(number, original-date, add-to-diary-list)
[emacs.git] / doc / misc / calc.texi
blobbfef5f953ff18763ac5c6c492dabdcfd5a21f35d
1 \input texinfo                  @c -*-texinfo-*-
2 @comment %**start of header (This is for running Texinfo on a region.)
3 @c smallbook
4 @setfilename ../../info/calc
5 @c [title]
6 @settitle GNU Emacs Calc 2.1 Manual
7 @setchapternewpage odd
8 @comment %**end of header (This is for running Texinfo on a region.)
10 @c The following macros are used for conditional output for single lines.
11 @c @texline foo
12 @c    `foo' will appear only in TeX output
13 @c @infoline foo
14 @c    `foo' will appear only in non-TeX output
16 @c @expr{expr} will typeset an expression;
17 @c $x$ in TeX, @samp{x} otherwise.
19 @iftex
20 @macro texline
21 @end macro
22 @alias infoline=comment
23 @alias expr=math
24 @alias tfn=code
25 @alias mathit=expr
26 @macro cpi{}
27 @math{@pi{}}
28 @end macro
29 @macro cpiover{den}
30 @math{@pi/\den\}
31 @end macro
32 @end iftex
34 @ifnottex
35 @alias texline=comment
36 @macro infoline{stuff}
37 \stuff\
38 @end macro
39 @alias expr=samp
40 @alias tfn=t
41 @alias mathit=i
42 @macro cpi{}
43 @expr{pi}
44 @end macro
45 @macro cpiover{den}
46 @expr{pi/\den\}
47 @end macro
48 @end ifnottex
51 @tex
52 % Suggested by Karl Berry <karl@@freefriends.org>
53 \gdef\!{\mskip-\thinmuskip}
54 @end tex
56 @c Fix some other things specifically for this manual.
57 @iftex
58 @finalout
59 @mathcode`@:=`@:  @c Make Calc fractions come out right in math mode
60 @tex
61 \gdef\coloneq{\mathrel{\mathord:\mathord=}}
63 \gdef\beforedisplay{\vskip-10pt}
64 \gdef\afterdisplay{\vskip-5pt}
65 \gdef\beforedisplayh{\vskip-25pt}
66 \gdef\afterdisplayh{\vskip-10pt}
67 @end tex
68 @newdimen@kyvpos @kyvpos=0pt
69 @newdimen@kyhpos @kyhpos=0pt
70 @newcount@calcclubpenalty @calcclubpenalty=1000
71 @ignore
72 @newcount@calcpageno
73 @newtoks@calcoldeverypar @calcoldeverypar=@everypar
74 @everypar={@calceverypar@the@calcoldeverypar}
75 @ifx@turnoffactive@undefinedzzz@def@turnoffactive{}@fi
76 @ifx@ninett@undefinedzzz@font@ninett=cmtt9@fi
77 @catcode`@\=0 \catcode`\@=11
78 \r@ggedbottomtrue
79 \catcode`\@=0 @catcode`@\=@active
80 @end ignore
81 @end iftex
83 @copying
84 This file documents Calc, the GNU Emacs calculator.
86 Copyright @copyright{} 1990, 1991, 2001, 2002, 2003, 2004,
87 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
89 @quotation
90 Permission is granted to copy, distribute and/or modify this document
91 under the terms of the GNU Free Documentation License, Version 1.2 or
92 any later version published by the Free Software Foundation; with the
93 Invariant Sections being just ``GNU GENERAL PUBLIC LICENSE'', with the
94 Front-Cover texts being ``A GNU Manual,'' and with the Back-Cover
95 Texts as in (a) below.  A copy of the license is included in the section
96 entitled ``GNU Free Documentation License.''
98 (a) The FSF's Back-Cover Text is: ``You have freedom to copy and modify
99 this GNU Manual, like GNU software.  Copies published by the Free
100 Software Foundation raise funds for GNU development.''
101 @end quotation
102 @end copying
104 @dircategory Emacs
105 @direntry
106 * Calc: (calc).         Advanced desk calculator and mathematical tool.
107 @end direntry
109 @titlepage
110 @sp 6
111 @center @titlefont{Calc Manual}
112 @sp 4
113 @center GNU Emacs Calc Version 2.1
114 @c [volume]
115 @sp 5
116 @center Dave Gillespie
117 @center daveg@@synaptics.com
118 @page
120 @vskip 0pt plus 1filll
121 Copyright @copyright{} 1990, 1991, 2001, 2002, 2003, 2004,
122    2005, 2006, 2007, 2008 Free Software Foundation, Inc.
123 @insertcopying
124 @end titlepage
127 @summarycontents
129 @c [end]
131 @contents
133 @c [begin]
134 @ifnottex
135 @node Top, Getting Started, (dir), (dir)
136 @chapter The GNU Emacs Calculator
138 @noindent
139 @dfn{Calc} is an advanced desk calculator and mathematical tool
140 written by Dave Gillespie that runs as part of the GNU Emacs environment.
142 This manual, also written (mostly) by Dave Gillespie, is divided into
143 three major parts: ``Getting Started,'' the ``Calc Tutorial,'' and the
144 ``Calc Reference.''  The Tutorial introduces all the major aspects of
145 Calculator use in an easy, hands-on way.  The remainder of the manual is
146 a complete reference to the features of the Calculator.
147 @end ifnottex
149 @ifinfo
150 For help in the Emacs Info system (which you are using to read this
151 file), type @kbd{?}.  (You can also type @kbd{h} to run through a
152 longer Info tutorial.)
153 @end ifinfo
155 @menu
156 * Getting Started::       General description and overview.
157 @ifinfo
158 * Interactive Tutorial::
159 @end ifinfo
160 * Tutorial::              A step-by-step introduction for beginners.
162 * Introduction::          Introduction to the Calc reference manual.
163 * Data Types::            Types of objects manipulated by Calc.
164 * Stack and Trail::       Manipulating the stack and trail buffers.
165 * Mode Settings::         Adjusting display format and other modes.
166 * Arithmetic::            Basic arithmetic functions.
167 * Scientific Functions::  Transcendentals and other scientific functions.
168 * Matrix Functions::      Operations on vectors and matrices.
169 * Algebra::               Manipulating expressions algebraically.
170 * Units::                 Operations on numbers with units.
171 * Store and Recall::      Storing and recalling variables.
172 * Graphics::              Commands for making graphs of data.
173 * Kill and Yank::         Moving data into and out of Calc.
174 * Keypad Mode::           Operating Calc from a keypad.
175 * Embedded Mode::         Working with formulas embedded in a file.
176 * Programming::           Calc as a programmable calculator.
178 * Copying::               How you can copy and share Calc.
179 * GNU Free Documentation License:: The license for this documentation.
180 * Customizing Calc::      Customizing Calc.
181 * Reporting Bugs::        How to report bugs and make suggestions.
183 * Summary::               Summary of Calc commands and functions.
185 * Key Index::             The standard Calc key sequences.
186 * Command Index::         The interactive Calc commands.
187 * Function Index::        Functions (in algebraic formulas).
188 * Concept Index::         General concepts.
189 * Variable Index::        Variables used by Calc (both user and internal).
190 * Lisp Function Index::   Internal Lisp math functions.
191 @end menu
193 @ifinfo
194 @node Getting Started, Interactive Tutorial, Top, Top
195 @end ifinfo
196 @ifnotinfo
197 @node Getting Started, Tutorial, Top, Top
198 @end ifnotinfo
199 @chapter Getting Started
200 @noindent
201 This chapter provides a general overview of Calc, the GNU Emacs
202 Calculator:  What it is, how to start it and how to exit from it,
203 and what are the various ways that it can be used.
205 @menu
206 * What is Calc::
207 * About This Manual::
208 * Notations Used in This Manual::
209 * Demonstration of Calc::
210 * Using Calc::
211 * History and Acknowledgements::
212 @end menu
214 @node What is Calc, About This Manual, Getting Started, Getting Started
215 @section What is Calc?
217 @noindent
218 @dfn{Calc} is an advanced calculator and mathematical tool that runs as
219 part of the GNU Emacs environment.  Very roughly based on the HP-28/48
220 series of calculators, its many features include:
222 @itemize @bullet
223 @item
224 Choice of algebraic or RPN (stack-based) entry of calculations.
226 @item
227 Arbitrary precision integers and floating-point numbers.
229 @item
230 Arithmetic on rational numbers, complex numbers (rectangular and polar),
231 error forms with standard deviations, open and closed intervals, vectors
232 and matrices, dates and times, infinities, sets, quantities with units,
233 and algebraic formulas.
235 @item
236 Mathematical operations such as logarithms and trigonometric functions.
238 @item
239 Programmer's features (bitwise operations, non-decimal numbers).
241 @item
242 Financial functions such as future value and internal rate of return.
244 @item
245 Number theoretical features such as prime factorization and arithmetic
246 modulo @var{m} for any @var{m}.
248 @item
249 Algebraic manipulation features, including symbolic calculus.
251 @item
252 Moving data to and from regular editing buffers.
254 @item
255 Embedded mode for manipulating Calc formulas and data directly
256 inside any editing buffer.
258 @item
259 Graphics using GNUPLOT, a versatile (and free) plotting program.
261 @item
262 Easy programming using keyboard macros, algebraic formulas,
263 algebraic rewrite rules, or extended Emacs Lisp.
264 @end itemize
266 Calc tries to include a little something for everyone; as a result it is
267 large and might be intimidating to the first-time user.  If you plan to
268 use Calc only as a traditional desk calculator, all you really need to
269 read is the ``Getting Started'' chapter of this manual and possibly the
270 first few sections of the tutorial.  As you become more comfortable with
271 the program you can learn its additional features.  Calc does not
272 have the scope and depth of a fully-functional symbolic math package,
273 but Calc has the advantages of convenience, portability, and freedom.
275 @node About This Manual, Notations Used in This Manual, What is Calc, Getting Started
276 @section About This Manual
278 @noindent
279 This document serves as a complete description of the GNU Emacs
280 Calculator.  It works both as an introduction for novices, and as
281 a reference for experienced users.  While it helps to have some
282 experience with GNU Emacs in order to get the most out of Calc,
283 this manual ought to be readable even if you don't know or use Emacs
284 regularly.
286 The manual is divided into three major parts:@: the ``Getting
287 Started'' chapter you are reading now, the Calc tutorial (chapter 2),
288 and the Calc reference manual (the remaining chapters and appendices).
289 @c [when-split]
290 @c This manual has been printed in two volumes, the @dfn{Tutorial} and the
291 @c @dfn{Reference}.  Both volumes include a copy of the ``Getting Started''
292 @c chapter.
294 If you are in a hurry to use Calc, there is a brief ``demonstration''
295 below which illustrates the major features of Calc in just a couple of
296 pages.  If you don't have time to go through the full tutorial, this
297 will show you everything you need to know to begin.
298 @xref{Demonstration of Calc}.
300 The tutorial chapter walks you through the various parts of Calc
301 with lots of hands-on examples and explanations.  If you are new
302 to Calc and you have some time, try going through at least the
303 beginning of the tutorial.  The tutorial includes about 70 exercises
304 with answers.  These exercises give you some guided practice with
305 Calc, as well as pointing out some interesting and unusual ways
306 to use its features.
308 The reference section discusses Calc in complete depth.  You can read
309 the reference from start to finish if you want to learn every aspect
310 of Calc.  Or, you can look in the table of contents or the Concept
311 Index to find the parts of the manual that discuss the things you
312 need to know.
314 @cindex Marginal notes
315 Every Calc keyboard command is listed in the Calc Summary, and also
316 in the Key Index.  Algebraic functions, @kbd{M-x} commands, and
317 variables also have their own indices.  
318 @texline Each
319 @infoline In the printed manual, each
320 paragraph that is referenced in the Key or Function Index is marked
321 in the margin with its index entry.
323 @c [fix-ref Help Commands]
324 You can access this manual on-line at any time within Calc by
325 pressing the @kbd{h i} key sequence.  Outside of the Calc window,
326 you can press @kbd{C-x * i} to read the manual on-line.  Also, you
327 can jump directly to the Tutorial by pressing @kbd{h t} or @kbd{C-x * t},
328 or to the Summary by pressing @kbd{h s} or @kbd{C-x * s}.  Within Calc,
329 you can also go to the part of the manual describing any Calc key,
330 function, or variable using @w{@kbd{h k}}, @kbd{h f}, or @kbd{h v},
331 respectively.  @xref{Help Commands}.
333 @ifnottex
334 The Calc manual can be printed, but because the manual is so large, you
335 should only make a printed copy if you really need it.  To print the
336 manual, you will need the @TeX{} typesetting program (this is a free
337 program by Donald Knuth at Stanford University) as well as the
338 @file{texindex} program and @file{texinfo.tex} file, both of which can
339 be obtained from the FSF as part of the @code{texinfo} package.
340 To print the Calc manual in one huge tome, you will need the
341 source code to this manual, @file{calc.texi}, available as part of the
342 Emacs source.  Once you have this file, type @kbd{texi2dvi calc.texi}.
343 Alternatively, change to the @file{man} subdirectory of the Emacs
344 source distribution, and type @kbd{make calc.dvi}. (Don't worry if you
345 get some ``overfull box'' warnings while @TeX{} runs.)
346 The result will be a device-independent output file called
347 @file{calc.dvi}, which you must print in whatever way is right
348 for your system.  On many systems, the command is
350 @example
351 lpr -d calc.dvi
352 @end example
354 @noindent
357 @example
358 dvips calc.dvi
359 @end example
360 @end ifnottex
361 @c Printed copies of this manual are also available from the Free Software
362 @c Foundation.
364 @node Notations Used in This Manual, Demonstration of Calc, About This Manual, Getting Started
365 @section Notations Used in This Manual
367 @noindent
368 This section describes the various notations that are used
369 throughout the Calc manual.
371 In keystroke sequences, uppercase letters mean you must hold down
372 the shift key while typing the letter.  Keys pressed with Control
373 held down are shown as @kbd{C-x}.  Keys pressed with Meta held down
374 are shown as @kbd{M-x}.  Other notations are @key{RET} for the
375 Return key, @key{SPC} for the space bar, @key{TAB} for the Tab key,
376 @key{DEL} for the Delete key, and @key{LFD} for the Line-Feed key.
377 The @key{DEL} key is called Backspace on some keyboards, it is
378 whatever key you would use to correct a simple typing error when
379 regularly using Emacs.
381 (If you don't have the @key{LFD} or @key{TAB} keys on your keyboard,
382 the @kbd{C-j} and @kbd{C-i} keys are equivalent to them, respectively.
383 If you don't have a Meta key, look for Alt or Extend Char.  You can
384 also press @key{ESC} or @kbd{C-[} first to get the same effect, so
385 that @kbd{M-x}, @kbd{@key{ESC} x}, and @kbd{C-[ x} are all equivalent.)
387 Sometimes the @key{RET} key is not shown when it is ``obvious''
388 that you must press @key{RET} to proceed.  For example, the @key{RET}
389 is usually omitted in key sequences like @kbd{M-x calc-keypad @key{RET}}.
391 Commands are generally shown like this:  @kbd{p} (@code{calc-precision})
392 or @kbd{C-x * k} (@code{calc-keypad}).  This means that the command is
393 normally used by pressing the @kbd{p} key or @kbd{C-x * k} key sequence,
394 but it also has the full-name equivalent shown, e.g., @kbd{M-x calc-precision}.
396 Commands that correspond to functions in algebraic notation
397 are written:  @kbd{C} (@code{calc-cos}) [@code{cos}].  This means
398 the @kbd{C} key is equivalent to @kbd{M-x calc-cos}, and that
399 the corresponding function in an algebraic-style formula would
400 be @samp{cos(@var{x})}.
402 A few commands don't have key equivalents:  @code{calc-sincos}
403 [@code{sincos}].
405 @node Demonstration of Calc, Using Calc, Notations Used in This Manual, Getting Started
406 @section A Demonstration of Calc
408 @noindent
409 @cindex Demonstration of Calc
410 This section will show some typical small problems being solved with
411 Calc.  The focus is more on demonstration than explanation, but
412 everything you see here will be covered more thoroughly in the
413 Tutorial.
415 To begin, start Emacs if necessary (usually the command @code{emacs}
416 does this), and type @kbd{C-x * c} to start the
417 Calculator.  (You can also use @kbd{M-x calc} if this doesn't work.
418 @xref{Starting Calc}, for various ways of starting the Calculator.)
420 Be sure to type all the sample input exactly, especially noting the
421 difference between lower-case and upper-case letters.  Remember,
422 @key{RET}, @key{TAB}, @key{DEL}, and @key{SPC} are the Return, Tab,
423 Delete, and Space keys.
425 @strong{RPN calculation.}  In RPN, you type the input number(s) first,
426 then the command to operate on the numbers.
428 @noindent
429 Type @kbd{2 @key{RET} 3 + Q} to compute 
430 @texline @math{\sqrt{2+3} = 2.2360679775}.
431 @infoline the square root of 2+3, which is 2.2360679775.
433 @noindent
434 Type @kbd{P 2 ^} to compute 
435 @texline @math{\pi^2 = 9.86960440109}.
436 @infoline the value of `pi' squared, 9.86960440109.
438 @noindent
439 Type @key{TAB} to exchange the order of these two results.
441 @noindent
442 Type @kbd{- I H S} to subtract these results and compute the Inverse
443 Hyperbolic sine of the difference, 2.72996136574.
445 @noindent
446 Type @key{DEL} to erase this result.
448 @strong{Algebraic calculation.}  You can also enter calculations using
449 conventional ``algebraic'' notation.  To enter an algebraic formula,
450 use the apostrophe key.
452 @noindent
453 Type @kbd{' sqrt(2+3) @key{RET}} to compute 
454 @texline @math{\sqrt{2+3}}.
455 @infoline the square root of 2+3.
457 @noindent
458 Type @kbd{' pi^2 @key{RET}} to enter 
459 @texline @math{\pi^2}.
460 @infoline `pi' squared.  
461 To evaluate this symbolic formula as a number, type @kbd{=}.
463 @noindent
464 Type @kbd{' arcsinh($ - $$) @key{RET}} to subtract the second-most-recent
465 result from the most-recent and compute the Inverse Hyperbolic sine.
467 @strong{Keypad mode.}  If you are using the X window system, press
468 @w{@kbd{C-x * k}} to get Keypad mode.  (If you don't use X, skip to
469 the next section.)
471 @noindent
472 Click on the @key{2}, @key{ENTER}, @key{3}, @key{+}, and @key{SQRT}
473 ``buttons'' using your left mouse button.
475 @noindent
476 Click on @key{PI}, @key{2}, and @tfn{y^x}.
478 @noindent
479 Click on @key{INV}, then @key{ENTER} to swap the two results.
481 @noindent
482 Click on @key{-}, @key{INV}, @key{HYP}, and @key{SIN}.
484 @noindent
485 Click on @key{<-} to erase the result, then click @key{OFF} to turn
486 the Keypad Calculator off.
488 @strong{Grabbing data.}  Type @kbd{C-x * x} if necessary to exit Calc.
489 Now select the following numbers as an Emacs region:  ``Mark'' the
490 front of the list by typing @kbd{C-@key{SPC}} or @kbd{C-@@} there,
491 then move to the other end of the list.  (Either get this list from
492 the on-line copy of this manual, accessed by @w{@kbd{C-x * i}}, or just
493 type these numbers into a scratch file.)  Now type @kbd{C-x * g} to
494 ``grab'' these numbers into Calc.
496 @example
497 @group
498 1.23  1.97
499 1.6   2
500 1.19  1.08
501 @end group
502 @end example
504 @noindent
505 The result @samp{[1.23, 1.97, 1.6, 2, 1.19, 1.08]} is a Calc ``vector.''
506 Type @w{@kbd{V R +}} to compute the sum of these numbers.
508 @noindent
509 Type @kbd{U} to Undo this command, then type @kbd{V R *} to compute
510 the product of the numbers.
512 @noindent
513 You can also grab data as a rectangular matrix.  Place the cursor on
514 the upper-leftmost @samp{1} and set the mark, then move to just after
515 the lower-right @samp{8} and press @kbd{C-x * r}.
517 @noindent
518 Type @kbd{v t} to transpose this 
519 @texline @math{3\times2}
520 @infoline 3x2 
521 matrix into a 
522 @texline @math{2\times3}
523 @infoline 2x3
524 matrix.  Type @w{@kbd{v u}} to unpack the rows into two separate
525 vectors.  Now type @w{@kbd{V R + @key{TAB} V R +}} to compute the sums
526 of the two original columns. (There is also a special
527 grab-and-sum-columns command, @kbd{C-x * :}.)
529 @strong{Units conversion.}  Units are entered algebraically.
530 Type @w{@kbd{' 43 mi/hr @key{RET}}} to enter the quantity 43 miles-per-hour.
531 Type @w{@kbd{u c km/hr @key{RET}}}.  Type @w{@kbd{u c m/s @key{RET}}}.
533 @strong{Date arithmetic.}  Type @kbd{t N} to get the current date and
534 time.  Type @kbd{90 +} to find the date 90 days from now.  Type
535 @kbd{' <25 dec 87> @key{RET}} to enter a date, then @kbd{- 7 /} to see how
536 many weeks have passed since then.
538 @strong{Algebra.}  Algebraic entries can also include formulas
539 or equations involving variables.  Type @kbd{@w{' [x + y} = a, x y = 1] @key{RET}}
540 to enter a pair of equations involving three variables.
541 (Note the leading apostrophe in this example; also, note that the space
542 between @samp{x y} is required.)  Type @w{@kbd{a S x,y @key{RET}}} to solve
543 these equations for the variables @expr{x} and @expr{y}.
545 @noindent
546 Type @kbd{d B} to view the solutions in more readable notation.
547 Type @w{@kbd{d C}} to view them in C language notation, @kbd{d T}
548 to view them in the notation for the @TeX{} typesetting system,
549 and @kbd{d L} to view them in the notation for the La@TeX{} typesetting
550 system.  Type @kbd{d N} to return to normal notation.
552 @noindent
553 Type @kbd{7.5}, then @kbd{s l a @key{RET}} to let @expr{a = 7.5} in these formulas.
554 (That's a letter @kbd{l}, not a numeral @kbd{1}.)
556 @ifnotinfo
557 @strong{Help functions.}  You can read about any command in the on-line
558 manual.  Type @kbd{C-x * c} to return to Calc after each of these
559 commands: @kbd{h k t N} to read about the @kbd{t N} command,
560 @kbd{h f sqrt @key{RET}} to read about the @code{sqrt} function, and
561 @kbd{h s} to read the Calc summary.
562 @end ifnotinfo
563 @ifinfo
564 @strong{Help functions.}  You can read about any command in the on-line
565 manual.  Remember to type the letter @kbd{l}, then @kbd{C-x * c}, to
566 return here after each of these commands: @w{@kbd{h k t N}} to read
567 about the @w{@kbd{t N}} command, @kbd{h f sqrt @key{RET}} to read about the
568 @code{sqrt} function, and @kbd{h s} to read the Calc summary.
569 @end ifinfo
571 Press @key{DEL} repeatedly to remove any leftover results from the stack.
572 To exit from Calc, press @kbd{q} or @kbd{C-x * c} again.
574 @node Using Calc, History and Acknowledgements, Demonstration of Calc, Getting Started
575 @section Using Calc
577 @noindent
578 Calc has several user interfaces that are specialized for
579 different kinds of tasks.  As well as Calc's standard interface,
580 there are Quick mode, Keypad mode, and Embedded mode.
582 @menu
583 * Starting Calc::
584 * The Standard Interface::
585 * Quick Mode Overview::
586 * Keypad Mode Overview::
587 * Standalone Operation::
588 * Embedded Mode Overview::
589 * Other C-x * Commands::
590 @end menu
592 @node Starting Calc, The Standard Interface, Using Calc, Using Calc
593 @subsection Starting Calc
595 @noindent
596 On most systems, you can type @kbd{C-x *} to start the Calculator.
597 The key sequence @kbd{C-x *} is bound to the command @code{calc-dispatch}, 
598 which can be rebound if convenient (@pxref{Customizing Calc}).
600 When you press @kbd{C-x *}, Emacs waits for you to press a second key to
601 complete the command.  In this case, you will follow @kbd{C-x *} with a
602 letter (upper- or lower-case, it doesn't matter for @kbd{C-x *}) that says
603 which Calc interface you want to use.
605 To get Calc's standard interface, type @kbd{C-x * c}.  To get
606 Keypad mode, type @kbd{C-x * k}.  Type @kbd{C-x * ?} to get a brief
607 list of the available options, and type a second @kbd{?} to get
608 a complete list.
610 To ease typing, @kbd{C-x * *} also works to start Calc.  It starts the
611 same interface (either @kbd{C-x * c} or @w{@kbd{C-x * k}}) that you last
612 used, selecting the @kbd{C-x * c} interface by default.
614 If @kbd{C-x *} doesn't work for you, you can always type explicit
615 commands like @kbd{M-x calc} (for the standard user interface) or
616 @w{@kbd{M-x calc-keypad}} (for Keypad mode).  First type @kbd{M-x}
617 (that's Meta with the letter @kbd{x}), then, at the prompt,
618 type the full command (like @kbd{calc-keypad}) and press Return.
620 The same commands (like @kbd{C-x * c} or @kbd{C-x * *}) that start
621 the Calculator also turn it off if it is already on.
623 @node The Standard Interface, Quick Mode Overview, Starting Calc, Using Calc
624 @subsection The Standard Calc Interface
626 @noindent
627 @cindex Standard user interface
628 Calc's standard interface acts like a traditional RPN calculator,
629 operated by the normal Emacs keyboard.  When you type @kbd{C-x * c}
630 to start the Calculator, the Emacs screen splits into two windows
631 with the file you were editing on top and Calc on the bottom.
633 @smallexample
634 @group
637 --**-Emacs: myfile             (Fundamental)----All----------------------
638 --- Emacs Calculator Mode ---                   |Emacs Calculator Trail
639 2:  17.3                                        |    17.3
640 1:  -5                                          |    3
641     .                                           |    2
642                                                 |    4
643                                                 |  * 8
644                                                 |  ->-5
645                                                 |
646 --%%-Calc: 12 Deg       (Calculator)----All----- --%%-Emacs: *Calc Trail*
647 @end group
648 @end smallexample
650 In this figure, the mode-line for @file{myfile} has moved up and the
651 ``Calculator'' window has appeared below it.  As you can see, Calc
652 actually makes two windows side-by-side.  The lefthand one is
653 called the @dfn{stack window} and the righthand one is called the
654 @dfn{trail window.}  The stack holds the numbers involved in the
655 calculation you are currently performing.  The trail holds a complete
656 record of all calculations you have done.  In a desk calculator with
657 a printer, the trail corresponds to the paper tape that records what
658 you do.
660 In this case, the trail shows that four numbers (17.3, 3, 2, and 4)
661 were first entered into the Calculator, then the 2 and 4 were
662 multiplied to get 8, then the 3 and 8 were subtracted to get @mathit{-5}.
663 (The @samp{>} symbol shows that this was the most recent calculation.)
664 The net result is the two numbers 17.3 and @mathit{-5} sitting on the stack.
666 Most Calculator commands deal explicitly with the stack only, but
667 there is a set of commands that allow you to search back through
668 the trail and retrieve any previous result.
670 Calc commands use the digits, letters, and punctuation keys.
671 Shifted (i.e., upper-case) letters are different from lowercase
672 letters.  Some letters are @dfn{prefix} keys that begin two-letter
673 commands.  For example, @kbd{e} means ``enter exponent'' and shifted
674 @kbd{E} means @expr{e^x}.  With the @kbd{d} (``display modes'') prefix
675 the letter ``e'' takes on very different meanings:  @kbd{d e} means
676 ``engineering notation'' and @kbd{d E} means ``@dfn{eqn} language mode.''
678 There is nothing stopping you from switching out of the Calc
679 window and back into your editing window, say by using the Emacs
680 @w{@kbd{C-x o}} (@code{other-window}) command.  When the cursor is
681 inside a regular window, Emacs acts just like normal.  When the
682 cursor is in the Calc stack or trail windows, keys are interpreted
683 as Calc commands.
685 When you quit by pressing @kbd{C-x * c} a second time, the Calculator
686 windows go away but the actual Stack and Trail are not gone, just
687 hidden.  When you press @kbd{C-x * c} once again you will get the
688 same stack and trail contents you had when you last used the
689 Calculator.
691 The Calculator does not remember its state between Emacs sessions.
692 Thus if you quit Emacs and start it again, @kbd{C-x * c} will give you
693 a fresh stack and trail.  There is a command (@kbd{m m}) that lets
694 you save your favorite mode settings between sessions, though.
695 One of the things it saves is which user interface (standard or
696 Keypad) you last used; otherwise, a freshly started Emacs will
697 always treat @kbd{C-x * *} the same as @kbd{C-x * c}.
699 The @kbd{q} key is another equivalent way to turn the Calculator off.
701 If you type @kbd{C-x * b} first and then @kbd{C-x * c}, you get a
702 full-screen version of Calc (@code{full-calc}) in which the stack and
703 trail windows are still side-by-side but are now as tall as the whole
704 Emacs screen.  When you press @kbd{q} or @kbd{C-x * c} again to quit,
705 the file you were editing before reappears.  The @kbd{C-x * b} key
706 switches back and forth between ``big'' full-screen mode and the
707 normal partial-screen mode.
709 Finally, @kbd{C-x * o} (@code{calc-other-window}) is like @kbd{C-x * c}
710 except that the Calc window is not selected.  The buffer you were
711 editing before remains selected instead.  @kbd{C-x * o} is a handy
712 way to switch out of Calc momentarily to edit your file; type
713 @kbd{C-x * c} to switch back into Calc when you are done.
715 @node Quick Mode Overview, Keypad Mode Overview, The Standard Interface, Using Calc
716 @subsection Quick Mode (Overview)
718 @noindent
719 @dfn{Quick mode} is a quick way to use Calc when you don't need the
720 full complexity of the stack and trail.  To use it, type @kbd{C-x * q}
721 (@code{quick-calc}) in any regular editing buffer.
723 Quick mode is very simple:  It prompts you to type any formula in
724 standard algebraic notation (like @samp{4 - 2/3}) and then displays
725 the result at the bottom of the Emacs screen (@mathit{3.33333333333}
726 in this case).  You are then back in the same editing buffer you
727 were in before, ready to continue editing or to type @kbd{C-x * q}
728 again to do another quick calculation.  The result of the calculation
729 will also be in the Emacs ``kill ring'' so that a @kbd{C-y} command
730 at this point will yank the result into your editing buffer.
732 Calc mode settings affect Quick mode, too, though you will have to
733 go into regular Calc (with @kbd{C-x * c}) to change the mode settings.
735 @c [fix-ref Quick Calculator mode]
736 @xref{Quick Calculator}, for further information.
738 @node Keypad Mode Overview, Standalone Operation, Quick Mode Overview, Using Calc
739 @subsection Keypad Mode (Overview)
741 @noindent
742 @dfn{Keypad mode} is a mouse-based interface to the Calculator.
743 It is designed for use with terminals that support a mouse.  If you
744 don't have a mouse, you will have to operate Keypad mode with your
745 arrow keys (which is probably more trouble than it's worth).
747 Type @kbd{C-x * k} to turn Keypad mode on or off.  Once again you
748 get two new windows, this time on the righthand side of the screen
749 instead of at the bottom.  The upper window is the familiar Calc
750 Stack; the lower window is a picture of a typical calculator keypad.
752 @tex
753 \dimen0=\pagetotal%
754 \advance \dimen0 by 24\baselineskip%
755 \ifdim \dimen0>\pagegoal \vfill\eject \fi%
756 \medskip
757 @end tex
758 @smallexample
759 @group
760 |--- Emacs Calculator Mode ---
761 |2:  17.3
762 |1:  -5
763 |    .
764 |--%%-Calc: 12 Deg       (Calcul
765 |----+-----Calc 2.1------+----1
766 |FLR |CEIL|RND |TRNC|CLN2|FLT |
767 |----+----+----+----+----+----|
768 | LN |EXP |    |ABS |IDIV|MOD |
769 |----+----+----+----+----+----|
770 |SIN |COS |TAN |SQRT|y^x |1/x |
771 |----+----+----+----+----+----|
772 |  ENTER  |+/- |EEX |UNDO| <- |
773 |-----+---+-+--+--+-+---++----|
774 | INV |  7  |  8  |  9  |  /  |
775 |-----+-----+-----+-----+-----|
776 | HYP |  4  |  5  |  6  |  *  |
777 |-----+-----+-----+-----+-----|
778 |EXEC |  1  |  2  |  3  |  -  |
779 |-----+-----+-----+-----+-----|
780 | OFF |  0  |  .  | PI  |  +  |
781 |-----+-----+-----+-----+-----+
782 @end group
783 @end smallexample
785 Keypad mode is much easier for beginners to learn, because there
786 is no need to memorize lots of obscure key sequences.  But not all
787 commands in regular Calc are available on the Keypad.  You can
788 always switch the cursor into the Calc stack window to use
789 standard Calc commands if you need.  Serious Calc users, though,
790 often find they prefer the standard interface over Keypad mode.
792 To operate the Calculator, just click on the ``buttons'' of the
793 keypad using your left mouse button.  To enter the two numbers
794 shown here you would click @w{@kbd{1 7 .@: 3 ENTER 5 +/- ENTER}}; to
795 add them together you would then click @kbd{+} (to get 12.3 on
796 the stack).
798 If you click the right mouse button, the top three rows of the
799 keypad change to show other sets of commands, such as advanced
800 math functions, vector operations, and operations on binary
801 numbers.
803 Because Keypad mode doesn't use the regular keyboard, Calc leaves
804 the cursor in your original editing buffer.  You can type in
805 this buffer in the usual way while also clicking on the Calculator
806 keypad.  One advantage of Keypad mode is that you don't need an
807 explicit command to switch between editing and calculating.
809 If you press @kbd{C-x * b} first, you get a full-screen Keypad mode
810 (@code{full-calc-keypad}) with three windows:  The keypad in the lower
811 left, the stack in the lower right, and the trail on top.
813 @c [fix-ref Keypad Mode]
814 @xref{Keypad Mode}, for further information.
816 @node Standalone Operation, Embedded Mode Overview, Keypad Mode Overview, Using Calc
817 @subsection Standalone Operation
819 @noindent
820 @cindex Standalone Operation
821 If you are not in Emacs at the moment but you wish to use Calc,
822 you must start Emacs first.  If all you want is to run Calc, you
823 can give the commands:
825 @example
826 emacs -f full-calc
827 @end example
829 @noindent
832 @example
833 emacs -f full-calc-keypad
834 @end example
836 @noindent
837 which run a full-screen Calculator (as if by @kbd{C-x * b C-x * c}) or
838 a full-screen X-based Calculator (as if by @kbd{C-x * b C-x * k}).
839 In standalone operation, quitting the Calculator (by pressing
840 @kbd{q} or clicking on the keypad @key{EXIT} button) quits Emacs
841 itself.
843 @node Embedded Mode Overview, Other C-x * Commands, Standalone Operation, Using Calc
844 @subsection Embedded Mode (Overview)
846 @noindent
847 @dfn{Embedded mode} is a way to use Calc directly from inside an
848 editing buffer.  Suppose you have a formula written as part of a
849 document like this:
851 @smallexample
852 @group
853 The derivative of
855                                    ln(ln(x))
858 @end group
859 @end smallexample
861 @noindent
862 and you wish to have Calc compute and format the derivative for
863 you and store this derivative in the buffer automatically.  To
864 do this with Embedded mode, first copy the formula down to where
865 you want the result to be:
867 @smallexample
868 @group
869 The derivative of
871                                    ln(ln(x))
875                                    ln(ln(x))
876 @end group
877 @end smallexample
879 Now, move the cursor onto this new formula and press @kbd{C-x * e}.
880 Calc will read the formula (using the surrounding blank lines to
881 tell how much text to read), then push this formula (invisibly)
882 onto the Calc stack.  The cursor will stay on the formula in the
883 editing buffer, but the buffer's mode line will change to look
884 like the Calc mode line (with mode indicators like @samp{12 Deg}
885 and so on).  Even though you are still in your editing buffer,
886 the keyboard now acts like the Calc keyboard, and any new result
887 you get is copied from the stack back into the buffer.  To take
888 the derivative, you would type @kbd{a d x @key{RET}}.
890 @smallexample
891 @group
892 The derivative of
894                                    ln(ln(x))
898 1 / ln(x) x
899 @end group
900 @end smallexample
902 To make this look nicer, you might want to press @kbd{d =} to center
903 the formula, and even @kbd{d B} to use Big display mode.
905 @smallexample
906 @group
907 The derivative of
909                                    ln(ln(x))
912 % [calc-mode: justify: center]
913 % [calc-mode: language: big]
915                                        1
916                                     -------
917                                     ln(x) x
918 @end group
919 @end smallexample
921 Calc has added annotations to the file to help it remember the modes
922 that were used for this formula.  They are formatted like comments
923 in the @TeX{} typesetting language, just in case you are using @TeX{} or
924 La@TeX{}. (In this example @TeX{} is not being used, so you might want
925 to move these comments up to the top of the file or otherwise put them
926 out of the way.)
928 As an extra flourish, we can add an equation number using a
929 righthand label:  Type @kbd{d @} (1) @key{RET}}.
931 @smallexample
932 @group
933 % [calc-mode: justify: center]
934 % [calc-mode: language: big]
935 % [calc-mode: right-label: " (1)"]
937                                        1
938                                     -------                      (1)
939                                     ln(x) x
940 @end group
941 @end smallexample
943 To leave Embedded mode, type @kbd{C-x * e} again.  The mode line
944 and keyboard will revert to the way they were before.
946 The related command @kbd{C-x * w} operates on a single word, which
947 generally means a single number, inside text.  It uses any
948 non-numeric characters rather than blank lines to delimit the
949 formula it reads.  Here's an example of its use:
951 @smallexample
952 A slope of one-third corresponds to an angle of 1 degrees.
953 @end smallexample
955 Place the cursor on the @samp{1}, then type @kbd{C-x * w} to enable
956 Embedded mode on that number.  Now type @kbd{3 /} (to get one-third),
957 and @kbd{I T} (the Inverse Tangent converts a slope into an angle),
958 then @w{@kbd{C-x * w}} again to exit Embedded mode.
960 @smallexample
961 A slope of one-third corresponds to an angle of 18.4349488229 degrees.
962 @end smallexample
964 @c [fix-ref Embedded Mode]
965 @xref{Embedded Mode}, for full details.
967 @node Other C-x * Commands,  , Embedded Mode Overview, Using Calc
968 @subsection Other @kbd{C-x *} Commands
970 @noindent
971 Two more Calc-related commands are @kbd{C-x * g} and @kbd{C-x * r},
972 which ``grab'' data from a selected region of a buffer into the
973 Calculator.  The region is defined in the usual Emacs way, by
974 a ``mark'' placed at one end of the region, and the Emacs
975 cursor or ``point'' placed at the other.
977 The @kbd{C-x * g} command reads the region in the usual left-to-right,
978 top-to-bottom order.  The result is packaged into a Calc vector
979 of numbers and placed on the stack.  Calc (in its standard
980 user interface) is then started.  Type @kbd{v u} if you want
981 to unpack this vector into separate numbers on the stack.  Also,
982 @kbd{C-u C-x * g} interprets the region as a single number or
983 formula.
985 The @kbd{C-x * r} command reads a rectangle, with the point and
986 mark defining opposite corners of the rectangle.  The result
987 is a matrix of numbers on the Calculator stack.
989 Complementary to these is @kbd{C-x * y}, which ``yanks'' the
990 value at the top of the Calc stack back into an editing buffer.
991 If you type @w{@kbd{C-x * y}} while in such a buffer, the value is
992 yanked at the current position.  If you type @kbd{C-x * y} while
993 in the Calc buffer, Calc makes an educated guess as to which
994 editing buffer you want to use.  The Calc window does not have
995 to be visible in order to use this command, as long as there
996 is something on the Calc stack.
998 Here, for reference, is the complete list of @kbd{C-x *} commands.
999 The shift, control, and meta keys are ignored for the keystroke
1000 following @kbd{C-x *}.
1002 @noindent
1003 Commands for turning Calc on and off:
1005 @table @kbd
1006 @item *
1007 Turn Calc on or off, employing the same user interface as last time.
1009 @item =, +, -, /, \, &, #
1010 Alternatives for @kbd{*}.
1012 @item C
1013 Turn Calc on or off using its standard bottom-of-the-screen
1014 interface.  If Calc is already turned on but the cursor is not
1015 in the Calc window, move the cursor into the window.
1017 @item O
1018 Same as @kbd{C}, but don't select the new Calc window.  If
1019 Calc is already turned on and the cursor is in the Calc window,
1020 move it out of that window.
1022 @item B
1023 Control whether @kbd{C-x * c} and @kbd{C-x * k} use the full screen.
1025 @item Q
1026 Use Quick mode for a single short calculation.
1028 @item K
1029 Turn Calc Keypad mode on or off.
1031 @item E
1032 Turn Calc Embedded mode on or off at the current formula.
1034 @item J
1035 Turn Calc Embedded mode on or off, select the interesting part.
1037 @item W
1038 Turn Calc Embedded mode on or off at the current word (number).
1040 @item Z
1041 Turn Calc on in a user-defined way, as defined by a @kbd{Z I} command.
1043 @item X
1044 Quit Calc; turn off standard, Keypad, or Embedded mode if on.
1045 (This is like @kbd{q} or @key{OFF} inside of Calc.)
1046 @end table
1047 @iftex
1048 @sp 2
1049 @end iftex
1051 @noindent
1052 Commands for moving data into and out of the Calculator:
1054 @table @kbd
1055 @item G
1056 Grab the region into the Calculator as a vector.
1058 @item R
1059 Grab the rectangular region into the Calculator as a matrix.
1061 @item :
1062 Grab the rectangular region and compute the sums of its columns.
1064 @item _
1065 Grab the rectangular region and compute the sums of its rows.
1067 @item Y
1068 Yank a value from the Calculator into the current editing buffer.
1069 @end table
1070 @iftex
1071 @sp 2
1072 @end iftex
1074 @noindent
1075 Commands for use with Embedded mode:
1077 @table @kbd
1078 @item A
1079 ``Activate'' the current buffer.  Locate all formulas that
1080 contain @samp{:=} or @samp{=>} symbols and record their locations
1081 so that they can be updated automatically as variables are changed.
1083 @item D
1084 Duplicate the current formula immediately below and select
1085 the duplicate.
1087 @item F
1088 Insert a new formula at the current point.
1090 @item N
1091 Move the cursor to the next active formula in the buffer.
1093 @item P
1094 Move the cursor to the previous active formula in the buffer.
1096 @item U
1097 Update (i.e., as if by the @kbd{=} key) the formula at the current point.
1099 @item `
1100 Edit (as if by @code{calc-edit}) the formula at the current point.
1101 @end table
1102 @iftex
1103 @sp 2
1104 @end iftex
1106 @noindent
1107 Miscellaneous commands:
1109 @table @kbd
1110 @item I
1111 Run the Emacs Info system to read the Calc manual.
1112 (This is the same as @kbd{h i} inside of Calc.)
1114 @item T
1115 Run the Emacs Info system to read the Calc Tutorial.
1117 @item S
1118 Run the Emacs Info system to read the Calc Summary.
1120 @item L
1121 Load Calc entirely into memory.  (Normally the various parts
1122 are loaded only as they are needed.)
1124 @item M
1125 Read a region of written keystroke names (like @kbd{C-n a b c @key{RET}})
1126 and record them as the current keyboard macro.
1128 @item 0
1129 (This is the ``zero'' digit key.)  Reset the Calculator to
1130 its initial state:  Empty stack, and initial mode settings.
1131 @end table
1133 @node History and Acknowledgements,  , Using Calc, Getting Started
1134 @section History and Acknowledgements
1136 @noindent
1137 Calc was originally started as a two-week project to occupy a lull
1138 in the author's schedule.  Basically, a friend asked if I remembered
1139 the value of 
1140 @texline @math{2^{32}}.
1141 @infoline @expr{2^32}.  
1142 I didn't offhand, but I said, ``that's easy, just call up an
1143 @code{xcalc}.''  @code{Xcalc} duly reported that the answer to our
1144 question was @samp{4.294967e+09}---with no way to see the full ten
1145 digits even though we knew they were there in the program's memory!  I
1146 was so annoyed, I vowed to write a calculator of my own, once and for
1147 all.
1149 I chose Emacs Lisp, a) because I had always been curious about it
1150 and b) because, being only a text editor extension language after
1151 all, Emacs Lisp would surely reach its limits long before the project
1152 got too far out of hand.
1154 To make a long story short, Emacs Lisp turned out to be a distressingly
1155 solid implementation of Lisp, and the humble task of calculating
1156 turned out to be more open-ended than one might have expected.
1158 Emacs Lisp didn't have built-in floating point math (now it does), so
1159 this had to be simulated in software.  In fact, Emacs integers would
1160 only comfortably fit six decimal digits or so---not enough for a decent
1161 calculator.  So I had to write my own high-precision integer code as
1162 well, and once I had this I figured that arbitrary-size integers were
1163 just as easy as large integers.  Arbitrary floating-point precision was
1164 the logical next step.  Also, since the large integer arithmetic was
1165 there anyway it seemed only fair to give the user direct access to it,
1166 which in turn made it practical to support fractions as well as floats.
1167 All these features inspired me to look around for other data types that
1168 might be worth having.
1170 Around this time, my friend Rick Koshi showed me his nifty new HP-28
1171 calculator.  It allowed the user to manipulate formulas as well as
1172 numerical quantities, and it could also operate on matrices.  I
1173 decided that these would be good for Calc to have, too.  And once
1174 things had gone this far, I figured I might as well take a look at
1175 serious algebra systems for further ideas.  Since these systems did
1176 far more than I could ever hope to implement, I decided to focus on
1177 rewrite rules and other programming features so that users could
1178 implement what they needed for themselves.
1180 Rick complained that matrices were hard to read, so I put in code to
1181 format them in a 2D style.  Once these routines were in place, Big mode
1182 was obligatory.  Gee, what other language modes would be useful?
1184 Scott Hemphill and Allen Knutson, two friends with a strong mathematical
1185 bent, contributed ideas and algorithms for a number of Calc features
1186 including modulo forms, primality testing, and float-to-fraction conversion.
1188 Units were added at the eager insistence of Mass Sivilotti.  Later,
1189 Ulrich Mueller at CERN and Przemek Klosowski at NIST provided invaluable
1190 expert assistance with the units table.  As far as I can remember, the
1191 idea of using algebraic formulas and variables to represent units dates
1192 back to an ancient article in Byte magazine about muMath, an early
1193 algebra system for microcomputers.
