1 /* CCL (Code Conversion Language) interpreter.
2 Copyright (C) 2001-2012 Free Software Foundation, Inc.
3 Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
4 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 National Institute of Advanced Industrial Science and Technology (AIST)
6 Registration Number H14PRO021
8 National Institute of Advanced Industrial Science and Technology (AIST)
9 Registration Number H13PRO009
11 This file is part of GNU Emacs.
13 GNU Emacs is free software: you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation, either version 3 of the License, or
16 (at your option) any later version.
18 GNU Emacs is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
33 #include "character.h"
38 Lisp_Object Qccl
, Qcclp
;
40 /* This symbol is a property which associates with ccl program vector.
41 Ex: (get 'ccl-big5-encoder 'ccl-program) returns ccl program vector. */
42 static Lisp_Object Qccl_program
;
44 /* These symbols are properties which associate with code conversion
45 map and their ID respectively. */
46 static Lisp_Object Qcode_conversion_map
;
47 static Lisp_Object Qcode_conversion_map_id
;
49 /* Symbols of ccl program have this property, a value of the property
50 is an index for Vccl_program_table. */
51 static Lisp_Object Qccl_program_idx
;
53 /* Table of registered CCL programs. Each element is a vector of
54 NAME, CCL_PROG, RESOLVEDP, and UPDATEDP, where NAME (symbol) is the
55 name of the program, CCL_PROG (vector) is the compiled code of the
56 program, RESOLVEDP (t or nil) is the flag to tell if symbols in
57 CCL_PROG is already resolved to index numbers or not, UPDATEDP (t
58 or nil) is the flat to tell if the CCL program is updated after it
60 static Lisp_Object Vccl_program_table
;
62 /* Return a hash table of id number ID. */
63 #define GET_HASH_TABLE(id) \
64 (XHASH_TABLE (XCDR (AREF (Vtranslation_hash_table_vector, (id)))))
66 /* CCL (Code Conversion Language) is a simple language which has
67 operations on one input buffer, one output buffer, and 7 registers.
68 The syntax of CCL is described in `ccl.el'. Emacs Lisp function
69 `ccl-compile' compiles a CCL program and produces a CCL code which
70 is a vector of integers. The structure of this vector is as
71 follows: The 1st element: buffer-magnification, a factor for the
72 size of output buffer compared with the size of input buffer. The
73 2nd element: address of CCL code to be executed when encountered
74 with end of input stream. The 3rd and the remaining elements: CCL
77 /* Header of CCL compiled code */
78 #define CCL_HEADER_BUF_MAG 0
79 #define CCL_HEADER_EOF 1
80 #define CCL_HEADER_MAIN 2
82 /* CCL code is a sequence of 28-bit integers. Each contains a CCL
83 command and/or arguments in the following format:
85 |----------------- integer (28-bit) ------------------|
86 |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
87 |--constant argument--|-register-|-register-|-command-|
88 ccccccccccccccccc RRR rrr XXXXX
90 |------- relative address -------|-register-|-command-|
91 cccccccccccccccccccc rrr XXXXX
93 |------------- constant or other args ----------------|
94 cccccccccccccccccccccccccccc
96 where `cc...c' is a 17-bit, 20-bit, or 28-bit integer indicating a
97 constant value or a relative/absolute jump address, `RRR'
98 and `rrr' are CCL register number, `XXXXX' is one of the following
101 #define CCL_CODE_MAX ((1 << (28 - 1)) - 1)
102 #define CCL_CODE_MIN (-1 - CCL_CODE_MAX)
106 Each comment fields shows one or more lines for command syntax and
107 the following lines for semantics of the command. In semantics, IC
108 stands for Instruction Counter. */
110 #define CCL_SetRegister 0x00 /* Set register a register value:
111 1:00000000000000000RRRrrrXXXXX
112 ------------------------------
116 #define CCL_SetShortConst 0x01 /* Set register a short constant value:
117 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
118 ------------------------------
119 reg[rrr] = CCCCCCCCCCCCCCCCCCC;
122 #define CCL_SetConst 0x02 /* Set register a constant value:
123 1:00000000000000000000rrrXXXXX
125 ------------------------------
130 #define CCL_SetArray 0x03 /* Set register an element of array:
131 1:CCCCCCCCCCCCCCCCCRRRrrrXXXXX
135 ------------------------------
136 if (0 <= reg[RRR] < CC..C)
137 reg[rrr] = ELEMENT[reg[RRR]];
141 #define CCL_Jump 0x04 /* Jump:
142 1:A--D--D--R--E--S--S-000XXXXX
143 ------------------------------
147 /* Note: If CC..C is greater than 0, the second code is omitted. */
149 #define CCL_JumpCond 0x05 /* Jump conditional:
150 1:A--D--D--R--E--S--S-rrrXXXXX
151 ------------------------------
157 #define CCL_WriteRegisterJump 0x06 /* Write register and jump:
158 1:A--D--D--R--E--S--S-rrrXXXXX
159 ------------------------------
164 #define CCL_WriteRegisterReadJump 0x07 /* Write register, read, and jump:
165 1:A--D--D--R--E--S--S-rrrXXXXX
166 2:A--D--D--R--E--S--S-rrrYYYYY
167 -----------------------------
173 /* Note: If read is suspended, the resumed execution starts from the
174 second code (YYYYY == CCL_ReadJump). */
176 #define CCL_WriteConstJump 0x08 /* Write constant and jump:
177 1:A--D--D--R--E--S--S-000XXXXX
179 ------------------------------
184 #define CCL_WriteConstReadJump 0x09 /* Write constant, read, and jump:
185 1:A--D--D--R--E--S--S-rrrXXXXX
187 3:A--D--D--R--E--S--S-rrrYYYYY
188 -----------------------------
194 /* Note: If read is suspended, the resumed execution starts from the
195 second code (YYYYY == CCL_ReadJump). */
197 #define CCL_WriteStringJump 0x0A /* Write string and jump:
198 1:A--D--D--R--E--S--S-000XXXXX
200 3:000MSTRIN[0]STRIN[1]STRIN[2]
202 ------------------------------
204 write_multibyte_string (STRING, LENGTH);
206 write_string (STRING, LENGTH);
210 #define CCL_WriteArrayReadJump 0x0B /* Write an array element, read, and jump:
211 1:A--D--D--R--E--S--S-rrrXXXXX
216 N:A--D--D--R--E--S--S-rrrYYYYY
217 ------------------------------
218 if (0 <= reg[rrr] < LENGTH)
219 write (ELEMENT[reg[rrr]]);
220 IC += LENGTH + 2; (... pointing at N+1)
224 /* Note: If read is suspended, the resumed execution starts from the
225 Nth code (YYYYY == CCL_ReadJump). */
227 #define CCL_ReadJump 0x0C /* Read and jump:
228 1:A--D--D--R--E--S--S-rrrYYYYY
229 -----------------------------
234 #define CCL_Branch 0x0D /* Jump by branch table:
235 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
236 2:A--D--D--R--E-S-S[0]000XXXXX
237 3:A--D--D--R--E-S-S[1]000XXXXX
239 ------------------------------
240 if (0 <= reg[rrr] < CC..C)
241 IC += ADDRESS[reg[rrr]];
243 IC += ADDRESS[CC..C];
246 #define CCL_ReadRegister 0x0E /* Read bytes into registers:
247 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
248 2:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
250 ------------------------------
255 #define CCL_WriteExprConst 0x0F /* write result of expression:
256 1:00000OPERATION000RRR000XXXXX
258 ------------------------------
259 write (reg[RRR] OPERATION CONSTANT);
263 /* Note: If the Nth read is suspended, the resumed execution starts
264 from the Nth code. */
266 #define CCL_ReadBranch 0x10 /* Read one byte into a register,
267 and jump by branch table:
268 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
269 2:A--D--D--R--E-S-S[0]000XXXXX
270 3:A--D--D--R--E-S-S[1]000XXXXX
272 ------------------------------
274 if (0 <= reg[rrr] < CC..C)
275 IC += ADDRESS[reg[rrr]];
277 IC += ADDRESS[CC..C];
280 #define CCL_WriteRegister 0x11 /* Write registers:
281 1:CCCCCCCCCCCCCCCCCCCrrrXXXXX
282 2:CCCCCCCCCCCCCCCCCCCrrrXXXXX
284 ------------------------------
290 /* Note: If the Nth write is suspended, the resumed execution
291 starts from the Nth code. */
293 #define CCL_WriteExprRegister 0x12 /* Write result of expression
294 1:00000OPERATIONRrrRRR000XXXXX
295 ------------------------------
296 write (reg[RRR] OPERATION reg[Rrr]);
299 #define CCL_Call 0x13 /* Call the CCL program whose ID is
301 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX
302 [2:00000000cccccccccccccccccccc]
303 ------------------------------
311 #define CCL_WriteConstString 0x14 /* Write a constant or a string:
312 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
313 [2:000MSTRIN[0]STRIN[1]STRIN[2]]
315 -----------------------------
320 write_multibyte_string (STRING, CC..C);
322 write_string (STRING, CC..C);
323 IC += (CC..C + 2) / 3;
326 #define CCL_WriteArray 0x15 /* Write an element of array:
