrophe key (algebraic entry).
10147 The result of a Quick calculation is placed in the Emacs ``kill ring''
10148 as well as being displayed.  A subsequent @kbd{C-y} command will
10149 yank the result into the editing buffer.  You can also use this
10150 to yank the result into the next @kbd{C-x * q} input line as a more
10151 explicit alternative to @kbd{$} notation, or to yank the result
10152 into the Calculator stack after typing @kbd{C-x * c}.
10154 If you give a prefix argument to @kbd{C-x * q} or finish your formula
10155 by typing @key{LFD} (or @kbd{C-j}) instead of @key{RET}, the result is
10156 inserted immediately into the current buffer rather than going into
10157 the kill ring.
10159 Quick Calculator results are actually evaluated as if by the @kbd{=}
10160 key (which replaces variable names by their stored values, if any).
10161 If the formula you enter is an assignment to a variable using the
10162 @samp{:=} operator, say, @samp{foo := 2 + 3} or @samp{foo := foo + 1},
10163 then the result of the evaluation is stored in that Calc variable.
10164 @xref{Store and Recall}.
10166 If the result is an integer and the current display radix is decimal,
10167 the number will also be displayed in hex, octal and binary formats.  If
10168 the integer is in the range from 1 to 126, it will also be displayed as
10169 an ASCII character.
10171 For example, the quoted character @samp{"x"} produces the vector
10172 result @samp{[120]} (because 120 is the ASCII code of the lower-case
10173 ``x''; @pxref{Strings}).  Since this is a vector, not an integer, it
10174 is displayed only according to the current mode settings.  But
10175 running Quick Calc again and entering @samp{120} will produce the
10176 result @samp{120 (16#78, 8#170, x)} which shows the number in its
10177 decimal, hexadecimal, octal, and ASCII forms.
10179 Please note that the Quick Calculator is not any faster at loading
10180 or computing the answer than the full Calculator; the name ``quick''
10181 merely refers to the fact that it's much less hassle to use for
10182 small calculations.
10184 @node Prefix Arguments, Undo, Quick Calculator, Introduction
10185 @section Numeric Prefix Arguments
10187 @noindent
10188 Many Calculator commands use numeric prefix arguments.  Some, such as
10189 @kbd{d s} (@code{calc-sci-notation}), set a parameter to the value of
10190 the prefix argument or use a default if you don't use a prefix.
10191 Others (like @kbd{d f} (@code{calc-fix-notation})) require an argument
10192 and prompt for a number if you don't give one as a prefix.
10194 As a rule, stack-manipulation commands accept a numeric prefix argument
10195 which is interpreted as an index into the stack.  A positive argument
10196 operates on the top @var{n} stack entries; a negative argument operates
10197 on the @var{n}th stack entry in isolation; and a zero argument operates
10198 on the entire stack.
10200 Most commands that perform computations (such as the arithmetic and
10201 scientific functions) accept a numeric prefix argument that allows the
10202 operation to be applied across many stack elements.  For unary operations
10203 (that is, functions of one argument like absolute value or complex
10204 conjugate), a positive prefix argument applies that function to the top
10205 @var{n} stack entries simultaneously, and a negative argument applies it
10206 to the @var{n}th stack entry only.  For binary operations (functions of
10207 two arguments like addition, GCD, and vector concatenation), a positive
10208 prefix argument ``reduces'' the function across the top @var{n}
10209 stack elements (for example, @kbd{C-u 5 +} sums the top 5 stack entries;
10210 @pxref{Reducing and Mapping}), and a negative argument maps the next-to-top
10211 @var{n} stack elements with the top stack element as a second argument
10212 (for example, @kbd{7 c-u -5 +} adds 7 to the top 5 stack elements).
10213 This feature is not available for operations which use the numeric prefix
10214 argument for some other purpose.
10216 Numeric prefixes are specified the same way as always in Emacs:  Press
10217 a sequence of @key{META}-digits, or press @key{ESC} followed by digits,
10218 or press @kbd{C-u} followed by digits.  Some commands treat plain
10219 @kbd{C-u} (without any actual digits) specially.
10221 @kindex ~
10222 @pindex calc-num-prefix
10223 You can type @kbd{~} (@code{calc-num-prefix}) to pop an integer from the
10224 top of the stack and enter it as the numeric prefix for the next command.
10225 For example, @kbd{C-u 16 p} sets the precision to 16 digits; an alternate
10226 (silly) way to do this would be @kbd{2 @key{RET} 4 ^ ~ p}, i.e., compute 2
10227 to the fourth power and set the precision to that value.
10229 Conversely, if you have typed a numeric prefix argument the @kbd{~} key
10230 pushes it onto the stack in the form of an integer.
10232 @node Undo, Error Messages, Prefix Arguments, Introduction
10233 @section Undoing Mistakes
10235 @noindent
10236 @kindex U
10237 @kindex C-_
10238 @pindex calc-undo
10239 @cindex Mistakes, undoing
10240 @cindex Undoing mistakes
10241 @cindex Errors, undoing
10242 The shift-@kbd{U} key (@code{calc-undo}) undoes the most recent operation.
10243 If that operation added or dropped objects from the stack, those objects
10244 are removed or restored.  If it was a ``store'' operation, you are
10245 queried whether or not to restore the variable to its original value.
10246 The @kbd{U} key may be pressed any number of times to undo successively
10247 farther back in time; with a numeric prefix argument it undoes a
10248 specified number of operations.  When the Calculator is quit, as with
10249 the @kbd{q} (@code{calc-quit}) command, the undo history will be
10250 truncated to the length of the customizable variable
10251 @code{calc-undo-length} (@pxref{Customizing Calc}), which by default
10252 is @expr{100}. (Recall that @kbd{C-x * c} is synonymous with
10253 @code{calc-quit} while inside the Calculator; this also truncates the
10254 undo history.)
10256 Currently the mode-setting commands (like @code{calc-precision}) are not
10257 undoable.  You can undo past a point where you changed a mode, but you
10258 will need to reset the mode yourself.
10260 @kindex D
10261 @pindex calc-redo
10262 @cindex Redoing after an Undo
10263 The shift-@kbd{D} key (@code{calc-redo}) redoes an operation that was
10264 mistakenly undone.  Pressing @kbd{U} with a negative prefix argument is
10265 equivalent to executing @code{calc-redo}.  You can redo any number of
10266 times, up to the number of recent consecutive undo commands.  Redo
10267 information is cleared whenever you give any command that adds new undo
10268 information, i.e., if you undo, then enter a number on the stack or make
10269 any other change, then it will be too late to redo.
10271 @kindex M-@key{RET}
10272 @pindex calc-last-args
10273 @cindex Last-arguments feature
10274 @cindex Arguments, restoring
10275 The @kbd{M-@key{RET}} key (@code{calc-last-args}) is like undo in that
10276 it restores the arguments of the most recent command onto the stack;
10277 however, it does not remove the result of that command.  Given a numeric
10278 prefix argument, this command applies to the @expr{n}th most recent
10279 command which removed items from the stack; it pushes those items back
10280 onto the stack.
10282 The @kbd{K} (@code{calc-keep-args}) command provides a related function
10283 to @kbd{M-@key{RET}}.  @xref{Stack and Trail}.
10285 It is also possible to recall previous results or inputs using the trail.
10286 @xref{Trail Commands}.
10288 The standard Emacs @kbd{C-_} undo key is recognized as a synonym for @kbd{U}.
10290 @node Error Messages, Multiple Calculators, Undo, Introduction
10291 @section Error Messages
10293 @noindent
10294 @kindex w
10295 @pindex calc-why
10296 @cindex Errors, messages
10297 @cindex Why did an error occur?
10298 Many situations that would produce an error message in other calculators
10299 simply create unsimplified formulas in the Emacs Calculator.  For example,
10300 @kbd{1 @key{RET} 0 /} pushes the formula @expr{1 / 0}; @w{@kbd{0 L}} pushes
10301 the formula @samp{ln(0)}.  Floating-point overflow and underflow are also
10302 reasons for this to happen.
10304 When a function call must be left in symbolic form, Calc usually
10305 produces a message explaining why.  Messages that are probably
10306 surprising or indicative of user errors are displayed automatically.
10307 Other messages are simply kept in Calc's memory and are displayed only
10308 if you type @kbd{w} (@code{calc-why}).  You can also press @kbd{w} if
10309 the same computation results in several messages.  (The first message
10310 will end with @samp{[w=more]} in this case.)
10312 @kindex d w
10313 @pindex calc-auto-why
10314 The @kbd{d w} (@code{calc-auto-why}) command controls when error messages
10315 are displayed automatically.  (Calc effectively presses @kbd{w} for you
10316 after your computation finishes.)  By default, this occurs only for
10317 ``important'' messages.  The other possible modes are to report
10318 @emph{all} messages automatically, or to report none automatically (so
10319 that you must always press @kbd{w} yourself to see the messages).
10321 @node Multiple Calculators, Troubleshooting Commands, Error Messages, Introduction
10322 @section Multiple Calculators
10324 @noindent
10325 @pindex another-calc
10326 It is possible to have any number of Calc mode buffers at once.
10327 Usually this is done by executing @kbd{M-x another-calc}, which
10328 is similar to @kbd{C-x * c} except that if a @file{*Calculator*}
10329 buffer already exists, a new, independent one with a name of the
10330 form @file{*Calculator*<@var{n}>} is created.  You can also use the
10331 command @code{calc-mode} to put any buffer into Calculator mode, but
10332 this would ordinarily never be done.
10334 The @kbd{q} (@code{calc-quit}) command does not destroy a Calculator buffer;
10335 it only closes its window.  Use @kbd{M-x kill-buffer} to destroy a
10336 Calculator buffer.
10338 Each Calculator buffer keeps its own stack, undo list, and mode settings
10339 such as precision, angular mode, and display formats.  In Emacs terms,
10340 variables such as @code{calc-stack} are buffer-local variables.  The
10341 global default values of these variables are used only when a new
10342 Calculator buffer is created.  The @code{calc-quit} command saves
10343 the stack and mode settings of the buffer being quit as the new defaults.
10345 There is only one trail buffer, @file{*Calc Trail*}, used by all
10346 Calculator buffers.
10348 @node Troubleshooting Commands,  , Multiple Calculators, Introduction
10349 @section Troubleshooting Commands
10351 @noindent
10352 This section describes commands you can use in case a computation
10353 incorrectly fails or gives the wrong answer.
10355 @xref{Reporting Bugs}, if you find a problem that appears to be due
10356 to a bug or deficiency in Calc.
10358 @menu
10359 * Autoloading Problems::
10360 * Recursion Depth::
10361 * Caches::
10362 * Debugging Calc::
10363 @end menu
10365 @node Autoloading Problems, Recursion Depth, Troubleshooting Commands, Troubleshooting Commands
10366 @subsection Autoloading Problems
10368 @noindent
10369 The Calc program is split into many component files; components are
10370 loaded automatically as you use various commands that require them.
10371 Occasionally Calc may lose track of when a certain component is
10372 necessary; typically this means you will type a command and it won't
10373 work because some function you've never heard of was undefined.
10375 @kindex C-x * L
10376 @pindex calc-load-everything
10377 If this happens, the easiest workaround is to type @kbd{C-x * L}
10378 (@code{calc-load-everything}) to force all the parts of Calc to be
10379 loaded right away.  This will cause Emacs to take up a lot more
10380 memory than it would otherwise, but it's guaranteed to fix the problem.
10382 @node Recursion Depth, Caches, Autoloading Problems, Troubleshooting Commands
10383 @subsection Recursion Depth
10385 @noindent
10386 @kindex M
10387 @kindex I M
10388 @pindex calc-more-recursion-depth
10389 @pindex calc-less-recursion-depth
10390 @cindex Recursion depth
10391 @cindex ``Computation got stuck'' message
10392 @cindex @code{max-lisp-eval-depth}
10393 @cindex @code{max-specpdl-size}
10394 Calc uses recursion in many of its calculations.  Emacs Lisp keeps a
10395 variable @code{max-lisp-eval-depth} which limits the amount of recursion
10396 possible in an attempt to recover from program bugs.  If a calculation
10397 ever halts incorrectly with the message ``Computation got stuck or
10398 ran too long,'' use the @kbd{M} command (@code{calc-more-recursion-depth})
10399 to increase this limit.  (Of course, this will not help if the
10400 calculation really did get stuck due to some problem inside Calc.)
10402 The limit is always increased (multiplied) by a factor of two.  There
10403 is also an @kbd{I M} (@code{calc-less-recursion-depth}) command which
10404 decreases this limit by a factor of two, down to a minimum value of 200.
10405 The default value is 1000.
10407 These commands also double or halve @code{max-specpdl-size}, another
10408 internal Lisp recursion limit.  The minimum value for this limit is 600.
10410 @node Caches, Debugging Calc, Recursion Depth, Troubleshooting Commands
10411 @subsection Caches
10413 @noindent
10414 @cindex Caches
10415 @cindex Flushing caches
10416 Calc saves certain values after they have been computed once.  For
10417 example, the @kbd{P} (@code{calc-pi}) command initially ``knows'' the
10418 constant @cpi{} to about 20 decimal places; if the current precision
10419 is greater than this, it will recompute @cpi{} using a series
10420 approximation.  This value will not need to be recomputed ever again
10421 unless you raise the precision still further.  Many operations such as
10422 logarithms and sines make use of similarly cached values such as
10423 @cpiover{4} and
10424 @texline @math{\ln 2}.
10425 @infoline @expr{ln(2)}.
10426 The visible effect of caching is that
10427 high-precision computations may seem to do extra work the first time.
10428 Other things cached include powers of two (for the binary arithmetic
10429 functions), matrix inverses and determinants, symbolic integrals, and
10430 data points computed by the graphing commands.
10432 @pindex calc-flush-caches
10433 If you suspect a Calculator cache has become corrupt, you can use the
10434 @code{calc-flush-caches} command to reset all caches to the empty state.
10435 (This should only be necessary in the event of bugs in the Calculator.)
10436 The @kbd{C-x * 0} (with the zero key) command also resets caches along
10437 with all other aspects of the Calculator's state.
10439 @node Debugging Calc,  , Caches, Troubleshooting Commands
10440 @subsection Debugging Calc
10442 @noindent
10443 A few commands exist to help in the debugging of Calc commands.
10444 @xref{Programming}, to see the various ways that you can write
10445 your own Calc commands.
10447 @kindex Z T
10448 @pindex calc-timing
10449 The @kbd{Z T} (@code{calc-timing}) command turns on and off a mode
10450 in which the timing of slow commands is reported in the Trail.
10451 Any Calc command that takes two seconds or longer writes a line
10452 to the Trail showing how many seconds it took.  This value is
10453 accurate only to within one second.
10455 All steps of executing a command are included; in particular, time
10456 taken to format the result for display in the stack and trail is
10457 counted.  Some prompts also count time taken waiting for them to
10458 be answered, while others do not; this depends on the exact
10459 implementation of the command.  For best results, if you are timing
10460 a sequence that includes prompts or multiple commands, define a
10461 keyboard macro to run the whole sequence at once.  Calc's @kbd{X}
10462 command (@pxref{Keyboard Macros}) will then report the time taken
10463 to execute the whole macro.
10465 Another advantage of the @kbd{X} command is that while it is
10466 executing, the stack and trail are not updated from step to step.
10467 So if you expect the output of your test sequence to leave a result
10468 that may take a long time to format and you don't wish to count
10469 this formatting time, end your sequence with a @key{DEL} keystroke
10470 to clear the result from the stack.  When you run the sequence with
10471 @kbd{X}, Calc will never bother to format the large result.
10473 Another thing @kbd{Z T} does is to increase the Emacs variable
10474 @code{gc-cons-threshold} to a much higher value (two million; the
10475 usual default in Calc is 250,000) for the duration of each command.
10476 This generally prevents garbage collection during the timing of
10477 the command, though it may cause your Emacs process to grow
10478 abnormally large.  (Garbage collection time is a major unpredictable
10479 factor in the timing of Emacs operations.)
10481 Another command that is useful when debugging your own Lisp
10482 extensions to Calc is @kbd{M-x calc-pass-errors}, which disables
10483 the error handler that changes the ``@code{max-lisp-eval-depth}
10484 exceeded'' message to the much more friendly ``Computation got
10485 stuck or ran too long.''  This handler interferes with the Emacs
10486 Lisp debugger's @code{debug-on-error} mode.  Errors are reported
10487 in the handler itself rather than at the true location of the
10488 error.  After you have executed @code{calc-pass-errors}, Lisp
10489 errors will be reported correctly but the user-friendly message
10490 will be lost.
10492 @node Data Types, Stack and Trail, Introduction, Top
10493 @chapter Data Types
10495 @noindent
10496 This chapter discusses the various types of objects that can be placed
10497 on the Calculator stack, how they are displayed, and how they are
10498 entered.  (@xref{Data Type Formats}, for information on how these data
10499 types are represented as underlying Lisp objects.)
10501 Integers, fractions, and floats are various ways of describing real
10502 numbers.  HMS forms also for many purposes act as real numbers.  These
10503 types can be combined to form complex numbers, modulo forms, error forms,
10504 or interval forms.  (But these last four types cannot be combined
10505 arbitrarily: error forms may not contain modulo forms, for example.)
10506 Finally, all these types of numbers may be combined into vectors,
10507 matrices, or algebraic formulas.
10509 @menu
10510 * Integers::                The most basic data type.
10511 * Fractions::               This and above are called @dfn{rationals}.
10512 * Floats::                  This and above are called @dfn{reals}.
10513 * Complex Numbers::         This and above are called @dfn{numbers}.
10514 * Infinities::
10515 * Vectors and Matrices::
10516 * Strings::
10517 * HMS Forms::
10518 * Date Forms::
10519 * Modulo Forms::
10520 * Error Forms::
10521 * Interval Forms::
10522 * Incomplete Objects::
10523 * Variables::
10524 * Formulas::
10525 @end menu
10527 @node Integers, Fractions, Data Types, Data Types
10528 @section Integers
10530 @noindent
10531 @cindex Integers
10532 The Calculator stores integers to arbitrary precision.  Addition,
10533 subtraction, and multiplication of integers always yields an exact
10534 integer result.  (If the result of a division or exponentiation of
10535 integers is not an integer, it is expressed in fractional or
10536 floating-point form according to the current Fraction mode.
10537 @xref{Fraction Mode}.)
10539 A decimal integer is represented as an optional sign followed by a
10540 sequence of digits.  Grouping (@pxref{Grouping Digits}) can be used to
10541 insert a comma at every third digit for display purposes, but you
10542 must not type commas during the entry of numbers.
10544 @kindex #
10545 A non-decimal integer is represented as an optional sign, a radix
10546 between 2 and 36, a @samp{#} symbol, and one or more digits.  For radix 11
10547 and above, the letters A through Z (upper- or lower-case) count as
10548 digits and do not terminate numeric entry mode.  @xref{Radix Modes}, for how
10549 to set the default radix for display of integers.  Numbers of any radix
10550 may be entered at any time.  If you press @kbd{#} at the beginning of a
10551 number, the current display radix is used.
10553 @node Fractions, Floats, Integers, Data Types
10554 @section Fractions
10556 @noindent
10557 @cindex Fractions
10558 A @dfn{fraction} is a ratio of two integers.  Fractions are traditionally
10559 written ``2/3'' but Calc uses the notation @samp{2:3}.  (The @kbd{/} key
10560 performs RPN division; the following two sequences push the number
10561 @samp{2:3} on the stack:  @kbd{2 :@: 3 @key{RET}}, or @kbd{2 @key{RET} 3 /}
10562 assuming Fraction mode has been enabled.)
10563 When the Calculator produces a fractional result it always reduces it to
10564 simplest form, which may in fact be an integer.
10566 Fractions may also be entered in a three-part form, where @samp{2:3:4}
10567 represents two-and-three-quarters.  @xref{Fraction Formats}, for fraction
10568 display formats.
10570 Non-decimal fractions are entered and displayed as
10571 @samp{@var{radix}#@var{num}:@var{denom}} (or in the analogous three-part
10572 form).  The numerator and denominator always use the same radix.
10574 @node Floats, Complex Numbers, Fractions, Data Types
10575 @section Floats
10577 @noindent
10578 @cindex Floating-point numbers
10579 A floating-point number or @dfn{float} is a number stored in scientific
10580 notation.  The number of significant digits in the fractional part is
10581 governed by the current floating precision (@pxref{Precision}).  The
10582 range of acceptable values is from
10583 @texline @math{10^{-3999999}}
10584 @infoline @expr{10^-3999999}
10585 (inclusive) to
10586 @texline @math{10^{4000000}}
10587 @infoline @expr{10^4000000}
10588 (exclusive), plus the corresponding negative values and zero.
10590 Calculations that would exceed the allowable range of values (such
10591 as @samp{exp(exp(20))}) are left in symbolic form by Calc.  The
10592 messages ``floating-point overflow'' or ``floating-point underflow''
10593 indicate that during the calculation a number would have been produced
10594 that was too large or too close to zero, respectively, to be represented
10595 by Calc.  This does not necessarily mean the final result would have
10596 overflowed, just that an overflow occurred while computing the result.
10597 (In fact, it could report an underflow even though the final result
10598 would have overflowed!)
10600 If a rational number and a float are mixed in a calculation, the result
10601 will in general be expressed as a float.  Commands that require an integer
10602 value (such as @kbd{k g} [@code{gcd}]) will also accept integer-valued
10603 floats, i.e., floating-point numbers with nothing after the decimal point.
10605 Floats are identified by the presence of a decimal point and/or an
10606 exponent.  In general a float consists of an optional sign, digits
10607 including an optional decimal point, and an optional exponent consisting
10608 of an @samp{e}, an optional sign, and up to seven exponent digits.
10609 For example, @samp{23.5e-2} is 23.5 times ten to the minus-second power,
10610 or 0.235.
10612 Floating-point numbers are normally displayed in decimal notation with
10613 all significant figures shown.  Exceedingly large or small numbers are
10614 displayed in scientific notation.  Various other display options are
10615 available.  @xref{Float Formats}.
10617 @cindex Accuracy of calculations
10618 Floating-point numbers are stored in decimal, not binary.  The result
10619 of each operation is rounded to the nearest value representable in the
10620 number of significant digits specified by the current precision,
10621 rounding away from zero in the case of a tie.  Thus (in the default
10622 display mode) what you see is exactly what you get.  Some operations such
10623 as square roots and transcendental functions are performed with several
10624 digits of extra precision and then rounded down, in an effort to make the
10625 final result accurate to the full requested precision.  However,
10626 accuracy is not rigorously guaranteed.  If you suspect the validity of a
10627 result, try doing the same calculation in a higher precision.  The
10628 Calculator's arithmetic is not intended to be IEEE-conformant in any
10629 way.
10631 While floats are always @emph{stored} in decimal, they can be entered
10632 and displayed in any radix just like integers and fractions.  Since a
10633 float that is entered in a radix other that 10 will be converted to
10634 decimal, the number that Calc stores may not be exactly the number that
10635 was entered, it will be the closest decimal approximation given the
10636 current precision.  The notation @samp{@var{radix}#@var{ddd}.@var{ddd}}
10637 is a floating-point number whose digits are in the specified radix.
10638 Note that the @samp{.}  is more aptly referred to as a ``radix point''
10639 than as a decimal point in this case.  The number @samp{8#123.4567} is
10640 defined as @samp{8#1234567 * 8^-4}.  If the radix is 14 or less, you can
10641 use @samp{e} notation to write a non-decimal number in scientific
10642 notation.  The exponent is written in decimal, and is considered to be a
10643 power of the radix: @samp{8#1234567e-4}.  If the radix is 15 or above,
10644 the letter @samp{e} is a digit, so scientific notation must be written
10645 out, e.g., @samp{16#123.4567*16^2}.  The first two exercises of the
10646 Modes Tutorial explore some of the properties of non-decimal floats.
10648 @node Complex Numbers, Infinities, Floats, Data Types
10649 @section Complex Numbers
10651 @noindent
10652 @cindex Complex numbers
10653 There are two supported formats for complex numbers: rectangular and
10654 polar.  The default format is rectangular, displayed in the form
10655 @samp{(@var{real},@var{imag})} where @var{real} is the real part and
10656 @var{imag} is the imaginary part, each of which may be any real number.
10657 Rectangular complex numbers can also be displayed in @samp{@var{a}+@var{b}i}
10658 notation; @pxref{Complex Formats}.
10660 Polar complex numbers are displayed in the form
10661 @texline `@tfn{(}@var{r}@tfn{;}@math{\theta}@tfn{)}'
10662 @infoline `@tfn{(}@var{r}@tfn{;}@var{theta}@tfn{)}'
10663 where @var{r} is the nonnegative magnitude and
10664 @texline @math{\theta}
10665 @infoline @var{theta}
10666 is the argument or phase angle.  The range of
10667 @texline @math{\theta}
10668 @infoline @var{theta}
10669 depends on the current angular mode (@pxref{Angular Modes}); it is
10670 generally between @mathit{-180} and @mathit{+180} degrees or the equivalent range
10671 in radians.
10673 Complex numbers are entered in stages using incomplete objects.
10674 @xref{Incomplete Objects}.
10676 Operations on rectangular complex numbers yield rectangular complex
10677 results, and similarly for polar complex numbers.  Where the two types
10678 are mixed, or where new complex numbers arise (as for the square root of
10679 a negative real), the current @dfn{Polar mode} is used to determine the
10680 type.  @xref{Polar Mode}.
10682 A complex result in which the imaginary part is zero (or the phase angle
10683 is 0 or 180 degrees or @cpi{} radians) is automatically converted to a real
10684 number.
10686 @node Infinities, Vectors and Matrices, Complex Numbers, Data Types
10687 @section Infinities
10689 @noindent
10690 @cindex Infinity
10691 @cindex @code{inf} variable
10692 @cindex @code{uinf} variable
10693 @cindex @code{nan} variable
10694 @vindex inf
10695 @vindex uinf
10696 @vindex nan
10697 The word @code{inf} represents the mathematical concept of @dfn{infinity}.
10698 Calc actually has three slightly different infinity-like values:
10699 @code{inf}, @code{uinf}, and @code{nan}.  These are just regular
10700 variable names (@pxref{Variables}); you should avoid using these
10701 names for your own variables because Calc gives them special
10702 treatment.  Infinities, like all variable names, are normally
10703 entered using algebraic entry.
10705 Mathematically speaking, it is not rigorously correct to treat
10706 ``infinity'' as if it were a number, but mathematicians often do
10707 so informally.  When they say that @samp{1 / inf = 0}, what they
10708 really mean is that @expr{1 / x}, as @expr{x} becomes larger and
10709 larger, becomes arbitrarily close to zero.  So you can imagine
10710 that if @expr{x} got ``all the way to infinity,'' then @expr{1 / x}
10711 would go all the way to zero.  Similarly, when they say that
10712 @samp{exp(inf) = inf}, they mean that
10713 @texline @math{e^x}
10714 @infoline @expr{exp(x)}
10715 grows without bound as @expr{x} grows.  The symbol @samp{-inf} likewise
10716 stands for an infinitely negative real value; for example, we say that
10717 @samp{exp(-inf) = 0}.  You can have an infinity pointing in any
10718 direction on the complex plane:  @samp{sqrt(-inf) = i inf}.
10720 The same concept of limits can be used to define @expr{1 / 0}.  We
10721 really want the value that @expr{1 / x} approaches as @expr{x}
10722 approaches zero.  But if all we have is @expr{1 / 0}, we can't
10723 tell which direction @expr{x} was coming from.  If @expr{x} was
10724 positive and decreasing toward zero, then we should say that
10725 @samp{1 / 0 = inf}.  But if @expr{x} was negative and increasing
10726 toward zero, the answer is @samp{1 / 0 = -inf}.  In fact, @expr{x}
10727 could be an imaginary number, giving the answer @samp{i inf} or
10728 @samp{-i inf}.  Calc uses the special symbol @samp{uinf} to mean
10729 @dfn{undirected infinity}, i.e., a value which is infinitely
10730 large but with an unknown sign (or direction on the complex plane).
10732 Calc actually has three modes that say how infinities are handled.
10733 Normally, infinities never arise from calculations that didn't
10734 already have them.  Thus, @expr{1 / 0} is treated simply as an
10735 error and left unevaluated.  The @kbd{m i} (@code{calc-infinite-mode})
10736 command (@pxref{Infinite Mode}) enables a mode in which
10737 @expr{1 / 0} evaluates to @code{uinf} instead.  There is also
10738 an alternative type of infinite mode which says to treat zeros
10739 as if they were positive, so that @samp{1 / 0 = inf}.  While this
10740 is less mathematically correct, it may be the answer you want in
10741 some cases.
10743 Since all infinities are ``as large'' as all others, Calc simplifies,
10744 e.g., @samp{5 inf} to @samp{inf}.  Another example is
10745 @samp{5 - inf = -inf}, where the @samp{-inf} is so large that
10746 adding a finite number like five to it does not affect it.
10747 Note that @samp{a - inf} also results in @samp{-inf}; Calc assumes
10748 that variables like @code{a} always stand for finite quantities.
10749 Just to show that infinities really are all the same size,
10750 note that @samp{sqrt(inf) = inf^2 = exp(inf) = inf} in Calc's
10751 notation.
10753 It's not so easy to define certain formulas like @samp{0 * inf} and
10754 @samp{inf / inf}.  Depending on where these zeros and infinities
10755 came from, the answer could be literally anything.  The latter
10756 formula could be the limit of @expr{x / x} (giving a result of one),
10757 or @expr{2 x / x} (giving two), or @expr{x^2 / x} (giving @code{inf}),
10758 or @expr{x / x^2} (giving zero).  Calc uses the symbol @code{nan}
10759 to represent such an @dfn{indeterminate} value.  (The name ``nan''
10760 comes from analogy with the ``NAN'' concept of IEEE standard
10761 arithmetic; it stands for ``Not A Number.''  This is somewhat of a
10762 misnomer, since @code{nan} @emph{does} stand for some number or
10763 infinity, it's just that @emph{which} number it stands for
10764 cannot be determined.)  In Calc's notation, @samp{0 * inf = nan}
10765 and @samp{inf / inf = nan}.  A few other common indeterminate
10766 expressions are @samp{inf - inf} and @samp{inf ^ 0}.  Also,
10767 @samp{0 / 0 = nan} if you have turned on Infinite mode
10768 (as described above).
10770 Infinities are especially useful as parts of @dfn{intervals}.
10771 @xref{Interval Forms}.
10773 @node Vectors and Matrices, Strings, Infinities, Data Types
10774 @section Vectors and Matrices
10776 @noindent
10777 @cindex Vectors
10778 @cindex Plain vectors
10779 @cindex Matrices
10780 The @dfn{vector} data type is flexible and general.  A vector is simply a
10781 list of zero or more data objects.  When these objects are numbers, the
10782 whole is a vector in the mathematical sense.  When these objects are
10783 themselves vectors of equal (nonzero) length, the whole is a @dfn{matrix}.
10784 A vector which is not a matrix is referred to here as a @dfn{plain vector}.
10786 A vector is displayed as a list of values separated by commas and enclosed
10787 in square brackets:  @samp{[1, 2, 3]}.  Thus the following is a 2 row by
10788 3 column matrix:  @samp{[[1, 2, 3], [4, 5, 6]]}.  Vectors, like complex
10789 numbers, are entered as incomplete objects.  @xref{Incomplete Objects}.
10790 During algebraic entry, vectors are entered all at once in the usual
10791 brackets-and-commas form.  Matrices may be entered algebraically as nested
10792 vectors, or using the shortcut notation @w{@samp{[1, 2, 3; 4, 5, 6]}},
10793 with rows separated by semicolons.  The commas may usually be omitted
10794 when entering vectors:  @samp{[1 2 3]}.  Curly braces may be used in
10795 place of brackets: @samp{@{1, 2, 3@}}, but the commas are required in
10796 this case.
10798 Traditional vector and matrix arithmetic is also supported;
10799 @pxref{Basic Arithmetic} and @pxref{Matrix Functions}.
10800 Many other operations are applied to vectors element-wise.  For example,
10801 the complex conjugate of a vector is a vector of the complex conjugates
10802 of its elements.
10804 @ignore
10805 @starindex
10806 @end ignore
10807 @tindex vec
10808 Algebraic functions for building vectors include @samp{vec(a, b, c)}
10809 to build @samp{[a, b, c]}, @samp{cvec(a, n, m)} to build an
10810 @texline @math{n\times m}
10811 @infoline @var{n}x@var{m}
10812 matrix of @samp{a}s, and @samp{index(n)} to build a vector of integers
10813 from 1 to @samp{n}.
10815 @node Strings, HMS Forms, Vectors and Matrices, Data Types
10816 @section Strings
10818 @noindent
10819 @kindex "
10820 @cindex Strings
10821 @cindex Character strings
10822 Character strings are not a special data type in the Calculator.
10823 Rather, a string is represented simply as a vector all of whose
10824 elements are integers in the range 0 to 255 (ASCII codes).  You can
10825 enter a string at any time by pressing the @kbd{"} key.  Quotation
10826 marks and backslashes are written @samp{\"} and @samp{\\}, respectively,
10827 inside strings.  Other notations introduced by backslashes are:
10829 @example
10830 @group
10831 \a     7          \^@@    0
10832 \b     8          \^a-z  1-26
10833 \e     27         \^[    27
10834 \f     12         \^\\   28
10835 \n     10         \^]    29
10836 \r     13         \^^    30
10837 \t     9          \^_    31
10838                   \^?    127
10839 @end group
10840 @end example
10842 @noindent
10843 Finally, a backslash followed by three octal digits produces any
10844 character from its ASCII code.
10846 @kindex d "
10847 @pindex calc-display-strings
10848 Strings are normally displayed in vector-of-integers form.  The
10849 @w{@kbd{d "}} (@code{calc-display-strings}) command toggles a mode in
10850 which any vectors of small integers are displayed as quoted strings
10851 instead.
10853 The backslash notations shown above are also used for displaying
10854 strings.  Characters 128 and above are not translated by Calc; unless
10855 you have an Emacs modified for 8-bit fonts, these will show up in
10856 backslash-octal-digits notation.  For characters below 32, and
10857 for character 127, Calc uses the backslash-letter combination if
10858 there is one, or otherwise uses a @samp{\^} sequence.
10860 The only Calc feature that uses strings is @dfn{compositions};
10861 @pxref{Compositions}.  Strings also provide a convenient
10862 way to do conversions between ASCII characters and integers.
10864 @ignore
10865 @starindex
10866 @end ignore
10867 @tindex string
10868 There is a @code{string} function which provides a different display
10869 format for strings.  Basically, @samp{string(@var{s})}, where @var{s}
10870 is a vector of integers in the proper range, is displayed as the
10871 corresponding string of characters with no surrounding quotation
10872 marks or other modifications.  Thus @samp{string("ABC")} (or
10873 @samp{string([65 66 67])}) will look like @samp{ABC} on the stack.
10874 This happens regardless of whether @w{@kbd{d "}} has been used.  The
10875 only way to turn it off is to use @kbd{d U} (unformatted language
10876 mode) which will display @samp{string("ABC")} instead.
10878 Control characters are displayed somewhat differently by @code{string}.
10879 Characters below 32, and character 127, are shown using @samp{^} notation
10880 (same as shown above, but without the backslash).  The quote and
10881 backslash characters are left alone, as are characters 128 and above.
10883 @ignore
10884 @starindex
10885 @end ignore
10886 @tindex bstring
10887 The @code{bstring} function is just like @code{string} except that
10888 the resulting string is breakable across multiple lines if it doesn't
10889 fit all on one line.  Potential break points occur at every space
10890 character in the string.
10892 @node HMS Forms, Date Forms, Strings, Data Types
10893 @section HMS Forms
10895 @noindent
10896 @cindex Hours-minutes-seconds forms
10897 @cindex Degrees-minutes-seconds forms
10898 @dfn{HMS} stands for Hours-Minutes-Seconds; when used as an angular
10899 argument, the interpretation is Degrees-Minutes-Seconds.  All functions
10900 that operate on angles accept HMS forms.  These are interpreted as
10901 degrees regardless of the current angular mode.  It is also possible to
10902 use HMS as the angular mode so that calculated angles are expressed in
10903 degrees, minutes, and seconds.
10905 @kindex @@
10906 @ignore
10907 @mindex @null
10908 @end ignore
10909 @kindex ' (HMS forms)
10910 @ignore
10911 @mindex @null
10912 @end ignore
10913 @kindex " (HMS forms)
10914 @ignore
10915 @mindex @null
10916 @end ignore
10917 @kindex h (HMS forms)
10918 @ignore
10919 @mindex @null
10920 @end ignore
10921 @kindex o (HMS forms)
10922 @ignore
10923 @mindex @null
10924 @end ignore
10925 @kindex m (HMS forms)
10926 @ignore
10927 @mindex @null
10928 @end ignore
10929 @kindex s (HMS forms)
10930 The default format for HMS values is
10931 @samp{@var{hours}@@ @var{mins}' @var{secs}"}.  During entry, the letters
10932 @samp{h} (for ``hours'') or
10933 @samp{o} (approximating the ``degrees'' symbol) are accepted as well as
10934 @samp{@@}, @samp{m} is accepted in place of @samp{'}, and @samp{s} is
10935 accepted in place of @samp{"}.
10936 The @var{hours} value is an integer (or integer-valued float).
10937 The @var{mins} value is an integer or integer-valued float between 0 and 59.
10938 The @var{secs} value is a real number between 0 (inclusive) and 60
10939 (exclusive).  A positive HMS form is interpreted as @var{hours} +
10940 @var{mins}/60 + @var{secs}/3600.  A negative HMS form is interpreted
10941 as @mathit{- @var{hours}} @mathit{-} @var{mins}/60 @mathit{-} @var{secs}/3600.
10942 Display format for HMS forms is quite flexible.  @xref{HMS Formats}.
10944 HMS forms can be added and subtracted.  When they are added to numbers,
10945 the numbers are interpreted according to the current angular mode.  HMS
10946 forms can also be multiplied and divided by real numbers.  Dividing
10947 two HMS forms produces a real-valued ratio of the two angles.
10949 @pindex calc-time
10950 @cindex Time of day
10951 Just for kicks, @kbd{M-x calc-time} pushes the current time of day on
10952 the stack as an HMS form.
10954 @node Date Forms, Modulo Forms, HMS Forms, Data Types
10955 @section Date Forms
10957 @noindent
10958 @cindex Date forms
10959 A @dfn{date form} represents a date and possibly an associated time.
10960 Simple date arithmetic is supported:  Adding a number to a date
10961 produces a new date shifted by that many days; adding an HMS form to
10962 a date shifts it by that many hours.  Subtracting two date forms
10963 computes the number of days between them (represented as a simple
10964 number).  Many other operations, such as multiplying two date forms,
10965 are nonsensical and are not allowed by Calc.
10967 Date forms are entered and displayed enclosed in @samp{< >} brackets.
10968 The default format is, e.g., @samp{<Wed Jan 9, 1991>} for dates,
10969 or @samp{<3:32:20pm Wed Jan 9, 1991>} for dates with times.
10970 Input is flexible; date forms can be entered in any of the usual
10971 notations for dates and times.  @xref{Date Formats}.
10973 Date forms are stored internally as numbers, specifically the number
10974 of days since midnight on the morning of December 31 of the year 1 BC@.
10975 If the internal number is an integer, the form represents a date only;
10976 if the internal number is a fraction or float, the form represents
10977 a date and time.  For example, @samp{<6:00am Thu Jan 10, 1991>}
10978 is represented by the number 726842.25.  The standard precision of
10979 12 decimal digits is enough to ensure that a (reasonable) date and
10980 time can be stored without roundoff error.
10982 If the current precision is greater than 12, date forms will keep
10983 additional digits in the seconds position.  For example, if the
10984 precision is 15, the seconds will keep three digits after the
10985 decimal point.  Decreasing the precision below 12 may cause the
10986 time part of a date form to become inaccurate.  This can also happen
10987 if astronomically high years are used, though this will not be an
10988 issue in everyday (or even everymillennium) use.  Note that date
10989 forms without times are stored as exact integers, so roundoff is
10990 never an issue for them.
10992 You can use the @kbd{v p} (@code{calc-pack}) and @kbd{v u}
10993 (@code{calc-unpack}) commands to get at the numerical representation
10994 of a date form.  @xref{Packing and Unpacking}.
10996 Date forms can go arbitrarily far into the future or past.  Negative
10997 year numbers represent years BC@.  There is no ``year 0''; the day
10998 before @samp{<Mon Jan 1, +1>} is @samp{<Sun Dec 31, -1>}.  These are
10999 days 1 and 0 respectively in Calc's internal numbering scheme.  The
11000 Gregorian calendar is used for all dates, including dates before the
11001 Gregorian calendar was invented (although that can be configured; see
11002 below).  Thus Calc's use of the day number @mathit{-10000} to
11003 represent August 15, 28 BC should be taken with a grain of salt.
11005 @cindex Julian calendar
11006 @cindex Gregorian calendar
11007 Some historical background:  The Julian calendar was created by
11008 Julius Caesar in the year 46 BC as an attempt to fix the confusion
11009 caused by the irregular Roman calendar that was used before that time.
11010 The Julian calendar introduced an extra day in all years divisible by
11011 four.  After some initial confusion, the calendar was adopted around
11012 the year we call 8 AD@.  Some centuries later it became
11013 apparent that the Julian year of 365.25 days was itself not quite
11014 right.  In 1582 Pope Gregory XIII introduced the Gregorian calendar,
11015 which added the new rule that years divisible by 100, but not by 400,
11016 were not to be considered leap years despite being divisible by four.
11017 Many countries delayed adoption of the Gregorian calendar
11018 because of religious differences.  For example, Great Britain and the
11019 British colonies switched to the Gregorian calendar in September
11020 1752, when the Julian calendar was eleven days behind the
11021 Gregorian calendar.  That year in Britain, the day after September 2
11022 was September 14.  To take another example, Russia did not adopt the
11023 Gregorian calendar until 1918, and that year in Russia the day after
11024 January 31 was February 14.  Calc's reckoning therefore matches English
11025 practice starting in 1752 and Russian practice starting in 1918, but
11026 disagrees with earlier dates in both countries.
11028 When the Julian calendar was introduced, it had January 1 as the first
11029 day of the year.  By the Middle Ages, many European countries
11030 had changed the beginning of a new year to a different date, often to
11031 a religious festival.  Almost all countries reverted to using January 1
11032 as the beginning of the year by the time they adopted the Gregorian
11033 calendar.
11035 Some calendars attempt to mimic the historical situation by using the
11036 Gregorian calendar for recent dates and the Julian calendar for older
11037 dates. The @code{cal} program in most Unix implementations does this,
11038 for example. While January 1 wasn't always the beginning of a calendar
11039 year, these hybrid calendars still use January 1 as the beginning of
11040 the year even for older dates.   The customizable variable
11041 @code{calc-gregorian-switch} (@pxref{Customizing Calc}) can be set to
11042 have Calc's date forms switch from the Julian to Gregorian calendar at
11043 any specified date.
11045 Today's timekeepers introduce an occasional ``leap second''.
11046 These do not occur regularly and Calc does not take these minor
11047 effects into account.  (If it did, it would have to report a
11048 non-integer number of days between, say,
11049 @samp{<12:00am Mon Jan 1, 1900>} and
11050 @samp{<12:00am Sat Jan 1, 2000>}.)
11052 @cindex Julian day counting
11053 Another day counting system in common use is, confusingly, also called
11054 ``Julian.''  Julian days go from noon to noon.  The Julian day number
11055 is the numbers of days since 12:00 noon (GMT) on November 24, 4714 BC
11056 in the Gregorian calendar (i.e., January 1, 4713 BC in the Julian
11057 calendar).  In Calc's scheme (in GMT) the Julian day origin is
11058 @mathit{-1721422.5}, because Calc starts at midnight instead of noon.
11059 Thus to convert a Calc date code obtained by unpacking a
11060 date form into a Julian day number, simply add 1721422.5 after
11061 compensating for the time zone difference.  The built-in @kbd{t J}
11062 command performs this conversion for you.
11064 The Julian day number is based on the Julian cycle, which was invented
11065 in 1583 by Joseph Justus Scaliger.  Scaliger named it the Julian cycle
11066 since it involves the Julian calendar, but some have suggested that
11067 Scaliger named it in honor of his father, Julius Caesar Scaliger.  The
11068 Julian cycle is based on three other cycles: the indiction cycle, the
11069 Metonic cycle, and the solar cycle.  The indiction cycle is a 15 year
11070 cycle originally used by the Romans for tax purposes but later used to
11071 date medieval documents.  The Metonic cycle is a 19 year cycle; 19
11072 years is close to being a common multiple of a solar year and a lunar
11073 month, and so every 19 years the phases of the moon will occur on the
11074 same days of the year.  The solar cycle is a 28 year cycle; the Julian
11075 calendar repeats itself every 28 years.  The smallest time period
11076 which contains multiples of all three cycles is the least common
11077 multiple of 15 years, 19 years and 28 years, which (since they're
11078 pairwise relatively prime) is
11079 @texline @math{15\times 19\times 28 = 7980} years.
11080 @infoline 15*19*28 = 7980 years.
11081 This is the length of a Julian cycle.  Working backwards, the previous
11082 year in which all three cycles began was 4713 BC, and so Scaliger
11083 chose that year as the beginning of a Julian cycle.  Since at the time
11084 there were no historical records from before 4713 BC, using this year
11085 as a starting point had the advantage of avoiding negative year
11086 numbers.  In 1849, the astronomer John Herschel (son of William
11087 Herschel) suggested using the number of days since the beginning of
11088 the Julian cycle as an astronomical dating system; this idea was taken
11089 up by other astronomers.  (At the time, noon was the start of the
11090 astronomical day.  Herschel originally suggested counting the days
11091 since Jan 1, 4713 BC at noon Alexandria time; this was later amended to
11092 noon GMT@.)  Julian day numbering is largely used in astronomy.
11094 @cindex Unix time format
11095 The Unix operating system measures time as an integer number of
11096 seconds since midnight, Jan 1, 1970.  To convert a Calc date
11097 value into a Unix time stamp, first subtract 719163 (the code
11098 for @samp{<Jan 1, 1970>}), then multiply by 86400 (the number of
11099 seconds in a day) and press @kbd{R} to round to the nearest
11100 integer.  If you have a date form, you can simply subtract the
11101 day @samp{<Jan 1, 1970>} instead of unpacking and subtracting
11102 719163.  Likewise, divide by 86400 and add @samp{<Jan 1, 1970>}
11103 to convert from Unix time to a Calc date form.  (Note that
11104 Unix normally maintains the time in the GMT time zone; you may
11105 need to subtract five hours to get New York time, or eight hours
11106 for California time.  The same is usually true of Julian day
11107 counts.)  The built-in @kbd{t U} command performs these
11108 conversions.
11110 @node Modulo Forms, Error Forms, Date Forms, Data Types
11111 @section Modulo Forms
11113 @noindent
11114 @cindex Modulo forms
11115 A @dfn{modulo form} is a real number which is taken modulo (i.e., within
11116 an integer multiple of) some value @var{M}.  Arithmetic modulo @var{M}
11117 often arises in number theory.  Modulo forms are written
11118 `@var{a} @tfn{mod} @var{M}',
11119 where @var{a} and @var{M} are real numbers or HMS forms, and
11120 @texline @math{0 \le a < M}.
11121 @infoline @expr{0 <= a < @var{M}}.
11122 In many applications @expr{a} and @expr{M} will be
11123 integers but this is not required.
11125 @ignore
11126 @mindex M
11127 @end ignore
11128 @kindex M (modulo forms)
11129 @ignore
11130 @mindex mod
11131 @end ignore
11132 @tindex mod (operator)
11133 To create a modulo form during numeric entry, press the shift-@kbd{M}
11134 key to enter the word @samp{mod}.  As a special convenience, pressing
11135 shift-@kbd{M} a second time automatically enters the value of @expr{M}
11136 that was most recently used before.  During algebraic entry, either
11137 type @samp{mod} by hand or press @kbd{M-m} (that's @kbd{@key{META}-m}).
11138 Once again, pressing this a second time enters the current modulo.
11140 Modulo forms are not to be confused with the modulo operator @samp{%}.
11141 The expression @samp{27 % 10} means to compute 27 modulo 10 to produce
11142 the result 7.  Further computations treat this 7 as just a regular integer.
11143 The expression @samp{27 mod 10} produces the result @samp{7 mod 10};
11144 further computations with this value are again reduced modulo 10 so that
11145 the result always lies in the desired range.
11147 When two modulo forms with identical @expr{M}'s are added or multiplied,
11148 the Calculator simply adds or multiplies the values, then reduces modulo
11149 @expr{M}.  If one argument is a modulo form and the other a plain number,
11150 the plain number is treated like a compatible modulo form.  It is also
11151 possible to raise modulo forms to powers; the result is the value raised
11152 to the power, then reduced modulo @expr{M}.  (When all values involved
11153 are integers, this calculation is done much more efficiently than
11154 actually computing the power and then reducing.)
11156 @cindex Modulo division
11157 Two modulo forms `@var{a} @tfn{mod} @var{M}' and `@var{b} @tfn{mod} @var{M}'
11158 can be divided if @expr{a}, @expr{b}, and @expr{M} are all
11159 integers.  The result is the modulo form which, when multiplied by
11160 `@var{b} @tfn{mod} @var{M}', produces `@var{a} @tfn{mod} @var{M}'.  If
11161 there is no solution to this equation (which can happen only when
11162 @expr{M} is non-prime), or if any of the arguments are non-integers, the
11163 division is left in symbolic form.  Other operations, such as square
11164 roots, are not yet supported for modulo forms.  (Note that, although
11165 @w{`@tfn{(}@var{a} @tfn{mod} @var{M}@tfn{)^.5}'} will compute a ``modulo square root''
11166 in the sense of reducing
11167 @texline @math{\sqrt a}
11168 @infoline @expr{sqrt(a)}
11169 modulo @expr{M}, this is not a useful definition from the
11170 number-theoretical point of view.)
11172 It is possible to mix HMS forms and modulo forms.  For example, an
11173 HMS form modulo 24 could be used to manipulate clock times; an HMS
11174 form modulo 360 would be suitable for angles.  Making the modulo @expr{M}
11175 also be an HMS form eliminates troubles that would arise if the angular
11176 mode were inadvertently set to Radians, in which case
11177 @w{@samp{2@@ 0' 0" mod 24}} would be interpreted as two degrees modulo
11178 24 radians!
11180 Modulo forms cannot have variables or formulas for components.  If you
11181 enter the formula @samp{(x + 2) mod 5}, Calc propagates the modulus
11182 to each of the coefficients:  @samp{(1 mod 5) x + (2 mod 5)}.
11184 You can use @kbd{v p} and @kbd{%} to modify modulo forms.
11185 @xref{Packing and Unpacking}.  @xref{Basic Arithmetic}.
11187 @ignore
11188 @starindex
11189 @end ignore
11190 @tindex makemod
11191 The algebraic function @samp{makemod(a, m)} builds the modulo form
11192 @w{@samp{a mod m}}.
11194 @node Error Forms, Interval Forms, Modulo Forms, Data Types
11195 @section Error Forms
11197 @noindent
11198 @cindex Error forms
11199 @cindex Standard deviations
11200 An @dfn{error form} is a number with an associated standard
11201 deviation, as in @samp{2.3 +/- 0.12}.  The notation
11202 @texline `@var{x} @tfn{+/-} @math{\sigma}'
11203 @infoline `@var{x} @tfn{+/-} sigma'
11204 stands for an uncertain value which follows
11205 a normal or Gaussian distribution of mean @expr{x} and standard
11206 deviation or ``error''
11207 @texline @math{\sigma}.
11208 @infoline @expr{sigma}.
11209 Both the mean and the error can be either numbers or
11210 formulas.  Generally these are real numbers but the mean may also be
11211 complex.  If the error is negative or complex, it is changed to its
11212 absolute value.  An error form with zero error is converted to a
11213 regular number by the Calculator.
11215 All arithmetic and transcendental functions accept error forms as input.
11216 Operations on the mean-value part work just like operations on regular
11217 numbers.  The error part for any function @expr{f(x)} (such as
11218 @texline @math{\sin x}
11219 @infoline @expr{sin(x)})
11220 is defined by the error of @expr{x} times the derivative of @expr{f}
11221 evaluated at the mean value of @expr{x}.  For a two-argument function
11222 @expr{f(x,y)} (such as addition) the error is the square root of the sum
11223 of the squares of the errors due to @expr{x} and @expr{y}.
11224 @tex
11225 $$ \eqalign{
11226   f(x \hbox{\code{ +/- }} \sigma)
11227     &= f(x) \hbox{\code{ +/- }} \sigma \left| {df(x) \over dx} \right| \cr
11228   f(x \hbox{\code{ +/- }} \sigma_x, y \hbox{\code{ +/- }} \sigma_y)
11229     &= f(x,y) \hbox{\code{ +/- }}
11230         \sqrt{\left(\sigma_x \left| {\partial f(x,y) \over \partial x}
11231                              \right| \right)^2
11232              +\left(\sigma_y \left| {\partial f(x,y) \over \partial y}
11233                              \right| \right)^2 } \cr
11234 } $$
11235 @end tex
11236 Note that this
11237 definition assumes the errors in @expr{x} and @expr{y} are uncorrelated.
11238 A side effect of this definition is that @samp{(2 +/- 1) * (2 +/- 1)}
11239 is not the same as @samp{(2 +/- 1)^2}; the former represents the product
11240 of two independent values which happen to have the same probability
11241 distributions, and the latter is the product of one random value with itself.
11242 The former will produce an answer with less error, since on the average
11243 the two independent errors can be expected to cancel out.
11245 Consult a good text on error analysis for a discussion of the proper use
11246 of standard deviations.  Actual errors often are neither Gaussian-distributed
11247 nor uncorrelated, and the above formulas are valid only when errors
11248 are small.  As an example, the error arising from
11249 @texline `@tfn{sin(}@var{x} @tfn{+/-} @math{\sigma}@tfn{)}'
11250 @infoline `@tfn{sin(}@var{x} @tfn{+/-} @var{sigma}@tfn{)}'
11252 @texline `@math{\sigma} @tfn{abs(cos(}@var{x}@tfn{))}'.
11253 @infoline `@var{sigma} @tfn{abs(cos(}@var{x}@tfn{))}'.
11254 When @expr{x} is close to zero,
11255 @texline @math{\cos x}
11256 @infoline @expr{cos(x)}
11257 is close to one so the error in the sine is close to
11258 @texline @math{\sigma};
11259 @infoline @expr{sigma};
11260 this makes sense, since
11261 @texline @math{\sin x}
11262 @infoline @expr{sin(x)}
11263 is approximately @expr{x} near zero, so a given error in @expr{x} will
11264 produce about the same error in the sine.  Likewise, near 90 degrees
11265 @texline @math{\cos x}
11266 @infoline @expr{cos(x)}
11267 is nearly zero and so the computed error is
11268 small:  The sine curve is nearly flat in that region, so an error in @expr{x}
11269 has relatively little effect on the value of
11270 @texline @math{\sin x}.
11271 @infoline @expr{sin(x)}.
11272 However, consider @samp{sin(90 +/- 1000)}.  The cosine of 90 is zero, so
11273 Calc will report zero error!  We get an obviously wrong result because
11274 we have violated the small-error approximation underlying the error
11275 analysis.  If the error in @expr{x} had been small, the error in
11276 @texline @math{\sin x}
11277 @infoline @expr{sin(x)}
11278 would indeed have been negligible.
11280 @ignore
11281 @mindex p
11282 @end ignore
11283 @kindex p (error forms)
11284 @tindex +/-
11285 To enter an error form during regular numeric entry, use the @kbd{p}
11286 (``plus-or-minus'') key to type the @samp{+/-} symbol.  (If you try actually
11287 typing @samp{+/-} the @kbd{+} key will be interpreted as the Calculator's
11288 @kbd{+} command!)  Within an algebraic formula, you can press @kbd{M-+} to
11289 type the @samp{+/-} symbol, or type it out by hand.
11291 Error forms and complex numbers can be mixed; the formulas shown above
11292 are used for complex numbers, too; note that if the error part evaluates
11293 to a complex number its absolute value (or the square root of the sum of
11294 the squares of the absolute values of the two error contributions) is
11295 used.  Mathematically, this corresponds to a radially symmetric Gaussian
11296 distribution of numbers on the complex plane.  However, note that Calc
11297 considers an error form with real components to represent a real number,
11298 not a complex distribution around a real mean.
11300 Error forms may also be composed of HMS forms.  For best results, both
11301 the mean and the error should be HMS forms if either one is.
11303 @ignore
11304 @starindex
11305 @end ignore
11306 @tindex sdev
11307 The algebraic function @samp{sdev(a, b)} builds the error form @samp{a +/- b}.
11309 @node Interval Forms, Incomplete Objects, Error Forms, Data Types
11310 @section Interval Forms
11312 @noindent
11313 @cindex Interval forms
11314 An @dfn{interval} is a subset of consecutive real numbers.  For example,
11315 the interval @samp{[2 ..@: 4]} represents all the numbers from 2 to 4,
11316 inclusive.  If you multiply it by the interval @samp{[0.5 ..@: 2]} you
11317 obtain @samp{[1 ..@: 8]}.  This calculation represents the fact that if
11318 you multiply some number in the range @samp{[2 ..@: 4]} by some other
11319 number in the range @samp{[0.5 ..@: 2]}, your result will lie in the range
11320 from 1 to 8.  Interval arithmetic is used to get a worst-case estimate
11321 of the possible range of values a computation will produce, given the
11322 set of possible values of the input.
11324 @ifnottex
11325 Calc supports several varieties of intervals, including @dfn{closed}
11326 intervals of the type shown above, @dfn{open} intervals such as
11327 @samp{(2 ..@: 4)}, which represents the range of numbers from 2 to 4
11328 @emph{exclusive}, and @dfn{semi-open} intervals in which one end
11329 uses a round parenthesis and the other a square bracket.  In mathematical
11330 terms,
11331 @samp{[2 ..@: 4]} means @expr{2 <= x <= 4}, whereas
11332 @samp{[2 ..@: 4)} represents @expr{2 <= x < 4},
11333 @samp{(2 ..@: 4]} represents @expr{2 < x <= 4}, and
11334 @samp{(2 ..@: 4)} represents @expr{2 < x < 4}.
11335 @end ifnottex
11336 @tex
11337 Calc supports several varieties of intervals, including \dfn{closed}
11338 intervals of the type shown above, \dfn{open} intervals such as
11339 \samp{(2 ..\: 4)}, which represents the range of numbers from 2 to 4
11340 \emph{exclusive}, and \dfn{semi-open} intervals in which one end
11341 uses a round parenthesis and the other a square bracket.  In mathematical
11342 terms,
11343 $$ \eqalign{
11344    [2 \hbox{\cite{..}} 4]  &\quad\hbox{means}\quad  2 \le x \le 4  \cr
11345    [2 \hbox{\cite{..}} 4)  &\quad\hbox{means}\quad  2 \le x  <  4  \cr
11346    (2 \hbox{\cite{..}} 4]  &\quad\hbox{means}\quad  2  <  x \le 4  \cr
11347    (2 \hbox{\cite{..}} 4)  &\quad\hbox{means}\quad  2  <  x  <  4  \cr
11348 } $$
11349 @end tex
11351 The lower and upper limits of an interval must be either real numbers
11352 (or HMS or date forms), or symbolic expressions which are assumed to be
11353 real-valued, or @samp{-inf} and @samp{inf}.  In general the lower limit
11354 must be less than the upper limit.  A closed interval containing only
11355 one value, @samp{[3 ..@: 3]}, is converted to a plain number (3)
11356 automatically.  An interval containing no values at all (such as
11357 @samp{[3 ..@: 2]} or @samp{[2 ..@: 2)}) can be represented but is not
11358 guaranteed to behave well when used in arithmetic.  Note that the
11359 interval @samp{[3 .. inf)} represents all real numbers greater than
11360 or equal to 3, and @samp{(-inf .. inf)} represents all real numbers.
11361 In fact, @samp{[-inf .. inf]} represents all real numbers including
11362 the real infinities.
11364 Intervals are entered in the notation shown here, either as algebraic
11365 formulas, or using incomplete forms.  (@xref{Incomplete Objects}.)
11366 In algebraic formulas, multiple periods in a row are collected from
11367 left to right, so that @samp{1...1e2} is interpreted as @samp{1.0 ..@: 1e2}
11368 rather than @samp{1 ..@: 0.1e2}.  Add spaces or zeros if you want to
11369 get the other interpretation.  If you omit the lower or upper limit,
11370 a default of @samp{-inf} or @samp{inf} (respectively) is furnished.
11372 Infinite mode also affects operations on intervals
11373 (@pxref{Infinities}).  Calc will always introduce an open infinity,
11374 as in @samp{1 / (0 .. 2] = [0.5 .. inf)}.  But closed infinities,
11375 @w{@samp{1 / [0 .. 2] = [0.5 .. inf]}}, arise only in Infinite mode;
11376 otherwise they are left unevaluated.  Note that the ``direction'' of
11377 a zero is not an issue in this case since the zero is always assumed
11378 to be continuous with the rest of the interval.  For intervals that
11379 contain zero inside them Calc is forced to give the result,
11380 @samp{1 / (-2 .. 2) = [-inf .. inf]}.
11382 While it may seem that intervals and error forms are similar, they are
11383 based on entirely different concepts of inexact quantities.  An error
11384 form
11385 @texline `@var{x} @tfn{+/-} @math{\sigma}'
11386 @infoline `@var{x} @tfn{+/-} @var{sigma}'
11387 means a variable is random, and its value could
11388 be anything but is ``probably'' within one
11389 @texline @math{\sigma}
11390 @infoline @var{sigma}
11391 of the mean value @expr{x}. An interval
11392 `@tfn{[}@var{a} @tfn{..@:} @var{b}@tfn{]}' means a
11393 variable's value is unknown, but guaranteed to lie in the specified
11394 range.  Error forms are statistical or ``average case'' approximations;
11395 interval arithmetic tends to produce ``worst case'' bounds on an
11396 answer.
11398 Intervals may not contain complex numbers, but they may contain
11399 HMS forms or date forms.
11401 @xref{Set Operations}, for commands that interpret interval forms
11402 as subsets of the set of real numbers.
11404 @ignore
11405 @starindex
11406 @end ignore
11407 @tindex intv
11408 The algebraic function @samp{intv(n, a, b)} builds an interval form
11409 from @samp{a} to @samp{b}; @samp{n} is an integer code which must
11410 be 0 for @samp{(..)}, 1 for @samp{(..]}, 2 for @samp{[..)}, or
11411 3 for @samp{[..]}.
11413 Please note that in fully rigorous interval arithmetic, care would be
11414 taken to make sure that the computation of the lower bound rounds toward
11415 minus infinity, while upper bound computations round toward plus
11416 infinity.  Calc's arithmetic always uses a round-to-nearest mode,
11417 which means that roundoff errors could creep into an interval
11418 calculation to produce intervals slightly smaller than they ought to
11419 be.  For example, entering @samp{[1..2]} and pressing @kbd{Q 2 ^}
11420 should yield the interval @samp{[1..2]} again, but in fact it yields the
11421 (slightly too small) interval @samp{[1..1.9999999]} due to roundoff
11422 error.
11424 @node Incomplete Objects, Variables, Interval Forms, Data Types
11425 @section Incomplete Objects
11427 @noindent
11428 @ignore
11429 @mindex [ ]
11430 @end ignore
11431 @kindex [
11432 @ignore
11433 @mindex ( )
11434 @end ignore
11435 @kindex (
11436 @kindex ,
11437 @ignore
11438 @mindex @null
11439 @end ignore
11440 @kindex ]
11441 @ignore
11442 @mindex @null
11443 @end ignore
11444 @kindex )
11445 @cindex Incomplete vectors
11446 @cindex Incomplete complex numbers
11447 @cindex Incomplete interval forms
11448 When @kbd{(} or @kbd{[} is typed to begin entering a complex number or
11449 vector, respectively, the effect is to push an @dfn{incomplete} complex
11450 number or vector onto the stack.  The @kbd{,} key adds the value(s) at
11451 the top of the stack onto the current incomplete object.  The @kbd{)}
11452 and @kbd{]} keys ``close'' the incomplete object after adding any values
11453 on the top of the stack in front of the incomplete object.
11455 As a result, the sequence of keystrokes @kbd{[ 2 , 3 @key{RET} 2 * , 9 ]}
11456 pushes the vector @samp{[2, 6, 9]} onto the stack.  Likewise, @kbd{( 1 , 2 Q )}
11457 pushes the complex number @samp{(1, 1.414)} (approximately).
11459 If several values lie on the stack in front of the incomplete object,
11460 all are collected and appended to the object.  Thus the @kbd{,} key
11461 is redundant:  @kbd{[ 2 @key{RET} 3 @key{RET} 2 * 9 ]}.  Some people
11462 prefer the equivalent @key{SPC} key to @key{RET}.
11464 As a special case, typing @kbd{,} immediately after @kbd{(}, @kbd{[}, or
11465 @kbd{,} adds a zero or duplicates the preceding value in the list being
11466 formed.  Typing @key{DEL} during incomplete entry removes the last item
11467 from the list.
11469 @kindex ;
11470 The @kbd{;} key is used in the same way as @kbd{,} to create polar complex
11471 numbers:  @kbd{( 1 ; 2 )}.  When entering a vector, @kbd{;} is useful for
11472 creating a matrix.  In particular, @kbd{[ [ 1 , 2 ; 3 , 4 ; 5 , 6 ] ]} is
11473 equivalent to @kbd{[ [ 1 , 2 ] , [ 3 , 4 ] , [ 5 , 6 ] ]}.
11475 @kindex ..
11476 @pindex calc-dots
11477 Incomplete entry is also used to enter intervals.  For example,
11478 @kbd{[ 2 ..@: 4 )} enters a semi-open interval.  Note that when you type
11479 the first period, it will be interpreted as a decimal point, but when
11480 you type a second period immediately afterward, it is re-interpreted as
11481 part of the interval symbol.  Typing @kbd{..} corresponds to executing
11482 the @code{calc-dots} command.
11484 If you find incomplete entry distracting, you may wish to enter vectors
11485 and complex numbers as algebraic formulas by pressing the apostrophe key.
11487 @node Variables, Formulas, Incomplete Objects, Data Types
11488 @section Variables
11490 @noindent
11491 @cindex Variables, in formulas
11492 A @dfn{variable} is somewhere between a storage register on a conventional
11493 calculator, and a variable in a programming language.  (In fact, a Calc
11494 variable is really just an Emacs Lisp variable that contains a Calc number
11495 or formula.)  A variable's name is normally composed of letters and digits.
11496 Calc also allows apostrophes and @code{#} signs in variable names.
11497 (The Calc variable @code{foo} corresponds to the Emacs Lisp variable
11498 @code{var-foo}, but unless you access the variable from within Emacs
11499 Lisp, you don't need to worry about it.  Variable names in algebraic
11500 formulas implicitly have @samp{var-} prefixed to their names.  The
11501 @samp{#} character in variable names used in algebraic formulas
11502 corresponds to a dash @samp{-} in the Lisp variable name.  If the name
11503 contains any dashes, the prefix @samp{var-} is @emph{not} automatically
11504 added.  Thus the two formulas @samp{foo + 1} and @samp{var#foo + 1} both
11505 refer to the same variable.)
11507 In a command that takes a variable name, you can either type the full
11508 name of a variable, or type a single digit to use one of the special
11509 convenience variables @code{q0} through @code{q9}.  For example,
11510 @kbd{3 s s 2} stores the number 3 in variable @code{q2}, and
11511 @w{@kbd{3 s s foo @key{RET}}} stores that number in variable
11512 @code{foo}.
11514 To push a variable itself (as opposed to the variable's value) on the
11515 stack, enter its name as an algebraic expression using the apostrophe
11516 (@key{'}) key.
11518 @kindex =
11519 @pindex calc-evaluate
11520 @cindex Evaluation of variables in a formula
11521 @cindex Variables, evaluation
11522 @cindex Formulas, evaluation
11523 The @kbd{=} (@code{calc-evaluate}) key ``evaluates'' a formula by
11524 replacing all variables in the formula which have been given values by a
11525 @code{calc-store} or @code{calc-let} command by their stored values.
11526 Other variables are left alone.  Thus a variable that has not been
11527 stored acts like an abstract variable in algebra; a variable that has
11528 been stored acts more like a register in a traditional calculator.
11529 With a positive numeric prefix argument, @kbd{=} evaluates the top
11530 @var{n} stack entries; with a negative argument, @kbd{=} evaluates
11531 the @var{n}th stack entry.
11533 @cindex @code{e} variable
11534 @cindex @code{pi} variable
11535 @cindex @code{i} variable
11536 @cindex @code{phi} variable
11537 @cindex @code{gamma} variable
11538 @vindex e
11539 @vindex pi
11540 @vindex i
11541 @vindex phi
11542 @vindex gamma
11543 A few variables are called @dfn{special constants}.  Their names are
11544 @samp{e}, @samp{pi}, @samp{i}, @samp{phi}, and @samp{gamma}.
11545 (@xref{Scientific Functions}.)  When they are evaluated with @kbd{=},
11546 their values are calculated if necessary according to the current precision
11547 or complex polar mode.  If you wish to use these symbols for other purposes,
11548 simply undefine or redefine them using @code{calc-store}.
11550 The variables @samp{inf}, @samp{uinf}, and @samp{nan} stand for
11551 infinite or indeterminate values.  It's best not to use them as
11552 regular variables, since Calc uses special algebraic rules when
11553 it manipulates them.  Calc displays a warning message if you store
11554 a value into any of these special variables.
11556 @xref{Store and Recall}, for a discussion of commands dealing with variables.
11558 @node Formulas,  , Variables, Data Types
11559 @section Formulas
11561 @noindent
11562 @cindex Formulas
11563 @cindex Expressions
11564 @cindex Operators in formulas
11565 @cindex Precedence of operators
11566 When you press the apostrophe key you may enter any expression or formula
11567 in algebraic form.  (Calc uses the terms ``expression'' and ``formula''
11568 interchangeably.)  An expression is built up of numbers, variable names,
11569 and function calls, combined with various arithmetic operators.
11570 Parentheses may
11571 be used to indicate grouping.  Spaces are ignored within formulas, except
11572 that spaces are not permitted within variable names or numbers.
11573 Arithmetic operators, in order from highest to lowest precedence, and
11574 with their equivalent function names, are:
11576 @samp{_} [@code{subscr}] (subscripts);
11578 postfix @samp{%} [@code{percent}] (as in @samp{25% = 0.25});
11580 prefix @samp{!} [@code{lnot}] (logical ``not,'' as in @samp{!x});
11582 @samp{+/-} [@code{sdev}] (the standard deviation symbol) and
11583 @samp{mod} [@code{makemod}] (the symbol for modulo forms);
11585 postfix @samp{!} [@code{fact}] (factorial, as in @samp{n!})
11586 and postfix @samp{!!} [@code{dfact}] (double factorial);
11588 @samp{^} [@code{pow}] (raised-to-the-power-of);
11590 prefix @samp{+} and @samp{-} [@code{neg}] (as in @samp{-x});
11592 @samp{*} [@code{mul}];
11594 @samp{/} [@code{div}], @samp{%} [@code{mod}] (modulo), and
11595 @samp{\} [@code{idiv}] (integer division);
11597 infix @samp{+} [@code{add}] and @samp{-} [@code{sub}] (as in @samp{x-y});
11599 @samp{|} [@code{vconcat}] (vector concatenation);
11601 relations @samp{=} [@code{eq}], @samp{!=} [@code{neq}], @samp{<} [@code{lt}],
11602 @samp{>} [@code{gt}], @samp{<=} [@code{leq}], and @samp{>=} [@code{geq}];
11604 @samp{&&} [@code{land}] (logical ``and'');
11606 @samp{||} [@code{lor}] (logical ``or'');
11608 the C-style ``if'' operator @samp{a?b:c} [@code{if}];
11610 @samp{!!!} [@code{pnot}] (rewrite pattern ``not'');
11612 @samp{&&&} [@code{pand}] (rewrite pattern ``and'');
11614 @samp{|||} [@code{por}] (rewrite pattern ``or'');
11616 @samp{:=} [@code{assign}] (for assignments and rewrite rules);
11618 @samp{::} [@code{condition}] (rewrite pattern condition);
11620 @samp{=>} [@code{evalto}].
11622 Note that, unlike in usual computer notation, multiplication binds more
11623 strongly than division:  @samp{a*b/c*d} is equivalent to
11624 @texline @math{a b \over c d}.
11625 @infoline @expr{(a*b)/(c*d)}.
11627 @cindex Multiplication, implicit
11628 @cindex Implicit multiplication
11629 The multiplication sign @samp{*} may be omitted in many cases.  In particular,
11630 if the righthand side is a number, variable name, or parenthesized
11631 expression, the @samp{*} may be omitted.  Implicit multiplication has the
11632 same precedence as the explicit @samp{*} operator.  The one exception to
11633 the rule is that a variable name followed by a parenthesized expression,
11634 as in @samp{f(x)},
11635 is interpreted as a function call, not an implicit @samp{*}.  In many
11636 cases you must use a space if you omit the @samp{*}:  @samp{2a} is the
11637 same as @samp{2*a}, and @samp{a b} is the same as @samp{a*b}, but @samp{ab}
11638 is a variable called @code{ab}, @emph{not} the product of @samp{a} and
11639 @samp{b}!  Also note that @samp{f (x)} is still a function call.
11641 @cindex Implicit comma in vectors
11642 The rules are slightly different for vectors written with square brackets.
11643 In vectors, the space character is interpreted (like the comma) as a
11644 separator of elements of the vector.  Thus @w{@samp{[ 2a b+c d ]}} is
11645 equivalent to @samp{[2*a, b+c, d]}, whereas @samp{2a b+c d} is equivalent
11646 to @samp{2*a*b + c*d}.
11647 Note that spaces around the brackets, and around explicit commas, are
11648 ignored.  To force spaces to be interpreted as multiplication you can
11649 enclose a formula in parentheses as in @samp{[(a b) 2(c d)]}, which is
11650 interpreted as @samp{[a*b, 2*c*d]}.  An implicit comma is also inserted
11651 between @samp{][}, as in the matrix @samp{[[1 2][3 4]]}.
11653 Vectors that contain commas (not embedded within nested parentheses or
11654 brackets) do not treat spaces specially:  @samp{[a b, 2 c d]} is a vector
11655 of two elements.  Also, if it would be an error to treat spaces as
11656 separators, but not otherwise, then Calc will ignore spaces:
11657 @w{@samp{[a - b]}} is a vector of one element, but @w{@samp{[a -b]}} is
11658 a vector of two elements.  Finally, vectors entered with curly braces
11659 instead of square brackets do not give spaces any special treatment.
11660 When Calc displays a vector that does not contain any commas, it will
11661 insert parentheses if necessary to make the meaning clear:
11662 @w{@samp{[(a b)]}}.
11664 The expression @samp{5%-2} is ambiguous; is this five-percent minus two,
11665 or five modulo minus-two?  Calc always interprets the leftmost symbol as
11666 an infix operator preferentially (modulo, in this case), so you would
11667 need to write @samp{(5%)-2} to get the former interpretation.
11669 @cindex Function call notation
11670 A function call is, e.g., @samp{sin(1+x)}.  (The Calc algebraic function
11671 @code{foo} corresponds to the Emacs Lisp function @code{calcFunc-foo},
11672 but unless you access the function from within Emacs Lisp, you don't
11673 need to worry about it.)  Most mathematical Calculator commands like
11674 @code{calc-sin} have function equivalents like @code{sin}.
11675 If no Lisp function is defined for a function called by a formula, the
11676 call is left as it is during algebraic manipulation: @samp{f(x+y)} is
11677 left alone.  Beware that many innocent-looking short names like @code{in}
11678 and @code{re} have predefined meanings which could surprise you; however,
11679 single letters or single letters followed by digits are always safe to
11680 use for your own function names.  @xref{Function Index}.
11682 In the documentation for particular commands, the notation @kbd{H S}
11683 (@code{calc-sinh}) [@code{sinh}] means that the key sequence @kbd{H S}, the
11684 command @kbd{M-x calc-sinh}, and the algebraic function @code{sinh(x)} all
11685 represent the same operation.
11687 Commands that interpret (``parse'') text as algebraic formulas include
11688 algebraic entry (@kbd{'}), editing commands like @kbd{`} which parse
11689 the contents of the editing buffer when you finish, the @kbd{C-x * g}
11690 and @w{@kbd{C-x * r}} commands, the @kbd{C-y} command, the X window system
11691 ``paste'' mouse operation, and Embedded mode.  All of these operations
11692 use the same rules for parsing formulas; in particular, language modes
11693 (@pxref{Language Modes}) affect them all in the same way.
11695 When you read a large amount of text into the Calculator (say a vector
11696 which represents a big set of rewrite rules; @pxref{Rewrite Rules}),
11697 you may wish to include comments in the text.  Calc's formula parser
11698 ignores the symbol @samp{%%} and anything following it on a line:
11700 @example
11701 [ a + b,   %% the sum of "a" and "b"
11702   c + d,
11703   %% last line is coming up:
11704   e + f ]
11705 @end example
11707 @noindent
11708 This is parsed exactly the same as @samp{[ a + b, c + d, e + f ]}.
11710 @xref{Syntax Tables}, for a way to create your own operators and other
11711 input notations.  @xref{Compositions}, for a way to create new display
11712 formats.
11714 @xref{Algebra}, for commands for manipulating formulas symbolically.
11716 @node Stack and Trail, Mode Settings, Data Types, Top
11717 @chapter Stack and Trail Commands
11719 @noindent
11720 This chapter describes the Calc commands for manipulating objects on the
11721 stack and in the trail buffer.  (These commands operate on objects of any
11722 type, such as numbers, vectors, formulas, and incomplete objects.)
11724 @menu
11725 * Stack Manipulation::
11726 * Editing Stack Entries::
11727 * Trail Commands::
11728 * Keep Arguments::
11729 @end menu
11731 @node Stack Manipulation, Editing Stack Entries, Stack and Trail, Stack and Trail
11732 @section Stack Manipulation Commands
11734 @noindent
11735 @kindex @key{RET}
11736 @kindex @key{SPC}
11737 @pindex calc-enter
11738 @cindex Duplicating stack entries
11739 To duplicate the top object on the stack, press @key{RET} or @key{SPC}
11740 (two equivalent keys for the @code{calc-enter} command).
11741 Given a positive numeric prefix argument, these commands duplicate
11742 several elements at the top of the stack.
11743 Given a negative argument,
11744 these commands duplicate the specified element of the stack.
11745 Given an argument of zero, they duplicate the entire stack.
11746 For example, with @samp{10 20 30} on the stack,
11747 @key{RET} creates @samp{10 20 30 30},
11748 @kbd{C-u 2 @key{RET}} creates @samp{10 20 30 20 30},
11749 @kbd{C-u - 2 @key{RET}} creates @samp{10 20 30 20}, and
11750 @kbd{C-u 0 @key{RET}} creates @samp{10 20 30 10 20 30}.
11752 @kindex @key{LFD}
11753 @pindex calc-over
11754 The @key{LFD} (@code{calc-over}) command (on a key marked Line-Feed if you
11755 have it, else on @kbd{C-j}) is like @code{calc-enter}
11756 except that the sign of the numeric prefix argument is interpreted
11757 oppositely.  Also, with no prefix argument the default argument is 2.
11758 Thus with @samp{10 20 30} on the stack, @key{LFD} and @kbd{C-u 2 @key{LFD}}
11759 are both equivalent to @kbd{C-u - 2 @key{RET}}, producing
11760 @samp{10 20 30 20}.
11762 @kindex @key{DEL}
11763 @kindex C-d
11764 @pindex calc-pop
11765 @cindex Removing stack entries
11766 @cindex Deleting stack entries
11767 To remove the top element from the stack, press @key{DEL} (@code{calc-pop}).
11768 The @kbd{C-d} key is a synonym for @key{DEL}.
11769 (If the top element is an incomplete object with at least one element, the
11770 last element is removed from it.)  Given a positive numeric prefix argument,
11771 several elements are removed.  Given a negative argument, the specified
11772 element of the stack is deleted.  Given an argument of zero, the entire
11773 stack is emptied.
11774 For example, with @samp{10 20 30} on the stack,
11775 @key{DEL} leaves @samp{10 20},
11776 @kbd{C-u 2 @key{DEL}} leaves @samp{10},
11777 @kbd{C-u - 2 @key{DEL}} leaves @samp{10 30}, and
11778 @kbd{C-u 0 @key{DEL}} leaves an empty stack.
11780 @kindex M-@key{DEL}
11781 @pindex calc-pop-above
11782 The @kbd{M-@key{DEL}} (@code{calc-pop-above}) command is to @key{DEL} what
11783 @key{LFD} is to @key{RET}:  It interprets the sign of the numeric
11784 prefix argument in the opposite way, and the default argument is 2.
11785 Thus @kbd{M-@key{DEL}} by itself removes the second-from-top stack element,
11786 leaving the first, third, fourth, and so on; @kbd{M-3 M-@key{DEL}} deletes
11787 the third stack element.
11789 The above commands do not depend on the location of the cursor.
11790 If the customizable variable @code{calc-context-sensitive-enter} is
11791 non-@code{nil} (@pxref{Customizing Calc}), these commands will become
11792 context sensitive.  For example, instead of duplicating the top of the stack,
11793 @key{RET} will copy the element at the cursor to the top of the
11794 stack.  With a positive numeric prefix, a copy of the element at the
11795 cursor and the appropriate number of preceding elements will be placed
11796 at the top of the stack.  A negative prefix will still duplicate the
11797 specified element of the stack regardless of the cursor  position.
11798 Similarly, @key{DEL} will remove the corresponding elements from the
11799 stack.
11801 @kindex @key{TAB}
11802 @pindex calc-roll-down
11803 To exchange the top two elements of the stack, press @key{TAB}
11804 (@code{calc-roll-down}).  Given a positive numeric prefix argument, the
11805 specified number of elements at the top of the stack are rotated downward.
11806 Given a negative argument, the entire stack is rotated downward the specified
11807 number of times.  Given an argument of zero, the entire stack is reversed
11808 top-for-bottom.
11809 For example, with @samp{10 20 30 40 50} on the stack,
11810 @key{TAB} creates @samp{10 20 30 50 40},
11811 @kbd{C-u 3 @key{TAB}} creates @samp{10 20 50 30 40},
11812 @kbd{C-u - 2 @key{TAB}} creates @samp{40 50 10 20 30}, and
11813 @kbd{C-u 0 @key{TAB}} creates @samp{50 40 30 20 10}.
11815 @kindex M-@key{TAB}
11816 @pindex calc-roll-up
11817 The command @kbd{M-@key{TAB}} (@code{calc-roll-up}) is analogous to @key{TAB}
11818 except that it rotates upward instead of downward.  Also, the default
11819 with no prefix argument is to rotate the top 3 elements.
11820 For example, with @samp{10 20 30 40 50} on the stack,
11821 @kbd{M-@key{TAB}} creates @samp{10 20 40 50 30},
11822 @kbd{C-u 4 M-@key{TAB}} creates @samp{10 30 40 50 20},
11823 @kbd{C-u - 2 M-@key{TAB}} creates @samp{30 40 50 10 20}, and
11824 @kbd{C-u 0 M-@key{TAB}} creates @samp{50 40 30 20 10}.
11826 A good way to view the operation of @key{TAB} and @kbd{M-@key{TAB}} is in
11827 terms of moving a particular element to a new position in the stack.
11828 With a positive argument @var{n}, @key{TAB} moves the top stack
11829 element down to level @var{n}, making room for it by pulling all the
11830 intervening stack elements toward the top.  @kbd{M-@key{TAB}} moves the
11831 element at level @var{n} up to the top.  (Compare with @key{LFD},
11832 which copies instead of moving the element in level @var{n}.)
11834 With a negative argument @mathit{-@var{n}}, @key{TAB} rotates the stack
11835 to move the object in level @var{n} to the deepest place in the
11836 stack, and the object in level @mathit{@var{n}+1} to the top.  @kbd{M-@key{TAB}}
11837 rotates the deepest stack element to be in level @var{n}, also
11838 putting the top stack element in level @mathit{@var{n}+1}.
11840 @xref{Selecting Subformulas}, for a way to apply these commands to
11841 any portion of a vector or formula on the stack.
11843 @kindex C-xC-t
11844 @pindex calc-transpose-lines
11845 @cindex Moving stack entries
11846 The command @kbd{C-x C-t} (@code{calc-transpose-lines}) will transpose
11847 the stack object determined by the point with the stack object at the
11848 next higher level. For example, with @samp{10 20 30 40 50} on the
11849 stack and the point on the line containing @samp{30}, @kbd{C-x C-t}
11850 creates @samp{10 20 40 30 50}.  More generally, @kbd{C-x C-t} acts on
11851 the stack objects determined by the current point (and mark) similar
11852 to how the text-mode command @code{transpose-lines} acts on
11853 lines.  With argument @var{n}, @kbd{C-x C-t} will move the stack object
11854 at the level above the current point and move it past N other objects;
11855 for example, with @samp{10 20 30 40 50} on the stack and the point on
11856 the line containing @samp{30}, @kbd{C-u 2 C-x C-t} creates
11857 @samp{10 40 20 30 50}. With an argument of 0, @kbd{C-x C-t} will switch
11858 the stack objects at the levels determined by the point and the mark.
11860 @node Editing Stack Entries, Trail Commands, Stack Manipulation, Stack and Trail
11861 @section Editing Stack Entries
11863 @noindent
11864 @kindex `
11865 @pindex calc-edit
11866 @pindex calc-edit-finish
11867 @cindex Editing the stack with Emacs
11868 The @kbd{`} (@code{calc-edit}) command creates a temporary buffer
11869 (@file{*Calc Edit*}) for editing the top-of-stack value using regular
11870 Emacs commands.  Note that @kbd{`} is a grave accent, not an apostrophe.
11871 With a numeric prefix argument, it edits the specified number of stack
11872 entries at once.  (An argument of zero edits the entire stack; a
11873 negative argument edits one specific stack entry.)
11875 When you are done editing, press @kbd{C-c C-c} to finish and return
11876 to Calc.  The @key{RET} and @key{LFD} keys also work to finish most
11877 sorts of editing, though in some cases Calc leaves @key{RET} with its
11878 usual meaning (``insert a newline'') if it's a situation where you
11879 might want to insert new lines into the editing buffer.
11881 When you finish editing, the Calculator parses the lines of text in
11882 the @file{*Calc Edit*} buffer as numbers or formulas, replaces the
11883 original stack elements in the original buffer with these new values,
11884 then kills the @file{*Calc Edit*} buffer.  The original Calculator buffer
11885 continues to exist during editing, but for best results you should be
11886 careful not to change it until you have finished the edit.  You can
11887 also cancel the edit by killing the buffer with @kbd{C-x k}.
11889 The formula is normally reevaluated as it is put onto the stack.
11890 For example, editing @samp{a + 2} to @samp{3 + 2} and pressing
11891 @kbd{C-c C-c} will push 5 on the stack.  If you use @key{LFD} to
11892 finish, Calc will put the result on the stack without evaluating it.
11894 If you give a prefix argument to @kbd{C-c C-c},
11895 Calc will not kill the @file{*Calc Edit*} buffer.  You can switch
11896 back to that buffer and continue editing if you wish.  However, you
11897 should understand that if you initiated the edit with @kbd{`}, the
11898 @kbd{C-c C-c} operation will be programmed to replace the top of the
11899 stack with the new edited value, and it will do this even if you have
11900 rearranged the stack in the meanwhile.  This is not so much of a problem
11901 with other editing commands, though, such as @kbd{s e}
11902 (@code{calc-edit-variable}; @pxref{Operations on Variables}).
11904 If the @code{calc-edit} command involves more than one stack entry,
11905 each line of the @file{*Calc Edit*} buffer is interpreted as a
11906 separate formula.  Otherwise, the entire buffer is interpreted as
11907 one formula, with line breaks ignored.  (You can use @kbd{C-o} or
11908 @kbd{C-q C-j} to insert a newline in the buffer without pressing @key{RET}.)
11910 The @kbd{`} key also works during numeric or algebraic entry.  The
11911 text entered so far is moved to the @file{*Calc Edit*} buffer for
11912 more extensive editing than is convenient in the minibuffer.
11914 @node Trail Commands, Keep Arguments, Editing Stack Entries, Stack and Trail
11915 @section Trail Commands
11917 @noindent
11918 @cindex Trail buffer
11919 The commands for manipulating the Calc Trail buffer are two-key sequences
11920 beginning with the @kbd{t} prefix.
11922 @kindex t d
11923 @pindex calc-trail-display
11924 The @kbd{t d} (@code{calc-trail-display}) command turns display of the
11925 trail on and off.  Normally the trail display is toggled on if it was off,
11926 off if it was on.  With a numeric prefix of zero, this command always
11927 turns the trail off; with a prefix of one, it always turns the trail on.
11928 The other trail-manipulation commands described here automatically turn
11929 the trail on.  Note that when the trail is off values are still recorded
11930 there; they are simply not displayed.  To set Emacs to turn the trail
11931 off by default, type @kbd{t d} and then save the mode settings with
11932 @kbd{m m} (@code{calc-save-modes}).
11934 @kindex t i
11935 @pindex calc-trail-in
11936 @kindex t o
11937 @pindex calc-trail-out
11938 The @kbd{t i} (@code{calc-trail-in}) and @kbd{t o}
11939 (@code{calc-trail-out}) commands switch the cursor into and out of the
11940 Calc Trail window.  In practice they are rarely used, since the commands
11941 shown below are a more convenient way to move around in the
11942 trail, and they work ``by remote control'' when the cursor is still
11943 in the Calculator window.
11945 @cindex Trail pointer
11946 There is a @dfn{trail pointer} which selects some entry of the trail at
11947 any given time.  The trail pointer looks like a @samp{>} symbol right
11948 before the selected number.  The following commands operate on the
11949 trail pointer in various ways.
11951 @kindex t y
11952 @pindex calc-trail-yank
11953 @cindex Retrieving previous results
11954 The @kbd{t y} (@code{calc-trail-yank}) command reads the selected value in
11955 the trail and pushes it onto the Calculator stack.  It allows you to
11956 re-use any previously computed value without retyping.  With a numeric
11957 prefix argument @var{n}, it yanks the value @var{n} lines above the current
11958 trail pointer.
11960 @kindex t <
11961 @pindex calc-trail-scroll-left
11962 @kindex t >
11963 @pindex calc-trail-scroll-right
11964 The @kbd{t <} (@code{calc-trail-scroll-left}) and @kbd{t >}
11965 (@code{calc-trail-scroll-right}) commands horizontally scroll the trail
11966 window left or right by one half of its width.
11968 @kindex t n
11969 @pindex calc-trail-next
11970 @kindex t p
11971 @pindex calc-trail-previous
11972 @kindex t f
11973 @pindex calc-trail-forward
11974 @kindex t b
11975 @pindex calc-trail-backward
11976 The @kbd{t n} (@code{calc-trail-next}) and @kbd{t p}
11977 (@code{calc-trail-previous)} commands move the trail pointer down or up
11978 one line.  The @kbd{t f} (@code{calc-trail-forward}) and @kbd{t b}
11979 (@code{calc-trail-backward}) commands move the trail pointer down or up
11980 one screenful at a time.  All of these commands accept numeric prefix
11981 arguments to move several lines or screenfuls at a time.
11983 @kindex t [
11984 @pindex calc-trail-first
11985 @kindex t ]
11986 @pindex calc-trail-last
11987 @kindex t h
11988 @pindex calc-trail-here
11989 The @kbd{t [} (@code{calc-trail-first}) and @kbd{t ]}
11990 (@code{calc-trail-last}) commands move the trail pointer to the first or
11991 last line of the trail.  The @kbd{t h} (@code{calc-trail-here}) command
11992 moves the trail pointer to the cursor position; unlike the other trail
11993 commands, @kbd{t h} works only when Calc Trail is the selected window.
11995 @kindex t s
11996 @pindex calc-trail-isearch-forward
11997 @kindex t r
11998 @pindex calc-trail-isearch-backward
11999 @ifnottex
12000 The @kbd{t s} (@code{calc-trail-isearch-forward}) and @kbd{t r}
12001 (@code{calc-trail-isearch-backward}) commands perform an incremental
12002 search forward or backward through the trail.  You can press @key{RET}
12003 to terminate the search; the trail pointer moves to the current line.
12004 If you cancel the search with @kbd{C-g}, the trail pointer stays where
12005 it was when the search began.
12006 @end ifnottex
12007 @tex
12008 The @kbd{t s} (@code{calc-trail-isearch-forward}) and @kbd{t r}
12009 (@code{calc-trail-isearch-backward}) com\-mands perform an incremental
12010 search forward or backward through the trail.  You can press @key{RET}
12011 to terminate the search; the trail pointer moves to the current line.
12012 If you cancel the search with @kbd{C-g}, the trail pointer stays where
12013 it was when the search began.
12014 @end tex
12016 @kindex t m
12017 @pindex calc-trail-marker
12018 The @kbd{t m} (@code{calc-trail-marker}) command allows you to enter a
12019 line of text of your own choosing into the trail.  The text is inserted
12020 after the line containing the trail pointer; this usually means it is
12021 added to the end of the trail.  Trail markers are useful mainly as the
12022 targets for later incremental searches in the trail.
12024 @kindex t k
12025 @pindex calc-trail-kill
12026 The @kbd{t k} (@code{calc-trail-kill}) command removes the selected line
12027 from the trail.  The line is saved in the Emacs kill ring suitable for
12028 yanking into another buffer, but it is not easy to yank the text back
12029 into the trail buffer.  With a numeric prefix argument, this command
12030 kills the @var{n} lines below or above the selected one.
12032 The @kbd{t .} (@code{calc-full-trail-vectors}) command is described
12033 elsewhere; @pxref{Vector and Matrix Formats}.
12035 @node Keep Arguments,  , Trail Commands, Stack and Trail
12036 @section Keep Arguments
12038 @noindent
12039 @kindex K
12040 @pindex calc-keep-args
12041 The @kbd{K} (@code{calc-keep-args}) command acts like a prefix for
12042 the following command.  It prevents that command from removing its
12043 arguments from the stack.  For example, after @kbd{2 @key{RET} 3 +},
12044 the stack contains the sole number 5, but after @kbd{2 @key{RET} 3 K +},
12045 the stack contains the arguments and the result: @samp{2 3 5}.
12047 With the exception of keyboard macros, this works for all commands that
12048 take arguments off the stack. (To avoid potentially unpleasant behavior,
12049 a @kbd{K} prefix before a keyboard macro will be ignored.  A @kbd{K}
12050 prefix called @emph{within} the keyboard macro will still take effect.)
12051 As another example, @kbd{K a s} simplifies a formula, pushing the
12052 simplified version of the formula onto the stack after the original
12053 formula (rather than replacing the original formula).  Note that you
12054 could get the same effect by typing @kbd{@key{RET} a s}, copying the
12055 formula and then simplifying the copy. One difference is that for a very
12056 large formula the time taken to format the intermediate copy in
12057 @kbd{@key{RET} a s} could be noticeable; @kbd{K a s} would avoid this
12058 extra work.
12060 Even stack manipulation commands are affected.  @key{TAB} works by
12061 popping two values and pushing them back in the opposite order,
12062 so @kbd{2 @key{RET} 3 K @key{TAB}} produces @samp{2 3 3 2}.
12064 A few Calc commands provide other ways of doing the same thing.
12065 For example, @kbd{' sin($)} replaces the number on the stack with
12066 its sine using algebraic entry; to push the sine and keep the
12067 original argument you could use either @kbd{' sin($1)} or
12068 @kbd{K ' sin($)}.  @xref{Algebraic Entry}.  Also, the @kbd{s s}
12069 command is effectively the same as @kbd{K s t}.  @xref{Storing Variables}.
12071 If you execute a command and then decide you really wanted to keep
12072 the argument, you can press @kbd{M-@key{RET}} (@code{calc-last-args}).
12073 This command pushes the last arguments that were popped by any command
12074 onto the stack.  Note that the order of things on the stack will be
12075 different than with @kbd{K}:  @kbd{2 @key{RET} 3 + M-@key{RET}} leaves
12076 @samp{5 2 3} on the stack instead of @samp{2 3 5}.  @xref{Undo}.
12078 @node Mode Settings, Arithmetic, Stack and Trail, Top
12079 @chapter Mode Settings
12081 @noindent
12082 This chapter describes commands that set modes in the Calculator.
12083 They do not affect the contents of the stack, although they may change
12084 the @emph{appearance} or @emph{interpretation} of the stack's contents.
12086 @menu
12087 * General Mode Commands::
12088 * Precision::
12089 * Inverse and Hyperbolic::
12090 * Calculation Modes::
12091 * Simplification Modes::
12092 * Declarations::
12093 * Display Modes::
12094 * Language Modes::
12095 * Modes Variable::
12096 * Calc Mode Line::
12097 @end menu
12099 @node General Mode Commands, Precision, Mode Settings, Mode Settings
12100 @section General Mode Commands
12102 @noindent
12103 @kindex m m
12104 @pindex calc-save-modes
12105 @cindex Continuous memory
12106 @cindex Saving mode settings
12107 @cindex Permanent mode settings
12108 @cindex Calc init file, mode settings
12109 You can save all of the current mode settings in your Calc init file
12110 (the file given by the variable @code{calc-settings-file}, typically
12111 @file{~/.emacs.d/calc.el}) with the @kbd{m m} (@code{calc-save-modes})
12112 command.  This will cause Emacs to reestablish these modes each time
12113 it starts up.  The modes saved in the file include everything
12114 controlled by the @kbd{m} and @kbd{d} prefix keys, the current
12115 precision and binary word size, whether or not the trail is displayed,
12116 the current height of the Calc window, and more.  The current
12117 interface (used when you type @kbd{C-x * *}) is also saved.  If there
12118 were already saved mode settings in the file, they are replaced.
12119 Otherwise, the new mode information is appended to the end of the
12120 file.
12122 @kindex m R
12123 @pindex calc-mode-record-mode
12124 The @kbd{m R} (@code{calc-mode-record-mode}) command tells Calc to
12125 record all the mode settings (as if by pressing @kbd{m m}) every
12126 time a mode setting changes.  If the modes are saved this way, then this
12127 ``automatic mode recording'' mode is also saved.
12128 Type @kbd{m R} again to disable this method of recording the mode
12129 settings.  To turn it off permanently, the @kbd{m m} command will also be
12130 necessary.   (If Embedded mode is enabled, other options for recording
12131 the modes are available; @pxref{Mode Settings in Embedded Mode}.)
12133 @kindex m F
12134 @pindex calc-settings-file-name
12135 The @kbd{m F} (@code{calc-settings-file-name}) command allows you to
12136 choose a different file than the current value of @code{calc-settings-file}
12137 for @kbd{m m}, @kbd{Z P}, and similar commands to save permanent information.
12138 You are prompted for a file name.  All Calc modes are then reset to
12139 their default values, then settings from the file you named are loaded
12140 if this file exists, and this file becomes the one that Calc will
12141 use in the future for commands like @kbd{m m}.  The default settings
12142 file name is @file{~/.emacs.d/calc.el}.  You can see the current file name by
12143 giving a blank response to the @kbd{m F} prompt.  See also the
12144 discussion of the @code{calc-settings-file} variable; @pxref{Customizing Calc}.
12146 If the file name you give is your user init file (typically
12147 @file{~/.emacs}), @kbd{m F} will not automatically load the new file.  This
12148 is because your user init file may contain other things you don't want
12149 to reread.  You can give
12150 a numeric prefix argument of 1 to @kbd{m F} to force it to read the
12151 file no matter what.  Conversely, an argument of @mathit{-1} tells
12152 @kbd{m F} @emph{not} to read the new file.  An argument of 2 or @mathit{-2}
12153 tells @kbd{m F} not to reset the modes to their defaults beforehand,
12154 which is useful if you intend your new file to have a variant of the
12155 modes present in the file you were using before.
12157 @kindex m x
12158 @pindex calc-always-load-extensions
12159 The @kbd{m x} (@code{calc-always-load-extensions}) command enables a mode
12160 in which the first use of Calc loads the entire program, including all
12161 extensions modules.  Otherwise, the extensions modules will not be loaded
12162 until the various advanced Calc features are used.  Since this mode only
12163 has effect when Calc is first loaded, @kbd{m x} is usually followed by
12164 @kbd{m m} to make the mode-setting permanent.  To load all of Calc just
12165 once, rather than always in the future, you can press @kbd{C-x * L}.
12167 @kindex m S
12168 @pindex calc-shift-prefix
12169 The @kbd{m S} (@code{calc-shift-prefix}) command enables a mode in which
12170 all of Calc's letter prefix keys may be typed shifted as well as unshifted.
12171 If you are typing, say, @kbd{a S} (@code{calc-solve-for}) quite often
12172 you might find it easier to turn this mode on so that you can type
12173 @kbd{A S} instead.  When this mode is enabled, the commands that used to
12174 be on those single shifted letters (e.g., @kbd{A} (@code{calc-abs})) can
12175 now be invoked by pressing the shifted letter twice: @kbd{A A}.  Note
12176 that the @kbd{v} prefix key always works both shifted and unshifted, and
12177 the @kbd{z} and @kbd{Z} prefix keys are always distinct.  Also, the @kbd{h}
12178 prefix is not affected by this mode.  Press @kbd{m S} again to disable
12179 shifted-prefix mode.
12181 @node Precision, Inverse and Hyperbolic, General Mode Commands, Mode Settings
12182 @section Precision
12184 @noindent
12185 @kindex p
12186 @pindex calc-precision
12187 @cindex Precision of calculations
12188 The @kbd{p} (@code{calc-precision}) command controls the precision to
12189 which floating-point calculations are carried.  The precision must be
12190 at least 3 digits and may be arbitrarily high, within the limits of
12191 memory and time.  This affects only floats:  Integer and rational
12192 calculations are always carried out with as many digits as necessary.
12194 The @kbd{p} key prompts for the current precision.  If you wish you
12195 can instead give the precision as a numeric prefix argument.
12197 Many internal calculations are carried to one or two digits higher
12198 precision than normal.  Results are rounded down afterward to the
12199 current precision.  Unless a special display mode has been selected,
12200 floats are always displayed with their full stored precision, i.e.,
12201 what you see is what you get.  Reducing the current precision does not
12202 round values already on the stack, but those values will be rounded
12203 down before being used in any calculation.  The @kbd{c 0} through
12204 @kbd{c 9} commands (@pxref{Conversions}) can be used to round an
12205 existing value to a new precision.
12207 @cindex Accuracy of calculations
12208 It is important to distinguish the concepts of @dfn{precision} and
12209 @dfn{accuracy}.  In the normal usage of these words, the number
12210 123.4567 has a precision of 7 digits but an accuracy of 4 digits.
12211 The precision is the total number of digits not counting leading
12212 or trailing zeros (regardless of the position of the decimal point).
12213 The accuracy is simply the number of digits after the decimal point
12214 (again not counting trailing zeros).  In Calc you control the precision,
12215 not the accuracy of computations.  If you were to set the accuracy
12216 instead, then calculations like @samp{exp(100)} would generate many
12217 more digits than you would typically need, while @samp{exp(-100)} would
12218 probably round to zero!  In Calc, both these computations give you
12219 exactly 12 (or the requested number of) significant digits.
12221 The only Calc features that deal with accuracy instead of precision
12222 are fixed-point display mode for floats (@kbd{d f}; @pxref{Float Formats}),
12223 and the rounding functions like @code{floor} and @code{round}
12224 (@pxref{Integer Truncation}).  Also, @kbd{c 0} through @kbd{c 9}
12225 deal with both precision and accuracy depending on the magnitudes
12226 of the numbers involved.
12228 If you need to work with a particular fixed accuracy (say, dollars and
12229 cents with two digits after the decimal point), one solution is to work
12230 with integers and an ``implied'' decimal point.  For example, $8.99
12231 divided by 6 would be entered @kbd{899 @key{RET} 6 /}, yielding 149.833
12232 (actually $1.49833 with our implied decimal point); pressing @kbd{R}
12233 would round this to 150 cents, i.e., $1.50.
12235 @xref{Floats}, for still more on floating-point precision and related
12236 issues.
12238 @node Inverse and Hyperbolic, Calculation Modes, Precision, Mode Settings
12239 @section Inverse and Hyperbolic Flags
12241 @noindent
12242 @kindex I
12243 @pindex calc-inverse
12244 There is no single-key equivalent to the @code{calc-arcsin} function.
12245 Instead, you must first press @kbd{I} (@code{calc-inverse}) to set
12246 the @dfn{Inverse Flag}, then press @kbd{S} (@code{calc-sin}).
12247 The @kbd{I} key actually toggles the Inverse Flag.  When this flag
12248 is set, the word @samp{Inv} appears in the mode line.
12250 @kindex H
12251 @pindex calc-hyperbolic
12252 Likewise, the @kbd{H} key (@code{calc-hyperbolic}) sets or clears the
12253 Hyperbolic Flag, which transforms @code{calc-sin} into @code{calc-sinh}.
12254 If both of these flags are set at once, the effect will be
12255 @code{calc-arcsinh}.  (The Hyperbolic flag is also used by some
12256 non-trigonometric commands; for example @kbd{H L} computes a base-10,
12257 instead of base-@mathit{e}, logarithm.)
12259 Command names like @code{calc-arcsin} are provided for completeness, and
12260 may be executed with @kbd{x} or @kbd{M-x}.  Their effect is simply to
12261 toggle the Inverse and/or Hyperbolic flags and then execute the
12262 corresponding base command (@code{calc-sin} in this case).
12264 @kindex O
12265 @pindex calc-option
12266 The @kbd{O} key (@code{calc-option}) sets another flag, the
12267 @dfn{Option Flag}, which also can alter the subsequent Calc command in
12268 various ways.
12270 The Inverse, Hyperbolic and Option flags apply only to the next
12271 Calculator command, after which they are automatically cleared.  (They
12272 are also cleared if the next keystroke is not a Calc command.)  Digits
12273 you type after @kbd{I}, @kbd{H} or @kbd{O} (or @kbd{K}) are treated as
12274 prefix arguments for the next command, not as numeric entries.  The
12275 same is true of @kbd{C-u}, but not of the minus sign (@kbd{K -} means
12276 to subtract and keep arguments).
12278 Another Calc prefix flag, @kbd{K} (keep-arguments), is discussed
12279 elsewhere.  @xref{Keep Arguments}.
12281 @node Calculation Modes, Simplification Modes, Inverse and Hyperbolic, Mode Settings
12282 @section Calculation Modes
12284 @noindent
12285 The commands in this section are two-key sequences beginning with
12286 the @kbd{m} prefix.  (That's the letter @kbd{m}, not the @key{META} key.)
12287 The @samp{m a} (@code{calc-algebraic-mode}) command is described elsewhere
12288 (@pxref{Algebraic Entry}).
12290 @menu
12291 * Angular Modes::
12292 * Polar Mode::
12293 * Fraction Mode::
12294 * Infinite Mode::
12295 * Symbolic Mode::
12296 * Matrix Mode::
12297 * Automatic Recomputation::
12298 * Working Message::
12299 @end menu
12301 @node Angular Modes, Polar Mode, Calculation Modes, Calculation Modes
12302 @subsection Angular Modes
12304 @noindent
12305 @cindex Angular mode
12306 The Calculator supports three notations for angles: radians, degrees,
12307 and degrees-minutes-seconds.  When a number is presented to a function
12308 like @code{sin} that requires an angle, the current angular mode is
12309 used to interpret the number as either radians or degrees.  If an HMS
12310 form is presented to @code{sin}, it is always interpreted as
12311 degrees-minutes-seconds.
12313 Functions that compute angles produce a number in radians, a number in
12314 degrees, or an HMS form depending on the current angular mode.  If the
12315 result is a complex number and the current mode is HMS, the number is
12316 instead expressed in degrees.  (Complex-number calculations would
12317 normally be done in Radians mode, though.  Complex numbers are converted
12318 to degrees by calculating the complex result in radians and then
12319 multiplying by 180 over @cpi{}.)
12321 @kindex m r
12322 @pindex calc-radians-mode
12323 @kindex m d
12324 @pindex calc-degrees-mode
12325 @kindex m h
12326 @pindex calc-hms-mode
12327 The @kbd{m r} (@code{calc-radians-mode}), @kbd{m d} (@code{calc-degrees-mode}),
12328 and @kbd{m h} (@code{calc-hms-mode}) commands control the angular mode.
12329 The current angular mode is displayed on the Emacs mode line.
12330 The default angular mode is Degrees.
12332 @node Polar Mode, Fraction Mode, Angular Modes, Calculation Modes
12333 @subsection Polar Mode
12335 @noindent
12336 @cindex Polar mode
12337 The Calculator normally ``prefers'' rectangular complex numbers in the
12338 sense that rectangular form is used when the proper form can not be
12339 decided from the input.  This might happen by multiplying a rectangular
12340 number by a polar one, by taking the square root of a negative real
12341 number, or by entering @kbd{( 2 @key{SPC} 3 )}.
12343 @kindex m p
12344 @pindex calc-polar-mode
12345 The @kbd{m p} (@code{calc-polar-mode}) command toggles complex-number
12346 preference between rectangular and polar forms.  In Polar mode, all
12347 of the above example situations would produce polar complex numbers.
12349 @node Fraction Mode, Infinite Mode, Polar Mode, Calculation Modes
12350 @subsection Fraction Mode
12352 @noindent
12353 @cindex Fraction mode
12354 @cindex Division of integers
12355 Division of two integers normally yields a floating-point number if the
12356 result cannot be expressed as an integer.  In some cases you would
12357 rather get an exact fractional answer.  One way to accomplish this is
12358 to use the @kbd{:} (@code{calc-fdiv}) [@code{fdiv}] command, which
12359 divides the two integers on the top of the stack to produce a fraction:
12360 @kbd{6 @key{RET} 4 :} produces @expr{3:2} even though
12361 @kbd{6 @key{RET} 4 /} produces @expr{1.5}.
12363 @kindex m f
12364 @pindex calc-frac-mode
12365 To set the Calculator to produce fractional results for normal integer
12366 divisions, use the @kbd{m f} (@code{calc-frac-mode}) command.
12367 For example, @expr{8/4} produces @expr{2} in either mode,
12368 but @expr{6/4} produces @expr{3:2} in Fraction mode, @expr{1.5} in
12369 Float mode.
12371 At any time you can use @kbd{c f} (@code{calc-float}) to convert a
12372 fraction to a float, or @kbd{c F} (@code{calc-fraction}) to convert a
12373 float to a fraction.  @xref{Conversions}.
12375 @node Infinite Mode, Symbolic Mode, Fraction Mode, Calculation Modes
12376 @subsection Infinite Mode
12378 @noindent
12379 @cindex Infinite mode
12380 The Calculator normally treats results like @expr{1 / 0} as errors;
12381 formulas like this are left in unsimplified form.  But Calc can be
12382 put into a mode where such calculations instead produce ``infinite''
12383 results.
12385 @kindex m i
12386 @pindex calc-infinite-mode
12387 The @kbd{m i} (@code{calc-infinite-mode}) command turns this mode
12388 on and off.  When the mode is off, infinities do not arise except
12389 in calculations that already had infinities as inputs.  (One exception
12390 is that infinite open intervals like @samp{[0 .. inf)} can be
12391 generated; however, intervals closed at infinity (@samp{[0 .. inf]})
12392 will not be generated when Infinite mode is off.)
12394 With Infinite mode turned on, @samp{1 / 0} will generate @code{uinf},
12395 an undirected infinity.  @xref{Infinities}, for a discussion of the
12396 difference between @code{inf} and @code{uinf}.  Also, @expr{0 / 0}
12397 evaluates to @code{nan}, the ``indeterminate'' symbol.  Various other
12398 functions can also return infinities in this mode; for example,
12399 @samp{ln(0) = -inf}, and @samp{gamma(-7) = uinf}.  Once again,
12400 note that @samp{exp(inf) = inf} regardless of Infinite mode because
12401 this calculation has infinity as an input.
12403 @cindex Positive Infinite mode
12404 The @kbd{m i} command with a numeric prefix argument of zero,
12405 i.e., @kbd{C-u 0 m i}, turns on a Positive Infinite mode in
12406 which zero is treated as positive instead of being directionless.
12407 Thus, @samp{1 / 0 = inf} and @samp{-1 / 0 = -inf} in this mode.
12408 Note that zero never actually has a sign in Calc; there are no
12409 separate representations for @mathit{+0} and @mathit{-0}.  Positive
12410 Infinite mode merely changes the interpretation given to the
12411 single symbol, @samp{0}.  One consequence of this is that, while
12412 you might expect @samp{1 / -0 = -inf}, actually @samp{1 / -0}
12413 is equivalent to @samp{1 / 0}, which is equal to positive @code{inf}.
12415 @node Symbolic Mode, Matrix Mode, Infinite Mode, Calculation Modes
12416 @subsection Symbolic Mode
12418 @noindent
12419 @cindex Symbolic mode
12420 @cindex Inexact results
12421 Calculations are normally performed numerically wherever possible.
12422 For example, the @code{calc-sqrt} command, or @code{sqrt} function in an
12423 algebraic expression, produces a numeric answer if the argument is a
12424 number or a symbolic expression if the argument is an expression:
12425 @kbd{2 Q} pushes 1.4142 but @kbd{@key{'} x+1 @key{RET} Q} pushes @samp{sqrt(x+1)}.
12427 @kindex m s
12428 @pindex calc-symbolic-mode
12429 In @dfn{Symbolic mode}, controlled by the @kbd{m s} (@code{calc-symbolic-mode})
12430 command, functions which would produce inexact, irrational results are
12431 left in symbolic form.  Thus @kbd{16 Q} pushes 4, but @kbd{2 Q} pushes
12432 @samp{sqrt(2)}.
12434 @kindex N
12435 @pindex calc-eval-num
12436 The shift-@kbd{N} (@code{calc-eval-num}) command evaluates numerically
12437 the expression at the top of the stack, by temporarily disabling
12438 @code{calc-symbolic-mode} and executing @kbd{=} (@code{calc-evaluate}).
12439 Given a numeric prefix argument, it also
12440 sets the floating-point precision to the specified value for the duration
12441 of the command.
12443 To evaluate a formula numerically without expanding the variables it
12444 contains, you can use the key sequence @kbd{m s a v m s} (this uses
12445 @code{calc-alg-evaluate}, which resimplifies but doesn't evaluate
12446 variables.)
12448 @node Matrix Mode, Automatic Recomputation, Symbolic Mode, Calculation Modes
12449 @subsection Matrix and Scalar Modes
12451 @noindent
12452 @cindex Matrix mode
12453 @cindex Scalar mode
12454 Calc sometimes makes assumptions during algebraic manipulation that
12455 are awkward or incorrect when vectors and matrices are involved.
12456 Calc has two modes, @dfn{Matrix mode} and @dfn{Scalar mode}, which
12457 modify its behavior around vectors in useful ways.
12459 @kindex m v
12460 @pindex calc-matrix-mode
12461 Press @kbd{m v} (@code{calc-matrix-mode}) once to enter Matrix mode.
12462 In this mode, all objects are assumed to be matrices unless provably
12463 otherwise.  One major effect is that Calc will no longer consider
12464 multiplication to be commutative.  (Recall that in matrix arithmetic,
12465 @samp{A*B} is not the same as @samp{B*A}.)  This assumption affects
12466 rewrite rules and algebraic simplification.  Another effect of this
12467 mode is that calculations that would normally produce constants like
12468 0 and 1 (e.g., @expr{a - a} and @expr{a / a}, respectively) will now
12469 produce function calls that represent ``generic'' zero or identity
12470 matrices: @samp{idn(0)}, @samp{idn(1)}.  The @code{idn} function
12471 @samp{idn(@var{a},@var{n})} returns @var{a} times an @var{n}x@var{n}
12472 identity matrix; if @var{n} is omitted, it doesn't know what
12473 dimension to use and so the @code{idn} call remains in symbolic
12474 form.  However, if this generic identity matrix is later combined
12475 with a matrix whose size is known, it will be converted into
12476 a true identity matrix of the appropriate size.  On the other hand,
12477 if it is combined with a scalar (as in @samp{idn(1) + 2}), Calc
12478 will assume it really was a scalar after all and produce, e.g., 3.
12480 Press @kbd{m v} a second time to get Scalar mode.  Here, objects are
12481 assumed @emph{not} to be vectors or matrices unless provably so.
12482 For example, normally adding a variable to a vector, as in
12483 @samp{[x, y, z] + a}, will leave the sum in symbolic form because
12484 as far as Calc knows, @samp{a} could represent either a number or
12485 another 3-vector.  In Scalar mode, @samp{a} is assumed to be a
12486 non-vector, and the addition is evaluated to @samp{[x+a, y+a, z+a]}.
12488 Press @kbd{m v} a third time to return to the normal mode of operation.
12490 If you press @kbd{m v} with a numeric prefix argument @var{n}, you
12491 get a special ``dimensioned'' Matrix mode in which matrices of
12492 unknown size are assumed to be @var{n}x@var{n} square matrices.
12493 Then, the function call @samp{idn(1)} will expand into an actual
12494 matrix rather than representing a ``generic'' matrix.  Simply typing
12495 @kbd{C-u m v} will get you a square Matrix mode, in which matrices of
12496 unknown size are assumed to be square matrices of unspecified size.
12498 @cindex Declaring scalar variables
12499 Of course these modes are approximations to the true state of
12500 affairs, which is probably that some quantities will be matrices
12501 and others will be scalars.  One solution is to ``declare''
12502 certain variables or functions to be scalar-valued.
12503 @xref{Declarations}, to see how to make declarations in Calc.
12505 There is nothing stopping you from declaring a variable to be
12506 scalar and then storing a matrix in it; however, if you do, the
12507 results you get from Calc may not be valid.  Suppose you let Calc
12508 get the result @samp{[x+a, y+a, z+a]} shown above, and then stored
12509 @samp{[1, 2, 3]} in @samp{a}.  The result would not be the same as
12510 for @samp{[x, y, z] + [1, 2, 3]}, but that's because you have broken
12511 your earlier promise to Calc that @samp{a} would be scalar.
12513 Another way to mix scalars and matrices is to use selections
12514 (@pxref{Selecting Subformulas}).  Use Matrix mode when operating on
12515 your formula normally; then, to apply Scalar mode to a certain part
12516 of the formula without affecting the rest just select that part,
12517 change into Scalar mode and press @kbd{=} to resimplify the part
12518 under this mode, then change back to Matrix mode before deselecting.
12520 @node Automatic Recomputation, Working Message, Matrix Mode, Calculation Modes
12521 @subsection Automatic Recomputation
12523 @noindent
12524 The @dfn{evaluates-to} operator, @samp{=>}, has the special
12525 property that any @samp{=>} formulas on the stack are recomputed
12526 whenever variable values or mode settings that might affect them
12527 are changed.  @xref{Evaluates-To Operator}.
12529 @kindex m C
12530 @pindex calc-auto-recompute
12531 The @kbd{m C} (@code{calc-auto-recompute}) command turns this
12532 automatic recomputation on and off.  If you turn it off, Calc will
12533 not update @samp{=>} operators on the stack (nor those in the
12534 attached Embedded mode buffer, if there is one).  They will not
12535 be updated unless you explicitly do so by pressing @kbd{=} or until
12536 you press @kbd{m C} to turn recomputation back on.  (While automatic
12537 recomputation is off, you can think of @kbd{m C m C} as a command
12538 to update all @samp{=>} operators while leaving recomputation off.)
12540 To update @samp{=>} operators in an Embedded buffer while
12541 automatic recomputation is off, use @w{@kbd{C-x * u}}.
12542 @xref{Embedded Mode}.
12544 @node Working Message,  , Automatic Recomputation, Calculation Modes
12545 @subsection Working Messages
12547 @noindent
12548 @cindex Performance
12549 @cindex Working messages
12550 Since the Calculator is written entirely in Emacs Lisp, which is not
12551 designed for heavy numerical work, many operations are quite slow.
12552 The Calculator normally displays the message @samp{Working...} in the
12553 echo area during any command that may be slow.  In addition, iterative
12554 operations such as square roots and trigonometric functions display the
12555 intermediate result at each step.  Both of these types of messages can
12556 be disabled if you find them distracting.
12558 @kindex m w
12559 @pindex calc-working
12560 Type @kbd{m w} (@code{calc-working}) with a numeric prefix of 0 to
12561 disable all ``working'' messages.  Use a numeric prefix of 1 to enable
12562 only the plain @samp{Working...} message.  Use a numeric prefix of 2 to
12563 see intermediate results as well.  With no numeric prefix this displays
12564 the current mode.
12566 While it may seem that the ``working'' messages will slow Calc down
12567 considerably, experiments have shown that their impact is actually
12568 quite small.  But if your terminal is slow you may find that it helps
12569 to turn the messages off.
12571 @node Simplification Modes, Declarations, Calculation Modes, Mode Settings
12572 @section Simplification Modes
12574 @noindent
12575 The current @dfn{simplification mode} controls how numbers and formulas
12576 are ``normalized'' when being taken from or pushed onto the stack.
12577 Some normalizations are unavoidable, such as rounding floating-point
12578 results to the current precision, and reducing fractions to simplest
12579 form.  Others, such as simplifying a formula like @expr{a+a} (or @expr{2+3}),
12580 are done automatically but can be turned off when necessary.
12582 When you press a key like @kbd{+} when @expr{2} and @expr{3} are on the
12583 stack, Calc pops these numbers, normalizes them, creates the formula
12584 @expr{2+3}, normalizes it, and pushes the result.  Of course the standard
12585 rules for normalizing @expr{2+3} will produce the result @expr{5}.
12587 Simplification mode commands consist of the lower-case @kbd{m} prefix key
12588 followed by a shifted letter.
12590 @kindex m O
12591 @pindex calc-no-simplify-mode
12592 The @kbd{m O} (@code{calc-no-simplify-mode}) command turns off all optional
12593 simplifications.  These would leave a formula like @expr{2+3} alone.  In
12594 fact, nothing except simple numbers are ever affected by normalization
12595 in this mode.  Explicit simplification commands, such as @kbd{=} or
12596 @kbd{a s}, can still be given to simplify any formulas.
12597 @xref{Algebraic Definitions}, for a sample use of
12598 No-Simplification mode.
12601 @kindex m N
12602 @pindex calc-num-simplify-mode
12603 The @kbd{m N} (@code{calc-num-simplify-mode}) command turns off simplification
12604 of any formulas except those for which all arguments are constants.  For
12605 example, @expr{1+2} is simplified to @expr{3}, and @expr{a+(2-2)} is
12606 simplified to @expr{a+0} but no further, since one argument of the sum
12607 is not a constant.  Unfortunately, @expr{(a+2)-2} is @emph{not} simplified
12608 because the top-level @samp{-} operator's arguments are not both
12609 constant numbers (one of them is the formula @expr{a+2}).
12610 A constant is a number or other numeric object (such as a constant
12611 error form or modulo form), or a vector all of whose
12612 elements are constant.
12614 @kindex m I
12615 @pindex calc-basic-simplify-mode
12616 The @kbd{m I} (@code{calc-basic-simplify-mode}) command does some basic
12617 simplifications for all formulas.  This includes many easy and
12618 fast algebraic simplifications such as @expr{a+0} to @expr{a}, and
12619 @expr{a + 2 a} to @expr{3 a}, as well as evaluating functions like
12620 @expr{@tfn{deriv}(x^2, x)} to @expr{2 x}.
12622 @kindex m B
12623 @pindex calc-bin-simplify-mode
12624 The @kbd{m B} (@code{calc-bin-simplify-mode}) mode applies the basic
12625 simplifications to a result and then, if the result is an integer,
12626 uses the @kbd{b c} (@code{calc-clip}) command to clip the integer according
12627 to the current binary word size.  @xref{Binary Functions}.  Real numbers
12628 are rounded to the nearest integer and then clipped; other kinds of
12629 results (after the basic simplifications) are left alone.
12631 @kindex m A
12632 @pindex calc-alg-simplify-mode
12633 The @kbd{m A} (@code{calc-alg-simplify-mode}) mode does standard
12634 algebraic simplifications.  @xref{Algebraic Simplifications}.
12636 @kindex m E
12637 @pindex calc-ext-simplify-mode
12638 The @kbd{m E} (@code{calc-ext-simplify-mode}) mode does ``extended'', or
12639 ``unsafe'', algebraic simplification.  @xref{Unsafe Simplifications}.
12641 @kindex m U
12642 @pindex calc-units-simplify-mode
12643 The @kbd{m U} (@code{calc-units-simplify-mode}) mode does units
12644 simplification.  @xref{Simplification of Units}.  These include the
12645 algebraic simplifications, plus variable names which
12646 are identifiable as unit names (like @samp{mm} for ``millimeters'')
12647 are simplified with their unit definitions in mind.
12649 A common technique is to set the simplification mode down to the lowest
12650 amount of simplification you will allow to be applied automatically, then
12651 use manual commands like @kbd{a s} and @kbd{c c} (@code{calc-clean}) to
12652 perform higher types of simplifications on demand.
12653 @node Declarations, Display Modes, Simplification Modes, Mode Settings
12654 @section Declarations
12656 @noindent
12657 A @dfn{declaration} is a statement you make that promises you will
12658 use a certain variable or function in a restricted way.  This may
12659 give Calc the freedom to do things that it couldn't do if it had to
12660 take the fully general situation into account.
12662 @menu
12663 * Declaration Basics::
12664 * Kinds of Declarations::
12665 * Functions for Declarations::
12666 @end menu
12668 @node Declaration Basics, Kinds of Declarations, Declarations, Declarations
12669 @subsection Declaration Basics
12671 @noindent
12672 @kindex s d
12673 @pindex calc-declare-variable
12674 The @kbd{s d} (@code{calc-declare-variable}) command is the easiest
12675 way to make a declaration for a variable.  This command prompts for
12676 the variable name, then prompts for the declaration.  The default
12677 at the declaration prompt is the previous declaration, if any.
12678 You can edit this declaration, or press @kbd{C-k} to erase it and
12679 type a new declaration.  (Or, erase it and press @key{RET} to clear
12680 the declaration, effectively ``undeclaring'' the variable.)
12682 A declaration is in general a vector of @dfn{type symbols} and
12683 @dfn{range} values.  If there is only one type symbol or range value,
12684 you can write it directly rather than enclosing it in a vector.
12685 For example, @kbd{s d foo @key{RET} real @key{RET}} declares @code{foo} to
12686 be a real number, and @kbd{s d bar @key{RET} [int, const, [1..6]] @key{RET}}
12687 declares @code{bar} to be a constant integer between 1 and 6.
12688 (Actually, you can omit the outermost brackets and Calc will
12689 provide them for you: @kbd{s d bar @key{RET} int, const, [1..6] @key{RET}}.)
12691 @cindex @code{Decls} variable
12692 @vindex Decls
12693 Declarations in Calc are kept in a special variable called @code{Decls}.
12694 This variable encodes the set of all outstanding declarations in
12695 the form of a matrix.  Each row has two elements:  A variable or
12696 vector of variables declared by that row, and the declaration
12697 specifier as described above.  You can use the @kbd{s D} command to
12698 edit this variable if you wish to see all the declarations at once.
12699 @xref{Operations on Variables}, for a description of this command
12700 and the @kbd{s p} command that allows you to save your declarations
12701 permanently if you wish.
12703 Items being declared can also be function calls.  The arguments in
12704 the call are ignored; the effect is to say that this function returns
12705 values of the declared type for any valid arguments.  The @kbd{s d}
12706 command declares only variables, so if you wish to make a function
12707 declaration you will have to edit the @code{Decls} matrix yourself.
12709 For example, the declaration matrix
12711 @smallexample
12712 @group
12713 [ [ foo,       real       ]
12714   [ [j, k, n], int        ]
12715   [ f(1,2,3),  [0 .. inf) ] ]
12716 @end group
12717 @end smallexample
12719 @noindent
12720 declares that @code{foo} represents a real number, @code{j}, @code{k}
12721 and @code{n} represent integers, and the function @code{f} always
12722 returns a real number in the interval shown.
12724 @vindex All
12725 If there is a declaration for the variable @code{All}, then that
12726 declaration applies to all variables that are not otherwise declared.
12727 It does not apply to function names.  For example, using the row
12728 @samp{[All, real]} says that all your variables are real unless they
12729 are explicitly declared without @code{real} in some other row.
12730 The @kbd{s d} command declares @code{All} if you give a blank
12731 response to the variable-name prompt.
12733 @node Kinds of Declarations, Functions for Declarations, Declaration Basics, Declarations
12734 @subsection Kinds of Declarations
12736 @noindent
12737 The type-specifier part of a declaration (that is, the second prompt
12738 in the @kbd{s d} command) can be a type symbol, an interval, or a
12739 vector consisting of zero or more type symbols followed by zero or
12740 more intervals or numbers that represent the set of possible values
12741 for the variable.
12743 @smallexample
12744 @group
12745 [ [ a, [1, 2, 3, 4, 5] ]
12746   [ b, [1 .. 5]        ]
12747   [ c, [int, 1 .. 5]   ] ]
12748 @end group
12749 @end smallexample
12751 Here @code{a} is declared to contain one of the five integers shown;
12752 @code{b} is any number in the interval from 1 to 5 (any real number
12753 since we haven't specified), and @code{c} is any integer in that
12754 interval.  Thus the declarations for @code{a} and @code{c} are
12755 nearly equivalent (see below).
12757 The type-specifier can be the empty vector @samp{[]} to say that
12758 nothing is known about a given variable's value.  This is the same
12759 as not declaring the variable at all except that it overrides any
12760 @code{All} declaration which would otherwise apply.
12762 The initial value of @code{Decls} is the empty vector @samp{[]}.
12763 If @code{Decls} has no stored value or if the value stored in it
12764 is not valid, it is ignored and there are no declarations as far
12765 as Calc is concerned.  (The @kbd{s d} command will replace such a
12766 malformed value with a fresh empty matrix, @samp{[]}, before recording
12767 the new declaration.)  Unrecognized type symbols are ignored.
12769 The following type symbols describe what sorts of numbers will be
12770 stored in a variable:
12772 @table @code
12773 @item int
12774 Integers.
12775 @item numint
12776 Numerical integers.  (Integers or integer-valued floats.)
12777 @item frac
12778 Fractions.  (Rational numbers which are not integers.)
12779 @item rat
12780 Rational numbers.  (Either integers or fractions.)
12781 @item float
12782 Floating-point numbers.
12783 @item real
12784 Real numbers.  (Integers, fractions, or floats.  Actually,
12785 intervals and error forms with real components also count as
12786 reals here.)
12787 @item pos
12788 Positive real numbers.  (Strictly greater than zero.)
12789 @item nonneg
12790 Nonnegative real numbers.  (Greater than or equal to zero.)
12791 @item number
12792 Numbers.  (Real or complex.)
12793 @end table
12795 Calc uses this information to determine when certain simplifications
12796 of formulas are safe.  For example, @samp{(x^y)^z} cannot be
12797 simplified to @samp{x^(y z)} in general; for example,
12798 @samp{((-3)^2)^1:2} is 3, but @samp{(-3)^(2*1:2) = (-3)^1} is @mathit{-3}.
12799 However, this simplification @emph{is} safe if @code{z} is known
12800 to be an integer, or if @code{x} is known to be a nonnegative
12801 real number.  If you have given declarations that allow Calc to
12802 deduce either of these facts, Calc will perform this simplification
12803 of the formula.
12805 Calc can apply a certain amount of logic when using declarations.
12806 For example, @samp{(x^y)^(2n+1)} will be simplified if @code{n}
12807 has been declared @code{int}; Calc knows that an integer times an
12808 integer, plus an integer, must always be an integer.  (In fact,
12809 Calc would simplify @samp{(-x)^(2n+1)} to @samp{-(x^(2n+1))} since
12810 it is able to determine that @samp{2n+1} must be an odd integer.)
12812 Similarly, @samp{(abs(x)^y)^z} will be simplified to @samp{abs(x)^(y z)}
12813 because Calc knows that the @code{abs} function always returns a
12814 nonnegative real.  If you had a @code{myabs} function that also had
12815 this property, you could get Calc to recognize it by adding the row
12816 @samp{[myabs(), nonneg]} to the @code{Decls} matrix.
12818 One instance of this simplification is @samp{sqrt(x^2)} (since the
12819 @code{sqrt} function is effectively a one-half power).  Normally
12820 Calc leaves this formula alone.  After the command
12821 @kbd{s d x @key{RET} real @key{RET}}, however, it can simplify the formula to
12822 @samp{abs(x)}.  And after @kbd{s d x @key{RET} nonneg @key{RET}}, Calc can
12823 simplify this formula all the way to @samp{x}.
12825 If there are any intervals or real numbers in the type specifier,
12826 they comprise the set of possible values that the variable or
12827 function being declared can have.  In particular, the type symbol
12828 @code{real} is effectively the same as the range @samp{[-inf .. inf]}
12829 (note that infinity is included in the range of possible values);
12830 @code{pos} is the same as @samp{(0 .. inf]}, and @code{nonneg} is
12831 the same as @samp{[0 .. inf]}.  Saying @samp{[real, [-5 .. 5]]} is
12832 redundant because the fact that the variable is real can be
12833 deduced just from the interval, but @samp{[int, [-5 .. 5]]} and
12834 @samp{[rat, [-5 .. 5]]} are useful combinations.
12836 Note that the vector of intervals or numbers is in the same format
12837 used by Calc's set-manipulation commands.  @xref{Set Operations}.
12839 The type specifier @samp{[1, 2, 3]} is equivalent to
12840 @samp{[numint, 1, 2, 3]}, @emph{not} to @samp{[int, 1, 2, 3]}.
12841 In other words, the range of possible values means only that
12842 the variable's value must be numerically equal to a number in
12843 that range, but not that it must be equal in type as well.
12844 Calc's set operations act the same way; @samp{in(2, [1., 2., 3.])}
12845 and @samp{in(1.5, [1:2, 3:2, 5:2])} both report ``true.''
12847 If you use a conflicting combination of type specifiers, the
12848 results are unpredictable.  An example is @samp{[pos, [0 .. 5]]},
12849 where the interval does not lie in the range described by the
12850 type symbol.
12852 ``Real'' declarations mostly affect simplifications involving powers
12853 like the one described above.  Another case where they are used
12854 is in the @kbd{a P} command which returns a list of all roots of a
12855 polynomial; if the variable has been declared real, only the real
12856 roots (if any) will be included in the list.
12858 ``Integer'' declarations are used for simplifications which are valid
12859 only when certain values are integers (such as @samp{(x^y)^z}
12860 shown above).
12862 Calc's algebraic simplifications also make use of declarations when
12863 simplifying equations and inequalities.  They will cancel @code{x}
12864 from both sides of @samp{a x = b x} only if it is sure @code{x}
12865 is non-zero, say, because it has a @code{pos} declaration.
12866 To declare specifically that @code{x} is real and non-zero,
12867 use @samp{[[-inf .. 0), (0 .. inf]]}.  (There is no way in the
12868 current notation to say that @code{x} is nonzero but not necessarily
12869 real.)  The @kbd{a e} command does ``unsafe'' simplifications,
12870 including canceling @samp{x} from the equation when @samp{x} is
12871 not known to be nonzero.
12873 Another set of type symbols distinguish between scalars and vectors.
12875 @table @code
12876 @item scalar
12877 The value is not a vector.
12878 @item vector
12879 The value is a vector.
12880 @item matrix
12881 The value is a matrix (a rectangular vector of vectors).
12882 @item sqmatrix
12883 The value is a square matrix.
12884 @end table
12886 These type symbols can be combined with the other type symbols
12887 described above; @samp{[int, matrix]} describes an object which
12888 is a matrix of integers.
12890 Scalar/vector declarations are used to determine whether certain
12891 algebraic operations are safe.  For example, @samp{[a, b, c] + x}
12892 is normally not simplified to @samp{[a + x, b + x, c + x]}, but
12893 it will be if @code{x} has been declared @code{scalar}.  On the
12894 other hand, multiplication is usually assumed to be commutative,
12895 but the terms in @samp{x y} will never be exchanged if both @code{x}
12896 and @code{y} are known to be vectors or matrices.  (Calc currently
12897 never distinguishes between @code{vector} and @code{matrix}
12898 declarations.)
12900 @xref{Matrix Mode}, for a discussion of Matrix mode and
12901 Scalar mode, which are similar to declaring @samp{[All, matrix]}
12902 or @samp{[All, scalar]} but much more convenient.
12904 One more type symbol that is recognized is used with the @kbd{H a d}
12905 command for taking total derivatives of a formula.  @xref{Calculus}.
12907 @table @code
12908 @item const
12909 The value is a constant with respect to other variables.
12910 @end table
12912 Calc does not check the declarations for a variable when you store
12913 a value in it.  However, storing @mathit{-3.5} in a variable that has
12914 been declared @code{pos}, @code{int}, or @code{matrix} may have
12915 unexpected effects; Calc may evaluate @samp{sqrt(x^2)} to @expr{3.5}
12916 if it substitutes the value first, or to @expr{-3.5} if @code{x}
12917 was declared @code{pos} and the formula @samp{sqrt(x^2)} is
12918 simplified to @samp{x} before the value is substituted.  Before
12919 using a variable for a new purpose, it is best to use @kbd{s d}
12920 or @kbd{s D} to check to make sure you don't still have an old
12921 declaration for the variable that will conflict with its new meaning.
12923 @node Functions for Declarations,  , Kinds of Declarations, Declarations
12924 @subsection Functions for Declarations
12926 @noindent
12927 Calc has a set of functions for accessing the current declarations
12928 in a convenient manner.  These functions return 1 if the argument
12929 can be shown to have the specified property, or 0 if the argument
12930 can be shown @emph{not} to have that property; otherwise they are
12931 left unevaluated.  These functions are suitable for use with rewrite
12932 rules (@pxref{Conditional Rewrite Rules}) or programming constructs
12933 (@pxref{Conditionals in Macros}).  They can be entered only using
12934 algebraic notation.  @xref{Logical Operations}, for functions
12935 that perform other tests not related to declarations.
12937 For example, @samp{dint(17)} returns 1 because 17 is an integer, as
12938 do @samp{dint(n)} and @samp{dint(2 n - 3)} if @code{n} has been declared
12939 @code{int}, but @samp{dint(2.5)} and @samp{dint(n + 0.5)} return 0.
12940 Calc consults knowledge of its own built-in functions as well as your
12941 own declarations: @samp{dint(floor(x))} returns 1.
12943 @ignore
12944 @starindex
12945 @end ignore
12946 @tindex dint
12947 @ignore
12948 @starindex
12949 @end ignore
12950 @tindex dnumint
12951 @ignore
12952 @starindex
12953 @end ignore
12954 @tindex dnatnum
12955 The @code{dint} function checks if its argument is an integer.
12956 The @code{dnatnum} function checks if its argument is a natural
12957 number, i.e., a nonnegative integer.  The @code{dnumint} function
12958 checks if its argument is numerically an integer, i.e., either an
12959 integer or an integer-valued float.  Note that these and the other
12960 data type functions also accept vectors or matrices composed of
12961 suitable elements, and that real infinities @samp{inf} and @samp{-inf}
12962 are considered to be integers for the purposes of these functions.
12964 @ignore
12965 @starindex
12966 @end ignore
12967 @tindex drat
12968 The @code{drat} function checks if its argument is rational, i.e.,
12969 an integer or fraction.  Infinities count as rational, but intervals
12970 and error forms do not.
12972 @ignore
12973 @starindex
12974 @end ignore
12975 @tindex dreal
12976 The @code{dreal} function checks if its argument is real.  This
12977 includes integers, fractions, floats, real error forms, and intervals.
12979 @ignore
12980 @starindex
12981 @end ignore
12982 @tindex dimag
12983 The @code{dimag} function checks if its argument is imaginary,
12984 i.e., is mathematically equal to a real number times @expr{i}.
12986 @ignore
12987 @starindex
12988 @end ignore
12989 @tindex dpos
12990 @ignore
12991 @starindex
12992 @end ignore
12993 @tindex dneg
12994 @ignore
12995 @starindex
12996 @end ignore
12997 @tindex dnonneg
12998 The @code{dpos} function checks for positive (but nonzero) reals.
12999 The @code{dneg} function checks for negative reals.  The @code{dnonneg}
13000 function checks for nonnegative reals, i.e., reals greater than or
13001 equal to zero.  Note that Calc's algebraic simplifications, which are
13002 effectively applied to all conditions in rewrite rules, can simplify
13003 an expression like @expr{x > 0} to 1 or 0 using @code{dpos}.
13004 So the actual functions @code{dpos}, @code{dneg}, and @code{dnonneg}
13005 are rarely necessary.
13007 @ignore
13008 @starindex
13009 @end ignore
13010 @tindex dnonzero
13011 The @code{dnonzero} function checks that its argument is nonzero.
13012 This includes all nonzero real or complex numbers, all intervals that
13013 do not include zero, all nonzero modulo forms, vectors all of whose
13014 elements are nonzero, and variables or formulas whose values can be
13015 deduced to be nonzero.  It does not include error forms, since they
13016 represent values which could be anything including zero.  (This is
13017 also the set of objects considered ``true'' in conditional contexts.)
13019 @ignore
13020 @starindex
13021 @end ignore
13022 @tindex deven
13023 @ignore
13024 @starindex
13025 @end ignore
13026 @tindex dodd
13027 The @code{deven} function returns 1 if its argument is known to be
13028 an even integer (or integer-valued float); it returns 0 if its argument
13029 is known not to be even (because it is known to be odd or a non-integer).
13030 Calc's algebraic simplifications use this to simplify a test of the form
13031 @samp{x % 2 = 0}.  There is also an analogous @code{dodd} function.
13033 @ignore
13034 @starindex
13035 @end ignore
13036 @tindex drange
13037 The @code{drange} function returns a set (an interval or a vector
13038 of intervals and/or numbers; @pxref{Set Operations}) that describes
13039 the set of possible values of its argument.  If the argument is
13040 a variable or a function with a declaration, the range is copied
13041 from the declaration.  Otherwise, the possible signs of the
13042 expression are determined using a method similar to @code{dpos},
13043 etc., and a suitable set like @samp{[0 .. inf]} is returned.  If
13044 the expression is not provably real, the @code{drange} function
13045 remains unevaluated.
13047 @ignore
13048 @starindex
13049 @end ignore
13050 @tindex dscalar
13051 The @code{dscalar} function returns 1 if its argument is provably
13052 scalar, or 0 if its argument is provably non-scalar.  It is left
13053 unevaluated if this cannot be determined.  (If Matrix mode or Scalar
13054 mode is in effect, this function returns 1 or 0, respectively,
13055 if it has no other information.)  When Calc interprets a condition
13056 (say, in a rewrite rule) it considers an unevaluated formula to be
13057 ``false.''  Thus, @samp{dscalar(a)} is ``true'' only if @code{a} is
13058 provably scalar, and @samp{!dscalar(a)} is ``true'' only if @code{a}
13059 is provably non-scalar; both are ``false'' if there is insufficient
13060 information to tell.
13062 @node Display Modes, Language Modes, Declarations, Mode Settings
13063 @section Display Modes
13065 @noindent
13066 The commands in this section are two-key sequences beginning with the
13067 @kbd{d} prefix.  The @kbd{d l} (@code{calc-line-numbering}) and @kbd{d b}
13068 (@code{calc-line-breaking}) commands are described elsewhere;
13069 @pxref{Stack Basics} and @pxref{Normal Language Modes}, respectively.
13070 Display formats for vectors and matrices are also covered elsewhere;
13071 @pxref{Vector and Matrix Formats}.
13073 One thing all display modes have in common is their treatment of the
13074 @kbd{H} prefix.  This prefix causes any mode command that would normally
13075 refresh the stack to leave the stack display alone.  The word ``Dirty''
13076 will appear in the mode line when Calc thinks the stack display may not
13077 reflect the latest mode settings.
13079 @kindex d @key{RET}
13080 @pindex calc-refresh-top
13081 The @kbd{d @key{RET}} (@code{calc-refresh-top}) command reformats the
13082 top stack entry according to all the current modes.  Positive prefix
13083 arguments reformat the top @var{n} entries; negative prefix arguments
13084 reformat the specified entry, and a prefix of zero is equivalent to
13085 @kbd{d @key{SPC}} (@code{calc-refresh}), which reformats the entire stack.
13086 For example, @kbd{H d s M-2 d @key{RET}} changes to scientific notation
13087 but reformats only the top two stack entries in the new mode.
13089 The @kbd{I} prefix has another effect on the display modes.  The mode
13090 is set only temporarily; the top stack entry is reformatted according
13091 to that mode, then the original mode setting is restored.  In other
13092 words, @kbd{I d s} is equivalent to @kbd{H d s d @key{RET} H d (@var{old mode})}.
13094 @menu
13095 * Radix Modes::
13096 * Grouping Digits::
13097 * Float Formats::
13098 * Complex Formats::
13099 * Fraction Formats::
13100 * HMS Formats::
13101 * Date Formats::
13102 * Truncating the Stack::
13103 * Justification::
13104 * Labels::
13105 @end menu
13107 @node Radix Modes, Grouping Digits, Display Modes, Display Modes
13108 @subsection Radix Modes
13110 @noindent
13111 @cindex Radix display
13112 @cindex Non-decimal numbers
13113 @cindex Decimal and non-decimal numbers
13114 Calc normally displays numbers in decimal (@dfn{base-10} or @dfn{radix-10})
13115 notation.  Calc can actually display in any radix from two (binary) to 36.
13116 When the radix is above 10, the letters @code{A} to @code{Z} are used as
13117 digits.  When entering such a number, letter keys are interpreted as
13118 potential digits rather than terminating numeric entry mode.
13120 @kindex d 2
13121 @kindex d 8
13122 @kindex d 6
13123 @kindex d 0
13124 @cindex Hexadecimal integers
13125 @cindex Octal integers
13126 The key sequences @kbd{d 2}, @kbd{d 8}, @kbd{d 6}, and @kbd{d 0} select
13127 binary, octal, hexadecimal, and decimal as the current display radix,
13128 respectively.  Numbers can always be entered in any radix, though the
13129 current radix is used as a default if you press @kbd{#} without any initial
13130 digits.  A number entered without a @kbd{#} is @emph{always} interpreted
13131 as decimal.
13133 @kindex d r
13134 @pindex calc-radix
13135 To set the radix generally, use @kbd{d r} (@code{calc-radix}) and enter
13136 an integer from 2 to 36.  You can specify the radix as a numeric prefix
13137 argument; otherwise you will be prompted for it.
13139 @kindex d z
13140 @pindex calc-leading-zeros
13141 @cindex Leading zeros
13142 Integers normally are displayed with however many digits are necessary to
13143 represent the integer and no more.  The @kbd{d z} (@code{calc-leading-zeros})
13144 command causes integers to be padded out with leading zeros according to the
13145 current binary word size.  (@xref{Binary Functions}, for a discussion of
13146 word size.)  If the absolute value of the word size is @expr{w}, all integers
13147 are displayed with at least enough digits to represent
13148 @texline @math{2^w-1}
13149 @infoline @expr{(2^w)-1}
13150 in the current radix.  (Larger integers will still be displayed in their
13151 entirety.)
13153 @cindex Two's complements
13154 Calc can display @expr{w}-bit integers using two's complement
13155 notation, although this is most useful with the binary, octal and
13156 hexadecimal display modes.  This option is selected by using the
13157 @kbd{O} option prefix before setting the display radix, and a negative word
13158 size might be appropriate (@pxref{Binary Functions}). In two's
13159 complement notation, the integers in the (nearly) symmetric interval
13160 from
13161 @texline @math{-2^{w-1}}
13162 @infoline @expr{-2^(w-1)}
13164 @texline @math{2^{w-1}-1}
13165 @infoline @expr{2^(w-1)-1}
13166 are represented by the integers from @expr{0} to @expr{2^w-1}:
13167 the integers from @expr{0} to
13168 @texline @math{2^{w-1}-1}
13169 @infoline @expr{2^(w-1)-1}
13170 are represented by themselves and the integers from
13171 @texline @math{-2^{w-1}}
13172 @infoline @expr{-2^(w-1)}
13173 to @expr{-1} are represented by the integers from
13174 @texline @math{2^{w-1}}
13175 @infoline @expr{2^(w-1)}
13176 to @expr{2^w-1} (the integer @expr{k} is represented by @expr{k+2^w}).
13177 Calc will display a two's complement integer by the radix (either
13178 @expr{2}, @expr{8} or @expr{16}), two @kbd{#} symbols, and then its
13179 representation (including any leading zeros necessary to include all
13180 @expr{w} bits).  In a two's complement display mode, numbers that
13181 are not displayed in two's complement notation (i.e., that aren't
13182 integers from
13183 @texline @math{-2^{w-1}}
13184 @infoline @expr{-2^(w-1)}
13186 @c (
13187 @texline @math{2^{w-1}-1})
13188 @infoline @expr{2^(w-1)-1})
13189 will be represented using Calc's usual notation (in the appropriate
13190 radix).
13192 @node Grouping Digits, Float Formats, Radix Modes, Display Modes
13193 @subsection Grouping Digits
13195 @noindent
13196 @kindex d g
13197 @pindex calc-group-digits
13198 @cindex Grouping digits
13199 @cindex Digit grouping
13200 Long numbers can be hard to read if they have too many digits.  For
13201 example, the factorial of 30 is 33 digits long!  Press @kbd{d g}
13202 (@code{calc-group-digits}) to enable @dfn{Grouping} mode, in which digits
13203 are displayed in clumps of 3 or 4 (depending on the current radix)
13204 separated by commas.
13206 The @kbd{d g} command toggles grouping on and off.
13207 With a numeric prefix of 0, this command displays the current state of
13208 the grouping flag; with an argument of minus one it disables grouping;
13209 with a positive argument @expr{N} it enables grouping on every @expr{N}
13210 digits.  For floating-point numbers, grouping normally occurs only
13211 before the decimal point.  A negative prefix argument @expr{-N} enables
13212 grouping every @expr{N} digits both before and after the decimal point.
13214 @kindex d ,
13215 @pindex calc-group-char
13216 The @kbd{d ,} (@code{calc-group-char}) command allows you to choose any
13217 character as the grouping separator.  The default is the comma character.
13218 If you find it difficult to read vectors of large integers grouped with
13219 commas, you may wish to use spaces or some other character instead.
13220 This command takes the next character you type, whatever it is, and
13221 uses it as the digit separator.  As a special case, @kbd{d , \} selects
13222 @samp{\,} (@TeX{}'s thin-space symbol) as the digit separator.
13224 Please note that grouped numbers will not generally be parsed correctly
13225 if re-read in textual form, say by the use of @kbd{C-x * y} and @kbd{C-x * g}.
13226 (@xref{Kill and Yank}, for details on these commands.)  One exception is
13227 the @samp{\,} separator, which doesn't interfere with parsing because it
13228 is ignored by @TeX{} language mode.
13230 @node Float Formats, Complex Formats, Grouping Digits, Display Modes
13231 @subsection Float Formats
13233 @noindent
13234 Floating-point quantities are normally displayed in standard decimal
13235 form, with scientific notation used if the exponent is especially high
13236 or low.  All significant digits are normally displayed.  The commands
13237 in this section allow you to choose among several alternative display
13238 formats for floats.
13240 @kindex d n
13241 @pindex calc-normal-notation
13242 The @kbd{d n} (@code{calc-normal-notation}) command selects the normal
13243 display format.  All significant figures in a number are displayed.
13244 With a positive numeric prefix, numbers are rounded if necessary to
13245 that number of significant digits.  With a negative numerix prefix,
13246 the specified number of significant digits less than the current
13247 precision is used.  (Thus @kbd{C-u -2 d n} displays 10 digits if the
13248 current precision is 12.)
13250 @kindex d f
13251 @pindex calc-fix-notation
13252 The @kbd{d f} (@code{calc-fix-notation}) command selects fixed-point
13253 notation.  The numeric argument is the number of digits after the
13254 decimal point, zero or more.  This format will relax into scientific
13255 notation if a nonzero number would otherwise have been rounded all the
13256 way to zero.  Specifying a negative number of digits is the same as
13257 for a positive number, except that small nonzero numbers will be rounded
13258 to zero rather than switching to scientific notation.
13260 @kindex d s
13261 @pindex calc-sci-notation
13262 @cindex Scientific notation, display of
13263 The @kbd{d s} (@code{calc-sci-notation}) command selects scientific
13264 notation.  A positive argument sets the number of significant figures
13265 displayed, of which one will be before and the rest after the decimal
13266 point.  A negative argument works the same as for @kbd{d n} format.
13267 The default is to display all significant digits.
13269 @kindex d e
13270 @pindex calc-eng-notation
13271 @cindex Engineering notation, display of
13272 The @kbd{d e} (@code{calc-eng-notation}) command selects engineering
13273 notation.  This is similar to scientific notation except that the
13274 exponent is rounded down to a multiple of three, with from one to three
13275 digits before the decimal point.  An optional numeric prefix sets the
13276 number of significant digits to display, as for @kbd{d s}.
13278 It is important to distinguish between the current @emph{precision} and
13279 the current @emph{display format}.  After the commands @kbd{C-u 10 p}
13280 and @kbd{C-u 6 d n} the Calculator computes all results to ten
13281 significant figures but displays only six.  (In fact, intermediate
13282 calculations are often carried to one or two more significant figures,
13283 but values placed on the stack will be rounded down to ten figures.)
13284 Numbers are never actually rounded to the display precision for storage,
13285 except by commands like @kbd{C-k} and @kbd{C-x * y} which operate on the
13286 actual displayed text in the Calculator buffer.
13288 @kindex d .
13289 @pindex calc-point-char
13290 The @kbd{d .} (@code{calc-point-char}) command selects the character used
13291 as a decimal point.  Normally this is a period; users in some countries
13292 may wish to change this to a comma.  Note that this is only a display
13293 style; on entry, periods must always be used to denote floating-point
13294 numbers, and commas to separate elements in a list.
13296 @node Complex Formats, Fraction Formats, Float Formats, Display Modes
13297 @subsection Complex Formats
13299 @noindent
13300 @kindex d c
13301 @pindex calc-complex-notation
13302 There are three supported notations for complex numbers in rectangular
13303 form.  The default is as a pair of real numbers enclosed in parentheses
13304 and separated by a comma: @samp{(a,b)}.  The @kbd{d c}
13305 (@code{calc-complex-notation}) command selects this style.
13307 @kindex d i
13308 @pindex calc-i-notation
13309 @kindex d j
13310 @pindex calc-j-notation
13311 The other notations are @kbd{d i} (@code{calc-i-notation}), in which
13312 numbers are displayed in @samp{a+bi} form, and @kbd{d j}
13313 (@code{calc-j-notation}) which displays the form @samp{a+bj} preferred
13314 in some disciplines.
13316 @cindex @code{i} variable
13317 @vindex i
13318 Complex numbers are normally entered in @samp{(a,b)} format.
13319 If you enter @samp{2+3i} as an algebraic formula, it will be stored as
13320 the formula @samp{2 + 3 * i}.  However, if you use @kbd{=} to evaluate
13321 this formula and you have not changed the variable @samp{i}, the @samp{i}
13322 will be interpreted as @samp{(0,1)} and the formula will be simplified
13323 to @samp{(2,3)}.  Other commands (like @code{calc-sin}) will @emph{not}
13324 interpret the formula @samp{2 + 3 * i} as a complex number.
13325 @xref{Variables}, under ``special constants.''
13327 @node Fraction Formats, HMS Formats, Complex Formats, Display Modes
13328 @subsection Fraction Formats
13330 @noindent
13331 @kindex d o
13332 @pindex calc-over-notation
13333 Display of fractional numbers is controlled by the @kbd{d o}
13334 (@code{calc-over-notation}) command.  By default, a number like
13335 eight thirds is displayed in the form @samp{8:3}.  The @kbd{d o} command
13336 prompts for a one- or two-character format.  If you give one character,
13337 that character is used as the fraction separator.  Common separators are
13338 @samp{:} and @samp{/}.  (During input of numbers, the @kbd{:} key must be
13339 used regardless of the display format; in particular, the @kbd{/} is used
13340 for RPN-style division, @emph{not} for entering fractions.)
13342 If you give two characters, fractions use ``integer-plus-fractional-part''
13343 notation.  For example, the format @samp{+/} would display eight thirds
13344 as @samp{2+2/3}.  If two colons are present in a number being entered,
13345 the number is interpreted in this form (so that the entries @kbd{2:2:3}
13346 and @kbd{8:3} are equivalent).
13348 It is also possible to follow the one- or two-character format with
13349 a number.  For example:  @samp{:10} or @samp{+/3}.  In this case,
13350 Calc adjusts all fractions that are displayed to have the specified
13351 denominator, if possible.  Otherwise it adjusts the denominator to
13352 be a multiple of the specified value.  For example, in @samp{:6} mode
13353 the fraction @expr{1:6} will be unaffected, but @expr{2:3} will be
13354 displayed as @expr{4:6}, @expr{1:2} will be displayed as @expr{3:6},
13355 and @expr{1:8} will be displayed as @expr{3:24}.  Integers are also
13356 affected by this mode:  3 is displayed as @expr{18:6}.  Note that the
13357 format @samp{:1} writes fractions the same as @samp{:}, but it writes
13358 integers as @expr{n:1}.
13360 The fraction format does not affect the way fractions or integers are
13361 stored, only the way they appear on the screen.  The fraction format
13362 never affects floats.
13364 @node HMS Formats, Date Formats, Fraction Formats, Display Modes
13365 @subsection HMS Formats
13367 @noindent
13368 @kindex d h
13369 @pindex calc-hms-notation
13370 The @kbd{d h} (@code{calc-hms-notation}) command controls the display of
13371 HMS (hours-minutes-seconds) forms.  It prompts for a string which
13372 consists basically of an ``hours'' marker, optional punctuation, a
13373 ``minutes'' marker, more optional punctuation, and a ``seconds'' marker.
13374 Punctuation is zero or more spaces, commas, or semicolons.  The hours
13375 marker is one or more non-punctuation characters.  The minutes and
13376 seconds markers must be single non-punctuation characters.
13378 The default HMS format is @samp{@@ ' "}, producing HMS values of the form
13379 @samp{23@@ 30' 15.75"}.  The format @samp{deg, ms} would display this same
13380 value as @samp{23deg, 30m15.75s}.  During numeric entry, the @kbd{h} or @kbd{o}
13381 keys are recognized as synonyms for @kbd{@@} regardless of display format.
13382 The @kbd{m} and @kbd{s} keys are recognized as synonyms for @kbd{'} and
13383 @kbd{"}, respectively, but only if an @kbd{@@} (or @kbd{h} or @kbd{o}) has
13384 already been typed; otherwise, they have their usual meanings
13385 (@kbd{m-} prefix and @kbd{s-} prefix).  Thus, @kbd{5 "}, @kbd{0 @@ 5 "}, and
13386 @kbd{0 h 5 s} are some of the ways to enter the quantity ``five seconds.''
13387 The @kbd{'} key is recognized as ``minutes'' only if @kbd{@@} (or @kbd{h} or
13388 @kbd{o}) has already been pressed; otherwise it means to switch to algebraic
13389 entry.
13391 @node Date Formats, Truncating the Stack, HMS Formats, Display Modes
13392 @subsection Date Formats
13394 @noindent
13395 @kindex d d
13396 @pindex calc-date-notation
13397 The @kbd{d d} (@code{calc-date-notation}) command controls the display
13398 of date forms (@pxref{Date Forms}).  It prompts for a string which
13399 contains letters that represent the various parts of a date and time.
13400 To show which parts should be omitted when the form represents a pure
13401 date with no time, parts of the string can be enclosed in @samp{< >}
13402 marks.  If you don't include @samp{< >} markers in the format, Calc
13403 guesses at which parts, if any, should be omitted when formatting
13404 pure dates.