1195 Many people have contributed to Calc by reporting bugs and suggesting
1196 features, large and small.  A few deserve special mention:  Tim Peters,
1197 who helped develop the ideas that led to the selection commands, rewrite
1198 rules, and many other algebra features; 
1199 @texline Fran\c{c}ois
1200 @infoline Francois
1201 Pinard, who contributed an early prototype of the Calc Summary appendix
1202 as well as providing valuable suggestions in many other areas of Calc;
1203 Carl Witty, whose eagle eyes discovered many typographical and factual
1204 errors in the Calc manual; Tim Kay, who drove the development of
1205 Embedded mode; Ove Ewerlid, who made many suggestions relating to the
1206 algebra commands and contributed some code for polynomial operations;
1207 Randal Schwartz, who suggested the @code{calc-eval} function; Juha
1208 Sarlin, who first worked out how to split Calc into quickly-loading
1209 parts; Bob Weiner, who helped immensely with the Lucid Emacs port; and
1210 Robert J. Chassell, who suggested the Calc Tutorial and exercises as
1211 well as many other things.  
1213 @cindex Bibliography
1214 @cindex Knuth, Art of Computer Programming
1215 @cindex Numerical Recipes
1216 @c Should these be expanded into more complete references?
1217 Among the books used in the development of Calc were Knuth's @emph{Art
1218 of Computer Programming} (especially volume II, @emph{Seminumerical
1219 Algorithms}); @emph{Numerical Recipes} by Press, Flannery, Teukolsky,
1220 and Vetterling; Bevington's @emph{Data Reduction and Error Analysis
1221 for the Physical Sciences}; @emph{Concrete Mathematics} by Graham,
1222 Knuth, and Patashnik; Steele's @emph{Common Lisp, the Language}; the
1223 @emph{CRC Standard Math Tables} (William H. Beyer, ed.); and
1224 Abramowitz and Stegun's venerable @emph{Handbook of Mathematical
1225 Functions}.  Also, of course, Calc could not have been written without
1226 the excellent @emph{GNU Emacs Lisp Reference Manual}, by Bil Lewis and
1227 Dan LaLiberte.
1229 Final thanks go to Richard Stallman, without whose fine implementations
1230 of the Emacs editor, language, and environment, Calc would have been
1231 finished in two weeks.
1233 @c [tutorial]
1235 @ifinfo
1236 @c This node is accessed by the `C-x * t' command.
1237 @node Interactive Tutorial, Tutorial, Getting Started, Top
1238 @chapter Tutorial
1240 @noindent
1241 Some brief instructions on using the Emacs Info system for this tutorial:
1243 Press the space bar and Delete keys to go forward and backward in a
1244 section by screenfuls (or use the regular Emacs scrolling commands
1245 for this).
1247 Press @kbd{n} or @kbd{p} to go to the Next or Previous section.
1248 If the section has a @dfn{menu}, press a digit key like @kbd{1}
1249 or @kbd{2} to go to a sub-section from the menu.  Press @kbd{u} to
1250 go back up from a sub-section to the menu it is part of.
1252 Exercises in the tutorial all have cross-references to the
1253 appropriate page of the ``answers'' section.  Press @kbd{f}, then
1254 the exercise number, to see the answer to an exercise.  After
1255 you have followed a cross-reference, you can press the letter
1256 @kbd{l} to return to where you were before.
1258 You can press @kbd{?} at any time for a brief summary of Info commands.
1260 Press @kbd{1} now to enter the first section of the Tutorial.
1262 @menu
1263 * Tutorial::
1264 @end menu
1266 @node Tutorial, Introduction, Interactive Tutorial, Top
1267 @end ifinfo
1268 @ifnotinfo
1269 @node Tutorial, Introduction, Getting Started, Top
1270 @end ifnotinfo
1271 @chapter Tutorial
1273 @noindent
1274 This chapter explains how to use Calc and its many features, in
1275 a step-by-step, tutorial way.  You are encouraged to run Calc and
1276 work along with the examples as you read (@pxref{Starting Calc}).
1277 If you are already familiar with advanced calculators, you may wish
1278 @c [not-split]
1279 to skip on to the rest of this manual.
1280 @c [when-split]
1281 @c to skip on to volume II of this manual, the @dfn{Calc Reference}.
1283 @c [fix-ref Embedded Mode]
1284 This tutorial describes the standard user interface of Calc only.
1285 The Quick mode and Keypad mode interfaces are fairly
1286 self-explanatory.  @xref{Embedded Mode}, for a description of
1287 the Embedded mode interface.
1289 The easiest way to read this tutorial on-line is to have two windows on
1290 your Emacs screen, one with Calc and one with the Info system.  (If you
1291 have a printed copy of the manual you can use that instead.)  Press
1292 @kbd{C-x * c} to turn Calc on or to switch into the Calc window, and
1293 press @kbd{C-x * i} to start the Info system or to switch into its window.
1295 This tutorial is designed to be done in sequence.  But the rest of this
1296 manual does not assume you have gone through the tutorial.  The tutorial
1297 does not cover everything in the Calculator, but it touches on most
1298 general areas.
1300 @ifnottex
1301 You may wish to print out a copy of the Calc Summary and keep notes on
1302 it as you learn Calc.  @xref{About This Manual}, to see how to make a
1303 printed summary.  @xref{Summary}.
1304 @end ifnottex
1305 @iftex
1306 The Calc Summary at the end of the reference manual includes some blank
1307 space for your own use.  You may wish to keep notes there as you learn
1308 Calc.
1309 @end iftex
1311 @menu
1312 * Basic Tutorial::
1313 * Arithmetic Tutorial::
1314 * Vector/Matrix Tutorial::
1315 * Types Tutorial::
1316 * Algebra Tutorial::
1317 * Programming Tutorial::
1319 * Answers to Exercises::
1320 @end menu
1322 @node Basic Tutorial, Arithmetic Tutorial, Tutorial, Tutorial
1323 @section Basic Tutorial
1325 @noindent
1326 In this section, we learn how RPN and algebraic-style calculations
1327 work, how to undo and redo an operation done by mistake, and how
1328 to control various modes of the Calculator.
1330 @menu
1331 * RPN Tutorial::            Basic operations with the stack.
1332 * Algebraic Tutorial::      Algebraic entry; variables.
1333 * Undo Tutorial::           If you make a mistake: Undo and the trail.
1334 * Modes Tutorial::          Common mode-setting commands.
1335 @end menu
1337 @node RPN Tutorial, Algebraic Tutorial, Basic Tutorial, Basic Tutorial
1338 @subsection RPN Calculations and the Stack
1340 @cindex RPN notation
1341 @ifnottex
1342 @noindent
1343 Calc normally uses RPN notation.  You may be familiar with the RPN
1344 system from Hewlett-Packard calculators, FORTH, or PostScript.
1345 (Reverse Polish Notation, RPN, is named after the Polish mathematician
1346 Jan Lukasiewicz.)
1347 @end ifnottex
1348 @tex
1349 \noindent
1350 Calc normally uses RPN notation.  You may be familiar with the RPN
1351 system from Hewlett-Packard calculators, FORTH, or PostScript.
1352 (Reverse Polish Notation, RPN, is named after the Polish mathematician
1353 Jan \L ukasiewicz.)
1354 @end tex
1356 The central component of an RPN calculator is the @dfn{stack}.  A
1357 calculator stack is like a stack of dishes.  New dishes (numbers) are
1358 added at the top of the stack, and numbers are normally only removed
1359 from the top of the stack.
1361 @cindex Operators
1362 @cindex Operands
1363 In an operation like @expr{2+3}, the 2 and 3 are called the @dfn{operands}
1364 and the @expr{+} is the @dfn{operator}.  In an RPN calculator you always
1365 enter the operands first, then the operator.  Each time you type a
1366 number, Calc adds or @dfn{pushes} it onto the top of the Stack.
1367 When you press an operator key like @kbd{+}, Calc @dfn{pops} the appropriate
1368 number of operands from the stack and pushes back the result.
1370 Thus we could add the numbers 2 and 3 in an RPN calculator by typing:
1371 @kbd{2 @key{RET} 3 @key{RET} +}.  (The @key{RET} key, Return, corresponds to
1372 the @key{ENTER} key on traditional RPN calculators.)  Try this now if
1373 you wish; type @kbd{C-x * c} to switch into the Calc window (you can type
1374 @kbd{C-x * c} again or @kbd{C-x * o} to switch back to the Tutorial window).
1375 The first four keystrokes ``push'' the numbers 2 and 3 onto the stack.
1376 The @kbd{+} key ``pops'' the top two numbers from the stack, adds them,
1377 and pushes the result (5) back onto the stack.  Here's how the stack
1378 will look at various points throughout the calculation:
1380 @smallexample
1381 @group
1382     .          1:  2          2:  2          1:  5              .
1383                    .          1:  3              .
1384                                   .
1386   C-x * c          2 @key{RET}          3 @key{RET}            +             @key{DEL}
1387 @end group
1388 @end smallexample
1390 The @samp{.} symbol is a marker that represents the top of the stack.
1391 Note that the ``top'' of the stack is really shown at the bottom of
1392 the Stack window.  This may seem backwards, but it turns out to be
1393 less distracting in regular use.
1395 @cindex Stack levels
1396 @cindex Levels of stack
1397 The numbers @samp{1:} and @samp{2:} on the left are @dfn{stack level
1398 numbers}.  Old RPN calculators always had four stack levels called
1399 @expr{x}, @expr{y}, @expr{z}, and @expr{t}.  Calc's stack can grow
1400 as large as you like, so it uses numbers instead of letters.  Some
1401 stack-manipulation commands accept a numeric argument that says
1402 which stack level to work on.  Normal commands like @kbd{+} always
1403 work on the top few levels of the stack.
1405 @c [fix-ref Truncating the Stack]
1406 The Stack buffer is just an Emacs buffer, and you can move around in
1407 it using the regular Emacs motion commands.  But no matter where the
1408 cursor is, even if you have scrolled the @samp{.} marker out of
1409 view, most Calc commands always move the cursor back down to level 1
1410 before doing anything.  It is possible to move the @samp{.} marker
1411 upwards through the stack, temporarily ``hiding'' some numbers from
1412 commands like @kbd{+}.  This is called @dfn{stack truncation} and
1413 we will not cover it in this tutorial; @pxref{Truncating the Stack},
1414 if you are interested.
1416 You don't really need the second @key{RET} in @kbd{2 @key{RET} 3
1417 @key{RET} +}.  That's because if you type any operator name or
1418 other non-numeric key when you are entering a number, the Calculator
1419 automatically enters that number and then does the requested command.
1420 Thus @kbd{2 @key{RET} 3 +} will work just as well.
1422 Examples in this tutorial will often omit @key{RET} even when the
1423 stack displays shown would only happen if you did press @key{RET}:
1425 @smallexample
1426 @group
1427 1:  2          2:  2          1:  5
1428     .          1:  3              .
1429                    .
1431   2 @key{RET}            3              +
1432 @end group
1433 @end smallexample
1435 @noindent
1436 Here, after pressing @kbd{3} the stack would really show @samp{1:  2}
1437 with @samp{Calc:@: 3} in the minibuffer.  In these situations, you can
1438 press the optional @key{RET} to see the stack as the figure shows.
1440 (@bullet{}) @strong{Exercise 1.}  (This tutorial will include exercises
1441 at various points.  Try them if you wish.  Answers to all the exercises
1442 are located at the end of the Tutorial chapter.  Each exercise will
1443 include a cross-reference to its particular answer.  If you are
1444 reading with the Emacs Info system, press @kbd{f} and the
1445 exercise number to go to the answer, then the letter @kbd{l} to
1446 return to where you were.)
1448 @noindent
1449 Here's the first exercise:  What will the keystrokes @kbd{1 @key{RET} 2
1450 @key{RET} 3 @key{RET} 4 + * -} compute?  (@samp{*} is the symbol for
1451 multiplication.)  Figure it out by hand, then try it with Calc to see
1452 if you're right.  @xref{RPN Answer 1, 1}. (@bullet{})
1454 (@bullet{}) @strong{Exercise 2.}  Compute 
1455 @texline @math{(2\times4) + (7\times9.4) + {5\over4}}
1456 @infoline @expr{2*4 + 7*9.5 + 5/4} 
1457 using the stack.  @xref{RPN Answer 2, 2}. (@bullet{})
1459 The @key{DEL} key is called Backspace on some keyboards.  It is
1460 whatever key you would use to correct a simple typing error when
1461 regularly using Emacs.  The @key{DEL} key pops and throws away the
1462 top value on the stack.  (You can still get that value back from
1463 the Trail if you should need it later on.)  There are many places
1464 in this tutorial where we assume you have used @key{DEL} to erase the
1465 results of the previous example at the beginning of a new example.
1466 In the few places where it is really important to use @key{DEL} to
1467 clear away old results, the text will remind you to do so.
1469 (It won't hurt to let things accumulate on the stack, except that
1470 whenever you give a display-mode-changing command Calc will have to
1471 spend a long time reformatting such a large stack.)
1473 Since the @kbd{-} key is also an operator (it subtracts the top two
1474 stack elements), how does one enter a negative number?  Calc uses
1475 the @kbd{_} (underscore) key to act like the minus sign in a number.
1476 So, typing @kbd{-5 @key{RET}} won't work because the @kbd{-} key
1477 will try to do a subtraction, but @kbd{_5 @key{RET}} works just fine.
1479 You can also press @kbd{n}, which means ``change sign.''  It changes
1480 the number at the top of the stack (or the number being entered)
1481 from positive to negative or vice-versa:  @kbd{5 n @key{RET}}.
1483 @cindex Duplicating a stack entry
1484 If you press @key{RET} when you're not entering a number, the effect
1485 is to duplicate the top number on the stack.  Consider this calculation:
1487 @smallexample
1488 @group
1489 1:  3          2:  3          1:  9          2:  9          1:  81
1490     .          1:  3              .          1:  9              .
1491                    .                             .
1493   3 @key{RET}           @key{RET}             *             @key{RET}             *
1494 @end group
1495 @end smallexample
1497 @noindent
1498 (Of course, an easier way to do this would be @kbd{3 @key{RET} 4 ^},
1499 to raise 3 to the fourth power.)
1501 The space-bar key (denoted @key{SPC} here) performs the same function
1502 as @key{RET}; you could replace all three occurrences of @key{RET} in
1503 the above example with @key{SPC} and the effect would be the same.
1505 @cindex Exchanging stack entries
1506 Another stack manipulation key is @key{TAB}.  This exchanges the top
1507 two stack entries.  Suppose you have computed @kbd{2 @key{RET} 3 +}
1508 to get 5, and then you realize what you really wanted to compute
1509 was @expr{20 / (2+3)}.
1511 @smallexample
1512 @group
1513 1:  5          2:  5          2:  20         1:  4
1514     .          1:  20         1:  5              .
1515                    .              .
1517  2 @key{RET} 3 +         20            @key{TAB}             /
1518 @end group
1519 @end smallexample
1521 @noindent
1522 Planning ahead, the calculation would have gone like this:
1524 @smallexample
1525 @group
1526 1:  20         2:  20         3:  20         2:  20         1:  4
1527     .          1:  2          2:  2          1:  5              .
1528                    .          1:  3              .
1529                                   .
1531   20 @key{RET}         2 @key{RET}            3              +              /
1532 @end group
1533 @end smallexample
1535 A related stack command is @kbd{M-@key{TAB}} (hold @key{META} and type
1536 @key{TAB}).  It rotates the top three elements of the stack upward,
1537 bringing the object in level 3 to the top.
1539 @smallexample
1540 @group
1541 1:  10         2:  10         3:  10         3:  20         3:  30
1542     .          1:  20         2:  20         2:  30         2:  10
1543                    .          1:  30         1:  10         1:  20
1544                                   .              .              .
1546   10 @key{RET}         20 @key{RET}         30 @key{RET}         M-@key{TAB}          M-@key{TAB}
1547 @end group
1548 @end smallexample
1550 (@bullet{}) @strong{Exercise 3.} Suppose the numbers 10, 20, and 30 are
1551 on the stack.  Figure out how to add one to the number in level 2
1552 without affecting the rest of the stack.  Also figure out how to add
1553 one to the number in level 3.  @xref{RPN Answer 3, 3}. (@bullet{})
1555 Operations like @kbd{+}, @kbd{-}, @kbd{*}, @kbd{/}, and @kbd{^} pop two
1556 arguments from the stack and push a result.  Operations like @kbd{n} and
1557 @kbd{Q} (square root) pop a single number and push the result.  You can
1558 think of them as simply operating on the top element of the stack.
1560 @smallexample
1561 @group
1562 1:  3          1:  9          2:  9          1:  25         1:  5
1563     .              .          1:  16             .              .
1564                                   .
1566   3 @key{RET}          @key{RET} *        4 @key{RET} @key{RET} *        +              Q
1567 @end group
1568 @end smallexample
1570 @noindent
1571 (Note that capital @kbd{Q} means to hold down the Shift key while
1572 typing @kbd{q}.  Remember, plain unshifted @kbd{q} is the Quit command.)
1574 @cindex Pythagorean Theorem
1575 Here we've used the Pythagorean Theorem to determine the hypotenuse of a
1576 right triangle.  Calc actually has a built-in command for that called
1577 @kbd{f h}, but let's suppose we can't remember the necessary keystrokes.
1578 We can still enter it by its full name using @kbd{M-x} notation:
1580 @smallexample
1581 @group
1582 1:  3          2:  3          1:  5
1583     .          1:  4              .
1584                    .
1586   3 @key{RET}          4 @key{RET}      M-x calc-hypot
1587 @end group
1588 @end smallexample
1590 All Calculator commands begin with the word @samp{calc-}.  Since it
1591 gets tiring to type this, Calc provides an @kbd{x} key which is just
1592 like the regular Emacs @kbd{M-x} key except that it types the @samp{calc-}
1593 prefix for you:
1595 @smallexample
1596 @group
1597 1:  3          2:  3          1:  5
1598     .          1:  4              .
1599                    .
1601   3 @key{RET}          4 @key{RET}         x hypot
1602 @end group
1603 @end smallexample
1605 What happens if you take the square root of a negative number?
1607 @smallexample
1608 @group
1609 1:  4          1:  -4         1:  (0, 2)
1610     .              .              .
1612   4 @key{RET}            n              Q
1613 @end group
1614 @end smallexample
1616 @noindent
1617 The notation @expr{(a, b)} represents a complex number.
1618 Complex numbers are more traditionally written @expr{a + b i};
1619 Calc can display in this format, too, but for now we'll stick to the
1620 @expr{(a, b)} notation.
1622 If you don't know how complex numbers work, you can safely ignore this
1623 feature.  Complex numbers only arise from operations that would be
1624 errors in a calculator that didn't have complex numbers.  (For example,
1625 taking the square root or logarithm of a negative number produces a
1626 complex result.)
1628 Complex numbers are entered in the notation shown.  The @kbd{(} and
1629 @kbd{,} and @kbd{)} keys manipulate ``incomplete complex numbers.''
1631 @smallexample
1632 @group
1633 1:  ( ...      2:  ( ...      1:  (2, ...    1:  (2, ...    1:  (2, 3)
1634     .          1:  2              .              3              .
1635                    .                             .
1637     (              2              ,              3              )
1638 @end group
1639 @end smallexample
1641 You can perform calculations while entering parts of incomplete objects.
1642 However, an incomplete object cannot actually participate in a calculation:
1644 @smallexample
1645 @group
1646 1:  ( ...      2:  ( ...      3:  ( ...      1:  ( ...      1:  ( ...
1647     .          1:  2          2:  2              5              5
1648                    .          1:  3              .              .
1649                                   .
1650                                                              (error)
1651     (             2 @key{RET}           3              +              +
1652 @end group
1653 @end smallexample
1655 @noindent
1656 Adding 5 to an incomplete object makes no sense, so the last command
1657 produces an error message and leaves the stack the same.
1659 Incomplete objects can't participate in arithmetic, but they can be
1660 moved around by the regular stack commands.
1662 @smallexample
1663 @group
1664 2:  2          3:  2          3:  3          1:  ( ...      1:  (2, 3)
1665 1:  3          2:  3          2:  ( ...          2              .
1666     .          1:  ( ...      1:  2              3
1667                    .              .              .
1669 2 @key{RET} 3 @key{RET}        (            M-@key{TAB}          M-@key{TAB}            )
1670 @end group
1671 @end smallexample
1673 @noindent
1674 Note that the @kbd{,} (comma) key did not have to be used here.
1675 When you press @kbd{)} all the stack entries between the incomplete
1676 entry and the top are collected, so there's never really a reason
1677 to use the comma.  It's up to you.
1679 (@bullet{}) @strong{Exercise 4.}  To enter the complex number @expr{(2, 3)},
1680 your friend Joe typed @kbd{( 2 , @key{SPC} 3 )}.  What happened?
1681 (Joe thought of a clever way to correct his mistake in only two
1682 keystrokes, but it didn't quite work.  Try it to find out why.)
1683 @xref{RPN Answer 4, 4}. (@bullet{})
1685 Vectors are entered the same way as complex numbers, but with square
1686 brackets in place of parentheses.  We'll meet vectors again later in
1687 the tutorial.
1689 Any Emacs command can be given a @dfn{numeric prefix argument} by
1690 typing a series of @key{META}-digits beforehand.  If @key{META} is
1691 awkward for you, you can instead type @kbd{C-u} followed by the
1692 necessary digits.  Numeric prefix arguments can be negative, as in
1693 @kbd{M-- M-3 M-5} or @w{@kbd{C-u - 3 5}}.  Calc commands use numeric
1694 prefix arguments in a variety of ways.  For example, a numeric prefix
1695 on the @kbd{+} operator adds any number of stack entries at once:
1697 @smallexample
1698 @group
1699 1:  10         2:  10         3:  10         3:  10         1:  60
1700     .          1:  20         2:  20         2:  20             .
1701                    .          1:  30         1:  30
1702                                   .              .
1704   10 @key{RET}         20 @key{RET}         30 @key{RET}         C-u 3            +
1705 @end group
1706 @end smallexample
1708 For stack manipulation commands like @key{RET}, a positive numeric
1709 prefix argument operates on the top @var{n} stack entries at once.  A
1710 negative argument operates on the entry in level @var{n} only.  An
1711 argument of zero operates on the entire stack.  In this example, we copy
1712 the second-to-top element of the stack:
1714 @smallexample
1715 @group
1716 1:  10         2:  10         3:  10         3:  10         4:  10
1717     .          1:  20         2:  20         2:  20         3:  20
1718                    .          1:  30         1:  30         2:  30
1719                                   .              .          1:  20
1720                                                                 .
1722   10 @key{RET}         20 @key{RET}         30 @key{RET}         C-u -2          @key{RET}
1723 @end group
1724 @end smallexample
1726 @cindex Clearing the stack
1727 @cindex Emptying the stack
1728 Another common idiom is @kbd{M-0 @key{DEL}}, which clears the stack.
1729 (The @kbd{M-0} numeric prefix tells @key{DEL} to operate on the
1730 entire stack.)
1732 @node Algebraic Tutorial, Undo Tutorial, RPN Tutorial, Basic Tutorial
1733 @subsection Algebraic-Style Calculations
1735 @noindent
1736 If you are not used to RPN notation, you may prefer to operate the
1737 Calculator in Algebraic mode, which is closer to the way
1738 non-RPN calculators work.  In Algebraic mode, you enter formulas
1739 in traditional @expr{2+3} notation.
1741 @strong{Warning:} Note that @samp{/} has lower precedence than
1742 @samp{*}, so that @samp{a/b*c} is interpreted as @samp{a/(b*c)}.  See
1743 below for details.
1745 You don't really need any special ``mode'' to enter algebraic formulas.
1746 You can enter a formula at any time by pressing the apostrophe (@kbd{'})
1747 key.  Answer the prompt with the desired formula, then press @key{RET}.
1748 The formula is evaluated and the result is pushed onto the RPN stack.
1749 If you don't want to think in RPN at all, you can enter your whole
1750 computation as a formula, read the result from the stack, then press
1751 @key{DEL} to delete it from the stack.
1753 Try pressing the apostrophe key, then @kbd{2+3+4}, then @key{RET}.
1754 The result should be the number 9.
1756 Algebraic formulas use the operators @samp{+}, @samp{-}, @samp{*},
1757 @samp{/}, and @samp{^}.  You can use parentheses to make the order
1758 of evaluation clear.  In the absence of parentheses, @samp{^} is
1759 evaluated first, then @samp{*}, then @samp{/}, then finally
1760 @samp{+} and @samp{-}.  For example, the expression
1762 @example
1763 2 + 3*4*5 / 6*7^8 - 9
1764 @end example
1766 @noindent
1767 is equivalent to
1769 @example
1770 2 + ((3*4*5) / (6*(7^8)) - 9
1771 @end example
1773 @noindent
1774 or, in large mathematical notation,
1776 @ifnottex
1777 @example
1778 @group
1779     3 * 4 * 5
1780 2 + --------- - 9
1781           8
1782      6 * 7
1783 @end group
1784 @end example
1785 @end ifnottex
1786 @tex
1787 \turnoffactive
1788 \beforedisplay
1789 $$ 2 + { 3 \times 4 \times 5 \over 6 \times 7^8 } - 9 $$
1790 \afterdisplay
1791 @end tex
1793 @noindent
1794 The result of this expression will be the number @mathit{-6.99999826533}.
1796 Calc's order of evaluation is the same as for most computer languages,
1797 except that @samp{*} binds more strongly than @samp{/}, as the above
1798 example shows.  As in normal mathematical notation, the @samp{*} symbol
1799 can often be omitted:  @samp{2 a} is the same as @samp{2*a}.
1801 Operators at the same level are evaluated from left to right, except
1802 that @samp{^} is evaluated from right to left.  Thus, @samp{2-3-4} is
1803 equivalent to @samp{(2-3)-4} or @mathit{-5}, whereas @samp{2^3^4} is equivalent
1804 to @samp{2^(3^4)} (a very large integer; try it!).
1806 If you tire of typing the apostrophe all the time, there is
1807 Algebraic mode, where Calc automatically senses
1808 when you are about to type an algebraic expression.  To enter this
1809 mode, press the two letters @w{@kbd{m a}}.  (An @samp{Alg} indicator
1810 should appear in the Calc window's mode line.)
1812 Press @kbd{m a}, then @kbd{2+3+4} with no apostrophe, then @key{RET}.
1814 In Algebraic mode, when you press any key that would normally begin
1815 entering a number (such as a digit, a decimal point, or the @kbd{_}
1816 key), or if you press @kbd{(} or @kbd{[}, Calc automatically begins
1817 an algebraic entry.
1819 Functions which do not have operator symbols like @samp{+} and @samp{*}
1820 must be entered in formulas using function-call notation.  For example,
1821 the function name corresponding to the square-root key @kbd{Q} is
1822 @code{sqrt}.  To compute a square root in a formula, you would use
1823 the notation @samp{sqrt(@var{x})}.
1825 Press the apostrophe, then type @kbd{sqrt(5*2) - 3}.  The result should
1826 be @expr{0.16227766017}.
1828 Note that if the formula begins with a function name, you need to use
1829 the apostrophe even if you are in Algebraic mode.  If you type @kbd{arcsin}
1830 out of the blue, the @kbd{a r} will be taken as an Algebraic Rewrite
1831 command, and the @kbd{csin} will be taken as the name of the rewrite
1832 rule to use!
1834 Some people prefer to enter complex numbers and vectors in algebraic
1835 form because they find RPN entry with incomplete objects to be too
1836 distracting, even though they otherwise use Calc as an RPN calculator.
1838 Still in Algebraic mode, type:
1840 @smallexample
1841 @group
1842 1:  (2, 3)     2:  (2, 3)     1:  (8, -1)    2:  (8, -1)    1:  (9, -1)
1843     .          1:  (1, -2)        .          1:  1              .
1844                    .                             .
1846  (2,3) @key{RET}      (1,-2) @key{RET}        *              1 @key{RET}          +
1847 @end group
1848 @end smallexample
1850 Algebraic mode allows us to enter complex numbers without pressing
1851 an apostrophe first, but it also means we need to press @key{RET}
1852 after every entry, even for a simple number like @expr{1}.
1854 (You can type @kbd{C-u m a} to enable a special Incomplete Algebraic
1855 mode in which the @kbd{(} and @kbd{[} keys use algebraic entry even
1856 though regular numeric keys still use RPN numeric entry.  There is also
1857 Total Algebraic mode, started by typing @kbd{m t}, in which all
1858 normal keys begin algebraic entry.  You must then use the @key{META} key
1859 to type Calc commands:  @kbd{M-m t} to get back out of Total Algebraic
1860 mode, @kbd{M-q} to quit, etc.)
1862 If you're still in Algebraic mode, press @kbd{m a} again to turn it off.
1864 Actual non-RPN calculators use a mixture of algebraic and RPN styles.
1865 In general, operators of two numbers (like @kbd{+} and @kbd{*})
1866 use algebraic form, but operators of one number (like @kbd{n} and @kbd{Q})
1867 use RPN form.  Also, a non-RPN calculator allows you to see the
1868 intermediate results of a calculation as you go along.  You can
1869 accomplish this in Calc by performing your calculation as a series
1870 of algebraic entries, using the @kbd{$} sign to tie them together.
1871 In an algebraic formula, @kbd{$} represents the number on the top
1872 of the stack.  Here, we perform the calculation 
1873 @texline @math{\sqrt{2\times4+1}},
1874 @infoline @expr{sqrt(2*4+1)},
1875 which on a traditional calculator would be done by pressing
1876 @kbd{2 * 4 + 1 =} and then the square-root key.
1878 @smallexample
1879 @group
1880 1:  8          1:  9          1:  3
1881     .              .              .
1883   ' 2*4 @key{RET}        $+1 @key{RET}        Q
1884 @end group
1885 @end smallexample
1887 @noindent
1888 Notice that we didn't need to press an apostrophe for the @kbd{$+1},
1889 because the dollar sign always begins an algebraic entry.
1891 (@bullet{}) @strong{Exercise 1.}  How could you get the same effect as
1892 pressing @kbd{Q} but using an algebraic entry instead?  How about
1893 if the @kbd{Q} key on your keyboard were broken?
1894 @xref{Algebraic Answer 1, 1}. (@bullet{})
1896 The notations @kbd{$$}, @kbd{$$$}, and so on stand for higher stack
1897 entries.  For example, @kbd{' $$+$ @key{RET}} is just like typing @kbd{+}.
1899 Algebraic formulas can include @dfn{variables}.  To store in a
1900 variable, press @kbd{s s}, then type the variable name, then press
1901 @key{RET}.  (There are actually two flavors of store command:
1902 @kbd{s s} stores a number in a variable but also leaves the number
1903 on the stack, while @w{@kbd{s t}} removes a number from the stack and
1904 stores it in the variable.)  A variable name should consist of one
1905 or more letters or digits, beginning with a letter.
1907 @smallexample
1908 @group
1909 1:  17             .          1:  a + a^2    1:  306
1910     .                             .              .
1912     17          s t a @key{RET}      ' a+a^2 @key{RET}       =
1913 @end group
1914 @end smallexample
1916 @noindent
1917 The @kbd{=} key @dfn{evaluates} a formula by replacing all its
1918 variables by the values that were stored in them.
1920 For RPN calculations, you can recall a variable's value on the
1921 stack either by entering its name as a formula and pressing @kbd{=},
1922 or by using the @kbd{s r} command.
1924 @smallexample
1925 @group
1926 1:  17         2:  17         3:  17         2:  17         1:  306
1927     .          1:  17         2:  17         1:  289            .
1928                    .          1:  2              .
1929                                   .
1931   s r a @key{RET}     ' a @key{RET} =         2              ^              +
1932 @end group
1933 @end smallexample
1935 If you press a single digit for a variable name (as in @kbd{s t 3}, you
1936 get one of ten @dfn{quick variables} @code{q0} through @code{q9}.
1937 They are ``quick'' simply because you don't have to type the letter
1938 @code{q} or the @key{RET} after their names.  In fact, you can type
1939 simply @kbd{s 3} as a shorthand for @kbd{s s 3}, and likewise for
1940 @kbd{t 3} and @w{@kbd{r 3}}.
1942 Any variables in an algebraic formula for which you have not stored
1943 values are left alone, even when you evaluate the formula.
1945 @smallexample
1946 @group
1947 1:  2 a + 2 b     1:  34 + 2 b
1948     .                 .
1950  ' 2a+2b @key{RET}          =
1951 @end group
1952 @end smallexample
1954 Calls to function names which are undefined in Calc are also left
1955 alone, as are calls for which the value is undefined.
1957 @smallexample
1958 @group
1959 1:  2 + log10(0) + log10(x) + log10(5, 6) + foo(3)
1960     .
1962  ' log10(100) + log10(0) + log10(x) + log10(5,6) + foo(3) @key{RET}
1963 @end group
1964 @end smallexample
1966 @noindent
1967 In this example, the first call to @code{log10} works, but the other
1968 calls are not evaluated.  In the second call, the logarithm is
1969 undefined for that value of the argument; in the third, the argument
1970 is symbolic, and in the fourth, there are too many arguments.  In the
1971 fifth case, there is no function called @code{foo}.  You will see a
1972 ``Wrong number of arguments'' message referring to @samp{log10(5,6)}.
1973 Press the @kbd{w} (``why'') key to see any other messages that may
1974 have arisen from the last calculation.  In this case you will get
1975 ``logarithm of zero,'' then ``number expected: @code{x}''.  Calc
1976 automatically displays the first message only if the message is
1977 sufficiently important; for example, Calc considers ``wrong number
1978 of arguments'' and ``logarithm of zero'' to be important enough to
1979 report automatically, while a message like ``number expected: @code{x}''
1980 will only show up if you explicitly press the @kbd{w} key.
1982 (@bullet{}) @strong{Exercise 2.}  Joe entered the formula @samp{2 x y},
1983 stored 5 in @code{x}, pressed @kbd{=}, and got the expected result,
1984 @samp{10 y}.  He then tried the same for the formula @samp{2 x (1+y)},
1985 expecting @samp{10 (1+y)}, but it didn't work.  Why not?
1986 @xref{Algebraic Answer 2, 2}. (@bullet{})
1988 (@bullet{}) @strong{Exercise 3.}  What result would you expect
1989 @kbd{1 @key{RET} 0 /} to give?  What if you then type @kbd{0 *}?
1990 @xref{Algebraic Answer 3, 3}. (@bullet{})
1992 One interesting way to work with variables is to use the
1993 @dfn{evaluates-to} (@samp{=>}) operator.  It works like this:
1994 Enter a formula algebraically in the usual way, but follow
1995 the formula with an @samp{=>} symbol.  (There is also an @kbd{s =}
1996 command which builds an @samp{=>} formula using the stack.)  On
1997 the stack, you will see two copies of the formula with an @samp{=>}
1998 between them.  The lefthand formula is exactly like you typed it;
1999 the righthand formula has been evaluated as if by typing @kbd{=}.
2001 @smallexample
2002 @group
2003 2:  2 + 3 => 5                     2:  2 + 3 => 5
2004 1:  2 a + 2 b => 34 + 2 b          1:  2 a + 2 b => 20 + 2 b
2005     .                                  .
2007 ' 2+3 => @key{RET}  ' 2a+2b @key{RET} s =          10 s t a @key{RET}
2008 @end group
2009 @end smallexample
2011 @noindent
2012 Notice that the instant we stored a new value in @code{a}, all
2013 @samp{=>} operators already on the stack that referred to @expr{a}
2014 were updated to use the new value.  With @samp{=>}, you can push a
2015 set of formulas on the stack, then change the variables experimentally
2016 to see the effects on the formulas' values.
2018 You can also ``unstore'' a variable when you are through with it:
2020 @smallexample
2021 @group
2022 2:  2 + 5 => 5
2023 1:  2 a + 2 b => 2 a + 2 b
2024     .
2026     s u a @key{RET}
2027 @end group
2028 @end smallexample
2030 We will encounter formulas involving variables and functions again
2031 when we discuss the algebra and calculus features of the Calculator.
2033 @node Undo Tutorial, Modes Tutorial, Algebraic Tutorial, Basic Tutorial
2034 @subsection Undo and Redo
2036 @noindent
2037 If you make a mistake, you can usually correct it by pressing shift-@kbd{U},
2038 the ``undo'' command.  First, clear the stack (@kbd{M-0 @key{DEL}}) and exit
2039 and restart Calc (@kbd{C-x * * C-x * *}) to make sure things start off
2040 with a clean slate.  Now:
2042 @smallexample
2043 @group
2044 1:  2          2:  2          1:  8          2:  2          1:  6
2045     .          1:  3              .          1:  3              .
2046                    .                             .
2048    2 @key{RET}           3              ^              U              *
2049 @end group
2050 @end smallexample
2052 You can undo any number of times.  Calc keeps a complete record of
2053 all you have done since you last opened the Calc window.  After the
2054 above example, you could type:
2056 @smallexample
2057 @group
2058 1:  6          2:  2          1:  2              .              .
2059     .          1:  3              .
2060                    .
2061                                                              (error)
2062                    U              U              U              U
2063 @end group
2064 @end smallexample
2066 You can also type @kbd{D} to ``redo'' a command that you have undone
2067 mistakenly.
2069 @smallexample
2070 @group
2071     .          1:  2          2:  2          1:  6          1:  6
2072                    .          1:  3              .              .
2073                                   .
2074                                                              (error)
2075                    D              D              D              D
2076 @end group
2077 @end smallexample
2079 @noindent
2080 It was not possible to redo past the @expr{6}, since that was placed there
2081 by something other than an undo command.
2083 @cindex Time travel
2084 You can think of undo and redo as a sort of ``time machine.''  Press
2085 @kbd{U} to go backward in time, @kbd{D} to go forward.  If you go
2086 backward and do something (like @kbd{*}) then, as any science fiction
2087 reader knows, you have changed your future and you cannot go forward
2088 again.  Thus, the inability to redo past the @expr{6} even though there
2089 was an earlier undo command.
2091 You can always recall an earlier result using the Trail.  We've ignored
2092 the trail so far, but it has been faithfully recording everything we
2093 did since we loaded the Calculator.  If the Trail is not displayed,
2094 press @kbd{t d} now to turn it on.
2096 Let's try grabbing an earlier result.  The @expr{8} we computed was
2097 undone by a @kbd{U} command, and was lost even to Redo when we pressed
2098 @kbd{*}, but it's still there in the trail.  There should be a little
2099 @samp{>} arrow (the @dfn{trail pointer}) resting on the last trail
2100 entry.  If there isn't, press @kbd{t ]} to reset the trail pointer.
2101 Now, press @w{@kbd{t p}} to move the arrow onto the line containing
2102 @expr{8}, and press @w{@kbd{t y}} to ``yank'' that number back onto the
2103 stack.
2105 If you press @kbd{t ]} again, you will see that even our Yank command
2106 went into the trail.
2108 Let's go further back in time.  Earlier in the tutorial we computed
2109 a huge integer using the formula @samp{2^3^4}.  We don't remember
2110 what it was, but the first digits were ``241''.  Press @kbd{t r}
2111 (which stands for trail-search-reverse), then type @kbd{241}.
2112 The trail cursor will jump back to the next previous occurrence of
2113 the string ``241'' in the trail.  This is just a regular Emacs
2114 incremental search; you can now press @kbd{C-s} or @kbd{C-r} to
2115 continue the search forwards or backwards as you like.
2117 To finish the search, press @key{RET}.  This halts the incremental
2118 search and leaves the trail pointer at the thing we found.  Now we
2119 can type @kbd{t y} to yank that number onto the stack.  If we hadn't
2120 remembered the ``241'', we could simply have searched for @kbd{2^3^4},
2121 then pressed @kbd{@key{RET} t n} to halt and then move to the next item.
2123 You may have noticed that all the trail-related commands begin with
2124 the letter @kbd{t}.  (The store-and-recall commands, on the other hand,
2125 all began with @kbd{s}.)  Calc has so many commands that there aren't
2126 enough keys for all of them, so various commands are grouped into
2127 two-letter sequences where the first letter is called the @dfn{prefix}
2128 key.  If you type a prefix key by accident, you can press @kbd{C-g}
2129 to cancel it.  (In fact, you can press @kbd{C-g} to cancel almost
2130 anything in Emacs.)  To get help on a prefix key, press that key
2131 followed by @kbd{?}.  Some prefixes have several lines of help,
2132 so you need to press @kbd{?} repeatedly to see them all.  
2133 You can also type @kbd{h h} to see all the help at once.
2135 Try pressing @kbd{t ?} now.  You will see a line of the form,
2137 @smallexample
2138 trail/time: Display; Fwd, Back; Next, Prev, Here, [, ]; Yank:  [MORE]  t-
2139 @end smallexample
2141 @noindent
2142 The word ``trail'' indicates that the @kbd{t} prefix key contains
2143 trail-related commands.  Each entry on the line shows one command,
2144 with a single capital letter showing which letter you press to get
2145 that command.  We have used @kbd{t n}, @kbd{t p}, @kbd{t ]}, and
2146 @kbd{t y} so far.  The @samp{[MORE]} means you can press @kbd{?}
2147 again to see more @kbd{t}-prefix commands.  Notice that the commands
2148 are roughly divided (by semicolons) into related groups.
2150 When you are in the help display for a prefix key, the prefix is
2151 still active.  If you press another key, like @kbd{y} for example,
2152 it will be interpreted as a @kbd{t y} command.  If all you wanted
2153 was to look at the help messages, press @kbd{C-g} afterwards to cancel
2154 the prefix.
2156 One more way to correct an error is by editing the stack entries.
2157 The actual Stack buffer is marked read-only and must not be edited
2158 directly, but you can press @kbd{`} (the backquote or accent grave)
2159 to edit a stack entry.
2161 Try entering @samp{3.141439} now.  If this is supposed to represent
2162 @cpi{}, it's got several errors.  Press @kbd{`} to edit this number.
2163 Now use the normal Emacs cursor motion and editing keys to change
2164 the second 4 to a 5, and to transpose the 3 and the 9.  When you
2165 press @key{RET}, the number on the stack will be replaced by your
2166 new number.  This works for formulas, vectors, and all other types
2167 of values you can put on the stack.  The @kbd{`} key also works
2168 during entry of a number or algebraic formula.
2170 @node Modes Tutorial,  , Undo Tutorial, Basic Tutorial
2171 @subsection Mode-Setting Commands
2173 @noindent
2174 Calc has many types of @dfn{modes} that affect the way it interprets
2175 your commands or the way it displays data.  We have already seen one
2176 mode, namely Algebraic mode.  There are many others, too; we'll
2177 try some of the most common ones here.
2179 Perhaps the most fundamental mode in Calc is the current @dfn{precision}.
2180 Notice the @samp{12} on the Calc window's mode line:
2182 @smallexample
2183 --%%-Calc: 12 Deg       (Calculator)----All------
2184 @end smallexample
2186 @noindent
2187 Most of the symbols there are Emacs things you don't need to worry
2188 about, but the @samp{12} and the @samp{Deg} are mode indicators.
2189 The @samp{12} means that calculations should always be carried to
2190 12 significant figures.  That is why, when we type @kbd{1 @key{RET} 7 /},
2191 we get @expr{0.142857142857} with exactly 12 digits, not counting
2192 leading and trailing zeros.
2194 You can set the precision to anything you like by pressing @kbd{p},
2195 then entering a suitable number.  Try pressing @kbd{p 30 @key{RET}},
2196 then doing @kbd{1 @key{RET} 7 /} again:
2198 @smallexample
2199 @group
2200 1:  0.142857142857
2201 2:  0.142857142857142857142857142857
2202     .
2203 @end group
2204 @end smallexample
2206 Although the precision can be set arbitrarily high, Calc always
2207 has to have @emph{some} value for the current precision.  After
2208 all, the true value @expr{1/7} is an infinitely repeating decimal;
2209 Calc has to stop somewhere.
2211 Of course, calculations are slower the more digits you request.
2212 Press @w{@kbd{p 12}} now to set the precision back down to the default.
2214 Calculations always use the current precision.  For example, even
2215 though we have a 30-digit value for @expr{1/7} on the stack, if
2216 we use it in a calculation in 12-digit mode it will be rounded
2217 down to 12 digits before it is used.  Try it; press @key{RET} to
2218 duplicate the number, then @w{@kbd{1 +}}.  Notice that the @key{RET}
2219 key didn't round the number, because it doesn't do any calculation.
2220 But the instant we pressed @kbd{+}, the number was rounded down.
2222 @smallexample
2223 @group
2224 1:  0.142857142857
2225 2:  0.142857142857142857142857142857
2226 3:  1.14285714286
2227     .
2228 @end group
2229 @end smallexample
2231 @noindent
2232 In fact, since we added a digit on the left, we had to lose one
2233 digit on the right from even the 12-digit value of @expr{1/7}.
2235 How did we get more than 12 digits when we computed @samp{2^3^4}?  The
2236 answer is that Calc makes a distinction between @dfn{integers} and
2237 @dfn{floating-point} numbers, or @dfn{floats}.  An integer is a number
2238 that does not contain a decimal point.  There is no such thing as an
2239 ``infinitely repeating fraction integer,'' so Calc doesn't have to limit
2240 itself.  If you asked for @samp{2^10000} (don't try this!), you would
2241 have to wait a long time but you would eventually get an exact answer.
2242 If you ask for @samp{2.^10000}, you will quickly get an answer which is
2243 correct only to 12 places.  The decimal point tells Calc that it should
2244 use floating-point arithmetic to get the answer, not exact integer
2245 arithmetic.
2247 You can use the @kbd{F} (@code{calc-floor}) command to convert a
2248 floating-point value to an integer, and @kbd{c f} (@code{calc-float})
2249 to convert an integer to floating-point form.
2251 Let's try entering that last calculation:
2253 @smallexample
2254 @group
2255 1:  2.         2:  2.         1:  1.99506311689e3010
2256     .          1:  10000          .
2257                    .
2259   2.0 @key{RET}          10000 @key{RET}      ^
2260 @end group
2261 @end smallexample
2263 @noindent
2264 @cindex Scientific notation, entry of
2265 Notice the letter @samp{e} in there.  It represents ``times ten to the
2266 power of,'' and is used by Calc automatically whenever writing the
2267 number out fully would introduce more extra zeros than you probably
2268 want to see.  You can enter numbers in this notation, too.
2270 @smallexample
2271 @group
2272 1:  2.         2:  2.         1:  1.99506311678e3010
2273     .          1:  10000.         .
2274                    .
2276   2.0 @key{RET}          1e4 @key{RET}        ^
2277 @end group
2278 @end smallexample
2280 @cindex Round-off errors
2281 @noindent
2282 Hey, the answer is different!  Look closely at the middle columns
2283 of the two examples.  In the first, the stack contained the
2284 exact integer @expr{10000}, but in the second it contained
2285 a floating-point value with a decimal point.  When you raise a
2286 number to an integer power, Calc uses repeated squaring and
2287 multiplication to get the answer.  When you use a floating-point
2288 power, Calc uses logarithms and exponentials.  As you can see,
2289 a slight error crept in during one of these methods.  Which
2290 one should we trust?  Let's raise the precision a bit and find
2291 out:
2293 @smallexample
2294 @group
2295     .          1:  2.         2:  2.         1:  1.995063116880828e3010
2296                    .          1:  10000.         .