327 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
331 ------------------------------
332 if (0 <= reg[rrr] < CC..C)
333 write (ELEMENT[reg[rrr]]);
337 #define CCL_End 0x16 /* Terminate:
338 1:00000000000000000000000XXXXX
339 ------------------------------
343 /* The following two codes execute an assignment arithmetic/logical
344 operation. The form of the operation is like REG OP= OPERAND. */
346 #define CCL_ExprSelfConst 0x17 /* REG OP= constant:
347 1:00000OPERATION000000rrrXXXXX
349 ------------------------------
350 reg[rrr] OPERATION= CONSTANT;
353 #define CCL_ExprSelfReg 0x18 /* REG1 OP= REG2:
354 1:00000OPERATION000RRRrrrXXXXX
355 ------------------------------
356 reg[rrr] OPERATION= reg[RRR];
359 /* The following codes execute an arithmetic/logical operation. The
360 form of the operation is like REG_X = REG_Y OP OPERAND2. */
362 #define CCL_SetExprConst 0x19 /* REG_X = REG_Y OP constant:
363 1:00000OPERATION000RRRrrrXXXXX
365 ------------------------------
366 reg[rrr] = reg[RRR] OPERATION CONSTANT;
370 #define CCL_SetExprReg 0x1A /* REG1 = REG2 OP REG3:
371 1:00000OPERATIONRrrRRRrrrXXXXX
372 ------------------------------
373 reg[rrr] = reg[RRR] OPERATION reg[Rrr];
376 #define CCL_JumpCondExprConst 0x1B /* Jump conditional according to
377 an operation on constant:
378 1:A--D--D--R--E--S--S-rrrXXXXX
381 -----------------------------
382 reg[7] = reg[rrr] OPERATION CONSTANT;
389 #define CCL_JumpCondExprReg 0x1C /* Jump conditional according to
390 an operation on register:
391 1:A--D--D--R--E--S--S-rrrXXXXX
394 -----------------------------
395 reg[7] = reg[rrr] OPERATION reg[RRR];
402 #define CCL_ReadJumpCondExprConst 0x1D /* Read and jump conditional according
403 to an operation on constant:
404 1:A--D--D--R--E--S--S-rrrXXXXX
407 -----------------------------
409 reg[7] = reg[rrr] OPERATION CONSTANT;
416 #define CCL_ReadJumpCondExprReg 0x1E /* Read and jump conditional according
417 to an operation on register:
418 1:A--D--D--R--E--S--S-rrrXXXXX
421 -----------------------------
423 reg[7] = reg[rrr] OPERATION reg[RRR];
430 #define CCL_Extension 0x1F /* Extended CCL code
431 1:ExtendedCOMMNDRrrRRRrrrXXXXX
434 ------------------------------
435 extended_command (rrr,RRR,Rrr,ARGS)
439 Here after, Extended CCL Instructions.
440 Bit length of extended command is 14.
441 Therefore, the instruction code range is 0..16384(0x3fff).
444 /* Read a multibyte character.
445 A code point is stored into reg[rrr]. A charset ID is stored into
448 #define CCL_ReadMultibyteChar2 0x00 /* Read Multibyte Character
449 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
451 /* Write a multibyte character.
452 Write a character whose code point is reg[rrr] and the charset ID
455 #define CCL_WriteMultibyteChar2 0x01 /* Write Multibyte Character
456 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
458 /* Translate a character whose code point is reg[rrr] and the charset
459 ID is reg[RRR] by a translation table whose ID is reg[Rrr].
461 A translated character is set in reg[rrr] (code point) and reg[RRR]
464 #define CCL_TranslateCharacter 0x02 /* Translate a multibyte character
465 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
467 /* Translate a character whose code point is reg[rrr] and the charset
468 ID is reg[RRR] by a translation table whose ID is ARGUMENT.
470 A translated character is set in reg[rrr] (code point) and reg[RRR]
473 #define CCL_TranslateCharacterConstTbl 0x03 /* Translate a multibyte character
474 1:ExtendedCOMMNDRrrRRRrrrXXXXX
475 2:ARGUMENT(Translation Table ID)
478 /* Iterate looking up MAPs for reg[rrr] starting from the Nth (N =
479 reg[RRR]) MAP until some value is found.
481 Each MAP is a Lisp vector whose element is number, nil, t, or
483 If the element is nil, ignore the map and proceed to the next map.
484 If the element is t or lambda, finish without changing reg[rrr].
485 If the element is a number, set reg[rrr] to the number and finish.
487 Detail of the map structure is described in the comment for
488 CCL_MapMultiple below. */
490 #define CCL_IterateMultipleMap 0x10 /* Iterate multiple maps
491 1:ExtendedCOMMNDXXXRRRrrrXXXXX
498 /* Map the code in reg[rrr] by MAPs starting from the Nth (N =
501 MAPs are supplied in the succeeding CCL codes as follows:
503 When CCL program gives this nested structure of map to this command:
506 (MAP-ID121 MAP-ID122 MAP-ID123)
509 (MAP-ID211 (MAP-ID2111) MAP-ID212)
511 the compiled CCL codes has this sequence:
512 CCL_MapMultiple (CCL code of this command)
513 16 (total number of MAPs and SEPARATORs)
531 A value of each SEPARATOR follows this rule:
532 MAP-SET := SEPARATOR [(MAP-ID | MAP-SET)]+
533 SEPARATOR := -(number of MAP-IDs and SEPARATORs in the MAP-SET)
535 (*)....Nest level of MAP-SET must not be over than MAX_MAP_SET_LEVEL.
537 When some map fails to map (i.e. it doesn't have a value for
538 reg[rrr]), the mapping is treated as identity.
540 The mapping is iterated for all maps in each map set (set of maps
541 separated by SEPARATOR) except in the case that lambda is
542 encountered. More precisely, the mapping proceeds as below:
544 At first, VAL0 is set to reg[rrr], and it is translated by the
545 first map to VAL1. Then, VAL1 is translated by the next map to
546 VAL2. This mapping is iterated until the last map is used. The
547 result of the mapping is the last value of VAL?. When the mapping
548 process reached to the end of the map set, it moves to the next
549 map set. If the next does not exit, the mapping process terminates,
550 and regard the last value as a result.
552 But, when VALm is mapped to VALn and VALn is not a number, the
553 mapping proceed as below:
555 If VALn is nil, the last map is ignored and the mapping of VALm
556 proceed to the next map.
558 In VALn is t, VALm is reverted to reg[rrr] and the mapping of VALm
559 proceed to the next map.
561 If VALn is lambda, move to the next map set like reaching to the
562 end of the current map set.
564 If VALn is a symbol, call the CCL program referred by it.
565 Then, use reg[rrr] as a mapped value except for -1, -2 and -3.
566 Such special values are regarded as nil, t, and lambda respectively.
568 Each map is a Lisp vector of the following format (a) or (b):
569 (a)......[STARTPOINT VAL1 VAL2 ...]
570 (b)......[t VAL STARTPOINT ENDPOINT],
572 STARTPOINT is an offset to be used for indexing a map,
573 ENDPOINT is a maximum index number of a map,
574 VAL and VALn is a number, nil, t, or lambda.
576 Valid index range of a map of type (a) is:
577 STARTPOINT <= index < STARTPOINT + map_size - 1
578 Valid index range of a map of type (b) is:
579 STARTPOINT <= index < ENDPOINT */
581 #define CCL_MapMultiple 0x11 /* Mapping by multiple code conversion maps
582 1:ExtendedCOMMNDXXXRRRrrrXXXXX
594 #define MAX_MAP_SET_LEVEL 30
602 static tr_stack mapping_stack
[MAX_MAP_SET_LEVEL
];
603 static tr_stack
*mapping_stack_pointer
;
605 /* If this variable is non-zero, it indicates the stack_idx
606 of immediately called by CCL_MapMultiple. */
607 static int stack_idx_of_map_multiple
;
609 #define PUSH_MAPPING_STACK(restlen, orig) \
612 mapping_stack_pointer->rest_length = (restlen); \
613 mapping_stack_pointer->orig_val = (orig); \
614 mapping_stack_pointer++; \
618 #define POP_MAPPING_STACK(restlen, orig) \
621 mapping_stack_pointer--; \
622 (restlen) = mapping_stack_pointer->rest_length; \
623 (orig) = mapping_stack_pointer->orig_val; \
627 #define CCL_CALL_FOR_MAP_INSTRUCTION(symbol, ret_ic) \
630 struct ccl_program called_ccl; \
631 if (stack_idx >= 256 \
632 || (setup_ccl_program (&called_ccl, (symbol)) != 0)) \
636 ccl_prog = ccl_prog_stack_struct[0].ccl_prog; \
637 ic = ccl_prog_stack_struct[0].ic; \
638 eof_ic = ccl_prog_stack_struct[0].eof_ic; \
642 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog; \
643 ccl_prog_stack_struct[stack_idx].ic = (ret_ic); \
644 ccl_prog_stack_struct[stack_idx].eof_ic = eof_ic; \
646 ccl_prog = called_ccl.prog; \
647 ic = CCL_HEADER_MAIN; \
648 eof_ic = XFASTINT (ccl_prog[CCL_HEADER_EOF]); \
653 #define CCL_MapSingle 0x12 /* Map by single code conversion map
654 1:ExtendedCOMMNDXXXRRRrrrXXXXX
656 ------------------------------
657 Map reg[rrr] by MAP-ID.
658 If some valid mapping is found,
659 set reg[rrr] to the result,
664 #define CCL_LookupIntConstTbl 0x13 /* Lookup multibyte character by
665 integer key. Afterwards R7 set
666 to 1 if lookup succeeded.