13406 The default format is:  @samp{<H:mm:SSpp >Www Mmm D, YYYY}.
13407 An example string in this format is @samp{3:32pm Wed Jan 9, 1991}.
13408 If you enter a blank format string, this default format is
13409 reestablished.
13411 Calc uses @samp{< >} notation for nameless functions as well as for
13412 dates.  @xref{Specifying Operators}.  To avoid confusion with nameless
13413 functions, your date formats should avoid using the @samp{#} character.
13415 @menu
13416 * ISO 8601::
13417 * Date Formatting Codes::
13418 * Free-Form Dates::
13419 * Standard Date Formats::
13420 @end menu
13422 @node ISO 8601, Date Formatting Codes, Date Formats, Date Formats
13423 @subsubsection ISO 8601
13425 @noindent
13426 @cindex ISO 8601
13427 The same date can be written down in different formats and Calc tries
13428 to allow you to choose your preferred format.  Some common formats are
13429 ambiguous, however; for example, 10/11/2012 means October 11,
13430 2012 in the United States but it means November 10, 2012 in
13431 Europe.  To help avoid such ambiguities, the International Organization
13432 for Standardization (ISO) provides the ISO 8601 standard, which
13433 provides three different but easily distinguishable and unambiguous
13434 ways to represent a date.
13436 The ISO 8601 calendar date representation is
13438 @example
13439    @var{YYYY}-@var{MM}-@var{DD}
13440 @end example
13442 @noindent
13443 where @var{YYYY} is the four digit year, @var{MM} is the two-digit month
13444 number (01 for January to 12 for December), and @var{DD} is the
13445 two-digit day of the month (01 to 31).  (Note that @var{YYYY} does not
13446 correspond to Calc's date formatting code, which will be introduced
13447 later.)  The year, which should be padded with zeros to ensure it has at
13448 least four digits, is the Gregorian year, except that the year before
13449 0001 (1 AD) is the year 0000 (1 BC).  The date October 11, 2012 is
13450 written 2012-10-11 in this representation and November 10, 2012 is
13451 written 2012-11-10.
13453 The ISO 8601 ordinal date representation is
13455 @example
13456   @var{YYYY}-@var{DDD}
13457 @end example
13459 @noindent
13460 where @var{YYYY} is the year, as above, and @var{DDD} is the day of the year.
13461 The date December 31, 2011 is written 2011-365 in this representation
13462 and January 1, 2012 is written 2012-001.
13464 The ISO 8601 week date representation is
13466 @example
13467  @var{YYYY}-W@var{ww}-@var{D}
13468 @end example
13470 @noindent
13471 where @var{YYYY} is the ISO week-numbering year, @var{ww} is the two
13472 digit week number (preceded by a literal ``W''), and @var{D} is the day
13473 of the week (1 for Monday through 7 for Sunday).  The ISO week-numbering
13474 year is based on the Gregorian year but can differ slightly.  The first
13475 week of an ISO week-numbering year is the week with the Gregorian year's
13476 first Thursday in it (equivalently, the week containing January 4);
13477 any day of that week (Monday through Sunday) is part of the same ISO
13478 week-numbering year, any day from the previous week is part of the
13479 previous year.  For example, January 4, 2013 is on a Friday, and so
13480 the first week for the ISO week-numbering year 2013 starts  on
13481 Monday, December 31, 2012.  The day December 31, 2012 is then part of the
13482 Gregorian year 2012 but ISO week-numbering year 2013.  In the week
13483 date representation, this week goes from 2013-W01-1 (December 31,
13484 2012) to 2013-W01-7 (January 6, 2013).
13486 All three ISO 8601 representations arrange the numbers from most
13487 significant to least significant; as well as being unambiguous
13488 representations, they are easy to sort since chronological order in
13489 this formats corresponds to lexicographical order. The hyphens are
13490 sometimes omitted.
13492 The ISO 8601 standard uses a 24 hour clock; a particular time is
13493 represented by @var{hh}:@var{mm}:@var{ss} where @var{hh} is the
13494 two-digit hour (from 00 to 24), @var{mm} is the two-digit minute (from
13495 00 to 59) and @var{ss} is the two-digit second.  The seconds or minutes
13496 and seconds can be omitted, and decimals can be added.  If a date with a
13497 time is represented, they should be separated by a literal ``T'', so noon
13498 on December 13, 2012 can be represented as 2012-12-13T12:00.
13500 @node Date Formatting Codes, Free-Form Dates, ISO 8601, Date Formats
13501 @subsubsection Date Formatting Codes
13503 @noindent
13504 When displaying a date, the current date format is used.  All
13505 characters except for letters and @samp{<} and @samp{>} are
13506 copied literally when dates are formatted.  The portion between
13507 @samp{< >} markers is omitted for pure dates, or included for
13508 date/time forms.  Letters are interpreted according to the table
13509 below.
13511 When dates are read in during algebraic entry, Calc first tries to
13512 match the input string to the current format either with or without
13513 the time part.  The punctuation characters (including spaces) must
13514 match exactly; letter fields must correspond to suitable text in
13515 the input.  If this doesn't work, Calc checks if the input is a
13516 simple number; if so, the number is interpreted as a number of days
13517 since Dec 31, 1 BC@.  Otherwise, Calc tries a much more relaxed and
13518 flexible algorithm which is described in the next section.
13520 Weekday names are ignored during reading.
13522 Two-digit year numbers are interpreted as lying in the range
13523 from 1941 to 2039.  Years outside that range are always
13524 entered and displayed in full.  Year numbers with a leading
13525 @samp{+} sign are always interpreted exactly, allowing the
13526 entry and display of the years 1 through 99 AD.
13528 Here is a complete list of the formatting codes for dates:
13530 @table @asis
13531 @item Y
13532 Year:  ``91'' for 1991, ``7'' for 2007, ``+23'' for 23 AD.
13533 @item YY
13534 Year:  ``91'' for 1991, ``07'' for 2007, ``+23'' for 23 AD.
13535 @item BY
13536 Year:  ``91'' for 1991, `` 7'' for 2007, ``+23'' for 23 AD.
13537 @item YYY
13538 Year:  ``1991'' for 1991, ``23'' for 23 AD.
13539 @item YYYY
13540 Year:  ``1991'' for 1991, ``+23'' for 23 AD.
13541 @item ZYYY
13542 Year:  ``1991'' for 1991, ``0023'' for 23 AD, ``0000'' for 1 BC.
13543 @item IYYY
13544 Year:  ISO 8601 week-numbering year.
13545 @item aa
13546 Year:  ``ad'' or blank.
13547 @item AA
13548 Year:  ``AD'' or blank.
13549 @item aaa
13550 Year:  ``ad '' or blank.  (Note trailing space.)
13551 @item AAA
13552 Year:  ``AD '' or blank.
13553 @item aaaa
13554 Year:  ``a.d.@:'' or blank.
13555 @item AAAA
13556 Year:  ``A.D.'' or blank.
13557 @item bb
13558 Year:  ``bc'' or blank.
13559 @item BB
13560 Year:  ``BC'' or blank.
13561 @item bbb
13562 Year:  `` bc'' or blank.  (Note leading space.)
13563 @item BBB
13564 Year:  `` BC'' or blank.
13565 @item bbbb
13566 Year:  ``b.c.@:'' or blank.
13567 @item BBBB
13568 Year:  ``B.C.'' or blank.
13569 @item M
13570 Month:  ``8'' for August.
13571 @item MM
13572 Month:  ``08'' for August.
13573 @item BM
13574 Month:  `` 8'' for August.
13575 @item MMM
13576 Month:  ``AUG'' for August.
13577 @item Mmm
13578 Month:  ``Aug'' for August.
13579 @item mmm
13580 Month:  ``aug'' for August.
13581 @item MMMM
13582 Month:  ``AUGUST'' for August.
13583 @item Mmmm
13584 Month:  ``August'' for August.
13585 @item D
13586 Day:  ``7'' for 7th day of month.
13587 @item DD
13588 Day:  ``07'' for 7th day of month.
13589 @item BD
13590 Day:  `` 7'' for 7th day of month.
13591 @item W
13592 Weekday:  ``0'' for Sunday, ``6'' for Saturday.
13593 @item w
13594 Weekday:  ``1'' for Monday, ``7'' for Sunday.
13595 @item WWW
13596 Weekday:  ``SUN'' for Sunday.
13597 @item Www
13598 Weekday:  ``Sun'' for Sunday.
13599 @item www
13600 Weekday:  ``sun'' for Sunday.
13601 @item WWWW
13602 Weekday:  ``SUNDAY'' for Sunday.
13603 @item Wwww
13604 Weekday:  ``Sunday'' for Sunday.
13605 @item Iww
13606 Week number:  ISO 8601 week number, ``W01'' for week 1.
13607 @item d
13608 Day of year:  ``34'' for Feb.@: 3.
13609 @item ddd
13610 Day of year:  ``034'' for Feb.@: 3.
13611 @item bdd
13612 Day of year:  `` 34'' for Feb.@: 3.
13613 @item T
13614 Letter:  Literal ``T''.
13615 @item h
13616 Hour:  ``5'' for 5 AM; ``17'' for 5 PM.
13617 @item hh
13618 Hour:  ``05'' for 5 AM; ``17'' for 5 PM.
13619 @item bh
13620 Hour:  `` 5'' for 5 AM; ``17'' for 5 PM.
13621 @item H
13622 Hour:  ``5'' for 5 AM and 5 PM.
13623 @item HH
13624 Hour:  ``05'' for 5 AM and 5 PM.
13625 @item BH
13626 Hour:  `` 5'' for 5 AM and 5 PM.
13627 @item p
13628 AM/PM:  ``a'' or ``p''.
13629 @item P
13630 AM/PM:  ``A'' or ``P''.
13631 @item pp
13632 AM/PM:  ``am'' or ``pm''.
13633 @item PP
13634 AM/PM:  ``AM'' or ``PM''.
13635 @item pppp
13636 AM/PM:  ``a.m.@:'' or ``p.m.''.
13637 @item PPPP
13638 AM/PM:  ``A.M.'' or ``P.M.''.
13639 @item m
13640 Minutes:  ``7'' for 7.
13641 @item mm
13642 Minutes:  ``07'' for 7.
13643 @item bm
13644 Minutes:  `` 7'' for 7.
13645 @item s
13646 Seconds:  ``7'' for 7;  ``7.23'' for 7.23.
13647 @item ss
13648 Seconds:  ``07'' for 7;  ``07.23'' for 7.23.
13649 @item bs
13650 Seconds:  `` 7'' for 7;  `` 7.23'' for 7.23.
13651 @item SS
13652 Optional seconds:  ``07'' for 7;  blank for 0.
13653 @item BS
13654 Optional seconds:  `` 7'' for 7;  blank for 0.
13655 @item N
13656 Numeric date/time:  ``726842.25'' for 6:00am Wed Jan 9, 1991.
13657 @item n
13658 Numeric date:  ``726842'' for any time on Wed Jan 9, 1991.
13659 @item J
13660 Julian date/time:  ``2448265.75'' for 6:00am Wed Jan 9, 1991.
13661 @item j
13662 Julian date:  ``2448266'' for any time on Wed Jan 9, 1991.
13663 @item U
13664 Unix time:  ``663400800'' for 6:00am Wed Jan 9, 1991.
13665 @item X
13666 Brackets suppression.  An ``X'' at the front of the format
13667 causes the surrounding @w{@samp{< >}} delimiters to be omitted
13668 when formatting dates.  Note that the brackets are still
13669 required for algebraic entry.
13670 @end table
13672 If ``SS'' or ``BS'' (optional seconds) is preceded by a colon, the
13673 colon is also omitted if the seconds part is zero.
13675 If ``bb,'' ``bbb'' or ``bbbb'' or their upper-case equivalents
13676 appear in the format, then negative year numbers are displayed
13677 without a minus sign.  Note that ``aa'' and ``bb'' are mutually
13678 exclusive.  Some typical usages would be @samp{YYYY AABB};
13679 @samp{AAAYYYYBBB}; @samp{YYYYBBB}.
13681 The formats ``YY,'' ``YYYY,'' ``MM,'' ``DD,'' ``ddd,'' ``hh,'' ``HH,''
13682 ``mm,'' ``ss,'' and ``SS'' actually match any number of digits during
13683 reading unless several of these codes are strung together with no
13684 punctuation in between, in which case the input must have exactly as
13685 many digits as there are letters in the format.
13687 The ``j,'' ``J,'' and ``U'' formats do not make any time zone
13688 adjustment.  They effectively use @samp{julian(x,0)} and
13689 @samp{unixtime(x,0)} to make the conversion; @pxref{Date Arithmetic}.
13691 @node Free-Form Dates, Standard Date Formats, Date Formatting Codes, Date Formats
13692 @subsubsection Free-Form Dates
13694 @noindent
13695 When reading a date form during algebraic entry, Calc falls back
13696 on the algorithm described here if the input does not exactly
13697 match the current date format.  This algorithm generally
13698 ``does the right thing'' and you don't have to worry about it,
13699 but it is described here in full detail for the curious.
13701 Calc does not distinguish between upper- and lower-case letters
13702 while interpreting dates.
13704 First, the time portion, if present, is located somewhere in the
13705 text and then removed.  The remaining text is then interpreted as
13706 the date.
13708 A time is of the form @samp{hh:mm:ss}, possibly with the seconds
13709 part omitted and possibly with an AM/PM indicator added to indicate
13710 12-hour time.  If the AM/PM is present, the minutes may also be
13711 omitted.  The AM/PM part may be any of the words @samp{am},
13712 @samp{pm}, @samp{noon}, or @samp{midnight}; each of these may be
13713 abbreviated to one letter, and the alternate forms @samp{a.m.},
13714 @samp{p.m.}, and @samp{mid} are also understood.  Obviously
13715 @samp{noon} and @samp{midnight} are allowed only on 12:00:00.
13716 The words @samp{noon}, @samp{mid}, and @samp{midnight} are also
13717 recognized with no number attached.  Midnight will represent the
13718 beginning of a day.
13720 If there is no AM/PM indicator, the time is interpreted in 24-hour
13721 format.
13723 When reading the date portion, Calc first checks to see if it is an
13724 ISO 8601 week-numbering date; if the string contains an integer
13725 representing the year, a ``W'' followed by two digits for the week
13726 number, and an integer from 1 to 7 representing the weekday (in that
13727 order), then all other characters are ignored and this information
13728 determines the date.  Otherwise, all words and numbers are isolated
13729 from the string; other characters are ignored.  All words must be
13730 either month names or day-of-week names (the latter of which are
13731 ignored). Names can be written in full or as three-letter
13732 abbreviations.
13734 Large numbers, or numbers with @samp{+} or @samp{-} signs,
13735 are interpreted as years.  If one of the other numbers is
13736 greater than 12, then that must be the day and the remaining
13737 number in the input is therefore the month.  Otherwise, Calc
13738 assumes the month, day and year are in the same order that they
13739 appear in the current date format.  If the year is omitted, the
13740 current year is taken from the system clock.
13742 If there are too many or too few numbers, or any unrecognizable
13743 words, then the input is rejected.
13745 If there are any large numbers (of five digits or more) other than
13746 the year, they are ignored on the assumption that they are something
13747 like Julian dates that were included along with the traditional
13748 date components when the date was formatted.
13750 One of the words @samp{ad}, @samp{a.d.}, @samp{bc}, or @samp{b.c.}
13751 may optionally be used; the latter two are equivalent to a
13752 minus sign on the year value.
13754 If you always enter a four-digit year, and use a name instead
13755 of a number for the month, there is no danger of ambiguity.
13757 @node Standard Date Formats,  , Free-Form Dates, Date Formats
13758 @subsubsection Standard Date Formats
13760 @noindent
13761 There are actually ten standard date formats, numbered 0 through 9.
13762 Entering a blank line at the @kbd{d d} command's prompt gives
13763 you format number 1, Calc's usual format.  You can enter any digit
13764 to select the other formats.
13766 To create your own standard date formats, give a numeric prefix
13767 argument from 0 to 9 to the @w{@kbd{d d}} command.  The format you
13768 enter will be recorded as the new standard format of that
13769 number, as well as becoming the new current date format.
13770 You can save your formats permanently with the @w{@kbd{m m}}
13771 command (@pxref{Mode Settings}).
13773 @table @asis
13774 @item 0
13775 @samp{N}  (Numerical format)
13776 @item 1
13777 @samp{<H:mm:SSpp >Www Mmm D, YYYY}  (American format)
13778 @item 2
13779 @samp{D Mmm YYYY<, h:mm:SS>}  (European format)
13780 @item 3
13781 @samp{Www Mmm BD< hh:mm:ss> YYYY}  (Unix written date format)
13782 @item 4
13783 @samp{M/D/Y< H:mm:SSpp>}  (American slashed format)
13784 @item 5
13785 @samp{D.M.Y< h:mm:SS>}  (European dotted format)
13786 @item 6
13787 @samp{M-D-Y< H:mm:SSpp>}  (American dashed format)
13788 @item 7
13789 @samp{D-M-Y< h:mm:SS>}  (European dashed format)
13790 @item 8
13791 @samp{j<, h:mm:ss>}  (Julian day plus time)
13792 @item 9
13793 @samp{YYddd< hh:mm:ss>}  (Year-day format)
13794 @item 10
13795 @samp{ZYYY-MM-DD Www< hh:mm>} (Org mode format)
13796 @item 11
13797 @samp{IYYY-Iww-w<Thh:mm:ss>} (ISO 8601 week numbering format)
13798 @end table
13800 @node Truncating the Stack, Justification, Date Formats, Display Modes
13801 @subsection Truncating the Stack
13803 @noindent
13804 @kindex d t
13805 @pindex calc-truncate-stack
13806 @cindex Truncating the stack
13807 @cindex Narrowing the stack
13808 The @kbd{d t} (@code{calc-truncate-stack}) command moves the @samp{.}@:
13809 line that marks the top-of-stack up or down in the Calculator buffer.
13810 The number right above that line is considered to the be at the top of
13811 the stack.  Any numbers below that line are ``hidden'' from all stack
13812 operations (although still visible to the user).  This is similar to the
13813 Emacs ``narrowing'' feature, except that the values below the @samp{.}
13814 are @emph{visible}, just temporarily frozen.  This feature allows you to
13815 keep several independent calculations running at once in different parts
13816 of the stack, or to apply a certain command to an element buried deep in
13817 the stack.
13819 Pressing @kbd{d t} by itself moves the @samp{.} to the line the cursor
13820 is on.  Thus, this line and all those below it become hidden.  To un-hide
13821 these lines, move down to the end of the buffer and press @w{@kbd{d t}}.
13822 With a positive numeric prefix argument @expr{n}, @kbd{d t} hides the
13823 bottom @expr{n} values in the buffer.  With a negative argument, it hides
13824 all but the top @expr{n} values.  With an argument of zero, it hides zero
13825 values, i.e., moves the @samp{.} all the way down to the bottom.
13827 @kindex d [
13828 @pindex calc-truncate-up
13829 @kindex d ]
13830 @pindex calc-truncate-down
13831 The @kbd{d [} (@code{calc-truncate-up}) and @kbd{d ]}
13832 (@code{calc-truncate-down}) commands move the @samp{.} up or down one
13833 line at a time (or several lines with a prefix argument).
13835 @node Justification, Labels, Truncating the Stack, Display Modes
13836 @subsection Justification
13838 @noindent
13839 @kindex d <
13840 @pindex calc-left-justify
13841 @kindex d =
13842 @pindex calc-center-justify
13843 @kindex d >
13844 @pindex calc-right-justify
13845 Values on the stack are normally left-justified in the window.  You can
13846 control this arrangement by typing @kbd{d <} (@code{calc-left-justify}),
13847 @kbd{d >} (@code{calc-right-justify}), or @kbd{d =}
13848 (@code{calc-center-justify}).  For example, in Right-Justification mode,
13849 stack entries are displayed flush-right against the right edge of the
13850 window.
13852 If you change the width of the Calculator window you may have to type
13853 @kbd{d @key{SPC}} (@code{calc-refresh}) to re-align right-justified or centered
13854 text.
13856 Right-justification is especially useful together with fixed-point
13857 notation (see @code{d f}; @code{calc-fix-notation}).  With these modes
13858 together, the decimal points on numbers will always line up.
13860 With a numeric prefix argument, the justification commands give you
13861 a little extra control over the display.  The argument specifies the
13862 horizontal ``origin'' of a display line.  It is also possible to
13863 specify a maximum line width using the @kbd{d b} command (@pxref{Normal
13864 Language Modes}).  For reference, the precise rules for formatting and
13865 breaking lines are given below.  Notice that the interaction between
13866 origin and line width is slightly different in each justification
13867 mode.
13869 In Left-Justified mode, the line is indented by a number of spaces
13870 given by the origin (default zero).  If the result is longer than the
13871 maximum line width, if given, or too wide to fit in the Calc window
13872 otherwise, then it is broken into lines which will fit; each broken
13873 line is indented to the origin.
13875 In Right-Justified mode, lines are shifted right so that the rightmost
13876 character is just before the origin, or just before the current
13877 window width if no origin was specified.  If the line is too long
13878 for this, then it is broken; the current line width is used, if
13879 specified, or else the origin is used as a width if that is
13880 specified, or else the line is broken to fit in the window.
13882 In Centering mode, the origin is the column number of the center of
13883 each stack entry.  If a line width is specified, lines will not be
13884 allowed to go past that width; Calc will either indent less or
13885 break the lines if necessary.  If no origin is specified, half the
13886 line width or Calc window width is used.
13888 Note that, in each case, if line numbering is enabled the display
13889 is indented an additional four spaces to make room for the line
13890 number.  The width of the line number is taken into account when
13891 positioning according to the current Calc window width, but not
13892 when positioning by explicit origins and widths.  In the latter
13893 case, the display is formatted as specified, and then uniformly
13894 shifted over four spaces to fit the line numbers.
13896 @node Labels,  , Justification, Display Modes
13897 @subsection Labels
13899 @noindent
13900 @kindex d @{
13901 @pindex calc-left-label
13902 The @kbd{d @{} (@code{calc-left-label}) command prompts for a string,
13903 then displays that string to the left of every stack entry.  If the
13904 entries are left-justified (@pxref{Justification}), then they will
13905 appear immediately after the label (unless you specified an origin
13906 greater than the length of the label).  If the entries are centered
13907 or right-justified, the label appears on the far left and does not
13908 affect the horizontal position of the stack entry.
13910 Give a blank string (with @kbd{d @{ @key{RET}}) to turn the label off.
13912 @kindex d @}
13913 @pindex calc-right-label
13914 The @kbd{d @}} (@code{calc-right-label}) command similarly adds a
13915 label on the righthand side.  It does not affect positioning of
13916 the stack entries unless they are right-justified.  Also, if both
13917 a line width and an origin are given in Right-Justified mode, the
13918 stack entry is justified to the origin and the righthand label is
13919 justified to the line width.
13921 One application of labels would be to add equation numbers to
13922 formulas you are manipulating in Calc and then copying into a
13923 document (possibly using Embedded mode).  The equations would
13924 typically be centered, and the equation numbers would be on the
13925 left or right as you prefer.
13927 @node Language Modes, Modes Variable, Display Modes, Mode Settings
13928 @section Language Modes
13930 @noindent
13931 The commands in this section change Calc to use a different notation for
13932 entry and display of formulas, corresponding to the conventions of some
13933 other common language such as Pascal or @LaTeX{}.  Objects displayed on the
13934 stack or yanked from the Calculator to an editing buffer will be formatted
13935 in the current language; objects entered in algebraic entry or yanked from
13936 another buffer will be interpreted according to the current language.
13938 The current language has no effect on things written to or read from the
13939 trail buffer, nor does it affect numeric entry.  Only algebraic entry is
13940 affected.  You can make even algebraic entry ignore the current language
13941 and use the standard notation by giving a numeric prefix, e.g., @kbd{C-u '}.
13943 For example, suppose the formula @samp{2*a[1] + atan(a[2])} occurs in a C
13944 program; elsewhere in the program you need the derivatives of this formula
13945 with respect to @samp{a[1]} and @samp{a[2]}.  First, type @kbd{d C}
13946 to switch to C notation.  Now use @code{C-u C-x * g} to grab the formula
13947 into the Calculator, @kbd{a d a[1] @key{RET}} to differentiate with respect
13948 to the first variable, and @kbd{C-x * y} to yank the formula for the derivative
13949 back into your C program.  Press @kbd{U} to undo the differentiation and
13950 repeat with @kbd{a d a[2] @key{RET}} for the other derivative.
13952 Without being switched into C mode first, Calc would have misinterpreted
13953 the brackets in @samp{a[1]} and @samp{a[2]}, would not have known that
13954 @code{atan} was equivalent to Calc's built-in @code{arctan} function,
13955 and would have written the formula back with notations (like implicit
13956 multiplication) which would not have been valid for a C program.
13958 As another example, suppose you are maintaining a C program and a @LaTeX{}
13959 document, each of which needs a copy of the same formula.  You can grab the
13960 formula from the program in C mode, switch to @LaTeX{} mode, and yank the
13961 formula into the document in @LaTeX{} math-mode format.
13963 Language modes are selected by typing the letter @kbd{d} followed by a
13964 shifted letter key.
13966 @menu
13967 * Normal Language Modes::
13968 * C FORTRAN Pascal::
13969 * TeX and LaTeX Language Modes::
13970 * Eqn Language Mode::
13971 * Yacas Language Mode::
13972 * Maxima Language Mode::
13973 * Giac Language Mode::
13974 * Mathematica Language Mode::
13975 * Maple Language Mode::
13976 * Compositions::
13977 * Syntax Tables::
13978 @end menu
13980 @node Normal Language Modes, C FORTRAN Pascal, Language Modes, Language Modes
13981 @subsection Normal Language Modes
13983 @noindent
13984 @kindex d N
13985 @pindex calc-normal-language
13986 The @kbd{d N} (@code{calc-normal-language}) command selects the usual
13987 notation for Calc formulas, as described in the rest of this manual.
13988 Matrices are displayed in a multi-line tabular format, but all other
13989 objects are written in linear form, as they would be typed from the
13990 keyboard.
13992 @kindex d O
13993 @pindex calc-flat-language
13994 @cindex Matrix display
13995 The @kbd{d O} (@code{calc-flat-language}) command selects a language
13996 identical with the normal one, except that matrices are written in
13997 one-line form along with everything else.  In some applications this
13998 form may be more suitable for yanking data into other buffers.
14000 @kindex d b
14001 @pindex calc-line-breaking
14002 @cindex Line breaking
14003 @cindex Breaking up long lines
14004 Even in one-line mode, long formulas or vectors will still be split
14005 across multiple lines if they exceed the width of the Calculator window.
14006 The @kbd{d b} (@code{calc-line-breaking}) command turns this line-breaking
14007 feature on and off.  (It works independently of the current language.)
14008 If you give a numeric prefix argument of five or greater to the @kbd{d b}
14009 command, that argument will specify the line width used when breaking
14010 long lines.
14012 @kindex d B
14013 @pindex calc-big-language
14014 The @kbd{d B} (@code{calc-big-language}) command selects a language
14015 which uses textual approximations to various mathematical notations,
14016 such as powers, quotients, and square roots:
14018 @example
14019   ____________
14020  | a + 1    2
14021  | ----- + c
14022 \|   b
14023 @end example
14025 @noindent
14026 in place of @samp{sqrt((a+1)/b + c^2)}.
14028 Subscripts like @samp{a_i} are displayed as actual subscripts in Big
14029 mode.  Double subscripts, @samp{a_i_j} (@samp{subscr(subscr(a, i), j)})
14030 are displayed as @samp{a} with subscripts separated by commas:
14031 @samp{i, j}.  They must still be entered in the usual underscore
14032 notation.
14034 One slight ambiguity of Big notation is that
14036 @example
14037   3
14038 - -
14039   4
14040 @end example
14042 @noindent
14043 can represent either the negative rational number @expr{-3:4}, or the
14044 actual expression @samp{-(3/4)}; but the latter formula would normally
14045 never be displayed because it would immediately be evaluated to
14046 @expr{-3:4} or @expr{-0.75}, so this ambiguity is not a problem in
14047 typical use.
14049 Non-decimal numbers are displayed with subscripts.  Thus there is no
14050 way to tell the difference between @samp{16#C2} and @samp{C2_16},
14051 though generally you will know which interpretation is correct.
14052 Logarithms @samp{log(x,b)} and @samp{log10(x)} also use subscripts
14053 in Big mode.
14055 In Big mode, stack entries often take up several lines.  To aid
14056 readability, stack entries are separated by a blank line in this mode.
14057 You may find it useful to expand the Calc window's height using
14058 @kbd{C-x ^} (@code{enlarge-window}) or to make the Calc window the only
14059 one on the screen with @kbd{C-x 1} (@code{delete-other-windows}).
14061 Long lines are currently not rearranged to fit the window width in
14062 Big mode, so you may need to use the @kbd{<} and @kbd{>} keys
14063 to scroll across a wide formula.  For really big formulas, you may
14064 even need to use @kbd{@{} and @kbd{@}} to scroll up and down.
14066 @kindex d U
14067 @pindex calc-unformatted-language
14068 The @kbd{d U} (@code{calc-unformatted-language}) command altogether disables
14069 the use of operator notation in formulas.  In this mode, the formula
14070 shown above would be displayed:
14072 @example
14073 sqrt(add(div(add(a, 1), b), pow(c, 2)))
14074 @end example
14076 These four modes differ only in display format, not in the format
14077 expected for algebraic entry.  The standard Calc operators work in
14078 all four modes, and unformatted notation works in any language mode
14079 (except that Mathematica mode expects square brackets instead of
14080 parentheses).
14082 @node C FORTRAN Pascal, TeX and LaTeX Language Modes, Normal Language Modes, Language Modes
14083 @subsection C, FORTRAN, and Pascal Modes
14085 @noindent
14086 @kindex d C
14087 @pindex calc-c-language
14088 @cindex C language
14089 The @kbd{d C} (@code{calc-c-language}) command selects the conventions
14090 of the C language for display and entry of formulas.  This differs from
14091 the normal language mode in a variety of (mostly minor) ways.  In
14092 particular, C language operators and operator precedences are used in
14093 place of Calc's usual ones.  For example, @samp{a^b} means @samp{xor(a,b)}
14094 in C mode; a value raised to a power is written as a function call,
14095 @samp{pow(a,b)}.
14097 In C mode, vectors and matrices use curly braces instead of brackets.
14098 Octal and hexadecimal values are written with leading @samp{0} or @samp{0x}
14099 rather than using the @samp{#} symbol.  Array subscripting is
14100 translated into @code{subscr} calls, so that @samp{a[i]} in C
14101 mode is the same as @samp{a_i} in Normal mode.  Assignments
14102 turn into the @code{assign} function, which Calc normally displays
14103 using the @samp{:=} symbol.
14105 The variables @code{pi} and @code{e} would be displayed @samp{pi}
14106 and @samp{e} in Normal mode, but in C mode they are displayed as
14107 @samp{M_PI} and @samp{M_E}, corresponding to the names of constants
14108 typically provided in the @file{<math.h>} header.  Functions whose
14109 names are different in C are translated automatically for entry and
14110 display purposes.  For example, entering @samp{asin(x)} will push the
14111 formula @samp{arcsin(x)} onto the stack; this formula will be displayed
14112 as @samp{asin(x)} as long as C mode is in effect.
14114 @kindex d P
14115 @pindex calc-pascal-language
14116 @cindex Pascal language
14117 The @kbd{d P} (@code{calc-pascal-language}) command selects Pascal
14118 conventions.  Like C mode, Pascal mode interprets array brackets and uses
14119 a different table of operators.  Hexadecimal numbers are entered and
14120 displayed with a preceding dollar sign.  (Thus the regular meaning of
14121 @kbd{$2} during algebraic entry does not work in Pascal mode, though
14122 @kbd{$} (and @kbd{$$}, etc.)@: not followed by digits works the same as
14123 always.)  No special provisions are made for other non-decimal numbers,
14124 vectors, and so on, since there is no universally accepted standard way
14125 of handling these in Pascal.
14127 @kindex d F
14128 @pindex calc-fortran-language
14129 @cindex FORTRAN language
14130 The @kbd{d F} (@code{calc-fortran-language}) command selects FORTRAN
14131 conventions.  Various function names are transformed into FORTRAN
14132 equivalents.  Vectors are written as @samp{/1, 2, 3/}, and may be
14133 entered this way or using square brackets.  Since FORTRAN uses round
14134 parentheses for both function calls and array subscripts, Calc displays
14135 both in the same way; @samp{a(i)} is interpreted as a function call
14136 upon reading, and subscripts must be entered as @samp{subscr(a, i)}.
14137 If the variable @code{a} has been declared to have type
14138 @code{vector} or @code{matrix}, however,  then @samp{a(i)} will be
14139 parsed as a subscript.  (@xref{Declarations}.)  Usually it doesn't
14140 matter, though; if you enter the subscript expression @samp{a(i)} and
14141 Calc interprets it as a function call, you'll never know the difference
14142 unless you switch to another language mode or replace @code{a} with an
14143 actual vector (or unless @code{a} happens to be the name of a built-in
14144 function!).
14146 Underscores are allowed in variable and function names in all of these
14147 language modes.  The underscore here is equivalent to the @samp{#} in
14148 Normal mode, or to hyphens in the underlying Emacs Lisp variable names.
14150 FORTRAN and Pascal modes normally do not adjust the case of letters in
14151 formulas.  Most built-in Calc names use lower-case letters.  If you use a
14152 positive numeric prefix argument with @kbd{d P} or @kbd{d F}, these
14153 modes will use upper-case letters exclusively for display, and will
14154 convert to lower-case on input.  With a negative prefix, these modes
14155 convert to lower-case for display and input.
14157 @node TeX and LaTeX Language Modes, Eqn Language Mode, C FORTRAN Pascal, Language Modes
14158 @subsection @TeX{} and @LaTeX{} Language Modes
14160 @noindent
14161 @kindex d T
14162 @pindex calc-tex-language
14163 @cindex TeX language
14164 @kindex d L
14165 @pindex calc-latex-language
14166 @cindex LaTeX language
14167 The @kbd{d T} (@code{calc-tex-language}) command selects the conventions
14168 of ``math mode'' in Donald Knuth's @TeX{} typesetting language,
14169 and the @kbd{d L} (@code{calc-latex-language}) command selects the
14170 conventions of ``math mode'' in @LaTeX{}, a typesetting language that
14171 uses @TeX{} as its formatting engine.  Calc's @LaTeX{} language mode can
14172 read any formula that the @TeX{} language mode can, although @LaTeX{}
14173 mode may display it differently.
14175 Formulas are entered and displayed in the appropriate notation;
14176 @texline @math{\sin(a/b)}
14177 @infoline @expr{sin(a/b)}
14178 will appear as @samp{\sin\left( @{a \over b@} \right)} in @TeX{} mode and
14179 @samp{\sin\left(\frac@{a@}@{b@}\right)} in @LaTeX{} mode.
14180 Math formulas are often enclosed by @samp{$ $} signs in @TeX{} and
14181 @LaTeX{}; these should be omitted when interfacing with Calc.  To Calc,
14182 the @samp{$} sign has the same meaning it always does in algebraic
14183 formulas (a reference to an existing entry on the stack).
14185 Complex numbers are displayed as in @samp{3 + 4i}.  Fractions and
14186 quotients are written using @code{\over} in @TeX{} mode (as in
14187 @code{@{a \over b@}}) and @code{\frac} in @LaTeX{} mode (as in
14188 @code{\frac@{a@}@{b@}});  binomial coefficients are written with
14189 @code{\choose} in @TeX{} mode (as in @code{@{a \choose b@}}) and
14190 @code{\binom} in @LaTeX{} mode (as in @code{\binom@{a@}@{b@}}).
14191 Interval forms are written with @code{\ldots}, and error forms are
14192 written with @code{\pm}. Absolute values are written as in
14193 @samp{|x + 1|}, and the floor and ceiling functions are written with
14194 @code{\lfloor}, @code{\rfloor}, etc. The words @code{\left} and
14195 @code{\right} are ignored when reading formulas in @TeX{} and @LaTeX{}
14196 modes.  Both @code{inf} and @code{uinf} are written as @code{\infty};
14197 when read, @code{\infty} always translates to @code{inf}.
14199 Function calls are written the usual way, with the function name followed
14200 by the arguments in parentheses.  However, functions for which @TeX{}
14201 and @LaTeX{} have special names (like @code{\sin}) will use curly braces
14202 instead of parentheses for very simple arguments.  During input, curly
14203 braces and parentheses work equally well for grouping, but when the
14204 document is formatted the curly braces will be invisible.  Thus the
14205 printed result is
14206 @texline @math{\sin{2 x}}
14207 @infoline @expr{sin 2x}
14209 @texline @math{\sin(2 + x)}.
14210 @infoline @expr{sin(2 + x)}.
14212 The @TeX{} specific unit names (@pxref{Predefined Units}) will not use
14213 the @samp{tex} prefix;  the unit name for a @TeX{} point will be
14214 @samp{pt} instead of @samp{texpt}, for example.
14216 Function and variable names not treated specially by @TeX{} and @LaTeX{}
14217 are simply written out as-is, which will cause them to come out in
14218 italic letters in the printed document.  If you invoke @kbd{d T} or
14219 @kbd{d L} with a positive numeric prefix argument, names of more than
14220 one character will instead be enclosed in a protective commands that
14221 will prevent them from being typeset in the math italics; they will be
14222 written @samp{\hbox@{@var{name}@}} in @TeX{} mode and
14223 @samp{\text@{@var{name}@}} in @LaTeX{} mode.  The
14224 @samp{\hbox@{ @}} and @samp{\text@{ @}} notations are ignored during
14225 reading.  If you use a negative prefix argument, such function names are
14226 written @samp{\@var{name}}, and function names that begin with @code{\} during
14227 reading have the @code{\} removed.  (Note that in this mode, long
14228 variable names are still written with @code{\hbox} or @code{\text}.
14229 However, you can always make an actual variable name like @code{\bar} in
14230 any @TeX{} mode.)
14232 During reading, text of the form @samp{\matrix@{ ...@: @}} is replaced
14233 by @samp{[ ...@: ]}.  The same also applies to @code{\pmatrix} and
14234 @code{\bmatrix}.  In @LaTeX{} mode this also applies to
14235 @samp{\begin@{matrix@} ... \end@{matrix@}},
14236 @samp{\begin@{bmatrix@} ... \end@{bmatrix@}},
14237 @samp{\begin@{pmatrix@} ... \end@{pmatrix@}}, as well as
14238 @samp{\begin@{smallmatrix@} ... \end@{smallmatrix@}}.
14239 The symbol @samp{&} is interpreted as a comma,
14240 and the symbols @samp{\cr} and @samp{\\} are interpreted as semicolons.
14241 During output, matrices are displayed in @samp{\matrix@{ a & b \\ c & d@}}
14242 format in @TeX{} mode and in
14243 @samp{\begin@{pmatrix@} a & b \\ c & d \end@{pmatrix@}} format in
14244 @LaTeX{} mode; you may need to edit this afterwards to change to your
14245 preferred matrix form.  If you invoke @kbd{d T} or @kbd{d L} with an
14246 argument of 2 or -2, then matrices will be displayed in two-dimensional
14247 form, such as
14249 @example
14250 \begin@{pmatrix@}
14251 a & b \\
14252 c & d
14253 \end@{pmatrix@}
14254 @end example
14256 @noindent
14257 This may be convenient for isolated matrices, but could lead to
14258 expressions being displayed like
14260 @example
14261 \begin@{pmatrix@} \times x
14262 a & b \\
14263 c & d
14264 \end@{pmatrix@}
14265 @end example
14267 @noindent
14268 While this wouldn't bother Calc, it is incorrect @LaTeX{}.
14269 (Similarly for @TeX{}.)
14271 Accents like @code{\tilde} and @code{\bar} translate into function
14272 calls internally (@samp{tilde(x)}, @samp{bar(x)}).  The @code{\underline}
14273 sequence is treated as an accent.  The @code{\vec} accent corresponds
14274 to the function name @code{Vec}, because @code{vec} is the name of
14275 a built-in Calc function.  The following table shows the accents
14276 in Calc, @TeX{}, @LaTeX{} and @dfn{eqn} (described in the next section):
14278 @ignore
14279 @iftex
14280 @begingroup
14281 @let@calcindexershow=@calcindexernoshow  @c Suppress marginal notes
14282 @let@calcindexersh=@calcindexernoshow
14283 @end iftex
14284 @starindex
14285 @end ignore
14286 @tindex acute
14287 @ignore
14288 @starindex
14289 @end ignore
14290 @tindex Acute
14291 @ignore
14292 @starindex
14293 @end ignore
14294 @tindex bar
14295 @ignore
14296 @starindex
14297 @end ignore
14298 @tindex Bar
14299 @ignore
14300 @starindex
14301 @end ignore
14302 @tindex breve
14303 @ignore
14304 @starindex
14305 @end ignore
14306 @tindex Breve
14307 @ignore
14308 @starindex
14309 @end ignore
14310 @tindex check
14311 @ignore
14312 @starindex
14313 @end ignore
14314 @tindex Check
14315 @ignore
14316 @starindex
14317 @end ignore
14318 @tindex dddot
14319 @ignore
14320 @starindex
14321 @end ignore
14322 @tindex ddddot
14323 @ignore
14324 @starindex
14325 @end ignore
14326 @tindex dot
14327 @ignore
14328 @starindex
14329 @end ignore
14330 @tindex Dot
14331 @ignore
14332 @starindex
14333 @end ignore
14334 @tindex dotdot
14335 @ignore
14336 @starindex
14337 @end ignore
14338 @tindex DotDot
14339 @ignore
14340 @starindex
14341 @end ignore
14342 @tindex dyad
14343 @ignore
14344 @starindex
14345 @end ignore
14346 @tindex grave
14347 @ignore
14348 @starindex
14349 @end ignore
14350 @tindex Grave
14351 @ignore
14352 @starindex
14353 @end ignore
14354 @tindex hat
14355 @ignore
14356 @starindex
14357 @end ignore
14358 @tindex Hat
14359 @ignore
14360 @starindex
14361 @end ignore
14362 @tindex Prime
14363 @ignore
14364 @starindex
14365 @end ignore
14366 @tindex tilde
14367 @ignore
14368 @starindex
14369 @end ignore
14370 @tindex Tilde
14371 @ignore
14372 @starindex
14373 @end ignore
14374 @tindex under
14375 @ignore
14376 @starindex
14377 @end ignore
14378 @tindex Vec
14379 @ignore
14380 @starindex
14381 @end ignore
14382 @tindex VEC
14383 @ignore
14384 @iftex
14385 @endgroup
14386 @end iftex
14387 @end ignore
14388 @example
14389 Calc      TeX           LaTeX         eqn
14390 ----      ---           -----         ---
14391 acute     \acute        \acute
14392 Acute                   \Acute
14393 bar       \bar          \bar          bar
14394 Bar                     \Bar
14395 breve     \breve        \breve
14396 Breve                   \Breve
14397 check     \check        \check
14398 Check                   \Check
14399 dddot                   \dddot
14400 ddddot                  \ddddot
14401 dot       \dot          \dot          dot
14402 Dot                     \Dot
14403 dotdot    \ddot         \ddot         dotdot
14404 DotDot                  \Ddot
14405 dyad                                  dyad
14406 grave     \grave        \grave
14407 Grave                   \Grave
14408 hat       \hat          \hat          hat
14409 Hat                     \Hat
14410 Prime                                 prime
14411 tilde     \tilde        \tilde        tilde
14412 Tilde                   \Tilde
14413 under     \underline    \underline    under
14414 Vec       \vec          \vec          vec
14415 VEC                     \Vec
14416 @end example
14418 The @samp{=>} (evaluates-to) operator appears as a @code{\to} symbol:
14419 @samp{@{@var{a} \to @var{b}@}}.  @TeX{} defines @code{\to} as an
14420 alias for @code{\rightarrow}.  However, if the @samp{=>} is the
14421 top-level expression being formatted, a slightly different notation
14422 is used:  @samp{\evalto @var{a} \to @var{b}}.  The @code{\evalto}
14423 word is ignored by Calc's input routines, and is undefined in @TeX{}.
14424 You will typically want to include one of the following definitions
14425 at the top of a @TeX{} file that uses @code{\evalto}:
14427 @example
14428 \def\evalto@{@}
14429 \def\evalto#1\to@{@}
14430 @end example
14432 The first definition formats evaluates-to operators in the usual
14433 way.  The second causes only the @var{b} part to appear in the
14434 printed document; the @var{a} part and the arrow are hidden.
14435 Another definition you may wish to use is @samp{\let\to=\Rightarrow}
14436 which causes @code{\to} to appear more like Calc's @samp{=>} symbol.
14437 @xref{Evaluates-To Operator}, for a discussion of @code{evalto}.
14439 The complete set of @TeX{} control sequences that are ignored during
14440 reading is:
14442 @example
14443 \hbox  \mbox  \text  \left  \right
14444 \,  \>  \:  \;  \!  \quad  \qquad  \hfil  \hfill
14445 \displaystyle  \textstyle  \dsize  \tsize
14446 \scriptstyle  \scriptscriptstyle  \ssize  \ssize
14447 \rm  \bf  \it  \sl  \roman  \bold  \italic  \slanted
14448 \cal  \mit  \Cal  \Bbb  \frak  \goth
14449 \evalto
14450 @end example
14452 Note that, because these symbols are ignored, reading a @TeX{} or
14453 @LaTeX{} formula into Calc and writing it back out may lose spacing and
14454 font information.
14456 Also, the ``discretionary multiplication sign'' @samp{\*} is read
14457 the same as @samp{*}.
14459 @ifnottex
14460 The @TeX{} version of this manual includes some printed examples at the
14461 end of this section.
14462 @end ifnottex
14463 @iftex
14464 Here are some examples of how various Calc formulas are formatted in @TeX{}:
14466 @example
14467 @group
14468 sin(a^2 / b_i)
14469 \sin\left( {a^2 \over b_i} \right)
14470 @end group
14471 @end example
14472 @tex
14473 $$ \sin\left( a^2 \over b_i \right) $$
14474 @end tex
14475 @sp 1
14477 @example
14478 @group
14479 [(3, 4), 3:4, 3 +/- 4, [3 .. inf)]
14480 [3 + 4i, @{3 \over 4@}, 3 \pm 4, [3 \ldots \infty)]
14481 @end group
14482 @end example
14483 @tex
14484 $$ [3 + 4i, {3 \over 4}, 3 \pm 4, [ 3 \ldots \infty)] $$
14485 @end tex
14486 @sp 1
14488 @example
14489 @group
14490 [abs(a), abs(a / b), floor(a), ceil(a / b)]
14491 [|a|, \left| a \over b \right|,
14492  \lfloor a \rfloor, \left\lceil a \over b \right\rceil]
14493 @end group
14494 @end example
14495 @tex
14496 $$ [|a|, \left| a \over b \right|,
14497     \lfloor a \rfloor, \left\lceil a \over b \right\rceil] $$
14498 @end tex
14499 @sp 1
14501 @example
14502 @group
14503 [sin(a), sin(2 a), sin(2 + a), sin(a / b)]
14504 [\sin@{a@}, \sin@{2 a@}, \sin(2 + a),
14505  \sin\left( @{a \over b@} \right)]
14506 @end group
14507 @end example
14508 @tex
14509 $$ [\sin{a}, \sin{2 a}, \sin(2 + a), \sin\left( {a \over b} \right)] $$
14510 @end tex
14511 @sp 2
14513 First with plain @kbd{d T}, then with @kbd{C-u d T}, then finally with
14514 @kbd{C-u - d T} (using the example definition
14515 @samp{\def\foo#1@{\tilde F(#1)@}}:
14517 @example
14518 @group
14519 [f(a), foo(bar), sin(pi)]
14520 [f(a), foo(bar), \sin{\pi}]
14521 [f(a), \hbox@{foo@}(\hbox@{bar@}), \sin@{\pi@}]
14522 [f(a), \foo@{\hbox@{bar@}@}, \sin@{\pi@}]
14523 @end group
14524 @end example
14525 @tex
14526 $$ [f(a), foo(bar), \sin{\pi}] $$
14527 $$ [f(a), \hbox{foo}(\hbox{bar}), \sin{\pi}] $$
14528 $$ [f(a), \tilde F(\hbox{bar}), \sin{\pi}] $$
14529 @end tex
14530 @sp 2
14532 First with @samp{\def\evalto@{@}}, then with @samp{\def\evalto#1\to@{@}}:
14534 @example
14535 @group
14536 2 + 3 => 5
14537 \evalto 2 + 3 \to 5
14538 @end group
14539 @end example
14540 @tex
14541 $$ 2 + 3 \to 5 $$
14542 $$ 5 $$
14543 @end tex
14544 @sp 2
14546 First with standard @code{\to}, then with @samp{\let\to\Rightarrow}:
14548 @example
14549 @group
14550 [2 + 3 => 5, a / 2 => (b + c) / 2]
14551 [@{2 + 3 \to 5@}, @{@{a \over 2@} \to @{b + c \over 2@}@}]
14552 @end group
14553 @end example
14554 @tex
14555 $$ [{2 + 3 \to 5}, {{a \over 2} \to {b + c \over 2}}] $$
14556 {\let\to\Rightarrow
14557 $$ [{2 + 3 \to 5}, {{a \over 2} \to {b + c \over 2}}] $$}
14558 @end tex
14559 @sp 2
14561 Matrices normally, then changing @code{\matrix} to @code{\pmatrix}:
14563 @example
14564 @group
14565 [ [ a / b, 0 ], [ 0, 2^(x + 1) ] ]
14566 \matrix@{ @{a \over b@} & 0 \\ 0 & 2^@{(x + 1)@} @}
14567 \pmatrix@{ @{a \over b@} & 0 \\ 0 & 2^@{(x + 1)@} @}
14568 @end group
14569 @end example
14570 @tex
14571 $$ \matrix{ {a \over b} & 0 \cr 0 & 2^{(x + 1)} } $$
14572 $$ \pmatrix{ {a \over b} & 0 \cr 0 & 2^{(x + 1)} } $$
14573 @end tex
14574 @sp 2
14575 @end iftex
14577 @node Eqn Language Mode, Yacas Language Mode, TeX and LaTeX Language Modes, Language Modes
14578 @subsection Eqn Language Mode
14580 @noindent
14581 @kindex d E
14582 @pindex calc-eqn-language
14583 @dfn{Eqn} is another popular formatter for math formulas.  It is
14584 designed for use with the TROFF text formatter, and comes standard
14585 with many versions of Unix.  The @kbd{d E} (@code{calc-eqn-language})
14586 command selects @dfn{eqn} notation.
14588 The @dfn{eqn} language's main idiosyncrasy is that whitespace plays
14589 a significant part in the parsing of the language.  For example,
14590 @samp{sqrt x+1 + y} treats @samp{x+1} as the argument of the
14591 @code{sqrt} operator.  @dfn{Eqn} also understands more conventional
14592 grouping using curly braces:  @samp{sqrt@{x+1@} + y}.  Braces are
14593 required only when the argument contains spaces.
14595 In Calc's @dfn{eqn} mode, however, curly braces are required to
14596 delimit arguments of operators like @code{sqrt}.  The first of the
14597 above examples would treat only the @samp{x} as the argument of
14598 @code{sqrt}, and in fact @samp{sin x+1} would be interpreted as
14599 @samp{sin * x + 1}, because @code{sin} is not a special operator
14600 in the @dfn{eqn} language.  If you always surround the argument
14601 with curly braces, Calc will never misunderstand.
14603 Calc also understands parentheses as grouping characters.  Another
14604 peculiarity of @dfn{eqn}'s syntax makes it advisable to separate
14605 words with spaces from any surrounding characters that aren't curly
14606 braces, so Calc writes @samp{sin ( x + y )} in @dfn{eqn} mode.
14607 (The spaces around @code{sin} are important to make @dfn{eqn}
14608 recognize that @code{sin} should be typeset in a roman font, and
14609 the spaces around @code{x} and @code{y} are a good idea just in
14610 case the @dfn{eqn} document has defined special meanings for these
14611 names, too.)
14613 Powers and subscripts are written with the @code{sub} and @code{sup}
14614 operators, respectively.  Note that the caret symbol @samp{^} is
14615 treated the same as a space in @dfn{eqn} mode, as is the @samp{~}
14616 symbol (these are used to introduce spaces of various widths into
14617 the typeset output of @dfn{eqn}).
14619 As in @LaTeX{} mode, Calc's formatter omits parentheses around the
14620 arguments of functions like @code{ln} and @code{sin} if they are
14621 ``simple-looking''; in this case Calc surrounds the argument with
14622 braces, separated by a @samp{~} from the function name: @samp{sin~@{x@}}.
14624 Font change codes (like @samp{roman @var{x}}) and positioning codes
14625 (like @samp{~} and @samp{down @var{n} @var{x}}) are ignored by the
14626 @dfn{eqn} reader.  Also ignored are the words @code{left}, @code{right},
14627 @code{mark}, and @code{lineup}.  Quotation marks in @dfn{eqn} mode input
14628 are treated the same as curly braces: @samp{sqrt "1+x"} is equivalent to
14629 @samp{sqrt @{1+x@}}; this is only an approximation to the true meaning
14630 of quotes in @dfn{eqn}, but it is good enough for most uses.
14632 Accent codes (@samp{@var{x} dot}) are handled by treating them as
14633 function calls (@samp{dot(@var{x})}) internally.
14634 @xref{TeX and LaTeX Language Modes}, for a table of these accent
14635 functions.  The @code{prime} accent is treated specially if it occurs on
14636 a variable or function name: @samp{f prime prime @w{( x prime )}} is
14637 stored internally as @samp{f'@w{'}(x')}.  For example, taking the
14638 derivative of @samp{f(2 x)} with @kbd{a d x} will produce @samp{2 f'(2
14639 x)}, which @dfn{eqn} mode will display as @samp{2 f prime ( 2 x )}.
14641 Assignments are written with the @samp{<-} (left-arrow) symbol,
14642 and @code{evalto} operators are written with @samp{->} or
14643 @samp{evalto ... ->} (@pxref{TeX and LaTeX Language Modes}, for a discussion
14644 of this).  The regular Calc symbols @samp{:=} and @samp{=>} are also
14645 recognized for these operators during reading.
14647 Vectors in @dfn{eqn} mode use regular Calc square brackets, but
14648 matrices are formatted as @samp{matrix @{ ccol @{ a above b @} ... @}}.
14649 The words @code{lcol} and @code{rcol} are recognized as synonyms
14650 for @code{ccol} during input, and are generated instead of @code{ccol}
14651 if the matrix justification mode so specifies.
14653 @node Yacas Language Mode, Maxima Language Mode, Eqn Language Mode, Language Modes
14654 @subsection Yacas Language Mode
14656 @noindent
14657 @kindex d Y
14658 @pindex calc-yacas-language
14659 @cindex Yacas language
14660 The @kbd{d Y} (@code{calc-yacas-language}) command selects the
14661 conventions of Yacas, a free computer algebra system.  While the
14662 operators and functions in Yacas are similar to those of Calc, the names
14663 of built-in functions in Yacas are capitalized.  The Calc formula
14664 @samp{sin(2 x)}, for example, is entered and displayed @samp{Sin(2 x)}
14665 in Yacas mode,  and `@samp{arcsin(x^2)} is @samp{ArcSin(x^2)} in Yacas
14666 mode.  Complex numbers are written  are written @samp{3 + 4 I}.
14667 The standard special constants are written @code{Pi}, @code{E},
14668 @code{I}, @code{GoldenRatio} and @code{Gamma}.  @code{Infinity}
14669 represents both @code{inf} and @code{uinf}, and @code{Undefined}
14670 represents @code{nan}.
14672 Certain operators on functions, such as @code{D} for differentiation
14673 and @code{Integrate} for integration, take a prefix form in Yacas.  For
14674 example, the derivative of @w{@samp{e^x sin(x)}} can be computed with
14675 @w{@samp{D(x) Exp(x)*Sin(x)}}.
14677 Other notable differences between Yacas and standard Calc expressions
14678 are that vectors and matrices use curly braces in Yacas, and subscripts
14679 use square brackets.  If, for example, @samp{A} represents the list
14680 @samp{@{a,2,c,4@}}, then @samp{A[3]} would equal @samp{c}.
14683 @node Maxima Language Mode, Giac Language Mode, Yacas Language Mode, Language Modes
14684 @subsection Maxima Language Mode
14686 @noindent
14687 @kindex d X
14688 @pindex calc-maxima-language
14689 @cindex Maxima language
14690 The @kbd{d X} (@code{calc-maxima-language}) command selects the
14691 conventions of Maxima, another free computer algebra system.  The
14692 function names in Maxima are similar, but not always identical, to Calc.
14693 For example, instead of @samp{arcsin(x)}, Maxima will use
14694 @samp{asin(x)}.  Complex numbers are written @samp{3 + 4 %i}.  The
14695 standard special constants are written @code{%pi},  @code{%e},
14696 @code{%i}, @code{%phi} and @code{%gamma}.  In Maxima,  @code{inf} means
14697 the same as in Calc, but @code{infinity} represents Calc's @code{uinf}.
14699 Underscores as well as percent signs are allowed in function and
14700 variable names in Maxima mode.  The underscore again is equivalent to
14701 the @samp{#} in Normal mode, and the percent sign is equivalent to
14702 @samp{o'o}.
14704 Maxima uses square brackets for lists and vectors, and matrices are
14705 written as calls to the function @code{matrix}, given the row vectors of
14706 the matrix as arguments.  Square brackets are also used as subscripts.
14708 @node Giac Language Mode, Mathematica Language Mode, Maxima Language Mode, Language Modes
14709 @subsection Giac Language Mode
14711 @noindent
14712 @kindex d A
14713 @pindex calc-giac-language
14714 @cindex Giac language
14715 The @kbd{d A} (@code{calc-giac-language}) command selects the
14716 conventions of Giac, another free computer algebra system.  The function
14717 names in Giac are similar to Maxima.  Complex numbers are written
14718 @samp{3 + 4 i}.  The standard special constants in Giac are the same as
14719 in Calc, except that @code{infinity} represents both Calc's @code{inf}
14720 and @code{uinf}.
14722 Underscores are allowed in function and variable names in Giac mode.
14723 Brackets are used for subscripts.  In Giac, indexing of lists begins at
14724 0, instead of 1 as in Calc.  So if  @samp{A} represents the list
14725 @samp{[a,2,c,4]}, then @samp{A[2]} would equal @samp{c}.  In general,
14726 @samp{A[n]} in Giac mode corresponds to @samp{A_(n+1)} in Normal mode.
14728 The Giac interval notation @samp{2 .. 3} has no surrounding brackets;
14729 Calc reads @samp{2 .. 3} as the closed interval @samp{[2 .. 3]} and
14730 writes any kind of interval as @samp{2 .. 3}.  This means you cannot see
14731 the difference between an open and a closed interval while in Giac mode.
14733 @node Mathematica Language Mode, Maple Language Mode, Giac Language Mode, Language Modes
14734 @subsection Mathematica Language Mode
14736 @noindent
14737 @kindex d M
14738 @pindex calc-mathematica-language
14739 @cindex Mathematica language
14740 The @kbd{d M} (@code{calc-mathematica-language}) command selects the
14741 conventions of Mathematica.  Notable differences in Mathematica mode
14742 are that the names of built-in functions are capitalized, and function
14743 calls use square brackets instead of parentheses.  Thus the Calc
14744 formula @samp{sin(2 x)} is entered and displayed @w{@samp{Sin[2 x]}} in
14745 Mathematica mode.
14747 Vectors and matrices use curly braces in Mathematica.  Complex numbers
14748 are written @samp{3 + 4 I}.  The standard special constants in Calc are
14749 written @code{Pi}, @code{E}, @code{I}, @code{GoldenRatio}, @code{EulerGamma},
14750 @code{Infinity}, @code{ComplexInfinity}, and @code{Indeterminate} in
14751 Mathematica mode.
14752 Non-decimal numbers are written, e.g., @samp{16^^7fff}.  Floating-point
14753 numbers in scientific notation are written @samp{1.23*10.^3}.
14754 Subscripts use double square brackets: @samp{a[[i]]}.
14756 @node Maple Language Mode, Compositions, Mathematica Language Mode, Language Modes
14757 @subsection Maple Language Mode
14759 @noindent
14760 @kindex d W
14761 @pindex calc-maple-language
14762 @cindex Maple language
14763 The @kbd{d W} (@code{calc-maple-language}) command selects the
14764 conventions of Maple.
14766 Maple's language is much like C@.  Underscores are allowed in symbol
14767 names; square brackets are used for subscripts; explicit @samp{*}s for
14768 multiplications are required.  Use either @samp{^} or @samp{**} to
14769 denote powers.
14771 Maple uses square brackets for lists and curly braces for sets.  Calc
14772 interprets both notations as vectors, and displays vectors with square
14773 brackets.  This means Maple sets will be converted to lists when they
14774 pass through Calc.  As a special case, matrices are written as calls
14775 to the function @code{matrix}, given a list of lists as the argument,
14776 and can be read in this form or with all-capitals @code{MATRIX}.
14778 The Maple interval notation @samp{2 .. 3} is like Giac's interval
14779 notation, and is handled the same by Calc.
14781 Maple writes complex numbers as @samp{3 + 4*I}.  Its special constants
14782 are @code{Pi}, @code{E}, @code{I}, and @code{infinity} (all three of
14783 @code{inf}, @code{uinf}, and @code{nan} display as @code{infinity}).
14784 Floating-point numbers are written @samp{1.23*10.^3}.
14786 Among things not currently handled by Calc's Maple mode are the
14787 various quote symbols, procedures and functional operators, and
14788 inert (@samp{&}) operators.
14790 @node Compositions, Syntax Tables, Maple Language Mode, Language Modes
14791 @subsection Compositions
14793 @noindent
14794 @cindex Compositions
14795 There are several @dfn{composition functions} which allow you to get
14796 displays in a variety of formats similar to those in Big language
14797 mode.  Most of these functions do not evaluate to anything; they are
14798 placeholders which are left in symbolic form by Calc's evaluator but
14799 are recognized by Calc's display formatting routines.
14801 Two of these, @code{string} and @code{bstring}, are described elsewhere.
14802 @xref{Strings}.  For example, @samp{string("ABC")} is displayed as
14803 @samp{ABC}.  When viewed on the stack it will be indistinguishable from
14804 the variable @code{ABC}, but internally it will be stored as
14805 @samp{string([65, 66, 67])} and can still be manipulated this way; for
14806 example, the selection and vector commands @kbd{j 1 v v j u} would
14807 select the vector portion of this object and reverse the elements, then
14808 deselect to reveal a string whose characters had been reversed.
14810 The composition functions do the same thing in all language modes
14811 (although their components will of course be formatted in the current
14812 language mode).  The one exception is Unformatted mode (@kbd{d U}),
14813 which does not give the composition functions any special treatment.
14814 The functions are discussed here because of their relationship to
14815 the language modes.
14817 @menu
14818 * Composition Basics::
14819 * Horizontal Compositions::
14820 * Vertical Compositions::
14821 * Other Compositions::
14822 * Information about Compositions::
14823 * User-Defined Compositions::
14824 @end menu
14826 @node Composition Basics, Horizontal Compositions, Compositions, Compositions
14827 @subsubsection Composition Basics
14829 @noindent
14830 Compositions are generally formed by stacking formulas together
14831 horizontally or vertically in various ways.  Those formulas are
14832 themselves compositions.  @TeX{} users will find this analogous
14833 to @TeX{}'s ``boxes.''  Each multi-line composition has a
14834 @dfn{baseline}; horizontal compositions use the baselines to
14835 decide how formulas should be positioned relative to one another.
14836 For example, in the Big mode formula
14838 @example
14839 @group
14840           2
14841      a + b
14842 17 + ------
14843        c
14844 @end group
14845 @end example
14847 @noindent
14848 the second term of the sum is four lines tall and has line three as
14849 its baseline.  Thus when the term is combined with 17, line three
14850 is placed on the same level as the baseline of 17.
14852 @tex
14853 \bigskip
14854 @end tex
14856 Another important composition concept is @dfn{precedence}.  This is
14857 an integer that represents the binding strength of various operators.
14858 For example, @samp{*} has higher precedence (195) than @samp{+} (180),
14859 which means that @samp{(a * b) + c} will be formatted without the
14860 parentheses, but @samp{a * (b + c)} will keep the parentheses.
14862 The operator table used by normal and Big language modes has the
14863 following precedences:
14865 @example
14866 _     1200    @r{(subscripts)}
14867 %     1100    @r{(as in n}%@r{)}
14868 !     1000    @r{(as in }!@r{n)}
14869 mod    400
14870 +/-    300
14871 !!     210    @r{(as in n}!!@r{)}
14872 !      210    @r{(as in n}!@r{)}
14873 ^      200
14874 -      197    @r{(as in }-@r{n)}
14875 *      195    @r{(or implicit multiplication)}
14876 / % \  190
14877 + -    180    @r{(as in a}+@r{b)}
14878 |      170
14879 < =    160    @r{(and other relations)}
14880 &&     110
14881 ||     100
14882 ? :     90
14883 !!!     85
14884 &&&     80
14885 |||     75
14886 :=      50
14887 ::      45
14888 =>      40
14889 @end example
14891 The general rule is that if an operator with precedence @expr{n}
14892 occurs as an argument to an operator with precedence @expr{m}, then
14893 the argument is enclosed in parentheses if @expr{n < m}.  Top-level
14894 expressions and expressions which are function arguments, vector
14895 components, etc., are formatted with precedence zero (so that they
14896 normally never get additional parentheses).
14898 For binary left-associative operators like @samp{+}, the righthand
14899 argument is actually formatted with one-higher precedence than shown
14900 in the table.  This makes sure @samp{(a + b) + c} omits the parentheses,
14901 but the unnatural form @samp{a + (b + c)} keeps its parentheses.
14902 Right-associative operators like @samp{^} format the lefthand argument
14903 with one-higher precedence.
14905 @ignore
14906 @starindex
14907 @end ignore
14908 @tindex cprec
14909 The @code{cprec} function formats an expression with an arbitrary
14910 precedence.  For example, @samp{cprec(abc, 185)} will combine into
14911 sums and products as follows:  @samp{7 + abc}, @samp{7 (abc)} (because
14912 this @code{cprec} form has higher precedence than addition, but lower
14913 precedence than multiplication).
14915 @tex
14916 \bigskip
14917 @end tex
14919 A final composition issue is @dfn{line breaking}.  Calc uses two
14920 different strategies for ``flat'' and ``non-flat'' compositions.
14921 A non-flat composition is anything that appears on multiple lines
14922 (not counting line breaking).  Examples would be matrices and Big
14923 mode powers and quotients.  Non-flat compositions are displayed
14924 exactly as specified.  If they come out wider than the current
14925 window, you must use horizontal scrolling (@kbd{<} and @kbd{>}) to
14926 view them.
14928 Flat compositions, on the other hand, will be broken across several
14929 lines if they are too wide to fit the window.  Certain points in a
14930 composition are noted internally as @dfn{break points}.  Calc's
14931 general strategy is to fill each line as much as possible, then to
14932 move down to the next line starting at the first break point that
14933 didn't fit.  However, the line breaker understands the hierarchical
14934 structure of formulas.  It will not break an ``inner'' formula if
14935 it can use an earlier break point from an ``outer'' formula instead.
14936 For example, a vector of sums might be formatted as:
14938 @example
14939 @group
14940 [ a + b + c, d + e + f,
14941   g + h + i, j + k + l, m ]
14942 @end group
14943 @end example
14945 @noindent
14946 If the @samp{m} can fit, then so, it seems, could the @samp{g}.
14947 But Calc prefers to break at the comma since the comma is part
14948 of a ``more outer'' formula.  Calc would break at a plus sign
14949 only if it had to, say, if the very first sum in the vector had
14950 itself been too large to fit.
14952 Of the composition functions described below, only @code{choriz}
14953 generates break points.  The @code{bstring} function (@pxref{Strings})
14954 also generates breakable items:  A break point is added after every
14955 space (or group of spaces) except for spaces at the very beginning or
14956 end of the string.
14958 Composition functions themselves count as levels in the formula
14959 hierarchy, so a @code{choriz} that is a component of a larger
14960 @code{choriz} will be less likely to be broken.  As a special case,
14961 if a @code{bstring} occurs as a component of a @code{choriz} or
14962 @code{choriz}-like object (such as a vector or a list of arguments
14963 in a function call), then the break points in that @code{bstring}
14964 will be on the same level as the break points of the surrounding
14965 object.
14967 @node Horizontal Compositions, Vertical Compositions, Composition Basics, Compositions
14968 @subsubsection Horizontal Compositions
14970 @noindent
14971 @ignore
14972 @starindex
14973 @end ignore
14974 @tindex choriz
14975 The @code{choriz} function takes a vector of objects and composes
14976 them horizontally.  For example, @samp{choriz([17, a b/c, d])} formats
14977 as @w{@samp{17a b / cd}} in Normal language mode, or as
14979 @example
14980 @group
14981   a b
14982 17---d
14983    c
14984 @end group
14985 @end example
14987 @noindent
14988 in Big language mode.  This is actually one case of the general
14989 function @samp{choriz(@var{vec}, @var{sep}, @var{prec})}, where
14990 either or both of @var{sep} and @var{prec} may be omitted.
14991 @var{Prec} gives the @dfn{precedence} to use when formatting
14992 each of the components of @var{vec}.  The default precedence is
14993 the precedence from the surrounding environment.
14995 @var{Sep} is a string (i.e., a vector of character codes as might
14996 be entered with @code{" "} notation) which should separate components
14997 of the composition.  Also, if @var{sep} is given, the line breaker
14998 will allow lines to be broken after each occurrence of @var{sep}.
14999 If @var{sep} is omitted, the composition will not be breakable
15000 (unless any of its component compositions are breakable).
15002 For example, @samp{2 choriz([a, b c, d = e], " + ", 180)} is
15003 formatted as @samp{2 a + b c + (d = e)}.  To get the @code{choriz}
15004 to have precedence 180 ``outwards'' as well as ``inwards,''
15005 enclose it in a @code{cprec} form:  @samp{2 cprec(choriz(...), 180)}
15006 formats as @samp{2 (a + b c + (d = e))}.
15008 The baseline of a horizontal composition is the same as the
15009 baselines of the component compositions, which are all aligned.
15011 @node Vertical Compositions, Other Compositions, Horizontal Compositions, Compositions
15012 @subsubsection Vertical Compositions
15014 @noindent
15015 @ignore
15016 @starindex
15017 @end ignore
15018 @tindex cvert
15019 The @code{cvert} function makes a vertical composition.  Each
15020 component of the vector is centered in a column.  The baseline of
15021 the result is by default the top line of the resulting composition.
15022 For example, @samp{f(cvert([a, bb, ccc]), cvert([a^2 + 1, b^2]))}
15023 formats in Big mode as
15025 @example
15026 @group
15027 f( a ,  2    )
15028   bb   a  + 1
15029   ccc     2
15030          b
15031 @end group
15032 @end example
15034 @ignore
15035 @starindex
15036 @end ignore
15037 @tindex cbase
15038 There are several special composition functions that work only as
15039 components of a vertical composition.  The @code{cbase} function
15040 controls the baseline of the vertical composition; the baseline
15041 will be the same as the baseline of whatever component is enclosed
15042 in @code{cbase}.  Thus @samp{f(cvert([a, cbase(bb), ccc]),
15043 cvert([a^2 + 1, cbase(b^2)]))} displays as
15045 @example
15046 @group
15047         2
15048        a  + 1
15049    a      2
15050 f(bb ,   b   )
15051   ccc
15052 @end group
15053 @end example
15055 @ignore
15056 @starindex
15057 @end ignore
15058 @tindex ctbase
15059 @ignore
15060 @starindex
15061 @end ignore
15062 @tindex cbbase
15063 There are also @code{ctbase} and @code{cbbase} functions which
15064 make the baseline of the vertical composition equal to the top
15065 or bottom line (rather than the baseline) of that component.
15066 Thus @samp{cvert([cbase(a / b)]) + cvert([ctbase(a / b)]) +
15067 cvert([cbbase(a / b)])} gives
15069 @example
15070 @group
15071         a
15072 a       -
15073 - + a + b
15074 b   -
15075     b
15076 @end group
15077 @end example
15079 There should be only one @code{cbase}, @code{ctbase}, or @code{cbbase}
15080 function in a given vertical composition.  These functions can also
15081 be written with no arguments:  @samp{ctbase()} is a zero-height object
15082 which means the baseline is the top line of the following item, and
15083 @samp{cbbase()} means the baseline is the bottom line of the preceding
15084 item.
15086 @ignore
15087 @starindex
15088 @end ignore
15089 @tindex crule
15090 The @code{crule} function builds a ``rule,'' or horizontal line,
15091 across a vertical composition.  By itself @samp{crule()} uses @samp{-}
15092 characters to build the rule.  You can specify any other character,
15093 e.g., @samp{crule("=")}.  The argument must be a character code or
15094 vector of exactly one character code.  It is repeated to match the
15095 width of the widest item in the stack.  For example, a quotient
15096 with a thick line is @samp{cvert([a + 1, cbase(crule("=")), b^2])}:
15098 @example
15099 @group
15100 a + 1
15101 =====
15102   2
15104 @end group
15105 @end example
15107 @ignore
15108 @starindex
15109 @end ignore
15110 @tindex clvert
15111 @ignore
15112 @starindex
15113 @end ignore
15114 @tindex crvert
15115 Finally, the functions @code{clvert} and @code{crvert} act exactly
15116 like @code{cvert} except that the items are left- or right-justified
15117 in the stack.  Thus @samp{clvert([a, bb, ccc]) + crvert([a, bb, ccc])}
15118 gives:
15120 @example
15121 @group
15122 a   +   a
15123 bb     bb
15124 ccc   ccc
15125 @end group
15126 @end example
15128 Like @code{choriz}, the vertical compositions accept a second argument
15129 which gives the precedence to use when formatting the components.
15130 Vertical compositions do not support separator strings.
15132 @node Other Compositions, Information about Compositions, Vertical Compositions, Compositions
15133 @subsubsection Other Compositions
15135 @noindent
15136 @ignore
15137 @starindex
15138 @end ignore
15139 @tindex csup
15140 The @code{csup} function builds a superscripted expression.  For
15141 example, @samp{csup(a, b)} looks the same as @samp{a^b} does in Big
15142 language mode.  This is essentially a horizontal composition of
15143 @samp{a} and @samp{b}, where @samp{b} is shifted up so that its
15144 bottom line is one above the baseline.
15146 @ignore
15147 @starindex
15148 @end ignore
15149 @tindex csub
15150 Likewise, the @code{csub} function builds a subscripted expression.
15151 This shifts @samp{b} down so that its top line is one below the
15152 bottom line of @samp{a} (note that this is not quite analogous to
15153 @code{csup}).  Other arrangements can be obtained by using
15154 @code{choriz} and @code{cvert} directly.
15156 @ignore
15157 @starindex
15158 @end ignore
15159 @tindex cflat
15160 The @code{cflat} function formats its argument in ``flat'' mode,
15161 as obtained by @samp{d O}, if the current language mode is normal
15162 or Big.  It has no effect in other language modes.  For example,
15163 @samp{a^(b/c)} is formatted by Big mode like @samp{csup(a, cflat(b/c))}
15164 to improve its readability.
15166 @ignore
15167 @starindex
15168 @end ignore
15169 @tindex cspace
15170 The @code{cspace} function creates horizontal space.  For example,
15171 @samp{cspace(4)} is effectively the same as @samp{string("    ")}.
15172 A second string (i.e., vector of characters) argument is repeated
15173 instead of the space character.  For example, @samp{cspace(4, "ab")}
15174 looks like @samp{abababab}.  If the second argument is not a string,
15175 it is formatted in the normal way and then several copies of that
15176 are composed together:  @samp{cspace(4, a^2)} yields
15178 @example
15179 @group
15180  2 2 2 2
15181 a a a a
15182 @end group
15183 @end example
15185 @noindent
15186 If the number argument is zero, this is a zero-width object.
15188 @ignore
15189 @starindex
15190 @end ignore
15191 @tindex cvspace
15192 The @code{cvspace} function creates vertical space, or a vertical
15193 stack of copies of a certain string or formatted object.  The
15194 baseline is the center line of the resulting stack.  A numerical
15195 argument of zero will produce an object which contributes zero
15196 height if used in a vertical composition.
15198 @ignore
15199 @starindex
15200 @end ignore
15201 @tindex ctspace
15202 @ignore
15203 @starindex
15204 @end ignore
15205 @tindex cbspace
15206 There are also @code{ctspace} and @code{cbspace} functions which
15207 create vertical space with the baseline the same as the baseline
15208 of the top or bottom copy, respectively, of the second argument.
15209 Thus @samp{cvspace(2, a/b) + ctspace(2, a/b) + cbspace(2, a/b)}
15210 displays as:
15212 @example
15213 @group
15214         a
15215         -
15216 a       b
15217 -   a   a
15218 b + - + -
15219 a   b   b
15220 -   a
15221 b   -
15222     b
15223 @end group
15224 @end example
15226 @node Information about Compositions, User-Defined Compositions, Other Compositions, Compositions
15227 @subsubsection Information about Compositions
15229 @noindent
15230 The functions in this section are actual functions; they compose their
15231 arguments according to the current language and other display modes,
15232 then return a certain measurement of the composition as an integer.
15234 @ignore
15235 @starindex
15236 @end ignore
15237 @tindex cwidth
15238 The @code{cwidth} function measures the width, in characters, of a
15239 composition.  For example, @samp{cwidth(a + b)} is 5, and
15240 @samp{cwidth(a / b)} is 5 in Normal mode, 1 in Big mode, and 11 in
15241 @TeX{} mode (for @samp{@{a \over b@}}).  The argument may involve
15242 the composition functions described in this section.
15244 @ignore
15245 @starindex
15246 @end ignore
15247 @tindex cheight
15248 The @code{cheight} function measures the height of a composition.
15249 This is the total number of lines in the argument's printed form.
15251 @ignore
15252 @starindex
15253 @end ignore
15254 @tindex cascent
15255 @ignore
15256 @starindex
15257 @end ignore
15258 @tindex cdescent
15259 The functions @code{cascent} and @code{cdescent} measure the amount
15260 of the height that is above (and including) the baseline, or below
15261 the baseline, respectively.  Thus @samp{cascent(@var{x}) + cdescent(@var{x})}
15262 always equals @samp{cheight(@var{x})}.  For a one-line formula like
15263 @samp{a + b}, @code{cascent} returns 1 and @code{cdescent} returns 0.
15264 For @samp{a / b} in Big mode, @code{cascent} returns 2 and @code{cdescent}
15265 returns 1.  The only formula for which @code{cascent} will return zero
15266 is @samp{cvspace(0)} or equivalents.
15268 @node User-Defined Compositions,  , Information about Compositions, Compositions
15269 @subsubsection User-Defined Compositions
15271 @noindent
15272 @kindex Z C
15273 @pindex calc-user-define-composition
15274 The @kbd{Z C} (@code{calc-user-define-composition}) command lets you
15275 define the display format for any algebraic function.  You provide a
15276 formula containing a certain number of argument variables on the stack.
15277 Any time Calc formats a call to the specified function in the current
15278 language mode and with that number of arguments, Calc effectively
15279 replaces the function call with that formula with the arguments
15280 replaced.
15282 Calc builds the default argument list by sorting all the variable names
15283 that appear in the formula into alphabetical order.  You can edit this
15284 argument list before pressing @key{RET} if you wish.  Any variables in
15285 the formula that do not appear in the argument list will be displayed
15286 literally; any arguments that do not appear in the formula will not
15287 affect the display at all.
15289 You can define formats for built-in functions, for functions you have
15290 defined with @kbd{Z F} (@pxref{Algebraic Definitions}), or for functions
15291 which have no definitions but are being used as purely syntactic objects.
15292 You can define different formats for each language mode, and for each
15293 number of arguments, using a succession of @kbd{Z C} commands.  When
15294 Calc formats a function call, it first searches for a format defined
15295 for the current language mode (and number of arguments); if there is
15296 none, it uses the format defined for the Normal language mode.  If
15297 neither format exists, Calc uses its built-in standard format for that
15298 function (usually just @samp{@var{func}(@var{args})}).
15300 If you execute @kbd{Z C} with the number 0 on the stack instead of a
15301 formula, any defined formats for the function in the current language
15302 mode will be removed.  The function will revert to its standard format.
15304 For example, the default format for the binomial coefficient function
15305 @samp{choose(n, m)} in the Big language mode is
15307 @example
15308 @group
15310 ( )
15312 @end group
15313 @end example
15315 @noindent
15316 You might prefer the notation,
15318 @example
15319 @group
15321 n m
15322 @end group
15323 @end example
15325 @noindent
15326 To define this notation, first make sure you are in Big mode,
15327 then put the formula
15329 @smallexample
15330 choriz([cvert([cvspace(1), n]), C, cvert([cvspace(1), m])])
15331 @end smallexample
15333 @noindent
15334 on the stack and type @kbd{Z C}.  Answer the first prompt with
15335 @code{choose}.  The second prompt will be the default argument list
15336 of @samp{(C m n)}.  Edit this list to be @samp{(n m)} and press
15337 @key{RET}.  Now, try it out:  For example, turn simplification
15338 off with @kbd{m O} and enter @samp{choose(a,b) + choose(7,3)}
15339 as an algebraic entry.
15341 @example
15342 @group
15343  C  +  C
15344 a b   7 3
15345 @end group
15346 @end example
15348 As another example, let's define the usual notation for Stirling
15349 numbers of the first kind, @samp{stir1(n, m)}.  This is just like
15350 the regular format for binomial coefficients but with square brackets
15351 instead of parentheses.
15353 @smallexample
15354 choriz([string("["), cvert([n, cbase(cvspace(1)), m]), string("]")])
15355 @end smallexample
15357 Now type @kbd{Z C stir1 @key{RET}}, edit the argument list to
15358 @samp{(n m)}, and type @key{RET}.
15360 The formula provided to @kbd{Z C} usually will involve composition
15361 functions, but it doesn't have to.  Putting the formula @samp{a + b + c}
15362 onto the stack and typing @kbd{Z C foo @key{RET} @key{RET}} would define
15363 the function @samp{foo(x,y,z)} to display like @samp{x + y + z}.
15364 This ``sum'' will act exactly like a real sum for all formatting
15365 purposes (it will be parenthesized the same, and so on).  However
15366 it will be computationally unrelated to a sum.  For example, the
15367 formula @samp{2 * foo(1, 2, 3)} will display as @samp{2 (1 + 2 + 3)}.
15368 Operator precedences have caused the ``sum'' to be written in
15369 parentheses, but the arguments have not actually been summed.
15370 (Generally a display format like this would be undesirable, since
15371 it can easily be confused with a real sum.)
15373 The special function @code{eval} can be used inside a @kbd{Z C}
15374 composition formula to cause all or part of the formula to be
15375 evaluated at display time.  For example, if the formula is
15376 @samp{a + eval(b + c)}, then @samp{foo(1, 2, 3)} will be displayed
15377 as @samp{1 + 5}.  Evaluation will use the default simplifications,
15378 regardless of the current simplification mode.  There are also
15379 @code{evalsimp} and @code{evalextsimp} which simplify as if by
15380 @kbd{a s} and @kbd{a e} (respectively).  Note that these ``functions''
15381 operate only in the context of composition formulas (and also in
15382 rewrite rules, where they serve a similar purpose; @pxref{Rewrite
15383 Rules}).  On the stack, a call to @code{eval} will be left in
15384 symbolic form.
15386 It is not a good idea to use @code{eval} except as a last resort.
15387 It can cause the display of formulas to be extremely slow.  For
15388 example, while @samp{eval(a + b)} might seem quite fast and simple,
15389 there are several situations where it could be slow.  For example,
15390 @samp{a} and/or @samp{b} could be polar complex numbers, in which
15391 case doing the sum requires trigonometry.  Or, @samp{a} could be
15392 the factorial @samp{fact(100)} which is unevaluated because you
15393 have typed @kbd{m O}; @code{eval} will evaluate it anyway to
15394 produce a large, unwieldy integer.
15396 You can save your display formats permanently using the @kbd{Z P}
15397 command (@pxref{Creating User Keys}).
15399 @node Syntax Tables,  , Compositions, Language Modes
15400 @subsection Syntax Tables
15402 @noindent
15403 @cindex Syntax tables
15404 @cindex Parsing formulas, customized
15405 Syntax tables do for input what compositions do for output:  They
15406 allow you to teach custom notations to Calc's formula parser.
15407 Calc keeps a separate syntax table for each language mode.
15409 (Note that the Calc ``syntax tables'' discussed here are completely
15410 unrelated to the syntax tables described in the Emacs manual.)
15412 @kindex Z S
15413 @pindex calc-edit-user-syntax
15414 The @kbd{Z S} (@code{calc-edit-user-syntax}) command edits the
15415 syntax table for the current language mode.  If you want your
15416 syntax to work in any language, define it in the Normal language
15417 mode.  Type @kbd{C-c C-c} to finish editing the syntax table, or
15418 @kbd{C-x k} to cancel the edit.  The @kbd{m m} command saves all
15419 the syntax tables along with the other mode settings;
15420 @pxref{General Mode Commands}.
15422 @menu
15423 * Syntax Table Basics::
15424 * Precedence in Syntax Tables::
15425 * Advanced Syntax Patterns::
15426 * Conditional Syntax Rules::
15427 @end menu
15429 @node Syntax Table Basics, Precedence in Syntax Tables, Syntax Tables, Syntax Tables
15430 @subsubsection Syntax Table Basics
15432 @noindent
15433 @dfn{Parsing} is the process of converting a raw string of characters,
15434 such as you would type in during algebraic entry, into a Calc formula.
15435 Calc's parser works in two stages.  First, the input is broken down
15436 into @dfn{tokens}, such as words, numbers, and punctuation symbols
15437 like @samp{+}, @samp{:=}, and @samp{+/-}.  Space between tokens is
15438 ignored (except when it serves to separate adjacent words).  Next,
15439 the parser matches this string of tokens against various built-in
15440 syntactic patterns, such as ``an expression followed by @samp{+}
15441 followed by another expression'' or ``a name followed by @samp{(},
15442 zero or more expressions separated by commas, and @samp{)}.''
15444 A @dfn{syntax table} is a list of user-defined @dfn{syntax rules},
15445 which allow you to specify new patterns to define your own
15446 favorite input notations.  Calc's parser always checks the syntax
15447 table for the current language mode, then the table for the Normal
15448 language mode, before it uses its built-in rules to parse an
15449 algebraic formula you have entered.  Each syntax rule should go on
15450 its own line; it consists of a @dfn{pattern}, a @samp{:=} symbol,
15451 and a Calc formula with an optional @dfn{condition}.  (Syntax rules
15452 resemble algebraic rewrite rules, but the notation for patterns is
15453 completely different.)
15455 A syntax pattern is a list of tokens, separated by spaces.
15456 Except for a few special symbols, tokens in syntax patterns are
15457 matched literally, from left to right.  For example, the rule,
15459 @example
15460 foo ( ) := 2+3
15461 @end example
15463 @noindent
15464 would cause Calc to parse the formula @samp{4+foo()*5} as if it
15465 were @samp{4+(2+3)*5}.  Notice that the parentheses were written
15466 as two separate tokens in the rule.  As a result, the rule works
15467 for both @samp{foo()} and @w{@samp{foo (  )}}.  If we had written
15468 the rule as @samp{foo () := 2+3}, then Calc would treat @samp{()}
15469 as a single, indivisible token, so that @w{@samp{foo( )}} would
15470 not be recognized by the rule.  (It would be parsed as a regular
15471 zero-argument function call instead.)  In fact, this rule would
15472 also make trouble for the rest of Calc's parser:  An unrelated
15473 formula like @samp{bar()} would now be tokenized into @samp{bar ()}
15474 instead of @samp{bar ( )}, so that the standard parser for function
15475 calls would no longer recognize it!
15477 While it is possible to make a token with a mixture of letters
15478 and punctuation symbols, this is not recommended.  It is better to
15479 break it into several tokens, as we did with @samp{foo()} above.
15481 The symbol @samp{#} in a syntax pattern matches any Calc expression.
15482 On the righthand side, the things that matched the @samp{#}s can
15483 be referred to as @samp{#1}, @samp{#2}, and so on (where @samp{#1}
15484 matches the leftmost @samp{#} in the pattern).  For example, these
15485 rules match a user-defined function, prefix operator, infix operator,
15486 and postfix operator, respectively:
15488 @example
15489 foo ( # ) := myfunc(#1)
15490 foo # := myprefix(#1)
15491 # foo # := myinfix(#1,#2)
15492 # foo := mypostfix(#1)
15493 @end example
15495 Thus @samp{foo(3)} will parse as @samp{myfunc(3)}, and @samp{2+3 foo}
15496 will parse as @samp{mypostfix(2+3)}.
15498 It is important to write the first two rules in the order shown,
15499 because Calc tries rules in order from first to last.  If the
15500 pattern @samp{foo #} came first, it would match anything that could
15501 match the @samp{foo ( # )} rule, since an expression in parentheses
15502 is itself a valid expression.  Thus the @w{@samp{foo ( # )}} rule would
15503 never get to match anything.  Likewise, the last two rules must be
15504 written in the order shown or else @samp{3 foo 4} will be parsed as
15505 @samp{mypostfix(3) * 4}.  (Of course, the best way to avoid these
15506 ambiguities is not to use the same symbol in more than one way at
15507 the same time!  In case you're not convinced, try the following
15508 exercise:  How will the above rules parse the input @samp{foo(3,4)},
15509 if at all?  Work it out for yourself, then try it in Calc and see.)
15511 Calc is quite flexible about what sorts of patterns are allowed.
15512 The only rule is that every pattern must begin with a literal
15513 token (like @samp{foo} in the first two patterns above), or with
15514 a @samp{#} followed by a literal token (as in the last two
15515 patterns).  After that, any mixture is allowed, although putting
15516 two @samp{#}s in a row will not be very useful since two
15517 expressions with nothing between them will be parsed as one
15518 expression that uses implicit multiplication.
15520 As a more practical example, Maple uses the notation
15521 @samp{sum(a(i), i=1..10)} for sums, which Calc's Maple mode doesn't
15522 recognize at present.  To handle this syntax, we simply add the
15523 rule,
15525 @example
15526 sum ( # , # = # .. # ) := sum(#1,#2,#3,#4)
15527 @end example
15529 @noindent
15530 to the Maple mode syntax table.  As another example, C mode can't
15531 read assignment operators like @samp{++} and @samp{*=}.  We can
15532 define these operators quite easily:
15534 @example
15535 # *= # := muleq(#1,#2)
15536 # ++ := postinc(#1)
15537 ++ # := preinc(#1)
15538 @end example
15540 @noindent
15541 To complete the job, we would use corresponding composition functions
15542 and @kbd{Z C} to cause these functions to display in their respective
15543 Maple and C notations.  (Note that the C example ignores issues of
15544 operator precedence, which are discussed in the next section.)
15546 You can enclose any token in quotes to prevent its usual
15547 interpretation in syntax patterns:
15549 @example
15550 # ":=" # := becomes(#1,#2)
15551 @end example
15553 Quotes also allow you to include spaces in a token, although once
15554 again it is generally better to use two tokens than one token with
15555 an embedded space.  To include an actual quotation mark in a quoted
15556 token, precede it with a backslash.  (This also works to include
15557 backslashes in tokens.)
15559 @example
15560 # "bad token" # "/\"\\" # := silly(#1,#2,#3)
15561 @end example
15563 @noindent
15564 This will parse @samp{3 bad token 4 /"\ 5} to @samp{silly(3,4,5)}.
15566 The token @kbd{#} has a predefined meaning in Calc's formula parser;
15567 it is not valid to use @samp{"#"} in a syntax rule.  However, longer
15568 tokens that include the @samp{#} character are allowed.  Also, while
15569 @samp{"$"} and @samp{"\""} are allowed as tokens, their presence in
15570 the syntax table will prevent those characters from working in their
15571 usual ways (referring to stack entries and quoting strings,
15572 respectively).
15574 Finally, the notation @samp{%%} anywhere in a syntax table causes
15575 the rest of the line to be ignored as a comment.
15577 @node Precedence in Syntax Tables, Advanced Syntax Patterns, Syntax Table Basics, Syntax Tables
15578 @subsubsection Precedence
15580 @noindent
15581 Different operators are generally assigned different @dfn{precedences}.
15582 By default, an operator defined by a rule like
15584 @example
15585 # foo # := foo(#1,#2)
15586 @end example
15588 @noindent
15589 will have an extremely low precedence, so that @samp{2*3+4 foo 5 == 6}
15590 will be parsed as @samp{(2*3+4) foo (5 == 6)}.  To change the
15591 precedence of an operator, use the notation @samp{#/@var{p}} in
15592 place of @samp{#}, where @var{p} is an integer precedence level.
15593 For example, 185 lies between the precedences for @samp{+} and
15594 @samp{*}, so if we change this rule to
15596 @example
15597 #/185 foo #/186 := foo(#1,#2)
15598 @end example
15600 @noindent
15601 then @samp{2+3 foo 4*5} will be parsed as @samp{2+(3 foo (4*5))}.
15602 Also, because we've given the righthand expression slightly higher
15603 precedence, our new operator will be left-associative:
15604 @samp{1 foo 2 foo 3} will be parsed as @samp{(1 foo 2) foo 3}.
15605 By raising the precedence of the lefthand expression instead, we
15606 can create a right-associative operator.
15608 @xref{Composition Basics}, for a table of precedences of the
15609 standard Calc operators.  For the precedences of operators in other
15610 language modes, look in the Calc source file @file{calc-lang.el}.
15612 @node Advanced Syntax Patterns, Conditional Syntax Rules, Precedence in Syntax Tables, Syntax Tables
15613 @subsubsection Advanced Syntax Patterns
15615 @noindent
15616 To match a function with a variable number of arguments, you could
15617 write
15619 @example
15620 foo ( # ) := myfunc(#1)
15621 foo ( # , # ) := myfunc(#1,#2)
15622 foo ( # , # , # ) := myfunc(#1,#2,#3)
15623 @end example
15625 @noindent
15626 but this isn't very elegant.  To match variable numbers of items,
15627 Calc uses some notations inspired regular expressions and the
15628 ``extended BNF'' style used by some language designers.
15630 @example
15631 foo ( @{ # @}*, ) := apply(myfunc,#1)
15632 @end example
15634 The token @samp{@{} introduces a repeated or optional portion.
15635 One of the three tokens @samp{@}*}, @samp{@}+}, or @samp{@}?}
15636 ends the portion.  These will match zero or more, one or more,
15637 or zero or one copies of the enclosed pattern, respectively.
15638 In addition, @samp{@}*} and @samp{@}+} can be followed by a
15639 separator token (with no space in between, as shown above).
15640 Thus @samp{@{ # @}*,} matches nothing, or one expression, or
15641 several expressions separated by commas.
15643 A complete @samp{@{ ... @}} item matches as a vector of the
15644 items that matched inside it.  For example, the above rule will
15645 match @samp{foo(1,2,3)} to get @samp{apply(myfunc,[1,2,3])}.
15646 The Calc @code{apply} function takes a function name and a vector
15647 of arguments and builds a call to the function with those
15648 arguments, so the net result is the formula @samp{myfunc(1,2,3)}.
15650 If the body of a @samp{@{ ... @}} contains several @samp{#}s
15651 (or nested @samp{@{ ... @}} constructs), then the items will be
15652 strung together into the resulting vector.  If the body
15653 does not contain anything but literal tokens, the result will
15654 always be an empty vector.
15656 @example
15657 foo ( @{ # , # @}+, ) := bar(#1)
15658 foo ( @{ @{ # @}*, @}*; ) := matrix(#1)
15659 @end example
15661 @noindent
15662 will parse @samp{foo(1, 2, 3, 4)} as @samp{bar([1, 2, 3, 4])}, and
15663 @samp{foo(1, 2; 3, 4)} as @samp{matrix([[1, 2], [3, 4]])}.  Also, after
15664 some thought it's easy to see how this pair of rules will parse
15665 @samp{foo(1, 2, 3)} as @samp{matrix([[1, 2, 3]])}, since the first
15666 rule will only match an even number of arguments.  The rule
15668 @example
15669 foo ( # @{ , # , # @}? ) := bar(#1,#2)
15670 @end example
15672 @noindent
15673 will parse @samp{foo(2,3,4)} as @samp{bar(2,[3,4])}, and
15674 @samp{foo(2)} as @samp{bar(2,[])}.
15676 The notation @samp{@{ ... @}?.} (note the trailing period) works
15677 just the same as regular @samp{@{ ... @}?}, except that it does not
15678 count as an argument; the following two rules are equivalent:
15680 @example
15681 foo ( # , @{ also @}? # ) := bar(#1,#3)
15682 foo ( # , @{ also @}?. # ) := bar(#1,#2)
15683 @end example
15685 @noindent
15686 Note that in the first case the optional text counts as @samp{#2},
15687 which will always be an empty vector, but in the second case no
15688 empty vector is produced.
15690 Another variant is @samp{@{ ... @}?$}, which means the body is
15691 optional only at the end of the input formula.  All built-in syntax
15692 rules in Calc use this for closing delimiters, so that during
15693 algebraic entry you can type @kbd{[sqrt(2), sqrt(3 @key{RET}}, omitting
15694 the closing parenthesis and bracket.  Calc does this automatically
15695 for trailing @samp{)}, @samp{]}, and @samp{>} tokens in syntax
15696 rules, but you can use @samp{@{ ... @}?$} explicitly to get
15697 this effect with any token (such as @samp{"@}"} or @samp{end}).
15698 Like @samp{@{ ... @}?.}, this notation does not count as an
15699 argument.  Conversely, you can use quotes, as in @samp{")"}, to
15700 prevent a closing-delimiter token from being automatically treated
15701 as optional.
15703 Calc's parser does not have full backtracking, which means some
15704 patterns will not work as you might expect:
15706 @example
15707 foo ( @{ # , @}? # , # ) := bar(#1,#2,#3)
15708 @end example
15710 @noindent
15711 Here we are trying to make the first argument optional, so that
15712 @samp{foo(2,3)} parses as @samp{bar([],2,3)}.  Unfortunately, Calc
15713 first tries to match @samp{2,} against the optional part of the
15714 pattern, finds a match, and so goes ahead to match the rest of the
15715 pattern.  Later on it will fail to match the second comma, but it
15716 doesn't know how to go back and try the other alternative at that
15717 point.  One way to get around this would be to use two rules:
15719 @example
15720 foo ( # , # , # ) := bar([#1],#2,#3)
15721 foo ( # , # ) := bar([],#1,#2)
15722 @end example
15724 More precisely, when Calc wants to match an optional or repeated
15725 part of a pattern, it scans forward attempting to match that part.
15726 If it reaches the end of the optional part without failing, it
15727 ``finalizes'' its choice and proceeds.  If it fails, though, it
15728 backs up and tries the other alternative.  Thus Calc has ``partial''
15729 backtracking.  A fully backtracking parser would go on to make sure
15730 the rest of the pattern matched before finalizing the choice.
15732 @node Conditional Syntax Rules,  , Advanced Syntax Patterns, Syntax Tables
15733 @subsubsection Conditional Syntax Rules
15735 @noindent
15736 It is possible to attach a @dfn{condition} to a syntax rule.  For
15737 example, the rules
15739 @example
15740 foo ( # ) := ifoo(#1) :: integer(#1)
15741 foo ( # ) := gfoo(#1)
15742 @end example
15744 @noindent
15745 will parse @samp{foo(3)} as @samp{ifoo(3)}, but will parse
15746 @samp{foo(3.5)} and @samp{foo(x)} as calls to @code{gfoo}.  Any
15747 number of conditions may be attached; all must be true for the
15748 rule to succeed.  A condition is ``true'' if it evaluates to a
15749 nonzero number.  @xref{Logical Operations}, for a list of Calc
15750 functions like @code{integer} that perform logical tests.
15752 The exact sequence of events is as follows:  When Calc tries a
15753 rule, it first matches the pattern as usual.  It then substitutes
15754 @samp{#1}, @samp{#2}, etc., in the conditions, if any.  Next, the
15755 conditions are simplified and evaluated in order from left to right,
15756 using the algebraic simplifications (@pxref{Simplifying Formulas}).
15757 Each result is true if it is a nonzero number, or an expression
15758 that can be proven to be nonzero (@pxref{Declarations}).  If the
15759 results of all conditions are true, the expression (such as
15760 @samp{ifoo(#1)}) has its @samp{#}s substituted, and that is the
15761 result of the parse.  If the result of any condition is false, Calc
15762 goes on to try the next rule in the syntax table.
15764 Syntax rules also support @code{let} conditions, which operate in
15765 exactly the same way as they do in algebraic rewrite rules.
15766 @xref{Other Features of Rewrite Rules}, for details.  A @code{let}
15767 condition is always true, but as a side effect it defines a
15768 variable which can be used in later conditions, and also in the
15769 expression after the @samp{:=} sign:
15771 @example
15772 foo ( # ) := hifoo(x) :: let(x := #1 + 0.5) :: dnumint(x)
15773 @end example
15775 @noindent
15776 The @code{dnumint} function tests if a value is numerically an
15777 integer, i.e., either a true integer or an integer-valued float.
15778 This rule will parse @code{foo} with a half-integer argument,
15779 like @samp{foo(3.5)}, to a call like @samp{hifoo(4.)}.
15781 The lefthand side of a syntax rule @code{let} must be a simple
15782 variable, not the arbitrary pattern that is allowed in rewrite
15783 rules.
15785 The @code{matches} function is also treated specially in syntax
15786 rule conditions (again, in the same way as in rewrite rules).
15787 @xref{Matching Commands}.  If the matching pattern contains
15788 meta-variables, then those meta-variables may be used in later
15789 conditions and in the result expression.  The arguments to
15790 @code{matches} are not evaluated in this situation.
15792 @example
15793 sum ( # , # ) := sum(#1,a,b,c) :: matches(#2, a=[b..c])
15794 @end example
15796 @noindent
15797 This is another way to implement the Maple mode @code{sum} notation.
15798 In this approach, we allow @samp{#2} to equal the whole expression
15799 @samp{i=1..10}.  Then, we use @code{matches} to break it apart into
15800 its components.  If the expression turns out not to match the pattern,
15801 the syntax rule will fail.  Note that @kbd{Z S} always uses Calc's
15802 Normal language mode for editing expressions in syntax rules, so we
15803 must use regular Calc notation for the interval @samp{[b..c]} that
15804 will correspond to the Maple mode interval @samp{1..10}.
15806 @node Modes Variable, Calc Mode Line, Language Modes, Mode Settings
15807 @section The @code{Modes} Variable
15809 @noindent
15810 @kindex m g
15811 @pindex calc-get-modes
15812 The @kbd{m g} (@code{calc-get-modes}) command pushes onto the stack
15813 a vector of numbers that describes the various mode settings that
15814 are in effect.  With a numeric prefix argument, it pushes only the
15815 @var{n}th mode, i.e., the @var{n}th element of this vector.  Keyboard
15816 macros can use the @kbd{m g} command to modify their behavior based
15817 on the current mode settings.
15819 @cindex @code{Modes} variable
15820 @vindex Modes
15821 The modes vector is also available in the special variable
15822 @code{Modes}.  In other words, @kbd{m g} is like @kbd{s r Modes @key{RET}}.
15823 It will not work to store into this variable; in fact, if you do,
15824 @code{Modes} will cease to track the current modes.  (The @kbd{m g}
15825 command will continue to work, however.)
15827 In general, each number in this vector is suitable as a numeric
15828 prefix argument to the associated mode-setting command.  (Recall
15829 that the @kbd{~} key takes a number from the stack and gives it as
15830 a numeric prefix to the next command.)
15832 The elements of the modes vector are as follows:
15834 @enumerate
15835 @item
15836 Current precision.  Default is 12; associated command is @kbd{p}.
15838 @item
15839 Binary word size.  Default is 32; associated command is @kbd{b w}.
15841 @item
15842 Stack size (not counting the value about to be pushed by @kbd{m g}).
15843 This is zero if @kbd{m g} is executed with an empty stack.
15845 @item
15846 Number radix.  Default is 10; command is @kbd{d r}.
15848 @item
15849 Floating-point format.  This is the number of digits, plus the
15850 constant 0 for normal notation, 10000 for scientific notation,
15851 20000 for engineering notation, or 30000 for fixed-point notation.
15852 These codes are acceptable as prefix arguments to the @kbd{d n}
15853 command, but note that this may lose information:  For example,
15854 @kbd{d s} and @kbd{C-u 12 d s} have similar (but not quite
15855 identical) effects if the current precision is 12, but they both
15856 produce a code of 10012, which will be treated by @kbd{d n} as
15857 @kbd{C-u 12 d s}.  If the precision then changes, the float format
15858 will still be frozen at 12 significant figures.
15860 @item
15861 Angular mode.  Default is 1 (degrees).  Other values are 2 (radians)
15862 and 3 (HMS).  The @kbd{m d} command accepts these prefixes.
15864 @item
15865 Symbolic mode.  Value is 0 or 1; default is 0.  Command is @kbd{m s}.
15867 @item
15868 Fraction mode.  Value is 0 or 1; default is 0.  Command is @kbd{m f}.
15870 @item
15871 Polar mode.  Value is 0 (rectangular) or 1 (polar); default is 0.
15872 Command is @kbd{m p}.
15874 @item
15875 Matrix/Scalar mode.  Default value is @mathit{-1}.  Value is 0 for Scalar
15876 mode, @mathit{-2} for Matrix mode, @mathit{-3} for square Matrix mode,
15877 or @var{N} for
15878 @texline @math{N\times N}
15879 @infoline @var{N}x@var{N}
15880 Matrix mode.  Command is @kbd{m v}.
15882 @item
15883 Simplification mode.  Default is 1.  Value is @mathit{-1} for off (@kbd{m O}),
15884 0 for @kbd{m N}, 2 for @kbd{m B}, 3 for @kbd{m A}, 4 for @kbd{m E},
15885 or 5 for @w{@kbd{m U}}.  The @kbd{m D} command accepts these prefixes.
15887 @item
15888 Infinite mode.  Default is @mathit{-1} (off).  Value is 1 if the mode is on,
15889 or 0 if the mode is on with positive zeros.  Command is @kbd{m i}.
15890 @end enumerate
15892 For example, the sequence @kbd{M-1 m g @key{RET} 2 + ~ p} increases the
15893 precision by two, leaving a copy of the old precision on the stack.
15894 Later, @kbd{~ p} will restore the original precision using that
15895 stack value.  (This sequence might be especially useful inside a
15896 keyboard macro.)
15898 As another example, @kbd{M-3 m g 1 - ~ @key{DEL}} deletes all but the
15899 oldest (bottommost) stack entry.
15901 Yet another example:  The HP-48 ``round'' command rounds a number
15902 to the current displayed precision.  You could roughly emulate this
15903 in Calc with the sequence @kbd{M-5 m g 10000 % ~ c c}.  (This
15904 would not work for fixed-point mode, but it wouldn't be hard to
15905 do a full emulation with the help of the @kbd{Z [} and @kbd{Z ]}
15906 programming commands.  @xref{Conditionals in Macros}.)
15908 @node Calc Mode Line,  , Modes Variable, Mode Settings
15909 @section The Calc Mode Line
15911 @noindent
15912 @cindex Mode line indicators
15913 This section is a summary of all symbols that can appear on the
15914 Calc mode line, the highlighted bar that appears under the Calc
15915 stack window (or under an editing window in Embedded mode).
15917 The basic mode line format is:
15919 @example
15920 --%*-Calc: 12 Deg @var{other modes}       (Calculator)
15921 @end example
15923 The @samp{%*} indicates that the buffer is ``read-only''; it shows that
15924 regular Emacs commands are not allowed to edit the stack buffer
15925 as if it were text.
15927 The word @samp{Calc:} changes to @samp{CalcEmbed:} if Embedded mode
15928 is enabled.  The words after this describe the various Calc modes
15929 that are in effect.
15931 The first mode is always the current precision, an integer.
15932 The second mode is always the angular mode, either @code{Deg},
15933 @code{Rad}, or @code{Hms}.
15935 Here is a complete list of the remaining symbols that can appear
15936 on the mode line:
15938 @table @code
15939 @item Alg
15940 Algebraic mode (@kbd{m a}; @pxref{Algebraic Entry}).
15942 @item Alg[(
15943 Incomplete algebraic mode (@kbd{C-u m a}).
15945 @item Alg*
15946 Total algebraic mode (@kbd{m t}).
15948 @item Symb
15949 Symbolic mode (@kbd{m s}; @pxref{Symbolic Mode}).
15951 @item Matrix
15952 Matrix mode (@kbd{m v}; @pxref{Matrix Mode}).
15954 @item Matrix@var{n}
15955 Dimensioned Matrix mode (@kbd{C-u @var{n} m v}; @pxref{Matrix Mode}).
15957 @item SqMatrix
15958 Square Matrix mode (@kbd{C-u m v}; @pxref{Matrix Mode}).
15960 @item Scalar
15961 Scalar mode (@kbd{m v}; @pxref{Matrix Mode}).
15963 @item Polar
15964 Polar complex mode (@kbd{m p}; @pxref{Polar Mode}).
15966 @item Frac
15967 Fraction mode (@kbd{m f}; @pxref{Fraction Mode}).
15969 @item Inf
15970 Infinite mode (@kbd{m i}; @pxref{Infinite Mode}).
15972 @item +Inf
15973 Positive Infinite mode (@kbd{C-u 0 m i}).
15975 @item NoSimp
15976 Default simplifications off (@kbd{m O}; @pxref{Simplification Modes}).
15978 @item NumSimp
15979 Default simplifications for numeric arguments only (@kbd{m N}).
15981 @item BinSimp@var{w}
15982 Binary-integer simplification mode; word size @var{w} (@kbd{m B}, @kbd{b w}).
15984 @item BasicSimp
15985 Basic simplification mode (@kbd{m I}).
15987 @item ExtSimp
15988 Extended algebraic simplification mode (@kbd{m E}).
15990 @item UnitSimp
15991 Units simplification mode (@kbd{m U}).
15993 @item Bin
15994 Current radix is 2 (@kbd{d 2}; @pxref{Radix Modes}).
15996 @item Oct
15997 Current radix is 8 (@kbd{d 8}).
15999 @item Hex
16000 Current radix is 16 (@kbd{d 6}).
16002 @item Radix@var{n}
16003 Current radix is @var{n} (@kbd{d r}).
16005 @item Zero
16006 Leading zeros (@kbd{d z}; @pxref{Radix Modes}).
16008 @item Big
16009 Big language mode (@kbd{d B}; @pxref{Normal Language Modes}).
16011 @item Flat
16012 One-line normal language mode (@kbd{d O}).
16014 @item Unform
16015 Unformatted language mode (@kbd{d U}).
16017 @item C
16018 C language mode (@kbd{d C}; @pxref{C FORTRAN Pascal}).
16020 @item Pascal
16021 Pascal language mode (@kbd{d P}).
16023 @item Fortran
16024 FORTRAN language mode (@kbd{d F}).
16026 @item TeX
16027 @TeX{} language mode (@kbd{d T}; @pxref{TeX and LaTeX Language Modes}).
16029 @item LaTeX
16030 @LaTeX{} language mode (@kbd{d L}; @pxref{TeX and LaTeX Language Modes}).
16032 @item Eqn
16033 @dfn{Eqn} language mode (@kbd{d E}; @pxref{Eqn Language Mode}).
16035 @item Math
16036 Mathematica language mode (@kbd{d M}; @pxref{Mathematica Language Mode}).
16038 @item Maple
16039 Maple language mode (@kbd{d W}; @pxref{Maple Language Mode}).
16041 @item Norm@var{n}
16042 Normal float mode with @var{n} digits (@kbd{d n}; @pxref{Float Formats}).
16044 @item Fix@var{n}
16045 Fixed point mode with @var{n} digits after the point (@kbd{d f}).
16047 @item Sci
16048 Scientific notation mode (@kbd{d s}).
16050 @item Sci@var{n}
16051 Scientific notation with @var{n} digits (@kbd{d s}).
16053 @item Eng
16054 Engineering notation mode (@kbd{d e}).
16056 @item Eng@var{n}
16057 Engineering notation with @var{n} digits (@kbd{d e}).
16059 @item Left@var{n}
16060 Left-justified display indented by @var{n} (@kbd{d <}; @pxref{Justification}).
16062 @item Right
16063 Right-justified display (@kbd{d >}).
16065 @item Right@var{n}
16066 Right-justified display with width @var{n} (@kbd{d >}).
16068 @item Center
16069 Centered display (@kbd{d =}).
16071 @item Center@var{n}
16072 Centered display with center column @var{n} (@kbd{d =}).
16074 @item Wid@var{n}
16075 Line breaking with width @var{n} (@kbd{d b}; @pxref{Normal Language Modes}).
16077 @item Wide
16078 No line breaking (@kbd{d b}).
16080 @item Break
16081 Selections show deep structure (@kbd{j b}; @pxref{Making Selections}).
16083 @item Save
16084 Record modes in @file{~/.emacs.d/calc.el} (@kbd{m R}; @pxref{General Mode Commands}).
16086 @item Local
16087 Record modes in Embedded buffer (@kbd{m R}).
16089 @item LocEdit
16090 Record modes as editing-only in Embedded buffer (@kbd{m R}).
16092 @item LocPerm
16093 Record modes as permanent-only in Embedded buffer (@kbd{m R}).
16095 @item Global
16096 Record modes as global in Embedded buffer (@kbd{m R}).
16098 @item Manual
16099 Automatic recomputation turned off (@kbd{m C}; @pxref{Automatic
16100 Recomputation}).
16102 @item Graph
16103 GNUPLOT process is alive in background (@pxref{Graphics}).
16105 @item Sel
16106 Top-of-stack has a selection (Embedded only; @pxref{Making Selections}).
16108 @item Dirty
16109 The stack display may not be up-to-date (@pxref{Display Modes}).
16111 @item Inv
16112 ``Inverse'' prefix was pressed (@kbd{I}; @pxref{Inverse and Hyperbolic}).
16114 @item Hyp
16115 ``Hyperbolic'' prefix was pressed (@kbd{H}).
16117 @item Keep
16118 ``Keep-arguments'' prefix was pressed (@kbd{K}).
16120 @item Narrow
16121 Stack is truncated (@kbd{d t}; @pxref{Truncating the Stack}).
16122 @end table
16124 In addition, the symbols @code{Active} and @code{~Active} can appear
16125 as minor modes on an Embedded buffer's mode line.  @xref{Embedded Mode}.
16127 @node Arithmetic, Scientific Functions, Mode Settings, Top
16128 @chapter Arithmetic Functions
16130 @noindent
16131 This chapter describes the Calc commands for doing simple calculations
16132 on numbers, such as addition, absolute value, and square roots.  These
16133 commands work by removing the top one or two values from the stack,
16134 performing the desired operation, and pushing the result back onto the
16135 stack.  If the operation cannot be performed, the result pushed is a
16136 formula instead of a number, such as @samp{2/0} (because division by zero
16137 is invalid) or @samp{sqrt(x)} (because the argument @samp{x} is a formula).
16139 Most of the commands described here can be invoked by a single keystroke.
16140 Some of the more obscure ones are two-letter sequences beginning with
16141 the @kbd{f} (``functions'') prefix key.
16143 @xref{Prefix Arguments}, for a discussion of the effect of numeric
16144 prefix arguments on commands in this chapter which do not otherwise
16145 interpret a prefix argument.
16147 @menu
16148 * Basic Arithmetic::
16149 * Integer Truncation::
16150 * Complex Number Functions::
16151 * Conversions::
16152 * Date Arithmetic::
16153 * Financial Functions::
16154 * Binary Functions::
16155 @end menu
16157 @node Basic Arithmetic, Integer Truncation, Arithmetic, Arithmetic
16158 @section Basic Arithmetic
16160 @noindent
16161 @kindex +
16162 @pindex calc-plus
16163 @ignore
16164 @mindex @null
16165 @end ignore
16166 @tindex +
16167 The @kbd{+} (@code{calc-plus}) command adds two numbers.  The numbers may
16168 be any of the standard Calc data types.  The resulting sum is pushed back
16169 onto the stack.
16171 If both arguments of @kbd{+} are vectors or matrices (of matching dimensions),
16172 the result is a vector or matrix sum.  If one argument is a vector and the
16173 other a scalar (i.e., a non-vector), the scalar is added to each of the
16174 elements of the vector to form a new vector.  If the scalar is not a
16175 number, the operation is left in symbolic form:  Suppose you added @samp{x}
16176 to the vector @samp{[1,2]}.  You may want the result @samp{[1+x,2+x]}, or
16177 you may plan to substitute a 2-vector for @samp{x} in the future.  Since
16178 the Calculator can't tell which interpretation you want, it makes the
16179 safest assumption.  @xref{Reducing and Mapping}, for a way to add @samp{x}
16180 to every element of a vector.
16182 If either argument of @kbd{+} is a complex number, the result will in general
16183 be complex.  If one argument is in rectangular form and the other polar,
16184 the current Polar mode determines the form of the result.  If Symbolic
16185 mode is enabled, the sum may be left as a formula if the necessary
16186 conversions for polar addition are non-trivial.
16188 If both arguments of @kbd{+} are HMS forms, the forms are added according to
16189 the usual conventions of hours-minutes-seconds notation.  If one argument
16190 is an HMS form and the other is a number, that number is converted from
16191 degrees or radians (depending on the current Angular mode) to HMS format
16192 and then the two HMS forms are added.
16194 If one argument of @kbd{+} is a date form, the other can be either a
16195 real number, which advances the date by a certain number of days, or
16196 an HMS form, which advances the date by a certain amount of time.
16197 Subtracting two date forms yields the number of days between them.
16198 Adding two date forms is meaningless, but Calc interprets it as the
16199 subtraction of one date form and the negative of the other.  (The
16200 negative of a date form can be understood by remembering that dates
16201 are stored as the number of days before or after Jan 1, 1 AD.)
16203 If both arguments of @kbd{+} are error forms, the result is an error form
16204 with an appropriately computed standard deviation.  If one argument is an
16205 error form and the other is a number, the number is taken to have zero error.
16206 Error forms may have symbolic formulas as their mean and/or error parts;
16207 adding these will produce a symbolic error form result.  However, adding an
16208 error form to a plain symbolic formula (as in @samp{(a +/- b) + c}) will not
16209 work, for the same reasons just mentioned for vectors.  Instead you must
16210 write @samp{(a +/- b) + (c +/- 0)}.
16212 If both arguments of @kbd{+} are modulo forms with equal values of @expr{M},
16213 or if one argument is a modulo form and the other a plain number, the
16214 result is a modulo form which represents the sum, modulo @expr{M}, of
16215 the two values.
16217 If both arguments of @kbd{+} are intervals, the result is an interval
16218 which describes all possible sums of the possible input values.  If
16219 one argument is a plain number, it is treated as the interval
16220 @w{@samp{[x ..@: x]}}.
16222 If one argument of @kbd{+} is an infinity and the other is not, the
16223 result is that same infinity.  If both arguments are infinite and in
16224 the same direction, the result is the same infinity, but if they are
16225 infinite in different directions the result is @code{nan}.
16227 @kindex -
16228 @pindex calc-minus
16229 @ignore
16230 @mindex @null
16231 @end ignore
16232 @tindex -
16233 The @kbd{-} (@code{calc-minus}) command subtracts two values.  The top
16234 number on the stack is subtracted from the one behind it, so that the
16235 computation @kbd{5 @key{RET} 2 -} produces 3, not @mathit{-3}.  All options
16236 available for @kbd{+} are available for @kbd{-} as well.
16238 @kindex *
16239 @pindex calc-times
16240 @ignore
16241 @mindex @null
16242 @end ignore
16243 @tindex *
16244 The @kbd{*} (@code{calc-times}) command multiplies two numbers.  If one
16245 argument is a vector and the other a scalar, the scalar is multiplied by
16246 the elements of the vector to produce a new vector.  If both arguments
16247 are vectors, the interpretation depends on the dimensions of the
16248 vectors:  If both arguments are matrices, a matrix multiplication is
16249 done.  If one argument is a matrix and the other a plain vector, the
16250 vector is interpreted as a row vector or column vector, whichever is
16251 dimensionally correct.  If both arguments are plain vectors, the result
16252 is a single scalar number which is the dot product of the two vectors.
16254 If one argument of @kbd{*} is an HMS form and the other a number, the
16255 HMS form is multiplied by that amount.  It is an error to multiply two
16256 HMS forms together, or to attempt any multiplication involving date
16257 forms.  Error forms, modulo forms, and intervals can be multiplied;
16258 see the comments for addition of those forms.  When two error forms
16259 or intervals are multiplied they are considered to be statistically
16260 independent; thus, @samp{[-2 ..@: 3] * [-2 ..@: 3]} is @samp{[-6 ..@: 9]},
16261 whereas @w{@samp{[-2 ..@: 3] ^ 2}} is @samp{[0 ..@: 9]}.
16263 @kindex /
16264 @pindex calc-divide
16265 @ignore
16266 @mindex @null
16267 @end ignore
16268 @tindex /
16269 The @kbd{/} (@code{calc-divide}) command divides two numbers.
16271 When combining multiplication and division in an algebraic formula, it
16272 is good style to use parentheses to distinguish between possible
16273 interpretations; the expression @samp{a/b*c} should be written
16274 @samp{(a/b)*c} or @samp{a/(b*c)}, as appropriate.  Without the
16275 parentheses, Calc will interpret @samp{a/b*c} as @samp{a/(b*c)}, since
16276 in algebraic entry Calc gives division a lower precedence than
16277 multiplication. (This is not standard across all computer languages, and
16278 Calc may change the precedence depending on the language mode being used.
16279 @xref{Language Modes}.)  This default ordering can be changed by setting
16280 the customizable variable @code{calc-multiplication-has-precedence} to
16281 @code{nil} (@pxref{Customizing Calc}); this will give multiplication and
16282 division equal precedences.  Note that Calc's default choice of
16283 precedence allows @samp{a b / c d} to be used as a shortcut for
16284 @smallexample
16285 @group
16286 a b
16287 ---.
16288 c d
16289 @end group
16290 @end smallexample
16292 When dividing a scalar @expr{B} by a square matrix @expr{A}, the
16293 computation performed is @expr{B} times the inverse of @expr{A}.  This
16294 also occurs if @expr{B} is itself a vector or matrix, in which case the
16295 effect is to solve the set of linear equations represented by @expr{B}.
16296 If @expr{B} is a matrix with the same number of rows as @expr{A}, or a
16297 plain vector (which is interpreted here as a column vector), then the
16298 equation @expr{A X = B} is solved for the vector or matrix @expr{X}.
16299 Otherwise, if @expr{B} is a non-square matrix with the same number of
16300 @emph{columns} as @expr{A}, the equation @expr{X A = B} is solved.  If
16301 you wish a vector @expr{B} to be interpreted as a row vector to be
16302 solved as @expr{X A = B}, make it into a one-row matrix with @kbd{C-u 1
16303 v p} first.  To force a left-handed solution with a square matrix
16304 @expr{B}, transpose @expr{A} and @expr{B} before dividing, then
16305 transpose the result.
16307 HMS forms can be divided by real numbers or by other HMS forms.  Error
16308 forms can be divided in any combination of ways.  Modulo forms where both
16309 values and the modulo are integers can be divided to get an integer modulo
16310 form result.  Intervals can be divided; dividing by an interval that
16311 encompasses zero or has zero as a limit will result in an infinite
16312 interval.
16314 @kindex ^
16315 @pindex calc-power
16316 @ignore
16317 @mindex @null
16318 @end ignore
16319 @tindex ^
16320 The @kbd{^} (@code{calc-power}) command raises a number to a power.  If
16321 the power is an integer, an exact result is computed using repeated
16322 multiplications.  For non-integer powers, Calc uses Newton's method or
16323 logarithms and exponentials.  Square matrices can be raised to integer
16324 powers.  If either argument is an error (or interval or modulo) form,
16325 the result is also an error (or interval or modulo) form.
16327 @kindex I ^
16328 @tindex nroot
16329 If you press the @kbd{I} (inverse) key first, the @kbd{I ^} command
16330 computes an Nth root:  @kbd{125 @key{RET} 3 I ^} computes the number 5.
16331 (This is entirely equivalent to @kbd{125 @key{RET} 1:3 ^}.)
16333 @kindex \
16334 @pindex calc-idiv
16335 @tindex idiv
16336 @ignore
16337 @mindex @null
16338 @end ignore
16339 @tindex \
16340 The @kbd{\} (@code{calc-idiv}) command divides two numbers on the stack
16341 to produce an integer result.  It is equivalent to dividing with
16342 @key{/}, then rounding down with @kbd{F} (@code{calc-floor}), only a bit
16343 more convenient and efficient.  Also, since it is an all-integer
16344 operation when the arguments are integers, it avoids problems that
16345 @kbd{/ F} would have with floating-point roundoff.
16347 @kindex %
16348 @pindex calc-mod
16349 @ignore
16350 @mindex @null
16351 @end ignore
16352 @tindex %
16353 The @kbd{%} (@code{calc-mod}) command performs a ``modulo'' (or ``remainder'')
16354 operation.  Mathematically, @samp{a%b = a - (a\b)*b}, and is defined
16355 for all real numbers @expr{a} and @expr{b} (except @expr{b=0}).  For
16356 positive @expr{b}, the result will always be between 0 (inclusive) and
16357 @expr{b} (exclusive).  Modulo does not work for HMS forms and error forms.
16358 If @expr{a} is a modulo form, its modulo is changed to @expr{b}, which
16359 must be positive real number.
16361 @kindex :
16362 @pindex calc-fdiv
16363 @tindex fdiv
16364 The @kbd{:} (@code{calc-fdiv}) [@code{fdiv}] command
16365 divides the two integers on the top of the stack to produce a fractional
16366 result.  This is a convenient shorthand for enabling Fraction mode (with
16367 @kbd{m f}) temporarily and using @samp{/}.  Note that during numeric entry
16368 the @kbd{:} key is interpreted as a fraction separator, so to divide 8 by 6
16369 you would have to type @kbd{8 @key{RET} 6 @key{RET} :}.  (Of course, in
16370 this case, it would be much easier simply to enter the fraction directly
16371 as @kbd{8:6 @key{RET}}!)
16373 @kindex n
16374 @pindex calc-change-sign
16375 The @kbd{n} (@code{calc-change-sign}) command negates the number on the top
16376 of the stack.  It works on numbers, vectors and matrices, HMS forms, date
16377 forms, error forms, intervals, and modulo forms.
16379 @kindex A
16380 @pindex calc-abs
16381 @tindex abs
16382 The @kbd{A} (@code{calc-abs}) [@code{abs}] command computes the absolute
16383 value of a number.  The result of @code{abs} is always a nonnegative
16384 real number:  With a complex argument, it computes the complex magnitude.
16385 With a vector or matrix argument, it computes the Frobenius norm, i.e.,
16386 the square root of the sum of the squares of the absolute values of the
16387 elements.  The absolute value of an error form is defined by replacing
16388 the mean part with its absolute value and leaving the error part the same.
16389 The absolute value of a modulo form is undefined.  The absolute value of
16390 an interval is defined in the obvious way.
16392 @kindex f A
16393 @pindex calc-abssqr
16394 @tindex abssqr
16395 The @kbd{f A} (@code{calc-abssqr}) [@code{abssqr}] command computes the
16396 absolute value squared of a number, vector or matrix, or error form.
16398 @kindex f s
16399 @pindex calc-sign
16400 @tindex sign
16401 The @kbd{f s} (@code{calc-sign}) [@code{sign}] command returns 1 if its
16402 argument is positive, @mathit{-1} if its argument is negative, or 0 if its
16403 argument is zero.  In algebraic form, you can also write @samp{sign(a,x)}
16404 which evaluates to @samp{x * sign(a)}, i.e., either @samp{x}, @samp{-x}, or
16405 zero depending on the sign of @samp{a}.
16407 @kindex &
16408 @pindex calc-inv
16409 @tindex inv
16410 @cindex Reciprocal
16411 The @kbd{&} (@code{calc-inv}) [@code{inv}] command computes the
16412 reciprocal of a number, i.e., @expr{1 / x}.  Operating on a square
16413 matrix, it computes the inverse of that matrix.
16415 @kindex Q
16416 @pindex calc-sqrt
16417 @tindex sqrt
16418 The @kbd{Q} (@code{calc-sqrt}) [@code{sqrt}] command computes the square
16419 root of a number.  For a negative real argument, the result will be a
16420 complex number whose form is determined by the current Polar mode.
16422 @kindex f h
16423 @pindex calc-hypot
16424 @tindex hypot
16425 The @kbd{f h} (@code{calc-hypot}) [@code{hypot}] command computes the square
16426 root of the sum of the squares of two numbers.  That is, @samp{hypot(a,b)}
16427 is the length of the hypotenuse of a right triangle with sides @expr{a}
16428 and @expr{b}.  If the arguments are complex numbers, their squared
16429 magnitudes are used.
16431 @kindex f Q
16432 @pindex calc-isqrt
16433 @tindex isqrt
16434 The @kbd{f Q} (@code{calc-isqrt}) [@code{isqrt}] command computes the
16435 integer square root of an integer.  This is the true square root of the
16436 number, rounded down to an integer.  For example, @samp{isqrt(10)}
16437 produces 3.  Note that, like @kbd{\} [@code{idiv}], this uses exact
16438 integer arithmetic throughout to avoid roundoff problems.  If the input
16439 is a floating-point number or other non-integer value, this is exactly
16440 the same as @samp{floor(sqrt(x))}.
16442 @kindex f n
16443 @kindex f x
16444 @pindex calc-min
16445 @tindex min
16446 @pindex calc-max
16447 @tindex max
16448 The @kbd{f n} (@code{calc-min}) [@code{min}] and @kbd{f x} (@code{calc-max})
16449 [@code{max}] commands take the minimum or maximum of two real numbers,
16450 respectively.  These commands also work on HMS forms, date forms,
16451 intervals, and infinities.  (In algebraic expressions, these functions
16452 take any number of arguments and return the maximum or minimum among
16453 all the arguments.)
16455 @kindex f M
16456 @kindex f X
16457 @pindex calc-mant-part
16458 @tindex mant
16459 @pindex calc-xpon-part
16460 @tindex xpon
16461 The @kbd{f M} (@code{calc-mant-part}) [@code{mant}] function extracts
16462 the ``mantissa'' part @expr{m} of its floating-point argument; @kbd{f X}
16463 (@code{calc-xpon-part}) [@code{xpon}] extracts the ``exponent'' part
16464 @expr{e}.  The original number is equal to
16465 @texline @math{m \times 10^e},
16466 @infoline @expr{m * 10^e},
16467 where @expr{m} is in the interval @samp{[1.0 ..@: 10.0)} except that
16468 @expr{m=e=0} if the original number is zero.  For integers
16469 and fractions, @code{mant} returns the number unchanged and @code{xpon}
16470 returns zero.  The @kbd{v u} (@code{calc-unpack}) command can also be
16471 used to ``unpack'' a floating-point number; this produces an integer
16472 mantissa and exponent, with the constraint that the mantissa is not
16473 a multiple of ten (again except for the @expr{m=e=0} case).
16475 @kindex f S
16476 @pindex calc-scale-float
16477 @tindex scf
16478 The @kbd{f S} (@code{calc-scale-float}) [@code{scf}] function scales a number
16479 by a given power of ten.  Thus, @samp{scf(mant(x), xpon(x)) = x} for any
16480 real @samp{x}.  The second argument must be an integer, but the first
16481 may actually be any numeric value.  For example, @samp{scf(5,-2) = 0.05}
16482 or @samp{1:20} depending on the current Fraction mode.
16484 @kindex f [
16485 @kindex f ]
16486 @pindex calc-decrement
16487 @pindex calc-increment
16488 @tindex decr
16489 @tindex incr
16490 The @kbd{f [} (@code{calc-decrement}) [@code{decr}] and @kbd{f ]}
16491 (@code{calc-increment}) [@code{incr}] functions decrease or increase
16492 a number by one unit.  For integers, the effect is obvious.  For
16493 floating-point numbers, the change is by one unit in the last place.
16494 For example, incrementing @samp{12.3456} when the current precision
16495 is 6 digits yields @samp{12.3457}.  If the current precision had been
16496 8 digits, the result would have been @samp{12.345601}.  Incrementing
16497 @samp{0.0} produces
16498 @texline @math{10^{-p}},
16499 @infoline @expr{10^-p},
16500 where @expr{p} is the current
16501 precision.  These operations are defined only on integers and floats.
16502 With numeric prefix arguments, they change the number by @expr{n} units.
16504 Note that incrementing followed by decrementing, or vice-versa, will
16505 almost but not quite always cancel out.  Suppose the precision is
16506 6 digits and the number @samp{9.99999} is on the stack.  Incrementing
16507 will produce @samp{10.0000}; decrementing will produce @samp{9.9999}.
16508 One digit has been dropped.  This is an unavoidable consequence of the
16509 way floating-point numbers work.
16511 Incrementing a date/time form adjusts it by a certain number of seconds.
16512 Incrementing a pure date form adjusts it by a certain number of days.
16514 @node Integer Truncation, Complex Number Functions, Basic Arithmetic, Arithmetic
16515 @section Integer Truncation
16517 @noindent
16518 There are four commands for truncating a real number to an integer,
16519 differing mainly in their treatment of negative numbers.  All of these
16520 commands have the property that if the argument is an integer, the result
16521 is the same integer.  An integer-valued floating-point argument is converted
16522 to integer form.
16524 If you press @kbd{H} (@code{calc-hyperbolic}) first, the result will be
16525 expressed as an integer-valued floating-point number.
16527 @cindex Integer part of a number
16528 @kindex F
16529 @pindex calc-floor
16530 @tindex floor
16531 @tindex ffloor
16532 @ignore
16533 @mindex @null
16534 @end ignore
16535 @kindex H F
16536 The @kbd{F} (@code{calc-floor}) [@code{floor} or @code{ffloor}] command
16537 truncates a real number to the next lower integer, i.e., toward minus
16538 infinity.  Thus @kbd{3.6 F} produces 3, but @kbd{_3.6 F} produces
16539 @mathit{-4}.
16541 @kindex I F
16542 @pindex calc-ceiling
16543 @tindex ceil
16544 @tindex fceil
16545 @ignore
16546 @mindex @null
16547 @end ignore
16548 @kindex H I F
16549 The @kbd{I F} (@code{calc-ceiling}) [@code{ceil} or @code{fceil}]
16550 command truncates toward positive infinity.  Thus @kbd{3.6 I F} produces
16551 4, and @kbd{_3.6 I F} produces @mathit{-3}.
16553 @kindex R
16554 @pindex calc-round
16555 @tindex round
16556 @tindex fround
16557 @ignore
16558 @mindex @null
16559 @end ignore
16560 @kindex H R
16561 The @kbd{R} (@code{calc-round}) [@code{round} or @code{fround}] command
16562 rounds to the nearest integer.  When the fractional part is .5 exactly,
16563 this command rounds away from zero.  (All other rounding in the
16564 Calculator uses this convention as well.)  Thus @kbd{3.5 R} produces 4
16565 but @kbd{3.4 R} produces 3; @kbd{_3.5 R} produces @mathit{-4}.
16567 @kindex I R
16568 @pindex calc-trunc
16569 @tindex trunc
16570 @tindex ftrunc
16571 @ignore
16572 @mindex @null
16573 @end ignore
16574 @kindex H I R
16575 The @kbd{I R} (@code{calc-trunc}) [@code{trunc} or @code{ftrunc}]
16576 command truncates toward zero.  In other words, it ``chops off''
16577 everything after the decimal point.  Thus @kbd{3.6 I R} produces 3 and
16578 @kbd{_3.6 I R} produces @mathit{-3}.
16580 These functions may not be applied meaningfully to error forms, but they
16581 do work for intervals.  As a convenience, applying @code{floor} to a
16582 modulo form floors the value part of the form.  Applied to a vector,
16583 these functions operate on all elements of the vector one by one.
16584 Applied to a date form, they operate on the internal numerical
16585 representation of dates, converting a date/time form into a pure date.
16587 @ignore
16588 @starindex
16589 @end ignore
16590 @tindex rounde
16591 @ignore
16592 @starindex
16593 @end ignore
16594 @tindex roundu
16595 @ignore
16596 @starindex
16597 @end ignore
16598 @tindex frounde
16599 @ignore
16600 @starindex
16601 @end ignore
16602 @tindex froundu
16603 There are two more rounding functions which can only be entered in
16604 algebraic notation.  The @code{roundu} function is like @code{round}
16605 except that it rounds up, toward plus infinity, when the fractional
16606 part is .5.  This distinction matters only for negative arguments.
16607 Also, @code{rounde} rounds to an even number in the case of a tie,
16608 rounding up or down as necessary.  For example, @samp{rounde(3.5)} and
16609 @samp{rounde(4.5)} both return 4, but @samp{rounde(5.5)} returns 6.
16610 The advantage of round-to-even is that the net error due to rounding
16611 after a long calculation tends to cancel out to zero.  An important
16612 subtle point here is that the number being fed to @code{rounde} will
16613 already have been rounded to the current precision before @code{rounde}
16614 begins.  For example, @samp{rounde(2.500001)} with a current precision
16615 of 6 will incorrectly, or at least surprisingly, yield 2 because the
16616 argument will first have been rounded down to @expr{2.5} (which
16617 @code{rounde} sees as an exact tie between 2 and 3).
16619 Each of these functions, when written in algebraic formulas, allows
16620 a second argument which specifies the number of digits after the
16621 decimal point to keep.  For example, @samp{round(123.4567, 2)} will
16622 produce the answer 123.46, and @samp{round(123.4567, -1)} will
16623 produce 120 (i.e., the cutoff is one digit to the @emph{left} of
16624 the decimal point).  A second argument of zero is equivalent to
16625 no second argument at all.
16627 @cindex Fractional part of a number
16628 To compute the fractional part of a number (i.e., the amount which, when
16629 added to `@tfn{floor(}@var{n}@tfn{)}', will produce @var{n}) just take @var{n}
16630 modulo 1 using the @code{%} command.
16632 Note also the @kbd{\} (integer quotient), @kbd{f I} (integer logarithm),
16633 and @kbd{f Q} (integer square root) commands, which are analogous to
16634 @kbd{/}, @kbd{B}, and @kbd{Q}, respectively, except that they take integer
16635 arguments and return the result rounded down to an integer.
16637 @node Complex Number Functions, Conversions, Integer Truncation, Arithmetic
16638 @section Complex Number Functions
16640 @noindent
16641 @kindex J
16642 @pindex calc-conj
16643 @tindex conj
16644 The @kbd{J} (@code{calc-conj}) [@code{conj}] command computes the
16645 complex conjugate of a number.  For complex number @expr{a+bi}, the
16646 complex conjugate is @expr{a-bi}.  If the argument is a real number,
16647 this command leaves it the same.  If the argument is a vector or matrix,
16648 this command replaces each element by its complex conjugate.
16650 @kindex G
16651 @pindex calc-argument
16652 @tindex arg
16653 The @kbd{G} (@code{calc-argument}) [@code{arg}] command computes the
16654 ``argument'' or polar angle of a complex number.  For a number in polar
16655 notation, this is simply the second component of the pair
16656 @texline `@tfn{(}@var{r}@tfn{;}@math{\theta}@tfn{)}'.
16657 @infoline `@tfn{(}@var{r}@tfn{;}@var{theta}@tfn{)}'.
16658 The result is expressed according to the current angular mode and will
16659 be in the range @mathit{-180} degrees (exclusive) to @mathit{+180} degrees
16660 (inclusive), or the equivalent range in radians.
16662 @pindex calc-imaginary
16663 The @code{calc-imaginary} command multiplies the number on the
16664 top of the stack by the imaginary number @expr{i = (0,1)}.  This
16665 command is not normally bound to a key in Calc, but it is available
16666 on the @key{IMAG} button in Keypad mode.
16668 @kindex f r
16669 @pindex calc-re
16670 @tindex re
16671 The @kbd{f r} (@code{calc-re}) [@code{re}] command replaces a complex number
16672 by its real part.  This command has no effect on real numbers.  (As an
16673 added convenience, @code{re} applied to a modulo form extracts
16674 the value part.)
16676 @kindex f i
16677 @pindex calc-im
16678 @tindex im
16679 The @kbd{f i} (@code{calc-im}) [@code{im}] command replaces a complex number
16680 by its imaginary part; real numbers are converted to zero.  With a vector
16681 or matrix argument, these functions operate element-wise.
16683 @ignore
16684 @mindex v p
16685 @end ignore
16686 @kindex v p (complex)
16687 @kindex V p (complex)
16688 @pindex calc-pack
16689 The @kbd{v p} (@code{calc-pack}) command can pack the top two numbers on
16690 the stack into a composite object such as a complex number.  With
16691 a prefix argument of @mathit{-1}, it produces a rectangular complex number;
16692 with an argument of @mathit{-2}, it produces a polar complex number.
16693 (Also, @pxref{Building Vectors}.)
16695 @ignore
16696 @mindex v u
16697 @end ignore
16698 @kindex v u (complex)
16699 @kindex V u (complex)
16700 @pindex calc-unpack
16701 The @kbd{v u} (@code{calc-unpack}) command takes the complex number
16702 (or other composite object) on the top of the stack and unpacks it
16703 into its separate components.
16705 @node Conversions, Date Arithmetic, Complex Number Functions, Arithmetic
16706 @section Conversions
16708 @noindent
16709 The commands described in this section convert numbers from one form
16710 to another; they are two-key sequences beginning with the letter @kbd{c}.
16712 @kindex c f
16713 @pindex calc-float
16714 @tindex pfloat
16715 The @kbd{c f} (@code{calc-float}) [@code{pfloat}] command converts the
16716 number on the top of the stack to floating-point form.  For example,
16717 @expr{23} is converted to @expr{23.0}, @expr{3:2} is converted to
16718 @expr{1.5}, and @expr{2.3} is left the same.  If the value is a composite
16719 object such as a complex number or vector, each of the components is
16720 converted to floating-point.  If the value is a formula, all numbers
16721 in the formula are converted to floating-point.  Note that depending
16722 on the current floating-point precision, conversion to floating-point
16723 format may lose information.
16725 As a special exception, integers which appear as powers or subscripts
16726 are not floated by @kbd{c f}.  If you really want to float a power,
16727 you can use a @kbd{j s} command to select the power followed by @kbd{c f}.
16728 Because @kbd{c f} cannot examine the formula outside of the selection,
16729 it does not notice that the thing being floated is a power.
16730 @xref{Selecting Subformulas}.
16732 The normal @kbd{c f} command is ``pervasive'' in the sense that it
16733 applies to all numbers throughout the formula.  The @code{pfloat}
16734 algebraic function never stays around in a formula; @samp{pfloat(a + 1)}
16735 changes to @samp{a + 1.0} as soon as it is evaluated.
16737 @kindex H c f
16738 @tindex float
16739 With the Hyperbolic flag, @kbd{H c f} [@code{float}] operates
16740 only on the number or vector of numbers at the top level of its
16741 argument.  Thus, @samp{float(1)} is 1.0, but @samp{float(a + 1)}
16742 is left unevaluated because its argument is not a number.
16744 You should use @kbd{H c f} if you wish to guarantee that the final
16745 value, once all the variables have been assigned, is a float; you
16746 would use @kbd{c f} if you wish to do the conversion on the numbers
16747 that appear right now.
16749 @kindex c F
16750 @pindex calc-fraction
16751 @tindex pfrac
16752 The @kbd{c F} (@code{calc-fraction}) [@code{pfrac}] command converts a
16753 floating-point number into a fractional approximation.  By default, it
16754 produces a fraction whose decimal representation is the same as the
16755 input number, to within the current precision.  You can also give a
16756 numeric prefix argument to specify a tolerance, either directly, or,
16757 if the prefix argument is zero, by using the number on top of the stack
16758 as the tolerance.  If the tolerance is a positive integer, the fraction
16759 is correct to within that many significant figures.  If the tolerance is
16760 a non-positive integer, it specifies how many digits fewer than the current
16761 precision to use.  If the tolerance is a floating-point number, the
16762 fraction is correct to within that absolute amount.
16764 @kindex H c F
16765 @tindex frac
16766 The @code{pfrac} function is pervasive, like @code{pfloat}.
16767 There is also a non-pervasive version, @kbd{H c F} [@code{frac}],
16768 which is analogous to @kbd{H c f} discussed above.
16770 @kindex c d
16771 @pindex calc-to-degrees
16772 @tindex deg
16773 The @kbd{c d} (@code{calc-to-degrees}) [@code{deg}] command converts a
16774 number into degrees form.  The value on the top of the stack may be an
16775 HMS form (interpreted as degrees-minutes-seconds), or a real number which
16776 will be interpreted in radians regardless of the current angular mode.
16778 @kindex c r
16779 @pindex calc-to-radians
16780 @tindex rad
16781 The @kbd{c r} (@code{calc-to-radians}) [@code{rad}] command converts an
16782 HMS form or angle in degrees into an angle in radians.
16784 @kindex c h
16785 @pindex calc-to-hms
16786 @tindex hms
16787 The @kbd{c h} (@code{calc-to-hms}) [@code{hms}] command converts a real
16788 number, interpreted according to the current angular mode, to an HMS
16789 form describing the same angle.  In algebraic notation, the @code{hms}
16790 function also accepts three arguments: @samp{hms(@var{h}, @var{m}, @var{s})}.
16791 (The three-argument version is independent of the current angular mode.)
16793 @pindex calc-from-hms
16794 The @code{calc-from-hms} command converts the HMS form on the top of the
16795 stack into a real number according to the current angular mode.
16797 @kindex c p
16798 @kindex I c p
16799 @pindex calc-polar
16800 @tindex polar
16801 @tindex rect
16802 The @kbd{c p} (@code{calc-polar}) command converts the complex number on
16803 the top of the stack from polar to rectangular form, or from rectangular
16804 to polar form, whichever is appropriate.  Real numbers are left the same.
16805 This command is equivalent to the @code{rect} or @code{polar}
16806 functions in algebraic formulas, depending on the direction of
16807 conversion.  (It uses @code{polar}, except that if the argument is
16808 already a polar complex number, it uses @code{rect} instead.  The
16809 @kbd{I c p} command always uses @code{rect}.)
16811 @kindex c c
16812 @pindex calc-clean
16813 @tindex pclean
16814 The @kbd{c c} (@code{calc-clean}) [@code{pclean}] command ``cleans'' the
16815 number on the top of the stack.  Floating point numbers are re-rounded
16816 according to the current precision.  Polar numbers whose angular
16817 components have strayed from the @mathit{-180} to @mathit{+180} degree range
16818 are normalized.  (Note that results will be undesirable if the current
16819 angular mode is different from the one under which the number was
16820 produced!)  Integers and fractions are generally unaffected by this
16821 operation.  Vectors and formulas are cleaned by cleaning each component
16822 number (i.e., pervasively).
16824 If the simplification mode is set below basic simplification, it is raised
16825 for the purposes of this command.  Thus, @kbd{c c} applies the basic
16826 simplifications even if their automatic application is disabled.
16827 @xref{Simplification Modes}.
16829 @cindex Roundoff errors, correcting
16830 A numeric prefix argument to @kbd{c c} sets the floating-point precision
16831 to that value for the duration of the command.  A positive prefix (of at
16832 least 3) sets the precision to the specified value; a negative or zero
16833 prefix decreases the precision by the specified amount.
16835 @kindex c 0-9
16836 @pindex calc-clean-num
16837 The keystroke sequences @kbd{c 0} through @kbd{c 9} are equivalent
16838 to @kbd{c c} with the corresponding negative prefix argument.  If roundoff
16839 errors have changed 2.0 into 1.999999, typing @kbd{c 1} to clip off one
16840 decimal place often conveniently does the trick.
16842 The @kbd{c c} command with a numeric prefix argument, and the @kbd{c 0}
16843 through @kbd{c 9} commands, also ``clip'' very small floating-point
16844 numbers to zero.  If the exponent is less than or equal to the negative
16845 of the specified precision, the number is changed to 0.0.  For example,
16846 if the current precision is 12, then @kbd{c 2} changes the vector
16847 @samp{[1e-8, 1e-9, 1e-10, 1e-11]} to @samp{[1e-8, 1e-9, 0, 0]}.
16848 Numbers this small generally arise from roundoff noise.
16850 If the numbers you are using really are legitimately this small,
16851 you should avoid using the @kbd{c 0} through @kbd{c 9} commands.
16852 (The plain @kbd{c c} command rounds to the current precision but
16853 does not clip small numbers.)
16855 One more property of @kbd{c 0} through @kbd{c 9}, and of @kbd{c c} with
16856 a prefix argument, is that integer-valued floats are converted to
16857 plain integers, so that @kbd{c 1} on @samp{[1., 1.5, 2., 2.5, 3.]}
16858 produces @samp{[1, 1.5, 2, 2.5, 3]}.  This is not done for huge
16859 numbers (@samp{1e100} is technically an integer-valued float, but
16860 you wouldn't want it automatically converted to a 100-digit integer).
16862 @kindex H c 0-9
16863 @kindex H c c
16864 @tindex clean
16865 With the Hyperbolic flag, @kbd{H c c} and @kbd{H c 0} through @kbd{H c 9}
16866 operate non-pervasively [@code{clean}].
16868 @node Date Arithmetic, Financial Functions, Conversions, Arithmetic
16869 @section Date Arithmetic
16871 @noindent
16872 @cindex Date arithmetic, additional functions
16873 The commands described in this section perform various conversions
16874 and calculations involving date forms (@pxref{Date Forms}).  They
16875 use the @kbd{t} (for time/date) prefix key followed by shifted
16876 letters.
16878 The simplest date arithmetic is done using the regular @kbd{+} and @kbd{-}
16879 commands.  In particular, adding a number to a date form advances the
16880 date form by a certain number of days; adding an HMS form to a date
16881 form advances the date by a certain amount of time; and subtracting two
16882 date forms produces a difference measured in days.  The commands
16883 described here provide additional, more specialized operations on dates.
16885 Many of these commands accept a numeric prefix argument; if you give
16886 plain @kbd{C-u} as the prefix, these commands will instead take the
16887 additional argument from the top of the stack.
16889 @menu
16890 * Date Conversions::
16891 * Date Functions::
16892 * Time Zones::
16893 * Business Days::
16894 @end menu
16896 @node Date Conversions, Date Functions, Date Arithmetic, Date Arithmetic
16897 @subsection Date Conversions
16899 @noindent
16900 @kindex t D
16901 @pindex calc-date
16902 @tindex date
16903 The @kbd{t D} (@code{calc-date}) [@code{date}] command converts a
16904 date form into a number, measured in days since Jan 1, 1 AD@.  The
16905 result will be an integer if @var{date} is a pure date form, or a
16906 fraction or float if @var{date} is a date/time form.  Or, if its
16907 argument is a number, it converts this number into a date form.
16909 With a numeric prefix argument, @kbd{t D} takes that many objects
16910 (up to six) from the top of the stack and interprets them in one
16911 of the following ways:
16913 The @samp{date(@var{year}, @var{month}, @var{day})} function
16914 builds a pure date form out of the specified year, month, and
16915 day, which must all be integers.  @var{Year} is a year number,
16916 such as 1991 (@emph{not} the same as 91!).  @var{Month} must be
16917 an integer in the range 1 to 12; @var{day} must be in the range
16918 1 to 31.  If the specified month has fewer than 31 days and
16919 @var{day} is too large, the equivalent day in the following
16920 month will be used.
16922 The @samp{date(@var{month}, @var{day})} function builds a
16923 pure date form using the current year, as determined by the
16924 real-time clock.
16926 The @samp{date(@var{year}, @var{month}, @var{day}, @var{hms})}
16927 function builds a date/time form using an @var{hms} form.
16929 The @samp{date(@var{year}, @var{month}, @var{day}, @var{hour},
16930 @var{minute}, @var{second})} function builds a date/time form.
16931 @var{hour} should be an integer in the range 0 to 23;
16932 @var{minute} should be an integer in the range 0 to 59;
16933 @var{second} should be any real number in the range @samp{[0 .. 60)}.
16934 The last two arguments default to zero if omitted.
16936 @kindex t J
16937 @pindex calc-julian
16938 @tindex julian
16939 @cindex Julian day counts, conversions
16940 The @kbd{t J} (@code{calc-julian}) [@code{julian}] command converts
16941 a date form into a Julian day count, which is the number of days
16942 since noon (GMT) on Jan 1, 4713 BC@.  A pure date is converted to an
16943 integer Julian count representing noon of that day.  A date/time form
16944 is converted to an exact floating-point Julian count, adjusted to
16945 interpret the date form in the current time zone but the Julian
16946 day count in Greenwich Mean Time.  A numeric prefix argument allows
16947 you to specify the time zone; @pxref{Time Zones}.  Use a prefix of
16948 zero to suppress the time zone adjustment.  Note that pure date forms
16949 are never time-zone adjusted.
16951 This command can also do the opposite conversion, from a Julian day
16952 count (either an integer day, or a floating-point day and time in
16953 the GMT zone), into a pure date form or a date/time form in the
16954 current or specified time zone.
16956 @kindex t U
16957 @pindex calc-unix-time
16958 @tindex unixtime
16959 @cindex Unix time format, conversions
16960 The @kbd{t U} (@code{calc-unix-time}) [@code{unixtime}] command
16961 converts a date form into a Unix time value, which is the number of
16962 seconds since midnight on Jan 1, 1970, or vice-versa.  The numeric result
16963 will be an integer if the current precision is 12 or less; for higher
16964 precision, the result may be a float with (@var{precision}@minus{}12)
16965 digits after the decimal.  Just as for @kbd{t J}, the numeric time
16966 is interpreted in the GMT time zone and the date form is interpreted
16967 in the current or specified zone.  Some systems use Unix-like
16968 numbering but with the local time zone; give a prefix of zero to
16969 suppress the adjustment if so.
16971 @kindex t C
16972 @pindex calc-convert-time-zones
16973 @tindex tzconv
16974 @cindex Time Zones, converting between
16975 The @kbd{t C} (@code{calc-convert-time-zones}) [@code{tzconv}]
16976 command converts a date form from one time zone to another.  You
16977 are prompted for each time zone name in turn; you can answer with
16978 any suitable Calc time zone expression (@pxref{Time Zones}).
16979 If you answer either prompt with a blank line, the local time
16980 zone is used for that prompt.  You can also answer the first
16981 prompt with @kbd{$} to take the two time zone names from the
16982 stack (and the date to be converted from the third stack level).
16984 @node Date Functions, Business Days, Date Conversions, Date Arithmetic
16985 @subsection Date Functions
16987 @noindent
16988 @kindex t N
16989 @pindex calc-now
16990 @tindex now
16991 The @kbd{t N} (@code{calc-now}) [@code{now}] command pushes the
16992 current date and time on the stack as a date form.  The time is
16993 reported in terms of the specified time zone; with no numeric prefix
16994 argument, @kbd{t N} reports for the current time zone.
16996 @kindex t P
16997 @pindex calc-date-part
16998 The @kbd{t P} (@code{calc-date-part}) command extracts one part
16999 of a date form.  The prefix argument specifies the part; with no
17000 argument, this command prompts for a part code from 1 to 9.
17001 The various part codes are described in the following paragraphs.
17003 @tindex year
17004 The @kbd{M-1 t P} [@code{year}] function extracts the year number
17005 from a date form as an integer, e.g., 1991.  This and the
17006 following functions will also accept a real number for an
17007 argument, which is interpreted as a standard Calc day number.
17008 Note that this function will never return zero, since the year
17009 1 BC immediately precedes the year 1 AD.
17011 @tindex month
17012 The @kbd{M-2 t P} [@code{month}] function extracts the month number
17013 from a date form as an integer in the range 1 to 12.
17015 @tindex day
17016 The @kbd{M-3 t P} [@code{day}] function extracts the day number
17017 from a date form as an integer in the range 1 to 31.
17019 @tindex hour
17020 The @kbd{M-4 t P} [@code{hour}] function extracts the hour from
17021 a date form as an integer in the range 0 (midnight) to 23.  Note
17022 that 24-hour time is always used.  This returns zero for a pure
17023 date form.  This function (and the following two) also accept
17024 HMS forms as input.
17026 @tindex minute
17027 The @kbd{M-5 t P} [@code{minute}] function extracts the minute
17028 from a date form as an integer in the range 0 to 59.
17030 @tindex second
17031 The @kbd{M-6 t P} [@code{second}] function extracts the second
17032 from a date form.  If the current precision is 12 or less,
17033 the result is an integer in the range 0 to 59.  For higher
17034 precision, the result may instead be a floating-point number.
17036 @tindex weekday
17037 The @kbd{M-7 t P} [@code{weekday}] function extracts the weekday
17038 number from a date form as an integer in the range 0 (Sunday)
17039 to 6 (Saturday).
17041 @tindex yearday
17042 The @kbd{M-8 t P} [@code{yearday}] function extracts the day-of-year
17043 number from a date form as an integer in the range 1 (January 1)
17044 to 366 (December 31 of a leap year).
17046 @tindex time
17047 The @kbd{M-9 t P} [@code{time}] function extracts the time portion
17048 of a date form as an HMS form.  This returns @samp{0@@ 0' 0"}
17049 for a pure date form.
17051 @kindex t M
17052 @pindex calc-new-month
17053 @tindex newmonth
17054 The @kbd{t M} (@code{calc-new-month}) [@code{newmonth}] command
17055 computes a new date form that represents the first day of the month
17056 specified by the input date.  The result is always a pure date
17057 form; only the year and month numbers of the input are retained.
17058 With a numeric prefix argument @var{n} in the range from 1 to 31,
17059 @kbd{t M} computes the @var{n}th day of the month.  (If @var{n}
17060 is greater than the actual number of days in the month, or if
17061 @var{n} is zero, the last day of the month is used.)
17063 @kindex t Y
17064 @pindex calc-new-year
17065 @tindex newyear
17066 The @kbd{t Y} (@code{calc-new-year}) [@code{newyear}] command
17067 computes a new pure date form that represents the first day of
17068 the year specified by the input.  The month, day, and time
17069 of the input date form are lost.  With a numeric prefix argument
17070 @var{n} in the range from 1 to 366, @kbd{t Y} computes the
17071 @var{n}th day of the year (366 is treated as 365 in non-leap
17072 years).  A prefix argument of 0 computes the last day of the
17073 year (December 31).  A negative prefix argument from @mathit{-1} to
17074 @mathit{-12} computes the first day of the @var{n}th month of the year.
17076 @kindex t W
17077 @pindex calc-new-week
17078 @tindex newweek
17079 The @kbd{t W} (@code{calc-new-week}) [@code{newweek}] command
17080 computes a new pure date form that represents the Sunday on or before
17081 the input date.  With a numeric prefix argument, it can be made to
17082 use any day of the week as the starting day; the argument must be in
17083 the range from 0 (Sunday) to 6 (Saturday).  This function always
17084 subtracts between 0 and 6 days from the input date.
17086 Here's an example use of @code{newweek}:  Find the date of the next
17087 Wednesday after a given date.  Using @kbd{M-3 t W} or @samp{newweek(d, 3)}
17088 will give you the @emph{preceding} Wednesday, so @samp{newweek(d+7, 3)}
17089 will give you the following Wednesday.  A further look at the definition
17090 of @code{newweek} shows that if the input date is itself a Wednesday,
17091 this formula will return the Wednesday one week in the future.  An
17092 exercise for the reader is to modify this formula to yield the same day
17093 if the input is already a Wednesday.  Another interesting exercise is
17094 to preserve the time-of-day portion of the input (@code{newweek} resets
17095 the time to midnight; hint: how can @code{newweek} be defined in terms
17096 of the @code{weekday} function?).