2297                                   .
2299  p 16 @key{RET}        2. @key{RET}           1e4            ^    p 12 @key{RET}
2300 @end group
2301 @end smallexample
2303 @noindent
2304 @cindex Guard digits
2305 Presumably, it doesn't matter whether we do this higher-precision
2306 calculation using an integer or floating-point power, since we
2307 have added enough ``guard digits'' to trust the first 12 digits
2308 no matter what.  And the verdict is@dots{}  Integer powers were more
2309 accurate; in fact, the result was only off by one unit in the
2310 last place.
2312 @cindex Guard digits
2313 Calc does many of its internal calculations to a slightly higher
2314 precision, but it doesn't always bump the precision up enough.
2315 In each case, Calc added about two digits of precision during
2316 its calculation and then rounded back down to 12 digits
2317 afterward.  In one case, it was enough; in the other, it
2318 wasn't.  If you really need @var{x} digits of precision, it
2319 never hurts to do the calculation with a few extra guard digits.
2321 What if we want guard digits but don't want to look at them?
2322 We can set the @dfn{float format}.  Calc supports four major
2323 formats for floating-point numbers, called @dfn{normal},
2324 @dfn{fixed-point}, @dfn{scientific notation}, and @dfn{engineering
2325 notation}.  You get them by pressing @w{@kbd{d n}}, @kbd{d f},
2326 @kbd{d s}, and @kbd{d e}, respectively.  In each case, you can
2327 supply a numeric prefix argument which says how many digits
2328 should be displayed.  As an example, let's put a few numbers
2329 onto the stack and try some different display modes.  First,
2330 use @kbd{M-0 @key{DEL}} to clear the stack, then enter the four
2331 numbers shown here:
2333 @smallexample
2334 @group
2335 4:  12345      4:  12345      4:  12345      4:  12345      4:  12345
2336 3:  12345.     3:  12300.     3:  1.2345e4   3:  1.23e4     3:  12345.000
2337 2:  123.45     2:  123.       2:  1.2345e2   2:  1.23e2     2:  123.450
2338 1:  12.345     1:  12.3       1:  1.2345e1   1:  1.23e1     1:  12.345
2339     .              .              .              .              .
2341    d n          M-3 d n          d s          M-3 d s        M-3 d f
2342 @end group
2343 @end smallexample
2345 @noindent
2346 Notice that when we typed @kbd{M-3 d n}, the numbers were rounded down
2347 to three significant digits, but then when we typed @kbd{d s} all
2348 five significant figures reappeared.  The float format does not
2349 affect how numbers are stored, it only affects how they are
2350 displayed.  Only the current precision governs the actual rounding
2351 of numbers in the Calculator's memory.
2353 Engineering notation, not shown here, is like scientific notation
2354 except the exponent (the power-of-ten part) is always adjusted to be
2355 a multiple of three (as in ``kilo,'' ``micro,'' etc.).  As a result
2356 there will be one, two, or three digits before the decimal point.
2358 Whenever you change a display-related mode, Calc redraws everything
2359 in the stack.  This may be slow if there are many things on the stack,
2360 so Calc allows you to type shift-@kbd{H} before any mode command to
2361 prevent it from updating the stack.  Anything Calc displays after the
2362 mode-changing command will appear in the new format.
2364 @smallexample
2365 @group
2366 4:  12345      4:  12345      4:  12345      4:  12345      4:  12345
2367 3:  12345.000  3:  12345.000  3:  12345.000  3:  1.2345e4   3:  12345.
2368 2:  123.450    2:  123.450    2:  1.2345e1   2:  1.2345e1   2:  123.45
2369 1:  12.345     1:  1.2345e1   1:  1.2345e2   1:  1.2345e2   1:  12.345
2370     .              .              .              .              .
2372     H d s          @key{DEL} U          @key{TAB}            d @key{SPC}          d n
2373 @end group
2374 @end smallexample
2376 @noindent
2377 Here the @kbd{H d s} command changes to scientific notation but without
2378 updating the screen.  Deleting the top stack entry and undoing it back
2379 causes it to show up in the new format; swapping the top two stack
2380 entries reformats both entries.  The @kbd{d @key{SPC}} command refreshes the
2381 whole stack.  The @kbd{d n} command changes back to the normal float
2382 format; since it doesn't have an @kbd{H} prefix, it also updates all
2383 the stack entries to be in @kbd{d n} format.
2385 Notice that the integer @expr{12345} was not affected by any
2386 of the float formats.  Integers are integers, and are always
2387 displayed exactly.
2389 @cindex Large numbers, readability
2390 Large integers have their own problems.  Let's look back at
2391 the result of @kbd{2^3^4}.
2393 @example
2394 2417851639229258349412352
2395 @end example
2397 @noindent
2398 Quick---how many digits does this have?  Try typing @kbd{d g}:
2400 @example
2401 2,417,851,639,229,258,349,412,352
2402 @end example
2404 @noindent
2405 Now how many digits does this have?  It's much easier to tell!
2406 We can actually group digits into clumps of any size.  Some
2407 people prefer @kbd{M-5 d g}:
2409 @example
2410 24178,51639,22925,83494,12352
2411 @end example
2413 Let's see what happens to floating-point numbers when they are grouped.
2414 First, type @kbd{p 25 @key{RET}} to make sure we have enough precision
2415 to get ourselves into trouble.  Now, type @kbd{1e13 /}:
2417 @example
2418 24,17851,63922.9258349412352
2419 @end example
2421 @noindent
2422 The integer part is grouped but the fractional part isn't.  Now try
2423 @kbd{M-- M-5 d g} (that's meta-minus-sign, meta-five):
2425 @example
2426 24,17851,63922.92583,49412,352
2427 @end example
2429 If you find it hard to tell the decimal point from the commas, try
2430 changing the grouping character to a space with @kbd{d , @key{SPC}}:
2432 @example
2433 24 17851 63922.92583 49412 352
2434 @end example
2436 Type @kbd{d , ,} to restore the normal grouping character, then
2437 @kbd{d g} again to turn grouping off.  Also, press @kbd{p 12} to
2438 restore the default precision.
2440 Press @kbd{U} enough times to get the original big integer back.
2441 (Notice that @kbd{U} does not undo each mode-setting command; if
2442 you want to undo a mode-setting command, you have to do it yourself.)
2443 Now, type @kbd{d r 16 @key{RET}}:
2445 @example
2446 16#200000000000000000000
2447 @end example
2449 @noindent
2450 The number is now displayed in @dfn{hexadecimal}, or ``base-16'' form.
2451 Suddenly it looks pretty simple; this should be no surprise, since we
2452 got this number by computing a power of two, and 16 is a power of 2.
2453 In fact, we can use @w{@kbd{d r 2 @key{RET}}} to see it in actual binary
2454 form:
2456 @example
2457 2#1000000000000000000000000000000000000000000000000000000 @dots{}
2458 @end example
2460 @noindent
2461 We don't have enough space here to show all the zeros!  They won't
2462 fit on a typical screen, either, so you will have to use horizontal
2463 scrolling to see them all.  Press @kbd{<} and @kbd{>} to scroll the
2464 stack window left and right by half its width.  Another way to view
2465 something large is to press @kbd{`} (back-quote) to edit the top of
2466 stack in a separate window.  (Press @kbd{C-c C-c} when you are done.)
2468 You can enter non-decimal numbers using the @kbd{#} symbol, too.
2469 Let's see what the hexadecimal number @samp{5FE} looks like in
2470 binary.  Type @kbd{16#5FE} (the letters can be typed in upper or
2471 lower case; they will always appear in upper case).  It will also
2472 help to turn grouping on with @kbd{d g}:
2474 @example
2475 2#101,1111,1110
2476 @end example
2478 Notice that @kbd{d g} groups by fours by default if the display radix
2479 is binary or hexadecimal, but by threes if it is decimal, octal, or any
2480 other radix.
2482 Now let's see that number in decimal; type @kbd{d r 10}:
2484 @example
2485 1,534
2486 @end example
2488 Numbers are not @emph{stored} with any particular radix attached.  They're
2489 just numbers; they can be entered in any radix, and are always displayed
2490 in whatever radix you've chosen with @kbd{d r}.  The current radix applies
2491 to integers, fractions, and floats.
2493 @cindex Roundoff errors, in non-decimal numbers
2494 (@bullet{}) @strong{Exercise 1.}  Your friend Joe tried to enter one-third
2495 as @samp{3#0.1} in @kbd{d r 3} mode with a precision of 12.  He got
2496 @samp{3#0.0222222...} (with 25 2's) in the display.  When he multiplied
2497 that by three, he got @samp{3#0.222222...} instead of the expected
2498 @samp{3#1}.  Next, Joe entered @samp{3#0.2} and, to his great relief,
2499 saw @samp{3#0.2} on the screen.  But when he typed @kbd{2 /}, he got
2500 @samp{3#0.10000001} (some zeros omitted).  What's going on here?
2501 @xref{Modes Answer 1, 1}. (@bullet{})
2503 @cindex Scientific notation, in non-decimal numbers
2504 (@bullet{}) @strong{Exercise 2.}  Scientific notation works in non-decimal
2505 modes in the natural way (the exponent is a power of the radix instead of
2506 a power of ten, although the exponent itself is always written in decimal).
2507 Thus @samp{8#1.23e3 = 8#1230.0}.  Suppose we have the hexadecimal number
2508 @samp{f.e8f} times 16 to the 15th power:  We write @samp{16#f.e8fe15}.
2509 What is wrong with this picture?  What could we write instead that would
2510 work better?  @xref{Modes Answer 2, 2}. (@bullet{})
2512 The @kbd{m} prefix key has another set of modes, relating to the way
2513 Calc interprets your inputs and does computations.  Whereas @kbd{d}-prefix
2514 modes generally affect the way things look, @kbd{m}-prefix modes affect
2515 the way they are actually computed.
2517 The most popular @kbd{m}-prefix mode is the @dfn{angular mode}.  Notice
2518 the @samp{Deg} indicator in the mode line.  This means that if you use
2519 a command that interprets a number as an angle, it will assume the
2520 angle is measured in degrees.  For example,
2522 @smallexample
2523 @group
2524 1:  45         1:  0.707106781187   1:  0.500000000001    1:  0.5
2525     .              .                    .                     .
2527     45             S                    2 ^                   c 1
2528 @end group
2529 @end smallexample
2531 @noindent
2532 The shift-@kbd{S} command computes the sine of an angle.  The sine
2533 of 45 degrees is 
2534 @texline @math{\sqrt{2}/2};
2535 @infoline @expr{sqrt(2)/2}; 
2536 squaring this yields @expr{2/4 = 0.5}.  However, there has been a slight
2537 roundoff error because the representation of 
2538 @texline @math{\sqrt{2}/2}
2539 @infoline @expr{sqrt(2)/2} 
2540 wasn't exact.  The @kbd{c 1} command is a handy way to clean up numbers
2541 in this case; it temporarily reduces the precision by one digit while it
2542 re-rounds the number on the top of the stack.
2544 @cindex Roundoff errors, examples
2545 (@bullet{}) @strong{Exercise 3.}  Your friend Joe computed the sine
2546 of 45 degrees as shown above, then, hoping to avoid an inexact
2547 result, he increased the precision to 16 digits before squaring.
2548 What happened?  @xref{Modes Answer 3, 3}. (@bullet{})
2550 To do this calculation in radians, we would type @kbd{m r} first.
2551 (The indicator changes to @samp{Rad}.)  45 degrees corresponds to
2552 @cpiover{4} radians.  To get @cpi{}, press the @kbd{P} key.  (Once
2553 again, this is a shifted capital @kbd{P}.  Remember, unshifted
2554 @kbd{p} sets the precision.)
2556 @smallexample
2557 @group
2558 1:  3.14159265359   1:  0.785398163398   1:  0.707106781187
2559     .                   .                .
2561     P                   4 /       m r    S
2562 @end group
2563 @end smallexample
2565 Likewise, inverse trigonometric functions generate results in
2566 either radians or degrees, depending on the current angular mode.
2568 @smallexample
2569 @group
2570 1:  0.707106781187   1:  0.785398163398   1:  45.
2571     .                    .                    .
2573     .5 Q        m r      I S        m d       U I S
2574 @end group
2575 @end smallexample
2577 @noindent
2578 Here we compute the Inverse Sine of 
2579 @texline @math{\sqrt{0.5}},
2580 @infoline @expr{sqrt(0.5)}, 
2581 first in radians, then in degrees.
2583 Use @kbd{c d} and @kbd{c r} to convert a number from radians to degrees
2584 and vice-versa.
2586 @smallexample
2587 @group
2588 1:  45         1:  0.785398163397     1:  45.
2589     .              .                      .
2591     45             c r                    c d
2592 @end group
2593 @end smallexample
2595 Another interesting mode is @dfn{Fraction mode}.  Normally,
2596 dividing two integers produces a floating-point result if the
2597 quotient can't be expressed as an exact integer.  Fraction mode
2598 causes integer division to produce a fraction, i.e., a rational
2599 number, instead.
2601 @smallexample
2602 @group
2603 2:  12         1:  1.33333333333    1:  4:3
2604 1:  9              .                    .
2605     .
2607  12 @key{RET} 9          /          m f       U /      m f
2608 @end group
2609 @end smallexample
2611 @noindent
2612 In the first case, we get an approximate floating-point result.
2613 In the second case, we get an exact fractional result (four-thirds).
2615 You can enter a fraction at any time using @kbd{:} notation.
2616 (Calc uses @kbd{:} instead of @kbd{/} as the fraction separator
2617 because @kbd{/} is already used to divide the top two stack
2618 elements.)  Calculations involving fractions will always
2619 produce exact fractional results; Fraction mode only says
2620 what to do when dividing two integers.
2622 @cindex Fractions vs. floats
2623 @cindex Floats vs. fractions
2624 (@bullet{}) @strong{Exercise 4.}  If fractional arithmetic is exact,
2625 why would you ever use floating-point numbers instead?
2626 @xref{Modes Answer 4, 4}. (@bullet{})
2628 Typing @kbd{m f} doesn't change any existing values in the stack.
2629 In the above example, we had to Undo the division and do it over
2630 again when we changed to Fraction mode.  But if you use the
2631 evaluates-to operator you can get commands like @kbd{m f} to
2632 recompute for you.
2634 @smallexample
2635 @group
2636 1:  12 / 9 => 1.33333333333    1:  12 / 9 => 1.333    1:  12 / 9 => 4:3
2637     .                              .                      .
2639    ' 12/9 => @key{RET}                   p 4 @key{RET}                m f
2640 @end group
2641 @end smallexample
2643 @noindent
2644 In this example, the righthand side of the @samp{=>} operator
2645 on the stack is recomputed when we change the precision, then
2646 again when we change to Fraction mode.  All @samp{=>} expressions
2647 on the stack are recomputed every time you change any mode that
2648 might affect their values.
2650 @node Arithmetic Tutorial, Vector/Matrix Tutorial, Basic Tutorial, Tutorial
2651 @section Arithmetic Tutorial
2653 @noindent
2654 In this section, we explore the arithmetic and scientific functions
2655 available in the Calculator.
2657 The standard arithmetic commands are @kbd{+}, @kbd{-}, @kbd{*}, @kbd{/},
2658 and @kbd{^}.  Each normally takes two numbers from the top of the stack
2659 and pushes back a result.  The @kbd{n} and @kbd{&} keys perform
2660 change-sign and reciprocal operations, respectively.
2662 @smallexample
2663 @group
2664 1:  5          1:  0.2        1:  5.         1:  -5.        1:  5.
2665     .              .              .              .              .
2667     5              &              &              n              n
2668 @end group
2669 @end smallexample
2671 @cindex Binary operators
2672 You can apply a ``binary operator'' like @kbd{+} across any number of
2673 stack entries by giving it a numeric prefix.  You can also apply it
2674 pairwise to several stack elements along with the top one if you use
2675 a negative prefix.
2677 @smallexample
2678 @group
2679 3:  2          1:  9          3:  2          4:  2          3:  12
2680 2:  3              .          2:  3          3:  3          2:  13
2681 1:  4                         1:  4          2:  4          1:  14
2682     .                             .          1:  10             .
2683                                                  .
2685 2 @key{RET} 3 @key{RET} 4     M-3 +           U              10          M-- M-3 +
2686 @end group
2687 @end smallexample
2689 @cindex Unary operators
2690 You can apply a ``unary operator'' like @kbd{&} to the top @var{n}
2691 stack entries with a numeric prefix, too.
2693 @smallexample
2694 @group
2695 3:  2          3:  0.5                3:  0.5
2696 2:  3          2:  0.333333333333     2:  3.
2697 1:  4          1:  0.25               1:  4.
2698     .              .                      .
2700 2 @key{RET} 3 @key{RET} 4      M-3 &                  M-2 &
2701 @end group
2702 @end smallexample
2704 Notice that the results here are left in floating-point form.
2705 We can convert them back to integers by pressing @kbd{F}, the
2706 ``floor'' function.  This function rounds down to the next lower
2707 integer.  There is also @kbd{R}, which rounds to the nearest
2708 integer.
2710 @smallexample
2711 @group
2712 7:  2.         7:  2          7:  2
2713 6:  2.4        6:  2          6:  2
2714 5:  2.5        5:  2          5:  3
2715 4:  2.6        4:  2          4:  3
2716 3:  -2.        3:  -2         3:  -2
2717 2:  -2.4       2:  -3         2:  -2
2718 1:  -2.6       1:  -3         1:  -3
2719     .              .              .
2721                   M-7 F        U M-7 R
2722 @end group
2723 @end smallexample
2725 Since dividing-and-flooring (i.e., ``integer quotient'') is such a
2726 common operation, Calc provides a special command for that purpose, the
2727 backslash @kbd{\}.  Another common arithmetic operator is @kbd{%}, which
2728 computes the remainder that would arise from a @kbd{\} operation, i.e.,
2729 the ``modulo'' of two numbers.  For example,
2731 @smallexample
2732 @group
2733 2:  1234       1:  12         2:  1234       1:  34
2734 1:  100            .          1:  100            .
2735     .                             .
2737 1234 @key{RET} 100       \              U              %
2738 @end group
2739 @end smallexample
2741 These commands actually work for any real numbers, not just integers.
2743 @smallexample
2744 @group
2745 2:  3.1415     1:  3          2:  3.1415     1:  0.1415
2746 1:  1              .          1:  1              .
2747     .                             .
2749 3.1415 @key{RET} 1       \              U              %
2750 @end group
2751 @end smallexample
2753 (@bullet{}) @strong{Exercise 1.}  The @kbd{\} command would appear to be a
2754 frill, since you could always do the same thing with @kbd{/ F}.  Think
2755 of a situation where this is not true---@kbd{/ F} would be inadequate.
2756 Now think of a way you could get around the problem if Calc didn't
2757 provide a @kbd{\} command.  @xref{Arithmetic Answer 1, 1}. (@bullet{})
2759 We've already seen the @kbd{Q} (square root) and @kbd{S} (sine)
2760 commands.  Other commands along those lines are @kbd{C} (cosine),
2761 @kbd{T} (tangent), @kbd{E} (@expr{e^x}) and @kbd{L} (natural
2762 logarithm).  These can be modified by the @kbd{I} (inverse) and
2763 @kbd{H} (hyperbolic) prefix keys.
2765 Let's compute the sine and cosine of an angle, and verify the
2766 identity 
2767 @texline @math{\sin^2x + \cos^2x = 1}.
2768 @infoline @expr{sin(x)^2 + cos(x)^2 = 1}.  
2769 We'll arbitrarily pick @mathit{-64} degrees as a good value for @expr{x}.
2770 With the angular mode set to degrees (type @w{@kbd{m d}}), do:
2772 @smallexample
2773 @group
2774 2:  -64        2:  -64        2:  -0.89879   2:  -0.89879   1:  1.
2775 1:  -64        1:  -0.89879   1:  -64        1:  0.43837        .
2776     .              .              .              .
2778  64 n @key{RET} @key{RET}      S              @key{TAB}            C              f h
2779 @end group
2780 @end smallexample
2782 @noindent
2783 (For brevity, we're showing only five digits of the results here.
2784 You can of course do these calculations to any precision you like.)
2786 Remember, @kbd{f h} is the @code{calc-hypot}, or square-root of sum
2787 of squares, command.
2789 Another identity is 
2790 @texline @math{\displaystyle\tan x = {\sin x \over \cos x}}.
2791 @infoline @expr{tan(x) = sin(x) / cos(x)}.
2792 @smallexample
2793 @group
2795 2:  -0.89879   1:  -2.0503    1:  -64.
2796 1:  0.43837        .              .
2797     .
2799     U              /              I T
2800 @end group
2801 @end smallexample
2803 A physical interpretation of this calculation is that if you move
2804 @expr{0.89879} units downward and @expr{0.43837} units to the right,
2805 your direction of motion is @mathit{-64} degrees from horizontal.  Suppose
2806 we move in the opposite direction, up and to the left:
2808 @smallexample
2809 @group
2810 2:  -0.89879   2:  0.89879    1:  -2.0503    1:  -64.
2811 1:  0.43837    1:  -0.43837       .              .
2812     .              .
2814     U U            M-2 n          /              I T
2815 @end group
2816 @end smallexample
2818 @noindent
2819 How can the angle be the same?  The answer is that the @kbd{/} operation
2820 loses information about the signs of its inputs.  Because the quotient
2821 is negative, we know exactly one of the inputs was negative, but we
2822 can't tell which one.  There is an @kbd{f T} [@code{arctan2}] function which
2823 computes the inverse tangent of the quotient of a pair of numbers.
2824 Since you feed it the two original numbers, it has enough information
2825 to give you a full 360-degree answer.
2827 @smallexample
2828 @group
2829 2:  0.89879    1:  116.       3:  116.       2:  116.       1:  180.
2830 1:  -0.43837       .          2:  -0.89879   1:  -64.           .
2831     .                         1:  0.43837        .
2832                                   .
2834     U U            f T         M-@key{RET} M-2 n       f T            -
2835 @end group
2836 @end smallexample
2838 @noindent
2839 The resulting angles differ by 180 degrees; in other words, they
2840 point in opposite directions, just as we would expect.
2842 The @key{META}-@key{RET} we used in the third step is the
2843 ``last-arguments'' command.  It is sort of like Undo, except that it
2844 restores the arguments of the last command to the stack without removing
2845 the command's result.  It is useful in situations like this one,
2846 where we need to do several operations on the same inputs.  We could
2847 have accomplished the same thing by using @kbd{M-2 @key{RET}} to duplicate
2848 the top two stack elements right after the @kbd{U U}, then a pair of
2849 @kbd{M-@key{TAB}} commands to cycle the 116 up around the duplicates.
2851 A similar identity is supposed to hold for hyperbolic sines and cosines,
2852 except that it is the @emph{difference}
2853 @texline @math{\cosh^2x - \sinh^2x}
2854 @infoline @expr{cosh(x)^2 - sinh(x)^2} 
2855 that always equals one.  Let's try to verify this identity.
2857 @smallexample
2858 @group
2859 2:  -64        2:  -64        2:  -64        2:  9.7192e54  2:  9.7192e54
2860 1:  -64        1:  -3.1175e27 1:  9.7192e54  1:  -64        1:  9.7192e54
2861     .              .              .              .              .
2863  64 n @key{RET} @key{RET}      H C            2 ^            @key{TAB}            H S 2 ^
2864 @end group
2865 @end smallexample
2867 @noindent
2868 @cindex Roundoff errors, examples
2869 Something's obviously wrong, because when we subtract these numbers
2870 the answer will clearly be zero!  But if you think about it, if these
2871 numbers @emph{did} differ by one, it would be in the 55th decimal
2872 place.  The difference we seek has been lost entirely to roundoff
2873 error.
2875 We could verify this hypothesis by doing the actual calculation with,
2876 say, 60 decimal places of precision.  This will be slow, but not
2877 enormously so.  Try it if you wish; sure enough, the answer is
2878 0.99999, reasonably close to 1.
2880 Of course, a more reasonable way to verify the identity is to use
2881 a more reasonable value for @expr{x}!
2883 @cindex Common logarithm
2884 Some Calculator commands use the Hyperbolic prefix for other purposes.
2885 The logarithm and exponential functions, for example, work to the base
2886 @expr{e} normally but use base-10 instead if you use the Hyperbolic
2887 prefix.
2889 @smallexample
2890 @group
2891 1:  1000       1:  6.9077     1:  1000       1:  3
2892     .              .              .              .
2894     1000           L              U              H L
2895 @end group
2896 @end smallexample
2898 @noindent
2899 First, we mistakenly compute a natural logarithm.  Then we undo
2900 and compute a common logarithm instead.
2902 The @kbd{B} key computes a general base-@var{b} logarithm for any
2903 value of @var{b}.
2905 @smallexample
2906 @group
2907 2:  1000       1:  3          1:  1000.      2:  1000.      1:  6.9077
2908 1:  10             .              .          1:  2.71828        .
2909     .                                            .
2911  1000 @key{RET} 10       B              H E            H P            B
2912 @end group
2913 @end smallexample
2915 @noindent
2916 Here we first use @kbd{B} to compute the base-10 logarithm, then use
2917 the ``hyperbolic'' exponential as a cheap hack to recover the number
2918 1000, then use @kbd{B} again to compute the natural logarithm.  Note
2919 that @kbd{P} with the hyperbolic prefix pushes the constant @expr{e}
2920 onto the stack.
2922 You may have noticed that both times we took the base-10 logarithm
2923 of 1000, we got an exact integer result.  Calc always tries to give
2924 an exact rational result for calculations involving rational numbers
2925 where possible.  But when we used @kbd{H E}, the result was a
2926 floating-point number for no apparent reason.  In fact, if we had
2927 computed @kbd{10 @key{RET} 3 ^} we @emph{would} have gotten an
2928 exact integer 1000.  But the @kbd{H E} command is rigged to generate
2929 a floating-point result all of the time so that @kbd{1000 H E} will
2930 not waste time computing a thousand-digit integer when all you
2931 probably wanted was @samp{1e1000}.
2933 (@bullet{}) @strong{Exercise 2.}  Find a pair of integer inputs to
2934 the @kbd{B} command for which Calc could find an exact rational
2935 result but doesn't.  @xref{Arithmetic Answer 2, 2}. (@bullet{})
2937 The Calculator also has a set of functions relating to combinatorics
2938 and statistics.  You may be familiar with the @dfn{factorial} function,
2939 which computes the product of all the integers up to a given number.
2941 @smallexample
2942 @group
2943 1:  100        1:  93326215443...    1:  100.       1:  9.3326e157
2944     .              .                     .              .
2946     100            !                     U c f          !
2947 @end group
2948 @end smallexample
2950 @noindent
2951 Recall, the @kbd{c f} command converts the integer or fraction at the
2952 top of the stack to floating-point format.  If you take the factorial
2953 of a floating-point number, you get a floating-point result
2954 accurate to the current precision.  But if you give @kbd{!} an
2955 exact integer, you get an exact integer result (158 digits long
2956 in this case).
2958 If you take the factorial of a non-integer, Calc uses a generalized
2959 factorial function defined in terms of Euler's Gamma function
2960 @texline @math{\Gamma(n)}
2961 @infoline @expr{gamma(n)}
2962 (which is itself available as the @kbd{f g} command).
2964 @smallexample
2965 @group
2966 3:  4.         3:  24.               1:  5.5        1:  52.342777847
2967 2:  4.5        2:  52.3427777847         .              .
2968 1:  5.         1:  120.
2969     .              .
2971                    M-3 !              M-0 @key{DEL} 5.5       f g
2972 @end group
2973 @end smallexample
2975 @noindent
2976 Here we verify the identity 
2977 @texline @math{n! = \Gamma(n+1)}.
2978 @infoline @expr{@var{n}!@: = gamma(@var{n}+1)}.
2980 The binomial coefficient @var{n}-choose-@var{m}
2981 @texline or @math{\displaystyle {n \choose m}}
2982 is defined by
2983 @texline @math{\displaystyle {n! \over m! \, (n-m)!}}
2984 @infoline @expr{n!@: / m!@: (n-m)!}
2985 for all reals @expr{n} and @expr{m}.  The intermediate results in this
2986 formula can become quite large even if the final result is small; the
2987 @kbd{k c} command computes a binomial coefficient in a way that avoids
2988 large intermediate values.
2990 The @kbd{k} prefix key defines several common functions out of
2991 combinatorics and number theory.  Here we compute the binomial
2992 coefficient 30-choose-20, then determine its prime factorization.
2994 @smallexample
2995 @group
2996 2:  30         1:  30045015   1:  [3, 3, 5, 7, 11, 13, 23, 29]
2997 1:  20             .              .
2998     .
3000  30 @key{RET} 20         k c            k f
3001 @end group
3002 @end smallexample
3004 @noindent
3005 You can verify these prime factors by using @kbd{v u} to ``unpack''
3006 this vector into 8 separate stack entries, then @kbd{M-8 *} to
3007 multiply them back together.  The result is the original number,
3008 30045015.
3010 @cindex Hash tables
3011 Suppose a program you are writing needs a hash table with at least
3012 10000 entries.  It's best to use a prime number as the actual size
3013 of a hash table.  Calc can compute the next prime number after 10000:
3015 @smallexample
3016 @group
3017 1:  10000      1:  10007      1:  9973
3018     .              .              .
3020     10000          k n            I k n
3021 @end group
3022 @end smallexample
3024 @noindent
3025 Just for kicks we've also computed the next prime @emph{less} than
3026 10000.
3028 @c [fix-ref Financial Functions]
3029 @xref{Financial Functions}, for a description of the Calculator
3030 commands that deal with business and financial calculations (functions
3031 like @code{pv}, @code{rate}, and @code{sln}).
3033 @c [fix-ref Binary Number Functions]
3034 @xref{Binary Functions}, to read about the commands for operating
3035 on binary numbers (like @code{and}, @code{xor}, and @code{lsh}).
3037 @node Vector/Matrix Tutorial, Types Tutorial, Arithmetic Tutorial, Tutorial
3038 @section Vector/Matrix Tutorial
3040 @noindent
3041 A @dfn{vector} is a list of numbers or other Calc data objects.
3042 Calc provides a large set of commands that operate on vectors.  Some
3043 are familiar operations from vector analysis.  Others simply treat
3044 a vector as a list of objects.
3046 @menu
3047 * Vector Analysis Tutorial::
3048 * Matrix Tutorial::
3049 * List Tutorial::
3050 @end menu
3052 @node Vector Analysis Tutorial, Matrix Tutorial, Vector/Matrix Tutorial, Vector/Matrix Tutorial
3053 @subsection Vector Analysis
3055 @noindent
3056 If you add two vectors, the result is a vector of the sums of the
3057 elements, taken pairwise.
3059 @smallexample
3060 @group
3061 1:  [1, 2, 3]     2:  [1, 2, 3]     1:  [8, 8, 3]
3062     .             1:  [7, 6, 0]         .
3063                       .
3065     [1,2,3]  s 1      [7 6 0]  s 2      +
3066 @end group
3067 @end smallexample
3069 @noindent
3070 Note that we can separate the vector elements with either commas or
3071 spaces.  This is true whether we are using incomplete vectors or
3072 algebraic entry.  The @kbd{s 1} and @kbd{s 2} commands save these
3073 vectors so we can easily reuse them later.
3075 If you multiply two vectors, the result is the sum of the products
3076 of the elements taken pairwise.  This is called the @dfn{dot product}
3077 of the vectors.
3079 @smallexample
3080 @group
3081 2:  [1, 2, 3]     1:  19
3082 1:  [7, 6, 0]         .
3083     .
3085     r 1 r 2           *
3086 @end group
3087 @end smallexample
3089 @cindex Dot product
3090 The dot product of two vectors is equal to the product of their
3091 lengths times the cosine of the angle between them.  (Here the vector
3092 is interpreted as a line from the origin @expr{(0,0,0)} to the
3093 specified point in three-dimensional space.)  The @kbd{A}
3094 (absolute value) command can be used to compute the length of a
3095 vector.
3097 @smallexample
3098 @group
3099 3:  19            3:  19          1:  0.550782    1:  56.579
3100 2:  [1, 2, 3]     2:  3.741657        .               .
3101 1:  [7, 6, 0]     1:  9.219544
3102     .                 .
3104     M-@key{RET}             M-2 A          * /             I C
3105 @end group
3106 @end smallexample
3108 @noindent
3109 First we recall the arguments to the dot product command, then
3110 we compute the absolute values of the top two stack entries to
3111 obtain the lengths of the vectors, then we divide the dot product
3112 by the product of the lengths to get the cosine of the angle.
3113 The inverse cosine finds that the angle between the vectors
3114 is about 56 degrees.
3116 @cindex Cross product
3117 @cindex Perpendicular vectors
3118 The @dfn{cross product} of two vectors is a vector whose length
3119 is the product of the lengths of the inputs times the sine of the
3120 angle between them, and whose direction is perpendicular to both
3121 input vectors.  Unlike the dot product, the cross product is
3122 defined only for three-dimensional vectors.  Let's double-check
3123 our computation of the angle using the cross product.
3125 @smallexample
3126 @group
3127 2:  [1, 2, 3]  3:  [-18, 21, -8]  1:  [-0.52, 0.61, -0.23]  1:  56.579
3128 1:  [7, 6, 0]  2:  [1, 2, 3]          .                         .
3129     .          1:  [7, 6, 0]
3130                    .
3132     r 1 r 2        V C  s 3  M-@key{RET}    M-2 A * /                 A I S
3133 @end group
3134 @end smallexample
3136 @noindent
3137 First we recall the original vectors and compute their cross product,
3138 which we also store for later reference.  Now we divide the vector
3139 by the product of the lengths of the original vectors.  The length of
3140 this vector should be the sine of the angle; sure enough, it is!
3142 @c [fix-ref General Mode Commands]
3143 Vector-related commands generally begin with the @kbd{v} prefix key.
3144 Some are uppercase letters and some are lowercase.  To make it easier
3145 to type these commands, the shift-@kbd{V} prefix key acts the same as
3146 the @kbd{v} key.  (@xref{General Mode Commands}, for a way to make all
3147 prefix keys have this property.)
3149 If we take the dot product of two perpendicular vectors we expect
3150 to get zero, since the cosine of 90 degrees is zero.  Let's check
3151 that the cross product is indeed perpendicular to both inputs:
3153 @smallexample
3154 @group
3155 2:  [1, 2, 3]      1:  0          2:  [7, 6, 0]      1:  0
3156 1:  [-18, 21, -8]      .          1:  [-18, 21, -8]      .
3157     .                                 .
3159     r 1 r 3            *          @key{DEL} r 2 r 3            *
3160 @end group
3161 @end smallexample
3163 @cindex Normalizing a vector
3164 @cindex Unit vectors
3165 (@bullet{}) @strong{Exercise 1.}  Given a vector on the top of the
3166 stack, what keystrokes would you use to @dfn{normalize} the
3167 vector, i.e., to reduce its length to one without changing its
3168 direction?  @xref{Vector Answer 1, 1}. (@bullet{})
3170 (@bullet{}) @strong{Exercise 2.}  Suppose a certain particle can be
3171 at any of several positions along a ruler.  You have a list of
3172 those positions in the form of a vector, and another list of the
3173 probabilities for the particle to be at the corresponding positions.
3174 Find the average position of the particle.
3175 @xref{Vector Answer 2, 2}. (@bullet{})
3177 @node Matrix Tutorial, List Tutorial, Vector Analysis Tutorial, Vector/Matrix Tutorial
3178 @subsection Matrices
3180 @noindent
3181 A @dfn{matrix} is just a vector of vectors, all the same length.
3182 This means you can enter a matrix using nested brackets.  You can
3183 also use the semicolon character to enter a matrix.  We'll show
3184 both methods here:
3186 @smallexample
3187 @group
3188 1:  [ [ 1, 2, 3 ]             1:  [ [ 1, 2, 3 ]
3189       [ 4, 5, 6 ] ]                 [ 4, 5, 6 ] ]
3190     .                             .
3192   [[1 2 3] [4 5 6]]             ' [1 2 3; 4 5 6] @key{RET}
3193 @end group
3194 @end smallexample
3196 @noindent
3197 We'll be using this matrix again, so type @kbd{s 4} to save it now.
3199 Note that semicolons work with incomplete vectors, but they work
3200 better in algebraic entry.  That's why we use the apostrophe in
3201 the second example.
3203 When two matrices are multiplied, the lefthand matrix must have
3204 the same number of columns as the righthand matrix has rows.
3205 Row @expr{i}, column @expr{j} of the result is effectively the
3206 dot product of row @expr{i} of the left matrix by column @expr{j}
3207 of the right matrix.
3209 If we try to duplicate this matrix and multiply it by itself,
3210 the dimensions are wrong and the multiplication cannot take place:
3212 @smallexample
3213 @group
3214 1:  [ [ 1, 2, 3 ]   * [ [ 1, 2, 3 ]
3215       [ 4, 5, 6 ] ]     [ 4, 5, 6 ] ]
3216     .
3218     @key{RET} *
3219 @end group
3220 @end smallexample
3222 @noindent
3223 Though rather hard to read, this is a formula which shows the product
3224 of two matrices.  The @samp{*} function, having invalid arguments, has
3225 been left in symbolic form.
3227 We can multiply the matrices if we @dfn{transpose} one of them first.
3229 @smallexample
3230 @group
3231 2:  [ [ 1, 2, 3 ]       1:  [ [ 14, 32 ]      1:  [ [ 17, 22, 27 ]
3232       [ 4, 5, 6 ] ]           [ 32, 77 ] ]          [ 22, 29, 36 ]
3233 1:  [ [ 1, 4 ]              .                       [ 27, 36, 45 ] ]
3234       [ 2, 5 ]                                    .
3235       [ 3, 6 ] ]
3236     .
3238     U v t                   *                     U @key{TAB} *
3239 @end group
3240 @end smallexample
3242 Matrix multiplication is not commutative; indeed, switching the
3243 order of the operands can even change the dimensions of the result
3244 matrix, as happened here!
3246 If you multiply a plain vector by a matrix, it is treated as a
3247 single row or column depending on which side of the matrix it is
3248 on.  The result is a plain vector which should also be interpreted
3249 as a row or column as appropriate.
3251 @smallexample
3252 @group
3253 2:  [ [ 1, 2, 3 ]      1:  [14, 32]
3254       [ 4, 5, 6 ] ]        .
3255 1:  [1, 2, 3]
3256     .
3258     r 4 r 1                *
3259 @end group
3260 @end smallexample
3262 Multiplying in the other order wouldn't work because the number of
3263 rows in the matrix is different from the number of elements in the
3264 vector.
3266 (@bullet{}) @strong{Exercise 1.}  Use @samp{*} to sum along the rows
3267 of the above 
3268 @texline @math{2\times3}
3269 @infoline 2x3 
3270 matrix to get @expr{[6, 15]}.  Now use @samp{*} to sum along the columns
3271 to get @expr{[5, 7, 9]}. 
3272 @xref{Matrix Answer 1, 1}. (@bullet{})
3274 @cindex Identity matrix
3275 An @dfn{identity matrix} is a square matrix with ones along the
3276 diagonal and zeros elsewhere.  It has the property that multiplication
3277 by an identity matrix, on the left or on the right, always produces
3278 the original matrix.
3280 @smallexample
3281 @group
3282 1:  [ [ 1, 2, 3 ]      2:  [ [ 1, 2, 3 ]      1:  [ [ 1, 2, 3 ]
3283       [ 4, 5, 6 ] ]          [ 4, 5, 6 ] ]          [ 4, 5, 6 ] ]
3284     .                  1:  [ [ 1, 0, 0 ]          .
3285                              [ 0, 1, 0 ]
3286                              [ 0, 0, 1 ] ]
3287                            .
3289     r 4                    v i 3 @key{RET}              *
3290 @end group
3291 @end smallexample
3293 If a matrix is square, it is often possible to find its @dfn{inverse},
3294 that is, a matrix which, when multiplied by the original matrix, yields
3295 an identity matrix.  The @kbd{&} (reciprocal) key also computes the
3296 inverse of a matrix.
3298 @smallexample
3299 @group
3300 1:  [ [ 1, 2, 3 ]      1:  [ [   -2.4,     1.2,   -0.2 ]
3301       [ 4, 5, 6 ]            [    2.8,    -1.4,    0.4 ]
3302       [ 7, 6, 0 ] ]          [ -0.73333, 0.53333, -0.2 ] ]
3303     .                      .
3305     r 4 r 2 |  s 5         &
3306 @end group
3307 @end smallexample
3309 @noindent
3310 The vertical bar @kbd{|} @dfn{concatenates} numbers, vectors, and
3311 matrices together.  Here we have used it to add a new row onto
3312 our matrix to make it square.
3314 We can multiply these two matrices in either order to get an identity.
3316 @smallexample
3317 @group
3318 1:  [ [ 1., 0., 0. ]      1:  [ [ 1., 0., 0. ]
3319       [ 0., 1., 0. ]            [ 0., 1., 0. ]
3320       [ 0., 0., 1. ] ]          [ 0., 0., 1. ] ]
3321     .                         .
3323     M-@key{RET}  *                  U @key{TAB} *
3324 @end group
3325 @end smallexample
3327 @cindex Systems of linear equations
3328 @cindex Linear equations, systems of
3329 Matrix inverses are related to systems of linear equations in algebra.
3330 Suppose we had the following set of equations:
3332 @ifnottex
3333 @group
3334 @example
3335     a + 2b + 3c = 6
3336    4a + 5b + 6c = 2
3337    7a + 6b      = 3
3338 @end example
3339 @end group
3340 @end ifnottex
3341 @tex
3342 \turnoffactive
3343 \beforedisplayh
3344 $$ \openup1\jot \tabskip=0pt plus1fil
3345 \halign to\displaywidth{\tabskip=0pt
3346    $\hfil#$&$\hfil{}#{}$&
3347    $\hfil#$&$\hfil{}#{}$&
3348    $\hfil#$&${}#\hfil$\tabskip=0pt plus1fil\cr
3349   a&+&2b&+&3c&=6 \cr
3350  4a&+&5b&+&6c&=2 \cr
3351  7a&+&6b& &  &=3 \cr}
3353 \afterdisplayh
3354 @end tex
3356 @noindent
3357 This can be cast into the matrix equation,
3359 @ifnottex
3360 @group
3361 @example
3362    [ [ 1, 2, 3 ]     [ [ a ]     [ [ 6 ]
3363      [ 4, 5, 6 ]   *   [ b ]   =   [ 2 ]
3364      [ 7, 6, 0 ] ]     [ c ] ]     [ 3 ] ]
3365 @end example
3366 @end group
3367 @end ifnottex
3368 @tex
3369 \turnoffactive
3370 \beforedisplay
3371 $$ \pmatrix{ 1 & 2 & 3 \cr 4 & 5 & 6 \cr 7 & 6 & 0 }
3372    \times
3373    \pmatrix{ a \cr b \cr c } = \pmatrix{ 6 \cr 2 \cr 3 }
3375 \afterdisplay
3376 @end tex
3378 We can solve this system of equations by multiplying both sides by the
3379 inverse of the matrix.  Calc can do this all in one step:
3381 @smallexample
3382 @group
3383 2:  [6, 2, 3]          1:  [-12.6, 15.2, -3.93333]
3384 1:  [ [ 1, 2, 3 ]          .
3385       [ 4, 5, 6 ]
3386       [ 7, 6, 0 ] ]
3387     .
3389     [6,2,3] r 5            /
3390 @end group
3391 @end smallexample
3393 @noindent
3394 The result is the @expr{[a, b, c]} vector that solves the equations.
3395 (Dividing by a square matrix is equivalent to multiplying by its
3396 inverse.)
3398 Let's verify this solution:
3400 @smallexample
3401 @group
3402 2:  [ [ 1, 2, 3 ]                1:  [6., 2., 3.]
3403       [ 4, 5, 6 ]                    .
3404       [ 7, 6, 0 ] ]
3405 1:  [-12.6, 15.2, -3.93333]
3406     .
3408     r 5  @key{TAB}                         *
3409 @end group
3410 @end smallexample
3412 @noindent
3413 Note that we had to be careful about the order in which we multiplied
3414 the matrix and vector.  If we multiplied in the other order, Calc would
3415 assume the vector was a row vector in order to make the dimensions
3416 come out right, and the answer would be incorrect.  If you
3417 don't feel safe letting Calc take either interpretation of your
3418 vectors, use explicit 
3419 @texline @math{N\times1}
3420 @infoline Nx1
3422 @texline @math{1\times N}
3423 @infoline 1xN
3424 matrices instead.  In this case, you would enter the original column
3425 vector as @samp{[[6], [2], [3]]} or @samp{[6; 2; 3]}.
3427 (@bullet{}) @strong{Exercise 2.}  Algebraic entry allows you to make
3428 vectors and matrices that include variables.  Solve the following
3429 system of equations to get expressions for @expr{x} and @expr{y}
3430 in terms of @expr{a} and @expr{b}.
3432 @ifnottex
3433 @group
3434 @example
3435    x + a y = 6
3436    x + b y = 10
3437 @end example
3438 @end group
3439 @end ifnottex
3440 @tex
3441 \turnoffactive
3442 \beforedisplay
3443 $$ \eqalign{ x &+ a y = 6 \cr
3444              x &+ b y = 10}
3446 \afterdisplay
3447 @end tex
3449 @noindent
3450 @xref{Matrix Answer 2, 2}. (@bullet{})
3452 @cindex Least-squares for over-determined systems
3453 @cindex Over-determined systems of equations
3454 (@bullet{}) @strong{Exercise 3.}  A system of equations is ``over-determined''
3455 if it has more equations than variables.  It is often the case that
3456 there are no values for the variables that will satisfy all the
3457 equations at once, but it is still useful to find a set of values
3458 which ``nearly'' satisfy all the equations.  In terms of matrix equations,
3459 you can't solve @expr{A X = B} directly because the matrix @expr{A}
3460 is not square for an over-determined system.  Matrix inversion works
3461 only for square matrices.  One common trick is to multiply both sides
3462 on the left by the transpose of @expr{A}:
3463 @ifnottex
3464 @samp{trn(A)*A*X = trn(A)*B}.
3465 @end ifnottex
3466 @tex
3467 \turnoffactive
3468 $A^T A \, X = A^T B$, where $A^T$ is the transpose \samp{trn(A)}.