667 1:ExtendedCOMMNDRrrRRRXXXXXXXX
668 2:ARGUMENT(Hash table ID) */
670 #define CCL_LookupCharConstTbl 0x14 /* Lookup integer by multibyte
671 character key. Afterwards R7 set
672 to 1 if lookup succeeded.
673 1:ExtendedCOMMNDRrrRRRrrrXXXXX
674 2:ARGUMENT(Hash table ID) */
676 /* CCL arithmetic/logical operators. */
677 #define CCL_PLUS 0x00 /* X = Y + Z */
678 #define CCL_MINUS 0x01 /* X = Y - Z */
679 #define CCL_MUL 0x02 /* X = Y * Z */
680 #define CCL_DIV 0x03 /* X = Y / Z */
681 #define CCL_MOD 0x04 /* X = Y % Z */
682 #define CCL_AND 0x05 /* X = Y & Z */
683 #define CCL_OR 0x06 /* X = Y | Z */
684 #define CCL_XOR 0x07 /* X = Y ^ Z */
685 #define CCL_LSH 0x08 /* X = Y << Z */
686 #define CCL_RSH 0x09 /* X = Y >> Z */
687 #define CCL_LSH8 0x0A /* X = (Y << 8) | Z */
688 #define CCL_RSH8 0x0B /* X = Y >> 8, r[7] = Y & 0xFF */
689 #define CCL_DIVMOD 0x0C /* X = Y / Z, r[7] = Y % Z */
690 #define CCL_LS 0x10 /* X = (X < Y) */
691 #define CCL_GT 0x11 /* X = (X > Y) */
692 #define CCL_EQ 0x12 /* X = (X == Y) */
693 #define CCL_LE 0x13 /* X = (X <= Y) */
694 #define CCL_GE 0x14 /* X = (X >= Y) */
695 #define CCL_NE 0x15 /* X = (X != Y) */
697 #define CCL_DECODE_SJIS 0x16 /* X = HIGHER_BYTE (DE-SJIS (Y, Z))
698 r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */
699 #define CCL_ENCODE_SJIS 0x17 /* X = HIGHER_BYTE (SJIS (Y, Z))
700 r[7] = LOWER_BYTE (SJIS (Y, Z) */
702 /* Terminate CCL program successfully. */
703 #define CCL_SUCCESS \
706 ccl->status = CCL_STAT_SUCCESS; \
711 /* Suspend CCL program because of reading from empty input buffer or
712 writing to full output buffer. When this program is resumed, the
713 same I/O command is executed. */
714 #define CCL_SUSPEND(stat) \
718 ccl->status = stat; \
723 /* Terminate CCL program because of invalid command. Should not occur
724 in the normal case. */
727 #define CCL_INVALID_CMD \
730 ccl->status = CCL_STAT_INVALID_CMD; \
731 goto ccl_error_handler; \
737 #define CCL_INVALID_CMD \
740 ccl_debug_hook (this_ic); \
741 ccl->status = CCL_STAT_INVALID_CMD; \
742 goto ccl_error_handler; \
748 /* Use "&" rather than "&&" to suppress a bogus GCC warning; see
749 <http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43772>. */
750 #define ASCENDING_ORDER(lo, med, hi) (((lo) <= (med)) & ((med) <= (hi)))
752 #define GET_CCL_RANGE(var, ccl_prog, ic, lo, hi) \
755 EMACS_INT prog_word = XINT ((ccl_prog)[ic]); \
756 if (! ASCENDING_ORDER (lo, prog_word, hi)) \
762 #define GET_CCL_CODE(code, ccl_prog, ic) \
763 GET_CCL_RANGE (code, ccl_prog, ic, CCL_CODE_MIN, CCL_CODE_MAX)
765 #define IN_INT_RANGE(val) ASCENDING_ORDER (INT_MIN, val, INT_MAX)
767 /* Encode one character CH to multibyte form and write to the current
768 output buffer. If CH is less than 256, CH is written as is. */
769 #define CCL_WRITE_CHAR(ch) \
773 else if (dst < dst_end) \
776 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
779 /* Write a string at ccl_prog[IC] of length LEN to the current output
781 #define CCL_WRITE_STRING(len) \
786 else if (dst + len <= dst_end) \
788 if (XFASTINT (ccl_prog[ic]) & 0x1000000) \
789 for (ccli = 0; ccli < len; ccli++) \
790 *dst++ = XFASTINT (ccl_prog[ic + ccli]) & 0xFFFFFF; \
792 for (ccli = 0; ccli < len; ccli++) \
793 *dst++ = ((XFASTINT (ccl_prog[ic + (ccli / 3)])) \
794 >> ((2 - (ccli % 3)) * 8)) & 0xFF; \
797 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
800 /* Read one byte from the current input buffer into Rth register. */
801 #define CCL_READ_CHAR(r) \
805 else if (src < src_end) \
807 else if (ccl->last_block) \
814 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC); \
817 /* Decode CODE by a charset whose id is ID. If ID is 0, return CODE
818 as is for backward compatibility. Assume that we can use the
819 variable `charset'. */
821 #define CCL_DECODE_CHAR(id, code) \
822 ((id) == 0 ? (code) \
823 : (charset = CHARSET_FROM_ID ((id)), DECODE_CHAR (charset, (code))))
825 /* Encode character C by some of charsets in CHARSET_LIST. Set ID to
826 the id of the used charset, ENCODED to the result of encoding.
827 Assume that we can use the variable `charset'. */
829 #define CCL_ENCODE_CHAR(c, charset_list, id, encoded) \
833 charset = char_charset ((c), (charset_list), &ncode); \
834 if (! charset && ! NILP (charset_list)) \
835 charset = char_charset ((c), Qnil, &ncode); \
838 (id) = CHARSET_ID (charset); \
843 /* Execute CCL code on characters at SOURCE (length SRC_SIZE). The
844 resulting text goes to a place pointed by DESTINATION, the length
845 of which should not exceed DST_SIZE. As a side effect, how many
846 characters are consumed and produced are recorded in CCL->consumed
847 and CCL->produced, and the contents of CCL registers are updated.