17098 @ignore
17099 @starindex
17100 @end ignore
17101 @tindex pwday
17102 The @samp{pwday(@var{date})} function (not on any key) computes the
17103 day-of-month number of the Sunday on or before @var{date}.  With
17104 two arguments, @samp{pwday(@var{date}, @var{day})} computes the day
17105 number of the Sunday on or before day number @var{day} of the month
17106 specified by @var{date}.  The @var{day} must be in the range from
17107 7 to 31; if the day number is greater than the actual number of days
17108 in the month, the true number of days is used instead.  Thus
17109 @samp{pwday(@var{date}, 7)} finds the first Sunday of the month, and
17110 @samp{pwday(@var{date}, 31)} finds the last Sunday of the month.
17111 With a third @var{weekday} argument, @code{pwday} can be made to look
17112 for any day of the week instead of Sunday.
17114 @kindex t I
17115 @pindex calc-inc-month
17116 @tindex incmonth
17117 The @kbd{t I} (@code{calc-inc-month}) [@code{incmonth}] command
17118 increases a date form by one month, or by an arbitrary number of
17119 months specified by a numeric prefix argument.  The time portion,
17120 if any, of the date form stays the same.  The day also stays the
17121 same, except that if the new month has fewer days the day
17122 number may be reduced to lie in the valid range.  For example,
17123 @samp{incmonth(<Jan 31, 1991>)} produces @samp{<Feb 28, 1991>}.
17124 Because of this, @kbd{t I t I} and @kbd{M-2 t I} do not always give
17125 the same results (@samp{<Mar 28, 1991>} versus @samp{<Mar 31, 1991>}
17126 in this case).
17128 @ignore
17129 @starindex
17130 @end ignore
17131 @tindex incyear
17132 The @samp{incyear(@var{date}, @var{step})} function increases
17133 a date form by the specified number of years, which may be
17134 any positive or negative integer.  Note that @samp{incyear(d, n)}
17135 is equivalent to @w{@samp{incmonth(d, 12*n)}}, but these do not have
17136 simple equivalents in terms of day arithmetic because
17137 months and years have varying lengths.  If the @var{step}
17138 argument is omitted, 1 year is assumed.  There is no keyboard
17139 command for this function; use @kbd{C-u 12 t I} instead.
17141 There is no @code{newday} function at all because @kbd{F} [@code{floor}]
17142 serves this purpose.  Similarly, instead of @code{incday} and
17143 @code{incweek} simply use @expr{d + n} or @expr{d + 7 n}.
17145 @xref{Basic Arithmetic}, for the @kbd{f ]} [@code{incr}] command
17146 which can adjust a date/time form by a certain number of seconds.
17148 @node Business Days, Time Zones, Date Functions, Date Arithmetic
17149 @subsection Business Days
17151 @noindent
17152 Often time is measured in ``business days'' or ``working days,''
17153 where weekends and holidays are skipped.  Calc's normal date
17154 arithmetic functions use calendar days, so that subtracting two
17155 consecutive Mondays will yield a difference of 7 days.  By contrast,
17156 subtracting two consecutive Mondays would yield 5 business days
17157 (assuming two-day weekends and the absence of holidays).
17159 @kindex t +
17160 @kindex t -
17161 @tindex badd
17162 @tindex bsub
17163 @pindex calc-business-days-plus
17164 @pindex calc-business-days-minus
17165 The @kbd{t +} (@code{calc-business-days-plus}) [@code{badd}]
17166 and @kbd{t -} (@code{calc-business-days-minus}) [@code{bsub}]
17167 commands perform arithmetic using business days.  For @kbd{t +},
17168 one argument must be a date form and the other must be a real
17169 number (positive or negative).  If the number is not an integer,
17170 then a certain amount of time is added as well as a number of
17171 days; for example, adding 0.5 business days to a time in Friday
17172 evening will produce a time in Monday morning.  It is also
17173 possible to add an HMS form; adding @samp{12@@ 0' 0"} also adds
17174 half a business day.  For @kbd{t -}, the arguments are either a
17175 date form and a number or HMS form, or two date forms, in which
17176 case the result is the number of business days between the two
17177 dates.
17179 @cindex @code{Holidays} variable
17180 @vindex Holidays
17181 By default, Calc considers any day that is not a Saturday or
17182 Sunday to be a business day.  You can define any number of
17183 additional holidays by editing the variable @code{Holidays}.
17184 (There is an @w{@kbd{s H}} convenience command for editing this
17185 variable.)  Initially, @code{Holidays} contains the vector
17186 @samp{[sat, sun]}.  Entries in the @code{Holidays} vector may
17187 be any of the following kinds of objects:
17189 @itemize @bullet
17190 @item
17191 Date forms (pure dates, not date/time forms).  These specify
17192 particular days which are to be treated as holidays.
17194 @item
17195 Intervals of date forms.  These specify a range of days, all of
17196 which are holidays (e.g., Christmas week).  @xref{Interval Forms}.
17198 @item
17199 Nested vectors of date forms.  Each date form in the vector is
17200 considered to be a holiday.
17202 @item
17203 Any Calc formula which evaluates to one of the above three things.
17204 If the formula involves the variable @expr{y}, it stands for a
17205 yearly repeating holiday; @expr{y} will take on various year
17206 numbers like 1992.  For example, @samp{date(y, 12, 25)} specifies
17207 Christmas day, and @samp{newweek(date(y, 11, 7), 4) + 21} specifies
17208 Thanksgiving (which is held on the fourth Thursday of November).
17209 If the formula involves the variable @expr{m}, that variable
17210 takes on month numbers from 1 to 12:  @samp{date(y, m, 15)} is
17211 a holiday that takes place on the 15th of every month.
17213 @item
17214 A weekday name, such as @code{sat} or @code{sun}.  This is really
17215 a variable whose name is a three-letter, lower-case day name.
17217 @item
17218 An interval of year numbers (integers).  This specifies the span of
17219 years over which this holiday list is to be considered valid.  Any
17220 business-day arithmetic that goes outside this range will result
17221 in an error message.  Use this if you are including an explicit
17222 list of holidays, rather than a formula to generate them, and you
17223 want to make sure you don't accidentally go beyond the last point
17224 where the holidays you entered are complete.  If there is no
17225 limiting interval in the @code{Holidays} vector, the default
17226 @samp{[1 .. 2737]} is used.  (This is the absolute range of years
17227 for which Calc's business-day algorithms will operate.)
17229 @item
17230 An interval of HMS forms.  This specifies the span of hours that
17231 are to be considered one business day.  For example, if this
17232 range is @samp{[9@@ 0' 0" .. 17@@ 0' 0"]} (i.e., 9am to 5pm), then
17233 the business day is only eight hours long, so that @kbd{1.5 t +}
17234 on @samp{<4:00pm Fri Dec 13, 1991>} will add one business day and
17235 four business hours to produce @samp{<12:00pm Tue Dec 17, 1991>}.
17236 Likewise, @kbd{t -} will now express differences in time as
17237 fractions of an eight-hour day.  Times before 9am will be treated
17238 as 9am by business date arithmetic, and times at or after 5pm will
17239 be treated as 4:59:59pm.  If there is no HMS interval in @code{Holidays},
17240 the full 24-hour day @samp{[0@ 0' 0" .. 24@ 0' 0"]} is assumed.
17241 (Regardless of the type of bounds you specify, the interval is
17242 treated as inclusive on the low end and exclusive on the high end,
17243 so that the work day goes from 9am up to, but not including, 5pm.)
17244 @end itemize
17246 If the @code{Holidays} vector is empty, then @kbd{t +} and
17247 @kbd{t -} will act just like @kbd{+} and @kbd{-} because there will
17248 then be no difference between business days and calendar days.
17250 Calc expands the intervals and formulas you give into a complete
17251 list of holidays for internal use.  This is done mainly to make
17252 sure it can detect multiple holidays.  (For example,
17253 @samp{<Jan 1, 1989>} is both New Year's Day and a Sunday, but
17254 Calc's algorithms take care to count it only once when figuring
17255 the number of holidays between two dates.)
17257 Since the complete list of holidays for all the years from 1 to
17258 2737 would be huge, Calc actually computes only the part of the
17259 list between the smallest and largest years that have been involved
17260 in business-day calculations so far.  Normally, you won't have to
17261 worry about this.  Keep in mind, however, that if you do one
17262 calculation for 1992, and another for 1792, even if both involve
17263 only a small range of years, Calc will still work out all the
17264 holidays that fall in that 200-year span.
17266 If you add a (positive) number of days to a date form that falls on a
17267 weekend or holiday, the date form is treated as if it were the most
17268 recent business day.  (Thus adding one business day to a Friday,
17269 Saturday, or Sunday will all yield the following Monday.)  If you
17270 subtract a number of days from a weekend or holiday, the date is
17271 effectively on the following business day.  (So subtracting one business
17272 day from Saturday, Sunday, or Monday yields the preceding Friday.)  The
17273 difference between two dates one or both of which fall on holidays
17274 equals the number of actual business days between them.  These
17275 conventions are consistent in the sense that, if you add @var{n}
17276 business days to any date, the difference between the result and the
17277 original date will come out to @var{n} business days.  (It can't be
17278 completely consistent though; a subtraction followed by an addition
17279 might come out a bit differently, since @kbd{t +} is incapable of
17280 producing a date that falls on a weekend or holiday.)
17282 @ignore
17283 @starindex
17284 @end ignore
17285 @tindex holiday
17286 There is a @code{holiday} function, not on any keys, that takes
17287 any date form and returns 1 if that date falls on a weekend or
17288 holiday, as defined in @code{Holidays}, or 0 if the date is a
17289 business day.
17291 @node Time Zones,  , Business Days, Date Arithmetic
17292 @subsection Time Zones
17294 @noindent
17295 @cindex Time zones
17296 @cindex Daylight saving time
17297 Time zones and daylight saving time are a complicated business.
17298 The conversions to and from Julian and Unix-style dates automatically
17299 compute the correct time zone and daylight saving adjustment to use,
17300 provided they can figure out this information.  This section describes
17301 Calc's time zone adjustment algorithm in detail, in case you want to
17302 do conversions in different time zones or in case Calc's algorithms
17303 can't determine the right correction to use.
17305 Adjustments for time zones and daylight saving time are done by
17306 @kbd{t U}, @kbd{t J}, @kbd{t N}, and @kbd{t C}, but not by any other
17307 commands.  In particular, @samp{<may 1 1991> - <apr 1 1991>} evaluates
17308 to exactly 30 days even though there is a daylight-saving
17309 transition in between.  This is also true for Julian pure dates:
17310 @samp{julian(<may 1 1991>) - julian(<apr 1 1991>)}.  But Julian
17311 and Unix date/times will adjust for daylight saving time:  using Calc's
17312 default daylight saving time rule (see the explanation below),
17313 @samp{julian(<12am may 1 1991>) - julian(<12am apr 1 1991>)}
17314 evaluates to @samp{29.95833} (that's 29 days and 23 hours)
17315 because one hour was lost when daylight saving commenced on
17316 April 7, 1991.
17318 In brief, the idiom @samp{julian(@var{date1}) - julian(@var{date2})}
17319 computes the actual number of 24-hour periods between two dates, whereas
17320 @samp{@var{date1} - @var{date2}} computes the number of calendar
17321 days between two dates without taking daylight saving into account.
17323 @pindex calc-time-zone
17324 @ignore
17325 @starindex
17326 @end ignore
17327 @tindex tzone
17328 The @code{calc-time-zone} [@code{tzone}] command converts the time
17329 zone specified by its numeric prefix argument into a number of
17330 seconds difference from Greenwich mean time (GMT).  If the argument
17331 is a number, the result is simply that value multiplied by 3600.
17332 Typical arguments for North America are 5 (Eastern) or 8 (Pacific).  If
17333 Daylight Saving time is in effect, one hour should be subtracted from
17334 the normal difference.
17336 If you give a prefix of plain @kbd{C-u}, @code{calc-time-zone} (like other
17337 date arithmetic commands that include a time zone argument) takes the
17338 zone argument from the top of the stack.  (In the case of @kbd{t J}
17339 and @kbd{t U}, the normal argument is then taken from the second-to-top
17340 stack position.)  This allows you to give a non-integer time zone
17341 adjustment.  The time-zone argument can also be an HMS form, or
17342 it can be a variable which is a time zone name in upper- or lower-case.
17343 For example @samp{tzone(PST) = tzone(8)} and @samp{tzone(pdt) = tzone(7)}
17344 (for Pacific standard and daylight saving times, respectively).
17346 North American and European time zone names are defined as follows;
17347 note that for each time zone there is one name for standard time,
17348 another for daylight saving time, and a third for ``generalized'' time
17349 in which the daylight saving adjustment is computed from context.
17351 @smallexample
17352 @group
17353 YST  PST  MST  CST  EST  AST    NST    GMT   WET     MET    MEZ
17354  9    8    7    6    5    4     3.5     0     -1      -2     -2
17356 YDT  PDT  MDT  CDT  EDT  ADT    NDT    BST  WETDST  METDST  MESZ
17357  8    7    6    5    4    3     2.5     -1    -2      -3     -3
17359 YGT  PGT  MGT  CGT  EGT  AGT    NGT    BGT   WEGT    MEGT   MEGZ
17360 9/8  8/7  7/6  6/5  5/4  4/3  3.5/2.5  0/-1 -1/-2   -2/-3  -2/-3
17361 @end group
17362 @end smallexample
17364 @vindex math-tzone-names
17365 To define time zone names that do not appear in the above table,
17366 you must modify the Lisp variable @code{math-tzone-names}.  This
17367 is a list of lists describing the different time zone names; its
17368 structure is best explained by an example.  The three entries for
17369 Pacific Time look like this:
17371 @smallexample
17372 @group
17373 ( ( "PST" 8 0 )    ; Name as an upper-case string, then standard
17374   ( "PDT" 8 -1 )   ; adjustment, then daylight saving adjustment.
17375   ( "PGT" 8 "PST" "PDT" ) )   ; Generalized time zone.
17376 @end group
17377 @end smallexample
17379 @cindex @code{TimeZone} variable
17380 @vindex TimeZone
17381 With no arguments, @code{calc-time-zone} or @samp{tzone()} will by
17382 default get the time zone and daylight saving information from the
17383 calendar (@pxref{Daylight Saving,Calendar/Diary,The Calendar and the Diary,
17384 emacs,The GNU Emacs Manual}).  To use a different time zone, or if the
17385 calendar does not give the desired result, you can set the Calc variable
17386 @code{TimeZone} (which is by default @code{nil}) to an appropriate
17387 time zone name.  (The easiest way to do this is to edit the
17388 @code{TimeZone} variable using Calc's @kbd{s T} command, then use the
17389 @kbd{s p} (@code{calc-permanent-variable}) command to save the value of
17390 @code{TimeZone} permanently.)
17391 If the time zone given by @code{TimeZone} is a generalized time zone,
17392 e.g., @code{EGT}, Calc examines the date being converted to tell whether
17393 to use standard or daylight saving time.  But if the current time zone
17394 is explicit, e.g., @code{EST} or @code{EDT}, then that adjustment is
17395 used exactly and Calc's daylight saving algorithm is not consulted.
17396 The special time zone name @code{local}
17397 is equivalent to no argument; i.e., it uses the information obtained
17398 from the calendar.
17400 The @kbd{t J} and @code{t U} commands with no numeric prefix
17401 arguments do the same thing as @samp{tzone()}; namely, use the
17402 information from the calendar if @code{TimeZone} is @code{nil},
17403 otherwise use the time zone given by @code{TimeZone}.
17405 @vindex math-daylight-savings-hook
17406 @findex math-std-daylight-savings
17407 When Calc computes the daylight saving information itself (i.e., when
17408 the @code{TimeZone} variable is set), it will by default consider
17409 daylight saving time to begin at 2 a.m.@: on the second Sunday of March
17410 (for years from 2007 on) or on the last Sunday in April (for years
17411 before 2007), and to end at 2 a.m.@: on the first Sunday of
17412 November. (for years from 2007 on) or the last Sunday in October (for
17413 years before 2007).  These are the rules that have been in effect in
17414 much of North America since 1966 and take into account the rule change
17415 that began in 2007.  If you are in a country that uses different rules
17416 for computing daylight saving time, you have two choices: Write your own
17417 daylight saving hook, or control time zones explicitly by setting the
17418 @code{TimeZone} variable and/or always giving a time-zone argument for
17419 the conversion functions.
17421 The Lisp variable @code{math-daylight-savings-hook} holds the
17422 name of a function that is used to compute the daylight saving
17423 adjustment for a given date.  The default is
17424 @code{math-std-daylight-savings}, which computes an adjustment
17425 (either 0 or @mathit{-1}) using the North American rules given above.
17427 The daylight saving hook function is called with four arguments:
17428 The date, as a floating-point number in standard Calc format;
17429 a six-element list of the date decomposed into year, month, day,
17430 hour, minute, and second, respectively; a string which contains
17431 the generalized time zone name in upper-case, e.g., @code{"WEGT"};
17432 and a special adjustment to be applied to the hour value when
17433 converting into a generalized time zone (see below).
17435 @findex math-prev-weekday-in-month
17436 The Lisp function @code{math-prev-weekday-in-month} is useful for
17437 daylight saving computations.  This is an internal version of
17438 the user-level @code{pwday} function described in the previous
17439 section. It takes four arguments:  The floating-point date value,
17440 the corresponding six-element date list, the day-of-month number,
17441 and the weekday number (0--6).
17443 The default daylight saving hook ignores the time zone name, but a
17444 more sophisticated hook could use different algorithms for different
17445 time zones.  It would also be possible to use different algorithms
17446 depending on the year number, but the default hook always uses the
17447 algorithm for 1987 and later.  Here is a listing of the default
17448 daylight saving hook:
17450 @smallexample
17451 (defun math-std-daylight-savings (date dt zone bump)
17452   (cond ((< (nth 1 dt) 4) 0)
17453         ((= (nth 1 dt) 4)
17454          (let ((sunday (math-prev-weekday-in-month date dt 7 0)))
17455            (cond ((< (nth 2 dt) sunday) 0)
17456                  ((= (nth 2 dt) sunday)
17457                   (if (>= (nth 3 dt) (+ 3 bump)) -1 0))
17458                  (t -1))))
17459         ((< (nth 1 dt) 10) -1)
17460         ((= (nth 1 dt) 10)
17461          (let ((sunday (math-prev-weekday-in-month date dt 31 0)))
17462            (cond ((< (nth 2 dt) sunday) -1)
17463                  ((= (nth 2 dt) sunday)
17464                   (if (>= (nth 3 dt) (+ 2 bump)) 0 -1))
17465                  (t 0))))
17466         (t 0))
17468 @end smallexample
17470 @noindent
17471 The @code{bump} parameter is equal to zero when Calc is converting
17472 from a date form in a generalized time zone into a GMT date value.
17473 It is @mathit{-1} when Calc is converting in the other direction.  The
17474 adjustments shown above ensure that the conversion behaves correctly
17475 and reasonably around the 2 a.m.@: transition in each direction.
17477 There is a ``missing'' hour between 2 a.m.@: and 3 a.m.@: at the
17478 beginning of daylight saving time; converting a date/time form that
17479 falls in this hour results in a time value for the following hour,
17480 from 3 a.m.@: to 4 a.m.  At the end of daylight saving time, the
17481 hour from 1 a.m.@: to 2 a.m.@: repeats itself; converting a date/time
17482 form that falls in this hour results in a time value for the first
17483 manifestation of that time (@emph{not} the one that occurs one hour
17484 later).
17486 If @code{math-daylight-savings-hook} is @code{nil}, then the
17487 daylight saving adjustment is always taken to be zero.
17489 In algebraic formulas, @samp{tzone(@var{zone}, @var{date})}
17490 computes the time zone adjustment for a given zone name at a
17491 given date.  The @var{date} is ignored unless @var{zone} is a
17492 generalized time zone.  If @var{date} is a date form, the
17493 daylight saving computation is applied to it as it appears.
17494 If @var{date} is a numeric date value, it is adjusted for the
17495 daylight-saving version of @var{zone} before being given to
17496 the daylight saving hook.  This odd-sounding rule ensures
17497 that the daylight-saving computation is always done in
17498 local time, not in the GMT time that a numeric @var{date}
17499 is typically represented in.
17501 @ignore
17502 @starindex
17503 @end ignore
17504 @tindex dsadj
17505 The @samp{dsadj(@var{date}, @var{zone})} function computes the
17506 daylight saving adjustment that is appropriate for @var{date} in
17507 time zone @var{zone}.  If @var{zone} is explicitly in or not in
17508 daylight saving time (e.g., @code{PDT} or @code{PST}) the
17509 @var{date} is ignored.  If @var{zone} is a generalized time zone,
17510 the algorithms described above are used.  If @var{zone} is omitted,
17511 the computation is done for the current time zone.
17513 @node Financial Functions, Binary Functions, Date Arithmetic, Arithmetic
17514 @section Financial Functions
17516 @noindent
17517 Calc's financial or business functions use the @kbd{b} prefix
17518 key followed by a shifted letter.  (The @kbd{b} prefix followed by
17519 a lower-case letter is used for operations on binary numbers.)
17521 Note that the rate and the number of intervals given to these
17522 functions must be on the same time scale, e.g., both months or
17523 both years.  Mixing an annual interest rate with a time expressed
17524 in months will give you very wrong answers!
17526 It is wise to compute these functions to a higher precision than
17527 you really need, just to make sure your answer is correct to the
17528 last penny; also, you may wish to check the definitions at the end
17529 of this section to make sure the functions have the meaning you expect.
17531 @menu
17532 * Percentages::
17533 * Future Value::
17534 * Present Value::
17535 * Related Financial Functions::
17536 * Depreciation Functions::
17537 * Definitions of Financial Functions::
17538 @end menu
17540 @node Percentages, Future Value, Financial Functions, Financial Functions
17541 @subsection Percentages
17543 @kindex M-%
17544 @pindex calc-percent
17545 @tindex %
17546 @tindex percent
17547 The @kbd{M-%} (@code{calc-percent}) command takes a percentage value,
17548 say 5.4, and converts it to an equivalent actual number.  For example,
17549 @kbd{5.4 M-%} enters 0.054 on the stack.  (That's the @key{META} or
17550 @key{ESC} key combined with @kbd{%}.)
17552 Actually, @kbd{M-%} creates a formula of the form @samp{5.4%}.
17553 You can enter @samp{5.4%} yourself during algebraic entry.  The
17554 @samp{%} operator simply means, ``the preceding value divided by
17555 100.''  The @samp{%} operator has very high precedence, so that
17556 @samp{1+8%} is interpreted as @samp{1+(8%)}, not as @samp{(1+8)%}.
17557 (The @samp{%} operator is just a postfix notation for the
17558 @code{percent} function, just like @samp{20!} is the notation for
17559 @samp{fact(20)}, or twenty-factorial.)
17561 The formula @samp{5.4%} would normally evaluate immediately to
17562 0.054, but the @kbd{M-%} command suppresses evaluation as it puts
17563 the formula onto the stack.  However, the next Calc command that
17564 uses the formula @samp{5.4%} will evaluate it as its first step.
17565 The net effect is that you get to look at @samp{5.4%} on the stack,
17566 but Calc commands see it as @samp{0.054}, which is what they expect.
17568 In particular, @samp{5.4%} and @samp{0.054} are suitable values
17569 for the @var{rate} arguments of the various financial functions,
17570 but the number @samp{5.4} is probably @emph{not} suitable---it
17571 represents a rate of 540 percent!
17573 The key sequence @kbd{M-% *} effectively means ``percent-of.''
17574 For example, @kbd{68 @key{RET} 25 M-% *} computes 17, which is 25% of
17575 68 (and also 68% of 25, which comes out to the same thing).
17577 @kindex c %
17578 @pindex calc-convert-percent
17579 The @kbd{c %} (@code{calc-convert-percent}) command converts the
17580 value on the top of the stack from numeric to percentage form.
17581 For example, if 0.08 is on the stack, @kbd{c %} converts it to
17582 @samp{8%}.  The quantity is the same, it's just represented
17583 differently.  (Contrast this with @kbd{M-%}, which would convert
17584 this number to @samp{0.08%}.)  The @kbd{=} key is a convenient way
17585 to convert a formula like @samp{8%} back to numeric form, 0.08.
17587 To compute what percentage one quantity is of another quantity,
17588 use @kbd{/ c %}.  For example, @w{@kbd{17 @key{RET} 68 / c %}} displays
17589 @samp{25%}.
17591 @kindex b %
17592 @pindex calc-percent-change
17593 @tindex relch
17594 The @kbd{b %} (@code{calc-percent-change}) [@code{relch}] command
17595 calculates the percentage change from one number to another.
17596 For example, @kbd{40 @key{RET} 50 b %} produces the answer @samp{25%},
17597 since 50 is 25% larger than 40.  A negative result represents a
17598 decrease:  @kbd{50 @key{RET} 40 b %} produces @samp{-20%}, since 40 is
17599 20% smaller than 50.  (The answers are different in magnitude
17600 because, in the first case, we're increasing by 25% of 40, but
17601 in the second case, we're decreasing by 20% of 50.)  The effect
17602 of @kbd{40 @key{RET} 50 b %} is to compute @expr{(50-40)/40}, converting
17603 the answer to percentage form as if by @kbd{c %}.
17605 @node Future Value, Present Value, Percentages, Financial Functions
17606 @subsection Future Value
17608 @noindent
17609 @kindex b F
17610 @pindex calc-fin-fv
17611 @tindex fv
17612 The @kbd{b F} (@code{calc-fin-fv}) [@code{fv}] command computes
17613 the future value of an investment.  It takes three arguments
17614 from the stack:  @samp{fv(@var{rate}, @var{n}, @var{payment})}.
17615 If you give payments of @var{payment} every year for @var{n}
17616 years, and the money you have paid earns interest at @var{rate} per
17617 year, then this function tells you what your investment would be
17618 worth at the end of the period.  (The actual interval doesn't
17619 have to be years, as long as @var{n} and @var{rate} are expressed
17620 in terms of the same intervals.)  This function assumes payments
17621 occur at the @emph{end} of each interval.
17623 @kindex I b F
17624 @tindex fvb
17625 The @kbd{I b F} [@code{fvb}] command does the same computation,
17626 but assuming your payments are at the beginning of each interval.
17627 Suppose you plan to deposit $1000 per year in a savings account
17628 earning 5.4% interest, starting right now.  How much will be
17629 in the account after five years?  @code{fvb(5.4%, 5, 1000) = 5870.73}.
17630 Thus you will have earned $870 worth of interest over the years.
17631 Using the stack, this calculation would have been
17632 @kbd{5.4 M-% 5 @key{RET} 1000 I b F}.  Note that the rate is expressed
17633 as a number between 0 and 1, @emph{not} as a percentage.
17635 @kindex H b F
17636 @tindex fvl
17637 The @kbd{H b F} [@code{fvl}] command computes the future value
17638 of an initial lump sum investment.  Suppose you could deposit
17639 those five thousand dollars in the bank right now; how much would
17640 they be worth in five years?  @code{fvl(5.4%, 5, 5000) = 6503.89}.
17642 The algebraic functions @code{fv} and @code{fvb} accept an optional
17643 fourth argument, which is used as an initial lump sum in the sense
17644 of @code{fvl}.  In other words, @code{fv(@var{rate}, @var{n},
17645 @var{payment}, @var{initial}) = fv(@var{rate}, @var{n}, @var{payment})
17646 + fvl(@var{rate}, @var{n}, @var{initial})}.
17648 To illustrate the relationships between these functions, we could
17649 do the @code{fvb} calculation ``by hand'' using @code{fvl}.  The
17650 final balance will be the sum of the contributions of our five
17651 deposits at various times.  The first deposit earns interest for
17652 five years:  @code{fvl(5.4%, 5, 1000) = 1300.78}.  The second
17653 deposit only earns interest for four years:  @code{fvl(5.4%, 4, 1000) =
17654 1234.13}.  And so on down to the last deposit, which earns one
17655 year's interest:  @code{fvl(5.4%, 1, 1000) = 1054.00}.  The sum of
17656 these five values is, sure enough, $5870.73, just as was computed
17657 by @code{fvb} directly.
17659 What does @code{fv(5.4%, 5, 1000) = 5569.96} mean?  The payments
17660 are now at the ends of the periods.  The end of one year is the same
17661 as the beginning of the next, so what this really means is that we've
17662 lost the payment at year zero (which contributed $1300.78), but we're
17663 now counting the payment at year five (which, since it didn't have
17664 a chance to earn interest, counts as $1000).  Indeed, @expr{5569.96 =
17665 5870.73 - 1300.78 + 1000} (give or take a bit of roundoff error).
17667 @node Present Value, Related Financial Functions, Future Value, Financial Functions
17668 @subsection Present Value
17670 @noindent
17671 @kindex b P
17672 @pindex calc-fin-pv
17673 @tindex pv
17674 The @kbd{b P} (@code{calc-fin-pv}) [@code{pv}] command computes
17675 the present value of an investment.  Like @code{fv}, it takes
17676 three arguments:  @code{pv(@var{rate}, @var{n}, @var{payment})}.
17677 It computes the present value of a series of regular payments.
17678 Suppose you have the chance to make an investment that will
17679 pay $2000 per year over the next four years; as you receive
17680 these payments you can put them in the bank at 9% interest.
17681 You want to know whether it is better to make the investment, or
17682 to keep the money in the bank where it earns 9% interest right
17683 from the start.  The calculation @code{pv(9%, 4, 2000)} gives the
17684 result 6479.44.  If your initial investment must be less than this,
17685 say, $6000, then the investment is worthwhile.  But if you had to
17686 put up $7000, then it would be better just to leave it in the bank.
17688 Here is the interpretation of the result of @code{pv}:  You are
17689 trying to compare the return from the investment you are
17690 considering, which is @code{fv(9%, 4, 2000) = 9146.26}, with
17691 the return from leaving the money in the bank, which is
17692 @code{fvl(9%, 4, @var{x})} where @var{x} is the amount of money
17693 you would have to put up in advance.  The @code{pv} function
17694 finds the break-even point, @expr{x = 6479.44}, at which
17695 @code{fvl(9%, 4, 6479.44)} is also equal to 9146.26.  This is
17696 the largest amount you should be willing to invest.
17698 @kindex I b P
17699 @tindex pvb
17700 The @kbd{I b P} [@code{pvb}] command solves the same problem,
17701 but with payments occurring at the beginning of each interval.
17702 It has the same relationship to @code{fvb} as @code{pv} has
17703 to @code{fv}.  For example @code{pvb(9%, 4, 2000) = 7062.59},
17704 a larger number than @code{pv} produced because we get to start
17705 earning interest on the return from our investment sooner.
17707 @kindex H b P
17708 @tindex pvl
17709 The @kbd{H b P} [@code{pvl}] command computes the present value of
17710 an investment that will pay off in one lump sum at the end of the
17711 period.  For example, if we get our $8000 all at the end of the
17712 four years, @code{pvl(9%, 4, 8000) = 5667.40}.  This is much
17713 less than @code{pv} reported, because we don't earn any interest
17714 on the return from this investment.  Note that @code{pvl} and
17715 @code{fvl} are simple inverses:  @code{fvl(9%, 4, 5667.40) = 8000}.
17717 You can give an optional fourth lump-sum argument to @code{pv}
17718 and @code{pvb}; this is handled in exactly the same way as the
17719 fourth argument for @code{fv} and @code{fvb}.
17721 @kindex b N
17722 @pindex calc-fin-npv
17723 @tindex npv
17724 The @kbd{b N} (@code{calc-fin-npv}) [@code{npv}] command computes
17725 the net present value of a series of irregular investments.
17726 The first argument is the interest rate.  The second argument is
17727 a vector which represents the expected return from the investment
17728 at the end of each interval.  For example, if the rate represents
17729 a yearly interest rate, then the vector elements are the return
17730 from the first year, second year, and so on.
17732 Thus, @code{npv(9%, [2000,2000,2000,2000]) = pv(9%, 4, 2000) = 6479.44}.
17733 Obviously this function is more interesting when the payments are
17734 not all the same!
17736 The @code{npv} function can actually have two or more arguments.
17737 Multiple arguments are interpreted in the same way as for the
17738 vector statistical functions like @code{vsum}.
17739 @xref{Single-Variable Statistics}.  Basically, if there are several
17740 payment arguments, each either a vector or a plain number, all these
17741 values are collected left-to-right into the complete list of payments.
17742 A numeric prefix argument on the @kbd{b N} command says how many
17743 payment values or vectors to take from the stack.
17745 @kindex I b N
17746 @tindex npvb
17747 The @kbd{I b N} [@code{npvb}] command computes the net present
17748 value where payments occur at the beginning of each interval
17749 rather than at the end.
17751 @node Related Financial Functions, Depreciation Functions, Present Value, Financial Functions
17752 @subsection Related Financial Functions
17754 @noindent
17755 The functions in this section are basically inverses of the
17756 present value functions with respect to the various arguments.
17758 @kindex b M
17759 @pindex calc-fin-pmt
17760 @tindex pmt
17761 The @kbd{b M} (@code{calc-fin-pmt}) [@code{pmt}] command computes
17762 the amount of periodic payment necessary to amortize a loan.
17763 Thus @code{pmt(@var{rate}, @var{n}, @var{amount})} equals the
17764 value of @var{payment} such that @code{pv(@var{rate}, @var{n},
17765 @var{payment}) = @var{amount}}.
17767 @kindex I b M
17768 @tindex pmtb
17769 The @kbd{I b M} [@code{pmtb}] command does the same computation
17770 but using @code{pvb} instead of @code{pv}.  Like @code{pv} and
17771 @code{pvb}, these functions can also take a fourth argument which
17772 represents an initial lump-sum investment.
17774 @kindex H b M
17775 The @kbd{H b M} key just invokes the @code{fvl} function, which is
17776 the inverse of @code{pvl}.  There is no explicit @code{pmtl} function.
17778 @kindex b #
17779 @pindex calc-fin-nper
17780 @tindex nper
17781 The @kbd{b #} (@code{calc-fin-nper}) [@code{nper}] command computes
17782 the number of regular payments necessary to amortize a loan.
17783 Thus @code{nper(@var{rate}, @var{payment}, @var{amount})} equals
17784 the value of @var{n} such that @code{pv(@var{rate}, @var{n},
17785 @var{payment}) = @var{amount}}.  If @var{payment} is too small
17786 ever to amortize a loan for @var{amount} at interest rate @var{rate},
17787 the @code{nper} function is left in symbolic form.
17789 @kindex I b #
17790 @tindex nperb
17791 The @kbd{I b #} [@code{nperb}] command does the same computation
17792 but using @code{pvb} instead of @code{pv}.  You can give a fourth
17793 lump-sum argument to these functions, but the computation will be
17794 rather slow in the four-argument case.
17796 @kindex H b #
17797 @tindex nperl
17798 The @kbd{H b #} [@code{nperl}] command does the same computation
17799 using @code{pvl}.  By exchanging @var{payment} and @var{amount} you
17800 can also get the solution for @code{fvl}.  For example,
17801 @code{nperl(8%, 2000, 1000) = 9.006}, so if you place $1000 in a
17802 bank account earning 8%, it will take nine years to grow to $2000.
17804 @kindex b T
17805 @pindex calc-fin-rate
17806 @tindex rate
17807 The @kbd{b T} (@code{calc-fin-rate}) [@code{rate}] command computes
17808 the rate of return on an investment.  This is also an inverse of @code{pv}:
17809 @code{rate(@var{n}, @var{payment}, @var{amount})} computes the value of
17810 @var{rate} such that @code{pv(@var{rate}, @var{n}, @var{payment}) =
17811 @var{amount}}.  The result is expressed as a formula like @samp{6.3%}.
17813 @kindex I b T
17814 @kindex H b T
17815 @tindex rateb
17816 @tindex ratel
17817 The @kbd{I b T} [@code{rateb}] and @kbd{H b T} [@code{ratel}]
17818 commands solve the analogous equations with @code{pvb} or @code{pvl}
17819 in place of @code{pv}.  Also, @code{rate} and @code{rateb} can
17820 accept an optional fourth argument just like @code{pv} and @code{pvb}.
17821 To redo the above example from a different perspective,
17822 @code{ratel(9, 2000, 1000) = 8.00597%}, which says you will need an
17823 interest rate of 8% in order to double your account in nine years.
17825 @kindex b I
17826 @pindex calc-fin-irr
17827 @tindex irr
17828 The @kbd{b I} (@code{calc-fin-irr}) [@code{irr}] command is the
17829 analogous function to @code{rate} but for net present value.
17830 Its argument is a vector of payments.  Thus @code{irr(@var{payments})}
17831 computes the @var{rate} such that @code{npv(@var{rate}, @var{payments}) = 0};
17832 this rate is known as the @dfn{internal rate of return}.
17834 @kindex I b I
17835 @tindex irrb
17836 The @kbd{I b I} [@code{irrb}] command computes the internal rate of
17837 return assuming payments occur at the beginning of each period.
17839 @node Depreciation Functions, Definitions of Financial Functions, Related Financial Functions, Financial Functions
17840 @subsection Depreciation Functions
17842 @noindent
17843 The functions in this section calculate @dfn{depreciation}, which is
17844 the amount of value that a possession loses over time.  These functions
17845 are characterized by three parameters:  @var{cost}, the original cost
17846 of the asset; @var{salvage}, the value the asset will have at the end
17847 of its expected ``useful life''; and @var{life}, the number of years
17848 (or other periods) of the expected useful life.
17850 There are several methods for calculating depreciation that differ in
17851 the way they spread the depreciation over the lifetime of the asset.
17853 @kindex b S
17854 @pindex calc-fin-sln
17855 @tindex sln
17856 The @kbd{b S} (@code{calc-fin-sln}) [@code{sln}] command computes the
17857 ``straight-line'' depreciation.  In this method, the asset depreciates
17858 by the same amount every year (or period).  For example,
17859 @samp{sln(12000, 2000, 5)} returns 2000.  The asset costs $12000
17860 initially and will be worth $2000 after five years; it loses $2000
17861 per year.
17863 @kindex b Y
17864 @pindex calc-fin-syd
17865 @tindex syd
17866 The @kbd{b Y} (@code{calc-fin-syd}) [@code{syd}] command computes the
17867 accelerated ``sum-of-years'-digits'' depreciation.  Here the depreciation
17868 is higher during the early years of the asset's life.  Since the
17869 depreciation is different each year, @kbd{b Y} takes a fourth @var{period}
17870 parameter which specifies which year is requested, from 1 to @var{life}.
17871 If @var{period} is outside this range, the @code{syd} function will
17872 return zero.
17874 @kindex b D
17875 @pindex calc-fin-ddb
17876 @tindex ddb
17877 The @kbd{b D} (@code{calc-fin-ddb}) [@code{ddb}] command computes an
17878 accelerated depreciation using the double-declining balance method.
17879 It also takes a fourth @var{period} parameter.
17881 For symmetry, the @code{sln} function will accept a @var{period}
17882 parameter as well, although it will ignore its value except that the
17883 return value will as usual be zero if @var{period} is out of range.
17885 For example, pushing the vector @expr{[1,2,3,4,5]} (perhaps with @kbd{v x 5})
17886 and then mapping @kbd{V M ' [sln(12000,2000,5,$), syd(12000,2000,5,$),
17887 ddb(12000,2000,5,$)] @key{RET}} produces a matrix that allows us to compare
17888 the three depreciation methods:
17890 @example
17891 @group
17892 [ [ 2000, 3333, 4800 ]
17893   [ 2000, 2667, 2880 ]
17894   [ 2000, 2000, 1728 ]
17895   [ 2000, 1333,  592 ]
17896   [ 2000,  667,   0  ] ]
17897 @end group
17898 @end example
17900 @noindent
17901 (Values have been rounded to nearest integers in this figure.)
17902 We see that @code{sln} depreciates by the same amount each year,
17903 @kbd{syd} depreciates more at the beginning and less at the end,
17904 and @kbd{ddb} weights the depreciation even more toward the beginning.
17906 Summing columns with @kbd{V R : +} yields @expr{[10000, 10000, 10000]};
17907 the total depreciation in any method is (by definition) the
17908 difference between the cost and the salvage value.
17910 @node Definitions of Financial Functions,  , Depreciation Functions, Financial Functions
17911 @subsection Definitions
17913 @noindent
17914 For your reference, here are the actual formulas used to compute
17915 Calc's financial functions.
17917 Calc will not evaluate a financial function unless the @var{rate} or
17918 @var{n} argument is known.  However, @var{payment} or @var{amount} can
17919 be a variable.  Calc expands these functions according to the
17920 formulas below for symbolic arguments only when you use the @kbd{a "}
17921 (@code{calc-expand-formula}) command, or when taking derivatives or
17922 integrals or solving equations involving the functions.
17924 @ifnottex
17925 These formulas are shown using the conventions of Big display
17926 mode (@kbd{d B}); for example, the formula for @code{fv} written
17927 linearly is @samp{pmt * ((1 + rate)^n) - 1) / rate}.
17929 @example
17930                                         n
17931                               (1 + rate)  - 1
17932 fv(rate, n, pmt) =      pmt * ---------------
17933                                    rate
17935                                          n
17936                               ((1 + rate)  - 1) (1 + rate)
17937 fvb(rate, n, pmt) =     pmt * ----------------------------
17938                                          rate
17940                                         n
17941 fvl(rate, n, pmt) =     pmt * (1 + rate)
17943                                             -n
17944                               1 - (1 + rate)
17945 pv(rate, n, pmt) =      pmt * ----------------
17946                                     rate
17948                                              -n
17949                               (1 - (1 + rate)  ) (1 + rate)
17950 pvb(rate, n, pmt) =     pmt * -----------------------------
17951                                          rate
17953                                         -n
17954 pvl(rate, n, pmt) =     pmt * (1 + rate)
17956                                     -1               -2               -3
17957 npv(rate, [a, b, c]) =  a*(1 + rate)   + b*(1 + rate)   + c*(1 + rate)
17959                                         -1               -2
17960 npvb(rate, [a, b, c]) = a + b*(1 + rate)   + c*(1 + rate)
17962                                              -n
17963                         (amt - x * (1 + rate)  ) * rate
17964 pmt(rate, n, amt, x) =  -------------------------------
17965                                              -n
17966                                1 - (1 + rate)
17968                                              -n
17969                         (amt - x * (1 + rate)  ) * rate
17970 pmtb(rate, n, amt, x) = -------------------------------
17971                                         -n
17972                          (1 - (1 + rate)  ) (1 + rate)
17974                                    amt * rate
17975 nper(rate, pmt, amt) =  - log(1 - ------------, 1 + rate)
17976                                       pmt
17978                                     amt * rate
17979 nperb(rate, pmt, amt) = - log(1 - ---------------, 1 + rate)
17980                                   pmt * (1 + rate)
17982                               amt
17983 nperl(rate, pmt, amt) = - log(---, 1 + rate)
17984                               pmt
17986                            1/n
17987                         pmt
17988 ratel(n, pmt, amt) =    ------ - 1
17989                            1/n
17990                         amt
17992                         cost - salv
17993 sln(cost, salv, life) = -----------
17994                            life
17996                              (cost - salv) * (life - per + 1)
17997 syd(cost, salv, life, per) = --------------------------------
17998                                   life * (life + 1) / 2
18000                              book * 2
18001 ddb(cost, salv, life, per) = --------,  book = cost - depreciation so far
18002                                life
18003 @end example
18004 @end ifnottex
18005 @tex
18006 $$ \code{fv}(r, n, p) = p { (1 + r)^n - 1 \over r } $$
18007 $$ \code{fvb}(r, n, p) = p { ((1 + r)^n - 1) (1 + r) \over r } $$
18008 $$ \code{fvl}(r, n, p) = p (1 + r)^n $$
18009 $$ \code{pv}(r, n, p) = p { 1 - (1 + r)^{-n} \over r } $$
18010 $$ \code{pvb}(r, n, p) = p { (1 - (1 + r)^{-n}) (1 + r) \over r } $$
18011 $$ \code{pvl}(r, n, p) = p (1 + r)^{-n} $$
18012 $$ \code{npv}(r, [a,b,c]) = a (1 + r)^{-1} + b (1 + r)^{-2} + c (1 + r)^{-3} $$
18013 $$ \code{npvb}(r, [a,b,c]) = a + b (1 + r)^{-1} + c (1 + r)^{-2} $$
18014 $$ \code{pmt}(r, n, a, x) = { (a - x (1 + r)^{-n}) r \over 1 - (1 + r)^{-n} }$$
18015 $$ \code{pmtb}(r, n, a, x) = { (a - x (1 + r)^{-n}) r \over
18016                                (1 - (1 + r)^{-n}) (1 + r) } $$
18017 $$ \code{nper}(r, p, a) = -\code{log}(1 - { a r \over p }, 1 + r) $$
18018 $$ \code{nperb}(r, p, a) = -\code{log}(1 - { a r \over p (1 + r) }, 1 + r) $$
18019 $$ \code{nperl}(r, p, a) = -\code{log}({a \over p}, 1 + r) $$
18020 $$ \code{ratel}(n, p, a) = { p^{1/n} \over a^{1/n} } - 1 $$
18021 $$ \code{sln}(c, s, l) = { c - s \over l } $$
18022 $$ \code{syd}(c, s, l, p) = { (c - s) (l - p + 1) \over l (l+1) / 2 } $$
18023 $$ \code{ddb}(c, s, l, p) = { 2 (c - \hbox{depreciation so far}) \over l } $$
18024 @end tex
18026 @noindent
18027 In @code{pmt} and @code{pmtb}, @expr{x=0} if omitted.
18029 These functions accept any numeric objects, including error forms,
18030 intervals, and even (though not very usefully) complex numbers.  The
18031 above formulas specify exactly the behavior of these functions with
18032 all sorts of inputs.
18034 Note that if the first argument to the @code{log} in @code{nper} is
18035 negative, @code{nper} leaves itself in symbolic form rather than
18036 returning a (financially meaningless) complex number.
18038 @samp{rate(num, pmt, amt)} solves the equation
18039 @samp{pv(rate, num, pmt) = amt} for @samp{rate} using @kbd{H a R}
18040 (@code{calc-find-root}), with the interval @samp{[.01% .. 100%]}
18041 for an initial guess.  The @code{rateb} function is the same except
18042 that it uses @code{pvb}.  Note that @code{ratel} can be solved
18043 directly; its formula is shown in the above list.
18045 Similarly, @samp{irr(pmts)} solves the equation @samp{npv(rate, pmts) = 0}
18046 for @samp{rate}.
18048 If you give a fourth argument to @code{nper} or @code{nperb}, Calc
18049 will also use @kbd{H a R} to solve the equation using an initial
18050 guess interval of @samp{[0 .. 100]}.
18052 A fourth argument to @code{fv} simply sums the two components
18053 calculated from the above formulas for @code{fv} and @code{fvl}.
18054 The same is true of @code{fvb}, @code{pv}, and @code{pvb}.
18056 The @kbd{ddb} function is computed iteratively; the ``book'' value
18057 starts out equal to @var{cost}, and decreases according to the above
18058 formula for the specified number of periods.  If the book value
18059 would decrease below @var{salvage}, it only decreases to @var{salvage}
18060 and the depreciation is zero for all subsequent periods.  The @code{ddb}
18061 function returns the amount the book value decreased in the specified
18062 period.
18064 @node Binary Functions,  , Financial Functions, Arithmetic
18065 @section Binary Number Functions
18067 @noindent
18068 The commands in this chapter all use two-letter sequences beginning with
18069 the @kbd{b} prefix.
18071 @cindex Binary numbers
18072 The ``binary'' operations actually work regardless of the currently
18073 displayed radix, although their results make the most sense in a radix
18074 like 2, 8, or 16 (as obtained by the @kbd{d 2}, @kbd{d 8}, or @w{@kbd{d 6}}
18075 commands, respectively).  You may also wish to enable display of leading
18076 zeros with @kbd{d z}.  @xref{Radix Modes}.
18078 @cindex Word size for binary operations
18079 The Calculator maintains a current @dfn{word size} @expr{w}, an
18080 arbitrary positive or negative integer.  For a positive word size, all
18081 of the binary operations described here operate modulo @expr{2^w}.  In
18082 particular, negative arguments are converted to positive integers modulo
18083 @expr{2^w} by all binary functions.
18085 If the word size is negative, binary operations produce twos-complement
18086 integers from
18087 @texline @math{-2^{-w-1}}
18088 @infoline @expr{-(2^(-w-1))}
18090 @texline @math{2^{-w-1}-1}
18091 @infoline @expr{2^(-w-1)-1}
18092 inclusive.  Either mode accepts inputs in any range; the sign of
18093 @expr{w} affects only the results produced.
18095 @kindex b c
18096 @pindex calc-clip
18097 @tindex clip
18098 The @kbd{b c} (@code{calc-clip})
18099 [@code{clip}] command can be used to clip a number by reducing it modulo
18100 @expr{2^w}.  The commands described in this chapter automatically clip
18101 their results to the current word size.  Note that other operations like
18102 addition do not use the current word size, since integer addition
18103 generally is not ``binary.''  (However, @pxref{Simplification Modes},
18104 @code{calc-bin-simplify-mode}.)  For example, with a word size of 8
18105 bits @kbd{b c} converts a number to the range 0 to 255; with a word
18106 size of @mathit{-8} @kbd{b c} converts to the range @mathit{-128} to 127.
18108 @kindex b w
18109 @pindex calc-word-size
18110 The default word size is 32 bits.  All operations except the shifts and
18111 rotates allow you to specify a different word size for that one
18112 operation by giving a numeric prefix argument:  @kbd{C-u 8 b c} clips the
18113 top of stack to the range 0 to 255 regardless of the current word size.
18114 To set the word size permanently, use @kbd{b w} (@code{calc-word-size}).
18115 This command displays a prompt with the current word size; press @key{RET}
18116 immediately to keep this word size, or type a new word size at the prompt.
18118 When the binary operations are written in symbolic form, they take an
18119 optional second (or third) word-size parameter.  When a formula like
18120 @samp{and(a,b)} is finally evaluated, the word size current at that time
18121 will be used, but when @samp{and(a,b,-8)} is evaluated, a word size of
18122 @mathit{-8} will always be used.  A symbolic binary function will be left
18123 in symbolic form unless the all of its argument(s) are integers or
18124 integer-valued floats.
18126 If either or both arguments are modulo forms for which @expr{M} is a
18127 power of two, that power of two is taken as the word size unless a
18128 numeric prefix argument overrides it.  The current word size is never
18129 consulted when modulo-power-of-two forms are involved.
18131 @kindex b a
18132 @pindex calc-and
18133 @tindex and
18134 The @kbd{b a} (@code{calc-and}) [@code{and}] command computes the bitwise
18135 AND of the two numbers on the top of the stack.  In other words, for each
18136 of the @expr{w} binary digits of the two numbers (pairwise), the corresponding
18137 bit of the result is 1 if and only if both input bits are 1:
18138 @samp{and(2#1100, 2#1010) = 2#1000}.
18140 @kindex b o
18141 @pindex calc-or
18142 @tindex or
18143 The @kbd{b o} (@code{calc-or}) [@code{or}] command computes the bitwise
18144 inclusive OR of two numbers.  A bit is 1 if either of the input bits, or
18145 both, are 1:  @samp{or(2#1100, 2#1010) = 2#1110}.
18147 @kindex b x
18148 @pindex calc-xor
18149 @tindex xor
18150 The @kbd{b x} (@code{calc-xor}) [@code{xor}] command computes the bitwise
18151 exclusive OR of two numbers.  A bit is 1 if exactly one of the input bits
18152 is 1:  @samp{xor(2#1100, 2#1010) = 2#0110}.
18154 @kindex b d
18155 @pindex calc-diff
18156 @tindex diff
18157 The @kbd{b d} (@code{calc-diff}) [@code{diff}] command computes the bitwise
18158 difference of two numbers; this is defined by @samp{diff(a,b) = and(a,not(b))},
18159 so that @samp{diff(2#1100, 2#1010) = 2#0100}.
18161 @kindex b n
18162 @pindex calc-not
18163 @tindex not
18164 The @kbd{b n} (@code{calc-not}) [@code{not}] command computes the bitwise
18165 NOT of a number.  A bit is 1 if the input bit is 0 and vice-versa.
18167 @kindex b l
18168 @pindex calc-lshift-binary
18169 @tindex lsh
18170 The @kbd{b l} (@code{calc-lshift-binary}) [@code{lsh}] command shifts a
18171 number left by one bit, or by the number of bits specified in the numeric
18172 prefix argument.  A negative prefix argument performs a logical right shift,
18173 in which zeros are shifted in on the left.  In symbolic form, @samp{lsh(a)}
18174 is short for @samp{lsh(a,1)}, which in turn is short for @samp{lsh(a,n,w)}.
18175 Bits shifted ``off the end,'' according to the current word size, are lost.
18177 @kindex H b l
18178 @kindex H b r
18179 @ignore
18180 @mindex @idots
18181 @end ignore
18182 @kindex H b L
18183 @ignore
18184 @mindex @null
18185 @end ignore
18186 @kindex H b R
18187 @ignore
18188 @mindex @null
18189 @end ignore
18190 @kindex H b t
18191 The @kbd{H b l} command also does a left shift, but it takes two arguments
18192 from the stack (the value to shift, and, at top-of-stack, the number of
18193 bits to shift).  This version interprets the prefix argument just like
18194 the regular binary operations, i.e., as a word size.  The Hyperbolic flag
18195 has a similar effect on the rest of the binary shift and rotate commands.
18197 @kindex b r
18198 @pindex calc-rshift-binary
18199 @tindex rsh
18200 The @kbd{b r} (@code{calc-rshift-binary}) [@code{rsh}] command shifts a
18201 number right by one bit, or by the number of bits specified in the numeric
18202 prefix argument:  @samp{rsh(a,n) = lsh(a,-n)}.
18204 @kindex b L
18205 @pindex calc-lshift-arith
18206 @tindex ash
18207 The @kbd{b L} (@code{calc-lshift-arith}) [@code{ash}] command shifts a
18208 number left.  It is analogous to @code{lsh}, except that if the shift
18209 is rightward (the prefix argument is negative), an arithmetic shift
18210 is performed as described below.
18212 @kindex b R
18213 @pindex calc-rshift-arith
18214 @tindex rash
18215 The @kbd{b R} (@code{calc-rshift-arith}) [@code{rash}] command performs
18216 an ``arithmetic'' shift to the right, in which the leftmost bit (according
18217 to the current word size) is duplicated rather than shifting in zeros.
18218 This corresponds to dividing by a power of two where the input is interpreted
18219 as a signed, twos-complement number.  (The distinction between the @samp{rsh}
18220 and @samp{rash} operations is totally independent from whether the word
18221 size is positive or negative.)  With a negative prefix argument, this
18222 performs a standard left shift.
18224 @kindex b t
18225 @pindex calc-rotate-binary
18226 @tindex rot
18227 The @kbd{b t} (@code{calc-rotate-binary}) [@code{rot}] command rotates a
18228 number one bit to the left.  The leftmost bit (according to the current
18229 word size) is dropped off the left and shifted in on the right.  With a
18230 numeric prefix argument, the number is rotated that many bits to the left
18231 or right.
18233 @xref{Set Operations}, for the @kbd{b p} and @kbd{b u} commands that
18234 pack and unpack binary integers into sets.  (For example, @kbd{b u}
18235 unpacks the number @samp{2#11001} to the set of bit-numbers
18236 @samp{[0, 3, 4]}.)  Type @kbd{b u V #} to count the number of ``1''
18237 bits in a binary integer.
18239 Another interesting use of the set representation of binary integers
18240 is to reverse the bits in, say, a 32-bit integer.  Type @kbd{b u} to
18241 unpack; type @kbd{31 @key{TAB} -} to replace each bit-number in the set
18242 with 31 minus that bit-number; type @kbd{b p} to pack the set back
18243 into a binary integer.
18245 @node Scientific Functions, Matrix Functions, Arithmetic, Top
18246 @chapter Scientific Functions
18248 @noindent
18249 The functions described here perform trigonometric and other transcendental
18250 calculations.  They generally produce floating-point answers correct to the
18251 full current precision.  The @kbd{H} (Hyperbolic) and @kbd{I} (Inverse)
18252 flag keys must be used to get some of these functions from the keyboard.
18254 @kindex P
18255 @pindex calc-pi
18256 @cindex @code{pi} variable
18257 @vindex pi
18258 @kindex H P
18259 @cindex @code{e} variable
18260 @vindex e
18261 @kindex I P
18262 @cindex @code{gamma} variable
18263 @vindex gamma
18264 @cindex Gamma constant, Euler's
18265 @cindex Euler's gamma constant
18266 @kindex H I P
18267 @cindex @code{phi} variable
18268 @cindex Phi, golden ratio
18269 @cindex Golden ratio
18270 One miscellaneous command is shift-@kbd{P} (@code{calc-pi}), which pushes
18271 the value of @cpi{} (at the current precision) onto the stack.  With the
18272 Hyperbolic flag, it pushes the value @expr{e}, the base of natural logarithms.
18273 With the Inverse flag, it pushes Euler's constant
18274 @texline @math{\gamma}
18275 @infoline @expr{gamma}
18276 (about 0.5772).  With both Inverse and Hyperbolic, it
18277 pushes the ``golden ratio''
18278 @texline @math{\phi}
18279 @infoline @expr{phi}
18280 (about 1.618).  (At present, Euler's constant is not available
18281 to unlimited precision; Calc knows only the first 100 digits.)
18282 In Symbolic mode, these commands push the
18283 actual variables @samp{pi}, @samp{e}, @samp{gamma}, and @samp{phi},
18284 respectively, instead of their values; @pxref{Symbolic Mode}.
18286 @ignore
18287 @mindex Q
18288 @end ignore
18289 @ignore
18290 @mindex I Q
18291 @end ignore
18292 @kindex I Q
18293 @tindex sqr
18294 The @kbd{Q} (@code{calc-sqrt}) [@code{sqrt}] function is described elsewhere;
18295 @pxref{Basic Arithmetic}.  With the Inverse flag [@code{sqr}], this command
18296 computes the square of the argument.
18298 @xref{Prefix Arguments}, for a discussion of the effect of numeric
18299 prefix arguments on commands in this chapter which do not otherwise
18300 interpret a prefix argument.
18302 @menu
18303 * Logarithmic Functions::
18304 * Trigonometric and Hyperbolic Functions::
18305 * Advanced Math Functions::
18306 * Branch Cuts::
18307 * Random Numbers::
18308 * Combinatorial Functions::
18309 * Probability Distribution Functions::
18310 @end menu
18312 @node Logarithmic Functions, Trigonometric and Hyperbolic Functions, Scientific Functions, Scientific Functions
18313 @section Logarithmic Functions
18315 @noindent
18316 @kindex L
18317 @pindex calc-ln
18318 @tindex ln
18319 @ignore
18320 @mindex @null
18321 @end ignore
18322 @kindex I E
18323 The shift-@kbd{L} (@code{calc-ln}) [@code{ln}] command computes the natural
18324 logarithm of the real or complex number on the top of the stack.  With
18325 the Inverse flag it computes the exponential function instead, although
18326 this is redundant with the @kbd{E} command.
18328 @kindex E
18329 @pindex calc-exp
18330 @tindex exp
18331 @ignore
18332 @mindex @null
18333 @end ignore
18334 @kindex I L
18335 The shift-@kbd{E} (@code{calc-exp}) [@code{exp}] command computes the
18336 exponential, i.e., @expr{e} raised to the power of the number on the stack.
18337 The meanings of the Inverse and Hyperbolic flags follow from those for
18338 the @code{calc-ln} command.
18340 @kindex H L
18341 @kindex H E
18342 @pindex calc-log10
18343 @tindex log10
18344 @tindex exp10
18345 @ignore
18346 @mindex @null
18347 @end ignore
18348 @kindex H I L
18349 @ignore
18350 @mindex @null
18351 @end ignore
18352 @kindex H I E
18353 The @kbd{H L} (@code{calc-log10}) [@code{log10}] command computes the common
18354 (base-10) logarithm of a number.  (With the Inverse flag [@code{exp10}],
18355 it raises ten to a given power.)  Note that the common logarithm of a
18356 complex number is computed by taking the natural logarithm and dividing
18358 @texline @math{\ln10}.
18359 @infoline @expr{ln(10)}.
18361 @kindex B
18362 @kindex I B
18363 @pindex calc-log
18364 @tindex log
18365 @tindex alog
18366 The @kbd{B} (@code{calc-log}) [@code{log}] command computes a logarithm
18367 to any base.  For example, @kbd{1024 @key{RET} 2 B} produces 10, since
18368 @texline @math{2^{10} = 1024}.
18369 @infoline @expr{2^10 = 1024}.
18370 In certain cases like @samp{log(3,9)}, the result
18371 will be either @expr{1:2} or @expr{0.5} depending on the current Fraction
18372 mode setting.  With the Inverse flag [@code{alog}], this command is
18373 similar to @kbd{^} except that the order of the arguments is reversed.
18375 @kindex f I
18376 @pindex calc-ilog
18377 @tindex ilog
18378 The @kbd{f I} (@code{calc-ilog}) [@code{ilog}] command computes the
18379 integer logarithm of a number to any base.  The number and the base must
18380 themselves be positive integers.  This is the true logarithm, rounded
18381 down to an integer.  Thus @kbd{ilog(x,10)} is 3 for all @expr{x} in the
18382 range from 1000 to 9999.  If both arguments are positive integers, exact
18383 integer arithmetic is used; otherwise, this is equivalent to
18384 @samp{floor(log(x,b))}.
18386 @kindex f E
18387 @pindex calc-expm1
18388 @tindex expm1
18389 The @kbd{f E} (@code{calc-expm1}) [@code{expm1}] command computes
18390 @texline @math{e^x - 1},
18391 @infoline @expr{exp(x)-1},
18392 but using an algorithm that produces a more accurate
18393 answer when the result is close to zero, i.e., when
18394 @texline @math{e^x}
18395 @infoline @expr{exp(x)}
18396 is close to one.
18398 @kindex f L
18399 @pindex calc-lnp1
18400 @tindex lnp1
18401 The @kbd{f L} (@code{calc-lnp1}) [@code{lnp1}] command computes
18402 @texline @math{\ln(x+1)},
18403 @infoline @expr{ln(x+1)},
18404 producing a more accurate answer when @expr{x} is close to zero.
18406 @node Trigonometric and Hyperbolic Functions, Advanced Math Functions, Logarithmic Functions, Scientific Functions
18407 @section Trigonometric/Hyperbolic Functions
18409 @noindent
18410 @kindex S
18411 @pindex calc-sin
18412 @tindex sin
18413 The shift-@kbd{S} (@code{calc-sin}) [@code{sin}] command computes the sine
18414 of an angle or complex number.  If the input is an HMS form, it is interpreted
18415 as degrees-minutes-seconds; otherwise, the input is interpreted according
18416 to the current angular mode.  It is best to use Radians mode when operating
18417 on complex numbers.
18419 Calc's ``units'' mechanism includes angular units like @code{deg},
18420 @code{rad}, and @code{grad}.  While @samp{sin(45 deg)} is not evaluated
18421 all the time, the @kbd{u s} (@code{calc-simplify-units}) command will
18422 simplify @samp{sin(45 deg)} by taking the sine of 45 degrees, regardless
18423 of the current angular mode.  @xref{Basic Operations on Units}.
18425 Also, the symbolic variable @code{pi} is not ordinarily recognized in
18426 arguments to trigonometric functions, as in @samp{sin(3 pi / 4)}, but
18427 the default algebraic simplifications recognize many such
18428 formulas when the current angular mode is Radians @emph{and} Symbolic
18429 mode is enabled; this example would be replaced by @samp{sqrt(2) / 2}.
18430 @xref{Symbolic Mode}.  Beware, this simplification occurs even if you
18431 have stored a different value in the variable @samp{pi}; this is one
18432 reason why changing built-in variables is a bad idea.  Arguments of
18433 the form @expr{x} plus a multiple of @cpiover{2} are also simplified.
18434 Calc includes similar formulas for @code{cos} and @code{tan}.
18436 Calc's algebraic simplifications know all angles which are integer multiples of
18437 @cpiover{12}, @cpiover{10}, or @cpiover{8} radians.  In Degrees mode,
18438 analogous simplifications occur for integer multiples of 15 or 18
18439 degrees, and for arguments plus multiples of 90 degrees.
18441 @kindex I S
18442 @pindex calc-arcsin
18443 @tindex arcsin
18444 With the Inverse flag, @code{calc-sin} computes an arcsine.  This is also
18445 available as the @code{calc-arcsin} command or @code{arcsin} algebraic
18446 function.  The returned argument is converted to degrees, radians, or HMS
18447 notation depending on the current angular mode.
18449 @kindex H S
18450 @pindex calc-sinh
18451 @tindex sinh
18452 @kindex H I S
18453 @pindex calc-arcsinh
18454 @tindex arcsinh
18455 With the Hyperbolic flag, @code{calc-sin} computes the hyperbolic
18456 sine, also available as @code{calc-sinh} [@code{sinh}].  With the
18457 Hyperbolic and Inverse flags, it computes the hyperbolic arcsine
18458 (@code{calc-arcsinh}) [@code{arcsinh}].
18460 @kindex C
18461 @pindex calc-cos
18462 @tindex cos
18463 @ignore
18464 @mindex @idots
18465 @end ignore
18466 @kindex I C
18467 @pindex calc-arccos
18468 @ignore
18469 @mindex @null
18470 @end ignore
18471 @tindex arccos
18472 @ignore
18473 @mindex @null
18474 @end ignore
18475 @kindex H C
18476 @pindex calc-cosh
18477 @ignore
18478 @mindex @null
18479 @end ignore
18480 @tindex cosh
18481 @ignore
18482 @mindex @null
18483 @end ignore
18484 @kindex H I C
18485 @pindex calc-arccosh
18486 @ignore
18487 @mindex @null
18488 @end ignore
18489 @tindex arccosh
18490 @ignore
18491 @mindex @null
18492 @end ignore
18493 @kindex T
18494 @pindex calc-tan
18495 @ignore
18496 @mindex @null
18497 @end ignore
18498 @tindex tan
18499 @ignore
18500 @mindex @null
18501 @end ignore
18502 @kindex I T
18503 @pindex calc-arctan
18504 @ignore
18505 @mindex @null
18506 @end ignore
18507 @tindex arctan
18508 @ignore
18509 @mindex @null
18510 @end ignore
18511 @kindex H T
18512 @pindex calc-tanh
18513 @ignore
18514 @mindex @null
18515 @end ignore
18516 @tindex tanh
18517 @ignore
18518 @mindex @null
18519 @end ignore
18520 @kindex H I T
18521 @pindex calc-arctanh
18522 @ignore
18523 @mindex @null
18524 @end ignore
18525 @tindex arctanh
18526 The shift-@kbd{C} (@code{calc-cos}) [@code{cos}] command computes the cosine
18527 of an angle or complex number, and shift-@kbd{T} (@code{calc-tan}) [@code{tan}]
18528 computes the tangent, along with all the various inverse and hyperbolic
18529 variants of these functions.
18531 @kindex f T
18532 @pindex calc-arctan2
18533 @tindex arctan2
18534 The @kbd{f T} (@code{calc-arctan2}) [@code{arctan2}] command takes two
18535 numbers from the stack and computes the arc tangent of their ratio.  The
18536 result is in the full range from @mathit{-180} (exclusive) to @mathit{+180}
18537 (inclusive) degrees, or the analogous range in radians.  A similar
18538 result would be obtained with @kbd{/} followed by @kbd{I T}, but the
18539 value would only be in the range from @mathit{-90} to @mathit{+90} degrees
18540 since the division loses information about the signs of the two
18541 components, and an error might result from an explicit division by zero
18542 which @code{arctan2} would avoid.  By (arbitrary) definition,
18543 @samp{arctan2(0,0)=0}.
18545 @pindex calc-sincos
18546 @ignore
18547 @starindex
18548 @end ignore
18549 @tindex sincos
18550 @ignore
18551 @starindex
18552 @end ignore
18553 @ignore
18554 @mindex arc@idots
18555 @end ignore
18556 @tindex arcsincos
18557 The @code{calc-sincos} [@code{sincos}] command computes the sine and
18558 cosine of a number, returning them as a vector of the form
18559 @samp{[@var{cos}, @var{sin}]}.
18560 With the Inverse flag [@code{arcsincos}], this command takes a two-element
18561 vector as an argument and computes @code{arctan2} of the elements.
18562 (This command does not accept the Hyperbolic flag.)
18564 @pindex calc-sec
18565 @tindex sec
18566 @pindex calc-csc
18567 @tindex csc
18568 @pindex calc-cot
18569 @tindex cot
18570 @pindex calc-sech
18571 @tindex sech
18572 @pindex calc-csch
18573 @tindex csch
18574 @pindex calc-coth
18575 @tindex coth
18576 The remaining trigonometric functions, @code{calc-sec} [@code{sec}],
18577 @code{calc-csc} [@code{csc}] and @code{calc-cot} [@code{cot}], are also
18578 available.  With the Hyperbolic flag, these compute their hyperbolic
18579 counterparts, which are also available separately as @code{calc-sech}
18580 [@code{sech}], @code{calc-csch} [@code{csch}] and @code{calc-coth}
18581 [@code{coth}].  (These commands do not accept the Inverse flag.)
18583 @node Advanced Math Functions, Branch Cuts, Trigonometric and Hyperbolic Functions, Scientific Functions
18584 @section Advanced Mathematical Functions
18586 @noindent
18587 Calc can compute a variety of less common functions that arise in
18588 various branches of mathematics.  All of the functions described in
18589 this section allow arbitrary complex arguments and, except as noted,
18590 will work to arbitrarily large precision.  They can not at present
18591 handle error forms or intervals as arguments.
18593 NOTE:  These functions are still experimental.  In particular, their
18594 accuracy is not guaranteed in all domains.  It is advisable to set the
18595 current precision comfortably higher than you actually need when
18596 using these functions.  Also, these functions may be impractically
18597 slow for some values of the arguments.
18599 @kindex f g
18600 @pindex calc-gamma
18601 @tindex gamma
18602 The @kbd{f g} (@code{calc-gamma}) [@code{gamma}] command computes the Euler
18603 gamma function.  For positive integer arguments, this is related to the
18604 factorial function:  @samp{gamma(n+1) = fact(n)}.  For general complex
18605 arguments the gamma function can be defined by the following definite
18606 integral:
18607 @texline @math{\Gamma(a) = \int_0^\infty t^{a-1} e^t dt}.
18608 @infoline @expr{gamma(a) = integ(t^(a-1) exp(t), t, 0, inf)}.
18609 (The actual implementation uses far more efficient computational methods.)
18611 @kindex f G
18612 @tindex gammaP
18613 @ignore
18614 @mindex @idots
18615 @end ignore
18616 @kindex I f G
18617 @ignore
18618 @mindex @null
18619 @end ignore
18620 @kindex H f G
18621 @ignore
18622 @mindex @null
18623 @end ignore
18624 @kindex H I f G
18625 @pindex calc-inc-gamma
18626 @ignore
18627 @mindex @null
18628 @end ignore
18629 @tindex gammaQ
18630 @ignore
18631 @mindex @null
18632 @end ignore
18633 @tindex gammag
18634 @ignore
18635 @mindex @null
18636 @end ignore
18637 @tindex gammaG
18638 The @kbd{f G} (@code{calc-inc-gamma}) [@code{gammaP}] command computes
18639 the incomplete gamma function, denoted @samp{P(a,x)}.  This is defined by
18640 the integral,
18641 @texline @math{P(a,x) = \left( \int_0^x t^{a-1} e^t dt \right) / \Gamma(a)}.
18642 @infoline @expr{gammaP(a,x) = integ(t^(a-1) exp(t), t, 0, x) / gamma(a)}.
18643 This implies that @samp{gammaP(a,inf) = 1} for any @expr{a} (see the
18644 definition of the normal gamma function).
18646 Several other varieties of incomplete gamma function are defined.
18647 The complement of @expr{P(a,x)}, called @expr{Q(a,x) = 1-P(a,x)} by
18648 some authors, is computed by the @kbd{I f G} [@code{gammaQ}] command.
18649 You can think of this as taking the other half of the integral, from
18650 @expr{x} to infinity.
18652 @ifnottex
18653 The functions corresponding to the integrals that define @expr{P(a,x)}
18654 and @expr{Q(a,x)} but without the normalizing @expr{1/gamma(a)}
18655 factor are called @expr{g(a,x)} and @expr{G(a,x)}, respectively
18656 (where @expr{g} and @expr{G} represent the lower- and upper-case Greek
18657 letter gamma).  You can obtain these using the @kbd{H f G} [@code{gammag}]
18658 and @kbd{H I f G} [@code{gammaG}] commands.
18659 @end ifnottex
18660 @tex
18661 The functions corresponding to the integrals that define $P(a,x)$
18662 and $Q(a,x)$ but without the normalizing $1/\Gamma(a)$
18663 factor are called $\gamma(a,x)$ and $\Gamma(a,x)$, respectively.
18664 You can obtain these using the \kbd{H f G} [\code{gammag}] and
18665 \kbd{I H f G} [\code{gammaG}] commands.
18666 @end tex
18668 @kindex f b
18669 @pindex calc-beta
18670 @tindex beta
18671 The @kbd{f b} (@code{calc-beta}) [@code{beta}] command computes the
18672 Euler beta function, which is defined in terms of the gamma function as
18673 @texline @math{B(a,b) = \Gamma(a) \Gamma(b) / \Gamma(a+b)},
18674 @infoline @expr{beta(a,b) = gamma(a) gamma(b) / gamma(a+b)},
18675 or by
18676 @texline @math{B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt}.
18677 @infoline @expr{beta(a,b) = integ(t^(a-1) (1-t)^(b-1), t, 0, 1)}.
18679 @kindex f B
18680 @kindex H f B
18681 @pindex calc-inc-beta
18682 @tindex betaI
18683 @tindex betaB
18684 The @kbd{f B} (@code{calc-inc-beta}) [@code{betaI}] command computes
18685 the incomplete beta function @expr{I(x,a,b)}.  It is defined by
18686 @texline @math{I(x,a,b) = \left( \int_0^x t^{a-1} (1-t)^{b-1} dt \right) / B(a,b)}.
18687 @infoline @expr{betaI(x,a,b) = integ(t^(a-1) (1-t)^(b-1), t, 0, x) / beta(a,b)}.
18688 Once again, the @kbd{H} (hyperbolic) prefix gives the corresponding
18689 un-normalized version [@code{betaB}].
18691 @kindex f e
18692 @kindex I f e
18693 @pindex calc-erf
18694 @tindex erf
18695 @tindex erfc
18696 The @kbd{f e} (@code{calc-erf}) [@code{erf}] command computes the
18697 error function
18698 @texline @math{\hbox{erf}(x) = {2 \over \sqrt{\pi}} \int_0^x e^{-t^2} dt}.
18699 @infoline @expr{erf(x) = 2 integ(exp(-(t^2)), t, 0, x) / sqrt(pi)}.
18700 The complementary error function @kbd{I f e} (@code{calc-erfc}) [@code{erfc}]
18701 is the corresponding integral from @samp{x} to infinity; the sum
18702 @texline @math{\hbox{erf}(x) + \hbox{erfc}(x) = 1}.
18703 @infoline @expr{erf(x) + erfc(x) = 1}.
18705 @kindex f j
18706 @kindex f y
18707 @pindex calc-bessel-J
18708 @pindex calc-bessel-Y
18709 @tindex besJ
18710 @tindex besY
18711 The @kbd{f j} (@code{calc-bessel-J}) [@code{besJ}] and @kbd{f y}
18712 (@code{calc-bessel-Y}) [@code{besY}] commands compute the Bessel
18713 functions of the first and second kinds, respectively.
18714 In @samp{besJ(n,x)} and @samp{besY(n,x)} the ``order'' parameter
18715 @expr{n} is often an integer, but is not required to be one.
18716 Calc's implementation of the Bessel functions currently limits the
18717 precision to 8 digits, and may not be exact even to that precision.
18718 Use with care!
18720 @node Branch Cuts, Random Numbers, Advanced Math Functions, Scientific Functions
18721 @section Branch Cuts and Principal Values
18723 @noindent
18724 @cindex Branch cuts
18725 @cindex Principal values
18726 All of the logarithmic, trigonometric, and other scientific functions are
18727 defined for complex numbers as well as for reals.
18728 This section describes the values
18729 returned in cases where the general result is a family of possible values.
18730 Calc follows section 12.5.3 of Steele's @dfn{Common Lisp, the Language},
18731 second edition, in these matters.  This section will describe each
18732 function briefly; for a more detailed discussion (including some nifty
18733 diagrams), consult Steele's book.
18735 Note that the branch cuts for @code{arctan} and @code{arctanh} were
18736 changed between the first and second editions of Steele.  Recent
18737 versions of Calc follow the second edition.
18739 The new branch cuts exactly match those of the HP-28/48 calculators.
18740 They also match those of Mathematica 1.2, except that Mathematica's
18741 @code{arctan} cut is always in the right half of the complex plane,
18742 and its @code{arctanh} cut is always in the top half of the plane.
18743 Calc's cuts are continuous with quadrants I and III for @code{arctan},
18744 or II and IV for @code{arctanh}.
18746 Note:  The current implementations of these functions with complex arguments
18747 are designed with proper behavior around the branch cuts in mind, @emph{not}
18748 efficiency or accuracy.  You may need to increase the floating precision
18749 and wait a while to get suitable answers from them.
18751 For @samp{sqrt(a+bi)}:  When @expr{a<0} and @expr{b} is small but positive
18752 or zero, the result is close to the @expr{+i} axis.  For @expr{b} small and
18753 negative, the result is close to the @expr{-i} axis.  The result always lies
18754 in the right half of the complex plane.
18756 For @samp{ln(a+bi)}:  The real part is defined as @samp{ln(abs(a+bi))}.
18757 The imaginary part is defined as @samp{arg(a+bi) = arctan2(b,a)}.
18758 Thus the branch cuts for @code{sqrt} and @code{ln} both lie on the
18759 negative real axis.
18761 The following table describes these branch cuts in another way.
18762 If the real and imaginary parts of @expr{z} are as shown, then
18763 the real and imaginary parts of @expr{f(z)} will be as shown.
18764 Here @code{eps} stands for a small positive value; each
18765 occurrence of @code{eps} may stand for a different small value.
18767 @smallexample
18768      z           sqrt(z)       ln(z)
18769 ----------------------------------------
18770    +,   0         +,  0       any, 0
18771    -,   0         0,  +       any, pi
18772    -, +eps      +eps, +      +eps, +
18773    -, -eps      +eps, -      +eps, -
18774 @end smallexample
18776 For @samp{z1^z2}:  This is defined by @samp{exp(ln(z1)*z2)}.
18777 One interesting consequence of this is that @samp{(-8)^1:3} does
18778 not evaluate to @mathit{-2} as you might expect, but to the complex
18779 number @expr{(1., 1.732)}.  Both of these are valid cube roots
18780 of @mathit{-8} (as is @expr{(1., -1.732)}); Calc chooses a perhaps
18781 less-obvious root for the sake of mathematical consistency.
18783 For @samp{arcsin(z)}:  This is defined by @samp{-i*ln(i*z + sqrt(1-z^2))}.
18784 The branch cuts are on the real axis, less than @mathit{-1} and greater than 1.
18786 For @samp{arccos(z)}:  This is defined by @samp{-i*ln(z + i*sqrt(1-z^2))},
18787 or equivalently by @samp{pi/2 - arcsin(z)}.  The branch cuts are on
18788 the real axis, less than @mathit{-1} and greater than 1.
18790 For @samp{arctan(z)}:  This is defined by
18791 @samp{(ln(1+i*z) - ln(1-i*z)) / (2*i)}.  The branch cuts are on the
18792 imaginary axis, below @expr{-i} and above @expr{i}.
18794 For @samp{arcsinh(z)}:  This is defined by @samp{ln(z + sqrt(1+z^2))}.
18795 The branch cuts are on the imaginary axis, below @expr{-i} and
18796 above @expr{i}.
18798 For @samp{arccosh(z)}:  This is defined by
18799 @samp{ln(z + (z+1)*sqrt((z-1)/(z+1)))}.  The branch cut is on the
18800 real axis less than 1.
18802 For @samp{arctanh(z)}:  This is defined by @samp{(ln(1+z) - ln(1-z)) / 2}.
18803 The branch cuts are on the real axis, less than @mathit{-1} and greater than 1.
18805 The following tables for @code{arcsin}, @code{arccos}, and
18806 @code{arctan} assume the current angular mode is Radians.  The
18807 hyperbolic functions operate independently of the angular mode.
18809 @smallexample
18810        z             arcsin(z)            arccos(z)
18811 -------------------------------------------------------
18812  (-1..1),  0      (-pi/2..pi/2), 0       (0..pi), 0
18813  (-1..1), +eps    (-pi/2..pi/2), +eps    (0..pi), -eps
18814  (-1..1), -eps    (-pi/2..pi/2), -eps    (0..pi), +eps
18815    <-1,    0          -pi/2,     +         pi,    -
18816    <-1,  +eps      -pi/2 + eps,  +      pi - eps, -
18817    <-1,  -eps      -pi/2 + eps,  -      pi - eps, +
18818     >1,    0           pi/2,     -          0,    +
18819     >1,  +eps       pi/2 - eps,  +        +eps,   -
18820     >1,  -eps       pi/2 - eps,  -        +eps,   +
18821 @end smallexample
18823 @smallexample
18824        z            arccosh(z)         arctanh(z)
18825 -----------------------------------------------------
18826  (-1..1),  0        0,  (0..pi)       any,     0
18827  (-1..1), +eps    +eps, (0..pi)       any,    +eps
18828  (-1..1), -eps    +eps, (-pi..0)      any,    -eps
18829    <-1,    0        +,    pi           -,     pi/2
18830    <-1,  +eps       +,  pi - eps       -,  pi/2 - eps
18831    <-1,  -eps       +, -pi + eps       -, -pi/2 + eps
18832     >1,    0        +,     0           +,    -pi/2
18833     >1,  +eps       +,   +eps          +,  pi/2 - eps
18834     >1,  -eps       +,   -eps          +, -pi/2 + eps
18835 @end smallexample
18837 @smallexample
18838        z           arcsinh(z)           arctan(z)
18839 -----------------------------------------------------
18840    0, (-1..1)    0, (-pi/2..pi/2)         0,     any
18841    0,   <-1      -,    -pi/2            -pi/2,    -
18842  +eps,  <-1      +, -pi/2 + eps       pi/2 - eps, -
18843  -eps,  <-1      -, -pi/2 + eps      -pi/2 + eps, -
18844    0,    >1      +,     pi/2             pi/2,    +
18845  +eps,   >1      +,  pi/2 - eps       pi/2 - eps, +
18846  -eps,   >1      -,  pi/2 - eps      -pi/2 + eps, +
18847 @end smallexample
18849 Finally, the following identities help to illustrate the relationship
18850 between the complex trigonometric and hyperbolic functions.  They
18851 are valid everywhere, including on the branch cuts.
18853 @smallexample
18854 sin(i*z)  = i*sinh(z)       arcsin(i*z)  = i*arcsinh(z)
18855 cos(i*z)  =   cosh(z)       arcsinh(i*z) = i*arcsin(z)
18856 tan(i*z)  = i*tanh(z)       arctan(i*z)  = i*arctanh(z)
18857 sinh(i*z) = i*sin(z)        cosh(i*z)    =   cos(z)
18858 @end smallexample
18860 The ``advanced math'' functions (gamma, Bessel, etc.@:) are also defined
18861 for general complex arguments, but their branch cuts and principal values
18862 are not rigorously specified at present.
18864 @node Random Numbers, Combinatorial Functions, Branch Cuts, Scientific Functions
18865 @section Random Numbers
18867 @noindent
18868 @kindex k r
18869 @pindex calc-random
18870 @tindex random
18871 The @kbd{k r} (@code{calc-random}) [@code{random}] command produces
18872 random numbers of various sorts.
18874 Given a positive numeric prefix argument @expr{M}, it produces a random
18875 integer @expr{N} in the range
18876 @texline @math{0 \le N < M}.
18877 @infoline @expr{0 <= N < M}.
18878 Each possible value @expr{N} appears with equal probability.
18880 With no numeric prefix argument, the @kbd{k r} command takes its argument
18881 from the stack instead.  Once again, if this is a positive integer @expr{M}
18882 the result is a random integer less than @expr{M}.  However, note that
18883 while numeric prefix arguments are limited to six digits or so, an @expr{M}
18884 taken from the stack can be arbitrarily large.  If @expr{M} is negative,
18885 the result is a random integer in the range
18886 @texline @math{M < N \le 0}.
18887 @infoline @expr{M < N <= 0}.
18889 If the value on the stack is a floating-point number @expr{M}, the result
18890 is a random floating-point number @expr{N} in the range
18891 @texline @math{0 \le N < M}
18892 @infoline @expr{0 <= N < M}
18894 @texline @math{M < N \le 0},
18895 @infoline @expr{M < N <= 0},
18896 according to the sign of @expr{M}.
18898 If @expr{M} is zero, the result is a Gaussian-distributed random real
18899 number; the distribution has a mean of zero and a standard deviation
18900 of one.  The algorithm used generates random numbers in pairs; thus,
18901 every other call to this function will be especially fast.
18903 If @expr{M} is an error form
18904 @texline @math{m} @code{+/-} @math{\sigma}
18905 @infoline @samp{m +/- s}
18906 where @var{m} and
18907 @texline @math{\sigma}
18908 @infoline @var{s}
18909 are both real numbers, the result uses a Gaussian distribution with mean
18910 @var{m} and standard deviation
18911 @texline @math{\sigma}.
18912 @infoline @var{s}.
18914 If @expr{M} is an interval form, the lower and upper bounds specify the
18915 acceptable limits of the random numbers.  If both bounds are integers,
18916 the result is a random integer in the specified range.  If either bound
18917 is floating-point, the result is a random real number in the specified
18918 range.  If the interval is open at either end, the result will be sure
18919 not to equal that end value.  (This makes a big difference for integer
18920 intervals, but for floating-point intervals it's relatively minor:
18921 with a precision of 6, @samp{random([1.0..2.0))} will return any of one
18922 million numbers from 1.00000 to 1.99999; @samp{random([1.0..2.0])} may
18923 additionally return 2.00000, but the probability of this happening is
18924 extremely small.)
18926 If @expr{M} is a vector, the result is one element taken at random from
18927 the vector.  All elements of the vector are given equal probabilities.
18929 @vindex RandSeed
18930 The sequence of numbers produced by @kbd{k r} is completely random by
18931 default, i.e., the sequence is seeded each time you start Calc using
18932 the current time and other information.  You can get a reproducible
18933 sequence by storing a particular ``seed value'' in the Calc variable
18934 @code{RandSeed}.  Any integer will do for a seed; integers of from 1
18935 to 12 digits are good.  If you later store a different integer into
18936 @code{RandSeed}, Calc will switch to a different pseudo-random
18937 sequence.  If you ``unstore'' @code{RandSeed}, Calc will re-seed itself
18938 from the current time.  If you store the same integer that you used
18939 before back into @code{RandSeed}, you will get the exact same sequence
18940 of random numbers as before.
18942 @pindex calc-rrandom
18943 The @code{calc-rrandom} command (not on any key) produces a random real
18944 number between zero and one.  It is equivalent to @samp{random(1.0)}.
18946 @kindex k a
18947 @pindex calc-random-again
18948 The @kbd{k a} (@code{calc-random-again}) command produces another random
18949 number, re-using the most recent value of @expr{M}.  With a numeric
18950 prefix argument @var{n}, it produces @var{n} more random numbers using
18951 that value of @expr{M}.
18953 @kindex k h
18954 @pindex calc-shuffle
18955 @tindex shuffle
18956 The @kbd{k h} (@code{calc-shuffle}) command produces a vector of several
18957 random values with no duplicates.  The value on the top of the stack
18958 specifies the set from which the random values are drawn, and may be any
18959 of the @expr{M} formats described above.  The numeric prefix argument
18960 gives the length of the desired list.  (If you do not provide a numeric
18961 prefix argument, the length of the list is taken from the top of the
18962 stack, and @expr{M} from second-to-top.)
18964 If @expr{M} is a floating-point number, zero, or an error form (so
18965 that the random values are being drawn from the set of real numbers)
18966 there is little practical difference between using @kbd{k h} and using
18967 @kbd{k r} several times.  But if the set of possible values consists
18968 of just a few integers, or the elements of a vector, then there is
18969 a very real chance that multiple @kbd{k r}'s will produce the same
18970 number more than once.  The @kbd{k h} command produces a vector whose
18971 elements are always distinct.  (Actually, there is a slight exception:
18972 If @expr{M} is a vector, no given vector element will be drawn more
18973 than once, but if several elements of @expr{M} are equal, they may
18974 each make it into the result vector.)
18976 One use of @kbd{k h} is to rearrange a list at random.  This happens
18977 if the prefix argument is equal to the number of values in the list:
18978 @kbd{[1, 1.5, 2, 2.5, 3] 5 k h} might produce the permuted list
18979 @samp{[2.5, 1, 1.5, 3, 2]}.  As a convenient feature, if the argument
18980 @var{n} is negative it is replaced by the size of the set represented
18981 by @expr{M}.  Naturally, this is allowed only when @expr{M} specifies
18982 a small discrete set of possibilities.
18984 To do the equivalent of @kbd{k h} but with duplications allowed,
18985 given @expr{M} on the stack and with @var{n} just entered as a numeric
18986 prefix, use @kbd{v b} to build a vector of copies of @expr{M}, then use
18987 @kbd{V M k r} to ``map'' the normal @kbd{k r} function over the
18988 elements of this vector.  @xref{Matrix Functions}.
18990 @menu
18991 * Random Number Generator::     (Complete description of Calc's algorithm)
18992 @end menu
18994 @node Random Number Generator,  , Random Numbers, Random Numbers
18995 @subsection Random Number Generator
18997 Calc's random number generator uses several methods to ensure that
18998 the numbers it produces are highly random.  Knuth's @emph{Art of
18999 Computer Programming}, Volume II, contains a thorough description
19000 of the theory of random number generators and their measurement and
19001 characterization.
19003 If @code{RandSeed} has no stored value, Calc calls Emacs's built-in
19004 @code{random} function to get a stream of random numbers, which it
19005 then treats in various ways to avoid problems inherent in the simple
19006 random number generators that many systems use to implement @code{random}.
19008 When Calc's random number generator is first invoked, it ``seeds''
19009 the low-level random sequence using the time of day, so that the
19010 random number sequence will be different every time you use Calc.
19012 Since Emacs Lisp doesn't specify the range of values that will be
19013 returned by its @code{random} function, Calc exercises the function
19014 several times to estimate the range.  When Calc subsequently uses
19015 the @code{random} function, it takes only 10 bits of the result
19016 near the most-significant end.  (It avoids at least the bottom
19017 four bits, preferably more, and also tries to avoid the top two
19018 bits.)  This strategy works well with the linear congruential
19019 generators that are typically used to implement @code{random}.
19021 If @code{RandSeed} contains an integer, Calc uses this integer to
19022 seed an ``additive congruential'' method (Knuth's algorithm 3.2.2A,
19023 computing
19024 @texline @math{X_{n-55} - X_{n-24}}.
19025 @infoline @expr{X_n-55 - X_n-24}).
19026 This method expands the seed
19027 value into a large table which is maintained internally; the variable
19028 @code{RandSeed} is changed from, e.g., 42 to the vector @expr{[42]}
19029 to indicate that the seed has been absorbed into this table.  When
19030 @code{RandSeed} contains a vector, @kbd{k r} and related commands
19031 continue to use the same internal table as last time.  There is no
19032 way to extract the complete state of the random number generator
19033 so that you can restart it from any point; you can only restart it
19034 from the same initial seed value.  A simple way to restart from the
19035 same seed is to type @kbd{s r RandSeed} to get the seed vector,
19036 @kbd{v u} to unpack it back into a number, then @kbd{s t RandSeed}
19037 to reseed the generator with that number.
19039 Calc uses a ``shuffling'' method as described in algorithm 3.2.2B
19040 of Knuth.  It fills a table with 13 random 10-bit numbers.  Then,
19041 to generate a new random number, it uses the previous number to
19042 index into the table, picks the value it finds there as the new
19043 random number, then replaces that table entry with a new value
19044 obtained from a call to the base random number generator (either
19045 the additive congruential generator or the @code{random} function
19046 supplied by the system).  If there are any flaws in the base
19047 generator, shuffling will tend to even them out.  But if the system
19048 provides an excellent @code{random} function, shuffling will not
19049 damage its randomness.
19051 To create a random integer of a certain number of digits, Calc
19052 builds the integer three decimal digits at a time.  For each group
19053 of three digits, Calc calls its 10-bit shuffling random number generator
19054 (which returns a value from 0 to 1023); if the random value is 1000
19055 or more, Calc throws it out and tries again until it gets a suitable
19056 value.
19058 To create a random floating-point number with precision @var{p}, Calc
19059 simply creates a random @var{p}-digit integer and multiplies by
19060 @texline @math{10^{-p}}.
19061 @infoline @expr{10^-p}.
19062 The resulting random numbers should be very clean, but note
19063 that relatively small numbers will have few significant random digits.
19064 In other words, with a precision of 12, you will occasionally get
19065 numbers on the order of
19066 @texline @math{10^{-9}}
19067 @infoline @expr{10^-9}
19069 @texline @math{10^{-10}},
19070 @infoline @expr{10^-10},
19071 but those numbers will only have two or three random digits since they
19072 correspond to small integers times
19073 @texline @math{10^{-12}}.
19074 @infoline @expr{10^-12}.
19076 To create a random integer in the interval @samp{[0 .. @var{m})}, Calc
19077 counts the digits in @var{m}, creates a random integer with three
19078 additional digits, then reduces modulo @var{m}.  Unless @var{m} is a
19079 power of ten the resulting values will be very slightly biased toward
19080 the lower numbers, but this bias will be less than 0.1%.  (For example,
19081 if @var{m} is 42, Calc will reduce a random integer less than 100000
19082 modulo 42 to get a result less than 42.  It is easy to show that the
19083 numbers 40 and 41 will be only 2380/2381 as likely to result from this
19084 modulo operation as numbers 39 and below.)  If @var{m} is a power of
19085 ten, however, the numbers should be completely unbiased.
19087 The Gaussian random numbers generated by @samp{random(0.0)} use the
19088 ``polar'' method described in Knuth section 3.4.1C@.  This method
19089 generates a pair of Gaussian random numbers at a time, so only every
19090 other call to @samp{random(0.0)} will require significant calculations.
19092 @node Combinatorial Functions, Probability Distribution Functions, Random Numbers, Scientific Functions
19093 @section Combinatorial Functions
19095 @noindent
19096 Commands relating to combinatorics and number theory begin with the
19097 @kbd{k} key prefix.
19099 @kindex k g
19100 @pindex calc-gcd
19101 @tindex gcd
19102 The @kbd{k g} (@code{calc-gcd}) [@code{gcd}] command computes the
19103 Greatest Common Divisor of two integers.  It also accepts fractions;
19104 the GCD of two fractions is defined by taking the GCD of the
19105 numerators, and the LCM of the denominators.  This definition is
19106 consistent with the idea that @samp{a / gcd(a,x)} should yield an
19107 integer for any @samp{a} and @samp{x}.  For other types of arguments,
19108 the operation is left in symbolic form.
19110 @kindex k l
19111 @pindex calc-lcm
19112 @tindex lcm
19113 The @kbd{k l} (@code{calc-lcm}) [@code{lcm}] command computes the
19114 Least Common Multiple of two integers or fractions.  The product of
19115 the LCM and GCD of two numbers is equal to the product of the
19116 numbers.
19118 @kindex k E
19119 @pindex calc-extended-gcd
19120 @tindex egcd
19121 The @kbd{k E} (@code{calc-extended-gcd}) [@code{egcd}] command computes
19122 the GCD of two integers @expr{x} and @expr{y} and returns a vector
19123 @expr{[g, a, b]} where
19124 @texline @math{g = \gcd(x,y) = a x + b y}.
19125 @infoline @expr{g = gcd(x,y) = a x + b y}.
19127 @kindex !
19128 @pindex calc-factorial
19129 @tindex fact
19130 @ignore
19131 @mindex @null
19132 @end ignore
19133 @tindex !
19134 The @kbd{!} (@code{calc-factorial}) [@code{fact}] command computes the
19135 factorial of the number at the top of the stack.  If the number is an
19136 integer, the result is an exact integer.  If the number is an
19137 integer-valued float, the result is a floating-point approximation.  If
19138 the number is a non-integral real number, the generalized factorial is used,
19139 as defined by the Euler Gamma function.  Please note that computation of
19140 large factorials can be slow; using floating-point format will help
19141 since fewer digits must be maintained.  The same is true of many of
19142 the commands in this section.
19144 @kindex k d
19145 @pindex calc-double-factorial
19146 @tindex dfact
19147 @ignore
19148 @mindex @null
19149 @end ignore
19150 @tindex !!
19151 The @kbd{k d} (@code{calc-double-factorial}) [@code{dfact}] command
19152 computes the ``double factorial'' of an integer.  For an even integer,
19153 this is the product of even integers from 2 to @expr{N}.  For an odd
19154 integer, this is the product of odd integers from 3 to @expr{N}.  If
19155 the argument is an integer-valued float, the result is a floating-point
19156 approximation.  This function is undefined for negative even integers.
19157 The notation @expr{N!!} is also recognized for double factorials.
19159 @kindex k c
19160 @pindex calc-choose
19161 @tindex choose
19162 The @kbd{k c} (@code{calc-choose}) [@code{choose}] command computes the
19163 binomial coefficient @expr{N}-choose-@expr{M}, where @expr{M} is the number
19164 on the top of the stack and @expr{N} is second-to-top.  If both arguments
19165 are integers, the result is an exact integer.  Otherwise, the result is a
19166 floating-point approximation.  The binomial coefficient is defined for all
19167 real numbers by
19168 @texline @math{N! \over M! (N-M)!\,}.
19169 @infoline @expr{N! / M! (N-M)!}.
19171 @kindex H k c
19172 @pindex calc-perm
19173 @tindex perm
19174 @ifnottex
19175 The @kbd{H k c} (@code{calc-perm}) [@code{perm}] command computes the
19176 number-of-permutations function @expr{N! / (N-M)!}.
19177 @end ifnottex
19178 @tex
19179 The \kbd{H k c} (\code{calc-perm}) [\code{perm}] command computes the
19180 number-of-perm\-utations function $N! \over (N-M)!\,$.
19181 @end tex
19183 @kindex k b
19184 @kindex H k b
19185 @pindex calc-bernoulli-number
19186 @tindex bern
19187 The @kbd{k b} (@code{calc-bernoulli-number}) [@code{bern}] command
19188 computes a given Bernoulli number.  The value at the top of the stack
19189 is a nonnegative integer @expr{n} that specifies which Bernoulli number
19190 is desired.  The @kbd{H k b} command computes a Bernoulli polynomial,
19191 taking @expr{n} from the second-to-top position and @expr{x} from the
19192 top of the stack.  If @expr{x} is a variable or formula the result is
19193 a polynomial in @expr{x}; if @expr{x} is a number the result is a number.
19195 @kindex k e
19196 @kindex H k e
19197 @pindex calc-euler-number
19198 @tindex euler
19199 The @kbd{k e} (@code{calc-euler-number}) [@code{euler}] command similarly
19200 computes an Euler number, and @w{@kbd{H k e}} computes an Euler polynomial.
19201 Bernoulli and Euler numbers occur in the Taylor expansions of several
19202 functions.
19204 @kindex k s
19205 @kindex H k s
19206 @pindex calc-stirling-number
19207 @tindex stir1
19208 @tindex stir2
19209 The @kbd{k s} (@code{calc-stirling-number}) [@code{stir1}] command
19210 computes a Stirling number of the first
19211 @texline kind@tie{}@math{n \brack m},
19212 @infoline kind,
19213 given two integers @expr{n} and @expr{m} on the stack.  The @kbd{H k s}
19214 [@code{stir2}] command computes a Stirling number of the second
19215 @texline kind@tie{}@math{n \brace m}.
19216 @infoline kind.
19217 These are the number of @expr{m}-cycle permutations of @expr{n} objects,
19218 and the number of ways to partition @expr{n} objects into @expr{m}
19219 non-empty sets, respectively.
19221 @kindex k p
19222 @pindex calc-prime-test
19223 @cindex Primes
19224 The @kbd{k p} (@code{calc-prime-test}) command checks if the integer on
19225 the top of the stack is prime.  For integers less than eight million, the
19226 answer is always exact and reasonably fast.  For larger integers, a
19227 probabilistic method is used (see Knuth vol.@: II, section 4.5.4, algorithm P).
19228 The number is first checked against small prime factors (up to 13).  Then,
19229 any number of iterations of the algorithm are performed.  Each step either
19230 discovers that the number is non-prime, or substantially increases the
19231 certainty that the number is prime.  After a few steps, the chance that
19232 a number was mistakenly described as prime will be less than one percent.
19233 (Indeed, this is a worst-case estimate of the probability; in practice
19234 even a single iteration is quite reliable.)  After the @kbd{k p} command,
19235 the number will be reported as definitely prime or non-prime if possible,
19236 or otherwise ``probably'' prime with a certain probability of error.
19238 @ignore
19239 @starindex
19240 @end ignore
19241 @tindex prime
19242 The normal @kbd{k p} command performs one iteration of the primality
19243 test.  Pressing @kbd{k p} repeatedly for the same integer will perform
19244 additional iterations.  Also, @kbd{k p} with a numeric prefix performs
19245 the specified number of iterations.  There is also an algebraic function
19246 @samp{prime(n)} or @samp{prime(n,iters)} which returns 1 if @expr{n}
19247 is (probably) prime and 0 if not.
19249 @kindex k f
19250 @pindex calc-prime-factors
19251 @tindex prfac
19252 The @kbd{k f} (@code{calc-prime-factors}) [@code{prfac}] command
19253 attempts to decompose an integer into its prime factors.  For numbers up
19254 to 25 million, the answer is exact although it may take some time.  The
19255 result is a vector of the prime factors in increasing order.  For larger
19256 inputs, prime factors above 5000 may not be found, in which case the
19257 last number in the vector will be an unfactored integer greater than 25
19258 million (with a warning message).  For negative integers, the first
19259 element of the list will be @mathit{-1}.  For inputs @mathit{-1}, @mathit{0}, and
19260 @mathit{1}, the result is a list of the same number.
19262 @kindex k n
19263 @pindex calc-next-prime
19264 @ignore
19265 @mindex nextpr@idots
19266 @end ignore
19267 @tindex nextprime
19268 The @kbd{k n} (@code{calc-next-prime}) [@code{nextprime}] command finds
19269 the next prime above a given number.  Essentially, it searches by calling
19270 @code{calc-prime-test} on successive integers until it finds one that
19271 passes the test.  This is quite fast for integers less than eight million,
19272 but once the probabilistic test comes into play the search may be rather
19273 slow.  Ordinarily this command stops for any prime that passes one iteration
19274 of the primality test.  With a numeric prefix argument, a number must pass
19275 the specified number of iterations before the search stops.  (This only
19276 matters when searching above eight million.)  You can always use additional
19277 @kbd{k p} commands to increase your certainty that the number is indeed
19278 prime.
19280 @kindex I k n
19281 @pindex calc-prev-prime
19282 @ignore
19283 @mindex prevpr@idots
19284 @end ignore
19285 @tindex prevprime
19286 The @kbd{I k n} (@code{calc-prev-prime}) [@code{prevprime}] command
19287 analogously finds the next prime less than a given number.
19289 @kindex k t
19290 @pindex calc-totient
19291 @tindex totient
19292 The @kbd{k t} (@code{calc-totient}) [@code{totient}] command computes the
19293 Euler ``totient''
19294 @texline function@tie{}@math{\phi(n)},
19295 @infoline function,
19296 the number of integers less than @expr{n} which
19297 are relatively prime to @expr{n}.
19299 @kindex k m
19300 @pindex calc-moebius
19301 @tindex moebius
19302 The @kbd{k m} (@code{calc-moebius}) [@code{moebius}] command computes the
19303 Möbius Î¼ function.  If the input number is a product of @expr{k}
19304 distinct factors, this is @expr{(-1)^k}.  If the input number has any
19305 duplicate factors (i.e., can be divided by the same prime more than once),
19306 the result is zero.
19308 @node Probability Distribution Functions,  , Combinatorial Functions, Scientific Functions
19309 @section Probability Distribution Functions
19311 @noindent
19312 The functions in this section compute various probability distributions.
19313 For continuous distributions, this is the integral of the probability
19314 density function from @expr{x} to infinity.  (These are the ``upper
19315 tail'' distribution functions; there are also corresponding ``lower
19316 tail'' functions which integrate from minus infinity to @expr{x}.)
19317 For discrete distributions, the upper tail function gives the sum
19318 from @expr{x} to infinity; the lower tail function gives the sum
19319 from minus infinity up to, but not including,@w{ }@expr{x}.
19321 To integrate from @expr{x} to @expr{y}, just use the distribution
19322 function twice and subtract.  For example, the probability that a
19323 Gaussian random variable with mean 2 and standard deviation 1 will
19324 lie in the range from 2.5 to 2.8 is @samp{utpn(2.5,2,1) - utpn(2.8,2,1)}
19325 (``the probability that it is greater than 2.5, but not greater than 2.8''),
19326 or equivalently @samp{ltpn(2.8,2,1) - ltpn(2.5,2,1)}.
19328 @kindex k B
19329 @kindex I k B
19330 @pindex calc-utpb
19331 @tindex utpb
19332 @tindex ltpb
19333 The @kbd{k B} (@code{calc-utpb}) [@code{utpb}] function uses the
19334 binomial distribution.  Push the parameters @var{n}, @var{p}, and
19335 then @var{x} onto the stack; the result (@samp{utpb(x,n,p)}) is the
19336 probability that an event will occur @var{x} or more times out
19337 of @var{n} trials, if its probability of occurring in any given
19338 trial is @var{p}.  The @kbd{I k B} [@code{ltpb}] function is
19339 the probability that the event will occur fewer than @var{x} times.
19341 The other probability distribution functions similarly take the
19342 form @kbd{k @var{X}} (@code{calc-utp@var{x}}) [@code{utp@var{x}}]
19343 and @kbd{I k @var{X}} [@code{ltp@var{x}}], for various letters
19344 @var{x}.  The arguments to the algebraic functions are the value of
19345 the random variable first, then whatever other parameters define the
19346 distribution.  Note these are among the few Calc functions where the
19347 order of the arguments in algebraic form differs from the order of
19348 arguments as found on the stack.  (The random variable comes last on
19349 the stack, so that you can type, e.g., @kbd{2 @key{RET} 1 @key{RET} 2.5
19350 k N M-@key{RET} @key{DEL} 2.8 k N -}, using @kbd{M-@key{RET} @key{DEL}} to
19351 recover the original arguments but substitute a new value for @expr{x}.)
19353 @kindex k C
19354 @pindex calc-utpc
19355 @tindex utpc
19356 @ignore
19357 @mindex @idots
19358 @end ignore
19359 @kindex I k C
19360 @ignore
19361 @mindex @null
19362 @end ignore
19363 @tindex ltpc
19364 The @samp{utpc(x,v)} function uses the chi-square distribution with
19365 @texline @math{\nu}
19366 @infoline @expr{v}
19367 degrees of freedom.  It is the probability that a model is
19368 correct if its chi-square statistic is @expr{x}.
19370 @kindex k F
19371 @pindex calc-utpf
19372 @tindex utpf
19373 @ignore
19374 @mindex @idots
19375 @end ignore
19376 @kindex I k F
19377 @ignore
19378 @mindex @null
19379 @end ignore
19380 @tindex ltpf
19381 The @samp{utpf(F,v1,v2)} function uses the F distribution, used in
19382 various statistical tests.  The parameters
19383 @texline @math{\nu_1}
19384 @infoline @expr{v1}
19386 @texline @math{\nu_2}
19387 @infoline @expr{v2}
19388 are the degrees of freedom in the numerator and denominator,
19389 respectively, used in computing the statistic @expr{F}.
19391 @kindex k N
19392 @pindex calc-utpn
19393 @tindex utpn
19394 @ignore
19395 @mindex @idots
19396 @end ignore
19397 @kindex I k N
19398 @ignore
19399 @mindex @null
19400 @end ignore
19401 @tindex ltpn
19402 The @samp{utpn(x,m,s)} function uses a normal (Gaussian) distribution
19403 with mean @expr{m} and standard deviation
19404 @texline @math{\sigma}.
19405 @infoline @expr{s}.
19406 It is the probability that such a normal-distributed random variable
19407 would exceed @expr{x}.
19409 @kindex k P
19410 @pindex calc-utpp
19411 @tindex utpp
19412 @ignore
19413 @mindex @idots
19414 @end ignore
19415 @kindex I k P
19416 @ignore
19417 @mindex @null
19418 @end ignore
19419 @tindex ltpp
19420 The @samp{utpp(n,x)} function uses a Poisson distribution with
19421 mean @expr{x}.  It is the probability that @expr{n} or more such
19422 Poisson random events will occur.
19424 @kindex k T
19425 @pindex calc-ltpt
19426 @tindex utpt
19427 @ignore
19428 @mindex @idots
19429 @end ignore
19430 @kindex I k T
19431 @ignore
19432 @mindex @null
19433 @end ignore
19434 @tindex ltpt
19435 The @samp{utpt(t,v)} function uses the Student's ``t'' distribution
19436 with
19437 @texline @math{\nu}
19438 @infoline @expr{v}
19439 degrees of freedom.  It is the probability that a
19440 t-distributed random variable will be greater than @expr{t}.
19441 (Note:  This computes the distribution function
19442 @texline @math{A(t|\nu)}
19443 @infoline @expr{A(t|v)}
19444 where
19445 @texline @math{A(0|\nu) = 1}
19446 @infoline @expr{A(0|v) = 1}
19448 @texline @math{A(\infty|\nu) \to 0}.
19449 @infoline @expr{A(inf|v) -> 0}.
19450 The @code{UTPT} operation on the HP-48 uses a different definition which
19451 returns half of Calc's value:  @samp{UTPT(t,v) = .5*utpt(t,v)}.)
19453 While Calc does not provide inverses of the probability distribution
19454 functions, the @kbd{a R} command can be used to solve for the inverse.
19455 Since the distribution functions are monotonic, @kbd{a R} is guaranteed
19456 to be able to find a solution given any initial guess.
19457 @xref{Numerical Solutions}.
19459 @node Matrix Functions, Algebra, Scientific Functions, Top
19460 @chapter Vector/Matrix Functions
19462 @noindent
19463 Many of the commands described here begin with the @kbd{v} prefix.
19464 (For convenience, the shift-@kbd{V} prefix is equivalent to @kbd{v}.)
19465 The commands usually apply to both plain vectors and matrices; some
19466 apply only to matrices or only to square matrices.  If the argument
19467 has the wrong dimensions the operation is left in symbolic form.
19469 Vectors are entered and displayed using @samp{[a,b,c]} notation.
19470 Matrices are vectors of which all elements are vectors of equal length.
19471 (Though none of the standard Calc commands use this concept, a
19472 three-dimensional matrix or rank-3 tensor could be defined as a
19473 vector of matrices, and so on.)
19475 @menu
19476 * Packing and Unpacking::
19477 * Building Vectors::
19478 * Extracting Elements::
19479 * Manipulating Vectors::
19480 * Vector and Matrix Arithmetic::
19481 * Set Operations::
19482 * Statistical Operations::
19483 * Reducing and Mapping::
19484 * Vector and Matrix Formats::
19485 @end menu
19487 @node Packing and Unpacking, Building Vectors, Matrix Functions, Matrix Functions
19488 @section Packing and Unpacking
19490 @noindent
19491 Calc's ``pack'' and ``unpack'' commands collect stack entries to build
19492 composite objects such as vectors and complex numbers.  They are
19493 described in this chapter because they are most often used to build
19494 vectors.
19496 @kindex v p
19497 @kindex V p
19498 @pindex calc-pack
19499 The @kbd{v p} (@code{calc-pack}) [@code{pack}] command collects several
19500 elements from the stack into a matrix, complex number, HMS form, error
19501 form, etc.  It uses a numeric prefix argument to specify the kind of
19502 object to be built; this argument is referred to as the ``packing mode.''
19503 If the packing mode is a nonnegative integer, a vector of that
19504 length is created.  For example, @kbd{C-u 5 v p} will pop the top
19505 five stack elements and push back a single vector of those five
19506 elements.  (@kbd{C-u 0 v p} simply creates an empty vector.)
19508 The same effect can be had by pressing @kbd{[} to push an incomplete
19509 vector on the stack, using @key{TAB} (@code{calc-roll-down}) to sneak
19510 the incomplete object up past a certain number of elements, and
19511 then pressing @kbd{]} to complete the vector.
19513 Negative packing modes create other kinds of composite objects:
19515 @table @cite
19516 @item -1
19517 Two values are collected to build a complex number.  For example,
19518 @kbd{5 @key{RET} 7 C-u -1 v p} creates the complex number
19519 @expr{(5, 7)}.  The result is always a rectangular complex
19520 number.  The two input values must both be real numbers,
19521 i.e., integers, fractions, or floats.  If they are not, Calc
19522 will instead build a formula like @samp{a + (0, 1) b}.  (The
19523 other packing modes also create a symbolic answer if the
19524 components are not suitable.)
19526 @item -2
19527 Two values are collected to build a polar complex number.
19528 The first is the magnitude; the second is the phase expressed
19529 in either degrees or radians according to the current angular
19530 mode.
19532 @item -3
19533 Three values are collected into an HMS form.  The first
19534 two values (hours and minutes) must be integers or
19535 integer-valued floats.  The third value may be any real
19536 number.
19538 @item -4
19539 Two values are collected into an error form.  The inputs
19540 may be real numbers or formulas.
19542 @item -5
19543 Two values are collected into a modulo form.  The inputs
19544 must be real numbers.
19546 @item -6
19547 Two values are collected into the interval @samp{[a .. b]}.
19548 The inputs may be real numbers, HMS or date forms, or formulas.
19550 @item -7
19551 Two values are collected into the interval @samp{[a .. b)}.
19553 @item -8
19554 Two values are collected into the interval @samp{(a .. b]}.
19556 @item -9
19557 Two values are collected into the interval @samp{(a .. b)}.
19559 @item -10
19560 Two integer values are collected into a fraction.
19562 @item -11
19563 Two values are collected into a floating-point number.
19564 The first is the mantissa; the second, which must be an
19565 integer, is the exponent.  The result is the mantissa
19566 times ten to the power of the exponent.
19568 @item -12
19569 This is treated the same as @mathit{-11} by the @kbd{v p} command.
19570 When unpacking, @mathit{-12} specifies that a floating-point mantissa
19571 is desired.
19573 @item -13
19574 A real number is converted into a date form.
19576 @item -14
19577 Three numbers (year, month, day) are packed into a pure date form.
19579 @item -15
19580 Six numbers are packed into a date/time form.
19581 @end table
19583 With any of the two-input negative packing modes, either or both
19584 of the inputs may be vectors.  If both are vectors of the same
19585 length, the result is another vector made by packing corresponding
19586 elements of the input vectors.  If one input is a vector and the
19587 other is a plain number, the number is packed along with each vector
19588 element to produce a new vector.  For example, @kbd{C-u -4 v p}
19589 could be used to convert a vector of numbers and a vector of errors
19590 into a single vector of error forms; @kbd{C-u -5 v p} could convert
19591 a vector of numbers and a single number @var{M} into a vector of
19592 numbers modulo @var{M}.
19594 If you don't give a prefix argument to @kbd{v p}, it takes
19595 the packing mode from the top of the stack.  The elements to
19596 be packed then begin at stack level 2.  Thus
19597 @kbd{1 @key{RET} 2 @key{RET} 4 n v p} is another way to
19598 enter the error form @samp{1 +/- 2}.
19600 If the packing mode taken from the stack is a vector, the result is a
19601 matrix with the dimensions specified by the elements of the vector,
19602 which must each be integers.  For example, if the packing mode is
19603 @samp{[2, 3]}, then six numbers will be taken from the stack and
19604 returned in the form @samp{[@w{[a, b, c]}, [d, e, f]]}.
19606 If any elements of the vector are negative, other kinds of
19607 packing are done at that level as described above.  For
19608 example, @samp{[2, 3, -4]} takes 12 objects and creates a
19609 @texline @math{2\times3}
19610 @infoline 2x3
19611 matrix of error forms: @samp{[[a +/- b, c +/- d ... ]]}.
19612 Also, @samp{[-4, -10]} will convert four integers into an
19613 error form consisting of two fractions:  @samp{a:b +/- c:d}.
19615 @ignore
19616 @starindex
19617 @end ignore
19618 @tindex pack
19619 There is an equivalent algebraic function,
19620 @samp{pack(@var{mode}, @var{items})} where @var{mode} is a
19621 packing mode (an integer or a vector of integers) and @var{items}
19622 is a vector of objects to be packed (re-packed, really) according
19623 to that mode.  For example, @samp{pack([3, -4], [a,b,c,d,e,f])}
19624 yields @samp{[a +/- b, @w{c +/- d}, e +/- f]}.  The function is
19625 left in symbolic form if the packing mode is invalid, or if the
19626 number of data items does not match the number of items required
19627 by the mode.
19629 @kindex v u
19630 @kindex V u
19631 @pindex calc-unpack
19632 The @kbd{v u} (@code{calc-unpack}) command takes the vector, complex
19633 number, HMS form, or other composite object on the top of the stack and
19634 ``unpacks'' it, pushing each of its elements onto the stack as separate
19635 objects.  Thus, it is the ``inverse'' of @kbd{v p}.  If the value
19636 at the top of the stack is a formula, @kbd{v u} unpacks it by pushing
19637 each of the arguments of the top-level operator onto the stack.
19639 You can optionally give a numeric prefix argument to @kbd{v u}
19640 to specify an explicit (un)packing mode.  If the packing mode is
19641 negative and the input is actually a vector or matrix, the result
19642 will be two or more similar vectors or matrices of the elements.
19643 For example, given the vector @samp{[@w{a +/- b}, c^2, d +/- 7]},
19644 the result of @kbd{C-u -4 v u} will be the two vectors
19645 @samp{[a, c^2, d]} and @w{@samp{[b, 0, 7]}}.
19647 Note that the prefix argument can have an effect even when the input is
19648 not a vector.  For example, if the input is the number @mathit{-5}, then
19649 @kbd{c-u -1 v u} yields @mathit{-5} and 0 (the components of @mathit{-5}
19650 when viewed as a rectangular complex number); @kbd{C-u -2 v u} yields 5
19651 and 180 (assuming Degrees mode); and @kbd{C-u -10 v u} yields @mathit{-5}
19652 and 1 (the numerator and denominator of @mathit{-5}, viewed as a rational
19653 number).  Plain @kbd{v u} with this input would complain that the input
19654 is not a composite object.
19656 Unpacking mode @mathit{-11} converts a float into an integer mantissa and
19657 an integer exponent, where the mantissa is not divisible by 10
19658 (except that 0.0 is represented by a mantissa and exponent of 0).
19659 Unpacking mode @mathit{-12} converts a float into a floating-point mantissa
19660 and integer exponent, where the mantissa (for non-zero numbers)
19661 is guaranteed to lie in the range [1 .. 10).  In both cases,
19662 the mantissa is shifted left or right (and the exponent adjusted
19663 to compensate) in order to satisfy these constraints.
19665 Positive unpacking modes are treated differently than for @kbd{v p}.
19666 A mode of 1 is much like plain @kbd{v u} with no prefix argument,
19667 except that in addition to the components of the input object,
19668 a suitable packing mode to re-pack the object is also pushed.
19669 Thus, @kbd{C-u 1 v u} followed by @kbd{v p} will re-build the
19670 original object.
19672 A mode of 2 unpacks two levels of the object; the resulting
19673 re-packing mode will be a vector of length 2.  This might be used
19674 to unpack a matrix, say, or a vector of error forms.  Higher
19675 unpacking modes unpack the input even more deeply.
19677 @ignore
19678 @starindex
19679 @end ignore
19680 @tindex unpack
19681 There are two algebraic functions analogous to @kbd{v u}.
19682 The @samp{unpack(@var{mode}, @var{item})} function unpacks the
19683 @var{item} using the given @var{mode}, returning the result as
19684 a vector of components.  Here the @var{mode} must be an
19685 integer, not a vector.  For example, @samp{unpack(-4, a +/- b)}
19686 returns @samp{[a, b]}, as does @samp{unpack(1, a +/- b)}.
19688 @ignore
19689 @starindex
19690 @end ignore
19691 @tindex unpackt
19692 The @code{unpackt} function is like @code{unpack} but instead
19693 of returning a simple vector of items, it returns a vector of
19694 two things:  The mode, and the vector of items.  For example,
19695 @samp{unpackt(1, 2:3 +/- 1:4)} returns @samp{[-4, [2:3, 1:4]]},
19696 and @samp{unpackt(2, 2:3 +/- 1:4)} returns @samp{[[-4, -10], [2, 3, 1, 4]]}.
19697 The identity for re-building the original object is
19698 @samp{apply(pack, unpackt(@var{n}, @var{x})) = @var{x}}.  (The
19699 @code{apply} function builds a function call given the function
19700 name and a vector of arguments.)
19702 @cindex Numerator of a fraction, extracting
19703 Subscript notation is a useful way to extract a particular part
19704 of an object.  For example, to get the numerator of a rational
19705 number, you can use @samp{unpack(-10, @var{x})_1}.
19707 @node Building Vectors, Extracting Elements, Packing and Unpacking, Matrix Functions
19708 @section Building Vectors
19710 @noindent
19711 Vectors and matrices can be added,
19712 subtracted, multiplied, and divided; @pxref{Basic Arithmetic}.
19714 @kindex |
19715 @pindex calc-concat
19716 @ignore
19717 @mindex @null
19718 @end ignore
19719 @tindex |
19720 The @kbd{|} (@code{calc-concat}) [@code{vconcat}] command ``concatenates'' two vectors
19721 into one.  For example, after @kbd{@w{[ 1 , 2 ]} [ 3 , 4 ] |}, the stack
19722 will contain the single vector @samp{[1, 2, 3, 4]}.  If the arguments
19723 are matrices, the rows of the first matrix are concatenated with the
19724 rows of the second.  (In other words, two matrices are just two vectors
19725 of row-vectors as far as @kbd{|} is concerned.)
19727 If either argument to @kbd{|} is a scalar (a non-vector), it is treated
19728 like a one-element vector for purposes of concatenation:  @kbd{1 [ 2 , 3 ] |}
19729 produces the vector @samp{[1, 2, 3]}.  Likewise, if one argument is a
19730 matrix and the other is a plain vector, the vector is treated as a
19731 one-row matrix.
19733 @kindex H |
19734 @tindex append
19735 The @kbd{H |} (@code{calc-append}) [@code{append}] command concatenates
19736 two vectors without any special cases.  Both inputs must be vectors.
19737 Whether or not they are matrices is not taken into account.  If either
19738 argument is a scalar, the @code{append} function is left in symbolic form.
19739 See also @code{cons} and @code{rcons} below.
19741 @kindex I |
19742 @kindex H I |
19743 The @kbd{I |} and @kbd{H I |} commands are similar, but they use their
19744 two stack arguments in the opposite order.  Thus @kbd{I |} is equivalent
19745 to @kbd{@key{TAB} |}, but possibly more convenient and also a bit faster.
19747 @kindex v d
19748 @kindex V d
19749 @pindex calc-diag
19750 @tindex diag
19751 The @kbd{v d} (@code{calc-diag}) [@code{diag}] function builds a diagonal
19752 square matrix.  The optional numeric prefix gives the number of rows
19753 and columns in the matrix.  If the value at the top of the stack is a
19754 vector, the elements of the vector are used as the diagonal elements; the
19755 prefix, if specified, must match the size of the vector.  If the value on
19756 the stack is a scalar, it is used for each element on the diagonal, and
19757 the prefix argument is required.
19759 To build a constant square matrix, e.g., a
19760 @texline @math{3\times3}
19761 @infoline 3x3
19762 matrix filled with ones, use @kbd{0 M-3 v d 1 +}, i.e., build a zero
19763 matrix first and then add a constant value to that matrix.  (Another
19764 alternative would be to use @kbd{v b} and @kbd{v a}; see below.)
19766 @kindex v i
19767 @kindex V i
19768 @pindex calc-ident
19769 @tindex idn
19770 The @kbd{v i} (@code{calc-ident}) [@code{idn}] function builds an identity
19771 matrix of the specified size.  It is a convenient form of @kbd{v d}
19772 where the diagonal element is always one.  If no prefix argument is given,
19773 this command prompts for one.
19775 In algebraic notation, @samp{idn(a,n)} acts much like @samp{diag(a,n)},
19776 except that @expr{a} is required to be a scalar (non-vector) quantity.
19777 If @expr{n} is omitted, @samp{idn(a)} represents @expr{a} times an
19778 identity matrix of unknown size.  Calc can operate algebraically on
19779 such generic identity matrices, and if one is combined with a matrix
19780 whose size is known, it is converted automatically to an identity
19781 matrix of a suitable matching size.  The @kbd{v i} command with an
19782 argument of zero creates a generic identity matrix, @samp{idn(1)}.
19783 Note that in dimensioned Matrix mode (@pxref{Matrix Mode}), generic
19784 identity matrices are immediately expanded to the current default
19785 dimensions.
19787 @kindex v x
19788 @kindex V x
19789 @pindex calc-index
19790 @tindex index
19791 The @kbd{v x} (@code{calc-index}) [@code{index}] function builds a vector
19792 of consecutive integers from 1 to @var{n}, where @var{n} is the numeric
19793 prefix argument.  If you do not provide a prefix argument, you will be
19794 prompted to enter a suitable number.  If @var{n} is negative, the result
19795 is a vector of negative integers from @var{n} to @mathit{-1}.
19797 With a prefix argument of just @kbd{C-u}, the @kbd{v x} command takes
19798 three values from the stack: @var{n}, @var{start}, and @var{incr} (with
19799 @var{incr} at top-of-stack).  Counting starts at @var{start} and increases
19800 by @var{incr} for successive vector elements.  If @var{start} or @var{n}
19801 is in floating-point format, the resulting vector elements will also be
19802 floats.  Note that @var{start} and @var{incr} may in fact be any kind
19803 of numbers or formulas.
19805 When @var{start} and @var{incr} are specified, a negative @var{n} has a
19806 different interpretation:  It causes a geometric instead of arithmetic
19807 sequence to be generated.  For example, @samp{index(-3, a, b)} produces
19808 @samp{[a, a b, a b^2]}.  If you omit @var{incr} in the algebraic form,
19809 @samp{index(@var{n}, @var{start})}, the default value for @var{incr}
19810 is one for positive @var{n} or two for negative @var{n}.
19812 @kindex v b
19813 @kindex V b
19814 @pindex calc-build-vector
19815 @tindex cvec
19816 The @kbd{v b} (@code{calc-build-vector}) [@code{cvec}] function builds a
19817 vector of @var{n} copies of the value on the top of the stack, where @var{n}
19818 is the numeric prefix argument.  In algebraic formulas, @samp{cvec(x,n,m)}
19819 can also be used to build an @var{n}-by-@var{m} matrix of copies of @var{x}.
19820 (Interactively, just use @kbd{v b} twice: once to build a row, then again
19821 to build a matrix of copies of that row.)
19823 @kindex v h
19824 @kindex V h
19825 @kindex I v h
19826 @kindex I V h
19827 @pindex calc-head
19828 @pindex calc-tail
19829 @tindex head
19830 @tindex tail
19831 The @kbd{v h} (@code{calc-head}) [@code{head}] function returns the first
19832 element of a vector.  The @kbd{I v h} (@code{calc-tail}) [@code{tail}]
19833 function returns the vector with its first element removed.  In both
19834 cases, the argument must be a non-empty vector.
19836 @kindex v k
19837 @kindex V k
19838 @pindex calc-cons
19839 @tindex cons
19840 The @kbd{v k} (@code{calc-cons}) [@code{cons}] function takes a value @var{h}
19841 and a vector @var{t} from the stack, and produces the vector whose head is
19842 @var{h} and whose tail is @var{t}.  This is similar to @kbd{|}, except
19843 if @var{h} is itself a vector, @kbd{|} will concatenate the two vectors
19844 whereas @code{cons} will insert @var{h} at the front of the vector @var{t}.
19846 @kindex H v h
19847 @kindex H V h
19848 @tindex rhead
19849 @ignore
19850 @mindex @idots
19851 @end ignore
19852 @kindex H I v h
19853 @kindex H I V h
19854 @ignore
19855 @mindex @null
19856 @end ignore
19857 @kindex H v k
19858 @kindex H V k
19859 @ignore
19860 @mindex @null
19861 @end ignore
19862 @tindex rtail
19863 @ignore
19864 @mindex @null
19865 @end ignore
19866 @tindex rcons
19867 Each of these three functions also accepts the Hyperbolic flag [@code{rhead},
19868 @code{rtail}, @code{rcons}] in which case @var{t} instead represents
19869 the @emph{last} single element of the vector, with @var{h}
19870 representing the remainder of the vector.  Thus the vector
19871 @samp{[a, b, c, d] = cons(a, [b, c, d]) = rcons([a, b, c], d)}.
19872 Also, @samp{head([a, b, c, d]) = a}, @samp{tail([a, b, c, d]) = [b, c, d]},
19873 @samp{rhead([a, b, c, d]) = [a, b, c]}, and @samp{rtail([a, b, c, d]) = d}.
19875 @node Extracting Elements, Manipulating Vectors, Building Vectors, Matrix Functions
19876 @section Extracting Vector Elements
19878 @noindent
19879 @kindex v r
19880 @kindex V r
19881 @pindex calc-mrow
19882 @tindex mrow
19883 The @kbd{v r} (@code{calc-mrow}) [@code{mrow}] command extracts one row of
19884 the matrix on the top of the stack, or one element of the plain vector on
19885 the top of the stack.  The row or element is specified by the numeric
19886 prefix argument; the default is to prompt for the row or element number.
19887 The matrix or vector is replaced by the specified row or element in the
19888 form of a vector or scalar, respectively.
19890 @cindex Permutations, applying
19891 With a prefix argument of @kbd{C-u} only, @kbd{v r} takes the index of
19892 the element or row from the top of the stack, and the vector or matrix
19893 from the second-to-top position.  If the index is itself a vector of
19894 integers, the result is a vector of the corresponding elements of the
19895 input vector, or a matrix of the corresponding rows of the input matrix.
19896 This command can be used to obtain any permutation of a vector.
19898 With @kbd{C-u}, if the index is an interval form with integer components,
19899 it is interpreted as a range of indices and the corresponding subvector or
19900 submatrix is returned.
19902 @cindex Subscript notation
19903 @kindex a _
19904 @pindex calc-subscript
19905 @tindex subscr
19906 @tindex _
19907 Subscript notation in algebraic formulas (@samp{a_b}) stands for the
19908 Calc function @code{subscr}, which is synonymous with @code{mrow}.
19909 Thus, @samp{[x, y, z]_k} produces @expr{x}, @expr{y}, or @expr{z} if
19910 @expr{k} is one, two, or three, respectively.  A double subscript
19911 (@samp{M_i_j}, equivalent to @samp{subscr(subscr(M, i), j)}) will
19912 access the element at row @expr{i}, column @expr{j} of a matrix.
19913 The @kbd{a _} (@code{calc-subscript}) command creates a subscript
19914 formula @samp{a_b} out of two stack entries.  (It is on the @kbd{a}
19915 ``algebra'' prefix because subscripted variables are often used
19916 purely as an algebraic notation.)
19918 @tindex mrrow
19919 Given a negative prefix argument, @kbd{v r} instead deletes one row or
19920 element from the matrix or vector on the top of the stack.  Thus
19921 @kbd{C-u 2 v r} replaces a matrix with its second row, but @kbd{C-u -2 v r}
19922 replaces the matrix with the same matrix with its second row removed.
19923 In algebraic form this function is called @code{mrrow}.
19925 @tindex getdiag
19926 Given a prefix argument of zero, @kbd{v r} extracts the diagonal elements
19927 of a square matrix in the form of a vector.  In algebraic form this
19928 function is called @code{getdiag}.
19930 @kindex v c
19931 @kindex V c
19932 @pindex calc-mcol
19933 @tindex mcol
19934 @tindex mrcol
19935 The @kbd{v c} (@code{calc-mcol}) [@code{mcol} or @code{mrcol}] command is
19936 the analogous operation on columns of a matrix.  Given a plain vector
19937 it extracts (or removes) one element, just like @kbd{v r}.  If the
19938 index in @kbd{C-u v c} is an interval or vector and the argument is a
19939 matrix, the result is a submatrix with only the specified columns
19940 retained (and possibly permuted in the case of a vector index).
19942 To extract a matrix element at a given row and column, use @kbd{v r} to
19943 extract the row as a vector, then @kbd{v c} to extract the column element
19944 from that vector.  In algebraic formulas, it is often more convenient to
19945 use subscript notation:  @samp{m_i_j} gives row @expr{i}, column @expr{j}
19946 of matrix @expr{m}.
19948 @kindex v s
19949 @kindex V s
19950 @pindex calc-subvector
19951 @tindex subvec
19952 The @kbd{v s} (@code{calc-subvector}) [@code{subvec}] command extracts
19953 a subvector of a vector.  The arguments are the vector, the starting
19954 index, and the ending index, with the ending index in the top-of-stack
19955 position.  The starting index indicates the first element of the vector
19956 to take.  The ending index indicates the first element @emph{past} the
19957 range to be taken.  Thus, @samp{subvec([a, b, c, d, e], 2, 4)} produces
19958 the subvector @samp{[b, c]}.  You could get the same result using
19959 @samp{mrow([a, b, c, d, e], @w{[2 .. 4)})}.
19961 If either the start or the end index is zero or negative, it is
19962 interpreted as relative to the end of the vector.  Thus
19963 @samp{subvec([a, b, c, d, e], 2, -2)} also produces @samp{[b, c]}.  In
19964 the algebraic form, the end index can be omitted in which case it
19965 is taken as zero, i.e., elements from the starting element to the
19966 end of the vector are used.  The infinity symbol, @code{inf}, also
19967 has this effect when used as the ending index.
19969 @kindex I v s
19970 @kindex I V s
19971 @tindex rsubvec
19972 With the Inverse flag, @kbd{I v s} [@code{rsubvec}] removes a subvector
19973 from a vector.  The arguments are interpreted the same as for the
19974 normal @kbd{v s} command.  Thus, @samp{rsubvec([a, b, c, d, e], 2, 4)}
19975 produces @samp{[a, d, e]}.  It is always true that @code{subvec} and
19976 @code{rsubvec} return complementary parts of the input vector.
19978 @xref{Selecting Subformulas}, for an alternative way to operate on
19979 vectors one element at a time.
19981 @node Manipulating Vectors, Vector and Matrix Arithmetic, Extracting Elements, Matrix Functions
19982 @section Manipulating Vectors
19984 @noindent
19985 @kindex v l
19986 @kindex V l
19987 @pindex calc-vlength
19988 @tindex vlen
19989 The @kbd{v l} (@code{calc-vlength}) [@code{vlen}] command computes the
19990 length of a vector.  The length of a non-vector is considered to be zero.
19991 Note that matrices are just vectors of vectors for the purposes of this
19992 command.
19994 @kindex H v l
19995 @kindex H V l
19996 @tindex mdims
19997 With the Hyperbolic flag, @kbd{H v l} [@code{mdims}] computes a vector
19998 of the dimensions of a vector, matrix, or higher-order object.  For
19999 example, @samp{mdims([[a,b,c],[d,e,f]])} returns @samp{[2, 3]} since
20000 its argument is a
20001 @texline @math{2\times3}
20002 @infoline 2x3
20003 matrix.
20005 @kindex v f
20006 @kindex V f
20007 @pindex calc-vector-find
20008 @tindex find
20009 The @kbd{v f} (@code{calc-vector-find}) [@code{find}] command searches
20010 along a vector for the first element equal to a given target.  The target
20011 is on the top of the stack; the vector is in the second-to-top position.
20012 If a match is found, the result is the index of the matching element.
20013 Otherwise, the result is zero.  The numeric prefix argument, if given,
20014 allows you to select any starting index for the search.
20016 @kindex v a
20017 @kindex V a
20018 @pindex calc-arrange-vector
20019 @tindex arrange
20020 @cindex Arranging a matrix
20021 @cindex Reshaping a matrix
20022 @cindex Flattening a matrix
20023 The @kbd{v a} (@code{calc-arrange-vector}) [@code{arrange}] command
20024 rearranges a vector to have a certain number of columns and rows.  The
20025 numeric prefix argument specifies the number of columns; if you do not
20026 provide an argument, you will be prompted for the number of columns.
20027 The vector or matrix on the top of the stack is @dfn{flattened} into a
20028 plain vector.  If the number of columns is nonzero, this vector is
20029 then formed into a matrix by taking successive groups of @var{n} elements.
20030 If the number of columns does not evenly divide the number of elements
20031 in the vector, the last row will be short and the result will not be
20032 suitable for use as a matrix.  For example, with the matrix
20033 @samp{[[1, 2], @w{[3, 4]}]} on the stack, @kbd{v a 4} produces
20034 @samp{[[1, 2, 3, 4]]} (a
20035 @texline @math{1\times4}
20036 @infoline 1x4
20037 matrix), @kbd{v a 1} produces @samp{[[1], [2], [3], [4]]} (a
20038 @texline @math{4\times1}
20039 @infoline 4x1
20040 matrix), @kbd{v a 2} produces @samp{[[1, 2], [3, 4]]} (the original
20041 @texline @math{2\times2}
20042 @infoline 2x2
20043 matrix), @w{@kbd{v a 3}} produces @samp{[[1, 2, 3], [4]]} (not a
20044 matrix), and @kbd{v a 0} produces the flattened list
20045 @samp{[1, 2, @w{3, 4}]}.
20047 @cindex Sorting data
20048 @kindex v S
20049 @kindex V S
20050 @kindex I v S
20051 @kindex I V S
20052 @pindex calc-sort
20053 @tindex sort
20054 @tindex rsort
20055 The @kbd{V S} (@code{calc-sort}) [@code{sort}] command sorts the elements of
20056 a vector into increasing order.  Real numbers, real infinities, and
20057 constant interval forms come first in this ordering; next come other
20058 kinds of numbers, then variables (in alphabetical order), then finally
20059 come formulas and other kinds of objects; these are sorted according
20060 to a kind of lexicographic ordering with the useful property that
20061 one vector is less or greater than another if the first corresponding
20062 unequal elements are less or greater, respectively.  Since quoted strings
20063 are stored by Calc internally as vectors of ASCII character codes
20064 (@pxref{Strings}), this means vectors of strings are also sorted into
20065 alphabetical order by this command.
20067 The @kbd{I V S} [@code{rsort}] command sorts a vector into decreasing order.
20069 @cindex Permutation, inverse of
20070 @cindex Inverse of permutation
20071 @cindex Index tables
20072 @cindex Rank tables
20073 @kindex v G
20074 @kindex V G
20075 @kindex I v G
20076 @kindex I V G
20077 @pindex calc-grade
20078 @tindex grade
20079 @tindex rgrade
20080 The @kbd{V G} (@code{calc-grade}) [@code{grade}, @code{rgrade}] command
20081 produces an index table or permutation vector which, if applied to the
20082 input vector (as the index of @kbd{C-u v r}, say), would sort the vector.
20083 A permutation vector is just a vector of integers from 1 to @var{n}, where
20084 each integer occurs exactly once.  One application of this is to sort a
20085 matrix of data rows using one column as the sort key; extract that column,
20086 grade it with @kbd{V G}, then use the result to reorder the original matrix
20087 with @kbd{C-u v r}.  Another interesting property of the @code{V G} command
20088 is that, if the input is itself a permutation vector, the result will
20089 be the inverse of the permutation.  The inverse of an index table is
20090 a rank table, whose @var{k}th element says where the @var{k}th original
20091 vector element will rest when the vector is sorted.  To get a rank
20092 table, just use @kbd{V G V G}.
20094 With the Inverse flag, @kbd{I V G} produces an index table that would
20095 sort the input into decreasing order.  Note that @kbd{V S} and @kbd{V G}
20096 use a ``stable'' sorting algorithm, i.e., any two elements which are equal
20097 will not be moved out of their original order.  Generally there is no way
20098 to tell with @kbd{V S}, since two elements which are equal look the same,
20099 but with @kbd{V G} this can be an important issue.  In the matrix-of-rows
20100 example, suppose you have names and telephone numbers as two columns and
20101 you wish to sort by phone number primarily, and by name when the numbers
20102 are equal.  You can sort the data matrix by names first, and then again
20103 by phone numbers.  Because the sort is stable, any two rows with equal
20104 phone numbers will remain sorted by name even after the second sort.
20106 @cindex Histograms
20107 @kindex v H
20108 @kindex V H
20109 @pindex calc-histogram
20110 @ignore
20111 @mindex histo@idots
20112 @end ignore
20113 @tindex histogram
20114 The @kbd{V H} (@code{calc-histogram}) [@code{histogram}] command builds a
20115 histogram of a vector of numbers.  Vector elements are assumed to be
20116 integers or real numbers in the range [0..@var{n}) for some ``number of
20117 bins'' @var{n}, which is the numeric prefix argument given to the
20118 command.  The result is a vector of @var{n} counts of how many times
20119 each value appeared in the original vector.  Non-integers in the input
20120 are rounded down to integers.  Any vector elements outside the specified
20121 range are ignored.  (You can tell if elements have been ignored by noting
20122 that the counts in the result vector don't add up to the length of the
20123 input vector.)
20125 If no prefix is given, then you will be prompted for a vector which
20126 will be used to determine the bins. (If a positive integer is given at
20127 this prompt, it will be still treated as if it were given as a
20128 prefix.)  Each bin will consist of the interval of numbers closest to
20129 the corresponding number of this new vector; if the vector
20130 @expr{[a, b, c, ...]} is entered at the prompt, the bins will be
20131 @expr{(-inf, (a+b)/2]}, @expr{((a+b)/2, (b+c)/2]}, etc.  The result of
20132 this command will be a vector counting how many elements of the
20133 original vector are in each bin.
20135 The result will then be a vector with the same length as this new vector;
20136 each element of the new vector will be replaced by the number of
20137 elements of the original vector which are closest to it.
20139 @kindex H v H
20140 @kindex H V H
20141 With the Hyperbolic flag, @kbd{H V H} pulls two vectors from the stack.
20142 The second-to-top vector is the list of numbers as before.  The top
20143 vector is an equal-sized list of ``weights'' to attach to the elements
20144 of the data vector.  For example, if the first data element is 4.2 and
20145 the first weight is 10, then 10 will be added to bin 4 of the result
20146 vector.  Without the hyperbolic flag, every element has a weight of one.
20148 @kindex v t
20149 @kindex V t
20150 @pindex calc-transpose
20151 @tindex trn
20152 The @kbd{v t} (@code{calc-transpose}) [@code{trn}] command computes
20153 the transpose of the matrix at the top of the stack.  If the argument
20154 is a plain vector, it is treated as a row vector and transposed into
20155 a one-column matrix.
20157 @kindex v v
20158 @kindex V v
20159 @pindex calc-reverse-vector
20160 @tindex rev
20161 The @kbd{v v} (@code{calc-reverse-vector}) [@code{rev}] command reverses
20162 a vector end-for-end.  Given a matrix, it reverses the order of the rows.
20163 (To reverse the columns instead, just use @kbd{v t v v v t}.  The same
20164 principle can be used to apply other vector commands to the columns of
20165 a matrix.)
20167 @kindex v m
20168 @kindex V m
20169 @pindex calc-mask-vector
20170 @tindex vmask
20171 The @kbd{v m} (@code{calc-mask-vector}) [@code{vmask}] command uses
20172 one vector as a mask to extract elements of another vector.  The mask
20173 is in the second-to-top position; the target vector is on the top of
20174 the stack.  These vectors must have the same length.  The result is
20175 the same as the target vector, but with all elements which correspond
20176 to zeros in the mask vector deleted.  Thus, for example,
20177 @samp{vmask([1, 0, 1, 0, 1], [a, b, c, d, e])} produces @samp{[a, c, e]}.
20178 @xref{Logical Operations}.
20180 @kindex v e
20181 @kindex V e
20182 @pindex calc-expand-vector
20183 @tindex vexp
20184 The @kbd{v e} (@code{calc-expand-vector}) [@code{vexp}] command
20185 expands a vector according to another mask vector.  The result is a
20186 vector the same length as the mask, but with nonzero elements replaced
20187 by successive elements from the target vector.  The length of the target
20188 vector is normally the number of nonzero elements in the mask.  If the
20189 target vector is longer, its last few elements are lost.  If the target
20190 vector is shorter, the last few nonzero mask elements are left
20191 unreplaced in the result.  Thus @samp{vexp([2, 0, 3, 0, 7], [a, b])}
20192 produces @samp{[a, 0, b, 0, 7]}.
20194 @kindex H v e
20195 @kindex H V e
20196 With the Hyperbolic flag, @kbd{H v e} takes a filler value from the
20197 top of the stack; the mask and target vectors come from the third and
20198 second elements of the stack.  This filler is used where the mask is
20199 zero:  @samp{vexp([2, 0, 3, 0, 7], [a, b], z)} produces
20200 @samp{[a, z, c, z, 7]}.  If the filler value is itself a vector,
20201 then successive values are taken from it, so that the effect is to
20202 interleave two vectors according to the mask:
20203 @samp{vexp([2, 0, 3, 7, 0, 0], [a, b], [x, y])} produces
20204 @samp{[a, x, b, 7, y, 0]}.
20206 Another variation on the masking idea is to combine @samp{[a, b, c, d, e]}
20207 with the mask @samp{[1, 0, 1, 0, 1]} to produce @samp{[a, 0, c, 0, e]}.
20208 You can accomplish this with @kbd{V M a &}, mapping the logical ``and''
20209 operation across the two vectors.  @xref{Logical Operations}.  Note that
20210 the @code{? :} operation also discussed there allows other types of
20211 masking using vectors.
20213 @node Vector and Matrix Arithmetic, Set Operations, Manipulating Vectors, Matrix Functions
20214 @section Vector and Matrix Arithmetic
20216 @noindent
20217 Basic arithmetic operations like addition and multiplication are defined
20218 for vectors and matrices as well as for numbers.  Division of matrices, in
20219 the sense of multiplying by the inverse, is supported.  (Division by a
20220 matrix actually uses LU-decomposition for greater accuracy and speed.)
20221 @xref{Basic Arithmetic}.
20223 The following functions are applied element-wise if their arguments are
20224 vectors or matrices: @code{change-sign}, @code{conj}, @code{arg},
20225 @code{re}, @code{im}, @code{polar}, @code{rect}, @code{clean},
20226 @code{float}, @code{frac}.  @xref{Function Index}.
20228 @kindex v J
20229 @kindex V J
20230 @pindex calc-conj-transpose
20231 @tindex ctrn
20232 The @kbd{V J} (@code{calc-conj-transpose}) [@code{ctrn}] command computes
20233 the conjugate transpose of its argument, i.e., @samp{conj(trn(x))}.
20235 @ignore
20236 @mindex A
20237 @end ignore
20238 @kindex A (vectors)
20239 @pindex calc-abs (vectors)
20240 @ignore
20241 @mindex abs
20242 @end ignore
20243 @tindex abs (vectors)
20244 The @kbd{A} (@code{calc-abs}) [@code{abs}] command computes the
20245 Frobenius norm of a vector or matrix argument.  This is the square
20246 root of the sum of the squares of the absolute values of the
20247 elements of the vector or matrix.  If the vector is interpreted as
20248 a point in two- or three-dimensional space, this is the distance
20249 from that point to the origin.
20251 @kindex v n
20252 @kindex V n
20253 @pindex calc-rnorm
20254 @tindex rnorm
20255 The @kbd{v n} (@code{calc-rnorm}) [@code{rnorm}] command computes the
20256 infinity-norm of a vector, or the row norm of a matrix.  For a plain
20257 vector, this is the maximum of the absolute values of the elements.  For
20258 a matrix, this is the maximum of the row-absolute-value-sums, i.e., of
20259 the sums of the absolute values of the elements along the various rows.
20261 @kindex v N
20262 @kindex V N
20263 @pindex calc-cnorm
20264 @tindex cnorm
20265 The @kbd{V N} (@code{calc-cnorm}) [@code{cnorm}] command computes
20266 the one-norm of a vector, or column norm of a matrix.  For a plain
20267 vector, this is the sum of the absolute values of the elements.
20268 For a matrix, this is the maximum of the column-absolute-value-sums.
20269 General @expr{k}-norms for @expr{k} other than one or infinity are
20270 not provided.  However, the 2-norm (or Frobenius norm) is provided for
20271 vectors by the @kbd{A} (@code{calc-abs}) command.
20273 @kindex v C
20274 @kindex V C
20275 @pindex calc-cross
20276 @tindex cross
20277 The @kbd{V C} (@code{calc-cross}) [@code{cross}] command computes the
20278 right-handed cross product of two vectors, each of which must have
20279 exactly three elements.
20281 @ignore
20282 @mindex &
20283 @end ignore
20284 @kindex & (matrices)
20285 @pindex calc-inv (matrices)
20286 @ignore
20287 @mindex inv
20288 @end ignore
20289 @tindex inv (matrices)
20290 The @kbd{&} (@code{calc-inv}) [@code{inv}] command computes the
20291 inverse of a square matrix.  If the matrix is singular, the inverse
20292 operation is left in symbolic form.  Matrix inverses are recorded so
20293 that once an inverse (or determinant) of a particular matrix has been
20294 computed, the inverse and determinant of the matrix can be recomputed
20295 quickly in the future.
20297 If the argument to @kbd{&} is a plain number @expr{x}, this
20298 command simply computes @expr{1/x}.  This is okay, because the
20299 @samp{/} operator also does a matrix inversion when dividing one
20300 by a matrix.
20302 @kindex v D
20303 @kindex V D
20304 @pindex calc-mdet
20305 @tindex det
20306 The @kbd{V D} (@code{calc-mdet}) [@code{det}] command computes the
20307 determinant of a square matrix.
20309 @kindex v L
20310 @kindex V L
20311 @pindex calc-mlud
20312 @tindex lud
20313 The @kbd{V L} (@code{calc-mlud}) [@code{lud}] command computes the
20314 LU decomposition of a matrix.  The result is a list of three matrices
20315 which, when multiplied together left-to-right, form the original matrix.
20316 The first is a permutation matrix that arises from pivoting in the
20317 algorithm, the second is lower-triangular with ones on the diagonal,
20318 and the third is upper-triangular.
20320 @kindex v T
20321 @kindex V T
20322 @pindex calc-mtrace
20323 @tindex tr
20324 The @kbd{V T} (@code{calc-mtrace}) [@code{tr}] command computes the
20325 trace of a square matrix.  This is defined as the sum of the diagonal
20326 elements of the matrix.
20328 @kindex v K
20329 @kindex V K
20330 @pindex calc-kron
20331 @tindex kron
20332 The @kbd{V K} (@code{calc-kron}) [@code{kron}] command computes
20333 the Kronecker product of two matrices.
20335 @node Set Operations, Statistical Operations, Vector and Matrix Arithmetic, Matrix Functions
20336 @section Set Operations using Vectors
20338 @noindent
20339 @cindex Sets, as vectors
20340 Calc includes several commands which interpret vectors as @dfn{sets} of
20341 objects.  A set is a collection of objects; any given object can appear
20342 only once in the set.  Calc stores sets as vectors of objects in
20343 sorted order.  Objects in a Calc set can be any of the usual things,
20344 such as numbers, variables, or formulas.  Two set elements are considered
20345 equal if they are identical, except that numerically equal numbers like
20346 the integer 4 and the float 4.0 are considered equal even though they
20347 are not ``identical.''  Variables are treated like plain symbols without
20348 attached values by the set operations; subtracting the set @samp{[b]}
20349 from @samp{[a, b]} always yields the set @samp{[a]} even though if
20350 the variables @samp{a} and @samp{b} both equaled 17, you might
20351 expect the answer @samp{[]}.
20353 If a set contains interval forms, then it is assumed to be a set of
20354 real numbers.  In this case, all set operations require the elements
20355 of the set to be only things that are allowed in intervals:  Real
20356 numbers, plus and minus infinity, HMS forms, and date forms.  If
20357 there are variables or other non-real objects present in a real set,
20358 all set operations on it will be left in unevaluated form.
20360 If the input to a set operation is a plain number or interval form
20361 @var{a}, it is treated like the one-element vector @samp{[@var{a}]}.
20362 The result is always a vector, except that if the set consists of a
20363 single interval, the interval itself is returned instead.
20365 @xref{Logical Operations}, for the @code{in} function which tests if
20366 a certain value is a member of a given set.  To test if the set @expr{A}
20367 is a subset of the set @expr{B}, use @samp{vdiff(A, B) = []}.
20369 @kindex v +
20370 @kindex V +
20371 @pindex calc-remove-duplicates
20372 @tindex rdup
20373 The @kbd{V +} (@code{calc-remove-duplicates}) [@code{rdup}] command
20374 converts an arbitrary vector into set notation.  It works by sorting
20375 the vector as if by @kbd{V S}, then removing duplicates.  (For example,
20376 @kbd{[a, 5, 4, a, 4.0]} is sorted to @samp{[4, 4.0, 5, a, a]} and then
20377 reduced to @samp{[4, 5, a]}).  Overlapping intervals are merged as
20378 necessary.  You rarely need to use @kbd{V +} explicitly, since all the
20379 other set-based commands apply @kbd{V +} to their inputs before using
20380 them.
20382 @kindex v V
20383 @kindex V V
20384 @pindex calc-set-union
20385 @tindex vunion
20386 The @kbd{V V} (@code{calc-set-union}) [@code{vunion}] command computes
20387 the union of two sets.  An object is in the union of two sets if and
20388 only if it is in either (or both) of the input sets.  (You could
20389 accomplish the same thing by concatenating the sets with @kbd{|},
20390 then using @kbd{V +}.)
20392 @kindex v ^
20393 @kindex V ^
20394 @pindex calc-set-intersect
20395 @tindex vint
20396 The @kbd{V ^} (@code{calc-set-intersect}) [@code{vint}] command computes
20397 the intersection of two sets.  An object is in the intersection if
20398 and only if it is in both of the input sets.  Thus if the input
20399 sets are disjoint, i.e., if they share no common elements, the result
20400 will be the empty vector @samp{[]}.  Note that the characters @kbd{V}
20401 and @kbd{^} were chosen to be close to the conventional mathematical
20402 notation for set
20403 @texline union@tie{}(@math{A \cup B})
20404 @infoline union
20406 @texline intersection@tie{}(@math{A \cap B}).
20407 @infoline intersection.
20409 @kindex v -
20410 @kindex V -
20411 @pindex calc-set-difference
20412 @tindex vdiff
20413 The @kbd{V -} (@code{calc-set-difference}) [@code{vdiff}] command computes
20414 the difference between two sets.  An object is in the difference
20415 @expr{A - B} if and only if it is in @expr{A} but not in @expr{B}.
20416 Thus subtracting @samp{[y,z]} from a set will remove the elements
20417 @samp{y} and @samp{z} if they are present.  You can also think of this
20418 as a general @dfn{set complement} operator; if @expr{A} is the set of
20419 all possible values, then @expr{A - B} is the ``complement'' of @expr{B}.
20420 Obviously this is only practical if the set of all possible values in
20421 your problem is small enough to list in a Calc vector (or simple
20422 enough to express in a few intervals).
20424 @kindex v X
20425 @kindex V X
20426 @pindex calc-set-xor
20427 @tindex vxor
20428 The @kbd{V X} (@code{calc-set-xor}) [@code{vxor}] command computes
20429 the ``exclusive-or,'' or ``symmetric difference'' of two sets.
20430 An object is in the symmetric difference of two sets if and only
20431 if it is in one, but @emph{not} both, of the sets.  Objects that
20432 occur in both sets ``cancel out.''
20434 @kindex v ~
20435 @kindex V ~
20436 @pindex calc-set-complement
20437 @tindex vcompl
20438 The @kbd{V ~} (@code{calc-set-complement}) [@code{vcompl}] command
20439 computes the complement of a set with respect to the real numbers.
20440 Thus @samp{vcompl(x)} is equivalent to @samp{vdiff([-inf .. inf], x)}.
20441 For example, @samp{vcompl([2, (3 .. 4]])} evaluates to
20442 @samp{[[-inf .. 2), (2 .. 3], (4 .. inf]]}.
20444 @kindex v F
20445 @kindex V F
20446 @pindex calc-set-floor
20447 @tindex vfloor
20448 The @kbd{V F} (@code{calc-set-floor}) [@code{vfloor}] command
20449 reinterprets a set as a set of integers.  Any non-integer values,
20450 and intervals that do not enclose any integers, are removed.  Open
20451 intervals are converted to equivalent closed intervals.  Successive
20452 integers are converted into intervals of integers.  For example, the
20453 complement of the set @samp{[2, 6, 7, 8]} is messy, but if you wanted
20454 the complement with respect to the set of integers you could type
20455 @kbd{V ~ V F} to get @samp{[[-inf .. 1], [3 .. 5], [9 .. inf]]}.
20457 @kindex v E
20458 @kindex V E
20459 @pindex calc-set-enumerate
20460 @tindex venum
20461 The @kbd{V E} (@code{calc-set-enumerate}) [@code{venum}] command
20462 converts a set of integers into an explicit vector.  Intervals in
20463 the set are expanded out to lists of all integers encompassed by
20464 the intervals.  This only works for finite sets (i.e., sets which
20465 do not involve @samp{-inf} or @samp{inf}).
20467 @kindex v :
20468 @kindex V :
20469 @pindex calc-set-span
20470 @tindex vspan
20471 The @kbd{V :} (@code{calc-set-span}) [@code{vspan}] command converts any
20472 set of reals into an interval form that encompasses all its elements.
20473 The lower limit will be the smallest element in the set; the upper
20474 limit will be the largest element.  For an empty set, @samp{vspan([])}
20475 returns the empty interval @w{@samp{[0 .. 0)}}.
20477 @kindex v #
20478 @kindex V #
20479 @pindex calc-set-cardinality
20480 @tindex vcard
20481 The @kbd{V #} (@code{calc-set-cardinality}) [@code{vcard}] command counts
20482 the number of integers in a set.  The result is the length of the vector
20483 that would be produced by @kbd{V E}, although the computation is much
20484 more efficient than actually producing that vector.
20486 @cindex Sets, as binary numbers
20487 Another representation for sets that may be more appropriate in some
20488 cases is binary numbers.  If you are dealing with sets of integers
20489 in the range 0 to 49, you can use a 50-bit binary number where a
20490 particular bit is 1 if the corresponding element is in the set.
20491 @xref{Binary Functions}, for a list of commands that operate on
20492 binary numbers.  Note that many of the above set operations have
20493 direct equivalents in binary arithmetic:  @kbd{b o} (@code{calc-or}),
20494 @kbd{b a} (@code{calc-and}), @kbd{b d} (@code{calc-diff}),
20495 @kbd{b x} (@code{calc-xor}), and @kbd{b n} (@code{calc-not}),
20496 respectively.  You can use whatever representation for sets is most
20497 convenient to you.
20499 @kindex b p
20500 @kindex b u
20501 @pindex calc-pack-bits
20502 @pindex calc-unpack-bits
20503 @tindex vpack
20504 @tindex vunpack
20505 The @kbd{b u} (@code{calc-unpack-bits}) [@code{vunpack}] command
20506 converts an integer that represents a set in binary into a set
20507 in vector/interval notation.  For example, @samp{vunpack(67)}
20508 returns @samp{[[0 .. 1], 6]}.  If the input is negative, the set
20509 it represents is semi-infinite: @samp{vunpack(-4) = [2 .. inf)}.
20510 Use @kbd{V E} afterwards to expand intervals to individual
20511 values if you wish.  Note that this command uses the @kbd{b}
20512 (binary) prefix key.