3469 @end tex
3470 Now 
3471 @texline @math{A^T A}
3472 @infoline @expr{trn(A)*A} 
3473 is a square matrix so a solution is possible.  It turns out that the
3474 @expr{X} vector you compute in this way will be a ``least-squares''
3475 solution, which can be regarded as the ``closest'' solution to the set
3476 of equations.  Use Calc to solve the following over-determined
3477 system:
3479 @ifnottex
3480 @group
3481 @example
3482     a + 2b + 3c = 6
3483    4a + 5b + 6c = 2
3484    7a + 6b      = 3
3485    2a + 4b + 6c = 11
3486 @end example
3487 @end group
3488 @end ifnottex
3489 @tex
3490 \turnoffactive
3491 \beforedisplayh
3492 $$ \openup1\jot \tabskip=0pt plus1fil
3493 \halign to\displaywidth{\tabskip=0pt
3494    $\hfil#$&$\hfil{}#{}$&
3495    $\hfil#$&$\hfil{}#{}$&
3496    $\hfil#$&${}#\hfil$\tabskip=0pt plus1fil\cr
3497   a&+&2b&+&3c&=6 \cr
3498  4a&+&5b&+&6c&=2 \cr
3499  7a&+&6b& &  &=3 \cr
3500  2a&+&4b&+&6c&=11 \cr}
3502 \afterdisplayh
3503 @end tex
3505 @noindent
3506 @xref{Matrix Answer 3, 3}. (@bullet{})
3508 @node List Tutorial,  , Matrix Tutorial, Vector/Matrix Tutorial
3509 @subsection Vectors as Lists
3511 @noindent
3512 @cindex Lists
3513 Although Calc has a number of features for manipulating vectors and
3514 matrices as mathematical objects, you can also treat vectors as
3515 simple lists of values.  For example, we saw that the @kbd{k f}
3516 command returns a vector which is a list of the prime factors of a
3517 number.
3519 You can pack and unpack stack entries into vectors:
3521 @smallexample
3522 @group
3523 3:  10         1:  [10, 20, 30]     3:  10
3524 2:  20             .                2:  20
3525 1:  30                              1:  30
3526     .                                   .
3528                    M-3 v p              v u
3529 @end group
3530 @end smallexample
3532 You can also build vectors out of consecutive integers, or out
3533 of many copies of a given value:
3535 @smallexample
3536 @group
3537 1:  [1, 2, 3, 4]    2:  [1, 2, 3, 4]    2:  [1, 2, 3, 4]
3538     .               1:  17              1:  [17, 17, 17, 17]
3539                         .                   .
3541     v x 4 @key{RET}           17                  v b 4 @key{RET}
3542 @end group
3543 @end smallexample
3545 You can apply an operator to every element of a vector using the
3546 @dfn{map} command.
3548 @smallexample
3549 @group
3550 1:  [17, 34, 51, 68]   1:  [289, 1156, 2601, 4624]  1:  [17, 34, 51, 68]
3551     .                      .                            .
3553     V M *                  2 V M ^                      V M Q
3554 @end group
3555 @end smallexample
3557 @noindent
3558 In the first step, we multiply the vector of integers by the vector
3559 of 17's elementwise.  In the second step, we raise each element to
3560 the power two.  (The general rule is that both operands must be
3561 vectors of the same length, or else one must be a vector and the
3562 other a plain number.)  In the final step, we take the square root
3563 of each element.
3565 (@bullet{}) @strong{Exercise 1.}  Compute a vector of powers of two
3566 from 
3567 @texline @math{2^{-4}}
3568 @infoline @expr{2^-4} 
3569 to @expr{2^4}.  @xref{List Answer 1, 1}. (@bullet{})
3571 You can also @dfn{reduce} a binary operator across a vector.
3572 For example, reducing @samp{*} computes the product of all the
3573 elements in the vector:
3575 @smallexample
3576 @group
3577 1:  123123     1:  [3, 7, 11, 13, 41]      1:  123123
3578     .              .                           .
3580     123123         k f                         V R *
3581 @end group
3582 @end smallexample
3584 @noindent
3585 In this example, we decompose 123123 into its prime factors, then
3586 multiply those factors together again to yield the original number.
3588 We could compute a dot product ``by hand'' using mapping and
3589 reduction:
3591 @smallexample
3592 @group
3593 2:  [1, 2, 3]     1:  [7, 12, 0]     1:  19
3594 1:  [7, 6, 0]         .                  .
3595     .
3597     r 1 r 2           V M *              V R +
3598 @end group
3599 @end smallexample
3601 @noindent
3602 Recalling two vectors from the previous section, we compute the
3603 sum of pairwise products of the elements to get the same answer
3604 for the dot product as before.
3606 A slight variant of vector reduction is the @dfn{accumulate} operation,
3607 @kbd{V U}.  This produces a vector of the intermediate results from
3608 a corresponding reduction.  Here we compute a table of factorials:
3610 @smallexample
3611 @group
3612 1:  [1, 2, 3, 4, 5, 6]    1:  [1, 2, 6, 24, 120, 720]
3613     .                         .
3615     v x 6 @key{RET}                 V U *
3616 @end group
3617 @end smallexample
3619 Calc allows vectors to grow as large as you like, although it gets
3620 rather slow if vectors have more than about a hundred elements.
3621 Actually, most of the time is spent formatting these large vectors
3622 for display, not calculating on them.  Try the following experiment
3623 (if your computer is very fast you may need to substitute a larger
3624 vector size).
3626 @smallexample
3627 @group
3628 1:  [1, 2, 3, 4, ...      1:  [2, 3, 4, 5, ...
3629     .                         .
3631     v x 500 @key{RET}               1 V M +
3632 @end group
3633 @end smallexample
3635 Now press @kbd{v .} (the letter @kbd{v}, then a period) and try the
3636 experiment again.  In @kbd{v .} mode, long vectors are displayed
3637 ``abbreviated'' like this:
3639 @smallexample
3640 @group
3641 1:  [1, 2, 3, ..., 500]   1:  [2, 3, 4, ..., 501]
3642     .                         .
3644     v x 500 @key{RET}               1 V M +
3645 @end group
3646 @end smallexample
3648 @noindent
3649 (where now the @samp{...} is actually part of the Calc display).
3650 You will find both operations are now much faster.  But notice that
3651 even in @w{@kbd{v .}} mode, the full vectors are still shown in the Trail.
3652 Type @w{@kbd{t .}} to cause the trail to abbreviate as well, and try the
3653 experiment one more time.  Operations on long vectors are now quite
3654 fast!  (But of course if you use @kbd{t .} you will lose the ability
3655 to get old vectors back using the @kbd{t y} command.)
3657 An easy way to view a full vector when @kbd{v .} mode is active is
3658 to press @kbd{`} (back-quote) to edit the vector; editing always works
3659 with the full, unabbreviated value.
3661 @cindex Least-squares for fitting a straight line
3662 @cindex Fitting data to a line
3663 @cindex Line, fitting data to
3664 @cindex Data, extracting from buffers
3665 @cindex Columns of data, extracting
3666 As a larger example, let's try to fit a straight line to some data,
3667 using the method of least squares.  (Calc has a built-in command for
3668 least-squares curve fitting, but we'll do it by hand here just to
3669 practice working with vectors.)  Suppose we have the following list
3670 of values in a file we have loaded into Emacs:
3672 @smallexample
3673   x        y
3674  ---      ---
3675  1.34    0.234
3676  1.41    0.298
3677  1.49    0.402
3678  1.56    0.412
3679  1.64    0.466
3680  1.73    0.473
3681  1.82    0.601
3682  1.91    0.519
3683  2.01    0.603
3684  2.11    0.637
3685  2.22    0.645
3686  2.33    0.705
3687  2.45    0.917
3688  2.58    1.009
3689  2.71    0.971
3690  2.85    1.062
3691  3.00    1.148
3692  3.15    1.157
3693  3.32    1.354
3694 @end smallexample
3696 @noindent
3697 If you are reading this tutorial in printed form, you will find it
3698 easiest to press @kbd{C-x * i} to enter the on-line Info version of
3699 the manual and find this table there.  (Press @kbd{g}, then type
3700 @kbd{List Tutorial}, to jump straight to this section.)
3702 Position the cursor at the upper-left corner of this table, just
3703 to the left of the @expr{1.34}.  Press @kbd{C-@@} to set the mark.
3704 (On your system this may be @kbd{C-2}, @kbd{C-@key{SPC}}, or @kbd{NUL}.)
3705 Now position the cursor to the lower-right, just after the @expr{1.354}.
3706 You have now defined this region as an Emacs ``rectangle.''  Still
3707 in the Info buffer, type @kbd{C-x * r}.  This command
3708 (@code{calc-grab-rectangle}) will pop you back into the Calculator, with
3709 the contents of the rectangle you specified in the form of a matrix.
3711 @smallexample
3712 @group
3713 1:  [ [ 1.34, 0.234 ]
3714       [ 1.41, 0.298 ]
3715       @dots{}
3716 @end group
3717 @end smallexample
3719 @noindent
3720 (You may wish to use @kbd{v .} mode to abbreviate the display of this
3721 large matrix.)
3723 We want to treat this as a pair of lists.  The first step is to
3724 transpose this matrix into a pair of rows.  Remember, a matrix is
3725 just a vector of vectors.  So we can unpack the matrix into a pair
3726 of row vectors on the stack.
3728 @smallexample
3729 @group
3730 1:  [ [ 1.34,  1.41,  1.49,  ... ]     2:  [1.34, 1.41, 1.49, ... ]
3731       [ 0.234, 0.298, 0.402, ... ] ]   1:  [0.234, 0.298, 0.402, ... ]
3732     .                                      .
3734     v t                                    v u
3735 @end group
3736 @end smallexample
3738 @noindent
3739 Let's store these in quick variables 1 and 2, respectively.
3741 @smallexample
3742 @group
3743 1:  [1.34, 1.41, 1.49, ... ]        .
3744     .
3746     t 2                             t 1
3747 @end group
3748 @end smallexample
3750 @noindent
3751 (Recall that @kbd{t 2} is a variant of @kbd{s 2} that removes the
3752 stored value from the stack.)
3754 In a least squares fit, the slope @expr{m} is given by the formula
3756 @ifnottex
3757 @example
3758 m = (N sum(x y) - sum(x) sum(y)) / (N sum(x^2) - sum(x)^2)
3759 @end example
3760 @end ifnottex
3761 @tex
3762 \turnoffactive
3763 \beforedisplay
3764 $$ m = {N \sum x y - \sum x \sum y  \over
3765         N \sum x^2 - \left( \sum x \right)^2} $$
3766 \afterdisplay
3767 @end tex
3769 @noindent
3770 where 
3771 @texline @math{\sum x}
3772 @infoline @expr{sum(x)} 
3773 represents the sum of all the values of @expr{x}.  While there is an
3774 actual @code{sum} function in Calc, it's easier to sum a vector using a
3775 simple reduction.  First, let's compute the four different sums that
3776 this formula uses.
3778 @smallexample
3779 @group
3780 1:  41.63                 1:  98.0003
3781     .                         .
3783  r 1 V R +   t 3           r 1 2 V M ^ V R +   t 4
3785 @end group
3786 @end smallexample
3787 @noindent
3788 @smallexample
3789 @group
3790 1:  13.613                1:  33.36554
3791     .                         .
3793  r 2 V R +   t 5           r 1 r 2 V M * V R +   t 6
3794 @end group
3795 @end smallexample
3797 @ifnottex
3798 @noindent
3799 These are @samp{sum(x)}, @samp{sum(x^2)}, @samp{sum(y)}, and @samp{sum(x y)},
3800 respectively.  (We could have used @kbd{*} to compute @samp{sum(x^2)} and
3801 @samp{sum(x y)}.)
3802 @end ifnottex
3803 @tex
3804 \turnoffactive
3805 These are $\sum x$, $\sum x^2$, $\sum y$, and $\sum x y$,
3806 respectively.  (We could have used \kbd{*} to compute $\sum x^2$ and
3807 $\sum x y$.)
3808 @end tex
3810 Finally, we also need @expr{N}, the number of data points.  This is just
3811 the length of either of our lists.
3813 @smallexample
3814 @group
3815 1:  19
3816     .
3818  r 1 v l   t 7
3819 @end group
3820 @end smallexample
3822 @noindent
3823 (That's @kbd{v} followed by a lower-case @kbd{l}.)
3825 Now we grind through the formula:
3827 @smallexample
3828 @group
3829 1:  633.94526  2:  633.94526  1:  67.23607
3830     .          1:  566.70919      .
3831                    .
3833  r 7 r 6 *      r 3 r 5 *         -
3835 @end group
3836 @end smallexample
3837 @noindent
3838 @smallexample
3839 @group
3840 2:  67.23607   3:  67.23607   2:  67.23607   1:  0.52141679
3841 1:  1862.0057  2:  1862.0057  1:  128.9488       .
3842     .          1:  1733.0569      .
3843                    .
3845  r 7 r 4 *      r 3 2 ^           -              /   t 8
3846 @end group
3847 @end smallexample
3849 That gives us the slope @expr{m}.  The y-intercept @expr{b} can now
3850 be found with the simple formula,
3852 @ifnottex
3853 @example
3854 b = (sum(y) - m sum(x)) / N
3855 @end example
3856 @end ifnottex
3857 @tex
3858 \turnoffactive
3859 \beforedisplay
3860 $$ b = {\sum y - m \sum x \over N} $$
3861 \afterdisplay
3862 \vskip10pt
3863 @end tex
3865 @smallexample
3866 @group
3867 1:  13.613     2:  13.613     1:  -8.09358   1:  -0.425978
3868     .          1:  21.70658       .              .
3869                    .
3871    r 5            r 8 r 3 *       -              r 7 /   t 9
3872 @end group
3873 @end smallexample
3875 Let's ``plot'' this straight line approximation, 
3876 @texline @math{y \approx m x + b},
3877 @infoline @expr{m x + b}, 
3878 and compare it with the original data.
3880 @smallexample
3881 @group
3882 1:  [0.699, 0.735, ... ]    1:  [0.273, 0.309, ... ]
3883     .                           .
3885     r 1 r 8 *                   r 9 +    s 0
3886 @end group
3887 @end smallexample
3889 @noindent
3890 Notice that multiplying a vector by a constant, and adding a constant
3891 to a vector, can be done without mapping commands since these are
3892 common operations from vector algebra.  As far as Calc is concerned,
3893 we've just been doing geometry in 19-dimensional space!
3895 We can subtract this vector from our original @expr{y} vector to get
3896 a feel for the error of our fit.  Let's find the maximum error:
3898 @smallexample
3899 @group
3900 1:  [0.0387, 0.0112, ... ]   1:  [0.0387, 0.0112, ... ]   1:  0.0897
3901     .                            .                            .
3903     r 2 -                        V M A                        V R X
3904 @end group
3905 @end smallexample
3907 @noindent
3908 First we compute a vector of differences, then we take the absolute
3909 values of these differences, then we reduce the @code{max} function
3910 across the vector.  (The @code{max} function is on the two-key sequence
3911 @kbd{f x}; because it is so common to use @code{max} in a vector
3912 operation, the letters @kbd{X} and @kbd{N} are also accepted for
3913 @code{max} and @code{min} in this context.  In general, you answer
3914 the @kbd{V M} or @kbd{V R} prompt with the actual key sequence that
3915 invokes the function you want.  You could have typed @kbd{V R f x} or
3916 even @kbd{V R x max @key{RET}} if you had preferred.)
3918 If your system has the GNUPLOT program, you can see graphs of your
3919 data and your straight line to see how well they match.  (If you have
3920 GNUPLOT 3.0 or higher, the following instructions will work regardless
3921 of the kind of display you have.  Some GNUPLOT 2.0, non-X-windows systems
3922 may require additional steps to view the graphs.)
3924 Let's start by plotting the original data.  Recall the ``@var{x}'' and ``@var{y}''
3925 vectors onto the stack and press @kbd{g f}.  This ``fast'' graphing
3926 command does everything you need to do for simple, straightforward
3927 plotting of data.
3929 @smallexample
3930 @group
3931 2:  [1.34, 1.41, 1.49, ... ]
3932 1:  [0.234, 0.298, 0.402, ... ]
3933     .
3935     r 1 r 2    g f
3936 @end group
3937 @end smallexample
3939 If all goes well, you will shortly get a new window containing a graph
3940 of the data.  (If not, contact your GNUPLOT or Calc installer to find
3941 out what went wrong.)  In the X window system, this will be a separate
3942 graphics window.  For other kinds of displays, the default is to
3943 display the graph in Emacs itself using rough character graphics.
3944 Press @kbd{q} when you are done viewing the character graphics.
3946 Next, let's add the line we got from our least-squares fit.
3947 @ifinfo
3948 (If you are reading this tutorial on-line while running Calc, typing
3949 @kbd{g a} may cause the tutorial to disappear from its window and be
3950 replaced by a buffer named @samp{*Gnuplot Commands*}.  The tutorial
3951 will reappear when you terminate GNUPLOT by typing @kbd{g q}.) 
3952 @end ifinfo
3954 @smallexample
3955 @group
3956 2:  [1.34, 1.41, 1.49, ... ]
3957 1:  [0.273, 0.309, 0.351, ... ]
3958     .
3960     @key{DEL} r 0    g a  g p
3961 @end group
3962 @end smallexample
3964 It's not very useful to get symbols to mark the data points on this
3965 second curve; you can type @kbd{g S g p} to remove them.  Type @kbd{g q}
3966 when you are done to remove the X graphics window and terminate GNUPLOT.
3968 (@bullet{}) @strong{Exercise 2.}  An earlier exercise showed how to do
3969 least squares fitting to a general system of equations.  Our 19 data
3970 points are really 19 equations of the form @expr{y_i = m x_i + b} for
3971 different pairs of @expr{(x_i,y_i)}.  Use the matrix-transpose method
3972 to solve for @expr{m} and @expr{b}, duplicating the above result.
3973 @xref{List Answer 2, 2}. (@bullet{})
3975 @cindex Geometric mean
3976 (@bullet{}) @strong{Exercise 3.}  If the input data do not form a
3977 rectangle, you can use @w{@kbd{C-x * g}} (@code{calc-grab-region})
3978 to grab the data the way Emacs normally works with regions---it reads
3979 left-to-right, top-to-bottom, treating line breaks the same as spaces.
3980 Use this command to find the geometric mean of the following numbers.
3981 (The geometric mean is the @var{n}th root of the product of @var{n} numbers.)
3983 @example
3984 2.3  6  22  15.1  7
3985   15  14  7.5
3986   2.5
3987 @end example
3989 @noindent
3990 The @kbd{C-x * g} command accepts numbers separated by spaces or commas,
3991 with or without surrounding vector brackets.
3992 @xref{List Answer 3, 3}. (@bullet{})
3994 @ifnottex
3995 As another example, a theorem about binomial coefficients tells
3996 us that the alternating sum of binomial coefficients
3997 @var{n}-choose-0 minus @var{n}-choose-1 plus @var{n}-choose-2, and so
3998 on up to @var{n}-choose-@var{n},
3999 always comes out to zero.  Let's verify this
4000 for @expr{n=6}.
4001 @end ifnottex
4002 @tex
4003 As another example, a theorem about binomial coefficients tells
4004 us that the alternating sum of binomial coefficients
4005 ${n \choose 0} - {n \choose 1} + {n \choose 2} - \cdots \pm {n \choose n}$
4006 always comes out to zero.  Let's verify this
4007 for \cite{n=6}.
4008 @end tex
4010 @smallexample
4011 @group
4012 1:  [1, 2, 3, 4, 5, 6, 7]     1:  [0, 1, 2, 3, 4, 5, 6]
4013     .                             .
4015     v x 7 @key{RET}                     1 -
4017 @end group
4018 @end smallexample
4019 @noindent
4020 @smallexample
4021 @group
4022 1:  [1, -6, 15, -20, 15, -6, 1]          1:  0
4023     .                                        .
4025     V M ' (-1)^$ choose(6,$) @key{RET}             V R +
4026 @end group
4027 @end smallexample
4029 The @kbd{V M '} command prompts you to enter any algebraic expression
4030 to define the function to map over the vector.  The symbol @samp{$}
4031 inside this expression represents the argument to the function.
4032 The Calculator applies this formula to each element of the vector,
4033 substituting each element's value for the @samp{$} sign(s) in turn.
4035 To define a two-argument function, use @samp{$$} for the first
4036 argument and @samp{$} for the second:  @kbd{V M ' $$-$ @key{RET}} is
4037 equivalent to @kbd{V M -}.  This is analogous to regular algebraic
4038 entry, where @samp{$$} would refer to the next-to-top stack entry
4039 and @samp{$} would refer to the top stack entry, and @kbd{' $$-$ @key{RET}}
4040 would act exactly like @kbd{-}.
4042 Notice that the @kbd{V M '} command has recorded two things in the
4043 trail:  The result, as usual, and also a funny-looking thing marked
4044 @samp{oper} that represents the operator function you typed in.
4045 The function is enclosed in @samp{< >} brackets, and the argument is
4046 denoted by a @samp{#} sign.  If there were several arguments, they
4047 would be shown as @samp{#1}, @samp{#2}, and so on.  (For example,
4048 @kbd{V M ' $$-$} will put the function @samp{<#1 - #2>} on the
4049 trail.)  This object is a ``nameless function''; you can use nameless
4050 @w{@samp{< >}} notation to answer the @kbd{V M '} prompt if you like.
4051 Nameless function notation has the interesting, occasionally useful
4052 property that a nameless function is not actually evaluated until
4053 it is used.  For example, @kbd{V M ' $+random(2.0)} evaluates
4054 @samp{random(2.0)} once and adds that random number to all elements
4055 of the vector, but @kbd{V M ' <#+random(2.0)>} evaluates the
4056 @samp{random(2.0)} separately for each vector element.
4058 Another group of operators that are often useful with @kbd{V M} are
4059 the relational operators:  @kbd{a =}, for example, compares two numbers
4060 and gives the result 1 if they are equal, or 0 if not.  Similarly,
4061 @w{@kbd{a <}} checks for one number being less than another.
4063 Other useful vector operations include @kbd{v v}, to reverse a
4064 vector end-for-end; @kbd{V S}, to sort the elements of a vector
4065 into increasing order; and @kbd{v r} and @w{@kbd{v c}}, to extract
4066 one row or column of a matrix, or (in both cases) to extract one
4067 element of a plain vector.  With a negative argument, @kbd{v r}
4068 and @kbd{v c} instead delete one row, column, or vector element.
4070 @cindex Divisor functions
4071 (@bullet{}) @strong{Exercise 4.}  The @expr{k}th @dfn{divisor function}
4072 @tex
4073 $\sigma_k(n)$
4074 @end tex
4075 is the sum of the @expr{k}th powers of all the divisors of an
4076 integer @expr{n}.  Figure out a method for computing the divisor
4077 function for reasonably small values of @expr{n}.  As a test,
4078 the 0th and 1st divisor functions of 30 are 8 and 72, respectively.
4079 @xref{List Answer 4, 4}. (@bullet{})
4081 @cindex Square-free numbers
4082 @cindex Duplicate values in a list
4083 (@bullet{}) @strong{Exercise 5.}  The @kbd{k f} command produces a
4084 list of prime factors for a number.  Sometimes it is important to
4085 know that a number is @dfn{square-free}, i.e., that no prime occurs
4086 more than once in its list of prime factors.  Find a sequence of
4087 keystrokes to tell if a number is square-free; your method should
4088 leave 1 on the stack if it is, or 0 if it isn't.
4089 @xref{List Answer 5, 5}. (@bullet{})
4091 @cindex Triangular lists
4092 (@bullet{}) @strong{Exercise 6.}  Build a list of lists that looks
4093 like the following diagram.  (You may wish to use the @kbd{v /}
4094 command to enable multi-line display of vectors.)
4096 @smallexample
4097 @group
4098 1:  [ [1],
4099       [1, 2],
4100       [1, 2, 3],
4101       [1, 2, 3, 4],
4102       [1, 2, 3, 4, 5],
4103       [1, 2, 3, 4, 5, 6] ]
4104 @end group
4105 @end smallexample
4107 @noindent
4108 @xref{List Answer 6, 6}. (@bullet{})
4110 (@bullet{}) @strong{Exercise 7.}  Build the following list of lists.
4112 @smallexample
4113 @group
4114 1:  [ [0],
4115       [1, 2],
4116       [3, 4, 5],
4117       [6, 7, 8, 9],
4118       [10, 11, 12, 13, 14],
4119       [15, 16, 17, 18, 19, 20] ]
4120 @end group
4121 @end smallexample
4123 @noindent
4124 @xref{List Answer 7, 7}. (@bullet{})
4126 @cindex Maximizing a function over a list of values
4127 @c [fix-ref Numerical Solutions]
4128 (@bullet{}) @strong{Exercise 8.}  Compute a list of values of Bessel's
4129 @texline @math{J_1(x)}
4130 @infoline @expr{J1} 
4131 function @samp{besJ(1,x)} for @expr{x} from 0 to 5 in steps of 0.25.
4132 Find the value of @expr{x} (from among the above set of values) for
4133 which @samp{besJ(1,x)} is a maximum.  Use an ``automatic'' method,
4134 i.e., just reading along the list by hand to find the largest value
4135 is not allowed!  (There is an @kbd{a X} command which does this kind
4136 of thing automatically; @pxref{Numerical Solutions}.)
4137 @xref{List Answer 8, 8}. (@bullet{})
4139 @cindex Digits, vectors of
4140 (@bullet{}) @strong{Exercise 9.}  You are given an integer in the range
4141 @texline @math{0 \le N < 10^m}
4142 @infoline @expr{0 <= N < 10^m} 
4143 for @expr{m=12} (i.e., an integer of less than
4144 twelve digits).  Convert this integer into a vector of @expr{m}
4145 digits, each in the range from 0 to 9.  In vector-of-digits notation,
4146 add one to this integer to produce a vector of @expr{m+1} digits
4147 (since there could be a carry out of the most significant digit).
4148 Convert this vector back into a regular integer.  A good integer
4149 to try is 25129925999.  @xref{List Answer 9, 9}. (@bullet{})
4151 (@bullet{}) @strong{Exercise 10.}  Your friend Joe tried to use
4152 @kbd{V R a =} to test if all numbers in a list were equal.  What
4153 happened?  How would you do this test?  @xref{List Answer 10, 10}. (@bullet{})
4155 (@bullet{}) @strong{Exercise 11.}  The area of a circle of radius one
4156 is @cpi{}.  The area of the 
4157 @texline @math{2\times2}
4158 @infoline 2x2
4159 square that encloses that circle is 4.  So if we throw @var{n} darts at
4160 random points in the square, about @cpiover{4} of them will land inside
4161 the circle.  This gives us an entertaining way to estimate the value of 
4162 @cpi{}.  The @w{@kbd{k r}}
4163 command picks a random number between zero and the value on the stack.
4164 We could get a random floating-point number between @mathit{-1} and 1 by typing
4165 @w{@kbd{2.0 k r 1 -}}.  Build a vector of 100 random @expr{(x,y)} points in
4166 this square, then use vector mapping and reduction to count how many
4167 points lie inside the unit circle.  Hint:  Use the @kbd{v b} command.
4168 @xref{List Answer 11, 11}. (@bullet{})
4170 @cindex Matchstick problem
4171 (@bullet{}) @strong{Exercise 12.}  The @dfn{matchstick problem} provides
4172 another way to calculate @cpi{}.  Say you have an infinite field
4173 of vertical lines with a spacing of one inch.  Toss a one-inch matchstick
4174 onto the field.  The probability that the matchstick will land crossing
4175 a line turns out to be 
4176 @texline @math{2/\pi}.
4177 @infoline @expr{2/pi}.  
4178 Toss 100 matchsticks to estimate @cpi{}.  (If you want still more fun,
4179 the probability that the GCD (@w{@kbd{k g}}) of two large integers is
4180 one turns out to be 
4181 @texline @math{6/\pi^2}.
4182 @infoline @expr{6/pi^2}.
4183 That provides yet another way to estimate @cpi{}.)
4184 @xref{List Answer 12, 12}. (@bullet{})
4186 (@bullet{}) @strong{Exercise 13.}  An algebraic entry of a string in
4187 double-quote marks, @samp{"hello"}, creates a vector of the numerical
4188 (ASCII) codes of the characters (here, @expr{[104, 101, 108, 108, 111]}).
4189 Sometimes it is convenient to compute a @dfn{hash code} of a string,
4190 which is just an integer that represents the value of that string.
4191 Two equal strings have the same hash code; two different strings
4192 @dfn{probably} have different hash codes.  (For example, Calc has
4193 over 400 function names, but Emacs can quickly find the definition for
4194 any given name because it has sorted the functions into ``buckets'' by
4195 their hash codes.  Sometimes a few names will hash into the same bucket,
4196 but it is easier to search among a few names than among all the names.)
4197 One popular hash function is computed as follows:  First set @expr{h = 0}.
4198 Then, for each character from the string in turn, set @expr{h = 3h + c_i}
4199 where @expr{c_i} is the character's ASCII code.  If we have 511 buckets,
4200 we then take the hash code modulo 511 to get the bucket number.  Develop a
4201 simple command or commands for converting string vectors into hash codes.
4202 The hash code for @samp{"Testing, 1, 2, 3"} is 1960915098, which modulo
4203 511 is 121.  @xref{List Answer 13, 13}. (@bullet{})
4205 (@bullet{}) @strong{Exercise 14.}  The @kbd{H V R} and @kbd{H V U}
4206 commands do nested function evaluations.  @kbd{H V U} takes a starting
4207 value and a number of steps @var{n} from the stack; it then applies the
4208 function you give to the starting value 0, 1, 2, up to @var{n} times
4209 and returns a vector of the results.  Use this command to create a
4210 ``random walk'' of 50 steps.  Start with the two-dimensional point
4211 @expr{(0,0)}; then take one step a random distance between @mathit{-1} and 1
4212 in both @expr{x} and @expr{y}; then take another step, and so on.  Use the
4213 @kbd{g f} command to display this random walk.  Now modify your random
4214 walk to walk a unit distance, but in a random direction, at each step.
4215 (Hint:  The @code{sincos} function returns a vector of the cosine and
4216 sine of an angle.)  @xref{List Answer 14, 14}. (@bullet{})
4218 @node Types Tutorial, Algebra Tutorial, Vector/Matrix Tutorial, Tutorial
4219 @section Types Tutorial
4221 @noindent
4222 Calc understands a variety of data types as well as simple numbers.
4223 In this section, we'll experiment with each of these types in turn.
4225 The numbers we've been using so far have mainly been either @dfn{integers}
4226 or @dfn{floats}.  We saw that floats are usually a good approximation to
4227 the mathematical concept of real numbers, but they are only approximations
4228 and are susceptible to roundoff error.  Calc also supports @dfn{fractions},
4229 which can exactly represent any rational number.
4231 @smallexample
4232 @group
4233 1:  3628800    2:  3628800    1:  518400:7   1:  518414:7   1:  7:518414
4234     .          1:  49             .              .              .
4235                    .
4237     10 !           49 @key{RET}         :              2 +            &
4238 @end group
4239 @end smallexample
4241 @noindent
4242 The @kbd{:} command divides two integers to get a fraction; @kbd{/}
4243 would normally divide integers to get a floating-point result.
4244 Notice we had to type @key{RET} between the @kbd{49} and the @kbd{:}
4245 since the @kbd{:} would otherwise be interpreted as part of a
4246 fraction beginning with 49.
4248 You can convert between floating-point and fractional format using
4249 @kbd{c f} and @kbd{c F}:
4251 @smallexample
4252 @group
4253 1:  1.35027217629e-5    1:  7:518414
4254     .                       .
4256     c f                     c F
4257 @end group
4258 @end smallexample
4260 The @kbd{c F} command replaces a floating-point number with the
4261 ``simplest'' fraction whose floating-point representation is the
4262 same, to within the current precision.
4264 @smallexample
4265 @group
4266 1:  3.14159265359   1:  1146408:364913   1:  3.1416   1:  355:113
4267     .                   .                    .            .
4269     P                   c F      @key{DEL}       p 5 @key{RET} P      c F
4270 @end group
4271 @end smallexample
4273 (@bullet{}) @strong{Exercise 1.}  A calculation has produced the
4274 result 1.26508260337.  You suspect it is the square root of the
4275 product of @cpi{} and some rational number.  Is it?  (Be sure
4276 to allow for roundoff error!)  @xref{Types Answer 1, 1}. (@bullet{})
4278 @dfn{Complex numbers} can be stored in both rectangular and polar form.
4280 @smallexample
4281 @group
4282 1:  -9     1:  (0, 3)    1:  (3; 90.)   1:  (6; 90.)   1:  (2.4495; 45.)
4283     .          .             .              .              .
4285     9 n        Q             c p            2 *            Q
4286 @end group
4287 @end smallexample
4289 @noindent
4290 The square root of @mathit{-9} is by default rendered in rectangular form
4291 (@w{@expr{0 + 3i}}), but we can convert it to polar form (3 with a
4292 phase angle of 90 degrees).  All the usual arithmetic and scientific
4293 operations are defined on both types of complex numbers.
4295 Another generalized kind of number is @dfn{infinity}.  Infinity
4296 isn't really a number, but it can sometimes be treated like one.
4297 Calc uses the symbol @code{inf} to represent positive infinity,
4298 i.e., a value greater than any real number.  Naturally, you can
4299 also write @samp{-inf} for minus infinity, a value less than any
4300 real number.  The word @code{inf} can only be input using
4301 algebraic entry.
4303 @smallexample
4304 @group
4305 2:  inf        2:  -inf       2:  -inf       2:  -inf       1:  nan
4306 1:  -17        1:  -inf       1:  -inf       1:  inf            .
4307     .              .              .              .
4309 ' inf @key{RET} 17 n     *  @key{RET}         72 +           A              +
4310 @end group
4311 @end smallexample
4313 @noindent
4314 Since infinity is infinitely large, multiplying it by any finite
4315 number (like @mathit{-17}) has no effect, except that since @mathit{-17}
4316 is negative, it changes a plus infinity to a minus infinity.
4317 (``A huge positive number, multiplied by @mathit{-17}, yields a huge
4318 negative number.'')  Adding any finite number to infinity also
4319 leaves it unchanged.  Taking an absolute value gives us plus
4320 infinity again.  Finally, we add this plus infinity to the minus
4321 infinity we had earlier.  If you work it out, you might expect
4322 the answer to be @mathit{-72} for this.  But the 72 has been completely
4323 lost next to the infinities; by the time we compute @w{@samp{inf - inf}}
4324 the finite difference between them, if any, is undetectable.
4325 So we say the result is @dfn{indeterminate}, which Calc writes
4326 with the symbol @code{nan} (for Not A Number).
4328 Dividing by zero is normally treated as an error, but you can get
4329 Calc to write an answer in terms of infinity by pressing @kbd{m i}
4330 to turn on Infinite mode.
4332 @smallexample
4333 @group
4334 3:  nan        2:  nan        2:  nan        2:  nan        1:  nan
4335 2:  1          1:  1 / 0      1:  uinf       1:  uinf           .
4336 1:  0              .              .              .
4337     .
4339   1 @key{RET} 0          /       m i    U /            17 n *         +
4340 @end group
4341 @end smallexample
4343 @noindent
4344 Dividing by zero normally is left unevaluated, but after @kbd{m i}
4345 it instead gives an infinite result.  The answer is actually
4346 @code{uinf}, ``undirected infinity.''  If you look at a graph of
4347 @expr{1 / x} around @w{@expr{x = 0}}, you'll see that it goes toward
4348 plus infinity as you approach zero from above, but toward minus
4349 infinity as you approach from below.  Since we said only @expr{1 / 0},
4350 Calc knows that the answer is infinite but not in which direction.
4351 That's what @code{uinf} means.  Notice that multiplying @code{uinf}
4352 by a negative number still leaves plain @code{uinf}; there's no
4353 point in saying @samp{-uinf} because the sign of @code{uinf} is
4354 unknown anyway.  Finally, we add @code{uinf} to our @code{nan},
4355 yielding @code{nan} again.  It's easy to see that, because
4356 @code{nan} means ``totally unknown'' while @code{uinf} means
4357 ``unknown sign but known to be infinite,'' the more mysterious
4358 @code{nan} wins out when it is combined with @code{uinf}, or, for
4359 that matter, with anything else.
4361 (@bullet{}) @strong{Exercise 2.}  Predict what Calc will answer
4362 for each of these formulas:  @samp{inf / inf}, @samp{exp(inf)},
4363 @samp{exp(-inf)}, @samp{sqrt(-inf)}, @samp{sqrt(uinf)},
4364 @samp{abs(uinf)}, @samp{ln(0)}.
4365 @xref{Types Answer 2, 2}. (@bullet{})
4367 (@bullet{}) @strong{Exercise 3.}  We saw that @samp{inf - inf = nan},
4368 which stands for an unknown value.  Can @code{nan} stand for
4369 a complex number?  Can it stand for infinity?
4370 @xref{Types Answer 3, 3}. (@bullet{})
4372 @dfn{HMS forms} represent a value in terms of hours, minutes, and
4373 seconds.
4375 @smallexample
4376 @group
4377 1:  2@@ 30' 0"     1:  3@@ 30' 0"     2:  3@@ 30' 0"     1:  2.
4378     .                 .             1:  1@@ 45' 0."        .
4379                                         .
4381   2@@ 30' @key{RET}          1 +               @key{RET} 2 /           /
4382 @end group
4383 @end smallexample
4385 HMS forms can also be used to hold angles in degrees, minutes, and
4386 seconds.
4388 @smallexample
4389 @group
4390 1:  0.5        1:  26.56505   1:  26@@ 33' 54.18"    1:  0.44721
4391     .              .              .                     .
4393     0.5            I T            c h                   S
4394 @end group
4395 @end smallexample
4397 @noindent
4398 First we convert the inverse tangent of 0.5 to degrees-minutes-seconds
4399 form, then we take the sine of that angle.  Note that the trigonometric
4400 functions will accept HMS forms directly as input.
4402 @cindex Beatles
4403 (@bullet{}) @strong{Exercise 4.}  The Beatles' @emph{Abbey Road} is
4404 47 minutes and 26 seconds long, and contains 17 songs.  What is the
4405 average length of a song on @emph{Abbey Road}?  If the Extended Disco
4406 Version of @emph{Abbey Road} added 20 seconds to the length of each
4407 song, how long would the album be?  @xref{Types Answer 4, 4}. (@bullet{})
4409 A @dfn{date form} represents a date, or a date and time.  Dates must
4410 be entered using algebraic entry.  Date forms are surrounded by
4411 @samp{< >} symbols; most standard formats for dates are recognized.
4413 @smallexample
4414 @group
4415 2:  <Sun Jan 13, 1991>                    1:  2.25
4416 1:  <6:00pm Thu Jan 10, 1991>                 .
4417     .
4419 ' <13 Jan 1991>, <1/10/91, 6pm> @key{RET}           -
4420 @end group
4421 @end smallexample
4423 @noindent
4424 In this example, we enter two dates, then subtract to find the
4425 number of days between them.  It is also possible to add an
4426 HMS form or a number (of days) to a date form to get another
4427 date form.
4429 @smallexample
4430 @group
4431 1:  <4:45:59pm Mon Jan 14, 1991>     1:  <2:50:59am Thu Jan 17, 1991>
4432     .                                    .
4434     t N                                  2 + 10@@ 5' +
4435 @end group
4436 @end smallexample
4438 @c [fix-ref Date Arithmetic]
4439 @noindent
4440 The @kbd{t N} (``now'') command pushes the current date and time on the
4441 stack; then we add two days, ten hours and five minutes to the date and
4442 time.  Other date-and-time related commands include @kbd{t J}, which
4443 does Julian day conversions, @kbd{t W}, which finds the beginning of
4444 the week in which a date form lies, and @kbd{t I}, which increments a
4445 date by one or several months.  @xref{Date Arithmetic}, for more.
4447 (@bullet{}) @strong{Exercise 5.}  How many days until the next
4448 Friday the 13th?  @xref{Types Answer 5, 5}. (@bullet{})
4450 (@bullet{}) @strong{Exercise 6.}  How many leap years will there be
4451 between now and the year 10001 A.D.?  @xref{Types Answer 6, 6}. (@bullet{})
4453 @cindex Slope and angle of a line
4454 @cindex Angle and slope of a line
4455 An @dfn{error form} represents a mean value with an attached standard
4456 deviation, or error estimate.  Suppose our measurements indicate that
4457 a certain telephone pole is about 30 meters away, with an estimated
4458 error of 1 meter, and 8 meters tall, with an estimated error of 0.2
4459 meters.  What is the slope of a line from here to the top of the
4460 pole, and what is the equivalent angle in degrees?
4462 @smallexample
4463 @group
4464 1:  8 +/- 0.2    2:  8 +/- 0.2   1:  0.266 +/- 0.011   1:  14.93 +/- 0.594
4465     .            1:  30 +/- 1        .                     .
4466                      .
4468     8 p .2 @key{RET}       30 p 1          /                     I T
4469 @end group
4470 @end smallexample
4472 @noindent
4473 This means that the angle is about 15 degrees, and, assuming our
4474 original error estimates were valid standard deviations, there is about
4475 a 60% chance that the result is correct within 0.59 degrees.
4477 @cindex Torus, volume of
4478 (@bullet{}) @strong{Exercise 7.}  The volume of a torus (a donut shape) is
4479 @texline @math{2 \pi^2 R r^2}
4480 @infoline @w{@expr{2 pi^2 R r^2}} 
4481 where @expr{R} is the radius of the circle that
4482 defines the center of the tube and @expr{r} is the radius of the tube
4483 itself.  Suppose @expr{R} is 20 cm and @expr{r} is 4 cm, each known to
4484 within 5 percent.  What is the volume and the relative uncertainty of
4485 the volume?  @xref{Types Answer 7, 7}. (@bullet{})
4487 An @dfn{interval form} represents a range of values.  While an
4488 error form is best for making statistical estimates, intervals give
4489 you exact bounds on an answer.  Suppose we additionally know that
4490 our telephone pole is definitely between 28 and 31 meters away,
4491 and that it is between 7.7 and 8.1 meters tall.
4493 @smallexample
4494 @group
4495 1:  [7.7 .. 8.1]  2:  [7.7 .. 8.1]  1:  [0.24 .. 0.28]  1:  [13.9 .. 16.1]
4496     .             1:  [28 .. 31]        .                   .
4497                       .
4499   [ 7.7 .. 8.1 ]    [ 28 .. 31 ]        /                   I T
4500 @end group
4501 @end smallexample
4503 @noindent
4504 If our bounds were correct, then the angle to the top of the pole
4505 is sure to lie in the range shown.
4507 The square brackets around these intervals indicate that the endpoints
4508 themselves are allowable values.  In other words, the distance to the
4509 telephone pole is between 28 and 31, @emph{inclusive}.  You can also
4510 make an interval that is exclusive of its endpoints by writing
4511 parentheses instead of square brackets.  You can even make an interval
4512 which is inclusive (``closed'') on one end and exclusive (``open'') on
4513 the other.
4515 @smallexample
4516 @group
4517 1:  [1 .. 10)    1:  (0.1 .. 1]   2:  (0.1 .. 1]   1:  (0.2 .. 3)
4518     .                .            1:  [2 .. 3)         .
4519                                       .
4521   [ 1 .. 10 )        &              [ 2 .. 3 )         *
4522 @end group
4523 @end smallexample
4525 @noindent
4526 The Calculator automatically keeps track of which end values should
4527 be open and which should be closed.  You can also make infinite or
4528 semi-infinite intervals by using @samp{-inf} or @samp{inf} for one
4529 or both endpoints.
4531 (@bullet{}) @strong{Exercise 8.}  What answer would you expect from
4532 @samp{@w{1 /} @w{(0 .. 10)}}?  What about @samp{@w{1 /} @w{(-10 .. 0)}}?  What
4533 about @samp{@w{1 /} @w{[0 .. 10]}} (where the interval actually includes
4534 zero)?  What about @samp{@w{1 /} @w{(-10 .. 10)}}?
4535 @xref{Types Answer 8, 8}. (@bullet{})
4537 (@bullet{}) @strong{Exercise 9.}  Two easy ways of squaring a number
4538 are @kbd{@key{RET} *} and @w{@kbd{2 ^}}.  Normally these produce the same
4539 answer.  Would you expect this still to hold true for interval forms?
4540 If not, which of these will result in a larger interval?
4541 @xref{Types Answer 9, 9}. (@bullet{})
4543 A @dfn{modulo form} is used for performing arithmetic modulo @var{m}.
4544 For example, arithmetic involving time is generally done modulo 12
4545 or 24 hours.
4547 @smallexample
4548 @group
4549 1:  17 mod 24    1:  3 mod 24     1:  21 mod 24    1:  9 mod 24
4550     .                .                .                .
4552     17 M 24 @key{RET}      10 +             n                5 /
4553 @end group
4554 @end smallexample
4556 @noindent
4557 In this last step, Calc has divided by 5 modulo 24; i.e., it has found a
4558 new number which, when multiplied by 5 modulo 24, produces the original
4559 number, 21.  If @var{m} is prime and the divisor is not a multiple of
4560 @var{m}, it is always possible to find such a number.  For non-prime
4561 @var{m} like 24, it is only sometimes possible. 
4563 @smallexample
4564 @group
4565 1:  10 mod 24    1:  16 mod 24    1:  1000000...   1:  16
4566     .                .                .                .
4568     10 M 24 @key{RET}      100 ^            10 @key{RET} 100 ^     24 %
4569 @end group
4570 @end smallexample
4572 @noindent
4573 These two calculations get the same answer, but the first one is
4574 much more efficient because it avoids the huge intermediate value
4575 that arises in the second one.
4577 @cindex Fermat, primality test of
4578 (@bullet{}) @strong{Exercise 10.}  A theorem of Pierre de Fermat
4579 says that 
4580 @texline @w{@math{x^{n-1} \bmod n = 1}}
4581 @infoline @expr{x^(n-1) mod n = 1}
4582 if @expr{n} is a prime number and @expr{x} is an integer less than
4583 @expr{n}.  If @expr{n} is @emph{not} a prime number, this will
4584 @emph{not} be true for most values of @expr{x}.  Thus we can test
4585 informally if a number is prime by trying this formula for several
4586 values of @expr{x}.  Use this test to tell whether the following numbers
4587 are prime: 811749613, 15485863.  @xref{Types Answer 10, 10}. (@bullet{})
4589 It is possible to use HMS forms as parts of error forms, intervals,
4590 modulo forms, or as the phase part of a polar complex number.
4591 For example, the @code{calc-time} command pushes the current time
4592 of day on the stack as an HMS/modulo form.
4594 @smallexample
4595 @group
4596 1:  17@@ 34' 45" mod 24@@ 0' 0"     1:  6@@ 22' 15" mod 24@@ 0' 0"
4597     .                                 .
4599     x time @key{RET}                        n
4600 @end group
4601 @end smallexample
4603 @noindent
4604 This calculation tells me it is six hours and 22 minutes until midnight.
4606 (@bullet{}) @strong{Exercise 11.}  A rule of thumb is that one year
4607 is about 
4608 @texline @math{\pi \times 10^7}
4609 @infoline @w{@expr{pi * 10^7}} 
4610 seconds.  What time will it be that many seconds from right now?