848 If SOURCE or DESTINATION is NULL, only operations on registers are
852 #define CCL_DEBUG_BACKTRACE_LEN 256
853 int ccl_backtrace_table
[CCL_DEBUG_BACKTRACE_LEN
];
854 int ccl_backtrace_idx
;
857 ccl_debug_hook (int ic
)
864 struct ccl_prog_stack
866 Lisp_Object
*ccl_prog
; /* Pointer to an array of CCL code. */
867 int ic
; /* Instruction Counter. */
868 int eof_ic
; /* Instruction Counter to jump on EOF. */
871 /* For the moment, we only support depth 256 of stack. */
872 static struct ccl_prog_stack ccl_prog_stack_struct
[256];
875 ccl_driver (struct ccl_program
*ccl
, int *source
, int *destination
, int src_size
, int dst_size
, Lisp_Object charset_list
)
877 register int *reg
= ccl
->reg
;
878 register int ic
= ccl
->ic
;
879 register int code
= 0, field1
, field2
;
880 register Lisp_Object
*ccl_prog
= ccl
->prog
;
881 int *src
= source
, *src_end
= src
+ src_size
;
882 int *dst
= destination
, *dst_end
= dst
+ dst_size
;
885 int stack_idx
= ccl
->stack_idx
;
886 /* Instruction counter of the current CCL code. */
888 struct charset
*charset
;
889 int eof_ic
= ccl
->eof_ic
;
892 if (ccl
->buf_magnification
== 0) /* We can't read/produce any bytes. */
895 /* Set mapping stack pointer. */
896 mapping_stack_pointer
= mapping_stack
;
899 ccl_backtrace_idx
= 0;
906 ccl_backtrace_table
[ccl_backtrace_idx
++] = ic
;
907 if (ccl_backtrace_idx
>= CCL_DEBUG_BACKTRACE_LEN
)
908 ccl_backtrace_idx
= 0;
909 ccl_backtrace_table
[ccl_backtrace_idx
] = 0;
912 if (!NILP (Vquit_flag
) && NILP (Vinhibit_quit
))
914 /* We can't just signal Qquit, instead break the loop as if
915 the whole data is processed. Don't reset Vquit_flag, it
916 must be handled later at a safer place. */
918 src
= source
+ src_size
;
919 ccl
->status
= CCL_STAT_QUIT
;
924 GET_CCL_CODE (code
, ccl_prog
, ic
++);
926 field2
= (code
& 0xFF) >> 5;
929 #define RRR (field1 & 7)
930 #define Rrr ((field1 >> 3) & 7)
932 #define EXCMD (field1 >> 6)
936 case CCL_SetRegister
: /* 00000000000000000RRRrrrXXXXX */
940 case CCL_SetShortConst
: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
944 case CCL_SetConst
: /* 00000000000000000000rrrXXXXX */
945 reg
[rrr
] = XINT (ccl_prog
[ic
++]);
948 case CCL_SetArray
: /* CCCCCCCCCCCCCCCCCCCCRRRrrrXXXXX */
952 reg
[rrr
] = XINT (ccl_prog
[ic
+ i
]);
956 case CCL_Jump
: /* A--D--D--R--E--S--S-000XXXXX */
960 case CCL_JumpCond
: /* A--D--D--R--E--S--S-rrrXXXXX */
965 case CCL_WriteRegisterJump
: /* A--D--D--R--E--S--S-rrrXXXXX */
971 case CCL_WriteRegisterReadJump
: /* A--D--D--R--E--S--S-rrrXXXXX */
975 CCL_READ_CHAR (reg
[rrr
]);
979 case CCL_WriteConstJump
: /* A--D--D--R--E--S--S-000XXXXX */
980 i
= XINT (ccl_prog
[ic
]);
985 case CCL_WriteConstReadJump
: /* A--D--D--R--E--S--S-rrrXXXXX */
986 i
= XINT (ccl_prog
[ic
]);
989 CCL_READ_CHAR (reg
[rrr
]);
993 case CCL_WriteStringJump
: /* A--D--D--R--E--S--S-000XXXXX */
994 j
= XINT (ccl_prog
[ic
++]);
995 CCL_WRITE_STRING (j
);
999 case CCL_WriteArrayReadJump
: /* A--D--D--R--E--S--S-rrrXXXXX */
1001 j
= XINT (ccl_prog
[ic
]);
1002 if (0 <= i
&& i
< j
)
1004 i
= XINT (ccl_prog
[ic
+ 1 + i
]);
1008 CCL_READ_CHAR (reg
[rrr
]);
1009 ic
+= ADDR
- (j
+ 2);
1012 case CCL_ReadJump
: /* A--D--D--R--E--S--S-rrrYYYYY */
1013 CCL_READ_CHAR (reg
[rrr
]);
1017 case CCL_ReadBranch
: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1018 CCL_READ_CHAR (reg
[rrr
]);
1019 /* fall through ... */
1020 case CCL_Branch
: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1022 int ioff
= 0 <= reg
[rrr
] && reg
[rrr
] < field1
? reg
[rrr
] : field1
;
1023 int incr
= XINT (ccl_prog
[ic
+ ioff
]);
1028 case CCL_ReadRegister
: /* CCCCCCCCCCCCCCCCCCCCrrXXXXX */
1031 CCL_READ_CHAR (reg
[rrr
]);
1033 GET_CCL_CODE (code
, ccl_prog
, ic
++);
1035 field2
= (code
& 0xFF) >> 5;
1039 case CCL_WriteExprConst
: /* 1:00000OPERATION000RRR000XXXXX */
1042 j
= XINT (ccl_prog
[ic
]);
1044 jump_address
= ic
+ 1;
1047 case CCL_WriteRegister
: /* CCCCCCCCCCCCCCCCCCCrrrXXXXX */
1053 GET_CCL_CODE (code
, ccl_prog
, ic
++);
1055 field2
= (code
& 0xFF) >> 5;
1059 case CCL_WriteExprRegister
: /* 1:00000OPERATIONRrrRRR000XXXXX */
1067 case CCL_Call
: /* 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX */
1072 /* If FFF is nonzero, the CCL program ID is in the
1075 prog_id
= XINT (ccl_prog
[ic
++]);
1079 if (stack_idx
>= 256
1081 || prog_id
>= ASIZE (Vccl_program_table
)
1082 || (slot
= AREF (Vccl_program_table
, prog_id
), !VECTORP (slot
))
1083 || !VECTORP (AREF (slot
, 1)))
1087 ccl_prog
= ccl_prog_stack_struct
[0].ccl_prog
;
1088 ic
= ccl_prog_stack_struct
[0].ic
;
1089 eof_ic
= ccl_prog_stack_struct
[0].eof_ic
;
1094 ccl_prog_stack_struct
[stack_idx
].ccl_prog
= ccl_prog
;
1095 ccl_prog_stack_struct
[stack_idx
].ic
= ic
;
1096 ccl_prog_stack_struct
[stack_idx
].eof_ic
= eof_ic
;
1098 ccl_prog
= XVECTOR (AREF (slot
, 1))->contents
;
1099 ic
= CCL_HEADER_MAIN
;
1100 eof_ic
= XFASTINT (ccl_prog
[CCL_HEADER_EOF
]);
1104 case CCL_WriteConstString
: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1106 CCL_WRITE_CHAR (field1
);
1109 CCL_WRITE_STRING (field1
);
1110 ic
+= (field1
+ 2) / 3;
1114 case CCL_WriteArray
: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1116 if (0 <= i
&& i
< field1
)
1118 j
= XINT (ccl_prog
[ic
+ i
]);
1124 case CCL_End
: /* 0000000000000000000000XXXXX */
1128 ccl_prog
= ccl_prog_stack_struct
[stack_idx
].ccl_prog
;
1129 ic
= ccl_prog_stack_struct
[stack_idx
].ic
;
1130 eof_ic
= ccl_prog_stack_struct
[stack_idx
].eof_ic
;
1137 /* ccl->ic should points to this command code again to
1138 suppress further processing. */
1142 case CCL_ExprSelfConst
: /* 00000OPERATION000000rrrXXXXX */
1143 i
= XINT (ccl_prog
[ic
++]);
1147 case CCL_ExprSelfReg
: /* 00000OPERATION000RRRrrrXXXXX */
1154 case CCL_PLUS
: reg
[rrr
] += i
; break;
1155 case CCL_MINUS
: reg
[rrr
] -= i
; break;
1156 case CCL_MUL
: reg
[rrr
] *= i
; break;
1157 case CCL_DIV
: reg
[rrr
] /= i
; break;
1158 case CCL_MOD
: reg
[rrr
] %= i
; break;
1159 case CCL_AND
: reg
[rrr
] &= i
; break;
1160 case CCL_OR
: reg
[rrr
] |= i
; break;
1161 case CCL_XOR
: reg
[rrr
] ^= i
; break;
1162 case CCL_LSH
: reg
[rrr
] <<= i
; break;
1163 case CCL_RSH
: reg
[rrr
] >>= i
; break;
1164 case CCL_LSH8
: reg
[rrr
] <<= 8; reg
[rrr
] |= i
; break;
1165 case CCL_RSH8
: reg
[7] = reg
[rrr
] & 0xFF; reg
[rrr
] >>= 8; break;
1166 case CCL_DIVMOD
: reg
[7] = reg
[rrr
] % i
; reg
[rrr
] /= i
; break;
1167 case CCL_LS
: reg
[rrr
] = reg
[rrr
] < i
; break;
1168 case CCL_GT
: reg
[rrr
] = reg
[rrr
] > i
; break;
1169 case CCL_EQ
: reg
[rrr
] = reg
[rrr
] == i
; break;
1170 case CCL_LE
: reg
[rrr
] = reg
[rrr
] <= i
; break;
1171 case CCL_GE
: reg
[rrr
] = reg
[rrr
] >= i
; break;
1172 case CCL_NE
: reg
[rrr
] = reg
[rrr
] != i
; break;
1173 default: CCL_INVALID_CMD
;
1177 case CCL_SetExprConst