20514 The @kbd{b p} (@code{calc-pack-bits}) [@code{vpack}] command
20515 converts the other way, from a vector or interval representing
20516 a set of nonnegative integers into a binary integer describing
20517 the same set.  The set may include positive infinity, but must
20518 not include any negative numbers.  The input is interpreted as a
20519 set of integers in the sense of @kbd{V F} (@code{vfloor}).  Beware
20520 that a simple input like @samp{[100]} can result in a huge integer
20521 representation
20522 @texline (@math{2^{100}}, a 31-digit integer, in this case).
20523 @infoline (@expr{2^100}, a 31-digit integer, in this case).
20525 @node Statistical Operations, Reducing and Mapping, Set Operations, Matrix Functions
20526 @section Statistical Operations on Vectors
20528 @noindent
20529 @cindex Statistical functions
20530 The commands in this section take vectors as arguments and compute
20531 various statistical measures on the data stored in the vectors.  The
20532 references used in the definitions of these functions are Bevington's
20533 @emph{Data Reduction and Error Analysis for the Physical Sciences},
20534 and @emph{Numerical Recipes} by Press, Flannery, Teukolsky and
20535 Vetterling.
20537 The statistical commands use the @kbd{u} prefix key followed by
20538 a shifted letter or other character.
20540 @xref{Manipulating Vectors}, for a description of @kbd{V H}
20541 (@code{calc-histogram}).
20543 @xref{Curve Fitting}, for the @kbd{a F} command for doing
20544 least-squares fits to statistical data.
20546 @xref{Probability Distribution Functions}, for several common
20547 probability distribution functions.
20549 @menu
20550 * Single-Variable Statistics::
20551 * Paired-Sample Statistics::
20552 @end menu
20554 @node Single-Variable Statistics, Paired-Sample Statistics, Statistical Operations, Statistical Operations
20555 @subsection Single-Variable Statistics
20557 @noindent
20558 These functions do various statistical computations on single
20559 vectors.  Given a numeric prefix argument, they actually pop
20560 @var{n} objects from the stack and combine them into a data
20561 vector.  Each object may be either a number or a vector; if a
20562 vector, any sub-vectors inside it are ``flattened'' as if by
20563 @kbd{v a 0}; @pxref{Manipulating Vectors}.  By default one object
20564 is popped, which (in order to be useful) is usually a vector.
20566 If an argument is a variable name, and the value stored in that
20567 variable is a vector, then the stored vector is used.  This method
20568 has the advantage that if your data vector is large, you can avoid
20569 the slow process of manipulating it directly on the stack.
20571 These functions are left in symbolic form if any of their arguments
20572 are not numbers or vectors, e.g., if an argument is a formula, or
20573 a non-vector variable.  However, formulas embedded within vector
20574 arguments are accepted; the result is a symbolic representation
20575 of the computation, based on the assumption that the formula does
20576 not itself represent a vector.  All varieties of numbers such as
20577 error forms and interval forms are acceptable.
20579 Some of the functions in this section also accept a single error form
20580 or interval as an argument.  They then describe a property of the
20581 normal or uniform (respectively) statistical distribution described
20582 by the argument.  The arguments are interpreted in the same way as
20583 the @var{M} argument of the random number function @kbd{k r}.  In
20584 particular, an interval with integer limits is considered an integer
20585 distribution, so that @samp{[2 .. 6)} is the same as @samp{[2 .. 5]}.
20586 An interval with at least one floating-point limit is a continuous
20587 distribution:  @samp{[2.0 .. 6.0)} is @emph{not} the same as
20588 @samp{[2.0 .. 5.0]}!
20590 @kindex u #
20591 @pindex calc-vector-count
20592 @tindex vcount
20593 The @kbd{u #} (@code{calc-vector-count}) [@code{vcount}] command
20594 computes the number of data values represented by the inputs.
20595 For example, @samp{vcount(1, [2, 3], [[4, 5], [], x, y])} returns 7.
20596 If the argument is a single vector with no sub-vectors, this
20597 simply computes the length of the vector.
20599 @kindex u +
20600 @kindex u *
20601 @pindex calc-vector-sum
20602 @pindex calc-vector-prod
20603 @tindex vsum
20604 @tindex vprod
20605 @cindex Summations (statistical)
20606 The @kbd{u +} (@code{calc-vector-sum}) [@code{vsum}] command
20607 computes the sum of the data values.  The @kbd{u *}
20608 (@code{calc-vector-prod}) [@code{vprod}] command computes the
20609 product of the data values.  If the input is a single flat vector,
20610 these are the same as @kbd{V R +} and @kbd{V R *}
20611 (@pxref{Reducing and Mapping}).
20613 @kindex u X
20614 @kindex u N
20615 @pindex calc-vector-max
20616 @pindex calc-vector-min
20617 @tindex vmax
20618 @tindex vmin
20619 The @kbd{u X} (@code{calc-vector-max}) [@code{vmax}] command
20620 computes the maximum of the data values, and the @kbd{u N}
20621 (@code{calc-vector-min}) [@code{vmin}] command computes the minimum.
20622 If the argument is an interval, this finds the minimum or maximum
20623 value in the interval.  (Note that @samp{vmax([2..6)) = 5} as
20624 described above.)  If the argument is an error form, this returns
20625 plus or minus infinity.
20627 @kindex u M
20628 @pindex calc-vector-mean
20629 @tindex vmean
20630 @cindex Mean of data values
20631 The @kbd{u M} (@code{calc-vector-mean}) [@code{vmean}] command
20632 computes the average (arithmetic mean) of the data values.
20633 If the inputs are error forms
20634 @texline @math{x \pm \sigma},
20635 @infoline @samp{x +/- s},
20636 this is the weighted mean of the @expr{x} values with weights
20637 @texline @math{1 /\sigma^2}.
20638 @infoline @expr{1 / s^2}.
20639 @tex
20640 $$ \mu = { \displaystyle \sum { x_i \over \sigma_i^2 } \over
20641            \displaystyle \sum { 1 \over \sigma_i^2 } } $$
20642 @end tex
20643 If the inputs are not error forms, this is simply the sum of the
20644 values divided by the count of the values.
20646 Note that a plain number can be considered an error form with
20647 error
20648 @texline @math{\sigma = 0}.
20649 @infoline @expr{s = 0}.
20650 If the input to @kbd{u M} is a mixture of
20651 plain numbers and error forms, the result is the mean of the
20652 plain numbers, ignoring all values with non-zero errors.  (By the
20653 above definitions it's clear that a plain number effectively
20654 has an infinite weight, next to which an error form with a finite
20655 weight is completely negligible.)
20657 This function also works for distributions (error forms or
20658 intervals).  The mean of an error form `@var{a} @tfn{+/-} @var{b}' is simply
20659 @expr{a}.  The mean of an interval is the mean of the minimum
20660 and maximum values of the interval.
20662 @kindex I u M
20663 @pindex calc-vector-mean-error
20664 @tindex vmeane
20665 The @kbd{I u M} (@code{calc-vector-mean-error}) [@code{vmeane}]
20666 command computes the mean of the data points expressed as an
20667 error form.  This includes the estimated error associated with
20668 the mean.  If the inputs are error forms, the error is the square
20669 root of the reciprocal of the sum of the reciprocals of the squares
20670 of the input errors.  (I.e., the variance is the reciprocal of the
20671 sum of the reciprocals of the variances.)
20672 @tex
20673 $$ \sigma_\mu^2 = {1 \over \displaystyle \sum {1 \over \sigma_i^2}} $$
20674 @end tex
20675 If the inputs are plain
20676 numbers, the error is equal to the standard deviation of the values
20677 divided by the square root of the number of values.  (This works
20678 out to be equivalent to calculating the standard deviation and
20679 then assuming each value's error is equal to this standard
20680 deviation.)
20681 @tex
20682 $$ \sigma_\mu^2 = {\sigma^2 \over N} $$
20683 @end tex
20685 @kindex H u M
20686 @pindex calc-vector-median
20687 @tindex vmedian
20688 @cindex Median of data values
20689 The @kbd{H u M} (@code{calc-vector-median}) [@code{vmedian}]
20690 command computes the median of the data values.  The values are
20691 first sorted into numerical order; the median is the middle
20692 value after sorting.  (If the number of data values is even,
20693 the median is taken to be the average of the two middle values.)
20694 The median function is different from the other functions in
20695 this section in that the arguments must all be real numbers;
20696 variables are not accepted even when nested inside vectors.
20697 (Otherwise it is not possible to sort the data values.)  If
20698 any of the input values are error forms, their error parts are
20699 ignored.
20701 The median function also accepts distributions.  For both normal
20702 (error form) and uniform (interval) distributions, the median is
20703 the same as the mean.
20705 @kindex H I u M
20706 @pindex calc-vector-harmonic-mean
20707 @tindex vhmean
20708 @cindex Harmonic mean
20709 The @kbd{H I u M} (@code{calc-vector-harmonic-mean}) [@code{vhmean}]
20710 command computes the harmonic mean of the data values.  This is
20711 defined as the reciprocal of the arithmetic mean of the reciprocals
20712 of the values.
20713 @tex
20714 $$ { N \over \displaystyle \sum {1 \over x_i} } $$
20715 @end tex
20717 @kindex u G
20718 @pindex calc-vector-geometric-mean
20719 @tindex vgmean
20720 @cindex Geometric mean
20721 The @kbd{u G} (@code{calc-vector-geometric-mean}) [@code{vgmean}]
20722 command computes the geometric mean of the data values.  This
20723 is the @var{n}th root of the product of the values.  This is also
20724 equal to the @code{exp} of the arithmetic mean of the logarithms
20725 of the data values.
20726 @tex
20727 $$ \exp \left ( \sum { \ln x_i } \right ) =
20728    \left ( \prod { x_i } \right)^{1 / N} $$
20729 @end tex
20731 @kindex H u G
20732 @tindex agmean
20733 The @kbd{H u G} [@code{agmean}] command computes the ``arithmetic-geometric
20734 mean'' of two numbers taken from the stack.  This is computed by
20735 replacing the two numbers with their arithmetic mean and geometric
20736 mean, then repeating until the two values converge.
20737 @tex
20738 $$ a_{i+1} = { a_i + b_i \over 2 } , \qquad b_{i+1} = \sqrt{a_i b_i} $$
20739 @end tex
20741 @c @cindex Root-mean-square
20742 @c Another commonly used mean, the RMS (root-mean-square), can be computed
20743 @c for a vector of numbers simply by using the @kbd{A} command.
20745 @kindex u S
20746 @pindex calc-vector-sdev
20747 @tindex vsdev
20748 @cindex Standard deviation
20749 @cindex Sample statistics
20750 The @kbd{u S} (@code{calc-vector-sdev}) [@code{vsdev}] command
20751 computes the standard
20752 @texline deviation@tie{}@math{\sigma}
20753 @infoline deviation
20754 of the data values.  If the values are error forms, the errors are used
20755 as weights just as for @kbd{u M}.  This is the @emph{sample} standard
20756 deviation, whose value is the square root of the sum of the squares of
20757 the differences between the values and the mean of the @expr{N} values,
20758 divided by @expr{N-1}.
20759 @tex
20760 $$ \sigma^2 = {1 \over N - 1} \sum (x_i - \mu)^2 $$
20761 @end tex
20763 This function also applies to distributions.  The standard deviation
20764 of a single error form is simply the error part.  The standard deviation
20765 of a continuous interval happens to equal the difference between the
20766 limits, divided by
20767 @texline @math{\sqrt{12}}.
20768 @infoline @expr{sqrt(12)}.
20769 The standard deviation of an integer interval is the same as the
20770 standard deviation of a vector of those integers.
20772 @kindex I u S
20773 @pindex calc-vector-pop-sdev
20774 @tindex vpsdev
20775 @cindex Population statistics
20776 The @kbd{I u S} (@code{calc-vector-pop-sdev}) [@code{vpsdev}]
20777 command computes the @emph{population} standard deviation.
20778 It is defined by the same formula as above but dividing
20779 by @expr{N} instead of by @expr{N-1}.  The population standard
20780 deviation is used when the input represents the entire set of
20781 data values in the distribution; the sample standard deviation
20782 is used when the input represents a sample of the set of all
20783 data values, so that the mean computed from the input is itself
20784 only an estimate of the true mean.
20785 @tex
20786 $$ \sigma^2 = {1 \over N} \sum (x_i - \mu)^2 $$
20787 @end tex
20789 For error forms and continuous intervals, @code{vpsdev} works
20790 exactly like @code{vsdev}.  For integer intervals, it computes the
20791 population standard deviation of the equivalent vector of integers.
20793 @kindex H u S
20794 @kindex H I u S
20795 @pindex calc-vector-variance
20796 @pindex calc-vector-pop-variance
20797 @tindex vvar
20798 @tindex vpvar
20799 @cindex Variance of data values
20800 The @kbd{H u S} (@code{calc-vector-variance}) [@code{vvar}] and
20801 @kbd{H I u S} (@code{calc-vector-pop-variance}) [@code{vpvar}]
20802 commands compute the variance of the data values.  The variance
20803 is the
20804 @texline square@tie{}@math{\sigma^2}
20805 @infoline square
20806 of the standard deviation, i.e., the sum of the
20807 squares of the deviations of the data values from the mean.
20808 (This definition also applies when the argument is a distribution.)
20810 @ignore
20811 @starindex
20812 @end ignore
20813 @tindex vflat
20814 The @code{vflat} algebraic function returns a vector of its
20815 arguments, interpreted in the same way as the other functions
20816 in this section.  For example, @samp{vflat(1, [2, [3, 4]], 5)}
20817 returns @samp{[1, 2, 3, 4, 5]}.
20819 @node Paired-Sample Statistics,  , Single-Variable Statistics, Statistical Operations
20820 @subsection Paired-Sample Statistics
20822 @noindent
20823 The functions in this section take two arguments, which must be
20824 vectors of equal size.  The vectors are each flattened in the same
20825 way as by the single-variable statistical functions.  Given a numeric
20826 prefix argument of 1, these functions instead take one object from
20827 the stack, which must be an
20828 @texline @math{N\times2}
20829 @infoline Nx2
20830 matrix of data values.  Once again, variable names can be used in place
20831 of actual vectors and matrices.
20833 @kindex u C
20834 @pindex calc-vector-covariance
20835 @tindex vcov
20836 @cindex Covariance
20837 The @kbd{u C} (@code{calc-vector-covariance}) [@code{vcov}] command
20838 computes the sample covariance of two vectors.  The covariance
20839 of vectors @var{x} and @var{y} is the sum of the products of the
20840 differences between the elements of @var{x} and the mean of @var{x}
20841 times the differences between the corresponding elements of @var{y}
20842 and the mean of @var{y}, all divided by @expr{N-1}.  Note that
20843 the variance of a vector is just the covariance of the vector
20844 with itself.  Once again, if the inputs are error forms the
20845 errors are used as weight factors.  If both @var{x} and @var{y}
20846 are composed of error forms, the error for a given data point
20847 is taken as the square root of the sum of the squares of the two
20848 input errors.
20849 @tex
20850 $$ \sigma_{x\!y}^2 = {1 \over N-1} \sum (x_i - \mu_x) (y_i - \mu_y) $$
20851 $$ \sigma_{x\!y}^2 =
20852     {\displaystyle {1 \over N-1}
20853                    \sum {(x_i - \mu_x) (y_i - \mu_y) \over \sigma_i^2}
20854      \over \displaystyle {1 \over N} \sum {1 \over \sigma_i^2}}
20856 @end tex
20858 @kindex I u C
20859 @pindex calc-vector-pop-covariance
20860 @tindex vpcov
20861 The @kbd{I u C} (@code{calc-vector-pop-covariance}) [@code{vpcov}]
20862 command computes the population covariance, which is the same as the
20863 sample covariance computed by @kbd{u C} except dividing by @expr{N}
20864 instead of @expr{N-1}.
20866 @kindex H u C
20867 @pindex calc-vector-correlation
20868 @tindex vcorr
20869 @cindex Correlation coefficient
20870 @cindex Linear correlation
20871 The @kbd{H u C} (@code{calc-vector-correlation}) [@code{vcorr}]
20872 command computes the linear correlation coefficient of two vectors.
20873 This is defined by the covariance of the vectors divided by the
20874 product of their standard deviations.  (There is no difference
20875 between sample or population statistics here.)
20876 @tex
20877 $$ r_{x\!y} = { \sigma_{x\!y}^2 \over \sigma_x^2 \sigma_y^2 } $$
20878 @end tex
20880 @node Reducing and Mapping, Vector and Matrix Formats, Statistical Operations, Matrix Functions
20881 @section Reducing and Mapping Vectors
20883 @noindent
20884 The commands in this section allow for more general operations on the
20885 elements of vectors.
20887 @kindex v A
20888 @kindex V A
20889 @pindex calc-apply
20890 @tindex apply
20891 The simplest of these operations is @kbd{V A} (@code{calc-apply})
20892 [@code{apply}], which applies a given operator to the elements of a vector.
20893 For example, applying the hypothetical function @code{f} to the vector
20894 @w{@samp{[1, 2, 3]}} would produce the function call @samp{f(1, 2, 3)}.
20895 Applying the @code{+} function to the vector @samp{[a, b]} gives
20896 @samp{a + b}.  Applying @code{+} to the vector @samp{[a, b, c]} is an
20897 error, since the @code{+} function expects exactly two arguments.
20899 While @kbd{V A} is useful in some cases, you will usually find that either
20900 @kbd{V R} or @kbd{V M}, described below, is closer to what you want.
20902 @menu
20903 * Specifying Operators::
20904 * Mapping::
20905 * Reducing::
20906 * Nesting and Fixed Points::
20907 * Generalized Products::
20908 @end menu
20910 @node Specifying Operators, Mapping, Reducing and Mapping, Reducing and Mapping
20911 @subsection Specifying Operators
20913 @noindent
20914 Commands in this section (like @kbd{V A}) prompt you to press the key
20915 corresponding to the desired operator.  Press @kbd{?} for a partial
20916 list of the available operators.  Generally, an operator is any key or
20917 sequence of keys that would normally take one or more arguments from
20918 the stack and replace them with a result.  For example, @kbd{V A H C}
20919 uses the hyperbolic cosine operator, @code{cosh}.  (Since @code{cosh}
20920 expects one argument, @kbd{V A H C} requires a vector with a single
20921 element as its argument.)
20923 You can press @kbd{x} at the operator prompt to select any algebraic
20924 function by name to use as the operator.  This includes functions you
20925 have defined yourself using the @kbd{Z F} command.  (@xref{Algebraic
20926 Definitions}.)  If you give a name for which no function has been
20927 defined, the result is left in symbolic form, as in @samp{f(1, 2, 3)}.
20928 Calc will prompt for the number of arguments the function takes if it
20929 can't figure it out on its own (say, because you named a function that
20930 is currently undefined).  It is also possible to type a digit key before
20931 the function name to specify the number of arguments, e.g.,
20932 @kbd{V M 3 x f @key{RET}} calls @code{f} with three arguments even if it
20933 looks like it ought to have only two.  This technique may be necessary
20934 if the function allows a variable number of arguments.  For example,
20935 the @kbd{v e} [@code{vexp}] function accepts two or three arguments;
20936 if you want to map with the three-argument version, you will have to
20937 type @kbd{V M 3 v e}.
20939 It is also possible to apply any formula to a vector by treating that
20940 formula as a function.  When prompted for the operator to use, press
20941 @kbd{'} (the apostrophe) and type your formula as an algebraic entry.
20942 You will then be prompted for the argument list, which defaults to a
20943 list of all variables that appear in the formula, sorted into alphabetic
20944 order.  For example, suppose you enter the formula @w{@samp{x + 2y^x}}.
20945 The default argument list would be @samp{(x y)}, which means that if
20946 this function is applied to the arguments @samp{[3, 10]} the result will
20947 be @samp{3 + 2*10^3}.  (If you plan to use a certain formula in this
20948 way often, you might consider defining it as a function with @kbd{Z F}.)
20950 Another way to specify the arguments to the formula you enter is with
20951 @kbd{$}, @kbd{$$}, and so on.  For example, @kbd{V A ' $$ + 2$^$$}
20952 has the same effect as the previous example.  The argument list is
20953 automatically taken to be @samp{($$ $)}.  (The order of the arguments
20954 may seem backwards, but it is analogous to the way normal algebraic
20955 entry interacts with the stack.)
20957 If you press @kbd{$} at the operator prompt, the effect is similar to
20958 the apostrophe except that the relevant formula is taken from top-of-stack
20959 instead.  The actual vector arguments of the @kbd{V A $} or related command
20960 then start at the second-to-top stack position.  You will still be
20961 prompted for an argument list.
20963 @cindex Nameless functions
20964 @cindex Generic functions
20965 A function can be written without a name using the notation @samp{<#1 - #2>},
20966 which means ``a function of two arguments that computes the first
20967 argument minus the second argument.''  The symbols @samp{#1} and @samp{#2}
20968 are placeholders for the arguments.  You can use any names for these
20969 placeholders if you wish, by including an argument list followed by a
20970 colon:  @samp{<x, y : x - y>}.  When you type @kbd{V A ' $$ + 2$^$$ @key{RET}},
20971 Calc builds the nameless function @samp{<#1 + 2 #2^#1>} as the function
20972 to map across the vectors.  When you type @kbd{V A ' x + 2y^x @key{RET} @key{RET}},
20973 Calc builds the nameless function @w{@samp{<x, y : x + 2 y^x>}}.  In both
20974 cases, Calc also writes the nameless function to the Trail so that you
20975 can get it back later if you wish.
20977 If there is only one argument, you can write @samp{#} in place of @samp{#1}.
20978 (Note that @samp{< >} notation is also used for date forms.  Calc tells
20979 that @samp{<@var{stuff}>} is a nameless function by the presence of
20980 @samp{#} signs inside @var{stuff}, or by the fact that @var{stuff}
20981 begins with a list of variables followed by a colon.)
20983 You can type a nameless function directly to @kbd{V A '}, or put one on
20984 the stack and use it with @w{@kbd{V A $}}.  Calc will not prompt for an
20985 argument list in this case, since the nameless function specifies the
20986 argument list as well as the function itself.  In @kbd{V A '}, you can
20987 omit the @samp{< >} marks if you use @samp{#} notation for the arguments,
20988 so that @kbd{V A ' #1+#2 @key{RET}} is the same as @kbd{V A ' <#1+#2> @key{RET}},
20989 which in turn is the same as @kbd{V A ' $$+$ @key{RET}}.
20991 @cindex Lambda expressions
20992 @ignore
20993 @starindex
20994 @end ignore
20995 @tindex lambda
20996 The internal format for @samp{<x, y : x + y>} is @samp{lambda(x, y, x + y)}.
20997 (The word @code{lambda} derives from Lisp notation and the theory of
20998 functions.)  The internal format for @samp{<#1 + #2>} is @samp{lambda(ArgA,
20999 ArgB, ArgA + ArgB)}.  Note that there is no actual Calc function called
21000 @code{lambda}; the whole point is that the @code{lambda} expression is
21001 used in its symbolic form, not evaluated for an answer until it is applied
21002 to specific arguments by a command like @kbd{V A} or @kbd{V M}.
21004 (Actually, @code{lambda} does have one special property:  Its arguments
21005 are never evaluated; for example, putting @samp{<(2/3) #>} on the stack
21006 will not simplify the @samp{2/3} until the nameless function is actually
21007 called.)
21009 @tindex add
21010 @tindex sub
21011 @ignore
21012 @mindex @idots
21013 @end ignore
21014 @tindex mul
21015 @ignore
21016 @mindex @null
21017 @end ignore
21018 @tindex div
21019 @ignore
21020 @mindex @null
21021 @end ignore
21022 @tindex pow
21023 @ignore
21024 @mindex @null
21025 @end ignore
21026 @tindex neg
21027 @ignore
21028 @mindex @null
21029 @end ignore
21030 @tindex mod
21031 @ignore
21032 @mindex @null
21033 @end ignore
21034 @tindex vconcat
21035 As usual, commands like @kbd{V A} have algebraic function name equivalents.
21036 For example, @kbd{V A k g} with an argument of @samp{v} is equivalent to
21037 @samp{apply(gcd, v)}.  The first argument specifies the operator name,
21038 and is either a variable whose name is the same as the function name,
21039 or a nameless function like @samp{<#^3+1>}.  Operators that are normally
21040 written as algebraic symbols have the names @code{add}, @code{sub},
21041 @code{mul}, @code{div}, @code{pow}, @code{neg}, @code{mod}, and
21042 @code{vconcat}.
21044 @ignore
21045 @starindex
21046 @end ignore
21047 @tindex call
21048 The @code{call} function builds a function call out of several arguments:
21049 @samp{call(gcd, x, y)} is the same as @samp{apply(gcd, [x, y])}, which
21050 in turn is the same as @samp{gcd(x, y)}.  The first argument of @code{call},
21051 like the other functions described here, may be either a variable naming a
21052 function, or a nameless function (@samp{call(<#1+2#2>, x, y)} is the same
21053 as @samp{x + 2y}).
21055 (Experts will notice that it's not quite proper to use a variable to name
21056 a function, since the name @code{gcd} corresponds to the Lisp variable
21057 @code{var-gcd} but to the Lisp function @code{calcFunc-gcd}.  Calc
21058 automatically makes this translation, so you don't have to worry
21059 about it.)
21061 @node Mapping, Reducing, Specifying Operators, Reducing and Mapping
21062 @subsection Mapping
21064 @noindent
21065 @kindex v M
21066 @kindex V M
21067 @pindex calc-map
21068 @tindex map
21069 The @kbd{V M} (@code{calc-map}) [@code{map}] command applies a given
21070 operator elementwise to one or more vectors.  For example, mapping
21071 @code{A} [@code{abs}] produces a vector of the absolute values of the
21072 elements in the input vector.  Mapping @code{+} pops two vectors from
21073 the stack, which must be of equal length, and produces a vector of the
21074 pairwise sums of the elements.  If either argument is a non-vector, it
21075 is duplicated for each element of the other vector.  For example,
21076 @kbd{[1,2,3] 2 V M ^} squares the elements of the specified vector.
21077 With the 2 listed first, it would have computed a vector of powers of
21078 two.  Mapping a user-defined function pops as many arguments from the
21079 stack as the function requires.  If you give an undefined name, you will
21080 be prompted for the number of arguments to use.
21082 If any argument to @kbd{V M} is a matrix, the operator is normally mapped
21083 across all elements of the matrix.  For example, given the matrix
21084 @expr{[[1, -2, 3], [-4, 5, -6]]}, @kbd{V M A} takes six absolute values to
21085 produce another
21086 @texline @math{3\times2}
21087 @infoline 3x2
21088 matrix, @expr{[[1, 2, 3], [4, 5, 6]]}.
21090 @tindex mapr
21091 The command @kbd{V M _} [@code{mapr}] (i.e., type an underscore at the
21092 operator prompt) maps by rows instead.  For example, @kbd{V M _ A} views
21093 the above matrix as a vector of two 3-element row vectors.  It produces
21094 a new vector which contains the absolute values of those row vectors,
21095 namely @expr{[3.74, 8.77]}.  (Recall, the absolute value of a vector is
21096 defined as the square root of the sum of the squares of the elements.)
21097 Some operators accept vectors and return new vectors; for example,
21098 @kbd{v v} reverses a vector, so @kbd{V M _ v v} would reverse each row
21099 of the matrix to get a new matrix, @expr{[[3, -2, 1], [-6, 5, -4]]}.
21101 Sometimes a vector of vectors (representing, say, strings, sets, or lists)
21102 happens to look like a matrix.  If so, remember to use @kbd{V M _} if you
21103 want to map a function across the whole strings or sets rather than across
21104 their individual elements.
21106 @tindex mapc
21107 The command @kbd{V M :} [@code{mapc}] maps by columns.  Basically, it
21108 transposes the input matrix, maps by rows, and then, if the result is a
21109 matrix, transposes again.  For example, @kbd{V M : A} takes the absolute
21110 values of the three columns of the matrix, treating each as a 2-vector,
21111 and @kbd{V M : v v} reverses the columns to get the matrix
21112 @expr{[[-4, 5, -6], [1, -2, 3]]}.
21114 (The symbols @kbd{_} and @kbd{:} were chosen because they had row-like
21115 and column-like appearances, and were not already taken by useful
21116 operators.  Also, they appear shifted on most keyboards so they are easy
21117 to type after @kbd{V M}.)
21119 The @kbd{_} and @kbd{:} modifiers have no effect on arguments that are
21120 not matrices (so if none of the arguments are matrices, they have no
21121 effect at all).  If some of the arguments are matrices and others are
21122 plain numbers, the plain numbers are held constant for all rows of the
21123 matrix (so that @kbd{2 V M _ ^} squares every row of a matrix; squaring
21124 a vector takes a dot product of the vector with itself).
21126 If some of the arguments are vectors with the same lengths as the
21127 rows (for @kbd{V M _}) or columns (for @kbd{V M :}) of the matrix
21128 arguments, those vectors are also held constant for every row or
21129 column.
21131 Sometimes it is useful to specify another mapping command as the operator
21132 to use with @kbd{V M}.  For example, @kbd{V M _ V A +} applies @kbd{V A +}
21133 to each row of the input matrix, which in turn adds the two values on that
21134 row.  If you give another vector-operator command as the operator for
21135 @kbd{V M}, it automatically uses map-by-rows mode if you don't specify
21136 otherwise; thus @kbd{V M V A +} is equivalent to @kbd{V M _ V A +}.  (If
21137 you really want to map-by-elements another mapping command, you can use
21138 a triple-nested mapping command:  @kbd{V M V M V A +} means to map
21139 @kbd{V M V A +} over the rows of the matrix; in turn, @kbd{V A +} is
21140 mapped over the elements of each row.)
21142 @tindex mapa
21143 @tindex mapd
21144 Previous versions of Calc had ``map across'' and ``map down'' modes
21145 that are now considered obsolete; the old ``map across'' is now simply
21146 @kbd{V M V A}, and ``map down'' is now @kbd{V M : V A}.  The algebraic
21147 functions @code{mapa} and @code{mapd} are still supported, though.
21148 Note also that, while the old mapping modes were persistent (once you
21149 set the mode, it would apply to later mapping commands until you reset
21150 it), the new @kbd{:} and @kbd{_} modifiers apply only to the current
21151 mapping command.  The default @kbd{V M} always means map-by-elements.
21153 @xref{Algebraic Manipulation}, for the @kbd{a M} command, which is like
21154 @kbd{V M} but for equations and inequalities instead of vectors.
21155 @xref{Storing Variables}, for the @kbd{s m} command which modifies a
21156 variable's stored value using a @kbd{V M}-like operator.
21158 @node Reducing, Nesting and Fixed Points, Mapping, Reducing and Mapping
21159 @subsection Reducing
21161 @noindent
21162 @kindex v R
21163 @kindex V R
21164 @pindex calc-reduce
21165 @tindex reduce
21166 The @kbd{V R} (@code{calc-reduce}) [@code{reduce}] command applies a given
21167 binary operator across all the elements of a vector.  A binary operator is
21168 a function such as @code{+} or @code{max} which takes two arguments.  For
21169 example, reducing @code{+} over a vector computes the sum of the elements
21170 of the vector.  Reducing @code{-} computes the first element minus each of
21171 the remaining elements.  Reducing @code{max} computes the maximum element
21172 and so on.  In general, reducing @code{f} over the vector @samp{[a, b, c, d]}
21173 produces @samp{f(f(f(a, b), c), d)}.
21175 @kindex I v R
21176 @kindex I V R
21177 @tindex rreduce
21178 The @kbd{I V R} [@code{rreduce}] command is similar to @kbd{V R} except
21179 that works from right to left through the vector.  For example, plain
21180 @kbd{V R -} on the vector @samp{[a, b, c, d]} produces @samp{a - b - c - d}
21181 but @kbd{I V R -} on the same vector produces @samp{a - (b - (c - d))},
21182 or @samp{a - b + c - d}.  This ``alternating sum'' occurs frequently
21183 in power series expansions.
21185 @kindex v U
21186 @kindex V U
21187 @tindex accum
21188 The @kbd{V U} (@code{calc-accumulate}) [@code{accum}] command does an
21189 accumulation operation.  Here Calc does the corresponding reduction
21190 operation, but instead of producing only the final result, it produces
21191 a vector of all the intermediate results.  Accumulating @code{+} over
21192 the vector @samp{[a, b, c, d]} produces the vector
21193 @samp{[a, a + b, a + b + c, a + b + c + d]}.
21195 @kindex I v U
21196 @kindex I V U
21197 @tindex raccum
21198 The @kbd{I V U} [@code{raccum}] command does a right-to-left accumulation.
21199 For example, @kbd{I V U -} on the vector @samp{[a, b, c, d]} produces the
21200 vector @samp{[a - b + c - d, b - c + d, c - d, d]}.
21202 @tindex reducea
21203 @tindex rreducea
21204 @tindex reduced
21205 @tindex rreduced
21206 As for @kbd{V M}, @kbd{V R} normally reduces a matrix elementwise.  For
21207 example, given the matrix @expr{[[a, b, c], [d, e, f]]}, @kbd{V R +} will
21208 compute @expr{a + b + c + d + e + f}.  You can type @kbd{V R _} or
21209 @kbd{V R :} to modify this behavior.  The @kbd{V R _} [@code{reducea}]
21210 command reduces ``across'' the matrix; it reduces each row of the matrix
21211 as a vector, then collects the results.  Thus @kbd{V R _ +} of this
21212 matrix would produce @expr{[a + b + c, d + e + f]}.  Similarly, @kbd{V R :}
21213 [@code{reduced}] reduces down; @kbd{V R : +} would produce @expr{[a + d,
21214 b + e, c + f]}.
21216 @tindex reducer
21217 @tindex rreducer
21218 There is a third ``by rows'' mode for reduction that is occasionally
21219 useful; @kbd{V R =} [@code{reducer}] simply reduces the operator over
21220 the rows of the matrix themselves.  Thus @kbd{V R = +} on the above
21221 matrix would get the same result as @kbd{V R : +}, since adding two
21222 row vectors is equivalent to adding their elements.  But @kbd{V R = *}
21223 would multiply the two rows (to get a single number, their dot product),
21224 while @kbd{V R : *} would produce a vector of the products of the columns.
21226 These three matrix reduction modes work with @kbd{V R} and @kbd{I V R},
21227 but they are not currently supported with @kbd{V U} or @kbd{I V U}.
21229 @tindex reducec
21230 @tindex rreducec
21231 The obsolete reduce-by-columns function, @code{reducec}, is still
21232 supported but there is no way to get it through the @kbd{V R} command.
21234 The commands @kbd{C-x * :} and @kbd{C-x * _} are equivalent to typing
21235 @kbd{C-x * r} to grab a rectangle of data into Calc, and then typing
21236 @kbd{V R : +} or @kbd{V R _ +}, respectively, to sum the columns or
21237 rows of the matrix.  @xref{Grabbing From Buffers}.
21239 @node Nesting and Fixed Points, Generalized Products, Reducing, Reducing and Mapping
21240 @subsection Nesting and Fixed Points
21242 @noindent
21243 @kindex H v R
21244 @kindex H V R
21245 @tindex nest
21246 The @kbd{H V R} [@code{nest}] command applies a function to a given
21247 argument repeatedly.  It takes two values, @samp{a} and @samp{n}, from
21248 the stack, where @samp{n} must be an integer.  It then applies the
21249 function nested @samp{n} times; if the function is @samp{f} and @samp{n}
21250 is 3, the result is @samp{f(f(f(a)))}.  The number @samp{n} may be
21251 negative if Calc knows an inverse for the function @samp{f}; for
21252 example, @samp{nest(sin, a, -2)} returns @samp{arcsin(arcsin(a))}.
21254 @kindex H v U
21255 @kindex H V U
21256 @tindex anest
21257 The @kbd{H V U} [@code{anest}] command is an accumulating version of
21258 @code{nest}:  It returns a vector of @samp{n+1} values, e.g.,
21259 @samp{[a, f(a), f(f(a)), f(f(f(a)))]}.  If @samp{n} is negative and
21260 @samp{F} is the inverse of @samp{f}, then the result is of the
21261 form @samp{[a, F(a), F(F(a)), F(F(F(a)))]}.
21263 @kindex H I v R
21264 @kindex H I V R
21265 @tindex fixp
21266 @cindex Fixed points
21267 The @kbd{H I V R} [@code{fixp}] command is like @kbd{H V R}, except
21268 that it takes only an @samp{a} value from the stack; the function is
21269 applied until it reaches a ``fixed point,'' i.e., until the result
21270 no longer changes.
21272 @kindex H I v U
21273 @kindex H I V U
21274 @tindex afixp
21275 The @kbd{H I V U} [@code{afixp}] command is an accumulating @code{fixp}.
21276 The first element of the return vector will be the initial value @samp{a};
21277 the last element will be the final result that would have been returned
21278 by @code{fixp}.
21280 For example, 0.739085 is a fixed point of the cosine function (in radians):
21281 @samp{cos(0.739085) = 0.739085}.  You can find this value by putting, say,
21282 1.0 on the stack and typing @kbd{H I V U C}.  (We use the accumulating
21283 version so we can see the intermediate results:  @samp{[1, 0.540302, 0.857553,
21284 0.65329, ...]}.  With a precision of six, this command will take 36 steps
21285 to converge to 0.739085.)
21287 Newton's method for finding roots is a classic example of iteration
21288 to a fixed point.  To find the square root of five starting with an
21289 initial guess, Newton's method would look for a fixed point of the
21290 function @samp{(x + 5/x) / 2}.  Putting a guess of 1 on the stack
21291 and typing @kbd{H I V R ' ($ + 5/$)/2 @key{RET}} quickly yields the result
21292 2.23607.  This is equivalent to using the @kbd{a R} (@code{calc-find-root})
21293 command to find a root of the equation @samp{x^2 = 5}.
21295 These examples used numbers for @samp{a} values.  Calc keeps applying
21296 the function until two successive results are equal to within the
21297 current precision.  For complex numbers, both the real parts and the
21298 imaginary parts must be equal to within the current precision.  If
21299 @samp{a} is a formula (say, a variable name), then the function is
21300 applied until two successive results are exactly the same formula.
21301 It is up to you to ensure that the function will eventually converge;
21302 if it doesn't, you may have to press @kbd{C-g} to stop the Calculator.
21304 The algebraic @code{fixp} function takes two optional arguments, @samp{n}
21305 and @samp{tol}.  The first is the maximum number of steps to be allowed,
21306 and must be either an integer or the symbol @samp{inf} (infinity, the
21307 default).  The second is a convergence tolerance.  If a tolerance is
21308 specified, all results during the calculation must be numbers, not
21309 formulas, and the iteration stops when the magnitude of the difference
21310 between two successive results is less than or equal to the tolerance.
21311 (This implies that a tolerance of zero iterates until the results are
21312 exactly equal.)
21314 Putting it all together, @samp{fixp(<(# + A/#)/2>, B, 20, 1e-10)}
21315 computes the square root of @samp{A} given the initial guess @samp{B},
21316 stopping when the result is correct within the specified tolerance, or
21317 when 20 steps have been taken, whichever is sooner.
21319 @node Generalized Products,  , Nesting and Fixed Points, Reducing and Mapping
21320 @subsection Generalized Products
21322 @kindex v O
21323 @kindex V O
21324 @pindex calc-outer-product
21325 @tindex outer
21326 The @kbd{V O} (@code{calc-outer-product}) [@code{outer}] command applies
21327 a given binary operator to all possible pairs of elements from two
21328 vectors, to produce a matrix.  For example, @kbd{V O *} with @samp{[a, b]}
21329 and @samp{[x, y, z]} on the stack produces a multiplication table:
21330 @samp{[[a x, a y, a z], [b x, b y, b z]]}.  Element @var{r},@var{c} of
21331 the result matrix is obtained by applying the operator to element @var{r}
21332 of the lefthand vector and element @var{c} of the righthand vector.
21334 @kindex v I
21335 @kindex V I
21336 @pindex calc-inner-product
21337 @tindex inner
21338 The @kbd{V I} (@code{calc-inner-product}) [@code{inner}] command computes
21339 the generalized inner product of two vectors or matrices, given a
21340 ``multiplicative'' operator and an ``additive'' operator.  These can each
21341 actually be any binary operators; if they are @samp{*} and @samp{+},
21342 respectively, the result is a standard matrix multiplication.  Element
21343 @var{r},@var{c} of the result matrix is obtained by mapping the
21344 multiplicative operator across row @var{r} of the lefthand matrix and
21345 column @var{c} of the righthand matrix, and then reducing with the additive
21346 operator.  Just as for the standard @kbd{*} command, this can also do a
21347 vector-matrix or matrix-vector inner product, or a vector-vector
21348 generalized dot product.
21350 Since @kbd{V I} requires two operators, it prompts twice.  In each case,
21351 you can use any of the usual methods for entering the operator.  If you
21352 use @kbd{$} twice to take both operator formulas from the stack, the
21353 first (multiplicative) operator is taken from the top of the stack
21354 and the second (additive) operator is taken from second-to-top.
21356 @node Vector and Matrix Formats,  , Reducing and Mapping, Matrix Functions
21357 @section Vector and Matrix Display Formats
21359 @noindent
21360 Commands for controlling vector and matrix display use the @kbd{v} prefix
21361 instead of the usual @kbd{d} prefix.  But they are display modes; in
21362 particular, they are influenced by the @kbd{I} and @kbd{H} prefix keys
21363 in the same way (@pxref{Display Modes}).  Matrix display is also
21364 influenced by the @kbd{d O} (@code{calc-flat-language}) mode;
21365 @pxref{Normal Language Modes}.
21367 @kindex v <
21368 @kindex V <
21369 @pindex calc-matrix-left-justify
21370 @kindex v =
21371 @kindex V =
21372 @pindex calc-matrix-center-justify
21373 @kindex v >
21374 @kindex V >
21375 @pindex calc-matrix-right-justify
21376 The commands @kbd{v <} (@code{calc-matrix-left-justify}), @kbd{v >}
21377 (@code{calc-matrix-right-justify}), and @w{@kbd{v =}}
21378 (@code{calc-matrix-center-justify}) control whether matrix elements
21379 are justified to the left, right, or center of their columns.
21381 @kindex v [
21382 @kindex V [
21383 @pindex calc-vector-brackets
21384 @kindex v @{
21385 @kindex V @{
21386 @pindex calc-vector-braces
21387 @kindex v (
21388 @kindex V (
21389 @pindex calc-vector-parens
21390 The @kbd{v [} (@code{calc-vector-brackets}) command turns the square
21391 brackets that surround vectors and matrices displayed in the stack on
21392 and off.  The @kbd{v @{} (@code{calc-vector-braces}) and @kbd{v (}
21393 (@code{calc-vector-parens}) commands use curly braces or parentheses,
21394 respectively, instead of square brackets.  For example, @kbd{v @{} might
21395 be used in preparation for yanking a matrix into a buffer running
21396 Mathematica.  (In fact, the Mathematica language mode uses this mode;
21397 @pxref{Mathematica Language Mode}.)  Note that, regardless of the
21398 display mode, either brackets or braces may be used to enter vectors,
21399 and parentheses may never be used for this purpose.
21401 @kindex V ]
21402 @kindex v ]
21403 @kindex V )
21404 @kindex v )
21405 @kindex V @}
21406 @kindex v @}
21407 @pindex calc-matrix-brackets
21408 The @kbd{v ]} (@code{calc-matrix-brackets}) command controls the
21409 ``big'' style display of matrices, for matrices which have more than
21410 one row.  It prompts for a string of code letters; currently
21411 implemented letters are @code{R}, which enables brackets on each row
21412 of the matrix; @code{O}, which enables outer brackets in opposite
21413 corners of the matrix; and @code{C}, which enables commas or
21414 semicolons at the ends of all rows but the last.  The default format
21415 is @samp{RO}.  (Before Calc 2.00, the format was fixed at @samp{ROC}.)
21416 Here are some example matrices:
21418 @example
21419 @group
21420 [ [ 123,  0,   0  ]       [ [ 123,  0,   0  ],
21421   [  0,  123,  0  ]         [  0,  123,  0  ],
21422   [  0,   0,  123 ] ]       [  0,   0,  123 ] ]
21424          RO                        ROC
21426 @end group
21427 @end example
21428 @noindent
21429 @example
21430 @group
21431   [ 123,  0,   0            [ 123,  0,   0 ;
21432      0,  123,  0               0,  123,  0 ;
21433      0,   0,  123 ]            0,   0,  123 ]
21435           O                        OC
21437 @end group
21438 @end example
21439 @noindent
21440 @example
21441 @group
21442   [ 123,  0,   0  ]           123,  0,   0
21443   [  0,  123,  0  ]            0,  123,  0
21444   [  0,   0,  123 ]            0,   0,  123
21446           R                       @r{blank}
21447 @end group
21448 @end example
21450 @noindent
21451 Note that of the formats shown here, @samp{RO}, @samp{ROC}, and
21452 @samp{OC} are all recognized as matrices during reading, while
21453 the others are useful for display only.
21455 @kindex v ,
21456 @kindex V ,
21457 @pindex calc-vector-commas
21458 The @kbd{v ,} (@code{calc-vector-commas}) command turns commas on and
21459 off in vector and matrix display.
21461 In vectors of length one, and in all vectors when commas have been
21462 turned off, Calc adds extra parentheses around formulas that might
21463 otherwise be ambiguous.  For example, @samp{[a b]} could be a vector
21464 of the one formula @samp{a b}, or it could be a vector of two
21465 variables with commas turned off.  Calc will display the former
21466 case as @samp{[(a b)]}.  You can disable these extra parentheses
21467 (to make the output less cluttered at the expense of allowing some
21468 ambiguity) by adding the letter @code{P} to the control string you
21469 give to @kbd{v ]} (as described above).
21471 @kindex v .
21472 @kindex V .
21473 @pindex calc-full-vectors
21474 The @kbd{v .} (@code{calc-full-vectors}) command turns abbreviated
21475 display of long vectors on and off.  In this mode, vectors of six
21476 or more elements, or matrices of six or more rows or columns, will
21477 be displayed in an abbreviated form that displays only the first
21478 three elements and the last element:  @samp{[a, b, c, ..., z]}.
21479 When very large vectors are involved this will substantially
21480 improve Calc's display speed.
21482 @kindex t .
21483 @pindex calc-full-trail-vectors
21484 The @kbd{t .} (@code{calc-full-trail-vectors}) command controls a
21485 similar mode for recording vectors in the Trail.  If you turn on
21486 this mode, vectors of six or more elements and matrices of six or
21487 more rows or columns will be abbreviated when they are put in the
21488 Trail.  The @kbd{t y} (@code{calc-trail-yank}) command will be
21489 unable to recover those vectors.  If you are working with very
21490 large vectors, this mode will improve the speed of all operations
21491 that involve the trail.
21493 @kindex v /
21494 @kindex V /
21495 @pindex calc-break-vectors
21496 The @kbd{v /} (@code{calc-break-vectors}) command turns multi-line
21497 vector display on and off.  Normally, matrices are displayed with one
21498 row per line but all other types of vectors are displayed in a single
21499 line.  This mode causes all vectors, whether matrices or not, to be
21500 displayed with a single element per line.  Sub-vectors within the
21501 vectors will still use the normal linear form.
21503 @node Algebra, Units, Matrix Functions, Top
21504 @chapter Algebra
21506 @noindent
21507 This section covers the Calc features that help you work with
21508 algebraic formulas.  First, the general sub-formula selection
21509 mechanism is described; this works in conjunction with any Calc
21510 commands.  Then, commands for specific algebraic operations are
21511 described.  Finally, the flexible @dfn{rewrite rule} mechanism
21512 is discussed.
21514 The algebraic commands use the @kbd{a} key prefix; selection
21515 commands use the @kbd{j} (for ``just a letter that wasn't used
21516 for anything else'') prefix.
21518 @xref{Editing Stack Entries}, to see how to manipulate formulas
21519 using regular Emacs editing commands.
21521 When doing algebraic work, you may find several of the Calculator's
21522 modes to be helpful, including Algebraic Simplification mode (@kbd{m A})
21523 or No-Simplification mode (@kbd{m O}),
21524 Algebraic entry mode (@kbd{m a}), Fraction mode (@kbd{m f}), and
21525 Symbolic mode (@kbd{m s}).  @xref{Mode Settings}, for discussions
21526 of these modes.  You may also wish to select Big display mode (@kbd{d B}).
21527 @xref{Normal Language Modes}.
21529 @menu
21530 * Selecting Subformulas::
21531 * Algebraic Manipulation::
21532 * Simplifying Formulas::
21533 * Polynomials::
21534 * Calculus::
21535 * Solving Equations::
21536 * Numerical Solutions::
21537 * Curve Fitting::
21538 * Summations::
21539 * Logical Operations::
21540 * Rewrite Rules::
21541 @end menu
21543 @node Selecting Subformulas, Algebraic Manipulation, Algebra, Algebra
21544 @section Selecting Sub-Formulas
21546 @noindent
21547 @cindex Selections
21548 @cindex Sub-formulas
21549 @cindex Parts of formulas
21550 When working with an algebraic formula it is often necessary to
21551 manipulate a portion of the formula rather than the formula as a
21552 whole.  Calc allows you to ``select'' a portion of any formula on
21553 the stack.  Commands which would normally operate on that stack
21554 entry will now operate only on the sub-formula, leaving the
21555 surrounding part of the stack entry alone.
21557 One common non-algebraic use for selection involves vectors.  To work
21558 on one element of a vector in-place, simply select that element as a
21559 ``sub-formula'' of the vector.
21561 @menu
21562 * Making Selections::
21563 * Changing Selections::
21564 * Displaying Selections::
21565 * Operating on Selections::
21566 * Rearranging with Selections::
21567 @end menu
21569 @node Making Selections, Changing Selections, Selecting Subformulas, Selecting Subformulas
21570 @subsection Making Selections
21572 @noindent
21573 @kindex j s
21574 @pindex calc-select-here
21575 To select a sub-formula, move the Emacs cursor to any character in that
21576 sub-formula, and press @w{@kbd{j s}} (@code{calc-select-here}).  Calc will
21577 highlight the smallest portion of the formula that contains that
21578 character.  By default the sub-formula is highlighted by blanking out
21579 all of the rest of the formula with dots.  Selection works in any
21580 display mode but is perhaps easiest in Big mode (@kbd{d B}).
21581 Suppose you enter the following formula:
21583 @smallexample
21584 @group
21585            3    ___
21586     (a + b)  + V c
21587 1:  ---------------
21588         2 x + 1
21589 @end group
21590 @end smallexample
21592 @noindent
21593 (by typing @kbd{' ((a+b)^3 + sqrt(c)) / (2x+1)}).  If you move the
21594 cursor to the letter @samp{b} and press @w{@kbd{j s}}, the display changes
21597 @smallexample
21598 @group
21599            .    ...
21600     .. . b.  . . .
21601 1*  ...............
21602         . . . .
21603 @end group
21604 @end smallexample
21606 @noindent
21607 Every character not part of the sub-formula @samp{b} has been changed
21608 to a dot. (If the customizable variable
21609 @code{calc-highlight-selections-with-faces} is non-@code{nil}, then the characters
21610 not part of the sub-formula are de-emphasized by using a less
21611 noticeable face instead of using dots. @pxref{Displaying Selections}.)
21612 The @samp{*} next to the line number is to remind you that
21613 the formula has a portion of it selected.  (In this case, it's very
21614 obvious, but it might not always be.  If Embedded mode is enabled,
21615 the word @samp{Sel} also appears in the mode line because the stack
21616 may not be visible.  @pxref{Embedded Mode}.)
21618 If you had instead placed the cursor on the parenthesis immediately to
21619 the right of the @samp{b}, the selection would have been:
21621 @smallexample
21622 @group
21623            .    ...
21624     (a + b)  . . .
21625 1*  ...............
21626         . . . .
21627 @end group
21628 @end smallexample
21630 @noindent
21631 The portion selected is always large enough to be considered a complete
21632 formula all by itself, so selecting the parenthesis selects the whole
21633 formula that it encloses.  Putting the cursor on the @samp{+} sign
21634 would have had the same effect.
21636 (Strictly speaking, the Emacs cursor is really the manifestation of
21637 the Emacs ``point,'' which is a position @emph{between} two characters
21638 in the buffer.  So purists would say that Calc selects the smallest
21639 sub-formula which contains the character to the right of ``point.'')
21641 If you supply a numeric prefix argument @var{n}, the selection is
21642 expanded to the @var{n}th enclosing sub-formula.  Thus, positioning
21643 the cursor on the @samp{b} and typing @kbd{C-u 1 j s} will select
21644 @samp{a + b}; typing @kbd{C-u 2 j s} will select @samp{(a + b)^3},
21645 and so on.
21647 If the cursor is not on any part of the formula, or if you give a
21648 numeric prefix that is too large, the entire formula is selected.
21650 If the cursor is on the @samp{.} line that marks the top of the stack
21651 (i.e., its normal ``rest position''), this command selects the entire
21652 formula at stack level 1.  Most selection commands similarly operate
21653 on the formula at the top of the stack if you haven't positioned the
21654 cursor on any stack entry.
21656 @kindex j a
21657 @pindex calc-select-additional
21658 The @kbd{j a} (@code{calc-select-additional}) command enlarges the
21659 current selection to encompass the cursor.  To select the smallest
21660 sub-formula defined by two different points, move to the first and
21661 press @kbd{j s}, then move to the other and press @kbd{j a}.  This
21662 is roughly analogous to using @kbd{C-@@} (@code{set-mark-command}) to
21663 select the two ends of a region of text during normal Emacs editing.
21665 @kindex j o
21666 @pindex calc-select-once
21667 The @kbd{j o} (@code{calc-select-once}) command selects a formula in
21668 exactly the same way as @kbd{j s}, except that the selection will
21669 last only as long as the next command that uses it.  For example,
21670 @kbd{j o 1 +} is a handy way to add one to the sub-formula indicated
21671 by the cursor.
21673 (A somewhat more precise definition: The @kbd{j o} command sets a flag
21674 such that the next command involving selected stack entries will clear
21675 the selections on those stack entries afterwards.  All other selection
21676 commands except @kbd{j a} and @kbd{j O} clear this flag.)
21678 @kindex j S
21679 @kindex j O
21680 @pindex calc-select-here-maybe
21681 @pindex calc-select-once-maybe
21682 The @kbd{j S} (@code{calc-select-here-maybe}) and @kbd{j O}
21683 (@code{calc-select-once-maybe}) commands are equivalent to @kbd{j s}
21684 and @kbd{j o}, respectively, except that if the formula already
21685 has a selection they have no effect.  This is analogous to the
21686 behavior of some commands such as @kbd{j r} (@code{calc-rewrite-selection};
21687 @pxref{Selections with Rewrite Rules}) and is mainly intended to be
21688 used in keyboard macros that implement your own selection-oriented
21689 commands.
21691 Selection of sub-formulas normally treats associative terms like
21692 @samp{a + b - c + d} and @samp{x * y * z} as single levels of the formula.
21693 If you place the cursor anywhere inside @samp{a + b - c + d} except
21694 on one of the variable names and use @kbd{j s}, you will select the
21695 entire four-term sum.
21697 @kindex j b
21698 @pindex calc-break-selections
21699 The @kbd{j b} (@code{calc-break-selections}) command controls a mode
21700 in which the ``deep structure'' of these associative formulas shows
21701 through.  Calc actually stores the above formulas as
21702 @samp{((a + b) - c) + d} and @samp{x * (y * z)}.  (Note that for certain
21703 obscure reasons, by default Calc treats multiplication as
21704 right-associative.)  Once you have enabled @kbd{j b} mode, selecting
21705 with the cursor on the @samp{-} sign would only select the @samp{a + b -
21706 c} portion, which makes sense when the deep structure of the sum is
21707 considered.  There is no way to select the @samp{b - c + d} portion;
21708 although this might initially look like just as legitimate a sub-formula
21709 as @samp{a + b - c}, the deep structure shows that it isn't.  The @kbd{d
21710 U} command can be used to view the deep structure of any formula
21711 (@pxref{Normal Language Modes}).
21713 When @kbd{j b} mode has not been enabled, the deep structure is
21714 generally hidden by the selection commands---what you see is what
21715 you get.
21717 @kindex j u
21718 @pindex calc-unselect
21719 The @kbd{j u} (@code{calc-unselect}) command unselects the formula
21720 that the cursor is on.  If there was no selection in the formula,
21721 this command has no effect.  With a numeric prefix argument, it
21722 unselects the @var{n}th stack element rather than using the cursor
21723 position.
21725 @kindex j c
21726 @pindex calc-clear-selections
21727 The @kbd{j c} (@code{calc-clear-selections}) command unselects all
21728 stack elements.
21730 @node Changing Selections, Displaying Selections, Making Selections, Selecting Subformulas
21731 @subsection Changing Selections
21733 @noindent
21734 @kindex j m
21735 @pindex calc-select-more
21736 Once you have selected a sub-formula, you can expand it using the
21737 @w{@kbd{j m}} (@code{calc-select-more}) command.  If @samp{a + b} is
21738 selected, pressing @w{@kbd{j m}} repeatedly works as follows:
21740 @smallexample
21741 @group
21742            3    ...                3    ___                3    ___
21743     (a + b)  . . .          (a + b)  + V c          (a + b)  + V c
21744 1*  ...............     1*  ...............     1*  ---------------
21745         . . . .                 . . . .                 2 x + 1
21746 @end group
21747 @end smallexample
21749 @noindent
21750 In the last example, the entire formula is selected.  This is roughly
21751 the same as having no selection at all, but because there are subtle
21752 differences the @samp{*} character is still there on the line number.
21754 With a numeric prefix argument @var{n}, @kbd{j m} expands @var{n}
21755 times (or until the entire formula is selected).  Note that @kbd{j s}
21756 with argument @var{n} is equivalent to plain @kbd{j s} followed by
21757 @kbd{j m} with argument @var{n}.  If @w{@kbd{j m}} is used when there
21758 is no current selection, it is equivalent to @w{@kbd{j s}}.
21760 Even though @kbd{j m} does not explicitly use the location of the
21761 cursor within the formula, it nevertheless uses the cursor to determine
21762 which stack element to operate on.  As usual, @kbd{j m} when the cursor
21763 is not on any stack element operates on the top stack element.
21765 @kindex j l
21766 @pindex calc-select-less
21767 The @kbd{j l} (@code{calc-select-less}) command reduces the current
21768 selection around the cursor position.  That is, it selects the
21769 immediate sub-formula of the current selection which contains the
21770 cursor, the opposite of @kbd{j m}.  If the cursor is not inside the
21771 current selection, the command de-selects the formula.
21773 @kindex j 1-9
21774 @pindex calc-select-part
21775 The @kbd{j 1} through @kbd{j 9} (@code{calc-select-part}) commands
21776 select the @var{n}th sub-formula of the current selection.  They are
21777 like @kbd{j l} (@code{calc-select-less}) except they use counting
21778 rather than the cursor position to decide which sub-formula to select.
21779 For example, if the current selection is @kbd{a + b + c} or
21780 @kbd{f(a, b, c)} or @kbd{[a, b, c]}, then @kbd{j 1} selects @samp{a},
21781 @kbd{j 2} selects @samp{b}, and @kbd{j 3} selects @samp{c}; in each of
21782 these cases, @kbd{j 4} through @kbd{j 9} would be errors.
21784 If there is no current selection, @kbd{j 1} through @kbd{j 9} select
21785 the @var{n}th top-level sub-formula.  (In other words, they act as if
21786 the entire stack entry were selected first.)  To select the @var{n}th
21787 sub-formula where @var{n} is greater than nine, you must instead invoke
21788 @w{@kbd{j 1}} with @var{n} as a numeric prefix argument.
21790 @kindex j n
21791 @kindex j p
21792 @pindex calc-select-next
21793 @pindex calc-select-previous
21794 The @kbd{j n} (@code{calc-select-next}) and @kbd{j p}
21795 (@code{calc-select-previous}) commands change the current selection
21796 to the next or previous sub-formula at the same level.  For example,
21797 if @samp{b} is selected in @w{@samp{2 + a*b*c + x}}, then @kbd{j n}
21798 selects @samp{c}.  Further @kbd{j n} commands would be in error because,
21799 even though there is something to the right of @samp{c} (namely, @samp{x}),
21800 it is not at the same level; in this case, it is not a term of the
21801 same product as @samp{b} and @samp{c}.  However, @kbd{j m} (to select
21802 the whole product @samp{a*b*c} as a term of the sum) followed by
21803 @w{@kbd{j n}} would successfully select the @samp{x}.
21805 Similarly, @kbd{j p} moves the selection from the @samp{b} in this
21806 sample formula to the @samp{a}.  Both commands accept numeric prefix
21807 arguments to move several steps at a time.
21809 It is interesting to compare Calc's selection commands with the
21810 Emacs Info system's commands for navigating through hierarchically
21811 organized documentation.  Calc's @kbd{j n} command is completely
21812 analogous to Info's @kbd{n} command.  Likewise, @kbd{j p} maps to
21813 @kbd{p}, @kbd{j 2} maps to @kbd{2}, and Info's @kbd{u} is like @kbd{j m}.
21814 (Note that @kbd{j u} stands for @code{calc-unselect}, not ``up''.)
21815 The Info @kbd{m} command is somewhat similar to Calc's @kbd{j s} and
21816 @kbd{j l}; in each case, you can jump directly to a sub-component
21817 of the hierarchy simply by pointing to it with the cursor.
21819 @node Displaying Selections, Operating on Selections, Changing Selections, Selecting Subformulas
21820 @subsection Displaying Selections
21822 @noindent
21823 @kindex j d
21824 @pindex calc-show-selections
21825 @vindex calc-highlight-selections-with-faces
21826 @vindex calc-selected-face
21827 @vindex calc-nonselected-face
21828 The @kbd{j d} (@code{calc-show-selections}) command controls how
21829 selected sub-formulas are displayed.  One of the alternatives is
21830 illustrated in the above examples; if we press @kbd{j d} we switch
21831 to the other style in which the selected portion itself is obscured
21832 by @samp{#} signs:
21834 @smallexample
21835 @group
21836            3    ...                  #    ___
21837     (a + b)  . . .            ## # ##  + V c
21838 1*  ...............       1*  ---------------
21839         . . . .                   2 x + 1
21840 @end group
21841 @end smallexample
21842 If the customizable variable
21843 @code{calc-highlight-selections-with-faces} is non-@code{nil}, then the
21844 non-selected portion of the formula will be de-emphasized by using a
21845 less noticeable face (@code{calc-nonselected-face}) instead of dots
21846 and the selected sub-formula will be highlighted by using a more
21847 noticeable face (@code{calc-selected-face}) instead of @samp{#}
21848 signs. (@pxref{Customizing Calc}.)
21850 @node Operating on Selections, Rearranging with Selections, Displaying Selections, Selecting Subformulas
21851 @subsection Operating on Selections
21853 @noindent
21854 Once a selection is made, all Calc commands that manipulate items
21855 on the stack will operate on the selected portions of the items
21856 instead.  (Note that several stack elements may have selections
21857 at once, though there can be only one selection at a time in any
21858 given stack element.)
21860 @kindex j e
21861 @pindex calc-enable-selections
21862 The @kbd{j e} (@code{calc-enable-selections}) command disables the
21863 effect that selections have on Calc commands.  The current selections
21864 still exist, but Calc commands operate on whole stack elements anyway.
21865 This mode can be identified by the fact that the @samp{*} markers on
21866 the line numbers are gone, even though selections are visible.  To
21867 reactivate the selections, press @kbd{j e} again.
21869 To extract a sub-formula as a new formula, simply select the
21870 sub-formula and press @key{RET}.  This normally duplicates the top
21871 stack element; here it duplicates only the selected portion of that
21872 element.
21874 To replace a sub-formula with something different, you can enter the
21875 new value onto the stack and press @key{TAB}.  This normally exchanges
21876 the top two stack elements; here it swaps the value you entered into
21877 the selected portion of the formula, returning the old selected
21878 portion to the top of the stack.
21880 @smallexample
21881 @group
21882            3    ...                    ...                    ___
21883     (a + b)  . . .           17 x y . . .           17 x y + V c
21884 2*  ...............      2*  .............      2:  -------------
21885         . . . .                 . . . .                2 x + 1
21887                                     3                      3
21888 1:  17 x y               1:  (a + b)            1:  (a + b)
21889 @end group
21890 @end smallexample
21892 In this example we select a sub-formula of our original example,
21893 enter a new formula, @key{TAB} it into place, then deselect to see
21894 the complete, edited formula.
21896 If you want to swap whole formulas around even though they contain
21897 selections, just use @kbd{j e} before and after.
21899 @kindex j '
21900 @pindex calc-enter-selection
21901 The @kbd{j '} (@code{calc-enter-selection}) command is another way
21902 to replace a selected sub-formula.  This command does an algebraic
21903 entry just like the regular @kbd{'} key.  When you press @key{RET},
21904 the formula you type replaces the original selection.  You can use
21905 the @samp{$} symbol in the formula to refer to the original
21906 selection.  If there is no selection in the formula under the cursor,
21907 the cursor is used to make a temporary selection for the purposes of
21908 the command.  Thus, to change a term of a formula, all you have to
21909 do is move the Emacs cursor to that term and press @kbd{j '}.
21911 @kindex j `
21912 @pindex calc-edit-selection
21913 The @kbd{j `} (@code{calc-edit-selection}) command is a similar
21914 analogue of the @kbd{`} (@code{calc-edit}) command.  It edits the
21915 selected sub-formula in a separate buffer.  If there is no
21916 selection, it edits the sub-formula indicated by the cursor.
21918 To delete a sub-formula, press @key{DEL}.  This generally replaces
21919 the sub-formula with the constant zero, but in a few suitable contexts
21920 it uses the constant one instead.  The @key{DEL} key automatically
21921 deselects and re-simplifies the entire formula afterwards.  Thus:
21923 @smallexample
21924 @group
21925               ###
21926     17 x y + # #          17 x y         17 # y          17 y
21927 1*  -------------     1:  -------    1*  -------    1:  -------
21928        2 x + 1            2 x + 1        2 x + 1        2 x + 1
21929 @end group
21930 @end smallexample
21932 In this example, we first delete the @samp{sqrt(c)} term; Calc
21933 accomplishes this by replacing @samp{sqrt(c)} with zero and
21934 resimplifying.  We then delete the @kbd{x} in the numerator;
21935 since this is part of a product, Calc replaces it with @samp{1}
21936 and resimplifies.
21938 If you select an element of a vector and press @key{DEL}, that
21939 element is deleted from the vector.  If you delete one side of
21940 an equation or inequality, only the opposite side remains.
21942 @kindex j @key{DEL}
21943 @pindex calc-del-selection
21944 The @kbd{j @key{DEL}} (@code{calc-del-selection}) command is like
21945 @key{DEL} but with the auto-selecting behavior of @kbd{j '} and
21946 @kbd{j `}.  It deletes the selected portion of the formula
21947 indicated by the cursor, or, in the absence of a selection, it
21948 deletes the sub-formula indicated by the cursor position.
21950 @kindex j @key{RET}
21951 @pindex calc-grab-selection
21952 (There is also an auto-selecting @kbd{j @key{RET}} (@code{calc-copy-selection})
21953 command.)
21955 Normal arithmetic operations also apply to sub-formulas.  Here we
21956 select the denominator, press @kbd{5 -} to subtract five from the
21957 denominator, press @kbd{n} to negate the denominator, then
21958 press @kbd{Q} to take the square root.
21960 @smallexample
21961 @group
21962      .. .           .. .           .. .             .. .
21963 1*  .......    1*  .......    1*  .......    1*  ..........
21964     2 x + 1        2 x - 4        4 - 2 x         _________
21965                                                  V 4 - 2 x
21966 @end group
21967 @end smallexample
21969 Certain types of operations on selections are not allowed.  For
21970 example, for an arithmetic function like @kbd{-} no more than one of
21971 the arguments may be a selected sub-formula.  (As the above example
21972 shows, the result of the subtraction is spliced back into the argument
21973 which had the selection; if there were more than one selection involved,
21974 this would not be well-defined.)  If you try to subtract two selections,
21975 the command will abort with an error message.
21977 Operations on sub-formulas sometimes leave the formula as a whole
21978 in an ``un-natural'' state.  Consider negating the @samp{2 x} term
21979 of our sample formula by selecting it and pressing @kbd{n}
21980 (@code{calc-change-sign}).
21982 @smallexample
21983 @group
21984        .. .                .. .
21985 1*  ..........      1*  ...........
21986      .........           ..........
21987     . . . 2 x           . . . -2 x
21988 @end group
21989 @end smallexample
21991 Unselecting the sub-formula reveals that the minus sign, which would
21992 normally have canceled out with the subtraction automatically, has
21993 not been able to do so because the subtraction was not part of the
21994 selected portion.  Pressing @kbd{=} (@code{calc-evaluate}) or doing
21995 any other mathematical operation on the whole formula will cause it
21996 to be simplified.
21998 @smallexample
21999 @group
22000        17 y                17 y
22001 1:  -----------     1:  ----------
22002      __________          _________
22003     V 4 - -2 x          V 4 + 2 x
22004 @end group
22005 @end smallexample
22007 @node Rearranging with Selections,  , Operating on Selections, Selecting Subformulas
22008 @subsection Rearranging Formulas using Selections
22010 @noindent
22011 @kindex j R
22012 @pindex calc-commute-right
22013 The @kbd{j R} (@code{calc-commute-right}) command moves the selected
22014 sub-formula to the right in its surrounding formula.  Generally the
22015 selection is one term of a sum or product; the sum or product is
22016 rearranged according to the commutative laws of algebra.
22018 As with @kbd{j '} and @kbd{j @key{DEL}}, the term under the cursor is used
22019 if there is no selection in the current formula.  All commands described
22020 in this section share this property.  In this example, we place the
22021 cursor on the @samp{a} and type @kbd{j R}, then repeat.
22023 @smallexample
22024 1:  a + b - c          1:  b + a - c          1:  b - c + a
22025 @end smallexample
22027 @noindent
22028 Note that in the final step above, the @samp{a} is switched with
22029 the @samp{c} but the signs are adjusted accordingly.  When moving
22030 terms of sums and products, @kbd{j R} will never change the
22031 mathematical meaning of the formula.
22033 The selected term may also be an element of a vector or an argument
22034 of a function.  The term is exchanged with the one to its right.
22035 In this case, the ``meaning'' of the vector or function may of
22036 course be drastically changed.
22038 @smallexample
22039 1:  [a, b, c]          1:  [b, a, c]          1:  [b, c, a]
22041 1:  f(a, b, c)         1:  f(b, a, c)         1:  f(b, c, a)
22042 @end smallexample
22044 @kindex j L
22045 @pindex calc-commute-left
22046 The @kbd{j L} (@code{calc-commute-left}) command is like @kbd{j R}
22047 except that it swaps the selected term with the one to its left.
22049 With numeric prefix arguments, these commands move the selected
22050 term several steps at a time.  It is an error to try to move a
22051 term left or right past the end of its enclosing formula.
22052 With numeric prefix arguments of zero, these commands move the
22053 selected term as far as possible in the given direction.
22055 @kindex j D
22056 @pindex calc-sel-distribute
22057 The @kbd{j D} (@code{calc-sel-distribute}) command mixes the selected
22058 sum or product into the surrounding formula using the distributive
22059 law.  For example, in @samp{a * (b - c)} with the @samp{b - c}
22060 selected, the result is @samp{a b - a c}.  This also distributes
22061 products or quotients into surrounding powers, and can also do
22062 transformations like @samp{exp(a + b)} to @samp{exp(a) exp(b)},
22063 where @samp{a + b} is the selected term, and @samp{ln(a ^ b)}
22064 to @samp{ln(a) b}, where @samp{a ^ b} is the selected term.
22066 For multiple-term sums or products, @kbd{j D} takes off one term
22067 at a time:  @samp{a * (b + c - d)} goes to @samp{a * (c - d) + a b}
22068 with the @samp{c - d} selected so that you can type @kbd{j D}
22069 repeatedly to expand completely.  The @kbd{j D} command allows a
22070 numeric prefix argument which specifies the maximum number of
22071 times to expand at once; the default is one time only.
22073 @vindex DistribRules
22074 The @kbd{j D} command is implemented using rewrite rules.
22075 @xref{Selections with Rewrite Rules}.  The rules are stored in
22076 the Calc variable @code{DistribRules}.  A convenient way to view
22077 these rules is to use @kbd{s e} (@code{calc-edit-variable}) which
22078 displays and edits the stored value of a variable.  Press @kbd{C-c C-c}
22079 to return from editing mode; be careful not to make any actual changes
22080 or else you will affect the behavior of future @kbd{j D} commands!
22082 To extend @kbd{j D} to handle new cases, just edit @code{DistribRules}
22083 as described above.  You can then use the @kbd{s p} command to save
22084 this variable's value permanently for future Calc sessions.
22085 @xref{Operations on Variables}.
22087 @kindex j M
22088 @pindex calc-sel-merge
22089 @vindex MergeRules
22090 The @kbd{j M} (@code{calc-sel-merge}) command is the complement
22091 of @kbd{j D}; given @samp{a b - a c} with either @samp{a b} or
22092 @samp{a c} selected, the result is @samp{a * (b - c)}.  Once
22093 again, @kbd{j M} can also merge calls to functions like @code{exp}
22094 and @code{ln}; examine the variable @code{MergeRules} to see all
22095 the relevant rules.
22097 @kindex j C
22098 @pindex calc-sel-commute
22099 @vindex CommuteRules
22100 The @kbd{j C} (@code{calc-sel-commute}) command swaps the arguments
22101 of the selected sum, product, or equation.  It always behaves as
22102 if @kbd{j b} mode were in effect, i.e., the sum @samp{a + b + c} is
22103 treated as the nested sums @samp{(a + b) + c} by this command.
22104 If you put the cursor on the first @samp{+}, the result is
22105 @samp{(b + a) + c}; if you put the cursor on the second @samp{+}, the
22106 result is @samp{c + (a + b)} (which the default simplifications
22107 will rearrange to @samp{(c + a) + b}).  The relevant rules are stored
22108 in the variable @code{CommuteRules}.
22110 You may need to turn default simplifications off (with the @kbd{m O}
22111 command) in order to get the full benefit of @kbd{j C}.  For example,
22112 commuting @samp{a - b} produces @samp{-b + a}, but the default
22113 simplifications will ``simplify'' this right back to @samp{a - b} if
22114 you don't turn them off.  The same is true of some of the other
22115 manipulations described in this section.
22117 @kindex j N
22118 @pindex calc-sel-negate
22119 @vindex NegateRules
22120 The @kbd{j N} (@code{calc-sel-negate}) command replaces the selected
22121 term with the negative of that term, then adjusts the surrounding
22122 formula in order to preserve the meaning.  For example, given
22123 @samp{exp(a - b)} where @samp{a - b} is selected, the result is
22124 @samp{1 / exp(b - a)}.  By contrast, selecting a term and using the
22125 regular @kbd{n} (@code{calc-change-sign}) command negates the
22126 term without adjusting the surroundings, thus changing the meaning
22127 of the formula as a whole.  The rules variable is @code{NegateRules}.
22129 @kindex j &
22130 @pindex calc-sel-invert
22131 @vindex InvertRules
22132 The @kbd{j &} (@code{calc-sel-invert}) command is similar to @kbd{j N}
22133 except it takes the reciprocal of the selected term.  For example,
22134 given @samp{a - ln(b)} with @samp{b} selected, the result is
22135 @samp{a + ln(1/b)}.  The rules variable is @code{InvertRules}.
22137 @kindex j E
22138 @pindex calc-sel-jump-equals
22139 @vindex JumpRules
22140 The @kbd{j E} (@code{calc-sel-jump-equals}) command moves the
22141 selected term from one side of an equation to the other.  Given
22142 @samp{a + b = c + d} with @samp{c} selected, the result is
22143 @samp{a + b - c = d}.  This command also works if the selected
22144 term is part of a @samp{*}, @samp{/}, or @samp{^} formula.  The
22145 relevant rules variable is @code{JumpRules}.
22147 @kindex j I
22148 @kindex H j I
22149 @pindex calc-sel-isolate
22150 The @kbd{j I} (@code{calc-sel-isolate}) command isolates the
22151 selected term on its side of an equation.  It uses the @kbd{a S}
22152 (@code{calc-solve-for}) command to solve the equation, and the
22153 Hyperbolic flag affects it in the same way.  @xref{Solving Equations}.
22154 When it applies, @kbd{j I} is often easier to use than @kbd{j E}.
22155 It understands more rules of algebra, and works for inequalities
22156 as well as equations.
22158 @kindex j *
22159 @kindex j /
22160 @pindex calc-sel-mult-both-sides
22161 @pindex calc-sel-div-both-sides
22162 The @kbd{j *} (@code{calc-sel-mult-both-sides}) command prompts for a
22163 formula using algebraic entry, then multiplies both sides of the
22164 selected quotient or equation by that formula.  It performs the
22165 default algebraic simplifications  before re-forming the
22166 quotient or equation.  You can suppress this simplification by
22167 providing a prefix argument: @kbd{C-u j *}.  There is also a @kbd{j /}
22168 (@code{calc-sel-div-both-sides}) which is similar to @kbd{j *} but
22169 dividing instead of multiplying by the factor you enter.
22171 If the selection is a quotient with numerator 1, then Calc's default
22172 simplifications would normally cancel the new factors.  To prevent
22173 this, when the @kbd{j *} command is used on a selection whose numerator is
22174 1 or -1, the denominator is expanded at the top level using the
22175 distributive law (as if using the @kbd{C-u 1 a x} command).  Suppose the
22176 formula on the stack is @samp{1 / (a + 1)} and you wish to multiplying the
22177 top and bottom by @samp{a - 1}.  Calc's default simplifications would
22178 normally change the result @samp{(a - 1) /(a + 1) (a - 1)} back
22179 to the original form by cancellation; when @kbd{j *} is used, Calc
22180 expands the denominator to  @samp{a (a - 1) + a - 1} to prevent this.
22182 If you wish the @kbd{j *} command to completely expand the denominator
22183 of a quotient you can call it with a zero prefix: @kbd{C-u 0 j *}.  For
22184 example, if the formula on the stack is @samp{1 / (sqrt(a) + 1)}, you may
22185 wish to eliminate the square root in the denominator by multiplying
22186 the top and bottom by @samp{sqrt(a) - 1}.  If you did this simply by using
22187 a simple @kbd{j *} command, you would get
22188 @samp{(sqrt(a)-1)/ (sqrt(a) (sqrt(a) - 1) + sqrt(a) - 1)}.  Instead,
22189 you would probably want to use @kbd{C-u 0 j *}, which would expand the
22190 bottom and give you the desired result @samp{(sqrt(a)-1)/(a-1)}.  More
22191 generally, if @kbd{j *} is called with an argument of a positive
22192 integer @var{n}, then the denominator of the expression will be
22193 expanded @var{n} times (as if with the @kbd{C-u @var{n} a x} command).
22195 If the selection is an inequality, @kbd{j *} and @kbd{j /} will
22196 accept any factor, but will warn unless they can prove the factor
22197 is either positive or negative.  (In the latter case the direction
22198 of the inequality will be switched appropriately.)  @xref{Declarations},
22199 for ways to inform Calc that a given variable is positive or
22200 negative.  If Calc can't tell for sure what the sign of the factor
22201 will be, it will assume it is positive and display a warning
22202 message.
22204 For selections that are not quotients, equations, or inequalities,
22205 these commands pull out a multiplicative factor:  They divide (or
22206 multiply) by the entered formula, simplify, then multiply (or divide)
22207 back by the formula.
22209 @kindex j +
22210 @kindex j -
22211 @pindex calc-sel-add-both-sides
22212 @pindex calc-sel-sub-both-sides
22213 The @kbd{j +} (@code{calc-sel-add-both-sides}) and @kbd{j -}
22214 (@code{calc-sel-sub-both-sides}) commands analogously add to or
22215 subtract from both sides of an equation or inequality.  For other
22216 types of selections, they extract an additive factor.  A numeric
22217 prefix argument suppresses simplification of the intermediate
22218 results.
22220 @kindex j U
22221 @pindex calc-sel-unpack
22222 The @kbd{j U} (@code{calc-sel-unpack}) command replaces the
22223 selected function call with its argument.  For example, given
22224 @samp{a + sin(x^2)} with @samp{sin(x^2)} selected, the result
22225 is @samp{a + x^2}.  (The @samp{x^2} will remain selected; if you
22226 wanted to change the @code{sin} to @code{cos}, just press @kbd{C}
22227 now to take the cosine of the selected part.)
22229 @kindex j v
22230 @pindex calc-sel-evaluate
22231 The @kbd{j v} (@code{calc-sel-evaluate}) command performs the
22232 basic simplifications on the selected sub-formula.
22233 These simplifications would normally be done automatically
22234 on all results, but may have been partially inhibited by
22235 previous selection-related operations, or turned off altogether
22236 by the @kbd{m O} command.  This command is just an auto-selecting
22237 version of the @w{@kbd{a v}} command (@pxref{Algebraic Manipulation}).
22239 With a numeric prefix argument of 2, @kbd{C-u 2 j v} applies
22240 the default algebraic simplifications to the selected
22241 sub-formula.  With a prefix argument of 3 or more, e.g., @kbd{C-u j v}
22242 applies the @kbd{a e} (@code{calc-simplify-extended}) command.
22243 @xref{Simplifying Formulas}.  With a negative prefix argument
22244 it simplifies at the top level only, just as with @kbd{a v}.
22245 Here the ``top'' level refers to the top level of the selected
22246 sub-formula.
22248 @kindex j "
22249 @pindex calc-sel-expand-formula
22250 The @kbd{j "} (@code{calc-sel-expand-formula}) command is to @kbd{a "}
22251 (@pxref{Algebraic Manipulation}) what @kbd{j v} is to @kbd{a v}.
22253 You can use the @kbd{j r} (@code{calc-rewrite-selection}) command
22254 to define other algebraic operations on sub-formulas.  @xref{Rewrite Rules}.
22256 @node Algebraic Manipulation, Simplifying Formulas, Selecting Subformulas, Algebra
22257 @section Algebraic Manipulation
22259 @noindent
22260 The commands in this section perform general-purpose algebraic
22261 manipulations.  They work on the whole formula at the top of the
22262 stack (unless, of course, you have made a selection in that
22263 formula).
22265 Many algebra commands prompt for a variable name or formula.  If you
22266 answer the prompt with a blank line, the variable or formula is taken
22267 from top-of-stack, and the normal argument for the command is taken
22268 from the second-to-top stack level.
22270 @kindex a v
22271 @pindex calc-alg-evaluate
22272 The @kbd{a v} (@code{calc-alg-evaluate}) command performs the normal
22273 default simplifications on a formula; for example, @samp{a - -b} is
22274 changed to @samp{a + b}.  These simplifications are normally done
22275 automatically on all Calc results, so this command is useful only if
22276 you have turned default simplifications off with an @kbd{m O}
22277 command.  @xref{Simplification Modes}.
22279 It is often more convenient to type @kbd{=}, which is like @kbd{a v}
22280 but which also substitutes stored values for variables in the formula.
22281 Use @kbd{a v} if you want the variables to ignore their stored values.
22283 If you give a numeric prefix argument of 2 to @kbd{a v}, it simplifies
22284 using Calc's algebraic simplifications; @pxref{Simplifying Formulas}.
22285 If you give a numeric prefix of 3 or more, it uses Extended
22286 Simplification mode (@kbd{a e}).
22288 If you give a negative prefix argument @mathit{-1}, @mathit{-2}, or @mathit{-3},
22289 it simplifies in the corresponding mode but only works on the top-level
22290 function call of the formula.  For example, @samp{(2 + 3) * (2 + 3)} will
22291 simplify to @samp{(2 + 3)^2}, without simplifying the sub-formulas
22292 @samp{2 + 3}.  As another example, typing @kbd{V R +} to sum the vector
22293 @samp{[1, 2, 3, 4]} produces the formula @samp{reduce(add, [1, 2, 3, 4])}
22294 in No-Simplify mode.  Using @kbd{a v} will evaluate this all the way to
22295 10; using @kbd{C-u - a v} will evaluate it only to @samp{1 + 2 + 3 + 4}.
22296 (@xref{Reducing and Mapping}.)
22298 @tindex evalv
22299 @tindex evalvn
22300 The @kbd{=} command corresponds to the @code{evalv} function, and
22301 the related @kbd{N} command, which is like @kbd{=} but temporarily
22302 disables Symbolic mode (@kbd{m s}) during the evaluation, corresponds
22303 to the @code{evalvn} function.  (These commands interpret their prefix
22304 arguments differently than @kbd{a v}; @kbd{=} treats the prefix as
22305 the number of stack elements to evaluate at once, and @kbd{N} treats
22306 it as a temporary different working precision.)
22308 The @code{evalvn} function can take an alternate working precision
22309 as an optional second argument.  This argument can be either an
22310 integer, to set the precision absolutely, or a vector containing
22311 a single integer, to adjust the precision relative to the current
22312 precision.  Note that @code{evalvn} with a larger than current
22313 precision will do the calculation at this higher precision, but the
22314 result will as usual be rounded back down to the current precision
22315 afterward.  For example, @samp{evalvn(pi - 3.1415)} at a precision
22316 of 12 will return @samp{9.265359e-5}; @samp{evalvn(pi - 3.1415, 30)}
22317 will return @samp{9.26535897932e-5} (computing a 25-digit result which
22318 is then rounded down to 12); and @samp{evalvn(pi - 3.1415, [-2])}
22319 will return @samp{9.2654e-5}.
22321 @kindex a "
22322 @pindex calc-expand-formula
22323 The @kbd{a "} (@code{calc-expand-formula}) command expands functions
22324 into their defining formulas wherever possible.  For example,
22325 @samp{deg(x^2)} is changed to @samp{180 x^2 / pi}.  Most functions,
22326 like @code{sin} and @code{gcd}, are not defined by simple formulas
22327 and so are unaffected by this command.  One important class of
22328 functions which @emph{can} be expanded is the user-defined functions
22329 created by the @kbd{Z F} command.  @xref{Algebraic Definitions}.
22330 Other functions which @kbd{a "} can expand include the probability
22331 distribution functions, most of the financial functions, and the
22332 hyperbolic and inverse hyperbolic functions.  A numeric prefix argument
22333 affects @kbd{a "} in the same way as it does @kbd{a v}:  A positive
22334 argument expands all functions in the formula and then simplifies in
22335 various ways; a negative argument expands and simplifies only the
22336 top-level function call.
22338 @kindex a M
22339 @pindex calc-map-equation
22340 @tindex mapeq
22341 The @kbd{a M} (@code{calc-map-equation}) [@code{mapeq}] command applies
22342 a given function or operator to one or more equations.  It is analogous
22343 to @kbd{V M}, which operates on vectors instead of equations.
22344 @pxref{Reducing and Mapping}.  For example, @kbd{a M S} changes
22345 @samp{x = y+1} to @samp{sin(x) = sin(y+1)}, and @kbd{a M +} with
22346 @samp{x = y+1} and @expr{6} on the stack produces @samp{x+6 = y+7}.
22347 With two equations on the stack, @kbd{a M +} would add the lefthand
22348 sides together and the righthand sides together to get the two
22349 respective sides of a new equation.
22351 Mapping also works on inequalities.  Mapping two similar inequalities
22352 produces another inequality of the same type.  Mapping an inequality
22353 with an equation produces an inequality of the same type.  Mapping a
22354 @samp{<=} with a @samp{<} or @samp{!=} (not-equal) produces a @samp{<}.
22355 If inequalities with opposite direction (e.g., @samp{<} and @samp{>})
22356 are mapped, the direction of the second inequality is reversed to
22357 match the first:  Using @kbd{a M +} on @samp{a < b} and @samp{a > 2}
22358 reverses the latter to get @samp{2 < a}, which then allows the
22359 combination @samp{a + 2 < b + a}, which the algebraic simplifications
22360 can reduce to @samp{2 < b}.
22362 Using @kbd{a M *}, @kbd{a M /}, @kbd{a M n}, or @kbd{a M &} to negate
22363 or invert an inequality will reverse the direction of the inequality.
22364 Other adjustments to inequalities are @emph{not} done automatically;
22365 @kbd{a M S} will change @w{@samp{x < y}} to @samp{sin(x) < sin(y)} even
22366 though this is not true for all values of the variables.
22368 @kindex H a M
22369 @tindex mapeqp
22370 With the Hyperbolic flag, @kbd{H a M} [@code{mapeqp}] does a plain
22371 mapping operation without reversing the direction of any inequalities.
22372 Thus, @kbd{H a M &} would change @kbd{x > 2} to @kbd{1/x > 0.5}.
22373 (This change is mathematically incorrect, but perhaps you were
22374 fixing an inequality which was already incorrect.)
22376 @kindex I a M
22377 @tindex mapeqr
22378 With the Inverse flag, @kbd{I a M} [@code{mapeqr}] always reverses
22379 the direction of the inequality.  You might use @kbd{I a M C} to
22380 change @samp{x < y} to @samp{cos(x) > cos(y)} if you know you are
22381 working with small positive angles.
22383 @kindex a b
22384 @pindex calc-substitute
22385 @tindex subst
22386 The @kbd{a b} (@code{calc-substitute}) [@code{subst}] command substitutes
22387 all occurrences
22388 of some variable or sub-expression of an expression with a new
22389 sub-expression.  For example, substituting @samp{sin(x)} with @samp{cos(y)}
22390 in @samp{2 sin(x)^2 + x sin(x) + sin(2 x)} produces
22391 @samp{2 cos(y)^2 + x cos(y) + @w{sin(2 x)}}.
22392 Note that this is a purely structural substitution; the lone @samp{x} and
22393 the @samp{sin(2 x)} stayed the same because they did not look like
22394 @samp{sin(x)}.  @xref{Rewrite Rules}, for a more general method for
22395 doing substitutions.
22397 The @kbd{a b} command normally prompts for two formulas, the old
22398 one and the new one.  If you enter a blank line for the first
22399 prompt, all three arguments are taken from the stack (new, then old,
22400 then target expression).  If you type an old formula but then enter a
22401 blank line for the new one, the new formula is taken from top-of-stack
22402 and the target from second-to-top.  If you answer both prompts, the
22403 target is taken from top-of-stack as usual.
22405 Note that @kbd{a b} has no understanding of commutativity or
22406 associativity.  The pattern @samp{x+y} will not match the formula
22407 @samp{y+x}.  Also, @samp{y+z} will not match inside the formula @samp{x+y+z}
22408 because the @samp{+} operator is left-associative, so the ``deep
22409 structure'' of that formula is @samp{(x+y) + z}.  Use @kbd{d U}
22410 (@code{calc-unformatted-language}) mode to see the true structure of
22411 a formula.  The rewrite rule mechanism, discussed later, does not have
22412 these limitations.
22414 As an algebraic function, @code{subst} takes three arguments:
22415 Target expression, old, new.  Note that @code{subst} is always
22416 evaluated immediately, even if its arguments are variables, so if
22417 you wish to put a call to @code{subst} onto the stack you must
22418 turn the default simplifications off first (with @kbd{m O}).
22420 @node Simplifying Formulas, Polynomials, Algebraic Manipulation, Algebra
22421 @section Simplifying Formulas
22423 @noindent
22424 @kindex a s
22425 @kindex I a s
22426 @kindex H a s
22427 @pindex calc-simplify
22428 @tindex simplify
22430 The sections below describe all the various kinds of
22431 simplifications Calc provides in full detail.  None of Calc's
22432 simplification commands are designed to pull rabbits out of hats;
22433 they simply apply certain specific rules to put formulas into
22434 less redundant or more pleasing forms.  Serious algebra in Calc
22435 must be done manually, usually with a combination of selections
22436 and rewrite rules.  @xref{Rearranging with Selections}.
22437 @xref{Rewrite Rules}.
22439 @xref{Simplification Modes}, for commands to control what level of
22440 simplification occurs automatically.  Normally the algebraic
22441 simplifications described below occur.  If you have turned on a
22442 simplification mode which does not do these algebraic simplifications,
22443 you can still apply them to a formula with the @kbd{a s}
22444 (@code{calc-simplify}) [@code{simplify}] command.
22446 There are some simplifications that, while sometimes useful, are never
22447 done automatically.  For example, the @kbd{I} prefix can be given to
22448 @kbd{a s}; the @kbd{I a s} command will change any trigonometric
22449 function to the appropriate combination of @samp{sin}s and @samp{cos}s
22450 before simplifying.  This can be useful in simplifying even mildly
22451 complicated trigonometric expressions.  For example, while the algebraic
22452 simplifications can reduce @samp{sin(x) csc(x)} to @samp{1}, they will not
22453 simplify @samp{sin(x)^2 csc(x)}.  The command @kbd{I a s} can be used to
22454 simplify this latter expression; it will transform @samp{sin(x)^2
22455 csc(x)} into @samp{sin(x)}.  However, @kbd{I a s} will also perform
22456 some ``simplifications'' which may not be desired; for example, it
22457 will transform @samp{tan(x)^2} into @samp{sin(x)^2 / cos(x)^2}.  The
22458 Hyperbolic prefix @kbd{H} can be used similarly; the @kbd{H a s} will
22459 replace any hyperbolic functions in the formula with the appropriate
22460 combinations of @samp{sinh}s and @samp{cosh}s before simplifying.
22463 @menu
22464 * Basic Simplifications::
22465 * Algebraic Simplifications::
22466 * Unsafe Simplifications::
22467 * Simplification of Units::
22468 @end menu
22470 @node Basic Simplifications, Algebraic Simplifications, Simplifying Formulas, Simplifying Formulas
22471 @subsection Basic Simplifications
22473 @noindent
22474 @cindex Basic simplifications
22475 This section describes basic simplifications which Calc performs in many
22476 situations.  For example, both binary simplifications and algebraic
22477 simplifications begin by performing these basic simplifications.  You
22478 can type @kbd{m I} to restrict the simplifications done on the stack to
22479 these simplifications.
22481 The most basic simplification is the evaluation of functions.
22482 For example, @expr{2 + 3} is evaluated to @expr{5}, and @expr{@tfn{sqrt}(9)}
22483 is evaluated to @expr{3}.  Evaluation does not occur if the arguments
22484 to a function are somehow of the wrong type @expr{@tfn{tan}([2,3,4])}),
22485 range (@expr{@tfn{tan}(90)}), or number (@expr{@tfn{tan}(3,5)}),
22486 or if the function name is not recognized (@expr{@tfn{f}(5)}), or if
22487 Symbolic mode (@pxref{Symbolic Mode}) prevents evaluation
22488 (@expr{@tfn{sqrt}(2)}).
22490 Calc simplifies (evaluates) the arguments to a function before it
22491 simplifies the function itself.  Thus @expr{@tfn{sqrt}(5+4)} is
22492 simplified to @expr{@tfn{sqrt}(9)} before the @code{sqrt} function
22493 itself is applied.  There are very few exceptions to this rule:
22494 @code{quote}, @code{lambda}, and @code{condition} (the @code{::}
22495 operator) do not evaluate their arguments, @code{if} (the @code{? :}
22496 operator) does not evaluate all of its arguments, and @code{evalto}
22497 does not evaluate its lefthand argument.
22499 Most commands apply at least these basic simplifications to all
22500 arguments they take from the stack, perform a particular operation,
22501 then simplify the result before pushing it back on the stack.  In the
22502 common special case of regular arithmetic commands like @kbd{+} and
22503 @kbd{Q} [@code{sqrt}], the arguments are simply popped from the stack
22504 and collected into a suitable function call, which is then simplified
22505 (the arguments being simplified first as part of the process, as
22506 described above).
22508 Even the basic set of simplifications are too numerous to describe
22509 completely here, but this section will describe the ones that apply to the
22510 major arithmetic operators.  This list will be rather technical in
22511 nature, and will probably be interesting to you only if you are
22512 a serious user of Calc's algebra facilities.
22514 @tex
22515 \bigskip
22516 @end tex
22518 As well as the simplifications described here, if you have stored
22519 any rewrite rules in the variable @code{EvalRules} then these rules
22520 will also be applied before any of the basic simplifications.
22521 @xref{Automatic Rewrites}, for details.
22523 @tex
22524 \bigskip
22525 @end tex
22527 And now, on with the basic simplifications:
22529 Arithmetic operators like @kbd{+} and @kbd{*} always take two
22530 arguments in Calc's internal form.  Sums and products of three or
22531 more terms are arranged by the associative law of algebra into
22532 a left-associative form for sums, @expr{((a + b) + c) + d}, and
22533 (by default) a right-associative form for products,
22534 @expr{a * (b * (c * d))}.  Formulas like @expr{(a + b) + (c + d)} are
22535 rearranged to left-associative form, though this rarely matters since
22536 Calc's algebra commands are designed to hide the inner structure of sums
22537 and products as much as possible.  Sums and products in their proper
22538 associative form will be written without parentheses in the examples
22539 below.
22541 Sums and products are @emph{not} rearranged according to the
22542 commutative law (@expr{a + b} to @expr{b + a}) except in a few
22543 special cases described below.  Some algebra programs always
22544 rearrange terms into a canonical order, which enables them to
22545 see that @expr{a b + b a} can be simplified to @expr{2 a b}.
22546 If you are using Basic Simplification mode, Calc assumes you have put
22547 the terms into the order you want and generally leaves that order alone,
22548 with the consequence that formulas like the above will only be
22549 simplified if you explicitly give the @kbd{a s} command.
22550 @xref{Algebraic Simplifications}.
22552 Differences @expr{a - b} are treated like sums @expr{a + (-b)}
22553 for purposes of simplification; one of the default simplifications
22554 is to rewrite @expr{a + (-b)} or @expr{(-b) + a}, where @expr{-b}
22555 represents a ``negative-looking'' term, into @expr{a - b} form.
22556 ``Negative-looking'' means negative numbers, negated formulas like
22557 @expr{-x}, and products or quotients in which either term is
22558 negative-looking.
22560 Other simplifications involving negation are @expr{-(-x)} to @expr{x};
22561 @expr{-(a b)} or @expr{-(a/b)} where either @expr{a} or @expr{b} is
22562 negative-looking, simplified by negating that term, or else where
22563 @expr{a} or @expr{b} is any number, by negating that number;
22564 @expr{-(a + b)} to @expr{-a - b}, and @expr{-(b - a)} to @expr{a - b}.
22565 (This, and rewriting @expr{(-b) + a} to @expr{a - b}, are the only
22566 cases where the order of terms in a sum is changed by the default
22567 simplifications.)
22569 The distributive law is used to simplify sums in some cases:
22570 @expr{a x + b x} to @expr{(a + b) x}, where @expr{a} represents
22571 a number or an implicit 1 or @mathit{-1} (as in @expr{x} or @expr{-x})
22572 and similarly for @expr{b}.  Use the @kbd{a c}, @w{@kbd{a f}}, or
22573 @kbd{j M} commands to merge sums with non-numeric coefficients
22574 using the distributive law.
22576 The distributive law is only used for sums of two terms, or
22577 for adjacent terms in a larger sum.  Thus @expr{a + b + b + c}
22578 is simplified to @expr{a + 2 b + c}, but @expr{a + b + c + b}
22579 is not simplified.  The reason is that comparing all terms of a
22580 sum with one another would require time proportional to the
22581 square of the number of terms; Calc omits potentially slow
22582 operations like this in basic simplification mode.
22584 Finally, @expr{a + 0} and @expr{0 + a} are simplified to @expr{a}.
22585 A consequence of the above rules is that @expr{0 - a} is simplified
22586 to @expr{-a}.
22588 @tex
22589 \bigskip
22590 @end tex
22592 The products @expr{1 a} and @expr{a 1} are simplified to @expr{a};
22593 @expr{(-1) a} and @expr{a (-1)} are simplified to @expr{-a};
22594 @expr{0 a} and @expr{a 0} are simplified to @expr{0}, except that
22595 in Matrix mode where @expr{a} is not provably scalar the result
22596 is the generic zero matrix @samp{idn(0)}, and that if @expr{a} is
22597 infinite the result is @samp{nan}.
22599 Also, @expr{(-a) b} and @expr{a (-b)} are simplified to @expr{-(a b)},
22600 where this occurs for negated formulas but not for regular negative
22601 numbers.
22603 Products are commuted only to move numbers to the front:
22604 @expr{a b 2} is commuted to @expr{2 a b}.
22606 The product @expr{a (b + c)} is distributed over the sum only if
22607 @expr{a} and at least one of @expr{b} and @expr{c} are numbers:
22608 @expr{2 (x + 3)} goes to @expr{2 x + 6}.  The formula
22609 @expr{(-a) (b - c)}, where @expr{-a} is a negative number, is
22610 rewritten to @expr{a (c - b)}.
22612 The distributive law of products and powers is used for adjacent
22613 terms of the product: @expr{x^a x^b} goes to
22614 @texline @math{x^{a+b}}
22615 @infoline @expr{x^(a+b)}
22616 where @expr{a} is a number, or an implicit 1 (as in @expr{x}),
22617 or the implicit one-half of @expr{@tfn{sqrt}(x)}, and similarly for
22618 @expr{b}.  The result is written using @samp{sqrt} or @samp{1/sqrt}
22619 if the sum of the powers is @expr{1/2} or @expr{-1/2}, respectively.
22620 If the sum of the powers is zero, the product is simplified to
22621 @expr{1} or to @samp{idn(1)} if Matrix mode is enabled.
22623 The product of a negative power times anything but another negative
22624 power is changed to use division:
22625 @texline @math{x^{-2} y}
22626 @infoline @expr{x^(-2) y}
22627 goes to @expr{y / x^2} unless Matrix mode is
22628 in effect and neither @expr{x} nor @expr{y} are scalar (in which
22629 case it is considered unsafe to rearrange the order of the terms).
22631 Finally, @expr{a (b/c)} is rewritten to @expr{(a b)/c}, and also
22632 @expr{(a/b) c} is changed to @expr{(a c)/b} unless in Matrix mode.
22634 @tex
22635 \bigskip
22636 @end tex
22638 Simplifications for quotients are analogous to those for products.
22639 The quotient @expr{0 / x} is simplified to @expr{0}, with the same
22640 exceptions that were noted for @expr{0 x}.  Likewise, @expr{x / 1}
22641 and @expr{x / (-1)} are simplified to @expr{x} and @expr{-x},
22642 respectively.
22644 The quotient @expr{x / 0} is left unsimplified or changed to an
22645 infinite quantity, as directed by the current infinite mode.
22646 @xref{Infinite Mode}.
22648 The expression
22649 @texline @math{a / b^{-c}}
22650 @infoline @expr{a / b^(-c)}
22651 is changed to @expr{a b^c}, where @expr{-c} is any negative-looking
22652 power.  Also, @expr{1 / b^c} is changed to
22653 @texline @math{b^{-c}}
22654 @infoline @expr{b^(-c)}
22655 for any power @expr{c}.
22657 Also, @expr{(-a) / b} and @expr{a / (-b)} go to @expr{-(a/b)};
22658 @expr{(a/b) / c} goes to @expr{a / (b c)}; and @expr{a / (b/c)}
22659 goes to @expr{(a c) / b} unless Matrix mode prevents this
22660 rearrangement.  Similarly, @expr{a / (b:c)} is simplified to
22661 @expr{(c:b) a} for any fraction @expr{b:c}.
22663 The distributive law is applied to @expr{(a + b) / c} only if
22664 @expr{c} and at least one of @expr{a} and @expr{b} are numbers.
22665 Quotients of powers and square roots are distributed just as
22666 described for multiplication.
22668 Quotients of products cancel only in the leading terms of the
22669 numerator and denominator.  In other words, @expr{a x b / a y b}
22670 is canceled to @expr{x b / y b} but not to @expr{x / y}.  Once
22671 again this is because full cancellation can be slow; use @kbd{a s}
22672 to cancel all terms of the quotient.
22674 Quotients of negative-looking values are simplified according
22675 to @expr{(-a) / (-b)} to @expr{a / b}, @expr{(-a) / (b - c)}
22676 to @expr{a / (c - b)}, and @expr{(a - b) / (-c)} to @expr{(b - a) / c}.
22678 @tex
22679 \bigskip
22680 @end tex
22682 The formula @expr{x^0} is simplified to @expr{1}, or to @samp{idn(1)}
22683 in Matrix mode.  The formula @expr{0^x} is simplified to @expr{0}
22684 unless @expr{x} is a negative number, complex number or zero.
22685 If @expr{x} is negative, complex or @expr{0.0}, @expr{0^x} is an
22686 infinity or an unsimplified formula according to the current infinite
22687 mode.  The expression @expr{0^0} is simplified to @expr{1}.
22689 Powers of products or quotients @expr{(a b)^c}, @expr{(a/b)^c}
22690 are distributed to @expr{a^c b^c}, @expr{a^c / b^c} only if @expr{c}
22691 is an integer, or if either @expr{a} or @expr{b} are nonnegative
22692 real numbers.  Powers of powers @expr{(a^b)^c} are simplified to
22693 @texline @math{a^{b c}}
22694 @infoline @expr{a^(b c)}
22695 only when @expr{c} is an integer and @expr{b c} also
22696 evaluates to an integer.  Without these restrictions these simplifications
22697 would not be safe because of problems with principal values.
22698 (In other words,
22699 @texline @math{((-3)^{1/2})^2}
22700 @infoline @expr{((-3)^1:2)^2}
22701 is safe to simplify, but
22702 @texline @math{((-3)^2)^{1/2}}
22703 @infoline @expr{((-3)^2)^1:2}
22704 is not.)  @xref{Declarations}, for ways to inform Calc that your
22705 variables satisfy these requirements.
22707 As a special case of this rule, @expr{@tfn{sqrt}(x)^n} is simplified to
22708 @texline @math{x^{n/2}}
22709 @infoline @expr{x^(n/2)}
22710 only for even integers @expr{n}.
22712 If @expr{a} is known to be real, @expr{b} is an even integer, and
22713 @expr{c} is a half- or quarter-integer, then @expr{(a^b)^c} is
22714 simplified to @expr{@tfn{abs}(a^(b c))}.
22716 Also, @expr{(-a)^b} is simplified to @expr{a^b} if @expr{b} is an
22717 even integer, or to @expr{-(a^b)} if @expr{b} is an odd integer,
22718 for any negative-looking expression @expr{-a}.
22720 Square roots @expr{@tfn{sqrt}(x)} generally act like one-half powers
22721 @texline @math{x^{1:2}}
22722 @infoline @expr{x^1:2}
22723 for the purposes of the above-listed simplifications.
22725 Also, note that
22726 @texline @math{1 / x^{1:2}}
22727 @infoline @expr{1 / x^1:2}
22728 is changed to
22729 @texline @math{x^{-1:2}},
22730 @infoline @expr{x^(-1:2)},
22731 but @expr{1 / @tfn{sqrt}(x)} is left alone.
22733 @tex
22734 \bigskip
22735 @end tex
22737 Generic identity matrices (@pxref{Matrix Mode}) are simplified by the
22738 following rules:  @expr{@tfn{idn}(a) + b} to @expr{a + b} if @expr{b}
22739 is provably scalar, or expanded out if @expr{b} is a matrix;
22740 @expr{@tfn{idn}(a) + @tfn{idn}(b)} to @expr{@tfn{idn}(a + b)};
22741 @expr{-@tfn{idn}(a)} to @expr{@tfn{idn}(-a)}; @expr{a @tfn{idn}(b)} to
22742 @expr{@tfn{idn}(a b)} if @expr{a} is provably scalar, or to @expr{a b}
22743 if @expr{a} is provably non-scalar;  @expr{@tfn{idn}(a) @tfn{idn}(b)} to
22744 @expr{@tfn{idn}(a b)}; analogous simplifications for quotients involving
22745 @code{idn}; and @expr{@tfn{idn}(a)^n} to @expr{@tfn{idn}(a^n)} where
22746 @expr{n} is an integer.
22748 @tex
22749 \bigskip
22750 @end tex
22752 The @code{floor} function and other integer truncation functions
22753 vanish if the argument is provably integer-valued, so that
22754 @expr{@tfn{floor}(@tfn{round}(x))} simplifies to @expr{@tfn{round}(x)}.
22755 Also, combinations of @code{float}, @code{floor} and its friends,
22756 and @code{ffloor} and its friends, are simplified in appropriate
22757 ways.  @xref{Integer Truncation}.
22759 The expression @expr{@tfn{abs}(-x)} changes to @expr{@tfn{abs}(x)}.
22760 The expression @expr{@tfn{abs}(@tfn{abs}(x))} changes to
22761 @expr{@tfn{abs}(x)};  in fact, @expr{@tfn{abs}(x)} changes to @expr{x} or
22762 @expr{-x} if @expr{x} is provably nonnegative or nonpositive
22763 (@pxref{Declarations}).
22765 While most functions do not recognize the variable @code{i} as an
22766 imaginary number, the @code{arg} function does handle the two cases
22767 @expr{@tfn{arg}(@tfn{i})} and @expr{@tfn{arg}(-@tfn{i})} just for convenience.
22769 The expression @expr{@tfn{conj}(@tfn{conj}(x))} simplifies to @expr{x}.
22770 Various other expressions involving @code{conj}, @code{re}, and
22771 @code{im} are simplified, especially if some of the arguments are
22772 provably real or involve the constant @code{i}.  For example,
22773 @expr{@tfn{conj}(a + b i)} is changed to
22774 @expr{@tfn{conj}(a) - @tfn{conj}(b) i},  or to @expr{a - b i} if @expr{a}
22775 and @expr{b} are known to be real.
22777 Functions like @code{sin} and @code{arctan} generally don't have
22778 any default simplifications beyond simply evaluating the functions
22779 for suitable numeric arguments and infinity.  The algebraic
22780 simplifications described in the next section do provide some
22781 simplifications for these functions, though.
22783 One important simplification that does occur is that
22784 @expr{@tfn{ln}(@tfn{e})} is simplified to 1, and @expr{@tfn{ln}(@tfn{e}^x)} is
22785 simplified to @expr{x} for any @expr{x}.  This occurs even if you have
22786 stored a different value in the Calc variable @samp{e}; but this would
22787 be a bad idea in any case if you were also using natural logarithms!
22789 Among the logical functions, @tfn{!(@var{a} <= @var{b})} changes to
22790 @tfn{@var{a} > @var{b}} and so on.  Equations and inequalities where both sides
22791 are either negative-looking or zero are simplified by negating both sides
22792 and reversing the inequality.  While it might seem reasonable to simplify
22793 @expr{!!x} to @expr{x}, this would not be valid in general because
22794 @expr{!!2} is 1, not 2.
22796 Most other Calc functions have few if any basic simplifications
22797 defined, aside of course from evaluation when the arguments are
22798 suitable numbers.
22800 @node Algebraic Simplifications, Unsafe Simplifications, Basic Simplifications, Simplifying Formulas
22801 @subsection Algebraic Simplifications
22803 @noindent
22804 @cindex Algebraic simplifications
22805 @kindex a s
22806 @kindex m A
22807 This section describes all simplifications that are performed by
22808 the algebraic simplification mode, which is the default simplification
22809 mode.  If you have switched to a different simplification mode, you can
22810 switch back with the @kbd{m A} command. Even in other simplification
22811 modes, the @kbd{a s} command will use these algebraic simplifications to
22812 simplify the formula.
22814 There is a variable, @code{AlgSimpRules}, in which you can put rewrites
22815 to be applied. Its use is analogous to @code{EvalRules},
22816 but without the special restrictions.  Basically, the simplifier does
22817 @samp{@w{a r} AlgSimpRules} with an infinite repeat count on the whole
22818 expression being simplified, then it traverses the expression applying
22819 the built-in rules described below.  If the result is different from
22820 the original expression, the process repeats with the basic
22821 simplifications (including @code{EvalRules}), then @code{AlgSimpRules},
22822 then the built-in simplifications, and so on.
22824 @tex
22825 \bigskip
22826 @end tex
22828 Sums are simplified in two ways.  Constant terms are commuted to the
22829 end of the sum, so that @expr{a + 2 + b} changes to @expr{a + b + 2}.
22830 The only exception is that a constant will not be commuted away
22831 from the first position of a difference, i.e., @expr{2 - x} is not
22832 commuted to @expr{-x + 2}.
22834 Also, terms of sums are combined by the distributive law, as in
22835 @expr{x + y + 2 x} to @expr{y + 3 x}.  This always occurs for
22836 adjacent terms, but Calc's algebraic simplifications compare all pairs
22837 of terms including non-adjacent ones.
22839 @tex
22840 \bigskip
22841 @end tex
22843 Products are sorted into a canonical order using the commutative
22844 law.  For example, @expr{b c a} is commuted to @expr{a b c}.
22845 This allows easier comparison of products; for example, the basic
22846 simplifications will not change @expr{x y + y x} to @expr{2 x y},
22847 but the algebraic simplifications; it first rewrites the sum to
22848 @expr{x y + x y} which can then be recognized as a sum of identical
22849 terms.
22851 The canonical ordering used to sort terms of products has the
22852 property that real-valued numbers, interval forms and infinities
22853 come first, and are sorted into increasing order.  The @kbd{V S}
22854 command uses the same ordering when sorting a vector.
22856 Sorting of terms of products is inhibited when Matrix mode is
22857 turned on; in this case, Calc will never exchange the order of
22858 two terms unless it knows at least one of the terms is a scalar.
22860 Products of powers are distributed by comparing all pairs of
22861 terms, using the same method that the default simplifications
22862 use for adjacent terms of products.
22864 Even though sums are not sorted, the commutative law is still
22865 taken into account when terms of a product are being compared.
22866 Thus @expr{(x + y) (y + x)} will be simplified to @expr{(x + y)^2}.
22867 A subtle point is that @expr{(x - y) (y - x)} will @emph{not}
22868 be simplified to @expr{-(x - y)^2}; Calc does not notice that
22869 one term can be written as a constant times the other, even if
22870 that constant is @mathit{-1}.
22872 A fraction times any expression, @expr{(a:b) x}, is changed to
22873 a quotient involving integers:  @expr{a x / b}.  This is not
22874 done for floating-point numbers like @expr{0.5}, however.  This
22875 is one reason why you may find it convenient to turn Fraction mode
22876 on while doing algebra; @pxref{Fraction Mode}.
22878 @tex
22879 \bigskip
22880 @end tex
22882 Quotients are simplified by comparing all terms in the numerator
22883 with all terms in the denominator for possible cancellation using
22884 the distributive law.  For example, @expr{a x^2 b / c x^3 d} will
22885 cancel @expr{x^2} from the top and bottom to get @expr{a b / c x d}.
22886 (The terms in the denominator will then be rearranged to @expr{c d x}
22887 as described above.)  If there is any common integer or fractional
22888 factor in the numerator and denominator, it is canceled out;
22889 for example, @expr{(4 x + 6) / 8 x} simplifies to @expr{(2 x + 3) / 4 x}.
22891 Non-constant common factors are not found even by algebraic
22892 simplifications.  To cancel the factor @expr{a} in
22893 @expr{(a x + a) / a^2} you could first use @kbd{j M} on the product
22894 @expr{a x} to Merge the numerator to @expr{a (1+x)}, which can then be
22895 simplified successfully.
22897 @tex
22898 \bigskip
22899 @end tex
22901 Integer powers of the variable @code{i} are simplified according
22902 to the identity @expr{i^2 = -1}.  If you store a new value other
22903 than the complex number @expr{(0,1)} in @code{i}, this simplification
22904 will no longer occur.  This is not done by the basic
22905 simplifications; in case someone (unwisely) wants to use the name
22906 @code{i} for a variable unrelated to complex numbers, they can use
22907 basic simplification mode.
22909 Square roots of integer or rational arguments are simplified in
22910 several ways.  (Note that these will be left unevaluated only in
22911 Symbolic mode.)  First, square integer or rational factors are
22912 pulled out so that @expr{@tfn{sqrt}(8)} is rewritten as
22913 @texline @math{2\,@tfn{sqrt}(2)}.
22914 @infoline @expr{2 sqrt(2)}.
22915 Conceptually speaking this implies factoring the argument into primes
22916 and moving pairs of primes out of the square root, but for reasons of
22917 efficiency Calc only looks for primes up to 29.
22919 Square roots in the denominator of a quotient are moved to the
22920 numerator:  @expr{1 / @tfn{sqrt}(3)} changes to @expr{@tfn{sqrt}(3) / 3}.
22921 The same effect occurs for the square root of a fraction:
22922 @expr{@tfn{sqrt}(2:3)} changes to @expr{@tfn{sqrt}(6) / 3}.
22924 @tex
22925 \bigskip
22926 @end tex
22928 The @code{%} (modulo) operator is simplified in several ways
22929 when the modulus @expr{M} is a positive real number.  First, if
22930 the argument is of the form @expr{x + n} for some real number
22931 @expr{n}, then @expr{n} is itself reduced modulo @expr{M}.  For
22932 example, @samp{(x - 23) % 10} is simplified to @samp{(x + 7) % 10}.
22934 If the argument is multiplied by a constant, and this constant
22935 has a common integer divisor with the modulus, then this factor is
22936 canceled out.  For example, @samp{12 x % 15} is changed to
22937 @samp{3 (4 x % 5)} by factoring out 3.  Also, @samp{(12 x + 1) % 15}
22938 is changed to @samp{3 ((4 x + 1:3) % 5)}.  While these forms may
22939 not seem ``simpler,'' they allow Calc to discover useful information
22940 about modulo forms in the presence of declarations.
22942 If the modulus is 1, then Calc can use @code{int} declarations to
22943 evaluate the expression.  For example, the idiom @samp{x % 2} is
22944 often used to check whether a number is odd or even.  As described
22945 above, @w{@samp{2 n % 2}} and @samp{(2 n + 1) % 2} are simplified to
22946 @samp{2 (n % 1)} and @samp{2 ((n + 1:2) % 1)}, respectively; Calc
22947 can simplify these to 0 and 1 (respectively) if @code{n} has been
22948 declared to be an integer.
22950 @tex
22951 \bigskip
22952 @end tex
22954 Trigonometric functions are simplified in several ways.  Whenever a
22955 products of two trigonometric functions can be replaced by a single
22956 function, the replacement is made; for example,
22957 @expr{@tfn{tan}(x) @tfn{cos}(x)} is simplified to @expr{@tfn{sin}(x)}.
22958 Reciprocals of trigonometric functions are replaced by their reciprocal
22959 function; for example, @expr{1/@tfn{sec}(x)} is simplified to
22960 @expr{@tfn{cos}(x)}.  The corresponding simplifications for the
22961 hyperbolic functions are also handled.
22963 Trigonometric functions of their inverse functions are
22964 simplified. The expression @expr{@tfn{sin}(@tfn{arcsin}(x))} is
22965 simplified to @expr{x}, and similarly for @code{cos} and @code{tan}.
22966 Trigonometric functions of inverses of different trigonometric
22967 functions can also be simplified, as in @expr{@tfn{sin}(@tfn{arccos}(x))}
22968 to @expr{@tfn{sqrt}(1 - x^2)}.
22970 If the argument to @code{sin} is negative-looking, it is simplified to
22971 @expr{-@tfn{sin}(x)}, and similarly for @code{cos} and @code{tan}.
22972 Finally, certain special values of the argument are recognized;
22973 @pxref{Trigonometric and Hyperbolic Functions}.
22975 Hyperbolic functions of their inverses and of negative-looking
22976 arguments are also handled, as are exponentials of inverse
22977 hyperbolic functions.
22979 No simplifications for inverse trigonometric and hyperbolic
22980 functions are known, except for negative arguments of @code{arcsin},
22981 @code{arctan}, @code{arcsinh}, and @code{arctanh}.  Note that
22982 @expr{@tfn{arcsin}(@tfn{sin}(x))} can @emph{not} safely change to
22983 @expr{x}, since this only correct within an integer multiple of
22984 @texline @math{2 \pi}
22985 @infoline @expr{2 pi}
22986 radians or 360 degrees.  However, @expr{@tfn{arcsinh}(@tfn{sinh}(x))} is
22987 simplified to @expr{x} if @expr{x} is known to be real.
22989 Several simplifications that apply to logarithms and exponentials
22990 are that @expr{@tfn{exp}(@tfn{ln}(x))},
22991 @texline @tfn{e}@math{^{\ln(x)}},
22992 @infoline @expr{e^@tfn{ln}(x)},
22994 @texline @math{10^{{\rm log10}(x)}}
22995 @infoline @expr{10^@tfn{log10}(x)}
22996 all reduce to @expr{x}.  Also, @expr{@tfn{ln}(@tfn{exp}(x))}, etc., can
22997 reduce to @expr{x} if @expr{x} is provably real.  The form
22998 @expr{@tfn{exp}(x)^y} is simplified to @expr{@tfn{exp}(x y)}.  If @expr{x}
22999 is a suitable multiple of
23000 @texline @math{\pi i}
23001 @infoline @expr{pi i}
23002 (as described above for the trigonometric functions), then
23003 @expr{@tfn{exp}(x)} or @expr{e^x} will be expanded.  Finally,
23004 @expr{@tfn{ln}(x)} is simplified to a form involving @code{pi} and
23005 @code{i} where @expr{x} is provably negative, positive imaginary, or
23006 negative imaginary.
23008 The error functions @code{erf} and @code{erfc} are simplified when
23009 their arguments are negative-looking or are calls to the @code{conj}
23010 function.
23012 @tex
23013 \bigskip
23014 @end tex
23016 Equations and inequalities are simplified by canceling factors
23017 of products, quotients, or sums on both sides.  Inequalities
23018 change sign if a negative multiplicative factor is canceled.
23019 Non-constant multiplicative factors as in @expr{a b = a c} are
23020 canceled from equations only if they are provably nonzero (generally
23021 because they were declared so; @pxref{Declarations}).  Factors
23022 are canceled from inequalities only if they are nonzero and their
23023 sign is known.
23025 Simplification also replaces an equation or inequality with
23026 1 or 0 (``true'' or ``false'') if it can through the use of
23027 declarations.  If @expr{x} is declared to be an integer greater
23028 than 5, then @expr{x < 3}, @expr{x = 3}, and @expr{x = 7.5} are
23029 all simplified to 0, but @expr{x > 3} is simplified to 1.
23030 By a similar analysis, @expr{abs(x) >= 0} is simplified to 1,
23031 as is @expr{x^2 >= 0} if @expr{x} is known to be real.
23033 @node Unsafe Simplifications, Simplification of Units, Algebraic Simplifications, Simplifying Formulas
23034 @subsection ``Unsafe'' Simplifications
23036 @noindent
23037 @cindex Unsafe simplifications
23038 @cindex Extended simplification
23039 @kindex a e
23040 @kindex m E
23041 @pindex calc-simplify-extended
23042 @ignore
23043 @mindex esimpl@idots
23044 @end ignore
23045 @tindex esimplify
23046 Calc is capable of performing some simplifications which may sometimes
23047 be desired but which are not ``safe'' in all cases.  The @kbd{a e}
23048 (@code{calc-simplify-extended}) [@code{esimplify}] command
23049 applies the algebraic simplifications as well as these extended, or
23050 ``unsafe'', simplifications.  Use this only if you know the values in
23051 your formula lie in the restricted ranges for which these
23052 simplifications are valid.  You can use Extended Simplification mode
23053 (@kbd{m E}) to have these simplifications done automatically.
23055 The symbolic integrator uses these extended simplifications; one effect
23056 of this is that the integrator's results must be used with caution.
23057 Where an integral table will often attach conditions like ``for positive
23058 @expr{a} only,'' Calc (like most other symbolic integration programs)
23059 will simply produce an unqualified result.
23061 Because @kbd{a e}'s simplifications are unsafe, it is sometimes better
23062 to type @kbd{C-u -3 a v}, which does extended simplification only
23063 on the top level of the formula without affecting the sub-formulas.
23064 In fact, @kbd{C-u -3 j v} allows you to target extended simplification
23065 to any specific part of a formula.
23067 The variable @code{ExtSimpRules} contains rewrites to be applied when
23068 the extended simplifications are used.  These are applied in addition to
23069 @code{EvalRules} and @code{AlgSimpRules}.  (The @kbd{a r AlgSimpRules}
23070 step described above is simply followed by an @kbd{a r ExtSimpRules} step.)
23072 Following is a complete list of the ``unsafe'' simplifications.
23074 @tex
23075 \bigskip
23076 @end tex
23078 Inverse trigonometric or hyperbolic functions, called with their
23079 corresponding non-inverse functions as arguments, are simplified.
23080 For example, @expr{@tfn{arcsin}(@tfn{sin}(x))} changes
23081 to @expr{x}.  Also, @expr{@tfn{arcsin}(@tfn{cos}(x))} and
23082 @expr{@tfn{arccos}(@tfn{sin}(x))} both change to @expr{@tfn{pi}/2 - x}.
23083 These simplifications are unsafe because they are valid only for
23084 values of @expr{x} in a certain range; outside that range, values
23085 are folded down to the 360-degree range that the inverse trigonometric
23086 functions always produce.
23088 Powers of powers @expr{(x^a)^b} are simplified to
23089 @texline @math{x^{a b}}
23090 @infoline @expr{x^(a b)}
23091 for all @expr{a} and @expr{b}.  These results will be valid only
23092 in a restricted range of @expr{x}; for example, in
23093 @texline @math{(x^2)^{1:2}}
23094 @infoline @expr{(x^2)^1:2}
23095 the powers cancel to get @expr{x}, which is valid for positive values
23096 of @expr{x} but not for negative or complex values.
23098 Similarly, @expr{@tfn{sqrt}(x^a)} and @expr{@tfn{sqrt}(x)^a} are both
23099 simplified (possibly unsafely) to
23100 @texline @math{x^{a/2}}.
23101 @infoline @expr{x^(a/2)}.
23103 Forms like @expr{@tfn{sqrt}(1 - sin(x)^2)} are simplified to, e.g.,
23104 @expr{@tfn{cos}(x)}.  Calc has identities of this sort for @code{sin},
23105 @code{cos}, @code{tan}, @code{sinh}, and @code{cosh}.
23107 Arguments of square roots are partially factored to look for
23108 squared terms that can be extracted.  For example,
23109 @expr{@tfn{sqrt}(a^2 b^3 + a^3 b^2)} simplifies to
23110 @expr{a b @tfn{sqrt}(a+b)}.
23112 The simplifications of @expr{@tfn{ln}(@tfn{exp}(x))},
23113 @expr{@tfn{ln}(@tfn{e}^x)}, and @expr{@tfn{log10}(10^x)} to @expr{x} are also
23114 unsafe because of problems with principal values (although these
23115 simplifications are safe if @expr{x} is known to be real).
23117 Common factors are canceled from products on both sides of an
23118 equation, even if those factors may be zero:  @expr{a x / b x}
23119 to @expr{a / b}.  Such factors are never canceled from
23120 inequalities:  Even the extended simplifications are not bold enough to
23121 reduce @expr{a x < b x} to @expr{a < b} (or @expr{a > b}, depending
23122 on whether you believe @expr{x} is positive or negative).
23123 The @kbd{a M /} command can be used to divide a factor out of
23124 both sides of an inequality.
23126 @node Simplification of Units,  , Unsafe Simplifications, Simplifying Formulas
23127 @subsection Simplification of Units
23129 @noindent
23130 The simplifications described in this section (as well as the algebraic
23131 simplifications) are applied when units need to be simplified.  They can
23132 be applied using the @kbd{u s} (@code{calc-simplify-units}) command, or
23133 will be done automatically in Units Simplification mode (@kbd{m U}).
23134 @xref{Basic Operations on Units}.
23136 The variable @code{UnitSimpRules} contains rewrites to be applied by
23137 units simplifications.  These are applied in addition to @code{EvalRules}
23138 and @code{AlgSimpRules}.
23140 Scalar mode is automatically put into effect when simplifying units.
23141 @xref{Matrix Mode}.
23143 Sums @expr{a + b} involving units are simplified by extracting the
23144 units of @expr{a} as if by the @kbd{u x} command (call the result
23145 @expr{u_a}), then simplifying the expression @expr{b / u_a}
23146 using @kbd{u b} and @kbd{u s}.  If the result has units then the sum
23147 is inconsistent and is left alone.  Otherwise, it is rewritten
23148 in terms of the units @expr{u_a}.
23150 If units auto-ranging mode is enabled, products or quotients in
23151 which the first argument is a number which is out of range for the
23152 leading unit are modified accordingly.
23154 When canceling and combining units in products and quotients,
23155 Calc accounts for unit names that differ only in the prefix letter.
23156 For example, @samp{2 km m} is simplified to @samp{2000 m^2}.
23157 However, compatible but different units like @code{ft} and @code{in}
23158 are not combined in this way.
23160 Quotients @expr{a / b} are simplified in three additional ways.  First,
23161 if @expr{b} is a number or a product beginning with a number, Calc
23162 computes the reciprocal of this number and moves it to the numerator.
23164 Second, for each pair of unit names from the numerator and denominator
23165 of a quotient, if the units are compatible (e.g., they are both
23166 units of area) then they are replaced by the ratio between those
23167 units.  For example, in @samp{3 s in N / kg cm} the units
23168 @samp{in / cm} will be replaced by @expr{2.54}.
23170 Third, if the units in the quotient exactly cancel out, so that
23171 a @kbd{u b} command on the quotient would produce a dimensionless
23172 number for an answer, then the quotient simplifies to that number.
23174 For powers and square roots, the ``unsafe'' simplifications
23175 @expr{(a b)^c} to @expr{a^c b^c}, @expr{(a/b)^c} to @expr{a^c / b^c},
23176 and @expr{(a^b)^c} to
23177 @texline @math{a^{b c}}
23178 @infoline @expr{a^(b c)}
23179 are done if the powers are real numbers.  (These are safe in the context
23180 of units because all numbers involved can reasonably be assumed to be
23181 real.)
23183 Also, if a unit name is raised to a fractional power, and the
23184 base units in that unit name all occur to powers which are a
23185 multiple of the denominator of the power, then the unit name
23186 is expanded out into its base units, which can then be simplified
23187 according to the previous paragraph.  For example, @samp{acre^1.5}
23188 is simplified by noting that @expr{1.5 = 3:2}, that @samp{acre}
23189 is defined in terms of @samp{m^2}, and that the 2 in the power of
23190 @code{m} is a multiple of 2 in @expr{3:2}.  Thus, @code{acre^1.5} is
23191 replaced by approximately
23192 @texline @math{(4046 m^2)^{1.5}}
23193 @infoline @expr{(4046 m^2)^1.5},
23194 which is then changed to
23195 @texline @math{4046^{1.5} \, (m^2)^{1.5}},
23196 @infoline @expr{4046^1.5 (m^2)^1.5},
23197 then to @expr{257440 m^3}.
23199 The functions @code{float}, @code{frac}, @code{clean}, @code{abs},
23200 as well as @code{floor} and the other integer truncation functions,
23201 applied to unit names or products or quotients involving units, are
23202 simplified.  For example, @samp{round(1.6 in)} is changed to
23203 @samp{round(1.6) round(in)}; the lefthand term evaluates to 2,
23204 and the righthand term simplifies to @code{in}.
23206 The functions @code{sin}, @code{cos}, and @code{tan} with arguments
23207 that have angular units like @code{rad} or @code{arcmin} are
23208 simplified by converting to base units (radians), then evaluating
23209 with the angular mode temporarily set to radians.
23211 @node Polynomials, Calculus, Simplifying Formulas, Algebra
23212 @section Polynomials
23214 A @dfn{polynomial} is a sum of terms which are coefficients times
23215 various powers of a ``base'' variable.  For example, @expr{2 x^2 + 3 x - 4}
23216 is a polynomial in @expr{x}.  Some formulas can be considered
23217 polynomials in several different variables:  @expr{1 + 2 x + 3 y + 4 x y^2}
23218 is a polynomial in both @expr{x} and @expr{y}.  Polynomial coefficients
23219 are often numbers, but they may in general be any formulas not
23220 involving the base variable.
23222 @kindex a f
23223 @pindex calc-factor
23224 @tindex factor
23225 The @kbd{a f} (@code{calc-factor}) [@code{factor}] command factors a
23226 polynomial into a product of terms.  For example, the polynomial
23227 @expr{x^3 + 2 x^2 + x} is factored into @samp{x*(x+1)^2}.  As another
23228 example, @expr{a c + b d + b c + a d} is factored into the product
23229 @expr{(a + b) (c + d)}.
23231 Calc currently has three algorithms for factoring.  Formulas which are
23232 linear in several variables, such as the second example above, are
23233 merged according to the distributive law.  Formulas which are
23234 polynomials in a single variable, with constant integer or fractional
23235 coefficients, are factored into irreducible linear and/or quadratic
23236 terms.  The first example above factors into three linear terms
23237 (@expr{x}, @expr{x+1}, and @expr{x+1} again).  Finally, formulas
23238 which do not fit the above criteria are handled by the algebraic
23239 rewrite mechanism.
23241 Calc's polynomial factorization algorithm works by using the general
23242 root-finding command (@w{@kbd{a P}}) to solve for the roots of the
23243 polynomial.  It then looks for roots which are rational numbers
23244 or complex-conjugate pairs, and converts these into linear and
23245 quadratic terms, respectively.  Because it uses floating-point
23246 arithmetic, it may be unable to find terms that involve large
23247 integers (whose number of digits approaches the current precision).
23248 Also, irreducible factors of degree higher than quadratic are not
23249 found, and polynomials in more than one variable are not treated.
23250 (A more robust factorization algorithm may be included in a future
23251 version of Calc.)
23253 @vindex FactorRules
23254 @ignore
23255 @starindex
23256 @end ignore
23257 @tindex thecoefs
23258 @ignore
23259 @starindex
23260 @end ignore
23261 @ignore
23262 @mindex @idots
23263 @end ignore
23264 @tindex thefactors
23265 The rewrite-based factorization method uses rules stored in the variable
23266 @code{FactorRules}.  @xref{Rewrite Rules}, for a discussion of the
23267 operation of rewrite rules.  The default @code{FactorRules} are able
23268 to factor quadratic forms symbolically into two linear terms,
23269 @expr{(a x + b) (c x + d)}.  You can edit these rules to include other
23270 cases if you wish.  To use the rules, Calc builds the formula
23271 @samp{thecoefs(x, [a, b, c, ...])} where @code{x} is the polynomial
23272 base variable and @code{a}, @code{b}, etc., are polynomial coefficients
23273 (which may be numbers or formulas).  The constant term is written first,
23274 i.e., in the @code{a} position.  When the rules complete, they should have
23275 changed the formula into the form @samp{thefactors(x, [f1, f2, f3, ...])}
23276 where each @code{fi} should be a factored term, e.g., @samp{x - ai}.
23277 Calc then multiplies these terms together to get the complete
23278 factored form of the polynomial.  If the rules do not change the
23279 @code{thecoefs} call to a @code{thefactors} call, @kbd{a f} leaves the
23280 polynomial alone on the assumption that it is unfactorable.  (Note that
23281 the function names @code{thecoefs} and @code{thefactors} are used only
23282 as placeholders; there are no actual Calc functions by those names.)
23284 @kindex H a f
23285 @tindex factors
23286 The @kbd{H a f} [@code{factors}] command also factors a polynomial,
23287 but it returns a list of factors instead of an expression which is the
23288 product of the factors.  Each factor is represented by a sub-vector
23289 of the factor, and the power with which it appears.  For example,
23290 @expr{x^5 + x^4 - 33 x^3 + 63 x^2} factors to @expr{(x + 7) x^2 (x - 3)^2}
23291 in @kbd{a f}, or to @expr{[ [x, 2], [x+7, 1], [x-3, 2] ]} in @kbd{H a f}.
23292 If there is an overall numeric factor, it always comes first in the list.
23293 The functions @code{factor} and @code{factors} allow a second argument
23294 when written in algebraic form; @samp{factor(x,v)} factors @expr{x} with
23295 respect to the specific variable @expr{v}.  The default is to factor with
23296 respect to all the variables that appear in @expr{x}.
23298 @kindex a c
23299 @pindex calc-collect
23300 @tindex collect
23301 The @kbd{a c} (@code{calc-collect}) [@code{collect}] command rearranges a
23302 formula as a
23303 polynomial in a given variable, ordered in decreasing powers of that
23304 variable.  For example, given @expr{1 + 2 x + 3 y + 4 x y^2} on
23305 the stack, @kbd{a c x} would produce @expr{(2 + 4 y^2) x + (1 + 3 y)},
23306 and @kbd{a c y} would produce @expr{(4 x) y^2 + 3 y + (1 + 2 x)}.
23307 The polynomial will be expanded out using the distributive law as
23308 necessary:  Collecting @expr{x} in @expr{(x - 1)^3} produces
23309 @expr{x^3 - 3 x^2 + 3 x - 1}.  Terms not involving @expr{x} will
23310 not be expanded.
23312 The ``variable'' you specify at the prompt can actually be any
23313 expression: @kbd{a c ln(x+1)} will collect together all terms multiplied
23314 by @samp{ln(x+1)} or integer powers thereof.  If @samp{x} also appears
23315 in the formula in a context other than @samp{ln(x+1)}, @kbd{a c} will
23316 treat those occurrences as unrelated to @samp{ln(x+1)}, i.e., as constants.
23318 @kindex a x
23319 @pindex calc-expand
23320 @tindex expand
23321 The @kbd{a x} (@code{calc-expand}) [@code{expand}] command expands an
23322 expression by applying the distributive law everywhere.  It applies to
23323 products, quotients, and powers involving sums.  By default, it fully
23324 distributes all parts of the expression.  With a numeric prefix argument,
23325 the distributive law is applied only the specified number of times, then
23326 the partially expanded expression is left on the stack.
23328 The @kbd{a x} and @kbd{j D} commands are somewhat redundant.  Use
23329 @kbd{a x} if you want to expand all products of sums in your formula.
23330 Use @kbd{j D} if you want to expand a particular specified term of
23331 the formula.  There is an exactly analogous correspondence between
23332 @kbd{a f} and @kbd{j M}.  (The @kbd{j D} and @kbd{j M} commands
23333 also know many other kinds of expansions, such as
23334 @samp{exp(a + b) = exp(a) exp(b)}, which @kbd{a x} and @kbd{a f}
23335 do not do.)
23337 Calc's automatic simplifications will sometimes reverse a partial
23338 expansion.  For example, the first step in expanding @expr{(x+1)^3} is
23339 to write @expr{(x+1) (x+1)^2}.  If @kbd{a x} stops there and tries
23340 to put this formula onto the stack, though, Calc will automatically
23341 simplify it back to @expr{(x+1)^3} form.  The solution is to turn
23342 simplification off first (@pxref{Simplification Modes}), or to run
23343 @kbd{a x} without a numeric prefix argument so that it expands all
23344 the way in one step.
23346 @kindex a a
23347 @pindex calc-apart
23348 @tindex apart
23349 The @kbd{a a} (@code{calc-apart}) [@code{apart}] command expands a
23350 rational function by partial fractions.  A rational function is the
23351 quotient of two polynomials; @code{apart} pulls this apart into a
23352 sum of rational functions with simple denominators.  In algebraic
23353 notation, the @code{apart} function allows a second argument that
23354 specifies which variable to use as the ``base''; by default, Calc
23355 chooses the base variable automatically.
23357 @kindex a n
23358 @pindex calc-normalize-rat
23359 @tindex nrat
23360 The @kbd{a n} (@code{calc-normalize-rat}) [@code{nrat}] command
23361 attempts to arrange a formula into a quotient of two polynomials.
23362 For example, given @expr{1 + (a + b/c) / d}, the result would be
23363 @expr{(b + a c + c d) / c d}.  The quotient is reduced, so that
23364 @kbd{a n} will simplify @expr{(x^2 + 2x + 1) / (x^2 - 1)} by dividing
23365 out the common factor @expr{x + 1}, yielding @expr{(x + 1) / (x - 1)}.
23367 @kindex a \
23368 @pindex calc-poly-div
23369 @tindex pdiv
23370 The @kbd{a \} (@code{calc-poly-div}) [@code{pdiv}] command divides
23371 two polynomials @expr{u} and @expr{v}, yielding a new polynomial
23372 @expr{q}.  If several variables occur in the inputs, the inputs are
23373 considered multivariate polynomials.  (Calc divides by the variable
23374 with the largest power in @expr{u} first, or, in the case of equal
23375 powers, chooses the variables in alphabetical order.)  For example,
23376 dividing @expr{x^2 + 3 x + 2} by @expr{x + 2} yields @expr{x + 1}.
23377 The remainder from the division, if any, is reported at the bottom
23378 of the screen and is also placed in the Trail along with the quotient.
23380 Using @code{pdiv} in algebraic notation, you can specify the particular
23381 variable to be used as the base: @code{pdiv(@var{a},@var{b},@var{x})}.
23382 If @code{pdiv} is given only two arguments (as is always the case with
23383 the @kbd{a \} command), then it does a multivariate division as outlined
23384 above.
23386 @kindex a %
23387 @pindex calc-poly-rem
23388 @tindex prem
23389 The @kbd{a %} (@code{calc-poly-rem}) [@code{prem}] command divides
23390 two polynomials and keeps the remainder @expr{r}.  The quotient
23391 @expr{q} is discarded.  For any formulas @expr{a} and @expr{b}, the
23392 results of @kbd{a \} and @kbd{a %} satisfy @expr{a = q b + r}.
23393 (This is analogous to plain @kbd{\} and @kbd{%}, which compute the
23394 integer quotient and remainder from dividing two numbers.)
23396 @kindex a /
23397 @kindex H a /
23398 @pindex calc-poly-div-rem
23399 @tindex pdivrem
23400 @tindex pdivide
23401 The @kbd{a /} (@code{calc-poly-div-rem}) [@code{pdivrem}] command
23402 divides two polynomials and reports both the quotient and the
23403 remainder as a vector @expr{[q, r]}.  The @kbd{H a /} [@code{pdivide}]
23404 command divides two polynomials and constructs the formula
23405 @expr{q + r/b} on the stack.  (Naturally if the remainder is zero,
23406 this will immediately simplify to @expr{q}.)
23408 @kindex a g
23409 @pindex calc-poly-gcd
23410 @tindex pgcd
23411 The @kbd{a g} (@code{calc-poly-gcd}) [@code{pgcd}] command computes
23412 the greatest common divisor of two polynomials.  (The GCD actually
23413 is unique only to within a constant multiplier; Calc attempts to
23414 choose a GCD which will be unsurprising.)  For example, the @kbd{a n}
23415 command uses @kbd{a g} to take the GCD of the numerator and denominator
23416 of a quotient, then divides each by the result using @kbd{a \}.  (The
23417 definition of GCD ensures that this division can take place without
23418 leaving a remainder.)
23420 While the polynomials used in operations like @kbd{a /} and @kbd{a g}
23421 often have integer coefficients, this is not required.  Calc can also
23422 deal with polynomials over the rationals or floating-point reals.
23423 Polynomials with modulo-form coefficients are also useful in many
23424 applications; if you enter @samp{(x^2 + 3 x - 1) mod 5}, Calc
23425 automatically transforms this into a polynomial over the field of
23426 integers mod 5:  @samp{(1 mod 5) x^2 + (3 mod 5) x + (4 mod 5)}.
23428 Congratulations and thanks go to Ove Ewerlid
23429 (@code{ewerlid@@mizar.DoCS.UU.SE}), who contributed many of the
23430 polynomial routines used in the above commands.
23432 @xref{Decomposing Polynomials}, for several useful functions for
23433 extracting the individual coefficients of a polynomial.
23435 @node Calculus, Solving Equations, Polynomials, Algebra
23436 @section Calculus
23438 @noindent
23439 The following calculus commands do not automatically simplify their
23440 inputs or outputs using @code{calc-simplify}.  You may find it helps
23441 to do this by hand by typing @kbd{a s} or @kbd{a e}.  It may also help
23442 to use @kbd{a x} and/or @kbd{a c} to arrange a result in the most
23443 readable way.
23445 @menu
23446 * Differentiation::
23447 * Integration::
23448 * Customizing the Integrator::
23449 * Numerical Integration::
23450 * Taylor Series::
23451 @end menu
23453 @node Differentiation, Integration, Calculus, Calculus
23454 @subsection Differentiation
23456 @noindent
23457 @kindex a d
23458 @kindex H a d
23459 @pindex calc-derivative
23460 @tindex deriv
23461 @tindex tderiv
23462 The @kbd{a d} (@code{calc-derivative}) [@code{deriv}] command computes
23463 the derivative of the expression on the top of the stack with respect to
23464 some variable, which it will prompt you to enter.  Normally, variables
23465 in the formula other than the specified differentiation variable are
23466 considered constant, i.e., @samp{deriv(y,x)} is reduced to zero.  With
23467 the Hyperbolic flag, the @code{tderiv} (total derivative) operation is used
23468 instead, in which derivatives of variables are not reduced to zero
23469 unless those variables are known to be ``constant,'' i.e., independent
23470 of any other variables.  (The built-in special variables like @code{pi}
23471 are considered constant, as are variables that have been declared
23472 @code{const}; @pxref{Declarations}.)
23474 With a numeric prefix argument @var{n}, this command computes the
23475 @var{n}th derivative.
23477 When working with trigonometric functions, it is best to switch to
23478 Radians mode first (with @w{@kbd{m r}}).  The derivative of @samp{sin(x)}
23479 in degrees is @samp{(pi/180) cos(x)}, probably not the expected
23480 answer!
23482 If you use the @code{deriv} function directly in an algebraic formula,
23483 you can write @samp{deriv(f,x,x0)} which represents the derivative
23484 of @expr{f} with respect to @expr{x}, evaluated at the point
23485 @texline @math{x=x_0}.
23486 @infoline @expr{x=x0}.
23488 If the formula being differentiated contains functions which Calc does
23489 not know, the derivatives of those functions are produced by adding
23490 primes (apostrophe characters).  For example, @samp{deriv(f(2x), x)}
23491 produces @samp{2 f'(2 x)}, where the function @code{f'} represents the
23492 derivative of @code{f}.
23494 For functions you have defined with the @kbd{Z F} command, Calc expands
23495 the functions according to their defining formulas unless you have
23496 also defined @code{f'} suitably.  For example, suppose we define
23497 @samp{sinc(x) = sin(x)/x} using @kbd{Z F}.  If we then differentiate
23498 the formula @samp{sinc(2 x)}, the formula will be expanded to
23499 @samp{sin(2 x) / (2 x)} and differentiated.  However, if we also
23500 define @samp{sinc'(x) = dsinc(x)}, say, then Calc will write the
23501 result as @samp{2 dsinc(2 x)}.  @xref{Algebraic Definitions}.
23503 For multi-argument functions @samp{f(x,y,z)}, the derivative with respect
23504 to the first argument is written @samp{f'(x,y,z)}; derivatives with
23505 respect to the other arguments are @samp{f'2(x,y,z)} and @samp{f'3(x,y,z)}.
23506 Various higher-order derivatives can be formed in the obvious way, e.g.,
23507 @samp{f'@var{}'(x)} (the second derivative of @code{f}) or
23508 @samp{f'@var{}'2'3(x,y,z)} (@code{f} differentiated with respect to each
23509 argument once).
23511 @node Integration, Customizing the Integrator, Differentiation, Calculus
23512 @subsection Integration
23514 @noindent
23515 @kindex a i
23516 @pindex calc-integral
23517 @tindex integ
23518 The @kbd{a i} (@code{calc-integral}) [@code{integ}] command computes the
23519 indefinite integral of the expression on the top of the stack with
23520 respect to a prompted-for variable.  The integrator is not guaranteed to
23521 work for all integrable functions, but it is able to integrate several
23522 large classes of formulas.  In particular, any polynomial or rational
23523 function (a polynomial divided by a polynomial) is acceptable.
23524 (Rational functions don't have to be in explicit quotient form, however;
23525 @texline @math{x/(1+x^{-2})}
23526 @infoline @expr{x/(1+x^-2)}
23527 is not strictly a quotient of polynomials, but it is equivalent to
23528 @expr{x^3/(x^2+1)}, which is.)  Also, square roots of terms involving
23529 @expr{x} and @expr{x^2} may appear in rational functions being
23530 integrated.  Finally, rational functions involving trigonometric or
23531 hyperbolic functions can be integrated.
23533 With an argument (@kbd{C-u a i}), this command will compute the definite
23534 integral of the expression on top of the stack.  In this case, the
23535 command will again prompt for an integration variable, then prompt for a
23536 lower limit and an upper limit.
23538 @ifnottex
23539 If you use the @code{integ} function directly in an algebraic formula,
23540 you can also write @samp{integ(f,x,v)} which expresses the resulting
23541 indefinite integral in terms of variable @code{v} instead of @code{x}.
23542 With four arguments, @samp{integ(f(x),x,a,b)} represents a definite
23543 integral from @code{a} to @code{b}.
23544 @end ifnottex
23545 @tex
23546 If you use the @code{integ} function directly in an algebraic formula,
23547 you can also write @samp{integ(f,x,v)} which expresses the resulting
23548 indefinite integral in terms of variable @code{v} instead of @code{x}.
23549 With four arguments, @samp{integ(f(x),x,a,b)} represents a definite
23550 integral $\int_a^b f(x) \, dx$.
23551 @end tex
23553 Please note that the current implementation of Calc's integrator sometimes
23554 produces results that are significantly more complex than they need to
23555 be.  For example, the integral Calc finds for
23556 @texline @math{1/(x+\sqrt{x^2+1})}
23557 @infoline @expr{1/(x+sqrt(x^2+1))}
23558 is several times more complicated than the answer Mathematica
23559 returns for the same input, although the two forms are numerically
23560 equivalent.  Also, any indefinite integral should be considered to have
23561 an arbitrary constant of integration added to it, although Calc does not
23562 write an explicit constant of integration in its result.  For example,
23563 Calc's solution for
23564 @texline @math{1/(1+\tan x)}
23565 @infoline @expr{1/(1+tan(x))}
23566 differs from the solution given in the @emph{CRC Math Tables} by a
23567 constant factor of
23568 @texline @math{\pi i / 2}
23569 @infoline @expr{pi i / 2},
23570 due to a different choice of constant of integration.
23572 The Calculator remembers all the integrals it has done.  If conditions
23573 change in a way that would invalidate the old integrals, say, a switch
23574 from Degrees to Radians mode, then they will be thrown out.  If you
23575 suspect this is not happening when it should, use the
23576 @code{calc-flush-caches} command; @pxref{Caches}.
23578 @vindex IntegLimit
23579 Calc normally will pursue integration by substitution or integration by
23580 parts up to 3 nested times before abandoning an approach as fruitless.
23581 If the integrator is taking too long, you can lower this limit by storing
23582 a number (like 2) in the variable @code{IntegLimit}.  (The @kbd{s I}
23583 command is a convenient way to edit @code{IntegLimit}.)  If this variable
23584 has no stored value or does not contain a nonnegative integer, a limit
23585 of 3 is used.  The lower this limit is, the greater the chance that Calc
23586 will be unable to integrate a function it could otherwise handle.  Raising
23587 this limit allows the Calculator to solve more integrals, though the time
23588 it takes may grow exponentially.  You can monitor the integrator's actions
23589 by creating an Emacs buffer called @file{*Trace*}.  If such a buffer
23590 exists, the @kbd{a i} command will write a log of its actions there.
23592 If you want to manipulate integrals in a purely symbolic way, you can
23593 set the integration nesting limit to 0 to prevent all but fast
23594 table-lookup solutions of integrals.  You might then wish to define
23595 rewrite rules for integration by parts, various kinds of substitutions,
23596 and so on.  @xref{Rewrite Rules}.
23598 @node Customizing the Integrator, Numerical Integration, Integration, Calculus
23599 @subsection Customizing the Integrator
23601 @noindent
23602 @vindex IntegRules
23603 Calc has two built-in rewrite rules called @code{IntegRules} and
23604 @code{IntegAfterRules} which you can edit to define new integration
23605 methods.  @xref{Rewrite Rules}.  At each step of the integration process,
23606 Calc wraps the current integrand in a call to the fictitious function
23607 @samp{integtry(@var{expr},@var{var})}, where @var{expr} is the
23608 integrand and @var{var} is the integration variable.  If your rules
23609 rewrite this to be a plain formula (not a call to @code{integtry}), then
23610 Calc will use this formula as the integral of @var{expr}.  For example,
23611 the rule @samp{integtry(mysin(x),x) := -mycos(x)} would define a rule to
23612 integrate a function @code{mysin} that acts like the sine function.
23613 Then, putting @samp{4 mysin(2y+1)} on the stack and typing @kbd{a i y}
23614 will produce the integral @samp{-2 mycos(2y+1)}.  Note that Calc has
23615 automatically made various transformations on the integral to allow it
23616 to use your rule; integral tables generally give rules for
23617 @samp{mysin(a x + b)}, but you don't need to use this much generality
23618 in your @code{IntegRules}.
23620 @cindex Exponential integral Ei(x)
23621 @ignore
23622 @starindex
23623 @end ignore
23624 @tindex Ei
23625 As a more serious example, the expression @samp{exp(x)/x} cannot be
23626 integrated in terms of the standard functions, so the ``exponential
23627 integral'' function
23628 @texline @math{{\rm Ei}(x)}
23629 @infoline @expr{Ei(x)}
23630 was invented to describe it.
23631 We can get Calc to do this integral in terms of a made-up @code{Ei}
23632 function by adding the rule @samp{[integtry(exp(x)/x, x) := Ei(x)]}
23633 to @code{IntegRules}.  Now entering @samp{exp(2x)/x} on the stack
23634 and typing @kbd{a i x} yields @samp{Ei(2 x)}.  This new rule will
23635 work with Calc's various built-in integration methods (such as
23636 integration by substitution) to solve a variety of other problems
23637 involving @code{Ei}:  For example, now Calc will also be able to
23638 integrate @samp{exp(exp(x))} and @samp{ln(ln(x))} (to get @samp{Ei(exp(x))}
23639 and @samp{x ln(ln(x)) - Ei(ln(x))}, respectively).
23641 Your rule may do further integration by calling @code{integ}.  For
23642 example, @samp{integtry(twice(u),x) := twice(integ(u))} allows Calc
23643 to integrate @samp{twice(sin(x))} to get @samp{twice(-cos(x))}.
23644 Note that @code{integ} was called with only one argument.  This notation
23645 is allowed only within @code{IntegRules}; it means ``integrate this
23646 with respect to the same integration variable.''  If Calc is unable
23647 to integrate @code{u}, the integration that invoked @code{IntegRules}
23648 also fails.  Thus integrating @samp{twice(f(x))} fails, returning the
23649 unevaluated integral @samp{integ(twice(f(x)), x)}.  It is still valid
23650 to call @code{integ} with two or more arguments, however; in this case,
23651 if @code{u} is not integrable, @code{twice} itself will still be
23652 integrated:  If the above rule is changed to @samp{... := twice(integ(u,x))},
23653 then integrating @samp{twice(f(x))} will yield @samp{twice(integ(f(x),x))}.
23655 If a rule instead produces the formula @samp{integsubst(@var{sexpr},
23656 @var{svar})}, either replacing the top-level @code{integtry} call or
23657 nested anywhere inside the expression, then Calc will apply the
23658 substitution @samp{@var{u} = @var{sexpr}(@var{svar})} to try to
23659 integrate the original @var{expr}.  For example, the rule
23660 @samp{sqrt(a) := integsubst(sqrt(x),x)} says that if Calc ever finds
23661 a square root in the integrand, it should attempt the substitution
23662 @samp{u = sqrt(x)}.  (This particular rule is unnecessary because
23663 Calc always tries ``obvious'' substitutions where @var{sexpr} actually
23664 appears in the integrand.)  The variable @var{svar} may be the same
23665 as the @var{var} that appeared in the call to @code{integtry}, but
23666 it need not be.
23668 When integrating according to an @code{integsubst}, Calc uses the
23669 equation solver to find the inverse of @var{sexpr} (if the integrand
23670 refers to @var{var} anywhere except in subexpressions that exactly
23671 match @var{sexpr}).  It uses the differentiator to find the derivative
23672 of @var{sexpr} and/or its inverse (it has two methods that use one
23673 derivative or the other).  You can also specify these items by adding
23674 extra arguments to the @code{integsubst} your rules construct; the
23675 general form is @samp{integsubst(@var{sexpr}, @var{svar}, @var{sinv},
23676 @var{sprime})}, where @var{sinv} is the inverse of @var{sexpr} (still
23677 written as a function of @var{svar}), and @var{sprime} is the
23678 derivative of @var{sexpr} with respect to @var{svar}.  If you don't
23679 specify these things, and Calc is not able to work them out on its
23680 own with the information it knows, then your substitution rule will
23681 work only in very specific, simple cases.
23683 Calc applies @code{IntegRules} as if by @kbd{C-u 1 a r IntegRules};
23684 in other words, Calc stops rewriting as soon as any rule in your rule
23685 set succeeds.  (If it weren't for this, the @samp{integsubst(sqrt(x),x)}
23686 example above would keep on adding layers of @code{integsubst} calls
23687 forever!)
23689 @vindex IntegSimpRules
23690 Another set of rules, stored in @code{IntegSimpRules}, are applied
23691 every time the integrator uses algebraic simplifications to simplify an
23692 intermediate result.  For example, putting the rule
23693 @samp{twice(x) := 2 x} into  @code{IntegSimpRules} would tell Calc to
23694 convert the @code{twice} function into a form it knows whenever
23695 integration is attempted.
23697 One more way to influence the integrator is to define a function with
23698 the @kbd{Z F} command (@pxref{Algebraic Definitions}).  Calc's
23699 integrator automatically expands such functions according to their
23700 defining formulas, even if you originally asked for the function to
23701 be left unevaluated for symbolic arguments.  (Certain other Calc
23702 systems, such as the differentiator and the equation solver, also
23703 do this.)
23705 @vindex IntegAfterRules
23706 Sometimes Calc is able to find a solution to your integral, but it
23707 expresses the result in a way that is unnecessarily complicated.  If
23708 this happens, you can either use @code{integsubst} as described
23709 above to try to hint at a more direct path to the desired result, or
23710 you can use @code{IntegAfterRules}.  This is an extra rule set that
23711 runs after the main integrator returns its result; basically, Calc does
23712 an @kbd{a r IntegAfterRules} on the result before showing it to you.
23713 (It also does algebraic simplifications, without @code{IntegSimpRules},
23714 after that to further simplify the result.)  For example, Calc's integrator
23715 sometimes produces expressions of the form @samp{ln(1+x) - ln(1-x)};
23716 the default @code{IntegAfterRules} rewrite this into the more readable
23717 form @samp{2 arctanh(x)}.  Note that, unlike @code{IntegRules},
23718 @code{IntegSimpRules} and @code{IntegAfterRules} are applied any number
23719 of times until no further changes are possible.  Rewriting by
23720 @code{IntegAfterRules} occurs only after the main integrator has
23721 finished, not at every step as for @code{IntegRules} and
23722 @code{IntegSimpRules}.
23724 @node Numerical Integration, Taylor Series, Customizing the Integrator, Calculus
23725 @subsection Numerical Integration
23727 @noindent
23728 @kindex a I
23729 @pindex calc-num-integral
23730 @tindex ninteg
23731 If you want a purely numerical answer to an integration problem, you can
23732 use the @kbd{a I} (@code{calc-num-integral}) [@code{ninteg}] command.  This
23733 command prompts for an integration variable, a lower limit, and an
23734 upper limit.  Except for the integration variable, all other variables
23735 that appear in the integrand formula must have stored values.  (A stored
23736 value, if any, for the integration variable itself is ignored.)
23738 Numerical integration works by evaluating your formula at many points in
23739 the specified interval.  Calc uses an ``open Romberg'' method; this means
23740 that it does not evaluate the formula actually at the endpoints (so that
23741 it is safe to integrate @samp{sin(x)/x} from zero, for example).  Also,
23742 the Romberg method works especially well when the function being
23743 integrated is fairly smooth.  If the function is not smooth, Calc will
23744 have to evaluate it at quite a few points before it can accurately
23745 determine the value of the integral.