4611 @xref{Types Answer 11, 11}. (@bullet{})
4613 (@bullet{}) @strong{Exercise 12.}  You are preparing to order packaging
4614 for the CD release of the Extended Disco Version of @emph{Abbey Road}.
4615 You are told that the songs will actually be anywhere from 20 to 60
4616 seconds longer than the originals.  One CD can hold about 75 minutes
4617 of music.  Should you order single or double packages?
4618 @xref{Types Answer 12, 12}. (@bullet{})
4620 Another kind of data the Calculator can manipulate is numbers with
4621 @dfn{units}.  This isn't strictly a new data type; it's simply an
4622 application of algebraic expressions, where we use variables with
4623 suggestive names like @samp{cm} and @samp{in} to represent units
4624 like centimeters and inches.
4626 @smallexample
4627 @group
4628 1:  2 in        1:  5.08 cm      1:  0.027778 fath   1:  0.0508 m
4629     .               .                .                   .
4631     ' 2in @key{RET}       u c cm @key{RET}       u c fath @key{RET}        u b
4632 @end group
4633 @end smallexample
4635 @noindent
4636 We enter the quantity ``2 inches'' (actually an algebraic expression
4637 which means two times the variable @samp{in}), then we convert it
4638 first to centimeters, then to fathoms, then finally to ``base'' units,
4639 which in this case means meters.
4641 @smallexample
4642 @group
4643 1:  9 acre     1:  3 sqrt(acre)   1:  190.84 m   1:  190.84 m + 30 cm
4644     .              .                  .              .
4646  ' 9 acre @key{RET}      Q                  u s            ' $+30 cm @key{RET}
4648 @end group
4649 @end smallexample
4650 @noindent
4651 @smallexample
4652 @group
4653 1:  191.14 m     1:  36536.3046 m^2    1:  365363046 cm^2
4654     .                .                     .
4656     u s              2 ^                   u c cgs
4657 @end group
4658 @end smallexample
4660 @noindent
4661 Since units expressions are really just formulas, taking the square
4662 root of @samp{acre} is undefined.  After all, @code{acre} might be an
4663 algebraic variable that you will someday assign a value.  We use the
4664 ``units-simplify'' command to simplify the expression with variables
4665 being interpreted as unit names.
4667 In the final step, we have converted not to a particular unit, but to a
4668 units system.  The ``cgs'' system uses centimeters instead of meters
4669 as its standard unit of length.
4671 There is a wide variety of units defined in the Calculator.
4673 @smallexample
4674 @group
4675 1:  55 mph     1:  88.5139 kph   1:   88.5139 km / hr   1:  8.201407e-8 c
4676     .              .                  .                     .
4678  ' 55 mph @key{RET}      u c kph @key{RET}        u c km/hr @key{RET}         u c c @key{RET}
4679 @end group
4680 @end smallexample
4682 @noindent
4683 We express a speed first in miles per hour, then in kilometers per
4684 hour, then again using a slightly more explicit notation, then
4685 finally in terms of fractions of the speed of light.
4687 Temperature conversions are a bit more tricky.  There are two ways to
4688 interpret ``20 degrees Fahrenheit''---it could mean an actual
4689 temperature, or it could mean a change in temperature.  For normal
4690 units there is no difference, but temperature units have an offset
4691 as well as a scale factor and so there must be two explicit commands
4692 for them.
4694 @smallexample
4695 @group
4696 1:  20 degF       1:  11.1111 degC     1:  -20:3 degC    1:  -6.666 degC
4697     .                 .                    .                 .
4699   ' 20 degF @key{RET}       u c degC @key{RET}         U u t degC @key{RET}    c f
4700 @end group
4701 @end smallexample
4703 @noindent
4704 First we convert a change of 20 degrees Fahrenheit into an equivalent
4705 change in degrees Celsius (or Centigrade).  Then, we convert the
4706 absolute temperature 20 degrees Fahrenheit into Celsius.  Since
4707 this comes out as an exact fraction, we then convert to floating-point
4708 for easier comparison with the other result.
4710 For simple unit conversions, you can put a plain number on the stack.
4711 Then @kbd{u c} and @kbd{u t} will prompt for both old and new units.
4712 When you use this method, you're responsible for remembering which
4713 numbers are in which units:
4715 @smallexample
4716 @group
4717 1:  55         1:  88.5139              1:  8.201407e-8
4718     .              .                        .
4720     55             u c mph @key{RET} kph @key{RET}      u c km/hr @key{RET} c @key{RET}
4721 @end group
4722 @end smallexample
4724 To see a complete list of built-in units, type @kbd{u v}.  Press
4725 @w{@kbd{C-x * c}} again to re-enter the Calculator when you're done looking
4726 at the units table.
4728 (@bullet{}) @strong{Exercise 13.}  How many seconds are there really
4729 in a year?  @xref{Types Answer 13, 13}. (@bullet{})
4731 @cindex Speed of light
4732 (@bullet{}) @strong{Exercise 14.}  Supercomputer designs are limited by
4733 the speed of light (and of electricity, which is nearly as fast).
4734 Suppose a computer has a 4.1 ns (nanosecond) clock cycle, and its
4735 cabinet is one meter across.  Is speed of light going to be a
4736 significant factor in its design?  @xref{Types Answer 14, 14}. (@bullet{})
4738 (@bullet{}) @strong{Exercise 15.}  Sam the Slug normally travels about
4739 five yards in an hour.  He has obtained a supply of Power Pills; each
4740 Power Pill he eats doubles his speed.  How many Power Pills can he
4741 swallow and still travel legally on most US highways?
4742 @xref{Types Answer 15, 15}. (@bullet{})
4744 @node Algebra Tutorial, Programming Tutorial, Types Tutorial, Tutorial
4745 @section Algebra and Calculus Tutorial
4747 @noindent
4748 This section shows how to use Calc's algebra facilities to solve
4749 equations, do simple calculus problems, and manipulate algebraic
4750 formulas.
4752 @menu
4753 * Basic Algebra Tutorial::
4754 * Rewrites Tutorial::
4755 @end menu
4757 @node Basic Algebra Tutorial, Rewrites Tutorial, Algebra Tutorial, Algebra Tutorial
4758 @subsection Basic Algebra
4760 @noindent
4761 If you enter a formula in Algebraic mode that refers to variables,
4762 the formula itself is pushed onto the stack.  You can manipulate
4763 formulas as regular data objects.
4765 @smallexample
4766 @group
4767 1:  2 x^2 - 6       1:  6 - 2 x^2       1:  (6 - 2 x^2) (3 x^2 + y)
4768     .                   .                   .
4770     ' 2x^2-6 @key{RET}        n                   ' 3x^2+y @key{RET} *
4771 @end group
4772 @end smallexample
4774 (@bullet{}) @strong{Exercise 1.}  Do @kbd{' x @key{RET} Q 2 ^} and
4775 @kbd{' x @key{RET} 2 ^ Q} both wind up with the same result (@samp{x})?
4776 Why or why not?  @xref{Algebra Answer 1, 1}. (@bullet{})
4778 There are also commands for doing common algebraic operations on
4779 formulas.  Continuing with the formula from the last example,
4781 @smallexample
4782 @group
4783 1:  18 x^2 + 6 y - 6 x^4 - 2 x^2 y    1:  (18 - 2 y) x^2 - 6 x^4 + 6 y
4784     .                                     .
4786     a x                                   a c x @key{RET}
4787 @end group
4788 @end smallexample
4790 @noindent
4791 First we ``expand'' using the distributive law, then we ``collect''
4792 terms involving like powers of @expr{x}.
4794 Let's find the value of this expression when @expr{x} is 2 and @expr{y}
4795 is one-half.
4797 @smallexample
4798 @group
4799 1:  17 x^2 - 6 x^4 + 3      1:  -25
4800     .                           .
4802     1:2 s l y @key{RET}               2 s l x @key{RET}
4803 @end group
4804 @end smallexample
4806 @noindent
4807 The @kbd{s l} command means ``let''; it takes a number from the top of
4808 the stack and temporarily assigns it as the value of the variable
4809 you specify.  It then evaluates (as if by the @kbd{=} key) the
4810 next expression on the stack.  After this command, the variable goes
4811 back to its original value, if any.
4813 (An earlier exercise in this tutorial involved storing a value in the
4814 variable @code{x}; if this value is still there, you will have to
4815 unstore it with @kbd{s u x @key{RET}} before the above example will work
4816 properly.)
4818 @cindex Maximum of a function using Calculus
4819 Let's find the maximum value of our original expression when @expr{y}
4820 is one-half and @expr{x} ranges over all possible values.  We can
4821 do this by taking the derivative with respect to @expr{x} and examining
4822 values of @expr{x} for which the derivative is zero.  If the second
4823 derivative of the function at that value of @expr{x} is negative,
4824 the function has a local maximum there.
4826 @smallexample
4827 @group
4828 1:  17 x^2 - 6 x^4 + 3      1:  34 x - 24 x^3
4829     .                           .
4831     U @key{DEL}  s 1                  a d x @key{RET}   s 2
4832 @end group
4833 @end smallexample
4835 @noindent
4836 Well, the derivative is clearly zero when @expr{x} is zero.  To find
4837 the other root(s), let's divide through by @expr{x} and then solve:
4839 @smallexample
4840 @group
4841 1:  (34 x - 24 x^3) / x    1:  34 x / x - 24 x^3 / x    1:  34 - 24 x^2
4842     .                          .                            .
4844     ' x @key{RET} /                  a x                          a s
4846 @end group
4847 @end smallexample
4848 @noindent
4849 @smallexample
4850 @group
4851 1:  34 - 24 x^2 = 0        1:  x = 1.19023
4852     .                          .
4854     0 a =  s 3                 a S x @key{RET}
4855 @end group
4856 @end smallexample
4858 @noindent
4859 Notice the use of @kbd{a s} to ``simplify'' the formula.  When the
4860 default algebraic simplifications don't do enough, you can use
4861 @kbd{a s} to tell Calc to spend more time on the job.
4863 Now we compute the second derivative and plug in our values of @expr{x}:
4865 @smallexample
4866 @group
4867 1:  1.19023        2:  1.19023         2:  1.19023
4868     .              1:  34 x - 24 x^3   1:  34 - 72 x^2
4869                        .                   .
4871     a .                r 2                 a d x @key{RET} s 4
4872 @end group
4873 @end smallexample
4875 @noindent
4876 (The @kbd{a .} command extracts just the righthand side of an equation.
4877 Another method would have been to use @kbd{v u} to unpack the equation
4878 @w{@samp{x = 1.19}} to @samp{x} and @samp{1.19}, then use @kbd{M-- M-2 @key{DEL}}
4879 to delete the @samp{x}.)
4881 @smallexample
4882 @group
4883 2:  34 - 72 x^2   1:  -68.         2:  34 - 72 x^2     1:  34
4884 1:  1.19023           .            1:  0                   .
4885     .                                  .
4887     @key{TAB}               s l x @key{RET}        U @key{DEL} 0             s l x @key{RET}
4888 @end group
4889 @end smallexample
4891 @noindent
4892 The first of these second derivatives is negative, so we know the function
4893 has a maximum value at @expr{x = 1.19023}.  (The function also has a
4894 local @emph{minimum} at @expr{x = 0}.)
4896 When we solved for @expr{x}, we got only one value even though
4897 @expr{34 - 24 x^2 = 0} is a quadratic equation that ought to have
4898 two solutions.  The reason is that @w{@kbd{a S}} normally returns a
4899 single ``principal'' solution.  If it needs to come up with an
4900 arbitrary sign (as occurs in the quadratic formula) it picks @expr{+}.
4901 If it needs an arbitrary integer, it picks zero.  We can get a full
4902 solution by pressing @kbd{H} (the Hyperbolic flag) before @kbd{a S}.
4904 @smallexample
4905 @group
4906 1:  34 - 24 x^2 = 0    1:  x = 1.19023 s1      1:  x = -1.19023
4907     .                      .                       .
4909     r 3                    H a S x @key{RET}  s 5        1 n  s l s1 @key{RET}
4910 @end group
4911 @end smallexample
4913 @noindent
4914 Calc has invented the variable @samp{s1} to represent an unknown sign;
4915 it is supposed to be either @mathit{+1} or @mathit{-1}.  Here we have used
4916 the ``let'' command to evaluate the expression when the sign is negative.
4917 If we plugged this into our second derivative we would get the same,
4918 negative, answer, so @expr{x = -1.19023} is also a maximum.
4920 To find the actual maximum value, we must plug our two values of @expr{x}
4921 into the original formula.
4923 @smallexample
4924 @group
4925 2:  17 x^2 - 6 x^4 + 3    1:  24.08333 s1^2 - 12.04166 s1^4 + 3
4926 1:  x = 1.19023 s1            .
4927     .
4929     r 1 r 5                   s l @key{RET}
4930 @end group
4931 @end smallexample
4933 @noindent
4934 (Here we see another way to use @kbd{s l}; if its input is an equation
4935 with a variable on the lefthand side, then @kbd{s l} treats the equation
4936 like an assignment to that variable if you don't give a variable name.)
4938 It's clear that this will have the same value for either sign of
4939 @code{s1}, but let's work it out anyway, just for the exercise:
4941 @smallexample
4942 @group
4943 2:  [-1, 1]              1:  [15.04166, 15.04166]
4944 1:  24.08333 s1^2 ...        .
4945     .
4947   [ 1 n , 1 ] @key{TAB}            V M $ @key{RET}
4948 @end group
4949 @end smallexample
4951 @noindent
4952 Here we have used a vector mapping operation to evaluate the function
4953 at several values of @samp{s1} at once.  @kbd{V M $} is like @kbd{V M '}
4954 except that it takes the formula from the top of the stack.  The
4955 formula is interpreted as a function to apply across the vector at the
4956 next-to-top stack level.  Since a formula on the stack can't contain
4957 @samp{$} signs, Calc assumes the variables in the formula stand for
4958 different arguments.  It prompts you for an @dfn{argument list}, giving
4959 the list of all variables in the formula in alphabetical order as the
4960 default list.  In this case the default is @samp{(s1)}, which is just
4961 what we want so we simply press @key{RET} at the prompt.
4963 If there had been several different values, we could have used
4964 @w{@kbd{V R X}} to find the global maximum.
4966 Calc has a built-in @kbd{a P} command that solves an equation using
4967 @w{@kbd{H a S}} and returns a vector of all the solutions.  It simply
4968 automates the job we just did by hand.  Applied to our original
4969 cubic polynomial, it would produce the vector of solutions
4970 @expr{[1.19023, -1.19023, 0]}.  (There is also an @kbd{a X} command
4971 which finds a local maximum of a function.  It uses a numerical search
4972 method rather than examining the derivatives, and thus requires you
4973 to provide some kind of initial guess to show it where to look.)
4975 (@bullet{}) @strong{Exercise 2.}  Given a vector of the roots of a
4976 polynomial (such as the output of an @kbd{a P} command), what
4977 sequence of commands would you use to reconstruct the original
4978 polynomial?  (The answer will be unique to within a constant
4979 multiple; choose the solution where the leading coefficient is one.)
4980 @xref{Algebra Answer 2, 2}. (@bullet{})
4982 The @kbd{m s} command enables Symbolic mode, in which formulas
4983 like @samp{sqrt(5)} that can't be evaluated exactly are left in
4984 symbolic form rather than giving a floating-point approximate answer.
4985 Fraction mode (@kbd{m f}) is also useful when doing algebra.
4987 @smallexample
4988 @group
4989 2:  34 x - 24 x^3        2:  34 x - 24 x^3
4990 1:  34 x - 24 x^3        1:  [sqrt(51) / 6, sqrt(51) / -6, 0]
4991     .                        .
4993     r 2  @key{RET}     m s  m f    a P x @key{RET}
4994 @end group
4995 @end smallexample
4997 One more mode that makes reading formulas easier is Big mode.
4999 @smallexample
5000 @group
5001                3
5002 2:  34 x - 24 x
5004       ____   ____
5005      V 51   V 51
5006 1:  [-----, -----, 0]
5007        6     -6
5009     .
5011     d B
5012 @end group
5013 @end smallexample
5015 Here things like powers, square roots, and quotients and fractions
5016 are displayed in a two-dimensional pictorial form.  Calc has other
5017 language modes as well, such as C mode, FORTRAN mode, @TeX{} mode
5018 and La@TeX{} mode.
5020 @smallexample
5021 @group
5022 2:  34*x - 24*pow(x, 3)               2:  34*x - 24*x**3
5023 1:  @{sqrt(51) / 6, sqrt(51) / -6, 0@}  1:  /sqrt(51) / 6, sqrt(51) / -6, 0/
5024     .                                     .
5026     d C                                   d F
5028 @end group
5029 @end smallexample
5030 @noindent
5031 @smallexample
5032 @group
5033 3:  34 x - 24 x^3
5034 2:  [@{\sqrt@{51@} \over 6@}, @{\sqrt@{51@} \over -6@}, 0]
5035 1:  @{2 \over 3@} \sqrt@{5@}
5036     .
5038     d T   ' 2 \sqrt@{5@} \over 3 @key{RET}
5039 @end group
5040 @end smallexample
5042 @noindent
5043 As you can see, language modes affect both entry and display of
5044 formulas.  They affect such things as the names used for built-in
5045 functions, the set of arithmetic operators and their precedences,
5046 and notations for vectors and matrices.
5048 Notice that @samp{sqrt(51)} may cause problems with older
5049 implementations of C and FORTRAN, which would require something more
5050 like @samp{sqrt(51.0)}.  It is always wise to check over the formulas
5051 produced by the various language modes to make sure they are fully
5052 correct.
5054 Type @kbd{m s}, @kbd{m f}, and @kbd{d N} to reset these modes.  (You
5055 may prefer to remain in Big mode, but all the examples in the tutorial
5056 are shown in normal mode.)
5058 @cindex Area under a curve
5059 What is the area under the portion of this curve from @expr{x = 1} to @expr{2}?
5060 This is simply the integral of the function:
5062 @smallexample
5063 @group
5064 1:  17 x^2 - 6 x^4 + 3     1:  5.6666 x^3 - 1.2 x^5 + 3 x
5065     .                          .
5067     r 1                        a i x
5068 @end group
5069 @end smallexample
5071 @noindent
5072 We want to evaluate this at our two values for @expr{x} and subtract.
5073 One way to do it is again with vector mapping and reduction:
5075 @smallexample
5076 @group
5077 2:  [2, 1]            1:  [12.93333, 7.46666]    1:  5.46666
5078 1:  5.6666 x^3 ...        .                          .
5080    [ 2 , 1 ] @key{TAB}          V M $ @key{RET}                  V R -
5081 @end group
5082 @end smallexample
5084 (@bullet{}) @strong{Exercise 3.}  Find the integral from 1 to @expr{y}
5085 of 
5086 @texline @math{x \sin \pi x}
5087 @infoline @w{@expr{x sin(pi x)}} 
5088 (where the sine is calculated in radians).  Find the values of the
5089 integral for integers @expr{y} from 1 to 5.  @xref{Algebra Answer 3,
5090 3}. (@bullet{})
5092 Calc's integrator can do many simple integrals symbolically, but many
5093 others are beyond its capabilities.  Suppose we wish to find the area
5094 under the curve 
5095 @texline @math{\sin x \ln x}
5096 @infoline @expr{sin(x) ln(x)} 
5097 over the same range of @expr{x}.  If you entered this formula and typed
5098 @kbd{a i x @key{RET}} (don't bother to try this), Calc would work for a
5099 long time but would be unable to find a solution.  In fact, there is no
5100 closed-form solution to this integral.  Now what do we do?
5102 @cindex Integration, numerical
5103 @cindex Numerical integration
5104 One approach would be to do the integral numerically.  It is not hard
5105 to do this by hand using vector mapping and reduction.  It is rather
5106 slow, though, since the sine and logarithm functions take a long time.
5107 We can save some time by reducing the working precision.
5109 @smallexample
5110 @group
5111 3:  10                  1:  [1, 1.1, 1.2,  ...  , 1.8, 1.9]
5112 2:  1                       .
5113 1:  0.1
5114     .
5116  10 @key{RET} 1 @key{RET} .1 @key{RET}        C-u v x
5117 @end group
5118 @end smallexample
5120 @noindent
5121 (Note that we have used the extended version of @kbd{v x}; we could
5122 also have used plain @kbd{v x} as follows:  @kbd{v x 10 @key{RET} 9 + .1 *}.)
5124 @smallexample
5125 @group
5126 2:  [1, 1.1, ... ]              1:  [0., 0.084941, 0.16993, ... ]
5127 1:  sin(x) ln(x)                    .
5128     .
5130     ' sin(x) ln(x) @key{RET}  s 1    m r  p 5 @key{RET}   V M $ @key{RET}
5132 @end group
5133 @end smallexample
5134 @noindent
5135 @smallexample
5136 @group
5137 1:  3.4195     0.34195
5138     .          .
5140     V R +      0.1 *
5141 @end group
5142 @end smallexample
5144 @noindent
5145 (If you got wildly different results, did you remember to switch
5146 to Radians mode?)
5148 Here we have divided the curve into ten segments of equal width;
5149 approximating these segments as rectangular boxes (i.e., assuming
5150 the curve is nearly flat at that resolution), we compute the areas
5151 of the boxes (height times width), then sum the areas.  (It is
5152 faster to sum first, then multiply by the width, since the width
5153 is the same for every box.)
5155 The true value of this integral turns out to be about 0.374, so
5156 we're not doing too well.  Let's try another approach.
5158 @smallexample
5159 @group
5160 1:  sin(x) ln(x)    1:  0.84147 x - 0.84147 + 0.11957 (x - 1)^2 - ...
5161     .                   .
5163     r 1                 a t x=1 @key{RET} 4 @key{RET}
5164 @end group
5165 @end smallexample
5167 @noindent
5168 Here we have computed the Taylor series expansion of the function
5169 about the point @expr{x=1}.  We can now integrate this polynomial
5170 approximation, since polynomials are easy to integrate.
5172 @smallexample
5173 @group
5174 1:  0.42074 x^2 + ...    1:  [-0.0446, -0.42073]      1:  0.3761
5175     .                        .                            .
5177     a i x @key{RET}            [ 2 , 1 ] @key{TAB}  V M $ @key{RET}         V R -
5178 @end group
5179 @end smallexample
5181 @noindent
5182 Better!  By increasing the precision and/or asking for more terms
5183 in the Taylor series, we can get a result as accurate as we like.
5184 (Taylor series converge better away from singularities in the
5185 function such as the one at @code{ln(0)}, so it would also help to
5186 expand the series about the points @expr{x=2} or @expr{x=1.5} instead
5187 of @expr{x=1}.)
5189 @cindex Simpson's rule
5190 @cindex Integration by Simpson's rule
5191 (@bullet{}) @strong{Exercise 4.}  Our first method approximated the
5192 curve by stairsteps of width 0.1; the total area was then the sum
5193 of the areas of the rectangles under these stairsteps.  Our second
5194 method approximated the function by a polynomial, which turned out
5195 to be a better approximation than stairsteps.  A third method is
5196 @dfn{Simpson's rule}, which is like the stairstep method except
5197 that the steps are not required to be flat.  Simpson's rule boils
5198 down to the formula,
5200 @ifnottex
5201 @example
5202 (h/3) * (f(a) + 4 f(a+h) + 2 f(a+2h) + 4 f(a+3h) + ...
5203               + 2 f(a+(n-2)*h) + 4 f(a+(n-1)*h) + f(a+n*h))
5204 @end example
5205 @end ifnottex
5206 @tex
5207 \turnoffactive
5208 \beforedisplay
5209 $$ \displaylines{
5210       \qquad {h \over 3} (f(a) + 4 f(a+h) + 2 f(a+2h) + 4 f(a+3h) + \cdots
5211    \hfill \cr \hfill    {} + 2 f(a+(n-2)h) + 4 f(a+(n-1)h) + f(a+n h)) \qquad
5212 } $$
5213 \afterdisplay
5214 @end tex
5216 @noindent
5217 where @expr{n} (which must be even) is the number of slices and @expr{h}
5218 is the width of each slice.  These are 10 and 0.1 in our example.
5219 For reference, here is the corresponding formula for the stairstep
5220 method:
5222 @ifnottex
5223 @example
5224 h * (f(a) + f(a+h) + f(a+2h) + f(a+3h) + ...
5225           + f(a+(n-2)*h) + f(a+(n-1)*h))
5226 @end example
5227 @end ifnottex
5228 @tex
5229 \turnoffactive
5230 \beforedisplay
5231 $$ h (f(a) + f(a+h) + f(a+2h) + f(a+3h) + \cdots
5232            + f(a+(n-2)h) + f(a+(n-1)h)) $$
5233 \afterdisplay
5234 @end tex
5236 Compute the integral from 1 to 2 of 
5237 @texline @math{\sin x \ln x}
5238 @infoline @expr{sin(x) ln(x)} 
5239 using Simpson's rule with 10 slices.  
5240 @xref{Algebra Answer 4, 4}. (@bullet{})
5242 Calc has a built-in @kbd{a I} command for doing numerical integration.
5243 It uses @dfn{Romberg's method}, which is a more sophisticated cousin
5244 of Simpson's rule.  In particular, it knows how to keep refining the
5245 result until the current precision is satisfied.
5247 @c [fix-ref Selecting Sub-Formulas]
5248 Aside from the commands we've seen so far, Calc also provides a
5249 large set of commands for operating on parts of formulas.  You
5250 indicate the desired sub-formula by placing the cursor on any part
5251 of the formula before giving a @dfn{selection} command.  Selections won't
5252 be covered in the tutorial; @pxref{Selecting Subformulas}, for
5253 details and examples.
5255 @c hard exercise: simplify (2^(n r) - 2^(r*(n - 1))) / (2^r - 1) 2^(n - 1)
5256 @c                to 2^((n-1)*(r-1)).
5258 @node Rewrites Tutorial,  , Basic Algebra Tutorial, Algebra Tutorial
5259 @subsection Rewrite Rules
5261 @noindent
5262 No matter how many built-in commands Calc provided for doing algebra,
5263 there would always be something you wanted to do that Calc didn't have
5264 in its repertoire.  So Calc also provides a @dfn{rewrite rule} system
5265 that you can use to define your own algebraic manipulations.
5267 Suppose we want to simplify this trigonometric formula:
5269 @smallexample
5270 @group
5271 1:  1 / cos(x) - sin(x) tan(x)
5272     .
5274     ' 1/cos(x) - sin(x) tan(x) @key{RET}   s 1
5275 @end group
5276 @end smallexample
5278 @noindent
5279 If we were simplifying this by hand, we'd probably replace the
5280 @samp{tan} with a @samp{sin/cos} first, then combine over a common
5281 denominator.  There is no Calc command to do the former; the @kbd{a n}
5282 algebra command will do the latter but we'll do both with rewrite
5283 rules just for practice.
5285 Rewrite rules are written with the @samp{:=} symbol.
5287 @smallexample
5288 @group
5289 1:  1 / cos(x) - sin(x)^2 / cos(x)
5290     .
5292     a r tan(a) := sin(a)/cos(a) @key{RET}
5293 @end group
5294 @end smallexample
5296 @noindent
5297 (The ``assignment operator'' @samp{:=} has several uses in Calc.  All
5298 by itself the formula @samp{tan(a) := sin(a)/cos(a)} doesn't do anything,
5299 but when it is given to the @kbd{a r} command, that command interprets
5300 it as a rewrite rule.)
5302 The lefthand side, @samp{tan(a)}, is called the @dfn{pattern} of the
5303 rewrite rule.  Calc searches the formula on the stack for parts that
5304 match the pattern.  Variables in a rewrite pattern are called
5305 @dfn{meta-variables}, and when matching the pattern each meta-variable
5306 can match any sub-formula.  Here, the meta-variable @samp{a} matched
5307 the actual variable @samp{x}.
5309 When the pattern part of a rewrite rule matches a part of the formula,
5310 that part is replaced by the righthand side with all the meta-variables
5311 substituted with the things they matched.  So the result is
5312 @samp{sin(x) / cos(x)}.  Calc's normal algebraic simplifications then
5313 mix this in with the rest of the original formula.
5315 To merge over a common denominator, we can use another simple rule:
5317 @smallexample
5318 @group
5319 1:  (1 - sin(x)^2) / cos(x)
5320     .
5322     a r a/x + b/x := (a+b)/x @key{RET}
5323 @end group
5324 @end smallexample
5326 This rule points out several interesting features of rewrite patterns.
5327 First, if a meta-variable appears several times in a pattern, it must
5328 match the same thing everywhere.  This rule detects common denominators
5329 because the same meta-variable @samp{x} is used in both of the
5330 denominators.
5332 Second, meta-variable names are independent from variables in the
5333 target formula.  Notice that the meta-variable @samp{x} here matches
5334 the subformula @samp{cos(x)}; Calc never confuses the two meanings of
5335 @samp{x}.
5337 And third, rewrite patterns know a little bit about the algebraic
5338 properties of formulas.  The pattern called for a sum of two quotients;
5339 Calc was able to match a difference of two quotients by matching
5340 @samp{a = 1}, @samp{b = -sin(x)^2}, and @samp{x = cos(x)}.
5342 @c [fix-ref Algebraic Properties of Rewrite Rules]
5343 We could just as easily have written @samp{a/x - b/x := (a-b)/x} for
5344 the rule.  It would have worked just the same in all cases.  (If we
5345 really wanted the rule to apply only to @samp{+} or only to @samp{-},
5346 we could have used the @code{plain} symbol.  @xref{Algebraic Properties
5347 of Rewrite Rules}, for some examples of this.)
5349 One more rewrite will complete the job.  We want to use the identity
5350 @samp{sin(x)^2 + cos(x)^2 = 1}, but of course we must first rearrange
5351 the identity in a way that matches our formula.  The obvious rule
5352 would be @samp{@w{1 - sin(x)^2} := cos(x)^2}, but a little thought shows
5353 that the rule @samp{sin(x)^2 := 1 - cos(x)^2} will also work.  The
5354 latter rule has a more general pattern so it will work in many other
5355 situations, too.
5357 @smallexample
5358 @group
5359 1:  (1 + cos(x)^2 - 1) / cos(x)           1:  cos(x)
5360     .                                         .
5362     a r sin(x)^2 := 1 - cos(x)^2 @key{RET}          a s
5363 @end group
5364 @end smallexample
5366 You may ask, what's the point of using the most general rule if you
5367 have to type it in every time anyway?  The answer is that Calc allows
5368 you to store a rewrite rule in a variable, then give the variable
5369 name in the @kbd{a r} command.  In fact, this is the preferred way to
5370 use rewrites.  For one, if you need a rule once you'll most likely
5371 need it again later.  Also, if the rule doesn't work quite right you
5372 can simply Undo, edit the variable, and run the rule again without
5373 having to retype it.
5375 @smallexample
5376 @group
5377 ' tan(x) := sin(x)/cos(x) @key{RET}      s t tsc @key{RET}
5378 ' a/x + b/x := (a+b)/x @key{RET}         s t merge @key{RET}
5379 ' sin(x)^2 := 1 - cos(x)^2 @key{RET}     s t sinsqr @key{RET}
5381 1:  1 / cos(x) - sin(x) tan(x)     1:  cos(x)
5382     .                                  .
5384     r 1                a r tsc @key{RET}  a r merge @key{RET}  a r sinsqr @key{RET}  a s
5385 @end group
5386 @end smallexample
5388 To edit a variable, type @kbd{s e} and the variable name, use regular
5389 Emacs editing commands as necessary, then type @kbd{C-c C-c} to store
5390 the edited value back into the variable. 
5391 You can also use @w{@kbd{s e}} to create a new variable if you wish.
5393 Notice that the first time you use each rule, Calc puts up a ``compiling''
5394 message briefly.  The pattern matcher converts rules into a special
5395 optimized pattern-matching language rather than using them directly.
5396 This allows @kbd{a r} to apply even rather complicated rules very
5397 efficiently.  If the rule is stored in a variable, Calc compiles it
5398 only once and stores the compiled form along with the variable.  That's
5399 another good reason to store your rules in variables rather than
5400 entering them on the fly.
5402 (@bullet{}) @strong{Exercise 1.}  Type @kbd{m s} to get Symbolic
5403 mode, then enter the formula @samp{@w{(2 + sqrt(2))} / @w{(1 + sqrt(2))}}.
5404 Using a rewrite rule, simplify this formula by multiplying the top and
5405 bottom by the conjugate @w{@samp{1 - sqrt(2)}}.  The result will have
5406 to be expanded by the distributive law; do this with another
5407 rewrite.  @xref{Rewrites Answer 1, 1}. (@bullet{})
5409 The @kbd{a r} command can also accept a vector of rewrite rules, or
5410 a variable containing a vector of rules.
5412 @smallexample
5413 @group
5414 1:  [tsc, merge, sinsqr]          1:  [tan(x) := sin(x) / cos(x), ... ]
5415     .                                 .
5417     ' [tsc,merge,sinsqr] @key{RET}          =
5419 @end group
5420 @end smallexample
5421 @noindent
5422 @smallexample
5423 @group
5424 1:  1 / cos(x) - sin(x) tan(x)    1:  cos(x)
5425     .                                 .
5427     s t trig @key{RET}  r 1                 a r trig @key{RET}  a s
5428 @end group
5429 @end smallexample
5431 @c [fix-ref Nested Formulas with Rewrite Rules]
5432 Calc tries all the rules you give against all parts of the formula,
5433 repeating until no further change is possible.  (The exact order in
5434 which things are tried is rather complex, but for simple rules like
5435 the ones we've used here the order doesn't really matter.
5436 @xref{Nested Formulas with Rewrite Rules}.)
5438 Calc actually repeats only up to 100 times, just in case your rule set
5439 has gotten into an infinite loop.  You can give a numeric prefix argument
5440 to @kbd{a r} to specify any limit.  In particular, @kbd{M-1 a r} does
5441 only one rewrite at a time.
5443 @smallexample
5444 @group
5445 1:  1 / cos(x) - sin(x)^2 / cos(x)    1:  (1 - sin(x)^2) / cos(x)
5446     .                                     .
5448     r 1  M-1 a r trig @key{RET}                 M-1 a r trig @key{RET}
5449 @end group
5450 @end smallexample
5452 You can type @kbd{M-0 a r} if you want no limit at all on the number
5453 of rewrites that occur.
5455 Rewrite rules can also be @dfn{conditional}.  Simply follow the rule
5456 with a @samp{::} symbol and the desired condition.  For example,
5458 @smallexample
5459 @group
5460 1:  exp(2 pi i) + exp(3 pi i) + exp(4 pi i)
5461     .
5463     ' exp(2 pi i) + exp(3 pi i) + exp(4 pi i) @key{RET}
5465 @end group
5466 @end smallexample
5467 @noindent
5468 @smallexample
5469 @group
5470 1:  1 + exp(3 pi i) + 1
5471     .
5473     a r exp(k pi i) := 1 :: k % 2 = 0 @key{RET}
5474 @end group
5475 @end smallexample
5477 @noindent
5478 (Recall, @samp{k % 2} is the remainder from dividing @samp{k} by 2,
5479 which will be zero only when @samp{k} is an even integer.)
5481 An interesting point is that the variables @samp{pi} and @samp{i}
5482 were matched literally rather than acting as meta-variables.
5483 This is because they are special-constant variables.  The special
5484 constants @samp{e}, @samp{phi}, and so on also match literally.
5485 A common error with rewrite
5486 rules is to write, say, @samp{f(a,b,c,d,e) := g(a+b+c+d+e)}, expecting
5487 to match any @samp{f} with five arguments but in fact matching
5488 only when the fifth argument is literally @samp{e}!
5490 @cindex Fibonacci numbers
5491 @ignore
5492 @starindex
5493 @end ignore
5494 @tindex fib
5495 Rewrite rules provide an interesting way to define your own functions.
5496 Suppose we want to define @samp{fib(n)} to produce the @var{n}th
5497 Fibonacci number.  The first two Fibonacci numbers are each 1;
5498 later numbers are formed by summing the two preceding numbers in
5499 the sequence.  This is easy to express in a set of three rules:
5501 @smallexample
5502 @group
5503 ' [fib(1) := 1, fib(2) := 1, fib(n) := fib(n-1) + fib(n-2)] @key{RET}  s t fib
5505 1:  fib(7)               1:  13
5506     .                        .
5508     ' fib(7) @key{RET}             a r fib @key{RET}
5509 @end group
5510 @end smallexample
5512 One thing that is guaranteed about the order that rewrites are tried
5513 is that, for any given subformula, earlier rules in the rule set will
5514 be tried for that subformula before later ones.  So even though the
5515 first and third rules both match @samp{fib(1)}, we know the first will
5516 be used preferentially.
5518 This rule set has one dangerous bug:  Suppose we apply it to the
5519 formula @samp{fib(x)}?  (Don't actually try this.)  The third rule
5520 will match @samp{fib(x)} and replace it with @w{@samp{fib(x-1) + fib(x-2)}}.
5521 Each of these will then be replaced to get @samp{fib(x-2) + 2 fib(x-3) +
5522 fib(x-4)}, and so on, expanding forever.  What we really want is to apply
5523 the third rule only when @samp{n} is an integer greater than two.  Type
5524 @w{@kbd{s e fib @key{RET}}}, then edit the third rule to:
5526 @smallexample
5527 fib(n) := fib(n-1) + fib(n-2) :: integer(n) :: n > 2
5528 @end smallexample
5530 @noindent
5531 Now:
5533 @smallexample
5534 @group
5535 1:  fib(6) + fib(x) + fib(0)      1:  8 + fib(x) + fib(0)
5536     .                                 .
5538     ' fib(6)+fib(x)+fib(0) @key{RET}        a r fib @key{RET}
5539 @end group
5540 @end smallexample
5542 @noindent
5543 We've created a new function, @code{fib}, and a new command,
5544 @w{@kbd{a r fib @key{RET}}}, which means ``evaluate all @code{fib} calls in
5545 this formula.''  To make things easier still, we can tell Calc to
5546 apply these rules automatically by storing them in the special
5547 variable @code{EvalRules}.
5549 @smallexample
5550 @group
5551 1:  [fib(1) := ...]    .                1:  [8, 13]
5552     .                                       .
5554     s r fib @key{RET}        s t EvalRules @key{RET}    ' [fib(6), fib(7)] @key{RET}
5555 @end group
5556 @end smallexample
5558 It turns out that this rule set has the problem that it does far
5559 more work than it needs to when @samp{n} is large.  Consider the
5560 first few steps of the computation of @samp{fib(6)}:
5562 @smallexample
5563 @group
5564 fib(6) =
5565 fib(5)              +               fib(4) =
5566 fib(4)     +      fib(3)     +      fib(3)     +      fib(2) =
5567 fib(3) + fib(2) + fib(2) + fib(1) + fib(2) + fib(1) + 1 = ...
5568 @end group
5569 @end smallexample
5571 @noindent
5572 Note that @samp{fib(3)} appears three times here.  Unless Calc's
5573 algebraic simplifier notices the multiple @samp{fib(3)}s and combines
5574 them (and, as it happens, it doesn't), this rule set does lots of
5575 needless recomputation.  To cure the problem, type @code{s e EvalRules}
5576 to edit the rules (or just @kbd{s E}, a shorthand command for editing
5577 @code{EvalRules}) and add another condition:
5579 @smallexample
5580 fib(n) := fib(n-1) + fib(n-2) :: integer(n) :: n > 2 :: remember
5581 @end smallexample
5583 @noindent
5584 If a @samp{:: remember} condition appears anywhere in a rule, then if
5585 that rule succeeds Calc will add another rule that describes that match
5586 to the front of the rule set.  (Remembering works in any rule set, but
5587 for technical reasons it is most effective in @code{EvalRules}.)  For
5588 example, if the rule rewrites @samp{fib(7)} to something that evaluates
5589 to 13, then the rule @samp{fib(7) := 13} will be added to the rule set.
5591 Type @kbd{' fib(8) @key{RET}} to compute the eighth Fibonacci number, then
5592 type @kbd{s E} again to see what has happened to the rule set.
5594 With the @code{remember} feature, our rule set can now compute
5595 @samp{fib(@var{n})} in just @var{n} steps.  In the process it builds
5596 up a table of all Fibonacci numbers up to @var{n}.  After we have
5597 computed the result for a particular @var{n}, we can get it back
5598 (and the results for all smaller @var{n}) later in just one step.
5600 All Calc operations will run somewhat slower whenever @code{EvalRules}
5601 contains any rules.  You should type @kbd{s u EvalRules @key{RET}} now to
5602 un-store the variable.
5604 (@bullet{}) @strong{Exercise 2.}  Sometimes it is possible to reformulate
5605 a problem to reduce the amount of recursion necessary to solve it.
5606 Create a rule that, in about @var{n} simple steps and without recourse
5607 to the @code{remember} option, replaces @samp{fib(@var{n}, 1, 1)} with
5608 @samp{fib(1, @var{x}, @var{y})} where @var{x} and @var{y} are the
5609 @var{n}th and @var{n+1}st Fibonacci numbers, respectively.  This rule is
5610 rather clunky to use, so add a couple more rules to make the ``user
5611 interface'' the same as for our first version: enter @samp{fib(@var{n})},
5612 get back a plain number.  @xref{Rewrites Answer 2, 2}. (@bullet{})
5614 There are many more things that rewrites can do.  For example, there
5615 are @samp{&&&} and @samp{|||} pattern operators that create ``and''
5616 and ``or'' combinations of rules.  As one really simple example, we
5617 could combine our first two Fibonacci rules thusly:
5619 @example
5620 [fib(1 ||| 2) := 1, fib(n) := ... ]
5621 @end example
5623 @noindent
5624 That means ``@code{fib} of something matching either 1 or 2 rewrites
5625 to 1.''
5627 You can also make meta-variables optional by enclosing them in @code{opt}.
5628 For example, the pattern @samp{a + b x} matches @samp{2 + 3 x} but not
5629 @samp{2 + x} or @samp{3 x} or @samp{x}.  The pattern @samp{opt(a) + opt(b) x}
5630 matches all of these forms, filling in a default of zero for @samp{a}
5631 and one for @samp{b}.
5633 (@bullet{}) @strong{Exercise 3.}  Your friend Joe had @samp{2 + 3 x}
5634 on the stack and tried to use the rule
5635 @samp{opt(a) + opt(b) x := f(a, b, x)}.  What happened?
5636 @xref{Rewrites Answer 3, 3}. (@bullet{})
5638 (@bullet{}) @strong{Exercise 4.}  Starting with a positive integer @expr{a},
5639 divide @expr{a} by two if it is even, otherwise compute @expr{3 a + 1}.
5640 Now repeat this step over and over.  A famous unproved conjecture
5641 is that for any starting @expr{a}, the sequence always eventually
5642 reaches 1.  Given the formula @samp{seq(@var{a}, 0)}, write a set of
5643 rules that convert this into @samp{seq(1, @var{n})} where @var{n}
5644 is the number of steps it took the sequence to reach the value 1.
5645 Now enhance the rules to accept @samp{seq(@var{a})} as a starting
5646 configuration, and to stop with just the number @var{n} by itself.
5647 Now make the result be a vector of values in the sequence, from @var{a}
5648 to 1.  (The formula @samp{@var{x}|@var{y}} appends the vectors @var{x}
5649 and @var{y}.)  For example, rewriting @samp{seq(6)} should yield the
5650 vector @expr{[6, 3, 10, 5, 16, 8, 4, 2, 1]}.
5651 @xref{Rewrites Answer 4, 4}. (@bullet{})
5653 (@bullet{}) @strong{Exercise 5.}  Define, using rewrite rules, a function
5654 @samp{nterms(@var{x})} that returns the number of terms in the sum
5655 @var{x}, or 1 if @var{x} is not a sum.  (A @dfn{sum} for our purposes
5656 is one or more non-sum terms separated by @samp{+} or @samp{-} signs,
5657 so that @expr{2 - 3 (x + y) + x y} is a sum of three terms.)
5658 @xref{Rewrites Answer 5, 5}. (@bullet{})
5660 (@bullet{}) @strong{Exercise 6.}  A Taylor series for a function is an
5661 infinite series that exactly equals the value of that function at
5662 values of @expr{x} near zero.
5664 @ifnottex
5665 @example
5666 cos(x) = 1 - x^2 / 2! + x^4 / 4! - x^6 / 6! + ...
5667 @end example
5668 @end ifnottex
5669 @tex
5670 \turnoffactive
5671 \beforedisplay
5672 $$ \cos x = 1 - {x^2 \over 2!} + {x^4 \over 4!} - {x^6 \over 6!} + \cdots $$
5673 \afterdisplay
5674 @end tex
5676 The @kbd{a t} command produces a @dfn{truncated Taylor series} which
5677 is obtained by dropping all the terms higher than, say, @expr{x^2}.
5678 Calc represents the truncated Taylor series as a polynomial in @expr{x}.
5679 Mathematicians often write a truncated series using a ``big-O'' notation
5680 that records what was the lowest term that was truncated.
5682 @ifnottex
5683 @example
5684 cos(x) = 1 - x^2 / 2! + O(x^3)
5685 @end example
5686 @end ifnottex
5687 @tex
5688 \turnoffactive
5689 \beforedisplay
5690 $$ \cos x = 1 - {x^2 \over 2!} + O(x^3) $$
5691 \afterdisplay
5692 @end tex
5694 @noindent
5695 The meaning of @expr{O(x^3)} is ``a quantity which is negligibly small
5696 if @expr{x^3} is considered negligibly small as @expr{x} goes to zero.''
5698 The exercise is to create rewrite rules that simplify sums and products of
5699 power series represented as @samp{@var{polynomial} + O(@var{var}^@var{n})}.
5700 For example, given @samp{1 - x^2 / 2 + O(x^3)} and @samp{x - x^3 / 6 + O(x^4)}
5701 on the stack, we want to be able to type @kbd{*} and get the result
5702 @samp{x - 2:3 x^3 + O(x^4)}.  Don't worry if the terms of the sum are
5703 rearranged or if @kbd{a s} needs to be typed after rewriting.  (This one
5704 is rather tricky; the solution at the end of this chapter uses 6 rewrite
5705 rules.  Hint:  The @samp{constant(x)} condition tests whether @samp{x} is
5706 a number.)  @xref{Rewrites Answer 6, 6}. (@bullet{})
5708 Just for kicks, try adding the rule @code{2+3 := 6} to @code{EvalRules}.
5709 What happens?  (Be sure to remove this rule afterward, or you might get
5710 a nasty surprise when you use Calc to balance your checkbook!)
5712 @xref{Rewrite Rules}, for the whole story on rewrite rules.