: /* 00000OPERATION000RRRrrrXXXXX */
1179 j
= XINT (ccl_prog
[ic
++]);
1184 case CCL_SetExprReg
: /* 00000OPERATIONRrrRRRrrrXXXXX */
1191 case CCL_ReadJumpCondExprConst
: /* A--D--D--R--E--S--S-rrrXXXXX */
1192 CCL_READ_CHAR (reg
[rrr
]);
1193 case CCL_JumpCondExprConst
: /* A--D--D--R--E--S--S-rrrXXXXX */
1195 jump_address
= ic
+ ADDR
;
1196 op
= XINT (ccl_prog
[ic
++]);
1197 j
= XINT (ccl_prog
[ic
++]);
1201 case CCL_ReadJumpCondExprReg
: /* A--D--D--R--E--S--S-rrrXXXXX */
1202 CCL_READ_CHAR (reg
[rrr
]);
1203 case CCL_JumpCondExprReg
:
1205 jump_address
= ic
+ ADDR
;
1206 op
= XINT (ccl_prog
[ic
++]);
1207 GET_CCL_RANGE (j
, ccl_prog
, ic
++, 0, 7);
1214 case CCL_PLUS
: reg
[rrr
] = i
+ j
; break;
1215 case CCL_MINUS
: reg
[rrr
] = i
- j
; break;
1216 case CCL_MUL
: reg
[rrr
] = i
* j
; break;
1217 case CCL_DIV
: reg
[rrr
] = i
/ j
; break;
1218 case CCL_MOD
: reg
[rrr
] = i
% j
; break;
1219 case CCL_AND
: reg
[rrr
] = i
& j
; break;
1220 case CCL_OR
: reg
[rrr
] = i
| j
; break;
1221 case CCL_XOR
: reg
[rrr
] = i
^ j
; break;
1222 case CCL_LSH
: reg
[rrr
] = i
<< j
; break;
1223 case CCL_RSH
: reg
[rrr
] = i
>> j
; break;
1224 case CCL_LSH8
: reg
[rrr
] = (i
<< 8) | j
; break;
1225 case CCL_RSH8
: reg
[rrr
] = i
>> 8; reg
[7] = i
& 0xFF; break;
1226 case CCL_DIVMOD
: reg
[rrr
] = i
/ j
; reg
[7] = i
% j
; break;
1227 case CCL_LS
: reg
[rrr
] = i
< j
; break;
1228 case CCL_GT
: reg
[rrr
] = i
> j
; break;
1229 case CCL_EQ
: reg
[rrr
] = i
== j
; break;
1230 case CCL_LE
: reg
[rrr
] = i
<= j
; break;
1231 case CCL_GE
: reg
[rrr
] = i
>= j
; break;
1232 case CCL_NE
: reg
[rrr
] = i
!= j
; break;
1233 case CCL_DECODE_SJIS
:
1241 case CCL_ENCODE_SJIS
:
1249 default: CCL_INVALID_CMD
;
1252 if (code
== CCL_WriteExprConst
|| code
== CCL_WriteExprRegister
)
1265 case CCL_ReadMultibyteChar2
:
1269 CCL_ENCODE_CHAR (i
, charset_list
, reg
[RRR
], reg
[rrr
]);
1272 case CCL_WriteMultibyteChar2
:
1275 i
= CCL_DECODE_CHAR (reg
[RRR
], reg
[rrr
]);
1279 case CCL_TranslateCharacter
:
1280 i
= CCL_DECODE_CHAR (reg
[RRR
], reg
[rrr
]);
1281 op
= translate_char (GET_TRANSLATION_TABLE (reg
[Rrr
]), i
);
1282 CCL_ENCODE_CHAR (op
, charset_list
, reg
[RRR
], reg
[rrr
]);
1285 case CCL_TranslateCharacterConstTbl
:
1288 GET_CCL_RANGE (eop
, ccl_prog
, ic
++, 0,
1289 (VECTORP (Vtranslation_table_vector
)
1290 ? ASIZE (Vtranslation_table_vector
)
1292 i
= CCL_DECODE_CHAR (reg
[RRR
], reg
[rrr
]);
1293 op
= translate_char (GET_TRANSLATION_TABLE (eop
), i
);
1294 CCL_ENCODE_CHAR (op
, charset_list
, reg
[RRR
], reg
[rrr
]);
1298 case CCL_LookupIntConstTbl
:
1301 struct Lisp_Hash_Table
*h
;
1302 GET_CCL_RANGE (eop
, ccl_prog
, ic
++, 0,
1303 (VECTORP (Vtranslation_hash_table_vector
)
1304 ? ASIZE (Vtranslation_hash_table_vector
)
1306 h
= GET_HASH_TABLE (eop
);
1308 eop
= hash_lookup (h
, make_number (reg
[RRR
]), NULL
);
1312 opl
= HASH_VALUE (h
, eop
);
1313 if (! (IN_INT_RANGE (eop
) && CHARACTERP (opl
)))
1315 reg
[RRR
] = charset_unicode
;
1317 reg
[7] = 1; /* r7 true for success */
1324 case CCL_LookupCharConstTbl
:
1327 struct Lisp_Hash_Table
*h
;
1328 GET_CCL_RANGE (eop
, ccl_prog
, ic
++, 0,
1329 (VECTORP (Vtranslation_hash_table_vector
)
1330 ? ASIZE (Vtranslation_hash_table_vector
)
1332 i
= CCL_DECODE_CHAR (reg
[RRR
], reg
[rrr
]);
1333 h
= GET_HASH_TABLE (eop
);
1335 eop
= hash_lookup (h
, make_number (i
), NULL
);
1339 opl
= HASH_VALUE (h
, eop
);
1340 if (! (INTEGERP (opl
) && IN_INT_RANGE (XINT (opl
))))
1342 reg
[RRR
] = XINT (opl
);
1343 reg
[7] = 1; /* r7 true for success */
1350 case CCL_IterateMultipleMap
:
1352 Lisp_Object map
, content
, attrib
, value
;
1357 j
= XINT (ccl_prog
[ic
++]); /* number of maps. */
1360 if ((j
> reg
[RRR
]) && (j
>= 0))
1374 if (!VECTORP (Vcode_conversion_map_vector
)) continue;
1375 size
= ASIZE (Vcode_conversion_map_vector
);
1376 point
= XINT (ccl_prog
[ic
++]);
1377 if (! (0 <= point
&& point
< size
)) continue;
1378 map
= AREF (Vcode_conversion_map_vector
, point
);
1380 /* Check map validity. */
1381 if (!CONSP (map
)) continue;
1383 if (!VECTORP (map
)) continue;
1385 if (size
<= 1) continue;
1387 content
= AREF (map
, 0);
1390 [STARTPOINT VAL1 VAL2 ...] or
1391 [t ELEMENT STARTPOINT ENDPOINT] */
1392 if (INTEGERP (content
))
1394 point
= XINT (content
);
1395 if (!(point
<= op
&& op
- point
+ 1 < size
)) continue;
1396 content
= AREF (map
, op
- point
+ 1);
1398 else if (EQ (content
, Qt
))
1400 if (size
!= 4) continue;
1401 if (INTEGERP (AREF (map
, 2))
1402 && XINT (AREF (map
, 2)) <= op
1403 && INTEGERP (AREF (map
, 3))
1404 && op
< XINT (AREF (map
, 3)))
1405 content
= AREF (map
, 1);
1414 else if (INTEGERP (content
) && IN_INT_RANGE (XINT (content
)))
1417 reg
[rrr
] = XINT (content
);
1420 else if (EQ (content
, Qt
) || EQ (content
, Qlambda
))
1425 else if (CONSP (content
))
1427 attrib
= XCAR (content
);
1428 value
= XCDR (content
);
1429 if (! (INTEGERP (attrib
) && INTEGERP (value
)
1430 && IN_INT_RANGE (XINT (value
))))
1433 reg
[rrr
] = XINT (value
);
1436 else if (SYMBOLP (content
))
1437 CCL_CALL_FOR_MAP_INSTRUCTION (content
, fin_ic
);
1447 case CCL_MapMultiple
:
1449 Lisp_Object map
, content
, attrib
, value
;
1451 ptrdiff_t size
, map_vector_size
;
1452 int map_set_rest_length
, fin_ic
;
1453 int current_ic
= this_ic
;
1455 /* inhibit recursive call on MapMultiple. */
1456 if (stack_idx_of_map_multiple
> 0)
1458 if (stack_idx_of_map_multiple
<= stack_idx
)
1460 stack_idx_of_map_multiple
= 0;
1461 mapping_stack_pointer
= mapping_stack
;
1466 mapping_stack_pointer
= mapping_stack
;
1467 stack_idx_of_map_multiple
= 0;
1469 /* Get number of maps and separators. */
1470 map_set_rest_length
= XINT (ccl_prog
[ic
++]);
1472 fin_ic
= ic
+ map_set_rest_length
;
1475 if ((map_set_rest_length
> reg
[RRR
]) && (reg
[RRR
] >= 0))
1479 map_set_rest_length
-= i
;
1485 mapping_stack_pointer
= mapping_stack
;
1489 if (mapping_stack_pointer
<= (mapping_stack
+ 1))
1491 /* Set up initial state. */
1492 mapping_stack_pointer
= mapping_stack
;
1493 PUSH_MAPPING_STACK (0, op
);
1498 /* Recover after calling other ccl program. */
1501 POP_MAPPING_STACK (map_set_rest_length
, orig_op
);
1502 POP_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1506 /* Regard it as Qnil. */
1510 map_set_rest_length
--;
1513 /* Regard it as Qt. */
1517 map_set_rest_length
--;
1520 /* Regard it as Qlambda. */
1522 i
+= map_set_rest_length
;
1523 ic
+= map_set_rest_length
;
1524 map_set_rest_length
= 0;
1527 /* Regard it as normal mapping. */
1528 i
+= map_set_rest_length
;
1529 ic
+= map_set_rest_length
;
1530 POP_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1534 if (!VECTORP (Vcode_conversion_map_vector
))
1536 map_vector_size
= ASIZE (Vcode_conversion_map_vector
);
1539 for (;map_set_rest_length
> 0;i
++, ic
++, map_set_rest_length