23747 Integration is much faster when the current precision is small.  It is
23748 best to set the precision to the smallest acceptable number of digits
23749 before you use @kbd{a I}.  If Calc appears to be taking too long, press
23750 @kbd{C-g} to halt it and try a lower precision.  If Calc still appears
23751 to need hundreds of evaluations, check to make sure your function is
23752 well-behaved in the specified interval.
23754 It is possible for the lower integration limit to be @samp{-inf} (minus
23755 infinity).  Likewise, the upper limit may be plus infinity.  Calc
23756 internally transforms the integral into an equivalent one with finite
23757 limits.  However, integration to or across singularities is not supported:
23758 The integral of @samp{1/sqrt(x)} from 0 to 1 exists (it can be found
23759 by Calc's symbolic integrator, for example), but @kbd{a I} will fail
23760 because the integrand goes to infinity at one of the endpoints.
23762 @node Taylor Series,  , Numerical Integration, Calculus
23763 @subsection Taylor Series
23765 @noindent
23766 @kindex a t
23767 @pindex calc-taylor
23768 @tindex taylor
23769 The @kbd{a t} (@code{calc-taylor}) [@code{taylor}] command computes a
23770 power series expansion or Taylor series of a function.  You specify the
23771 variable and the desired number of terms.  You may give an expression of
23772 the form @samp{@var{var} = @var{a}} or @samp{@var{var} - @var{a}} instead
23773 of just a variable to produce a Taylor expansion about the point @var{a}.
23774 You may specify the number of terms with a numeric prefix argument;
23775 otherwise the command will prompt you for the number of terms.  Note that
23776 many series expansions have coefficients of zero for some terms, so you
23777 may appear to get fewer terms than you asked for.
23779 If the @kbd{a i} command is unable to find a symbolic integral for a
23780 function, you can get an approximation by integrating the function's
23781 Taylor series.
23783 @node Solving Equations, Numerical Solutions, Calculus, Algebra
23784 @section Solving Equations
23786 @noindent
23787 @kindex a S
23788 @pindex calc-solve-for
23789 @tindex solve
23790 @cindex Equations, solving
23791 @cindex Solving equations
23792 The @kbd{a S} (@code{calc-solve-for}) [@code{solve}] command rearranges
23793 an equation to solve for a specific variable.  An equation is an
23794 expression of the form @expr{L = R}.  For example, the command @kbd{a S x}
23795 will rearrange @expr{y = 3x + 6} to the form, @expr{x = y/3 - 2}.  If the
23796 input is not an equation, it is treated like an equation of the
23797 form @expr{X = 0}.
23799 This command also works for inequalities, as in @expr{y < 3x + 6}.
23800 Some inequalities cannot be solved where the analogous equation could
23801 be; for example, solving
23802 @texline @math{a < b \, c}
23803 @infoline @expr{a < b c}
23804 for @expr{b} is impossible
23805 without knowing the sign of @expr{c}.  In this case, @kbd{a S} will
23806 produce the result
23807 @texline @math{b \mathbin{\hbox{\code{!=}}} a/c}
23808 @infoline @expr{b != a/c}
23809 (using the not-equal-to operator) to signify that the direction of the
23810 inequality is now unknown.  The inequality
23811 @texline @math{a \le b \, c}
23812 @infoline @expr{a <= b c}
23813 is not even partially solved.  @xref{Declarations}, for a way to tell
23814 Calc that the signs of the variables in a formula are in fact known.
23816 Two useful commands for working with the result of @kbd{a S} are
23817 @kbd{a .} (@pxref{Logical Operations}), which converts @expr{x = y/3 - 2}
23818 to @expr{y/3 - 2}, and @kbd{s l} (@pxref{Let Command}) which evaluates
23819 another formula with @expr{x} set equal to @expr{y/3 - 2}.
23821 @menu
23822 * Multiple Solutions::
23823 * Solving Systems of Equations::
23824 * Decomposing Polynomials::
23825 @end menu
23827 @node Multiple Solutions, Solving Systems of Equations, Solving Equations, Solving Equations
23828 @subsection Multiple Solutions
23830 @noindent
23831 @kindex H a S
23832 @tindex fsolve
23833 Some equations have more than one solution.  The Hyperbolic flag
23834 (@code{H a S}) [@code{fsolve}] tells the solver to report the fully
23835 general family of solutions.  It will invent variables @code{n1},
23836 @code{n2}, @dots{}, which represent independent arbitrary integers, and
23837 @code{s1}, @code{s2}, @dots{}, which represent independent arbitrary
23838 signs (either @mathit{+1} or @mathit{-1}).  If you don't use the Hyperbolic
23839 flag, Calc will use zero in place of all arbitrary integers, and plus
23840 one in place of all arbitrary signs.  Note that variables like @code{n1}
23841 and @code{s1} are not given any special interpretation in Calc except by
23842 the equation solver itself.  As usual, you can use the @w{@kbd{s l}}
23843 (@code{calc-let}) command to obtain solutions for various actual values
23844 of these variables.
23846 For example, @kbd{' x^2 = y @key{RET} H a S x @key{RET}} solves to
23847 get @samp{x = s1 sqrt(y)}, indicating that the two solutions to the
23848 equation are @samp{sqrt(y)} and @samp{-sqrt(y)}.  Another way to
23849 think about it is that the square-root operation is really a
23850 two-valued function; since every Calc function must return a
23851 single result, @code{sqrt} chooses to return the positive result.
23852 Then @kbd{H a S} doctors this result using @code{s1} to indicate
23853 the full set of possible values of the mathematical square-root.
23855 There is a similar phenomenon going the other direction:  Suppose
23856 we solve @samp{sqrt(y) = x} for @code{y}.  Calc squares both sides
23857 to get @samp{y = x^2}.  This is correct, except that it introduces
23858 some dubious solutions.  Consider solving @samp{sqrt(y) = -3}:
23859 Calc will report @expr{y = 9} as a valid solution, which is true
23860 in the mathematical sense of square-root, but false (there is no
23861 solution) for the actual Calc positive-valued @code{sqrt}.  This
23862 happens for both @kbd{a S} and @kbd{H a S}.
23864 @cindex @code{GenCount} variable
23865 @vindex GenCount
23866 @ignore
23867 @starindex
23868 @end ignore
23869 @tindex an
23870 @ignore
23871 @starindex
23872 @end ignore
23873 @tindex as
23874 If you store a positive integer in the Calc variable @code{GenCount},
23875 then Calc will generate formulas of the form @samp{as(@var{n})} for
23876 arbitrary signs, and @samp{an(@var{n})} for arbitrary integers,
23877 where @var{n} represents successive values taken by incrementing
23878 @code{GenCount} by one.  While the normal arbitrary sign and
23879 integer symbols start over at @code{s1} and @code{n1} with each
23880 new Calc command, the @code{GenCount} approach will give each
23881 arbitrary value a name that is unique throughout the entire Calc
23882 session.  Also, the arbitrary values are function calls instead
23883 of variables, which is advantageous in some cases.  For example,
23884 you can make a rewrite rule that recognizes all arbitrary signs
23885 using a pattern like @samp{as(n)}.  The @kbd{s l} command only works
23886 on variables, but you can use the @kbd{a b} (@code{calc-substitute})
23887 command to substitute actual values for function calls like @samp{as(3)}.
23889 The @kbd{s G} (@code{calc-edit-GenCount}) command is a convenient
23890 way to create or edit this variable.  Press @kbd{C-c C-c} to finish.
23892 If you have not stored a value in @code{GenCount}, or if the value
23893 in that variable is not a positive integer, the regular
23894 @code{s1}/@code{n1} notation is used.
23896 @kindex I a S
23897 @kindex H I a S
23898 @tindex finv
23899 @tindex ffinv
23900 With the Inverse flag, @kbd{I a S} [@code{finv}] treats the expression
23901 on top of the stack as a function of the specified variable and solves
23902 to find the inverse function, written in terms of the same variable.
23903 For example, @kbd{I a S x} inverts @expr{2x + 6} to @expr{x/2 - 3}.
23904 You can use both Inverse and Hyperbolic [@code{ffinv}] to obtain a
23905 fully general inverse, as described above.
23907 @kindex a P
23908 @pindex calc-poly-roots
23909 @tindex roots
23910 Some equations, specifically polynomials, have a known, finite number
23911 of solutions.  The @kbd{a P} (@code{calc-poly-roots}) [@code{roots}]
23912 command uses @kbd{H a S} to solve an equation in general form, then, for
23913 all arbitrary-sign variables like @code{s1}, and all arbitrary-integer
23914 variables like @code{n1} for which @code{n1} only usefully varies over
23915 a finite range, it expands these variables out to all their possible
23916 values.  The results are collected into a vector, which is returned.
23917 For example, @samp{roots(x^4 = 1, x)} returns the four solutions
23918 @samp{[1, -1, (0, 1), (0, -1)]}.  Generally an @var{n}th degree
23919 polynomial will always have @var{n} roots on the complex plane.
23920 (If you have given a @code{real} declaration for the solution
23921 variable, then only the real-valued solutions, if any, will be
23922 reported; @pxref{Declarations}.)
23924 Note that because @kbd{a P} uses @kbd{H a S}, it is able to deliver
23925 symbolic solutions if the polynomial has symbolic coefficients.  Also
23926 note that Calc's solver is not able to get exact symbolic solutions
23927 to all polynomials.  Polynomials containing powers up to @expr{x^4}
23928 can always be solved exactly; polynomials of higher degree sometimes
23929 can be:  @expr{x^6 + x^3 + 1} is converted to @expr{(x^3)^2 + (x^3) + 1},
23930 which can be solved for @expr{x^3} using the quadratic equation, and then
23931 for @expr{x} by taking cube roots.  But in many cases, like
23932 @expr{x^6 + x + 1}, Calc does not know how to rewrite the polynomial
23933 into a form it can solve.  The @kbd{a P} command can still deliver a
23934 list of numerical roots, however, provided that Symbolic mode (@kbd{m s})
23935 is not turned on.  (If you work with Symbolic mode on, recall that the
23936 @kbd{N} (@code{calc-eval-num}) key is a handy way to reevaluate the
23937 formula on the stack with Symbolic mode temporarily off.)  Naturally,
23938 @kbd{a P} can only provide numerical roots if the polynomial coefficients
23939 are all numbers (real or complex).
23941 @node Solving Systems of Equations, Decomposing Polynomials, Multiple Solutions, Solving Equations
23942 @subsection Solving Systems of Equations
23944 @noindent
23945 @cindex Systems of equations, symbolic
23946 You can also use the commands described above to solve systems of
23947 simultaneous equations.  Just create a vector of equations, then
23948 specify a vector of variables for which to solve.  (You can omit
23949 the surrounding brackets when entering the vector of variables
23950 at the prompt.)
23952 For example, putting @samp{[x + y = a, x - y = b]} on the stack
23953 and typing @kbd{a S x,y @key{RET}} produces the vector of solutions
23954 @samp{[x = a - (a-b)/2, y = (a-b)/2]}.  The result vector will
23955 have the same length as the variables vector, and the variables
23956 will be listed in the same order there.  Note that the solutions
23957 are not always simplified as far as possible; the solution for
23958 @expr{x} here could be improved by an application of the @kbd{a n}
23959 command.
23961 Calc's algorithm works by trying to eliminate one variable at a
23962 time by solving one of the equations for that variable and then
23963 substituting into the other equations.  Calc will try all the
23964 possibilities, but you can speed things up by noting that Calc
23965 first tries to eliminate the first variable with the first
23966 equation, then the second variable with the second equation,
23967 and so on.  It also helps to put the simpler (e.g., more linear)
23968 equations toward the front of the list.  Calc's algorithm will
23969 solve any system of linear equations, and also many kinds of
23970 nonlinear systems.
23972 @ignore
23973 @starindex
23974 @end ignore
23975 @tindex elim
23976 Normally there will be as many variables as equations.  If you
23977 give fewer variables than equations (an ``over-determined'' system
23978 of equations), Calc will find a partial solution.  For example,
23979 typing @kbd{a S y @key{RET}} with the above system of equations
23980 would produce @samp{[y = a - x]}.  There are now several ways to
23981 express this solution in terms of the original variables; Calc uses
23982 the first one that it finds.  You can control the choice by adding
23983 variable specifiers of the form @samp{elim(@var{v})} to the
23984 variables list.  This says that @var{v} should be eliminated from
23985 the equations; the variable will not appear at all in the solution.
23986 For example, typing @kbd{a S y,elim(x)} would yield
23987 @samp{[y = a - (b+a)/2]}.
23989 If the variables list contains only @code{elim} specifiers,
23990 Calc simply eliminates those variables from the equations
23991 and then returns the resulting set of equations.  For example,
23992 @kbd{a S elim(x)} produces @samp{[a - 2 y = b]}.  Every variable
23993 eliminated will reduce the number of equations in the system
23994 by one.
23996 Again, @kbd{a S} gives you one solution to the system of
23997 equations.  If there are several solutions, you can use @kbd{H a S}
23998 to get a general family of solutions, or, if there is a finite
23999 number of solutions, you can use @kbd{a P} to get a list.  (In
24000 the latter case, the result will take the form of a matrix where
24001 the rows are different solutions and the columns correspond to the
24002 variables you requested.)
24004 Another way to deal with certain kinds of overdetermined systems of
24005 equations is the @kbd{a F} command, which does least-squares fitting
24006 to satisfy the equations.  @xref{Curve Fitting}.
24008 @node Decomposing Polynomials,  , Solving Systems of Equations, Solving Equations
24009 @subsection Decomposing Polynomials
24011 @noindent
24012 @ignore
24013 @starindex
24014 @end ignore
24015 @tindex poly
24016 The @code{poly} function takes a polynomial and a variable as
24017 arguments, and returns a vector of polynomial coefficients (constant
24018 coefficient first).  For example, @samp{poly(x^3 + 2 x, x)} returns
24019 @expr{[0, 2, 0, 1]}.  If the input is not a polynomial in @expr{x},
24020 the call to @code{poly} is left in symbolic form.  If the input does
24021 not involve the variable @expr{x}, the input is returned in a list
24022 of length one, representing a polynomial with only a constant
24023 coefficient.  The call @samp{poly(x, x)} returns the vector @expr{[0, 1]}.
24024 The last element of the returned vector is guaranteed to be nonzero;
24025 note that @samp{poly(0, x)} returns the empty vector @expr{[]}.
24026 Note also that @expr{x} may actually be any formula; for example,
24027 @samp{poly(sin(x)^2 - sin(x) + 3, sin(x))} returns @expr{[3, -1, 1]}.
24029 @cindex Coefficients of polynomial
24030 @cindex Degree of polynomial
24031 To get the @expr{x^k} coefficient of polynomial @expr{p}, use
24032 @samp{poly(p, x)_(k+1)}.  To get the degree of polynomial @expr{p},
24033 use @samp{vlen(poly(p, x)) - 1}.  For example, @samp{poly((x+1)^4, x)}
24034 returns @samp{[1, 4, 6, 4, 1]}, so @samp{poly((x+1)^4, x)_(2+1)}
24035 gives the @expr{x^2} coefficient of this polynomial, 6.
24037 @ignore
24038 @starindex
24039 @end ignore
24040 @tindex gpoly
24041 One important feature of the solver is its ability to recognize
24042 formulas which are ``essentially'' polynomials.  This ability is
24043 made available to the user through the @code{gpoly} function, which
24044 is used just like @code{poly}:  @samp{gpoly(@var{expr}, @var{var})}.
24045 If @var{expr} is a polynomial in some term which includes @var{var}, then
24046 this function will return a vector @samp{[@var{x}, @var{c}, @var{a}]}
24047 where @var{x} is the term that depends on @var{var}, @var{c} is a
24048 vector of polynomial coefficients (like the one returned by @code{poly}),
24049 and @var{a} is a multiplier which is usually 1.  Basically,
24050 @samp{@var{expr} = @var{a}*(@var{c}_1 + @var{c}_2 @var{x} +
24051 @var{c}_3 @var{x}^2 + ...)}.  The last element of @var{c} is
24052 guaranteed to be non-zero, and @var{c} will not equal @samp{[1]}
24053 (i.e., the trivial decomposition @var{expr} = @var{x} is not
24054 considered a polynomial).  One side effect is that @samp{gpoly(x, x)}
24055 and @samp{gpoly(6, x)}, both of which might be expected to recognize
24056 their arguments as polynomials, will not because the decomposition
24057 is considered trivial.
24059 For example, @samp{gpoly((x-2)^2, x)} returns @samp{[x, [4, -4, 1], 1]},
24060 since the expanded form of this polynomial is @expr{4 - 4 x + x^2}.
24062 The term @var{x} may itself be a polynomial in @var{var}.  This is
24063 done to reduce the size of the @var{c} vector.  For example,
24064 @samp{gpoly(x^4 + x^2 - 1, x)} returns @samp{[x^2, [-1, 1, 1], 1]},
24065 since a quadratic polynomial in @expr{x^2} is easier to solve than
24066 a quartic polynomial in @expr{x}.
24068 A few more examples of the kinds of polynomials @code{gpoly} can
24069 discover:
24071 @smallexample
24072 sin(x) - 1               [sin(x), [-1, 1], 1]
24073 x + 1/x - 1              [x, [1, -1, 1], 1/x]
24074 x + 1/x                  [x^2, [1, 1], 1/x]
24075 x^3 + 2 x                [x^2, [2, 1], x]
24076 x + x^2:3 + sqrt(x)      [x^1:6, [1, 1, 0, 1], x^1:2]
24077 x^(2a) + 2 x^a + 5       [x^a, [5, 2, 1], 1]
24078 (exp(-x) + exp(x)) / 2   [e^(2 x), [0.5, 0.5], e^-x]
24079 @end smallexample
24081 The @code{poly} and @code{gpoly} functions accept a third integer argument
24082 which specifies the largest degree of polynomial that is acceptable.
24083 If this is @expr{n}, then only @var{c} vectors of length @expr{n+1}
24084 or less will be returned.  Otherwise, the @code{poly} or @code{gpoly}
24085 call will remain in symbolic form.  For example, the equation solver
24086 can handle quartics and smaller polynomials, so it calls
24087 @samp{gpoly(@var{expr}, @var{var}, 4)} to discover whether @var{expr}
24088 can be treated by its linear, quadratic, cubic, or quartic formulas.
24090 @ignore
24091 @starindex
24092 @end ignore
24093 @tindex pdeg
24094 The @code{pdeg} function computes the degree of a polynomial;
24095 @samp{pdeg(p,x)} is the highest power of @code{x} that appears in
24096 @code{p}.  This is the same as @samp{vlen(poly(p,x))-1}, but is
24097 much more efficient.  If @code{p} is constant with respect to @code{x},
24098 then @samp{pdeg(p,x) = 0}.  If @code{p} is not a polynomial in @code{x}
24099 (e.g., @samp{pdeg(2 cos(x), x)}, the function remains unevaluated.
24100 It is possible to omit the second argument @code{x}, in which case
24101 @samp{pdeg(p)} returns the highest total degree of any term of the
24102 polynomial, counting all variables that appear in @code{p}.  Note
24103 that @code{pdeg(c) = pdeg(c,x) = 0} for any nonzero constant @code{c};
24104 the degree of the constant zero is considered to be @code{-inf}
24105 (minus infinity).
24107 @ignore
24108 @starindex
24109 @end ignore
24110 @tindex plead
24111 The @code{plead} function finds the leading term of a polynomial.
24112 Thus @samp{plead(p,x)} is equivalent to @samp{poly(p,x)_vlen(poly(p,x))},
24113 though again more efficient.  In particular, @samp{plead((2x+1)^10, x)}
24114 returns 1024 without expanding out the list of coefficients.  The
24115 value of @code{plead(p,x)} will be zero only if @expr{p = 0}.
24117 @ignore
24118 @starindex
24119 @end ignore
24120 @tindex pcont
24121 The @code{pcont} function finds the @dfn{content} of a polynomial.  This
24122 is the greatest common divisor of all the coefficients of the polynomial.
24123 With two arguments, @code{pcont(p,x)} effectively uses @samp{poly(p,x)}
24124 to get a list of coefficients, then uses @code{pgcd} (the polynomial
24125 GCD function) to combine these into an answer.  For example,
24126 @samp{pcont(4 x y^2 + 6 x^2 y, x)} is @samp{2 y}.  The content is
24127 basically the ``biggest'' polynomial that can be divided into @code{p}
24128 exactly.  The sign of the content is the same as the sign of the leading
24129 coefficient.
24131 With only one argument, @samp{pcont(p)} computes the numerical
24132 content of the polynomial, i.e., the @code{gcd} of the numerical
24133 coefficients of all the terms in the formula.  Note that @code{gcd}
24134 is defined on rational numbers as well as integers; it computes
24135 the @code{gcd} of the numerators and the @code{lcm} of the
24136 denominators.  Thus @samp{pcont(4:3 x y^2 + 6 x^2 y)} returns 2:3.
24137 Dividing the polynomial by this number will clear all the
24138 denominators, as well as dividing by any common content in the
24139 numerators.  The numerical content of a polynomial is negative only
24140 if all the coefficients in the polynomial are negative.
24142 @ignore
24143 @starindex
24144 @end ignore
24145 @tindex pprim
24146 The @code{pprim} function finds the @dfn{primitive part} of a
24147 polynomial, which is simply the polynomial divided (using @code{pdiv}
24148 if necessary) by its content.  If the input polynomial has rational
24149 coefficients, the result will have integer coefficients in simplest
24150 terms.
24152 @node Numerical Solutions, Curve Fitting, Solving Equations, Algebra
24153 @section Numerical Solutions
24155 @noindent
24156 Not all equations can be solved symbolically.  The commands in this
24157 section use numerical algorithms that can find a solution to a specific
24158 instance of an equation to any desired accuracy.  Note that the
24159 numerical commands are slower than their algebraic cousins; it is a
24160 good idea to try @kbd{a S} before resorting to these commands.
24162 (@xref{Curve Fitting}, for some other, more specialized, operations
24163 on numerical data.)
24165 @menu
24166 * Root Finding::
24167 * Minimization::
24168 * Numerical Systems of Equations::
24169 @end menu
24171 @node Root Finding, Minimization, Numerical Solutions, Numerical Solutions
24172 @subsection Root Finding
24174 @noindent
24175 @kindex a R
24176 @pindex calc-find-root
24177 @tindex root
24178 @cindex Newton's method
24179 @cindex Roots of equations
24180 @cindex Numerical root-finding
24181 The @kbd{a R} (@code{calc-find-root}) [@code{root}] command finds a
24182 numerical solution (or @dfn{root}) of an equation.  (This command treats
24183 inequalities the same as equations.  If the input is any other kind
24184 of formula, it is interpreted as an equation of the form @expr{X = 0}.)
24186 The @kbd{a R} command requires an initial guess on the top of the
24187 stack, and a formula in the second-to-top position.  It prompts for a
24188 solution variable, which must appear in the formula.  All other variables
24189 that appear in the formula must have assigned values, i.e., when
24190 a value is assigned to the solution variable and the formula is
24191 evaluated with @kbd{=}, it should evaluate to a number.  Any assigned
24192 value for the solution variable itself is ignored and unaffected by
24193 this command.
24195 When the command completes, the initial guess is replaced on the stack
24196 by a vector of two numbers:  The value of the solution variable that
24197 solves the equation, and the difference between the lefthand and
24198 righthand sides of the equation at that value.  Ordinarily, the second
24199 number will be zero or very nearly zero.  (Note that Calc uses a
24200 slightly higher precision while finding the root, and thus the second
24201 number may be slightly different from the value you would compute from
24202 the equation yourself.)
24204 The @kbd{v h} (@code{calc-head}) command is a handy way to extract
24205 the first element of the result vector, discarding the error term.
24207 The initial guess can be a real number, in which case Calc searches
24208 for a real solution near that number, or a complex number, in which
24209 case Calc searches the whole complex plane near that number for a
24210 solution, or it can be an interval form which restricts the search
24211 to real numbers inside that interval.
24213 Calc tries to use @kbd{a d} to take the derivative of the equation.
24214 If this succeeds, it uses Newton's method.  If the equation is not
24215 differentiable Calc uses a bisection method.  (If Newton's method
24216 appears to be going astray, Calc switches over to bisection if it
24217 can, or otherwise gives up.  In this case it may help to try again
24218 with a slightly different initial guess.)  If the initial guess is a
24219 complex number, the function must be differentiable.
24221 If the formula (or the difference between the sides of an equation)
24222 is negative at one end of the interval you specify and positive at
24223 the other end, the root finder is guaranteed to find a root.
24224 Otherwise, Calc subdivides the interval into small parts looking for
24225 positive and negative values to bracket the root.  When your guess is
24226 an interval, Calc will not look outside that interval for a root.
24228 @kindex H a R
24229 @tindex wroot
24230 The @kbd{H a R} [@code{wroot}] command is similar to @kbd{a R}, except
24231 that if the initial guess is an interval for which the function has
24232 the same sign at both ends, then rather than subdividing the interval
24233 Calc attempts to widen it to enclose a root.  Use this mode if
24234 you are not sure if the function has a root in your interval.
24236 If the function is not differentiable, and you give a simple number
24237 instead of an interval as your initial guess, Calc uses this widening
24238 process even if you did not type the Hyperbolic flag.  (If the function
24239 @emph{is} differentiable, Calc uses Newton's method which does not
24240 require a bounding interval in order to work.)
24242 If Calc leaves the @code{root} or @code{wroot} function in symbolic
24243 form on the stack, it will normally display an explanation for why
24244 no root was found.  If you miss this explanation, press @kbd{w}
24245 (@code{calc-why}) to get it back.
24247 @node Minimization, Numerical Systems of Equations, Root Finding, Numerical Solutions
24248 @subsection Minimization
24250 @noindent
24251 @kindex a N
24252 @kindex H a N
24253 @kindex a X
24254 @kindex H a X
24255 @pindex calc-find-minimum
24256 @pindex calc-find-maximum
24257 @tindex minimize
24258 @tindex maximize
24259 @cindex Minimization, numerical
24260 The @kbd{a N} (@code{calc-find-minimum}) [@code{minimize}] command
24261 finds a minimum value for a formula.  It is very similar in operation
24262 to @kbd{a R} (@code{calc-find-root}):  You give the formula and an initial
24263 guess on the stack, and are prompted for the name of a variable.  The guess
24264 may be either a number near the desired minimum, or an interval enclosing
24265 the desired minimum.  The function returns a vector containing the
24266 value of the variable which minimizes the formula's value, along
24267 with the minimum value itself.
24269 Note that this command looks for a @emph{local} minimum.  Many functions
24270 have more than one minimum; some, like
24271 @texline @math{x \sin x},
24272 @infoline @expr{x sin(x)},
24273 have infinitely many.  In fact, there is no easy way to define the
24274 ``global'' minimum of
24275 @texline @math{x \sin x}
24276 @infoline @expr{x sin(x)}
24277 but Calc can still locate any particular local minimum
24278 for you.  Calc basically goes downhill from the initial guess until it
24279 finds a point at which the function's value is greater both to the left
24280 and to the right.  Calc does not use derivatives when minimizing a function.
24282 If your initial guess is an interval and it looks like the minimum
24283 occurs at one or the other endpoint of the interval, Calc will return
24284 that endpoint only if that endpoint is closed; thus, minimizing @expr{17 x}
24285 over @expr{[2..3]} will return @expr{[2, 38]}, but minimizing over
24286 @expr{(2..3]} would report no minimum found.  In general, you should
24287 use closed intervals to find literally the minimum value in that
24288 range of @expr{x}, or open intervals to find the local minimum, if
24289 any, that happens to lie in that range.
24291 Most functions are smooth and flat near their minimum values.  Because
24292 of this flatness, if the current precision is, say, 12 digits, the
24293 variable can only be determined meaningfully to about six digits.  Thus
24294 you should set the precision to twice as many digits as you need in your
24295 answer.
24297 @ignore
24298 @mindex wmin@idots
24299 @end ignore
24300 @tindex wminimize
24301 @ignore
24302 @mindex wmax@idots
24303 @end ignore
24304 @tindex wmaximize
24305 The @kbd{H a N} [@code{wminimize}] command, analogously to @kbd{H a R},
24306 expands the guess interval to enclose a minimum rather than requiring
24307 that the minimum lie inside the interval you supply.
24309 The @kbd{a X} (@code{calc-find-maximum}) [@code{maximize}] and
24310 @kbd{H a X} [@code{wmaximize}] commands effectively minimize the
24311 negative of the formula you supply.
24313 The formula must evaluate to a real number at all points inside the
24314 interval (or near the initial guess if the guess is a number).  If
24315 the initial guess is a complex number the variable will be minimized
24316 over the complex numbers; if it is real or an interval it will
24317 be minimized over the reals.
24319 @node Numerical Systems of Equations,  , Minimization, Numerical Solutions
24320 @subsection Systems of Equations
24322 @noindent
24323 @cindex Systems of equations, numerical
24324 The @kbd{a R} command can also solve systems of equations.  In this
24325 case, the equation should instead be a vector of equations, the
24326 guess should instead be a vector of numbers (intervals are not
24327 supported), and the variable should be a vector of variables.  You
24328 can omit the brackets while entering the list of variables.  Each
24329 equation must be differentiable by each variable for this mode to
24330 work.  The result will be a vector of two vectors:  The variable
24331 values that solved the system of equations, and the differences
24332 between the sides of the equations with those variable values.
24333 There must be the same number of equations as variables.  Since
24334 only plain numbers are allowed as guesses, the Hyperbolic flag has
24335 no effect when solving a system of equations.
24337 It is also possible to minimize over many variables with @kbd{a N}
24338 (or maximize with @kbd{a X}).  Once again the variable name should
24339 be replaced by a vector of variables, and the initial guess should
24340 be an equal-sized vector of initial guesses.  But, unlike the case of
24341 multidimensional @kbd{a R}, the formula being minimized should
24342 still be a single formula, @emph{not} a vector.  Beware that
24343 multidimensional minimization is currently @emph{very} slow.
24345 @node Curve Fitting, Summations, Numerical Solutions, Algebra
24346 @section Curve Fitting
24348 @noindent
24349 The @kbd{a F} command fits a set of data to a @dfn{model formula},
24350 such as @expr{y = m x + b} where @expr{m} and @expr{b} are parameters
24351 to be determined.  For a typical set of measured data there will be
24352 no single @expr{m} and @expr{b} that exactly fit the data; in this
24353 case, Calc chooses values of the parameters that provide the closest
24354 possible fit.  The model formula can be entered in various ways after
24355 the key sequence @kbd{a F} is pressed.
24357 If the letter @kbd{P} is pressed after @kbd{a F} but before the model
24358 description is entered, the data as well as the model formula will be
24359 plotted after the formula is determined.  This will be indicated by a
24360 ``P'' in the minibuffer after the help message.
24362 @menu
24363 * Linear Fits::
24364 * Polynomial and Multilinear Fits::
24365 * Error Estimates for Fits::
24366 * Standard Nonlinear Models::
24367 * Curve Fitting Details::
24368 * Interpolation::
24369 @end menu
24371 @node Linear Fits, Polynomial and Multilinear Fits, Curve Fitting, Curve Fitting
24372 @subsection Linear Fits
24374 @noindent
24375 @kindex a F
24376 @pindex calc-curve-fit
24377 @tindex fit
24378 @cindex Linear regression
24379 @cindex Least-squares fits
24380 The @kbd{a F} (@code{calc-curve-fit}) [@code{fit}] command attempts
24381 to fit a set of data (@expr{x} and @expr{y} vectors of numbers) to a
24382 straight line, polynomial, or other function of @expr{x}.  For the
24383 moment we will consider only the case of fitting to a line, and we
24384 will ignore the issue of whether or not the model was in fact a good
24385 fit for the data.
24387 In a standard linear least-squares fit, we have a set of @expr{(x,y)}
24388 data points that we wish to fit to the model @expr{y = m x + b}
24389 by adjusting the parameters @expr{m} and @expr{b} to make the @expr{y}
24390 values calculated from the formula be as close as possible to the actual
24391 @expr{y} values in the data set.  (In a polynomial fit, the model is
24392 instead, say, @expr{y = a x^3 + b x^2 + c x + d}.  In a multilinear fit,
24393 we have data points of the form @expr{(x_1,x_2,x_3,y)} and our model is
24394 @expr{y = a x_1 + b x_2 + c x_3 + d}.  These will be discussed later.)
24396 In the model formula, variables like @expr{x} and @expr{x_2} are called
24397 the @dfn{independent variables}, and @expr{y} is the @dfn{dependent
24398 variable}.  Variables like @expr{m}, @expr{a}, and @expr{b} are called
24399 the @dfn{parameters} of the model.
24401 The @kbd{a F} command takes the data set to be fitted from the stack.
24402 By default, it expects the data in the form of a matrix.  For example,
24403 for a linear or polynomial fit, this would be a
24404 @texline @math{2\times N}
24405 @infoline 2xN
24406 matrix where the first row is a list of @expr{x} values and the second
24407 row has the corresponding @expr{y} values.  For the multilinear fit
24408 shown above, the matrix would have four rows (@expr{x_1}, @expr{x_2},
24409 @expr{x_3}, and @expr{y}, respectively).
24411 If you happen to have an
24412 @texline @math{N\times2}
24413 @infoline Nx2
24414 matrix instead of a
24415 @texline @math{2\times N}
24416 @infoline 2xN
24417 matrix, just press @kbd{v t} first to transpose the matrix.
24419 After you type @kbd{a F}, Calc prompts you to select a model.  For a
24420 linear fit, press the digit @kbd{1}.
24422 Calc then prompts for you to name the variables.  By default it chooses
24423 high letters like @expr{x} and @expr{y} for independent variables and
24424 low letters like @expr{a} and @expr{b} for parameters.  (The dependent
24425 variable doesn't need a name.)  The two kinds of variables are separated
24426 by a semicolon.  Since you generally care more about the names of the
24427 independent variables than of the parameters, Calc also allows you to
24428 name only those and let the parameters use default names.
24430 For example, suppose the data matrix
24432 @ifnottex
24433 @example
24434 @group
24435 [ [ 1, 2, 3, 4,  5  ]
24436   [ 5, 7, 9, 11, 13 ] ]
24437 @end group
24438 @end example
24439 @end ifnottex
24440 @tex
24441 \beforedisplay
24442 $$ \pmatrix{ 1 & 2 & 3 & 4  & 5  \cr
24443              5 & 7 & 9 & 11 & 13 }
24445 \afterdisplay
24446 @end tex
24448 @noindent
24449 is on the stack and we wish to do a simple linear fit.  Type
24450 @kbd{a F}, then @kbd{1} for the model, then @key{RET} to use
24451 the default names.  The result will be the formula @expr{3. + 2. x}
24452 on the stack.  Calc has created the model expression @kbd{a + b x},
24453 then found the optimal values of @expr{a} and @expr{b} to fit the
24454 data.  (In this case, it was able to find an exact fit.)  Calc then
24455 substituted those values for @expr{a} and @expr{b} in the model
24456 formula.
24458 The @kbd{a F} command puts two entries in the trail.  One is, as
24459 always, a copy of the result that went to the stack; the other is
24460 a vector of the actual parameter values, written as equations:
24461 @expr{[a = 3, b = 2]}, in case you'd rather read them in a list
24462 than pick them out of the formula.  (You can type @kbd{t y}
24463 to move this vector to the stack; see @ref{Trail Commands}.
24465 Specifying a different independent variable name will affect the
24466 resulting formula: @kbd{a F 1 k @key{RET}} produces @kbd{3 + 2 k}.
24467 Changing the parameter names (say, @kbd{a F 1 k;b,m @key{RET}}) will affect
24468 the equations that go into the trail.
24470 @tex
24471 \bigskip
24472 @end tex
24474 To see what happens when the fit is not exact, we could change
24475 the number 13 in the data matrix to 14 and try the fit again.
24476 The result is:
24478 @example
24479 2.6 + 2.2 x
24480 @end example
24482 Evaluating this formula, say with @kbd{v x 5 @key{RET} @key{TAB} V M $ @key{RET}}, shows
24483 a reasonably close match to the y-values in the data.
24485 @example
24486 [4.8, 7., 9.2, 11.4, 13.6]
24487 @end example
24489 Since there is no line which passes through all the @var{n} data points,
24490 Calc has chosen a line that best approximates the data points using
24491 the method of least squares.  The idea is to define the @dfn{chi-square}
24492 error measure
24494 @ifnottex
24495 @example
24496 chi^2 = sum((y_i - (a + b x_i))^2, i, 1, N)
24497 @end example
24498 @end ifnottex
24499 @tex
24500 \beforedisplay
24501 $$ \chi^2 = \sum_{i=1}^N (y_i - (a + b x_i))^2 $$
24502 \afterdisplay
24503 @end tex
24505 @noindent
24506 which is clearly zero if @expr{a + b x} exactly fits all data points,
24507 and increases as various @expr{a + b x_i} values fail to match the
24508 corresponding @expr{y_i} values.  There are several reasons why the
24509 summand is squared, one of them being to ensure that
24510 @texline @math{\chi^2 \ge 0}.
24511 @infoline @expr{chi^2 >= 0}.
24512 Least-squares fitting simply chooses the values of @expr{a} and @expr{b}
24513 for which the error
24514 @texline @math{\chi^2}
24515 @infoline @expr{chi^2}
24516 is as small as possible.
24518 Other kinds of models do the same thing but with a different model
24519 formula in place of @expr{a + b x_i}.
24521 @tex
24522 \bigskip
24523 @end tex
24525 A numeric prefix argument causes the @kbd{a F} command to take the
24526 data in some other form than one big matrix.  A positive argument @var{n}
24527 will take @var{N} items from the stack, corresponding to the @var{n} rows
24528 of a data matrix.  In the linear case, @var{n} must be 2 since there
24529 is always one independent variable and one dependent variable.
24531 A prefix of zero or plain @kbd{C-u} is a compromise; Calc takes two
24532 items from the stack, an @var{n}-row matrix of @expr{x} values, and a
24533 vector of @expr{y} values.  If there is only one independent variable,
24534 the @expr{x} values can be either a one-row matrix or a plain vector,
24535 in which case the @kbd{C-u} prefix is the same as a @w{@kbd{C-u 2}} prefix.
24537 @node Polynomial and Multilinear Fits, Error Estimates for Fits, Linear Fits, Curve Fitting
24538 @subsection Polynomial and Multilinear Fits
24540 @noindent
24541 To fit the data to higher-order polynomials, just type one of the
24542 digits @kbd{2} through @kbd{9} when prompted for a model.  For example,
24543 we could fit the original data matrix from the previous section
24544 (with 13, not 14) to a parabola instead of a line by typing
24545 @kbd{a F 2 @key{RET}}.
24547 @example
24548 2.00000000001 x - 1.5e-12 x^2 + 2.99999999999
24549 @end example
24551 Note that since the constant and linear terms are enough to fit the
24552 data exactly, it's no surprise that Calc chose a tiny contribution
24553 for @expr{x^2}.  (The fact that it's not exactly zero is due only
24554 to roundoff error.  Since our data are exact integers, we could get
24555 an exact answer by typing @kbd{m f} first to get Fraction mode.
24556 Then the @expr{x^2} term would vanish altogether.  Usually, though,
24557 the data being fitted will be approximate floats so Fraction mode
24558 won't help.)
24560 Doing the @kbd{a F 2} fit on the data set with 14 instead of 13
24561 gives a much larger @expr{x^2} contribution, as Calc bends the
24562 line slightly to improve the fit.
24564 @example
24565 0.142857142855 x^2 + 1.34285714287 x + 3.59999999998
24566 @end example
24568 An important result from the theory of polynomial fitting is that it
24569 is always possible to fit @var{n} data points exactly using a polynomial
24570 of degree @mathit{@var{n}-1}, sometimes called an @dfn{interpolating polynomial}.
24571 Using the modified (14) data matrix, a model number of 4 gives
24572 a polynomial that exactly matches all five data points:
24574 @example
24575 0.04167 x^4 - 0.4167 x^3 + 1.458 x^2 - 0.08333 x + 4.
24576 @end example
24578 The actual coefficients we get with a precision of 12, like
24579 @expr{0.0416666663588}, clearly suffer from loss of precision.
24580 It is a good idea to increase the working precision to several
24581 digits beyond what you need when you do a fitting operation.
24582 Or, if your data are exact, use Fraction mode to get exact
24583 results.
24585 You can type @kbd{i} instead of a digit at the model prompt to fit
24586 the data exactly to a polynomial.  This just counts the number of
24587 columns of the data matrix to choose the degree of the polynomial
24588 automatically.
24590 Fitting data ``exactly'' to high-degree polynomials is not always
24591 a good idea, though.  High-degree polynomials have a tendency to
24592 wiggle uncontrollably in between the fitting data points.  Also,
24593 if the exact-fit polynomial is going to be used to interpolate or
24594 extrapolate the data, it is numerically better to use the @kbd{a p}
24595 command described below.  @xref{Interpolation}.
24597 @tex
24598 \bigskip
24599 @end tex
24601 Another generalization of the linear model is to assume the
24602 @expr{y} values are a sum of linear contributions from several
24603 @expr{x} values.  This is a @dfn{multilinear} fit, and it is also
24604 selected by the @kbd{1} digit key.  (Calc decides whether the fit
24605 is linear or multilinear by counting the rows in the data matrix.)
24607 Given the data matrix,
24609 @example
24610 @group
24611 [ [  1,   2,   3,    4,   5  ]
24612   [  7,   2,   3,    5,   2  ]
24613   [ 14.5, 15, 18.5, 22.5, 24 ] ]
24614 @end group
24615 @end example
24617 @noindent
24618 the command @kbd{a F 1 @key{RET}} will call the first row @expr{x} and the
24619 second row @expr{y}, and will fit the values in the third row to the
24620 model @expr{a + b x + c y}.
24622 @example
24623 8. + 3. x + 0.5 y
24624 @end example
24626 Calc can do multilinear fits with any number of independent variables
24627 (i.e., with any number of data rows).
24629 @tex
24630 \bigskip
24631 @end tex
24633 Yet another variation is @dfn{homogeneous} linear models, in which
24634 the constant term is known to be zero.  In the linear case, this
24635 means the model formula is simply @expr{a x}; in the multilinear
24636 case, the model might be @expr{a x + b y + c z}; and in the polynomial
24637 case, the model could be @expr{a x + b x^2 + c x^3}.  You can get
24638 a homogeneous linear or multilinear model by pressing the letter
24639 @kbd{h} followed by a regular model key, like @kbd{1} or @kbd{2}.
24640 This will be indicated by an ``h'' in the minibuffer after the help
24641 message.
24643 It is certainly possible to have other constrained linear models,
24644 like @expr{2.3 + a x} or @expr{a - 4 x}.  While there is no single
24645 key to select models like these, a later section shows how to enter
24646 any desired model by hand.  In the first case, for example, you
24647 would enter @kbd{a F ' 2.3 + a x}.
24649 Another class of models that will work but must be entered by hand
24650 are multinomial fits, e.g., @expr{a + b x + c y + d x^2 + e y^2 + f x y}.
24652 @node Error Estimates for Fits, Standard Nonlinear Models, Polynomial and Multilinear Fits, Curve Fitting
24653 @subsection Error Estimates for Fits
24655 @noindent
24656 @kindex H a F
24657 @tindex efit
24658 With the Hyperbolic flag, @kbd{H a F} [@code{efit}] performs the same
24659 fitting operation as @kbd{a F}, but reports the coefficients as error
24660 forms instead of plain numbers.  Fitting our two data matrices (first
24661 with 13, then with 14) to a line with @kbd{H a F} gives the results,
24663 @example
24664 3. + 2. x
24665 2.6 +/- 0.382970843103 + 2.2 +/- 0.115470053838 x
24666 @end example
24668 In the first case the estimated errors are zero because the linear
24669 fit is perfect.  In the second case, the errors are nonzero but
24670 moderately small, because the data are still very close to linear.
24672 It is also possible for the @emph{input} to a fitting operation to
24673 contain error forms.  The data values must either all include errors
24674 or all be plain numbers.  Error forms can go anywhere but generally
24675 go on the numbers in the last row of the data matrix.  If the last
24676 row contains error forms
24677 @texline `@var{y_i}@w{ @tfn{+/-} }@math{\sigma_i}',
24678 @infoline `@var{y_i}@w{ @tfn{+/-} }@var{sigma_i}',
24679 then the
24680 @texline @math{\chi^2}
24681 @infoline @expr{chi^2}
24682 statistic is now,
24684 @ifnottex
24685 @example
24686 chi^2 = sum(((y_i - (a + b x_i)) / sigma_i)^2, i, 1, N)
24687 @end example
24688 @end ifnottex
24689 @tex
24690 \beforedisplay
24691 $$ \chi^2 = \sum_{i=1}^N \left(y_i - (a + b x_i) \over \sigma_i\right)^2 $$
24692 \afterdisplay
24693 @end tex
24695 @noindent
24696 so that data points with larger error estimates contribute less to
24697 the fitting operation.
24699 If there are error forms on other rows of the data matrix, all the
24700 errors for a given data point are combined; the square root of the
24701 sum of the squares of the errors forms the
24702 @texline @math{\sigma_i}
24703 @infoline @expr{sigma_i}
24704 used for the data point.
24706 Both @kbd{a F} and @kbd{H a F} can accept error forms in the input
24707 matrix, although if you are concerned about error analysis you will
24708 probably use @kbd{H a F} so that the output also contains error
24709 estimates.
24711 If the input contains error forms but all the
24712 @texline @math{\sigma_i}
24713 @infoline @expr{sigma_i}
24714 values are the same, it is easy to see that the resulting fitted model
24715 will be the same as if the input did not have error forms at all
24716 @texline (@math{\chi^2}
24717 @infoline (@expr{chi^2}
24718 is simply scaled uniformly by
24719 @texline @math{1 / \sigma^2},
24720 @infoline @expr{1 / sigma^2},
24721 which doesn't affect where it has a minimum).  But there @emph{will} be
24722 a difference in the estimated errors of the coefficients reported by
24723 @kbd{H a F}.
24725 Consult any text on statistical modeling of data for a discussion
24726 of where these error estimates come from and how they should be
24727 interpreted.
24729 @tex
24730 \bigskip
24731 @end tex
24733 @kindex I a F
24734 @tindex xfit
24735 With the Inverse flag, @kbd{I a F} [@code{xfit}] produces even more
24736 information.  The result is a vector of six items:
24738 @enumerate
24739 @item
24740 The model formula with error forms for its coefficients or
24741 parameters.  This is the result that @kbd{H a F} would have
24742 produced.
24744 @item
24745 A vector of ``raw'' parameter values for the model.  These are the
24746 polynomial coefficients or other parameters as plain numbers, in the
24747 same order as the parameters appeared in the final prompt of the
24748 @kbd{I a F} command.  For polynomials of degree @expr{d}, this vector
24749 will have length @expr{M = d+1} with the constant term first.
24751 @item
24752 The covariance matrix @expr{C} computed from the fit.  This is
24753 an @var{m}x@var{m} symmetric matrix; the diagonal elements
24754 @texline @math{C_{jj}}
24755 @infoline @expr{C_j_j}
24756 are the variances
24757 @texline @math{\sigma_j^2}
24758 @infoline @expr{sigma_j^2}
24759 of the parameters.  The other elements are covariances
24760 @texline @math{\sigma_{ij}^2}
24761 @infoline @expr{sigma_i_j^2}
24762 that describe the correlation between pairs of parameters.  (A related
24763 set of numbers, the @dfn{linear correlation coefficients}
24764 @texline @math{r_{ij}},
24765 @infoline @expr{r_i_j},
24766 are defined as
24767 @texline @math{\sigma_{ij}^2 / \sigma_i \, \sigma_j}.)
24768 @infoline @expr{sigma_i_j^2 / sigma_i sigma_j}.)
24770 @item
24771 A vector of @expr{M} ``parameter filter'' functions whose
24772 meanings are described below.  If no filters are necessary this
24773 will instead be an empty vector; this is always the case for the
24774 polynomial and multilinear fits described so far.
24776 @item
24777 The value of
24778 @texline @math{\chi^2}
24779 @infoline @expr{chi^2}
24780 for the fit, calculated by the formulas shown above.  This gives a
24781 measure of the quality of the fit; statisticians consider
24782 @texline @math{\chi^2 \approx N - M}
24783 @infoline @expr{chi^2 = N - M}
24784 to indicate a moderately good fit (where again @expr{N} is the number of
24785 data points and @expr{M} is the number of parameters).
24787 @item
24788 A measure of goodness of fit expressed as a probability @expr{Q}.
24789 This is computed from the @code{utpc} probability distribution
24790 function using
24791 @texline @math{\chi^2}
24792 @infoline @expr{chi^2}
24793 with @expr{N - M} degrees of freedom.  A
24794 value of 0.5 implies a good fit; some texts recommend that often
24795 @expr{Q = 0.1} or even 0.001 can signify an acceptable fit.  In
24796 particular,
24797 @texline @math{\chi^2}
24798 @infoline @expr{chi^2}
24799 statistics assume the errors in your inputs
24800 follow a normal (Gaussian) distribution; if they don't, you may
24801 have to accept smaller values of @expr{Q}.
24803 The @expr{Q} value is computed only if the input included error
24804 estimates.  Otherwise, Calc will report the symbol @code{nan}
24805 for @expr{Q}.  The reason is that in this case the
24806 @texline @math{\chi^2}
24807 @infoline @expr{chi^2}
24808 value has effectively been used to estimate the original errors
24809 in the input, and thus there is no redundant information left
24810 over to use for a confidence test.
24811 @end enumerate
24813 @node Standard Nonlinear Models, Curve Fitting Details, Error Estimates for Fits, Curve Fitting
24814 @subsection Standard Nonlinear Models
24816 @noindent
24817 The @kbd{a F} command also accepts other kinds of models besides
24818 lines and polynomials.  Some common models have quick single-key
24819 abbreviations; others must be entered by hand as algebraic formulas.
24821 Here is a complete list of the standard models recognized by @kbd{a F}:
24823 @table @kbd
24824 @item 1
24825 Linear or multilinear.  @mathit{a + b x + c y + d z}.
24826 @item 2-9
24827 Polynomials.  @mathit{a + b x + c x^2 + d x^3}.
24828 @item e
24829 Exponential.  @mathit{a} @tfn{exp}@mathit{(b x)} @tfn{exp}@mathit{(c y)}.
24830 @item E
24831 Base-10 exponential.  @mathit{a} @tfn{10^}@mathit{(b x)} @tfn{10^}@mathit{(c y)}.
24832 @item x
24833 Exponential (alternate notation).  @tfn{exp}@mathit{(a + b x + c y)}.
24834 @item X
24835 Base-10 exponential (alternate).  @tfn{10^}@mathit{(a + b x + c y)}.
24836 @item l
24837 Logarithmic.  @mathit{a + b} @tfn{ln}@mathit{(x) + c} @tfn{ln}@mathit{(y)}.
24838 @item L
24839 Base-10 logarithmic.  @mathit{a + b} @tfn{log10}@mathit{(x) + c} @tfn{log10}@mathit{(y)}.
24840 @item ^
24841 General exponential.  @mathit{a b^x c^y}.
24842 @item p
24843 Power law.  @mathit{a x^b y^c}.
24844 @item q
24845 Quadratic.  @mathit{a + b (x-c)^2 + d (x-e)^2}.
24846 @item g
24847 Gaussian.
24848 @texline @math{{a \over b \sqrt{2 \pi}} \exp\left( -{1 \over 2} \left( x - c \over b \right)^2 \right)}.
24849 @infoline @mathit{(a / b sqrt(2 pi)) exp(-0.5*((x-c)/b)^2)}.
24850 @item s
24851 Logistic @emph{s} curve.
24852 @texline @math{a/(1+e^{b(x-c)})}.
24853 @infoline @mathit{a/(1 + exp(b (x - c)))}.
24854 @item b
24855 Logistic bell curve.
24856 @texline @math{ae^{b(x-c)}/(1+e^{b(x-c)})^2}.
24857 @infoline @mathit{a exp(b (x - c))/(1 + exp(b (x - c)))^2}.
24858 @item o
24859 Hubbert linearization.
24860 @texline @math{{y \over x} = a(1-x/b)}.
24861 @infoline @mathit{(y/x) = a (1 - x/b)}.
24862 @end table
24864 All of these models are used in the usual way; just press the appropriate
24865 letter at the model prompt, and choose variable names if you wish.  The
24866 result will be a formula as shown in the above table, with the best-fit
24867 values of the parameters substituted.  (You may find it easier to read
24868 the parameter values from the vector that is placed in the trail.)
24870 All models except Gaussian, logistics, Hubbert and polynomials can
24871 generalize as shown to any number of independent variables.  Also, all
24872 the built-in models except for the logistic and Hubbert curves have an
24873 additive or multiplicative parameter shown as @expr{a} in the above table
24874 which can be replaced by zero or one, as appropriate, by typing @kbd{h}
24875 before the model key.
24877 Note that many of these models are essentially equivalent, but express
24878 the parameters slightly differently.  For example, @expr{a b^x} and
24879 the other two exponential models are all algebraic rearrangements of
24880 each other.  Also, the ``quadratic'' model is just a degree-2 polynomial
24881 with the parameters expressed differently.  Use whichever form best
24882 matches the problem.
24884 The HP-28/48 calculators support four different models for curve
24885 fitting, called @code{LIN}, @code{LOG}, @code{EXP}, and @code{PWR}.
24886 These correspond to Calc models @samp{a + b x}, @samp{a + b ln(x)},
24887 @samp{a exp(b x)}, and @samp{a x^b}, respectively.  In each case,
24888 @expr{a} is what the HP-48 identifies as the ``intercept,'' and
24889 @expr{b} is what it calls the ``slope.''
24891 @tex
24892 \bigskip
24893 @end tex
24895 If the model you want doesn't appear on this list, press @kbd{'}
24896 (the apostrophe key) at the model prompt to enter any algebraic
24897 formula, such as @kbd{m x - b}, as the model.  (Not all models
24898 will work, though---see the next section for details.)
24900 The model can also be an equation like @expr{y = m x + b}.
24901 In this case, Calc thinks of all the rows of the data matrix on
24902 equal terms; this model effectively has two parameters
24903 (@expr{m} and @expr{b}) and two independent variables (@expr{x}
24904 and @expr{y}), with no ``dependent'' variables.  Model equations
24905 do not need to take this @expr{y =} form.  For example, the
24906 implicit line equation @expr{a x + b y = 1} works fine as a
24907 model.
24909 When you enter a model, Calc makes an alphabetical list of all
24910 the variables that appear in the model.  These are used for the
24911 default parameters, independent variables, and dependent variable
24912 (in that order).  If you enter a plain formula (not an equation),
24913 Calc assumes the dependent variable does not appear in the formula
24914 and thus does not need a name.
24916 For example, if the model formula has the variables @expr{a,mu,sigma,t,x},
24917 and the data matrix has three rows (meaning two independent variables),
24918 Calc will use @expr{a,mu,sigma} as the default parameters, and the
24919 data rows will be named @expr{t} and @expr{x}, respectively.  If you
24920 enter an equation instead of a plain formula, Calc will use @expr{a,mu}
24921 as the parameters, and @expr{sigma,t,x} as the three independent
24922 variables.
24924 You can, of course, override these choices by entering something
24925 different at the prompt.  If you leave some variables out of the list,
24926 those variables must have stored values and those stored values will
24927 be used as constants in the model.  (Stored values for the parameters
24928 and independent variables are ignored by the @kbd{a F} command.)
24929 If you list only independent variables, all the remaining variables
24930 in the model formula will become parameters.
24932 If there are @kbd{$} signs in the model you type, they will stand
24933 for parameters and all other variables (in alphabetical order)
24934 will be independent.  Use @kbd{$} for one parameter, @kbd{$$} for
24935 another, and so on.  Thus @kbd{$ x + $$} is another way to describe
24936 a linear model.
24938 If you type a @kbd{$} instead of @kbd{'} at the model prompt itself,
24939 Calc will take the model formula from the stack.  (The data must then
24940 appear at the second stack level.)  The same conventions are used to
24941 choose which variables in the formula are independent by default and
24942 which are parameters.
24944 Models taken from the stack can also be expressed as vectors of
24945 two or three elements, @expr{[@var{model}, @var{vars}]} or
24946 @expr{[@var{model}, @var{vars}, @var{params}]}.  Each of @var{vars}
24947 and @var{params} may be either a variable or a vector of variables.
24948 (If @var{params} is omitted, all variables in @var{model} except
24949 those listed as @var{vars} are parameters.)
24951 When you enter a model manually with @kbd{'}, Calc puts a 3-vector
24952 describing the model in the trail so you can get it back if you wish.
24954 @tex
24955 \bigskip
24956 @end tex
24958 @vindex Model1
24959 @vindex Model2
24960 Finally, you can store a model in one of the Calc variables
24961 @code{Model1} or @code{Model2}, then use this model by typing
24962 @kbd{a F u} or @kbd{a F U} (respectively).  The value stored in
24963 the variable can be any of the formats that @kbd{a F $} would
24964 accept for a model on the stack.
24966 @tex
24967 \bigskip
24968 @end tex
24970 Calc uses the principal values of inverse functions like @code{ln}
24971 and @code{arcsin} when doing fits.  For example, when you enter
24972 the model @samp{y = sin(a t + b)} Calc actually uses the easier
24973 form @samp{arcsin(y) = a t + b}.  The @code{arcsin} function always
24974 returns results in the range from @mathit{-90} to 90 degrees (or the
24975 equivalent range in radians).  Suppose you had data that you
24976 believed to represent roughly three oscillations of a sine wave,
24977 so that the argument of the sine might go from zero to
24978 @texline @math{3\times360}
24979 @infoline @mathit{3*360}
24980 degrees.
24981 The above model would appear to be a good way to determine the
24982 true frequency and phase of the sine wave, but in practice it
24983 would fail utterly.  The righthand side of the actual model
24984 @samp{arcsin(y) = a t + b} will grow smoothly with @expr{t}, but
24985 the lefthand side will bounce back and forth between @mathit{-90} and 90.
24986 No values of @expr{a} and @expr{b} can make the two sides match,
24987 even approximately.
24989 There is no good solution to this problem at present.  You could
24990 restrict your data to small enough ranges so that the above problem
24991 doesn't occur (i.e., not straddling any peaks in the sine wave).
24992 Or, in this case, you could use a totally different method such as
24993 Fourier analysis, which is beyond the scope of the @kbd{a F} command.
24994 (Unfortunately, Calc does not currently have any facilities for
24995 taking Fourier and related transforms.)
24997 @node Curve Fitting Details, Interpolation, Standard Nonlinear Models, Curve Fitting
24998 @subsection Curve Fitting Details
25000 @noindent
25001 Calc's internal least-squares fitter can only handle multilinear
25002 models.  More precisely, it can handle any model of the form
25003 @expr{a f(x,y,z) + b g(x,y,z) + c h(x,y,z)}, where @expr{a,b,c}
25004 are the parameters and @expr{x,y,z} are the independent variables
25005 (of course there can be any number of each, not just three).
25007 In a simple multilinear or polynomial fit, it is easy to see how
25008 to convert the model into this form.  For example, if the model
25009 is @expr{a + b x + c x^2}, then @expr{f(x) = 1}, @expr{g(x) = x},
25010 and @expr{h(x) = x^2} are suitable functions.
25012 For most other models, Calc uses a variety of algebraic manipulations
25013 to try to put the problem into the form
25015 @smallexample
25016 Y(x,y,z) = A(a,b,c) F(x,y,z) + B(a,b,c) G(x,y,z) + C(a,b,c) H(x,y,z)
25017 @end smallexample
25019 @noindent
25020 where @expr{Y,A,B,C,F,G,H} are arbitrary functions.  It computes
25021 @expr{Y}, @expr{F}, @expr{G}, and @expr{H} for all the data points,
25022 does a standard linear fit to find the values of @expr{A}, @expr{B},
25023 and @expr{C}, then uses the equation solver to solve for @expr{a,b,c}
25024 in terms of @expr{A,B,C}.
25026 A remarkable number of models can be cast into this general form.
25027 We'll look at two examples here to see how it works.  The power-law
25028 model @expr{y = a x^b} with two independent variables and two parameters
25029 can be rewritten as follows:
25031 @example
25032 y = a x^b
25033 y = a exp(b ln(x))
25034 y = exp(ln(a) + b ln(x))
25035 ln(y) = ln(a) + b ln(x)
25036 @end example
25038 @noindent
25039 which matches the desired form with
25040 @texline @math{Y = \ln(y)},
25041 @infoline @expr{Y = ln(y)},
25042 @texline @math{A = \ln(a)},
25043 @infoline @expr{A = ln(a)},
25044 @expr{F = 1}, @expr{B = b}, and
25045 @texline @math{G = \ln(x)}.
25046 @infoline @expr{G = ln(x)}.
25047 Calc thus computes the logarithms of your @expr{y} and @expr{x} values,
25048 does a linear fit for @expr{A} and @expr{B}, then solves to get
25049 @texline @math{a = \exp(A)}
25050 @infoline @expr{a = exp(A)}
25051 and @expr{b = B}.
25053 Another interesting example is the ``quadratic'' model, which can
25054 be handled by expanding according to the distributive law.
25056 @example
25057 y = a + b*(x - c)^2
25058 y = a + b c^2 - 2 b c x + b x^2
25059 @end example
25061 @noindent
25062 which matches with @expr{Y = y}, @expr{A = a + b c^2}, @expr{F = 1},
25063 @expr{B = -2 b c}, @expr{G = x} (the @mathit{-2} factor could just as easily
25064 have been put into @expr{G} instead of @expr{B}), @expr{C = b}, and
25065 @expr{H = x^2}.
25067 The Gaussian model looks quite complicated, but a closer examination
25068 shows that it's actually similar to the quadratic model but with an
25069 exponential that can be brought to the top and moved into @expr{Y}.
25071 The logistic models cannot be put into general linear form.  For these
25072 models, and the Hubbert linearization, Calc computes a rough
25073 approximation for the parameters, then uses the Levenberg-Marquardt
25074 iterative method to refine the approximations.
25076 Another model that cannot be put into general linear
25077 form is a Gaussian with a constant background added on, i.e.,
25078 @expr{d} + the regular Gaussian formula.  If you have a model like
25079 this, your best bet is to replace enough of your parameters with
25080 constants to make the model linearizable, then adjust the constants
25081 manually by doing a series of fits.  You can compare the fits by
25082 graphing them, by examining the goodness-of-fit measures returned by
25083 @kbd{I a F}, or by some other method suitable to your application.
25084 Note that some models can be linearized in several ways.  The
25085 Gaussian-plus-@var{d} model can be linearized by setting @expr{d}
25086 (the background) to a constant, or by setting @expr{b} (the standard
25087 deviation) and @expr{c} (the mean) to constants.
25089 To fit a model with constants substituted for some parameters, just
25090 store suitable values in those parameter variables, then omit them
25091 from the list of parameters when you answer the variables prompt.
25093 @tex
25094 \bigskip
25095 @end tex
25097 A last desperate step would be to use the general-purpose
25098 @code{minimize} function rather than @code{fit}.  After all, both
25099 functions solve the problem of minimizing an expression (the
25100 @texline @math{\chi^2}
25101 @infoline @expr{chi^2}
25102 sum) by adjusting certain parameters in the expression.  The @kbd{a F}
25103 command is able to use a vastly more efficient algorithm due to its
25104 special knowledge about linear chi-square sums, but the @kbd{a N}
25105 command can do the same thing by brute force.
25107 A compromise would be to pick out a few parameters without which the
25108 fit is linearizable, and use @code{minimize} on a call to @code{fit}
25109 which efficiently takes care of the rest of the parameters.  The thing
25110 to be minimized would be the value of
25111 @texline @math{\chi^2}
25112 @infoline @expr{chi^2}
25113 returned as the fifth result of the @code{xfit} function:
25115 @smallexample
25116 minimize(xfit(gaus(a,b,c,d,x), x, [a,b,c], data)_5, d, guess)
25117 @end smallexample
25119 @noindent
25120 where @code{gaus} represents the Gaussian model with background,
25121 @code{data} represents the data matrix, and @code{guess} represents
25122 the initial guess for @expr{d} that @code{minimize} requires.
25123 This operation will only be, shall we say, extraordinarily slow
25124 rather than astronomically slow (as would be the case if @code{minimize}
25125 were used by itself to solve the problem).
25127 @tex
25128 \bigskip
25129 @end tex
25131 The @kbd{I a F} [@code{xfit}] command is somewhat trickier when
25132 nonlinear models are used.  The second item in the result is the
25133 vector of ``raw'' parameters @expr{A}, @expr{B}, @expr{C}.  The
25134 covariance matrix is written in terms of those raw parameters.
25135 The fifth item is a vector of @dfn{filter} expressions.  This
25136 is the empty vector @samp{[]} if the raw parameters were the same
25137 as the requested parameters, i.e., if @expr{A = a}, @expr{B = b},
25138 and so on (which is always true if the model is already linear
25139 in the parameters as written, e.g., for polynomial fits).  If the
25140 parameters had to be rearranged, the fifth item is instead a vector
25141 of one formula per parameter in the original model.  The raw
25142 parameters are expressed in these ``filter'' formulas as
25143 @samp{fitdummy(1)} for @expr{A}, @samp{fitdummy(2)} for @expr{B},
25144 and so on.
25146 When Calc needs to modify the model to return the result, it replaces
25147 @samp{fitdummy(1)} in all the filters with the first item in the raw
25148 parameters list, and so on for the other raw parameters, then
25149 evaluates the resulting filter formulas to get the actual parameter
25150 values to be substituted into the original model.  In the case of
25151 @kbd{H a F} and @kbd{I a F} where the parameters must be error forms,
25152 Calc uses the square roots of the diagonal entries of the covariance
25153 matrix as error values for the raw parameters, then lets Calc's
25154 standard error-form arithmetic take it from there.
25156 If you use @kbd{I a F} with a nonlinear model, be sure to remember
25157 that the covariance matrix is in terms of the raw parameters,
25158 @emph{not} the actual requested parameters.  It's up to you to
25159 figure out how to interpret the covariances in the presence of
25160 nontrivial filter functions.
25162 Things are also complicated when the input contains error forms.
25163 Suppose there are three independent and dependent variables, @expr{x},
25164 @expr{y}, and @expr{z}, one or more of which are error forms in the
25165 data.  Calc combines all the error values by taking the square root
25166 of the sum of the squares of the errors.  It then changes @expr{x}
25167 and @expr{y} to be plain numbers, and makes @expr{z} into an error
25168 form with this combined error.  The @expr{Y(x,y,z)} part of the
25169 linearized model is evaluated, and the result should be an error
25170 form.  The error part of that result is used for
25171 @texline @math{\sigma_i}
25172 @infoline @expr{sigma_i}
25173 for the data point.  If for some reason @expr{Y(x,y,z)} does not return
25174 an error form, the combined error from @expr{z} is used directly for
25175 @texline @math{\sigma_i}.
25176 @infoline @expr{sigma_i}.
25177 Finally, @expr{z} is also stripped of its error
25178 for use in computing @expr{F(x,y,z)}, @expr{G(x,y,z)} and so on;
25179 the righthand side of the linearized model is computed in regular
25180 arithmetic with no error forms.
25182 (While these rules may seem complicated, they are designed to do
25183 the most reasonable thing in the typical case that @expr{Y(x,y,z)}
25184 depends only on the dependent variable @expr{z}, and in fact is
25185 often simply equal to @expr{z}.  For common cases like polynomials
25186 and multilinear models, the combined error is simply used as the
25187 @texline @math{\sigma}
25188 @infoline @expr{sigma}
25189 for the data point with no further ado.)
25191 @tex
25192 \bigskip
25193 @end tex
25195 @vindex FitRules
25196 It may be the case that the model you wish to use is linearizable,
25197 but Calc's built-in rules are unable to figure it out.  Calc uses
25198 its algebraic rewrite mechanism to linearize a model.  The rewrite
25199 rules are kept in the variable @code{FitRules}.  You can edit this
25200 variable using the @kbd{s e FitRules} command; in fact, there is
25201 a special @kbd{s F} command just for editing @code{FitRules}.
25202 @xref{Operations on Variables}.
25204 @xref{Rewrite Rules}, for a discussion of rewrite rules.
25206 @ignore
25207 @starindex
25208 @end ignore
25209 @tindex fitvar
25210 @ignore
25211 @starindex
25212 @end ignore
25213 @ignore
25214 @mindex @idots
25215 @end ignore
25216 @tindex fitparam
25217 @ignore
25218 @starindex
25219 @end ignore
25220 @ignore
25221 @mindex @null
25222 @end ignore
25223 @tindex fitmodel
25224 @ignore
25225 @starindex
25226 @end ignore
25227 @ignore
25228 @mindex @null
25229 @end ignore
25230 @tindex fitsystem
25231 @ignore
25232 @starindex
25233 @end ignore
25234 @ignore
25235 @mindex @null
25236 @end ignore
25237 @tindex fitdummy
25238 Calc uses @code{FitRules} as follows.  First, it converts the model
25239 to an equation if necessary and encloses the model equation in a
25240 call to the function @code{fitmodel} (which is not actually a defined
25241 function in Calc; it is only used as a placeholder by the rewrite rules).
25242 Parameter variables are renamed to function calls @samp{fitparam(1)},
25243 @samp{fitparam(2)}, and so on, and independent variables are renamed
25244 to @samp{fitvar(1)}, @samp{fitvar(2)}, etc.  The dependent variable
25245 is the highest-numbered @code{fitvar}.  For example, the power law
25246 model @expr{a x^b} is converted to @expr{y = a x^b}, then to
25248 @smallexample
25249 @group
25250 fitmodel(fitvar(2) = fitparam(1) fitvar(1)^fitparam(2))
25251 @end group
25252 @end smallexample
25254 Calc then applies the rewrites as if by @samp{C-u 0 a r FitRules}.
25255 (The zero prefix means that rewriting should continue until no further
25256 changes are possible.)
25258 When rewriting is complete, the @code{fitmodel} call should have
25259 been replaced by a @code{fitsystem} call that looks like this:
25261 @example
25262 fitsystem(@var{Y}, @var{FGH}, @var{abc})
25263 @end example
25265 @noindent
25266 where @var{Y} is a formula that describes the function @expr{Y(x,y,z)},
25267 @var{FGH} is the vector of formulas @expr{[F(x,y,z), G(x,y,z), H(x,y,z)]},
25268 and @var{abc} is the vector of parameter filters which refer to the
25269 raw parameters as @samp{fitdummy(1)} for @expr{A}, @samp{fitdummy(2)}
25270 for @expr{B}, etc.  While the number of raw parameters (the length of
25271 the @var{FGH} vector) is usually the same as the number of original
25272 parameters (the length of the @var{abc} vector), this is not required.
25274 The power law model eventually boils down to
25276 @smallexample
25277 @group
25278 fitsystem(ln(fitvar(2)),
25279           [1, ln(fitvar(1))],
25280           [exp(fitdummy(1)), fitdummy(2)])
25281 @end group
25282 @end smallexample
25284 The actual implementation of @code{FitRules} is complicated; it
25285 proceeds in four phases.  First, common rearrangements are done
25286 to try to bring linear terms together and to isolate functions like
25287 @code{exp} and @code{ln} either all the way ``out'' (so that they
25288 can be put into @var{Y}) or all the way ``in'' (so that they can
25289 be put into @var{abc} or @var{FGH}).  In particular, all
25290 non-constant powers are converted to logs-and-exponentials form,
25291 and the distributive law is used to expand products of sums.
25292 Quotients are rewritten to use the @samp{fitinv} function, where
25293 @samp{fitinv(x)} represents @expr{1/x} while the @code{FitRules}
25294 are operating.  (The use of @code{fitinv} makes recognition of
25295 linear-looking forms easier.)  If you modify @code{FitRules}, you
25296 will probably only need to modify the rules for this phase.
25298 Phase two, whose rules can actually also apply during phases one
25299 and three, first rewrites @code{fitmodel} to a two-argument
25300 form @samp{fitmodel(@var{Y}, @var{model})}, where @var{Y} is
25301 initially zero and @var{model} has been changed from @expr{a=b}
25302 to @expr{a-b} form.  It then tries to peel off invertible functions
25303 from the outside of @var{model} and put them into @var{Y} instead,
25304 calling the equation solver to invert the functions.  Finally, when
25305 this is no longer possible, the @code{fitmodel} is changed to a
25306 four-argument @code{fitsystem}, where the fourth argument is
25307 @var{model} and the @var{FGH} and @var{abc} vectors are initially
25308 empty.  (The last vector is really @var{ABC}, corresponding to
25309 raw parameters, for now.)
25311 Phase three converts a sum of items in the @var{model} to a sum
25312 of @samp{fitpart(@var{a}, @var{b}, @var{c})} terms which represent
25313 terms @samp{@var{a}*@var{b}*@var{c}} of the sum, where @var{a}
25314 is all factors that do not involve any variables, @var{b} is all
25315 factors that involve only parameters, and @var{c} is the factors
25316 that involve only independent variables.  (If this decomposition
25317 is not possible, the rule set will not complete and Calc will
25318 complain that the model is too complex.)  Then @code{fitpart}s
25319 with equal @var{b} or @var{c} components are merged back together
25320 using the distributive law in order to minimize the number of
25321 raw parameters needed.
25323 Phase four moves the @code{fitpart} terms into the @var{FGH} and
25324 @var{ABC} vectors.  Also, some of the algebraic expansions that
25325 were done in phase 1 are undone now to make the formulas more
25326 computationally efficient.  Finally, it calls the solver one more
25327 time to convert the @var{ABC} vector to an @var{abc} vector, and
25328 removes the fourth @var{model} argument (which by now will be zero)
25329 to obtain the three-argument @code{fitsystem} that the linear
25330 least-squares solver wants to see.
25332 @ignore
25333 @starindex
25334 @end ignore
25335 @ignore
25336 @mindex hasfit@idots
25337 @end ignore
25338 @tindex hasfitparams
25339 @ignore
25340 @starindex
25341 @end ignore
25342 @ignore
25343 @mindex @null
25344 @end ignore
25345 @tindex hasfitvars
25346 Two functions which are useful in connection with @code{FitRules}
25347 are @samp{hasfitparams(x)} and @samp{hasfitvars(x)}, which check
25348 whether @expr{x} refers to any parameters or independent variables,
25349 respectively.  Specifically, these functions return ``true'' if the
25350 argument contains any @code{fitparam} (or @code{fitvar}) function
25351 calls, and ``false'' otherwise.  (Recall that ``true'' means a
25352 nonzero number, and ``false'' means zero.  The actual nonzero number
25353 returned is the largest @var{n} from all the @samp{fitparam(@var{n})}s
25354 or @samp{fitvar(@var{n})}s, respectively, that appear in the formula.)
25356 @tex
25357 \bigskip
25358 @end tex
25360 The @code{fit} function in algebraic notation normally takes four
25361 arguments, @samp{fit(@var{model}, @var{vars}, @var{params}, @var{data})},
25362 where @var{model} is the model formula as it would be typed after
25363 @kbd{a F '}, @var{vars} is the independent variable or a vector of
25364 independent variables, @var{params} likewise gives the parameter(s),
25365 and @var{data} is the data matrix.  Note that the length of @var{vars}
25366 must be equal to the number of rows in @var{data} if @var{model} is
25367 an equation, or one less than the number of rows if @var{model} is
25368 a plain formula.  (Actually, a name for the dependent variable is
25369 allowed but will be ignored in the plain-formula case.)
25371 If @var{params} is omitted, the parameters are all variables in
25372 @var{model} except those that appear in @var{vars}.  If @var{vars}
25373 is also omitted, Calc sorts all the variables that appear in
25374 @var{model} alphabetically and uses the higher ones for @var{vars}
25375 and the lower ones for @var{params}.
25377 Alternatively, @samp{fit(@var{modelvec}, @var{data})} is allowed
25378 where @var{modelvec} is a 2- or 3-vector describing the model
25379 and variables, as discussed previously.
25381 If Calc is unable to do the fit, the @code{fit} function is left
25382 in symbolic form, ordinarily with an explanatory message.  The
25383 message will be ``Model expression is too complex'' if the
25384 linearizer was unable to put the model into the required form.
25386 The @code{efit} (corresponding to @kbd{H a F}) and @code{xfit}
25387 (for @kbd{I a F}) functions are completely analogous.
25389 @node Interpolation,  , Curve Fitting Details, Curve Fitting
25390 @subsection Polynomial Interpolation
25392 @kindex a p
25393 @pindex calc-poly-interp
25394 @tindex polint
25395 The @kbd{a p} (@code{calc-poly-interp}) [@code{polint}] command does
25396 a polynomial interpolation at a particular @expr{x} value.  It takes
25397 two arguments from the stack:  A data matrix of the sort used by
25398 @kbd{a F}, and a single number which represents the desired @expr{x}
25399 value.  Calc effectively does an exact polynomial fit as if by @kbd{a F i},
25400 then substitutes the @expr{x} value into the result in order to get an
25401 approximate @expr{y} value based on the fit.  (Calc does not actually
25402 use @kbd{a F i}, however; it uses a direct method which is both more
25403 efficient and more numerically stable.)
25405 The result of @kbd{a p} is actually a vector of two values:  The @expr{y}
25406 value approximation, and an error measure @expr{dy} that reflects Calc's
25407 estimation of the probable error of the approximation at that value of
25408 @expr{x}.  If the input @expr{x} is equal to any of the @expr{x} values
25409 in the data matrix, the output @expr{y} will be the corresponding @expr{y}
25410 value from the matrix, and the output @expr{dy} will be exactly zero.
25412 A prefix argument of 2 causes @kbd{a p} to take separate x- and
25413 y-vectors from the stack instead of one data matrix.
25415 If @expr{x} is a vector of numbers, @kbd{a p} will return a matrix of
25416 interpolated results for each of those @expr{x} values.  (The matrix will
25417 have two columns, the @expr{y} values and the @expr{dy} values.)
25418 If @expr{x} is a formula instead of a number, the @code{polint} function
25419 remains in symbolic form; use the @kbd{a "} command to expand it out to
25420 a formula that describes the fit in symbolic terms.
25422 In all cases, the @kbd{a p} command leaves the data vectors or matrix
25423 on the stack.  Only the @expr{x} value is replaced by the result.
25425 @kindex H a p
25426 @tindex ratint
25427 The @kbd{H a p} [@code{ratint}] command does a rational function
25428 interpolation.  It is used exactly like @kbd{a p}, except that it
25429 uses as its model the quotient of two polynomials.  If there are
25430 @expr{N} data points, the numerator and denominator polynomials will
25431 each have degree @expr{N/2} (if @expr{N} is odd, the denominator will
25432 have degree one higher than the numerator).
25434 Rational approximations have the advantage that they can accurately
25435 describe functions that have poles (points at which the function's value
25436 goes to infinity, so that the denominator polynomial of the approximation
25437 goes to zero).  If @expr{x} corresponds to a pole of the fitted rational
25438 function, then the result will be a division by zero.  If Infinite mode
25439 is enabled, the result will be @samp{[uinf, uinf]}.
25441 There is no way to get the actual coefficients of the rational function
25442 used by @kbd{H a p}.  (The algorithm never generates these coefficients
25443 explicitly, and quotients of polynomials are beyond @w{@kbd{a F}}'s
25444 capabilities to fit.)
25446 @node Summations, Logical Operations, Curve Fitting, Algebra
25447 @section Summations
25449 @noindent
25450 @cindex Summation of a series
25451 @kindex a +
25452 @pindex calc-summation
25453 @tindex sum
25454 The @kbd{a +} (@code{calc-summation}) [@code{sum}] command computes
25455 the sum of a formula over a certain range of index values.  The formula
25456 is taken from the top of the stack; the command prompts for the
25457 name of the summation index variable, the lower limit of the
25458 sum (any formula), and the upper limit of the sum.  If you
25459 enter a blank line at any of these prompts, that prompt and
25460 any later ones are answered by reading additional elements from
25461 the stack.  Thus, @kbd{' k^2 @key{RET} ' k @key{RET} 1 @key{RET} 5 @key{RET} a + @key{RET}}
25462 produces the result 55.
25463 @tex
25464 $$ \sum_{k=1}^5 k^2 = 55 $$
25465 @end tex
25467 The choice of index variable is arbitrary, but it's best not to
25468 use a variable with a stored value.  In particular, while
25469 @code{i} is often a favorite index variable, it should be avoided
25470 in Calc because @code{i} has the imaginary constant @expr{(0, 1)}
25471 as a value.  If you pressed @kbd{=} on a sum over @code{i}, it would
25472 be changed to a nonsensical sum over the ``variable'' @expr{(0, 1)}!
25473 If you really want to use @code{i} as an index variable, use
25474 @w{@kbd{s u i @key{RET}}} first to ``unstore'' this variable.
25475 (@xref{Storing Variables}.)
25477 A numeric prefix argument steps the index by that amount rather
25478 than by one.  Thus @kbd{' a_k @key{RET} C-u -2 a + k @key{RET} 10 @key{RET} 0 @key{RET}}
25479 yields @samp{a_10 + a_8 + a_6 + a_4 + a_2 + a_0}.  A prefix
25480 argument of plain @kbd{C-u} causes @kbd{a +} to prompt for the
25481 step value, in which case you can enter any formula or enter
25482 a blank line to take the step value from the stack.  With the
25483 @kbd{C-u} prefix, @kbd{a +} can take up to five arguments from
25484 the stack:  The formula, the variable, the lower limit, the
25485 upper limit, and (at the top of the stack), the step value.
25487 Calc knows how to do certain sums in closed form.  For example,
25488 @samp{sum(6 k^2, k, 1, n) = @w{2 n^3} + 3 n^2 + n}.  In particular,
25489 this is possible if the formula being summed is polynomial or
25490 exponential in the index variable.  Sums of logarithms are
25491 transformed into logarithms of products.  Sums of trigonometric
25492 and hyperbolic functions are transformed to sums of exponentials
25493 and then done in closed form.  Also, of course, sums in which the
25494 lower and upper limits are both numbers can always be evaluated
25495 just by grinding them out, although Calc will use closed forms
25496 whenever it can for the sake of efficiency.
25498 The notation for sums in algebraic formulas is
25499 @samp{sum(@var{expr}, @var{var}, @var{low}, @var{high}, @var{step})}.
25500 If @var{step} is omitted, it defaults to one.  If @var{high} is
25501 omitted, @var{low} is actually the upper limit and the lower limit
25502 is one.  If @var{low} is also omitted, the limits are @samp{-inf}
25503 and @samp{inf}, respectively.
25505 Infinite sums can sometimes be evaluated:  @samp{sum(.5^k, k, 1, inf)}
25506 returns @expr{1}.  This is done by evaluating the sum in closed
25507 form (to @samp{1. - 0.5^n} in this case), then evaluating this
25508 formula with @code{n} set to @code{inf}.  Calc's usual rules
25509 for ``infinite'' arithmetic can find the answer from there.  If
25510 infinite arithmetic yields a @samp{nan}, or if the sum cannot be
25511 solved in closed form, Calc leaves the @code{sum} function in
25512 symbolic form.  @xref{Infinities}.
25514 As a special feature, if the limits are infinite (or omitted, as
25515 described above) but the formula includes vectors subscripted by
25516 expressions that involve the iteration variable, Calc narrows
25517 the limits to include only the range of integers which result in
25518 valid subscripts for the vector.  For example, the sum
25519 @samp{sum(k [a,b,c,d,e,f,g]_(2k),k)} evaluates to @samp{b + 2 d + 3 f}.
25521 The limits of a sum do not need to be integers.  For example,
25522 @samp{sum(a_k, k, 0, 2 n, n)} produces @samp{a_0 + a_n + a_(2 n)}.
25523 Calc computes the number of iterations using the formula
25524 @samp{1 + (@var{high} - @var{low}) / @var{step}}, which must,
25525 after algebraic simplification, evaluate to an integer.
25527 If the number of iterations according to the above formula does
25528 not come out to an integer, the sum is invalid and will be left
25529 in symbolic form.  However, closed forms are still supplied, and
25530 you are on your honor not to misuse the resulting formulas by
25531 substituting mismatched bounds into them.  For example,
25532 @samp{sum(k, k, 1, 10, 2)} is invalid, but Calc will go ahead and
25533 evaluate the closed form solution for the limits 1 and 10 to get
25534 the rather dubious answer, 29.25.
25536 If the lower limit is greater than the upper limit (assuming a
25537 positive step size), the result is generally zero.  However,
25538 Calc only guarantees a zero result when the upper limit is
25539 exactly one step less than the lower limit, i.e., if the number
25540 of iterations is @mathit{-1}.  Thus @samp{sum(f(k), k, n, n-1)} is zero
25541 but the sum from @samp{n} to @samp{n-2} may report a nonzero value
25542 if Calc used a closed form solution.
25544 Calc's logical predicates like @expr{a < b} return 1 for ``true''
25545 and 0 for ``false.''  @xref{Logical Operations}.  This can be
25546 used to advantage for building conditional sums.  For example,
25547 @samp{sum(prime(k)*k^2, k, 1, 20)} is the sum of the squares of all
25548 prime numbers from 1 to 20; the @code{prime} predicate returns 1 if
25549 its argument is prime and 0 otherwise.  You can read this expression
25550 as ``the sum of @expr{k^2}, where @expr{k} is prime.''  Indeed,
25551 @samp{sum(prime(k)*k^2, k)} would represent the sum of @emph{all} primes
25552 squared, since the limits default to plus and minus infinity, but
25553 there are no such sums that Calc's built-in rules can do in
25554 closed form.
25556 As another example, @samp{sum((k != k_0) * f(k), k, 1, n)} is the
25557 sum of @expr{f(k)} for all @expr{k} from 1 to @expr{n}, excluding
25558 one value @expr{k_0}.  Slightly more tricky is the summand
25559 @samp{(k != k_0) / (k - k_0)}, which is an attempt to describe
25560 the sum of all @expr{1/(k-k_0)} except at @expr{k = k_0}, where
25561 this would be a division by zero.  But at @expr{k = k_0}, this
25562 formula works out to the indeterminate form @expr{0 / 0}, which
25563 Calc will not assume is zero.  Better would be to use
25564 @samp{(k != k_0) ? 1/(k-k_0) : 0}; the @samp{? :} operator does
25565 an ``if-then-else'' test:  This expression says, ``if
25566 @texline @math{k \ne k_0},
25567 @infoline @expr{k != k_0},
25568 then @expr{1/(k-k_0)}, else zero.''  Now the formula @expr{1/(k-k_0)}
25569 will not even be evaluated by Calc when @expr{k = k_0}.
25571 @cindex Alternating sums
25572 @kindex a -
25573 @pindex calc-alt-summation
25574 @tindex asum
25575 The @kbd{a -} (@code{calc-alt-summation}) [@code{asum}] command
25576 computes an alternating sum.  Successive terms of the sequence
25577 are given alternating signs, with the first term (corresponding
25578 to the lower index value) being positive.  Alternating sums
25579 are converted to normal sums with an extra term of the form
25580 @samp{(-1)^(k-@var{low})}.  This formula is adjusted appropriately
25581 if the step value is other than one.  For example, the Taylor
25582 series for the sine function is @samp{asum(x^k / k!, k, 1, inf, 2)}.
25583 (Calc cannot evaluate this infinite series, but it can approximate
25584 it if you replace @code{inf} with any particular odd number.)
25585 Calc converts this series to a regular sum with a step of one,
25586 namely @samp{sum((-1)^k x^(2k+1) / (2k+1)!, k, 0, inf)}.
25588 @cindex Product of a sequence
25589 @kindex a *
25590 @pindex calc-product
25591 @tindex prod
25592 The @kbd{a *} (@code{calc-product}) [@code{prod}] command is
25593 the analogous way to take a product of many terms.  Calc also knows
25594 some closed forms for products, such as @samp{prod(k, k, 1, n) = n!}.
25595 Conditional products can be written @samp{prod(k^prime(k), k, 1, n)}
25596 or @samp{prod(prime(k) ? k : 1, k, 1, n)}.
25598 @kindex a T
25599 @pindex calc-tabulate
25600 @tindex table
25601 The @kbd{a T} (@code{calc-tabulate}) [@code{table}] command
25602 evaluates a formula at a series of iterated index values, just
25603 like @code{sum} and @code{prod}, but its result is simply a
25604 vector of the results.  For example, @samp{table(a_i, i, 1, 7, 2)}
25605 produces @samp{[a_1, a_3, a_5, a_7]}.
25607 @node Logical Operations, Rewrite Rules, Summations, Algebra
25608 @section Logical Operations
25610 @noindent
25611 The following commands and algebraic functions return true/false values,
25612 where 1 represents ``true'' and 0 represents ``false.''  In cases where
25613 a truth value is required (such as for the condition part of a rewrite
25614 rule, or as the condition for a @w{@kbd{Z [ Z ]}} control structure), any
25615 nonzero value is accepted to mean ``true.''  (Specifically, anything
25616 for which @code{dnonzero} returns 1 is ``true,'' and anything for
25617 which @code{dnonzero} returns 0 or cannot decide is assumed ``false.''
25618 Note that this means that @w{@kbd{Z [ Z ]}} will execute the ``then''
25619 portion if its condition is provably true, but it will execute the
25620 ``else'' portion for any condition like @expr{a = b} that is not
25621 provably true, even if it might be true.  Algebraic functions that
25622 have conditions as arguments, like @code{? :} and @code{&&}, remain
25623 unevaluated if the condition is neither provably true nor provably
25624 false.  @xref{Declarations}.)
25626 @kindex a =
25627 @pindex calc-equal-to
25628 @tindex eq
25629 @tindex =
25630 @tindex ==
25631 The @kbd{a =} (@code{calc-equal-to}) command, or @samp{eq(a,b)} function
25632 (which can also be written @samp{a = b} or @samp{a == b} in an algebraic
25633 formula) is true if @expr{a} and @expr{b} are equal, either because they
25634 are identical expressions, or because they are numbers which are
25635 numerically equal.  (Thus the integer 1 is considered equal to the float
25636 1.0.)  If the equality of @expr{a} and @expr{b} cannot be determined,
25637 the comparison is left in symbolic form.  Note that as a command, this
25638 operation pops two values from the stack and pushes back either a 1 or
25639 a 0, or a formula @samp{a = b} if the values' equality cannot be determined.
25641 Many Calc commands use @samp{=} formulas to represent @dfn{equations}.
25642 For example, the @kbd{a S} (@code{calc-solve-for}) command rearranges
25643 an equation to solve for a given variable.  The @kbd{a M}
25644 (@code{calc-map-equation}) command can be used to apply any
25645 function to both sides of an equation; for example, @kbd{2 a M *}
25646 multiplies both sides of the equation by two.  Note that just
25647 @kbd{2 *} would not do the same thing; it would produce the formula
25648 @samp{2 (a = b)} which represents 2 if the equality is true or
25649 zero if not.
25651 The @code{eq} function with more than two arguments (e.g., @kbd{C-u 3 a =}
25652 or @samp{a = b = c}) tests if all of its arguments are equal.  In
25653 algebraic notation, the @samp{=} operator is unusual in that it is
25654 neither left- nor right-associative:  @samp{a = b = c} is not the
25655 same as @samp{(a = b) = c} or @samp{a = (b = c)} (which each compare
25656 one variable with the 1 or 0 that results from comparing two other
25657 variables).
25659 @kindex a #
25660 @pindex calc-not-equal-to
25661 @tindex neq
25662 @tindex !=
25663 The @kbd{a #} (@code{calc-not-equal-to}) command, or @samp{neq(a,b)} or
25664 @samp{a != b} function, is true if @expr{a} and @expr{b} are not equal.
25665 This also works with more than two arguments; @samp{a != b != c != d}
25666 tests that all four of @expr{a}, @expr{b}, @expr{c}, and @expr{d} are
25667 distinct numbers.
25669 @kindex a <
25670 @tindex lt
25671 @ignore
25672 @mindex @idots
25673 @end ignore
25674 @kindex a >
25675 @ignore
25676 @mindex @null
25677 @end ignore
25678 @kindex a [
25679 @ignore
25680 @mindex @null
25681 @end ignore
25682 @kindex a ]
25683 @pindex calc-less-than
25684 @pindex calc-greater-than
25685 @pindex calc-less-equal
25686 @pindex calc-greater-equal
25687 @ignore
25688 @mindex @null
25689 @end ignore
25690 @tindex gt
25691 @ignore
25692 @mindex @null
25693 @end ignore
25694 @tindex leq
25695 @ignore
25696 @mindex @null
25697 @end ignore
25698 @tindex geq
25699 @ignore
25700 @mindex @null
25701 @end ignore
25702 @tindex <
25703 @ignore
25704 @mindex @null
25705 @end ignore
25706 @tindex >
25707 @ignore
25708 @mindex @null
25709 @end ignore
25710 @tindex <=
25711 @ignore
25712 @mindex @null
25713 @end ignore
25714 @tindex >=
25715 The @kbd{a <} (@code{calc-less-than}) [@samp{lt(a,b)} or @samp{a < b}]
25716 operation is true if @expr{a} is less than @expr{b}.  Similar functions
25717 are @kbd{a >} (@code{calc-greater-than}) [@samp{gt(a,b)} or @samp{a > b}],
25718 @kbd{a [} (@code{calc-less-equal}) [@samp{leq(a,b)} or @samp{a <= b}], and
25719 @kbd{a ]} (@code{calc-greater-equal}) [@samp{geq(a,b)} or @samp{a >= b}].
25721 While the inequality functions like @code{lt} do not accept more
25722 than two arguments, the syntax @w{@samp{a <= b < c}} is translated to an
25723 equivalent expression involving intervals: @samp{b in [a .. c)}.
25724 (See the description of @code{in} below.)  All four combinations
25725 of @samp{<} and @samp{<=} are allowed, or any of the four combinations
25726 of @samp{>} and @samp{>=}.  Four-argument constructions like
25727 @samp{a < b < c < d}, and mixtures like @w{@samp{a < b = c}} that
25728 involve both equations and inequalities, are not allowed.
25730 @kindex a .
25731 @pindex calc-remove-equal
25732 @tindex rmeq
25733 The @kbd{a .} (@code{calc-remove-equal}) [@code{rmeq}] command extracts
25734 the righthand side of the equation or inequality on the top of the
25735 stack.  It also works elementwise on vectors.  For example, if
25736 @samp{[x = 2.34, y = z / 2]} is on the stack, then @kbd{a .} produces
25737 @samp{[2.34, z / 2]}.  As a special case, if the righthand side is a
25738 variable and the lefthand side is a number (as in @samp{2.34 = x}), then
25739 Calc keeps the lefthand side instead.  Finally, this command works with
25740 assignments @samp{x := 2.34} as well as equations, always taking the
25741 righthand side, and for @samp{=>} (evaluates-to) operators, always
25742 taking the lefthand side.
25744 @kindex a &
25745 @pindex calc-logical-and
25746 @tindex land
25747 @tindex &&
25748 The @kbd{a &} (@code{calc-logical-and}) [@samp{land(a,b)} or @samp{a && b}]
25749 function is true if both of its arguments are true, i.e., are
25750 non-zero numbers.  In this case, the result will be either @expr{a} or
25751 @expr{b}, chosen arbitrarily.  If either argument is zero, the result is
25752 zero.  Otherwise, the formula is left in symbolic form.
25754 @kindex a |
25755 @pindex calc-logical-or
25756 @tindex lor
25757 @tindex ||
25758 The @kbd{a |} (@code{calc-logical-or}) [@samp{lor(a,b)} or @samp{a || b}]
25759 function is true if either or both of its arguments are true (nonzero).
25760 The result is whichever argument was nonzero, choosing arbitrarily if both
25761 are nonzero.  If both @expr{a} and @expr{b} are zero, the result is
25762 zero.
25764 @kindex a !
25765 @pindex calc-logical-not
25766 @tindex lnot
25767 @tindex !
25768 The @kbd{a !} (@code{calc-logical-not}) [@samp{lnot(a)} or @samp{!@: a}]
25769 function is true if @expr{a} is false (zero), or false if @expr{a} is
25770 true (nonzero).  It is left in symbolic form if @expr{a} is not a
25771 number.
25773 @kindex a :
25774 @pindex calc-logical-if
25775 @tindex if
25776 @ignore
25777 @mindex ? :
25778 @end ignore
25779 @tindex ?
25780 @ignore
25781 @mindex @null
25782 @end ignore
25783 @tindex :
25784 @cindex Arguments, not evaluated
25785 The @kbd{a :} (@code{calc-logical-if}) [@samp{if(a,b,c)} or @samp{a ? b :@: c}]
25786 function is equal to either @expr{b} or @expr{c} if @expr{a} is a nonzero
25787 number or zero, respectively.  If @expr{a} is not a number, the test is
25788 left in symbolic form and neither @expr{b} nor @expr{c} is evaluated in
25789 any way.  In algebraic formulas, this is one of the few Calc functions
25790 whose arguments are not automatically evaluated when the function itself
25791 is evaluated.  The others are @code{lambda}, @code{quote}, and
25792 @code{condition}.
25794 One minor surprise to watch out for is that the formula @samp{a?3:4}
25795 will not work because the @samp{3:4} is parsed as a fraction instead of
25796 as three separate symbols.  Type something like @samp{a ? 3 : 4} or
25797 @samp{a?(3):4} instead.
25799 As a special case, if @expr{a} evaluates to a vector, then both @expr{b}
25800 and @expr{c} are evaluated; the result is a vector of the same length
25801 as @expr{a} whose elements are chosen from corresponding elements of
25802 @expr{b} and @expr{c} according to whether each element of @expr{a}
25803 is zero or nonzero.  Each of @expr{b} and @expr{c} must be either a
25804 vector of the same length as @expr{a}, or a non-vector which is matched
25805 with all elements of @expr{a}.
25807 @kindex a @{
25808 @pindex calc-in-set
25809 @tindex in
25810 The @kbd{a @{} (@code{calc-in-set}) [@samp{in(a,b)}] function is true if
25811 the number @expr{a} is in the set of numbers represented by @expr{b}.
25812 If @expr{b} is an interval form, @expr{a} must be one of the values
25813 encompassed by the interval.  If @expr{b} is a vector, @expr{a} must be
25814 equal to one of the elements of the vector.  (If any vector elements are
25815 intervals, @expr{a} must be in any of the intervals.)  If @expr{b} is a
25816 plain number, @expr{a} must be numerically equal to @expr{b}.
25817 @xref{Set Operations}, for a group of commands that manipulate sets
25818 of this sort.
25820 @ignore
25821 @starindex
25822 @end ignore
25823 @tindex typeof
25824 The @samp{typeof(a)} function produces an integer or variable which
25825 characterizes @expr{a}.  If @expr{a} is a number, vector, or variable,
25826 the result will be one of the following numbers:
25828 @example
25829  1   Integer
25830  2   Fraction
25831  3   Floating-point number
25832  4   HMS form
25833  5   Rectangular complex number
25834  6   Polar complex number
25835  7   Error form
25836  8   Interval form
25837  9   Modulo form
25838 10   Date-only form
25839 11   Date/time form
25840 12   Infinity (inf, uinf, or nan)
25841 100  Variable
25842 101  Vector (but not a matrix)
25843 102  Matrix
25844 @end example
25846 Otherwise, @expr{a} is a formula, and the result is a variable which
25847 represents the name of the top-level function call.
25849 @ignore
25850 @starindex
25851 @end ignore
25852 @tindex integer
25853 @ignore
25854 @starindex
25855 @end ignore
25856 @tindex real
25857 @ignore
25858 @starindex
25859 @end ignore
25860 @tindex constant
25861 The @samp{integer(a)} function returns true if @expr{a} is an integer.
25862 The @samp{real(a)} function
25863 is true if @expr{a} is a real number, either integer, fraction, or
25864 float.  The @samp{constant(a)} function returns true if @expr{a} is
25865 any of the objects for which @code{typeof} would produce an integer
25866 code result except for variables, and provided that the components of
25867 an object like a vector or error form are themselves constant.
25868 Note that infinities do not satisfy any of these tests, nor do
25869 special constants like @code{pi} and @code{e}.
25871 @xref{Declarations}, for a set of similar functions that recognize
25872 formulas as well as actual numbers.  For example, @samp{dint(floor(x))}
25873 is true because @samp{floor(x)} is provably integer-valued, but
25874 @samp{integer(floor(x))} does not because @samp{floor(x)} is not
25875 literally an integer constant.
25877 @ignore
25878 @starindex
25879 @end ignore
25880 @tindex refers
25881 The @samp{refers(a,b)} function is true if the variable (or sub-expression)
25882 @expr{b} appears in @expr{a}, or false otherwise.  Unlike the other
25883 tests described here, this function returns a definite ``no'' answer
25884 even if its arguments are still in symbolic form.  The only case where
25885 @code{refers} will be left unevaluated is if @expr{a} is a plain
25886 variable (different from @expr{b}).
25888 @ignore
25889 @starindex
25890 @end ignore
25891 @tindex negative
25892 The @samp{negative(a)} function returns true if @expr{a} ``looks'' negative,
25893 because it is a negative number, because it is of the form @expr{-x},
25894 or because it is a product or quotient with a term that looks negative.
25895 This is most useful in rewrite rules.  Beware that @samp{negative(a)}
25896 evaluates to 1 or 0 for @emph{any} argument @expr{a}, so it can only
25897 be stored in a formula if the default simplifications are turned off
25898 first with @kbd{m O} (or if it appears in an unevaluated context such
25899 as a rewrite rule condition).
25901 @ignore
25902 @starindex
25903 @end ignore
25904 @tindex variable
25905 The @samp{variable(a)} function is true if @expr{a} is a variable,
25906 or false if not.  If @expr{a} is a function call, this test is left
25907 in symbolic form.  Built-in variables like @code{pi} and @code{inf}
25908 are considered variables like any others by this test.
25910 @ignore
25911 @starindex
25912 @end ignore
25913 @tindex nonvar
25914 The @samp{nonvar(a)} function is true if @expr{a} is a non-variable.
25915 If its argument is a variable it is left unsimplified; it never
25916 actually returns zero.  However, since Calc's condition-testing
25917 commands consider ``false'' anything not provably true, this is
25918 often good enough.
25920 @ignore
25921 @starindex
25922 @end ignore
25923 @tindex lin
25924 @ignore
25925 @starindex
25926 @end ignore
25927 @tindex linnt
25928 @ignore
25929 @starindex
25930 @end ignore
25931 @tindex islin
25932 @ignore
25933 @starindex
25934 @end ignore
25935 @tindex islinnt
25936 @cindex Linearity testing
25937 The functions @code{lin}, @code{linnt}, @code{islin}, and @code{islinnt}
25938 check if an expression is ``linear,'' i.e., can be written in the form
25939 @expr{a + b x} for some constants @expr{a} and @expr{b}, and some
25940 variable or subformula @expr{x}.  The function @samp{islin(f,x)} checks
25941 if formula @expr{f} is linear in @expr{x}, returning 1 if so.  For
25942 example, @samp{islin(x,x)}, @samp{islin(-x,x)}, @samp{islin(3,x)}, and
25943 @samp{islin(x y / 3 - 2, x)} all return 1.  The @samp{lin(f,x)} function
25944 is similar, except that instead of returning 1 it returns the vector
25945 @expr{[a, b, x]}.  For the above examples, this vector would be
25946 @expr{[0, 1, x]}, @expr{[0, -1, x]}, @expr{[3, 0, x]}, and
25947 @expr{[-2, y/3, x]}, respectively.  Both @code{lin} and @code{islin}
25948 generally remain unevaluated for expressions which are not linear,
25949 e.g., @samp{lin(2 x^2, x)} and @samp{lin(sin(x), x)}.  The second
25950 argument can also be a formula; @samp{islin(2 + 3 sin(x), sin(x))}
25951 returns true.
25953 The @code{linnt} and @code{islinnt} functions perform a similar check,
25954 but require a ``non-trivial'' linear form, which means that the
25955 @expr{b} coefficient must be non-zero.  For example, @samp{lin(2,x)}
25956 returns @expr{[2, 0, x]} and @samp{lin(y,x)} returns @expr{[y, 0, x]},
25957 but @samp{linnt(2,x)} and @samp{linnt(y,x)} are left unevaluated
25958 (in other words, these formulas are considered to be only ``trivially''
25959 linear in @expr{x}).
25961 All four linearity-testing functions allow you to omit the second
25962 argument, in which case the input may be linear in any non-constant
25963 formula.  Here, the @expr{a=0}, @expr{b=1} case is also considered
25964 trivial, and only constant values for @expr{a} and @expr{b} are
25965 recognized.  Thus, @samp{lin(2 x y)} returns @expr{[0, 2, x y]},
25966 @samp{lin(2 - x y)} returns @expr{[2, -1, x y]}, and @samp{lin(x y)}
25967 returns @expr{[0, 1, x y]}.  The @code{linnt} function would allow the
25968 first two cases but not the third.  Also, neither @code{lin} nor
25969 @code{linnt} accept plain constants as linear in the one-argument
25970 case: @samp{islin(2,x)} is true, but @samp{islin(2)} is false.
25972 @ignore
25973 @starindex
25974 @end ignore
25975 @tindex istrue
25976 The @samp{istrue(a)} function returns 1 if @expr{a} is a nonzero
25977 number or provably nonzero formula, or 0 if @expr{a} is anything else.
25978 Calls to @code{istrue} can only be manipulated if @kbd{m O} mode is
25979 used to make sure they are not evaluated prematurely.  (Note that
25980 declarations are used when deciding whether a formula is true;
25981 @code{istrue} returns 1 when @code{dnonzero} would return 1, and
25982 it returns 0 when @code{dnonzero} would return 0 or leave itself
25983 in symbolic form.)
25985 @node Rewrite Rules,  , Logical Operations, Algebra
25986 @section Rewrite Rules
25988 @noindent
25989 @cindex Rewrite rules
25990 @cindex Transformations
25991 @cindex Pattern matching
25992 @kindex a r
25993 @pindex calc-rewrite
25994 @tindex rewrite
25995 The @kbd{a r} (@code{calc-rewrite}) [@code{rewrite}] command makes
25996 substitutions in a formula according to a specified pattern or patterns
25997 known as @dfn{rewrite rules}.  Whereas @kbd{a b} (@code{calc-substitute})
25998 matches literally, so that substituting @samp{sin(x)} with @samp{cos(x)}
25999 matches only the @code{sin} function applied to the variable @code{x},
26000 rewrite rules match general kinds of formulas; rewriting using the rule
26001 @samp{sin(x) := cos(x)} matches @code{sin} of any argument and replaces
26002 it with @code{cos} of that same argument.  The only significance of the
26003 name @code{x} is that the same name is used on both sides of the rule.
26005 Rewrite rules rearrange formulas already in Calc's memory.
26006 @xref{Syntax Tables}, to read about @dfn{syntax rules}, which are
26007 similar to algebraic rewrite rules but operate when new algebraic
26008 entries are being parsed, converting strings of characters into
26009 Calc formulas.
26011 @menu
26012 * Entering Rewrite Rules::
26013 * Basic Rewrite Rules::
26014 * Conditional Rewrite Rules::
26015 * Algebraic Properties of Rewrite Rules::
26016 * Other Features of Rewrite Rules::
26017 * Composing Patterns in Rewrite Rules::
26018 * Nested Formulas with Rewrite Rules::
26019 * Multi-Phase Rewrite Rules::
26020 * Selections with Rewrite Rules::
26021 * Matching Commands::
26022 * Automatic Rewrites::
26023 * Debugging Rewrites::
26024 * Examples of Rewrite Rules::
26025 @end menu
26027 @node Entering Rewrite Rules, Basic Rewrite Rules, Rewrite Rules, Rewrite Rules
26028 @subsection Entering Rewrite Rules
26030 @noindent
26031 Rewrite rules normally use the ``assignment'' operator
26032 @samp{@var{old} := @var{new}}.
26033 This operator is equivalent to the function call @samp{assign(old, new)}.
26034 The @code{assign} function is undefined by itself in Calc, so an
26035 assignment formula such as a rewrite rule will be left alone by ordinary
26036 Calc commands.  But certain commands, like the rewrite system, interpret
26037 assignments in special ways.
26039 For example, the rule @samp{sin(x)^2 := 1-cos(x)^2} says to replace
26040 every occurrence of the sine of something, squared, with one minus the
26041 square of the cosine of that same thing.  All by itself as a formula
26042 on the stack it does nothing, but when given to the @kbd{a r} command
26043 it turns that command into a sine-squared-to-cosine-squared converter.
26045 To specify a set of rules to be applied all at once, make a vector of
26046 rules.
26048 When @kbd{a r} prompts you to enter the rewrite rules, you can answer
26049 in several ways:
26051 @enumerate
26052 @item
26053 With a rule:  @kbd{f(x) := g(x) @key{RET}}.
26054 @item
26055 With a vector of rules:  @kbd{[f1(x) := g1(x), f2(x) := g2(x)] @key{RET}}.
26056 (You can omit the enclosing square brackets if you wish.)
26057 @item
26058 With the name of a variable that contains the rule or rules vector:
26059 @kbd{myrules @key{RET}}.
26060 @item
26061 With any formula except a rule, a vector, or a variable name; this
26062 will be interpreted as the @var{old} half of a rewrite rule,
26063 and you will be prompted a second time for the @var{new} half:
26064 @kbd{f(x) @key{RET} g(x) @key{RET}}.
26065 @item
26066 With a blank line, in which case the rule, rules vector, or variable
26067 will be taken from the top of the stack (and the formula to be
26068 rewritten will come from the second-to-top position).
26069 @end enumerate
26071 If you enter the rules directly (as opposed to using rules stored
26072 in a variable), those rules will be put into the Trail so that you
26073 can retrieve them later.  @xref{Trail Commands}.
26075 It is most convenient to store rules you use often in a variable and
26076 invoke them by giving the variable name.  The @kbd{s e}
26077 (@code{calc-edit-variable}) command is an easy way to create or edit a
26078 rule set stored in a variable.  You may also wish to use @kbd{s p}
26079 (@code{calc-permanent-variable}) to save your rules permanently;
26080 @pxref{Operations on Variables}.
26082 Rewrite rules are compiled into a special internal form for faster
26083 matching.  If you enter a rule set directly it must be recompiled
26084 every time.  If you store the rules in a variable and refer to them
26085 through that variable, they will be compiled once and saved away
26086 along with the variable for later reference.  This is another good
26087 reason to store your rules in a variable.
26089 Calc also accepts an obsolete notation for rules, as vectors
26090 @samp{[@var{old}, @var{new}]}.  But because it is easily confused with a
26091 vector of two rules, the use of this notation is no longer recommended.
26093 @node Basic Rewrite Rules, Conditional Rewrite Rules, Entering Rewrite Rules, Rewrite Rules
26094 @subsection Basic Rewrite Rules
26096 @noindent
26097 To match a particular formula @expr{x} with a particular rewrite rule
26098 @samp{@var{old} := @var{new}}, Calc compares the structure of @expr{x} with
26099 the structure of @var{old}.  Variables that appear in @var{old} are
26100 treated as @dfn{meta-variables}; the corresponding positions in @expr{x}
26101 may contain any sub-formulas.  For example, the pattern @samp{f(x,y)}
26102 would match the expression @samp{f(12, a+1)} with the meta-variable
26103 @samp{x} corresponding to 12 and with @samp{y} corresponding to
26104 @samp{a+1}.  However, this pattern would not match @samp{f(12)} or
26105 @samp{g(12, a+1)}, since there is no assignment of the meta-variables
26106 that will make the pattern match these expressions.  Notice that if
26107 the pattern is a single meta-variable, it will match any expression.
26109 If a given meta-variable appears more than once in @var{old}, the
26110 corresponding sub-formulas of @expr{x} must be identical.  Thus
26111 the pattern @samp{f(x,x)} would match @samp{f(12, 12)} and
26112 @samp{f(a+1, a+1)} but not @samp{f(12, a+1)} or @samp{f(a+b, b+a)}.
26113 (@xref{Conditional Rewrite Rules}, for a way to match the latter.)
26115 Things other than variables must match exactly between the pattern
26116 and the target formula.  To match a particular variable exactly, use
26117 the pseudo-function @samp{quote(v)} in the pattern.  For example, the
26118 pattern @samp{x+quote(y)} matches @samp{x+y}, @samp{2+y}, or
26119 @samp{sin(a)+y}.
26121 The special variable names @samp{e}, @samp{pi}, @samp{i}, @samp{phi},
26122 @samp{gamma}, @samp{inf}, @samp{uinf}, and @samp{nan} always match
26123 literally.  Thus the pattern @samp{sin(d + e + f)} acts exactly like
26124 @samp{sin(d + quote(e) + f)}.
26126 If the @var{old} pattern is found to match a given formula, that
26127 formula is replaced by @var{new}, where any occurrences in @var{new}
26128 of meta-variables from the pattern are replaced with the sub-formulas
26129 that they matched.  Thus, applying the rule @samp{f(x,y) := g(y+x,x)}
26130 to @samp{f(12, a+1)} would produce @samp{g(a+13, 12)}.
26132 The normal @kbd{a r} command applies rewrite rules over and over
26133 throughout the target formula until no further changes are possible
26134 (up to a limit of 100 times).  Use @kbd{C-u 1 a r} to make only one
26135 change at a time.
26137 @node Conditional Rewrite Rules, Algebraic Properties of Rewrite Rules, Basic Rewrite Rules, Rewrite Rules
26138 @subsection Conditional Rewrite Rules
26140 @noindent
26141 A rewrite rule can also be @dfn{conditional}, written in the form
26142 @samp{@var{old} := @var{new} :: @var{cond}}.  (There is also the obsolete
26143 form @samp{[@var{old}, @var{new}, @var{cond}]}.)  If a @var{cond} part
26144 is present in the
26145 rule, this is an additional condition that must be satisfied before
26146 the rule is accepted.  Once @var{old} has been successfully matched
26147 to the target expression, @var{cond} is evaluated (with all the
26148 meta-variables substituted for the values they matched) and simplified
26149 with Calc's algebraic simplifications.  If the result is a nonzero
26150 number or any other object known to be nonzero (@pxref{Declarations}),
26151 the rule is accepted.  If the result is zero or if it is a symbolic
26152 formula that is not known to be nonzero, the rule is rejected.
26153 @xref{Logical Operations}, for a number of functions that return
26154 1 or 0 according to the results of various tests.
26156 For example, the formula @samp{n > 0} simplifies to 1 or 0 if @expr{n}
26157 is replaced by a positive or nonpositive number, respectively (or if
26158 @expr{n} has been declared to be positive or nonpositive).  Thus,
26159 the rule @samp{f(x,y) := g(y+x,x) :: x+y > 0} would apply to
26160 @samp{f(0, 4)} but not to @samp{f(-3, 2)} or @samp{f(12, a+1)}
26161 (assuming no outstanding declarations for @expr{a}).  In the case of
26162 @samp{f(-3, 2)}, the condition can be shown not to be satisfied; in
26163 the case of @samp{f(12, a+1)}, the condition merely cannot be shown
26164 to be satisfied, but that is enough to reject the rule.
26166 While Calc will use declarations to reason about variables in the
26167 formula being rewritten, declarations do not apply to meta-variables.
26168 For example, the rule @samp{f(a) := g(a+1)} will match for any values
26169 of @samp{a}, such as complex numbers, vectors, or formulas, even if
26170 @samp{a} has been declared to be real or scalar.  If you want the
26171 meta-variable @samp{a} to match only literal real numbers, use
26172 @samp{f(a) := g(a+1) :: real(a)}.  If you want @samp{a} to match only
26173 reals and formulas which are provably real, use @samp{dreal(a)} as
26174 the condition.
26176 The @samp{::} operator is a shorthand for the @code{condition}
26177 function; @samp{@var{old} := @var{new} :: @var{cond}} is equivalent to
26178 the formula @samp{condition(assign(@var{old}, @var{new}), @var{cond})}.
26180 If you have several conditions, you can use @samp{... :: c1 :: c2 :: c3}
26181 or @samp{... :: c1 && c2 && c3}.  The two are entirely equivalent.
26183 It is also possible to embed conditions inside the pattern:
26184 @samp{f(x :: x>0, y) := g(y+x, x)}.  This is purely a notational
26185 convenience, though; where a condition appears in a rule has no
26186 effect on when it is tested.  The rewrite-rule compiler automatically
26187 decides when it is best to test each condition while a rule is being
26188 matched.
26190 Certain conditions are handled as special cases by the rewrite rule
26191 system and are tested very efficiently:  Where @expr{x} is any
26192 meta-variable, these conditions are @samp{integer(x)}, @samp{real(x)},
26193 @samp{constant(x)}, @samp{negative(x)}, @samp{x >= y} where @expr{y}
26194 is either a constant or another meta-variable and @samp{>=} may be
26195 replaced by any of the six relational operators, and @samp{x % a = b}
26196 where @expr{a} and @expr{b} are constants.  Other conditions, like
26197 @samp{x >= y+1} or @samp{dreal(x)}, will be less efficient to check
26198 since Calc must bring the whole evaluator and simplifier into play.
26200 An interesting property of @samp{::} is that neither of its arguments
26201 will be touched by Calc's default simplifications.  This is important
26202 because conditions often are expressions that cannot safely be
26203 evaluated early.  For example, the @code{typeof} function never
26204 remains in symbolic form; entering @samp{typeof(a)} will put the
26205 number 100 (the type code for variables like @samp{a}) on the stack.
26206 But putting the condition @samp{... :: typeof(a) = 6} on the stack
26207 is safe since @samp{::} prevents the @code{typeof} from being
26208 evaluated until the condition is actually used by the rewrite system.
26210 Since @samp{::} protects its lefthand side, too, you can use a dummy
26211 condition to protect a rule that must itself not evaluate early.
26212 For example, it's not safe to put @samp{a(f,x) := apply(f, [x])} on
26213 the stack because it will immediately evaluate to @samp{a(f,x) := f(x)},
26214 where the meta-variable-ness of @code{f} on the righthand side has been
26215 lost.  But @samp{a(f,x) := apply(f, [x]) :: 1} is safe, and of course
26216 the condition @samp{1} is always true (nonzero) so it has no effect on
26217 the functioning of the rule.  (The rewrite compiler will ensure that
26218 it doesn't even impact the speed of matching the rule.)
26220 @node Algebraic Properties of Rewrite Rules, Other Features of Rewrite Rules, Conditional Rewrite Rules, Rewrite Rules
26221 @subsection Algebraic Properties of Rewrite Rules
26223 @noindent
26224 The rewrite mechanism understands the algebraic properties of functions
26225 like @samp{+} and @samp{*}.  In particular, pattern matching takes
26226 the associativity and commutativity of the following functions into
26227 account:
26229 @smallexample
26230 + - *  = !=  && ||  and or xor  vint vunion vxor  gcd lcm  max min  beta
26231 @end smallexample
26233 For example, the rewrite rule:
26235 @example
26236 a x + b x  :=  (a + b) x
26237 @end example
26239 @noindent
26240 will match formulas of the form,
26242 @example
26243 a x + b x,  x a + x b,  a x + x b,  x a + b x
26244 @end example
26246 Rewrites also understand the relationship between the @samp{+} and @samp{-}
26247 operators.  The above rewrite rule will also match the formulas,
26249 @example
26250 a x - b x,  x a - x b,  a x - x b,  x a - b x
26251 @end example
26253 @noindent
26254 by matching @samp{b} in the pattern to @samp{-b} from the formula.
26256 Applied to a sum of many terms like @samp{r + a x + s + b x + t}, this
26257 pattern will check all pairs of terms for possible matches.  The rewrite
26258 will take whichever suitable pair it discovers first.
26260 In general, a pattern using an associative operator like @samp{a + b}
26261 will try @var{2 n} different ways to match a sum of @var{n} terms
26262 like @samp{x + y + z - w}.  First, @samp{a} is matched against each
26263 of @samp{x}, @samp{y}, @samp{z}, and @samp{-w} in turn, with @samp{b}
26264 being matched to the remainders @samp{y + z - w}, @samp{x + z - w}, etc.
26265 If none of these succeed, then @samp{b} is matched against each of the
26266 four terms with @samp{a} matching the remainder.  Half-and-half matches,
26267 like @samp{(x + y) + (z - w)}, are not tried.
26269 Note that @samp{*} is not commutative when applied to matrices, but
26270 rewrite rules pretend that it is.  If you type @kbd{m v} to enable
26271 Matrix mode (@pxref{Matrix Mode}), rewrite rules will match @samp{*}
26272 literally, ignoring its usual commutativity property.  (In the
26273 current implementation, the associativity also vanishes---it is as
26274 if the pattern had been enclosed in a @code{plain} marker; see below.)
26275 If you are applying rewrites to formulas with matrices, it's best to
26276 enable Matrix mode first to prevent algebraically incorrect rewrites
26277 from occurring.
26279 The pattern @samp{-x} will actually match any expression.  For example,
26280 the rule
26282 @example
26283 f(-x)  :=  -f(x)
26284 @end example
26286 @noindent
26287 will rewrite @samp{f(a)} to @samp{-f(-a)}.  To avoid this, either use
26288 a @code{plain} marker as described below, or add a @samp{negative(x)}
26289 condition.  The @code{negative} function is true if its argument
26290 ``looks'' negative, for example, because it is a negative number or
26291 because it is a formula like @samp{-x}.  The new rule using this
26292 condition is:
26294 @example
26295 f(x)  :=  -f(-x)  :: negative(x)    @r{or, equivalently,}
26296 f(-x)  :=  -f(x)  :: negative(-x)
26297 @end example
26299 In the same way, the pattern @samp{x - y} will match the sum @samp{a + b}
26300 by matching @samp{y} to @samp{-b}.
26302 The pattern @samp{a b} will also match the formula @samp{x/y} if
26303 @samp{y} is a number.  Thus the rule @samp{a x + @w{b x} := (a+b) x}
26304 will also convert @samp{a x + x / 2} to @samp{(a + 0.5) x} (or
26305 @samp{(a + 1:2) x}, depending on the current fraction mode).
26307 Calc will @emph{not} take other liberties with @samp{*}, @samp{/}, and
26308 @samp{^}.  For example, the pattern @samp{f(a b)} will not match
26309 @samp{f(x^2)}, and @samp{f(a + b)} will not match @samp{f(2 x)}, even
26310 though conceivably these patterns could match with @samp{a = b = x}.
26311 Nor will @samp{f(a b)} match @samp{f(x / y)} if @samp{y} is not a
26312 constant, even though it could be considered to match with @samp{a = x}
26313 and @samp{b = 1/y}.  The reasons are partly for efficiency, and partly
26314 because while few mathematical operations are substantively different
26315 for addition and subtraction, often it is preferable to treat the cases
26316 of multiplication, division, and integer powers separately.
26318 Even more subtle is the rule set
26320 @example
26321 [ f(a) + f(b) := f(a + b),  -f(a) := f(-a) ]
26322 @end example
26324 @noindent
26325 attempting to match @samp{f(x) - f(y)}.  You might think that Calc
26326 will view this subtraction as @samp{f(x) + (-f(y))} and then apply
26327 the above two rules in turn, but actually this will not work because
26328 Calc only does this when considering rules for @samp{+} (like the
26329 first rule in this set).  So it will see first that @samp{f(x) + (-f(y))}
26330 does not match @samp{f(a) + f(b)} for any assignments of the
26331 meta-variables, and then it will see that @samp{f(x) - f(y)} does
26332 not match @samp{-f(a)} for any assignment of @samp{a}.  Because Calc
26333 tries only one rule at a time, it will not be able to rewrite
26334 @samp{f(x) - f(y)} with this rule set.  An explicit @samp{f(a) - f(b)}
26335 rule will have to be added.
26337 Another thing patterns will @emph{not} do is break up complex numbers.
26338 The pattern @samp{myconj(a + @w{b i)} := a - b i} will work for formulas
26339 involving the special constant @samp{i} (such as @samp{3 - 4 i}), but
26340 it will not match actual complex numbers like @samp{(3, -4)}.  A version
26341 of the above rule for complex numbers would be
26343 @example
26344 myconj(a)  :=  re(a) - im(a) (0,1)  :: im(a) != 0
26345 @end example
26347 @noindent
26348 (Because the @code{re} and @code{im} functions understand the properties
26349 of the special constant @samp{i}, this rule will also work for
26350 @samp{3 - 4 i}.  In fact, this particular rule would probably be better
26351 without the @samp{im(a) != 0} condition, since if @samp{im(a) = 0} the
26352 righthand side of the rule will still give the correct answer for the
26353 conjugate of a real number.)
26355 It is also possible to specify optional arguments in patterns.  The rule
26357 @example
26358 opt(a) x + opt(b) (x^opt(c) + opt(d))  :=  f(a, b, c, d)
26359 @end example
26361 @noindent
26362 will match the formula
26364 @example
26365 5 (x^2 - 4) + 3 x
26366 @end example
26368 @noindent
26369 in a fairly straightforward manner, but it will also match reduced
26370 formulas like
26372 @example
26373 x + x^2,    2(x + 1) - x,    x + x
26374 @end example
26376 @noindent
26377 producing, respectively,
26379 @example
26380 f(1, 1, 2, 0),   f(-1, 2, 1, 1),   f(1, 1, 1, 0)
26381 @end example
26383 (The latter two formulas can be entered only if default simplifications
26384 have been turned off with @kbd{m O}.)
26386 The default value for a term of a sum is zero.  The default value
26387 for a part of a product, for a power, or for the denominator of a
26388 quotient, is one.  Also, @samp{-x} matches the pattern @samp{opt(a) b}
26389 with @samp{a = -1}.
26391 In particular, the distributive-law rule can be refined to
26393 @example
26394 opt(a) x + opt(b) x  :=  (a + b) x
26395 @end example
26397 @noindent
26398 so that it will convert, e.g., @samp{a x - x}, to @samp{(a - 1) x}.
26400 The pattern @samp{opt(a) + opt(b) x} matches almost any formulas which
26401 are linear in @samp{x}.  You can also use the @code{lin} and @code{islin}
26402 functions with rewrite conditions to test for this; @pxref{Logical
26403 Operations}.  These functions are not as convenient to use in rewrite
26404 rules, but they recognize more kinds of formulas as linear:
26405 @samp{x/z} is considered linear with @expr{b = 1/z} by @code{lin},
26406 but it will not match the above pattern because that pattern calls
26407 for a multiplication, not a division.
26409 As another example, the obvious rule to replace @samp{sin(x)^2 + cos(x)^2}
26410 by 1,
26412 @example
26413 sin(x)^2 + cos(x)^2  :=  1
26414 @end example
26416 @noindent
26417 misses many cases because the sine and cosine may both be multiplied by
26418 an equal factor.  Here's a more successful rule:
26420 @example
26421 opt(a) sin(x)^2 + opt(a) cos(x)^2  :=  a
26422 @end example
26424 Note that this rule will @emph{not} match @samp{sin(x)^2 + 6 cos(x)^2}
26425 because one @expr{a} would have ``matched'' 1 while the other matched 6.
26427 Calc automatically converts a rule like
26429 @example
26430 f(x-1, x)  :=  g(x)
26431 @end example
26433 @noindent
26434 into the form
26436 @example
26437 f(temp, x)  :=  g(x)  :: temp = x-1
26438 @end example
26440 @noindent
26441 (where @code{temp} stands for a new, invented meta-variable that
26442 doesn't actually have a name).  This modified rule will successfully
26443 match @samp{f(6, 7)}, binding @samp{temp} and @samp{x} to 6 and 7,
26444 respectively, then verifying that they differ by one even though
26445 @samp{6} does not superficially look like @samp{x-1}.
26447 However, Calc does not solve equations to interpret a rule.  The
26448 following rule,
26450 @example
26451 f(x-1, x+1)  :=  g(x)
26452 @end example
26454 @noindent
26455 will not work.  That is, it will match @samp{f(a - 1 + b, a + 1 + b)}
26456 but not @samp{f(6, 8)}.  Calc always interprets at least one occurrence
26457 of a variable by literal matching.  If the variable appears ``isolated''
26458 then Calc is smart enough to use it for literal matching.  But in this
26459 last example, Calc is forced to rewrite the rule to @samp{f(x-1, temp)
26460 := g(x) :: temp = x+1} where the @samp{x-1} term must correspond to an
26461 actual ``something-minus-one'' in the target formula.
26463 A successful way to write this would be @samp{f(x, x+2) := g(x+1)}.
26464 You could make this resemble the original form more closely by using
26465 @code{let} notation, which is described in the next section:
26467 @example
26468 f(xm1, x+1)  :=  g(x)  :: let(x := xm1+1)
26469 @end example
26471 Calc does this rewriting or ``conditionalizing'' for any sub-pattern
26472 which involves only the functions in the following list, operating
26473 only on constants and meta-variables which have already been matched
26474 elsewhere in the pattern.  When matching a function call, Calc is
26475 careful to match arguments which are plain variables before arguments
26476 which are calls to any of the functions below, so that a pattern like
26477 @samp{f(x-1, x)} can be conditionalized even though the isolated
26478 @samp{x} comes after the @samp{x-1}.
26480 @smallexample
26481 + - * / \ % ^  abs sign  round rounde roundu trunc floor ceil
26482 max min  re im conj arg
26483 @end smallexample
26485 You can suppress all of the special treatments described in this
26486 section by surrounding a function call with a @code{plain} marker.
26487 This marker causes the function call which is its argument to be
26488 matched literally, without regard to commutativity, associativity,
26489 negation, or conditionalization.  When you use @code{plain}, the
26490 ``deep structure'' of the formula being matched can show through.
26491 For example,
26493 @example
26494 plain(a - a b)  :=  f(a, b)
26495 @end example
26497 @noindent
26498 will match only literal subtractions.  However, the @code{plain}
26499 marker does not affect its arguments' arguments.  In this case,
26500 commutativity and associativity is still considered while matching
26501 the @w{@samp{a b}} sub-pattern, so the whole pattern will match
26502 @samp{x - y x} as well as @samp{x - x y}.  We could go still
26503 further and use
26505 @example
26506 plain(a - plain(a b))  :=  f(a, b)
26507 @end example
26509 @noindent
26510 which would do a completely strict match for the pattern.
26512 By contrast, the @code{quote} marker means that not only the
26513 function name but also the arguments must be literally the same.
26514 The above pattern will match @samp{x - x y} but
26516 @example
26517 quote(a - a b)  :=  f(a, b)
26518 @end example
26520 @noindent
26521 will match only the single formula @samp{a - a b}.  Also,
26523 @example
26524 quote(a - quote(a b))  :=  f(a, b)
26525 @end example
26527 @noindent
26528 will match only @samp{a - quote(a b)}---probably not the desired
26529 effect!
26531 A certain amount of algebra is also done when substituting the
26532 meta-variables on the righthand side of a rule.  For example,
26533 in the rule
26535 @example
26536 a + f(b)  :=  f(a + b)
26537 @end example
26539 @noindent
26540 matching @samp{f(x) - y} would produce @samp{f((-y) + x)} if
26541 taken literally, but the rewrite mechanism will simplify the
26542 righthand side to @samp{f(x - y)} automatically.  (Of course,
26543 the default simplifications would do this anyway, so this
26544 special simplification is only noticeable if you have turned the
26545 default simplifications off.)  This rewriting is done only when
26546 a meta-variable expands to a ``negative-looking'' expression.
26547 If this simplification is not desirable, you can use a @code{plain}
26548 marker on the righthand side:
26550 @example
26551 a + f(b)  :=  f(plain(a + b))
26552 @end example
26554 @noindent
26555 In this example, we are still allowing the pattern-matcher to
26556 use all the algebra it can muster, but the righthand side will
26557 always simplify to a literal addition like @samp{f((-y) + x)}.
26559 @node Other Features of Rewrite Rules, Composing Patterns in Rewrite Rules, Algebraic Properties of Rewrite Rules, Rewrite Rules
26560 @subsection Other Features of Rewrite Rules
26562 @noindent
26563 Certain ``function names'' serve as markers in rewrite rules.
26564 Here is a complete list of these markers.  First are listed the
26565 markers that work inside a pattern; then come the markers that
26566 work in the righthand side of a rule.
26568 @ignore
26569 @starindex
26570 @end ignore
26571 @tindex import
26572 One kind of marker, @samp{import(x)}, takes the place of a whole
26573 rule.  Here @expr{x} is the name of a variable containing another
26574 rule set; those rules are ``spliced into'' the rule set that
26575 imports them.  For example, if @samp{[f(a+b) := f(a) + f(b),
26576 f(a b) := a f(b) :: real(a)]} is stored in variable @samp{linearF},
26577 then the rule set @samp{[f(0) := 0, import(linearF)]} will apply
26578 all three rules.  It is possible to modify the imported rules
26579 slightly:  @samp{import(x, v1, x1, v2, x2, @dots{})} imports
26580 the rule set @expr{x} with all occurrences of
26581 @texline @math{v_1},
26582 @infoline @expr{v1},
26583 as either a variable name or a function name, replaced with
26584 @texline @math{x_1}
26585 @infoline @expr{x1}
26586 and so on.  (If
26587 @texline @math{v_1}
26588 @infoline @expr{v1}
26589 is used as a function name, then
26590 @texline @math{x_1}
26591 @infoline @expr{x1}
26592 must be either a function name itself or a @w{@samp{< >}} nameless
26593 function; @pxref{Specifying Operators}.)  For example, @samp{[g(0) := 0,
26594 import(linearF, f, g)]} applies the linearity rules to the function
26595 @samp{g} instead of @samp{f}.  Imports can be nested, but the
26596 import-with-renaming feature may fail to rename sub-imports properly.
26598 The special functions allowed in patterns are:
26600 @table @samp
26601 @item quote(x)
26602 @ignore
26603 @starindex
26604 @end ignore
26605 @tindex quote
26606 This pattern matches exactly @expr{x}; variable names in @expr{x} are
26607 not interpreted as meta-variables.  The only flexibility is that
26608 numbers are compared for numeric equality, so that the pattern
26609 @samp{f(quote(12))} will match both @samp{f(12)} and @samp{f(12.0)}.
26610 (Numbers are always treated this way by the rewrite mechanism:
26611 The rule @samp{f(x,x) := g(x)} will match @samp{f(12, 12.0)}.
26612 The rewrite may produce either @samp{g(12)} or @samp{g(12.0)}
26613 as a result in this case.)
26615 @item plain(x)
26616 @ignore
26617 @starindex
26618 @end ignore
26619 @tindex plain
26620 Here @expr{x} must be a function call @samp{f(x1,x2,@dots{})}.  This
26621 pattern matches a call to function @expr{f} with the specified
26622 argument patterns.  No special knowledge of the properties of the
26623 function @expr{f} is used in this case; @samp{+} is not commutative or
26624 associative.  Unlike @code{quote}, the arguments @samp{x1,x2,@dots{}}
26625 are treated as patterns.  If you wish them to be treated ``plainly''
26626 as well, you must enclose them with more @code{plain} markers:
26627 @samp{plain(plain(@w{-a}) + plain(b c))}.
26629 @item opt(x,def)
26630 @ignore
26631 @starindex
26632 @end ignore
26633 @tindex opt
26634 Here @expr{x} must be a variable name.  This must appear as an
26635 argument to a function or an element of a vector; it specifies that
26636 the argument or element is optional.
26637 As an argument to @samp{+}, @samp{-}, @samp{*}, @samp{&&}, or @samp{||},
26638 or as the second argument to @samp{/} or @samp{^}, the value @var{def}
26639 may be omitted.  The pattern @samp{x + opt(y)} matches a sum by
26640 binding one summand to @expr{x} and the other to @expr{y}, and it
26641 matches anything else by binding the whole expression to @expr{x} and
26642 zero to @expr{y}.  The other operators above work similarly.
26644 For general miscellaneous functions, the default value @code{def}
26645 must be specified.  Optional arguments are dropped starting with
26646 the rightmost one during matching.  For example, the pattern
26647 @samp{f(opt(a,0), b, opt(c,b))} will match @samp{f(b)}, @samp{f(a,b)},
26648 or @samp{f(a,b,c)}.  Default values of zero and @expr{b} are
26649 supplied in this example for the omitted arguments.  Note that
26650 the literal variable @expr{b} will be the default in the latter
26651 case, @emph{not} the value that matched the meta-variable @expr{b}.
26652 In other words, the default @var{def} is effectively quoted.
26654 @item condition(x,c)
26655 @ignore
26656 @starindex
26657 @end ignore
26658 @tindex condition
26659 @tindex ::
26660 This matches the pattern @expr{x}, with the attached condition
26661 @expr{c}.  It is the same as @samp{x :: c}.
26663 @item pand(x,y)
26664 @ignore
26665 @starindex
26666 @end ignore
26667 @tindex pand
26668 @tindex &&&
26669 This matches anything that matches both pattern @expr{x} and
26670 pattern @expr{y}.  It is the same as @samp{x &&& y}.
26671 @pxref{Composing Patterns in Rewrite Rules}.
26673 @item por(x,y)
26674 @ignore
26675 @starindex
26676 @end ignore
26677 @tindex por
26678 @tindex |||
26679 This matches anything that matches either pattern @expr{x} or
26680 pattern @expr{y}.  It is the same as @w{@samp{x ||| y}}.
26682 @item pnot(x)
26683 @ignore
26684 @starindex
26685 @end ignore
26686 @tindex pnot
26687 @tindex !!!
26688 This matches anything that does not match pattern @expr{x}.
26689 It is the same as @samp{!!! x}.
26691 @item cons(h,t)
26692 @ignore
26693 @mindex cons
26694 @end ignore
26695 @tindex cons (rewrites)
26696 This matches any vector of one or more elements.  The first
26697 element is matched to @expr{h}; a vector of the remaining
26698 elements is matched to @expr{t}.  Note that vectors of fixed
26699 length can also be matched as actual vectors:  The rule
26700 @samp{cons(a,cons(b,[])) := cons(a+b,[])} is equivalent
26701 to the rule @samp{[a,b] := [a+b]}.
26703 @item rcons(t,h)
26704 @ignore
26705 @mindex rcons
26706 @end ignore
26707 @tindex rcons (rewrites)
26708 This is like @code{cons}, except that the @emph{last} element
26709 is matched to @expr{h}, with the remaining elements matched
26710 to @expr{t}.
26712 @item apply(f,args)
26713 @ignore
26714 @mindex apply
26715 @end ignore
26716 @tindex apply (rewrites)
26717 This matches any function call.  The name of the function, in
26718 the form of a variable, is matched to @expr{f}.  The arguments
26719 of the function, as a vector of zero or more objects, are
26720 matched to @samp{args}.  Constants, variables, and vectors
26721 do @emph{not} match an @code{apply} pattern.  For example,
26722 @samp{apply(f,x)} matches any function call, @samp{apply(quote(f),x)}
26723 matches any call to the function @samp{f}, @samp{apply(f,[a,b])}
26724 matches any function call with exactly two arguments, and
26725 @samp{apply(quote(f), cons(a,cons(b,x)))} matches any call
26726 to the function @samp{f} with two or more arguments.  Another
26727 way to implement the latter, if the rest of the rule does not
26728 need to refer to the first two arguments of @samp{f} by name,
26729 would be @samp{apply(quote(f), x :: vlen(x) >= 2)}.
26730 Here's a more interesting sample use of @code{apply}:
26732 @example
26733 apply(f,[x+n])  :=  n + apply(f,[x])
26734    :: in(f, [floor,ceil,round,trunc]) :: integer(n)
26735 @end example
26737 Note, however, that this will be slower to match than a rule
26738 set with four separate rules.  The reason is that Calc sorts
26739 the rules of a rule set according to top-level function name;
26740 if the top-level function is @code{apply}, Calc must try the
26741 rule for every single formula and sub-formula.  If the top-level
26742 function in the pattern is, say, @code{floor}, then Calc invokes
26743 the rule only for sub-formulas which are calls to @code{floor}.
26745 Formulas normally written with operators like @code{+} are still
26746 considered function calls:  @code{apply(f,x)} matches @samp{a+b}
26747 with @samp{f = add}, @samp{x = [a,b]}.
26749 You must use @code{apply} for meta-variables with function names
26750 on both sides of a rewrite rule:  @samp{apply(f, [x]) := f(x+1)}
26751 is @emph{not} correct, because it rewrites @samp{spam(6)} into
26752 @samp{f(7)}.  The righthand side should be @samp{apply(f, [x+1])}.
26753 Also note that you will have to use No-Simplify mode (@kbd{m O})
26754 when entering this rule so that the @code{apply} isn't
26755 evaluated immediately to get the new rule @samp{f(x) := f(x+1)}.
26756 Or, use @kbd{s e} to enter the rule without going through the stack,
26757 or enter the rule as @samp{apply(f, [x]) := apply(f, [x+1]) @w{:: 1}}.
26758 @xref{Conditional Rewrite Rules}.
26760 @item select(x)
26761 @ignore
26762 @starindex
26763 @end ignore
26764 @tindex select
26765 This is used for applying rules to formulas with selections;
26766 @pxref{Selections with Rewrite Rules}.
26767 @end table
26769 Special functions for the righthand sides of rules are:
26771 @table @samp
26772 @item quote(x)
26773 The notation @samp{quote(x)} is changed to @samp{x} when the
26774 righthand side is used.  As far as the rewrite rule is concerned,
26775 @code{quote} is invisible.  However, @code{quote} has the special
26776 property in Calc that its argument is not evaluated.  Thus,
26777 while it will not work to put the rule @samp{t(a) := typeof(a)}
26778 on the stack because @samp{typeof(a)} is evaluated immediately
26779 to produce @samp{t(a) := 100}, you can use @code{quote} to
26780 protect the righthand side:  @samp{t(a) := quote(typeof(a))}.
26781 (@xref{Conditional Rewrite Rules}, for another trick for
26782 protecting rules from evaluation.)
26784 @item plain(x)
26785 Special properties of and simplifications for the function call
26786 @expr{x} are not used.  One interesting case where @code{plain}
26787 is useful is the rule, @samp{q(x) := quote(x)}, trying to expand a
26788 shorthand notation for the @code{quote} function.  This rule will
26789 not work as shown; instead of replacing @samp{q(foo)} with
26790 @samp{quote(foo)}, it will replace it with @samp{foo}!  The correct
26791 rule would be @samp{q(x) := plain(quote(x))}.
26793 @item cons(h,t)
26794 Where @expr{t} is a vector, this is converted into an expanded
26795 vector during rewrite processing.  Note that @code{cons} is a regular
26796 Calc function which normally does this anyway; the only way @code{cons}
26797 is treated specially by rewrites is that @code{cons} on the righthand
26798 side of a rule will be evaluated even if default simplifications
26799 have been turned off.
26801 @item rcons(t,h)
26802 Analogous to @code{cons} except putting @expr{h} at the @emph{end} of
26803 the vector @expr{t}.
26805 @item apply(f,args)
26806 Where @expr{f} is a variable and @var{args} is a vector, this
26807 is converted to a function call.  Once again, note that @code{apply}
26808 is also a regular Calc function.
26810 @item eval(x)
26811 @ignore
26812 @starindex
26813 @end ignore
26814 @tindex eval
26815 The formula @expr{x} is handled in the usual way, then the
26816 default simplifications are applied to it even if they have
26817 been turned off normally.  This allows you to treat any function
26818 similarly to the way @code{cons} and @code{apply} are always
26819 treated.  However, there is a slight difference:  @samp{cons(2+3, [])}
26820 with default simplifications off will be converted to @samp{[2+3]},
26821 whereas @samp{eval(cons(2+3, []))} will be converted to @samp{[5]}.
26823 @item evalsimp(x)
26824 @ignore
26825 @starindex
26826 @end ignore
26827 @tindex evalsimp
26828 The formula @expr{x} has meta-variables substituted in the usual
26829 way, then algebraically simplified.
26831 @item evalextsimp(x)
26832 @ignore
26833 @starindex
26834 @end ignore
26835 @tindex evalextsimp
26836 The formula @expr{x} has meta-variables substituted in the normal
26837 way, then ``extendedly'' simplified as if by the @kbd{a e} command.
26839 @item select(x)
26840 @xref{Selections with Rewrite Rules}.
26841 @end table
26843 There are also some special functions you can use in conditions.
26845 @table @samp
26846 @item let(v := x)
26847 @ignore
26848 @starindex
26849 @end ignore
26850 @tindex let
26851 The expression @expr{x} is evaluated with meta-variables substituted.
26852 The algebraic simplifications are @emph{not} applied by
26853 default, but @expr{x} can include calls to @code{evalsimp} or
26854 @code{evalextsimp} as described above to invoke higher levels
26855 of simplification.  The result of @expr{x} is then bound to the
26856 meta-variable @expr{v}.  As usual, if this meta-variable has already
26857 been matched to something else the two values must be equal; if the
26858 meta-variable is new then it is bound to the result of the expression.
26859 This variable can then appear in later conditions, and on the righthand
26860 side of the rule.
26861 In fact, @expr{v} may be any pattern in which case the result of
26862 evaluating @expr{x} is matched to that pattern, binding any
26863 meta-variables that appear in that pattern.  Note that @code{let}
26864 can only appear by itself as a condition, or as one term of an
26865 @samp{&&} which is a whole condition:  It cannot be inside
26866 an @samp{||} term or otherwise buried.
26868 The alternate, equivalent form @samp{let(v, x)} is also recognized.
26869 Note that the use of @samp{:=} by @code{let}, while still being
26870 assignment-like in character, is unrelated to the use of @samp{:=}
26871 in the main part of a rewrite rule.
26873 As an example, @samp{f(a) := g(ia) :: let(ia := 1/a) :: constant(ia)}
26874 replaces @samp{f(a)} with @samp{g} of the inverse of @samp{a}, if
26875 that inverse exists and is constant.  For example, if @samp{a} is a
26876 singular matrix the operation @samp{1/a} is left unsimplified and
26877 @samp{constant(ia)} fails, but if @samp{a} is an invertible matrix
26878 then the rule succeeds.  Without @code{let} there would be no way
26879 to express this rule that didn't have to invert the matrix twice.
26880 Note that, because the meta-variable @samp{ia} is otherwise unbound
26881 in this rule, the @code{let} condition itself always ``succeeds''
26882 because no matter what @samp{1/a} evaluates to, it can successfully
26883 be bound to @code{ia}.
26885 Here's another example, for integrating cosines of linear
26886 terms:  @samp{myint(cos(y),x) := sin(y)/b :: let([a,b,x] := lin(y,x))}.
26887 The @code{lin} function returns a 3-vector if its argument is linear,
26888 or leaves itself unevaluated if not.  But an unevaluated @code{lin}
26889 call will not match the 3-vector on the lefthand side of the @code{let},
26890 so this @code{let} both verifies that @code{y} is linear, and binds
26891 the coefficients @code{a} and @code{b} for use elsewhere in the rule.
26892 (It would have been possible to use @samp{sin(a x + b)/b} for the
26893 righthand side instead, but using @samp{sin(y)/b} avoids gratuitous
26894 rearrangement of the argument of the sine.)
26896 @ignore
26897 @starindex
26898 @end ignore
26899 @tindex ierf
26900 Similarly, here is a rule that implements an inverse-@code{erf}
26901 function.  It uses @code{root} to search for a solution.  If
26902 @code{root} succeeds, it will return a vector of two numbers
26903 where the first number is the desired solution.  If no solution
26904 is found, @code{root} remains in symbolic form.  So we use
26905 @code{let} to check that the result was indeed a vector.
26907 @example
26908 ierf(x)  :=  y  :: let([y,z] := root(erf(a) = x, a, .5))
26909 @end example
26911 @item matches(v,p)
26912 The meta-variable @var{v}, which must already have been matched
26913 to something elsewhere in the rule, is compared against pattern
26914 @var{p}.  Since @code{matches} is a standard Calc function, it
26915 can appear anywhere in a condition.  But if it appears alone or
26916 as a term of a top-level @samp{&&}, then you get the special
26917 extra feature that meta-variables which are bound to things
26918 inside @var{p} can be used elsewhere in the surrounding rewrite
26919 rule.
26921 The only real difference between @samp{let(p := v)} and
26922 @samp{matches(v, p)} is that the former evaluates @samp{v} using
26923 the default simplifications, while the latter does not.
26925 @item remember
26926 @vindex remember
26927 This is actually a variable, not a function.  If @code{remember}
26928 appears as a condition in a rule, then when that rule succeeds
26929 the original expression and rewritten expression are added to the
26930 front of the rule set that contained the rule.  If the rule set
26931 was not stored in a variable, @code{remember} is ignored.  The
26932 lefthand side is enclosed in @code{quote} in the added rule if it
26933 contains any variables.
26935 For example, the rule @samp{f(n) := n f(n-1) :: remember} applied
26936 to @samp{f(7)} will add the rule @samp{f(7) := 7 f(6)} to the front
26937 of the rule set.  The rule set @code{EvalRules} works slightly
26938 differently:  There, the evaluation of @samp{f(6)} will complete before
26939 the result is added to the rule set, in this case as @samp{f(7) := 5040}.
26940 Thus @code{remember} is most useful inside @code{EvalRules}.
26942 It is up to you to ensure that the optimization performed by
26943 @code{remember} is safe.  For example, the rule @samp{foo(n) := n
26944 :: evalv(eatfoo) > 0 :: remember} is a bad idea (@code{evalv} is
26945 the function equivalent of the @kbd{=} command); if the variable
26946 @code{eatfoo} ever contains 1, rules like @samp{foo(7) := 7} will
26947 be added to the rule set and will continue to operate even if
26948 @code{eatfoo} is later changed to 0.
26950 @item remember(c)
26951 @ignore
26952 @starindex
26953 @end ignore
26954 @tindex remember
26955 Remember the match as described above, but only if condition @expr{c}
26956 is true.  For example, @samp{remember(n % 4 = 0)} in the above factorial
26957 rule remembers only every fourth result.  Note that @samp{remember(1)}
26958 is equivalent to @samp{remember}, and @samp{remember(0)} has no effect.
26959 @end table
26961 @node Composing Patterns in Rewrite Rules, Nested Formulas with Rewrite Rules, Other Features of Rewrite Rules, Rewrite Rules
26962 @subsection Composing Patterns in Rewrite Rules
26964 @noindent
26965 There are three operators, @samp{&&&}, @samp{|||}, and @samp{!!!},
26966 that combine rewrite patterns to make larger patterns.  The
26967 combinations are ``and,'' ``or,'' and ``not,'' respectively, and
26968 these operators are the pattern equivalents of @samp{&&}, @samp{||}
26969 and @samp{!} (which operate on zero-or-nonzero logical values).
26971 Note that @samp{&&&}, @samp{|||}, and @samp{!!!} are left in symbolic
26972 form by all regular Calc features; they have special meaning only in
26973 the context of rewrite rule patterns.
26975 The pattern @samp{@var{p1} &&& @var{p2}} matches anything that
26976 matches both @var{p1} and @var{p2}.  One especially useful case is
26977 when one of @var{p1} or @var{p2} is a meta-variable.  For example,
26978 here is a rule that operates on error forms:
26980 @example
26981 f(x &&& a +/- b, x)  :=  g(x)
26982 @end example
26984 This does the same thing, but is arguably simpler than, the rule
26986 @example
26987 f(a +/- b, a +/- b)  :=  g(a +/- b)
26988 @end example
26990 @ignore
26991 @starindex
26992 @end ignore
26993 @tindex ends
26994 Here's another interesting example:
26996 @example
26997 ends(cons(a, x) &&& rcons(y, b))  :=  [a, b]
26998 @end example
27000 @noindent
27001 which effectively clips out the middle of a vector leaving just
27002 the first and last elements.  This rule will change a one-element
27003 vector @samp{[a]} to @samp{[a, a]}.  The similar rule
27005 @example
27006 ends(cons(a, rcons(y, b)))  :=  [a, b]
27007 @end example
27009 @noindent
27010 would do the same thing except that it would fail to match a
27011 one-element vector.
27013 @tex
27014 \bigskip
27015 @end tex
27017 The pattern @samp{@var{p1} ||| @var{p2}} matches anything that
27018 matches either @var{p1} or @var{p2}.  Calc first tries matching
27019 against @var{p1}; if that fails, it goes on to try @var{p2}.
27021 @ignore
27022 @starindex
27023 @end ignore
27024 @tindex curve
27025 A simple example of @samp{|||} is
27027 @example
27028 curve(inf ||| -inf)  :=  0
27029 @end example
27031 @noindent
27032 which converts both @samp{curve(inf)} and @samp{curve(-inf)} to zero.
27034 Here is a larger example:
27036 @example
27037 log(a, b) ||| (ln(a) :: let(b := e))  :=  mylog(a, b)
27038 @end example
27040 This matches both generalized and natural logarithms in a single rule.
27041 Note that the @samp{::} term must be enclosed in parentheses because
27042 that operator has lower precedence than @samp{|||} or @samp{:=}.
27044 (In practice this rule would probably include a third alternative,
27045 omitted here for brevity, to take care of @code{log10}.)
27047 While Calc generally treats interior conditions exactly the same as
27048 conditions on the outside of a rule, it does guarantee that if all the
27049 variables in the condition are special names like @code{e}, or already
27050 bound in the pattern to which the condition is attached (say, if
27051 @samp{a} had appeared in this condition), then Calc will process this
27052 condition right after matching the pattern to the left of the @samp{::}.
27053 Thus, we know that @samp{b} will be bound to @samp{e} only if the
27054 @code{ln} branch of the @samp{|||} was taken.
27056 Note that this rule was careful to bind the same set of meta-variables
27057 on both sides of the @samp{|||}.  Calc does not check this, but if
27058 you bind a certain meta-variable only in one branch and then use that
27059 meta-variable elsewhere in the rule, results are unpredictable:
27061 @example
27062 f(a,b) ||| g(b)  :=  h(a,b)
27063 @end example
27065 Here if the pattern matches @samp{g(17)}, Calc makes no promises about
27066 the value that will be substituted for @samp{a} on the righthand side.
27068 @tex
27069 \bigskip
27070 @end tex
27072 The pattern @samp{!!! @var{pat}} matches anything that does not
27073 match @var{pat}.  Any meta-variables that are bound while matching
27074 @var{pat} remain unbound outside of @var{pat}.
27076 For example,
27078 @example
27079 f(x &&& !!! a +/- b, !!![])  :=  g(x)
27080 @end example
27082 @noindent
27083 converts @code{f} whose first argument is anything @emph{except} an
27084 error form, and whose second argument is not the empty vector, into
27085 a similar call to @code{g} (but without the second argument).
27087 If we know that the second argument will be a vector (empty or not),
27088 then an equivalent rule would be:
27090 @example
27091 f(x, y)  :=  g(x)  :: typeof(x) != 7 :: vlen(y) > 0
27092 @end example
27094 @noindent
27095 where of course 7 is the @code{typeof} code for error forms.
27096 Another final condition, that works for any kind of @samp{y},
27097 would be @samp{!istrue(y == [])}.  (The @code{istrue} function
27098 returns an explicit 0 if its argument was left in symbolic form;
27099 plain @samp{!(y == [])} or @samp{y != []} would not work to replace
27100 @samp{!!![]} since these would be left unsimplified, and thus cause
27101 the rule to fail, if @samp{y} was something like a variable name.)
27103 It is possible for a @samp{!!!} to refer to meta-variables bound
27104 elsewhere in the pattern.  For example,
27106 @example
27107 f(a, !!!a)  :=  g(a)
27108 @end example
27110 @noindent
27111 matches any call to @code{f} with different arguments, changing
27112 this to @code{g} with only the first argument.
27114 If a function call is to be matched and one of the argument patterns
27115 contains a @samp{!!!} somewhere inside it, that argument will be
27116 matched last.  Thus
27118 @example
27119 f(!!!a, a)  :=  g(a)
27120 @end example
27122 @noindent
27123 will be careful to bind @samp{a} to the second argument of @code{f}
27124 before testing the first argument.  If Calc had tried to match the
27125 first argument of @code{f} first, the results would have been
27126 disastrous: since @code{a} was unbound so far, the pattern @samp{a}
27127 would have matched anything at all, and the pattern @samp{!!!a}
27128 therefore would @emph{not} have matched anything at all!
27130 @node Nested Formulas with Rewrite Rules, Multi-Phase Rewrite Rules, Composing Patterns in Rewrite Rules, Rewrite Rules
27131 @subsection Nested Formulas with Rewrite Rules
27133 @noindent
27134 When @kbd{a r} (@code{calc-rewrite}) is used, it takes an expression from
27135 the top of the stack and attempts to match any of the specified rules
27136 to any part of the expression, starting with the whole expression
27137 and then, if that fails, trying deeper and deeper sub-expressions.
27138 For each part of the expression, the rules are tried in the order
27139 they appear in the rules vector.  The first rule to match the first
27140 sub-expression wins; it replaces the matched sub-expression according
27141 to the @var{new} part of the rule.
27143 Often, the rule set will match and change the formula several times.
27144 The top-level formula is first matched and substituted repeatedly until
27145 it no longer matches the pattern; then, sub-formulas are tried, and
27146 so on.  Once every part of the formula has gotten its chance, the
27147 rewrite mechanism starts over again with the top-level formula
27148 (in case a substitution of one of its arguments has caused it again
27149 to match).  This continues until no further matches can be made
27150 anywhere in the formula.
27152 It is possible for a rule set to get into an infinite loop.  The
27153 most obvious case, replacing a formula with itself, is not a problem
27154 because a rule is not considered to ``succeed'' unless the righthand
27155 side actually comes out to something different than the original
27156 formula or sub-formula that was matched.  But if you accidentally
27157 had both @samp{ln(a b) := ln(a) + ln(b)} and the reverse
27158 @samp{ln(a) + ln(b) := ln(a b)} in your rule set, Calc would
27159 run forever switching a formula back and forth between the two
27160 forms.
27162 To avoid disaster, Calc normally stops after 100 changes have been
27163 made to the formula.  This will be enough for most multiple rewrites,
27164 but it will keep an endless loop of rewrites from locking up the
27165 computer forever.  (On most systems, you can also type @kbd{C-g} to
27166 halt any Emacs command prematurely.)
27168 To change this limit, give a positive numeric prefix argument.
27169 In particular, @kbd{M-1 a r} applies only one rewrite at a time,
27170 useful when you are first testing your rule (or just if repeated
27171 rewriting is not what is called for by your application).
27173 @ignore
27174 @starindex
27175 @end ignore
27176 @ignore
27177 @mindex iter@idots
27178 @end ignore
27179 @tindex iterations
27180 You can also put a ``function call'' @samp{iterations(@var{n})}
27181 in place of a rule anywhere in your rules vector (but usually at
27182 the top).  Then, @var{n} will be used instead of 100 as the default
27183 number of iterations for this rule set.  You can use
27184 @samp{iterations(inf)} if you want no iteration limit by default.
27185 A prefix argument will override the @code{iterations} limit in the
27186 rule set.
27188 @example
27189 [ iterations(1),
27190   f(x) := f(x+1) ]
27191 @end example
27193 More precisely, the limit controls the number of ``iterations,''
27194 where each iteration is a successful matching of a rule pattern whose
27195 righthand side, after substituting meta-variables and applying the
27196 default simplifications, is different from the original sub-formula
27197 that was matched.
27199 A prefix argument of zero sets the limit to infinity.  Use with caution!
27201 Given a negative numeric prefix argument, @kbd{a r} will match and
27202 substitute the top-level expression up to that many times, but
27203 will not attempt to match the rules to any sub-expressions.
27205 In a formula, @code{rewrite(@var{expr}, @var{rules}, @var{n})}
27206 does a rewriting operation.  Here @var{expr} is the expression
27207 being rewritten, @var{rules} is the rule, vector of rules, or
27208 variable containing the rules, and @var{n} is the optional
27209 iteration limit, which may be a positive integer, a negative
27210 integer, or @samp{inf} or @samp{-inf}.  If @var{n} is omitted
27211 the @code{iterations} value from the rule set is used; if both
27212 are omitted, 100 is used.
27214 @node Multi-Phase Rewrite Rules, Selections with Rewrite Rules, Nested Formulas with Rewrite Rules, Rewrite Rules
27215 @subsection Multi-Phase Rewrite Rules
27217 @noindent
27218 It is possible to separate a rewrite rule set into several @dfn{phases}.
27219 During each phase, certain rules will be enabled while certain others
27220 will be disabled.  A @dfn{phase schedule} controls the order in which
27221 phases occur during the rewriting process.