5714 @node Programming Tutorial, Answers to Exercises, Algebra Tutorial, Tutorial
5715 @section Programming Tutorial
5717 @noindent
5718 The Calculator is written entirely in Emacs Lisp, a highly extensible
5719 language.  If you know Lisp, you can program the Calculator to do
5720 anything you like.  Rewrite rules also work as a powerful programming
5721 system.  But Lisp and rewrite rules take a while to master, and often
5722 all you want to do is define a new function or repeat a command a few
5723 times.  Calc has features that allow you to do these things easily.
5725 One very limited form of programming is defining your own functions.
5726 Calc's @kbd{Z F} command allows you to define a function name and
5727 key sequence to correspond to any formula.  Programming commands use
5728 the shift-@kbd{Z} prefix; the user commands they create use the lower
5729 case @kbd{z} prefix.
5731 @smallexample
5732 @group
5733 1:  1 + x + x^2 / 2 + x^3 / 6         1:  1 + x + x^2 / 2 + x^3 / 6
5734     .                                     .
5736     ' 1 + x + x^2/2! + x^3/3! @key{RET}         Z F e myexp @key{RET} @key{RET} @key{RET} y
5737 @end group
5738 @end smallexample
5740 This polynomial is a Taylor series approximation to @samp{exp(x)}.
5741 The @kbd{Z F} command asks a number of questions.  The above answers
5742 say that the key sequence for our function should be @kbd{z e}; the
5743 @kbd{M-x} equivalent should be @code{calc-myexp}; the name of the
5744 function in algebraic formulas should also be @code{myexp}; the
5745 default argument list @samp{(x)} is acceptable; and finally @kbd{y}
5746 answers the question ``leave it in symbolic form for non-constant
5747 arguments?''
5749 @smallexample
5750 @group
5751 1:  1.3495     2:  1.3495     3:  1.3495
5752     .          1:  1.34986    2:  1.34986
5753                    .          1:  myexp(a + 1)
5754                                   .
5756     .3 z e         .3 E           ' a+1 @key{RET} z e
5757 @end group
5758 @end smallexample
5760 @noindent
5761 First we call our new @code{exp} approximation with 0.3 as an
5762 argument, and compare it with the true @code{exp} function.  Then
5763 we note that, as requested, if we try to give @kbd{z e} an
5764 argument that isn't a plain number, it leaves the @code{myexp}
5765 function call in symbolic form.  If we had answered @kbd{n} to the
5766 final question, @samp{myexp(a + 1)} would have evaluated by plugging
5767 in @samp{a + 1} for @samp{x} in the defining formula.
5769 @cindex Sine integral Si(x)
5770 @ignore
5771 @starindex
5772 @end ignore
5773 @tindex Si
5774 (@bullet{}) @strong{Exercise 1.}  The ``sine integral'' function
5775 @texline @math{{\rm Si}(x)}
5776 @infoline @expr{Si(x)} 
5777 is defined as the integral of @samp{sin(t)/t} for
5778 @expr{t = 0} to @expr{x} in radians.  (It was invented because this
5779 integral has no solution in terms of basic functions; if you give it
5780 to Calc's @kbd{a i} command, it will ponder it for a long time and then
5781 give up.)  We can use the numerical integration command, however,
5782 which in algebraic notation is written like @samp{ninteg(f(t), t, 0, x)}
5783 with any integrand @samp{f(t)}.  Define a @kbd{z s} command and
5784 @code{Si} function that implement this.  You will need to edit the
5785 default argument list a bit.  As a test, @samp{Si(1)} should return
5786 0.946083. (If you don't get this answer, you might want to check that
5787 Calc is in Radians mode.  Also, @code{ninteg} will run a lot faster if
5788 you reduce the precision to, say, six digits beforehand.)
5789 @xref{Programming Answer 1, 1}. (@bullet{})
5791 The simplest way to do real ``programming'' of Emacs is to define a
5792 @dfn{keyboard macro}.  A keyboard macro is simply a sequence of
5793 keystrokes which Emacs has stored away and can play back on demand.
5794 For example, if you find yourself typing @kbd{H a S x @key{RET}} often,
5795 you may wish to program a keyboard macro to type this for you.
5797 @smallexample
5798 @group
5799 1:  y = sqrt(x)          1:  x = y^2
5800     .                        .
5802     ' y=sqrt(x) @key{RET}       C-x ( H a S x @key{RET} C-x )
5804 1:  y = cos(x)           1:  x = s1 arccos(y) + 2 pi n1
5805     .                        .
5807     ' y=cos(x) @key{RET}           X
5808 @end group
5809 @end smallexample
5811 @noindent
5812 When you type @kbd{C-x (}, Emacs begins recording.  But it is also
5813 still ready to execute your keystrokes, so you're really ``training''
5814 Emacs by walking it through the procedure once.  When you type
5815 @w{@kbd{C-x )}}, the macro is recorded.  You can now type @kbd{X} to
5816 re-execute the same keystrokes.
5818 You can give a name to your macro by typing @kbd{Z K}.
5820 @smallexample
5821 @group
5822 1:  .              1:  y = x^4         1:  x = s2 sqrt(s1 sqrt(y))
5823                        .                   .
5825   Z K x @key{RET}            ' y=x^4 @key{RET}         z x
5826 @end group
5827 @end smallexample
5829 @noindent
5830 Notice that we use shift-@kbd{Z} to define the command, and lower-case
5831 @kbd{z} to call it up.
5833 Keyboard macros can call other macros.
5835 @smallexample
5836 @group
5837 1:  abs(x)        1:  x = s1 y                1:  2 / x    1:  x = 2 / y
5838     .                 .                           .            .
5840  ' abs(x) @key{RET}   C-x ( ' y @key{RET} a = z x C-x )    ' 2/x @key{RET}       X
5841 @end group
5842 @end smallexample
5844 (@bullet{}) @strong{Exercise 2.}  Define a keyboard macro to negate
5845 the item in level 3 of the stack, without disturbing the rest of
5846 the stack.  @xref{Programming Answer 2, 2}. (@bullet{})
5848 (@bullet{}) @strong{Exercise 3.}  Define keyboard macros to compute
5849 the following functions:
5851 @enumerate
5852 @item
5853 Compute 
5854 @texline @math{\displaystyle{\sin x \over x}},
5855 @infoline @expr{sin(x) / x}, 
5856 where @expr{x} is the number on the top of the stack.
5858 @item
5859 Compute the base-@expr{b} logarithm, just like the @kbd{B} key except
5860 the arguments are taken in the opposite order.
5862 @item
5863 Produce a vector of integers from 1 to the integer on the top of
5864 the stack.
5865 @end enumerate
5866 @noindent
5867 @xref{Programming Answer 3, 3}. (@bullet{})
5869 (@bullet{}) @strong{Exercise 4.}  Define a keyboard macro to compute
5870 the average (mean) value of a list of numbers.
5871 @xref{Programming Answer 4, 4}. (@bullet{})
5873 In many programs, some of the steps must execute several times.
5874 Calc has @dfn{looping} commands that allow this.  Loops are useful
5875 inside keyboard macros, but actually work at any time.
5877 @smallexample
5878 @group
5879 1:  x^6          2:  x^6        1: 360 x^2
5880     .            1:  4             .
5881                      .
5883   ' x^6 @key{RET}          4         Z < a d x @key{RET} Z >
5884 @end group
5885 @end smallexample
5887 @noindent
5888 Here we have computed the fourth derivative of @expr{x^6} by
5889 enclosing a derivative command in a ``repeat loop'' structure.
5890 This structure pops a repeat count from the stack, then
5891 executes the body of the loop that many times.
5893 If you make a mistake while entering the body of the loop,
5894 type @w{@kbd{Z C-g}} to cancel the loop command.
5896 @cindex Fibonacci numbers
5897 Here's another example:
5899 @smallexample
5900 @group
5901 3:  1               2:  10946
5902 2:  1               1:  17711
5903 1:  20                  .
5904     .
5906 1 @key{RET} @key{RET} 20       Z < @key{TAB} C-j + Z >
5907 @end group
5908 @end smallexample
5910 @noindent
5911 The numbers in levels 2 and 1 should be the 21st and 22nd Fibonacci
5912 numbers, respectively.  (To see what's going on, try a few repetitions
5913 of the loop body by hand; @kbd{C-j}, also on the Line-Feed or @key{LFD}
5914 key if you have one, makes a copy of the number in level 2.)
5916 @cindex Golden ratio
5917 @cindex Phi, golden ratio
5918 A fascinating property of the Fibonacci numbers is that the @expr{n}th
5919 Fibonacci number can be found directly by computing 
5920 @texline @math{\phi^n / \sqrt{5}}
5921 @infoline @expr{phi^n / sqrt(5)}
5922 and then rounding to the nearest integer, where 
5923 @texline @math{\phi} (``phi''),
5924 @infoline @expr{phi}, 
5925 the ``golden ratio,'' is 
5926 @texline @math{(1 + \sqrt{5}) / 2}.
5927 @infoline @expr{(1 + sqrt(5)) / 2}. 
5928 (For convenience, this constant is available from the @code{phi}
5929 variable, or the @kbd{I H P} command.)
5931 @smallexample
5932 @group
5933 1:  1.61803         1:  24476.0000409    1:  10945.9999817    1:  10946
5934     .                   .                    .                    .
5936     I H P               21 ^                 5 Q /                R
5937 @end group
5938 @end smallexample
5940 @cindex Continued fractions
5941 (@bullet{}) @strong{Exercise 5.}  The @dfn{continued fraction}
5942 representation of 
5943 @texline @math{\phi}
5944 @infoline @expr{phi} 
5945 is 
5946 @texline @math{1 + 1/(1 + 1/(1 + 1/( \ldots )))}.
5947 @infoline @expr{1 + 1/(1 + 1/(1 + 1/( ...@: )))}.
5948 We can compute an approximate value by carrying this however far
5949 and then replacing the innermost 
5950 @texline @math{1/( \ldots )}
5951 @infoline @expr{1/( ...@: )} 
5952 by 1.  Approximate
5953 @texline @math{\phi}
5954 @infoline @expr{phi} 
5955 using a twenty-term continued fraction.
5956 @xref{Programming Answer 5, 5}. (@bullet{})
5958 (@bullet{}) @strong{Exercise 6.}  Linear recurrences like the one for
5959 Fibonacci numbers can be expressed in terms of matrices.  Given a
5960 vector @w{@expr{[a, b]}} determine a matrix which, when multiplied by this
5961 vector, produces the vector @expr{[b, c]}, where @expr{a}, @expr{b} and
5962 @expr{c} are three successive Fibonacci numbers.  Now write a program
5963 that, given an integer @expr{n}, computes the @expr{n}th Fibonacci number
5964 using matrix arithmetic.  @xref{Programming Answer 6, 6}. (@bullet{})
5966 @cindex Harmonic numbers
5967 A more sophisticated kind of loop is the @dfn{for} loop.  Suppose
5968 we wish to compute the 20th ``harmonic'' number, which is equal to
5969 the sum of the reciprocals of the integers from 1 to 20.
5971 @smallexample
5972 @group
5973 3:  0               1:  3.597739
5974 2:  1                   .
5975 1:  20
5976     .
5978 0 @key{RET} 1 @key{RET} 20         Z ( & + 1 Z )
5979 @end group
5980 @end smallexample
5982 @noindent
5983 The ``for'' loop pops two numbers, the lower and upper limits, then
5984 repeats the body of the loop as an internal counter increases from
5985 the lower limit to the upper one.  Just before executing the loop
5986 body, it pushes the current loop counter.  When the loop body
5987 finishes, it pops the ``step,'' i.e., the amount by which to
5988 increment the loop counter.  As you can see, our loop always
5989 uses a step of one.
5991 This harmonic number function uses the stack to hold the running
5992 total as well as for the various loop housekeeping functions.  If
5993 you find this disorienting, you can sum in a variable instead:
5995 @smallexample
5996 @group
5997 1:  0         2:  1                  .            1:  3.597739
5998     .         1:  20                                  .
5999                   .
6001     0 t 7       1 @key{RET} 20      Z ( & s + 7 1 Z )       r 7
6002 @end group
6003 @end smallexample
6005 @noindent
6006 The @kbd{s +} command adds the top-of-stack into the value in a
6007 variable (and removes that value from the stack).
6009 It's worth noting that many jobs that call for a ``for'' loop can
6010 also be done more easily by Calc's high-level operations.  Two
6011 other ways to compute harmonic numbers are to use vector mapping
6012 and reduction (@kbd{v x 20}, then @w{@kbd{V M &}}, then @kbd{V R +}),
6013 or to use the summation command @kbd{a +}.  Both of these are
6014 probably easier than using loops.  However, there are some
6015 situations where loops really are the way to go:
6017 (@bullet{}) @strong{Exercise 7.}  Use a ``for'' loop to find the first
6018 harmonic number which is greater than 4.0.
6019 @xref{Programming Answer 7, 7}. (@bullet{})
6021 Of course, if we're going to be using variables in our programs,
6022 we have to worry about the programs clobbering values that the
6023 caller was keeping in those same variables.  This is easy to
6024 fix, though:
6026 @smallexample
6027 @group
6028     .        1:  0.6667       1:  0.6667     3:  0.6667
6029                  .                .          2:  3.597739
6030                                              1:  0.6667
6031                                                  .
6033    Z `    p 4 @key{RET} 2 @key{RET} 3 /   s 7 s s a @key{RET}    Z '  r 7 s r a @key{RET}
6034 @end group
6035 @end smallexample
6037 @noindent
6038 When we type @kbd{Z `} (that's a back-quote character), Calc saves
6039 its mode settings and the contents of the ten ``quick variables''
6040 for later reference.  When we type @kbd{Z '} (that's an apostrophe
6041 now), Calc restores those saved values.  Thus the @kbd{p 4} and
6042 @kbd{s 7} commands have no effect outside this sequence.  Wrapping
6043 this around the body of a keyboard macro ensures that it doesn't
6044 interfere with what the user of the macro was doing.  Notice that
6045 the contents of the stack, and the values of named variables,
6046 survive past the @kbd{Z '} command.
6048 @cindex Bernoulli numbers, approximate
6049 The @dfn{Bernoulli numbers} are a sequence with the interesting
6050 property that all of the odd Bernoulli numbers are zero, and the
6051 even ones, while difficult to compute, can be roughly approximated
6052 by the formula 
6053 @texline @math{\displaystyle{2 n! \over (2 \pi)^n}}.
6054 @infoline @expr{2 n!@: / (2 pi)^n}.  
6055 Let's write a keyboard macro to compute (approximate) Bernoulli numbers.
6056 (Calc has a command, @kbd{k b}, to compute exact Bernoulli numbers, but
6057 this command is very slow for large @expr{n} since the higher Bernoulli
6058 numbers are very large fractions.)
6060 @smallexample
6061 @group
6062 1:  10               1:  0.0756823
6063     .                    .
6065     10     C-x ( @key{RET} 2 % Z [ @key{DEL} 0 Z : ' 2 $! / (2 pi)^$ @key{RET} = Z ] C-x )
6066 @end group
6067 @end smallexample
6069 @noindent
6070 You can read @kbd{Z [} as ``then,'' @kbd{Z :} as ``else,'' and
6071 @kbd{Z ]} as ``end-if.''  There is no need for an explicit ``if''
6072 command.  For the purposes of @w{@kbd{Z [}}, the condition is ``true''
6073 if the value it pops from the stack is a nonzero number, or ``false''
6074 if it pops zero or something that is not a number (like a formula).
6075 Here we take our integer argument modulo 2; this will be nonzero
6076 if we're asking for an odd Bernoulli number.
6078 The actual tenth Bernoulli number is @expr{5/66}.
6080 @smallexample
6081 @group
6082 3:  0.0756823    1:  0          1:  0.25305    1:  0          1:  1.16659
6083 2:  5:66             .              .              .              .
6084 1:  0.0757575
6085     .
6087 10 k b @key{RET} c f   M-0 @key{DEL} 11 X   @key{DEL} 12 X       @key{DEL} 13 X       @key{DEL} 14 X
6088 @end group
6089 @end smallexample
6091 Just to exercise loops a bit more, let's compute a table of even
6092 Bernoulli numbers.
6094 @smallexample
6095 @group
6096 3:  []             1:  [0.10132, 0.03079, 0.02340, 0.033197, ...]
6097 2:  2                  .
6098 1:  30
6099     .
6101  [ ] 2 @key{RET} 30          Z ( X | 2 Z )
6102 @end group
6103 @end smallexample
6105 @noindent
6106 The vertical-bar @kbd{|} is the vector-concatenation command.  When
6107 we execute it, the list we are building will be in stack level 2
6108 (initially this is an empty list), and the next Bernoulli number
6109 will be in level 1.  The effect is to append the Bernoulli number
6110 onto the end of the list.  (To create a table of exact fractional
6111 Bernoulli numbers, just replace @kbd{X} with @kbd{k b} in the above
6112 sequence of keystrokes.)
6114 With loops and conditionals, you can program essentially anything
6115 in Calc.  One other command that makes looping easier is @kbd{Z /},
6116 which takes a condition from the stack and breaks out of the enclosing
6117 loop if the condition is true (non-zero).  You can use this to make
6118 ``while'' and ``until'' style loops.
6120 If you make a mistake when entering a keyboard macro, you can edit
6121 it using @kbd{Z E}.  First, you must attach it to a key with @kbd{Z K}.
6122 One technique is to enter a throwaway dummy definition for the macro,
6123 then enter the real one in the edit command.
6125 @smallexample
6126 @group
6127 1:  3                   1:  3           Calc Macro Edit Mode.
6128     .                       .           Original keys: 1 <return> 2 +
6130                                         1                          ;; calc digits
6131                                         RET                        ;; calc-enter
6132                                         2                          ;; calc digits
6133                                         +                          ;; calc-plus
6135 C-x ( 1 @key{RET} 2 + C-x )    Z K h @key{RET}      Z E h
6136 @end group
6137 @end smallexample
6139 @noindent
6140 A keyboard macro is stored as a pure keystroke sequence.  The
6141 @file{edmacro} package (invoked by @kbd{Z E}) scans along the
6142 macro and tries to decode it back into human-readable steps.
6143 Descriptions of the keystrokes are given as comments, which begin with
6144 @samp{;;}, and which are ignored when the edited macro is saved.
6145 Spaces and line breaks are also ignored when the edited macro is saved.
6146 To enter a space into the macro, type @code{SPC}.  All the special
6147 characters @code{RET}, @code{LFD}, @code{TAB}, @code{SPC}, @code{DEL},
6148 and @code{NUL} must be written in all uppercase, as must the prefixes
6149 @code{C-} and @code{M-}.
6151 Let's edit in a new definition, for computing harmonic numbers.
6152 First, erase the four lines of the old definition.  Then, type
6153 in the new definition (or use Emacs @kbd{M-w} and @kbd{C-y} commands
6154 to copy it from this page of the Info file; you can of course skip
6155 typing the comments, which begin with @samp{;;}).
6157 @smallexample
6158 Z`                      ;; calc-kbd-push     (Save local values)
6159 0                       ;; calc digits       (Push a zero onto the stack)
6160 st                      ;; calc-store-into   (Store it in the following variable)
6161 1                       ;; calc quick variable  (Quick variable q1)
6162 1                       ;; calc digits       (Initial value for the loop) 
6163 TAB                     ;; calc-roll-down    (Swap initial and final)
6164 Z(                      ;; calc-kbd-for      (Begin the "for" loop)
6165 &                       ;; calc-inv          (Take the reciprocal)
6166 s+                      ;; calc-store-plus   (Add to the following variable)
6167 1                       ;; calc quick variable  (Quick variable q1)
6168 1                       ;; calc digits       (The loop step is 1)
6169 Z)                      ;; calc-kbd-end-for  (End the "for" loop)
6170 sr                      ;; calc-recall       (Recall the final accumulated value)
6171 1                       ;; calc quick variable (Quick variable q1)
6172 Z'                      ;; calc-kbd-pop      (Restore values)
6173 @end smallexample
6175 @noindent
6176 Press @kbd{C-c C-c} to finish editing and return to the Calculator.
6178 @smallexample
6179 @group
6180 1:  20         1:  3.597739
6181     .              .
6183     20             z h
6184 @end group
6185 @end smallexample
6187 The @file{edmacro} package defines a handy @code{read-kbd-macro} command
6188 which reads the current region of the current buffer as a sequence of
6189 keystroke names, and defines that sequence on the @kbd{X} 
6190 (and @kbd{C-x e}) key.  Because this is so useful, Calc puts this
6191 command on the @kbd{C-x * m} key.  Try reading in this macro in the
6192 following form:  Press @kbd{C-@@} (or @kbd{C-@key{SPC}}) at 
6193 one end of the text below, then type @kbd{C-x * m} at the other.
6195 @example
6196 @group
6197 Z ` 0 t 1
6198     1 TAB
6199     Z (  & s + 1  1 Z )
6200     r 1
6201 Z '
6202 @end group
6203 @end example
6205 (@bullet{}) @strong{Exercise 8.}  A general algorithm for solving
6206 equations numerically is @dfn{Newton's Method}.  Given the equation
6207 @expr{f(x) = 0} for any function @expr{f}, and an initial guess
6208 @expr{x_0} which is reasonably close to the desired solution, apply
6209 this formula over and over:
6211 @ifnottex
6212 @example
6213 new_x = x - f(x)/f'(x)
6214 @end example
6215 @end ifnottex
6216 @tex
6217 \beforedisplay
6218 $$ x_{\rm new} = x - {f(x) \over f'(x)} $$
6219 \afterdisplay
6220 @end tex
6222 @noindent
6223 where @expr{f'(x)} is the derivative of @expr{f}.  The @expr{x}
6224 values will quickly converge to a solution, i.e., eventually
6225 @texline @math{x_{\rm new}}
6226 @infoline @expr{new_x} 
6227 and @expr{x} will be equal to within the limits
6228 of the current precision.  Write a program which takes a formula
6229 involving the variable @expr{x}, and an initial guess @expr{x_0},
6230 on the stack, and produces a value of @expr{x} for which the formula
6231 is zero.  Use it to find a solution of 
6232 @texline @math{\sin(\cos x) = 0.5}
6233 @infoline @expr{sin(cos(x)) = 0.5}
6234 near @expr{x = 4.5}.  (Use angles measured in radians.)  Note that
6235 the built-in @w{@kbd{a R}} (@code{calc-find-root}) command uses Newton's
6236 method when it is able.  @xref{Programming Answer 8, 8}. (@bullet{})
6238 @cindex Digamma function
6239 @cindex Gamma constant, Euler's
6240 @cindex Euler's gamma constant
6241 (@bullet{}) @strong{Exercise 9.}  The @dfn{digamma} function 
6242 @texline @math{\psi(z) (``psi'')}
6243 @infoline @expr{psi(z)}
6244 is defined as the derivative of 
6245 @texline @math{\ln \Gamma(z)}.
6246 @infoline @expr{ln(gamma(z))}.  
6247 For large values of @expr{z}, it can be approximated by the infinite sum
6249 @ifnottex
6250 @example
6251 psi(z) ~= ln(z) - 1/2z - sum(bern(2 n) / 2 n z^(2 n), n, 1, inf)
6252 @end example
6253 @end ifnottex
6254 @tex
6255 \beforedisplay
6256 $$ \psi(z) \approx \ln z - {1\over2z} -
6257    \sum_{n=1}^\infty {\code{bern}(2 n) \over 2 n z^{2n}}
6259 \afterdisplay
6260 @end tex
6262 @noindent
6263 where 
6264 @texline @math{\sum}
6265 @infoline @expr{sum} 
6266 represents the sum over @expr{n} from 1 to infinity
6267 (or to some limit high enough to give the desired accuracy), and
6268 the @code{bern} function produces (exact) Bernoulli numbers.
6269 While this sum is not guaranteed to converge, in practice it is safe.
6270 An interesting mathematical constant is Euler's gamma, which is equal
6271 to about 0.5772.  One way to compute it is by the formula,
6272 @texline @math{\gamma = -\psi(1)}.
6273 @infoline @expr{gamma = -psi(1)}.  
6274 Unfortunately, 1 isn't a large enough argument
6275 for the above formula to work (5 is a much safer value for @expr{z}).
6276 Fortunately, we can compute 
6277 @texline @math{\psi(1)}
6278 @infoline @expr{psi(1)} 
6279 from 
6280 @texline @math{\psi(5)}
6281 @infoline @expr{psi(5)} 
6282 using the recurrence 
6283 @texline @math{\psi(z+1) = \psi(z) + {1 \over z}}.
6284 @infoline @expr{psi(z+1) = psi(z) + 1/z}.  
6285 Your task:  Develop a program to compute 
6286 @texline @math{\psi(z)};
6287 @infoline @expr{psi(z)}; 
6288 it should ``pump up'' @expr{z}
6289 if necessary to be greater than 5, then use the above summation
6290 formula.  Use looping commands to compute the sum.  Use your function
6291 to compute 
6292 @texline @math{\gamma}
6293 @infoline @expr{gamma} 
6294 to twelve decimal places.  (Calc has a built-in command
6295 for Euler's constant, @kbd{I P}, which you can use to check your answer.)
6296 @xref{Programming Answer 9, 9}. (@bullet{})
6298 @cindex Polynomial, list of coefficients
6299 (@bullet{}) @strong{Exercise 10.}  Given a polynomial in @expr{x} and
6300 a number @expr{m} on the stack, where the polynomial is of degree
6301 @expr{m} or less (i.e., does not have any terms higher than @expr{x^m}),
6302 write a program to convert the polynomial into a list-of-coefficients
6303 notation.  For example, @expr{5 x^4 + (x + 1)^2} with @expr{m = 6}
6304 should produce the list @expr{[1, 2, 1, 0, 5, 0, 0]}.  Also develop
6305 a way to convert from this form back to the standard algebraic form.
6306 @xref{Programming Answer 10, 10}. (@bullet{})
6308 @cindex Recursion
6309 (@bullet{}) @strong{Exercise 11.}  The @dfn{Stirling numbers of the
6310 first kind} are defined by the recurrences,
6312 @ifnottex
6313 @example
6314 s(n,n) = 1   for n >= 0,
6315 s(n,0) = 0   for n > 0,
6316 s(n+1,m) = s(n,m-1) - n s(n,m)   for n >= m >= 1.
6317 @end example
6318 @end ifnottex
6319 @tex
6320 \turnoffactive
6321 \beforedisplay
6322 $$ \eqalign{ s(n,n)   &= 1 \qquad \hbox{for } n \ge 0,  \cr
6323              s(n,0)   &= 0 \qquad \hbox{for } n > 0, \cr
6324              s(n+1,m) &= s(n,m-1) - n \, s(n,m) \qquad
6325                           \hbox{for } n \ge m \ge 1.}
6327 \afterdisplay
6328 \vskip5pt
6329 (These numbers are also sometimes written $\displaystyle{n \brack m}$.)
6330 @end tex
6332 This can be implemented using a @dfn{recursive} program in Calc; the
6333 program must invoke itself in order to calculate the two righthand
6334 terms in the general formula.  Since it always invokes itself with
6335 ``simpler'' arguments, it's easy to see that it must eventually finish
6336 the computation.  Recursion is a little difficult with Emacs keyboard
6337 macros since the macro is executed before its definition is complete.
6338 So here's the recommended strategy:  Create a ``dummy macro'' and assign
6339 it to a key with, e.g., @kbd{Z K s}.  Now enter the true definition,
6340 using the @kbd{z s} command to call itself recursively, then assign it
6341 to the same key with @kbd{Z K s}.  Now the @kbd{z s} command will run
6342 the complete recursive program.  (Another way is to use @w{@kbd{Z E}}
6343 or @kbd{C-x * m} (@code{read-kbd-macro}) to read the whole macro at once,
6344 thus avoiding the ``training'' phase.)  The task:  Write a program
6345 that computes Stirling numbers of the first kind, given @expr{n} and
6346 @expr{m} on the stack.  Test it with @emph{small} inputs like
6347 @expr{s(4,2)}.  (There is a built-in command for Stirling numbers,
6348 @kbd{k s}, which you can use to check your answers.)
6349 @xref{Programming Answer 11, 11}. (@bullet{})
6351 The programming commands we've seen in this part of the tutorial
6352 are low-level, general-purpose operations.  Often you will find
6353 that a higher-level function, such as vector mapping or rewrite
6354 rules, will do the job much more easily than a detailed, step-by-step
6355 program can:
6357 (@bullet{}) @strong{Exercise 12.}  Write another program for
6358 computing Stirling numbers of the first kind, this time using
6359 rewrite rules.  Once again, @expr{n} and @expr{m} should be taken
6360 from the stack.  @xref{Programming Answer 12, 12}. (@bullet{})
6362 @example
6364 @end example
6365 This ends the tutorial section of the Calc manual.  Now you know enough
6366 about Calc to use it effectively for many kinds of calculations.  But
6367 Calc has many features that were not even touched upon in this tutorial.
6368 @c [not-split]
6369 The rest of this manual tells the whole story.
6370 @c [when-split]
6371 @c Volume II of this manual, the @dfn{Calc Reference}, tells the whole story.
6373 @page
6374 @node Answers to Exercises,  , Programming Tutorial, Tutorial
6375 @section Answers to Exercises
6377 @noindent
6378 This section includes answers to all the exercises in the Calc tutorial.
6380 @menu
6381 * RPN Answer 1::           1 @key{RET} 2 @key{RET} 3 @key{RET} 4 + * -
6382 * RPN Answer 2::           2*4 + 7*9.5 + 5/4
6383 * RPN Answer 3::           Operating on levels 2 and 3
6384 * RPN Answer 4::           Joe's complex problems
6385 * Algebraic Answer 1::     Simulating Q command
6386 * Algebraic Answer 2::     Joe's algebraic woes
6387 * Algebraic Answer 3::     1 / 0
6388 * Modes Answer 1::         3#0.1 = 3#0.0222222?
6389 * Modes Answer 2::         16#f.e8fe15
6390 * Modes Answer 3::         Joe's rounding bug
6391 * Modes Answer 4::         Why floating point?
6392 * Arithmetic Answer 1::    Why the \ command?
6393 * Arithmetic Answer 2::    Tripping up the B command
6394 * Vector Answer 1::        Normalizing a vector
6395 * Vector Answer 2::        Average position
6396 * Matrix Answer 1::        Row and column sums
6397 * Matrix Answer 2::        Symbolic system of equations
6398 * Matrix Answer 3::        Over-determined system
6399 * List Answer 1::          Powers of two
6400 * List Answer 2::          Least-squares fit with matrices
6401 * List Answer 3::          Geometric mean
6402 * List Answer 4::          Divisor function
6403 * List Answer 5::          Duplicate factors
6404 * List Answer 6::          Triangular list
6405 * List Answer 7::          Another triangular list
6406 * List Answer 8::          Maximum of Bessel function
6407 * List Answer 9::          Integers the hard way
6408 * List Answer 10::         All elements equal
6409 * List Answer 11::         Estimating pi with darts
6410 * List Answer 12::         Estimating pi with matchsticks
6411 * List Answer 13::         Hash codes
6412 * List Answer 14::         Random walk
6413 * Types Answer 1::         Square root of pi times rational
6414 * Types Answer 2::         Infinities
6415 * Types Answer 3::         What can "nan" be?
6416 * Types Answer 4::         Abbey Road
6417 * Types Answer 5::         Friday the 13th
6418 * Types Answer 6::         Leap years
6419 * Types Answer 7::         Erroneous donut
6420 * Types Answer 8::         Dividing intervals
6421 * Types Answer 9::         Squaring intervals
6422 * Types Answer 10::        Fermat's primality test
6423 * Types Answer 11::        pi * 10^7 seconds
6424 * Types Answer 12::        Abbey Road on CD
6425 * Types Answer 13::        Not quite pi * 10^7 seconds
6426 * Types Answer 14::        Supercomputers and c
6427 * Types Answer 15::        Sam the Slug
6428 * Algebra Answer 1::       Squares and square roots
6429 * Algebra Answer 2::       Building polynomial from roots
6430 * Algebra Answer 3::       Integral of x sin(pi x)
6431 * Algebra Answer 4::       Simpson's rule
6432 * Rewrites Answer 1::      Multiplying by conjugate
6433 * Rewrites Answer 2::      Alternative fib rule
6434 * Rewrites Answer 3::      Rewriting opt(a) + opt(b) x
6435 * Rewrites Answer 4::      Sequence of integers
6436 * Rewrites Answer 5::      Number of terms in sum
6437 * Rewrites Answer 6::      Truncated Taylor series
6438 * Programming Answer 1::   Fresnel's C(x)
6439 * Programming Answer 2::   Negate third stack element
6440 * Programming Answer 3::   Compute sin(x) / x, etc.
6441 * Programming Answer 4::   Average value of a list
6442 * Programming Answer 5::   Continued fraction phi
6443 * Programming Answer 6::   Matrix Fibonacci numbers
6444 * Programming Answer 7::   Harmonic number greater than 4
6445 * Programming Answer 8::   Newton's method
6446 * Programming Answer 9::   Digamma function
6447 * Programming Answer 10::  Unpacking a polynomial
6448 * Programming Answer 11::  Recursive Stirling numbers
6449 * Programming Answer 12::  Stirling numbers with rewrites
6450 @end menu
6452 @c The following kludgery prevents the individual answers from
6453 @c being entered on the table of contents.
6454 @tex
6455 \global\let\oldwrite=\write
6456 \gdef\skipwrite#1#2{\let\write=\oldwrite}
6457 \global\let\oldchapternofonts=\chapternofonts
6458 \gdef\chapternofonts{\let\write=\skipwrite\oldchapternofonts}
6459 @end tex
6461 @node RPN Answer 1, RPN Answer 2, Answers to Exercises, Answers to Exercises
6462 @subsection RPN Tutorial Exercise 1
6464 @noindent
6465 @kbd{1 @key{RET} 2 @key{RET} 3 @key{RET} 4 + * -}
6467 The result is 
6468 @texline @math{1 - (2 \times (3 + 4)) = -13}.
6469 @infoline @expr{1 - (2 * (3 + 4)) = -13}.
6471 @node RPN Answer 2, RPN Answer 3, RPN Answer 1, Answers to Exercises
6472 @subsection RPN Tutorial Exercise 2
6474 @noindent
6475 @texline @math{2\times4 + 7\times9.5 + {5\over4} = 75.75}
6476 @infoline @expr{2*4 + 7*9.5 + 5/4 = 75.75}
6478 After computing the intermediate term 
6479 @texline @math{2\times4 = 8},
6480 @infoline @expr{2*4 = 8}, 
6481 you can leave that result on the stack while you compute the second
6482 term.  With both of these results waiting on the stack you can then
6483 compute the final term, then press @kbd{+ +} to add everything up.
6485 @smallexample
6486 @group
6487 2:  2          1:  8          3:  8          2:  8
6488 1:  4              .          2:  7          1:  66.5
6489     .                         1:  9.5            .
6490                                   .
6492   2 @key{RET} 4          *          7 @key{RET} 9.5          *
6494 @end group
6495 @end smallexample
6496 @noindent
6497 @smallexample
6498 @group
6499 4:  8          3:  8          2:  8          1:  75.75
6500 3:  66.5       2:  66.5       1:  67.75          .
6501 2:  5          1:  1.25           .
6502 1:  4              .
6503     .
6505   5 @key{RET} 4          /              +              +
6506 @end group
6507 @end smallexample
6509 Alternatively, you could add the first two terms before going on
6510 with the third term.
6512 @smallexample
6513 @group
6514 2:  8          1:  74.5       3:  74.5       2:  74.5       1:  75.75
6515 1:  66.5           .          2:  5          1:  1.25           .
6516     .                         1:  4              .
6517                                   .
6519    ...             +            5 @key{RET} 4          /              +
6520 @end group
6521 @end smallexample
6523 On an old-style RPN calculator this second method would have the
6524 advantage of using only three stack levels.  But since Calc's stack
6525 can grow arbitrarily large this isn't really an issue.  Which method
6526 you choose is purely a matter of taste.
6528 @node RPN Answer 3, RPN Answer 4, RPN Answer 2, Answers to Exercises
6529 @subsection RPN Tutorial Exercise 3
6531 @noindent
6532 The @key{TAB} key provides a way to operate on the number in level 2.
6534 @smallexample
6535 @group
6536 3:  10         3:  10         4:  10         3:  10         3:  10
6537 2:  20         2:  30         3:  30         2:  30         2:  21
6538 1:  30         1:  20         2:  20         1:  21         1:  30
6539     .              .          1:  1              .              .
6540                                   .
6542                   @key{TAB}             1              +             @key{TAB}
6543 @end group
6544 @end smallexample
6546 Similarly, @kbd{M-@key{TAB}} gives you access to the number in level 3.
6548 @smallexample
6549 @group
6550 3:  10         3:  21         3:  21         3:  30         3:  11
6551 2:  21         2:  30         2:  30         2:  11         2:  21
6552 1:  30         1:  10         1:  11         1:  21         1:  30
6553     .              .              .              .              .
6555                   M-@key{TAB}           1 +           M-@key{TAB}          M-@key{TAB}
6556 @end group
6557 @end smallexample
6559 @node RPN Answer 4, Algebraic Answer 1, RPN Answer 3, Answers to Exercises
6560 @subsection RPN Tutorial Exercise 4
6562 @noindent
6563 Either @kbd{( 2 , 3 )} or @kbd{( 2 @key{SPC} 3 )} would have worked,
6564 but using both the comma and the space at once yields:
6566 @smallexample
6567 @group
6568 1:  ( ...      2:  ( ...      1:  (2, ...    2:  (2, ...    2:  (2, ...
6569     .          1:  2              .          1:  (2, ...    1:  (2, 3)
6570                    .                             .              .
6572     (              2              ,             @key{SPC}            3 )
6573 @end group
6574 @end smallexample
6576 Joe probably tried to type @kbd{@key{TAB} @key{DEL}} to swap the
6577 extra incomplete object to the top of the stack and delete it.
6578 But a feature of Calc is that @key{DEL} on an incomplete object
6579 deletes just one component out of that object, so he had to press
6580 @key{DEL} twice to finish the job.
6582 @smallexample
6583 @group
6584 2:  (2, ...    2:  (2, 3)     2:  (2, 3)     1:  (2, 3)
6585 1:  (2, 3)     1:  (2, ...    1:  ( ...          .
6586     .              .              .
6588                   @key{TAB}            @key{DEL}            @key{DEL}
6589 @end group
6590 @end smallexample
6592 (As it turns out, deleting the second-to-top stack entry happens often
6593 enough that Calc provides a special key, @kbd{M-@key{DEL}}, to do just that.
6594 @kbd{M-@key{DEL}} is just like @kbd{@key{TAB} @key{DEL}}, except that it doesn't exhibit
6595 the ``feature'' that tripped poor Joe.)
6597 @node Algebraic Answer 1, Algebraic Answer 2, RPN Answer 4, Answers to Exercises
6598 @subsection Algebraic Entry Tutorial Exercise 1
6600 @noindent
6601 Type @kbd{' sqrt($) @key{RET}}.
6603 If the @kbd{Q} key is broken, you could use @kbd{' $^0.5 @key{RET}}.
6604 Or, RPN style, @kbd{0.5 ^}.
6606 (Actually, @samp{$^1:2}, using the fraction one-half as the power, is
6607 a closer equivalent, since @samp{9^0.5} yields @expr{3.0} whereas
6608 @samp{sqrt(9)} and @samp{9^1:2} yield the exact integer @expr{3}.)
6610 @node Algebraic Answer 2, Algebraic Answer 3, Algebraic Answer 1, Answers to Exercises
6611 @subsection Algebraic Entry Tutorial Exercise 2
6613 @noindent
6614 In the formula @samp{2 x (1+y)}, @samp{x} was interpreted as a function
6615 name with @samp{1+y} as its argument.  Assigning a value to a variable
6616 has no relation to a function by the same name.  Joe needed to use an
6617 explicit @samp{*} symbol here:  @samp{2 x*(1+y)}.
6619 @node Algebraic Answer 3, Modes Answer 1, Algebraic Answer 2, Answers to Exercises
6620 @subsection Algebraic Entry Tutorial Exercise 3
6622 @noindent
6623 The result from @kbd{1 @key{RET} 0 /} will be the formula @expr{1 / 0}.
6624 The ``function'' @samp{/} cannot be evaluated when its second argument
6625 is zero, so it is left in symbolic form.  When you now type @kbd{0 *},
6626 the result will be zero because Calc uses the general rule that ``zero
6627 times anything is zero.''
6629 @c [fix-ref Infinities]
6630 The @kbd{m i} command enables an @dfn{Infinite mode} in which @expr{1 / 0}
6631 results in a special symbol that represents ``infinity.''  If you
6632 multiply infinity by zero, Calc uses another special new symbol to
6633 show that the answer is ``indeterminate.''  @xref{Infinities}, for
6634 further discussion of infinite and indeterminate values.
6636 @node Modes Answer 1, Modes Answer 2, Algebraic Answer 3, Answers to Exercises
6637 @subsection Modes Tutorial Exercise 1
6639 @noindent
6640 Calc always stores its numbers in decimal, so even though one-third has
6641 an exact base-3 representation (@samp{3#0.1}), it is still stored as
6642 0.3333333 (chopped off after 12 or however many decimal digits) inside
6643 the calculator's memory.  When this inexact number is converted back
6644 to base 3 for display, it may still be slightly inexact.  When we
6645 multiply this number by 3, we get 0.999999, also an inexact value.
6647 When Calc displays a number in base 3, it has to decide how many digits
6648 to show.  If the current precision is 12 (decimal) digits, that corresponds
6649 to @samp{12 / log10(3) = 25.15} base-3 digits.  Because 25.15 is not an
6650 exact integer, Calc shows only 25 digits, with the result that stored
6651 numbers carry a little bit of extra information that may not show up on
6652 the screen.  When Joe entered @samp{3#0.2}, the stored number 0.666666
6653 happened to round to a pleasing value when it lost that last 0.15 of a
6654 digit, but it was still inexact in Calc's memory.  When he divided by 2,
6655 he still got the dreaded inexact value 0.333333.  (Actually, he divided
6656 0.666667 by 2 to get 0.333334, which is why he got something a little
6657 higher than @code{3#0.1} instead of a little lower.)
6659 If Joe didn't want to be bothered with all this, he could have typed
6660 @kbd{M-24 d n} to display with one less digit than the default.  (If
6661 you give @kbd{d n} a negative argument, it uses default-minus-that,
6662 so @kbd{M-- d n} would be an easier way to get the same effect.)  Those
6663 inexact results would still be lurking there, but they would now be
6664 rounded to nice, natural-looking values for display purposes.  (Remember,
6665 @samp{0.022222} in base 3 is like @samp{0.099999} in base 10; rounding
6666 off one digit will round the number up to @samp{0.1}.)  Depending on the
6667 nature of your work, this hiding of the inexactness may be a benefit or
6668 a danger.  With the @kbd{d n} command, Calc gives you the choice.
6670 Incidentally, another consequence of all this is that if you type
6671 @kbd{M-30 d n} to display more digits than are ``really there,''
6672 you'll see garbage digits at the end of the number.  (In decimal
6673 display mode, with decimally-stored numbers, these garbage digits are
6674 always zero so they vanish and you don't notice them.)  Because Calc
6675 rounds off that 0.15 digit, there is the danger that two numbers could
6676 be slightly different internally but still look the same.  If you feel
6677 uneasy about this, set the @kbd{d n} precision to be a little higher
6678 than normal; you'll get ugly garbage digits, but you'll always be able
6679 to tell two distinct numbers apart.
6681 An interesting side note is that most computers store their
6682 floating-point numbers in binary, and convert to decimal for display.
6683 Thus everyday programs have the same problem:  Decimal 0.1 cannot be
6684 represented exactly in binary (try it: @kbd{0.1 d 2}), so @samp{0.1 * 10}
6685 comes out as an inexact approximation to 1 on some machines (though
6686 they generally arrange to hide it from you by rounding off one digit as
6687 we did above).  Because Calc works in decimal instead of binary, you can
6688 be sure that numbers that look exact @emph{are} exact as long as you stay
6689 in decimal display mode.
6691 It's not hard to show that any number that can be represented exactly
6692 in binary, octal, or hexadecimal is also exact in decimal, so the kinds
6693 of problems we saw in this exercise are likely to be severe only when
6694 you use a relatively unusual radix like 3.
6696 @node Modes Answer 2, Modes Answer 3, Modes Answer 1, Answers to Exercises
6697 @subsection Modes Tutorial Exercise 2
6699 If the radix is 15 or higher, we can't use the letter @samp{e} to mark
6700 the exponent because @samp{e} is interpreted as a digit.  When Calc
6701 needs to display scientific notation in a high radix, it writes
6702 @samp{16#F.E8F*16.^15}.  You can enter a number like this as an
6703 algebraic entry.  Also, pressing @kbd{e} without any digits before it
6704 normally types @kbd{1e}, but in a high radix it types @kbd{16.^} and
6705 puts you in algebraic entry:  @kbd{16#f.e8f @key{RET} e 15 @key{RET} *} is another
6706 way to enter this number.
6708 The reason Calc puts a decimal point in the @samp{16.^} is to prevent
6709 huge integers from being generated if the exponent is large (consider
6710 @samp{16#1.23*16^1000}, where we compute @samp{16^1000} as a giant
6711 exact integer and then throw away most of the digits when we multiply
6712 it by the floating-point @samp{16#1.23}).  While this wouldn't normally
6713 matter for display purposes, it could give you a nasty surprise if you
6714 copied that number into a file and later moved it back into Calc.
6716 @node Modes Answer 3, Modes Answer 4, Modes Answer 2, Answers to Exercises
6717 @subsection Modes Tutorial Exercise 3
6719 @noindent
6720 The answer he got was @expr{0.5000000000006399}.
6722 The problem is not that the square operation is inexact, but that the
6723 sine of 45 that was already on the stack was accurate to only 12 places.
6724 Arbitrary-precision calculations still only give answers as good as
6725 their inputs.
6727 The real problem is that there is no 12-digit number which, when
6728 squared, comes out to 0.5 exactly.  The @kbd{f [} and @kbd{f ]}
6729 commands decrease or increase a number by one unit in the last
6730 place (according to the current precision).  They are useful for
6731 determining facts like this.
6733 @smallexample
6734 @group
6735 1:  0.707106781187      1:  0.500000000001
6736     .                       .
6738     45 S                    2 ^
6740 @end group
6741 @end smallexample
6742 @noindent
6743 @smallexample
6744 @group
6745 1:  0.707106781187      1:  0.707106781186      1:  0.499999999999
6746     .                       .                       .
6748     U  @key{DEL}                  f [                     2 ^
6749 @end group
6750 @end smallexample
6752 A high-precision calculation must be carried out in high precision
6753 all the way.  The only number in the original problem which was known
6754 exactly was the quantity 45 degrees, so the precision must be raised
6755 before anything is done after the number 45 has been entered in order
6756 for the higher precision to be meaningful.