--)
1541 point
= XINT (ccl_prog
[ic
]);
1544 /* +1 is for including separator. */
1546 if (mapping_stack_pointer
1547 >= &mapping_stack
[MAX_MAP_SET_LEVEL
])
1549 PUSH_MAPPING_STACK (map_set_rest_length
- point
,
1551 map_set_rest_length
= point
;
1556 if (point
>= map_vector_size
) continue;
1557 map
= AREF (Vcode_conversion_map_vector
, point
);
1559 /* Check map validity. */
1560 if (!CONSP (map
)) continue;
1562 if (!VECTORP (map
)) continue;
1564 if (size
<= 1) continue;
1566 content
= AREF (map
, 0);
1569 [STARTPOINT VAL1 VAL2 ...] or
1570 [t ELEMENT STARTPOINT ENDPOINT] */
1571 if (INTEGERP (content
))
1573 point
= XINT (content
);
1574 if (!(point
<= op
&& op
- point
+ 1 < size
)) continue;
1575 content
= AREF (map
, op
- point
+ 1);
1577 else if (EQ (content
, Qt
))
1579 if (size
!= 4) continue;
1580 if (INTEGERP (AREF (map
, 2))
1581 && XINT (AREF (map
, 2)) <= op
1582 && INTEGERP (AREF (map
, 3))
1583 && op
< XINT (AREF (map
, 3)))
1584 content
= AREF (map
, 1);
1595 if (INTEGERP (content
) && IN_INT_RANGE (XINT (content
)))
1597 op
= XINT (content
);
1598 i
+= map_set_rest_length
- 1;
1599 ic
+= map_set_rest_length
- 1;
1600 POP_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1601 map_set_rest_length
++;
1603 else if (CONSP (content
))
1605 attrib
= XCAR (content
);
1606 value
= XCDR (content
);
1607 if (! (INTEGERP (attrib
) && INTEGERP (value
)
1608 && IN_INT_RANGE (XINT (value
))))
1611 i
+= map_set_rest_length
- 1;
1612 ic
+= map_set_rest_length
- 1;
1613 POP_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1614 map_set_rest_length
++;
1616 else if (EQ (content
, Qt
))
1620 else if (EQ (content
, Qlambda
))
1622 i
+= map_set_rest_length
;
1623 ic
+= map_set_rest_length
;
1626 else if (SYMBOLP (content
))
1628 if (mapping_stack_pointer
1629 >= &mapping_stack
[MAX_MAP_SET_LEVEL
])
1631 PUSH_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1632 PUSH_MAPPING_STACK (map_set_rest_length
, op
);
1633 stack_idx_of_map_multiple
= stack_idx
+ 1;
1634 CCL_CALL_FOR_MAP_INSTRUCTION (content
, current_ic
);
1639 if (mapping_stack_pointer
<= (mapping_stack
+ 1))
1641 POP_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1642 i
+= map_set_rest_length
;
1643 ic
+= map_set_rest_length
;
1644 POP_MAPPING_STACK (map_set_rest_length
, reg
[rrr
]);
1654 Lisp_Object map
, attrib
, value
, content
;
1656 j
= XINT (ccl_prog
[ic
++]); /* map_id */
1658 if (! (VECTORP (Vcode_conversion_map_vector
)
1659 && j
< ASIZE (Vcode_conversion_map_vector
)))
1664 map
= AREF (Vcode_conversion_map_vector
, j
);
1671 if (! (VECTORP (map
)
1673 && INTEGERP (AREF (map
, 0))
1674 && XINT (AREF (map
, 0)) <= op
1675 && op
- XINT (AREF (map
, 0)) + 1 < ASIZE (map
)))
1680 point
= op
- XINT (AREF (map
, 0)) + 1;
1682 content
= AREF (map
, point
);
1685 else if (TYPE_RANGED_INTEGERP (int, content
))
1686 reg
[rrr
] = XINT (content
);
1687 else if (EQ (content
, Qt
));
1688 else if (CONSP (content
))
1690 attrib
= XCAR (content
);
1691 value
= XCDR (content
);
1692 if (!INTEGERP (attrib
)
1693 || !TYPE_RANGED_INTEGERP (int, value
))
1695 reg
[rrr
] = XINT (value
);
1698 else if (SYMBOLP (content
))
1699 CCL_CALL_FOR_MAP_INSTRUCTION (content
, ic
);
1716 /* The suppress_error member is set when e.g. a CCL-based coding
1717 system is used for terminal output. */
1718 if (!ccl
->suppress_error
&& destination
)
1720 /* We can insert an error message only if DESTINATION is
1721 specified and we still have a room to store the message
1729 switch (ccl
->status
)
1731 case CCL_STAT_INVALID_CMD
:
1732 msglen
= sprintf (msg
,
1733 "\nCCL: Invalid command %x (ccl_code = %x) at %d.",
1734 code
& 0x1F, code
, this_ic
);
1737 int i
= ccl_backtrace_idx
- 1;
1740 if (dst
+ msglen
<= (dst_bytes
? dst_end
: src
))
1742 memcpy (dst
, msg
, msglen
);
1746 for (j
= 0; j
< CCL_DEBUG_BACKTRACE_LEN
; j
++, i
--)
1748 if (i
< 0) i
= CCL_DEBUG_BACKTRACE_LEN
- 1;
1749 if (ccl_backtrace_table
[i
] == 0)
1751 msglen
= sprintf (msg
, " %d", ccl_backtrace_table
[i
]);
1752 if (dst
+ msglen
> (dst_bytes
? dst_end
: src
))
1754 memcpy (dst
, msg
, msglen
);
1763 msglen
= ccl
->quit_silently
? 0 : sprintf (msg
, "\nCCL: Quitted.");
1767 msglen
= sprintf (msg
, "\nCCL: Unknown error type (%d)", ccl
->status
);
1770 if (msglen
<= dst_end
- dst
)
1772 for (i
= 0; i
< msglen
; i
++)
1776 if (ccl
->status
== CCL_STAT_INVALID_CMD
)
1778 #if 0 /* If the remaining bytes contain 0x80..0x9F, copying them
1779 results in an invalid multibyte sequence. */
1781 /* Copy the remaining source data. */
1782 int i
= src_end
- src
;
1783 if (dst_bytes
&& (dst_end
- dst
) < i
)
1785 memcpy (dst
, src
, i
);
1789 /* Signal that we've consumed everything. */
1797 ccl
->stack_idx
= stack_idx
;
1798 ccl
->prog
= ccl_prog
;
1799 ccl
->consumed
= src
- source
;
1801 ccl
->produced
= dst
- destination
;
1806 /* Resolve symbols in the specified CCL code (Lisp vector). This
1807 function converts symbols of code conversion maps and character
1808 translation tables embedded in the CCL code into their ID numbers.
1810 The return value is a new vector in which all symbols are resolved,
1811 Qt if resolving of some symbol failed,
1812 or nil if CCL contains invalid data. */
1815 resolve_symbol_ccl_program (Lisp_Object ccl
)
1817 int i
, veclen
, unresolved
= 0;
1818 Lisp_Object result
, contents
, val
;
1820 if (! (CCL_HEADER_MAIN
< ASIZE (ccl
) && ASIZE (ccl
) <= INT_MAX
))
1822 result
= Fcopy_sequence (ccl
);
1823 veclen
= ASIZE (result
);
1825 for (i
= 0; i
< veclen
; i
++)
1827 contents
= AREF (result
, i
);
1828 if (TYPE_RANGED_INTEGERP (int, contents
))
1830 else if (CONSP (contents
)
1831 && SYMBOLP (XCAR (contents
))
1832 && SYMBOLP (XCDR (contents
)))
1834 /* This is the new style for embedding symbols. The form is
1835 (SYMBOL . PROPERTY). (get SYMBOL PROPERTY) should give
1837 val
= Fget (XCAR (contents
), XCDR (contents
));
1838 if (RANGED_INTEGERP (0, val
, INT_MAX
))
1839 ASET (result
, i
, val
);
1844 else if (SYMBOLP (contents
))
1846 /* This is the old style for embedding symbols. This style
1847 may lead to a bug if, for instance, a translation table
1848 and a code conversion map have the same name. */
1849 val
= Fget (contents
, Qtranslation_table_id
);
1850 if (RANGED_INTEGERP (0, val
, INT_MAX
))
1851 ASET (result
, i
, val
);
1854 val
= Fget (contents
, Qcode_conversion_map_id
);
1855 if (RANGED_INTEGERP (0, val
, INT_MAX
))
1856 ASET (result
, i
, val
);
1859 val
= Fget (contents
, Qccl_program_idx
);
1860 if (RANGED_INTEGERP (0, val
, INT_MAX
))
1861 ASET (result
, i
, val
);
1871 if (! (0 <= XINT (AREF (result
, CCL_HEADER_BUF_MAG
))
1872 && ASCENDING_ORDER (0, XINT (AREF (result
, CCL_HEADER_EOF
)),
1876 return (unresolved
? Qt
: result
);
1879 /* Return the compiled code (vector) of CCL program CCL_PROG.