27223 @ignore
27224 @starindex
27225 @end ignore
27226 @tindex phase
27227 @vindex all
27228 If a call to the marker function @code{phase} appears in the rules
27229 vector in place of a rule, all rules following that point will be
27230 members of the phase(s) identified in the arguments to @code{phase}.
27231 Phases are given integer numbers.  The markers @samp{phase()} and
27232 @samp{phase(all)} both mean the following rules belong to all phases;
27233 this is the default at the start of the rule set.
27235 If you do not explicitly schedule the phases, Calc sorts all phase
27236 numbers that appear in the rule set and executes the phases in
27237 ascending order.  For example, the rule set
27239 @example
27240 @group
27241 [ f0(x) := g0(x),
27242   phase(1),
27243   f1(x) := g1(x),
27244   phase(2),
27245   f2(x) := g2(x),
27246   phase(3),
27247   f3(x) := g3(x),
27248   phase(1,2),
27249   f4(x) := g4(x) ]
27250 @end group
27251 @end example
27253 @noindent
27254 has three phases, 1 through 3.  Phase 1 consists of the @code{f0},
27255 @code{f1}, and @code{f4} rules (in that order).  Phase 2 consists of
27256 @code{f0}, @code{f2}, and @code{f4}.  Phase 3 consists of @code{f0}
27257 and @code{f3}.
27259 When Calc rewrites a formula using this rule set, it first rewrites
27260 the formula using only the phase 1 rules until no further changes are
27261 possible.  Then it switches to the phase 2 rule set and continues
27262 until no further changes occur, then finally rewrites with phase 3.
27263 When no more phase 3 rules apply, rewriting finishes.  (This is
27264 assuming @kbd{a r} with a large enough prefix argument to allow the
27265 rewriting to run to completion; the sequence just described stops
27266 early if the number of iterations specified in the prefix argument,
27267 100 by default, is reached.)
27269 During each phase, Calc descends through the nested levels of the
27270 formula as described previously.  (@xref{Nested Formulas with Rewrite
27271 Rules}.)  Rewriting starts at the top of the formula, then works its
27272 way down to the parts, then goes back to the top and works down again.
27273 The phase 2 rules do not begin until no phase 1 rules apply anywhere
27274 in the formula.
27276 @ignore
27277 @starindex
27278 @end ignore
27279 @tindex schedule
27280 A @code{schedule} marker appearing in the rule set (anywhere, but
27281 conventionally at the top) changes the default schedule of phases.
27282 In the simplest case, @code{schedule} has a sequence of phase numbers
27283 for arguments; each phase number is invoked in turn until the
27284 arguments to @code{schedule} are exhausted.  Thus adding
27285 @samp{schedule(3,2,1)} at the top of the above rule set would
27286 reverse the order of the phases; @samp{schedule(1,2,3)} would have
27287 no effect since this is the default schedule; and @samp{schedule(1,2,1,3)}
27288 would give phase 1 a second chance after phase 2 has completed, before
27289 moving on to phase 3.
27291 Any argument to @code{schedule} can instead be a vector of phase
27292 numbers (or even of sub-vectors).  Then the sub-sequence of phases
27293 described by the vector are tried repeatedly until no change occurs
27294 in any phase in the sequence.  For example, @samp{schedule([1, 2], 3)}
27295 tries phase 1, then phase 2, then, if either phase made any changes
27296 to the formula, repeats these two phases until they can make no
27297 further progress.  Finally, it goes on to phase 3 for finishing
27298 touches.
27300 Also, items in @code{schedule} can be variable names as well as
27301 numbers.  A variable name is interpreted as the name of a function
27302 to call on the whole formula.  For example, @samp{schedule(1, simplify)}
27303 says to apply the phase-1 rules (presumably, all of them), then to
27304 call @code{simplify} which is the function name equivalent of @kbd{a s}.
27305 Likewise, @samp{schedule([1, simplify])} says to alternate between
27306 phase 1 and @kbd{a s} until no further changes occur.
27308 Phases can be used purely to improve efficiency; if it is known that
27309 a certain group of rules will apply only at the beginning of rewriting,
27310 and a certain other group will apply only at the end, then rewriting
27311 will be faster if these groups are identified as separate phases.
27312 Once the phase 1 rules are done, Calc can put them aside and no longer
27313 spend any time on them while it works on phase 2.
27315 There are also some problems that can only be solved with several
27316 rewrite phases.  For a real-world example of a multi-phase rule set,
27317 examine the set @code{FitRules}, which is used by the curve-fitting
27318 command to convert a model expression to linear form.
27319 @xref{Curve Fitting Details}.  This set is divided into four phases.
27320 The first phase rewrites certain kinds of expressions to be more
27321 easily linearizable, but less computationally efficient.  After the
27322 linear components have been picked out, the final phase includes the
27323 opposite rewrites to put each component back into an efficient form.
27324 If both sets of rules were included in one big phase, Calc could get
27325 into an infinite loop going back and forth between the two forms.
27327 Elsewhere in @code{FitRules}, the components are first isolated,
27328 then recombined where possible to reduce the complexity of the linear
27329 fit, then finally packaged one component at a time into vectors.
27330 If the packaging rules were allowed to begin before the recombining
27331 rules were finished, some components might be put away into vectors
27332 before they had a chance to recombine.  By putting these rules in
27333 two separate phases, this problem is neatly avoided.
27335 @node Selections with Rewrite Rules, Matching Commands, Multi-Phase Rewrite Rules, Rewrite Rules
27336 @subsection Selections with Rewrite Rules
27338 @noindent
27339 If a sub-formula of the current formula is selected (as by @kbd{j s};
27340 @pxref{Selecting Subformulas}), the @kbd{a r} (@code{calc-rewrite})
27341 command applies only to that sub-formula.  Together with a negative
27342 prefix argument, you can use this fact to apply a rewrite to one
27343 specific part of a formula without affecting any other parts.
27345 @kindex j r
27346 @pindex calc-rewrite-selection
27347 The @kbd{j r} (@code{calc-rewrite-selection}) command allows more
27348 sophisticated operations on selections.  This command prompts for
27349 the rules in the same way as @kbd{a r}, but it then applies those
27350 rules to the whole formula in question even though a sub-formula
27351 of it has been selected.  However, the selected sub-formula will
27352 first have been surrounded by a @samp{select( )} function call.
27353 (Calc's evaluator does not understand the function name @code{select};
27354 this is only a tag used by the @kbd{j r} command.)
27356 For example, suppose the formula on the stack is @samp{2 (a + b)^2}
27357 and the sub-formula @samp{a + b} is selected.  This formula will
27358 be rewritten to @samp{2 select(a + b)^2} and then the rewrite
27359 rules will be applied in the usual way.  The rewrite rules can
27360 include references to @code{select} to tell where in the pattern
27361 the selected sub-formula should appear.
27363 If there is still exactly one @samp{select( )} function call in
27364 the formula after rewriting is done, it indicates which part of
27365 the formula should be selected afterwards.  Otherwise, the
27366 formula will be unselected.
27368 You can make @kbd{j r} act much like @kbd{a r} by enclosing both parts
27369 of the rewrite rule with @samp{select()}.  However, @kbd{j r}
27370 allows you to use the current selection in more flexible ways.
27371 Suppose you wished to make a rule which removed the exponent from
27372 the selected term; the rule @samp{select(a)^x := select(a)} would
27373 work.  In the above example, it would rewrite @samp{2 select(a + b)^2}
27374 to @samp{2 select(a + b)}.  This would then be returned to the
27375 stack as @samp{2 (a + b)} with the @samp{a + b} selected.
27377 The @kbd{j r} command uses one iteration by default, unlike
27378 @kbd{a r} which defaults to 100 iterations.  A numeric prefix
27379 argument affects @kbd{j r} in the same way as @kbd{a r}.
27380 @xref{Nested Formulas with Rewrite Rules}.
27382 As with other selection commands, @kbd{j r} operates on the stack
27383 entry that contains the cursor.  (If the cursor is on the top-of-stack
27384 @samp{.} marker, it works as if the cursor were on the formula
27385 at stack level 1.)
27387 If you don't specify a set of rules, the rules are taken from the
27388 top of the stack, just as with @kbd{a r}.  In this case, the
27389 cursor must indicate stack entry 2 or above as the formula to be
27390 rewritten (otherwise the same formula would be used as both the
27391 target and the rewrite rules).
27393 If the indicated formula has no selection, the cursor position within
27394 the formula temporarily selects a sub-formula for the purposes of this
27395 command.  If the cursor is not on any sub-formula (e.g., it is in
27396 the line-number area to the left of the formula), the @samp{select( )}
27397 markers are ignored by the rewrite mechanism and the rules are allowed
27398 to apply anywhere in the formula.
27400 As a special feature, the normal @kbd{a r} command also ignores
27401 @samp{select( )} calls in rewrite rules.  For example, if you used the
27402 above rule @samp{select(a)^x := select(a)} with @kbd{a r}, it would apply
27403 the rule as if it were @samp{a^x := a}.  Thus, you can write general
27404 purpose rules with @samp{select( )} hints inside them so that they
27405 will ``do the right thing'' in both @kbd{a r} and @kbd{j r},
27406 both with and without selections.
27408 @node Matching Commands, Automatic Rewrites, Selections with Rewrite Rules, Rewrite Rules
27409 @subsection Matching Commands
27411 @noindent
27412 @kindex a m
27413 @pindex calc-match
27414 @tindex match
27415 The @kbd{a m} (@code{calc-match}) [@code{match}] function takes a
27416 vector of formulas and a rewrite-rule-style pattern, and produces
27417 a vector of all formulas which match the pattern.  The command
27418 prompts you to enter the pattern; as for @kbd{a r}, you can enter
27419 a single pattern (i.e., a formula with meta-variables), or a
27420 vector of patterns, or a variable which contains patterns, or
27421 you can give a blank response in which case the patterns are taken
27422 from the top of the stack.  The pattern set will be compiled once
27423 and saved if it is stored in a variable.  If there are several
27424 patterns in the set, vector elements are kept if they match any
27425 of the patterns.
27427 For example, @samp{match(a+b, [x, x+y, x-y, 7, x+y+z])}
27428 will return @samp{[x+y, x-y, x+y+z]}.
27430 The @code{import} mechanism is not available for pattern sets.
27432 The @kbd{a m} command can also be used to extract all vector elements
27433 which satisfy any condition:  The pattern @samp{x :: x>0} will select
27434 all the positive vector elements.
27436 @kindex I a m
27437 @tindex matchnot
27438 With the Inverse flag [@code{matchnot}], this command extracts all
27439 vector elements which do @emph{not} match the given pattern.
27441 @ignore
27442 @starindex
27443 @end ignore
27444 @tindex matches
27445 There is also a function @samp{matches(@var{x}, @var{p})} which
27446 evaluates to 1 if expression @var{x} matches pattern @var{p}, or
27447 to 0 otherwise.  This is sometimes useful for including into the
27448 conditional clauses of other rewrite rules.
27450 @ignore
27451 @starindex
27452 @end ignore
27453 @tindex vmatches
27454 The function @code{vmatches} is just like @code{matches}, except
27455 that if the match succeeds it returns a vector of assignments to
27456 the meta-variables instead of the number 1.  For example,
27457 @samp{vmatches(f(1,2), f(a,b))} returns @samp{[a := 1, b := 2]}.
27458 If the match fails, the function returns the number 0.
27460 @node Automatic Rewrites, Debugging Rewrites, Matching Commands, Rewrite Rules
27461 @subsection Automatic Rewrites
27463 @noindent
27464 @cindex @code{EvalRules} variable
27465 @vindex EvalRules
27466 It is possible to get Calc to apply a set of rewrite rules on all
27467 results, effectively adding to the built-in set of default
27468 simplifications.  To do this, simply store your rule set in the
27469 variable @code{EvalRules}.  There is a convenient @kbd{s E} command
27470 for editing @code{EvalRules}; @pxref{Operations on Variables}.
27472 For example, suppose you want @samp{sin(a + b)} to be expanded out
27473 to @samp{sin(b) cos(a) + cos(b) sin(a)} wherever it appears, and
27474 similarly for @samp{cos(a + b)}.  The corresponding rewrite rule
27475 set would be,
27477 @smallexample
27478 @group
27479 [ sin(a + b)  :=  cos(a) sin(b) + sin(a) cos(b),
27480   cos(a + b)  :=  cos(a) cos(b) - sin(a) sin(b) ]
27481 @end group
27482 @end smallexample
27484 To apply these manually, you could put them in a variable called
27485 @code{trigexp} and then use @kbd{a r trigexp} every time you wanted
27486 to expand trig functions.  But if instead you store them in the
27487 variable @code{EvalRules}, they will automatically be applied to all
27488 sines and cosines of sums.  Then, with @samp{2 x} and @samp{45} on
27489 the stack, typing @kbd{+ S} will (assuming Degrees mode) result in
27490 @samp{0.7071 sin(2 x) + 0.7071 cos(2 x)} automatically.
27492 As each level of a formula is evaluated, the rules from
27493 @code{EvalRules} are applied before the default simplifications.
27494 Rewriting continues until no further @code{EvalRules} apply.
27495 Note that this is different from the usual order of application of
27496 rewrite rules:  @code{EvalRules} works from the bottom up, simplifying
27497 the arguments to a function before the function itself, while @kbd{a r}
27498 applies rules from the top down.
27500 Because the @code{EvalRules} are tried first, you can use them to
27501 override the normal behavior of any built-in Calc function.
27503 It is important not to write a rule that will get into an infinite
27504 loop.  For example, the rule set @samp{[f(0) := 1, f(n) := n f(n-1)]}
27505 appears to be a good definition of a factorial function, but it is
27506 unsafe.  Imagine what happens if @samp{f(2.5)} is simplified.  Calc
27507 will continue to subtract 1 from this argument forever without reaching
27508 zero.  A safer second rule would be @samp{f(n) := n f(n-1) :: n>0}.
27509 Another dangerous rule is @samp{g(x, y) := g(y, x)}.  Rewriting
27510 @samp{g(2, 4)}, this would bounce back and forth between that and
27511 @samp{g(4, 2)} forever.  If an infinite loop in @code{EvalRules}
27512 occurs, Emacs will eventually stop with a ``Computation got stuck
27513 or ran too long'' message.
27515 Another subtle difference between @code{EvalRules} and regular rewrites
27516 concerns rules that rewrite a formula into an identical formula.  For
27517 example, @samp{f(n) := f(floor(n))} ``fails to match'' when @expr{n} is
27518 already an integer.  But in @code{EvalRules} this case is detected only
27519 if the righthand side literally becomes the original formula before any
27520 further simplification.  This means that @samp{f(n) := f(floor(n))} will
27521 get into an infinite loop if it occurs in @code{EvalRules}.  Calc will
27522 replace @samp{f(6)} with @samp{f(floor(6))}, which is different from
27523 @samp{f(6)}, so it will consider the rule to have matched and will
27524 continue simplifying that formula; first the argument is simplified
27525 to get @samp{f(6)}, then the rule matches again to get @samp{f(floor(6))}
27526 again, ad infinitum.  A much safer rule would check its argument first,
27527 say, with @samp{f(n) := f(floor(n)) :: !dint(n)}.
27529 (What really happens is that the rewrite mechanism substitutes the
27530 meta-variables in the righthand side of a rule, compares to see if the
27531 result is the same as the original formula and fails if so, then uses
27532 the default simplifications to simplify the result and compares again
27533 (and again fails if the formula has simplified back to its original
27534 form).  The only special wrinkle for the @code{EvalRules} is that the
27535 same rules will come back into play when the default simplifications
27536 are used.  What Calc wants to do is build @samp{f(floor(6))}, see that
27537 this is different from the original formula, simplify to @samp{f(6)},
27538 see that this is the same as the original formula, and thus halt the
27539 rewriting.  But while simplifying, @samp{f(6)} will again trigger
27540 the same @code{EvalRules} rule and Calc will get into a loop inside
27541 the rewrite mechanism itself.)
27543 The @code{phase}, @code{schedule}, and @code{iterations} markers do
27544 not work in @code{EvalRules}.  If the rule set is divided into phases,
27545 only the phase 1 rules are applied, and the schedule is ignored.
27546 The rules are always repeated as many times as possible.
27548 The @code{EvalRules} are applied to all function calls in a formula,
27549 but not to numbers (and other number-like objects like error forms),
27550 nor to vectors or individual variable names.  (Though they will apply
27551 to @emph{components} of vectors and error forms when appropriate.)  You
27552 might try to make a variable @code{phihat} which automatically expands
27553 to its definition without the need to press @kbd{=} by writing the
27554 rule @samp{quote(phihat) := (1-sqrt(5))/2}, but unfortunately this rule
27555 will not work as part of @code{EvalRules}.
27557 Finally, another limitation is that Calc sometimes calls its built-in
27558 functions directly rather than going through the default simplifications.
27559 When it does this, @code{EvalRules} will not be able to override those
27560 functions.  For example, when you take the absolute value of the complex
27561 number @expr{(2, 3)}, Calc computes @samp{sqrt(2*2 + 3*3)} by calling
27562 the multiplication, addition, and square root functions directly rather
27563 than applying the default simplifications to this formula.  So an
27564 @code{EvalRules} rule that (perversely) rewrites @samp{sqrt(13) := 6}
27565 would not apply.  (However, if you put Calc into Symbolic mode so that
27566 @samp{sqrt(13)} will be left in symbolic form by the built-in square
27567 root function, your rule will be able to apply.  But if the complex
27568 number were @expr{(3,4)}, so that @samp{sqrt(25)} must be calculated,
27569 then Symbolic mode will not help because @samp{sqrt(25)} can be
27570 evaluated exactly to 5.)
27572 One subtle restriction that normally only manifests itself with
27573 @code{EvalRules} is that while a given rewrite rule is in the process
27574 of being checked, that same rule cannot be recursively applied.  Calc
27575 effectively removes the rule from its rule set while checking the rule,
27576 then puts it back once the match succeeds or fails.  (The technical
27577 reason for this is that compiled pattern programs are not reentrant.)
27578 For example, consider the rule @samp{foo(x) := x :: foo(x/2) > 0}
27579 attempting to match @samp{foo(8)}.  This rule will be inactive while
27580 the condition @samp{foo(4) > 0} is checked, even though it might be
27581 an integral part of evaluating that condition.  Note that this is not
27582 a problem for the more usual recursive type of rule, such as
27583 @samp{foo(x) := foo(x/2)}, because there the rule has succeeded and
27584 been reactivated by the time the righthand side is evaluated.
27586 If @code{EvalRules} has no stored value (its default state), or if
27587 anything but a vector is stored in it, then it is ignored.
27589 Even though Calc's rewrite mechanism is designed to compare rewrite
27590 rules to formulas as quickly as possible, storing rules in
27591 @code{EvalRules} may make Calc run substantially slower.  This is
27592 particularly true of rules where the top-level call is a commonly used
27593 function, or is not fixed.  The rule @samp{f(n) := n f(n-1) :: n>0} will
27594 only activate the rewrite mechanism for calls to the function @code{f},
27595 but @samp{lg(n) + lg(m) := lg(n m)} will check every @samp{+} operator.
27597 @smallexample
27598 apply(f, [a*b]) := apply(f, [a]) + apply(f, [b]) :: in(f, [ln, log10])
27599 @end smallexample
27601 @noindent
27602 may seem more ``efficient'' than two separate rules for @code{ln} and
27603 @code{log10}, but actually it is vastly less efficient because rules
27604 with @code{apply} as the top-level pattern must be tested against
27605 @emph{every} function call that is simplified.
27607 @cindex @code{AlgSimpRules} variable
27608 @vindex AlgSimpRules
27609 Suppose you want @samp{sin(a + b)} to be expanded out not all the time,
27610 but only when algebraic simplifications are used to simplify the
27611 formula.  The variable @code{AlgSimpRules} holds rules for this purpose.
27612 The @kbd{a s} command will apply @code{EvalRules} and
27613 @code{AlgSimpRules} to the formula, as well as all of its built-in
27614 simplifications.
27616 Most of the special limitations for @code{EvalRules} don't apply to
27617 @code{AlgSimpRules}.  Calc simply does an @kbd{a r AlgSimpRules}
27618 command with an infinite repeat count as the first step of algebraic
27619 simplifications. It then applies its own built-in simplifications
27620 throughout the formula, and then repeats these two steps (along with
27621 applying the default simplifications) until no further changes are
27622 possible.
27624 @cindex @code{ExtSimpRules} variable
27625 @cindex @code{UnitSimpRules} variable
27626 @vindex ExtSimpRules
27627 @vindex UnitSimpRules
27628 There are also @code{ExtSimpRules} and @code{UnitSimpRules} variables
27629 that are used by @kbd{a e} and @kbd{u s}, respectively; these commands
27630 also apply @code{EvalRules} and @code{AlgSimpRules}.  The variable
27631 @code{IntegSimpRules} contains simplification rules that are used
27632 only during integration by @kbd{a i}.
27634 @node Debugging Rewrites, Examples of Rewrite Rules, Automatic Rewrites, Rewrite Rules
27635 @subsection Debugging Rewrites
27637 @noindent
27638 If a buffer named @file{*Trace*} exists, the rewrite mechanism will
27639 record some useful information there as it operates.  The original
27640 formula is written there, as is the result of each successful rewrite,
27641 and the final result of the rewriting.  All phase changes are also
27642 noted.
27644 Calc always appends to @file{*Trace*}.  You must empty this buffer
27645 yourself periodically if it is in danger of growing unwieldy.
27647 Note that the rewriting mechanism is substantially slower when the
27648 @file{*Trace*} buffer exists, even if the buffer is not visible on
27649 the screen.  Once you are done, you will probably want to kill this
27650 buffer (with @kbd{C-x k *Trace* @key{RET}}).  If you leave it in
27651 existence and forget about it, all your future rewrite commands will
27652 be needlessly slow.
27654 @node Examples of Rewrite Rules,  , Debugging Rewrites, Rewrite Rules
27655 @subsection Examples of Rewrite Rules
27657 @noindent
27658 Returning to the example of substituting the pattern
27659 @samp{sin(x)^2 + cos(x)^2} with 1, we saw that the rule
27660 @samp{opt(a) sin(x)^2 + opt(a) cos(x)^2 := a} does a good job of
27661 finding suitable cases.  Another solution would be to use the rule
27662 @samp{cos(x)^2 := 1 - sin(x)^2}, followed by algebraic simplification
27663 if necessary.  This rule will be the most effective way to do the job,
27664 but at the expense of making some changes that you might not desire.
27666 Another algebraic rewrite rule is @samp{exp(x+y) := exp(x) exp(y)}.
27667 To make this work with the @w{@kbd{j r}} command so that it can be
27668 easily targeted to a particular exponential in a large formula,
27669 you might wish to write the rule as @samp{select(exp(x+y)) :=
27670 select(exp(x) exp(y))}.  The @samp{select} markers will be
27671 ignored by the regular @kbd{a r} command
27672 (@pxref{Selections with Rewrite Rules}).
27674 A surprisingly useful rewrite rule is @samp{a/(b-c) := a*(b+c)/(b^2-c^2)}.
27675 This will simplify the formula whenever @expr{b} and/or @expr{c} can
27676 be made simpler by squaring.  For example, applying this rule to
27677 @samp{2 / (sqrt(2) + 3)} yields @samp{6:7 - 2:7 sqrt(2)} (assuming
27678 Symbolic mode has been enabled to keep the square root from being
27679 evaluated to a floating-point approximation).  This rule is also
27680 useful when working with symbolic complex numbers, e.g.,
27681 @samp{(a + b i) / (c + d i)}.
27683 As another example, we could define our own ``triangular numbers'' function
27684 with the rules @samp{[tri(0) := 0, tri(n) := n + tri(n-1) :: n>0]}.  Enter
27685 this vector and store it in a variable:  @kbd{@w{s t} trirules}.  Now, given
27686 a suitable formula like @samp{tri(5)} on the stack, type @samp{a r trirules}
27687 to apply these rules repeatedly.  After six applications, @kbd{a r} will
27688 stop with 15 on the stack.  Once these rules are debugged, it would probably
27689 be most useful to add them to @code{EvalRules} so that Calc will evaluate
27690 the new @code{tri} function automatically.  We could then use @kbd{Z K} on
27691 the keyboard macro @kbd{' tri($) @key{RET}} to make a command that applies
27692 @code{tri} to the value on the top of the stack.  @xref{Programming}.
27694 @cindex Quaternions
27695 The following rule set, contributed by François
27696 Pinard, implements @dfn{quaternions}, a generalization of the concept of
27697 complex numbers.  Quaternions have four components, and are here
27698 represented by function calls @samp{quat(@var{w}, [@var{x}, @var{y},
27699 @var{z}])} with ``real part'' @var{w} and the three ``imaginary'' parts
27700 collected into a vector.  Various arithmetical operations on quaternions
27701 are supported.  To use these rules, either add them to @code{EvalRules},
27702 or create a command based on @kbd{a r} for simplifying quaternion
27703 formulas.  A convenient way to enter quaternions would be a command
27704 defined by a keyboard macro containing: @kbd{' quat($$$$, [$$$, $$, $])
27705 @key{RET}}.
27707 @smallexample
27708 [ quat(w, x, y, z) := quat(w, [x, y, z]),
27709   quat(w, [0, 0, 0]) := w,
27710   abs(quat(w, v)) := hypot(w, v),
27711   -quat(w, v) := quat(-w, -v),
27712   r + quat(w, v) := quat(r + w, v) :: real(r),
27713   r - quat(w, v) := quat(r - w, -v) :: real(r),
27714   quat(w1, v1) + quat(w2, v2) := quat(w1 + w2, v1 + v2),
27715   r * quat(w, v) := quat(r * w, r * v) :: real(r),
27716   plain(quat(w1, v1) * quat(w2, v2))
27717      := quat(w1 * w2 - v1 * v2, w1 * v2 + w2 * v1 + cross(v1, v2)),
27718   quat(w1, v1) / r := quat(w1 / r, v1 / r) :: real(r),
27719   z / quat(w, v) := z * quatinv(quat(w, v)),
27720   quatinv(quat(w, v)) := quat(w, -v) / (w^2 + v^2),
27721   quatsqr(quat(w, v)) := quat(w^2 - v^2, 2 * w * v),
27722   quat(w, v)^k := quatsqr(quat(w, v)^(k / 2))
27723                :: integer(k) :: k > 0 :: k % 2 = 0,
27724   quat(w, v)^k := quatsqr(quat(w, v)^((k - 1) / 2)) * quat(w, v)
27725                :: integer(k) :: k > 2,
27726   quat(w, v)^-k := quatinv(quat(w, v)^k) :: integer(k) :: k > 0 ]
27727 @end smallexample
27729 Quaternions, like matrices, have non-commutative multiplication.
27730 In other words, @expr{q1 * q2 = q2 * q1} is not necessarily true if
27731 @expr{q1} and @expr{q2} are @code{quat} forms.  The @samp{quat*quat}
27732 rule above uses @code{plain} to prevent Calc from rearranging the
27733 product.  It may also be wise to add the line @samp{[quat(), matrix]}
27734 to the @code{Decls} matrix, to ensure that Calc's other algebraic
27735 operations will not rearrange a quaternion product.  @xref{Declarations}.
27737 These rules also accept a four-argument @code{quat} form, converting
27738 it to the preferred form in the first rule.  If you would rather see
27739 results in the four-argument form, just append the two items
27740 @samp{phase(2), quat(w, [x, y, z]) := quat(w, x, y, z)} to the end
27741 of the rule set.  (But remember that multi-phase rule sets don't work
27742 in @code{EvalRules}.)
27744 @node Units, Store and Recall, Algebra, Top
27745 @chapter Operating on Units
27747 @noindent
27748 One special interpretation of algebraic formulas is as numbers with units.
27749 For example, the formula @samp{5 m / s^2} can be read ``five meters
27750 per second squared.''  The commands in this chapter help you
27751 manipulate units expressions in this form.  Units-related commands
27752 begin with the @kbd{u} prefix key.
27754 @menu
27755 * Basic Operations on Units::
27756 * The Units Table::
27757 * Predefined Units::
27758 * User-Defined Units::
27759 * Logarithmic Units::
27760 * Musical Notes::
27761 @end menu
27763 @node Basic Operations on Units, The Units Table, Units, Units
27764 @section Basic Operations on Units
27766 @noindent
27767 A @dfn{units expression} is a formula which is basically a number
27768 multiplied and/or divided by one or more @dfn{unit names}, which may
27769 optionally be raised to integer powers.  Actually, the value part need not
27770 be a number; any product or quotient involving unit names is a units
27771 expression.  Many of the units commands will also accept any formula,
27772 where the command applies to all units expressions which appear in the
27773 formula.
27775 A unit name is a variable whose name appears in the @dfn{unit table},
27776 or a variable whose name is a prefix character like @samp{k} (for ``kilo'')
27777 or @samp{u} (for ``micro'') followed by a name in the unit table.
27778 A substantial table of built-in units is provided with Calc;
27779 @pxref{Predefined Units}.  You can also define your own unit names;
27780 @pxref{User-Defined Units}.
27782 Note that if the value part of a units expression is exactly @samp{1},
27783 it will be removed by the Calculator's automatic algebra routines:  The
27784 formula @samp{1 mm} is ``simplified'' to @samp{mm}.  This is only a
27785 display anomaly, however; @samp{mm} will work just fine as a
27786 representation of one millimeter.
27788 You may find that Algebraic mode (@pxref{Algebraic Entry}) makes working
27789 with units expressions easier.  Otherwise, you will have to remember
27790 to hit the apostrophe key every time you wish to enter units.
27792 @kindex u s
27793 @pindex calc-simplify-units
27794 @ignore
27795 @mindex usimpl@idots
27796 @end ignore
27797 @tindex usimplify
27798 The @kbd{u s} (@code{calc-simplify-units}) [@code{usimplify}] command
27799 simplifies a units
27800 expression.  It uses Calc's algebraic simplifications to simplify the
27801 expression first as a regular algebraic formula; it then looks for
27802 features that can be further simplified by converting one object's units
27803 to be compatible with another's.  For example, @samp{5 m + 23 mm} will
27804 simplify to @samp{5.023 m}.  When different but compatible units are
27805 added, the righthand term's units are converted to match those of the
27806 lefthand term.  @xref{Simplification Modes}, for a way to have this done
27807 automatically at all times.
27809 Units simplification also handles quotients of two units with the same
27810 dimensionality, as in @w{@samp{2 in s/L cm}} to @samp{5.08 s/L}; fractional
27811 powers of unit expressions, as in @samp{sqrt(9 mm^2)} to @samp{3 mm} and
27812 @samp{sqrt(9 acre)} to a quantity in meters; and @code{floor},
27813 @code{ceil}, @code{round}, @code{rounde}, @code{roundu}, @code{trunc},
27814 @code{float}, @code{frac}, @code{abs}, and @code{clean}
27815 applied to units expressions, in which case
27816 the operation in question is applied only to the numeric part of the
27817 expression.  Finally, trigonometric functions of quantities with units
27818 of angle are evaluated, regardless of the current angular mode.
27820 @kindex u c
27821 @pindex calc-convert-units
27822 The @kbd{u c} (@code{calc-convert-units}) command converts a units
27823 expression to new, compatible units.  For example, given the units
27824 expression @samp{55 mph}, typing @kbd{u c m/s @key{RET}} produces
27825 @samp{24.5872 m/s}.  If you have previously converted a units expression
27826 with the same type of units (in this case, distance over time), you will
27827 be offered the previous choice of new units as a default.  Continuing
27828 the above example, entering the units expression @samp{100 km/hr} and
27829 typing @kbd{u c @key{RET}} (without specifying new units) produces
27830 @samp{27.7777777778 m/s}.
27832 @kindex u t
27833 @pindex calc-convert-temperature
27834 @cindex Temperature conversion
27835 The @kbd{u c} command treats temperature units (like @samp{degC} and
27836 @samp{K}) as relative temperatures.  For example, @kbd{u c} converts
27837 @samp{10 degC} to @samp{18 degF}: A change of 10 degrees Celsius
27838 corresponds to a change of 18 degrees Fahrenheit.  To convert absolute
27839 temperatures, you can use the @kbd{u t}
27840 (@code{calc-convert-temperature}) command.   The value on the stack
27841 must be a simple units expression with units of temperature only.
27842 This command would convert @samp{10 degC} to @samp{50 degF}, the
27843 equivalent temperature on the Fahrenheit scale.
27845 While many of Calc's conversion factors are exact, some are necessarily
27846 approximate.  If Calc is in fraction mode (@pxref{Fraction Mode}), then
27847 unit conversions will try to give exact, rational conversions, but it
27848 isn't always possible.  Given @samp{55 mph} in fraction mode, typing
27849 @kbd{u c m/s @key{RET}} produces  @samp{15367:625 m/s}, for example,
27850 while typing @kbd{u c au/yr @key{RET}} produces
27851 @samp{5.18665819999e-3 au/yr}.
27853 If the units you request are inconsistent with the original units, the
27854 number will be converted into your units times whatever ``remainder''
27855 units are left over.  For example, converting @samp{55 mph} into acres
27856 produces @samp{6.08e-3 acre / (m s)}. Remainder units are expressed in terms of
27857 ``fundamental'' units like @samp{m} and @samp{s}, regardless of the
27858 input units.
27860 @kindex u n
27861 @pindex calc-convert-exact-units
27862 If you intend that your new units be consistent with the original
27863 units, the @kbd{u n} (@code{calc-convert-exact-units}) command will
27864 check the units before the conversion.  For example, to change
27865 @samp{mi/hr} to @samp{km/hr}, you could type @kbd{u c km @key{RET}},
27866 but @kbd{u n km @key{RET}} would signal an error.
27867 You would need to type @kbd{u n km/hr @key{RET}}.
27869 One special exception is that if you specify a single unit name, and
27870 a compatible unit appears somewhere in the units expression, then
27871 that compatible unit will be converted to the new unit and the
27872 remaining units in the expression will be left alone.  For example,
27873 given the input @samp{980 cm/s^2}, the command @kbd{u c ms} will
27874 change the @samp{s} to @samp{ms} to get @samp{9.8e-4 cm/ms^2}.
27875 The ``remainder unit'' @samp{cm} is left alone rather than being
27876 changed to the base unit @samp{m}.
27878 You can use explicit unit conversion instead of the @kbd{u s} command
27879 to gain more control over the units of the result of an expression.
27880 For example, given @samp{5 m + 23 mm}, you can type @kbd{u c m} or
27881 @kbd{u c mm} to express the result in either meters or millimeters.
27882 (For that matter, you could type @kbd{u c fath} to express the result
27883 in fathoms, if you preferred!)
27885 In place of a specific set of units, you can also enter one of the
27886 units system names @code{si}, @code{mks} (equivalent), or @code{cgs}.
27887 For example, @kbd{u c si @key{RET}} converts the expression into
27888 International System of Units (SI) base units.  Also, @kbd{u c base}
27889 converts to Calc's base units, which are the same as @code{si} units
27890 except that @code{base} uses @samp{g} as the fundamental unit of mass
27891 whereas @code{si} uses @samp{kg}.
27893 @cindex Composite units
27894 The @kbd{u c} command also accepts @dfn{composite units}, which
27895 are expressed as the sum of several compatible unit names.  For
27896 example, converting @samp{30.5 in} to units @samp{mi+ft+in} (miles,
27897 feet, and inches) produces @samp{2 ft + 6.5 in}.  Calc first
27898 sorts the unit names into order of decreasing relative size.
27899 It then accounts for as much of the input quantity as it can
27900 using an integer number times the largest unit, then moves on
27901 to the next smaller unit, and so on.  Only the smallest unit
27902 may have a non-integer amount attached in the result.  A few
27903 standard unit names exist for common combinations, such as
27904 @code{mfi} for @samp{mi+ft+in}, and @code{tpo} for @samp{ton+lb+oz}.
27905 Composite units are expanded as if by @kbd{a x}, so that
27906 @samp{(ft+in)/hr} is first converted to @samp{ft/hr+in/hr}.
27908 If the value on the stack does not contain any units, @kbd{u c} will
27909 prompt first for the old units which this value should be considered
27910 to have, then for the new units.  (If the value on the stack can be
27911 simplified so that it doesn't contain any units, like @samp{ft/in} can
27912 be simplified to 12, then @kbd{u c} will still prompt for both old
27913 units and new units.   Assuming the old and new units you give are
27914 consistent with each other, the result also will not contain any
27915 units.  For example, @kbd{@w{u c} cm @key{RET} in @key{RET}} converts
27916 the number 2 on the stack to 5.08.
27918 @kindex u b
27919 @pindex calc-base-units
27920 The @kbd{u b} (@code{calc-base-units}) command is shorthand for
27921 @kbd{u c base}; it converts the units expression on the top of the
27922 stack into @code{base} units.  If @kbd{u s} does not simplify a
27923 units expression as far as you would like, try @kbd{u b}.
27925 Like the @kbd{u c} command, the @kbd{u b} command treats temperature
27926 units as relative temperatures.
27928 @kindex u r
27929 @pindex calc-remove-units
27930 @kindex u x
27931 @pindex calc-extract-units
27932 The @kbd{u r} (@code{calc-remove-units}) command removes units from the
27933 formula at the top of the stack.  The @kbd{u x}
27934 (@code{calc-extract-units}) command extracts only the units portion of a
27935 formula.  These commands essentially replace every term of the formula
27936 that does or doesn't (respectively) look like a unit name by the
27937 constant 1, then resimplify the formula.
27939 @kindex u a
27940 @pindex calc-autorange-units
27941 The @kbd{u a} (@code{calc-autorange-units}) command turns on and off a
27942 mode in which unit prefixes like @code{k} (``kilo'') are automatically
27943 applied to keep the numeric part of a units expression in a reasonable
27944 range.  This mode affects @kbd{u s} and all units conversion commands
27945 except @kbd{u b}.  For example, with autoranging on, @samp{12345 Hz}
27946 will be simplified to @samp{12.345 kHz}.  Autoranging is useful for
27947 some kinds of units (like @code{Hz} and @code{m}), but is probably
27948 undesirable for non-metric units like @code{ft} and @code{tbsp}.
27949 (Composite units are more appropriate for those; see above.)
27951 Autoranging always applies the prefix to the leftmost unit name.
27952 Calc chooses the largest prefix that causes the number to be greater
27953 than or equal to 1.0.  Thus an increasing sequence of adjusted times
27954 would be @samp{1 ms, 10 ms, 100 ms, 1 s, 10 s, 100 s, 1 ks}.
27955 Generally the rule of thumb is that the number will be adjusted
27956 to be in the interval @samp{[1 .. 1000)}, although there are several
27957 exceptions to this rule.  First, if the unit has a power then this
27958 is not possible; @samp{0.1 s^2} simplifies to @samp{100000 ms^2}.
27959 Second, the ``centi-'' prefix is allowed to form @code{cm} (centimeters),
27960 but will not apply to other units.  The ``deci-,'' ``deka-,'' and
27961 ``hecto-'' prefixes are never used.  Thus the allowable interval is
27962 @samp{[1 .. 10)} for millimeters and @samp{[1 .. 100)} for centimeters.
27963 Finally, a prefix will not be added to a unit if the resulting name
27964 is also the actual name of another unit; @samp{1e-15 t} would normally
27965 be considered a ``femto-ton,'' but it is written as @samp{1000 at}
27966 (1000 atto-tons) instead because @code{ft} would be confused with feet.
27968 @node The Units Table, Predefined Units, Basic Operations on Units, Units
27969 @section The Units Table
27971 @noindent
27972 @kindex u v
27973 @pindex calc-enter-units-table
27974 The @kbd{u v} (@code{calc-enter-units-table}) command displays the units table
27975 in another buffer called @file{*Units Table*}.  Each entry in this table
27976 gives the unit name as it would appear in an expression, the definition
27977 of the unit in terms of simpler units, and a full name or description of
27978 the unit.  Fundamental units are defined as themselves; these are the
27979 units produced by the @kbd{u b} command.  The fundamental units are
27980 meters, seconds, grams, kelvins, amperes, candelas, moles, radians,
27981 and steradians.
27983 The Units Table buffer also displays the Unit Prefix Table.  Note that
27984 two prefixes, ``kilo'' and ``hecto,'' accept either upper- or lower-case
27985 prefix letters.  @samp{Meg} is also accepted as a synonym for the @samp{M}
27986 prefix.  Whenever a unit name can be interpreted as either a built-in name
27987 or a prefix followed by another built-in name, the former interpretation
27988 wins.  For example, @samp{2 pt} means two pints, not two pico-tons.
27990 The Units Table buffer, once created, is not rebuilt unless you define
27991 new units.  To force the buffer to be rebuilt, give any numeric prefix
27992 argument to @kbd{u v}.
27994 @kindex u V
27995 @pindex calc-view-units-table
27996 The @kbd{u V} (@code{calc-view-units-table}) command is like @kbd{u v} except
27997 that the cursor is not moved into the Units Table buffer.  You can
27998 type @kbd{u V} again to remove the Units Table from the display.  To
27999 return from the Units Table buffer after a @kbd{u v}, type @kbd{C-x * c}
28000 again or use the regular Emacs @w{@kbd{C-x o}} (@code{other-window})
28001 command.  You can also kill the buffer with @kbd{C-x k} if you wish;
28002 the actual units table is safely stored inside the Calculator.
28004 @kindex u g
28005 @pindex calc-get-unit-definition
28006 The @kbd{u g} (@code{calc-get-unit-definition}) command retrieves a unit's
28007 defining expression and pushes it onto the Calculator stack.  For example,
28008 @kbd{u g in} will produce the expression @samp{2.54 cm}.  This is the
28009 same definition for the unit that would appear in the Units Table buffer.
28010 Note that this command works only for actual unit names; @kbd{u g km}
28011 will report that no such unit exists, for example, because @code{km} is
28012 really the unit @code{m} with a @code{k} (``kilo'') prefix.  To see a
28013 definition of a unit in terms of base units, it is easier to push the
28014 unit name on the stack and then reduce it to base units with @kbd{u b}.
28016 @kindex u e
28017 @pindex calc-explain-units
28018 The @kbd{u e} (@code{calc-explain-units}) command displays an English
28019 description of the units of the expression on the stack.  For example,
28020 for the expression @samp{62 km^2 g / s^2 mol K}, the description is
28021 ``Square-Kilometer Gram per (Second-squared Mole Degree-Kelvin).''  This
28022 command uses the English descriptions that appear in the righthand
28023 column of the Units Table.
28025 @node Predefined Units, User-Defined Units, The Units Table, Units
28026 @section Predefined Units
28028 @noindent
28029 The definitions of many units have changed over the years.  For example,
28030 the meter was originally defined in 1791 as one ten-millionth of the
28031 distance from the equator to the north pole.  In order to be more
28032 precise, the definition was adjusted several times, and now a meter is
28033 defined as the distance that light will travel in a vacuum in
28034 1/299792458 of a second; consequently, the speed of light in a
28035 vacuum is exactly 299792458 m/s.  Many other units have been
28036 redefined in terms of fundamental physical processes; a second, for
28037 example, is currently defined as 9192631770 periods of a certain
28038 radiation related to the cesium-133 atom.  The only SI unit that is not
28039 based on a fundamental physical process (although there are efforts to
28040 change this) is the kilogram, which was originally defined as the mass
28041 of one liter of water, but is now defined as the mass of the
28042 international prototype of the kilogram (IPK), a cylinder of platinum-iridium
28043 kept at the Bureau international des poids et mesures in Sèvres,
28044 France.  (There are several copies of the IPK throughout the world.)
28045 The British imperial units, once defined in terms of physical objects,
28046 were redefined in 1963 in terms of SI units.  The US customary units,
28047 which were the same as British units until the British imperial system
28048 was created in 1824, were also defined in terms of the SI units in 1893.
28049 Because of these redefinitions, conversions between metric, British
28050 Imperial, and US customary units can often be done precisely.
28052 Since the exact definitions of many kinds of units have evolved over the
28053 years, and since certain countries sometimes have local differences in
28054 their definitions, it is a good idea to examine Calc's definition of a
28055 unit before depending on its exact value.  For example, there are three
28056 different units for gallons, corresponding to the US (@code{gal}),
28057 Canadian (@code{galC}), and British (@code{galUK}) definitions.  Also,
28058 note that @code{oz} is a standard ounce of mass, @code{ozt} is a Troy
28059 ounce, and @code{ozfl} is a fluid ounce.
28061 The temperature units corresponding to degrees Kelvin and Centigrade
28062 (Celsius) are the same in this table, since most units commands treat
28063 temperatures as being relative.  The @code{calc-convert-temperature}
28064 command has special rules for handling the different absolute magnitudes
28065 of the various temperature scales.
28067 The unit of volume ``liters'' can be referred to by either the lower-case
28068 @code{l} or the upper-case @code{L}.
28070 The unit @code{A} stands for Amperes; the name @code{Ang} is used
28071 @tex
28072 for \AA ngstroms.
28073 @end tex
28074 @ifnottex
28075 for Angstroms.
28076 @end ifnottex
28078 The unit @code{pt} stands for pints; the name @code{point} stands for
28079 a typographical point, defined by @samp{72 point = 1 in}.  This is
28080 slightly different than the point defined by the American Typefounder's
28081 Association in 1886, but the point used by Calc has become standard
28082 largely due to its use by the PostScript page description language.
28083 There is also @code{texpt}, which stands for a printer's point as
28084 defined by the @TeX{} typesetting system:  @samp{72.27 texpt = 1 in}.
28085 Other units used by @TeX{} are available; they are @code{texpc} (a pica),
28086 @code{texbp} (a ``big point'', equal to a standard point which is larger
28087 than the point used by @TeX{}), @code{texdd} (a Didot point),
28088 @code{texcc} (a Cicero) and @code{texsp} (a scaled @TeX{} point,
28089 all dimensions representable in @TeX{} are multiples of this value).
28091 When Calc is using the @TeX{} or @LaTeX{} language mode (@pxref{TeX
28092 and LaTeX Language Modes}), the @TeX{} specific unit names will not
28093 use the @samp{tex} prefix; the unit name for a @TeX{} point will be
28094 @samp{pt} instead of @samp{texpt}, for example.  To avoid conflicts,
28095 the unit names for pint and parsec will simply be @samp{pint} and
28096 @samp{parsec} instead of @samp{pt} and @samp{pc}.
28099 The unit @code{e} stands for the elementary (electron) unit of charge;
28100 because algebra command could mistake this for the special constant
28101 @expr{e}, Calc provides the alternate unit name @code{ech} which is
28102 preferable to @code{e}.
28104 The name @code{g} stands for one gram of mass; there is also @code{gf},
28105 one gram of force.  (Likewise for @kbd{lb}, pounds, and @kbd{lbf}.)
28106 Meanwhile, one ``@expr{g}'' of acceleration is denoted @code{ga}.
28108 The unit @code{ton} is a U.S. ton of @samp{2000 lb}, and @code{t} is
28109 a metric ton of @samp{1000 kg}.
28111 The names @code{s} (or @code{sec}) and @code{min} refer to units of
28112 time; @code{arcsec} and @code{arcmin} are units of angle.
28114 Some ``units'' are really physical constants; for example, @code{c}
28115 represents the speed of light, and @code{h} represents Planck's
28116 constant.  You can use these just like other units: converting
28117 @samp{.5 c} to @samp{m/s} expresses one-half the speed of light in
28118 meters per second.  You can also use this merely as a handy reference;
28119 the @kbd{u g} command gets the definition of one of these constants
28120 in its normal terms, and @kbd{u b} expresses the definition in base
28121 units.
28123 Two units, @code{pi} and @code{alpha} (the fine structure constant,
28124 approximately @mathit{1/137}) are dimensionless.  The units simplification
28125 commands simply treat these names as equivalent to their corresponding
28126 values.  However you can, for example, use @kbd{u c} to convert a pure
28127 number into multiples of the fine structure constant, or @kbd{u b} to
28128 convert this back into a pure number.  (When @kbd{u c} prompts for the
28129 ``old units,'' just enter a blank line to signify that the value
28130 really is unitless.)
28132 @c Describe angular units, luminosity vs. steradians problem.
28134 @node User-Defined Units, Logarithmic Units, Predefined Units, Units
28135 @section User-Defined Units
28137 @noindent
28138 Calc provides ways to get quick access to your selected ``favorite''
28139 units, as well as ways to define your own new units.
28141 @kindex u 0-9
28142 @pindex calc-quick-units
28143 @vindex Units
28144 @cindex @code{Units} variable
28145 @cindex Quick units
28146 To select your favorite units, store a vector of unit names or
28147 expressions in the Calc variable @code{Units}.  The @kbd{u 1}
28148 through @kbd{u 9} commands (@code{calc-quick-units}) provide access
28149 to these units.  If the value on the top of the stack is a plain
28150 number (with no units attached), then @kbd{u 1} gives it the
28151 specified units.  (Basically, it multiplies the number by the
28152 first item in the @code{Units} vector.)  If the number on the
28153 stack @emph{does} have units, then @kbd{u 1} converts that number
28154 to the new units.  For example, suppose the vector @samp{[in, ft]}
28155 is stored in @code{Units}.  Then @kbd{30 u 1} will create the
28156 expression @samp{30 in}, and @kbd{u 2} will convert that expression
28157 to @samp{2.5 ft}.
28159 The @kbd{u 0} command accesses the tenth element of @code{Units}.
28160 Only ten quick units may be defined at a time.  If the @code{Units}
28161 variable has no stored value (the default), or if its value is not
28162 a vector, then the quick-units commands will not function.  The
28163 @kbd{s U} command is a convenient way to edit the @code{Units}
28164 variable; @pxref{Operations on Variables}.
28166 @kindex u d
28167 @pindex calc-define-unit
28168 @cindex User-defined units
28169 The @kbd{u d} (@code{calc-define-unit}) command records the units
28170 expression on the top of the stack as the definition for a new,
28171 user-defined unit.  For example, putting @samp{16.5 ft} on the stack and
28172 typing @kbd{u d rod} defines the new unit @samp{rod} to be equivalent to
28173 16.5 feet.  The unit conversion and simplification commands will now
28174 treat @code{rod} just like any other unit of length.  You will also be
28175 prompted for an optional English description of the unit, which will
28176 appear in the Units Table.  If you wish the definition of this unit to
28177 be displayed in a special way in the Units Table buffer (such as with an
28178 asterisk to indicate an approximate value), then you can call this
28179 command with an argument, @kbd{C-u u d}; you will then also be prompted
28180 for a string that will be used to display the definition.
28182 @kindex u u
28183 @pindex calc-undefine-unit
28184 The @kbd{u u} (@code{calc-undefine-unit}) command removes a user-defined
28185 unit.  It is not possible to remove one of the predefined units,
28186 however.
28188 If you define a unit with an existing unit name, your new definition
28189 will replace the original definition of that unit.  If the unit was a
28190 predefined unit, the old definition will not be replaced, only
28191 ``shadowed.''  The built-in definition will reappear if you later use
28192 @kbd{u u} to remove the shadowing definition.
28194 To create a new fundamental unit, use either 1 or the unit name itself
28195 as the defining expression.  Otherwise the expression can involve any
28196 other units that you like (except for composite units like @samp{mfi}).
28197 You can create a new composite unit with a sum of other units as the
28198 defining expression.  The next unit operation like @kbd{u c} or @kbd{u v}
28199 will rebuild the internal unit table incorporating your modifications.
28200 Note that erroneous definitions (such as two units defined in terms of
28201 each other) will not be detected until the unit table is next rebuilt;
28202 @kbd{u v} is a convenient way to force this to happen.
28204 Temperature units are treated specially inside the Calculator; it is not
28205 possible to create user-defined temperature units.
28207 @kindex u p
28208 @pindex calc-permanent-units
28209 @cindex Calc init file, user-defined units
28210 The @kbd{u p} (@code{calc-permanent-units}) command stores the user-defined
28211 units in your Calc init file (the file given by the variable
28212 @code{calc-settings-file}, typically @file{~/.emacs.d/calc.el}), so that the
28213 units will still be available in subsequent Emacs sessions.  If there
28214 was already a set of user-defined units in your Calc init file, it
28215 is replaced by the new set.  (@xref{General Mode Commands}, for a way to
28216 tell Calc to use a different file for the Calc init file.)
28218 @node Logarithmic Units, Musical Notes, User-Defined Units, Units
28219 @section Logarithmic Units
28221 The units @code{dB} (decibels) and @code{Np} (nepers) are logarithmic
28222 units which are manipulated differently than standard units.  Calc
28223 provides commands to work with these logarithmic units.
28225 Decibels and nepers are used to measure power quantities as well as
28226 field quantities (quantities whose squares are proportional to power);
28227 these two types of quantities are handled slightly different from each
28228 other.  By default the Calc commands work as if power quantities are
28229 being used; with the @kbd{H} prefix the Calc commands work as if field
28230 quantities are being used.
28232 The decibel level of a power
28233 @infoline @math{P1},
28234 @texline @math{P_1},
28235 relative to a reference power
28236 @infoline @math{P0},
28237 @texline @math{P_0},
28238 is defined to be
28239 @infoline @math{10 log10(P1/P0) dB}.
28240 @texline @math{10 \log_{10}(P_{1}/P_{0}) {\rm dB}}.
28241 (The factor of 10 is because a decibel, as its name implies, is
28242 one-tenth of a bel. The bel, named after Alexander Graham Bell, was
28243 considered to be too large of a unit and was effectively replaced by
28244 the decibel.)  If @math{F} is a field quantity with power
28245 @math{P=k F^2}, then a reference quantity of
28246 @infoline @math{F0}
28247 @texline @math{F_0}
28248 would correspond to a power of
28249 @infoline @math{P0=k F0^2}.
28250 @texline @math{P_{0}=kF_{0}^2}.
28252 @infoline @math{P1=k F1^2},
28253 @texline @math{P_{1}=kF_{1}^2},
28254 then
28256 @ifnottex
28257 @example
28258 10 log10(P1/P0) = 10 log10(F1^2/F0^2) = 20 log10(F1/F0).
28259 @end example
28260 @end ifnottex
28261 @tex
28262 $$ 10 \log_{10}(P_1/P_0) = 10 \log_{10}(F_1^2/F_0^2) = 20
28263 \log_{10}(F_1/F_0)$$
28264 @end tex
28266 @noindent
28267 In order to get the same decibel level regardless of whether a field
28268 quantity or the corresponding power quantity is used,  the decibel
28269 level of a field quantity
28270 @infoline @math{F1},
28271 @texline @math{F_1},
28272 relative to a reference
28273 @infoline @math{F0},
28274 @texline @math{F_0},
28275 is defined as
28276 @infoline @math{20 log10(F1/F0) dB}.
28277 @texline @math{20 \log_{10}(F_{1}/F_{0}) {\rm dB}}.
28278 For example, the decibel value of a sound pressure level of
28279 @infoline @math{60 uPa}
28280 @texline @math{60 \mu{\rm Pa}}
28281 relative to
28282 @infoline @math{20 uPa}
28283 @texline @math{20 \mu{\rm Pa}}
28284 (the threshold of human hearing) is
28285 @infoline @math{20 log10(60 uPa/ 20 uPa) dB = 20 log10(3) dB},
28286 @texline  @math{20 \log_{10}(60 \mu{\rm Pa}/20 \mu{\rm Pa}) {\rm dB} = 20 \log_{10}(3) {\rm dB}},
28287 which is about
28288 @infoline @math{9.54 dB}.
28289 @texline @math{9.54 {\rm dB}}.
28290 Note that in taking the ratio, the original units cancel and so these
28291 logarithmic units are dimensionless.
28293 Nepers (named after John Napier, who is credited with inventing the
28294 logarithm) are similar to bels except they use natural logarithms instead
28295 of common logarithms.  The neper level of a power
28296 @infoline @math{P1},
28297 @texline @math{P_1},
28298 relative to a reference power
28299 @infoline @math{P0},
28300 @texline @math{P_0},
28302 @infoline @math{(1/2) ln(P1/P0) Np}.
28303 @texline @math{(1/2) \ln(P_1/P_0) {\rm Np}}.
28304 The neper level of a field
28305 @infoline @math{F1},
28306 @texline @math{F_1},
28307 relative to a reference field
28308 @infoline @math{F0},
28309 @texline @math{F_0},
28311 @infoline @math{ln(F1/F0) Np}.
28312 @texline @math{\ln(F_1/F_0) {\rm Np}}.
28314 @vindex calc-lu-power-reference
28315 @vindex calc-lu-field-reference
28316 For power quantities, Calc uses
28317 @infoline @math{1 mW}
28318 @texline @math{1 {\rm mW}}
28319 as the default reference quantity; this default can be changed by changing
28320 the value of the customizable variable
28321 @code{calc-lu-power-reference} (@pxref{Customizing Calc}).
28322 For field quantities, Calc uses
28323 @infoline @math{20 uPa}
28324 @texline @math{20 \mu{\rm Pa}}
28325 as the default reference quantity; this is the value used in acoustics
28326 which is where decibels are commonly encountered.  This default can be
28327 changed by changing the value of the customizable variable
28328 @code{calc-lu-field-reference} (@pxref{Customizing Calc}).  A
28329 non-default reference quantity will be read from the stack if the
28330 capital @kbd{O} prefix is used.
28332 @kindex l q
28333 @pindex calc-lu-quant
28334 @tindex lupquant
28335 @tindex lufquant
28336 The @kbd{l q} (@code{calc-lu-quant}) [@code{lupquant}]
28337 command computes the power quantity corresponding to a given number of
28338 logarithmic units. With the capital @kbd{O} prefix, @kbd{O l q}, the
28339 reference level will be read from the top of the stack. (In an
28340 algebraic formula, @code{lupquant} can be given an optional second
28341 argument which will be used for the reference level.) For example,
28342 @code{20 dB @key{RET} l q} will return @code{100 mW};
28343 @code{20 dB @key{RET} 4 W @key{RET} O l q} will return @code{400 W}.
28344 The @kbd{H l q} [@code{lufquant}] command behaves like @kbd{l q} but
28345 computes field quantities instead of power quantities.
28347 @kindex l d
28348 @pindex calc-db
28349 @tindex dbpower
28350 @tindex dbfield
28351 @kindex l n
28352 @pindex calc-np
28353 @tindex nppower
28354 @tindex npfield
28355 The @kbd{l d} (@code{calc-db}) [@code{dbpower}] command will compute
28356 the decibel level of a power quantity using the default reference
28357 level; @kbd{H l d} [@code{dbfield}] will compute the decibel level of
28358 a field quantity.  The commands @kbd{l n} (@code{calc-np})
28359 [@code{nppower}] and @kbd{H l n} [@code{npfield}] will similarly
28360 compute neper levels.  With the capital @kbd{O} prefix these commands
28361 will read a reference level from the stack; in an algebraic formula
28362 the reference level can be given as an optional second argument.
28364 @kindex l +
28365 @pindex calc-lu-plus
28366 @tindex lupadd
28367 @tindex lufadd
28368 @kindex l -
28369 @pindex calc-lu-minus
28370 @tindex lupsub
28371 @tindex lufsub
28372 @kindex l *
28373 @pindex calc-lu-times
28374 @tindex lupmul
28375 @tindex lufmul
28376 @kindex l /
28377 @pindex calc-lu-divide
28378 @tindex lupdiv
28379 @tindex lufdiv
28380 The sum of two power or field quantities doesn't correspond to the sum
28381 of the corresponding decibel or neper levels.  If the powers
28382 corresponding to decibel levels
28383 @infoline @math{D1}
28384 @texline @math{D_1}
28386 @infoline @math{D2}
28387 @texline @math{D_2}
28388 are added, the corresponding decibel level ``sum'' will be
28390 @ifnottex
28391 @example
28392   10 log10(10^(D1/10) + 10^(D2/10)) dB.
28393 @end example
28394 @end ifnottex
28395 @tex
28396 $$ 10 \log_{10}(10^{D_1/10} + 10^{D_2/10}) {\rm dB}.$$
28397 @end tex
28399 @noindent
28400 When field quantities are combined, it often means the corresponding
28401 powers are added and so the above formula might be used.  In
28402 acoustics, for example, the sound pressure level is a field quantity
28403 and so the decibels are often defined using the field formula, but the
28404 sound pressure levels are combined as the sound power levels, and so
28405 the above formula should be used.  If two field quantities themselves
28406 are added, the new decibel level will be
28408 @ifnottex
28409 @example
28410   20 log10(10^(D1/20) + 10^(D2/20)) dB.
28411 @end example
28412 @end ifnottex
28413 @tex
28414 $$ 20 \log_{10}(10^{D_1/20} + 10^{D_2/20}) {\rm dB}.$$
28415 @end tex
28417 @noindent
28418 If the power corresponding to @math{D} dB is multiplied by a number @math{N},
28419 then the corresponding decibel level will be
28421 @ifnottex
28422 @example
28423   D + 10 log10(N) dB,
28424 @end example
28425 @end ifnottex
28426 @tex
28427 $$ D + 10 \log_{10}(N) {\rm dB},$$
28428 @end tex
28430 @noindent
28431 if a field quantity is multiplied by @math{N} the corresponding decibel level
28432 will be
28434 @ifnottex
28435 @example
28436   D + 20 log10(N) dB.
28437 @end example
28438 @end ifnottex
28439 @tex
28440 $$ D + 20 \log_{10}(N) {\rm dB}.$$
28441 @end tex
28443 @noindent
28444 There are similar formulas for combining nepers.  The @kbd{l +}
28445 (@code{calc-lu-plus}) [@code{lupadd}] command will ``add'' two
28446 logarithmic unit power levels this way; with the @kbd{H} prefix,
28447 @kbd{H l +} [@code{lufadd}] will add logarithmic unit field levels.
28448 Similarly, logarithmic units can be ``subtracted'' with @kbd{l -}
28449 (@code{calc-lu-minus}) [@code{lupsub}] or @kbd{H l -} [@code{lufsub}].
28450 The @kbd{l *} (@code{calc-lu-times}) [@code{lupmul}] and @kbd{H l *}
28451 [@code{lufmul}] commands will ``multiply'' a logarithmic unit by a
28452 number; the @kbd{l /} (@code{calc-lu-divide}) [@code{lupdiv}] and
28453 @kbd{H l /} [@code{lufdiv}] commands will ``divide'' a logarithmic
28454 unit by a number. Note that the reference quantities don't play a role
28455 in this arithmetic.
28457 @node Musical Notes, , Logarithmic Units, Units
28458 @section Musical Notes
28460 Calc can convert between musical notes and their associated
28461 frequencies.  Notes can be given using either scientific pitch
28462 notation or midi numbers.  Since these note systems are basically
28463 logarithmic scales, Calc uses the @kbd{l} prefix for functions
28464 operating on notes.
28466 Scientific pitch notation refers to a note by giving a letter
28467 A through G, possibly followed by a flat or sharp) with a subscript
28468 indicating an octave number.  Each octave starts with C and ends with
28469 B and
28470 @c increasing each note by a semitone will result
28471 @c in the sequence @expr{C}, @expr{C} sharp, @expr{D}, @expr{E} flat, @expr{E},
28472 @c @expr{F}, @expr{F} sharp, @expr{G}, @expr{A} flat, @expr{A}, @expr{B}
28473 @c flat and @expr{B}.
28474 the octave numbered 0 was chosen to correspond to the lowest
28475 audible frequency.  Using this system, middle C (about 261.625 Hz)
28476 corresponds to the note @expr{C} in octave 4 and is denoted
28477 @expr{C_4}.  Any frequency can be described by giving a note plus an
28478 offset in cents (where a cent is a ratio of frequencies so that a
28479 semitone consists of 100 cents).
28481 The midi note number system assigns numbers to notes so that
28482 @expr{C_(-1)} corresponds to the midi note number 0 and @expr{G_9}
28483 corresponds to the midi note number 127.   A midi controller can have
28484 up to 128 keys and each midi note number from  0 to 127 corresponds to
28485 a possible key.
28487 @kindex l s
28488 @pindex calc-spn
28489 @tindex spn
28490 The @kbd{l s} (@code{calc-spn}) [@code{spn}] command converts either
28491 a frequency or a midi number to scientific pitch notation.  For
28492 example, @code{500 Hz} gets converted to
28493 @code{B_4 + 21.3094853649 cents} and @code{84} to @code{C_6}.
28496 @kindex l m
28497 @pindex calc-midi
28498 @tindex midi
28499 The @kbd{l m} (@code{calc-midi}) [@code{midi}] command converts either
28500 a frequency or a note given in scientific pitch notation to the
28501 corresponding midi number. For example, @code{C_6} gets converted to 84
28502 and @code{440 Hz} to 69.
28504 @kindex l f
28505 @pindex calc-freq
28506 @tindex freq
28507 The @kbd{l f} (@code{calc-freq}) [@code{freq}] command converts either
28508 either a midi number or a note given in scientific pitch notation to
28509 the corresponding frequency. For example, @code{Asharp_2 + 30 cents}
28510 gets converted to @code{118.578040134 Hz} and @code{55} to
28511 @code{195.99771799 Hz}.
28513 Since the frequencies of notes are not usually given exactly (and are
28514 typically irrational), the customizable variable
28515 @code{calc-note-threshold} determines how close (in cents) a frequency
28516 needs to be to a note to be recognized as that note
28517 (@pxref{Customizing Calc}).  This variable has a default value of
28518 @code{1}.  For example, middle @var{C} is approximately
28519 @expr{261.625565302 Hz}; this frequency is often shortened to
28520 @expr{261.625 Hz}.  Without @code{calc-note-threshold} (or a value of
28521 @expr{0}), Calc would convert @code{261.625 Hz} to scientific pitch
28522 notation @code{B_3 + 99.9962592773 cents}; with the default value of
28523 @code{1}, Calc converts @code{261.625 Hz} to @code{C_4}.
28527 @node Store and Recall, Graphics, Units, Top
28528 @chapter Storing and Recalling
28530 @noindent
28531 Calculator variables are really just Lisp variables that contain numbers
28532 or formulas in a form that Calc can understand.  The commands in this
28533 section allow you to manipulate variables conveniently.  Commands related
28534 to variables use the @kbd{s} prefix key.
28536 @menu
28537 * Storing Variables::
28538 * Recalling Variables::
28539 * Operations on Variables::
28540 * Let Command::
28541 * Evaluates-To Operator::
28542 @end menu
28544 @node Storing Variables, Recalling Variables, Store and Recall, Store and Recall
28545 @section Storing Variables
28547 @noindent
28548 @kindex s s
28549 @pindex calc-store
28550 @cindex Storing variables
28551 @cindex Quick variables
28552 @vindex q0
28553 @vindex q9
28554 The @kbd{s s} (@code{calc-store}) command stores the value at the top of
28555 the stack into a specified variable.  It prompts you to enter the
28556 name of the variable.  If you press a single digit, the value is stored
28557 immediately in one of the ``quick'' variables @code{q0} through
28558 @code{q9}.  Or you can enter any variable name.
28560 @kindex s t
28561 @pindex calc-store-into
28562 The @kbd{s s} command leaves the stored value on the stack.  There is
28563 also an @kbd{s t} (@code{calc-store-into}) command, which removes a
28564 value from the stack and stores it in a variable.
28566 If the top of stack value is an equation @samp{a = 7} or assignment
28567 @samp{a := 7} with a variable on the lefthand side, then Calc will
28568 assign that variable with that value by default, i.e., if you type
28569 @kbd{s s @key{RET}} or @kbd{s t @key{RET}}.  In this example, the
28570 value 7 would be stored in the variable @samp{a}.  (If you do type
28571 a variable name at the prompt, the top-of-stack value is stored in
28572 its entirety, even if it is an equation:  @samp{s s b @key{RET}}
28573 with @samp{a := 7} on the stack stores @samp{a := 7} in @code{b}.)
28575 In fact, the top of stack value can be a vector of equations or
28576 assignments with different variables on their lefthand sides; the
28577 default will be to store all the variables with their corresponding
28578 righthand sides simultaneously.
28580 It is also possible to type an equation or assignment directly at
28581 the prompt for the @kbd{s s} or @kbd{s t} command:  @kbd{s s foo = 7}.
28582 In this case the expression to the right of the @kbd{=} or @kbd{:=}
28583 symbol is evaluated as if by the @kbd{=} command, and that value is
28584 stored in the variable.  No value is taken from the stack; @kbd{s s}
28585 and @kbd{s t} are equivalent when used in this way.
28587 @kindex s 0-9
28588 @kindex t 0-9
28589 The prefix keys @kbd{s} and @kbd{t} may be followed immediately by a
28590 digit; @kbd{s 9} is equivalent to @kbd{s s 9}, and @kbd{t 9} is
28591 equivalent to @kbd{s t 9}.  (The @kbd{t} prefix is otherwise used
28592 for trail and time/date commands.)
28594 @kindex s +
28595 @kindex s -
28596 @ignore
28597 @mindex @idots
28598 @end ignore
28599 @kindex s *
28600 @ignore
28601 @mindex @null
28602 @end ignore
28603 @kindex s /
28604 @ignore
28605 @mindex @null
28606 @end ignore
28607 @kindex s ^
28608 @ignore
28609 @mindex @null
28610 @end ignore
28611 @kindex s |
28612 @ignore
28613 @mindex @null
28614 @end ignore
28615 @kindex s n
28616 @ignore
28617 @mindex @null
28618 @end ignore
28619 @kindex s &
28620 @ignore
28621 @mindex @null
28622 @end ignore
28623 @kindex s [
28624 @ignore
28625 @mindex @null
28626 @end ignore
28627 @kindex s ]
28628 @pindex calc-store-plus
28629 @pindex calc-store-minus
28630 @pindex calc-store-times
28631 @pindex calc-store-div
28632 @pindex calc-store-power
28633 @pindex calc-store-concat
28634 @pindex calc-store-neg
28635 @pindex calc-store-inv
28636 @pindex calc-store-decr
28637 @pindex calc-store-incr
28638 There are also several ``arithmetic store'' commands.  For example,
28639 @kbd{s +} removes a value from the stack and adds it to the specified
28640 variable.  The other arithmetic stores are @kbd{s -}, @kbd{s *}, @kbd{s /},
28641 @kbd{s ^}, and @w{@kbd{s |}} (vector concatenation), plus @kbd{s n} and
28642 @kbd{s &} which negate or invert the value in a variable, and @w{@kbd{s [}}
28643 and @kbd{s ]} which decrease or increase a variable by one.
28645 All the arithmetic stores accept the Inverse prefix to reverse the
28646 order of the operands.  If @expr{v} represents the contents of the
28647 variable, and @expr{a} is the value drawn from the stack, then regular
28648 @w{@kbd{s -}} assigns
28649 @texline @math{v \coloneq v - a},
28650 @infoline @expr{v := v - a},
28651 but @kbd{I s -} assigns
28652 @texline @math{v \coloneq a - v}.
28653 @infoline @expr{v := a - v}.
28654 While @kbd{I s *} might seem pointless, it is
28655 useful if matrix multiplication is involved.  Actually, all the
28656 arithmetic stores use formulas designed to behave usefully both
28657 forwards and backwards:
28659 @example
28660 @group
28661 s +        v := v + a          v := a + v
28662 s -        v := v - a          v := a - v
28663 s *        v := v * a          v := a * v
28664 s /        v := v / a          v := a / v
28665 s ^        v := v ^ a          v := a ^ v
28666 s |        v := v | a          v := a | v
28667 s n        v := v / (-1)       v := (-1) / v
28668 s &        v := v ^ (-1)       v := (-1) ^ v
28669 s [        v := v - 1          v := 1 - v
28670 s ]        v := v - (-1)       v := (-1) - v
28671 @end group
28672 @end example
28674 In the last four cases, a numeric prefix argument will be used in
28675 place of the number one.  (For example, @kbd{M-2 s ]} increases
28676 a variable by 2, and @kbd{M-2 I s ]} replaces a variable by
28677 minus-two minus the variable.
28679 The first six arithmetic stores can also be typed @kbd{s t +}, @kbd{s t -},
28680 etc.  The commands @kbd{s s +}, @kbd{s s -}, and so on are analogous
28681 arithmetic stores that don't remove the value @expr{a} from the stack.
28683 All arithmetic stores report the new value of the variable in the
28684 Trail for your information.  They signal an error if the variable
28685 previously had no stored value.  If default simplifications have been
28686 turned off, the arithmetic stores temporarily turn them on for numeric
28687 arguments only (i.e., they temporarily do an @kbd{m N} command).
28688 @xref{Simplification Modes}.  Large vectors put in the trail by
28689 these commands always use abbreviated (@kbd{t .}) mode.
28691 @kindex s m
28692 @pindex calc-store-map
28693 The @kbd{s m} command is a general way to adjust a variable's value
28694 using any Calc function.  It is a ``mapping'' command analogous to
28695 @kbd{V M}, @kbd{V R}, etc.  @xref{Reducing and Mapping}, to see
28696 how to specify a function for a mapping command.  Basically,
28697 all you do is type the Calc command key that would invoke that
28698 function normally.  For example, @kbd{s m n} applies the @kbd{n}
28699 key to negate the contents of the variable, so @kbd{s m n} is
28700 equivalent to @kbd{s n}.  Also, @kbd{s m Q} takes the square root
28701 of the value stored in a variable, @kbd{s m v v} uses @kbd{v v} to
28702 reverse the vector stored in the variable, and @kbd{s m H I S}
28703 takes the hyperbolic arcsine of the variable contents.
28705 If the mapping function takes two or more arguments, the additional
28706 arguments are taken from the stack; the old value of the variable
28707 is provided as the first argument.  Thus @kbd{s m -} with @expr{a}
28708 on the stack computes @expr{v - a}, just like @kbd{s -}.  With the
28709 Inverse prefix, the variable's original value becomes the @emph{last}
28710 argument instead of the first.  Thus @kbd{I s m -} is also
28711 equivalent to @kbd{I s -}.
28713 @kindex s x
28714 @pindex calc-store-exchange
28715 The @kbd{s x} (@code{calc-store-exchange}) command exchanges the value
28716 of a variable with the value on the top of the stack.  Naturally, the
28717 variable must already have a stored value for this to work.
28719 You can type an equation or assignment at the @kbd{s x} prompt.  The
28720 command @kbd{s x a=6} takes no values from the stack; instead, it
28721 pushes the old value of @samp{a} on the stack and stores @samp{a = 6}.
28723 @kindex s u
28724 @pindex calc-unstore
28725 @cindex Void variables
28726 @cindex Un-storing variables
28727 Until you store something in them, most variables are ``void,'' that is,
28728 they contain no value at all.  If they appear in an algebraic formula
28729 they will be left alone even if you press @kbd{=} (@code{calc-evaluate}).
28730 The @kbd{s u} (@code{calc-unstore}) command returns a variable to the
28731 void state.
28733 @kindex s c
28734 @pindex calc-copy-variable
28735 The @kbd{s c} (@code{calc-copy-variable}) command copies the stored
28736 value of one variable to another.  One way it differs from a simple
28737 @kbd{s r} followed by an @kbd{s t} (aside from saving keystrokes) is
28738 that the value never goes on the stack and thus is never rounded,
28739 evaluated, or simplified in any way; it is not even rounded down to the
28740 current precision.
28742 The only variables with predefined values are the ``special constants''
28743 @code{pi}, @code{e}, @code{i}, @code{phi}, and @code{gamma}.  You are free
28744 to unstore these variables or to store new values into them if you like,
28745 although some of the algebraic-manipulation functions may assume these
28746 variables represent their standard values.  Calc displays a warning if
28747 you change the value of one of these variables, or of one of the other
28748 special variables @code{inf}, @code{uinf}, and @code{nan} (which are
28749 normally void).
28751 Note that @code{pi} doesn't actually have 3.14159265359 stored in it,
28752 but rather a special magic value that evaluates to @cpi{} at the current
28753 precision.  Likewise @code{e}, @code{i}, and @code{phi} evaluate
28754 according to the current precision or polar mode.  If you recall a value
28755 from @code{pi} and store it back, this magic property will be lost.  The
28756 magic property is preserved, however, when a variable is copied with
28757 @kbd{s c}.
28759 @kindex s k
28760 @pindex calc-copy-special-constant
28761 If one of the ``special constants'' is redefined (or undefined) so that
28762 it no longer has its magic property, the property can be restored with
28763 @kbd{s k} (@code{calc-copy-special-constant}).  This command will prompt
28764 for a special constant and a variable to store it in, and so a special
28765 constant can be stored in any variable.  Here, the special constant that
28766 you enter doesn't depend on the value of the corresponding variable;
28767 @code{pi} will represent 3.14159@dots{} regardless of what is currently
28768 stored in the Calc variable @code{pi}.  If one of the other special
28769 variables, @code{inf}, @code{uinf} or @code{nan}, is given a value, its
28770 original behavior can be restored by voiding it with @kbd{s u}.
28772 @node Recalling Variables, Operations on Variables, Storing Variables, Store and Recall
28773 @section Recalling Variables
28775 @noindent
28776 @kindex s r
28777 @pindex calc-recall
28778 @cindex Recalling variables
28779 The most straightforward way to extract the stored value from a variable
28780 is to use the @kbd{s r} (@code{calc-recall}) command.  This command prompts
28781 for a variable name (similarly to @code{calc-store}), looks up the value
28782 of the specified variable, and pushes that value onto the stack.  It is
28783 an error to try to recall a void variable.
28785 It is also possible to recall the value from a variable by evaluating a
28786 formula containing that variable.  For example, @kbd{' a @key{RET} =} is
28787 the same as @kbd{s r a @key{RET}} except that if the variable is void, the
28788 former will simply leave the formula @samp{a} on the stack whereas the
28789 latter will produce an error message.
28791 @kindex r 0-9
28792 The @kbd{r} prefix may be followed by a digit, so that @kbd{r 9} is
28793 equivalent to @kbd{s r 9}.
28795 @node Operations on Variables, Let Command, Recalling Variables, Store and Recall
28796 @section Other Operations on Variables
28798 @noindent
28799 @kindex s e
28800 @pindex calc-edit-variable
28801 The @kbd{s e} (@code{calc-edit-variable}) command edits the stored
28802 value of a variable without ever putting that value on the stack
28803 or simplifying or evaluating the value.  It prompts for the name of
28804 the variable to edit.  If the variable has no stored value, the
28805 editing buffer will start out empty.  If the editing buffer is
28806 empty when you press @kbd{C-c C-c} to finish, the variable will
28807 be made void.  @xref{Editing Stack Entries}, for a general
28808 description of editing.
28810 The @kbd{s e} command is especially useful for creating and editing
28811 rewrite rules which are stored in variables.  Sometimes these rules
28812 contain formulas which must not be evaluated until the rules are
28813 actually used.  (For example, they may refer to @samp{deriv(x,y)},
28814 where @code{x} will someday become some expression involving @code{y};
28815 if you let Calc evaluate the rule while you are defining it, Calc will
28816 replace @samp{deriv(x,y)} with 0 because the formula @code{x} does
28817 not itself refer to @code{y}.)  By contrast, recalling the variable,
28818 editing with @kbd{`}, and storing will evaluate the variable's value
28819 as a side effect of putting the value on the stack.
28821 @kindex s A
28822 @kindex s D
28823 @ignore
28824 @mindex @idots
28825 @end ignore
28826 @kindex s E
28827 @ignore
28828 @mindex @null
28829 @end ignore
28830 @kindex s F
28831 @ignore
28832 @mindex @null
28833 @end ignore
28834 @kindex s G
28835 @ignore
28836 @mindex @null
28837 @end ignore
28838 @kindex s H
28839 @ignore
28840 @mindex @null
28841 @end ignore
28842 @kindex s I
28843 @ignore
28844 @mindex @null
28845 @end ignore
28846 @kindex s L
28847 @ignore
28848 @mindex @null
28849 @end ignore
28850 @kindex s P
28851 @ignore
28852 @mindex @null
28853 @end ignore
28854 @kindex s R
28855 @ignore
28856 @mindex @null
28857 @end ignore
28858 @kindex s T
28859 @ignore
28860 @mindex @null
28861 @end ignore
28862 @kindex s U
28863 @ignore
28864 @mindex @null
28865 @end ignore
28866 @kindex s X
28867 @pindex calc-store-AlgSimpRules
28868 @pindex calc-store-Decls
28869 @pindex calc-store-EvalRules
28870 @pindex calc-store-FitRules
28871 @pindex calc-store-GenCount
28872 @pindex calc-store-Holidays
28873 @pindex calc-store-IntegLimit
28874 @pindex calc-store-LineStyles
28875 @pindex calc-store-PointStyles
28876 @pindex calc-store-PlotRejects
28877 @pindex calc-store-TimeZone
28878 @pindex calc-store-Units
28879 @pindex calc-store-ExtSimpRules
28880 There are several special-purpose variable-editing commands that
28881 use the @kbd{s} prefix followed by a shifted letter:
28883 @table @kbd
28884 @item s A
28885 Edit @code{AlgSimpRules}.  @xref{Algebraic Simplifications}.
28886 @item s D
28887 Edit @code{Decls}.  @xref{Declarations}.
28888 @item s E
28889 Edit @code{EvalRules}.  @xref{Basic Simplifications}.
28890 @item s F
28891 Edit @code{FitRules}.  @xref{Curve Fitting}.
28892 @item s G
28893 Edit @code{GenCount}.  @xref{Solving Equations}.
28894 @item s H
28895 Edit @code{Holidays}.  @xref{Business Days}.
28896 @item s I
28897 Edit @code{IntegLimit}.  @xref{Calculus}.
28898 @item s L
28899 Edit @code{LineStyles}.  @xref{Graphics}.
28900 @item s P
28901 Edit @code{PointStyles}.  @xref{Graphics}.
28902 @item s R
28903 Edit @code{PlotRejects}.  @xref{Graphics}.
28904 @item s T
28905 Edit @code{TimeZone}.  @xref{Time Zones}.
28906 @item s U
28907 Edit @code{Units}.  @xref{User-Defined Units}.
28908 @item s X
28909 Edit @code{ExtSimpRules}.  @xref{Unsafe Simplifications}.
28910 @end table
28912 These commands are just versions of @kbd{s e} that use fixed variable
28913 names rather than prompting for the variable name.
28915 @kindex s p
28916 @pindex calc-permanent-variable
28917 @cindex Storing variables
28918 @cindex Permanent variables
28919 @cindex Calc init file, variables
28920 The @kbd{s p} (@code{calc-permanent-variable}) command saves a
28921 variable's value permanently in your Calc init file (the file given by
28922 the variable @code{calc-settings-file}, typically @file{~/.emacs.d/calc.el}), so
28923 that its value will still be available in future Emacs sessions.  You
28924 can re-execute @w{@kbd{s p}} later on to update the saved value, but the
28925 only way to remove a saved variable is to edit your calc init file
28926 by hand.  (@xref{General Mode Commands}, for a way to tell Calc to
28927 use a different file for the Calc init file.)
28929 If you do not specify the name of a variable to save (i.e.,
28930 @kbd{s p @key{RET}}), all Calc variables with defined values
28931 are saved except for the special constants @code{pi}, @code{e},
28932 @code{i}, @code{phi}, and @code{gamma}; the variables @code{TimeZone}
28933 and @code{PlotRejects};
28934 @code{FitRules}, @code{DistribRules}, and other built-in rewrite
28935 rules; and @code{PlotData@var{n}} variables generated
28936 by the graphics commands.  (You can still save these variables by
28937 explicitly naming them in an @kbd{s p} command.)
28939 @kindex s i
28940 @pindex calc-insert-variables
28941 The @kbd{s i} (@code{calc-insert-variables}) command writes
28942 the values of all Calc variables into a specified buffer.
28943 The variables are written with the prefix @code{var-} in the form of
28944 Lisp @code{setq} commands
28945 which store the values in string form.  You can place these commands
28946 in your Calc init file (or @file{.emacs}) if you wish, though in this case it
28947 would be easier to use @kbd{s p @key{RET}}.  (Note that @kbd{s i}
28948 omits the same set of variables as @w{@kbd{s p @key{RET}}}; the difference
28949 is that @kbd{s i} will store the variables in any buffer, and it also
28950 stores in a more human-readable format.)
28952 @node Let Command, Evaluates-To Operator, Operations on Variables, Store and Recall
28953 @section The Let Command
28955 @noindent
28956 @kindex s l
28957 @pindex calc-let
28958 @cindex Variables, temporary assignment
28959 @cindex Temporary assignment to variables
28960 If you have an expression like @samp{a+b^2} on the stack and you wish to
28961 compute its value where @expr{b=3}, you can simply store 3 in @expr{b} and
28962 then press @kbd{=} to reevaluate the formula.  This has the side-effect
28963 of leaving the stored value of 3 in @expr{b} for future operations.
28965 The @kbd{s l} (@code{calc-let}) command evaluates a formula under a
28966 @emph{temporary} assignment of a variable.  It stores the value on the
28967 top of the stack into the specified variable, then evaluates the
28968 second-to-top stack entry, then restores the original value (or lack of one)
28969 in the variable.  Thus after @kbd{'@w{ }a+b^2 @key{RET} 3 s l b @key{RET}},
28970 the stack will contain the formula @samp{a + 9}.  The subsequent command
28971 @kbd{@w{5 s l a} @key{RET}} will replace this formula with the number 14.
28972 The variables @samp{a} and @samp{b} are not permanently affected in any way
28973 by these commands.
28975 The value on the top of the stack may be an equation or assignment, or
28976 a vector of equations or assignments, in which case the default will be
28977 analogous to the case of @kbd{s t @key{RET}}.  @xref{Storing Variables}.
28979 Also, you can answer the variable-name prompt with an equation or
28980 assignment:  @kbd{s l b=3 @key{RET}} is the same as storing 3 on the stack
28981 and typing @kbd{s l b @key{RET}}.
28983 The @kbd{a b} (@code{calc-substitute}) command is another way to substitute
28984 a variable with a value in a formula.  It does an actual substitution
28985 rather than temporarily assigning the variable and evaluating.  For
28986 example, letting @expr{n=2} in @samp{f(n pi)} with @kbd{a b} will
28987 produce @samp{f(2 pi)}, whereas @kbd{s l} would give @samp{f(6.28)}
28988 since the evaluation step will also evaluate @code{pi}.
28990 @node Evaluates-To Operator,  , Let Command, Store and Recall
28991 @section The Evaluates-To Operator
28993 @noindent
28994 @tindex evalto
28995 @tindex =>
28996 @cindex Evaluates-to operator
28997 @cindex @samp{=>} operator
28998 The special algebraic symbol @samp{=>} is known as the @dfn{evaluates-to
28999 operator}.  (It will show up as an @code{evalto} function call in
29000 other language modes like Pascal and @LaTeX{}.)  This is a binary
29001 operator, that is, it has a lefthand and a righthand argument,
29002 although it can be entered with the righthand argument omitted.
29004 A formula like @samp{@var{a} => @var{b}} is evaluated by Calc as
29005 follows:  First, @var{a} is not simplified or modified in any
29006 way.  The previous value of argument @var{b} is thrown away; the
29007 formula @var{a} is then copied and evaluated as if by the @kbd{=}
29008 command according to all current modes and stored variable values,
29009 and the result is installed as the new value of @var{b}.
29011 For example, suppose you enter the algebraic formula @samp{2 + 3 => 17}.
29012 The number 17 is ignored, and the lefthand argument is left in its
29013 unevaluated form; the result is the formula @samp{2 + 3 => 5}.
29015 @kindex s =
29016 @pindex calc-evalto
29017 You can enter an @samp{=>} formula either directly using algebraic
29018 entry (in which case the righthand side may be omitted since it is
29019 going to be replaced right away anyhow), or by using the @kbd{s =}
29020 (@code{calc-evalto}) command, which takes @var{a} from the stack
29021 and replaces it with @samp{@var{a} => @var{b}}.
29023 Calc keeps track of all @samp{=>} operators on the stack, and
29024 recomputes them whenever anything changes that might affect their
29025 values, i.e., a mode setting or variable value.  This occurs only
29026 if the @samp{=>} operator is at the top level of the formula, or
29027 if it is part of a top-level vector.  In other words, pushing
29028 @samp{2 + (a => 17)} will change the 17 to the actual value of
29029 @samp{a} when you enter the formula, but the result will not be
29030 dynamically updated when @samp{a} is changed later because the
29031 @samp{=>} operator is buried inside a sum.  However, a vector
29032 of @samp{=>} operators will be recomputed, since it is convenient
29033 to push a vector like @samp{[a =>, b =>, c =>]} on the stack to
29034 make a concise display of all the variables in your problem.
29035 (Another way to do this would be to use @samp{[a, b, c] =>},
29036 which provides a slightly different format of display.  You
29037 can use whichever you find easiest to read.)
29039 @kindex m C
29040 @pindex calc-auto-recompute
29041 The @kbd{m C} (@code{calc-auto-recompute}) command allows you to
29042 turn this automatic recomputation on or off.  If you turn
29043 recomputation off, you must explicitly recompute an @samp{=>}
29044 operator on the stack in one of the usual ways, such as by
29045 pressing @kbd{=}.  Turning recomputation off temporarily can save
29046 a lot of time if you will be changing several modes or variables
29047 before you look at the @samp{=>} entries again.
29049 Most commands are not especially useful with @samp{=>} operators
29050 as arguments.  For example, given @samp{x + 2 => 17}, it won't
29051 work to type @kbd{1 +} to get @samp{x + 3 => 18}.  If you want
29052 to operate on the lefthand side of the @samp{=>} operator on
29053 the top of the stack, type @kbd{j 1} (that's the digit ``one'')
29054 to select the lefthand side, execute your commands, then type
29055 @kbd{j u} to unselect.
29057 All current modes apply when an @samp{=>} operator is computed,
29058 including the current simplification mode.  Recall that the
29059 formula @samp{arcsin(sin(x))} will not be handled by Calc's algebraic
29060 simplifications, but Calc's unsafe simplifications will reduce it to
29061 @samp{x}.   If you enter @samp{arcsin(sin(x)) =>} normally, the result
29062 will be @samp{arcsin(sin(x)) => arcsin(sin(x))}.  If you change to
29063 Extended Simplification mode, the result will be
29064 @samp{arcsin(sin(x)) => x}.  However, just pressing @kbd{a e}
29065 once will have no effect on @samp{arcsin(sin(x)) => arcsin(sin(x))},
29066 because the righthand side depends only on the lefthand side
29067 and the current mode settings, and the lefthand side is not
29068 affected by commands like @kbd{a e}.
29070 The ``let'' command (@kbd{s l}) has an interesting interaction
29071 with the @samp{=>} operator.  The @kbd{s l} command evaluates the
29072 second-to-top stack entry with the top stack entry supplying
29073 a temporary value for a given variable.  As you might expect,
29074 if that stack entry is an @samp{=>} operator its righthand
29075 side will temporarily show this value for the variable.  In
29076 fact, all @samp{=>}s on the stack will be updated if they refer
29077 to that variable.  But this change is temporary in the sense
29078 that the next command that causes Calc to look at those stack
29079 entries will make them revert to the old variable value.
29081 @smallexample
29082 @group
29083 2:  a => a             2:  a => 17         2:  a => a
29084 1:  a + 1 => a + 1     1:  a + 1 => 18     1:  a + 1 => a + 1
29085     .                      .                   .
29087                            17 s l a @key{RET}        p 8 @key{RET}
29088 @end group
29089 @end smallexample
29091 Here the @kbd{p 8} command changes the current precision,
29092 thus causing the @samp{=>} forms to be recomputed after the
29093 influence of the ``let'' is gone.  The @kbd{d @key{SPC}} command
29094 (@code{calc-refresh}) is a handy way to force the @samp{=>}
29095 operators on the stack to be recomputed without any other
29096 side effects.
29098 @kindex s :
29099 @pindex calc-assign
29100 @tindex assign
29101 @tindex :=
29102 Embedded mode also uses @samp{=>} operators.  In Embedded mode,
29103 the lefthand side of an @samp{=>} operator can refer to variables
29104 assigned elsewhere in the file by @samp{:=} operators.  The
29105 assignment operator @samp{a := 17} does not actually do anything
29106 by itself.  But Embedded mode recognizes it and marks it as a sort
29107 of file-local definition of the variable.  You can enter @samp{:=}
29108 operators in Algebraic mode, or by using the @kbd{s :}
29109 (@code{calc-assign}) [@code{assign}] command which takes a variable
29110 and value from the stack and replaces them with an assignment.
29112 @xref{TeX and LaTeX Language Modes}, for the way @samp{=>} appears in
29113 @TeX{} language output.  The @dfn{eqn} mode gives similar
29114 treatment to @samp{=>}.
29116 @node Graphics, Kill and Yank, Store and Recall, Top
29117 @chapter Graphics
29119 @noindent
29120 The commands for graphing data begin with the @kbd{g} prefix key.  Calc
29121 uses GNUPLOT 2.0 or later to do graphics.  These commands will only work
29122 if GNUPLOT is available on your system.  (While GNUPLOT sounds like
29123 a relative of GNU Emacs, it is actually completely unrelated.
29124 However, it is free software.   It can be obtained from
29125 @samp{http://www.gnuplot.info}.)
29127 @vindex calc-gnuplot-name
29128 If you have GNUPLOT installed on your system but Calc is unable to
29129 find it, you may need to set the @code{calc-gnuplot-name} variable in
29130 your Calc init file or @file{.emacs}.  You may also need to set some
29131 Lisp variables to show Calc how to run GNUPLOT on your system; these
29132 are described under @kbd{g D} and @kbd{g O} below.  If you are using
29133 the X window system or MS-Windows, Calc will configure GNUPLOT for you
29134 automatically.  If you have GNUPLOT 3.0 or later and you are using a
29135 Unix or GNU system without X, Calc will configure GNUPLOT to display
29136 graphs using simple character graphics that will work on any
29137 Posix-compatible terminal.
29139 @menu
29140 * Basic Graphics::
29141 * Three Dimensional Graphics::
29142 * Managing Curves::
29143 * Graphics Options::
29144 * Devices::
29145 @end menu
29147 @node Basic Graphics, Three Dimensional Graphics, Graphics, Graphics
29148 @section Basic Graphics
29150 @noindent
29151 @kindex g f
29152 @pindex calc-graph-fast
29153 The easiest graphics command is @kbd{g f} (@code{calc-graph-fast}).
29154 This command takes two vectors of equal length from the stack.
29155 The vector at the top of the stack represents the ``y'' values of
29156 the various data points.  The vector in the second-to-top position
29157 represents the corresponding ``x'' values.  This command runs
29158 GNUPLOT (if it has not already been started by previous graphing
29159 commands) and displays the set of data points.  The points will
29160 be connected by lines, and there will also be some kind of symbol
29161 to indicate the points themselves.
29163 The ``x'' entry may instead be an interval form, in which case suitable
29164 ``x'' values are interpolated between the minimum and maximum values of
29165 the interval (whether the interval is open or closed is ignored).
29167 The ``x'' entry may also be a number, in which case Calc uses the
29168 sequence of ``x'' values @expr{x}, @expr{x+1}, @expr{x+2}, etc.
29169 (Generally the number 0 or 1 would be used for @expr{x} in this case.)
29171 The ``y'' entry may be any formula instead of a vector.  Calc effectively
29172 uses @kbd{N} (@code{calc-eval-num}) to evaluate variables in the formula;
29173 the result of this must be a formula in a single (unassigned) variable.
29174 The formula is plotted with this variable taking on the various ``x''
29175 values.  Graphs of formulas by default use lines without symbols at the
29176 computed data points.  Note that if neither ``x'' nor ``y'' is a vector,
29177 Calc guesses at a reasonable number of data points to use.  See the
29178 @kbd{g N} command below.  (The ``x'' values must be either a vector
29179 or an interval if ``y'' is a formula.)
29181 @ignore
29182 @starindex
29183 @end ignore
29184 @tindex xy
29185 If ``y'' is (or evaluates to) a formula of the form
29186 @samp{xy(@var{x}, @var{y})} then the result is a
29187 parametric plot.  The two arguments of the fictitious @code{xy} function
29188 are used as the ``x'' and ``y'' coordinates of the curve, respectively.
29189 In this case the ``x'' vector or interval you specified is not directly
29190 visible in the graph.  For example, if ``x'' is the interval @samp{[0..360]}
29191 and ``y'' is the formula @samp{xy(sin(t), cos(t))}, the resulting graph
29192 will be a circle.
29194 Also, ``x'' and ``y'' may each be variable names, in which case Calc
29195 looks for suitable vectors, intervals, or formulas stored in those
29196 variables.
29198 The ``x'' and ``y'' values for the data points (as pulled from the vectors,
29199 calculated from the formulas, or interpolated from the intervals) should
29200 be real numbers (integers, fractions, or floats).  One exception to this
29201 is that the ``y'' entry can consist of a vector of numbers combined with
29202 error forms, in which case the points will be plotted with the
29203 appropriate error bars.  Other than this, if either the ``x''
29204 value or the ``y'' value of a given data point is not a real number, that
29205 data point will be omitted from the graph.  The points on either side
29206 of the invalid point will @emph{not} be connected by a line.
29208 See the documentation for @kbd{g a} below for a description of the way
29209 numeric prefix arguments affect @kbd{g f}.
29211 @cindex @code{PlotRejects} variable
29212 @vindex PlotRejects
29213 If you store an empty vector in the variable @code{PlotRejects}
29214 (i.e., @kbd{[ ] s t PlotRejects}), Calc will append information to
29215 this vector for every data point which was rejected because its
29216 ``x'' or ``y'' values were not real numbers.  The result will be
29217 a matrix where each row holds the curve number, data point number,
29218 ``x'' value, and ``y'' value for a rejected data point.
29219 @xref{Evaluates-To Operator}, for a handy way to keep tabs on the
29220 current value of @code{PlotRejects}.  @xref{Operations on Variables},
29221 for the @kbd{s R} command which is another easy way to examine
29222 @code{PlotRejects}.
29224 @kindex g c
29225 @pindex calc-graph-clear
29226 To clear the graphics display, type @kbd{g c} (@code{calc-graph-clear}).
29227 If the GNUPLOT output device is an X window, the window will go away.
29228 Effects on other kinds of output devices will vary.  You don't need
29229 to use @kbd{g c} if you don't want to---if you give another @kbd{g f}
29230 or @kbd{g p} command later on, it will reuse the existing graphics
29231 window if there is one.
29233 @node Three Dimensional Graphics, Managing Curves, Basic Graphics, Graphics
29234 @section Three-Dimensional Graphics
29236 @kindex g F
29237 @pindex calc-graph-fast-3d
29238 The @kbd{g F} (@code{calc-graph-fast-3d}) command makes a three-dimensional
29239 graph.  It works only if you have GNUPLOT 3.0 or later; with GNUPLOT 2.0,
29240 you will see a GNUPLOT error message if you try this command.
29242 The @kbd{g F} command takes three values from the stack, called ``x'',
29243 ``y'', and ``z'', respectively.  As was the case for 2D graphs, there
29244 are several options for these values.
29246 In the first case, ``x'' and ``y'' are each vectors (not necessarily of
29247 the same length); either or both may instead be interval forms.  The
29248 ``z'' value must be a matrix with the same number of rows as elements
29249 in ``x'', and the same number of columns as elements in ``y''.  The
29250 result is a surface plot where
29251 @texline @math{z_{ij}}
29252 @infoline @expr{z_ij}
29253 is the height of the point
29254 at coordinate @expr{(x_i, y_j)} on the surface.  The 3D graph will
29255 be displayed from a certain default viewpoint; you can change this
29256 viewpoint by adding a @samp{set view} to the @file{*Gnuplot Commands*}
29257 buffer as described later.  See the GNUPLOT documentation for a
29258 description of the @samp{set view} command.
29260 Each point in the matrix will be displayed as a dot in the graph,
29261 and these points will be connected by a grid of lines (@dfn{isolines}).
29263 In the second case, ``x'', ``y'', and ``z'' are all vectors of equal
29264 length.  The resulting graph displays a 3D line instead of a surface,
29265 where the coordinates of points along the line are successive triplets
29266 of values from the input vectors.
29268 In the third case, ``x'' and ``y'' are vectors or interval forms, and
29269 ``z'' is any formula involving two variables (not counting variables
29270 with assigned values).  These variables are sorted into alphabetical
29271 order; the first takes on values from ``x'' and the second takes on
29272 values from ``y'' to form a matrix of results that are graphed as a
29273 3D surface.
29275 @ignore
29276 @starindex
29277 @end ignore
29278 @tindex xyz
29279 If the ``z'' formula evaluates to a call to the fictitious function
29280 @samp{xyz(@var{x}, @var{y}, @var{z})}, then the result is a
29281 ``parametric surface.''  In this case, the axes of the graph are
29282 taken from the @var{x} and @var{y} values in these calls, and the
29283 ``x'' and ``y'' values from the input vectors or intervals are used only
29284 to specify the range of inputs to the formula.  For example, plotting
29285 @samp{[0..360], [0..180], xyz(sin(x)*sin(y), cos(x)*sin(y), cos(y))}
29286 will draw a sphere.  (Since the default resolution for 3D plots is
29287 5 steps in each of ``x'' and ``y'', this will draw a very crude
29288 sphere.  You could use the @kbd{g N} command, described below, to
29289 increase this resolution, or specify the ``x'' and ``y'' values as
29290 vectors with more than 5 elements.
29292 It is also possible to have a function in a regular @kbd{g f} plot
29293 evaluate to an @code{xyz} call.  Since @kbd{g f} plots a line, not
29294 a surface, the result will be a 3D parametric line.  For example,
29295 @samp{[[0..720], xyz(sin(x), cos(x), x)]} will plot two turns of a
29296 helix (a three-dimensional spiral).
29298 As for @kbd{g f}, each of ``x'', ``y'', and ``z'' may instead be
29299 variables containing the relevant data.
29301 @node Managing Curves, Graphics Options, Three Dimensional Graphics, Graphics
29302 @section Managing Curves
29304 @noindent
29305 The @kbd{g f} command is really shorthand for the following commands:
29306 @kbd{C-u g d  g a  g p}.  Likewise, @w{@kbd{g F}} is shorthand for
29307 @kbd{C-u g d  g A  g p}.  You can gain more control over your graph
29308 by using these commands directly.
29310 @kindex g a
29311 @pindex calc-graph-add
29312 The @kbd{g a} (@code{calc-graph-add}) command adds the ``curve''
29313 represented by the two values on the top of the stack to the current
29314 graph.  You can have any number of curves in the same graph.  When
29315 you give the @kbd{g p} command, all the curves will be drawn superimposed
29316 on the same axes.
29318 The @kbd{g a} command (and many others that affect the current graph)
29319 will cause a special buffer, @file{*Gnuplot Commands*}, to be displayed
29320 in another window.  This buffer is a template of the commands that will
29321 be sent to GNUPLOT when it is time to draw the graph.  The first
29322 @kbd{g a} command adds a @code{plot} command to this buffer.  Succeeding
29323 @kbd{g a} commands add extra curves onto that @code{plot} command.
29324 Other graph-related commands put other GNUPLOT commands into this
29325 buffer.  In normal usage you never need to work with this buffer
29326 directly, but you can if you wish.  The only constraint is that there
29327 must be only one @code{plot} command, and it must be the last command
29328 in the buffer.  If you want to save and later restore a complete graph
29329 configuration, you can use regular Emacs commands to save and restore
29330 the contents of the @file{*Gnuplot Commands*} buffer.
29332 @vindex PlotData1
29333 @vindex PlotData2
29334 If the values on the stack are not variable names, @kbd{g a} will invent
29335 variable names for them (of the form @samp{PlotData@var{n}}) and store
29336 the values in those variables.  The ``x'' and ``y'' variables are what
29337 go into the @code{plot} command in the template.  If you add a curve
29338 that uses a certain variable and then later change that variable, you
29339 can replot the graph without having to delete and re-add the curve.
29340 That's because the variable name, not the vector, interval or formula
29341 itself, is what was added by @kbd{g a}.
29343 A numeric prefix argument on @kbd{g a} or @kbd{g f} changes the way
29344 stack entries are interpreted as curves.  With a positive prefix
29345 argument @expr{n}, the top @expr{n} stack entries are ``y'' values
29346 for @expr{n} different curves which share a common ``x'' value in
29347 the @expr{n+1}st stack entry.  (Thus @kbd{g a} with no prefix
29348 argument is equivalent to @kbd{C-u 1 g a}.)
29350 A prefix of zero or plain @kbd{C-u} means to take two stack entries,
29351 ``x'' and ``y'' as usual, but to interpret ``y'' as a vector of
29352 ``y'' values for several curves that share a common ``x''.
29354 A negative prefix argument tells Calc to read @expr{n} vectors from
29355 the stack; each vector @expr{[x, y]} describes an independent curve.
29356 This is the only form of @kbd{g a} that creates several curves at once
29357 that don't have common ``x'' values.  (Of course, the range of ``x''
29358 values covered by all the curves ought to be roughly the same if
29359 they are to look nice on the same graph.)
29361 For example, to plot
29362 @texline @math{\sin n x}
29363 @infoline @expr{sin(n x)}
29364 for integers @expr{n}
29365 from 1 to 5, you could use @kbd{v x} to create a vector of integers
29366 (@expr{n}), then @kbd{V M '} or @kbd{V M $} to map @samp{sin(n x)}
29367 across this vector.  The resulting vector of formulas is suitable
29368 for use as the ``y'' argument to a @kbd{C-u g a} or @kbd{C-u g f}
29369 command.
29371 @kindex g A
29372 @pindex calc-graph-add-3d
29373 The @kbd{g A} (@code{calc-graph-add-3d}) command adds a 3D curve
29374 to the graph.  It is not valid to intermix 2D and 3D curves in a
29375 single graph.  This command takes three arguments, ``x'', ``y'',
29376 and ``z'', from the stack.  With a positive prefix @expr{n}, it
29377 takes @expr{n+2} arguments (common ``x'' and ``y'', plus @expr{n}
29378 separate ``z''s).  With a zero prefix, it takes three stack entries
29379 but the ``z'' entry is a vector of curve values.  With a negative
29380 prefix @expr{-n}, it takes @expr{n} vectors of the form @expr{[x, y, z]}.
29381 The @kbd{g A} command works by adding a @code{splot} (surface-plot)
29382 command to the @file{*Gnuplot Commands*} buffer.
29384 (Although @kbd{g a} adds a 2D @code{plot} command to the
29385 @file{*Gnuplot Commands*} buffer, Calc changes this to @code{splot}
29386 before sending it to GNUPLOT if it notices that the data points are
29387 evaluating to @code{xyz} calls.  It will not work to mix 2D and 3D
29388 @kbd{g a} curves in a single graph, although Calc does not currently
29389 check for this.)
29391 @kindex g d
29392 @pindex calc-graph-delete
29393 The @kbd{g d} (@code{calc-graph-delete}) command deletes the most
29394 recently added curve from the graph.  It has no effect if there are
29395 no curves in the graph.  With a numeric prefix argument of any kind,
29396 it deletes all of the curves from the graph.
29398 @kindex g H
29399 @pindex calc-graph-hide
29400 The @kbd{g H} (@code{calc-graph-hide}) command ``hides'' or ``unhides''
29401 the most recently added curve.  A hidden curve will not appear in
29402 the actual plot, but information about it such as its name and line and
29403 point styles will be retained.
29405 @kindex g j
29406 @pindex calc-graph-juggle
29407 The @kbd{g j} (@code{calc-graph-juggle}) command moves the curve
29408 at the end of the list (the ``most recently added curve'') to the
29409 front of the list.  The next-most-recent curve is thus exposed for
29410 @w{@kbd{g d}} or similar commands to use.  With @kbd{g j} you can work
29411 with any curve in the graph even though curve-related commands only
29412 affect the last curve in the list.
29414 @kindex g p
29415 @pindex calc-graph-plot
29416 The @kbd{g p} (@code{calc-graph-plot}) command uses GNUPLOT to draw
29417 the graph described in the @file{*Gnuplot Commands*} buffer.  Any
29418 GNUPLOT parameters which are not defined by commands in this buffer
29419 are reset to their default values.  The variables named in the @code{plot}
29420 command are written to a temporary data file and the variable names
29421 are then replaced by the file name in the template.  The resulting
29422 plotting commands are fed to the GNUPLOT program.  See the documentation
29423 for the GNUPLOT program for more specific information.  All temporary
29424 files are removed when Emacs or GNUPLOT exits.
29426 If you give a formula for ``y'', Calc will remember all the values that
29427 it calculates for the formula so that later plots can reuse these values.
29428 Calc throws out these saved values when you change any circumstances
29429 that may affect the data, such as switching from Degrees to Radians
29430 mode, or changing the value of a parameter in the formula.  You can
29431 force Calc to recompute the data from scratch by giving a negative
29432 numeric prefix argument to @kbd{g p}.
29434 Calc uses a fairly rough step size when graphing formulas over intervals.
29435 This is to ensure quick response.  You can ``refine'' a plot by giving
29436 a positive numeric prefix argument to @kbd{g p}.  Calc goes through
29437 the data points it has computed and saved from previous plots of the
29438 function, and computes and inserts a new data point midway between
29439 each of the existing points.  You can refine a plot any number of times,
29440 but beware that the amount of calculation involved doubles each time.
29442 Calc does not remember computed values for 3D graphs.  This means the
29443 numerix prefix argument, if any, to @kbd{g p} is effectively ignored if
29444 the current graph is three-dimensional.
29446 @kindex g P
29447 @pindex calc-graph-print
29448 The @kbd{g P} (@code{calc-graph-print}) command is like @kbd{g p},
29449 except that it sends the output to a printer instead of to the
29450 screen.  More precisely, @kbd{g p} looks for @samp{set terminal}
29451 or @samp{set output} commands in the @file{*Gnuplot Commands*} buffer;
29452 lacking these it uses the default settings.  However, @kbd{g P}
29453 ignores @samp{set terminal} and @samp{set output} commands and
29454 uses a different set of default values.  All of these values are
29455 controlled by the @kbd{g D} and @kbd{g O} commands discussed below.
29456 Provided everything is set up properly, @kbd{g p} will plot to
29457 the screen unless you have specified otherwise and @kbd{g P} will
29458 always plot to the printer.
29460 @node Graphics Options, Devices, Managing Curves, Graphics
29461 @section Graphics Options
29463 @noindent
29464 @kindex g g
29465 @pindex calc-graph-grid
29466 The @kbd{g g} (@code{calc-graph-grid}) command turns the ``grid''
29467 on and off.  It is off by default; tick marks appear only at the
29468 edges of the graph.  With the grid turned on, dotted lines appear
29469 across the graph at each tick mark.  Note that this command only
29470 changes the setting in @file{*Gnuplot Commands*}; to see the effects
29471 of the change you must give another @kbd{g p} command.
29473 @kindex g b
29474 @pindex calc-graph-border
29475 The @kbd{g b} (@code{calc-graph-border}) command turns the border
29476 (the box that surrounds the graph) on and off.  It is on by default.
29477 This command will only work with GNUPLOT 3.0 and later versions.
29479 @kindex g k
29480 @pindex calc-graph-key
29481 The @kbd{g k} (@code{calc-graph-key}) command turns the ``key''
29482 on and off.  The key is a chart in the corner of the graph that
29483 shows the correspondence between curves and line styles.  It is
29484 off by default, and is only really useful if you have several
29485 curves on the same graph.
29487 @kindex g N
29488 @pindex calc-graph-num-points
29489 The @kbd{g N} (@code{calc-graph-num-points}) command allows you
29490 to select the number of data points in the graph.  This only affects
29491 curves where neither ``x'' nor ``y'' is specified as a vector.
29492 Enter a blank line to revert to the default value (initially 15).
29493 With no prefix argument, this command affects only the current graph.
29494 With a positive prefix argument this command changes or, if you enter
29495 a blank line, displays the default number of points used for all
29496 graphs created by @kbd{g a} that don't specify the resolution explicitly.
29497 With a negative prefix argument, this command changes or displays
29498 the default value (initially 5) used for 3D graphs created by @kbd{g A}.
29499 Note that a 3D setting of 5 means that a total of @expr{5^2 = 25} points
29500 will be computed for the surface.
29502 Data values in the graph of a function are normally computed to a
29503 precision of five digits, regardless of the current precision at the
29504 time. This is usually more than adequate, but there are cases where
29505 it will not be.  For example, plotting @expr{1 + x} with @expr{x} in the
29506 interval @samp{[0 ..@: 1e-6]} will round all the data points down
29507 to 1.0!  Putting the command @samp{set precision @var{n}} in the
29508 @file{*Gnuplot Commands*} buffer will cause the data to be computed
29509 at precision @var{n} instead of 5.  Since this is such a rare case,
29510 there is no keystroke-based command to set the precision.
29512 @kindex g h
29513 @pindex calc-graph-header
29514 The @kbd{g h} (@code{calc-graph-header}) command sets the title
29515 for the graph.  This will show up centered above the graph.
29516 The default title is blank (no title).
29518 @kindex g n
29519 @pindex calc-graph-name
29520 The @kbd{g n} (@code{calc-graph-name}) command sets the title of an
29521 individual curve.  Like the other curve-manipulating commands, it
29522 affects the most recently added curve, i.e., the last curve on the
29523 list in the @file{*Gnuplot Commands*} buffer.  To set the title of
29524 the other curves you must first juggle them to the end of the list
29525 with @kbd{g j}, or edit the @file{*Gnuplot Commands*} buffer by hand.
29526 Curve titles appear in the key; if the key is turned off they are
29527 not used.
29529 @kindex g t
29530 @kindex g T
29531 @pindex calc-graph-title-x
29532 @pindex calc-graph-title-y
29533 The @kbd{g t} (@code{calc-graph-title-x}) and @kbd{g T}
29534 (@code{calc-graph-title-y}) commands set the titles on the ``x''
29535 and ``y'' axes, respectively.  These titles appear next to the
29536 tick marks on the left and bottom edges of the graph, respectively.
29537 Calc does not have commands to control the tick marks themselves,
29538 but you can edit them into the @file{*Gnuplot Commands*} buffer if
29539 you wish.  See the GNUPLOT documentation for details.
29541 @kindex g r
29542 @kindex g R
29543 @pindex calc-graph-range-x
29544 @pindex calc-graph-range-y
29545 The @kbd{g r} (@code{calc-graph-range-x}) and @kbd{g R}
29546 (@code{calc-graph-range-y}) commands set the range of values on the
29547 ``x'' and ``y'' axes, respectively.  You are prompted to enter a
29548 suitable range.  This should be either a pair of numbers of the
29549 form, @samp{@var{min}:@var{max}}, or a blank line to revert to the
29550 default behavior of setting the range based on the range of values
29551 in the data, or @samp{$} to take the range from the top of the stack.
29552 Ranges on the stack can be represented as either interval forms or
29553 vectors:  @samp{[@var{min} ..@: @var{max}]} or @samp{[@var{min}, @var{max}]}.
29555 @kindex g l
29556 @kindex g L
29557 @pindex calc-graph-log-x
29558 @pindex calc-graph-log-y
29559 The @kbd{g l} (@code{calc-graph-log-x}) and @kbd{g L} (@code{calc-graph-log-y})
29560 commands allow you to set either or both of the axes of the graph to
29561 be logarithmic instead of linear.
29563 @kindex g C-l
29564 @kindex g C-r
29565 @kindex g C-t
29566 @pindex calc-graph-log-z
29567 @pindex calc-graph-range-z
29568 @pindex calc-graph-title-z
29569 For 3D plots, @kbd{g C-t}, @kbd{g C-r}, and @kbd{g C-l} (those are
29570 letters with the Control key held down) are the corresponding commands
29571 for the ``z'' axis.
29573 @kindex g z
29574 @kindex g Z
29575 @pindex calc-graph-zero-x
29576 @pindex calc-graph-zero-y
29577 The @kbd{g z} (@code{calc-graph-zero-x}) and @kbd{g Z}
29578 (@code{calc-graph-zero-y}) commands control whether a dotted line is
29579 drawn to indicate the ``x'' and/or ``y'' zero axes.  (These are the same
29580 dotted lines that would be drawn there anyway if you used @kbd{g g} to
29581 turn the ``grid'' feature on.)  Zero-axis lines are on by default, and
29582 may be turned off only in GNUPLOT 3.0 and later versions.  They are
29583 not available for 3D plots.
29585 @kindex g s
29586 @pindex calc-graph-line-style
29587 The @kbd{g s} (@code{calc-graph-line-style}) command turns the connecting
29588 lines on or off for the most recently added curve, and optionally selects
29589 the style of lines to be used for that curve.  Plain @kbd{g s} simply
29590 toggles the lines on and off.  With a numeric prefix argument, @kbd{g s}
29591 turns lines on and sets a particular line style.  Line style numbers
29592 start at one and their meanings vary depending on the output device.
29593 GNUPLOT guarantees that there will be at least six different line styles
29594 available for any device.
29596 @kindex g S
29597 @pindex calc-graph-point-style
29598 The @kbd{g S} (@code{calc-graph-point-style}) command similarly turns
29599 the symbols at the data points on or off, or sets the point style.
29600 If you turn both lines and points off, the data points will show as
29601 tiny dots.  If the ``y'' values being plotted contain error forms and
29602 the connecting lines are turned off, then this command will also turn
29603 the error bars on or off.
29605 @cindex @code{LineStyles} variable
29606 @cindex @code{PointStyles} variable
29607 @vindex LineStyles
29608 @vindex PointStyles
29609 Another way to specify curve styles is with the @code{LineStyles} and
29610 @code{PointStyles} variables.  These variables initially have no stored
29611 values, but if you store a vector of integers in one of these variables,
29612 the @kbd{g a} and @kbd{g f} commands will use those style numbers
29613 instead of the defaults for new curves that are added to the graph.
29614 An entry should be a positive integer for a specific style, or 0 to let
29615 the style be chosen automatically, or @mathit{-1} to turn off lines or points
29616 altogether.  If there are more curves than elements in the vector, the
29617 last few curves will continue to have the default styles.  Of course,
29618 you can later use @kbd{g s} and @kbd{g S} to change any of these styles.
29620 For example, @kbd{'[2 -1 3] @key{RET} s t LineStyles} causes the first curve
29621 to have lines in style number 2, the second curve to have no connecting
29622 lines, and the third curve to have lines in style 3.  Point styles will
29623 still be assigned automatically, but you could store another vector in
29624 @code{PointStyles} to define them, too.
29626 @node Devices,  , Graphics Options, Graphics
29627 @section Graphical Devices
29629 @noindent
29630 @kindex g D
29631 @pindex calc-graph-device
29632 The @kbd{g D} (@code{calc-graph-device}) command sets the device name
29633 (or ``terminal name'' in GNUPLOT lingo) to be used by @kbd{g p} commands
29634 on this graph.  It does not affect the permanent default device name.
29635 If you enter a blank name, the device name reverts to the default.
29636 Enter @samp{?} to see a list of supported devices.
29638 With a positive numeric prefix argument, @kbd{g D} instead sets
29639 the default device name, used by all plots in the future which do
29640 not override it with a plain @kbd{g D} command.  If you enter a
29641 blank line this command shows you the current default.  The special
29642 name @code{default} signifies that Calc should choose @code{x11} if
29643 the X window system is in use (as indicated by the presence of a
29644 @code{DISPLAY} environment variable), @code{windows} on MS-Windows, or
29645 otherwise @code{dumb} under GNUPLOT 3.0 and later, or
29646 @code{postscript} under GNUPLOT 2.0.  This is the initial default
29647 value.
29649 The @code{dumb} device is an interface to ``dumb terminals,'' i.e.,
29650 terminals with no special graphics facilities.  It writes a crude
29651 picture of the graph composed of characters like @code{-} and @code{|}
29652 to a buffer called @file{*Gnuplot Trail*}, which Calc then displays.
29653 The graph is made the same size as the Emacs screen, which on most
29654 dumb terminals will be
29655 @texline @math{80\times24}
29656 @infoline 80x24
29657 characters.  The graph is displayed in
29658 an Emacs ``recursive edit''; type @kbd{q} or @kbd{C-c C-c} to exit
29659 the recursive edit and return to Calc.  Note that the @code{dumb}
29660 device is present only in GNUPLOT 3.0 and later versions.
29662 The word @code{dumb} may be followed by two numbers separated by
29663 spaces.  These are the desired width and height of the graph in
29664 characters.  Also, the device name @code{big} is like @code{dumb}
29665 but creates a graph four times the width and height of the Emacs
29666 screen.  You will then have to scroll around to view the entire
29667 graph.  In the @file{*Gnuplot Trail*} buffer, @key{SPC}, @key{DEL},
29668 @kbd{<}, and @kbd{>} are defined to scroll by one screenful in each
29669 of the four directions.
29671 With a negative numeric prefix argument, @kbd{g D} sets or displays
29672 the device name used by @kbd{g P} (@code{calc-graph-print}).  This
29673 is initially @code{postscript}.  If you don't have a PostScript
29674 printer, you may decide once again to use @code{dumb} to create a
29675 plot on any text-only printer.
29677 @kindex g O
29678 @pindex calc-graph-output
29679 The @kbd{g O} (@code{calc-graph-output}) command sets the name of the
29680 output file used by GNUPLOT@.  For some devices, notably @code{x11} and
29681 @code{windows}, there is no output file and this information is not
29682 used.  Many other ``devices'' are really file formats like
29683 @code{postscript}; in these cases the output in the desired format
29684 goes into the file you name with @kbd{g O}.  Type @kbd{g O stdout
29685 @key{RET}} to set GNUPLOT to write to its standard output stream,
29686 i.e., to @file{*Gnuplot Trail*}.  This is the default setting.
29688 Another special output name is @code{tty}, which means that GNUPLOT
29689 is going to write graphics commands directly to its standard output,
29690 which you wish Emacs to pass through to your terminal.  Tektronix
29691 graphics terminals, among other devices, operate this way.  Calc does
29692 this by telling GNUPLOT to write to a temporary file, then running a
29693 sub-shell executing the command @samp{cat tempfile >/dev/tty}.  On
29694 typical Unix systems, this will copy the temporary file directly to
29695 the terminal, bypassing Emacs entirely.  You will have to type @kbd{C-l}
29696 to Emacs afterwards to refresh the screen.
29698 Once again, @kbd{g O} with a positive or negative prefix argument
29699 sets the default or printer output file names, respectively.  In each
29700 case you can specify @code{auto}, which causes Calc to invent a temporary
29701 file name for each @kbd{g p} (or @kbd{g P}) command.  This temporary file
29702 will be deleted once it has been displayed or printed.  If the output file
29703 name is not @code{auto}, the file is not automatically deleted.
29705 The default and printer devices and output files can be saved
29706 permanently by the @kbd{m m} (@code{calc-save-modes}) command.  The
29707 default number of data points (see @kbd{g N}) and the X geometry
29708 (see @kbd{g X}) are also saved.  Other graph information is @emph{not}
29709 saved; you can save a graph's configuration simply by saving the contents
29710 of the @file{*Gnuplot Commands*} buffer.
29712 @vindex calc-gnuplot-plot-command
29713 @vindex calc-gnuplot-default-device
29714 @vindex calc-gnuplot-default-output
29715 @vindex calc-gnuplot-print-command
29716 @vindex calc-gnuplot-print-device
29717 @vindex calc-gnuplot-print-output
29718 You may wish to configure the default and
29719 printer devices and output files for the whole system.  The relevant
29720 Lisp variables are @code{calc-gnuplot-default-device} and @code{-output},
29721 and @code{calc-gnuplot-print-device} and @code{-output}.  The output
29722 file names must be either strings as described above, or Lisp
29723 expressions which are evaluated on the fly to get the output file names.
29725 Other important Lisp variables are @code{calc-gnuplot-plot-command} and
29726 @code{calc-gnuplot-print-command}, which give the system commands to
29727 display or print the output of GNUPLOT, respectively.  These may be
29728 @code{nil} if no command is necessary, or strings which can include
29729 @samp{%s} to signify the name of the file to be displayed or printed.
29730 Or, these variables may contain Lisp expressions which are evaluated
29731 to display or print the output.  These variables are customizable
29732 (@pxref{Customizing Calc}).
29734 @kindex g x
29735 @pindex calc-graph-display
29736 The @kbd{g x} (@code{calc-graph-display}) command lets you specify
29737 on which X window system display your graphs should be drawn.  Enter
29738 a blank line to see the current display name.  This command has no
29739 effect unless the current device is @code{x11}.
29741 @kindex g X
29742 @pindex calc-graph-geometry
29743 The @kbd{g X} (@code{calc-graph-geometry}) command is a similar
29744 command for specifying the position and size of the X window.
29745 The normal value is @code{default}, which generally means your
29746 window manager will let you place the window interactively.
29747 Entering @samp{800x500+0+0} would create an 800-by-500 pixel
29748 window in the upper-left corner of the screen.  This command has no
29749 effect if the current device is @code{windows}.
29751 The buffer called @file{*Gnuplot Trail*} holds a transcript of the
29752 session with GNUPLOT@.  This shows the commands Calc has ``typed'' to
29753 GNUPLOT and the responses it has received.  Calc tries to notice when an
29754 error message has appeared here and display the buffer for you when
29755 this happens.  You can check this buffer yourself if you suspect
29756 something has gone wrong@footnote{
29757 On MS-Windows, due to the peculiarities of how the Windows version of
29758 GNUPLOT (called @command{wgnuplot}) works, the GNUPLOT responses are
29759 not communicated back to Calc.  Instead, you need to look them up in
29760 the GNUPLOT command window that is displayed as in normal interactive
29761 usage of GNUPLOT.
29764 @kindex g C
29765 @pindex calc-graph-command
29766 The @kbd{g C} (@code{calc-graph-command}) command prompts you to
29767 enter any line of text, then simply sends that line to the current
29768 GNUPLOT process.  The @file{*Gnuplot Trail*} buffer looks deceptively
29769 like a Shell buffer but you can't type commands in it yourself.
29770 Instead, you must use @kbd{g C} for this purpose.
29772 @kindex g v
29773 @kindex g V
29774 @pindex calc-graph-view-commands
29775 @pindex calc-graph-view-trail
29776 The @kbd{g v} (@code{calc-graph-view-commands}) and @kbd{g V}
29777 (@code{calc-graph-view-trail}) commands display the @file{*Gnuplot Commands*}
29778 and @file{*Gnuplot Trail*} buffers, respectively, in another window.
29779 This happens automatically when Calc thinks there is something you
29780 will want to see in either of these buffers.  If you type @kbd{g v}
29781 or @kbd{g V} when the relevant buffer is already displayed, the
29782 buffer is hidden again.  (Note that on MS-Windows, the @file{*Gnuplot
29783 Trail*} buffer will usually show nothing of interest, because
29784 GNUPLOT's responses are not communicated back to Calc.)
29786 One reason to use @kbd{g v} is to add your own commands to the
29787 @file{*Gnuplot Commands*} buffer.  Press @kbd{g v}, then use
29788 @kbd{C-x o} to switch into that window.  For example, GNUPLOT has
29789 @samp{set label} and @samp{set arrow} commands that allow you to
29790 annotate your plots.  Since Calc doesn't understand these commands,
29791 you have to add them to the @file{*Gnuplot Commands*} buffer
29792 yourself, then use @w{@kbd{g p}} to replot using these new commands.  Note
29793 that your commands must appear @emph{before} the @code{plot} command.
29794 To get help on any GNUPLOT feature, type, e.g., @kbd{g C help set label}.
29795 You may have to type @kbd{g C @key{RET}} a few times to clear the
29796 ``press return for more'' or ``subtopic of @dots{}'' requests.
29797 Note that Calc always sends commands (like @samp{set nolabel}) to
29798 reset all plotting parameters to the defaults before each plot, so
29799 to delete a label all you need to do is delete the @samp{set label}
29800 line you added (or comment it out with @samp{#}) and then replot
29801 with @kbd{g p}.
29803 @kindex g q
29804 @pindex calc-graph-quit
29805 You can use @kbd{g q} (@code{calc-graph-quit}) to kill the GNUPLOT
29806 process that is running.  The next graphing command you give will
29807 start a fresh GNUPLOT process.  The word @samp{Graph} appears in
29808 the Calc window's mode line whenever a GNUPLOT process is currently
29809 running.  The GNUPLOT process is automatically killed when you
29810 exit Emacs if you haven't killed it manually by then.
29812 @kindex g K
29813 @pindex calc-graph-kill
29814 The @kbd{g K} (@code{calc-graph-kill}) command is like @kbd{g q}
29815 except that it also views the @file{*Gnuplot Trail*} buffer so that
29816 you can see the process being killed.  This is better if you are
29817 killing GNUPLOT because you think it has gotten stuck.
29819 @node Kill and Yank, Keypad Mode, Graphics, Top
29820 @chapter Kill and Yank Functions
29822 @noindent
29823 The commands in this chapter move information between the Calculator and
29824 other Emacs editing buffers.
29826 In many cases Embedded mode is an easier and more natural way to
29827 work with Calc from a regular editing buffer.  @xref{Embedded Mode}.
29829 @menu
29830 * Killing From Stack::
29831 * Yanking Into Stack::
29832 * Saving Into Registers::
29833 * Inserting From Registers::
29834 * Grabbing From Buffers::
29835 * Yanking Into Buffers::
29836 * X Cut and Paste::
29837 @end menu
29839 @node Killing From Stack, Yanking Into Stack, Kill and Yank, Kill and Yank
29840 @section Killing from the Stack
29842 @noindent
29843 @kindex C-k
29844 @pindex calc-kill
29845 @kindex M-k
29846 @pindex calc-copy-as-kill
29847 @kindex C-w
29848 @pindex calc-kill-region
29849 @kindex M-w
29850 @pindex calc-copy-region-as-kill
29851 @kindex M-C-w
29852 @cindex Kill ring
29853 @dfn{Kill} commands are Emacs commands that insert text into the ``kill
29854 ring,'' from which it can later be ``yanked'' by a @kbd{C-y} command.
29855 Three common kill commands in normal Emacs are @kbd{C-k}, which kills
29856 one line, @kbd{C-w}, which kills the region between mark and point, and
29857 @kbd{M-w}, which puts the region into the kill ring without actually
29858 deleting it.  All of these commands work in the Calculator, too,
29859 although in the Calculator they operate on whole stack entries, so they
29860 ``round up'' the specified region to encompass full lines.  (To copy
29861 only parts of lines, the @kbd{M-C-w} command in the Calculator will copy
29862 the region to the kill ring without any ``rounding up'', just like the
29863 @kbd{M-w} command in normal Emacs.)  Also, @kbd{M-k} has been provided
29864 to complete the set; it puts the current line into the kill ring without
29865 deleting anything.
29867 The kill commands are unusual in that they pay attention to the location
29868 of the cursor in the Calculator buffer.  If the cursor is on or below
29869 the bottom line, the kill commands operate on the top of the stack.
29870 Otherwise, they operate on whatever stack element the cursor is on.  The
29871 text is copied into the kill ring exactly as it appears on the screen,
29872 including line numbers if they are enabled.
29874 A numeric prefix argument to @kbd{C-k} or @kbd{M-k} affects the number
29875 of lines killed.  A positive argument kills the current line and @expr{n-1}
29876 lines below it.  A negative argument kills the @expr{-n} lines above the
29877 current line.  Again this mirrors the behavior of the standard Emacs
29878 @kbd{C-k} command.  Although a whole line is always deleted, @kbd{C-k}
29879 with no argument copies only the number itself into the kill ring, whereas
29880 @kbd{C-k} with a prefix argument of 1 copies the number with its trailing
29881 newline.
29883 @node Yanking Into Stack, Saving Into Registers, Killing From Stack, Kill and Yank
29884 @section Yanking into the Stack
29886 @noindent
29887 @kindex C-y
29888 @pindex calc-yank
29889 The @kbd{C-y} command yanks the most recently killed text back into the
29890 Calculator.  It pushes this value onto the top of the stack regardless of
29891 the cursor position.  In general it re-parses the killed text as a number
29892 or formula (or a list of these separated by commas or newlines).  However if
29893 the thing being yanked is something that was just killed from the Calculator
29894 itself, its full internal structure is yanked.  For example, if you have
29895 set the floating-point display mode to show only four significant digits,
29896 then killing and re-yanking 3.14159 (which displays as 3.142) will yank the
29897 full 3.14159, even though yanking it into any other buffer would yank the
29898 number in its displayed form, 3.142.  (Since the default display modes
29899 show all objects to their full precision, this feature normally makes no
29900 difference.)
29902 @node Saving Into Registers, Inserting From Registers, Yanking Into Stack, Kill and Yank
29903 @section Saving into Registers
29905 @noindent
29906 @kindex r s
29907 @pindex calc-copy-to-register
29908 @pindex calc-prepend-to-register
29909 @pindex calc-append-to-register
29910 @cindex Registers
29911 An alternative to killing and yanking stack entries is using
29912 registers in Calc.  Saving stack entries in registers is like
29913 saving text in normal Emacs registers; although, like Calc's kill
29914 commands, register commands always operate on whole stack
29915 entries.
29917 Registers in Calc are places to store stack entries for later use;
29918 each register is indexed by a single character.  To store the current
29919 region (rounded up, of course, to include full stack entries) into a
29920 register, use the command @kbd{r s} (@code{calc-copy-to-register}).
29921 You will then be prompted for a register to use, the next character
29922 you type will be the index for the register.  To store the region in
29923 register @var{r}, the full command will be @kbd{r s @var{r}}.  With an
29924 argument, @kbd{C-u r s @var{r}}, the region being copied to the
29925 register will be deleted from the Calc buffer.
29927 It is possible to add additional stack entries to a register.  The
29928 command @kbd{M-x calc-append-to-register} will prompt for a register,
29929 then add the stack entries in the region to the end of the register
29930 contents. The command @kbd{M-x calc-prepend-to-register} will
29931 similarly prompt for a register and add  the stack entries in the
29932 region to the beginning of the register contents.  Both commands take
29933 @kbd{C-u} arguments, which will cause the region to be deleted after being
29934 added to the register.
29936 @node Inserting From Registers, Grabbing From Buffers, Saving Into Registers, Kill and Yank
29937 @section Inserting from Registers
29938 @noindent
29939 @kindex r i
29940 @pindex calc-insert-register
29941 The command @kbd{r i} (@code{calc-insert-register}) will prompt for a
29942 register, then insert the contents of that register into the
29943 Calculator.  If the contents of the register were placed there from
29944 within Calc, then the full internal structure of the contents will be
29945 inserted into the Calculator, otherwise whatever text is in the
29946 register is reparsed and then inserted into the Calculator.
29948 @node Grabbing From Buffers, Yanking Into Buffers, Inserting From Registers, Kill and Yank
29949 @section Grabbing from Other Buffers
29951 @noindent
29952 @kindex C-x * g
29953 @pindex calc-grab-region
29954 The @kbd{C-x * g} (@code{calc-grab-region}) command takes the text between
29955 point and mark in the current buffer and attempts to parse it as a
29956 vector of values.  Basically, it wraps the text in vector brackets
29957 @samp{[ ]} unless the text already is enclosed in vector brackets,
29958 then reads the text as if it were an algebraic entry.  The contents
29959 of the vector may be numbers, formulas, or any other Calc objects.
29960 If the @kbd{C-x * g} command works successfully, it does an automatic
29961 @kbd{C-x * c} to enter the Calculator buffer.
29963 A numeric prefix argument grabs the specified number of lines around
29964 point, ignoring the mark.  A positive prefix grabs from point to the
29965 @expr{n}th following newline (so that @kbd{M-1 C-x * g} grabs from point
29966 to the end of the current line); a negative prefix grabs from point
29967 back to the @expr{n+1}st preceding newline.  In these cases the text
29968 that is grabbed is exactly the same as the text that @kbd{C-k} would
29969 delete given that prefix argument.
29971 A prefix of zero grabs the current line; point may be anywhere on the
29972 line.
29974 A plain @kbd{C-u} prefix interprets the region between point and mark
29975 as a single number or formula rather than a vector.  For example,
29976 @kbd{C-x * g} on the text @samp{2 a b} produces the vector of three
29977 values @samp{[2, a, b]}, but @kbd{C-u C-x * g} on the same region
29978 reads a formula which is a product of three things:  @samp{2 a b}.
29979 (The text @samp{a + b}, on the other hand, will be grabbed as a
29980 vector of one element by plain @kbd{C-x * g} because the interpretation
29981 @samp{[a, +, b]} would be a syntax error.)
29983 If a different language has been specified (@pxref{Language Modes}),
29984 the grabbed text will be interpreted according to that language.
29986 @kindex C-x * r
29987 @pindex calc-grab-rectangle
29988 The @kbd{C-x * r} (@code{calc-grab-rectangle}) command takes the text between
29989 point and mark and attempts to parse it as a matrix.  If point and mark
29990 are both in the leftmost column, the lines in between are parsed in their
29991 entirety.  Otherwise, point and mark define the corners of a rectangle
29992 whose contents are parsed.
29994 Each line of the grabbed area becomes a row of the matrix.  The result
29995 will actually be a vector of vectors, which Calc will treat as a matrix
29996 only if every row contains the same number of values.
29998 If a line contains a portion surrounded by square brackets (or curly
29999 braces), that portion is interpreted as a vector which becomes a row
30000 of the matrix.  Any text surrounding the bracketed portion on the line
30001 is ignored.
30003 Otherwise, the entire line is interpreted as a row vector as if it
30004 were surrounded by square brackets.  Leading line numbers (in the
30005 format used in the Calc stack buffer) are ignored.  If you wish to
30006 force this interpretation (even if the line contains bracketed
30007 portions), give a negative numeric prefix argument to the
30008 @kbd{C-x * r} command.
30010 If you give a numeric prefix argument of zero or plain @kbd{C-u}, each
30011 line is instead interpreted as a single formula which is converted into
30012 a one-element vector.  Thus the result of @kbd{C-u C-x * r} will be a
30013 one-column matrix.  For example, suppose one line of the data is the
30014 expression @samp{2 a}.  A plain @w{@kbd{C-x * r}} will interpret this as
30015 @samp{[2 a]}, which in turn is read as a two-element vector that forms
30016 one row of the matrix.  But a @kbd{C-u C-x * r} will interpret this row
30017 as @samp{[2*a]}.
30019 If you give a positive numeric prefix argument @var{n}, then each line
30020 will be split up into columns of width @var{n}; each column is parsed
30021 separately as a matrix element.  If a line contained
30022 @w{@samp{2 +/- 3 4 +/- 5}}, then grabbing with a prefix argument of 8
30023 would correctly split the line into two error forms.
30025 @xref{Matrix Functions}, to see how to pull the matrix apart into its
30026 constituent rows and columns.  (If it is a
30027 @texline @math{1\times1}
30028 @infoline 1x1
30029 matrix, just hit @kbd{v u} (@code{calc-unpack}) twice.)
30031 @kindex C-x * :
30032 @kindex C-x * _
30033 @pindex calc-grab-sum-across
30034 @pindex calc-grab-sum-down
30035 @cindex Summing rows and columns of data
30036 The @kbd{C-x * :} (@code{calc-grab-sum-down}) command is a handy way to
30037 grab a rectangle of data and sum its columns.  It is equivalent to
30038 typing @kbd{C-x * r}, followed by @kbd{V R : +} (the vector reduction
30039 command that sums the columns of a matrix; @pxref{Reducing}).  The
30040 result of the command will be a vector of numbers, one for each column
30041 in the input data.  The @kbd{C-x * _} (@code{calc-grab-sum-across}) command
30042 similarly grabs a rectangle and sums its rows by executing @w{@kbd{V R _ +}}.
30044 As well as being more convenient, @kbd{C-x * :} and @kbd{C-x * _} are also
30045 much faster because they don't actually place the grabbed vector on
30046 the stack.  In a @kbd{C-x * r V R : +} sequence, formatting the vector
30047 for display on the stack takes a large fraction of the total time
30048 (unless you have planned ahead and used @kbd{v .} and @kbd{t .} modes).
30050 For example, suppose we have a column of numbers in a file which we
30051 wish to sum.  Go to one corner of the column and press @kbd{C-@@} to
30052 set the mark; go to the other corner and type @kbd{C-x * :}.  Since there
30053 is only one column, the result will be a vector of one number, the sum.
30054 (You can type @kbd{v u} to unpack this vector into a plain number if
30055 you want to do further arithmetic with it.)
30057 To compute the product of the column of numbers, we would have to do
30058 it ``by hand'' since there's no special grab-and-multiply command.
30059 Use @kbd{C-x * r} to grab the column of numbers into the calculator in
30060 the form of a column matrix.  The statistics command @kbd{u *} is a
30061 handy way to find the product of a vector or matrix of numbers.
30062 @xref{Statistical Operations}.  Another approach would be to use
30063 an explicit column reduction command, @kbd{V R : *}.
30065 @node Yanking Into Buffers, X Cut and Paste, Grabbing From Buffers, Kill and Yank
30066 @section Yanking into Other Buffers
30068 @noindent
30069 @kindex y
30070 @pindex calc-copy-to-buffer
30071 The plain @kbd{y} (@code{calc-copy-to-buffer}) command inserts the number
30072 at the top of the stack into the most recently used normal editing buffer.
30073 (More specifically, this is the most recently used buffer which is displayed
30074 in a window and whose name does not begin with @samp{*}.  If there is no
30075 such buffer, this is the most recently used buffer except for Calculator
30076 and Calc Trail buffers.)  The number is inserted exactly as it appears and
30077 without a newline.  (If line-numbering is enabled, the line number is
30078 normally not included.)  The number is @emph{not} removed from the stack.
30080 With a prefix argument, @kbd{y} inserts several numbers, one per line.
30081 A positive argument inserts the specified number of values from the top
30082 of the stack.  A negative argument inserts the @expr{n}th value from the
30083 top of the stack.  An argument of zero inserts the entire stack.  Note
30084 that @kbd{y} with an argument of 1 is slightly different from @kbd{y}
30085 with no argument; the former always copies full lines, whereas the
30086 latter strips off the trailing newline.
30088 With a lone @kbd{C-u} as a prefix argument, @kbd{y} @emph{replaces} the
30089 region in the other buffer with the yanked text, then quits the
30090 Calculator, leaving you in that buffer.  A typical use would be to use
30091 @kbd{C-x * g} to read a region of data into the Calculator, operate on the
30092 data to produce a new matrix, then type @kbd{C-u y} to replace the
30093 original data with the new data.  One might wish to alter the matrix
30094 display style (@pxref{Vector and Matrix Formats}) or change the current
30095 display language (@pxref{Language Modes}) before doing this.  Also, note
30096 that this command replaces a linear region of text (as grabbed by
30097 @kbd{C-x * g}), not a rectangle (as grabbed by @kbd{C-x * r}).
30099 If the editing buffer is in overwrite (as opposed to insert) mode,
30100 and the @kbd{C-u} prefix was not used, then the yanked number will
30101 overwrite the characters following point rather than being inserted
30102 before those characters.  The usual conventions of overwrite mode
30103 are observed; for example, characters will be inserted at the end of
30104 a line rather than overflowing onto the next line.  Yanking a multi-line
30105 object such as a matrix in overwrite mode overwrites the next @var{n}
30106 lines in the buffer, lengthening or shortening each line as necessary.
30107 Finally, if the thing being yanked is a simple integer or floating-point
30108 number (like @samp{-1.2345e-3}) and the characters following point also
30109 make up such a number, then Calc will replace that number with the new
30110 number, lengthening or shortening as necessary.  The concept of
30111 ``overwrite mode'' has thus been generalized from overwriting characters
30112 to overwriting one complete number with another.
30114 @kindex C-x * y
30115 The @kbd{C-x * y} key sequence is equivalent to @kbd{y} except that
30116 it can be typed anywhere, not just in Calc.  This provides an easy
30117 way to guarantee that Calc knows which editing buffer you want to use!
30119 @node X Cut and Paste,  , Yanking Into Buffers, Kill and Yank
30120 @section X Cut and Paste
30122 @noindent
30123 If you are using Emacs with the X window system, there is an easier
30124 way to move small amounts of data into and out of the calculator:
30125 Use the mouse-oriented cut and paste facilities of X.
30127 The default bindings for a three-button mouse cause the left button
30128 to move the Emacs cursor to the given place, the right button to
30129 select the text between the cursor and the clicked location, and
30130 the middle button to yank the selection into the buffer at the
30131 clicked location.  So, if you have a Calc window and an editing
30132 window on your Emacs screen, you can use left-click/right-click
30133 to select a number, vector, or formula from one window, then
30134 middle-click to paste that value into the other window.  When you
30135 paste text into the Calc window, Calc interprets it as an algebraic
30136 entry.  It doesn't matter where you click in the Calc window; the
30137 new value is always pushed onto the top of the stack.
30139 The @code{xterm} program that is typically used for general-purpose
30140 shell windows in X interprets the mouse buttons in the same way.
30141 So you can use the mouse to move data between Calc and any other
30142 Unix program.  One nice feature of @code{xterm} is that a double
30143 left-click selects one word, and a triple left-click selects a
30144 whole line.  So you can usually transfer a single number into Calc
30145 just by double-clicking on it in the shell, then middle-clicking
30146 in the Calc window.
30148 @node Keypad Mode, Embedded Mode, Kill and Yank, Top
30149 @chapter Keypad Mode
30151 @noindent
30152 @kindex C-x * k
30153 @pindex calc-keypad
30154 The @kbd{C-x * k} (@code{calc-keypad}) command starts the Calculator
30155 and displays a picture of a calculator-style keypad.  If you are using
30156 the X window system, you can click on any of the ``keys'' in the
30157 keypad using the left mouse button to operate the calculator.
30158 The original window remains the selected window; in Keypad mode
30159 you can type in your file while simultaneously performing
30160 calculations with the mouse.
30162 @pindex full-calc-keypad
30163 If you have used @kbd{C-x * b} first, @kbd{C-x * k} instead invokes
30164 the @code{full-calc-keypad} command, which takes over the whole
30165 Emacs screen and displays the keypad, the Calc stack, and the Calc
30166 trail all at once.  This mode would normally be used when running
30167 Calc standalone (@pxref{Standalone Operation}).
30169 If you aren't using the X window system, you must switch into
30170 the @file{*Calc Keypad*} window, place the cursor on the desired
30171 ``key,'' and type @key{SPC} or @key{RET}.  If you think this
30172 is easier than using Calc normally, go right ahead.
30174 Calc commands are more or less the same in Keypad mode.  Certain
30175 keypad keys differ slightly from the corresponding normal Calc
30176 keystrokes; all such deviations are described below.
30178 Keypad mode includes many more commands than will fit on the keypad
30179 at once.  Click the right mouse button [@code{calc-keypad-menu}]
30180 to switch to the next menu.  The bottom five rows of the keypad
30181 stay the same; the top three rows change to a new set of commands.
30182 To return to earlier menus, click the middle mouse button
30183 [@code{calc-keypad-menu-back}] or simply advance through the menus
30184 until you wrap around.  Typing @key{TAB} inside the keypad window
30185 is equivalent to clicking the right mouse button there.
30187 You can always click the @key{EXEC} button and type any normal
30188 Calc key sequence.  This is equivalent to switching into the
30189 Calc buffer, typing the keys, then switching back to your
30190 original buffer.
30192 @menu
30193 * Keypad Main Menu::
30194 * Keypad Functions Menu::
30195 * Keypad Binary Menu::
30196 * Keypad Vectors Menu::
30197 * Keypad Modes Menu::
30198 @end menu
30200 @node Keypad Main Menu, Keypad Functions Menu, Keypad Mode, Keypad Mode
30201 @section Main Menu
30203 @smallexample
30204 @group
30205 |----+----+--Calc---+----+----1
30206 |FLR |CEIL|RND |TRNC|CLN2|FLT |
30207 |----+----+----+----+----+----|
30208 | LN |EXP |    |ABS |IDIV|MOD |
30209 |----+----+----+----+----+----|
30210 |SIN |COS |TAN |SQRT|y^x |1/x |
30211 |----+----+----+----+----+----|
30212 |  ENTER  |+/- |EEX |UNDO| <- |
30213 |-----+---+-+--+--+-+---++----|
30214 | INV |  7  |  8  |  9  |  /  |
30215 |-----+-----+-----+-----+-----|
30216 | HYP |  4  |  5  |  6  |  *  |
30217 |-----+-----+-----+-----+-----|
30218 |EXEC |  1  |  2  |  3  |  -  |
30219 |-----+-----+-----+-----+-----|
30220 | OFF |  0  |  .  | PI  |  +  |
30221 |-----+-----+-----+-----+-----+
30222 @end group
30223 @end smallexample
30225 @noindent
30226 This is the menu that appears the first time you start Keypad mode.
30227 It will show up in a vertical window on the right side of your screen.
30228 Above this menu is the traditional Calc stack display.  On a 24-line
30229 screen you will be able to see the top three stack entries.
30231 The ten digit keys, decimal point, and @key{EEX} key are used for
30232 entering numbers in the obvious way.  @key{EEX} begins entry of an
30233 exponent in scientific notation.  Just as with regular Calc, the
30234 number is pushed onto the stack as soon as you press @key{ENTER}
30235 or any other function key.
30237 The @key{+/-} key corresponds to normal Calc's @kbd{n} key.  During
30238 numeric entry it changes the sign of the number or of the exponent.
30239 At other times it changes the sign of the number on the top of the
30240 stack.
30242 The @key{INV} and @key{HYP} keys modify other keys.  As well as
30243 having the effects described elsewhere in this manual, Keypad mode
30244 defines several other ``inverse'' operations.  These are described
30245 below and in the following sections.
30247 The @key{ENTER} key finishes the current numeric entry, or otherwise
30248 duplicates the top entry on the stack.
30250 The @key{UNDO} key undoes the most recent Calc operation.
30251 @kbd{INV UNDO} is the ``redo'' command, and @kbd{HYP UNDO} is
30252 ``last arguments'' (@kbd{M-@key{RET}}).
30254 The @key{<-} key acts as a ``backspace'' during numeric entry.
30255 At other times it removes the top stack entry.  @kbd{INV <-}
30256 clears the entire stack.  @kbd{HYP <-} takes an integer from
30257 the stack, then removes that many additional stack elements.
30259 The @key{EXEC} key prompts you to enter any keystroke sequence
30260 that would normally work in Calc mode.  This can include a
30261 numeric prefix if you wish.  It is also possible simply to
30262 switch into the Calc window and type commands in it; there is
30263 nothing ``magic'' about this window when Keypad mode is active.
30265 The other keys in this display perform their obvious calculator
30266 functions.  @key{CLN2} rounds the top-of-stack by temporarily
30267 reducing the precision by 2 digits.  @key{FLT} converts an
30268 integer or fraction on the top of the stack to floating-point.
30270 The @key{INV} and @key{HYP} keys combined with several of these keys
30271 give you access to some common functions even if the appropriate menu
30272 is not displayed.  Obviously you don't need to learn these keys
30273 unless you find yourself wasting time switching among the menus.
30275 @table @kbd
30276 @item INV +/-
30277 is the same as @key{1/x}.
30278 @item INV +
30279 is the same as @key{SQRT}.
30280 @item INV -
30281 is the same as @key{CONJ}.
30282 @item INV *
30283 is the same as @key{y^x}.
30284 @item INV /
30285 is the same as @key{INV y^x} (the @expr{x}th root of @expr{y}).
30286 @item HYP/INV 1
30287 are the same as @key{SIN} / @kbd{INV SIN}.
30288 @item HYP/INV 2
30289 are the same as @key{COS} / @kbd{INV COS}.
30290 @item HYP/INV 3
30291 are the same as @key{TAN} / @kbd{INV TAN}.
30292 @item INV/HYP 4
30293 are the same as @key{LN} / @kbd{HYP LN}.
30294 @item INV/HYP 5
30295 are the same as @key{EXP} / @kbd{HYP EXP}.
30296 @item INV 6
30297 is the same as @key{ABS}.
30298 @item INV 7
30299 is the same as @key{RND} (@code{calc-round}).
30300 @item INV 8
30301 is the same as @key{CLN2}.
30302 @item INV 9
30303 is the same as @key{FLT} (@code{calc-float}).
30304 @item INV 0
30305 is the same as @key{IMAG}.
30306 @item INV .
30307 is the same as @key{PREC}.
30308 @item INV ENTER
30309 is the same as @key{SWAP}.
30310 @item HYP ENTER
30311 is the same as @key{RLL3}.
30312 @item INV HYP ENTER
30313 is the same as @key{OVER}.
30314 @item HYP +/-
30315 packs the top two stack entries as an error form.
30316 @item HYP EEX
30317 packs the top two stack entries as a modulo form.
30318 @item INV EEX
30319 creates an interval form; this removes an integer which is one
30320 of 0 @samp{[]}, 1 @samp{[)}, 2 @samp{(]} or 3 @samp{()}, followed
30321 by the two limits of the interval.
30322 @end table
30324 The @kbd{OFF} key turns Calc off; typing @kbd{C-x * k} or @kbd{C-x * *}
30325 again has the same effect.  This is analogous to typing @kbd{q} or
30326 hitting @kbd{C-x * c} again in the normal calculator.  If Calc is
30327 running standalone (the @code{full-calc-keypad} command appeared in the
30328 command line that started Emacs), then @kbd{OFF} is replaced with
30329 @kbd{EXIT}; clicking on this actually exits Emacs itself.
30331 @node Keypad Functions Menu, Keypad Binary Menu, Keypad Main Menu, Keypad Mode
30332 @section Functions Menu
30334 @smallexample
30335 @group
30336 |----+----+----+----+----+----2
30337 |IGAM|BETA|IBET|ERF |BESJ|BESY|
30338 |----+----+----+----+----+----|
30339 |IMAG|CONJ| RE |ATN2|RAND|RAGN|
30340 |----+----+----+----+----+----|
30341 |GCD |FACT|DFCT|BNOM|PERM|NXTP|
30342 |----+----+----+----+----+----|
30343 @end group
30344 @end smallexample
30346 @noindent
30347 This menu provides various operations from the @kbd{f} and @kbd{k}
30348 prefix keys.
30350 @key{IMAG} multiplies the number on the stack by the imaginary
30351 number @expr{i = (0, 1)}.
30353 @key{RE} extracts the real part a complex number.  @kbd{INV RE}
30354 extracts the imaginary part.
30356 @key{RAND} takes a number from the top of the stack and computes
30357 a random number greater than or equal to zero but less than that
30358 number.  (@xref{Random Numbers}.)  @key{RAGN} is the ``random
30359 again'' command; it computes another random number using the
30360 same limit as last time.
30362 @key{INV GCD} computes the LCM (least common multiple) function.
30364 @key{INV FACT} is the gamma function.
30365 @texline @math{\Gamma(x) = (x-1)!}.
30366 @infoline @expr{gamma(x) = (x-1)!}.
30368 @key{PERM} is the number-of-permutations function, which is on the
30369 @kbd{H k c} key in normal Calc.
30371 @key{NXTP} finds the next prime after a number.  @kbd{INV NXTP}
30372 finds the previous prime.
30374 @node Keypad Binary Menu, Keypad Vectors Menu, Keypad Functions Menu, Keypad Mode
30375 @section Binary Menu
30377 @smallexample
30378 @group
30379 |----+----+----+----+----+----3
30380 |AND | OR |XOR |NOT |LSH |RSH |
30381 |----+----+----+----+----+----|
30382 |DEC |HEX |OCT |BIN |WSIZ|ARSH|
30383 |----+----+----+----+----+----|
30384 | A  | B  | C  | D  | E  | F  |
30385 |----+----+----+----+----+----|
30386 @end group
30387 @end smallexample
30389 @noindent
30390 The keys in this menu perform operations on binary integers.
30391 Note that both logical and arithmetic right-shifts are provided.
30392 @key{INV LSH} rotates one bit to the left.
30394 The ``difference'' function (normally on @kbd{b d}) is on @key{INV AND}.
30395 The ``clip'' function (normally on @w{@kbd{b c}}) is on @key{INV NOT}.
30397 The @key{DEC}, @key{HEX}, @key{OCT}, and @key{BIN} keys select the
30398 current radix for display and entry of numbers:  Decimal, hexadecimal,
30399 octal, or binary.  The six letter keys @key{A} through @key{F} are used
30400 for entering hexadecimal numbers.
30402 The @key{WSIZ} key displays the current word size for binary operations
30403 and allows you to enter a new word size.  You can respond to the prompt
30404 using either the keyboard or the digits and @key{ENTER} from the keypad.
30405 The initial word size is 32 bits.
30407 @node Keypad Vectors Menu, Keypad Modes Menu, Keypad Binary Menu, Keypad Mode
30408 @section Vectors Menu
30410 @smallexample
30411 @group
30412 |----+----+----+----+----+----4
30413 |SUM |PROD|MAX |MAP*|MAP^|MAP$|
30414 |----+----+----+----+----+----|
30415 |MINV|MDET|MTRN|IDNT|CRSS|"x" |
30416 |----+----+----+----+----+----|
30417 |PACK|UNPK|INDX|BLD |LEN |... |
30418 |----+----+----+----+----+----|
30419 @end group
30420 @end smallexample
30422 @noindent
30423 The keys in this menu operate on vectors and matrices.
30425 @key{PACK} removes an integer @var{n} from the top of the stack;
30426 the next @var{n} stack elements are removed and packed into a vector,
30427 which is replaced onto the stack.  Thus the sequence
30428 @kbd{1 ENTER 3 ENTER 5 ENTER 3 PACK} enters the vector
30429 @samp{[1, 3, 5]} onto the stack.  To enter a matrix, build each row
30430 on the stack as a vector, then use a final @key{PACK} to collect the
30431 rows into a matrix.
30433 @key{UNPK} unpacks the vector on the stack, pushing each of its
30434 components separately.
30436 @key{INDX} removes an integer @var{n}, then builds a vector of
30437 integers from 1 to @var{n}.  @kbd{INV INDX} takes three numbers
30438 from the stack:  The vector size @var{n}, the starting number,
30439 and the increment.  @kbd{BLD} takes an integer @var{n} and any
30440 value @var{x} and builds a vector of @var{n} copies of @var{x}.
30442 @key{IDNT} removes an integer @var{n}, then builds an @var{n}-by-@var{n}
30443 identity matrix.
30445 @key{LEN} replaces a vector by its length, an integer.
30447 @key{...} turns on or off ``abbreviated'' display mode for large vectors.
30449 @key{MINV}, @key{MDET}, @key{MTRN}, and @key{CROSS} are the matrix
30450 inverse, determinant, and transpose, and vector cross product.
30452 @key{SUM} replaces a vector by the sum of its elements.  It is
30453 equivalent to @kbd{u +} in normal Calc (@pxref{Statistical Operations}).
30454 @key{PROD} computes the product of the elements of a vector, and
30455 @key{MAX} computes the maximum of all the elements of a vector.
30457 @key{INV SUM} computes the alternating sum of the first element
30458 minus the second, plus the third, minus the fourth, and so on.
30459 @key{INV MAX} computes the minimum of the vector elements.
30461 @key{HYP SUM} computes the mean of the vector elements.
30462 @key{HYP PROD} computes the sample standard deviation.
30463 @key{HYP MAX} computes the median.
30465 @key{MAP*} multiplies two vectors elementwise.  It is equivalent
30466 to the @kbd{V M *} command.  @key{MAP^} computes powers elementwise.
30467 The arguments must be vectors of equal length, or one must be a vector
30468 and the other must be a plain number.  For example, @kbd{2 MAP^} squares
30469 all the elements of a vector.
30471 @key{MAP$} maps the formula on the top of the stack across the
30472 vector in the second-to-top position.  If the formula contains
30473 several variables, Calc takes that many vectors starting at the
30474 second-to-top position and matches them to the variables in
30475 alphabetical order.  The result is a vector of the same size as
30476 the input vectors, whose elements are the formula evaluated with
30477 the variables set to the various sets of numbers in those vectors.
30478 For example, you could simulate @key{MAP^} using @key{MAP$} with
30479 the formula @samp{x^y}.
30481 The @kbd{"x"} key pushes the variable name @expr{x} onto the
30482 stack.  To build the formula @expr{x^2 + 6}, you would use the
30483 key sequence @kbd{"x" 2 y^x 6 +}.  This formula would then be
30484 suitable for use with the @key{MAP$} key described above.
30485 With @key{INV}, @key{HYP}, or @key{INV} and @key{HYP}, the
30486 @kbd{"x"} key pushes the variable names @expr{y}, @expr{z}, and
30487 @expr{t}, respectively.