6758 @node Modes Answer 4, Arithmetic Answer 1, Modes Answer 3, Answers to Exercises
6759 @subsection Modes Tutorial Exercise 4
6761 @noindent
6762 Many calculations involve real-world quantities, like the width and
6763 height of a piece of wood or the volume of a jar.  Such quantities
6764 can't be measured exactly anyway, and if the data that is input to
6765 a calculation is inexact, doing exact arithmetic on it is a waste
6766 of time.
6768 Fractions become unwieldy after too many calculations have been
6769 done with them.  For example, the sum of the reciprocals of the
6770 integers from 1 to 10 is 7381:2520.  The sum from 1 to 30 is
6771 9304682830147:2329089562800.  After a point it will take a long
6772 time to add even one more term to this sum, but a floating-point
6773 calculation of the sum will not have this problem.
6775 Also, rational numbers cannot express the results of all calculations.
6776 There is no fractional form for the square root of two, so if you type
6777 @w{@kbd{2 Q}}, Calc has no choice but to give you a floating-point answer.
6779 @node Arithmetic Answer 1, Arithmetic Answer 2, Modes Answer 4, Answers to Exercises
6780 @subsection Arithmetic Tutorial Exercise 1
6782 @noindent
6783 Dividing two integers that are larger than the current precision may
6784 give a floating-point result that is inaccurate even when rounded
6785 down to an integer.  Consider @expr{123456789 / 2} when the current
6786 precision is 6 digits.  The true answer is @expr{61728394.5}, but
6787 with a precision of 6 this will be rounded to 
6788 @texline @math{12345700.0/2.0 = 61728500.0}.
6789 @infoline @expr{12345700.@: / 2.@: = 61728500.}.
6790 The result, when converted to an integer, will be off by 106.
6792 Here are two solutions:  Raise the precision enough that the
6793 floating-point round-off error is strictly to the right of the
6794 decimal point.  Or, convert to Fraction mode so that @expr{123456789 / 2}
6795 produces the exact fraction @expr{123456789:2}, which can be rounded
6796 down by the @kbd{F} command without ever switching to floating-point
6797 format.
6799 @node Arithmetic Answer 2, Vector Answer 1, Arithmetic Answer 1, Answers to Exercises
6800 @subsection Arithmetic Tutorial Exercise 2
6802 @noindent
6803 @kbd{27 @key{RET} 9 B} could give the exact result @expr{3:2}, but it
6804 does a floating-point calculation instead and produces @expr{1.5}.
6806 Calc will find an exact result for a logarithm if the result is an integer
6807 or (when in Fraction mode) the reciprocal of an integer.  But there is
6808 no efficient way to search the space of all possible rational numbers
6809 for an exact answer, so Calc doesn't try.
6811 @node Vector Answer 1, Vector Answer 2, Arithmetic Answer 2, Answers to Exercises
6812 @subsection Vector Tutorial Exercise 1
6814 @noindent
6815 Duplicate the vector, compute its length, then divide the vector
6816 by its length:  @kbd{@key{RET} A /}.
6818 @smallexample
6819 @group
6820 1:  [1, 2, 3]  2:  [1, 2, 3]      1:  [0.27, 0.53, 0.80]  1:  1.
6821     .          1:  3.74165738677      .                       .
6822                    .
6824     r 1            @key{RET} A              /                       A
6825 @end group
6826 @end smallexample
6828 The final @kbd{A} command shows that the normalized vector does
6829 indeed have unit length.
6831 @node Vector Answer 2, Matrix Answer 1, Vector Answer 1, Answers to Exercises
6832 @subsection Vector Tutorial Exercise 2
6834 @noindent
6835 The average position is equal to the sum of the products of the
6836 positions times their corresponding probabilities.  This is the
6837 definition of the dot product operation.  So all you need to do
6838 is to put the two vectors on the stack and press @kbd{*}.
6840 @node Matrix Answer 1, Matrix Answer 2, Vector Answer 2, Answers to Exercises
6841 @subsection Matrix Tutorial Exercise 1
6843 @noindent
6844 The trick is to multiply by a vector of ones.  Use @kbd{r 4 [1 1 1] *} to
6845 get the row sum.  Similarly, use @kbd{[1 1] r 4 *} to get the column sum.
6847 @node Matrix Answer 2, Matrix Answer 3, Matrix Answer 1, Answers to Exercises
6848 @subsection Matrix Tutorial Exercise 2
6850 @ifnottex
6851 @example
6852 @group
6853    x + a y = 6
6854    x + b y = 10
6855 @end group
6856 @end example
6857 @end ifnottex
6858 @tex
6859 \turnoffactive
6860 \beforedisplay
6861 $$ \eqalign{ x &+ a y = 6 \cr
6862              x &+ b y = 10}
6864 \afterdisplay
6865 @end tex
6867 Just enter the righthand side vector, then divide by the lefthand side
6868 matrix as usual.
6870 @smallexample
6871 @group
6872 1:  [6, 10]    2:  [6, 10]         1:  [6 - 4 a / (b - a), 4 / (b - a) ]
6873     .          1:  [ [ 1, a ]          .
6874                      [ 1, b ] ]
6875                    .
6877 ' [6 10] @key{RET}     ' [1 a; 1 b] @key{RET}      /
6878 @end group
6879 @end smallexample
6881 This can be made more readable using @kbd{d B} to enable Big display
6882 mode:
6884 @smallexample
6885 @group
6886           4 a     4
6887 1:  [6 - -----, -----]
6888          b - a  b - a
6889 @end group
6890 @end smallexample
6892 Type @kbd{d N} to return to Normal display mode afterwards.
6894 @node Matrix Answer 3, List Answer 1, Matrix Answer 2, Answers to Exercises
6895 @subsection Matrix Tutorial Exercise 3
6897 @noindent
6898 To solve 
6899 @texline @math{A^T A \, X = A^T B},
6900 @infoline @expr{trn(A) * A * X = trn(A) * B}, 
6901 first we compute
6902 @texline @math{A' = A^T A}
6903 @infoline @expr{A2 = trn(A) * A} 
6904 and 
6905 @texline @math{B' = A^T B};
6906 @infoline @expr{B2 = trn(A) * B}; 
6907 now, we have a system 
6908 @texline @math{A' X = B'}
6909 @infoline @expr{A2 * X = B2} 
6910 which we can solve using Calc's @samp{/} command.
6912 @ifnottex
6913 @example
6914 @group
6915     a + 2b + 3c = 6
6916    4a + 5b + 6c = 2
6917    7a + 6b      = 3
6918    2a + 4b + 6c = 11
6919 @end group
6920 @end example
6921 @end ifnottex
6922 @tex
6923 \turnoffactive
6924 \beforedisplayh
6925 $$ \openup1\jot \tabskip=0pt plus1fil
6926 \halign to\displaywidth{\tabskip=0pt
6927    $\hfil#$&$\hfil{}#{}$&
6928    $\hfil#$&$\hfil{}#{}$&
6929    $\hfil#$&${}#\hfil$\tabskip=0pt plus1fil\cr
6930   a&+&2b&+&3c&=6 \cr
6931  4a&+&5b&+&6c&=2 \cr
6932  7a&+&6b& &  &=3 \cr
6933  2a&+&4b&+&6c&=11 \cr}
6935 \afterdisplayh
6936 @end tex
6938 The first step is to enter the coefficient matrix.  We'll store it in
6939 quick variable number 7 for later reference.  Next, we compute the
6940 @texline @math{B'}
6941 @infoline @expr{B2} 
6942 vector.
6944 @smallexample
6945 @group
6946 1:  [ [ 1, 2, 3 ]             2:  [ [ 1, 4, 7, 2 ]     1:  [57, 84, 96]
6947       [ 4, 5, 6 ]                   [ 2, 5, 6, 4 ]         .
6948       [ 7, 6, 0 ]                   [ 3, 6, 0, 6 ] ]
6949       [ 2, 4, 6 ] ]           1:  [6, 2, 3, 11]
6950     .                             .
6952 ' [1 2 3; 4 5 6; 7 6 0; 2 4 6] @key{RET}  s 7  v t  [6 2 3 11]   *
6953 @end group
6954 @end smallexample
6956 @noindent
6957 Now we compute the matrix 
6958 @texline @math{A'}
6959 @infoline @expr{A2} 
6960 and divide.
6962 @smallexample
6963 @group
6964 2:  [57, 84, 96]          1:  [-11.64, 14.08, -3.64]
6965 1:  [ [ 70, 72, 39 ]          .
6966       [ 72, 81, 60 ]
6967       [ 39, 60, 81 ] ]
6968     .
6970     r 7 v t r 7 *             /
6971 @end group
6972 @end smallexample
6974 @noindent
6975 (The actual computed answer will be slightly inexact due to
6976 round-off error.)
6978 Notice that the answers are similar to those for the 
6979 @texline @math{3\times3}
6980 @infoline 3x3
6981 system solved in the text.  That's because the fourth equation that was 
6982 added to the system is almost identical to the first one multiplied
6983 by two.  (If it were identical, we would have gotten the exact same
6984 answer since the 
6985 @texline @math{4\times3}
6986 @infoline 4x3
6987 system would be equivalent to the original 
6988 @texline @math{3\times3}
6989 @infoline 3x3
6990 system.)
6992 Since the first and fourth equations aren't quite equivalent, they
6993 can't both be satisfied at once.  Let's plug our answers back into
6994 the original system of equations to see how well they match.
6996 @smallexample
6997 @group
6998 2:  [-11.64, 14.08, -3.64]     1:  [5.6, 2., 3., 11.2]
6999 1:  [ [ 1, 2, 3 ]                  .
7000       [ 4, 5, 6 ]
7001       [ 7, 6, 0 ]
7002       [ 2, 4, 6 ] ]
7003     .
7005     r 7                            @key{TAB} *
7006 @end group
7007 @end smallexample
7009 @noindent
7010 This is reasonably close to our original @expr{B} vector,
7011 @expr{[6, 2, 3, 11]}.
7013 @node List Answer 1, List Answer 2, Matrix Answer 3, Answers to Exercises
7014 @subsection List Tutorial Exercise 1
7016 @noindent
7017 We can use @kbd{v x} to build a vector of integers.  This needs to be
7018 adjusted to get the range of integers we desire.  Mapping @samp{-}
7019 across the vector will accomplish this, although it turns out the
7020 plain @samp{-} key will work just as well.
7022 @smallexample
7023 @group
7024 2:  2                              2:  2
7025 1:  [1, 2, 3, 4, 5, 6, 7, 8, 9]    1:  [-4, -3, -2, -1, 0, 1, 2, 3, 4]
7026     .                                  .
7028     2  v x 9 @key{RET}                       5 V M -   or   5 -
7029 @end group
7030 @end smallexample
7032 @noindent
7033 Now we use @kbd{V M ^} to map the exponentiation operator across the
7034 vector.
7036 @smallexample
7037 @group
7038 1:  [0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16]
7039     .
7041     V M ^
7042 @end group
7043 @end smallexample
7045 @node List Answer 2, List Answer 3, List Answer 1, Answers to Exercises
7046 @subsection List Tutorial Exercise 2
7048 @noindent
7049 Given @expr{x} and @expr{y} vectors in quick variables 1 and 2 as before,
7050 the first job is to form the matrix that describes the problem.
7052 @ifnottex
7053 @example
7054    m*x + b*1 = y
7055 @end example
7056 @end ifnottex
7057 @tex
7058 \turnoffactive
7059 \beforedisplay
7060 $$ m \times x + b \times 1 = y $$
7061 \afterdisplay
7062 @end tex
7064 Thus we want a 
7065 @texline @math{19\times2}
7066 @infoline 19x2
7067 matrix with our @expr{x} vector as one column and
7068 ones as the other column.  So, first we build the column of ones, then
7069 we combine the two columns to form our @expr{A} matrix.
7071 @smallexample
7072 @group
7073 2:  [1.34, 1.41, 1.49, ... ]    1:  [ [ 1.34, 1 ]
7074 1:  [1, 1, 1, ...]                    [ 1.41, 1 ]
7075     .                                 [ 1.49, 1 ]
7076                                       @dots{}
7078     r 1 1 v b 19 @key{RET}                M-2 v p v t   s 3
7079 @end group
7080 @end smallexample
7082 @noindent
7083 Now we compute 
7084 @texline @math{A^T y}
7085 @infoline @expr{trn(A) * y} 
7086 and 
7087 @texline @math{A^T A}
7088 @infoline @expr{trn(A) * A} 
7089 and divide.
7091 @smallexample
7092 @group
7093 1:  [33.36554, 13.613]    2:  [33.36554, 13.613]
7094     .                     1:  [ [ 98.0003, 41.63 ]
7095                                 [  41.63,   19   ] ]
7096                               .
7098  v t r 2 *                    r 3 v t r 3 *
7099 @end group
7100 @end smallexample
7102 @noindent
7103 (Hey, those numbers look familiar!)
7105 @smallexample
7106 @group
7107 1:  [0.52141679, -0.425978]
7108     .
7110     /
7111 @end group
7112 @end smallexample
7114 Since we were solving equations of the form 
7115 @texline @math{m \times x + b \times 1 = y},
7116 @infoline @expr{m*x + b*1 = y}, 
7117 these numbers should be @expr{m} and @expr{b}, respectively.  Sure
7118 enough, they agree exactly with the result computed using @kbd{V M} and
7119 @kbd{V R}!
7121 The moral of this story:  @kbd{V M} and @kbd{V R} will probably solve
7122 your problem, but there is often an easier way using the higher-level
7123 arithmetic functions!
7125 @c [fix-ref Curve Fitting]
7126 In fact, there is a built-in @kbd{a F} command that does least-squares
7127 fits.  @xref{Curve Fitting}.
7129 @node List Answer 3, List Answer 4, List Answer 2, Answers to Exercises
7130 @subsection List Tutorial Exercise 3
7132 @noindent
7133 Move to one end of the list and press @kbd{C-@@} (or @kbd{C-@key{SPC}} or
7134 whatever) to set the mark, then move to the other end of the list
7135 and type @w{@kbd{C-x * g}}.
7137 @smallexample
7138 @group
7139 1:  [2.3, 6, 22, 15.1, 7, 15, 14, 7.5, 2.5]
7140     .
7141 @end group
7142 @end smallexample
7144 To make things interesting, let's assume we don't know at a glance
7145 how many numbers are in this list.  Then we could type:
7147 @smallexample
7148 @group
7149 2:  [2.3, 6, 22, ... ]     2:  [2.3, 6, 22, ... ]
7150 1:  [2.3, 6, 22, ... ]     1:  126356422.5
7151     .                          .
7153     @key{RET}                        V R *
7155 @end group
7156 @end smallexample
7157 @noindent
7158 @smallexample
7159 @group
7160 2:  126356422.5            2:  126356422.5     1:  7.94652913734
7161 1:  [2.3, 6, 22, ... ]     1:  9                   .
7162     .                          .
7164     @key{TAB}                        v l                 I ^
7165 @end group
7166 @end smallexample
7168 @noindent
7169 (The @kbd{I ^} command computes the @var{n}th root of a number.
7170 You could also type @kbd{& ^} to take the reciprocal of 9 and
7171 then raise the number to that power.)
7173 @node List Answer 4, List Answer 5, List Answer 3, Answers to Exercises
7174 @subsection List Tutorial Exercise 4
7176 @noindent
7177 A number @expr{j} is a divisor of @expr{n} if 
7178 @texline @math{n \mathbin{\hbox{\code{\%}}} j = 0}.
7179 @infoline @samp{n % j = 0}.  
7180 The first step is to get a vector that identifies the divisors.
7182 @smallexample
7183 @group
7184 2:  30                  2:  [0, 0, 0, 2, ...]    1:  [1, 1, 1, 0, ...]
7185 1:  [1, 2, 3, 4, ...]   1:  0                        .
7186     .                       .
7188  30 @key{RET} v x 30 @key{RET}   s 1    V M %  0                 V M a =  s 2
7189 @end group
7190 @end smallexample
7192 @noindent
7193 This vector has 1's marking divisors of 30 and 0's marking non-divisors.
7195 The zeroth divisor function is just the total number of divisors.
7196 The first divisor function is the sum of the divisors.
7198 @smallexample
7199 @group
7200 1:  8      3:  8                    2:  8                    2:  8
7201            2:  [1, 2, 3, 4, ...]    1:  [1, 2, 3, 0, ...]    1:  72
7202            1:  [1, 1, 1, 0, ...]        .                        .
7203                .
7205    V R +       r 1 r 2                  V M *                  V R +
7206 @end group
7207 @end smallexample
7209 @noindent
7210 Once again, the last two steps just compute a dot product for which
7211 a simple @kbd{*} would have worked equally well.
7213 @node List Answer 5, List Answer 6, List Answer 4, Answers to Exercises
7214 @subsection List Tutorial Exercise 5
7216 @noindent
7217 The obvious first step is to obtain the list of factors with @kbd{k f}.
7218 This list will always be in sorted order, so if there are duplicates
7219 they will be right next to each other.  A suitable method is to compare
7220 the list with a copy of itself shifted over by one.
7222 @smallexample
7223 @group
7224 1:  [3, 7, 7, 7, 19]   2:  [3, 7, 7, 7, 19]     2:  [3, 7, 7, 7, 19, 0]
7225     .                  1:  [3, 7, 7, 7, 19, 0]  1:  [0, 3, 7, 7, 7, 19]
7226                            .                        .
7228     19551 k f              @key{RET} 0 |                  @key{TAB} 0 @key{TAB} |
7230 @end group
7231 @end smallexample
7232 @noindent
7233 @smallexample
7234 @group
7235 1:  [0, 0, 1, 1, 0, 0]   1:  2          1:  0
7236     .                        .              .
7238     V M a =                  V R +          0 a =
7239 @end group
7240 @end smallexample
7242 @noindent
7243 Note that we have to arrange for both vectors to have the same length
7244 so that the mapping operation works; no prime factor will ever be
7245 zero, so adding zeros on the left and right is safe.  From then on
7246 the job is pretty straightforward.
7248 Incidentally, Calc provides the 
7249 @texline @dfn{M@"obius} @math{\mu}
7250 @infoline @dfn{Moebius mu} 
7251 function which is zero if and only if its argument is square-free.  It
7252 would be a much more convenient way to do the above test in practice.
7254 @node List Answer 6, List Answer 7, List Answer 5, Answers to Exercises
7255 @subsection List Tutorial Exercise 6
7257 @noindent
7258 First use @kbd{v x 6 @key{RET}} to get a list of integers, then @kbd{V M v x}
7259 to get a list of lists of integers!
7261 @node List Answer 7, List Answer 8, List Answer 6, Answers to Exercises
7262 @subsection List Tutorial Exercise 7
7264 @noindent
7265 Here's one solution.  First, compute the triangular list from the previous
7266 exercise and type @kbd{1 -} to subtract one from all the elements.
7268 @smallexample
7269 @group
7270 1:  [ [0],
7271       [0, 1],
7272       [0, 1, 2],
7273       @dots{}
7275     1 -
7276 @end group
7277 @end smallexample
7279 The numbers down the lefthand edge of the list we desire are called
7280 the ``triangular numbers'' (now you know why!).  The @expr{n}th
7281 triangular number is the sum of the integers from 1 to @expr{n}, and
7282 can be computed directly by the formula 
7283 @texline @math{n (n+1) \over 2}.
7284 @infoline @expr{n * (n+1) / 2}.
7286 @smallexample
7287 @group
7288 2:  [ [0], [0, 1], ... ]    2:  [ [0], [0, 1], ... ]
7289 1:  [0, 1, 2, 3, 4, 5]      1:  [0, 1, 3, 6, 10, 15]
7290     .                           .
7292     v x 6 @key{RET} 1 -               V M ' $ ($+1)/2 @key{RET}
7293 @end group
7294 @end smallexample
7296 @noindent
7297 Adding this list to the above list of lists produces the desired
7298 result:
7300 @smallexample
7301 @group
7302 1:  [ [0],
7303       [1, 2],
7304       [3, 4, 5],
7305       [6, 7, 8, 9],
7306       [10, 11, 12, 13, 14],
7307       [15, 16, 17, 18, 19, 20] ]
7308       .
7310       V M +
7311 @end group
7312 @end smallexample
7314 If we did not know the formula for triangular numbers, we could have
7315 computed them using a @kbd{V U +} command.  We could also have
7316 gotten them the hard way by mapping a reduction across the original
7317 triangular list.
7319 @smallexample
7320 @group
7321 2:  [ [0], [0, 1], ... ]    2:  [ [0], [0, 1], ... ]
7322 1:  [ [0], [0, 1], ... ]    1:  [0, 1, 3, 6, 10, 15]
7323     .                           .
7325     @key{RET}                         V M V R +
7326 @end group
7327 @end smallexample
7329 @noindent
7330 (This means ``map a @kbd{V R +} command across the vector,'' and
7331 since each element of the main vector is itself a small vector,
7332 @kbd{V R +} computes the sum of its elements.)
7334 @node List Answer 8, List Answer 9, List Answer 7, Answers to Exercises
7335 @subsection List Tutorial Exercise 8
7337 @noindent
7338 The first step is to build a list of values of @expr{x}.
7340 @smallexample
7341 @group
7342 1:  [1, 2, 3, ..., 21]  1:  [0, 1, 2, ..., 20]  1:  [0, 0.25, 0.5, ..., 5]
7343     .                       .                       .
7345     v x 21 @key{RET}              1 -                     4 /  s 1
7346 @end group
7347 @end smallexample
7349 Next, we compute the Bessel function values.
7351 @smallexample
7352 @group
7353 1:  [0., 0.124, 0.242, ..., -0.328]
7354     .
7356     V M ' besJ(1,$) @key{RET}
7357 @end group
7358 @end smallexample
7360 @noindent
7361 (Another way to do this would be @kbd{1 @key{TAB} V M f j}.)
7363 A way to isolate the maximum value is to compute the maximum using
7364 @kbd{V R X}, then compare all the Bessel values with that maximum.
7366 @smallexample
7367 @group
7368 2:  [0., 0.124, 0.242, ... ]   1:  [0, 0, 0, ... ]    2:  [0, 0, 0, ... ]
7369 1:  0.5801562                      .                  1:  1
7370     .                                                     .
7372     @key{RET} V R X                      V M a =                @key{RET} V R +    @key{DEL}
7373 @end group
7374 @end smallexample
7376 @noindent
7377 It's a good idea to verify, as in the last step above, that only
7378 one value is equal to the maximum.  (After all, a plot of 
7379 @texline @math{\sin x}
7380 @infoline @expr{sin(x)}
7381 might have many points all equal to the maximum value, 1.)
7383 The vector we have now has a single 1 in the position that indicates
7384 the maximum value of @expr{x}.  Now it is a simple matter to convert
7385 this back into the corresponding value itself.
7387 @smallexample
7388 @group
7389 2:  [0, 0, 0, ... ]         1:  [0, 0., 0., ... ]    1:  1.75
7390 1:  [0, 0.25, 0.5, ... ]        .                        .
7391     .
7393     r 1                         V M *                    V R +
7394 @end group
7395 @end smallexample
7397 If @kbd{a =} had produced more than one @expr{1} value, this method
7398 would have given the sum of all maximum @expr{x} values; not very
7399 useful!  In this case we could have used @kbd{v m} (@code{calc-mask-vector})
7400 instead.  This command deletes all elements of a ``data'' vector that
7401 correspond to zeros in a ``mask'' vector, leaving us with, in this
7402 example, a vector of maximum @expr{x} values.
7404 The built-in @kbd{a X} command maximizes a function using more
7405 efficient methods.  Just for illustration, let's use @kbd{a X}
7406 to maximize @samp{besJ(1,x)} over this same interval.
7408 @smallexample
7409 @group
7410 2:  besJ(1, x)                 1:  [1.84115, 0.581865]
7411 1:  [0 .. 5]                       .
7412     .
7414 ' besJ(1,x), [0..5] @key{RET}            a X x @key{RET}
7415 @end group
7416 @end smallexample
7418 @noindent
7419 The output from @kbd{a X} is a vector containing the value of @expr{x}
7420 that maximizes the function, and the function's value at that maximum.
7421 As you can see, our simple search got quite close to the right answer.
7423 @node List Answer 9, List Answer 10, List Answer 8, Answers to Exercises
7424 @subsection List Tutorial Exercise 9
7426 @noindent
7427 Step one is to convert our integer into vector notation.
7429 @smallexample
7430 @group
7431 1:  25129925999           3:  25129925999
7432     .                     2:  10
7433                           1:  [11, 10, 9, ..., 1, 0]
7434                               .
7436     25129925999 @key{RET}           10 @key{RET} 12 @key{RET} v x 12 @key{RET} -
7438 @end group
7439 @end smallexample
7440 @noindent
7441 @smallexample
7442 @group
7443 1:  25129925999              1:  [0, 2, 25, 251, 2512, ... ]
7444 2:  [100000000000, ... ]         .
7445     .
7447     V M ^   s 1                  V M \
7448 @end group
7449 @end smallexample
7451 @noindent
7452 (Recall, the @kbd{\} command computes an integer quotient.)
7454 @smallexample
7455 @group
7456 1:  [0, 2, 5, 1, 2, 9, 9, 2, 5, 9, 9, 9]
7457     .
7459     10 V M %   s 2
7460 @end group
7461 @end smallexample
7463 Next we must increment this number.  This involves adding one to
7464 the last digit, plus handling carries.  There is a carry to the
7465 left out of a digit if that digit is a nine and all the digits to
7466 the right of it are nines.
7468 @smallexample
7469 @group
7470 1:  [0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1]   1:  [1, 1, 1, 0, 0, 1, ... ]
7471     .                                          .
7473     9 V M a =                                  v v
7475 @end group
7476 @end smallexample
7477 @noindent
7478 @smallexample
7479 @group
7480 1:  [1, 1, 1, 0, 0, 0, ... ]   1:  [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]
7481     .                              .
7483     V U *                          v v 1 |
7484 @end group
7485 @end smallexample
7487 @noindent
7488 Accumulating @kbd{*} across a vector of ones and zeros will preserve
7489 only the initial run of ones.  These are the carries into all digits
7490 except the rightmost digit.  Concatenating a one on the right takes
7491 care of aligning the carries properly, and also adding one to the
7492 rightmost digit.
7494 @smallexample
7495 @group
7496 2:  [0, 0, 0, 0, ... ]     1:  [0, 0, 2, 5, 1, 2, 9, 9, 2, 6, 0, 0, 0]
7497 1:  [0, 0, 2, 5, ... ]         .
7498     .
7500     0 r 2 |                    V M +  10 V M %
7501 @end group
7502 @end smallexample
7504 @noindent
7505 Here we have concatenated 0 to the @emph{left} of the original number;
7506 this takes care of shifting the carries by one with respect to the
7507 digits that generated them.
7509 Finally, we must convert this list back into an integer.
7511 @smallexample
7512 @group
7513 3:  [0, 0, 2, 5, ... ]        2:  [0, 0, 2, 5, ... ]
7514 2:  1000000000000             1:  [1000000000000, 100000000000, ... ]
7515 1:  [100000000000, ... ]          .
7516     .
7518     10 @key{RET} 12 ^  r 1              |
7520 @end group
7521 @end smallexample
7522 @noindent
7523 @smallexample
7524 @group
7525 1:  [0, 0, 20000000000, 5000000000, ... ]    1:  25129926000
7526     .                                            .
7528     V M *                                        V R +
7529 @end group
7530 @end smallexample
7532 @noindent
7533 Another way to do this final step would be to reduce the formula
7534 @w{@samp{10 $$ + $}} across the vector of digits.
7536 @smallexample
7537 @group
7538 1:  [0, 0, 2, 5, ... ]        1:  25129926000
7539     .                             .
7541                                   V R ' 10 $$ + $ @key{RET}
7542 @end group
7543 @end smallexample
7545 @node List Answer 10, List Answer 11, List Answer 9, Answers to Exercises
7546 @subsection List Tutorial Exercise 10
7548 @noindent
7549 For the list @expr{[a, b, c, d]}, the result is @expr{((a = b) = c) = d},
7550 which will compare @expr{a} and @expr{b} to produce a 1 or 0, which is
7551 then compared with @expr{c} to produce another 1 or 0, which is then
7552 compared with @expr{d}.  This is not at all what Joe wanted.
7554 Here's a more correct method:
7556 @smallexample
7557 @group
7558 1:  [7, 7, 7, 8, 7]      2:  [7, 7, 7, 8, 7]
7559     .                    1:  7
7560                              .
7562   ' [7,7,7,8,7] @key{RET}          @key{RET} v r 1 @key{RET}
7564 @end group
7565 @end smallexample
7566 @noindent
7567 @smallexample
7568 @group
7569 1:  [1, 1, 1, 0, 1]      1:  0
7570     .                        .
7572     V M a =                  V R *
7573 @end group
7574 @end smallexample
7576 @node List Answer 11, List Answer 12, List Answer 10, Answers to Exercises
7577 @subsection List Tutorial Exercise 11
7579 @noindent
7580 The circle of unit radius consists of those points @expr{(x,y)} for which
7581 @expr{x^2 + y^2 < 1}.  We start by generating a vector of @expr{x^2}
7582 and a vector of @expr{y^2}.
7584 We can make this go a bit faster by using the @kbd{v .} and @kbd{t .}
7585 commands.
7587 @smallexample
7588 @group
7589 2:  [2., 2., ..., 2.]          2:  [2., 2., ..., 2.]
7590 1:  [2., 2., ..., 2.]          1:  [1.16, 1.98, ..., 0.81]
7591     .                              .
7593  v . t .  2. v b 100 @key{RET} @key{RET}       V M k r
7595 @end group
7596 @end smallexample
7597 @noindent
7598 @smallexample
7599 @group
7600 2:  [2., 2., ..., 2.]          1:  [0.026, 0.96, ..., 0.036]
7601 1:  [0.026, 0.96, ..., 0.036]  2:  [0.53, 0.81, ..., 0.094]
7602     .                              .
7604     1 -  2 V M ^                   @key{TAB}  V M k r  1 -  2 V M ^
7605 @end group
7606 @end smallexample
7608 Now we sum the @expr{x^2} and @expr{y^2} values, compare with 1 to
7609 get a vector of 1/0 truth values, then sum the truth values.
7611 @smallexample
7612 @group
7613 1:  [0.56, 1.78, ..., 0.13]    1:  [1, 0, ..., 1]    1:  84
7614     .                              .                     .
7616     +                              1 V M a <             V R +
7617 @end group
7618 @end smallexample
7620 @noindent
7621 The ratio @expr{84/100} should approximate the ratio @cpiover{4}.
7623 @smallexample
7624 @group
7625 1:  0.84       1:  3.36       2:  3.36       1:  1.0695
7626     .              .          1:  3.14159        .
7628     100 /          4 *            P              /
7629 @end group
7630 @end smallexample
7632 @noindent
7633 Our estimate, 3.36, is off by about 7%.  We could get a better estimate
7634 by taking more points (say, 1000), but it's clear that this method is
7635 not very efficient!
7637 (Naturally, since this example uses random numbers your own answer
7638 will be slightly different from the one shown here!)
7640 If you typed @kbd{v .} and @kbd{t .} before, type them again to
7641 return to full-sized display of vectors.
7643 @node List Answer 12, List Answer 13, List Answer 11, Answers to Exercises
7644 @subsection List Tutorial Exercise 12
7646 @noindent
7647 This problem can be made a lot easier by taking advantage of some
7648 symmetries.  First of all, after some thought it's clear that the
7649 @expr{y} axis can be ignored altogether.  Just pick a random @expr{x}
7650 component for one end of the match, pick a random direction 
7651 @texline @math{\theta},
7652 @infoline @expr{theta},
7653 and see if @expr{x} and 
7654 @texline @math{x + \cos \theta}
7655 @infoline @expr{x + cos(theta)} 
7656 (which is the @expr{x} coordinate of the other endpoint) cross a line.
7657 The lines are at integer coordinates, so this happens when the two
7658 numbers surround an integer.
7660 Since the two endpoints are equivalent, we may as well choose the leftmost
7661 of the two endpoints as @expr{x}.  Then @expr{theta} is an angle pointing
7662 to the right, in the range -90 to 90 degrees.  (We could use radians, but
7663 it would feel like cheating to refer to @cpiover{2} radians while trying
7664 to estimate @cpi{}!)
7666 In fact, since the field of lines is infinite we can choose the
7667 coordinates 0 and 1 for the lines on either side of the leftmost
7668 endpoint.  The rightmost endpoint will be between 0 and 1 if the
7669 match does not cross a line, or between 1 and 2 if it does.  So:
7670 Pick random @expr{x} and 
7671 @texline @math{\theta},
7672 @infoline @expr{theta}, 
7673 compute
7674 @texline @math{x + \cos \theta},
7675 @infoline @expr{x + cos(theta)},
7676 and count how many of the results are greater than one.  Simple!
7678 We can make this go a bit faster by using the @kbd{v .} and @kbd{t .}
7679 commands.
7681 @smallexample
7682 @group
7683 1:  [0.52, 0.71, ..., 0.72]    2:  [0.52, 0.71, ..., 0.72]
7684     .                          1:  [78.4, 64.5, ..., -42.9]
7685                                    .
7687 v . t . 1. v b 100 @key{RET}  V M k r    180. v b 100 @key{RET}  V M k r  90 -
7688 @end group
7689 @end smallexample
7691 @noindent
7692 (The next step may be slow, depending on the speed of your computer.)
7694 @smallexample
7695 @group
7696 2:  [0.52, 0.71, ..., 0.72]    1:  [0.72, 1.14, ..., 1.45]
7697 1:  [0.20, 0.43, ..., 0.73]        .
7698     .
7700     m d  V M C                     +
7702 @end group
7703 @end smallexample
7704 @noindent
7705 @smallexample
7706 @group
7707 1:  [0, 1, ..., 1]       1:  0.64            1:  3.125
7708     .                        .                   .
7710     1 V M a >                V R + 100 /         2 @key{TAB} /
7711 @end group
7712 @end smallexample
7714 Let's try the third method, too.  We'll use random integers up to
7715 one million.  The @kbd{k r} command with an integer argument picks
7716 a random integer.
7718 @smallexample
7719 @group
7720 2:  [1000000, 1000000, ..., 1000000]   2:  [78489, 527587, ..., 814975]
7721 1:  [1000000, 1000000, ..., 1000000]   1:  [324014, 358783, ..., 955450]
7722     .                                      .
7724     1000000 v b 100 @key{RET} @key{RET}                V M k r  @key{TAB}  V M k r
7726 @end group
7727 @end smallexample
7728 @noindent
7729 @smallexample
7730 @group
7731 1:  [1, 1, ..., 25]      1:  [1, 1, ..., 0]     1:  0.56
7732     .                        .                      .
7734     V M k g                  1 V M a =              V R + 100 /
7736 @end group
7737 @end smallexample
7738 @noindent
7739 @smallexample
7740 @group
7741 1:  10.714        1:  3.273
7742     .                 .
7744     6 @key{TAB} /           Q
7745 @end group
7746 @end smallexample
7748 For a proof of this property of the GCD function, see section 4.5.2,
7749 exercise 10, of Knuth's @emph{Art of Computer Programming}, volume II.
7751 If you typed @kbd{v .} and @kbd{t .} before, type them again to
7752 return to full-sized display of vectors.
7754 @node List Answer 13, List Answer 14, List Answer 12, Answers to Exercises
7755 @subsection List Tutorial Exercise 13
7757 @noindent
7758 First, we put the string on the stack as a vector of ASCII codes.
7760 @smallexample
7761 @group
7762 1:  [84, 101, 115, ..., 51]
7763     .
7765     "Testing, 1, 2, 3 @key{RET}
7766 @end group
7767 @end smallexample
7769 @noindent
7770 Note that the @kbd{"} key, like @kbd{$}, initiates algebraic entry so
7771 there was no need to type an apostrophe.  Also, Calc didn't mind that
7772 we omitted the closing @kbd{"}.  (The same goes for all closing delimiters
7773 like @kbd{)} and @kbd{]} at the end of a formula.
7775 We'll show two different approaches here.  In the first, we note that
7776 if the input vector is @expr{[a, b, c, d]}, then the hash code is
7777 @expr{3 (3 (3a + b) + c) + d = 27a + 9b + 3c + d}.  In other words,
7778 it's a sum of descending powers of three times the ASCII codes.
7780 @smallexample
7781 @group
7782 2:  [84, 101, 115, ..., 51]    2:  [84, 101, 115, ..., 51]
7783 1:  16                         1:  [15, 14, 13, ..., 0]
7784     .                              .
7786     @key{RET} v l                        v x 16 @key{RET} -
7788 @end group
7789 @end smallexample
7790 @noindent
7791 @smallexample
7792 @group
7793 2:  [84, 101, 115, ..., 51]    1:  1960915098    1:  121
7794 1:  [14348907, ..., 1]             .                 .
7795     .
7797     3 @key{TAB} V M ^                    *                 511 %
7798 @end group
7799 @end smallexample
7801 @noindent
7802 Once again, @kbd{*} elegantly summarizes most of the computation.
7803 But there's an even more elegant approach:  Reduce the formula
7804 @kbd{3 $$ + $} across the vector.  Recall that this represents a
7805 function of two arguments that computes its first argument times three
7806 plus its second argument.
7808 @smallexample
7809 @group
7810 1:  [84, 101, 115, ..., 51]    1:  1960915098
7811     .                              .
7813     "Testing, 1, 2, 3 @key{RET}          V R ' 3$$+$ @key{RET}
7814 @end group
7815 @end smallexample
7817 @noindent
7818 If you did the decimal arithmetic exercise, this will be familiar.
7819 Basically, we're turning a base-3 vector of digits into an integer,
7820 except that our ``digits'' are much larger than real digits.
7822 Instead of typing @kbd{511 %} again to reduce the result, we can be
7823 cleverer still and notice that rather than computing a huge integer
7824 and taking the modulo at the end, we can take the modulo at each step
7825 without affecting the result.  While this means there are more
7826 arithmetic operations, the numbers we operate on remain small so
7827 the operations are faster.
7829 @smallexample
7830 @group
7831 1:  [84, 101, 115, ..., 51]    1:  121
7832     .                              .
7834     "Testing, 1, 2, 3 @key{RET}          V R ' (3$$+$)%511 @key{RET}
7835 @end group
7836 @end smallexample
7838 Why does this work?  Think about a two-step computation:
7839 @w{@expr{3 (3a + b) + c}}.  Taking a result modulo 511 basically means
7840 subtracting off enough 511's to put the result in the desired range.
7841 So the result when we take the modulo after every step is,
7843 @ifnottex
7844 @example
7845 3 (3 a + b - 511 m) + c - 511 n
7846 @end example
7847 @end ifnottex
7848 @tex
7849 \turnoffactive
7850 \beforedisplay
7851 $$ 3 (3 a + b - 511 m) + c - 511 n $$
7852 \afterdisplay
7853 @end tex
7855 @noindent
7856 for some suitable integers @expr{m} and @expr{n}.  Expanding out by
7857 the distributive law yields
7859 @ifnottex
7860 @example
7861 9 a + 3 b + c - 511*3 m - 511 n
7862 @end example
7863 @end ifnottex
7864 @tex
7865 \turnoffactive
7866 \beforedisplay
7867 $$ 9 a + 3 b + c - 511\times3 m - 511 n $$
7868 \afterdisplay
7869 @end tex
7871 @noindent
7872 The @expr{m} term in the latter formula is redundant because any
7873 contribution it makes could just as easily be made by the @expr{n}
7874 term.  So we can take it out to get an equivalent formula with
7875 @expr{n' = 3m + n},
7877 @ifnottex
7878 @example
7879 9 a + 3 b + c - 511 n'
7880 @end example
7881 @end ifnottex
7882 @tex
7883 \turnoffactive
7884 \beforedisplay
7885 $$ 9 a + 3 b + c - 511 n' $$
7886 \afterdisplay
7887 @end tex
7889 @noindent
7890 which is just the formula for taking the modulo only at the end of
7891 the calculation.  Therefore the two methods are essentially the same.
7893 Later in the tutorial we will encounter @dfn{modulo forms}, which
7894 basically automate the idea of reducing every intermediate result
7895 modulo some value @var{m}.
7897 @node List Answer 14, Types Answer 1, List Answer 13, Answers to Exercises
7898 @subsection List Tutorial Exercise 14
7900 We want to use @kbd{H V U} to nest a function which adds a random
7901 step to an @expr{(x,y)} coordinate.  The function is a bit long, but
7902 otherwise the problem is quite straightforward.
7904 @smallexample
7905 @group
7906 2:  [0, 0]     1:  [ [    0,       0    ]
7907 1:  50               [  0.4288, -0.1695 ]
7908     .                [ -0.4787, -0.9027 ]
7909                      ...
7911     [0,0] 50       H V U ' <# + [random(2.0)-1, random(2.0)-1]> @key{RET}
7912 @end group
7913 @end smallexample
7915 Just as the text recommended, we used @samp{< >} nameless function
7916 notation to keep the two @code{random} calls from being evaluated
7917 before nesting even begins.
7919 We now have a vector of @expr{[x, y]} sub-vectors, which by Calc's
7920 rules acts like a matrix.  We can transpose this matrix and unpack
7921 to get a pair of vectors, @expr{x} and @expr{y}, suitable for graphing.
7923 @smallexample
7924 @group
7925 2:  [ 0, 0.4288, -0.4787, ... ]
7926 1:  [ 0, -0.1696, -0.9027, ... ]
7927     .
7929     v t  v u  g f
7930 @end group
7931 @end smallexample
7933 Incidentally, because the @expr{x} and @expr{y} are completely
7934 independent in this case, we could have done two separate commands
7935 to create our @expr{x} and @expr{y} vectors of numbers directly.
7937 To make a random walk of unit steps, we note that @code{sincos} of
7938 a random direction exactly gives us an @expr{[x, y]} step of unit
7939 length; in fact, the new nesting function is even briefer, though
7940 we might want to lower the precision a bit for it.
7942 @smallexample
7943 @group
7944 2:  [0, 0]     1:  [ [    0,      0    ]
7945 1:  50               [  0.1318, 0.9912 ]
7946     .                [ -0.5965, 0.3061 ]
7947                      ...
7949     [0,0] 50   m d  p 6 @key{RET}   H V U ' <# + sincos(random(360.0))> @key{RET}
7950 @end group
7951 @end smallexample
7953 Another @kbd{v t v u g f} sequence will graph this new random walk.
7955 An interesting twist on these random walk functions would be to use
7956 complex numbers instead of 2-vectors to represent points on the plane.
7957 In the first example, we'd use something like @samp{random + random*(0,1)},
7958 and in the second we could use polar complex numbers with random phase
7959 angles.  (This exercise was first suggested in this form by Randal
7960 Schwartz.)
7962 @node Types Answer 1, Types Answer 2, List Answer 14, Answers to Exercises
7963 @subsection Types Tutorial Exercise 1
7965 @noindent
7966 If the number is the square root of @cpi{} times a rational number,
7967 then its square, divided by @cpi{}, should be a rational number.
7969 @smallexample
7970 @group
7971 1:  1.26508260337    1:  0.509433962268   1:  2486645810:4881193627
7972     .                    .                    .
7974                          2 ^ P /              c F
7975 @end group
7976 @end smallexample
7978 @noindent
7979 Technically speaking this is a rational number, but not one that is
7980 likely to have arisen in the original problem.  More likely, it just
7981 happens to be the fraction which most closely represents some
7982 irrational number to within 12 digits.
7984 But perhaps our result was not quite exact.  Let's reduce the
7985 precision slightly and try again:
7987 @smallexample
7988 @group
7989 1:  0.509433962268     1:  27:53
7990     .                      .
7992     U p 10 @key{RET}             c F
7993 @end group
7994 @end smallexample
7996 @noindent
7997 Aha!  It's unlikely that an irrational number would equal a fraction
7998 this simple to within ten digits, so our original number was probably
7999 @texline @math{\sqrt{27 \pi / 53}}.
8000 @infoline @expr{sqrt(27 pi / 53)}.
8002 Notice that we didn't need to re-round the number when we reduced the
8003 precision.  Remember, arithmetic operations always round their inputs
8004 to the current precision before they begin.
8006 @node Types Answer 2, Types Answer 3, Types Answer 1, Answers to Exercises
8007 @subsection Types Tutorial Exercise 2
8009 @noindent
8010 @samp{inf / inf = nan}.  Perhaps @samp{1} is the ``obvious'' answer.
8011 But if @w{@samp{17 inf = inf}}, then @samp{17 inf / inf = inf / inf = 17}, too.
8013 @samp{exp(inf) = inf}.  It's tempting to say that the exponential
8014 of infinity must be ``bigger'' than ``regular'' infinity, but as
8015 far as Calc is concerned all infinities are as just as big.
8016 In other words, as @expr{x} goes to infinity, @expr{e^x} also goes
8017 to infinity, but the fact the @expr{e^x} grows much faster than
8018 @expr{x} is not relevant here.
8020 @samp{exp(-inf) = 0}.  Here we have a finite answer even though
8021 the input is infinite.
8023 @samp{sqrt(-inf) = (0, 1) inf}.  Remember that @expr{(0, 1)}
8024 represents the imaginary number @expr{i}.  Here's a derivation:
8025 @samp{sqrt(-inf) = @w{sqrt((-1) * inf)} = sqrt(-1) * sqrt(inf)}.
8026 The first part is, by definition, @expr{i}; the second is @code{inf}
8027 because, once again, all infinities are the same size.
8029 @samp{sqrt(uinf) = uinf}.  In fact, we do know something about the
8030 direction because @code{sqrt} is defined to return a value in the
8031 right half of the complex plane.  But Calc has no notation for this,
8032 so it settles for the conservative answer @code{uinf}.
8034 @samp{abs(uinf) = inf}.  No matter which direction @expr{x} points,
8035 @samp{abs(x)} always points along the positive real axis.
8037 @samp{ln(0) = -inf}.  Here we have an infinite answer to a finite
8038 input.  As in the @expr{1 / 0} case, Calc will only use infinities
8039 here if you have turned on Infinite mode.  Otherwise, it will
8040 treat @samp{ln(0)} as an error.
8042 @node Types Answer 3, Types Answer 4, Types Answer 2, Answers to Exercises
8043 @subsection Types Tutorial Exercise 3
8045 @noindent
8046 We can make @samp{inf - inf} be any real number we like, say,
8047 @expr{a}, just by claiming that we added @expr{a} to the first
8048 infinity but not to the second.  This is just as true for complex
8049 values of @expr{a}, so @code{nan} can stand for a complex number.
8050 (And, similarly, @code{uinf} can stand for an infinity that points
8051 in any direction in the complex plane, such as @samp{(0, 1) inf}).
8053 In fact, we can multiply the first @code{inf} by two.  Surely
8054 @w{@samp{2 inf - inf = inf}}, but also @samp{2 inf - inf = inf - inf = nan}.
8055 So @code{nan} can even stand for infinity.  Obviously it's just
8056 as easy to make it stand for minus infinity as for plus infinity.