1880 CCL_PROG is a name (symbol) of the program or already compiled
1881 code. If necessary, resolve symbols in the compiled code to index
1882 numbers. If we failed to get the compiled code or to resolve
1883 symbols, return Qnil. */
1886 ccl_get_compiled_code (Lisp_Object ccl_prog
, ptrdiff_t *idx
)
1888 Lisp_Object val
, slot
;
1890 if (VECTORP (ccl_prog
))
1892 val
= resolve_symbol_ccl_program (ccl_prog
);
1894 return (VECTORP (val
) ? val
: Qnil
);
1896 if (!SYMBOLP (ccl_prog
))
1899 val
= Fget (ccl_prog
, Qccl_program_idx
);
1901 || XINT (val
) >= ASIZE (Vccl_program_table
))
1903 slot
= AREF (Vccl_program_table
, XINT (val
));
1904 if (! VECTORP (slot
)
1905 || ASIZE (slot
) != 4
1906 || ! VECTORP (AREF (slot
, 1)))
1909 if (NILP (AREF (slot
, 2)))
1911 val
= resolve_symbol_ccl_program (AREF (slot
, 1));
1912 if (! VECTORP (val
))
1914 ASET (slot
, 1, val
);
1917 return AREF (slot
, 1);
1920 /* Setup fields of the structure pointed by CCL appropriately for the
1921 execution of CCL program CCL_PROG. CCL_PROG is the name (symbol)
1922 of the CCL program or the already compiled code (vector).
1923 Return 0 if we succeed this setup, else return -1.
1925 If CCL_PROG is nil, we just reset the structure pointed by CCL. */
1927 setup_ccl_program (struct ccl_program
*ccl
, Lisp_Object ccl_prog
)
1931 if (! NILP (ccl_prog
))
1933 struct Lisp_Vector
*vp
;
1935 ccl_prog
= ccl_get_compiled_code (ccl_prog
, &ccl
->idx
);
1936 if (! VECTORP (ccl_prog
))
1938 vp
= XVECTOR (ccl_prog
);
1939 ccl
->size
= vp
->header
.size
;
1940 ccl
->prog
= vp
->contents
;
1941 ccl
->eof_ic
= XINT (vp
->contents
[CCL_HEADER_EOF
]);
1942 ccl
->buf_magnification
= XINT (vp
->contents
[CCL_HEADER_BUF_MAG
]);
1947 slot
= AREF (Vccl_program_table
, ccl
->idx
);
1948 ASET (slot
, 3, Qnil
);
1951 ccl
->ic
= CCL_HEADER_MAIN
;
1952 for (i
= 0; i
< 8; i
++)
1954 ccl
->last_block
= 0;
1955 ccl
->private_state
= 0;
1958 ccl
->suppress_error
= 0;
1959 ccl
->eight_bit_control
= 0;
1960 ccl
->quit_silently
= 0;
1965 DEFUN ("ccl-program-p", Fccl_program_p
, Sccl_program_p
, 1, 1, 0,
1966 doc
: /* Return t if OBJECT is a CCL program name or a compiled CCL program code.
1967 See the documentation of `define-ccl-program' for the detail of CCL program. */)
1968 (Lisp_Object object
)
1972 if (VECTORP (object
))
1974 val
= resolve_symbol_ccl_program (object
);
1975 return (VECTORP (val
) ? Qt
: Qnil
);
1977 if (!SYMBOLP (object
))
1980 val
= Fget (object
, Qccl_program_idx
);
1981 return ((! NATNUMP (val
)
1982 || XINT (val
) >= ASIZE (Vccl_program_table
))
1986 DEFUN ("ccl-execute", Fccl_execute
, Sccl_execute
, 2, 2, 0,
1987 doc
: /* Execute CCL-PROGRAM with registers initialized by REGISTERS.
1989 CCL-PROGRAM is a CCL program name (symbol)
1990 or compiled code generated by `ccl-compile' (for backward compatibility.
1991 In the latter case, the execution overhead is bigger than in the former).
1992 No I/O commands should appear in CCL-PROGRAM.
1994 REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value
1995 for the Nth register.
1997 As side effect, each element of REGISTERS holds the value of
1998 the corresponding register after the execution.
2000 See the documentation of `define-ccl-program' for a definition of CCL
2002 (Lisp_Object ccl_prog
, Lisp_Object reg
)
2004 struct ccl_program ccl
;
2007 if (setup_ccl_program (&ccl
, ccl_prog
) < 0)
2008 error ("Invalid CCL program");
2011 if (ASIZE (reg
) != 8)
2012 error ("Length of vector REGISTERS is not 8");
2014 for (i
= 0; i
< 8; i
++)
2015 ccl
.reg
[i
] = (TYPE_RANGED_INTEGERP (int, AREF (reg
, i
))
2016 ? XINT (AREF (reg
, i
))
2019 ccl_driver (&ccl
, NULL
, NULL
, 0, 0, Qnil
);
2021 if (ccl
.status
!= CCL_STAT_SUCCESS
)
2022 error ("Error in CCL program at %dth code", ccl
.ic
);
2024 for (i
= 0; i
< 8; i
++)
2025 ASET (reg
, i
, make_number (ccl
.reg
[i
]));
2029 DEFUN ("ccl-execute-on-string", Fccl_execute_on_string
, Sccl_execute_on_string
,
2031 doc
: /* Execute CCL-PROGRAM with initial STATUS on STRING.
2033 CCL-PROGRAM is a symbol registered by `register-ccl-program',
2034 or a compiled code generated by `ccl-compile' (for backward compatibility,
2035 in this case, the execution is slower).
2037 Read buffer is set to STRING, and write buffer is allocated automatically.
2039 STATUS is a vector of [R0 R1 ... R7 IC], where
2040 R0..R7 are initial values of corresponding registers,
2041 IC is the instruction counter specifying from where to start the program.
2042 If R0..R7 are nil, they are initialized to 0.
2043 If IC is nil, it is initialized to head of the CCL program.
2045 If optional 4th arg CONTINUE is non-nil, keep IC on read operation
2046 when read buffer is exhausted, else, IC is always set to the end of
2047 CCL-PROGRAM on exit.
2049 It returns the contents of write buffer as a string,
2050 and as side effect, STATUS is updated.
2051 If the optional 5th arg UNIBYTE-P is non-nil, the returned string
2052 is a unibyte string. By default it is a multibyte string.