30489 @node Keypad Modes Menu,  , Keypad Vectors Menu, Keypad Mode
30490 @section Modes Menu
30492 @smallexample
30493 @group
30494 |----+----+----+----+----+----5
30495 |FLT |FIX |SCI |ENG |GRP |    |
30496 |----+----+----+----+----+----|
30497 |RAD |DEG |FRAC|POLR|SYMB|PREC|
30498 |----+----+----+----+----+----|
30499 |SWAP|RLL3|RLL4|OVER|STO |RCL |
30500 |----+----+----+----+----+----|
30501 @end group
30502 @end smallexample
30504 @noindent
30505 The keys in this menu manipulate modes, variables, and the stack.
30507 The @key{FLT}, @key{FIX}, @key{SCI}, and @key{ENG} keys select
30508 floating-point, fixed-point, scientific, or engineering notation.
30509 @key{FIX} displays two digits after the decimal by default; the
30510 others display full precision.  With the @key{INV} prefix, these
30511 keys pop a number-of-digits argument from the stack.
30513 The @key{GRP} key turns grouping of digits with commas on or off.
30514 @kbd{INV GRP} enables grouping to the right of the decimal point as
30515 well as to the left.
30517 The @key{RAD} and @key{DEG} keys switch between radians and degrees
30518 for trigonometric functions.
30520 The @key{FRAC} key turns Fraction mode on or off.  This affects
30521 whether commands like @kbd{/} with integer arguments produce
30522 fractional or floating-point results.
30524 The @key{POLR} key turns Polar mode on or off, determining whether
30525 polar or rectangular complex numbers are used by default.
30527 The @key{SYMB} key turns Symbolic mode on or off, in which
30528 operations that would produce inexact floating-point results
30529 are left unevaluated as algebraic formulas.
30531 The @key{PREC} key selects the current precision.  Answer with
30532 the keyboard or with the keypad digit and @key{ENTER} keys.
30534 The @key{SWAP} key exchanges the top two stack elements.
30535 The @key{RLL3} key rotates the top three stack elements upwards.
30536 The @key{RLL4} key rotates the top four stack elements upwards.
30537 The @key{OVER} key duplicates the second-to-top stack element.
30539 The @key{STO} and @key{RCL} keys are analogous to @kbd{s t} and
30540 @kbd{s r} in regular Calc.  @xref{Store and Recall}.  Click the
30541 @key{STO} or @key{RCL} key, then one of the ten digits.  (Named
30542 variables are not available in Keypad mode.)  You can also use,
30543 for example, @kbd{STO + 3} to add to register 3.
30545 @node Embedded Mode, Programming, Keypad Mode, Top
30546 @chapter Embedded Mode
30548 @noindent
30549 Embedded mode in Calc provides an alternative to copying numbers
30550 and formulas back and forth between editing buffers and the Calc
30551 stack.  In Embedded mode, your editing buffer becomes temporarily
30552 linked to the stack and this copying is taken care of automatically.
30554 @menu
30555 * Basic Embedded Mode::
30556 * More About Embedded Mode::
30557 * Assignments in Embedded Mode::
30558 * Mode Settings in Embedded Mode::
30559 * Customizing Embedded Mode::
30560 @end menu
30562 @node Basic Embedded Mode, More About Embedded Mode, Embedded Mode, Embedded Mode
30563 @section Basic Embedded Mode
30565 @noindent
30566 @kindex C-x * e
30567 @pindex calc-embedded
30568 To enter Embedded mode, position the Emacs point (cursor) on a
30569 formula in any buffer and press @kbd{C-x * e} (@code{calc-embedded}).
30570 Note that @kbd{C-x * e} is not to be used in the Calc stack buffer
30571 like most Calc commands, but rather in regular editing buffers that
30572 are visiting your own files.
30574 Calc will try to guess an appropriate language based on the major mode
30575 of the editing buffer. (@xref{Language Modes}.) If the current buffer is
30576 in @code{latex-mode}, for example, Calc will set its language to @LaTeX{}.
30577 Similarly, Calc will use @TeX{} language for @code{tex-mode},
30578 @code{plain-tex-mode} and @code{context-mode}, C language for
30579 @code{c-mode} and @code{c++-mode}, FORTRAN language for
30580 @code{fortran-mode} and @code{f90-mode}, Pascal for @code{pascal-mode},
30581 and eqn for @code{nroff-mode} (@pxref{Customizing Calc}).
30582 These can be overridden with Calc's mode
30583 changing commands (@pxref{Mode Settings in Embedded Mode}).  If no
30584 suitable language is available, Calc will continue with its current language.
30586 Calc normally scans backward and forward in the buffer for the
30587 nearest opening and closing @dfn{formula delimiters}.  The simplest
30588 delimiters are blank lines.  Other delimiters that Embedded mode
30589 understands are:
30591 @enumerate
30592 @item
30593 The @TeX{} and @LaTeX{} math delimiters @samp{$ $}, @samp{$$ $$},
30594 @samp{\[ \]}, and @samp{\( \)};
30595 @item
30596 Lines beginning with @samp{\begin} and @samp{\end} (except matrix delimiters);
30597 @item
30598 Lines beginning with @samp{@@} (Texinfo delimiters).
30599 @item
30600 Lines beginning with @samp{.EQ} and @samp{.EN} (@dfn{eqn} delimiters);
30601 @item
30602 Lines containing a single @samp{%} or @samp{.\"} symbol and nothing else.
30603 @end enumerate
30605 @xref{Customizing Embedded Mode}, to see how to make Calc recognize
30606 your own favorite delimiters.  Delimiters like @samp{$ $} can appear
30607 on their own separate lines or in-line with the formula.
30609 If you give a positive or negative numeric prefix argument, Calc
30610 instead uses the current point as one end of the formula, and includes
30611 that many lines forward or backward (respectively, including the current
30612 line). Explicit delimiters are not necessary in this case.
30614 With a prefix argument of zero, Calc uses the current region (delimited
30615 by point and mark) instead of formula delimiters.  With a prefix
30616 argument of @kbd{C-u} only, Calc uses the current line as the formula.
30618 @kindex C-x * w
30619 @pindex calc-embedded-word
30620 The @kbd{C-x * w} (@code{calc-embedded-word}) command will start Embedded
30621 mode on the current ``word''; in this case Calc will scan for the first
30622 non-numeric character (i.e., the first character that is not a digit,
30623 sign, decimal point, or upper- or lower-case @samp{e}) forward and
30624 backward to delimit the formula.
30626 When you enable Embedded mode for a formula, Calc reads the text
30627 between the delimiters and tries to interpret it as a Calc formula.
30628 Calc can generally identify @TeX{} formulas and
30629 Big-style formulas even if the language mode is wrong.  If Calc
30630 can't make sense of the formula, it beeps and refuses to enter
30631 Embedded mode.  But if the current language is wrong, Calc can
30632 sometimes parse the formula successfully (but incorrectly);
30633 for example, the C expression @samp{atan(a[1])} can be parsed
30634 in Normal language mode, but the @code{atan} won't correspond to
30635 the built-in @code{arctan} function, and the @samp{a[1]} will be
30636 interpreted as @samp{a} times the vector @samp{[1]}!
30638 If you press @kbd{C-x * e} or @kbd{C-x * w} to activate an embedded
30639 formula which is blank, say with the cursor on the space between
30640 the two delimiters @samp{$ $}, Calc will immediately prompt for
30641 an algebraic entry.
30643 Only one formula in one buffer can be enabled at a time.  If you
30644 move to another area of the current buffer and give Calc commands,
30645 Calc turns Embedded mode off for the old formula and then tries
30646 to restart Embedded mode at the new position.  Other buffers are
30647 not affected by Embedded mode.
30649 When Embedded mode begins, Calc pushes the current formula onto
30650 the stack.  No Calc stack window is created; however, Calc copies
30651 the top-of-stack position into the original buffer at all times.
30652 You can create a Calc window by hand with @kbd{C-x * o} if you
30653 find you need to see the entire stack.
30655 For example, typing @kbd{C-x * e} while somewhere in the formula
30656 @samp{n>2} in the following line enables Embedded mode on that
30657 inequality:
30659 @example
30660 We define $F_n = F_(n-1)+F_(n-2)$ for all $n>2$.
30661 @end example
30663 @noindent
30664 The formula @expr{n>2} will be pushed onto the Calc stack, and
30665 the top of stack will be copied back into the editing buffer.
30666 This means that spaces will appear around the @samp{>} symbol
30667 to match Calc's usual display style:
30669 @example
30670 We define $F_n = F_(n-1)+F_(n-2)$ for all $n > 2$.
30671 @end example
30673 @noindent
30674 No spaces have appeared around the @samp{+} sign because it's
30675 in a different formula, one which we have not yet touched with
30676 Embedded mode.
30678 Now that Embedded mode is enabled, keys you type in this buffer
30679 are interpreted as Calc commands.  At this point we might use
30680 the ``commute'' command @kbd{j C} to reverse the inequality.
30681 This is a selection-based command for which we first need to
30682 move the cursor onto the operator (@samp{>} in this case) that
30683 needs to be commuted.
30685 @example
30686 We define $F_n = F_(n-1)+F_(n-2)$ for all $2 < n$.
30687 @end example
30689 The @kbd{C-x * o} command is a useful way to open a Calc window
30690 without actually selecting that window.  Giving this command
30691 verifies that @samp{2 < n} is also on the Calc stack.  Typing
30692 @kbd{17 @key{RET}} would produce:
30694 @example
30695 We define $F_n = F_(n-1)+F_(n-2)$ for all $17$.
30696 @end example
30698 @noindent
30699 with @samp{2 < n} and @samp{17} on the stack; typing @key{TAB}
30700 at this point will exchange the two stack values and restore
30701 @samp{2 < n} to the embedded formula.  Even though you can't
30702 normally see the stack in Embedded mode, it is still there and
30703 it still operates in the same way.  But, as with old-fashioned
30704 RPN calculators, you can only see the value at the top of the
30705 stack at any given time (unless you use @kbd{C-x * o}).
30707 Typing @kbd{C-x * e} again turns Embedded mode off.  The Calc
30708 window reveals that the formula @w{@samp{2 < n}} is automatically
30709 removed from the stack, but the @samp{17} is not.  Entering
30710 Embedded mode always pushes one thing onto the stack, and
30711 leaving Embedded mode always removes one thing.  Anything else
30712 that happens on the stack is entirely your business as far as
30713 Embedded mode is concerned.
30715 If you press @kbd{C-x * e} in the wrong place by accident, it is
30716 possible that Calc will be able to parse the nearby text as a
30717 formula and will mangle that text in an attempt to redisplay it
30718 ``properly'' in the current language mode.  If this happens,
30719 press @kbd{C-x * e} again to exit Embedded mode, then give the
30720 regular Emacs ``undo'' command (@kbd{C-_} or @kbd{C-x u}) to put
30721 the text back the way it was before Calc edited it.  Note that Calc's
30722 own Undo command (typed before you turn Embedded mode back off)
30723 will not do you any good, because as far as Calc is concerned
30724 you haven't done anything with this formula yet.
30726 @node More About Embedded Mode, Assignments in Embedded Mode, Basic Embedded Mode, Embedded Mode
30727 @section More About Embedded Mode
30729 @noindent
30730 When Embedded mode ``activates'' a formula, i.e., when it examines
30731 the formula for the first time since the buffer was created or
30732 loaded, Calc tries to sense the language in which the formula was
30733 written.  If the formula contains any @LaTeX{}-like @samp{\} sequences,
30734 it is parsed (i.e., read) in @LaTeX{} mode.  If the formula appears to
30735 be written in multi-line Big mode, it is parsed in Big mode.  Otherwise,
30736 it is parsed according to the current language mode.
30738 Note that Calc does not change the current language mode according
30739 the formula it reads in.  Even though it can read a @LaTeX{} formula when
30740 not in @LaTeX{} mode, it will immediately rewrite this formula using
30741 whatever language mode is in effect.
30743 @tex
30744 \bigskip
30745 @end tex
30747 @kindex d p
30748 @pindex calc-show-plain
30749 Calc's parser is unable to read certain kinds of formulas.  For
30750 example, with @kbd{v ]} (@code{calc-matrix-brackets}) you can
30751 specify matrix display styles which the parser is unable to
30752 recognize as matrices.  The @kbd{d p} (@code{calc-show-plain})
30753 command turns on a mode in which a ``plain'' version of a
30754 formula is placed in front of the fully-formatted version.
30755 When Calc reads a formula that has such a plain version in
30756 front, it reads the plain version and ignores the formatted
30757 version.
30759 Plain formulas are preceded and followed by @samp{%%%} signs
30760 by default.  This notation has the advantage that the @samp{%}
30761 character begins a comment in @TeX{} and @LaTeX{}, so if your formula is
30762 embedded in a @TeX{} or @LaTeX{} document its plain version will be
30763 invisible in the final printed copy.  Certain major modes have different
30764 delimiters to ensure that the ``plain'' version will be
30765 in a comment for those modes, also.
30766 See @ref{Customizing Embedded Mode} to see how to change the ``plain''
30767 formula delimiters.
30769 There are several notations which Calc's parser for ``big''
30770 formatted formulas can't yet recognize.  In particular, it can't
30771 read the large symbols for @code{sum}, @code{prod}, and @code{integ},
30772 and it can't handle @samp{=>} with the righthand argument omitted.
30773 Also, Calc won't recognize special formats you have defined with
30774 the @kbd{Z C} command (@pxref{User-Defined Compositions}).  In
30775 these cases it is important to use ``plain'' mode to make sure
30776 Calc will be able to read your formula later.
30778 Another example where ``plain'' mode is important is if you have
30779 specified a float mode with few digits of precision.  Normally
30780 any digits that are computed but not displayed will simply be
30781 lost when you save and re-load your embedded buffer, but ``plain''
30782 mode allows you to make sure that the complete number is present
30783 in the file as well as the rounded-down number.
30785 @tex
30786 \bigskip
30787 @end tex
30789 Embedded buffers remember active formulas for as long as they
30790 exist in Emacs memory.  Suppose you have an embedded formula
30791 which is @cpi{} to the normal 12 decimal places, and then
30792 type @w{@kbd{C-u 5 d n}} to display only five decimal places.
30793 If you then type @kbd{d n}, all 12 places reappear because the
30794 full number is still there on the Calc stack.  More surprisingly,
30795 even if you exit Embedded mode and later re-enter it for that
30796 formula, typing @kbd{d n} will restore all 12 places because
30797 each buffer remembers all its active formulas.  However, if you
30798 save the buffer in a file and reload it in a new Emacs session,
30799 all non-displayed digits will have been lost unless you used
30800 ``plain'' mode.
30802 @tex
30803 \bigskip
30804 @end tex
30806 In some applications of Embedded mode, you will want to have a
30807 sequence of copies of a formula that show its evolution as you
30808 work on it.  For example, you might want to have a sequence
30809 like this in your file (elaborating here on the example from
30810 the ``Getting Started'' chapter):
30812 @smallexample
30813 The derivative of
30815                               ln(ln(x))
30819                   @r{(the derivative of }ln(ln(x))@r{)}
30821 whose value at x = 2 is
30823                             @r{(the value)}
30825 and at x = 3 is
30827                             @r{(the value)}
30828 @end smallexample
30830 @kindex C-x * d
30831 @pindex calc-embedded-duplicate
30832 The @kbd{C-x * d} (@code{calc-embedded-duplicate}) command is a
30833 handy way to make sequences like this.  If you type @kbd{C-x * d},
30834 the formula under the cursor (which may or may not have Embedded
30835 mode enabled for it at the time) is copied immediately below and
30836 Embedded mode is then enabled for that copy.
30838 For this example, you would start with just
30840 @smallexample
30841 The derivative of
30843                               ln(ln(x))
30844 @end smallexample
30846 @noindent
30847 and press @kbd{C-x * d} with the cursor on this formula.  The result
30850 @smallexample
30851 The derivative of
30853                               ln(ln(x))
30856                               ln(ln(x))
30857 @end smallexample
30859 @noindent
30860 with the second copy of the formula enabled in Embedded mode.
30861 You can now press @kbd{a d x @key{RET}} to take the derivative, and
30862 @kbd{C-x * d C-x * d} to make two more copies of the derivative.
30863 To complete the computations, type @kbd{3 s l x @key{RET}} to evaluate
30864 the last formula, then move up to the second-to-last formula
30865 and type @kbd{2 s l x @key{RET}}.
30867 Finally, you would want to press @kbd{C-x * e} to exit Embedded
30868 mode, then go up and insert the necessary text in between the
30869 various formulas and numbers.
30871 @tex
30872 \bigskip
30873 @end tex
30875 @kindex C-x * f
30876 @kindex C-x * '
30877 @pindex calc-embedded-new-formula
30878 The @kbd{C-x * f} (@code{calc-embedded-new-formula}) command
30879 creates a new embedded formula at the current point.  It inserts
30880 some default delimiters, which are usually just blank lines,
30881 and then does an algebraic entry to get the formula (which is
30882 then enabled for Embedded mode).  This is just shorthand for
30883 typing the delimiters yourself, positioning the cursor between
30884 the new delimiters, and pressing @kbd{C-x * e}.  The key sequence
30885 @kbd{C-x * '} is equivalent to @kbd{C-x * f}.
30887 @kindex C-x * n
30888 @kindex C-x * p
30889 @pindex calc-embedded-next
30890 @pindex calc-embedded-previous
30891 The @kbd{C-x * n} (@code{calc-embedded-next}) and @kbd{C-x * p}
30892 (@code{calc-embedded-previous}) commands move the cursor to the
30893 next or previous active embedded formula in the buffer.  They
30894 can take positive or negative prefix arguments to move by several
30895 formulas.  Note that these commands do not actually examine the
30896 text of the buffer looking for formulas; they only see formulas
30897 which have previously been activated in Embedded mode.  In fact,
30898 @kbd{C-x * n} and @kbd{C-x * p} are a useful way to tell which
30899 embedded formulas are currently active.  Also, note that these
30900 commands do not enable Embedded mode on the next or previous
30901 formula, they just move the cursor.
30903 @kindex C-x * `
30904 @pindex calc-embedded-edit
30905 The @kbd{C-x * `} (@code{calc-embedded-edit}) command edits the
30906 embedded formula at the current point as if by @kbd{`} (@code{calc-edit}).
30907 Embedded mode does not have to be enabled for this to work.  Press
30908 @kbd{C-c C-c} to finish the edit, or @kbd{C-x k} to cancel.
30910 @node Assignments in Embedded Mode, Mode Settings in Embedded Mode, More About Embedded Mode, Embedded Mode
30911 @section Assignments in Embedded Mode
30913 @noindent
30914 The @samp{:=} (assignment) and @samp{=>} (``evaluates-to'') operators
30915 are especially useful in Embedded mode.  They allow you to make
30916 a definition in one formula, then refer to that definition in
30917 other formulas embedded in the same buffer.
30919 An embedded formula which is an assignment to a variable, as in
30921 @example
30922 foo := 5
30923 @end example
30925 @noindent
30926 records @expr{5} as the stored value of @code{foo} for the
30927 purposes of Embedded mode operations in the current buffer.  It
30928 does @emph{not} actually store @expr{5} as the ``global'' value
30929 of @code{foo}, however.  Regular Calc operations, and Embedded
30930 formulas in other buffers, will not see this assignment.
30932 One way to use this assigned value is simply to create an
30933 Embedded formula elsewhere that refers to @code{foo}, and to press
30934 @kbd{=} in that formula.  However, this permanently replaces the
30935 @code{foo} in the formula with its current value.  More interesting
30936 is to use @samp{=>} elsewhere:
30938 @example
30939 foo + 7 => 12
30940 @end example
30942 @xref{Evaluates-To Operator}, for a general discussion of @samp{=>}.
30944 If you move back and change the assignment to @code{foo}, any
30945 @samp{=>} formulas which refer to it are automatically updated.
30947 @example
30948 foo := 17
30950 foo + 7 => 24
30951 @end example
30953 The obvious question then is, @emph{how} can one easily change the
30954 assignment to @code{foo}?  If you simply select the formula in
30955 Embedded mode and type 17, the assignment itself will be replaced
30956 by the 17.  The effect on the other formula will be that the
30957 variable @code{foo} becomes unassigned:
30959 @example
30962 foo + 7 => foo + 7
30963 @end example
30965 The right thing to do is first to use a selection command (@kbd{j 2}
30966 will do the trick) to select the righthand side of the assignment.
30967 Then, @kbd{17 @key{TAB} @key{DEL}} will swap the 17 into place (@pxref{Selecting
30968 Subformulas}, to see how this works).
30970 @kindex C-x * j
30971 @pindex calc-embedded-select
30972 The @kbd{C-x * j} (@code{calc-embedded-select}) command provides an
30973 easy way to operate on assignments.  It is just like @kbd{C-x * e},
30974 except that if the enabled formula is an assignment, it uses
30975 @kbd{j 2} to select the righthand side.  If the enabled formula
30976 is an evaluates-to, it uses @kbd{j 1} to select the lefthand side.
30977 A formula can also be a combination of both:
30979 @example
30980 bar := foo + 3 => 20
30981 @end example
30983 @noindent
30984 in which case @kbd{C-x * j} will select the middle part (@samp{foo + 3}).
30986 The formula is automatically deselected when you leave Embedded
30987 mode.
30989 @kindex C-x * u
30990 @pindex calc-embedded-update-formula
30991 Another way to change the assignment to @code{foo} would simply be
30992 to edit the number using regular Emacs editing rather than Embedded
30993 mode.  Then, we have to find a way to get Embedded mode to notice
30994 the change.  The @kbd{C-x * u} (@code{calc-embedded-update-formula})
30995 command is a convenient way to do this.
30997 @example
30998 foo := 6
31000 foo + 7 => 13
31001 @end example
31003 Pressing @kbd{C-x * u} is much like pressing @kbd{C-x * e = C-x * e}, that
31004 is, temporarily enabling Embedded mode for the formula under the
31005 cursor and then evaluating it with @kbd{=}.  But @kbd{C-x * u} does
31006 not actually use @kbd{C-x * e}, and in fact another formula somewhere
31007 else can be enabled in Embedded mode while you use @kbd{C-x * u} and
31008 that formula will not be disturbed.
31010 With a numeric prefix argument, @kbd{C-x * u} updates all active
31011 @samp{=>} formulas in the buffer.  Formulas which have not yet
31012 been activated in Embedded mode, and formulas which do not have
31013 @samp{=>} as their top-level operator, are not affected by this.
31014 (This is useful only if you have used @kbd{m C}; see below.)
31016 With a plain @kbd{C-u} prefix, @kbd{C-u C-x * u} updates only in the
31017 region between mark and point rather than in the whole buffer.
31019 @kbd{C-x * u} is also a handy way to activate a formula, such as an
31020 @samp{=>} formula that has freshly been typed in or loaded from a
31021 file.
31023 @kindex C-x * a
31024 @pindex calc-embedded-activate
31025 The @kbd{C-x * a} (@code{calc-embedded-activate}) command scans
31026 through the current buffer and activates all embedded formulas
31027 that contain @samp{:=} or @samp{=>} symbols.  This does not mean
31028 that Embedded mode is actually turned on, but only that the
31029 formulas' positions are registered with Embedded mode so that
31030 the @samp{=>} values can be properly updated as assignments are
31031 changed.
31033 It is a good idea to type @kbd{C-x * a} right after loading a file
31034 that uses embedded @samp{=>} operators.  Emacs includes a nifty
31035 ``buffer-local variables'' feature that you can use to do this
31036 automatically.  The idea is to place near the end of your file
31037 a few lines that look like this:
31039 @example
31040 --- Local Variables: ---
31041 --- eval:(calc-embedded-activate) ---
31042 --- End: ---
31043 @end example
31045 @noindent
31046 where the leading and trailing @samp{---} can be replaced by
31047 any suitable strings (which must be the same on all three lines)
31048 or omitted altogether; in a @TeX{} or @LaTeX{} file, @samp{%} would be a good
31049 leading string and no trailing string would be necessary.  In a
31050 C program, @samp{/*} and @samp{*/} would be good leading and
31051 trailing strings.
31053 When Emacs loads a file into memory, it checks for a Local Variables
31054 section like this one at the end of the file.  If it finds this
31055 section, it does the specified things (in this case, running
31056 @kbd{C-x * a} automatically) before editing of the file begins.
31057 The Local Variables section must be within 3000 characters of the
31058 end of the file for Emacs to find it, and it must be in the last
31059 page of the file if the file has any page separators.
31060 @xref{File Variables, , Local Variables in Files, emacs, the
31061 Emacs manual}.
31063 Note that @kbd{C-x * a} does not update the formulas it finds.
31064 To do this, type, say, @kbd{M-1 C-x * u} after @w{@kbd{C-x * a}}.
31065 Generally this should not be a problem, though, because the
31066 formulas will have been up-to-date already when the file was
31067 saved.
31069 Normally, @kbd{C-x * a} activates all the formulas it finds, but
31070 any previous active formulas remain active as well.  With a
31071 positive numeric prefix argument, @kbd{C-x * a} first deactivates
31072 all current active formulas, then actives the ones it finds in
31073 its scan of the buffer.  With a negative prefix argument,
31074 @kbd{C-x * a} simply deactivates all formulas.
31076 Embedded mode has two symbols, @samp{Active} and @samp{~Active},
31077 which it puts next to the major mode name in a buffer's mode line.
31078 It puts @samp{Active} if it has reason to believe that all
31079 formulas in the buffer are active, because you have typed @kbd{C-x * a}
31080 and Calc has not since had to deactivate any formulas (which can
31081 happen if Calc goes to update an @samp{=>} formula somewhere because
31082 a variable changed, and finds that the formula is no longer there
31083 due to some kind of editing outside of Embedded mode).  Calc puts
31084 @samp{~Active} in the mode line if some, but probably not all,
31085 formulas in the buffer are active.  This happens if you activate
31086 a few formulas one at a time but never use @kbd{C-x * a}, or if you
31087 used @kbd{C-x * a} but then Calc had to deactivate a formula
31088 because it lost track of it.  If neither of these symbols appears
31089 in the mode line, no embedded formulas are active in the buffer
31090 (e.g., before Embedded mode has been used, or after a @kbd{M-- C-x * a}).
31092 Embedded formulas can refer to assignments both before and after them
31093 in the buffer.  If there are several assignments to a variable, the
31094 nearest preceding assignment is used if there is one, otherwise the
31095 following assignment is used.
31097 @example
31098 x => 1
31100 x := 1
31102 x => 1
31104 x := 2
31106 x => 2
31107 @end example
31109 As well as simple variables, you can also assign to subscript
31110 expressions of the form @samp{@var{var}_@var{number}} (as in
31111 @code{x_0}), or @samp{@var{var}_@var{var}} (as in @code{x_max}).
31112 Assignments to other kinds of objects can be represented by Calc,
31113 but the automatic linkage between assignments and references works
31114 only for plain variables and these two kinds of subscript expressions.
31116 If there are no assignments to a given variable, the global
31117 stored value for the variable is used (@pxref{Storing Variables}),
31118 or, if no value is stored, the variable is left in symbolic form.
31119 Note that global stored values will be lost when the file is saved
31120 and loaded in a later Emacs session, unless you have used the
31121 @kbd{s p} (@code{calc-permanent-variable}) command to save them;
31122 @pxref{Operations on Variables}.
31124 The @kbd{m C} (@code{calc-auto-recompute}) command turns automatic
31125 recomputation of @samp{=>} forms on and off.  If you turn automatic
31126 recomputation off, you will have to use @kbd{C-x * u} to update these
31127 formulas manually after an assignment has been changed.  If you
31128 plan to change several assignments at once, it may be more efficient
31129 to type @kbd{m C}, change all the assignments, then use @kbd{M-1 C-x * u}
31130 to update the entire buffer afterwards.  The @kbd{m C} command also
31131 controls @samp{=>} formulas on the stack; @pxref{Evaluates-To
31132 Operator}.  When you turn automatic recomputation back on, the
31133 stack will be updated but the Embedded buffer will not; you must
31134 use @kbd{C-x * u} to update the buffer by hand.
31136 @node Mode Settings in Embedded Mode, Customizing Embedded Mode, Assignments in Embedded Mode, Embedded Mode
31137 @section Mode Settings in Embedded Mode
31139 @kindex m e
31140 @pindex calc-embedded-preserve-modes
31141 @noindent
31142 The mode settings can be changed while Calc is in embedded mode, but
31143 by default they will revert to their original values when embedded mode
31144 is ended. However, the modes saved when the mode-recording mode is
31145 @code{Save} (see below) and the modes in effect when the @kbd{m e}
31146 (@code{calc-embedded-preserve-modes}) command is given
31147 will be preserved when embedded mode is ended.
31149 Embedded mode has a rather complicated mechanism for handling mode
31150 settings in Embedded formulas.  It is possible to put annotations
31151 in the file that specify mode settings either global to the entire
31152 file or local to a particular formula or formulas.  In the latter
31153 case, different modes can be specified for use when a formula
31154 is the enabled Embedded mode formula.
31156 When you give any mode-setting command, like @kbd{m f} (for Fraction
31157 mode) or @kbd{d s} (for scientific notation), Embedded mode adds
31158 a line like the following one to the file just before the opening
31159 delimiter of the formula.
31161 @example
31162 % [calc-mode: fractions: t]
31163 % [calc-mode: float-format: (sci 0)]
31164 @end example
31166 When Calc interprets an embedded formula, it scans the text before
31167 the formula for mode-setting annotations like these and sets the
31168 Calc buffer to match these modes.  Modes not explicitly described
31169 in the file are not changed.  Calc scans all the way to the top of
31170 the file, or up to a line of the form
31172 @example
31173 % [calc-defaults]
31174 @end example
31176 @noindent
31177 which you can insert at strategic places in the file if this backward
31178 scan is getting too slow, or just to provide a barrier between one
31179 ``zone'' of mode settings and another.
31181 If the file contains several annotations for the same mode, the
31182 closest one before the formula is used.  Annotations after the
31183 formula are never used (except for global annotations, described
31184 below).
31186 The scan does not look for the leading @samp{% }, only for the
31187 square brackets and the text they enclose.  In fact, the leading
31188 characters are different for different major modes.  You can edit the
31189 mode annotations to a style that works better in context if you wish.
31190 @xref{Customizing Embedded Mode}, to see how to change the style
31191 that Calc uses when it generates the annotations.  You can write
31192 mode annotations into the file yourself if you know the syntax;
31193 the easiest way to find the syntax for a given mode is to let
31194 Calc write the annotation for it once and see what it does.
31196 If you give a mode-changing command for a mode that already has
31197 a suitable annotation just above the current formula, Calc will
31198 modify that annotation rather than generating a new, conflicting
31199 one.
31201 Mode annotations have three parts, separated by colons.  (Spaces
31202 after the colons are optional.)  The first identifies the kind
31203 of mode setting, the second is a name for the mode itself, and
31204 the third is the value in the form of a Lisp symbol, number,
31205 or list.  Annotations with unrecognizable text in the first or
31206 second parts are ignored.  The third part is not checked to make
31207 sure the value is of a valid type or range; if you write an
31208 annotation by hand, be sure to give a proper value or results
31209 will be unpredictable.  Mode-setting annotations are case-sensitive.
31211 While Embedded mode is enabled, the word @code{Local} appears in
31212 the mode line.  This is to show that mode setting commands generate
31213 annotations that are ``local'' to the current formula or set of
31214 formulas.  The @kbd{m R} (@code{calc-mode-record-mode}) command
31215 causes Calc to generate different kinds of annotations.  Pressing
31216 @kbd{m R} repeatedly cycles through the possible modes.
31218 @code{LocEdit} and @code{LocPerm} modes generate annotations
31219 that look like this, respectively:
31221 @example
31222 % [calc-edit-mode: float-format: (sci 0)]
31223 % [calc-perm-mode: float-format: (sci 5)]
31224 @end example
31226 The first kind of annotation will be used only while a formula
31227 is enabled in Embedded mode.  The second kind will be used only
31228 when the formula is @emph{not} enabled.  (Whether the formula
31229 is ``active'' or not, i.e., whether Calc has seen this formula
31230 yet, is not relevant here.)
31232 @code{Global} mode generates an annotation like this at the end
31233 of the file:
31235 @example
31236 % [calc-global-mode: fractions t]
31237 @end example
31239 Global mode annotations affect all formulas throughout the file,
31240 and may appear anywhere in the file.  This allows you to tuck your
31241 mode annotations somewhere out of the way, say, on a new page of
31242 the file, as long as those mode settings are suitable for all
31243 formulas in the file.
31245 Enabling a formula with @kbd{C-x * e} causes a fresh scan for local
31246 mode annotations; you will have to use this after adding annotations
31247 above a formula by hand to get the formula to notice them.  Updating
31248 a formula with @kbd{C-x * u} will also re-scan the local modes, but
31249 global modes are only re-scanned by @kbd{C-x * a}.
31251 Another way that modes can get out of date is if you add a local
31252 mode annotation to a formula that has another formula after it.
31253 In this example, we have used the @kbd{d s} command while the
31254 first of the two embedded formulas is active.  But the second
31255 formula has not changed its style to match, even though by the
31256 rules of reading annotations the @samp{(sci 0)} applies to it, too.
31258 @example
31259 % [calc-mode: float-format: (sci 0)]
31260 1.23e2
31262 456.
31263 @end example
31265 We would have to go down to the other formula and press @kbd{C-x * u}
31266 on it in order to get it to notice the new annotation.
31268 Two more mode-recording modes selectable by @kbd{m R} are available
31269 which are also available outside of Embedded mode.
31270 (@pxref{General Mode Commands}.) They are @code{Save},  in which mode
31271 settings are recorded permanently in your Calc init file (the file given
31272 by the variable @code{calc-settings-file}, typically @file{~/.emacs.d/calc.el})
31273 rather than by annotating the current document, and no-recording
31274 mode (where there is no symbol like @code{Save} or @code{Local} in
31275 the mode line), in which mode-changing commands do not leave any
31276 annotations at all.
31278 When Embedded mode is not enabled, mode-recording modes except
31279 for @code{Save} have no effect.
31281 @node Customizing Embedded Mode,  , Mode Settings in Embedded Mode, Embedded Mode
31282 @section Customizing Embedded Mode
31284 @noindent
31285 You can modify Embedded mode's behavior by setting various Lisp
31286 variables described here.  These variables are customizable
31287 (@pxref{Customizing Calc}), or you can use @kbd{M-x set-variable}
31288 or @kbd{M-x edit-options} to adjust a variable on the fly.
31289 (Another possibility would be to use a file-local variable annotation at
31290 the end of the file;
31291 @pxref{File Variables, , Local Variables in Files, emacs, the Emacs manual}.)
31292 Many of the variables given mentioned here can be set to depend on the
31293 major mode of the editing buffer (@pxref{Customizing Calc}).
31295 @vindex calc-embedded-open-formula
31296 The @code{calc-embedded-open-formula} variable holds a regular
31297 expression for the opening delimiter of a formula.  @xref{Regexp Search,
31298 , Regular Expression Search, emacs, the Emacs manual}, to see
31299 how regular expressions work.  Basically, a regular expression is a
31300 pattern that Calc can search for.  A regular expression that considers
31301 blank lines, @samp{$}, and @samp{$$} to be opening delimiters is
31302 @code{"\\`\\|^\n\\|\\$\\$?"}.  Just in case the meaning of this
31303 regular expression is not completely plain, let's go through it
31304 in detail.
31306 The surrounding @samp{" "} marks quote the text between them as a
31307 Lisp string.  If you left them off, @code{set-variable} or
31308 @code{edit-options} would try to read the regular expression as a
31309 Lisp program.
31311 The most obvious property of this regular expression is that it
31312 contains indecently many backslashes.  There are actually two levels
31313 of backslash usage going on here.  First, when Lisp reads a quoted
31314 string, all pairs of characters beginning with a backslash are
31315 interpreted as special characters.  Here, @code{\n} changes to a
31316 new-line character, and @code{\\} changes to a single backslash.
31317 So the actual regular expression seen by Calc is
31318 @samp{\`\|^ @r{(newline)} \|\$\$?}.
31320 Regular expressions also consider pairs beginning with backslash
31321 to have special meanings.  Sometimes the backslash is used to quote
31322 a character that otherwise would have a special meaning in a regular
31323 expression, like @samp{$}, which normally means ``end-of-line,''
31324 or @samp{?}, which means that the preceding item is optional.  So
31325 @samp{\$\$?} matches either one or two dollar signs.
31327 The other codes in this regular expression are @samp{^}, which matches
31328 ``beginning-of-line,'' @samp{\|}, which means ``or,'' and @samp{\`},
31329 which matches ``beginning-of-buffer.''  So the whole pattern means
31330 that a formula begins at the beginning of the buffer, or on a newline
31331 that occurs at the beginning of a line (i.e., a blank line), or at
31332 one or two dollar signs.
31334 The default value of @code{calc-embedded-open-formula} looks just
31335 like this example, with several more alternatives added on to
31336 recognize various other common kinds of delimiters.
31338 By the way, the reason to use @samp{^\n} rather than @samp{^$}
31339 or @samp{\n\n}, which also would appear to match blank lines,
31340 is that the former expression actually ``consumes'' only one
31341 newline character as @emph{part of} the delimiter, whereas the
31342 latter expressions consume zero or two newlines, respectively.
31343 The former choice gives the most natural behavior when Calc
31344 must operate on a whole formula including its delimiters.
31346 See the Emacs manual for complete details on regular expressions.
31347 But just for your convenience, here is a list of all characters
31348 which must be quoted with backslash (like @samp{\$}) to avoid
31349 some special interpretation:  @samp{. * + ? [ ] ^ $ \}.  (Note
31350 the backslash in this list; for example, to match @samp{\[} you
31351 must use @code{"\\\\\\["}.  An exercise for the reader is to
31352 account for each of these six backslashes!)
31354 @vindex calc-embedded-close-formula
31355 The @code{calc-embedded-close-formula} variable holds a regular
31356 expression for the closing delimiter of a formula.  A closing
31357 regular expression to match the above example would be
31358 @code{"\\'\\|\n$\\|\\$\\$?"}.  This is almost the same as the
31359 other one, except it now uses @samp{\'} (``end-of-buffer'') and
31360 @samp{\n$} (newline occurring at end of line, yet another way
31361 of describing a blank line that is more appropriate for this
31362 case).
31364 @vindex calc-embedded-word-regexp
31365 The @code{calc-embedded-word-regexp} variable holds a regular expression
31366 used to define an expression to look for (a ``word'') when you type
31367 @kbd{C-x * w} to enable Embedded mode.
31369 @vindex calc-embedded-open-plain
31370 The @code{calc-embedded-open-plain} variable is a string which
31371 begins a ``plain'' formula written in front of the formatted
31372 formula when @kbd{d p} mode is turned on.  Note that this is an
31373 actual string, not a regular expression, because Calc must be able
31374 to write this string into a buffer as well as to recognize it.
31375 The default string is @code{"%%% "} (note the trailing space), but may
31376 be different for certain major modes.
31378 @vindex calc-embedded-close-plain
31379 The @code{calc-embedded-close-plain} variable is a string which
31380 ends a ``plain'' formula.  The default is @code{" %%%\n"}, but may be
31381 different for different major modes.  Without
31382 the trailing newline here, the first line of a Big mode formula
31383 that followed might be shifted over with respect to the other lines.
31385 @vindex calc-embedded-open-new-formula
31386 The @code{calc-embedded-open-new-formula} variable is a string
31387 which is inserted at the front of a new formula when you type
31388 @kbd{C-x * f}.  Its default value is @code{"\n\n"}.  If this
31389 string begins with a newline character and the @kbd{C-x * f} is
31390 typed at the beginning of a line, @kbd{C-x * f} will skip this
31391 first newline to avoid introducing unnecessary blank lines in
31392 the file.
31394 @vindex calc-embedded-close-new-formula
31395 The @code{calc-embedded-close-new-formula} variable is the corresponding
31396 string which is inserted at the end of a new formula.  Its default
31397 value is also @code{"\n\n"}.  The final newline is omitted by
31398 @w{@kbd{C-x * f}} if typed at the end of a line.  (It follows that if
31399 @kbd{C-x * f} is typed on a blank line, both a leading opening
31400 newline and a trailing closing newline are omitted.)
31402 @vindex calc-embedded-announce-formula
31403 The @code{calc-embedded-announce-formula} variable is a regular
31404 expression which is sure to be followed by an embedded formula.
31405 The @kbd{C-x * a} command searches for this pattern as well as for
31406 @samp{=>} and @samp{:=} operators.  Note that @kbd{C-x * a} will
31407 not activate just anything surrounded by formula delimiters; after
31408 all, blank lines are considered formula delimiters by default!
31409 But if your language includes a delimiter which can only occur
31410 actually in front of a formula, you can take advantage of it here.
31411 The default pattern is @code{"%Embed\n\\(% .*\n\\)*"}, but may be
31412 different for different major modes.
31413 This pattern will check for @samp{%Embed} followed by any number of
31414 lines beginning with @samp{%} and a space.  This last is important to
31415 make Calc consider mode annotations part of the pattern, so that the
31416 formula's opening delimiter really is sure to follow the pattern.
31418 @vindex calc-embedded-open-mode
31419 The @code{calc-embedded-open-mode} variable is a string (not a
31420 regular expression) which should precede a mode annotation.
31421 Calc never scans for this string; Calc always looks for the
31422 annotation itself.  But this is the string that is inserted before
31423 the opening bracket when Calc adds an annotation on its own.
31424 The default is @code{"% "}, but may be different for different major
31425 modes.
31427 @vindex calc-embedded-close-mode
31428 The @code{calc-embedded-close-mode} variable is a string which
31429 follows a mode annotation written by Calc.  Its default value
31430 is simply a newline, @code{"\n"}, but may be different for different
31431 major modes.  If you change this, it is a good idea still to end with a
31432 newline so that mode annotations will appear on lines by themselves.
31434 @node Programming, Copying, Embedded Mode, Top
31435 @chapter Programming
31437 @noindent
31438 There are several ways to ``program'' the Emacs Calculator, depending
31439 on the nature of the problem you need to solve.
31441 @enumerate
31442 @item
31443 @dfn{Keyboard macros} allow you to record a sequence of keystrokes
31444 and play them back at a later time.  This is just the standard Emacs
31445 keyboard macro mechanism, dressed up with a few more features such
31446 as loops and conditionals.
31448 @item
31449 @dfn{Algebraic definitions} allow you to use any formula to define a
31450 new function.  This function can then be used in algebraic formulas or
31451 as an interactive command.
31453 @item
31454 @dfn{Rewrite rules} are discussed in the section on algebra commands.
31455 @xref{Rewrite Rules}.  If you put your rewrite rules in the variable
31456 @code{EvalRules}, they will be applied automatically to all Calc
31457 results in just the same way as an internal ``rule'' is applied to
31458 evaluate @samp{sqrt(9)} to 3 and so on.  @xref{Automatic Rewrites}.
31460 @item
31461 @dfn{Lisp} is the programming language that Calc (and most of Emacs)
31462 is written in.  If the above techniques aren't powerful enough, you
31463 can write Lisp functions to do anything that built-in Calc commands
31464 can do.  Lisp code is also somewhat faster than keyboard macros or
31465 rewrite rules.
31466 @end enumerate
31468 @kindex z
31469 Programming features are available through the @kbd{z} and @kbd{Z}
31470 prefix keys.  New commands that you define are two-key sequences
31471 beginning with @kbd{z}.  Commands for managing these definitions
31472 use the shift-@kbd{Z} prefix.  (The @kbd{Z T} (@code{calc-timing})
31473 command is described elsewhere; @pxref{Troubleshooting Commands}.
31474 The @kbd{Z C} (@code{calc-user-define-composition}) command is also
31475 described elsewhere; @pxref{User-Defined Compositions}.)
31477 @menu
31478 * Creating User Keys::
31479 * Keyboard Macros::
31480 * Invocation Macros::
31481 * Algebraic Definitions::
31482 * Lisp Definitions::
31483 @end menu
31485 @node Creating User Keys, Keyboard Macros, Programming, Programming
31486 @section Creating User Keys
31488 @noindent
31489 @kindex Z D
31490 @pindex calc-user-define
31491 Any Calculator command may be bound to a key using the @kbd{Z D}
31492 (@code{calc-user-define}) command.  Actually, it is bound to a two-key
31493 sequence beginning with the lower-case @kbd{z} prefix.
31495 The @kbd{Z D} command first prompts for the key to define.  For example,
31496 press @kbd{Z D a} to define the new key sequence @kbd{z a}.  You are then
31497 prompted for the name of the Calculator command that this key should
31498 run.  For example, the @code{calc-sincos} command is not normally
31499 available on a key.  Typing @kbd{Z D s sincos @key{RET}} programs the
31500 @kbd{z s} key sequence to run @code{calc-sincos}.  This definition will remain
31501 in effect for the rest of this Emacs session, or until you redefine
31502 @kbd{z s} to be something else.
31504 You can actually bind any Emacs command to a @kbd{z} key sequence by
31505 backspacing over the @samp{calc-} when you are prompted for the command name.
31507 As with any other prefix key, you can type @kbd{z ?} to see a list of
31508 all the two-key sequences you have defined that start with @kbd{z}.
31509 Initially, no @kbd{z} sequences (except @kbd{z ?} itself) are defined.
31511 User keys are typically letters, but may in fact be any key.
31512 (@key{META}-keys are not permitted, nor are a terminal's special
31513 function keys which generate multi-character sequences when pressed.)
31514 You can define different commands on the shifted and unshifted versions
31515 of a letter if you wish.
31517 @kindex Z U
31518 @pindex calc-user-undefine
31519 The @kbd{Z U} (@code{calc-user-undefine}) command unbinds a user key.
31520 For example, the key sequence @kbd{Z U s} will undefine the @code{sincos}
31521 key we defined above.
31523 @kindex Z P
31524 @pindex calc-user-define-permanent
31525 @cindex Storing user definitions
31526 @cindex Permanent user definitions
31527 @cindex Calc init file, user-defined commands
31528 The @kbd{Z P} (@code{calc-user-define-permanent}) command makes a key
31529 binding permanent so that it will remain in effect even in future Emacs
31530 sessions.  (It does this by adding a suitable bit of Lisp code into
31531 your Calc init file; that is, the file given by the variable
31532 @code{calc-settings-file}, typically @file{~/.emacs.d/calc.el}.)  For example,
31533 @kbd{Z P s} would register our @code{sincos} command permanently.  If
31534 you later wish to unregister this command you must edit your Calc init
31535 file by hand.  (@xref{General Mode Commands}, for a way to tell Calc to
31536 use a different file for the Calc init file.)
31538 The @kbd{Z P} command also saves the user definition, if any, for the
31539 command bound to the key.  After @kbd{Z F} and @kbd{Z C}, a given user
31540 key could invoke a command, which in turn calls an algebraic function,
31541 which might have one or more special display formats.  A single @kbd{Z P}
31542 command will save all of these definitions.
31543 To save an algebraic function, type @kbd{'} (the apostrophe)
31544 when prompted for a key, and type the function name.  To save a command
31545 without its key binding, type @kbd{M-x} and enter a function name.  (The
31546 @samp{calc-} prefix will automatically be inserted for you.)
31547 (If the command you give implies a function, the function will be saved,
31548 and if the function has any display formats, those will be saved, but
31549 not the other way around:  Saving a function will not save any commands
31550 or key bindings associated with the function.)
31552 @kindex Z E
31553 @pindex calc-user-define-edit
31554 @cindex Editing user definitions
31555 The @kbd{Z E} (@code{calc-user-define-edit}) command edits the definition
31556 of a user key.  This works for keys that have been defined by either
31557 keyboard macros or formulas; further details are contained in the relevant
31558 following sections.
31560 @node Keyboard Macros, Invocation Macros, Creating User Keys, Programming
31561 @section Programming with Keyboard Macros
31563 @noindent
31564 @kindex X
31565 @cindex Programming with keyboard macros
31566 @cindex Keyboard macros
31567 The easiest way to ``program'' the Emacs Calculator is to use standard
31568 keyboard macros.  Press @w{@kbd{C-x (}} to begin recording a macro.  From
31569 this point on, keystrokes you type will be saved away as well as
31570 performing their usual functions.  Press @kbd{C-x )} to end recording.
31571 Press shift-@kbd{X} (or the standard Emacs key sequence @kbd{C-x e}) to
31572 execute your keyboard macro by replaying the recorded keystrokes.
31573 @xref{Keyboard Macros, , , emacs, the Emacs Manual}, for further
31574 information.
31576 When you use @kbd{X} to invoke a keyboard macro, the entire macro is
31577 treated as a single command by the undo and trail features.  The stack
31578 display buffer is not updated during macro execution, but is instead
31579 fixed up once the macro completes.  Thus, commands defined with keyboard
31580 macros are convenient and efficient.  The @kbd{C-x e} command, on the
31581 other hand, invokes the keyboard macro with no special treatment: Each
31582 command in the macro will record its own undo information and trail entry,
31583 and update the stack buffer accordingly.  If your macro uses features
31584 outside of Calc's control to operate on the contents of the Calc stack
31585 buffer, or if it includes Undo, Redo, or last-arguments commands, you
31586 must use @kbd{C-x e} to make sure the buffer and undo list are up-to-date
31587 at all times.  You could also consider using @kbd{K} (@code{calc-keep-args})
31588 instead of @kbd{M-@key{RET}} (@code{calc-last-args}).
31590 Calc extends the standard Emacs keyboard macros in several ways.
31591 Keyboard macros can be used to create user-defined commands.  Keyboard
31592 macros can include conditional and iteration structures, somewhat
31593 analogous to those provided by a traditional programmable calculator.
31595 @menu
31596 * Naming Keyboard Macros::
31597 * Conditionals in Macros::
31598 * Loops in Macros::
31599 * Local Values in Macros::
31600 * Queries in Macros::
31601 @end menu
31603 @node Naming Keyboard Macros, Conditionals in Macros, Keyboard Macros, Keyboard Macros
31604 @subsection Naming Keyboard Macros
31606 @noindent
31607 @kindex Z K
31608 @pindex calc-user-define-kbd-macro
31609 Once you have defined a keyboard macro, you can bind it to a @kbd{z}
31610 key sequence with the @kbd{Z K} (@code{calc-user-define-kbd-macro}) command.
31611 This command prompts first for a key, then for a command name.  For
31612 example, if you type @kbd{C-x ( n @key{TAB} n @key{TAB} C-x )} you will
31613 define a keyboard macro which negates the top two numbers on the stack
31614 (@key{TAB} swaps the top two stack elements).  Now you can type
31615 @kbd{Z K n @key{RET}} to define this keyboard macro onto the @kbd{z n} key
31616 sequence.  The default command name (if you answer the second prompt with
31617 just the @key{RET} key as in this example) will be something like
31618 @samp{calc-User-n}.  The keyboard macro will now be available as both
31619 @kbd{z n} and @kbd{M-x calc-User-n}.  You can backspace and enter a more
31620 descriptive command name if you wish.
31622 Macros defined by @kbd{Z K} act like single commands; they are executed
31623 in the same way as by the @kbd{X} key.  If you wish to define the macro
31624 as a standard no-frills Emacs macro (to be executed as if by @kbd{C-x e}),
31625 give a negative prefix argument to @kbd{Z K}.
31627 Once you have bound your keyboard macro to a key, you can use
31628 @kbd{Z P} to register it permanently with Emacs.  @xref{Creating User Keys}.
31630 @cindex Keyboard macros, editing
31631 The @kbd{Z E} (@code{calc-user-define-edit}) command on a key that has
31632 been defined by a keyboard macro tries to use the @code{edmacro} package
31633 edit the macro.  Type @kbd{C-c C-c} to finish editing and update
31634 the definition stored on the key, or, to cancel the edit, kill the
31635 buffer with @kbd{C-x k}.
31636 The special characters @code{RET}, @code{LFD}, @code{TAB}, @code{SPC},
31637 @code{DEL}, and @code{NUL} must be entered as these three character
31638 sequences, written in all uppercase, as must the prefixes @code{C-} and
31639 @code{M-}.  Spaces and line breaks are ignored.  Other characters are
31640 copied verbatim into the keyboard macro.  Basically, the notation is the
31641 same as is used in all of this manual's examples, except that the manual
31642 takes some liberties with spaces: When we say @kbd{' [1 2 3] @key{RET}},
31643 we take it for granted that it is clear we really mean
31644 @kbd{' [1 @key{SPC} 2 @key{SPC} 3] @key{RET}}.
31646 @kindex C-x * m
31647 @pindex read-kbd-macro
31648 The @kbd{C-x * m} (@code{read-kbd-macro}) command reads an Emacs ``region''
31649 of spelled-out keystrokes and defines it as the current keyboard macro.
31650 It is a convenient way to define a keyboard macro that has been stored
31651 in a file, or to define a macro without executing it at the same time.
31653 @node Conditionals in Macros, Loops in Macros, Naming Keyboard Macros, Keyboard Macros
31654 @subsection Conditionals in Keyboard Macros
31656 @noindent
31657 @kindex Z [
31658 @kindex Z ]
31659 @pindex calc-kbd-if
31660 @pindex calc-kbd-else
31661 @pindex calc-kbd-else-if
31662 @pindex calc-kbd-end-if
31663 @cindex Conditional structures
31664 The @kbd{Z [} (@code{calc-kbd-if}) and @kbd{Z ]} (@code{calc-kbd-end-if})
31665 commands allow you to put simple tests in a keyboard macro.  When Calc
31666 sees the @kbd{Z [}, it pops an object from the stack and, if the object is
31667 a non-zero value, continues executing keystrokes.  But if the object is
31668 zero, or if it is not provably nonzero, Calc skips ahead to the matching
31669 @kbd{Z ]} keystroke.  @xref{Logical Operations}, for a set of commands for
31670 performing tests which conveniently produce 1 for true and 0 for false.
31672 For example, @kbd{@key{RET} 0 a < Z [ n Z ]} implements an absolute-value
31673 function in the form of a keyboard macro.  This macro duplicates the
31674 number on the top of the stack, pushes zero and compares using @kbd{a <}
31675 (@code{calc-less-than}), then, if the number was less than zero,
31676 executes @kbd{n} (@code{calc-change-sign}).  Otherwise, the change-sign
31677 command is skipped.
31679 To program this macro, type @kbd{C-x (}, type the above sequence of
31680 keystrokes, then type @kbd{C-x )}.  Note that the keystrokes will be
31681 executed while you are making the definition as well as when you later
31682 re-execute the macro by typing @kbd{X}.  Thus you should make sure a
31683 suitable number is on the stack before defining the macro so that you
31684 don't get a stack-underflow error during the definition process.
31686 Conditionals can be nested arbitrarily.  However, there should be exactly
31687 one @kbd{Z ]} for each @kbd{Z [} in a keyboard macro.
31689 @kindex Z :
31690 The @kbd{Z :} (@code{calc-kbd-else}) command allows you to choose between
31691 two keystroke sequences.  The general format is @kbd{@var{cond} Z [
31692 @var{then-part} Z : @var{else-part} Z ]}.  If @var{cond} is true
31693 (i.e., if the top of stack contains a non-zero number after @var{cond}
31694 has been executed), the @var{then-part} will be executed and the
31695 @var{else-part} will be skipped.  Otherwise, the @var{then-part} will
31696 be skipped and the @var{else-part} will be executed.
31698 @kindex Z |
31699 The @kbd{Z |} (@code{calc-kbd-else-if}) command allows you to choose
31700 between any number of alternatives.  For example,
31701 @kbd{@var{cond1} Z [ @var{part1} Z : @var{cond2} Z | @var{part2} Z :
31702 @var{part3} Z ]} will execute @var{part1} if @var{cond1} is true,
31703 otherwise it will execute @var{part2} if @var{cond2} is true, otherwise
31704 it will execute @var{part3}.
31706 More precisely, @kbd{Z [} pops a number and conditionally skips to the
31707 next matching @kbd{Z :} or @kbd{Z ]} key.  @w{@kbd{Z ]}} has no effect when
31708 actually executed.  @kbd{Z :} skips to the next matching @kbd{Z ]}.
31709 @kbd{Z |} pops a number and conditionally skips to the next matching
31710 @kbd{Z :} or @kbd{Z ]}; thus, @kbd{Z [} and @kbd{Z |} are functionally
31711 equivalent except that @kbd{Z [} participates in nesting but @kbd{Z |}
31712 does not.
31714 Calc's conditional and looping constructs work by scanning the
31715 keyboard macro for occurrences of character sequences like @samp{Z:}
31716 and @samp{Z]}.  One side-effect of this is that if you use these
31717 constructs you must be careful that these character pairs do not
31718 occur by accident in other parts of the macros.  Since Calc rarely
31719 uses shift-@kbd{Z} for any purpose except as a prefix character, this
31720 is not likely to be a problem.  Another side-effect is that it will
31721 not work to define your own custom key bindings for these commands.
31722 Only the standard shift-@kbd{Z} bindings will work correctly.
31724 @kindex Z C-g
31725 If Calc gets stuck while skipping characters during the definition of a
31726 macro, type @kbd{Z C-g} to cancel the definition.  (Typing plain @kbd{C-g}
31727 actually adds a @kbd{C-g} keystroke to the macro.)
31729 @node Loops in Macros, Local Values in Macros, Conditionals in Macros, Keyboard Macros
31730 @subsection Loops in Keyboard Macros
31732 @noindent
31733 @kindex Z <
31734 @kindex Z >
31735 @pindex calc-kbd-repeat
31736 @pindex calc-kbd-end-repeat
31737 @cindex Looping structures
31738 @cindex Iterative structures
31739 The @kbd{Z <} (@code{calc-kbd-repeat}) and @kbd{Z >}
31740 (@code{calc-kbd-end-repeat}) commands pop a number from the stack,
31741 which must be an integer, then repeat the keystrokes between the brackets
31742 the specified number of times.  If the integer is zero or negative, the
31743 body is skipped altogether.  For example, @kbd{1 @key{TAB} Z < 2 * Z >}
31744 computes two to a nonnegative integer power.  First, we push 1 on the
31745 stack and then swap the integer argument back to the top.  The @kbd{Z <}
31746 pops that argument leaving the 1 back on top of the stack.  Then, we
31747 repeat a multiply-by-two step however many times.
31749 Once again, the keyboard macro is executed as it is being entered.
31750 In this case it is especially important to set up reasonable initial
31751 conditions before making the definition:  Suppose the integer 1000 just
31752 happened to be sitting on the stack before we typed the above definition!
31753 Another approach is to enter a harmless dummy definition for the macro,
31754 then go back and edit in the real one with a @kbd{Z E} command.  Yet
31755 another approach is to type the macro as written-out keystroke names
31756 in a buffer, then use @kbd{C-x * m} (@code{read-kbd-macro}) to read the
31757 macro.
31759 @kindex Z /
31760 @pindex calc-break
31761 The @kbd{Z /} (@code{calc-kbd-break}) command allows you to break out
31762 of a keyboard macro loop prematurely.  It pops an object from the stack;
31763 if that object is true (a non-zero number), control jumps out of the
31764 innermost enclosing @kbd{Z <} @dots{} @kbd{Z >} loop and continues
31765 after the @kbd{Z >}.  If the object is false, the @kbd{Z /} has no
31766 effect.  Thus @kbd{@var{cond} Z /} is similar to @samp{if (@var{cond}) break;}
31767 in the C language.
31769 @kindex Z (
31770 @kindex Z )
31771 @pindex calc-kbd-for
31772 @pindex calc-kbd-end-for
31773 The @kbd{Z (} (@code{calc-kbd-for}) and @kbd{Z )} (@code{calc-kbd-end-for})
31774 commands are similar to @kbd{Z <} and @kbd{Z >}, except that they make the
31775 value of the counter available inside the loop.  The general layout is
31776 @kbd{@var{init} @var{final} Z ( @var{body} @var{step} Z )}.  The @kbd{Z (}
31777 command pops initial and final values from the stack.  It then creates
31778 a temporary internal counter and initializes it with the value @var{init}.
31779 The @kbd{Z (} command then repeatedly pushes the counter value onto the
31780 stack and executes @var{body} and @var{step}, adding @var{step} to the
31781 counter each time until the loop finishes.
31783 @cindex Summations (by keyboard macros)
31784 By default, the loop finishes when the counter becomes greater than (or
31785 less than) @var{final}, assuming @var{initial} is less than (greater
31786 than) @var{final}.  If @var{initial} is equal to @var{final}, the body
31787 executes exactly once.  The body of the loop always executes at least
31788 once.  For example, @kbd{0 1 10 Z ( 2 ^ + 1 Z )} computes the sum of the
31789 squares of the integers from 1 to 10, in steps of 1.
31791 If you give a numeric prefix argument of 1 to @kbd{Z (}, the loop is
31792 forced to use upward-counting conventions.  In this case, if @var{initial}
31793 is greater than @var{final} the body will not be executed at all.
31794 Note that @var{step} may still be negative in this loop; the prefix
31795 argument merely constrains the loop-finished test.  Likewise, a prefix
31796 argument of @mathit{-1} forces downward-counting conventions.
31798 @kindex Z @{
31799 @kindex Z @}
31800 @pindex calc-kbd-loop
31801 @pindex calc-kbd-end-loop
31802 The @kbd{Z @{} (@code{calc-kbd-loop}) and @kbd{Z @}}
31803 (@code{calc-kbd-end-loop}) commands are similar to @kbd{Z <} and
31804 @kbd{Z >}, except that they do not pop a count from the stack---they
31805 effectively create an infinite loop.  Every @kbd{Z @{} @dots{} @kbd{Z @}}
31806 loop ought to include at least one @kbd{Z /} to make sure the loop
31807 doesn't run forever.  (If any error message occurs which causes Emacs
31808 to beep, the keyboard macro will also be halted; this is a standard
31809 feature of Emacs.  You can also generally press @kbd{C-g} to halt a
31810 running keyboard macro, although not all versions of Unix support
31811 this feature.)
31813 The conditional and looping constructs are not actually tied to
31814 keyboard macros, but they are most often used in that context.
31815 For example, the keystrokes @kbd{10 Z < 23 @key{RET} Z >} push
31816 ten copies of 23 onto the stack.  This can be typed ``live'' just
31817 as easily as in a macro definition.
31819 @xref{Conditionals in Macros}, for some additional notes about
31820 conditional and looping commands.
31822 @node Local Values in Macros, Queries in Macros, Loops in Macros, Keyboard Macros
31823 @subsection Local Values in Macros
31825 @noindent
31826 @cindex Local variables
31827 @cindex Restoring saved modes
31828 Keyboard macros sometimes want to operate under known conditions
31829 without affecting surrounding conditions.  For example, a keyboard
31830 macro may wish to turn on Fraction mode, or set a particular
31831 precision, independent of the user's normal setting for those
31832 modes.
31834 @kindex Z `
31835 @kindex Z '
31836 @pindex calc-kbd-push
31837 @pindex calc-kbd-pop
31838 Macros also sometimes need to use local variables.  Assignments to
31839 local variables inside the macro should not affect any variables
31840 outside the macro.  The @kbd{Z `} (@code{calc-kbd-push}) and @kbd{Z '}
31841 (@code{calc-kbd-pop}) commands give you both of these capabilities.
31843 When you type @kbd{Z `} (with a grave accent),
31844 the values of various mode settings are saved away.  The ten ``quick''
31845 variables @code{q0} through @code{q9} are also saved.  When
31846 you type @w{@kbd{Z '}} (with an apostrophe), these values are restored.
31847 Pairs of @kbd{Z `} and @kbd{Z '} commands may be nested.
31849 If a keyboard macro halts due to an error in between a @kbd{Z `} and
31850 a @kbd{Z '}, the saved values will be restored correctly even though
31851 the macro never reaches the @kbd{Z '} command.  Thus you can use
31852 @kbd{Z `} and @kbd{Z '} without having to worry about what happens
31853 in exceptional conditions.
31855 If you type @kbd{Z `} ``live'' (not in a keyboard macro), Calc puts
31856 you into a ``recursive edit.''  You can tell you are in a recursive
31857 edit because there will be extra square brackets in the mode line,
31858 as in @samp{[(Calculator)]}.  These brackets will go away when you
31859 type the matching @kbd{Z '} command.  The modes and quick variables
31860 will be saved and restored in just the same way as if actual keyboard
31861 macros were involved.
31863 The modes saved by @kbd{Z `} and @kbd{Z '} are the current precision
31864 and binary word size, the angular mode (Deg, Rad, or HMS), the
31865 simplification mode, Algebraic mode, Symbolic mode, Infinite mode,
31866 Matrix or Scalar mode, Fraction mode, and the current complex mode
31867 (Polar or Rectangular).  The ten ``quick'' variables' values (or lack
31868 thereof) are also saved.
31870 Most mode-setting commands act as toggles, but with a numeric prefix
31871 they force the mode either on (positive prefix) or off (negative
31872 or zero prefix).  Since you don't know what the environment might
31873 be when you invoke your macro, it's best to use prefix arguments
31874 for all mode-setting commands inside the macro.
31876 In fact, @kbd{C-u Z `} is like @kbd{Z `} except that it sets the modes
31877 listed above to their default values.  As usual, the matching @kbd{Z '}
31878 will restore the modes to their settings from before the @kbd{C-u Z `}.
31879 Also, @w{@kbd{Z `}} with a negative prefix argument resets the algebraic mode
31880 to its default (off) but leaves the other modes the same as they were
31881 outside the construct.
31883 The contents of the stack and trail, values of non-quick variables, and
31884 other settings such as the language mode and the various display modes,
31885 are @emph{not} affected by @kbd{Z `} and @kbd{Z '}.
31887 @node Queries in Macros,  , Local Values in Macros, Keyboard Macros
31888 @subsection Queries in Keyboard Macros
31890 @c @noindent
31891 @c @kindex Z =
31892 @c @pindex calc-kbd-report
31893 @c The @kbd{Z =} (@code{calc-kbd-report}) command displays an informative
31894 @c message including the value on the top of the stack.  You are prompted
31895 @c to enter a string.  That string, along with the top-of-stack value,
31896 @c is displayed unless @kbd{m w} (@code{calc-working}) has been used
31897 @c to turn such messages off.
31899 @noindent
31900 @kindex Z #
31901 @pindex calc-kbd-query
31902 The @kbd{Z #} (@code{calc-kbd-query}) command prompts for an algebraic
31903 entry which takes its input from the keyboard, even during macro
31904 execution.  All the normal conventions of algebraic input, including the
31905 use of @kbd{$} characters, are supported.  The prompt message itself is
31906 taken from the top of the stack, and so must be entered (as a string)
31907 before the @kbd{Z #} command.  (Recall, as a string it can be entered by
31908 pressing the @kbd{"} key and will appear as a vector when it is put on
31909 the stack.  The prompt message is only put on the stack to provide a
31910 prompt for the @kbd{Z #} command; it will not play any role in any
31911 subsequent calculations.)  This command allows your keyboard macros to
31912 accept numbers or formulas as interactive input.
31914 As an example,
31915 @kbd{2 @key{RET} "Power: " @key{RET} Z # 3 @key{RET} ^} will prompt for
31916 input with ``Power: '' in the minibuffer, then return 2 to the provided
31917 power.  (The response to the prompt that's given, 3 in this example,
31918 will not be part of the macro.)
31920 @xref{Keyboard Macro Query, , , emacs, the Emacs Manual}, for a description of
31921 @kbd{C-x q} (@code{kbd-macro-query}), the standard Emacs way to accept
31922 keyboard input during a keyboard macro.  In particular, you can use
31923 @kbd{C-x q} to enter a recursive edit, which allows the user to perform
31924 any Calculator operations interactively before pressing @kbd{C-M-c} to
31925 return control to the keyboard macro.
31927 @node Invocation Macros, Algebraic Definitions, Keyboard Macros, Programming
31928 @section Invocation Macros
31930 @kindex C-x * z
31931 @kindex Z I
31932 @pindex calc-user-invocation
31933 @pindex calc-user-define-invocation
31934 Calc provides one special keyboard macro, called up by @kbd{C-x * z}
31935 (@code{calc-user-invocation}), that is intended to allow you to define
31936 your own special way of starting Calc.  To define this ``invocation
31937 macro,'' create the macro in the usual way with @kbd{C-x (} and
31938 @kbd{C-x )}, then type @kbd{Z I} (@code{calc-user-define-invocation}).
31939 There is only one invocation macro, so you don't need to type any
31940 additional letters after @kbd{Z I}.  From now on, you can type
31941 @kbd{C-x * z} at any time to execute your invocation macro.
31943 For example, suppose you find yourself often grabbing rectangles of
31944 numbers into Calc and multiplying their columns.  You can do this
31945 by typing @kbd{C-x * r} to grab, and @kbd{V R : *} to multiply columns.
31946 To make this into an invocation macro, just type @kbd{C-x ( C-x * r
31947 V R : * C-x )}, then @kbd{Z I}.  Then, to multiply a rectangle of data,
31948 just mark the data in its buffer in the usual way and type @kbd{C-x * z}.
31950 Invocation macros are treated like regular Emacs keyboard macros;
31951 all the special features described above for @kbd{Z K}-style macros
31952 do not apply.  @kbd{C-x * z} is just like @kbd{C-x e}, except that it
31953 uses the macro that was last stored by @kbd{Z I}.  (In fact, the
31954 macro does not even have to have anything to do with Calc!)
31956 The @kbd{m m} command saves the last invocation macro defined by
31957 @kbd{Z I} along with all the other Calc mode settings.
31958 @xref{General Mode Commands}.
31960 @node Algebraic Definitions, Lisp Definitions, Invocation Macros, Programming
31961 @section Programming with Formulas
31963 @noindent
31964 @kindex Z F
31965 @pindex calc-user-define-formula
31966 @cindex Programming with algebraic formulas
31967 Another way to create a new Calculator command uses algebraic formulas.
31968 The @kbd{Z F} (@code{calc-user-define-formula}) command stores the
31969 formula at the top of the stack as the definition for a key.  This
31970 command prompts for five things: The key, the command name, the function
31971 name, the argument list, and the behavior of the command when given
31972 non-numeric arguments.
31974 For example, suppose we type @kbd{' a+2b @key{RET}} to push the formula
31975 @samp{a + 2*b} onto the stack.  We now type @kbd{Z F m} to define this
31976 formula on the @kbd{z m} key sequence.  The next prompt is for a command
31977 name, beginning with @samp{calc-}, which should be the long (@kbd{M-x}) form
31978 for the new command.  If you simply press @key{RET}, a default name like
31979 @code{calc-User-m} will be constructed.  In our example, suppose we enter
31980 @kbd{spam @key{RET}} to define the new command as @code{calc-spam}.
31982 If you want to give the formula a long-style name only, you can press
31983 @key{SPC} or @key{RET} when asked which single key to use.  For example
31984 @kbd{Z F @key{RET} spam @key{RET}} defines the new command as
31985 @kbd{M-x calc-spam}, with no keyboard equivalent.
31987 The third prompt is for an algebraic function name.  The default is to
31988 use the same name as the command name but without the @samp{calc-}
31989 prefix.  (If this is of the form @samp{User-m}, the hyphen is removed so
31990 it won't be taken for a minus sign in algebraic formulas.)
31991 This is the name you will use if you want to enter your
31992 new function in an algebraic formula.  Suppose we enter @kbd{yow @key{RET}}.
31993 Then the new function can be invoked by pushing two numbers on the
31994 stack and typing @kbd{z m} or @kbd{x spam}, or by entering the algebraic
31995 formula @samp{yow(x,y)}.
31997 The fourth prompt is for the function's argument list.  This is used to
31998 associate values on the stack with the variables that appear in the formula.
31999 The default is a list of all variables which appear in the formula, sorted
32000 into alphabetical order.  In our case, the default would be @samp{(a b)}.
32001 This means that, when the user types @kbd{z m}, the Calculator will remove
32002 two numbers from the stack, substitute these numbers for @samp{a} and
32003 @samp{b} (respectively) in the formula, then simplify the formula and
32004 push the result on the stack.  In other words, @kbd{10 @key{RET} 100 z m}
32005 would replace the 10 and 100 on the stack with the number 210, which is
32006 @expr{a + 2 b} with @expr{a=10} and @expr{b=100}.  Likewise, the formula
32007 @samp{yow(10, 100)} will be evaluated by substituting @expr{a=10} and
32008 @expr{b=100} in the definition.
32010 You can rearrange the order of the names before pressing @key{RET} to
32011 control which stack positions go to which variables in the formula.  If
32012 you remove a variable from the argument list, that variable will be left
32013 in symbolic form by the command.  Thus using an argument list of @samp{(b)}
32014 for our function would cause @kbd{10 z m} to replace the 10 on the stack
32015 with the formula @samp{a + 20}.  If we had used an argument list of
32016 @samp{(b a)}, the result with inputs 10 and 100 would have been 120.
32018 You can also put a nameless function on the stack instead of just a
32019 formula, as in @samp{<a, b : a + 2 b>}.  @xref{Specifying Operators}.
32020 In this example, the command will be defined by the formula @samp{a + 2 b}
32021 using the argument list @samp{(a b)}.
32023 The final prompt is a y-or-n question concerning what to do if symbolic
32024 arguments are given to your function.  If you answer @kbd{y}, then
32025 executing @kbd{z m} (using the original argument list @samp{(a b)}) with
32026 arguments @expr{10} and @expr{x} will leave the function in symbolic
32027 form, i.e., @samp{yow(10,x)}.  On the other hand, if you answer @kbd{n},
32028 then the formula will always be expanded, even for non-constant
32029 arguments: @samp{10 + 2 x}.  If you never plan to feed algebraic
32030 formulas to your new function, it doesn't matter how you answer this
32031 question.
32033 If you answered @kbd{y} to this question you can still cause a function
32034 call to be expanded by typing @kbd{a "} (@code{calc-expand-formula}).
32035 Also, Calc will expand the function if necessary when you take a
32036 derivative or integral or solve an equation involving the function.
32038 @kindex Z G
32039 @pindex calc-get-user-defn
32040 Once you have defined a formula on a key, you can retrieve this formula
32041 with the @kbd{Z G} (@code{calc-user-define-get-defn}) command.  Press a
32042 key, and this command pushes the formula that was used to define that
32043 key onto the stack.  Actually, it pushes a nameless function that
32044 specifies both the argument list and the defining formula.  You will get
32045 an error message if the key is undefined, or if the key was not defined
32046 by a @kbd{Z F} command.
32048 The @kbd{Z E} (@code{calc-user-define-edit}) command on a key that has
32049 been defined by a formula uses a variant of the @code{calc-edit} command
32050 to edit the defining formula.  Press @kbd{C-c C-c} to finish editing and
32051 store the new formula back in the definition, or kill the buffer with
32052 @kbd{C-x k} to
32053 cancel the edit.  (The argument list and other properties of the
32054 definition are unchanged; to adjust the argument list, you can use
32055 @kbd{Z G} to grab the function onto the stack, edit with @kbd{`}, and
32056 then re-execute the @kbd{Z F} command.)
32058 As usual, the @kbd{Z P} command records your definition permanently.
32059 In this case it will permanently record all three of the relevant
32060 definitions: the key, the command, and the function.
32062 You may find it useful to turn off the default simplifications with
32063 @kbd{m O} (@code{calc-no-simplify-mode}) when entering a formula to be
32064 used as a function definition.  For example, the formula @samp{deriv(a^2,v)}
32065 which might be used to define a new function @samp{dsqr(a,v)} will be
32066 ``simplified'' to 0 immediately upon entry since @code{deriv} considers
32067 @expr{a} to be constant with respect to @expr{v}.  Turning off
32068 default simplifications cures this problem:  The definition will be stored
32069 in symbolic form without ever activating the @code{deriv} function.  Press
32070 @kbd{m D} to turn the default simplifications back on afterwards.
32072 @node Lisp Definitions,  , Algebraic Definitions, Programming
32073 @section Programming with Lisp
32075 @noindent
32076 The Calculator can be programmed quite extensively in Lisp.  All you
32077 do is write a normal Lisp function definition, but with @code{defmath}
32078 in place of @code{defun}.  This has the same form as @code{defun}, but it
32079 automagically replaces calls to standard Lisp functions like @code{+} and
32080 @code{zerop} with calls to the corresponding functions in Calc's own library.
32081 Thus you can write natural-looking Lisp code which operates on all of the
32082 standard Calculator data types.  You can then use @kbd{Z D} if you wish to
32083 bind your new command to a @kbd{z}-prefix key sequence.  The @kbd{Z E} command
32084 will not edit a Lisp-based definition.
32086 Emacs Lisp is described in the GNU Emacs Lisp Reference Manual.  This section
32087 assumes a familiarity with Lisp programming concepts; if you do not know
32088 Lisp, you may find keyboard macros or rewrite rules to be an easier way
32089 to program the Calculator.
32091 This section first discusses ways to write commands, functions, or
32092 small programs to be executed inside of Calc.  Then it discusses how
32093 your own separate programs are able to call Calc from the outside.
32094 Finally, there is a list of internal Calc functions and data structures
32095 for the true Lisp enthusiast.
32097 @menu
32098 * Defining Functions::
32099 * Defining Simple Commands::
32100 * Defining Stack Commands::
32101 * Argument Qualifiers::
32102 * Example Definitions::
32104 * Calling Calc from Your Programs::
32105 * Internals::
32106 @end menu
32108 @node Defining Functions, Defining Simple Commands, Lisp Definitions, Lisp Definitions
32109 @subsection Defining New Functions
32111 @noindent
32112 @findex defmath
32113 The @code{defmath} function (actually a Lisp macro) is like @code{defun}
32114 except that code in the body of the definition can make use of the full
32115 range of Calculator data types.  The prefix @samp{calcFunc-} is added
32116 to the specified name to get the actual Lisp function name.  As a simple
32117 example,
32119 @example
32120 (defmath myfact (n)
32121   (if (> n 0)
32122       (* n (myfact (1- n)))
32123     1))
32124 @end example
32126 @noindent
32127 This actually expands to the code,
32129 @example
32130 (defun calcFunc-myfact (n)
32131   (if (math-posp n)
32132       (math-mul n (calcFunc-myfact (math-add n -1)))
32133     1))
32134 @end example
32136 @noindent
32137 This function can be used in algebraic expressions, e.g., @samp{myfact(5)}.
32139 The @samp{myfact} function as it is defined above has the bug that an
32140 expression @samp{myfact(a+b)} will be simplified to 1 because the
32141 formula @samp{a+b} is not considered to be @code{posp}.  A robust
32142 factorial function would be written along the following lines:
32144 @smallexample
32145 (defmath myfact (n)
32146   (if (> n 0)
32147       (* n (myfact (1- n)))
32148     (if (= n 0)
32149         1
32150       nil)))    ; this could be simplified as: (and (= n 0) 1)
32151 @end smallexample
32153 If a function returns @code{nil}, it is left unsimplified by the Calculator
32154 (except that its arguments will be simplified).  Thus, @samp{myfact(a+1+2)}
32155 will be simplified to @samp{myfact(a+3)} but no further.  Beware that every
32156 time the Calculator reexamines this formula it will attempt to resimplify
32157 it, so your function ought to detect the returning-@code{nil} case as
32158 efficiently as possible.
32160 The following standard Lisp functions are treated by @code{defmath}:
32161 @code{+}, @code{-}, @code{*}, @code{/}, @code{%}, @code{^} or
32162 @code{expt}, @code{=}, @code{<}, @code{>}, @code{<=}, @code{>=},
32163 @code{/=}, @code{1+}, @code{1-}, @code{logand}, @code{logior}, @code{logxor},
32164 @code{logandc2}, @code{lognot}.  Also, @code{~=} is an abbreviation for
32165 @code{math-nearly-equal}, which is useful in implementing Taylor series.
32167 For other functions @var{func}, if a function by the name
32168 @samp{calcFunc-@var{func}} exists it is used, otherwise if a function by the
32169 name @samp{math-@var{func}} exists it is used, otherwise if @var{func} itself
32170 is defined as a function it is used, otherwise @samp{calcFunc-@var{func}} is
32171 used on the assumption that this is a to-be-defined math function.  Also, if
32172 the function name is quoted as in @samp{('integerp a)} the function name is
32173 always used exactly as written (but not quoted).
32175 Variable names have @samp{var-} prepended to them unless they appear in
32176 the function's argument list or in an enclosing @code{let}, @code{let*},
32177 @code{for}, or @code{foreach} form,
32178 or their names already contain a @samp{-} character.  Thus a reference to
32179 @samp{foo} is the same as a reference to @samp{var-foo}.
32181 A few other Lisp extensions are available in @code{defmath} definitions:
32183 @itemize @bullet
32184 @item
32185 The @code{elt} function accepts any number of index variables.
32186 Note that Calc vectors are stored as Lisp lists whose first
32187 element is the symbol @code{vec}; thus, @samp{(elt v 2)} yields
32188 the second element of vector @code{v}, and @samp{(elt m i j)}
32189 yields one element of a Calc matrix.
32191 @item
32192 The @code{setq} function has been extended to act like the Common
32193 Lisp @code{setf} function.  (The name @code{setf} is recognized as
32194 a synonym of @code{setq}.)  Specifically, the first argument of
32195 @code{setq} can be an @code{nth}, @code{elt}, @code{car}, or @code{cdr} form,
32196 in which case the effect is to store into the specified
32197 element of a list.  Thus, @samp{(setq (elt m i j) x)} stores @expr{x}
32198 into one element of a matrix.
32200 @item
32201 A @code{for} looping construct is available.  For example,
32202 @samp{(for ((i 0 10)) body)} executes @code{body} once for each
32203 binding of @expr{i} from zero to 10.  This is like a @code{let}
32204 form in that @expr{i} is temporarily bound to the loop count
32205 without disturbing its value outside the @code{for} construct.
32206 Nested loops, as in @samp{(for ((i 0 10) (j 0 (1- i) 2)) body)},
32207 are also available.  For each value of @expr{i} from zero to 10,
32208 @expr{j} counts from 0 to @expr{i-1} in steps of two.  Note that
32209 @code{for} has the same general outline as @code{let*}, except
32210 that each element of the header is a list of three or four
32211 things, not just two.
32213 @item
32214 The @code{foreach} construct loops over elements of a list.
32215 For example, @samp{(foreach ((x (cdr v))) body)} executes
32216 @code{body} with @expr{x} bound to each element of Calc vector
32217 @expr{v} in turn.  The purpose of @code{cdr} here is to skip over
32218 the initial @code{vec} symbol in the vector.
32220 @item
32221 The @code{break} function breaks out of the innermost enclosing
32222 @code{while}, @code{for}, or @code{foreach} loop.  If given a
32223 value, as in @samp{(break x)}, this value is returned by the
32224 loop.  (Lisp loops otherwise always return @code{nil}.)
32226 @item
32227 The @code{return} function prematurely returns from the enclosing
32228 function.  For example, @samp{(return (+ x y))} returns @expr{x+y}
32229 as the value of a function.  You can use @code{return} anywhere
32230 inside the body of the function.
32231 @end itemize
32233 Non-integer numbers (and extremely large integers) cannot be included
32234 directly into a @code{defmath} definition.  This is because the Lisp
32235 reader will fail to parse them long before @code{defmath} ever gets control.
32236 Instead, use the notation, @samp{:"3.1415"}.  In fact, any algebraic
32237 formula can go between the quotes.  For example,
32239 @smallexample
32240 (defmath sqexp (x)     ; sqexp(x) == sqrt(exp(x)) == exp(x*0.5)
32241   (and (numberp x)
32242        (exp :"x * 0.5")))
32243 @end smallexample
32245 expands to
32247 @smallexample
32248 (defun calcFunc-sqexp (x)
32249   (and (math-numberp x)
32250        (calcFunc-exp (math-mul x '(float 5 -1)))))
32251 @end smallexample
32253 Note the use of @code{numberp} as a guard to ensure that the argument is
32254 a number first, returning @code{nil} if not.  The exponential function
32255 could itself have been included in the expression, if we had preferred:
32256 @samp{:"exp(x * 0.5)"}.  As another example, the multiplication-and-recursion
32257 step of @code{myfact} could have been written
32259 @example
32260 :"n * myfact(n-1)"
32261 @end example
32263 A good place to put your @code{defmath} commands is your Calc init file
32264 (the file given by @code{calc-settings-file}, typically
32265 @file{~/.emacs.d/calc.el}), which will not be loaded until Calc starts.
32266 If a file named @file{.emacs} exists in your home directory, Emacs reads
32267 and executes the Lisp forms in this file as it starts up.  While it may
32268 seem reasonable to put your favorite @code{defmath} commands there,
32269 this has the unfortunate side-effect that parts of the Calculator must be
32270 loaded in to process the @code{defmath} commands whether or not you will
32271 actually use the Calculator!  If you want to put the @code{defmath}
32272 commands there (for example, if you redefine @code{calc-settings-file}
32273 to be @file{.emacs}), a better effect can be had by writing
32275 @example
32276 (put 'calc-define 'thing '(progn
32277  (defmath ... )
32278  (defmath ... )
32280 @end example
32282 @noindent
32283 @vindex calc-define
32284 The @code{put} function adds a @dfn{property} to a symbol.  Each Lisp
32285 symbol has a list of properties associated with it.  Here we add a
32286 property with a name of @code{thing} and a @samp{(progn ...)} form as
32287 its value.  When Calc starts up, and at the start of every Calc command,
32288 the property list for the symbol @code{calc-define} is checked and the
32289 values of any properties found are evaluated as Lisp forms.  The
32290 properties are removed as they are evaluated.  The property names
32291 (like @code{thing}) are not used; you should choose something like the
32292 name of your project so as not to conflict with other properties.
32294 The net effect is that you can put the above code in your @file{.emacs}
32295 file and it will not be executed until Calc is loaded.  Or, you can put
32296 that same code in another file which you load by hand either before or
32297 after Calc itself is loaded.
32299 The properties of @code{calc-define} are evaluated in the same order
32300 that they were added.  They can assume that the Calc modules @file{calc.el},
32301 @file{calc-ext.el}, and @file{calc-macs.el} have been fully loaded, and
32302 that the @file{*Calculator*} buffer will be the current buffer.
32304 If your @code{calc-define} property only defines algebraic functions,
32305 you can be sure that it will have been evaluated before Calc tries to
32306 call your function, even if the file defining the property is loaded
32307 after Calc is loaded.  But if the property defines commands or key
32308 sequences, it may not be evaluated soon enough.  (Suppose it defines the
32309 new command @code{tweak-calc}; the user can load your file, then type
32310 @kbd{M-x tweak-calc} before Calc has had chance to do anything.)  To
32311 protect against this situation, you can put
32313 @example
32314 (run-hooks 'calc-check-defines)
32315 @end example
32317 @findex calc-check-defines
32318 @noindent
32319 at the end of your file.  The @code{calc-check-defines} function is what
32320 looks for and evaluates properties on @code{calc-define}; @code{run-hooks}
32321 has the advantage that it is quietly ignored if @code{calc-check-defines}
32322 is not yet defined because Calc has not yet been loaded.
32324 Examples of things that ought to be enclosed in a @code{calc-define}
32325 property are @code{defmath} calls, @code{define-key} calls that modify
32326 the Calc key map, and any calls that redefine things defined inside Calc.
32327 Ordinary @code{defun}s need not be enclosed with @code{calc-define}.
32329 @node Defining Simple Commands, Defining Stack Commands, Defining Functions, Lisp Definitions
32330 @subsection Defining New Simple Commands
32332 @noindent
32333 @findex interactive
32334 If a @code{defmath} form contains an @code{interactive} clause, it defines
32335 a Calculator command.  Actually such a @code{defmath} results in @emph{two}
32336 function definitions:  One, a @samp{calcFunc-} function as was just described,
32337 with the @code{interactive} clause removed.  Two, a @samp{calc-} function
32338 with a suitable @code{interactive} clause and some sort of wrapper to make
32339 the command work in the Calc environment.
32341 In the simple case, the @code{interactive} clause has the same form as
32342 for normal Emacs Lisp commands:
32344 @smallexample
32345 (defmath increase-precision (delta)
32346   "Increase precision by DELTA."     ; This is the "documentation string"
32347   (interactive "p")                  ; Register this as a M-x-able command
32348   (setq calc-internal-prec (+ calc-internal-prec delta)))
32349 @end smallexample
32351 This expands to the pair of definitions,
32353 @smallexample
32354 (defun calc-increase-precision (delta)
32355   "Increase precision by DELTA."
32356   (interactive "p")
32357   (calc-wrapper
32358    (setq calc-internal-prec (math-add calc-internal-prec delta))))
32360 (defun calcFunc-increase-precision (delta)
32361   "Increase precision by DELTA."
32362   (setq calc-internal-prec (math-add calc-internal-prec delta)))
32363 @end smallexample
32365 @noindent
32366 where in this case the latter function would never really be used!  Note
32367 that since the Calculator stores small integers as plain Lisp integers,
32368 the @code{math-add} function will work just as well as the native
32369 @code{+} even when the intent is to operate on native Lisp integers.
32371 @findex calc-wrapper
32372 The @samp{calc-wrapper} call invokes a macro which surrounds the body of
32373 the function with code that looks roughly like this:
32375 @smallexample
32376 (let ((calc-command-flags nil))
32377   (unwind-protect
32378       (save-current-buffer
32379         (calc-select-buffer)
32380         @emph{body of function}
32381         @emph{renumber stack}
32382         @emph{clear} Working @emph{message})
32383     @emph{realign cursor and window}
32384     @emph{clear Inverse, Hyperbolic, and Keep Args flags}
32385     @emph{update Emacs mode line}))
32386 @end smallexample
32388 @findex calc-select-buffer
32389 The @code{calc-select-buffer} function selects the @file{*Calculator*}
32390 buffer if necessary, say, because the command was invoked from inside
32391 the @file{*Calc Trail*} window.
32393 @findex calc-set-command-flag
32394 You can call, for example, @code{(calc-set-command-flag 'no-align)} to
32395 set the above-mentioned command flags.  Calc routines recognize the
32396 following command flags:
32398 @table @code
32399 @item renum-stack
32400 Stack line numbers @samp{1:}, @samp{2:}, and so on must be renumbered
32401 after this command completes.  This is set by routines like
32402 @code{calc-push}.
32404 @item clear-message
32405 Calc should call @samp{(message "")} if this command completes normally
32406 (to clear a ``Working@dots{}'' message out of the echo area).
32408 @item no-align
32409 Do not move the cursor back to the @samp{.} top-of-stack marker.
32411 @item position-point
32412 Use the variables @code{calc-position-point-line} and
32413 @code{calc-position-point-column} to position the cursor after
32414 this command finishes.
32416 @item keep-flags
32417 Do not clear @code{calc-inverse-flag}, @code{calc-hyperbolic-flag},
32418 and @code{calc-keep-args-flag} at the end of this command.
32420 @item do-edit
32421 Switch to buffer @file{*Calc Edit*} after this command.
32423 @item hold-trail
32424 Do not move trail pointer to end of trail when something is recorded
32425 there.
32426 @end table
32428 @kindex Y
32429 @kindex Y ?
32430 @vindex calc-Y-help-msgs
32431 Calc reserves a special prefix key, shift-@kbd{Y}, for user-written
32432 extensions to Calc.  There are no built-in commands that work with
32433 this prefix key; you must call @code{define-key} from Lisp (probably
32434 from inside a @code{calc-define} property) to add to it.  Initially only
32435 @kbd{Y ?} is defined; it takes help messages from a list of strings
32436 (initially @code{nil}) in the variable @code{calc-Y-help-msgs}.  All
32437 other undefined keys except for @kbd{Y} are reserved for use by
32438 future versions of Calc.
32440 If you are writing a Calc enhancement which you expect to give to
32441 others, it is best to minimize the number of @kbd{Y}-key sequences
32442 you use.  In fact, if you have more than one key sequence you should
32443 consider defining three-key sequences with a @kbd{Y}, then a key that
32444 stands for your package, then a third key for the particular command
32445 within your package.
32447 Users may wish to install several Calc enhancements, and it is possible
32448 that several enhancements will choose to use the same key.  In the
32449 example below, a variable @code{inc-prec-base-key} has been defined
32450 to contain the key that identifies the @code{inc-prec} package.  Its
32451 value is initially @code{"P"}, but a user can change this variable
32452 if necessary without having to modify the file.
32454 Here is a complete file, @file{inc-prec.el}, which makes a @kbd{Y P I}
32455 command that increases the precision, and a @kbd{Y P D} command that
32456 decreases the precision.
32458 @smallexample
32459 ;;; Increase and decrease Calc precision.  Dave Gillespie, 5/31/91.
32460 ;; (Include copyright or copyleft stuff here.)
32462 (defvar inc-prec-base-key "P"
32463   "Base key for inc-prec.el commands.")
32465 (put 'calc-define 'inc-prec '(progn
32467 (define-key calc-mode-map (format "Y%sI" inc-prec-base-key)
32468             'increase-precision)
32469 (define-key calc-mode-map (format "Y%sD" inc-prec-base-key)
32470             'decrease-precision)
32472 (setq calc-Y-help-msgs
32473       (cons (format "%s + Inc-prec, Dec-prec" inc-prec-base-key)
32474             calc-Y-help-msgs))
32476 (defmath increase-precision (delta)
32477   "Increase precision by DELTA."
32478   (interactive "p")
32479   (setq calc-internal-prec (+ calc-internal-prec delta)))
32481 (defmath decrease-precision (delta)
32482   "Decrease precision by DELTA."
32483   (interactive "p")
32484   (setq calc-internal-prec (- calc-internal-prec delta)))
32486 ))  ; end of calc-define property
32488 (run-hooks 'calc-check-defines)
32489 @end smallexample
32491 @node Defining Stack Commands, Argument Qualifiers, Defining Simple Commands, Lisp Definitions
32492 @subsection Defining New Stack-Based Commands
32494 @noindent
32495 To define a new computational command which takes and/or leaves arguments
32496 on the stack, a special form of @code{interactive} clause is used.
32498 @example
32499 (interactive @var{num} @var{tag})
32500 @end example
32502 @noindent
32503 where @var{num} is an integer, and @var{tag} is a string.  The effect is
32504 to pop @var{num} values off the stack, resimplify them by calling
32505 @code{calc-normalize}, and hand them to your function according to the
32506 function's argument list.  Your function may include @code{&optional} and
32507 @code{&rest} parameters, so long as calling the function with @var{num}
32508 parameters is valid.
32510 Your function must return either a number or a formula in a form
32511 acceptable to Calc, or a list of such numbers or formulas.  These value(s)
32512 are pushed onto the stack when the function completes.  They are also
32513 recorded in the Calc Trail buffer on a line beginning with @var{tag},
32514 a string of (normally) four characters or less.  If you omit @var{tag}
32515 or use @code{nil} as a tag, the result is not recorded in the trail.
32517 As an example, the definition
32519 @smallexample
32520 (defmath myfact (n)
32521   "Compute the factorial of the integer at the top of the stack."
32522   (interactive 1 "fact")
32523   (if (> n 0)
32524       (* n (myfact (1- n)))
32525     (and (= n 0) 1)))
32526 @end smallexample
32528 @noindent
32529 is a version of the factorial function shown previously which can be used
32530 as a command as well as an algebraic function.  It expands to
32532 @smallexample
32533 (defun calc-myfact ()
32534   "Compute the factorial of the integer at the top of the stack."
32535   (interactive)
32536   (calc-slow-wrapper
32537    (calc-enter-result 1 "fact"
32538      (cons 'calcFunc-myfact (calc-top-list-n 1)))))
32540 (defun calcFunc-myfact (n)
32541   "Compute the factorial of the integer at the top of the stack."
32542   (if (math-posp n)
32543       (math-mul n (calcFunc-myfact (math-add n -1)))
32544     (and (math-zerop n) 1)))
32545 @end smallexample
32547 @findex calc-slow-wrapper
32548 The @code{calc-slow-wrapper} function is a version of @code{calc-wrapper}
32549 that automatically puts up a @samp{Working...} message before the
32550 computation begins.  (This message can be turned off by the user
32551 with an @kbd{m w} (@code{calc-working}) command.)
32553 @findex calc-top-list-n
32554 The @code{calc-top-list-n} function returns a list of the specified number
32555 of values from the top of the stack.  It resimplifies each value by
32556 calling @code{calc-normalize}.  If its argument is zero it returns an
32557 empty list.  It does not actually remove these values from the stack.
32559 @findex calc-enter-result
32560 The @code{calc-enter-result} function takes an integer @var{num} and string
32561 @var{tag} as described above, plus a third argument which is either a
32562 Calculator data object or a list of such objects.  These objects are
32563 resimplified and pushed onto the stack after popping the specified number
32564 of values from the stack.  If @var{tag} is non-@code{nil}, the values
32565 being pushed are also recorded in the trail.
32567 Note that if @code{calcFunc-myfact} returns @code{nil} this represents
32568 ``leave the function in symbolic form.''  To return an actual empty list,
32569 in the sense that @code{calc-enter-result} will push zero elements back
32570 onto the stack, you should return the special value @samp{'(nil)}, a list
32571 containing the single symbol @code{nil}.
32573 The @code{interactive} declaration can actually contain a limited
32574 Emacs-style code string as well which comes just before @var{num} and
32575 @var{tag}.  Currently the only Emacs code supported is @samp{"p"}, as in
32577 @example
32578 (defmath foo (a b &optional c)
32579   (interactive "p" 2 "foo")
32580   @var{body})
32581 @end example
32583 In this example, the command @code{calc-foo} will evaluate the expression
32584 @samp{foo(a,b)} if executed with no argument, or @samp{foo(a,b,n)} if
32585 executed with a numeric prefix argument of @expr{n}.
32587 The other code string allowed is @samp{"m"} (unrelated to the usual @samp{"m"}
32588 code as used with @code{defun}).  It uses the numeric prefix argument as the
32589 number of objects to remove from the stack and pass to the function.
32590 In this case, the integer @var{num} serves as a default number of
32591 arguments to be used when no prefix is supplied.
32593 @node Argument Qualifiers, Example Definitions, Defining Stack Commands, Lisp Definitions
32594 @subsection Argument Qualifiers
32596 @noindent
32597 Anywhere a parameter name can appear in the parameter list you can also use
32598 an @dfn{argument qualifier}.  Thus the general form of a definition is:
32600 @example
32601 (defmath @var{name} (@var{param} @var{param...}
32602                &optional @var{param} @var{param...}
32603                &rest @var{param})
32604   @var{body})
32605 @end example
32607 @noindent
32608 where each @var{param} is either a symbol or a list of the form
32610 @example
32611 (@var{qual} @var{param})
32612 @end example
32614 The following qualifiers are recognized:
32616 @table @samp
32617 @item complete
32618 @findex complete
32619 The argument must not be an incomplete vector, interval, or complex number.
32620 (This is rarely needed since the Calculator itself will never call your
32621 function with an incomplete argument.  But there is nothing stopping your
32622 own Lisp code from calling your function with an incomplete argument.)
32624 @item integer
32625 @findex integer
32626 The argument must be an integer.  If it is an integer-valued float
32627 it will be accepted but converted to integer form.  Non-integers and
32628 formulas are rejected.
32630 @item natnum
32631 @findex natnum
32632 Like @samp{integer}, but the argument must be non-negative.
32634 @item fixnum
32635 @findex fixnum
32636 Like @samp{integer}, but the argument must fit into a native Lisp integer,
32637 which on most systems means less than 2^23 in absolute value.  The
32638 argument is converted into Lisp-integer form if necessary.
32640 @item float
32641 @findex float
32642 The argument is converted to floating-point format if it is a number or
32643 vector.  If it is a formula it is left alone.  (The argument is never
32644 actually rejected by this qualifier.)
32646 @item @var{pred}
32647 The argument must satisfy predicate @var{pred}, which is one of the
32648 standard Calculator predicates.  @xref{Predicates}.
32650 @item not-@var{pred}
32651 The argument must @emph{not} satisfy predicate @var{pred}.
32652 @end table
32654 For example,
32656 @example
32657 (defmath foo (a (constp (not-matrixp b)) &optional (float c)
32658               &rest (integer d))
32659   @var{body})
32660 @end example
32662 @noindent
32663 expands to
32665 @example
32666 (defun calcFunc-foo (a b &optional c &rest d)
32667   (and (math-matrixp b)
32668        (math-reject-arg b 'not-matrixp))
32669   (or (math-constp b)
32670       (math-reject-arg b 'constp))
32671   (and c (setq c (math-check-float c)))
32672   (setq d (mapcar 'math-check-integer d))
32673   @var{body})
32674 @end example
32676 @noindent
32677 which performs the necessary checks and conversions before executing the
32678 body of the function.
32680 @node Example Definitions, Calling Calc from Your Programs, Argument Qualifiers, Lisp Definitions
32681 @subsection Example Definitions
32683 @noindent
32684 This section includes some Lisp programming examples on a larger scale.
32685 These programs make use of some of the Calculator's internal functions;
32686 @pxref{Internals}.
32688 @menu
32689 * Bit Counting Example::
32690 * Sine Example::
32691 @end menu
32693 @node Bit Counting Example, Sine Example, Example Definitions, Example Definitions
32694 @subsubsection Bit-Counting
32696 @noindent
32697 @ignore
32698 @starindex
32699 @end ignore
32700 @tindex bcount
32701 Calc does not include a built-in function for counting the number of
32702 ``one'' bits in a binary integer.  It's easy to invent one using @kbd{b u}
32703 to convert the integer to a set, and @kbd{V #} to count the elements of
32704 that set; let's write a function that counts the bits without having to
32705 create an intermediate set.
32707 @smallexample
32708 (defmath bcount ((natnum n))
32709   (interactive 1 "bcnt")
32710   (let ((count 0))
32711     (while (> n 0)
32712       (if (oddp n)
32713           (setq count (1+ count)))
32714       (setq n (lsh n -1)))
32715     count))
32716 @end smallexample
32718 @noindent
32719 When this is expanded by @code{defmath}, it will become the following
32720 Emacs Lisp function:
32722 @smallexample
32723 (defun calcFunc-bcount (n)
32724   (setq n (math-check-natnum n))
32725   (let ((count 0))
32726     (while (math-posp n)
32727       (if (math-oddp n)
32728           (setq count (math-add count 1)))
32729       (setq n (calcFunc-lsh n -1)))
32730     count))
32731 @end smallexample
32733 If the input numbers are large, this function involves a fair amount
32734 of arithmetic.  A binary right shift is essentially a division by two;
32735 recall that Calc stores integers in decimal form so bit shifts must
32736 involve actual division.
32738 To gain a bit more efficiency, we could divide the integer into
32739 @var{n}-bit chunks, each of which can be handled quickly because
32740 they fit into Lisp integers.  It turns out that Calc's arithmetic
32741 routines are especially fast when dividing by an integer less than
32742 1000, so we can set @var{n = 9} bits and use repeated division by 512:
32744 @smallexample
32745 (defmath bcount ((natnum n))
32746   (interactive 1 "bcnt")
32747   (let ((count 0))
32748     (while (not (fixnump n))
32749       (let ((qr (idivmod n 512)))
32750         (setq count (+ count (bcount-fixnum (cdr qr)))
32751               n (car qr))))
32752     (+ count (bcount-fixnum n))))
32754 (defun bcount-fixnum (n)
32755   (let ((count 0))
32756     (while (> n 0)
32757       (setq count (+ count (logand n 1))
32758             n (lsh n -1)))
32759     count))
32760 @end smallexample
32762 @noindent
32763 Note that the second function uses @code{defun}, not @code{defmath}.
32764 Because this function deals only with native Lisp integers (``fixnums''),
32765 it can use the actual Emacs @code{+} and related functions rather
32766 than the slower but more general Calc equivalents which @code{defmath}
32767 uses.
32769 The @code{idivmod} function does an integer division, returning both
32770 the quotient and the remainder at once.  Again, note that while it
32771 might seem that @samp{(logand n 511)} and @samp{(lsh n -9)} are
32772 more efficient ways to split off the bottom nine bits of @code{n},
32773 actually they are less efficient because each operation is really
32774 a division by 512 in disguise; @code{idivmod} allows us to do the
32775 same thing with a single division by 512.
32777 @node Sine Example,  , Bit Counting Example, Example Definitions
32778 @subsubsection The Sine Function
32780 @noindent
32781 @ignore
32782 @starindex
32783 @end ignore
32784 @tindex mysin
32785 A somewhat limited sine function could be defined as follows, using the
32786 well-known Taylor series expansion for
32787 @texline @math{\sin x}:
32788 @infoline @samp{sin(x)}:
32790 @smallexample
32791 (defmath mysin ((float (anglep x)))
32792   (interactive 1 "mysn")
32793   (setq x (to-radians x))    ; Convert from current angular mode.
32794   (let ((sum x)              ; Initial term of Taylor expansion of sin.
32795         newsum
32796         (nfact 1)            ; "nfact" equals "n" factorial at all times.
32797         (xnegsqr :"-(x^2)")) ; "xnegsqr" equals -x^2.
32798     (for ((n 3 100 2))       ; Upper limit of 100 is a good precaution.
32799       (working "mysin" sum)  ; Display "Working" message, if enabled.
32800       (setq nfact (* nfact (1- n) n)
32801             x (* x xnegsqr)
32802             newsum (+ sum (/ x nfact)))
32803       (if (~= newsum sum)    ; If newsum is "nearly equal to" sum,
32804           (break))           ;  then we are done.
32805       (setq sum newsum))
32806     sum))
32807 @end smallexample
32809 The actual @code{sin} function in Calc works by first reducing the problem
32810 to a sine or cosine of a nonnegative number less than @cpiover{4}.  This
32811 ensures that the Taylor series will converge quickly.  Also, the calculation
32812 is carried out with two extra digits of precision to guard against cumulative
32813 round-off in @samp{sum}.  Finally, complex arguments are allowed and handled
32814 by a separate algorithm.
32816 @smallexample
32817 (defmath mysin ((float (scalarp x)))
32818   (interactive 1 "mysn")
32819   (setq x (to-radians x))    ; Convert from current angular mode.
32820   (with-extra-prec 2         ; Evaluate with extra precision.
32821     (cond ((complexp x)
32822            (mysin-complex x))
32823           ((< x 0)
32824            (- (mysin-raw (- x)))    ; Always call mysin-raw with x >= 0.
32825           (t (mysin-raw x))))))
32827 (defmath mysin-raw (x)
32828   (cond ((>= x 7)
32829          (mysin-raw (% x (two-pi))))     ; Now x < 7.
32830         ((> x (pi-over-2))
32831          (- (mysin-raw (- x (pi)))))     ; Now -pi/2 <= x <= pi/2.
32832         ((> x (pi-over-4))
32833          (mycos-raw (- x (pi-over-2))))  ; Now -pi/2 <= x <= pi/4.
32834         ((< x (- (pi-over-4)))
32835          (- (mycos-raw (+ x (pi-over-2)))))  ; Now -pi/4 <= x <= pi/4,
32836         (t (mysin-series x))))           ; so the series will be efficient.
32837 @end smallexample
32839 @noindent
32840 where @code{mysin-complex} is an appropriate function to handle complex
32841 numbers, @code{mysin-series} is the routine to compute the sine Taylor
32842 series as before, and @code{mycos-raw} is a function analogous to
32843 @code{mysin-raw} for cosines.
32845 The strategy is to ensure that @expr{x} is nonnegative before calling
32846 @code{mysin-raw}.  This function then recursively reduces its argument
32847 to a suitable range, namely, plus-or-minus @cpiover{4}.  Note that each
32848 test, and particularly the first comparison against 7, is designed so
32849 that small roundoff errors cannot produce an infinite loop.  (Suppose
32850 we compared with @samp{(two-pi)} instead; if due to roundoff problems
32851 the modulo operator ever returned @samp{(two-pi)} exactly, an infinite
32852 recursion could result!)  We use modulo only for arguments that will
32853 clearly get reduced, knowing that the next rule will catch any reductions
32854 that this rule misses.
32856 If a program is being written for general use, it is important to code
32857 it carefully as shown in this second example.  For quick-and-dirty programs,
32858 when you know that your own use of the sine function will never encounter
32859 a large argument, a simpler program like the first one shown is fine.
32861 @node Calling Calc from Your Programs, Internals, Example Definitions, Lisp Definitions
32862 @subsection Calling Calc from Your Lisp Programs
32864 @noindent
32865 A later section (@pxref{Internals}) gives a full description of
32866 Calc's internal Lisp functions.  It's not hard to call Calc from
32867 inside your programs, but the number of these functions can be daunting.
32868 So Calc provides one special ``programmer-friendly'' function called
32869 @code{calc-eval} that can be made to do just about everything you
32870 need.  It's not as fast as the low-level Calc functions, but it's
32871 much simpler to use!
32873 It may seem that @code{calc-eval} itself has a daunting number of
32874 options, but they all stem from one simple operation.
32876 In its simplest manifestation, @samp{(calc-eval "1+2")} parses the
32877 string @code{"1+2"} as if it were a Calc algebraic entry and returns
32878 the result formatted as a string: @code{"3"}.
32880 Since @code{calc-eval} is on the list of recommended @code{autoload}
32881 functions, you don't need to make any special preparations to load
32882 Calc before calling @code{calc-eval} the first time.  Calc will be
32883 loaded and initialized for you.
32885 All the Calc modes that are currently in effect will be used when
32886 evaluating the expression and formatting the result.
32888 @ifinfo
32889 @example
32891 @end example
32892 @end ifinfo
32893 @subsubsection Additional Arguments to @code{calc-eval}
32895 @noindent
32896 If the input string parses to a list of expressions, Calc returns
32897 the results separated by @code{", "}.  You can specify a different
32898 separator by giving a second string argument to @code{calc-eval}:
32899 @samp{(calc-eval "1+2,3+4" ";")} returns @code{"3;7"}.
32901 The ``separator'' can also be any of several Lisp symbols which
32902 request other behaviors from @code{calc-eval}.  These are discussed
32903 one by one below.
32905 You can give additional arguments to be substituted for
32906 @samp{$}, @samp{$$}, and so on in the main expression.  For
32907 example, @samp{(calc-eval "$/$$" nil "7" "1+1")} evaluates the
32908 expression @code{"7/(1+1)"} to yield the result @code{"3.5"}
32909 (assuming Fraction mode is not in effect).  Note the @code{nil}
32910 used as a placeholder for the item-separator argument.
32912 @ifinfo
32913 @example
32915 @end example
32916 @end ifinfo
32917 @subsubsection Error Handling
32919 @noindent
32920 If @code{calc-eval} encounters an error, it returns a list containing
32921 the character position of the error, plus a suitable message as a
32922 string.  Note that @samp{1 / 0} is @emph{not} an error by Calc's
32923 standards; it simply returns the string @code{"1 / 0"} which is the
32924 division left in symbolic form.  But @samp{(calc-eval "1/")} will
32925 return the list @samp{(2 "Expected a number")}.
32927 If you bind the variable @code{calc-eval-error} to @code{t}
32928 using a @code{let} form surrounding the call to @code{calc-eval},
32929 errors instead call the Emacs @code{error} function which aborts
32930 to the Emacs command loop with a beep and an error message.
32932 If you bind this variable to the symbol @code{string}, error messages
32933 are returned as strings instead of lists.  The character position is
32934 ignored.
32936 As a courtesy to other Lisp code which may be using Calc, be sure
32937 to bind @code{calc-eval-error} using @code{let} rather than changing
32938 it permanently with @code{setq}.
32940 @ifinfo
32941 @example
32943 @end example
32944 @end ifinfo
32945 @subsubsection Numbers Only
32947 @noindent
32948 Sometimes it is preferable to treat @samp{1 / 0} as an error
32949 rather than returning a symbolic result.  If you pass the symbol
32950 @code{num} as the second argument to @code{calc-eval}, results
32951 that are not constants are treated as errors.  The error message
32952 reported is the first @code{calc-why} message if there is one,
32953 or otherwise ``Number expected.''
32955 A result is ``constant'' if it is a number, vector, or other
32956 object that does not include variables or function calls.  If it
32957 is a vector, the components must themselves be constants.
32959 @ifinfo
32960 @example
32962 @end example
32963 @end ifinfo
32964 @subsubsection Default Modes
32966 @noindent
32967 If the first argument to @code{calc-eval} is a list whose first
32968 element is a formula string, then @code{calc-eval} sets all the
32969 various Calc modes to their default values while the formula is
32970 evaluated and formatted.  For example, the precision is set to 12
32971 digits, digit grouping is turned off, and the Normal language
32972 mode is used.
32974 This same principle applies to the other options discussed below.
32975 If the first argument would normally be @var{x}, then it can also
32976 be the list @samp{(@var{x})} to use the default mode settings.
32978 If there are other elements in the list, they are taken as
32979 variable-name/value pairs which override the default mode
32980 settings.  Look at the documentation at the front of the
32981 @file{calc.el} file to find the names of the Lisp variables for
32982 the various modes.  The mode settings are restored to their
32983 original values when @code{calc-eval} is done.
32985 For example, @samp{(calc-eval '("$+$$" calc-internal-prec 8) 'num a b)}
32986 computes the sum of two numbers, requiring a numeric result, and
32987 using default mode settings except that the precision is 8 instead
32988 of the default of 12.
32990 It's usually best to use this form of @code{calc-eval} unless your
32991 program actually considers the interaction with Calc's mode settings
32992 to be a feature.  This will avoid all sorts of potential ``gotchas'';
32993 consider what happens with @samp{(calc-eval "sqrt(2)" 'num)}
32994 when the user has left Calc in Symbolic mode or No-Simplify mode.
32996 As another example, @samp{(equal (calc-eval '("$<$$") nil a b) "1")}
32997 checks if the number in string @expr{a} is less than the one in
32998 string @expr{b}.  Without using a list, the integer 1 might
32999 come out in a variety of formats which would be hard to test for
33000 conveniently: @code{"1"}, @code{"8#1"}, @code{"00001"}.  (But
33001 see ``Predicates'' mode, below.)
33003 @ifinfo
33004 @example
33006 @end example
33007 @end ifinfo
33008 @subsubsection Raw Numbers
33010 @noindent
33011 Normally all input and output for @code{calc-eval} is done with strings.
33012 You can do arithmetic with, say, @samp{(calc-eval "$+$$" nil a b)}
33013 in place of @samp{(+ a b)}, but this is very inefficient since the
33014 numbers must be converted to and from string format as they are passed
33015 from one @code{calc-eval} to the next.
33017 If the separator is the symbol @code{raw}, the result will be returned
33018 as a raw Calc data structure rather than a string.  You can read about
33019 how these objects look in the following sections, but usually you can
33020 treat them as ``black box'' objects with no important internal
33021 structure.
33023 There is also a @code{rawnum} symbol, which is a combination of
33024 @code{raw} (returning a raw Calc object) and @code{num} (signaling
33025 an error if that object is not a constant).
33027 You can pass a raw Calc object to @code{calc-eval} in place of a
33028 string, either as the formula itself or as one of the @samp{$}
33029 arguments.  Thus @samp{(calc-eval "$+$$" 'raw a b)} is an
33030 addition function that operates on raw Calc objects.  Of course
33031 in this case it would be easier to call the low-level @code{math-add}
33032 function in Calc, if you can remember its name.
33034 In particular, note that a plain Lisp integer is acceptable to Calc
33035 as a raw object.  (All Lisp integers are accepted on input, but
33036 integers of more than six decimal digits are converted to ``big-integer''
33037 form for output.  @xref{Data Type Formats}.)
33039 When it comes time to display the object, just use @samp{(calc-eval a)}
33040 to format it as a string.
33042 It is an error if the input expression evaluates to a list of
33043 values.  The separator symbol @code{list} is like @code{raw}
33044 except that it returns a list of one or more raw Calc objects.
33046 Note that a Lisp string is not a valid Calc object, nor is a list
33047 containing a string.  Thus you can still safely distinguish all the
33048 various kinds of error returns discussed above.
33050 @ifinfo
33051 @example
33053 @end example
33054 @end ifinfo
33055 @subsubsection Predicates
33057 @noindent
33058 If the separator symbol is @code{pred}, the result of the formula is
33059 treated as a true/false value; @code{calc-eval} returns @code{t} or
33060 @code{nil}, respectively.  A value is considered ``true'' if it is a
33061 non-zero number, or false if it is zero or if it is not a number.
33063 For example, @samp{(calc-eval "$<$$" 'pred a b)} tests whether
33064 one value is less than another.
33066 As usual, it is also possible for @code{calc-eval} to return one of
33067 the error indicators described above.  Lisp will interpret such an
33068 indicator as ``true'' if you don't check for it explicitly.  If you
33069 wish to have an error register as ``false'', use something like
33070 @samp{(eq (calc-eval ...) t)}.
33072 @ifinfo
33073 @example
33075 @end example
33076 @end ifinfo
33077 @subsubsection Variable Values
33079 @noindent
33080 Variables in the formula passed to @code{calc-eval} are not normally
33081 replaced by their values.  If you wish this, you can use the
33082 @code{evalv} function (@pxref{Algebraic Manipulation}).  For example,
33083 if 4 is stored in Calc variable @code{a} (i.e., in Lisp variable
33084 @code{var-a}), then @samp{(calc-eval "a+pi")} will return the
33085 formula @code{"a + pi"}, but @samp{(calc-eval "evalv(a+pi)")}
33086 will return @code{"7.14159265359"}.
33088 To store in a Calc variable, just use @code{setq} to store in the
33089 corresponding Lisp variable.  (This is obtained by prepending
33090 @samp{var-} to the Calc variable name.)  Calc routines will
33091 understand either string or raw form values stored in variables,
33092 although raw data objects are much more efficient.  For example,
33093 to increment the Calc variable @code{a}:
33095 @example
33096 (setq var-a (calc-eval "evalv(a+1)" 'raw))
33097 @end example
33099 @ifinfo
33100 @example
33102 @end example
33103 @end ifinfo
33104 @subsubsection Stack Access
33106 @noindent
33107 If the separator symbol is @code{push}, the formula argument is
33108 evaluated (with possible @samp{$} expansions, as usual).  The
33109 result is pushed onto the Calc stack.  The return value is @code{nil}
33110 (unless there is an error from evaluating the formula, in which
33111 case the return value depends on @code{calc-eval-error} in the
33112 usual way).
33114 If the separator symbol is @code{pop}, the first argument to
33115 @code{calc-eval} must be an integer instead of a string.  That
33116 many values are popped from the stack and thrown away.  A negative
33117 argument deletes the entry at that stack level.  The return value
33118 is the number of elements remaining in the stack after popping;
33119 @samp{(calc-eval 0 'pop)} is a good way to measure the size of
33120 the stack.
33122 If the separator symbol is @code{top}, the first argument to
33123 @code{calc-eval} must again be an integer.  The value at that
33124 stack level is formatted as a string and returned.  Thus
33125 @samp{(calc-eval 1 'top)} returns the top-of-stack value.  If the
33126 integer is out of range, @code{nil} is returned.
33128 The separator symbol @code{rawtop} is just like @code{top} except
33129 that the stack entry is returned as a raw Calc object instead of
33130 as a string.
33132 In all of these cases the first argument can be made a list in
33133 order to force the default mode settings, as described above.
33134 Thus @samp{(calc-eval '(2 calc-number-radix 16) 'top)} returns the
33135 second-to-top stack entry, formatted as a string using the default
33136 instead of current display modes, except that the radix is
33137 hexadecimal instead of decimal.
33139 It is, of course, polite to put the Calc stack back the way you
33140 found it when you are done, unless the user of your program is
33141 actually expecting it to affect the stack.
33143 Note that you do not actually have to switch into the @file{*Calculator*}
33144 buffer in order to use @code{calc-eval}; it temporarily switches into
33145 the stack buffer if necessary.
33147 @ifinfo
33148 @example
33150 @end example
33151 @end ifinfo
33152 @subsubsection Keyboard Macros
33154 @noindent
33155 If the separator symbol is @code{macro}, the first argument must be a
33156 string of characters which Calc can execute as a sequence of keystrokes.
33157 This switches into the Calc buffer for the duration of the macro.
33158 For example, @samp{(calc-eval "vx5\rVR+" 'macro)} pushes the
33159 vector @samp{[1,2,3,4,5]} on the stack and then replaces it
33160 with the sum of those numbers.  Note that @samp{\r} is the Lisp
33161 notation for the carriage-return, @key{RET}, character.
33163 If your keyboard macro wishes to pop the stack, @samp{\C-d} is
33164 safer than @samp{\177} (the @key{DEL} character) because some
33165 installations may have switched the meanings of @key{DEL} and
33166 @kbd{C-h}.  Calc always interprets @kbd{C-d} as a synonym for
33167 ``pop-stack'' regardless of key mapping.
33169 If you provide a third argument to @code{calc-eval}, evaluation
33170 of the keyboard macro will leave a record in the Trail using
33171 that argument as a tag string.  Normally the Trail is unaffected.
33173 The return value in this case is always @code{nil}.
33175 @ifinfo
33176 @example
33178 @end example
33179 @end ifinfo
33180 @subsubsection Lisp Evaluation
33182 @noindent
33183 Finally, if the separator symbol is @code{eval}, then the Lisp
33184 @code{eval} function is called on the first argument, which must
33185 be a Lisp expression rather than a Calc formula.  Remember to
33186 quote the expression so that it is not evaluated until inside
33187 @code{calc-eval}.
33189 The difference from plain @code{eval} is that @code{calc-eval}
33190 switches to the Calc buffer before evaluating the expression.
33191 For example, @samp{(calc-eval '(setq calc-internal-prec 17) 'eval)}
33192 will correctly affect the buffer-local Calc precision variable.
33194 An alternative would be @samp{(calc-eval '(calc-precision 17) 'eval)}.
33195 This is evaluating a call to the function that is normally invoked
33196 by the @kbd{p} key, giving it 17 as its ``numeric prefix argument.''
33197 Note that this function will leave a message in the echo area as
33198 a side effect.  Also, all Calc functions switch to the Calc buffer
33199 automatically if not invoked from there, so the above call is
33200 also equivalent to @samp{(calc-precision 17)} by itself.
33201 In all cases, Calc uses @code{save-excursion} to switch back to
33202 your original buffer when it is done.
33204 As usual the first argument can be a list that begins with a Lisp
33205 expression to use default instead of current mode settings.
33207 The result of @code{calc-eval} in this usage is just the result
33208 returned by the evaluated Lisp expression.
33210 @ifinfo
33211 @example
33213 @end example
33214 @end ifinfo
33215 @subsubsection Example
33217 @noindent
33218 @findex convert-temp
33219 Here is a sample Emacs command that uses @code{calc-eval}.  Suppose
33220 you have a document with lots of references to temperatures on the
33221 Fahrenheit scale, say ``98.6 F'', and you wish to convert these
33222 references to Centigrade.  The following command does this conversion.
33223 Place the Emacs cursor right after the letter ``F'' and invoke the
33224 command to change ``98.6 F'' to ``37 C''.  Or, if the temperature is
33225 already in Centigrade form, the command changes it back to Fahrenheit.
33227 @example
33228 (defun convert-temp ()
33229   (interactive)
33230   (save-excursion
33231     (re-search-backward "[^-.0-9]\\([-.0-9]+\\) *\\([FC]\\)")
33232     (let* ((top1 (match-beginning 1))
33233            (bot1 (match-end 1))
33234            (number (buffer-substring top1 bot1))
33235            (top2 (match-beginning 2))
33236            (bot2 (match-end 2))
33237            (type (buffer-substring top2 bot2)))
33238       (if (equal type "F")
33239           (setq type "C"
33240                 number (calc-eval "($ - 32)*5/9" nil number))
33241         (setq type "F"
33242               number (calc-eval "$*9/5 + 32" nil number)))
33243       (goto-char top2)
33244       (delete-region top2 bot2)
33245       (insert-before-markers type)
33246       (goto-char top1)
33247       (delete-region top1 bot1)
33248       (if (string-match "\\.$" number)   ; change "37." to "37"
33249           (setq number (substring number 0 -1)))
33250       (insert number))))
33251 @end example
33253 Note the use of @code{insert-before-markers} when changing between
33254 ``F'' and ``C'', so that the character winds up before the cursor
33255 instead of after it.
33257 @node Internals,  , Calling Calc from Your Programs, Lisp Definitions
33258 @subsection Calculator Internals
33260 @noindent
33261 This section describes the Lisp functions defined by the Calculator that
33262 may be of use to user-written Calculator programs (as described in the
33263 rest of this chapter).  These functions are shown by their names as they
33264 conventionally appear in @code{defmath}.  Their full Lisp names are
33265 generally gotten by prepending @samp{calcFunc-} or @samp{math-} to their
33266 apparent names.  (Names that begin with @samp{calc-} are already in
33267 their full Lisp form.)  You can use the actual full names instead if you
33268 prefer them, or if you are calling these functions from regular Lisp.
33270 The functions described here are scattered throughout the various
33271 Calc component files.  Note that @file{calc.el} includes @code{autoload}s
33272 for only a few component files; when Calc wants to call an advanced
33273 function it calls @samp{(calc-extensions)} first; this function
33274 autoloads @file{calc-ext.el}, which in turn autoloads all the functions
33275 in the remaining component files.
33277 Because @code{defmath} itself uses the extensions, user-written code
33278 generally always executes with the extensions already loaded, so
33279 normally you can use any Calc function and be confident that it will
33280 be autoloaded for you when necessary.  If you are doing something
33281 special, check carefully to make sure each function you are using is
33282 from @file{calc.el} or its components, and call @samp{(calc-extensions)}
33283 before using any function based in @file{calc-ext.el} if you can't
33284 prove this file will already be loaded.
33286 @menu
33287 * Data Type Formats::
33288 * Interactive Lisp Functions::
33289 * Stack Lisp Functions::
33290 * Predicates::
33291 * Computational Lisp Functions::
33292 * Vector Lisp Functions::
33293 * Symbolic Lisp Functions::
33294 * Formatting Lisp Functions::
33295 * Hooks::
33296 @end menu
33298 @node Data Type Formats, Interactive Lisp Functions, Internals, Internals
33299 @subsubsection Data Type Formats
33301 @noindent
33302 Integers are stored in either of two ways, depending on their magnitude.
33303 Integers less than one million in absolute value are stored as standard
33304 Lisp integers.  This is the only storage format for Calc data objects
33305 which is not a Lisp list.
33307 Large integers are stored as lists of the form @samp{(bigpos @var{d0}
33308 @var{d1} @var{d2} @dots{})} for sufficiently large positive integers
33309 (where ``sufficiently large'' depends on the machine), or
33310 @samp{(bigneg @var{d0} @var{d1} @var{d2} @dots{})} for negative
33311 integers.  Each @var{d} is a base-@expr{10^n} ``digit'' (where again,
33312 @expr{n} depends on the machine), a Lisp integer from 0 to
33313 99@dots{}9.  The least significant digit is @var{d0}; the last digit,
33314 @var{dn}, which is always nonzero, is the most significant digit.  For
33315 example, the integer @mathit{-12345678} might be stored as
33316 @samp{(bigneg 678 345 12)}.
33318 The distinction between small and large integers is entirely hidden from
33319 the user.  In @code{defmath} definitions, the Lisp predicate @code{integerp}
33320 returns true for either kind of integer, and in general both big and small
33321 integers are accepted anywhere the word ``integer'' is used in this manual.
33322 If the distinction must be made, native Lisp integers are called @dfn{fixnums}
33323 and large integers are called @dfn{bignums}.
33325 Fractions are stored as a list of the form, @samp{(frac @var{n} @var{d})}
33326 where @var{n} is an integer (big or small) numerator, @var{d} is an
33327 integer denominator greater than one, and @var{n} and @var{d} are relatively
33328 prime.  Note that fractions where @var{d} is one are automatically converted
33329 to plain integers by all math routines; fractions where @var{d} is negative
33330 are normalized by negating the numerator and denominator.
33332 Floating-point numbers are stored in the form, @samp{(float @var{mant}
33333 @var{exp})}, where @var{mant} (the ``mantissa'') is an integer less than
33334 @samp{10^@var{p}} in absolute value (@var{p} represents the current
33335 precision), and @var{exp} (the ``exponent'') is a fixnum.  The value of
33336 the float is @samp{@var{mant} * 10^@var{exp}}.  For example, the number
33337 @mathit{-3.14} is stored as @samp{(float -314 -2) = -314*10^-2}.  Other constraints
33338 are that the number 0.0 is always stored as @samp{(float 0 0)}, and,
33339 except for the 0.0 case, the rightmost base-10 digit of @var{mant} is
33340 always nonzero.  (If the rightmost digit is zero, the number is
33341 rearranged by dividing @var{mant} by ten and incrementing @var{exp}.)
33343 Rectangular complex numbers are stored in the form @samp{(cplx @var{re}
33344 @var{im})}, where @var{re} and @var{im} are each real numbers, either
33345 integers, fractions, or floats.  The value is @samp{@var{re} + @var{im}i}.
33346 The @var{im} part is nonzero; complex numbers with zero imaginary
33347 components are converted to real numbers automatically.
33349 Polar complex numbers are stored in the form @samp{(polar @var{r}
33350 @var{theta})}, where @var{r} is a positive real value and @var{theta}
33351 is a real value or HMS form representing an angle.  This angle is
33352 usually normalized to lie in the interval @samp{(-180 ..@: 180)} degrees,
33353 or @samp{(-pi ..@: pi)} radians, according to the current angular mode.
33354 If the angle is 0 the value is converted to a real number automatically.
33355 (If the angle is 180 degrees, the value is usually also converted to a
33356 negative real number.)
33358 Hours-minutes-seconds forms are stored as @samp{(hms @var{h} @var{m}
33359 @var{s})}, where @var{h} is an integer or an integer-valued float (i.e.,
33360 a float with @samp{@var{exp} >= 0}), @var{m} is an integer or integer-valued
33361 float in the range @w{@samp{[0 ..@: 60)}}, and @var{s} is any real number
33362 in the range @samp{[0 ..@: 60)}.
33364 Date forms are stored as @samp{(date @var{n})}, where @var{n} is
33365 a real number that counts days since midnight on the morning of
33366 January 1, 1 AD@.  If @var{n} is an integer, this is a pure date
33367 form.  If @var{n} is a fraction or float, this is a date/time form.
33369 Modulo forms are stored as @samp{(mod @var{n} @var{m})}, where @var{m} is a
33370 positive real number or HMS form, and @var{n} is a real number or HMS
33371 form in the range @samp{[0 ..@: @var{m})}.
33373 Error forms are stored as @samp{(sdev @var{x} @var{sigma})}, where @var{x}
33374 is the mean value and @var{sigma} is the standard deviation.  Each
33375 component is either a number, an HMS form, or a symbolic object
33376 (a variable or function call).  If @var{sigma} is zero, the value is
33377 converted to a plain real number.  If @var{sigma} is negative or
33378 complex, it is automatically normalized to be a positive real.
33380 Interval forms are stored as @samp{(intv @var{mask} @var{lo} @var{hi})},
33381 where @var{mask} is one of the integers 0, 1, 2, or 3, and @var{lo} and
33382 @var{hi} are real numbers, HMS forms, or symbolic objects.  The @var{mask}
33383 is a binary integer where 1 represents the fact that the interval is
33384 closed on the high end, and 2 represents the fact that it is closed on
33385 the low end.  (Thus 3 represents a fully closed interval.)  The interval
33386 @w{@samp{(intv 3 @var{x} @var{x})}} is converted to the plain number @var{x};
33387 intervals @samp{(intv @var{mask} @var{x} @var{x})} for any other @var{mask}
33388 represent empty intervals.  If @var{hi} is less than @var{lo}, the interval
33389 is converted to a standard empty interval by replacing @var{hi} with @var{lo}.
33391 Vectors are stored as @samp{(vec @var{v1} @var{v2} @dots{})}, where @var{v1}
33392 is the first element of the vector, @var{v2} is the second, and so on.
33393 An empty vector is stored as @samp{(vec)}.  A matrix is simply a vector
33394 where all @var{v}'s are themselves vectors of equal lengths.  Note that
33395 Calc vectors are unrelated to the Emacs Lisp ``vector'' type, which is
33396 generally unused by Calc data structures.
33398 Variables are stored as @samp{(var @var{name} @var{sym})}, where
33399 @var{name} is a Lisp symbol whose print name is used as the visible name
33400 of the variable, and @var{sym} is a Lisp symbol in which the variable's
33401 value is actually stored.  Thus, @samp{(var pi var-pi)} represents the
33402 special constant @samp{pi}.  Almost always, the form is @samp{(var
33403 @var{v} var-@var{v})}.  If the variable name was entered with @code{#}
33404 signs (which are converted to hyphens internally), the form is
33405 @samp{(var @var{u} @var{v})}, where @var{u} is a symbol whose name
33406 contains @code{#} characters, and @var{v} is a symbol that contains
33407 @code{-} characters instead.  The value of a variable is the Calc
33408 object stored in its @var{sym} symbol's value cell.  If the symbol's
33409 value cell is void or if it contains @code{nil}, the variable has no
33410 value.  Special constants have the form @samp{(special-const
33411 @var{value})} stored in their value cell, where @var{value} is a formula
33412 which is evaluated when the constant's value is requested.  Variables
33413 which represent units are not stored in any special way; they are units
33414 only because their names appear in the units table.  If the value
33415 cell contains a string, it is parsed to get the variable's value when
33416 the variable is used.
33418 A Lisp list with any other symbol as the first element is a function call.
33419 The symbols @code{+}, @code{-}, @code{*}, @code{/}, @code{%}, @code{^},
33420 and @code{|} represent special binary operators; these lists are always
33421 of the form @samp{(@var{op} @var{lhs} @var{rhs})} where @var{lhs} is the
33422 sub-formula on the lefthand side and @var{rhs} is the sub-formula on the
33423 right.  The symbol @code{neg} represents unary negation; this list is always
33424 of the form @samp{(neg @var{arg})}.  Any other symbol @var{func} represents a
33425 function that would be displayed in function-call notation; the symbol
33426 @var{func} is in general always of the form @samp{calcFunc-@var{name}}.
33427 The function cell of the symbol @var{func} should contain a Lisp function
33428 for evaluating a call to @var{func}.  This function is passed the remaining
33429 elements of the list (themselves already evaluated) as arguments; such
33430 functions should return @code{nil} or call @code{reject-arg} to signify
33431 that they should be left in symbolic form, or they should return a Calc
33432 object which represents their value, or a list of such objects if they
33433 wish to return multiple values.  (The latter case is allowed only for
33434 functions which are the outer-level call in an expression whose value is
33435 about to be pushed on the stack; this feature is considered obsolete
33436 and is not used by any built-in Calc functions.)
33438 @node Interactive Lisp Functions, Stack Lisp Functions, Data Type Formats, Internals
33439 @subsubsection Interactive Functions
33441 @noindent
33442 The functions described here are used in implementing interactive Calc
33443 commands.  Note that this list is not exhaustive!  If there is an
33444 existing command that behaves similarly to the one you want to define,
33445 you may find helpful tricks by checking the source code for that command.
33447 @defun calc-set-command-flag flag
33448 Set the command flag @var{flag}.  This is generally a Lisp symbol, but
33449 may in fact be anything.  The effect is to add @var{flag} to the list
33450 stored in the variable @code{calc-command-flags}, unless it is already
33451 there.  @xref{Defining Simple Commands}.
33452 @end defun
33454 @defun calc-clear-command-flag flag
33455 If @var{flag} appears among the list of currently-set command flags,
33456 remove it from that list.
33457 @end defun
33459 @defun calc-record-undo rec
33460 Add the ``undo record'' @var{rec} to the list of steps to take if the
33461 current operation should need to be undone.  Stack push and pop functions
33462 automatically call @code{calc-record-undo}, so the kinds of undo records
33463 you might need to create take the form @samp{(set @var{sym} @var{value})},
33464 which says that the Lisp variable @var{sym} was changed and had previously
33465 contained @var{value}; @samp{(store @var{var} @var{value})} which says that
33466 the Calc variable @var{var} (a string which is the name of the symbol that
33467 contains the variable's value) was stored and its previous value was
33468 @var{value} (either a Calc data object, or @code{nil} if the variable was
33469 previously void); or @samp{(eval @var{undo} @var{redo} @var{args} @dots{})},
33470 which means that to undo requires calling the function @samp{(@var{undo}
33471 @var{args} @dots{})} and, if the undo is later redone, calling
33472 @samp{(@var{redo} @var{args} @dots{})}.
33473 @end defun
33475 @defun calc-record-why msg args
33476 Record the error or warning message @var{msg}, which is normally a string.
33477 This message will be replayed if the user types @kbd{w} (@code{calc-why});
33478 if the message string begins with a @samp{*}, it is considered important
33479 enough to display even if the user doesn't type @kbd{w}.  If one or more
33480 @var{args} are present, the displayed message will be of the form,
33481 @samp{@var{msg}: @var{arg1}, @var{arg2}, @dots{}}, where the arguments are
33482 formatted on the assumption that they are either strings or Calc objects of
33483 some sort.  If @var{msg} is a symbol, it is the name of a Calc predicate
33484 (such as @code{integerp} or @code{numvecp}) which the arguments did not
33485 satisfy; it is expanded to a suitable string such as ``Expected an
33486 integer.''  The @code{reject-arg} function calls @code{calc-record-why}
33487 automatically; @pxref{Predicates}.
33488 @end defun
33490 @defun calc-is-inverse
33491 This predicate returns true if the current command is inverse,
33492 i.e., if the Inverse (@kbd{I} key) flag was set.
33493 @end defun
33495 @defun calc-is-hyperbolic
33496 This predicate is the analogous function for the @kbd{H} key.
33497 @end defun
33499 @node Stack Lisp Functions, Predicates, Interactive Lisp Functions, Internals
33500 @subsubsection Stack-Oriented Functions
33502 @noindent
33503 The functions described here perform various operations on the Calc
33504 stack and trail.  They are to be used in interactive Calc commands.
33506 @defun calc-push-list vals n
33507 Push the Calc objects in list @var{vals} onto the stack at stack level
33508 @var{n}.  If @var{n} is omitted it defaults to 1, so that the elements
33509 are pushed at the top of the stack.  If @var{n} is greater than 1, the
33510 elements will be inserted into the stack so that the last element will
33511 end up at level @var{n}, the next-to-last at level @var{n}+1, etc.
33512 The elements of @var{vals} are assumed to be valid Calc objects, and
33513 are not evaluated, rounded, or renormalized in any way.  If @var{vals}
33514 is an empty list, nothing happens.
33516 The stack elements are pushed without any sub-formula selections.
33517 You can give an optional third argument to this function, which must
33518 be a list the same size as @var{vals} of selections.  Each selection
33519 must be @code{eq} to some sub-formula of the corresponding formula
33520 in @var{vals}, or @code{nil} if that formula should have no selection.
33521 @end defun
33523 @defun calc-top-list n m
33524 Return a list of the @var{n} objects starting at level @var{m} of the
33525 stack.  If @var{m} is omitted it defaults to 1, so that the elements are
33526 taken from the top of the stack.  If @var{n} is omitted, it also
33527 defaults to 1, so that the top stack element (in the form of a
33528 one-element list) is returned.  If @var{m} is greater than 1, the
33529 @var{m}th stack element will be at the end of the list, the @var{m}+1st
33530 element will be next-to-last, etc.  If @var{n} or @var{m} are out of
33531 range, the command is aborted with a suitable error message.  If @var{n}
33532 is zero, the function returns an empty list.  The stack elements are not
33533 evaluated, rounded, or renormalized.
33535 If any stack elements contain selections, and selections have not
33536 been disabled by the @kbd{j e} (@code{calc-enable-selections}) command,
33537 this function returns the selected portions rather than the entire
33538 stack elements.  It can be given a third ``selection-mode'' argument
33539 which selects other behaviors.  If it is the symbol @code{t}, then
33540 a selection in any of the requested stack elements produces an
33541 ``invalid operation on selections'' error.  If it is the symbol @code{full},
33542 the whole stack entry is always returned regardless of selections.
33543 If it is the symbol @code{sel}, the selected portion is always returned,
33544 or @code{nil} if there is no selection.  (This mode ignores the @kbd{j e}
33545 command.)  If the symbol is @code{entry}, the complete stack entry in
33546 list form is returned; the first element of this list will be the whole
33547 formula, and the third element will be the selection (or @code{nil}).
33548 @end defun
33550 @defun calc-pop-stack n m
33551 Remove the specified elements from the stack.  The parameters @var{n}
33552 and @var{m} are defined the same as for @code{calc-top-list}.  The return
33553 value of @code{calc-pop-stack} is uninteresting.
33555 If there are any selected sub-formulas among the popped elements, and
33556 @kbd{j e} has not been used to disable selections, this produces an
33557 error without changing the stack.  If you supply an optional third
33558 argument of @code{t}, the stack elements are popped even if they
33559 contain selections.
33560 @end defun
33562 @defun calc-record-list vals tag
33563 This function records one or more results in the trail.  The @var{vals}
33564 are a list of strings or Calc objects.  The @var{tag} is the four-character
33565 tag string to identify the values.  If @var{tag} is omitted, a blank tag
33566 will be used.
33567 @end defun
33569 @defun calc-normalize n
33570 This function takes a Calc object and ``normalizes'' it.  At the very
33571 least this involves re-rounding floating-point values according to the
33572 current precision and other similar jobs.  Also, unless the user has
33573 selected No-Simplify mode (@pxref{Simplification Modes}), this involves
33574 actually evaluating a formula object by executing the function calls
33575 it contains, and possibly also doing algebraic simplification, etc.
33576 @end defun
33578 @defun calc-top-list-n n m
33579 This function is identical to @code{calc-top-list}, except that it calls
33580 @code{calc-normalize} on the values that it takes from the stack.  They
33581 are also passed through @code{check-complete}, so that incomplete
33582 objects will be rejected with an error message.  All computational
33583 commands should use this in preference to @code{calc-top-list}; the only
33584 standard Calc commands that operate on the stack without normalizing
33585 are stack management commands like @code{calc-enter} and @code{calc-roll-up}.
33586 This function accepts the same optional selection-mode argument as
33587 @code{calc-top-list}.
33588 @end defun
33590 @defun calc-top-n m
33591 This function is a convenient form of @code{calc-top-list-n} in which only
33592 a single element of the stack is taken and returned, rather than a list
33593 of elements.  This also accepts an optional selection-mode argument.
33594 @end defun
33596 @defun calc-enter-result n tag vals
33597 This function is a convenient interface to most of the above functions.
33598 The @var{vals} argument should be either a single Calc object, or a list
33599 of Calc objects; the object or objects are normalized, and the top @var{n}
33600 stack entries are replaced by the normalized objects.  If @var{tag} is
33601 non-@code{nil}, the normalized objects are also recorded in the trail.
33602 A typical stack-based computational command would take the form,
33604 @smallexample
33605 (calc-enter-result @var{n} @var{tag} (cons 'calcFunc-@var{func}
33606                                (calc-top-list-n @var{n})))
33607 @end smallexample
33609 If any of the @var{n} stack elements replaced contain sub-formula
33610 selections, and selections have not been disabled by @kbd{j e},
33611 this function takes one of two courses of action.  If @var{n} is
33612 equal to the number of elements in @var{vals}, then each element of
33613 @var{vals} is spliced into the corresponding selection; this is what
33614 happens when you use the @key{TAB} key, or when you use a unary
33615 arithmetic operation like @code{sqrt}.  If @var{vals} has only one
33616 element but @var{n} is greater than one, there must be only one
33617 selection among the top @var{n} stack elements; the element from
33618 @var{vals} is spliced into that selection.  This is what happens when
33619 you use a binary arithmetic operation like @kbd{+}.  Any other
33620 combination of @var{n} and @var{vals} is an error when selections
33621 are present.
33622 @end defun
33624 @defun calc-unary-op tag func arg
33625 This function implements a unary operator that allows a numeric prefix
33626 argument to apply the operator over many stack entries.  If the prefix
33627 argument @var{arg} is @code{nil}, this uses @code{calc-enter-result}
33628 as outlined above.  Otherwise, it maps the function over several stack
33629 elements; @pxref{Prefix Arguments}.  For example,
33631 @smallexample
33632 (defun calc-zeta (arg)
33633   (interactive "P")
33634   (calc-unary-op "zeta" 'calcFunc-zeta arg))
33635 @end smallexample
33636 @end defun
33638 @defun calc-binary-op tag func arg ident unary
33639 This function implements a binary operator, analogously to
33640 @code{calc-unary-op}.  The optional @var{ident} and @var{unary}
33641 arguments specify the behavior when the prefix argument is zero or
33642 one, respectively.  If the prefix is zero, the value @var{ident}
33643 is pushed onto the stack, if specified, otherwise an error message
33644 is displayed.  If the prefix is one, the unary function @var{unary}
33645 is applied to the top stack element, or, if @var{unary} is not
33646 specified, nothing happens.  When the argument is two or more,
33647 the binary function @var{func} is reduced across the top @var{arg}
33648 stack elements; when the argument is negative, the function is
33649 mapped between the next-to-top @mathit{-@var{arg}} stack elements and the
33650 top element.
33651 @end defun
33653 @defun calc-stack-size
33654 Return the number of elements on the stack as an integer.  This count
33655 does not include elements that have been temporarily hidden by stack
33656 truncation; @pxref{Truncating the Stack}.
33657 @end defun
33659 @defun calc-cursor-stack-index n
33660 Move the point to the @var{n}th stack entry.  If @var{n} is zero, this
33661 will be the @samp{.} line.  If @var{n} is from 1 to the current stack size,
33662 this will be the beginning of the first line of that stack entry's display.
33663 If line numbers are enabled, this will move to the first character of the
33664 line number, not the stack entry itself.
33665 @end defun
33667 @defun calc-substack-height n
33668 Return the number of lines between the beginning of the @var{n}th stack
33669 entry and the bottom of the buffer.  If @var{n} is zero, this
33670 will be one (assuming no stack truncation).  If all stack entries are
33671 one line long (i.e., no matrices are displayed), the return value will
33672 be equal @var{n}+1 as long as @var{n} is in range.  (Note that in Big
33673 mode, the return value includes the blank lines that separate stack
33674 entries.)
33675 @end defun
33677 @defun calc-refresh
33678 Erase the @file{*Calculator*} buffer and reformat its contents from memory.
33679 This must be called after changing any parameter, such as the current
33680 display radix, which might change the appearance of existing stack
33681 entries.  (During a keyboard macro invoked by the @kbd{X} key, refreshing
33682 is suppressed, but a flag is set so that the entire stack will be refreshed
33683 rather than just the top few elements when the macro finishes.)
33684 @end defun
33686 @node Predicates, Computational Lisp Functions, Stack Lisp Functions, Internals
33687 @subsubsection Predicates
33689 @noindent
33690 The functions described here are predicates, that is, they return a
33691 true/false value where @code{nil} means false and anything else means
33692 true.  These predicates are expanded by @code{defmath}, for example,
33693 from @code{zerop} to @code{math-zerop}.  In many cases they correspond
33694 to native Lisp functions by the same name, but are extended to cover
33695 the full range of Calc data types.
33697 @defun zerop x
33698 Returns true if @var{x} is numerically zero, in any of the Calc data
33699 types.  (Note that for some types, such as error forms and intervals,
33700 it never makes sense to return true.)  In @code{defmath}, the expression
33701 @samp{(= x 0)} will automatically be converted to @samp{(math-zerop x)},
33702 and @samp{(/= x 0)} will be converted to @samp{(not (math-zerop x))}.
33703 @end defun
33705 @defun negp x
33706 Returns true if @var{x} is negative.  This accepts negative real numbers
33707 of various types, negative HMS and date forms, and intervals in which
33708 all included values are negative.  In @code{defmath}, the expression
33709 @samp{(< x 0)} will automatically be converted to @samp{(math-negp x)},
33710 and @samp{(>= x 0)} will be converted to @samp{(not (math-negp x))}.
33711 @end defun
33713 @defun posp x
33714 Returns true if @var{x} is positive (and non-zero).  For complex
33715 numbers, none of these three predicates will return true.
33716 @end defun
33718 @defun looks-negp x
33719 Returns true if @var{x} is ``negative-looking.''  This returns true if
33720 @var{x} is a negative number, or a formula with a leading minus sign
33721 such as @samp{-a/b}.  In other words, this is an object which can be
33722 made simpler by calling @code{(- @var{x})}.
33723 @end defun
33725 @defun integerp x
33726 Returns true if @var{x} is an integer of any size.
33727 @end defun
33729 @defun fixnump x
33730 Returns true if @var{x} is a native Lisp integer.
33731 @end defun
33733 @defun natnump x
33734 Returns true if @var{x} is a nonnegative integer of any size.
33735 @end defun
33737 @defun fixnatnump x
33738 Returns true if @var{x} is a nonnegative Lisp integer.
33739 @end defun
33741 @defun num-integerp x
33742 Returns true if @var{x} is numerically an integer, i.e., either a
33743 true integer or a float with no significant digits to the right of
33744 the decimal point.
33745 @end defun
33747 @defun messy-integerp x
33748 Returns true if @var{x} is numerically, but not literally, an integer.
33749 A value is @code{num-integerp} if it is @code{integerp} or
33750 @code{messy-integerp} (but it is never both at once).
33751 @end defun
33753 @defun num-natnump x
33754 Returns true if @var{x} is numerically a nonnegative integer.
33755 @end defun
33757 @defun evenp x
33758 Returns true if @var{x} is an even integer.
33759 @end defun
33761 @defun looks-evenp x
33762 Returns true if @var{x} is an even integer, or a formula with a leading
33763 multiplicative coefficient which is an even integer.
33764 @end defun
33766 @defun oddp x
33767 Returns true if @var{x} is an odd integer.
33768 @end defun
33770 @defun ratp x
33771 Returns true if @var{x} is a rational number, i.e., an integer or a
33772 fraction.
33773 @end defun
33775 @defun realp x
33776 Returns true if @var{x} is a real number, i.e., an integer, fraction,
33777 or floating-point number.
33778 @end defun
33780 @defun anglep x
33781 Returns true if @var{x} is a real number or HMS form.
33782 @end defun
33784 @defun floatp x
33785 Returns true if @var{x} is a float, or a complex number, error form,
33786 interval, date form, or modulo form in which at least one component
33787 is a float.
33788 @end defun
33790 @defun complexp x
33791 Returns true if @var{x} is a rectangular or polar complex number
33792 (but not a real number).
33793 @end defun
33795 @defun rect-complexp x
33796 Returns true if @var{x} is a rectangular complex number.
33797 @end defun
33799 @defun polar-complexp x
33800 Returns true if @var{x} is a polar complex number.
33801 @end defun
33803 @defun numberp x
33804 Returns true if @var{x} is a real number or a complex number.
33805 @end defun
33807 @defun scalarp x
33808 Returns true if @var{x} is a real or complex number or an HMS form.
33809 @end defun
33811 @defun vectorp x
33812 Returns true if @var{x} is a vector (this simply checks if its argument
33813 is a list whose first element is the symbol @code{vec}).
33814 @end defun
33816 @defun numvecp x
33817 Returns true if @var{x} is a number or vector.
33818 @end defun
33820 @defun matrixp x
33821 Returns true if @var{x} is a matrix, i.e., a vector of one or more vectors,
33822 all of the same size.
33823 @end defun
33825 @defun square-matrixp x
33826 Returns true if @var{x} is a square matrix.
33827 @end defun
33829 @defun objectp x
33830 Returns true if @var{x} is any numeric Calc object, including real and
33831 complex numbers, HMS forms, date forms, error forms, intervals, and
33832 modulo forms.  (Note that error forms and intervals may include formulas
33833 as their components; see @code{constp} below.)
33834 @end defun
33836 @defun objvecp x
33837 Returns true if @var{x} is an object or a vector.  This also accepts
33838 incomplete objects, but it rejects variables and formulas (except as
33839 mentioned above for @code{objectp}).
33840 @end defun
33842 @defun primp x
33843 Returns true if @var{x} is a ``primitive'' or ``atomic'' Calc object,
33844 i.e., one whose components cannot be regarded as sub-formulas.  This
33845 includes variables, and all @code{objectp} types except error forms
33846 and intervals.
33847 @end defun
33849 @defun constp x
33850 Returns true if @var{x} is constant, i.e., a real or complex number,
33851 HMS form, date form, or error form, interval, or vector all of whose
33852 components are @code{constp}.
33853 @end defun
33855 @defun lessp x y
33856 Returns true if @var{x} is numerically less than @var{y}.  Returns false
33857 if @var{x} is greater than or equal to @var{y}, or if the order is
33858 undefined or cannot be determined.  Generally speaking, this works
33859 by checking whether @samp{@var{x} - @var{y}} is @code{negp}.  In
33860 @code{defmath}, the expression @samp{(< x y)} will automatically be
33861 converted to @samp{(lessp x y)}; expressions involving @code{>}, @code{<=},
33862 and @code{>=} are similarly converted in terms of @code{lessp}.
33863 @end defun
33865 @defun beforep x y
33866 Returns true if @var{x} comes before @var{y} in a canonical ordering
33867 of Calc objects.  If @var{x} and @var{y} are both real numbers, this
33868 will be the same as @code{lessp}.  But whereas @code{lessp} considers
33869 other types of objects to be unordered, @code{beforep} puts any two
33870 objects into a definite, consistent order.  The @code{beforep}
33871 function is used by the @kbd{V S} vector-sorting command, and also
33872 by Calc's algebraic simplifications to put the terms of a product into
33873 canonical order: This allows @samp{x y + y x} to be simplified easily to
33874 @samp{2 x y}.
33875 @end defun
33877 @defun equal x y
33878 This is the standard Lisp @code{equal} predicate; it returns true if
33879 @var{x} and @var{y} are structurally identical.  This is the usual way
33880 to compare numbers for equality, but note that @code{equal} will treat
33881 0 and 0.0 as different.
33882 @end defun
33884 @defun math-equal x y
33885 Returns true if @var{x} and @var{y} are numerically equal, either because
33886 they are @code{equal}, or because their difference is @code{zerop}.  In
33887 @code{defmath}, the expression @samp{(= x y)} will automatically be
33888 converted to @samp{(math-equal x y)}.
33889 @end defun
33891 @defun equal-int x n
33892 Returns true if @var{x} and @var{n} are numerically equal, where @var{n}
33893 is a fixnum which is not a multiple of 10.  This will automatically be
33894 used by @code{defmath} in place of the more general @code{math-equal}
33895 whenever possible.
33896 @end defun
33898 @defun nearly-equal x y
33899 Returns true if @var{x} and @var{y}, as floating-point numbers, are
33900 equal except possibly in the last decimal place.  For example,
33901 314.159 and 314.166 are considered nearly equal if the current
33902 precision is 6 (since they differ by 7 units), but not if the current
33903 precision is 7 (since they differ by 70 units).  Most functions which
33904 use series expansions use @code{with-extra-prec} to evaluate the
33905 series with 2 extra digits of precision, then use @code{nearly-equal}
33906 to decide when the series has converged; this guards against cumulative
33907 error in the series evaluation without doing extra work which would be
33908 lost when the result is rounded back down to the current precision.
33909 In @code{defmath}, this can be written @samp{(~= @var{x} @var{y})}.
33910 The @var{x} and @var{y} can be numbers of any kind, including complex.
33911 @end defun
33913 @defun nearly-zerop x y
33914 Returns true if @var{x} is nearly zero, compared to @var{y}.  This
33915 checks whether @var{x} plus @var{y} would by be @code{nearly-equal}
33916 to @var{y} itself, to within the current precision, in other words,
33917 if adding @var{x} to @var{y} would have a negligible effect on @var{y}
33918 due to roundoff error.  @var{X} may be a real or complex number, but
33919 @var{y} must be real.
33920 @end defun
33922 @defun is-true x
33923 Return true if the formula @var{x} represents a true value in
33924 Calc, not Lisp, terms.  It tests if @var{x} is a non-zero number
33925 or a provably non-zero formula.
33926 @end defun
33928 @defun reject-arg val pred
33929 Abort the current function evaluation due to unacceptable argument values.
33930 This calls @samp{(calc-record-why @var{pred} @var{val})}, then signals a
33931 Lisp error which @code{normalize} will trap.  The net effect is that the
33932 function call which led here will be left in symbolic form.
33933 @end defun
33935 @defun inexact-value
33936 If Symbolic mode is enabled, this will signal an error that causes
33937 @code{normalize} to leave the formula in symbolic form, with the message
33938 ``Inexact result.''  (This function has no effect when not in Symbolic mode.)
33939 Note that if your function calls @samp{(sin 5)} in Symbolic mode, the
33940 @code{sin} function will call @code{inexact-value}, which will cause your
33941 function to be left unsimplified.  You may instead wish to call
33942 @samp{(normalize (list 'calcFunc-sin 5))}, which in Symbolic mode will
33943 return the formula @samp{sin(5)} to your function.
33944 @end defun
33946 @defun overflow
33947 This signals an error that will be reported as a floating-point overflow.
33948 @end defun
33950 @defun underflow
33951 This signals a floating-point underflow.
33952 @end defun
33954 @node Computational Lisp Functions, Vector Lisp Functions, Predicates, Internals
33955 @subsubsection Computational Functions
33957 @noindent
33958 The functions described here do the actual computational work of the
33959 Calculator.  In addition to these, note that any function described in
33960 the main body of this manual may be called from Lisp; for example, if
33961 the documentation refers to the @code{calc-sqrt} [@code{sqrt}] command,
33962 this means @code{calc-sqrt} is an interactive stack-based square-root
33963 command and @code{sqrt} (which @code{defmath} expands to @code{calcFunc-sqrt})
33964 is the actual Lisp function for taking square roots.
33966 The functions @code{math-add}, @code{math-sub}, @code{math-mul},
33967 @code{math-div}, @code{math-mod}, and @code{math-neg} are not included
33968 in this list, since @code{defmath} allows you to write native Lisp
33969 @code{+}, @code{-}, @code{*}, @code{/}, @code{%}, and unary @code{-},
33970 respectively, instead.
33972 @defun normalize val
33973 (Full form: @code{math-normalize}.)
33974 Reduce the value @var{val} to standard form.  For example, if @var{val}
33975 is a fixnum, it will be converted to a bignum if it is too large, and
33976 if @var{val} is a bignum it will be normalized by clipping off trailing
33977 (i.e., most-significant) zero digits and converting to a fixnum if it is
33978 small.  All the various data types are similarly converted to their standard
33979 forms.  Variables are left alone, but function calls are actually evaluated
33980 in formulas.  For example, normalizing @samp{(+ 2 (calcFunc-abs -4))} will
33981 return 6.
33983 If a function call fails, because the function is void or has the wrong
33984 number of parameters, or because it returns @code{nil} or calls
33985 @code{reject-arg} or @code{inexact-result}, @code{normalize} returns
33986 the formula still in symbolic form.
33988 If the current simplification mode is ``none'' or ``numeric arguments
33989 only,'' @code{normalize} will act appropriately.  However, the more
33990 powerful simplification modes (like Algebraic Simplification) are
33991 not handled by @code{normalize}.  They are handled by @code{calc-normalize},
33992 which calls @code{normalize} and possibly some other routines, such
33993 as @code{simplify} or @code{simplify-units}.  Programs generally will
33994 never call @code{calc-normalize} except when popping or pushing values
33995 on the stack.
33996 @end defun
33998 @defun evaluate-expr expr
33999 Replace all variables in @var{expr} that have values with their values,
34000 then use @code{normalize} to simplify the result.  This is what happens
34001 when you press the @kbd{=} key interactively.
34002 @end defun
34004 @defmac with-extra-prec n body
34005 Evaluate the Lisp forms in @var{body} with precision increased by @var{n}
34006 digits.  This is a macro which expands to
34008 @smallexample
34009 (math-normalize
34010   (let ((calc-internal-prec (+ calc-internal-prec @var{n})))
34011     @var{body}))
34012 @end smallexample
34014 The surrounding call to @code{math-normalize} causes a floating-point
34015 result to be rounded down to the original precision afterwards.  This
34016 is important because some arithmetic operations assume a number's
34017 mantissa contains no more digits than the current precision allows.
34018 @end defmac
34020 @defun make-frac n d
34021 Build a fraction @samp{@var{n}:@var{d}}.  This is equivalent to calling
34022 @samp{(normalize (list 'frac @var{n} @var{d}))}, but more efficient.