2054 See the documentation of `define-ccl-program' for the detail of CCL program.
2055 usage: (ccl-execute-on-string CCL-PROGRAM STATUS STRING &optional CONTINUE UNIBYTE-P) */)
2056 (Lisp_Object ccl_prog
, Lisp_Object status
, Lisp_Object str
, Lisp_Object contin
, Lisp_Object unibyte_p
)
2059 struct ccl_program ccl
;
2061 ptrdiff_t outbufsize
;
2062 unsigned char *outbuf
, *outp
;
2063 ptrdiff_t str_chars
, str_bytes
;
2064 #define CCL_EXECUTE_BUF_SIZE 1024
2065 int source
[CCL_EXECUTE_BUF_SIZE
], destination
[CCL_EXECUTE_BUF_SIZE
];
2066 ptrdiff_t consumed_chars
, consumed_bytes
, produced_chars
;
2067 int buf_magnification
;
2069 if (setup_ccl_program (&ccl
, ccl_prog
) < 0)
2070 error ("Invalid CCL program");
2072 CHECK_VECTOR (status
);
2073 if (ASIZE (status
) != 9)
2074 error ("Length of vector STATUS is not 9");
2077 str_chars
= SCHARS (str
);
2078 str_bytes
= SBYTES (str
);
2080 for (i
= 0; i
< 8; i
++)
2082 if (NILP (AREF (status
, i
)))
2083 ASET (status
, i
, make_number (0));
2084 if (TYPE_RANGED_INTEGERP (int, AREF (status
, i
)))
2085 ccl
.reg
[i
] = XINT (AREF (status
, i
));
2087 if (INTEGERP (AREF (status
, i
)))
2089 i
= XFASTINT (AREF (status
, 8));
2090 if (ccl
.ic
< i
&& i
< ccl
.size
)
2094 buf_magnification
= ccl
.buf_magnification
? ccl
.buf_magnification
: 1;
2096 if ((min (PTRDIFF_MAX
, SIZE_MAX
) - 256) / buf_magnification
< str_bytes
)
2097 memory_full (SIZE_MAX
);
2098 outbufsize
= (ccl
.buf_magnification
2099 ? str_bytes
* ccl
.buf_magnification
+ 256
2101 outp
= outbuf
= xmalloc (outbufsize
);
2103 consumed_chars
= consumed_bytes
= 0;
2107 const unsigned char *p
= SDATA (str
) + consumed_bytes
;
2108 const unsigned char *endp
= SDATA (str
) + str_bytes
;
2112 if (endp
- p
== str_chars
- consumed_chars
)
2113 while (j
< CCL_EXECUTE_BUF_SIZE
&& p
< endp
)
2116 while (j
< CCL_EXECUTE_BUF_SIZE
&& p
< endp
)
2117 source
[j
++] = STRING_CHAR_ADVANCE (p
);
2118 consumed_chars
+= j
;
2119 consumed_bytes
= p
- SDATA (str
);
2121 if (consumed_bytes
== str_bytes
)
2122 ccl
.last_block
= NILP (contin
);
2127 int max_expansion
= NILP (unibyte_p
) ? MAX_MULTIBYTE_LENGTH
: 1;
2128 ptrdiff_t offset
, shortfall
;
2129 ccl_driver (&ccl
, src
, destination
, src_size
, CCL_EXECUTE_BUF_SIZE
,
2131 produced_chars
+= ccl
.produced
;
2132 offset
= outp
- outbuf
;
2133 shortfall
= ccl
.produced
* max_expansion
- (outbufsize
- offset
);
2136 outbuf
= xpalloc (outbuf
, &outbufsize
, shortfall
, -1, 1);
2137 outp
= outbuf
+ offset
;
2139 if (NILP (unibyte_p
))
2141 for (j
= 0; j
< ccl
.produced
; j
++)
2142 CHAR_STRING_ADVANCE (destination
[j
], outp
);
2146 for (j
= 0; j
< ccl
.produced
; j
++)
2147 *outp
++ = destination
[j
];
2149 src
+= ccl
.consumed
;
2150 src_size
-= ccl
.consumed
;
2151 if (ccl
.status
!= CCL_STAT_SUSPEND_BY_DST
)
2155 if (ccl
.status
!= CCL_STAT_SUSPEND_BY_SRC
2156 || str_chars
== consumed_chars
)
2160 if (ccl
.status
== CCL_STAT_INVALID_CMD
)
2161 error ("Error in CCL program at %dth code", ccl
.ic
);
2162 if (ccl
.status
== CCL_STAT_QUIT
)
2163 error ("CCL program interrupted at %dth code", ccl
.ic
);
2165 for (i
= 0; i
< 8; i
++)
2166 ASET (status
, i
, make_number (ccl
.reg
[i
]));
2167 ASET (status
, 8, make_number (ccl
.ic
));
2169 if (NILP (unibyte_p
))
2170 val
= make_multibyte_string ((char *) outbuf
, produced_chars
,
2173 val
= make_unibyte_string ((char *) outbuf
, produced_chars
);
2179 DEFUN ("register-ccl-program", Fregister_ccl_program
, Sregister_ccl_program
,
2181 doc
: /* Register CCL program CCL-PROG as NAME in `ccl-program-table'.
2182 CCL-PROG should be a compiled CCL program (vector), or nil.
2183 If it is nil, just reserve NAME as a CCL program name.
2184 Return index number of the registered CCL program. */)
2185 (Lisp_Object name
, Lisp_Object ccl_prog
)
2187 ptrdiff_t len
= ASIZE (Vccl_program_table
);
2189 Lisp_Object resolved
;
2191 CHECK_SYMBOL (name
);
2193 if (!NILP (ccl_prog
))
2195 CHECK_VECTOR (ccl_prog
);
2196 resolved
= resolve_symbol_ccl_program (ccl_prog
);
2197 if (NILP (resolved
))
2198 error ("Error in CCL program");
2199 if (VECTORP (resolved
))
2201 ccl_prog
= resolved
;
2208 for (idx
= 0; idx
< len
; idx
++)
2212 slot
= AREF (Vccl_program_table
, idx
);
2213 if (!VECTORP (slot
))
2214 /* This is the first unused slot. Register NAME here. */
2217 if (EQ (name
, AREF (slot
, 0)))
2219 /* Update this slot. */
2220 ASET (slot
, 1, ccl_prog
);
2221 ASET (slot
, 2, resolved
);
2223 return make_number (idx
);
2228 /* Extend the table. */
2229 Vccl_program_table
= larger_vector (Vccl_program_table
, 1, -1);
2234 elt
= Fmake_vector (make_number (4), Qnil
);
2235 ASET (elt
, 0, name
);
2236 ASET (elt
, 1, ccl_prog
);
2237 ASET (elt
, 2, resolved
);
2239 ASET (Vccl_program_table
, idx
, elt
);
2242 Fput (name
, Qccl_program_idx
, make_number (idx
));
2243 return make_number (idx
);
2246 /* Register code conversion map.
2247 A code conversion map consists of numbers, Qt, Qnil, and Qlambda.
2248 The first element is the start code point.
2249 The other elements are mapped numbers.
2250 Symbol t means to map to an original number before mapping.
2251 Symbol nil means that the corresponding element is empty.
2252 Symbol lambda means to terminate mapping here.
2255 DEFUN ("register-code-conversion-map", Fregister_code_conversion_map
,
2256 Sregister_code_conversion_map
,
2258 doc
: /* Register SYMBOL as code conversion map MAP.
2259 Return index number of the registered map. */)
2260 (Lisp_Object symbol
, Lisp_Object map
)
2266 CHECK_SYMBOL (symbol
);
2268 if (! VECTORP (Vcode_conversion_map_vector
))
2269 error ("Invalid code-conversion-map-vector");
2271 len
= ASIZE (Vcode_conversion_map_vector
);
2273 for (i
= 0; i
< len
; i
++)
2275 Lisp_Object slot
= AREF (Vcode_conversion_map_vector
, i
);
2280 if (EQ (symbol
, XCAR (slot
)))
2282 idx
= make_number (i
);
2283 XSETCDR (slot
, map
);
2284 Fput (symbol
, Qcode_conversion_map
, map
);
2285 Fput (symbol
, Qcode_conversion_map_id
, idx
);
2291 Vcode_conversion_map_vector
= larger_vector (Vcode_conversion_map_vector
,
2294 idx
= make_number (i
);
2295 Fput (symbol
, Qcode_conversion_map
, map
);
2296 Fput (symbol
, Qcode_conversion_map_id
, idx
);
2297 ASET (Vcode_conversion_map_vector
, i
, Fcons (symbol
, map
));
2305 staticpro (&Vccl_program_table
);
2306 Vccl_program_table
= Fmake_vector (make_number (32), Qnil
);
2308 DEFSYM (Qccl
, "ccl");
2309 DEFSYM (Qcclp
, "cclp");
2310 DEFSYM (Qccl_program
, "ccl-program");
2311 DEFSYM (Qccl_program_idx
, "ccl-program-idx");
2312 DEFSYM (Qcode_conversion_map
, "code-conversion-map");
2313 DEFSYM (Qcode_conversion_map_id
, "code-conversion-map-id");
2315 DEFVAR_LISP ("code-conversion-map-vector", Vcode_conversion_map_vector
,
2316 doc
: /* Vector of code conversion maps. */);
2317 Vcode_conversion_map_vector
= Fmake_vector (make_number (16), Qnil
);
2319 DEFVAR_LISP ("font-ccl-encoder-alist", Vfont_ccl_encoder_alist
,
2320 doc
: /* Alist of fontname patterns vs corresponding CCL program.
2321 Each element looks like (REGEXP . CCL-CODE),
2322 where CCL-CODE is a compiled CCL program.
2323 When a font whose name matches REGEXP is used for displaying a character,
2324 CCL-CODE is executed to calculate the code point in the font
2325 from the charset number and position code(s) of the character which are set
2326 in CCL registers R0, R1, and R2 before the execution.
2327 The code point in the font is set in CCL registers R1 and R2
2328 when the execution terminated.
2329 If the font is single-byte font, the register R2 is not used. */);
2330 Vfont_ccl_encoder_alist
= Qnil
;
2332 DEFVAR_LISP ("translation-hash-table-vector", Vtranslation_hash_table_vector
,
2333 doc
: /* Vector containing all translation hash tables ever defined.
2334 Comprises pairs (SYMBOL . TABLE) where SYMBOL and TABLE were set up by calls
2335 to `define-translation-hash-table'. The vector is indexed by the table id
2337 Vtranslation_hash_table_vector
= Qnil
;
2339 defsubr (&Sccl_program_p
);
2340 defsubr (&Sccl_execute
);
2341 defsubr (&Sccl_execute_on_string
);
2342 defsubr (&Sregister_ccl_program
);
2343 defsubr (&Sregister_code_conversion_map
);