34023 @end defun
34025 @defun make-float mant exp
34026 Build a floating-point value out of @var{mant} and @var{exp}, both
34027 of which are arbitrary integers.  This function will return a
34028 properly normalized float value, or signal an overflow or underflow
34029 if @var{exp} is out of range.
34030 @end defun
34032 @defun make-sdev x sigma
34033 Build an error form out of @var{x} and the absolute value of @var{sigma}.
34034 If @var{sigma} is zero, the result is the number @var{x} directly.
34035 If @var{sigma} is negative or complex, its absolute value is used.
34036 If @var{x} or @var{sigma} is not a valid type of object for use in
34037 error forms, this calls @code{reject-arg}.
34038 @end defun
34040 @defun make-intv mask lo hi
34041 Build an interval form out of @var{mask} (which is assumed to be an
34042 integer from 0 to 3), and the limits @var{lo} and @var{hi}.  If
34043 @var{lo} is greater than @var{hi}, an empty interval form is returned.
34044 This calls @code{reject-arg} if @var{lo} or @var{hi} is unsuitable.
34045 @end defun
34047 @defun sort-intv mask lo hi
34048 Build an interval form, similar to @code{make-intv}, except that if
34049 @var{lo} is less than @var{hi} they are simply exchanged, and the
34050 bits of @var{mask} are swapped accordingly.
34051 @end defun
34053 @defun make-mod n m
34054 Build a modulo form out of @var{n} and the modulus @var{m}.  Since modulo
34055 forms do not allow formulas as their components, if @var{n} or @var{m}
34056 is not a real number or HMS form the result will be a formula which
34057 is a call to @code{makemod}, the algebraic version of this function.
34058 @end defun
34060 @defun float x
34061 Convert @var{x} to floating-point form.  Integers and fractions are
34062 converted to numerically equivalent floats; components of complex
34063 numbers, vectors, HMS forms, date forms, error forms, intervals, and
34064 modulo forms are recursively floated.  If the argument is a variable
34065 or formula, this calls @code{reject-arg}.
34066 @end defun
34068 @defun compare x y
34069 Compare the numbers @var{x} and @var{y}, and return @mathit{-1} if
34070 @samp{(lessp @var{x} @var{y})}, 1 if @samp{(lessp @var{y} @var{x})},
34071 0 if @samp{(math-equal @var{x} @var{y})}, or 2 if the order is
34072 undefined or cannot be determined.
34073 @end defun
34075 @defun numdigs n
34076 Return the number of digits of integer @var{n}, effectively
34077 @samp{ceil(log10(@var{n}))}, but much more efficient.  Zero is
34078 considered to have zero digits.
34079 @end defun
34081 @defun scale-int x n
34082 Shift integer @var{x} left @var{n} decimal digits, or right @mathit{-@var{n}}
34083 digits with truncation toward zero.
34084 @end defun
34086 @defun scale-rounding x n
34087 Like @code{scale-int}, except that a right shift rounds to the nearest
34088 integer rather than truncating.
34089 @end defun
34091 @defun fixnum n
34092 Return the integer @var{n} as a fixnum, i.e., a native Lisp integer.
34093 If @var{n} is outside the permissible range for Lisp integers (usually
34094 24 binary bits) the result is undefined.
34095 @end defun
34097 @defun sqr x
34098 Compute the square of @var{x}; short for @samp{(* @var{x} @var{x})}.
34099 @end defun
34101 @defun quotient x y
34102 Divide integer @var{x} by integer @var{y}; return an integer quotient
34103 and discard the remainder.  If @var{x} or @var{y} is negative, the
34104 direction of rounding is undefined.
34105 @end defun
34107 @defun idiv x y
34108 Perform an integer division; if @var{x} and @var{y} are both nonnegative
34109 integers, this uses the @code{quotient} function, otherwise it computes
34110 @samp{floor(@var{x}/@var{y})}.  Thus the result is well-defined but
34111 slower than for @code{quotient}.
34112 @end defun
34114 @defun imod x y
34115 Divide integer @var{x} by integer @var{y}; return the integer remainder
34116 and discard the quotient.  Like @code{quotient}, this works only for
34117 integer arguments and is not well-defined for negative arguments.
34118 For a more well-defined result, use @samp{(% @var{x} @var{y})}.
34119 @end defun
34121 @defun idivmod x y
34122 Divide integer @var{x} by integer @var{y}; return a cons cell whose
34123 @code{car} is @samp{(quotient @var{x} @var{y})} and whose @code{cdr}
34124 is @samp{(imod @var{x} @var{y})}.
34125 @end defun
34127 @defun pow x y
34128 Compute @var{x} to the power @var{y}.  In @code{defmath} code, this can
34129 also be written @samp{(^ @var{x} @var{y})} or
34130 @w{@samp{(expt @var{x} @var{y})}}.
34131 @end defun
34133 @defun abs-approx x
34134 Compute a fast approximation to the absolute value of @var{x}.  For
34135 example, for a rectangular complex number the result is the sum of
34136 the absolute values of the components.
34137 @end defun
34139 @findex e
34140 @findex gamma-const
34141 @findex ln-2
34142 @findex ln-10
34143 @findex phi
34144 @findex pi-over-2
34145 @findex pi-over-4
34146 @findex pi-over-180
34147 @findex sqrt-two-pi
34148 @findex sqrt-e
34149 @findex two-pi
34150 @defun pi
34151 The function @samp{(pi)} computes @samp{pi} to the current precision.
34152 Other related constant-generating functions are @code{two-pi},
34153 @code{pi-over-2}, @code{pi-over-4}, @code{pi-over-180}, @code{sqrt-two-pi},
34154 @code{e}, @code{sqrt-e}, @code{ln-2}, @code{ln-10}, @code{phi} and
34155 @code{gamma-const}.  Each function returns a floating-point value in the
34156 current precision, and each uses caching so that all calls after the
34157 first are essentially free.
34158 @end defun
34160 @defmac math-defcache @var{func} @var{initial} @var{form}
34161 This macro, usually used as a top-level call like @code{defun} or
34162 @code{defvar}, defines a new cached constant analogous to @code{pi}, etc.
34163 It defines a function @code{func} which returns the requested value;
34164 if @var{initial} is non-@code{nil} it must be a @samp{(float @dots{})}
34165 form which serves as an initial value for the cache.  If @var{func}
34166 is called when the cache is empty or does not have enough digits to
34167 satisfy the current precision, the Lisp expression @var{form} is evaluated
34168 with the current precision increased by four, and the result minus its
34169 two least significant digits is stored in the cache.  For example,
34170 calling @samp{(pi)} with a precision of 30 computes @samp{pi} to 34
34171 digits, rounds it down to 32 digits for future use, then rounds it
34172 again to 30 digits for use in the present request.
34173 @end defmac
34175 @findex half-circle
34176 @findex quarter-circle
34177 @defun full-circle symb
34178 If the current angular mode is Degrees or HMS, this function returns the
34179 integer 360.  In Radians mode, this function returns either the
34180 corresponding value in radians to the current precision, or the formula
34181 @samp{2*pi}, depending on the Symbolic mode.  There are also similar
34182 function @code{half-circle} and @code{quarter-circle}.
34183 @end defun
34185 @defun power-of-2 n
34186 Compute two to the integer power @var{n}, as a (potentially very large)
34187 integer.  Powers of two are cached, so only the first call for a
34188 particular @var{n} is expensive.
34189 @end defun
34191 @defun integer-log2 n
34192 Compute the base-2 logarithm of @var{n}, which must be an integer which
34193 is a power of two.  If @var{n} is not a power of two, this function will
34194 return @code{nil}.
34195 @end defun
34197 @defun div-mod a b m
34198 Divide @var{a} by @var{b}, modulo @var{m}.  This returns @code{nil} if
34199 there is no solution, or if any of the arguments are not integers.
34200 @end defun
34202 @defun pow-mod a b m
34203 Compute @var{a} to the power @var{b}, modulo @var{m}.  If @var{a},
34204 @var{b}, and @var{m} are integers, this uses an especially efficient
34205 algorithm.  Otherwise, it simply computes @samp{(% (^ a b) m)}.
34206 @end defun
34208 @defun isqrt n
34209 Compute the integer square root of @var{n}.  This is the square root
34210 of @var{n} rounded down toward zero, i.e., @samp{floor(sqrt(@var{n}))}.
34211 If @var{n} is itself an integer, the computation is especially efficient.
34212 @end defun
34214 @defun to-hms a ang
34215 Convert the argument @var{a} into an HMS form.  If @var{ang} is specified,
34216 it is the angular mode in which to interpret @var{a}, either @code{deg}
34217 or @code{rad}.  Otherwise, the current angular mode is used.  If @var{a}
34218 is already an HMS form it is returned as-is.
34219 @end defun
34221 @defun from-hms a ang
34222 Convert the HMS form @var{a} into a real number.  If @var{ang} is specified,
34223 it is the angular mode in which to express the result, otherwise the
34224 current angular mode is used.  If @var{a} is already a real number, it
34225 is returned as-is.
34226 @end defun
34228 @defun to-radians a
34229 Convert the number or HMS form @var{a} to radians from the current
34230 angular mode.
34231 @end defun
34233 @defun from-radians a
34234 Convert the number @var{a} from radians to the current angular mode.
34235 If @var{a} is a formula, this returns the formula @samp{deg(@var{a})}.
34236 @end defun
34238 @defun to-radians-2 a
34239 Like @code{to-radians}, except that in Symbolic mode a degrees to
34240 radians conversion yields a formula like @samp{@var{a}*pi/180}.
34241 @end defun
34243 @defun from-radians-2 a
34244 Like @code{from-radians}, except that in Symbolic mode a radians to
34245 degrees conversion yields a formula like @samp{@var{a}*180/pi}.
34246 @end defun
34248 @defun random-digit
34249 Produce a random base-1000 digit in the range 0 to 999.
34250 @end defun
34252 @defun random-digits n
34253 Produce a random @var{n}-digit integer; this will be an integer
34254 in the interval @samp{[0, 10^@var{n})}.
34255 @end defun
34257 @defun random-float
34258 Produce a random float in the interval @samp{[0, 1)}.
34259 @end defun
34261 @defun prime-test n iters
34262 Determine whether the integer @var{n} is prime.  Return a list which has
34263 one of these forms: @samp{(nil @var{f})} means the number is non-prime
34264 because it was found to be divisible by @var{f}; @samp{(nil)} means it
34265 was found to be non-prime by table look-up (so no factors are known);
34266 @samp{(nil unknown)} means it is definitely non-prime but no factors
34267 are known because @var{n} was large enough that Fermat's probabilistic
34268 test had to be used; @samp{(t)} means the number is definitely prime;
34269 and @samp{(maybe @var{i} @var{p})} means that Fermat's test, after @var{i}
34270 iterations, is @var{p} percent sure that the number is prime.  The
34271 @var{iters} parameter is the number of Fermat iterations to use, in the
34272 case that this is necessary.  If @code{prime-test} returns ``maybe,''
34273 you can call it again with the same @var{n} to get a greater certainty;
34274 @code{prime-test} remembers where it left off.
34275 @end defun
34277 @defun to-simple-fraction f
34278 If @var{f} is a floating-point number which can be represented exactly
34279 as a small rational number, return that number, else return @var{f}.
34280 For example, 0.75 would be converted to 3:4.  This function is very
34281 fast.
34282 @end defun
34284 @defun to-fraction f tol
34285 Find a rational approximation to floating-point number @var{f} to within
34286 a specified tolerance @var{tol}; this corresponds to the algebraic
34287 function @code{frac}, and can be rather slow.
34288 @end defun
34290 @defun quarter-integer n
34291 If @var{n} is an integer or integer-valued float, this function
34292 returns zero.  If @var{n} is a half-integer (i.e., an integer plus
34293 @mathit{1:2} or 0.5), it returns 2.  If @var{n} is a quarter-integer,
34294 it returns 1 or 3.  If @var{n} is anything else, this function
34295 returns @code{nil}.
34296 @end defun
34298 @node Vector Lisp Functions, Symbolic Lisp Functions, Computational Lisp Functions, Internals
34299 @subsubsection Vector Functions
34301 @noindent
34302 The functions described here perform various operations on vectors and
34303 matrices.
34305 @defun math-concat x y
34306 Do a vector concatenation; this operation is written @samp{@var{x} | @var{y}}
34307 in a symbolic formula.  @xref{Building Vectors}.
34308 @end defun
34310 @defun vec-length v
34311 Return the length of vector @var{v}.  If @var{v} is not a vector, the
34312 result is zero.  If @var{v} is a matrix, this returns the number of
34313 rows in the matrix.
34314 @end defun
34316 @defun mat-dimens m
34317 Determine the dimensions of vector or matrix @var{m}.  If @var{m} is not
34318 a vector, the result is an empty list.  If @var{m} is a plain vector
34319 but not a matrix, the result is a one-element list containing the length
34320 of the vector.  If @var{m} is a matrix with @var{r} rows and @var{c} columns,
34321 the result is the list @samp{(@var{r} @var{c})}.  Higher-order tensors
34322 produce lists of more than two dimensions.  Note that the object
34323 @samp{[[1, 2, 3], [4, 5]]} is a vector of vectors not all the same size,
34324 and is treated by this and other Calc routines as a plain vector of two
34325 elements.
34326 @end defun
34328 @defun dimension-error
34329 Abort the current function with a message of ``Dimension error.''
34330 The Calculator will leave the function being evaluated in symbolic
34331 form; this is really just a special case of @code{reject-arg}.
34332 @end defun
34334 @defun build-vector args
34335 Return a Calc vector with @var{args} as elements.
34336 For example, @samp{(build-vector 1 2 3)} returns the Calc vector
34337 @samp{[1, 2, 3]}, stored internally as the list @samp{(vec 1 2 3)}.
34338 @end defun
34340 @defun make-vec obj dims
34341 Return a Calc vector or matrix all of whose elements are equal to
34342 @var{obj}.  For example, @samp{(make-vec 27 3 4)} returns a 3x4 matrix
34343 filled with 27's.
34344 @end defun
34346 @defun row-matrix v
34347 If @var{v} is a plain vector, convert it into a row matrix, i.e.,
34348 a matrix whose single row is @var{v}.  If @var{v} is already a matrix,
34349 leave it alone.
34350 @end defun
34352 @defun col-matrix v
34353 If @var{v} is a plain vector, convert it into a column matrix, i.e., a
34354 matrix with each element of @var{v} as a separate row.  If @var{v} is
34355 already a matrix, leave it alone.
34356 @end defun
34358 @defun map-vec f v
34359 Map the Lisp function @var{f} over the Calc vector @var{v}.  For example,
34360 @samp{(map-vec 'math-floor v)} returns a vector of the floored components
34361 of vector @var{v}.
34362 @end defun
34364 @defun map-vec-2 f a b
34365 Map the Lisp function @var{f} over the two vectors @var{a} and @var{b}.
34366 If @var{a} and @var{b} are vectors of equal length, the result is a
34367 vector of the results of calling @samp{(@var{f} @var{ai} @var{bi})}
34368 for each pair of elements @var{ai} and @var{bi}.  If either @var{a} or
34369 @var{b} is a scalar, it is matched with each value of the other vector.
34370 For example, @samp{(map-vec-2 'math-add v 1)} returns the vector @var{v}
34371 with each element increased by one.  Note that using @samp{'+} would not
34372 work here, since @code{defmath} does not expand function names everywhere,
34373 just where they are in the function position of a Lisp expression.
34374 @end defun
34376 @defun reduce-vec f v
34377 Reduce the function @var{f} over the vector @var{v}.  For example, if
34378 @var{v} is @samp{[10, 20, 30, 40]}, this calls @samp{(f (f (f 10 20) 30) 40)}.
34379 If @var{v} is a matrix, this reduces over the rows of @var{v}.
34380 @end defun
34382 @defun reduce-cols f m
34383 Reduce the function @var{f} over the columns of matrix @var{m}.  For
34384 example, if @var{m} is @samp{[[1, 2], [3, 4], [5, 6]]}, the result
34385 is a vector of the two elements @samp{(f (f 1 3) 5)} and @samp{(f (f 2 4) 6)}.
34386 @end defun
34388 @defun mat-row m n
34389 Return the @var{n}th row of matrix @var{m}.  This is equivalent to
34390 @samp{(elt m n)}.  For a slower but safer version, use @code{mrow}.
34391 (@xref{Extracting Elements}.)
34392 @end defun
34394 @defun mat-col m n
34395 Return the @var{n}th column of matrix @var{m}, in the form of a vector.
34396 The arguments are not checked for correctness.
34397 @end defun
34399 @defun mat-less-row m n
34400 Return a copy of matrix @var{m} with its @var{n}th row deleted.  The
34401 number @var{n} must be in range from 1 to the number of rows in @var{m}.
34402 @end defun
34404 @defun mat-less-col m n
34405 Return a copy of matrix @var{m} with its @var{n}th column deleted.
34406 @end defun
34408 @defun transpose m
34409 Return the transpose of matrix @var{m}.
34410 @end defun
34412 @defun flatten-vector v
34413 Flatten nested vector @var{v} into a vector of scalars.  For example,
34414 if @var{v} is @samp{[[1, 2, 3], [4, 5]]} the result is @samp{[1, 2, 3, 4, 5]}.
34415 @end defun
34417 @defun copy-matrix m
34418 If @var{m} is a matrix, return a copy of @var{m}.  This maps
34419 @code{copy-sequence} over the rows of @var{m}; in Lisp terms, each
34420 element of the result matrix will be @code{eq} to the corresponding
34421 element of @var{m}, but none of the @code{cons} cells that make up
34422 the structure of the matrix will be @code{eq}.  If @var{m} is a plain
34423 vector, this is the same as @code{copy-sequence}.
34424 @end defun
34426 @defun swap-rows m r1 r2
34427 Exchange rows @var{r1} and @var{r2} of matrix @var{m} in-place.  In
34428 other words, unlike most of the other functions described here, this
34429 function changes @var{m} itself rather than building up a new result
34430 matrix.  The return value is @var{m}, i.e., @samp{(eq (swap-rows m 1 2) m)}
34431 is true, with the side effect of exchanging the first two rows of
34432 @var{m}.
34433 @end defun
34435 @node Symbolic Lisp Functions, Formatting Lisp Functions, Vector Lisp Functions, Internals
34436 @subsubsection Symbolic Functions
34438 @noindent
34439 The functions described here operate on symbolic formulas in the
34440 Calculator.
34442 @defun calc-prepare-selection num
34443 Prepare a stack entry for selection operations.  If @var{num} is
34444 omitted, the stack entry containing the cursor is used; otherwise,
34445 it is the number of the stack entry to use.  This function stores
34446 useful information about the current stack entry into a set of
34447 variables.  @code{calc-selection-cache-num} contains the number of
34448 the stack entry involved (equal to @var{num} if you specified it);
34449 @code{calc-selection-cache-entry} contains the stack entry as a
34450 list (such as @code{calc-top-list} would return with @code{entry}
34451 as the selection mode); and @code{calc-selection-cache-comp} contains
34452 a special ``tagged'' composition (@pxref{Formatting Lisp Functions})
34453 which allows Calc to relate cursor positions in the buffer with
34454 their corresponding sub-formulas.
34456 A slight complication arises in the selection mechanism because
34457 formulas may contain small integers.  For example, in the vector
34458 @samp{[1, 2, 1]} the first and last elements are @code{eq} to each
34459 other; selections are recorded as the actual Lisp object that
34460 appears somewhere in the tree of the whole formula, but storing
34461 @code{1} would falsely select both @code{1}'s in the vector.  So
34462 @code{calc-prepare-selection} also checks the stack entry and
34463 replaces any plain integers with ``complex number'' lists of the form
34464 @samp{(cplx @var{n} 0)}.  This list will be displayed the same as a
34465 plain @var{n} and the change will be completely invisible to the
34466 user, but it will guarantee that no two sub-formulas of the stack
34467 entry will be @code{eq} to each other.  Next time the stack entry
34468 is involved in a computation, @code{calc-normalize} will replace
34469 these lists with plain numbers again, again invisibly to the user.
34470 @end defun
34472 @defun calc-encase-atoms x
34473 This modifies the formula @var{x} to ensure that each part of the
34474 formula is a unique atom, using the @samp{(cplx @var{n} 0)} trick
34475 described above.  This function may use @code{setcar} to modify
34476 the formula in-place.
34477 @end defun
34479 @defun calc-find-selected-part
34480 Find the smallest sub-formula of the current formula that contains
34481 the cursor.  This assumes @code{calc-prepare-selection} has been
34482 called already.  If the cursor is not actually on any part of the
34483 formula, this returns @code{nil}.
34484 @end defun
34486 @defun calc-change-current-selection selection
34487 Change the currently prepared stack element's selection to
34488 @var{selection}, which should be @code{eq} to some sub-formula
34489 of the stack element, or @code{nil} to unselect the formula.
34490 The stack element's appearance in the Calc buffer is adjusted
34491 to reflect the new selection.
34492 @end defun
34494 @defun calc-find-nth-part expr n
34495 Return the @var{n}th sub-formula of @var{expr}.  This function is used
34496 by the selection commands, and (unless @kbd{j b} has been used) treats
34497 sums and products as flat many-element formulas.  Thus if @var{expr}
34498 is @samp{((a + b) - c) + d}, calling @code{calc-find-nth-part} with
34499 @var{n} equal to four will return @samp{d}.
34500 @end defun
34502 @defun calc-find-parent-formula expr part
34503 Return the sub-formula of @var{expr} which immediately contains
34504 @var{part}.  If @var{expr} is @samp{a*b + (c+1)*d} and @var{part}
34505 is @code{eq} to the @samp{c+1} term of @var{expr}, then this function
34506 will return @samp{(c+1)*d}.  If @var{part} turns out not to be a
34507 sub-formula of @var{expr}, the function returns @code{nil}.  If
34508 @var{part} is @code{eq} to @var{expr}, the function returns @code{t}.
34509 This function does not take associativity into account.
34510 @end defun
34512 @defun calc-find-assoc-parent-formula expr part
34513 This is the same as @code{calc-find-parent-formula}, except that
34514 (unless @kbd{j b} has been used) it continues widening the selection
34515 to contain a complete level of the formula.  Given @samp{a} from
34516 @samp{((a + b) - c) + d}, @code{calc-find-parent-formula} will
34517 return @samp{a + b} but @code{calc-find-assoc-parent-formula} will
34518 return the whole expression.
34519 @end defun
34521 @defun calc-grow-assoc-formula expr part
34522 This expands sub-formula @var{part} of @var{expr} to encompass a
34523 complete level of the formula.  If @var{part} and its immediate
34524 parent are not compatible associative operators, or if @kbd{j b}
34525 has been used, this simply returns @var{part}.
34526 @end defun
34528 @defun calc-find-sub-formula expr part
34529 This finds the immediate sub-formula of @var{expr} which contains
34530 @var{part}.  It returns an index @var{n} such that
34531 @samp{(calc-find-nth-part @var{expr} @var{n})} would return @var{part}.
34532 If @var{part} is not a sub-formula of @var{expr}, it returns @code{nil}.
34533 If @var{part} is @code{eq} to @var{expr}, it returns @code{t}.  This
34534 function does not take associativity into account.
34535 @end defun
34537 @defun calc-replace-sub-formula expr old new
34538 This function returns a copy of formula @var{expr}, with the
34539 sub-formula that is @code{eq} to @var{old} replaced by @var{new}.
34540 @end defun
34542 @defun simplify expr
34543 Simplify the expression @var{expr} by applying Calc's algebraic
34544 simplifications.  This  always returns a copy of the expression; the
34545 structure @var{expr} points to remains unchanged in memory.
34547 More precisely, here is what @code{simplify} does:  The expression is
34548 first normalized and evaluated by calling @code{normalize}.  If any
34549 @code{AlgSimpRules} have been defined, they are then applied.  Then
34550 the expression is traversed in a depth-first, bottom-up fashion; at
34551 each level, any simplifications that can be made are made until no
34552 further changes are possible.  Once the entire formula has been
34553 traversed in this way, it is compared with the original formula (from
34554 before the call to @code{normalize}) and, if it has changed,
34555 the entire procedure is repeated (starting with @code{normalize})
34556 until no further changes occur.  Usually only two iterations are
34557 needed: one to simplify the formula, and another to verify that no
34558 further simplifications were possible.
34559 @end defun
34561 @defun simplify-extended expr
34562 Simplify the expression @var{expr}, with additional rules enabled that
34563 help do a more thorough job, while not being entirely ``safe'' in all
34564 circumstances.  (For example, this mode will simplify @samp{sqrt(x^2)}
34565 to @samp{x}, which is only valid when @var{x} is positive.)  This is
34566 implemented by temporarily binding the variable @code{math-living-dangerously}
34567 to @code{t} (using a @code{let} form) and calling @code{simplify}.
34568 Dangerous simplification rules are written to check this variable
34569 before taking any action.
34570 @end defun
34572 @defun simplify-units expr
34573 Simplify the expression @var{expr}, treating variable names as units
34574 whenever possible.  This works by binding the variable
34575 @code{math-simplifying-units} to @code{t} while calling @code{simplify}.
34576 @end defun
34578 @defmac math-defsimplify funcs body
34579 Register a new simplification rule; this is normally called as a top-level
34580 form, like @code{defun} or @code{defmath}.  If @var{funcs} is a symbol
34581 (like @code{+} or @code{calcFunc-sqrt}), this simplification rule is
34582 applied to the formulas which are calls to the specified function.  Or,
34583 @var{funcs} can be a list of such symbols; the rule applies to all
34584 functions on the list.  The @var{body} is written like the body of a
34585 function with a single argument called @code{expr}.  The body will be
34586 executed with @code{expr} bound to a formula which is a call to one of
34587 the functions @var{funcs}.  If the function body returns @code{nil}, or
34588 if it returns a result @code{equal} to the original @code{expr}, it is
34589 ignored and Calc goes on to try the next simplification rule that applies.
34590 If the function body returns something different, that new formula is
34591 substituted for @var{expr} in the original formula.
34593 At each point in the formula, rules are tried in the order of the
34594 original calls to @code{math-defsimplify}; the search stops after the
34595 first rule that makes a change.  Thus later rules for that same
34596 function will not have a chance to trigger until the next iteration
34597 of the main @code{simplify} loop.
34599 Note that, since @code{defmath} is not being used here, @var{body} must
34600 be written in true Lisp code without the conveniences that @code{defmath}
34601 provides.  If you prefer, you can have @var{body} simply call another
34602 function (defined with @code{defmath}) which does the real work.
34604 The arguments of a function call will already have been simplified
34605 before any rules for the call itself are invoked.  Since a new argument
34606 list is consed up when this happens, this means that the rule's body is
34607 allowed to rearrange the function's arguments destructively if that is
34608 convenient.  Here is a typical example of a simplification rule:
34610 @smallexample
34611 (math-defsimplify calcFunc-arcsinh
34612   (or (and (math-looks-negp (nth 1 expr))
34613            (math-neg (list 'calcFunc-arcsinh
34614                            (math-neg (nth 1 expr)))))
34615       (and (eq (car-safe (nth 1 expr)) 'calcFunc-sinh)
34616            (or math-living-dangerously
34617                (math-known-realp (nth 1 (nth 1 expr))))
34618            (nth 1 (nth 1 expr)))))
34619 @end smallexample
34621 This is really a pair of rules written with one @code{math-defsimplify}
34622 for convenience; the first replaces @samp{arcsinh(-x)} with
34623 @samp{-arcsinh(x)}, and the second, which is safe only for real @samp{x},
34624 replaces @samp{arcsinh(sinh(x))} with @samp{x}.
34625 @end defmac
34627 @defun common-constant-factor expr
34628 Check @var{expr} to see if it is a sum of terms all multiplied by the
34629 same rational value.  If so, return this value.  If not, return @code{nil}.
34630 For example, if called on @samp{6x + 9y + 12z}, it would return 3, since
34631 3 is a common factor of all the terms.
34632 @end defun
34634 @defun cancel-common-factor expr factor
34635 Assuming @var{expr} is a sum with @var{factor} as a common factor,
34636 divide each term of the sum by @var{factor}.  This is done by
34637 destructively modifying parts of @var{expr}, on the assumption that
34638 it is being used by a simplification rule (where such things are
34639 allowed; see above).  For example, consider this built-in rule for
34640 square roots:
34642 @smallexample
34643 (math-defsimplify calcFunc-sqrt
34644   (let ((fac (math-common-constant-factor (nth 1 expr))))
34645     (and fac (not (eq fac 1))
34646          (math-mul (math-normalize (list 'calcFunc-sqrt fac))
34647                    (math-normalize
34648                     (list 'calcFunc-sqrt
34649                           (math-cancel-common-factor
34650                            (nth 1 expr) fac)))))))
34651 @end smallexample
34652 @end defun
34654 @defun frac-gcd a b
34655 Compute a ``rational GCD'' of @var{a} and @var{b}, which must both be
34656 rational numbers.  This is the fraction composed of the GCD of the
34657 numerators of @var{a} and @var{b}, over the GCD of the denominators.
34658 It is used by @code{common-constant-factor}.  Note that the standard
34659 @code{gcd} function uses the LCM to combine the denominators.
34660 @end defun
34662 @defun map-tree func expr many
34663 Try applying Lisp function @var{func} to various sub-expressions of
34664 @var{expr}.  Initially, call @var{func} with @var{expr} itself as an
34665 argument.  If this returns an expression which is not @code{equal} to
34666 @var{expr}, apply @var{func} again until eventually it does return
34667 @var{expr} with no changes.  Then, if @var{expr} is a function call,
34668 recursively apply @var{func} to each of the arguments.  This keeps going
34669 until no changes occur anywhere in the expression; this final expression
34670 is returned by @code{map-tree}.  Note that, unlike simplification rules,
34671 @var{func} functions may @emph{not} make destructive changes to
34672 @var{expr}.  If a third argument @var{many} is provided, it is an
34673 integer which says how many times @var{func} may be applied; the
34674 default, as described above, is infinitely many times.
34675 @end defun
34677 @defun compile-rewrites rules
34678 Compile the rewrite rule set specified by @var{rules}, which should
34679 be a formula that is either a vector or a variable name.  If the latter,
34680 the compiled rules are saved so that later @code{compile-rules} calls
34681 for that same variable can return immediately.  If there are problems
34682 with the rules, this function calls @code{error} with a suitable
34683 message.
34684 @end defun
34686 @defun apply-rewrites expr crules heads
34687 Apply the compiled rewrite rule set @var{crules} to the expression
34688 @var{expr}.  This will make only one rewrite and only checks at the
34689 top level of the expression.  The result @code{nil} if no rules
34690 matched, or if the only rules that matched did not actually change
34691 the expression.  The @var{heads} argument is optional; if is given,
34692 it should be a list of all function names that (may) appear in
34693 @var{expr}.  The rewrite compiler tags each rule with the
34694 rarest-looking function name in the rule; if you specify @var{heads},
34695 @code{apply-rewrites} can use this information to narrow its search
34696 down to just a few rules in the rule set.
34697 @end defun
34699 @defun rewrite-heads expr
34700 Compute a @var{heads} list for @var{expr} suitable for use with
34701 @code{apply-rewrites}, as discussed above.
34702 @end defun
34704 @defun rewrite expr rules many
34705 This is an all-in-one rewrite function.  It compiles the rule set
34706 specified by @var{rules}, then uses @code{map-tree} to apply the
34707 rules throughout @var{expr} up to @var{many} (default infinity)
34708 times.
34709 @end defun
34711 @defun match-patterns pat vec not-flag
34712 Given a Calc vector @var{vec} and an uncompiled pattern set or
34713 pattern set variable @var{pat}, this function returns a new vector
34714 of all elements of @var{vec} which do (or don't, if @var{not-flag} is
34715 non-@code{nil}) match any of the patterns in @var{pat}.
34716 @end defun
34718 @defun deriv expr var value symb
34719 Compute the derivative of @var{expr} with respect to variable @var{var}
34720 (which may actually be any sub-expression).  If @var{value} is specified,
34721 the derivative is evaluated at the value of @var{var}; otherwise, the
34722 derivative is left in terms of @var{var}.  If the expression contains
34723 functions for which no derivative formula is known, new derivative
34724 functions are invented by adding primes to the names; @pxref{Calculus}.
34725 However, if @var{symb} is non-@code{nil}, the presence of nondifferentiable
34726 functions in @var{expr} instead cancels the whole differentiation, and
34727 @code{deriv} returns @code{nil} instead.
34729 Derivatives of an @var{n}-argument function can be defined by
34730 adding a @code{math-derivative-@var{n}} property to the property list
34731 of the symbol for the function's derivative, which will be the
34732 function name followed by an apostrophe.  The value of the property
34733 should be a Lisp function; it is called with the same arguments as the
34734 original function call that is being differentiated.  It should return
34735 a formula for the derivative.  For example, the derivative of @code{ln}
34736 is defined by
34738 @smallexample
34739 (put 'calcFunc-ln\' 'math-derivative-1
34740      (function (lambda (u) (math-div 1 u))))
34741 @end smallexample
34743 The two-argument @code{log} function has two derivatives,
34744 @smallexample
34745 (put 'calcFunc-log\' 'math-derivative-2     ; d(log(x,b)) / dx
34746      (function (lambda (x b) ... )))
34747 (put 'calcFunc-log\'2 'math-derivative-2    ; d(log(x,b)) / db
34748      (function (lambda (x b) ... )))
34749 @end smallexample
34750 @end defun
34752 @defun tderiv expr var value symb
34753 Compute the total derivative of @var{expr}.  This is the same as
34754 @code{deriv}, except that variables other than @var{var} are not
34755 assumed to be constant with respect to @var{var}.
34756 @end defun
34758 @defun integ expr var low high
34759 Compute the integral of @var{expr} with respect to @var{var}.
34760 @xref{Calculus}, for further details.
34761 @end defun
34763 @defmac math-defintegral funcs body
34764 Define a rule for integrating a function or functions of one argument;
34765 this macro is very similar in format to @code{math-defsimplify}.
34766 The main difference is that here @var{body} is the body of a function
34767 with a single argument @code{u} which is bound to the argument to the
34768 function being integrated, not the function call itself.  Also, the
34769 variable of integration is available as @code{math-integ-var}.  If
34770 evaluation of the integral requires doing further integrals, the body
34771 should call @samp{(math-integral @var{x})} to find the integral of
34772 @var{x} with respect to @code{math-integ-var}; this function returns
34773 @code{nil} if the integral could not be done.  Some examples:
34775 @smallexample
34776 (math-defintegral calcFunc-conj
34777   (let ((int (math-integral u)))
34778     (and int
34779          (list 'calcFunc-conj int))))
34781 (math-defintegral calcFunc-cos
34782   (and (equal u math-integ-var)
34783        (math-from-radians-2 (list 'calcFunc-sin u))))
34784 @end smallexample
34786 In the @code{cos} example, we define only the integral of @samp{cos(x) dx},
34787 relying on the general integration-by-substitution facility to handle
34788 cosines of more complicated arguments.  An integration rule should return
34789 @code{nil} if it can't do the integral; if several rules are defined for
34790 the same function, they are tried in order until one returns a non-@code{nil}
34791 result.
34792 @end defmac
34794 @defmac math-defintegral-2 funcs body
34795 Define a rule for integrating a function or functions of two arguments.
34796 This is exactly analogous to @code{math-defintegral}, except that @var{body}
34797 is written as the body of a function with two arguments, @var{u} and
34798 @var{v}.
34799 @end defmac
34801 @defun solve-for lhs rhs var full
34802 Attempt to solve the equation @samp{@var{lhs} = @var{rhs}} by isolating
34803 the variable @var{var} on the lefthand side; return the resulting righthand
34804 side, or @code{nil} if the equation cannot be solved.  The variable
34805 @var{var} must appear at least once in @var{lhs} or @var{rhs}.  Note that
34806 the return value is a formula which does not contain @var{var}; this is
34807 different from the user-level @code{solve} and @code{finv} functions,
34808 which return a rearranged equation or a functional inverse, respectively.
34809 If @var{full} is non-@code{nil}, a full solution including dummy signs
34810 and dummy integers will be produced.  User-defined inverses are provided
34811 as properties in a manner similar to derivatives:
34813 @smallexample
34814 (put 'calcFunc-ln 'math-inverse
34815      (function (lambda (x) (list 'calcFunc-exp x))))
34816 @end smallexample
34818 This function can call @samp{(math-solve-get-sign @var{x})} to create
34819 a new arbitrary sign variable, returning @var{x} times that sign, and
34820 @samp{(math-solve-get-int @var{x})} to create a new arbitrary integer
34821 variable multiplied by @var{x}.  These functions simply return @var{x}
34822 if the caller requested a non-``full'' solution.
34823 @end defun
34825 @defun solve-eqn expr var full
34826 This version of @code{solve-for} takes an expression which will
34827 typically be an equation or inequality.  (If it is not, it will be
34828 interpreted as the equation @samp{@var{expr} = 0}.)  It returns an
34829 equation or inequality, or @code{nil} if no solution could be found.
34830 @end defun
34832 @defun solve-system exprs vars full
34833 This function solves a system of equations.  Generally, @var{exprs}
34834 and @var{vars} will be vectors of equal length.
34835 @xref{Solving Systems of Equations}, for other options.
34836 @end defun
34838 @defun expr-contains expr var
34839 Returns a non-@code{nil} value if @var{var} occurs as a subexpression
34840 of @var{expr}.
34842 This function might seem at first to be identical to
34843 @code{calc-find-sub-formula}.  The key difference is that
34844 @code{expr-contains} uses @code{equal} to test for matches, whereas
34845 @code{calc-find-sub-formula} uses @code{eq}.  In the formula
34846 @samp{f(a, a)}, the two @samp{a}s will be @code{equal} but not
34847 @code{eq} to each other.
34848 @end defun
34850 @defun expr-contains-count expr var
34851 Returns the number of occurrences of @var{var} as a subexpression
34852 of @var{expr}, or @code{nil} if there are no occurrences.
34853 @end defun
34855 @defun expr-depends expr var
34856 Returns true if @var{expr} refers to any variable the occurs in @var{var}.
34857 In other words, it checks if @var{expr} and @var{var} have any variables
34858 in common.
34859 @end defun
34861 @defun expr-contains-vars expr
34862 Return true if @var{expr} contains any variables, or @code{nil} if @var{expr}
34863 contains only constants and functions with constant arguments.
34864 @end defun
34866 @defun expr-subst expr old new
34867 Returns a copy of @var{expr}, with all occurrences of @var{old} replaced
34868 by @var{new}.  This treats @code{lambda} forms specially with respect
34869 to the dummy argument variables, so that the effect is always to return
34870 @var{expr} evaluated at @var{old} = @var{new}.
34871 @end defun
34873 @defun multi-subst expr old new
34874 This is like @code{expr-subst}, except that @var{old} and @var{new}
34875 are lists of expressions to be substituted simultaneously.  If one
34876 list is shorter than the other, trailing elements of the longer list
34877 are ignored.
34878 @end defun
34880 @defun expr-weight expr
34881 Returns the ``weight'' of @var{expr}, basically a count of the total
34882 number of objects and function calls that appear in @var{expr}.  For
34883 ``primitive'' objects, this will be one.
34884 @end defun
34886 @defun expr-height expr
34887 Returns the ``height'' of @var{expr}, which is the deepest level to
34888 which function calls are nested.  (Note that @samp{@var{a} + @var{b}}
34889 counts as a function call.)  For primitive objects, this returns zero.
34890 @end defun
34892 @defun polynomial-p expr var
34893 Check if @var{expr} is a polynomial in variable (or sub-expression)
34894 @var{var}.  If so, return the degree of the polynomial, that is, the
34895 highest power of @var{var} that appears in @var{expr}.  For example,
34896 for @samp{(x^2 + 3)^3 + 4} this would return 6.  This function returns
34897 @code{nil} unless @var{expr}, when expanded out by @kbd{a x}
34898 (@code{calc-expand}), would consist of a sum of terms in which @var{var}
34899 appears only raised to nonnegative integer powers.  Note that if
34900 @var{var} does not occur in @var{expr}, then @var{expr} is considered
34901 a polynomial of degree 0.
34902 @end defun
34904 @defun is-polynomial expr var degree loose
34905 Check if @var{expr} is a polynomial in variable or sub-expression
34906 @var{var}, and, if so, return a list representation of the polynomial
34907 where the elements of the list are coefficients of successive powers of
34908 @var{var}: @samp{@var{a} + @var{b} x + @var{c} x^3} would produce the
34909 list @samp{(@var{a} @var{b} 0 @var{c})}, and @samp{(x + 1)^2} would
34910 produce the list @samp{(1 2 1)}.  The highest element of the list will
34911 be non-zero, with the special exception that if @var{expr} is the
34912 constant zero, the returned value will be @samp{(0)}.  Return @code{nil}
34913 if @var{expr} is not a polynomial in @var{var}.  If @var{degree} is
34914 specified, this will not consider polynomials of degree higher than that
34915 value.  This is a good precaution because otherwise an input of
34916 @samp{(x+1)^1000} will cause a huge coefficient list to be built.  If
34917 @var{loose} is non-@code{nil}, then a looser definition of a polynomial
34918 is used in which coefficients are no longer required not to depend on
34919 @var{var}, but are only required not to take the form of polynomials
34920 themselves.  For example, @samp{sin(x) x^2 + cos(x)} is a loose
34921 polynomial with coefficients @samp{((calcFunc-cos x) 0 (calcFunc-sin
34922 x))}.  The result will never be @code{nil} in loose mode, since any
34923 expression can be interpreted as a ``constant'' loose polynomial.
34924 @end defun
34926 @defun polynomial-base expr pred
34927 Check if @var{expr} is a polynomial in any variable that occurs in it;
34928 if so, return that variable.  (If @var{expr} is a multivariate polynomial,
34929 this chooses one variable arbitrarily.)  If @var{pred} is specified, it should
34930 be a Lisp function which is called as @samp{(@var{pred} @var{subexpr})},
34931 and which should return true if @code{mpb-top-expr} (a global name for
34932 the original @var{expr}) is a suitable polynomial in @var{subexpr}.
34933 The default predicate uses @samp{(polynomial-p mpb-top-expr @var{subexpr})};
34934 you can use @var{pred} to specify additional conditions.  Or, you could
34935 have @var{pred} build up a list of every suitable @var{subexpr} that
34936 is found.
34937 @end defun
34939 @defun poly-simplify poly
34940 Simplify polynomial coefficient list @var{poly} by (destructively)
34941 clipping off trailing zeros.
34942 @end defun
34944 @defun poly-mix a ac b bc
34945 Mix two polynomial lists @var{a} and @var{b} (in the form returned by
34946 @code{is-polynomial}) in a linear combination with coefficient expressions
34947 @var{ac} and @var{bc}.  The result is a (not necessarily simplified)
34948 polynomial list representing @samp{@var{ac} @var{a} + @var{bc} @var{b}}.
34949 @end defun
34951 @defun poly-mul a b
34952 Multiply two polynomial coefficient lists @var{a} and @var{b}.  The
34953 result will be in simplified form if the inputs were simplified.
34954 @end defun
34956 @defun build-polynomial-expr poly var
34957 Construct a Calc formula which represents the polynomial coefficient
34958 list @var{poly} applied to variable @var{var}.  The @kbd{a c}
34959 (@code{calc-collect}) command uses @code{is-polynomial} to turn an
34960 expression into a coefficient list, then @code{build-polynomial-expr}
34961 to turn the list back into an expression in regular form.
34962 @end defun
34964 @defun check-unit-name var
34965 Check if @var{var} is a variable which can be interpreted as a unit
34966 name.  If so, return the units table entry for that unit.  This
34967 will be a list whose first element is the unit name (not counting
34968 prefix characters) as a symbol and whose second element is the
34969 Calc expression which defines the unit.  (Refer to the Calc sources
34970 for details on the remaining elements of this list.)  If @var{var}
34971 is not a variable or is not a unit name, return @code{nil}.
34972 @end defun
34974 @defun units-in-expr-p expr sub-exprs
34975 Return true if @var{expr} contains any variables which can be
34976 interpreted as units.  If @var{sub-exprs} is @code{t}, the entire
34977 expression is searched.  If @var{sub-exprs} is @code{nil}, this
34978 checks whether @var{expr} is directly a units expression.
34979 @end defun
34981 @defun single-units-in-expr-p expr
34982 Check whether @var{expr} contains exactly one units variable.  If so,
34983 return the units table entry for the variable.  If @var{expr} does
34984 not contain any units, return @code{nil}.  If @var{expr} contains
34985 two or more units, return the symbol @code{wrong}.
34986 @end defun
34988 @defun to-standard-units expr which
34989 Convert units expression @var{expr} to base units.  If @var{which}
34990 is @code{nil}, use Calc's native base units.  Otherwise, @var{which}
34991 can specify a units system, which is a list of two-element lists,
34992 where the first element is a Calc base symbol name and the second
34993 is an expression to substitute for it.
34994 @end defun
34996 @defun remove-units expr
34997 Return a copy of @var{expr} with all units variables replaced by ones.
34998 This expression is generally normalized before use.
34999 @end defun
35001 @defun extract-units expr
35002 Return a copy of @var{expr} with everything but units variables replaced
35003 by ones.
35004 @end defun
35006 @node Formatting Lisp Functions, Hooks, Symbolic Lisp Functions, Internals
35007 @subsubsection I/O and Formatting Functions
35009 @noindent
35010 The functions described here are responsible for parsing and formatting
35011 Calc numbers and formulas.
35013 @defun calc-eval str sep arg1 arg2 @dots{}
35014 This is the simplest interface to the Calculator from another Lisp program.
35015 @xref{Calling Calc from Your Programs}.
35016 @end defun
35018 @defun read-number str
35019 If string @var{str} contains a valid Calc number, either integer,
35020 fraction, float, or HMS form, this function parses and returns that
35021 number.  Otherwise, it returns @code{nil}.
35022 @end defun
35024 @defun read-expr str
35025 Read an algebraic expression from string @var{str}.  If @var{str} does
35026 not have the form of a valid expression, return a list of the form
35027 @samp{(error @var{pos} @var{msg})} where @var{pos} is an integer index
35028 into @var{str} of the general location of the error, and @var{msg} is
35029 a string describing the problem.
35030 @end defun
35032 @defun read-exprs str
35033 Read a list of expressions separated by commas, and return it as a
35034 Lisp list.  If an error occurs in any expressions, an error list as
35035 shown above is returned instead.
35036 @end defun
35038 @defun calc-do-alg-entry initial prompt no-norm
35039 Read an algebraic formula or formulas using the minibuffer.  All
35040 conventions of regular algebraic entry are observed.  The return value
35041 is a list of Calc formulas; there will be more than one if the user
35042 entered a list of values separated by commas.  The result is @code{nil}
35043 if the user presses Return with a blank line.  If @var{initial} is
35044 given, it is a string which the minibuffer will initially contain.
35045 If @var{prompt} is given, it is the prompt string to use; the default
35046 is ``Algebraic:''.  If @var{no-norm} is @code{t}, the formulas will
35047 be returned exactly as parsed; otherwise, they will be passed through
35048 @code{calc-normalize} first.
35050 To support the use of @kbd{$} characters in the algebraic entry, use
35051 @code{let} to bind @code{calc-dollar-values} to a list of the values
35052 to be substituted for @kbd{$}, @kbd{$$}, and so on, and bind
35053 @code{calc-dollar-used} to 0.  Upon return, @code{calc-dollar-used}
35054 will have been changed to the highest number of consecutive @kbd{$}s
35055 that actually appeared in the input.
35056 @end defun
35058 @defun format-number a
35059 Convert the real or complex number or HMS form @var{a} to string form.
35060 @end defun
35062 @defun format-flat-expr a prec
35063 Convert the arbitrary Calc number or formula @var{a} to string form,
35064 in the style used by the trail buffer and the @code{calc-edit} command.
35065 This is a simple format designed
35066 mostly to guarantee the string is of a form that can be re-parsed by
35067 @code{read-expr}.  Most formatting modes, such as digit grouping,
35068 complex number format, and point character, are ignored to ensure the
35069 result will be re-readable.  The @var{prec} parameter is normally 0; if
35070 you pass a large integer like 1000 instead, the expression will be
35071 surrounded by parentheses unless it is a plain number or variable name.
35072 @end defun
35074 @defun format-nice-expr a width
35075 This is like @code{format-flat-expr} (with @var{prec} equal to 0),
35076 except that newlines will be inserted to keep lines down to the
35077 specified @var{width}, and vectors that look like matrices or rewrite
35078 rules are written in a pseudo-matrix format.  The @code{calc-edit}
35079 command uses this when only one stack entry is being edited.
35080 @end defun
35082 @defun format-value a width
35083 Convert the Calc number or formula @var{a} to string form, using the
35084 format seen in the stack buffer.  Beware the string returned may
35085 not be re-readable by @code{read-expr}, for example, because of digit
35086 grouping.  Multi-line objects like matrices produce strings that
35087 contain newline characters to separate the lines.  The @var{w}
35088 parameter, if given, is the target window size for which to format
35089 the expressions.  If @var{w} is omitted, the width of the Calculator
35090 window is used.
35091 @end defun
35093 @defun compose-expr a prec
35094 Format the Calc number or formula @var{a} according to the current
35095 language mode, returning a ``composition.''  To learn about the
35096 structure of compositions, see the comments in the Calc source code.
35097 You can specify the format of a given type of function call by putting
35098 a @code{math-compose-@var{lang}} property on the function's symbol,
35099 whose value is a Lisp function that takes @var{a} and @var{prec} as
35100 arguments and returns a composition.  Here @var{lang} is a language
35101 mode name, one of @code{normal}, @code{big}, @code{c}, @code{pascal},
35102 @code{fortran}, @code{tex}, @code{eqn}, @code{math}, or @code{maple}.
35103 In Big mode, Calc actually tries @code{math-compose-big} first, then
35104 tries @code{math-compose-normal}.  If this property does not exist,
35105 or if the function returns @code{nil}, the function is written in the
35106 normal function-call notation for that language.
35107 @end defun
35109 @defun composition-to-string c w
35110 Convert a composition structure returned by @code{compose-expr} into
35111 a string.  Multi-line compositions convert to strings containing
35112 newline characters.  The target window size is given by @var{w}.
35113 The @code{format-value} function basically calls @code{compose-expr}
35114 followed by @code{composition-to-string}.
35115 @end defun
35117 @defun comp-width c
35118 Compute the width in characters of composition @var{c}.
35119 @end defun
35121 @defun comp-height c
35122 Compute the height in lines of composition @var{c}.
35123 @end defun
35125 @defun comp-ascent c
35126 Compute the portion of the height of composition @var{c} which is on or
35127 above the baseline.  For a one-line composition, this will be one.
35128 @end defun
35130 @defun comp-descent c
35131 Compute the portion of the height of composition @var{c} which is below
35132 the baseline.  For a one-line composition, this will be zero.
35133 @end defun
35135 @defun comp-first-char c
35136 If composition @var{c} is a ``flat'' composition, return the first
35137 (leftmost) character of the composition as an integer.  Otherwise,
35138 return @code{nil}.
35139 @end defun
35141 @defun comp-last-char c
35142 If composition @var{c} is a ``flat'' composition, return the last
35143 (rightmost) character, otherwise return @code{nil}.
35144 @end defun
35146 @comment @node Lisp Variables, Hooks, Formatting Lisp Functions, Internals
35147 @comment @subsubsection Lisp Variables
35148 @comment
35149 @comment @noindent
35150 @comment (This section is currently unfinished.)
35152 @node Hooks,  , Formatting Lisp Functions, Internals
35153 @subsubsection Hooks
35155 @noindent
35156 Hooks are variables which contain Lisp functions (or lists of functions)
35157 which are called at various times.  Calc defines a number of hooks
35158 that help you to customize it in various ways.  Calc uses the Lisp
35159 function @code{run-hooks} to invoke the hooks shown below.  Several
35160 other customization-related variables are also described here.
35162 @defvar calc-load-hook
35163 This hook is called at the end of @file{calc.el}, after the file has
35164 been loaded, before any functions in it have been called, but after
35165 @code{calc-mode-map} and similar variables have been set up.
35166 @end defvar
35168 @defvar calc-ext-load-hook
35169 This hook is called at the end of @file{calc-ext.el}.
35170 @end defvar
35172 @defvar calc-start-hook
35173 This hook is called as the last step in a @kbd{M-x calc} command.
35174 At this point, the Calc buffer has been created and initialized if
35175 necessary, the Calc window and trail window have been created,
35176 and the ``Welcome to Calc'' message has been displayed.
35177 @end defvar
35179 @defvar calc-mode-hook
35180 This hook is called when the Calc buffer is being created.  Usually
35181 this will only happen once per Emacs session.  The hook is called
35182 after Emacs has switched to the new buffer, the mode-settings file
35183 has been read if necessary, and all other buffer-local variables
35184 have been set up.  After this hook returns, Calc will perform a
35185 @code{calc-refresh} operation, set up the mode line display, then
35186 evaluate any deferred @code{calc-define} properties that have not
35187 been evaluated yet.
35188 @end defvar
35190 @defvar calc-trail-mode-hook
35191 This hook is called when the Calc Trail buffer is being created.
35192 It is called as the very last step of setting up the Trail buffer.
35193 Like @code{calc-mode-hook}, this will normally happen only once
35194 per Emacs session.
35195 @end defvar
35197 @defvar calc-end-hook
35198 This hook is called by @code{calc-quit}, generally because the user
35199 presses @kbd{q} or @kbd{C-x * c} while in Calc.  The Calc buffer will
35200 be the current buffer.  The hook is called as the very first
35201 step, before the Calc window is destroyed.
35202 @end defvar
35204 @defvar calc-window-hook
35205 If this hook is non-@code{nil}, it is called to create the Calc window.
35206 Upon return, this new Calc window should be the current window.
35207 (The Calc buffer will already be the current buffer when the
35208 hook is called.)  If the hook is not defined, Calc will
35209 generally use @code{split-window}, @code{set-window-buffer},
35210 and @code{select-window} to create the Calc window.
35211 @end defvar
35213 @defvar calc-trail-window-hook
35214 If this hook is non-@code{nil}, it is called to create the Calc Trail
35215 window.  The variable @code{calc-trail-buffer} will contain the buffer
35216 which the window should use.  Unlike @code{calc-window-hook}, this hook
35217 must @emph{not} switch into the new window.
35218 @end defvar
35220 @defvar calc-embedded-mode-hook
35221 This hook is called the first time that Embedded mode is entered.
35222 @end defvar
35224 @defvar calc-embedded-new-buffer-hook
35225 This hook is called each time that Embedded mode is entered in a
35226 new buffer.
35227 @end defvar
35229 @defvar calc-embedded-new-formula-hook
35230 This hook is called each time that Embedded mode is enabled for a
35231 new formula.
35232 @end defvar
35234 @defvar calc-edit-mode-hook
35235 This hook is called by @code{calc-edit} (and the other ``edit''
35236 commands) when the temporary editing buffer is being created.
35237 The buffer will have been selected and set up to be in
35238 @code{calc-edit-mode}, but will not yet have been filled with
35239 text.  (In fact it may still have leftover text from a previous
35240 @code{calc-edit} command.)
35241 @end defvar
35243 @defvar calc-mode-save-hook
35244 This hook is called by the @code{calc-save-modes} command,
35245 after Calc's own mode features have been inserted into the
35246 Calc init file and just before the ``End of mode settings''
35247 message is inserted.
35248 @end defvar
35250 @defvar calc-reset-hook
35251 This hook is called after @kbd{C-x * 0} (@code{calc-reset}) has
35252 reset all modes.  The Calc buffer will be the current buffer.
35253 @end defvar
35255 @defvar calc-other-modes
35256 This variable contains a list of strings.  The strings are
35257 concatenated at the end of the modes portion of the Calc
35258 mode line (after standard modes such as ``Deg'', ``Inv'' and
35259 ``Hyp'').  Each string should be a short, single word followed
35260 by a space.  The variable is @code{nil} by default.
35261 @end defvar
35263 @defvar calc-mode-map
35264 This is the keymap that is used by Calc mode.  The best time
35265 to adjust it is probably in a @code{calc-mode-hook}.  If the
35266 Calc extensions package (@file{calc-ext.el}) has not yet been
35267 loaded, many of these keys will be bound to @code{calc-missing-key},
35268 which is a command that loads the extensions package and
35269 ``retypes'' the key.  If your @code{calc-mode-hook} rebinds
35270 one of these keys, it will probably be overridden when the
35271 extensions are loaded.
35272 @end defvar
35274 @defvar calc-digit-map
35275 This is the keymap that is used during numeric entry.  Numeric
35276 entry uses the minibuffer, but this map binds every non-numeric
35277 key to @code{calcDigit-nondigit} which generally calls
35278 @code{exit-minibuffer} and ``retypes'' the key.
35279 @end defvar
35281 @defvar calc-alg-ent-map
35282 This is the keymap that is used during algebraic entry.  This is
35283 mostly a copy of @code{minibuffer-local-map}.
35284 @end defvar
35286 @defvar calc-store-var-map
35287 This is the keymap that is used during entry of variable names for
35288 commands like @code{calc-store} and @code{calc-recall}.  This is
35289 mostly a copy of @code{minibuffer-local-completion-map}.
35290 @end defvar
35292 @defvar calc-edit-mode-map
35293 This is the (sparse) keymap used by @code{calc-edit} and other
35294 temporary editing commands.  It binds @key{RET}, @key{LFD},
35295 and @kbd{C-c C-c} to @code{calc-edit-finish}.
35296 @end defvar
35298 @defvar calc-mode-var-list
35299 This is a list of variables which are saved by @code{calc-save-modes}.
35300 Each entry is a list of two items, the variable (as a Lisp symbol)
35301 and its default value.  When modes are being saved, each variable
35302 is compared with its default value (using @code{equal}) and any
35303 non-default variables are written out.
35304 @end defvar
35306 @defvar calc-local-var-list
35307 This is a list of variables which should be buffer-local to the
35308 Calc buffer.  Each entry is a variable name (as a Lisp symbol).
35309 These variables also have their default values manipulated by
35310 the @code{calc} and @code{calc-quit} commands; @pxref{Multiple Calculators}.
35311 Since @code{calc-mode-hook} is called after this list has been
35312 used the first time, your hook should add a variable to the
35313 list and also call @code{make-local-variable} itself.
35314 @end defvar
35316 @node Copying, GNU Free Documentation License, Programming, Top
35317 @appendix GNU GENERAL PUBLIC LICENSE
35318 @include gpl.texi
35320 @node GNU Free Documentation License, Customizing Calc, Copying, Top
35321 @appendix GNU Free Documentation License
35322 @include doclicense.texi
35324 @node Customizing Calc, Reporting Bugs, GNU Free Documentation License, Top
35325 @appendix Customizing Calc
35327 The usual prefix for Calc is the key sequence @kbd{C-x *}.  If you wish
35328 to use a different prefix, you can put
35330 @example
35331 (global-set-key "NEWPREFIX" 'calc-dispatch)
35332 @end example
35334 @noindent
35335 in your .emacs file.
35336 (@xref{Key Bindings,,Customizing Key Bindings,emacs,
35337 The GNU Emacs Manual}, for more information on binding keys.)
35338 A convenient way to start Calc is with @kbd{C-x * *}; to make it equally
35339 convenient for users who use a different prefix, the prefix can be
35340 followed by  @kbd{=}, @kbd{&}, @kbd{#}, @kbd{\}, @kbd{/}, @kbd{+} or
35341 @kbd{-} as well as @kbd{*} to start Calc, and so in many cases the last
35342 character of the prefix can simply be typed twice.
35344 Calc is controlled by many variables, most of which can be reset
35345 from within Calc.  Some variables are less involved with actual
35346 calculation and can be set outside of Calc using Emacs's
35347 customization facilities.  These variables are listed below.
35348 Typing @kbd{M-x customize-variable RET @var{variable-name} RET}
35349 will bring up a buffer in which the variable's value can be redefined.
35350 Typing @kbd{M-x customize-group RET calc RET} will bring up a buffer which
35351 contains all of Calc's customizable variables.  (These variables can
35352 also be reset by putting the appropriate lines in your .emacs file;
35353 @xref{Init File, ,Init File, emacs, The GNU Emacs Manual}.)
35355 Some of the customizable variables are regular expressions.  A regular
35356 expression is basically a pattern that Calc can search for.
35357 See @ref{Regexp Search,, Regular Expression Search, emacs, The GNU Emacs Manual}
35358 to see how regular expressions work.
35360 @defvar calc-settings-file
35361 The variable @code{calc-settings-file} holds the file name in
35362 which commands like @kbd{m m} and @kbd{Z P} store ``permanent''
35363 definitions.
35364 If @code{calc-settings-file} is not your user init file (typically
35365 @file{~/.emacs}) and if the variable @code{calc-loaded-settings-file} is
35366 @code{nil}, then Calc will automatically load your settings file (if it
35367 exists) the first time Calc is invoked.
35369 The default value for this variable is @code{"~/.emacs.d/calc.el"}
35370 unless the file @file{~/.calc.el} exists, in which case the default
35371 value will be @code{"~/.calc.el"}.
35372 @end defvar
35374 @defvar calc-gnuplot-name
35375 See @ref{Graphics}.@*
35376 The variable @code{calc-gnuplot-name} should be the name of the
35377 GNUPLOT program (a string).  If you have GNUPLOT installed on your
35378 system but Calc is unable to find it, you may need to set this
35379 variable.  You may also need to set some Lisp variables to show Calc how
35380 to run GNUPLOT on your system, see @ref{Devices, ,Graphical Devices} .
35381 The default value of @code{calc-gnuplot-name} is @code{"gnuplot"}.
35382 @end defvar
35384 @defvar  calc-gnuplot-plot-command
35385 @defvarx calc-gnuplot-print-command
35386 See @ref{Devices, ,Graphical Devices}.@*
35387 The variables @code{calc-gnuplot-plot-command} and
35388 @code{calc-gnuplot-print-command} represent system commands to
35389 display and print the output of GNUPLOT, respectively.  These may be
35390 @code{nil} if no command is necessary, or strings which can include
35391 @samp{%s} to signify the name of the file to be displayed or printed.
35392 Or, these variables may contain Lisp expressions which are evaluated
35393 to display or print the output.
35395 The default value of @code{calc-gnuplot-plot-command} is @code{nil},
35396 and the default value of @code{calc-gnuplot-print-command} is
35397 @code{"lp %s"}.
35398 @end defvar
35400 @defvar calc-language-alist
35401 See @ref{Basic Embedded Mode}.@*
35402 The variable @code{calc-language-alist} controls the languages that
35403 Calc will associate with major modes.  When Calc embedded mode is
35404 enabled, it will try to use the current major mode to
35405 determine what language should be used.  (This can be overridden using
35406 Calc's mode changing commands, @xref{Mode Settings in Embedded Mode}.)
35407 The variable @code{calc-language-alist} consists of a list of pairs of
35408 the form  @code{(@var{MAJOR-MODE} . @var{LANGUAGE})}; for example,
35409 @code{(latex-mode . latex)} is one such pair.  If Calc embedded is
35410 activated in a buffer whose major mode is @var{MAJOR-MODE}, it will set itself
35411 to use the language @var{LANGUAGE}.
35413 The default value of @code{calc-language-alist} is
35414 @example
35415    ((latex-mode . latex)
35416     (tex-mode   . tex)
35417     (plain-tex-mode . tex)
35418     (context-mode . tex)
35419     (nroff-mode . eqn)
35420     (pascal-mode . pascal)
35421     (c-mode . c)
35422     (c++-mode . c)
35423     (fortran-mode . fortran)
35424     (f90-mode . fortran))
35425 @end example
35426 @end defvar
35428 @defvar calc-embedded-announce-formula
35429 @defvarx calc-embedded-announce-formula-alist
35430 See @ref{Customizing Embedded Mode}.@*
35431 The variable @code{calc-embedded-announce-formula} helps determine
35432 what formulas @kbd{C-x * a} will activate in a buffer.  It is a
35433 regular expression, and when activating embedded formulas with
35434 @kbd{C-x * a}, it will tell Calc that what follows is a formula to be
35435 activated.  (Calc also uses other patterns to find formulas, such as
35436 @samp{=>} and @samp{:=}.)
35438 The default pattern is @code{"%Embed\n\\(% .*\n\\)*"}, which checks
35439 for @samp{%Embed} followed by any number of lines beginning with
35440 @samp{%} and a space.
35442 The variable @code{calc-embedded-announce-formula-alist} is used to
35443 set @code{calc-embedded-announce-formula} to different regular
35444 expressions depending on the major mode of the editing buffer.
35445 It consists of a list of pairs of the form @code{(@var{MAJOR-MODE} .
35446 @var{REGEXP})}, and its default value is
35447 @example
35448    ((c++-mode     . "//Embed\n\\(// .*\n\\)*")
35449     (c-mode       . "/\\*Embed\\*/\n\\(/\\* .*\\*/\n\\)*")
35450     (f90-mode     . "!Embed\n\\(! .*\n\\)*")
35451     (fortran-mode . "C Embed\n\\(C .*\n\\)*")
35452     (html-helper-mode . "<!-- Embed -->\n\\(<!-- .* -->\n\\)*")
35453     (html-mode    . "<!-- Embed -->\n\\(<!-- .* -->\n\\)*")
35454     (nroff-mode   . "\\\\\"Embed\n\\(\\\\\" .*\n\\)*")
35455     (pascal-mode  . "@{Embed@}\n\\(@{.*@}\n\\)*")
35456     (sgml-mode    . "<!-- Embed -->\n\\(<!-- .* -->\n\\)*")
35457     (xml-mode     . "<!-- Embed -->\n\\(<!-- .* -->\n\\)*")
35458     (texinfo-mode . "@@c Embed\n\\(@@c .*\n\\)*"))
35459 @end example
35460 Any major modes added to @code{calc-embedded-announce-formula-alist}
35461 should also be added to @code{calc-embedded-open-close-plain-alist}
35462 and @code{calc-embedded-open-close-mode-alist}.
35463 @end defvar
35465 @defvar  calc-embedded-open-formula
35466 @defvarx calc-embedded-close-formula
35467 @defvarx calc-embedded-open-close-formula-alist
35468 See @ref{Customizing Embedded Mode}.@*
35469 The variables @code{calc-embedded-open-formula} and
35470 @code{calc-embedded-close-formula} control the region that Calc will
35471 activate as a formula when Embedded mode is entered with @kbd{C-x * e}.
35472 They are regular expressions;
35473 Calc normally scans backward and forward in the buffer for the
35474 nearest text matching these regular expressions to be the ``formula
35475 delimiters''.
35477 The simplest delimiters are blank lines.  Other delimiters that
35478 Embedded mode understands by default are:
35479 @enumerate
35480 @item
35481 The @TeX{} and @LaTeX{} math delimiters @samp{$ $}, @samp{$$ $$},
35482 @samp{\[ \]}, and @samp{\( \)};
35483 @item
35484 Lines beginning with @samp{\begin} and @samp{\end} (except matrix delimiters);
35485 @item
35486 Lines beginning with @samp{@@} (Texinfo delimiters).
35487 @item
35488 Lines beginning with @samp{.EQ} and @samp{.EN} (@dfn{eqn} delimiters);
35489 @item
35490 Lines containing a single @samp{%} or @samp{.\"} symbol and nothing else.
35491 @end enumerate
35493 The variable @code{calc-embedded-open-close-formula-alist} is used to
35494 set @code{calc-embedded-open-formula} and
35495 @code{calc-embedded-close-formula} to different regular
35496 expressions depending on the major mode of the editing buffer.
35497 It consists of a list of lists of the form
35498 @code{(@var{MAJOR-MODE}  @var{OPEN-FORMULA-REGEXP}
35499 @var{CLOSE-FORMULA-REGEXP})}, and its default value is
35500 @code{nil}.
35501 @end defvar
35503 @defvar  calc-embedded-word-regexp
35504 @defvarx calc-embedded-word-regexp-alist
35505 See @ref{Customizing Embedded Mode}.@*
35506 The variable @code{calc-embedded-word-regexp} determines the expression
35507 that Calc will activate when Embedded mode is entered with @kbd{C-x *
35508 w}.  It is a regular expressions.
35510 The default value of @code{calc-embedded-word-regexp} is
35511 @code{"[-+]?[0-9]+\\(\\.[0-9]+\\)?\\([eE][-+]?[0-9]+\\)?"}.
35513 The variable @code{calc-embedded-word-regexp-alist} is used to
35514 set @code{calc-embedded-word-regexp} to a different regular
35515 expression depending on the major mode of the editing buffer.
35516 It consists of a list of lists of the form
35517 @code{(@var{MAJOR-MODE}  @var{WORD-REGEXP})}, and its default value is
35518 @code{nil}.
35519 @end defvar
35521 @defvar  calc-embedded-open-plain
35522 @defvarx calc-embedded-close-plain
35523 @defvarx calc-embedded-open-close-plain-alist
35524 See @ref{Customizing Embedded Mode}.@*
35525 The variables @code{calc-embedded-open-plain} and
35526 @code{calc-embedded-open-plain} are used to delimit ``plain''
35527 formulas.  Note that these are actual strings, not regular
35528 expressions, because Calc must be able to write these string into a
35529 buffer as well as to recognize them.
35531 The default string for @code{calc-embedded-open-plain} is
35532 @code{"%%% "}, note the trailing space.  The default string for
35533 @code{calc-embedded-close-plain} is @code{" %%%\n"}, without
35534 the trailing newline here, the first line of a Big mode formula
35535 that followed might be shifted over with respect to the other lines.
35537 The variable @code{calc-embedded-open-close-plain-alist} is used to
35538 set @code{calc-embedded-open-plain} and
35539 @code{calc-embedded-close-plain} to different strings
35540 depending on the major mode of the editing buffer.
35541 It consists of a list of lists of the form
35542 @code{(@var{MAJOR-MODE}  @var{OPEN-PLAIN-STRING}
35543 @var{CLOSE-PLAIN-STRING})}, and its default value is
35544 @example
35545    ((c++-mode     "// %% "   " %%\n")
35546     (c-mode       "/* %% "   " %% */\n")
35547     (f90-mode     "! %% "    " %%\n")
35548     (fortran-mode "C %% "    " %%\n")
35549     (html-helper-mode "<!-- %% " " %% -->\n")
35550     (html-mode "<!-- %% " " %% -->\n")
35551     (nroff-mode   "\\\" %% " " %%\n")
35552     (pascal-mode  "@{%% "    " %%@}\n")
35553     (sgml-mode     "<!-- %% " " %% -->\n")
35554     (xml-mode     "<!-- %% " " %% -->\n")
35555     (texinfo-mode "@@c %% "   " %%\n"))
35556 @end example
35557 Any major modes added to @code{calc-embedded-open-close-plain-alist}
35558 should also be added to @code{calc-embedded-announce-formula-alist}
35559 and @code{calc-embedded-open-close-mode-alist}.
35560 @end defvar
35562 @defvar  calc-embedded-open-new-formula
35563 @defvarx calc-embedded-close-new-formula
35564 @defvarx calc-embedded-open-close-new-formula-alist
35565 See @ref{Customizing Embedded Mode}.@*
35566 The variables @code{calc-embedded-open-new-formula} and
35567 @code{calc-embedded-close-new-formula} are strings which are
35568 inserted before and after a new formula when you type @kbd{C-x * f}.
35570 The default value of @code{calc-embedded-open-new-formula} is
35571 @code{"\n\n"}.  If this string begins with a newline character and the
35572 @kbd{C-x * f} is typed at the beginning of a line, @kbd{C-x * f} will skip
35573 this first newline to avoid introducing unnecessary blank lines in the
35574 file.  The default value of @code{calc-embedded-close-new-formula} is
35575 also @code{"\n\n"}.  The final newline is omitted by @w{@kbd{C-x * f}}
35576 if typed at the end of a line.  (It follows that if @kbd{C-x * f} is
35577 typed on a blank line, both a leading opening newline and a trailing
35578 closing newline are omitted.)
35580 The variable @code{calc-embedded-open-close-new-formula-alist} is used to
35581 set @code{calc-embedded-open-new-formula} and
35582 @code{calc-embedded-close-new-formula} to different strings
35583 depending on the major mode of the editing buffer.
35584 It consists of a list of lists of the form
35585 @code{(@var{MAJOR-MODE}  @var{OPEN-NEW-FORMULA-STRING}
35586 @var{CLOSE-NEW-FORMULA-STRING})}, and its default value is
35587 @code{nil}.
35588 @end defvar
35590 @defvar  calc-embedded-open-mode
35591 @defvarx calc-embedded-close-mode
35592 @defvarx calc-embedded-open-close-mode-alist
35593 See @ref{Customizing Embedded Mode}.@*
35594 The variables @code{calc-embedded-open-mode} and
35595 @code{calc-embedded-close-mode} are strings which Calc will place before
35596 and after any mode annotations that it inserts.  Calc never scans for
35597 these strings; Calc always looks for the annotation itself, so it is not
35598 necessary to add them to user-written annotations.
35600 The default value of @code{calc-embedded-open-mode} is @code{"% "}
35601 and the default value of @code{calc-embedded-close-mode} is
35602 @code{"\n"}.
35603 If you change the value of @code{calc-embedded-close-mode}, it is a good
35604 idea still to end with a newline so that mode annotations will appear on
35605 lines by themselves.
35607 The variable @code{calc-embedded-open-close-mode-alist} is used to
35608 set @code{calc-embedded-open-mode} and
35609 @code{calc-embedded-close-mode} to different strings
35610 expressions depending on the major mode of the editing buffer.
35611 It consists of a list of lists of the form
35612 @code{(@var{MAJOR-MODE}  @var{OPEN-MODE-STRING}
35613 @var{CLOSE-MODE-STRING})}, and its default value is
35614 @example
35615    ((c++-mode     "// "   "\n")
35616     (c-mode       "/* "   " */\n")
35617     (f90-mode     "! "    "\n")
35618     (fortran-mode "C "    "\n")
35619     (html-helper-mode "<!-- " " -->\n")
35620     (html-mode    "<!-- " " -->\n")
35621     (nroff-mode   "\\\" " "\n")
35622     (pascal-mode  "@{ "    " @}\n")
35623     (sgml-mode    "<!-- " " -->\n")
35624     (xml-mode     "<!-- " " -->\n")
35625     (texinfo-mode "@@c "   "\n"))
35626 @end example
35627 Any major modes added to @code{calc-embedded-open-close-mode-alist}
35628 should also be added to @code{calc-embedded-announce-formula-alist}
35629 and @code{calc-embedded-open-close-plain-alist}.
35630 @end defvar
35632 @defvar  calc-lu-power-reference
35633 @defvarx calc-lu-field-reference
35634 See @ref{Logarithmic Units}.@*
35635 The variables @code{calc-lu-power-reference} and
35636 @code{calc-lu-field-reference} are unit expressions (written as
35637 strings) which Calc will use as reference quantities for logarithmic
35638 units.
35640 The default value of @code{calc-lu-power-reference} is @code{"mW"}
35641 and the default value of @code{calc-lu-field-reference} is
35642 @code{"20 uPa"}.
35643 @end defvar
35645 @defvar calc-note-threshold
35646 See @ref{Musical Notes}.@*
35647 The variable @code{calc-note-threshold} is a number (written as a
35648 string) which determines how close (in cents) a frequency needs to be
35649 to a note to be recognized as that note.
35651 The default value of @code{calc-note-threshold} is 1.
35652 @end defvar
35654 @defvar calc-highlight-selections-with-faces
35655 @defvarx calc-selected-face
35656 @defvarx calc-nonselected-face
35657 See @ref{Displaying Selections}.@*
35658 The variable @code{calc-highlight-selections-with-faces}
35659 determines how selected sub-formulas are distinguished.
35660 If @code{calc-highlight-selections-with-faces} is nil, then
35661 a selected sub-formula is distinguished either by changing every
35662 character not part of the sub-formula with a dot or by changing every
35663 character in the sub-formula with a @samp{#} sign.
35664 If @code{calc-highlight-selections-with-faces} is t,
35665 then a selected sub-formula is distinguished either by displaying the
35666 non-selected portion of the formula with @code{calc-nonselected-face}
35667 or by displaying the selected sub-formula with
35668 @code{calc-nonselected-face}.
35669 @end defvar
35671 @defvar calc-multiplication-has-precedence
35672 The variable @code{calc-multiplication-has-precedence} determines
35673 whether multiplication has precedence over division in algebraic
35674 formulas in normal language modes.  If
35675 @code{calc-multiplication-has-precedence} is non-@code{nil}, then
35676 multiplication has precedence (and, for certain obscure reasons, is
35677 right associative), and so for example @samp{a/b*c} will be interpreted
35678 as @samp{a/(b*c)}. If @code{calc-multiplication-has-precedence} is
35679 @code{nil}, then multiplication has the same precedence as division
35680 (and, like division, is left associative), and so for example
35681 @samp{a/b*c} will be interpreted as @samp{(a/b)*c}.  The default value
35682 of @code{calc-multiplication-has-precedence} is @code{t}.
35683 @end defvar
35685 @defvar calc-context-sensitive-enter
35686 The commands @code{calc-enter} and @code{calc-pop} will typically
35687 duplicate the top of the stack.  If
35688 @code{calc-context-sensitive-enter} is non-@code{nil}, then the
35689 @code{calc-enter} will copy the element at the cursor to the
35690 top of the stack and @code{calc-pop} will delete the element at the
35691 cursor.  The default value of @code{calc-context-sensitive-enter} is
35692 @code{nil}.
35693 @end defvar
35695 @defvar calc-undo-length
35696 The variable @code{calc-undo-length} determines the number of undo
35697 steps that Calc will keep track of when @code{calc-quit} is called.
35698 If @code{calc-undo-length} is a non-negative integer, then this is the
35699 number of undo steps that will be preserved; if
35700 @code{calc-undo-length} has any other value, then all undo steps will
35701 be preserved.  The default value of @code{calc-undo-length} is @expr{100}.
35702 @end defvar
35704 @defvar calc-gregorian-switch
35705 See @ref{Date Forms}.@*
35706 The variable @code{calc-gregorian-switch} is either a list of integers
35707 @code{(@var{YEAR} @var{MONTH} @var{DAY})} or @code{nil}.
35708 If it is @code{nil}, then Calc's date forms always represent Gregorian dates.
35709 Otherwise, @code{calc-gregorian-switch} represents the date that the
35710 calendar switches from Julian dates to Gregorian dates;
35711 @code{(@var{YEAR} @var{MONTH} @var{DAY})} will be the first Gregorian
35712 date.  The customization buffer will offer several standard dates to
35713 choose from, or the user can enter their own date.
35715 The default value of @code{calc-gregorian-switch} is @code{nil}.
35716 @end defvar
35718 @node Reporting Bugs, Summary, Customizing Calc, Top
35719 @appendix Reporting Bugs
35721 @noindent
35722 If you find a bug in Calc, send e-mail to Jay Belanger,
35724 @example
35725 jay.p.belanger@@gmail.com
35726 @end example
35728 @noindent
35729 There is an automatic command @kbd{M-x report-calc-bug} which helps
35730 you to report bugs.  This command prompts you for a brief subject
35731 line, then leaves you in a mail editing buffer.  Type @kbd{C-c C-c} to
35732 send your mail.  Make sure your subject line indicates that you are
35733 reporting a Calc bug; this command sends mail to the maintainer's
35734 regular mailbox.
35736 If you have suggestions for additional features for Calc, please send
35737 them.  Some have dared to suggest that Calc is already top-heavy with
35738 features; this obviously cannot be the case, so if you have ideas, send
35739 them right in.
35741 At the front of the source file, @file{calc.el}, is a list of ideas for
35742 future work.  If any enthusiastic souls wish to take it upon themselves
35743 to work on these, please send a message (using @kbd{M-x report-calc-bug})
35744 so any efforts can be coordinated.
35746 The latest version of Calc is available from Savannah, in the Emacs
35747 repository.  See @uref{http://savannah.gnu.org/projects/emacs}.
35749 @c [summary]
35750 @node Summary, Key Index, Reporting Bugs, Top
35751 @appendix Calc Summary
35753 @noindent
35754 This section includes a complete list of Calc keystroke commands.
35755 Each line lists the stack entries used by the command (top-of-stack
35756 last), the keystrokes themselves, the prompts asked by the command,
35757 and the result of the command (also with top-of-stack last).
35758 The result is expressed using the equivalent algebraic function.
35759 Commands which put no results on the stack show the full @kbd{M-x}
35760 command name in that position.  Numbers preceding the result or
35761 command name refer to notes at the end.
35763 Algebraic functions and @kbd{M-x} commands that don't have corresponding
35764 keystrokes are not listed in this summary.
35765 @xref{Command Index}.  @xref{Function Index}.
35767 @iftex
35768 @begingroup
35769 @tex
35770 \vskip-2\baselineskip \null
35771 \gdef\sumrow#1{\sumrowx#1\relax}%
35772 \gdef\sumrowx#1\:#2\:#3\:#4\:#5\:#6\relax{%
35773 \leavevmode%
35774 {\smallfonts
35775 \hbox to5em{\sl\hss#1}%
35776 \hbox to5em{\tt#2\hss}%
35777 \hbox to4em{\sl#3\hss}%
35778 \hbox to5em{\rm\hss#4}%
35779 \thinspace%
35780 {\tt#5}%
35781 {\sl#6}%
35783 \gdef\sumlpar{{\rm(}}%
35784 \gdef\sumrpar{{\rm)}}%
35785 \gdef\sumcomma{{\rm,\thinspace}}%
35786 \gdef\sumexcl{{\rm!}}%
35787 \gdef\sumbreak{\vskip-2.5\baselineskip\goodbreak}%
35788 \gdef\minus#1{{\tt-}}%
35789 @end tex
35790 @let@:=@sumsep
35791 @let@r=@sumrow
35792 @catcode`@(=@active @let(=@sumlpar
35793 @catcode`@)=@active @let)=@sumrpar
35794 @catcode`@,=@active @let,=@sumcomma
35795 @catcode`@!=@active @let!=@sumexcl
35796 @end iftex
35797 @format
35798 @iftex
35799 @advance@baselineskip-2.5pt
35800 @let@c@sumbreak
35801 @end iftex
35802 @r{       @:     C-x * a  @:             @:    33  @:calc-embedded-activate@:}
35803 @r{       @:     C-x * b  @:             @:        @:calc-big-or-small@:}
35804 @r{       @:     C-x * c  @:             @:        @:calc@:}
35805 @r{       @:     C-x * d  @:             @:        @:calc-embedded-duplicate@:}
35806 @r{       @:     C-x * e  @:             @:    34  @:calc-embedded@:}
35807 @r{       @:     C-x * f  @:formula      @:        @:calc-embedded-new-formula@:}
35808 @r{       @:     C-x * g  @:             @:    35  @:calc-grab-region@:}
35809 @r{       @:     C-x * i  @:             @:        @:calc-info@:}
35810 @r{       @:     C-x * j  @:             @:        @:calc-embedded-select@:}
35811 @r{       @:     C-x * k  @:             @:        @:calc-keypad@:}
35812 @r{       @:     C-x * l  @:             @:        @:calc-load-everything@:}
35813 @r{       @:     C-x * m  @:             @:        @:read-kbd-macro@:}
35814 @r{       @:     C-x * n  @:             @:     4  @:calc-embedded-next@:}
35815 @r{       @:     C-x * o  @:             @:        @:calc-other-window@:}
35816 @r{       @:     C-x * p  @:             @:     4  @:calc-embedded-previous@:}
35817 @r{       @:     C-x * q  @:formula      @:        @:quick-calc@:}
35818 @r{       @:     C-x * r  @:             @:    36  @:calc-grab-rectangle@:}
35819 @r{       @:     C-x * s  @:             @:        @:calc-info-summary@:}
35820 @r{       @:     C-x * t  @:             @:        @:calc-tutorial@:}
35821 @r{       @:     C-x * u  @:             @:        @:calc-embedded-update-formula@:}
35822 @r{       @:     C-x * w  @:             @:        @:calc-embedded-word@:}
35823 @r{       @:     C-x * x  @:             @:        @:calc-quit@:}
35824 @r{       @:     C-x * y  @:            @:1,28,49  @:calc-copy-to-buffer@:}
35825 @r{       @:     C-x * z  @:             @:        @:calc-user-invocation@:}
35826 @r{       @:     C-x * :  @:             @:    36  @:calc-grab-sum-down@:}
35827 @r{       @:     C-x * _  @:             @:    36  @:calc-grab-sum-across@:}
35828 @r{       @:     C-x * `  @:editing      @:    30  @:calc-embedded-edit@:}
35829 @r{       @:     C-x * 0  @:(zero)       @:        @:calc-reset@:}
35832 @r{       @:      0-9   @:number       @:        @:@:number}
35833 @r{       @:      .     @:number       @:        @:@:0.number}
35834 @r{       @:      _     @:number       @:        @:-@:number}
35835 @r{       @:      e     @:number       @:        @:@:1e number}
35836 @r{       @:      #     @:number       @:        @:@:current-radix@tfn{#}number}
35837 @r{       @:      P     @:(in number)  @:        @:+/-@:}
35838 @r{       @:      M     @:(in number)  @:        @:mod@:}
35839 @r{       @:      @@ ' " @:  (in number)@:        @:@:HMS form}
35840 @r{       @:      h m s @:  (in number)@:        @:@:HMS form}
35843 @r{       @:      '     @:formula      @: 37,46  @:@:formula}
35844 @r{       @:      $     @:formula      @: 37,46  @:$@:formula}
35845 @r{       @:      "     @:string       @: 37,46  @:@:string}
35848 @r{    a b@:      +     @:             @:     2  @:add@:(a,b)  a+b}
35849 @r{    a b@:      -     @:             @:     2  @:sub@:(a,b)  a@minus{}b}
35850 @r{    a b@:      *     @:             @:     2  @:mul@:(a,b)  a b, a*b}
35851 @r{    a b@:      /     @:             @:     2  @:div@:(a,b)  a/b}
35852 @r{    a b@:      ^     @:             @:     2  @:pow@:(a,b)  a^b}
35853 @r{    a b@:    I ^     @:             @:     2  @:nroot@:(a,b)  a^(1/b)}
35854 @r{    a b@:      %     @:             @:     2  @:mod@:(a,b)  a%b}
35855 @r{    a b@:      \     @:             @:     2  @:idiv@:(a,b)  a\b}
35856 @r{    a b@:      :     @:             @:     2  @:fdiv@:(a,b)}
35857 @r{    a b@:      |     @:             @:     2  @:vconcat@:(a,b)  a|b}
35858 @r{    a b@:    I |     @:             @:        @:vconcat@:(b,a)  b|a}
35859 @r{    a b@:    H |     @:             @:     2  @:append@:(a,b)}
35860 @r{    a b@:  I H |     @:             @:        @:append@:(b,a)}
35861 @r{      a@:      &     @:             @:     1  @:inv@:(a)  1/a}
35862 @r{      a@:      !     @:             @:     1  @:fact@:(a)  a!}
35863 @r{      a@:      =     @:             @:     1  @:evalv@:(a)}
35864 @r{      a@:      M-%   @:             @:        @:percent@:(a)  a%}
35867 @r{  ... a@:      @summarykey{RET}   @:             @:     1  @:@:... a a}
35868 @r{  ... a@:      @summarykey{SPC}   @:             @:     1  @:@:... a a}
35869 @r{... a b@:      @summarykey{TAB}   @:             @:     3  @:@:... b a}
35870 @r{. a b c@:      M-@summarykey{TAB} @:             @:     3  @:@:... b c a}
35871 @r{... a b@:      @summarykey{LFD}   @:             @:     1  @:@:... a b a}
35872 @r{  ... a@:      @summarykey{DEL}   @:             @:     1  @:@:...}
35873 @r{... a b@:      M-@summarykey{DEL} @:             @:     1  @:@:... b}
35874 @r{       @:      M-@summarykey{RET} @:             @:     4  @:calc-last-args@:}
35875 @r{      a@:      `     @:editing      @:  1,30  @:calc-edit@:}
35878 @r{  ... a@:      C-d   @:             @:     1  @:@:...}
35879 @r{       @:      C-k   @:             @:    27  @:calc-kill@:}
35880 @r{       @:      C-w   @:             @:    27  @:calc-kill-region@:}
35881 @r{       @:      C-y   @:             @:        @:calc-yank@:}
35882 @r{       @:      C-_   @:             @:     4  @:calc-undo@:}
35883 @r{       @:      M-k   @:             @:    27  @:calc-copy-as-kill@:}
35884 @r{       @:      M-w   @:             @:    27  @:calc-copy-region-as-kill@:}
35887 @r{       @:      [     @:             @:        @:@:[...}
35888 @r{[.. a b@:      ]     @:             @:        @:@:[a,b]}
35889 @r{       @:      (     @:             @:        @:@:(...}
35890 @r{(.. a b@:      )     @:             @:        @:@:(a,b)}
35891 @r{       @:      ,     @:             @:        @:@:vector or rect complex}
35892 @r{       @:      ;     @:             @:        @:@:matrix or polar complex}
35893 @r{       @:      ..    @:             @:        @:@:interval}
35896 @r{       @:      ~     @:             @:        @:calc-num-prefix@:}
35897 @r{       @:      <     @:             @:     4  @:calc-scroll-left@:}
35898 @r{       @:      >     @:             @:     4  @:calc-scroll-right@:}
35899 @r{       @:      @{     @:             @:     4  @:calc-scroll-down@:}
35900 @r{       @:      @}     @:             @:     4  @:calc-scroll-up@:}
35901 @r{       @:      ?     @:             @:        @:calc-help@:}
35904 @r{      a@:      n     @:             @:     1  @:neg@:(a)  @minus{}a}
35905 @r{       @:      o     @:             @:     4  @:calc-realign@:}
35906 @r{       @:      p     @:precision    @:    31  @:calc-precision@:}
35907 @r{       @:      q     @:             @:        @:calc-quit@:}
35908 @r{       @:      w     @:             @:        @:calc-why@:}
35909 @r{       @:      x     @:command      @:        @:M-x calc-@:command}
35910 @r{      a@:      y     @:            @:1,28,49  @:calc-copy-to-buffer@:}
35913 @r{      a@:      A     @:             @:     1  @:abs@:(a)}
35914 @r{    a b@:      B     @:             @:     2  @:log@:(a,b)}
35915 @r{    a b@:    I B     @:             @:     2  @:alog@:(a,b)  b^a}
35916 @r{      a@:      C     @:             @:     1  @:cos@:(a)}
35917 @r{      a@:    I C     @:             @:     1  @:arccos@:(a)}
35918 @r{      a@:    H C     @:             @:     1  @:cosh@:(a)}
35919 @r{      a@:  I H C     @:             @:     1  @:arccosh@:(a)}
35920 @r{       @:      D     @:             @:     4  @:calc-redo@:}
35921 @r{      a@:      E     @:             @:     1  @:exp@:(a)}
35922 @r{      a@:    H E     @:             @:     1  @:exp10@:(a)  10.^a}
35923 @r{      a@:      F     @:             @:  1,11  @:floor@:(a,d)}
35924 @r{      a@:    I F     @:             @:  1,11  @:ceil@:(a,d)}
35925 @r{      a@:    H F     @:             @:  1,11  @:ffloor@:(a,d)}
35926 @r{      a@:  I H F     @:             @:  1,11  @:fceil@:(a,d)}
35927 @r{      a@:      G     @:             @:     1  @:arg@:(a)}
35928 @r{       @:      H     @:command      @:    32  @:@:Hyperbolic}
35929 @r{       @:      I     @:command      @:    32  @:@:Inverse}
35930 @r{      a@:      J     @:             @:     1  @:conj@:(a)}
35931 @r{       @:      K     @:command      @:    32  @:@:Keep-args}
35932 @r{      a@:      L     @:             @:     1  @:ln@:(a)}
35933 @r{      a@:    H L     @:             @:     1  @:log10@:(a)}
35934 @r{       @:      M     @:             @:        @:calc-more-recursion-depth@:}
35935 @r{       @:    I M     @:             @:        @:calc-less-recursion-depth@:}
35936 @r{      a@:      N     @:             @:     5  @:evalvn@:(a)}
35937 @r{       @:      O     @:command      @:    32  @:@:Option}
35938 @r{       @:      P     @:             @:        @:@:pi}
35939 @r{       @:    I P     @:             @:        @:@:gamma}
35940 @r{       @:    H P     @:             @:        @:@:e}
35941 @r{       @:  I H P     @:             @:        @:@:phi}
35942 @r{      a@:      Q     @:             @:     1  @:sqrt@:(a)}
35943 @r{      a@:    I Q     @:             @:     1  @:sqr@:(a)  a^2}
35944 @r{      a@:      R     @:             @:  1,11  @:round@:(a,d)}
35945 @r{      a@:    I R     @:             @:  1,11  @:trunc@:(a,d)}
35946 @r{      a@:    H R     @:             @:  1,11  @:fround@:(a,d)}
35947 @r{      a@:  I H R     @:             @:  1,11  @:ftrunc@:(a,d)}
35948 @r{      a@:      S     @:             @:     1  @:sin@:(a)}
35949 @r{      a@:    I S     @:             @:     1  @:arcsin@:(a)}
35950 @r{      a@:    H S     @:             @:     1  @:sinh@:(a)}
35951 @r{      a@:  I H S     @:             @:     1  @:arcsinh@:(a)}
35952 @r{      a@:      T     @:             @:     1  @:tan@:(a)}
35953 @r{      a@:    I T     @:             @:     1  @:arctan@:(a)}
35954 @r{      a@:    H T     @:             @:     1  @:tanh@:(a)}
35955 @r{      a@:  I H T     @:             @:     1  @:arctanh@:(a)}
35956 @r{       @:      U     @:             @:     4  @:calc-undo@:}
35957 @r{       @:      X     @:             @:     4  @:calc-call-last-kbd-macro@:}
35960 @r{    a b@:      a =   @:             @:     2  @:eq@:(a,b)  a=b}
35961 @r{    a b@:      a #   @:             @:     2  @:neq@:(a,b)  a!=b}
35962 @r{    a b@:      a <   @:             @:     2  @:lt@:(a,b)  a<b}
35963 @r{    a b@:      a >   @:             @:     2  @:gt@:(a,b)  a>b}
35964 @r{    a b@:      a [   @:             @:     2  @:leq@:(a,b)  a<=b}
35965 @r{    a b@:      a ]   @:             @:     2  @:geq@:(a,b)  a>=b}
35966 @r{    a b@:      a @{   @:             @:     2  @:in@:(a,b)}
35967 @r{    a b@:      a &   @:             @:  2,45  @:land@:(a,b)  a&&b}
35968 @r{    a b@:      a |   @:             @:  2,45  @:lor@:(a,b)  a||b}
35969 @r{      a@:      a !   @:             @:  1,45  @:lnot@:(a)  !a}
35970 @r{  a b c@:      a :   @:             @:    45  @:if@:(a,b,c)  a?b:c}
35971 @r{      a@:      a .   @:             @:     1  @:rmeq@:(a)}
35972 @r{      a@:      a "   @:             @:   7,8  @:calc-expand-formula@:}
35975 @r{      a@:      a +   @:i, l, h      @:  6,38  @:sum@:(a,i,l,h)}
35976 @r{      a@:      a -   @:i, l, h      @:  6,38  @:asum@:(a,i,l,h)}
35977 @r{      a@:      a *   @:i, l, h      @:  6,38  @:prod@:(a,i,l,h)}
35978 @r{    a b@:      a _   @:             @:     2  @:subscr@:(a,b)  a_b}
35981 @r{    a b@:      a \   @:             @:     2  @:pdiv@:(a,b)}
35982 @r{    a b@:      a %   @:             @:     2  @:prem@:(a,b)}
35983 @r{    a b@:      a /   @:             @:     2  @:pdivrem@:(a,b)  [q,r]}
35984 @r{    a b@:    H a /   @:             @:     2  @:pdivide@:(a,b)  q+r/b}
35987 @r{      a@:      a a   @:             @:     1  @:apart@:(a)}
35988 @r{      a@:      a b   @:old, new     @:    38  @:subst@:(a,old,new)}
35989 @r{      a@:      a c   @:v            @:    38  @:collect@:(a,v)}
35990 @r{      a@:      a d   @:v            @:  4,38  @:deriv@:(a,v)}
35991 @r{      a@:    H a d   @:v            @:  4,38  @:tderiv@:(a,v)}
35992 @r{      a@:      a e   @:             @:        @:esimplify@:(a)}
35993 @r{      a@:      a f   @:             @:     1  @:factor@:(a)}
35994 @r{      a@:    H a f   @:             @:     1  @:factors@:(a)}
35995 @r{    a b@:      a g   @:             @:     2  @:pgcd@:(a,b)}
35996 @r{      a@:      a i   @:v            @:    38  @:integ@:(a,v)}
35997 @r{      a@:      a m   @:pats         @:    38  @:match@:(a,pats)}
35998 @r{      a@:    I a m   @:pats         @:    38  @:matchnot@:(a,pats)}
35999 @r{ data x@:      a p   @:             @:    28  @:polint@:(data,x)}
36000 @r{ data x@:    H a p   @:             @:    28  @:ratint@:(data,x)}
36001 @r{      a@:      a n   @:             @:     1  @:nrat@:(a)}
36002 @r{      a@:      a r   @:rules        @:4,8,38  @:rewrite@:(a,rules,n)}
36003 @r{      a@:      a s   @:             @:        @:simplify@:(a)}
36004 @r{      a@:      a t   @:v, n         @: 31,39  @:taylor@:(a,v,n)}
36005 @r{      a@:      a v   @:             @:   7,8  @:calc-alg-evaluate@:}
36006 @r{      a@:      a x   @:             @:   4,8  @:expand@:(a)}
36009 @r{   data@:      a F   @:model, vars  @:    48  @:fit@:(m,iv,pv,data)}
36010 @r{   data@:    I a F   @:model, vars  @:    48  @:xfit@:(m,iv,pv,data)}
36011 @r{   data@:    H a F   @:model, vars  @:    48  @:efit@:(m,iv,pv,data)}
36012 @r{      a@:      a I   @:v, l, h      @:    38  @:ninteg@:(a,v,l,h)}
36013 @r{    a b@:      a M   @:op           @:    22  @:mapeq@:(op,a,b)}
36014 @r{    a b@:    I a M   @:op           @:    22  @:mapeqr@:(op,a,b)}
36015 @r{    a b@:    H a M   @:op           @:    22  @:mapeqp@:(op,a,b)}
36016 @r{    a g@:      a N   @:v            @:    38  @:minimize@:(a,v,g)}
36017 @r{    a g@:    H a N   @:v            @:    38  @:wminimize@:(a,v,g)}
36018 @r{      a@:      a P   @:v            @:    38  @:roots@:(a,v)}
36019 @r{    a g@:      a R   @:v            @:    38  @:root@:(a,v,g)}
36020 @r{    a g@:    H a R   @:v            @:    38  @:wroot@:(a,v,g)}
36021 @r{      a@:      a S   @:v            @:    38  @:solve@:(a,v)}
36022 @r{      a@:    I a S   @:v            @:    38  @:finv@:(a,v)}
36023 @r{      a@:    H a S   @:v            @:    38  @:fsolve@:(a,v)}
36024 @r{      a@:  I H a S   @:v            @:    38  @:ffinv@:(a,v)}
36025 @r{      a@:      a T   @:i, l, h      @:  6,38  @:table@:(a,i,l,h)}
36026 @r{    a g@:      a X   @:v            @:    38  @:maximize@:(a,v,g)}
36027 @r{    a g@:    H a X   @:v            @:    38  @:wmaximize@:(a,v,g)}
36030 @r{    a b@:      b a   @:             @:     9  @:and@:(a,b,w)}
36031 @r{      a@:      b c   @:             @:     9  @:clip@:(a,w)}
36032 @r{    a b@:      b d   @:             @:     9  @:diff@:(a,b,w)}
36033 @r{      a@:      b l   @:             @:    10  @:lsh@:(a,n,w)}
36034 @r{    a n@:    H b l   @:             @:     9  @:lsh@:(a,n,w)}
36035 @r{      a@:      b n   @:             @:     9  @:not@:(a,w)}
36036 @r{    a b@:      b o   @:             @:     9  @:or@:(a,b,w)}
36037 @r{      v@:      b p   @:             @:     1  @:vpack@:(v)}
36038 @r{      a@:      b r   @:             @:    10  @:rsh@:(a,n,w)}
36039 @r{    a n@:    H b r   @:             @:     9  @:rsh@:(a,n,w)}
36040 @r{      a@:      b t   @:             @:    10  @:rot@:(a,n,w)}
36041 @r{    a n@:    H b t   @:             @:     9  @:rot@:(a,n,w)}
36042 @r{      a@:      b u   @:             @:     1  @:vunpack@:(a)}
36043 @r{       @:      b w   @:w            @:  9,50  @:calc-word-size@:}
36044 @r{    a b@:      b x   @:             @:     9  @:xor@:(a,b,w)}
36047 @r{c s l p@:      b D   @:             @:        @:ddb@:(c,s,l,p)}
36048 @r{  r n p@:      b F   @:             @:        @:fv@:(r,n,p)}
36049 @r{  r n p@:    I b F   @:             @:        @:fvb@:(r,n,p)}
36050 @r{  r n p@:    H b F   @:             @:        @:fvl@:(r,n,p)}
36051 @r{      v@:      b I   @:             @:    19  @:irr@:(v)}
36052 @r{      v@:    I b I   @:             @:    19  @:irrb@:(v)}
36053 @r{      a@:      b L   @:             @:    10  @:ash@:(a,n,w)}
36054 @r{    a n@:    H b L   @:             @:     9  @:ash@:(a,n,w)}
36055 @r{  r n a@:      b M   @:             @:        @:pmt@:(r,n,a)}
36056 @r{  r n a@:    I b M   @:             @:        @:pmtb@:(r,n,a)}
36057 @r{  r n a@:    H b M   @:             @:        @:pmtl@:(r,n,a)}
36058 @r{    r v@:      b N   @:             @:    19  @:npv@:(r,v)}
36059 @r{    r v@:    I b N   @:             @:    19  @:npvb@:(r,v)}
36060 @r{  r n p@:      b P   @:             @:        @:pv@:(r,n,p)}
36061 @r{  r n p@:    I b P   @:             @:        @:pvb@:(r,n,p)}
36062 @r{  r n p@:    H b P   @:             @:        @:pvl@:(r,n,p)}
36063 @r{      a@:      b R   @:             @:    10  @:rash@:(a,n,w)}
36064 @r{    a n@:    H b R   @:             @:     9  @:rash@:(a,n,w)}
36065 @r{  c s l@:      b S   @:             @:        @:sln@:(c,s,l)}
36066 @r{  n p a@:      b T   @:             @:        @:rate@:(n,p,a)}
36067 @r{  n p a@:    I b T   @:             @:        @:rateb@:(n,p,a)}
36068 @r{  n p a@:    H b T   @:             @:        @:ratel@:(n,p,a)}
36069 @r{c s l p@:      b Y   @:             @:        @:syd@:(c,s,l,p)}
36071 @r{  r p a@:      b #   @:             @:        @:nper@:(r,p,a)}
36072 @r{  r p a@:    I b #   @:             @:        @:nperb@:(r,p,a)}
36073 @r{  r p a@:    H b #   @:             @:        @:nperl@:(r,p,a)}
36074 @r{    a b@:      b %   @:             @:        @:relch@:(a,b)}
36077 @r{      a@:      c c   @:             @:     5  @:pclean@:(a,p)}
36078 @r{      a@:      c 0-9 @:             @:        @:pclean@:(a,p)}
36079 @r{      a@:    H c c   @:             @:     5  @:clean@:(a,p)}
36080 @r{      a@:    H c 0-9 @:             @:        @:clean@:(a,p)}
36081 @r{      a@:      c d   @:             @:     1  @:deg@:(a)}
36082 @r{      a@:      c f   @:             @:     1  @:pfloat@:(a)}
36083 @r{      a@:    H c f   @:             @:     1  @:float@:(a)}
36084 @r{      a@:      c h   @:             @:     1  @:hms@:(a)}
36085 @r{      a@:      c p   @:             @:        @:polar@:(a)}
36086 @r{      a@:    I c p   @:             @:        @:rect@:(a)}
36087 @r{      a@:      c r   @:             @:     1  @:rad@:(a)}
36090 @r{      a@:      c F   @:             @:     5  @:pfrac@:(a,p)}
36091 @r{      a@:    H c F   @:             @:     5  @:frac@:(a,p)}
36094 @r{      a@:      c %   @:             @:        @:percent@:(a*100)}
36097 @r{       @:      d .   @:char         @:    50  @:calc-point-char@:}
36098 @r{       @:      d ,   @:char         @:    50  @:calc-group-char@:}
36099 @r{       @:      d <   @:             @: 13,50  @:calc-left-justify@:}
36100 @r{       @:      d =   @:             @: 13,50  @:calc-center-justify@:}
36101 @r{       @:      d >   @:             @: 13,50  @:calc-right-justify@:}
36102 @r{       @:      d @{   @:label        @:    50  @:calc-left-label@:}
36103 @r{       @:      d @}   @:label        @:    50  @:calc-right-label@:}
36104 @r{       @:      d [   @:             @:     4  @:calc-truncate-up@:}
36105 @r{       @:      d ]   @:             @:     4  @:calc-truncate-down@:}
36106 @r{       @:      d "   @:             @: 12,50  @:calc-display-strings@:}
36107 @r{       @:      d @summarykey{SPC} @:             @:        @:calc-refresh@:}
36108 @r{       @:      d @summarykey{RET} @:             @:     1  @:calc-refresh-top@:}
36111 @r{       @:      d 0   @:             @:    50  @:calc-decimal-radix@:}
36112 @r{       @:      d 2   @:             @:    50  @:calc-binary-radix@:}
36113 @r{       @:      d 6   @:             @:    50  @:calc-hex-radix@:}
36114 @r{       @:      d 8   @:             @:    50  @:calc-octal-radix@:}
36117 @r{       @:      d b   @:           @:12,13,50  @:calc-line-breaking@:}
36118 @r{       @:      d c   @:             @:    50  @:calc-complex-notation@:}
36119 @r{       @:      d d   @:format       @:    50  @:calc-date-notation@:}
36120 @r{       @:      d e   @:             @:  5,50  @:calc-eng-notation@:}
36121 @r{       @:      d f   @:num          @: 31,50  @:calc-fix-notation@:}
36122 @r{       @:      d g   @:           @:12,13,50  @:calc-group-digits@:}
36123 @r{       @:      d h   @:format       @:    50  @:calc-hms-notation@:}
36124 @r{       @:      d i   @:             @:    50  @:calc-i-notation@:}
36125 @r{       @:      d j   @:             @:    50  @:calc-j-notation@:}
36126 @r{       @:      d l   @:             @: 12,50  @:calc-line-numbering@:}
36127 @r{       @:      d n   @:             @:  5,50  @:calc-normal-notation@:}
36128 @r{       @:      d o   @:format       @:    50  @:calc-over-notation@:}
36129 @r{       @:      d p   @:             @: 12,50  @:calc-show-plain@:}
36130 @r{       @:      d r   @:radix        @: 31,50  @:calc-radix@:}
36131 @r{       @:      d s   @:             @:  5,50  @:calc-sci-notation@:}
36132 @r{       @:      d t   @:             @:    27  @:calc-truncate-stack@:}
36133 @r{       @:      d w   @:             @: 12,13  @:calc-auto-why@:}
36134 @r{       @:      d z   @:             @: 12,50  @:calc-leading-zeros@:}
36137 @r{       @:      d B   @:             @:    50  @:calc-big-language@:}
36138 @r{       @:      d C   @:             @:    50  @:calc-c-language@:}
36139 @r{       @:      d E   @:             @:    50  @:calc-eqn-language@:}
36140 @r{       @:      d F   @:             @:    50  @:calc-fortran-language@:}
36141 @r{       @:      d M   @:             @:    50  @:calc-mathematica-language@:}
36142 @r{       @:      d N   @:             @:    50  @:calc-normal-language@:}
36143 @r{       @:      d O   @:             @:    50  @:calc-flat-language@:}
36144 @r{       @:      d P   @:             @:    50  @:calc-pascal-language@:}
36145 @r{       @:      d T   @:             @:    50  @:calc-tex-language@:}
36146 @r{       @:      d L   @:             @:    50  @:calc-latex-language@:}
36147 @r{       @:      d U   @:             @:    50  @:calc-unformatted-language@:}
36148 @r{       @:      d W   @:             @:    50  @:calc-maple-language@:}
36151 @r{      a@:      f [   @:             @:     4  @:decr@:(a,n)}
36152 @r{      a@:      f ]   @:             @:     4  @:incr@:(a,n)}
36155 @r{    a b@:      f b   @:             @:     2  @:beta@:(a,b)}
36156 @r{      a@:      f e   @:             @:     1  @:erf@:(a)}
36157 @r{      a@:    I f e   @:             @:     1  @:erfc@:(a)}
36158 @r{      a@:      f g   @:             @:     1  @:gamma@:(a)}
36159 @r{    a b@:      f h   @:             @:     2  @:hypot@:(a,b)}
36160 @r{      a@:      f i   @:             @:     1  @:im@:(a)}
36161 @r{    n a@:      f j   @:             @:     2  @:besJ@:(n,a)}
36162 @r{    a b@:      f n   @:             @:     2  @:min@:(a,b)}
36163 @r{      a@:      f r   @:             @:     1  @:re@:(a)}
36164 @r{      a@:      f s   @:             @:     1  @:sign@:(a)}
36165 @r{    a b@:      f x   @:             @:     2  @:max@:(a,b)}
36166 @r{    n a@:      f y   @:             @:     2  @:besY@:(n,a)}
36169 @r{      a@:      f A   @:             @:     1  @:abssqr@:(a)}
36170 @r{  x a b@:      f B   @:             @:        @:betaI@:(x,a,b)}
36171 @r{  x a b@:    H f B   @:             @:        @:betaB@:(x,a,b)}
36172 @r{      a@:      f E   @:             @:     1  @:expm1@:(a)}
36173 @r{    a x@:      f G   @:             @:     2  @:gammaP@:(a,x)}
36174 @r{    a x@:    I f G   @:             @:     2  @:gammaQ@:(a,x)}
36175 @r{    a x@:    H f G   @:             @:     2  @:gammag@:(a,x)}
36176 @r{    a x@:  I H f G   @:             @:     2  @:gammaG@:(a,x)}
36177 @r{    a b@:      f I   @:             @:     2  @:ilog@:(a,b)}
36178 @r{    a b@:    I f I   @:             @:     2  @:alog@:(a,b)  b^a}
36179 @r{      a@:      f L   @:             @:     1  @:lnp1@:(a)}
36180 @r{      a@:      f M   @:             @:     1  @:mant@:(a)}
36181 @r{      a@:      f Q   @:             @:     1  @:isqrt@:(a)}
36182 @r{      a@:    I f Q   @:             @:     1  @:sqr@:(a)  a^2}
36183 @r{    a n@:      f S   @:             @:     2  @:scf@:(a,n)}
36184 @r{    y x@:      f T   @:             @:        @:arctan2@:(y,x)}
36185 @r{      a@:      f X   @:             @:     1  @:xpon@:(a)}
36188 @r{    x y@:      g a   @:             @: 28,40  @:calc-graph-add@:}
36189 @r{       @:      g b   @:             @:    12  @:calc-graph-border@:}
36190 @r{       @:      g c   @:             @:        @:calc-graph-clear@:}
36191 @r{       @:      g d   @:             @:    41  @:calc-graph-delete@:}
36192 @r{    x y@:      g f   @:             @: 28,40  @:calc-graph-fast@:}
36193 @r{       @:      g g   @:             @:    12  @:calc-graph-grid@:}
36194 @r{       @:      g h   @:title        @:        @:calc-graph-header@:}
36195 @r{       @:      g j   @:             @:     4  @:calc-graph-juggle@:}
36196 @r{       @:      g k   @:             @:    12  @:calc-graph-key@:}
36197 @r{       @:      g l   @:             @:    12  @:calc-graph-log-x@:}
36198 @r{       @:      g n   @:name         @:        @:calc-graph-name@:}
36199 @r{       @:      g p   @:             @:    42  @:calc-graph-plot@:}
36200 @r{       @:      g q   @:             @:        @:calc-graph-quit@:}
36201 @r{       @:      g r   @:range        @:        @:calc-graph-range-x@:}
36202 @r{       @:      g s   @:             @: 12,13  @:calc-graph-line-style@:}
36203 @r{       @:      g t   @:title        @:        @:calc-graph-title-x@:}
36204 @r{       @:      g v   @:             @:        @:calc-graph-view-commands@:}
36205 @r{       @:      g x   @:display      @:        @:calc-graph-display@:}
36206 @r{       @:      g z   @:             @:    12  @:calc-graph-zero-x@:}
36209 @r{  x y z@:      g A   @:             @: 28,40  @:calc-graph-add-3d@:}
36210 @r{       @:      g C   @:command      @:        @:calc-graph-command@:}
36211 @r{       @:      g D   @:device       @: 43,44  @:calc-graph-device@:}
36212 @r{  x y z@:      g F   @:             @: 28,40  @:calc-graph-fast-3d@:}
36213 @r{       @:      g H   @:             @:    12  @:calc-graph-hide@:}
36214 @r{       @:      g K   @:             @:        @:calc-graph-kill@:}
36215 @r{       @:      g L   @:             @:    12  @:calc-graph-log-y@:}
36216 @r{       @:      g N   @:number       @: 43,51  @:calc-graph-num-points@:}
36217 @r{       @:      g O   @:filename     @: 43,44  @:calc-graph-output@:}
36218 @r{       @:      g P   @:             @:    42  @:calc-graph-print@:}
36219 @r{       @:      g R   @:range        @:        @:calc-graph-range-y@:}
36220 @r{       @:      g S   @:             @: 12,13  @:calc-graph-point-style@:}
36221 @r{       @:      g T   @:title        @:        @:calc-graph-title-y@:}
36222 @r{       @:      g V   @:             @:        @:calc-graph-view-trail@:}
36223 @r{       @:      g X   @:format       @:        @:calc-graph-geometry@:}
36224 @r{       @:      g Z   @:             @:    12  @:calc-graph-zero-y@:}
36227 @r{       @:      g C-l @:             @:    12  @:calc-graph-log-z@:}
36228 @r{       @:      g C-r @:range        @:        @:calc-graph-range-z@:}
36229 @r{       @:      g C-t @:title        @:        @:calc-graph-title-z@:}
36232 @r{       @:      h b   @:             @:        @:calc-describe-bindings@:}
36233 @r{       @:      h c   @:key          @:        @:calc-describe-key-briefly@:}
36234 @r{       @:      h f   @:function     @:        @:calc-describe-function@:}
36235 @r{       @:      h h   @:             @:        @:calc-full-help@:}
36236 @r{       @:      h i   @:             @:        @:calc-info@:}
36237 @r{       @:      h k   @:key          @:        @:calc-describe-key@:}
36238 @r{       @:      h n   @:             @:        @:calc-view-news@:}
36239 @r{       @:      h s   @:             @:        @:calc-info-summary@:}
36240 @r{       @:      h t   @:             @:        @:calc-tutorial@:}
36241 @r{       @:      h v   @:var          @:        @:calc-describe-variable@:}
36244 @r{       @:      j 1-9 @:             @:        @:calc-select-part@:}
36245 @r{       @:      j @summarykey{RET} @:             @:    27  @:calc-copy-selection@:}
36246 @r{       @:      j @summarykey{DEL} @:             @:    27  @:calc-del-selection@:}
36247 @r{       @:      j '   @:formula      @:    27  @:calc-enter-selection@:}
36248 @r{       @:      j `   @:editing      @: 27,30  @:calc-edit-selection@:}
36249 @r{       @:      j "   @:             @:  7,27  @:calc-sel-expand-formula@:}
36252 @r{       @:      j +   @:formula      @:    27  @:calc-sel-add-both-sides@:}
36253 @r{       @:      j -   @:formula      @:    27  @:calc-sel-sub-both-sides@:}
36254 @r{       @:      j *   @:formula      @:    27  @:calc-sel-mul-both-sides@:}
36255 @r{       @:      j /   @:formula      @:    27  @:calc-sel-div-both-sides@:}
36256 @r{       @:      j &   @:             @:    27  @:calc-sel-invert@:}
36259 @r{       @:      j a   @:             @:    27  @:calc-select-additional@:}
36260 @r{       @:      j b   @:             @:    12  @:calc-break-selections@:}
36261 @r{       @:      j c   @:             @:        @:calc-clear-selections@:}
36262 @r{       @:      j d   @:             @: 12,50  @:calc-show-selections@:}
36263 @r{       @:      j e   @:             @:    12  @:calc-enable-selections@:}
36264 @r{       @:      j l   @:             @:  4,27  @:calc-select-less@:}
36265 @r{       @:      j m   @:             @:  4,27  @:calc-select-more@:}
36266 @r{       @:      j n   @:             @:     4  @:calc-select-next@:}
36267 @r{       @:      j o   @:             @:  4,27  @:calc-select-once@:}
36268 @r{       @:      j p   @:             @:     4  @:calc-select-previous@:}
36269 @r{       @:      j r   @:rules        @:4,8,27  @:calc-rewrite-selection@:}
36270 @r{       @:      j s   @:             @:  4,27  @:calc-select-here@:}
36271 @r{       @:      j u   @:             @:    27  @:calc-unselect@:}
36272 @r{       @:      j v   @:             @:  7,27  @:calc-sel-evaluate@:}
36275 @r{       @:      j C   @:             @:    27  @:calc-sel-commute@:}
36276 @r{       @:      j D   @:             @:  4,27  @:calc-sel-distribute@:}
36277 @r{       @:      j E   @:             @:    27  @:calc-sel-jump-equals@:}
36278 @r{       @:      j I   @:             @:    27  @:calc-sel-isolate@:}
36279 @r{       @:    H j I   @:             @:    27  @:calc-sel-isolate@: (full)}
36280 @r{       @:      j L   @:             @:  4,27  @:calc-commute-left@:}
36281 @r{       @:      j M   @:             @:    27  @:calc-sel-merge@:}
36282 @r{       @:      j N   @:             @:    27  @:calc-sel-negate@:}
36283 @r{       @:      j O   @:             @:  4,27  @:calc-select-once-maybe@:}
36284 @r{       @:      j R   @:             @:  4,27  @:calc-commute-right@:}
36285 @r{       @:      j S   @:             @:  4,27  @:calc-select-here-maybe@:}
36286 @r{       @:      j U   @:             @:    27  @:calc-sel-unpack@:}
36289 @r{       @:      k a   @:             @:        @:calc-random-again@:}
36290 @r{      n@:      k b   @:             @:     1  @:bern@:(n)}
36291 @r{    n x@:    H k b   @:             @:     2  @:bern@:(n,x)}
36292 @r{    n m@:      k c   @:             @:     2  @:choose@:(n,m)}
36293 @r{    n m@:    H k c   @:             @:     2  @:perm@:(n,m)}
36294 @r{      n@:      k d   @:             @:     1  @:dfact@:(n)  n!!}
36295 @r{      n@:      k e   @:             @:     1  @:euler@:(n)}
36296 @r{    n x@:    H k e   @:             @:     2  @:euler@:(n,x)}
36297 @r{      n@:      k f   @:             @:     4  @:prfac@:(n)}
36298 @r{    n m@:      k g   @:             @:     2  @:gcd@:(n,m)}
36299 @r{    m n@:      k h   @:             @:    14  @:shuffle@:(n,m)}
36300 @r{    n m@:      k l   @:             @:     2  @:lcm@:(n,m)}
36301 @r{      n@:      k m   @:             @:     1  @:moebius@:(n)}
36302 @r{      n@:      k n   @:             @:     4  @:nextprime@:(n)}
36303 @r{      n@:    I k n   @:             @:     4  @:prevprime@:(n)}
36304 @r{      n@:      k p   @:             @:  4,28  @:calc-prime-test@:}
36305 @r{      m@:      k r   @:             @:    14  @:random@:(m)}
36306 @r{    n m@:      k s   @:             @:     2  @:stir1@:(n,m)}
36307 @r{    n m@:    H k s   @:             @:     2  @:stir2@:(n,m)}
36308 @r{      n@:      k t   @:             @:     1  @:totient@:(n)}
36311 @r{  n p x@:      k B   @:             @:        @:utpb@:(x,n,p)}
36312 @r{  n p x@:    I k B   @:             @:        @:ltpb@:(x,n,p)}
36313 @r{    v x@:      k C   @:             @:        @:utpc@:(x,v)}
36314 @r{    v x@:    I k C   @:             @:        @:ltpc@:(x,v)}
36315 @r{    n m@:      k E   @:             @:        @:egcd@:(n,m)}
36316 @r{v1 v2 x@:      k F   @:             @:        @:utpf@:(x,v1,v2)}
36317 @r{v1 v2 x@:    I k F   @:             @:        @:ltpf@:(x,v1,v2)}
36318 @r{  m s x@:      k N   @:             @:        @:utpn@:(x,m,s)}
36319 @r{  m s x@:    I k N   @:             @:        @:ltpn@:(x,m,s)}
36320 @r{    m x@:      k P   @:             @:        @:utpp@:(x,m)}
36321 @r{    m x@:    I k P   @:             @:        @:ltpp@:(x,m)}
36322 @r{    v x@:      k T   @:             @:        @:utpt@:(x,v)}
36323 @r{    v x@:    I k T   @:             @:        @:ltpt@:(x,v)}
36326 @r{    a b@:      l +   @:             @:        @:lupadd@:(a,b)}
36327 @r{    a b@:    H l +   @:             @:        @:lufadd@:(a,b)}
36328 @r{    a b@:      l -   @:             @:        @:lupsub@:(a,b)}
36329 @r{    a b@:    H l -   @:             @:        @:lufsub@:(a,b)}
36330 @r{    a b@:      l *   @:             @:        @:lupmul@:(a,b)}
36331 @r{    a b@:    H l *   @:             @:        @:lufmul@:(a,b)}
36332 @r{    a b@:      l /   @:             @:        @:lupdiv@:(a,b)}
36333 @r{    a b@:    H l /   @:             @:        @:lufdiv@:(a,b)}
36334 @r{      a@:      l d   @:             @:        @:dbpower@:(a)}
36335 @r{    a b@:    O l d   @:             @:        @:dbpower@:(a,b)}
36336 @r{      a@:    H l d   @:             @:        @:dbfield@:(a)}
36337 @r{    a b@:  O H l d   @:             @:        @:dbfield@:(a,b)}
36338 @r{      a@:      l n   @:             @:        @:nppower@:(a)}
36339 @r{    a b@:    O l n   @:             @:        @:nppower@:(a,b)}
36340 @r{      a@:    H l n   @:             @:        @:npfield@:(a)}
36341 @r{    a b@:  O H l n   @:             @:        @:npfield@:(a,b)}
36342 @r{      a@:      l q   @:             @:        @:lupquant@:(a)}
36343 @r{    a b@:    O l q   @:             @:        @:lupquant@:(a,b)}
36344 @r{      a@:    H l q   @:             @:        @:lufquant@:(a)}
36345 @r{    a b@:  O H l q   @:             @:        @:lufquant@:(a,b)}
36346 @r{      a@:      l s   @:             @:        @:spn@:(a)}
36347 @r{      a@:      l m   @:             @:        @:midi@:(a)}
36348 @r{      a@:      l f   @:             @:        @:freq@:(a)}
36351 @r{       @:      m a   @:             @: 12,13  @:calc-algebraic-mode@:}
36352 @r{       @:      m d   @:             @:        @:calc-degrees-mode@:}
36353 @r{       @:      m e   @:             @:        @:calc-embedded-preserve-modes@:}
36354 @r{       @:      m f   @:             @:    12  @:calc-frac-mode@:}
36355 @r{       @:      m g   @:             @:    52  @:calc-get-modes@:}
36356 @r{       @:      m h   @:             @:        @:calc-hms-mode@:}
36357 @r{       @:      m i   @:             @: 12,13  @:calc-infinite-mode@:}
36358 @r{       @:      m m   @:             @:        @:calc-save-modes@:}
36359 @r{       @:      m p   @:             @:    12  @:calc-polar-mode@:}
36360 @r{       @:      m r   @:             @:        @:calc-radians-mode@:}
36361 @r{       @:      m s   @:             @:    12  @:calc-symbolic-mode@:}
36362 @r{       @:      m t   @:             @:    12  @:calc-total-algebraic-mode@:}
36363 @r{       @:      m v   @:             @: 12,13  @:calc-matrix-mode@:}
36364 @r{       @:      m w   @:             @:    13  @:calc-working@:}
36365 @r{       @:      m x   @:             @:        @:calc-always-load-extensions@:}
36368 @r{       @:      m A   @:             @:    12  @:calc-alg-simplify-mode@:}
36369 @r{       @:      m B   @:             @:    12  @:calc-bin-simplify-mode@:}
36370 @r{       @:      m C   @:             @:    12  @:calc-auto-recompute@:}
36371 @r{       @:      m D   @:             @:        @:calc-default-simplify-mode@:}
36372 @r{       @:      m E   @:             @:    12  @:calc-ext-simplify-mode@:}
36373 @r{       @:      m F   @:filename     @:    13  @:calc-settings-file-name@:}
36374 @r{       @:      m N   @:             @:    12  @:calc-num-simplify-mode@:}
36375 @r{       @:      m O   @:             @:    12  @:calc-no-simplify-mode@:}
36376 @r{       @:      m R   @:             @: 12,13  @:calc-mode-record-mode@:}
36377 @r{       @:      m S   @:             @:    12  @:calc-shift-prefix@:}
36378 @r{       @:      m U   @:             @:    12  @:calc-units-simplify-mode@:}
36381 @r{       @:      r s   @:register     @:    27  @:calc-copy-to-register@:}
36382 @r{       @:      r i   @:register     @:        @:calc-insert-register@:}
36385 @r{       @:      s c   @:var1, var2   @:    29  @:calc-copy-variable@:}
36386 @r{       @:      s d   @:var, decl    @:        @:calc-declare-variable@:}
36387 @r{       @:      s e   @:var, editing @: 29,30  @:calc-edit-variable@:}
36388 @r{       @:      s i   @:buffer       @:        @:calc-insert-variables@:}
36389 @r{       @:      s k   @:const, var   @:    29  @:calc-copy-special-constant@:}
36390 @r{    a b@:      s l   @:var          @:    29  @:@:a  (letting var=b)}
36391 @r{  a ...@:      s m   @:op, var      @: 22,29  @:calc-store-map@:}
36392 @r{       @:      s n   @:var          @: 29,47  @:calc-store-neg@:  (v/-1)}
36393 @r{       @:      s p   @:var          @:    29  @:calc-permanent-variable@:}
36394 @r{       @:      s r   @:var          @:    29  @:@:v  (recalled value)}
36395 @r{       @:      r 0-9 @:             @:        @:calc-recall-quick@:}
36396 @r{      a@:      s s   @:var          @: 28,29  @:calc-store@:}
36397 @r{      a@:      s 0-9 @:             @:        @:calc-store-quick@:}
36398 @r{      a@:      s t   @:var          @:    29  @:calc-store-into@:}
36399 @r{      a@:      t 0-9 @:             @:        @:calc-store-into-quick@:}
36400 @r{       @:      s u   @:var          @:    29  @:calc-unstore@:}
36401 @r{      a@:      s x   @:var          @:    29  @:calc-store-exchange@:}
36404 @r{       @:      s A   @:editing      @:    30  @:calc-edit-AlgSimpRules@:}
36405 @r{       @:      s D   @:editing      @:    30  @:calc-edit-Decls@:}
36406 @r{       @:      s E   @:editing      @:    30  @:calc-edit-EvalRules@:}
36407 @r{       @:      s F   @:editing      @:    30  @:calc-edit-FitRules@:}
36408 @r{       @:      s G   @:editing      @:    30  @:calc-edit-GenCount@:}
36409 @r{       @:      s H   @:editing      @:    30  @:calc-edit-Holidays@:}
36410 @r{       @:      s I   @:editing      @:    30  @:calc-edit-IntegLimit@:}
36411 @r{       @:      s L   @:editing      @:    30  @:calc-edit-LineStyles@:}
36412 @r{       @:      s P   @:editing      @:    30  @:calc-edit-PointStyles@:}
36413 @r{       @:      s R   @:editing      @:    30  @:calc-edit-PlotRejects@:}
36414 @r{       @:      s T   @:editing      @:    30  @:calc-edit-TimeZone@:}
36415 @r{       @:      s U   @:editing      @:    30  @:calc-edit-Units@:}
36416 @r{       @:      s X   @:editing      @:    30  @:calc-edit-ExtSimpRules@:}
36419 @r{      a@:      s +   @:var          @: 29,47  @:calc-store-plus@:  (v+a)}
36420 @r{      a@:      s -   @:var          @: 29,47  @:calc-store-minus@:  (v-a)}
36421 @r{      a@:      s *   @:var          @: 29,47  @:calc-store-times@:  (v*a)}
36422 @r{      a@:      s /   @:var          @: 29,47  @:calc-store-div@:  (v/a)}
36423 @r{      a@:      s ^   @:var          @: 29,47  @:calc-store-power@:  (v^a)}
36424 @r{      a@:      s |   @:var          @: 29,47  @:calc-store-concat@:  (v|a)}
36425 @r{       @:      s &   @:var          @: 29,47  @:calc-store-inv@:  (v^-1)}
36426 @r{       @:      s [   @:var          @: 29,47  @:calc-store-decr@:  (v-1)}
36427 @r{       @:      s ]   @:var          @: 29,47  @:calc-store-incr@:  (v-(-1))}
36428 @r{    a b@:      s :   @:             @:     2  @:assign@:(a,b)  a @tfn{:=} b}
36429 @r{      a@:      s =   @:             @:     1  @:evalto@:(a,b)  a @tfn{=>}}
36432 @r{       @:      t [   @:             @:     4  @:calc-trail-first@:}
36433 @r{       @:      t ]   @:             @:     4  @:calc-trail-last@:}
36434 @r{       @:      t <   @:             @:     4  @:calc-trail-scroll-left@:}
36435 @r{       @:      t >   @:             @:     4  @:calc-trail-scroll-right@:}
36436 @r{       @:      t .   @:             @:    12  @:calc-full-trail-vectors@:}
36439 @r{       @:      t b   @:             @:     4  @:calc-trail-backward@:}
36440 @r{       @:      t d   @:             @: 12,50  @:calc-trail-display@:}
36441 @r{       @:      t f   @:             @:     4  @:calc-trail-forward@:}
36442 @r{       @:      t h   @:             @:        @:calc-trail-here@:}
36443 @r{       @:      t i   @:             @:        @:calc-trail-in@:}
36444 @r{       @:      t k   @:             @:     4  @:calc-trail-kill@:}
36445 @r{       @:      t m   @:string       @:        @:calc-trail-marker@:}
36446 @r{       @:      t n   @:             @:     4  @:calc-trail-next@:}
36447 @r{       @:      t o   @:             @:        @:calc-trail-out@:}
36448 @r{       @:      t p   @:             @:     4  @:calc-trail-previous@:}
36449 @r{       @:      t r   @:string       @:        @:calc-trail-isearch-backward@:}
36450 @r{       @:      t s   @:string       @:        @:calc-trail-isearch-forward@:}
36451 @r{       @:      t y   @:             @:     4  @:calc-trail-yank@:}
36454 @r{      d@:      t C   @:oz, nz       @:        @:tzconv@:(d,oz,nz)}
36455 @r{d oz nz@:      t C   @:$            @:        @:tzconv@:(d,oz,nz)}
36456 @r{      d@:      t D   @:             @:    15  @:date@:(d)}
36457 @r{      d@:      t I   @:             @:     4  @:incmonth@:(d,n)}
36458 @r{      d@:      t J   @:             @:    16  @:julian@:(d,z)}
36459 @r{      d@:      t M   @:             @:    17  @:newmonth@:(d,n)}
36460 @r{       @:      t N   @:             @:    16  @:now@:(z)}
36461 @r{      d@:      t P   @:1            @:    31  @:year@:(d)}
36462 @r{      d@:      t P   @:2            @:    31  @:month@:(d)}
36463 @r{      d@:      t P   @:3            @:    31  @:day@:(d)}
36464 @r{      d@:      t P   @:4            @:    31  @:hour@:(d)}
36465 @r{      d@:      t P   @:5            @:    31  @:minute@:(d)}
36466 @r{      d@:      t P   @:6            @:    31  @:second@:(d)}
36467 @r{      d@:      t P   @:7            @:    31  @:weekday@:(d)}
36468 @r{      d@:      t P   @:8            @:    31  @:yearday@:(d)}
36469 @r{      d@:      t P   @:9            @:    31  @:time@:(d)}
36470 @r{      d@:      t U   @:             @:    16  @:unixtime@:(d,z)}
36471 @r{      d@:      t W   @:             @:    17  @:newweek@:(d,w)}
36472 @r{      d@:      t Y   @:             @:    17  @:newyear@:(d,n)}
36475 @r{    a b@:      t +   @:             @:     2  @:badd@:(a,b)}
36476 @r{    a b@:      t -   @:             @:     2  @:bsub@:(a,b)}
36479 @r{       @:      u a   @:             @:    12  @:calc-autorange-units@:}
36480 @r{      a@:      u b   @:             @:        @:calc-base-units@:}
36481 @r{      a@:      u c   @:units        @:    18  @:calc-convert-units@:}
36482 @r{   defn@:      u d   @:unit, descr  @:        @:calc-define-unit@:}
36483 @r{       @:      u e   @:             @:        @:calc-explain-units@:}
36484 @r{       @:      u g   @:unit         @:        @:calc-get-unit-definition@:}
36485 @r{       @:      u n   @:units        @:    18  @:calc-convert-exact-units@:}
36486 @r{       @:      u p   @:             @:        @:calc-permanent-units@:}
36487 @r{      a@:      u r   @:             @:        @:calc-remove-units@:}
36488 @r{      a@:      u s   @:             @:        @:usimplify@:(a)}
36489 @r{      a@:      u t   @:units        @:    18  @:calc-convert-temperature@:}
36490 @r{       @:      u u   @:unit         @:        @:calc-undefine-unit@:}
36491 @r{       @:      u v   @:             @:        @:calc-enter-units-table@:}
36492 @r{      a@:      u x   @:             @:        @:calc-extract-units@:}
36493 @r{      a@:      u 0-9 @:             @:        @:calc-quick-units@:}
36496 @r{  v1 v2@:      u C   @:             @:    20  @:vcov@:(v1,v2)}
36497 @r{  v1 v2@:    I u C   @:             @:    20  @:vpcov@:(v1,v2)}
36498 @r{  v1 v2@:    H u C   @:             @:    20  @:vcorr@:(v1,v2)}
36499 @r{      v@:      u G   @:             @:    19  @:vgmean@:(v)}
36500 @r{    a b@:    H u G   @:             @:     2  @:agmean@:(a,b)}
36501 @r{      v@:      u M   @:             @:    19  @:vmean@:(v)}
36502 @r{      v@:    I u M   @:             @:    19  @:vmeane@:(v)}
36503 @r{      v@:    H u M   @:             @:    19  @:vmedian@:(v)}
36504 @r{      v@:  I H u M   @:             @:    19  @:vhmean@:(v)}
36505 @r{      v@:      u N   @:             @:    19  @:vmin@:(v)}
36506 @r{      v@:      u S   @:             @:    19  @:vsdev@:(v)}
36507 @r{      v@:    I u S   @:             @:    19  @:vpsdev@:(v)}
36508 @r{      v@:    H u S   @:             @:    19  @:vvar@:(v)}
36509 @r{      v@:  I H u S   @:             @:    19  @:vpvar@:(v)}
36510 @r{       @:      u V   @:             @:        @:calc-view-units-table@:}
36511 @r{      v@:      u X   @:             @:    19  @:vmax@:(v)}
36514 @r{      v@:      u +   @:             @:    19  @:vsum@:(v)}
36515 @r{      v@:      u *   @:             @:    19  @:vprod@:(v)}
36516 @r{      v@:      u #   @:             @:    19  @:vcount@:(v)}
36519 @r{       @:      V (   @:             @:    50  @:calc-vector-parens@:}
36520 @r{       @:      V @{   @:             @:    50  @:calc-vector-braces@:}
36521 @r{       @:      V [   @:             @:    50  @:calc-vector-brackets@:}
36522 @r{       @:      V ]   @:ROCP         @:    50  @:calc-matrix-brackets@:}
36523 @r{       @:      V ,   @:             @:    50  @:calc-vector-commas@:}
36524 @r{       @:      V <   @:             @:    50  @:calc-matrix-left-justify@:}
36525 @r{       @:      V =   @:             @:    50  @:calc-matrix-center-justify@:}
36526 @r{       @:      V >   @:             @:    50  @:calc-matrix-right-justify@:}
36527 @r{       @:      V /   @:             @: 12,50  @:calc-break-vectors@:}
36528 @r{       @:      V .   @:             @: 12,50  @:calc-full-vectors@:}
36531 @r{    s t@:      V ^   @:             @:     2  @:vint@:(s,t)}
36532 @r{    s t@:      V -   @:             @:     2  @:vdiff@:(s,t)}
36533 @r{      s@:      V ~   @:             @:     1  @:vcompl@:(s)}
36534 @r{      s@:      V #   @:             @:     1  @:vcard@:(s)}
36535 @r{      s@:      V :   @:             @:     1  @:vspan@:(s)}
36536 @r{      s@:      V +   @:             @:     1  @:rdup@:(s)}
36539 @r{      m@:      V &   @:             @:     1  @:inv@:(m)  1/m}
36542 @r{      v@:      v a   @:n            @:        @:arrange@:(v,n)}
36543 @r{      a@:      v b   @:n            @:        @:cvec@:(a,n)}
36544 @r{      v@:      v c   @:n >0         @: 21,31  @:mcol@:(v,n)}
36545 @r{      v@:      v c   @:n <0         @:    31  @:mrcol@:(v,-n)}
36546 @r{      m@:      v c   @:0            @:    31  @:getdiag@:(m)}
36547 @r{      v@:      v d   @:             @:    25  @:diag@:(v,n)}
36548 @r{    v m@:      v e   @:             @:     2  @:vexp@:(v,m)}
36549 @r{  v m f@:    H v e   @:             @:     2  @:vexp@:(v,m,f)}
36550 @r{    v a@:      v f   @:             @:    26  @:find@:(v,a,n)}
36551 @r{      v@:      v h   @:             @:     1  @:head@:(v)}
36552 @r{      v@:    I v h   @:             @:     1  @:tail@:(v)}
36553 @r{      v@:    H v h   @:             @:     1  @:rhead@:(v)}
36554 @r{      v@:  I H v h   @:             @:     1  @:rtail@:(v)}
36555 @r{       @:      v i   @:n            @:    31  @:idn@:(1,n)}
36556 @r{       @:      v i   @:0            @:    31  @:idn@:(1)}
36557 @r{    h t@:      v k   @:             @:     2  @:cons@:(h,t)}
36558 @r{    h t@:    H v k   @:             @:     2  @:rcons@:(h,t)}
36559 @r{      v@:      v l   @:             @:     1  @:vlen@:(v)}
36560 @r{      v@:    H v l   @:             @:     1  @:mdims@:(v)}
36561 @r{    v m@:      v m   @:             @:     2  @:vmask@:(v,m)}
36562 @r{      v@:      v n   @:             @:     1  @:rnorm@:(v)}
36563 @r{  a b c@:      v p   @:             @:    24  @:calc-pack@:}
36564 @r{      v@:      v r   @:n >0         @: 21,31  @:mrow@:(v,n)}
36565 @r{      v@:      v r   @:n <0         @:    31  @:mrrow@:(v,-n)}
36566 @r{      m@:      v r   @:0            @:    31  @:getdiag@:(m)}
36567 @r{  v i j@:      v s   @:             @:        @:subvec@:(v,i,j)}
36568 @r{  v i j@:    I v s   @:             @:        @:rsubvec@:(v,i,j)}
36569 @r{      m@:      v t   @:             @:     1  @:trn@:(m)}
36570 @r{      v@:      v u   @:             @:    24  @:calc-unpack@:}
36571 @r{      v@:      v v   @:             @:     1  @:rev@:(v)}
36572 @r{       @:      v x   @:n            @:    31  @:index@:(n)}
36573 @r{  n s i@:  C-u v x   @:             @:        @:index@:(n,s,i)}
36576 @r{      v@:      V A   @:op           @:    22  @:apply@:(op,v)}
36577 @r{  v1 v2@:      V C   @:             @:     2  @:cross@:(v1,v2)}
36578 @r{      m@:      V D   @:             @:     1  @:det@:(m)}
36579 @r{      s@:      V E   @:             @:     1  @:venum@:(s)}
36580 @r{      s@:      V F   @:             @:     1  @:vfloor@:(s)}
36581 @r{      v@:      V G   @:             @:        @:grade@:(v)}
36582 @r{      v@:    I V G   @:             @:        @:rgrade@:(v)}
36583 @r{      v@:      V H   @:n            @:    31  @:histogram@:(v,n)}
36584 @r{    v w@:    H V H   @:n            @:    31  @:histogram@:(v,w,n)}
36585 @r{  v1 v2@:      V I   @:mop aop      @:    22  @:inner@:(mop,aop,v1,v2)}
36586 @r{      m@:      V J   @:             @:     1  @:ctrn@:(m)}
36587 @r{  m1 m2@:      V K   @:             @:        @:kron@:(m1,m2)}
36588 @r{      m@:      V L   @:             @:     1  @:lud@:(m)}
36589 @r{      v@:      V M   @:op           @: 22,23  @:map@:(op,v)}
36590 @r{      v@:      V N   @:             @:     1  @:cnorm@:(v)}
36591 @r{  v1 v2@:      V O   @:op           @:    22  @:outer@:(op,v1,v2)}
36592 @r{      v@:      V R   @:op           @: 22,23  @:reduce@:(op,v)}
36593 @r{      v@:    I V R   @:op           @: 22,23  @:rreduce@:(op,v)}
36594 @r{    a n@:    H V R   @:op           @:    22  @:nest@:(op,a,n)}
36595 @r{      a@:  I H V R   @:op           @:    22  @:fixp@:(op,a)}
36596 @r{      v@:      V S   @:             @:        @:sort@:(v)}
36597 @r{      v@:    I V S   @:             @:        @:rsort@:(v)}
36598 @r{      m@:      V T   @:             @:     1  @:tr@:(m)}
36599 @r{      v@:      V U   @:op           @:    22  @:accum@:(op,v)}
36600 @r{      v@:    I V U   @:op           @:    22  @:raccum@:(op,v)}
36601 @r{    a n@:    H V U   @:op           @:    22  @:anest@:(op,a,n)}
36602 @r{      a@:  I H V U   @:op           @:    22  @:afixp@:(op,a)}
36603 @r{    s t@:      V V   @:             @:     2  @:vunion@:(s,t)}
36604 @r{    s t@:      V X   @:             @:     2  @:vxor@:(s,t)}
36607 @r{       @:      Y     @:             @:        @:@:user commands}
36610 @r{       @:      z     @:             @:        @:@:user commands}
36613 @r{      c@:      Z [   @:             @:    45  @:calc-kbd-if@:}
36614 @r{      c@:      Z |   @:             @:    45  @:calc-kbd-else-if@:}
36615 @r{       @:      Z :   @:             @:        @:calc-kbd-else@:}
36616 @r{       @:      Z ]   @:             @:        @:calc-kbd-end-if@:}
36619 @r{       @:      Z @{   @:             @:     4  @:calc-kbd-loop@:}
36620 @r{      c@:      Z /   @:             @:    45  @:calc-kbd-break@:}
36621 @r{       @:      Z @}   @:             @:        @:calc-kbd-end-loop@:}
36622 @r{      n@:      Z <   @:             @:        @:calc-kbd-repeat@:}
36623 @r{       @:      Z >   @:             @:        @:calc-kbd-end-repeat@:}
36624 @r{    n m@:      Z (   @:             @:        @:calc-kbd-for@:}
36625 @r{      s@:      Z )   @:             @:        @:calc-kbd-end-for@:}
36628 @r{       @:      Z C-g @:             @:        @:@:cancel if/loop command}
36631 @r{       @:      Z `   @:             @:        @:calc-kbd-push@:}
36632 @r{       @:      Z '   @:             @:        @:calc-kbd-pop@:}
36633 @r{       @:      Z #   @:             @:        @:calc-kbd-query@:}
36636 @r{   comp@:      Z C   @:func, args   @:    50  @:calc-user-define-composition@:}
36637 @r{       @:      Z D   @:key, command @:        @:calc-user-define@:}
36638 @r{       @:      Z E   @:key, editing @:    30  @:calc-user-define-edit@:}
36639 @r{   defn@:      Z F   @:k, c, f, a, n@:    28  @:calc-user-define-formula@:}
36640 @r{       @:      Z G   @:key          @:        @:calc-get-user-defn@:}
36641 @r{       @:      Z I   @:             @:        @:calc-user-define-invocation@:}
36642 @r{       @:      Z K   @:key, command @:        @:calc-user-define-kbd-macro@:}
36643 @r{       @:      Z P   @:key          @:        @:calc-user-define-permanent@:}
36644 @r{       @:      Z S   @:             @:    30  @:calc-edit-user-syntax@:}
36645 @r{       @:      Z T   @:             @:    12  @:calc-timing@:}
36646 @r{       @:      Z U   @:key          @:        @:calc-user-undefine@:}
36648 @end format
36650 @c Avoid '@:' from here on, as it now means \sumsep in tex mode.
36652 @noindent
36653 NOTES
36655 @enumerate
36656 @c 1
36657 @item
36658 Positive prefix arguments apply to @expr{n} stack entries.
36659 Negative prefix arguments apply to the @expr{-n}th stack entry.
36660 A prefix of zero applies to the entire stack.  (For @key{LFD} and
36661 @kbd{M-@key{DEL}}, the meaning of the sign is reversed.)
36663 @c 2
36664 @item
36665 Positive prefix arguments apply to @expr{n} stack entries.
36666 Negative prefix arguments apply to the top stack entry
36667 and the next @expr{-n} stack entries.
36669 @c 3
36670 @item
36671 Positive prefix arguments rotate top @expr{n} stack entries by one.
36672 Negative prefix arguments rotate the entire stack by @expr{-n}.
36673 A prefix of zero reverses the entire stack.
36675 @c 4
36676 @item
36677 Prefix argument specifies a repeat count or distance.
36679 @c 5
36680 @item
36681 Positive prefix arguments specify a precision @expr{p}.
36682 Negative prefix arguments reduce the current precision by @expr{-p}.
36684 @c 6
36685 @item
36686 A prefix argument is interpreted as an additional step-size parameter.
36687 A plain @kbd{C-u} prefix means to prompt for the step size.
36689 @c 7
36690 @item
36691 A prefix argument specifies simplification level and depth.
36692 1=Basic simplifications, 2=Algebraic simplifications, 3=Extended simplifications
36694 @c 8
36695 @item
36696 A negative prefix operates only on the top level of the input formula.
36698 @c 9
36699 @item
36700 Positive prefix arguments specify a word size of @expr{w} bits, unsigned.
36701 Negative prefix arguments specify a word size of @expr{w} bits, signed.
36703 @c 10
36704 @item
36705 Prefix arguments specify the shift amount @expr{n}.  The @expr{w} argument
36706 cannot be specified in the keyboard version of this command.
36708 @c 11
36709 @item
36710 From the keyboard, @expr{d} is omitted and defaults to zero.
36712 @c 12
36713 @item
36714 Mode is toggled; a positive prefix always sets the mode, and a negative
36715 prefix always clears the mode.
36717 @c 13
36718 @item
36719 Some prefix argument values provide special variations of the mode.
36721 @c 14
36722 @item
36723 A prefix argument, if any, is used for @expr{m} instead of taking
36724 @expr{m} from the stack.  @expr{M} may take any of these values:
36725 @iftex
36726 {@advance@tableindent10pt
36727 @end iftex
36728 @table @asis
36729 @item Integer
36730 Random integer in the interval @expr{[0 .. m)}.
36731 @item Float
36732 Random floating-point number in the interval @expr{[0 .. m)}.
36733 @item 0.0
36734 Gaussian with mean 1 and standard deviation 0.
36735 @item Error form
36736 Gaussian with specified mean and standard deviation.
36737 @item Interval
36738 Random integer or floating-point number in that interval.
36739 @item Vector
36740 Random element from the vector.
36741 @end table
36742 @iftex
36744 @end iftex
36746 @c 15
36747 @item
36748 A prefix argument from 1 to 6 specifies number of date components
36749 to remove from the stack.  @xref{Date Conversions}.
36751 @c 16
36752 @item
36753 A prefix argument specifies a time zone; @kbd{C-u} says to take the
36754 time zone number or name from the top of the stack.  @xref{Time Zones}.
36756 @c 17
36757 @item
36758 A prefix argument specifies a day number (0--6, 0--31, or 0--366).
36760 @c 18
36761 @item
36762 If the input has no units, you will be prompted for both the old and
36763 the new units.
36765 @c 19
36766 @item
36767 With a prefix argument, collect that many stack entries to form the
36768 input data set.  Each entry may be a single value or a vector of values.
36770 @c 20
36771 @item
36772 With a prefix argument of 1, take a single
36773 @texline @var{n}@math{\times2}
36774 @infoline @mathit{@var{N}x2}
36775 matrix from the stack instead of two separate data vectors.
36777 @c 21
36778 @item
36779 The row or column number @expr{n} may be given as a numeric prefix
36780 argument instead.  A plain @kbd{C-u} prefix says to take @expr{n}
36781 from the top of the stack.  If @expr{n} is a vector or interval,
36782 a subvector/submatrix of the input is created.
36784 @c 22
36785 @item
36786 The @expr{op} prompt can be answered with the key sequence for the
36787 desired function, or with @kbd{x} or @kbd{z} followed by a function name,
36788 or with @kbd{$} to take a formula from the top of the stack, or with
36789 @kbd{'} and a typed formula.  In the last two cases, the formula may
36790 be a nameless function like @samp{<#1+#2>} or @samp{<x, y : x+y>}; or it
36791 may include @kbd{$}, @kbd{$$}, etc., where @kbd{$} will correspond to the
36792 last argument of the created function; or otherwise you will be
36793 prompted for an argument list.  The number of vectors popped from the
36794 stack by @kbd{V M} depends on the number of arguments of the function.
36796 @c 23
36797 @item
36798 One of the mapping direction keys @kbd{_} (horizontal, i.e., map
36799 by rows or reduce across), @kbd{:} (vertical, i.e., map by columns or
36800 reduce down), or @kbd{=} (map or reduce by rows) may be used before
36801 entering @expr{op}; these modify the function name by adding the letter
36802 @code{r} for ``rows,'' @code{c} for ``columns,'' @code{a} for ``across,''
36803 or @code{d} for ``down.''
36805 @c 24
36806 @item
36807 The prefix argument specifies a packing mode.  A nonnegative mode
36808 is the number of items (for @kbd{v p}) or the number of levels
36809 (for @kbd{v u}).  A negative mode is as described below.  With no
36810 prefix argument, the mode is taken from the top of the stack and
36811 may be an integer or a vector of integers.
36812 @iftex
36813 {@advance@tableindent-20pt
36814 @end iftex
36815 @table @cite
36816 @item -1
36817 (@var{2})  Rectangular complex number.
36818 @item -2
36819 (@var{2})  Polar complex number.
36820 @item -3
36821 (@var{3})  HMS form.
36822 @item -4
36823 (@var{2})  Error form.
36824 @item -5
36825 (@var{2})  Modulo form.
36826 @item -6
36827 (@var{2})  Closed interval.
36828 @item -7
36829 (@var{2})  Closed .. open interval.
36830 @item -8
36831 (@var{2})  Open .. closed interval.
36832 @item -9
36833 (@var{2})  Open interval.
36834 @item -10
36835 (@var{2})  Fraction.
36836 @item -11
36837 (@var{2})  Float with integer mantissa.
36838 @item -12
36839 (@var{2})  Float with mantissa in @expr{[1 .. 10)}.
36840 @item -13
36841 (@var{1})  Date form (using date numbers).
36842 @item -14
36843 (@var{3})  Date form (using year, month, day).
36844 @item -15
36845 (@var{6})  Date form (using year, month, day, hour, minute, second).
36846 @end table
36847 @iftex
36849 @end iftex
36851 @c 25
36852 @item
36853 A prefix argument specifies the size @expr{n} of the matrix.  With no
36854 prefix argument, @expr{n} is omitted and the size is inferred from
36855 the input vector.
36857 @c 26
36858 @item
36859 The prefix argument specifies the starting position @expr{n} (default 1).
36861 @c 27
36862 @item
36863 Cursor position within stack buffer affects this command.
36865 @c 28
36866 @item
36867 Arguments are not actually removed from the stack by this command.
36869 @c 29
36870 @item
36871 Variable name may be a single digit or a full name.
36873 @c 30
36874 @item
36875 Editing occurs in a separate buffer.  Press @kbd{C-c C-c} (or
36876 @key{LFD}, or in some cases @key{RET}) to finish the edit, or kill the
36877 buffer with @kbd{C-x k} to cancel the edit.  The @key{LFD} key prevents evaluation
36878 of the result of the edit.
36880 @c 31
36881 @item
36882 The number prompted for can also be provided as a prefix argument.
36884 @c 32
36885 @item
36886 Press this key a second time to cancel the prefix.
36888 @c 33
36889 @item
36890 With a negative prefix, deactivate all formulas.  With a positive
36891 prefix, deactivate and then reactivate from scratch.
36893 @c 34
36894 @item
36895 Default is to scan for nearest formula delimiter symbols.  With a
36896 prefix of zero, formula is delimited by mark and point.  With a
36897 non-zero prefix, formula is delimited by scanning forward or
36898 backward by that many lines.
36900 @c 35
36901 @item
36902 Parse the region between point and mark as a vector.  A nonzero prefix
36903 parses @var{n} lines before or after point as a vector.  A zero prefix
36904 parses the current line as a vector.  A @kbd{C-u} prefix parses the
36905 region between point and mark as a single formula.
36907 @c 36
36908 @item
36909 Parse the rectangle defined by point and mark as a matrix.  A positive
36910 prefix @var{n} divides the rectangle into columns of width @var{n}.
36911 A zero or @kbd{C-u} prefix parses each line as one formula.  A negative
36912 prefix suppresses special treatment of bracketed portions of a line.
36914 @c 37
36915 @item
36916 A numeric prefix causes the current language mode to be ignored.
36918 @c 38
36919 @item
36920 Responding to a prompt with a blank line answers that and all
36921 later prompts by popping additional stack entries.
36923 @c 39
36924 @item
36925 Answer for @expr{v} may also be of the form @expr{v = v_0} or
36926 @expr{v - v_0}.
36928 @c 40
36929 @item
36930 With a positive prefix argument, stack contains many @expr{y}'s and one
36931 common @expr{x}.  With a zero prefix, stack contains a vector of
36932 @expr{y}s and a common @expr{x}.  With a negative prefix, stack
36933 contains many @expr{[x,y]} vectors.  (For 3D plots, substitute
36934 @expr{z} for @expr{y} and @expr{x,y} for @expr{x}.)
36936 @c 41
36937 @item
36938 With any prefix argument, all curves in the graph are deleted.
36940 @c 42
36941 @item
36942 With a positive prefix, refines an existing plot with more data points.
36943 With a negative prefix, forces recomputation of the plot data.
36945 @c 43
36946 @item
36947 With any prefix argument, set the default value instead of the
36948 value for this graph.
36950 @c 44
36951 @item
36952 With a negative prefix argument, set the value for the printer.
36954 @c 45
36955 @item
36956 Condition is considered ``true'' if it is a nonzero real or complex
36957 number, or a formula whose value is known to be nonzero; it is ``false''
36958 otherwise.
36960 @c 46
36961 @item
36962 Several formulas separated by commas are pushed as multiple stack
36963 entries.  Trailing @kbd{)}, @kbd{]}, @kbd{@}}, @kbd{>}, and @kbd{"}
36964 delimiters may be omitted.  The notation @kbd{$$$} refers to the value
36965 in stack level three, and causes the formula to replace the top three
36966 stack levels.  The notation @kbd{$3} refers to stack level three without
36967 causing that value to be removed from the stack.  Use @key{LFD} in place
36968 of @key{RET} to prevent evaluation; use @kbd{M-=} in place of @key{RET}
36969 to evaluate variables.
36971 @c 47
36972 @item
36973 The variable is replaced by the formula shown on the right.  The
36974 Inverse flag reverses the order of the operands, e.g., @kbd{I s - x}
36975 assigns
36976 @texline @math{x \coloneq a-x}.
36977 @infoline @expr{x := a-x}.
36979 @c 48
36980 @item
36981 Press @kbd{?} repeatedly to see how to choose a model.  Answer the
36982 variables prompt with @expr{iv} or @expr{iv;pv} to specify
36983 independent and parameter variables.  A positive prefix argument
36984 takes @mathit{@var{n}+1} vectors from the stack; a zero prefix takes a matrix
36985 and a vector from the stack.
36987 @c 49
36988 @item
36989 With a plain @kbd{C-u} prefix, replace the current region of the
36990 destination buffer with the yanked text instead of inserting.
36992 @c 50
36993 @item
36994 All stack entries are reformatted; the @kbd{H} prefix inhibits this.
36995 The @kbd{I} prefix sets the mode temporarily, redraws the top stack
36996 entry, then restores the original setting of the mode.
36998 @c 51
36999 @item
37000 A negative prefix sets the default 3D resolution instead of the
37001 default 2D resolution.
37003 @c 52
37004 @item
37005 This grabs a vector of the form [@var{prec}, @var{wsize}, @var{ssize},
37006 @var{radix}, @var{flfmt}, @var{ang}, @var{frac}, @var{symb}, @var{polar},
37007 @var{matrix}, @var{simp}, @var{inf}].  A prefix argument from 1 to 12
37008 grabs the @var{n}th mode value only.
37009 @end enumerate
37011 @iftex
37012 (Space is provided below for you to keep your own written notes.)
37013 @page
37014 @endgroup
37015 @end iftex
37018 @c [end-summary]
37020 @node Key Index, Command Index, Summary, Top
37021 @unnumbered Index of Key Sequences
37023 @printindex ky
37025 @node Command Index, Function Index, Key Index, Top
37026 @unnumbered Index of Calculator Commands
37028 Since all Calculator commands begin with the prefix @samp{calc-}, the
37029 @kbd{x} key has been provided as a variant of @kbd{M-x} which automatically
37030 types @samp{calc-} for you.  Thus, @kbd{x last-args} is short for
37031 @kbd{M-x calc-last-args}.
37033 @printindex pg
37035 @node Function Index, Concept Index, Command Index, Top
37036 @unnumbered Index of Algebraic Functions
37038 This is a list of built-in functions and operators usable in algebraic
37039 expressions.  Their full Lisp names are derived by adding the prefix
37040 @samp{calcFunc-}, as in @code{calcFunc-sqrt}.
37041 @iftex
37042 All functions except those noted with ``*'' have corresponding
37043 Calc keystrokes and can also be found in the Calc Summary.
37044 @end iftex
37046 @printindex tp
37048 @node Concept Index, Variable Index, Function Index, Top
37049 @unnumbered Concept Index
37051 @printindex cp
37053 @node Variable Index, Lisp Function Index, Concept Index, Top
37054 @unnumbered Index of Variables
37056 The variables in this list that do not contain dashes are accessible
37057 as Calc variables.  Add a @samp{var-} prefix to get the name of the
37058 corresponding Lisp variable.
37060 The remaining variables are Lisp variables suitable for @code{setq}ing
37061 in your Calc init file or @file{.emacs} file.
37063 @printindex vr
37065 @node Lisp Function Index,  , Variable Index, Top
37066 @unnumbered Index of Lisp Math Functions
37068 The following functions are meant to be used with @code{defmath}, not
37069 @code{defun} definitions.  For names that do not start with @samp{calc-},
37070 the corresponding full Lisp name is derived by adding a prefix of
37071 @samp{math-}.
37073 @printindex fn
37075 @bye