8058 The moral of this story is that ``infinity'' is a slippery fish
8059 indeed, and Calc tries to handle it by having a very simple model
8060 for infinities (only the direction counts, not the ``size''); but
8061 Calc is careful to write @code{nan} any time this simple model is
8062 unable to tell what the true answer is.
8064 @node Types Answer 4, Types Answer 5, Types Answer 3, Answers to Exercises
8065 @subsection Types Tutorial Exercise 4
8067 @smallexample
8068 @group
8069 2:  0@@ 47' 26"              1:  0@@ 2' 47.411765"
8070 1:  17                          .
8071     .
8073     0@@ 47' 26" @key{RET} 17           /
8074 @end group
8075 @end smallexample
8077 @noindent
8078 The average song length is two minutes and 47.4 seconds.
8080 @smallexample
8081 @group
8082 2:  0@@ 2' 47.411765"     1:  0@@ 3' 7.411765"    1:  0@@ 53' 6.000005"
8083 1:  0@@ 0' 20"                .                      .
8084     .
8086     20"                      +                      17 *
8087 @end group
8088 @end smallexample
8090 @noindent
8091 The album would be 53 minutes and 6 seconds long.
8093 @node Types Answer 5, Types Answer 6, Types Answer 4, Answers to Exercises
8094 @subsection Types Tutorial Exercise 5
8096 @noindent
8097 Let's suppose it's January 14, 1991.  The easiest thing to do is
8098 to keep trying 13ths of months until Calc reports a Friday.
8099 We can do this by manually entering dates, or by using @kbd{t I}:
8101 @smallexample
8102 @group
8103 1:  <Wed Feb 13, 1991>    1:  <Wed Mar 13, 1991>   1:  <Sat Apr 13, 1991>
8104     .                         .                        .
8106     ' <2/13> @key{RET}       @key{DEL}    ' <3/13> @key{RET}             t I
8107 @end group
8108 @end smallexample
8110 @noindent
8111 (Calc assumes the current year if you don't say otherwise.)
8113 This is getting tedious---we can keep advancing the date by typing
8114 @kbd{t I} over and over again, but let's automate the job by using
8115 vector mapping.  The @kbd{t I} command actually takes a second
8116 ``how-many-months'' argument, which defaults to one.  This
8117 argument is exactly what we want to map over:
8119 @smallexample
8120 @group
8121 2:  <Sat Apr 13, 1991>     1:  [<Mon May 13, 1991>, <Thu Jun 13, 1991>,
8122 1:  [1, 2, 3, 4, 5, 6]          <Sat Jul 13, 1991>, <Tue Aug 13, 1991>,
8123     .                           <Fri Sep 13, 1991>, <Sun Oct 13, 1991>]
8124                                .
8126     v x 6 @key{RET}                  V M t I
8127 @end group
8128 @end smallexample
8130 @noindent
8131 Et voil@`a, September 13, 1991 is a Friday.
8133 @smallexample
8134 @group
8135 1:  242
8136     .
8138 ' <sep 13> - <jan 14> @key{RET}
8139 @end group
8140 @end smallexample
8142 @noindent
8143 And the answer to our original question:  242 days to go.
8145 @node Types Answer 6, Types Answer 7, Types Answer 5, Answers to Exercises
8146 @subsection Types Tutorial Exercise 6
8148 @noindent
8149 The full rule for leap years is that they occur in every year divisible
8150 by four, except that they don't occur in years divisible by 100, except
8151 that they @emph{do} in years divisible by 400.  We could work out the
8152 answer by carefully counting the years divisible by four and the
8153 exceptions, but there is a much simpler way that works even if we
8154 don't know the leap year rule.
8156 Let's assume the present year is 1991.  Years have 365 days, except
8157 that leap years (whenever they occur) have 366 days.  So let's count
8158 the number of days between now and then, and compare that to the
8159 number of years times 365.  The number of extra days we find must be
8160 equal to the number of leap years there were.
8162 @smallexample
8163 @group
8164 1:  <Mon Jan 1, 10001>     2:  <Mon Jan 1, 10001>     1:  2925593
8165     .                      1:  <Tue Jan 1, 1991>          .
8166                                .
8168   ' <jan 1 10001> @key{RET}         ' <jan 1 1991> @key{RET}          -
8170 @end group
8171 @end smallexample
8172 @noindent
8173 @smallexample
8174 @group
8175 3:  2925593       2:  2925593     2:  2925593     1:  1943
8176 2:  10001         1:  8010        1:  2923650         .
8177 1:  1991              .               .
8178     .
8180   10001 @key{RET} 1991      -               365 *           -
8181 @end group
8182 @end smallexample
8184 @c [fix-ref Date Forms]
8185 @noindent
8186 There will be 1943 leap years before the year 10001.  (Assuming,
8187 of course, that the algorithm for computing leap years remains
8188 unchanged for that long.  @xref{Date Forms}, for some interesting
8189 background information in that regard.)
8191 @node Types Answer 7, Types Answer 8, Types Answer 6, Answers to Exercises
8192 @subsection Types Tutorial Exercise 7
8194 @noindent
8195 The relative errors must be converted to absolute errors so that
8196 @samp{+/-} notation may be used.
8198 @smallexample
8199 @group
8200 1:  1.              2:  1.
8201     .               1:  0.2
8202                         .
8204     20 @key{RET} .05 *        4 @key{RET} .05 *
8205 @end group
8206 @end smallexample
8208 Now we simply chug through the formula.
8210 @smallexample
8211 @group
8212 1:  19.7392088022    1:  394.78 +/- 19.739    1:  6316.5 +/- 706.21
8213     .                    .                        .
8215     2 P 2 ^ *            20 p 1 *                 4 p .2 @key{RET} 2 ^ *
8216 @end group
8217 @end smallexample
8219 It turns out the @kbd{v u} command will unpack an error form as
8220 well as a vector.  This saves us some retyping of numbers.
8222 @smallexample
8223 @group
8224 3:  6316.5 +/- 706.21     2:  6316.5 +/- 706.21
8225 2:  6316.5                1:  0.1118
8226 1:  706.21                    .
8227     .
8229     @key{RET} v u                   @key{TAB} /
8230 @end group
8231 @end smallexample
8233 @noindent
8234 Thus the volume is 6316 cubic centimeters, within about 11 percent.
8236 @node Types Answer 8, Types Answer 9, Types Answer 7, Answers to Exercises
8237 @subsection Types Tutorial Exercise 8
8239 @noindent
8240 The first answer is pretty simple:  @samp{1 / (0 .. 10) = (0.1 .. inf)}.
8241 Since a number in the interval @samp{(0 .. 10)} can get arbitrarily
8242 close to zero, its reciprocal can get arbitrarily large, so the answer
8243 is an interval that effectively means, ``any number greater than 0.1''
8244 but with no upper bound.
8246 The second answer, similarly, is @samp{1 / (-10 .. 0) = (-inf .. -0.1)}.
8248 Calc normally treats division by zero as an error, so that the formula
8249 @w{@samp{1 / 0}} is left unsimplified.  Our third problem,
8250 @w{@samp{1 / [0 .. 10]}}, also (potentially) divides by zero because zero
8251 is now a member of the interval.  So Calc leaves this one unevaluated, too.
8253 If you turn on Infinite mode by pressing @kbd{m i}, you will
8254 instead get the answer @samp{[0.1 .. inf]}, which includes infinity
8255 as a possible value.
8257 The fourth calculation, @samp{1 / (-10 .. 10)}, has the same problem.
8258 Zero is buried inside the interval, but it's still a possible value.
8259 It's not hard to see that the actual result of @samp{1 / (-10 .. 10)}
8260 will be either greater than @mathit{0.1}, or less than @mathit{-0.1}.  Thus
8261 the interval goes from minus infinity to plus infinity, with a ``hole''
8262 in it from @mathit{-0.1} to @mathit{0.1}.  Calc doesn't have any way to
8263 represent this, so it just reports @samp{[-inf .. inf]} as the answer.
8264 It may be disappointing to hear ``the answer lies somewhere between
8265 minus infinity and plus infinity, inclusive,'' but that's the best
8266 that interval arithmetic can do in this case.
8268 @node Types Answer 9, Types Answer 10, Types Answer 8, Answers to Exercises
8269 @subsection Types Tutorial Exercise 9
8271 @smallexample
8272 @group
8273 1:  [-3 .. 3]       2:  [-3 .. 3]     2:  [0 .. 9]
8274     .               1:  [0 .. 9]      1:  [-9 .. 9]
8275                         .                 .
8277     [ 3 n .. 3 ]        @key{RET} 2 ^           @key{TAB} @key{RET} *
8278 @end group
8279 @end smallexample
8281 @noindent
8282 In the first case the result says, ``if a number is between @mathit{-3} and
8283 3, its square is between 0 and 9.''  The second case says, ``the product
8284 of two numbers each between @mathit{-3} and 3 is between @mathit{-9} and 9.''
8286 An interval form is not a number; it is a symbol that can stand for
8287 many different numbers.  Two identical-looking interval forms can stand
8288 for different numbers.
8290 The same issue arises when you try to square an error form.
8292 @node Types Answer 10, Types Answer 11, Types Answer 9, Answers to Exercises
8293 @subsection Types Tutorial Exercise 10
8295 @noindent
8296 Testing the first number, we might arbitrarily choose 17 for @expr{x}.
8298 @smallexample
8299 @group
8300 1:  17 mod 811749613   2:  17 mod 811749613   1:  533694123 mod 811749613
8301     .                      811749612              .
8302                            .
8304     17 M 811749613 @key{RET}     811749612              ^
8305 @end group
8306 @end smallexample
8308 @noindent
8309 Since 533694123 is (considerably) different from 1, the number 811749613
8310 must not be prime.
8312 It's awkward to type the number in twice as we did above.  There are
8313 various ways to avoid this, and algebraic entry is one.  In fact, using
8314 a vector mapping operation we can perform several tests at once.  Let's
8315 use this method to test the second number.
8317 @smallexample
8318 @group
8319 2:  [17, 42, 100000]               1:  [1 mod 15485863, 1 mod ... ]
8320 1:  15485863                           .
8321     .
8323  [17 42 100000] 15485863 @key{RET}           V M ' ($$ mod $)^($-1) @key{RET}
8324 @end group
8325 @end smallexample
8327 @noindent
8328 The result is three ones (modulo @expr{n}), so it's very probable that
8329 15485863 is prime.  (In fact, this number is the millionth prime.)
8331 Note that the functions @samp{($$^($-1)) mod $} or @samp{$$^($-1) % $}
8332 would have been hopelessly inefficient, since they would have calculated
8333 the power using full integer arithmetic.
8335 Calc has a @kbd{k p} command that does primality testing.  For small
8336 numbers it does an exact test; for large numbers it uses a variant
8337 of the Fermat test we used here.  You can use @kbd{k p} repeatedly
8338 to prove that a large integer is prime with any desired probability.
8340 @node Types Answer 11, Types Answer 12, Types Answer 10, Answers to Exercises
8341 @subsection Types Tutorial Exercise 11
8343 @noindent
8344 There are several ways to insert a calculated number into an HMS form.
8345 One way to convert a number of seconds to an HMS form is simply to
8346 multiply the number by an HMS form representing one second:
8348 @smallexample
8349 @group
8350 1:  31415926.5359     2:  31415926.5359     1:  8726@@ 38' 46.5359"
8351     .                 1:  0@@ 0' 1"              .
8352                           .
8354     P 1e7 *               0@@ 0' 1"              *
8356 @end group
8357 @end smallexample
8358 @noindent
8359 @smallexample
8360 @group
8361 2:  8726@@ 38' 46.5359"             1:  6@@ 6' 2.5359" mod 24@@ 0' 0"
8362 1:  15@@ 27' 16" mod 24@@ 0' 0"          .
8363     .
8365     x time @key{RET}                         +
8366 @end group
8367 @end smallexample
8369 @noindent
8370 It will be just after six in the morning.
8372 The algebraic @code{hms} function can also be used to build an
8373 HMS form:
8375 @smallexample
8376 @group
8377 1:  hms(0, 0, 10000000. pi)       1:  8726@@ 38' 46.5359"
8378     .                                 .
8380   ' hms(0, 0, 1e7 pi) @key{RET}             =
8381 @end group
8382 @end smallexample
8384 @noindent
8385 The @kbd{=} key is necessary to evaluate the symbol @samp{pi} to
8386 the actual number 3.14159...
8388 @node Types Answer 12, Types Answer 13, Types Answer 11, Answers to Exercises
8389 @subsection Types Tutorial Exercise 12
8391 @noindent
8392 As we recall, there are 17 songs of about 2 minutes and 47 seconds
8393 each.
8395 @smallexample
8396 @group
8397 2:  0@@ 2' 47"                    1:  [0@@ 3' 7" .. 0@@ 3' 47"]
8398 1:  [0@@ 0' 20" .. 0@@ 1' 0"]          .
8399     .
8401     [ 0@@ 20" .. 0@@ 1' ]              +
8403 @end group
8404 @end smallexample
8405 @noindent
8406 @smallexample
8407 @group
8408 1:  [0@@ 52' 59." .. 1@@ 4' 19."]
8409     .
8411     17 *
8412 @end group
8413 @end smallexample
8415 @noindent
8416 No matter how long it is, the album will fit nicely on one CD.
8418 @node Types Answer 13, Types Answer 14, Types Answer 12, Answers to Exercises
8419 @subsection Types Tutorial Exercise 13
8421 @noindent
8422 Type @kbd{' 1 yr @key{RET} u c s @key{RET}}.  The answer is 31557600 seconds.
8424 @node Types Answer 14, Types Answer 15, Types Answer 13, Answers to Exercises
8425 @subsection Types Tutorial Exercise 14
8427 @noindent
8428 How long will it take for a signal to get from one end of the computer
8429 to the other?
8431 @smallexample
8432 @group
8433 1:  m / c         1:  3.3356 ns
8434     .                 .
8436  ' 1 m / c @key{RET}        u c ns @key{RET}
8437 @end group
8438 @end smallexample
8440 @noindent
8441 (Recall, @samp{c} is a ``unit'' corresponding to the speed of light.)
8443 @smallexample
8444 @group
8445 1:  3.3356 ns     1:  0.81356 ns / ns     1:  0.81356
8446 2:  4.1 ns            .                       .
8447     .
8449   ' 4.1 ns @key{RET}        /                       u s
8450 @end group
8451 @end smallexample
8453 @noindent
8454 Thus a signal could take up to 81 percent of a clock cycle just to
8455 go from one place to another inside the computer, assuming the signal
8456 could actually attain the full speed of light.  Pretty tight!
8458 @node Types Answer 15, Algebra Answer 1, Types Answer 14, Answers to Exercises
8459 @subsection Types Tutorial Exercise 15
8461 @noindent
8462 The speed limit is 55 miles per hour on most highways.  We want to
8463 find the ratio of Sam's speed to the US speed limit.
8465 @smallexample
8466 @group
8467 1:  55 mph         2:  55 mph           3:  11 hr mph / yd
8468     .              1:  5 yd / hr            .
8469                        .
8471   ' 55 mph @key{RET}       ' 5 yd/hr @key{RET}          /
8472 @end group
8473 @end smallexample
8475 The @kbd{u s} command cancels out these units to get a plain
8476 number.  Now we take the logarithm base two to find the final
8477 answer, assuming that each successive pill doubles his speed.
8479 @smallexample
8480 @group
8481 1:  19360.       2:  19360.       1:  14.24
8482     .            1:  2                .
8483                      .
8485     u s              2                B
8486 @end group
8487 @end smallexample
8489 @noindent
8490 Thus Sam can take up to 14 pills without a worry.
8492 @node Algebra Answer 1, Algebra Answer 2, Types Answer 15, Answers to Exercises
8493 @subsection Algebra Tutorial Exercise 1
8495 @noindent
8496 @c [fix-ref Declarations]
8497 The result @samp{sqrt(x)^2} is simplified back to @expr{x} by the
8498 Calculator, but @samp{sqrt(x^2)} is not.  (Consider what happens
8499 if @w{@expr{x = -4}}.)  If @expr{x} is real, this formula could be
8500 simplified to @samp{abs(x)}, but for general complex arguments even
8501 that is not safe.  (@xref{Declarations}, for a way to tell Calc
8502 that @expr{x} is known to be real.)
8504 @node Algebra Answer 2, Algebra Answer 3, Algebra Answer 1, Answers to Exercises
8505 @subsection Algebra Tutorial Exercise 2
8507 @noindent
8508 Suppose our roots are @expr{[a, b, c]}.  We want a polynomial which
8509 is zero when @expr{x} is any of these values.  The trivial polynomial
8510 @expr{x-a} is zero when @expr{x=a}, so the product @expr{(x-a)(x-b)(x-c)}
8511 will do the job.  We can use @kbd{a c x} to write this in a more
8512 familiar form.
8514 @smallexample
8515 @group
8516 1:  34 x - 24 x^3          1:  [1.19023, -1.19023, 0]
8517     .                          .
8519     r 2                        a P x @key{RET}
8521 @end group
8522 @end smallexample
8523 @noindent
8524 @smallexample
8525 @group
8526 1:  [x - 1.19023, x + 1.19023, x]     1:  (x - 1.19023) (x + 1.19023) x
8527     .                                     .
8529     V M ' x-$ @key{RET}                         V R *
8531 @end group
8532 @end smallexample
8533 @noindent
8534 @smallexample
8535 @group
8536 1:  x^3 - 1.41666 x        1:  34 x - 24 x^3
8537     .                          .
8539     a c x @key{RET}                  24 n *  a x
8540 @end group
8541 @end smallexample
8543 @noindent
8544 Sure enough, our answer (multiplied by a suitable constant) is the
8545 same as the original polynomial.
8547 @node Algebra Answer 3, Algebra Answer 4, Algebra Answer 2, Answers to Exercises
8548 @subsection Algebra Tutorial Exercise 3
8550 @smallexample
8551 @group
8552 1:  x sin(pi x)         1:  (sin(pi x) - pi x cos(pi x)) / pi^2
8553     .                       .
8555   ' x sin(pi x) @key{RET}   m r   a i x @key{RET}
8557 @end group
8558 @end smallexample
8559 @noindent
8560 @smallexample
8561 @group
8562 1:  [y, 1]
8563 2:  (sin(pi x) - pi x cos(pi x)) / pi^2
8564     .
8566   ' [y,1] @key{RET} @key{TAB}
8568 @end group
8569 @end smallexample
8570 @noindent
8571 @smallexample
8572 @group
8573 1:  [(sin(pi y) - pi y cos(pi y)) / pi^2, (sin(pi) - pi cos(pi)) / pi^2]
8574     .
8576     V M $ @key{RET}
8578 @end group
8579 @end smallexample
8580 @noindent
8581 @smallexample
8582 @group
8583 1:  (sin(pi y) - pi y cos(pi y)) / pi^2 + (pi cos(pi) - sin(pi)) / pi^2
8584     .
8586     V R -
8588 @end group
8589 @end smallexample
8590 @noindent
8591 @smallexample
8592 @group
8593 1:  (sin(3.14159 y) - 3.14159 y cos(3.14159 y)) / 9.8696 - 0.3183
8594     .
8596     =
8598 @end group
8599 @end smallexample
8600 @noindent
8601 @smallexample
8602 @group
8603 1:  [0., -0.95493, 0.63662, -1.5915, 1.2732]
8604     .
8606     v x 5 @key{RET}  @key{TAB}  V M $ @key{RET}
8607 @end group
8608 @end smallexample
8610 @node Algebra Answer 4, Rewrites Answer 1, Algebra Answer 3, Answers to Exercises
8611 @subsection Algebra Tutorial Exercise 4
8613 @noindent
8614 The hard part is that @kbd{V R +} is no longer sufficient to add up all
8615 the contributions from the slices, since the slices have varying
8616 coefficients.  So first we must come up with a vector of these
8617 coefficients.  Here's one way:
8619 @smallexample
8620 @group
8621 2:  -1                 2:  3                    1:  [4, 2, ..., 4]
8622 1:  [1, 2, ..., 9]     1:  [-1, 1, ..., -1]         .
8623     .                      .
8625     1 n v x 9 @key{RET}          V M ^  3 @key{TAB}             -
8627 @end group
8628 @end smallexample
8629 @noindent
8630 @smallexample
8631 @group
8632 1:  [4, 2, ..., 4, 1]      1:  [1, 4, 2, ..., 4, 1]
8633     .                          .
8635     1 |                        1 @key{TAB} |
8636 @end group
8637 @end smallexample
8639 @noindent
8640 Now we compute the function values.  Note that for this method we need
8641 eleven values, including both endpoints of the desired interval.
8643 @smallexample
8644 @group
8645 2:  [1, 4, 2, ..., 4, 1]
8646 1:  [1, 1.1, 1.2,  ...  , 1.8, 1.9, 2.]
8647     .
8649  11 @key{RET} 1 @key{RET} .1 @key{RET}  C-u v x
8651 @end group
8652 @end smallexample
8653 @noindent
8654 @smallexample
8655 @group
8656 2:  [1, 4, 2, ..., 4, 1]
8657 1:  [0., 0.084941, 0.16993, ... ]
8658     .
8660     ' sin(x) ln(x) @key{RET}   m r  p 5 @key{RET}   V M $ @key{RET}
8661 @end group
8662 @end smallexample
8664 @noindent
8665 Once again this calls for @kbd{V M * V R +}; a simple @kbd{*} does the
8666 same thing.
8668 @smallexample
8669 @group
8670 1:  11.22      1:  1.122      1:  0.374
8671     .              .              .
8673     *              .1 *           3 /
8674 @end group
8675 @end smallexample
8677 @noindent
8678 Wow!  That's even better than the result from the Taylor series method.
8680 @node Rewrites Answer 1, Rewrites Answer 2, Algebra Answer 4, Answers to Exercises
8681 @subsection Rewrites Tutorial Exercise 1
8683 @noindent
8684 We'll use Big mode to make the formulas more readable.
8686 @smallexample
8687 @group
8688                                                ___
8689                                           2 + V 2
8690 1:  (2 + sqrt(2)) / (1 + sqrt(2))     1:  --------
8691     .                                          ___
8692                                           1 + V 2
8694                                           .
8696   ' (2+sqrt(2)) / (1+sqrt(2)) @key{RET}         d B
8697 @end group
8698 @end smallexample
8700 @noindent
8701 Multiplying by the conjugate helps because @expr{(a+b) (a-b) = a^2 - b^2}.
8703 @smallexample
8704 @group
8705           ___    ___
8706 1:  (2 + V 2 ) (V 2  - 1)
8707     .
8709   a r a/(b+c) := a*(b-c) / (b^2-c^2) @key{RET}
8711 @end group
8712 @end smallexample
8713 @noindent
8714 @smallexample
8715 @group
8716          ___                         ___
8717 1:  2 + V 2  - 2                1:  V 2
8718     .                               .
8720   a r a*(b+c) := a*b + a*c          a s
8721 @end group
8722 @end smallexample
8724 @noindent
8725 (We could have used @kbd{a x} instead of a rewrite rule for the
8726 second step.)
8728 The multiply-by-conjugate rule turns out to be useful in many
8729 different circumstances, such as when the denominator involves
8730 sines and cosines or the imaginary constant @code{i}.
8732 @node Rewrites Answer 2, Rewrites Answer 3, Rewrites Answer 1, Answers to Exercises
8733 @subsection Rewrites Tutorial Exercise 2
8735 @noindent
8736 Here is the rule set:
8738 @smallexample
8739 @group
8740 [ fib(n) := fib(n, 1, 1) :: integer(n) :: n >= 1,
8741   fib(1, x, y) := x,
8742   fib(n, x, y) := fib(n-1, y, x+y) ]
8743 @end group
8744 @end smallexample
8746 @noindent
8747 The first rule turns a one-argument @code{fib} that people like to write
8748 into a three-argument @code{fib} that makes computation easier.  The
8749 second rule converts back from three-argument form once the computation
8750 is done.  The third rule does the computation itself.  It basically
8751 says that if @expr{x} and @expr{y} are two consecutive Fibonacci numbers,
8752 then @expr{y} and @expr{x+y} are the next (overlapping) pair of Fibonacci
8753 numbers.
8755 Notice that because the number @expr{n} was ``validated'' by the
8756 conditions on the first rule, there is no need to put conditions on
8757 the other rules because the rule set would never get that far unless
8758 the input were valid.  That further speeds computation, since no
8759 extra conditions need to be checked at every step.
8761 Actually, a user with a nasty sense of humor could enter a bad
8762 three-argument @code{fib} call directly, say, @samp{fib(0, 1, 1)},
8763 which would get the rules into an infinite loop.  One thing that would
8764 help keep this from happening by accident would be to use something like
8765 @samp{ZzFib} instead of @code{fib} as the name of the three-argument
8766 function.
8768 @node Rewrites Answer 3, Rewrites Answer 4, Rewrites Answer 2, Answers to Exercises
8769 @subsection Rewrites Tutorial Exercise 3
8771 @noindent
8772 He got an infinite loop.  First, Calc did as expected and rewrote
8773 @w{@samp{2 + 3 x}} to @samp{f(2, 3, x)}.  Then it looked for ways to
8774 apply the rule again, and found that @samp{f(2, 3, x)} looks like
8775 @samp{a + b x} with @w{@samp{a = 0}} and @samp{b = 1}, so it rewrote to
8776 @samp{f(0, 1, f(2, 3, x))}.  It then wrapped another @samp{f(0, 1, ...)}
8777 around that, and so on, ad infinitum.  Joe should have used @kbd{M-1 a r}
8778 to make sure the rule applied only once.
8780 (Actually, even the first step didn't work as he expected.  What Calc
8781 really gives for @kbd{M-1 a r} in this situation is @samp{f(3 x, 1, 2)},
8782 treating 2 as the ``variable,'' and @samp{3 x} as a constant being added
8783 to it.  While this may seem odd, it's just as valid a solution as the
8784 ``obvious'' one.  One way to fix this would be to add the condition
8785 @samp{:: variable(x)} to the rule, to make sure the thing that matches
8786 @samp{x} is indeed a variable, or to change @samp{x} to @samp{quote(x)}
8787 on the lefthand side, so that the rule matches the actual variable
8788 @samp{x} rather than letting @samp{x} stand for something else.)
8790 @node Rewrites Answer 4, Rewrites Answer 5, Rewrites Answer 3, Answers to Exercises
8791 @subsection Rewrites Tutorial Exercise 4
8793 @noindent
8794 @ignore
8795 @starindex
8796 @end ignore
8797 @tindex seq
8798 Here is a suitable set of rules to solve the first part of the problem:
8800 @smallexample
8801 @group
8802 [ seq(n, c) := seq(n/2,  c+1) :: n%2 = 0,
8803   seq(n, c) := seq(3n+1, c+1) :: n%2 = 1 :: n > 1 ]
8804 @end group
8805 @end smallexample
8807 Given the initial formula @samp{seq(6, 0)}, application of these
8808 rules produces the following sequence of formulas:
8810 @example
8811 seq( 3, 1)
8812 seq(10, 2)
8813 seq( 5, 3)
8814 seq(16, 4)
8815 seq( 8, 5)
8816 seq( 4, 6)
8817 seq( 2, 7)
8818 seq( 1, 8)
8819 @end example
8821 @noindent
8822 whereupon neither of the rules match, and rewriting stops.
8824 We can pretty this up a bit with a couple more rules:
8826 @smallexample
8827 @group
8828 [ seq(n) := seq(n, 0),
8829   seq(1, c) := c,
8830   ... ]
8831 @end group
8832 @end smallexample
8834 @noindent
8835 Now, given @samp{seq(6)} as the starting configuration, we get 8
8836 as the result.
8838 The change to return a vector is quite simple:
8840 @smallexample
8841 @group
8842 [ seq(n) := seq(n, []) :: integer(n) :: n > 0,
8843   seq(1, v) := v | 1,
8844   seq(n, v) := seq(n/2,  v | n) :: n%2 = 0,
8845   seq(n, v) := seq(3n+1, v | n) :: n%2 = 1 ]
8846 @end group
8847 @end smallexample
8849 @noindent
8850 Given @samp{seq(6)}, the result is @samp{[6, 3, 10, 5, 16, 8, 4, 2, 1]}.
8852 Notice that the @expr{n > 1} guard is no longer necessary on the last
8853 rule since the @expr{n = 1} case is now detected by another rule.
8854 But a guard has been added to the initial rule to make sure the
8855 initial value is suitable before the computation begins.
8857 While still a good idea, this guard is not as vitally important as it
8858 was for the @code{fib} function, since calling, say, @samp{seq(x, [])}
8859 will not get into an infinite loop.  Calc will not be able to prove
8860 the symbol @samp{x} is either even or odd, so none of the rules will
8861 apply and the rewrites will stop right away.
8863 @node Rewrites Answer 5, Rewrites Answer 6, Rewrites Answer 4, Answers to Exercises
8864 @subsection Rewrites Tutorial Exercise 5
8866 @noindent
8867 @ignore
8868 @starindex
8869 @end ignore
8870 @tindex nterms
8871 If @expr{x} is the sum @expr{a + b}, then `@tfn{nterms(}@var{x}@tfn{)}' must
8872 be `@tfn{nterms(}@var{a}@tfn{)}' plus `@tfn{nterms(}@var{b}@tfn{)}'.  If @expr{x}
8873 is not a sum, then `@tfn{nterms(}@var{x}@tfn{)}' = 1.
8875 @smallexample
8876 @group
8877 [ nterms(a + b) := nterms(a) + nterms(b),
8878   nterms(x)     := 1 ]
8879 @end group
8880 @end smallexample
8882 @noindent
8883 Here we have taken advantage of the fact that earlier rules always
8884 match before later rules; @samp{nterms(x)} will only be tried if we
8885 already know that @samp{x} is not a sum.
8887 @node Rewrites Answer 6, Programming Answer 1, Rewrites Answer 5, Answers to Exercises
8888 @subsection Rewrites Tutorial Exercise 6
8890 @noindent
8891 Here is a rule set that will do the job:
8893 @smallexample
8894 @group
8895 [ a*(b + c) := a*b + a*c,
8896   opt(a) O(x^n) + opt(b) O(x^m) := O(x^n) :: n <= m
8897      :: constant(a) :: constant(b),
8898   opt(a) O(x^n) + opt(b) x^m := O(x^n) :: n <= m
8899      :: constant(a) :: constant(b),
8900   a O(x^n) := O(x^n) :: constant(a),
8901   x^opt(m) O(x^n) := O(x^(n+m)),
8902   O(x^n) O(x^m) := O(x^(n+m)) ]
8903 @end group
8904 @end smallexample
8906 If we really want the @kbd{+} and @kbd{*} keys to operate naturally
8907 on power series, we should put these rules in @code{EvalRules}.  For
8908 testing purposes, it is better to put them in a different variable,
8909 say, @code{O}, first.
8911 The first rule just expands products of sums so that the rest of the
8912 rules can assume they have an expanded-out polynomial to work with.
8913 Note that this rule does not mention @samp{O} at all, so it will
8914 apply to any product-of-sum it encounters---this rule may surprise
8915 you if you put it into @code{EvalRules}!
8917 In the second rule, the sum of two O's is changed to the smaller O.
8918 The optional constant coefficients are there mostly so that
8919 @samp{O(x^2) - O(x^3)} and @samp{O(x^3) - O(x^2)} are handled
8920 as well as @samp{O(x^2) + O(x^3)}.
8922 The third rule absorbs higher powers of @samp{x} into O's.
8924 The fourth rule says that a constant times a negligible quantity
8925 is still negligible.  (This rule will also match @samp{O(x^3) / 4},
8926 with @samp{a = 1/4}.)
8928 The fifth rule rewrites, for example, @samp{x^2 O(x^3)} to @samp{O(x^5)}.
8929 (It is easy to see that if one of these forms is negligible, the other
8930 is, too.)  Notice the @samp{x^opt(m)} to pick up terms like
8931 @w{@samp{x O(x^3)}}.  Optional powers will match @samp{x} as @samp{x^1}
8932 but not 1 as @samp{x^0}.  This turns out to be exactly what we want here.
8934 The sixth rule is the corresponding rule for products of two O's.
8936 Another way to solve this problem would be to create a new ``data type''
8937 that represents truncated power series.  We might represent these as
8938 function calls @samp{series(@var{coefs}, @var{x})} where @var{coefs} is
8939 a vector of coefficients for @expr{x^0}, @expr{x^1}, @expr{x^2}, and so
8940 on.  Rules would exist for sums and products of such @code{series}
8941 objects, and as an optional convenience could also know how to combine a
8942 @code{series} object with a normal polynomial.  (With this, and with a
8943 rule that rewrites @samp{O(x^n)} to the equivalent @code{series} form,
8944 you could still enter power series in exactly the same notation as
8945 before.)  Operations on such objects would probably be more efficient,
8946 although the objects would be a bit harder to read.
8948 @c [fix-ref Compositions]
8949 Some other symbolic math programs provide a power series data type
8950 similar to this.  Mathematica, for example, has an object that looks
8951 like @samp{PowerSeries[@var{x}, @var{x0}, @var{coefs}, @var{nmin},
8952 @var{nmax}, @var{den}]}, where @var{x0} is the point about which the
8953 power series is taken (we've been assuming this was always zero),
8954 and @var{nmin}, @var{nmax}, and @var{den} allow pseudo-power-series
8955 with fractional or negative powers.  Also, the @code{PowerSeries}
8956 objects have a special display format that makes them look like
8957 @samp{2 x^2 + O(x^4)} when they are printed out.  (@xref{Compositions},
8958 for a way to do this in Calc, although for something as involved as
8959 this it would probably be better to write the formatting routine
8960 in Lisp.)
8962 @node Programming Answer 1, Programming Answer 2, Rewrites Answer 6, Answers to Exercises
8963 @subsection Programming Tutorial Exercise 1
8965 @noindent
8966 Just enter the formula @samp{ninteg(sin(t)/t, t, 0, x)}, type
8967 @kbd{Z F}, and answer the questions.  Since this formula contains two
8968 variables, the default argument list will be @samp{(t x)}.  We want to
8969 change this to @samp{(x)} since @expr{t} is really a dummy variable
8970 to be used within @code{ninteg}.
8972 The exact keystrokes are @kbd{Z F s Si @key{RET} @key{RET} C-b C-b @key{DEL} @key{DEL} @key{RET} y}.
8973 (The @kbd{C-b C-b @key{DEL} @key{DEL}} are what fix the argument list.)
8975 @node Programming Answer 2, Programming Answer 3, Programming Answer 1, Answers to Exercises
8976 @subsection Programming Tutorial Exercise 2
8978 @noindent
8979 One way is to move the number to the top of the stack, operate on
8980 it, then move it back:  @kbd{C-x ( M-@key{TAB} n M-@key{TAB} M-@key{TAB} C-x )}.
8982 Another way is to negate the top three stack entries, then negate
8983 again the top two stack entries:  @kbd{C-x ( M-3 n M-2 n C-x )}.
8985 Finally, it turns out that a negative prefix argument causes a
8986 command like @kbd{n} to operate on the specified stack entry only,
8987 which is just what we want:  @kbd{C-x ( M-- 3 n C-x )}.
8989 Just for kicks, let's also do it algebraically:
8990 @w{@kbd{C-x ( ' -$$$, $$, $ @key{RET} C-x )}}.
8992 @node Programming Answer 3, Programming Answer 4, Programming Answer 2, Answers to Exercises
8993 @subsection Programming Tutorial Exercise 3
8995 @noindent
8996 Each of these functions can be computed using the stack, or using
8997 algebraic entry, whichever way you prefer:
8999 @noindent
9000 Computing 
9001 @texline @math{\displaystyle{\sin x \over x}}:
9002 @infoline @expr{sin(x) / x}:
9004 Using the stack:  @kbd{C-x (  @key{RET} S @key{TAB} /  C-x )}.
9006 Using algebraic entry:  @kbd{C-x (  ' sin($)/$ @key{RET}  C-x )}.
9008 @noindent
9009 Computing the logarithm:
9011 Using the stack:  @kbd{C-x (  @key{TAB} B  C-x )}
9013 Using algebraic entry:  @kbd{C-x (  ' log($,$$) @key{RET}  C-x )}.
9015 @noindent
9016 Computing the vector of integers:
9018 Using the stack:  @kbd{C-x (  1 @key{RET} 1  C-u v x  C-x )}.  (Recall that
9019 @kbd{C-u v x} takes the vector size, starting value, and increment
9020 from the stack.)
9022 Alternatively:  @kbd{C-x (  ~ v x  C-x )}.  (The @kbd{~} key pops a
9023 number from the stack and uses it as the prefix argument for the
9024 next command.)
9026 Using algebraic entry:  @kbd{C-x (  ' index($) @key{RET}  C-x )}.
9028 @node Programming Answer 4, Programming Answer 5, Programming Answer 3, Answers to Exercises
9029 @subsection Programming Tutorial Exercise 4
9031 @noindent
9032 Here's one way:  @kbd{C-x ( @key{RET} V R + @key{TAB} v l / C-x )}.
9034 @node Programming Answer 5, Programming Answer 6, Programming Answer 4, Answers to Exercises
9035 @subsection Programming Tutorial Exercise 5
9037 @smallexample
9038 @group
9039 2:  1              1:  1.61803398502         2:  1.61803398502
9040 1:  20                 .                     1:  1.61803398875
9041     .                                            .
9043    1 @key{RET} 20         Z < & 1 + Z >                I H P
9044 @end group
9045 @end smallexample
9047 @noindent
9048 This answer is quite accurate.
9050 @node Programming Answer 6, Programming Answer 7, Programming Answer 5, Answers to Exercises
9051 @subsection Programming Tutorial Exercise 6
9053 @noindent
9054 Here is the matrix:
9056 @example
9057 [ [ 0, 1 ]   * [a, b] = [b, a + b]
9058   [ 1, 1 ] ]
9059 @end example
9061 @noindent
9062 Thus @samp{[0, 1; 1, 1]^n * [1, 1]} computes Fibonacci numbers @expr{n+1}
9063 and @expr{n+2}.  Here's one program that does the job:
9065 @example
9066 C-x ( ' [0, 1; 1, 1] ^ ($-1) * [1, 1] @key{RET} v u @key{DEL} C-x )
9067 @end example
9069 @noindent
9070 This program is quite efficient because Calc knows how to raise a
9071 matrix (or other value) to the power @expr{n} in only 
9072 @texline @math{\log_2 n}
9073 @infoline @expr{log(n,2)}
9074 steps.  For example, this program can compute the 1000th Fibonacci
9075 number (a 209-digit integer!) in about 10 steps; even though the
9076 @kbd{Z < ... Z >} solution had much simpler steps, it would have
9077 required so many steps that it would not have been practical.
9079 @node Programming Answer 7, Programming Answer 8, Programming Answer 6, Answers to Exercises
9080 @subsection Programming Tutorial Exercise 7
9082 @noindent
9083 The trick here is to compute the harmonic numbers differently, so that
9084 the loop counter itself accumulates the sum of reciprocals.  We use
9085 a separate variable to hold the integer counter.
9087 @smallexample
9088 @group
9089 1:  1          2:  1       1:  .
9090     .          1:  4
9091                    .
9093     1 t 1       1 @key{RET} 4      Z ( t 2 r 1 1 + s 1 & Z )
9094 @end group
9095 @end smallexample
9097 @noindent
9098 The body of the loop goes as follows:  First save the harmonic sum
9099 so far in variable 2.  Then delete it from the stack; the for loop
9100 itself will take care of remembering it for us.  Next, recall the
9101 count from variable 1, add one to it, and feed its reciprocal to
9102 the for loop to use as the step value.  The for loop will increase
9103 the ``loop counter'' by that amount and keep going until the
9104 loop counter exceeds 4.
9106 @smallexample
9107 @group
9108 2:  31                  3:  31
9109 1:  3.99498713092       2:  3.99498713092
9110     .                   1:  4.02724519544
9111                             .
9113     r 1 r 2                 @key{RET} 31 & +
9114 @end group
9115 @end smallexample
9117 Thus we find that the 30th harmonic number is 3.99, and the 31st
9118 harmonic number is 4.02.
9120 @node Programming Answer 8, Programming Answer 9, Programming Answer 7, Answers to Exercises
9121 @subsection Programming Tutorial Exercise 8
9123 @noindent
9124 The first step is to compute the derivative @expr{f'(x)} and thus
9125 the formula 
9126 @texline @math{\displaystyle{x - {f(x) \over f'(x)}}}.
9127 @infoline @expr{x - f(x)/f'(x)}.
9129 (Because this definition is long, it will be repeated in concise form
9130 below.  You can use @w{@kbd{C-x * m}} to load it from there.  While you are
9131 entering a @kbd{Z ` Z '} body in a macro, Calc simply collects
9132 keystrokes without executing them.  In the following diagrams we'll
9133 pretend Calc actually executed the keystrokes as you typed them,
9134 just for purposes of illustration.)
9136 @smallexample
9137 @group
9138 2:  sin(cos(x)) - 0.5            3:  4.5
9139 1:  4.5                          2:  sin(cos(x)) - 0.5
9140     .                            1:  -(sin(x) cos(cos(x)))
9141                                      .
9143 ' sin(cos(x))-0.5 @key{RET} 4.5  m r  C-x ( Z `  @key{TAB} @key{RET} a d x @key{RET}
9145 @end group
9146 @end smallexample
9147 @noindent
9148 @smallexample
9149 @group
9150 2:  4.5
9151 1:  x + (sin(cos(x)) - 0.5) / sin(x) cos(cos(x))
9152     .
9154     /  ' x @key{RET} @key{TAB} -   t 1
9155 @end group
9156 @end smallexample
9158 Now, we enter the loop.  We'll use a repeat loop with a 20-repetition
9159 limit just in case the method fails to converge for some reason.
9160 (Normally, the @w{@kbd{Z /}} command will stop the loop before all 20
9161 repetitions are done.)
9163 @smallexample
9164 @group
9165 1:  4.5         3:  4.5                     2:  4.5
9166     .           2:  x + (sin(cos(x)) ...    1:  5.24196456928
9167                 1:  4.5                         .
9168                     .
9170   20 Z <          @key{RET} r 1 @key{TAB}                 s l x @key{RET}
9171 @end group
9172 @end smallexample
9174 This is the new guess for @expr{x}.  Now we compare it with the
9175 old one to see if we've converged.
9177 @smallexample
9178 @group
9179 3:  5.24196     2:  5.24196     1:  5.24196     1:  5.26345856348
9180 2:  5.24196     1:  0               .               .
9181 1:  4.5             .
9182     .
9184   @key{RET} M-@key{TAB}         a =             Z /             Z > Z ' C-x )
9185 @end group
9186 @end smallexample
9188 The loop converges in just a few steps to this value.  To check
9189 the result, we can simply substitute it back into the equation.
9191 @smallexample
9192 @group
9193 2:  5.26345856348
9194 1:  0.499999999997
9195     .
9197  @key{RET} ' sin(cos($)) @key{RET}
9198 @end group
9199 @end smallexample
9201 Let's test the new definition again:
9203 @smallexample
9204 @group
9205 2:  x^2 - 9           1:  3.
9206 1:  1                     .
9207     .
9209   ' x^2-9 @key{RET} 1           X
9210 @end group
9211 @end smallexample
9213 Once again, here's the full Newton's Method definition:
9215 @example
9216 @group
9217 C-x ( Z `  @key{TAB} @key{RET} a d x @key{RET}  /  ' x @key{RET} @key{TAB} -  t 1
9218            20 Z <  @key{RET} r 1 @key{TAB}  s l x @key{RET}
9219                    @key{RET} M-@key{TAB}  a =  Z /
9220               Z >
9221       Z '
9222 C-x )
9223 @end group
9224 @end example
9226 @c [fix-ref Nesting and Fixed Points]
9227 It turns out that Calc has a built-in command for applying a formula
9228 repeatedly until it converges to a number.  @xref{Nesting and Fixed Points},
9229 to see how to use it.
9231 @c [fix-ref Root Finding]
9232 Also, of course, @kbd{a R} is a built-in command that uses Newton's
9233 method (among others) to look for numerical solutions to any equation.
9234 @xref{Root Finding}.
9236 @node Programming Answer 9, Programming Answer 10, Programming Answer 8, Answers to Exercises
9237 @subsection Programming Tutorial Exercise 9
9239 @noindent
9240 The first step is to adjust @expr{z} to be greater than 5.  A simple
9241 ``for'' loop will do the job here.  If @expr{z} is less than 5, we
9242 reduce the problem using 
9243 @texline @math{\psi(z) = \psi(z+1) - 1/z}.
9244 @infoline @expr{psi(z) = psi(z+1) - 1/z}.  We go
9245 on to compute 
9246 @texline @math{\psi(z+1)},
9247 @infoline @expr{psi(z+1)}, 
9248 and remember to add back a factor of @expr{-1/z} when we're done.  This
9249 step is repeated until @expr{z > 5}.
9251 (Because this definition is long, it will be repeated in concise form
9252 below.  You can use @w{@kbd{C-x * m}} to load it from there.  While you are
9253 entering a @kbd{Z ` Z '} body in a macro, Calc simply collects
9254 keystrokes without executing them.  In the following diagrams we'll
9255 pretend Calc actually executed the keystrokes as you typed them,
9256 just for purposes of illustration.)
9258 @smallexample
9259 @group
9260 1:  1.             1:  1.
9261     .                  .
9263  1.0 @key{RET}       C-x ( Z `  s 1  0 t 2
9264 @end group
9265 @end smallexample
9267 Here, variable 1 holds @expr{z} and variable 2 holds the adjustment
9268 factor.  If @expr{z < 5}, we use a loop to increase it.
9270 (By the way, we started with @samp{1.0} instead of the integer 1 because
9271 otherwise the calculation below will try to do exact fractional arithmetic,
9272 and will never converge because fractions compare equal only if they
9273 are exactly equal, not just equal to within the current precision.)
9275 @smallexample
9276 @group
9277 3:  1.      2:  1.       1:  6.
9278 2:  1.      1:  1            .
9279 1:  5           .
9280     .
9282   @key{RET} 5        a <    Z [  5 Z (  & s + 2  1 s + 1  1 Z ) r 1  Z ]
9283 @end group
9284 @end smallexample
9286 Now we compute the initial part of the sum:  
9287 @texline @math{\ln z - {1 \over 2z}}
9288 @infoline @expr{ln(z) - 1/2z}
9289 minus the adjustment factor.
9291 @smallexample
9292 @group
9293 2:  1.79175946923      2:  1.7084261359      1:  -0.57490719743
9294 1:  0.0833333333333    1:  2.28333333333         .
9295     .                      .
9297     L  r 1 2 * &           -  r 2                -
9298 @end group
9299 @end smallexample
9301 Now we evaluate the series.  We'll use another ``for'' loop counting
9302 up the value of @expr{2 n}.  (Calc does have a summation command,
9303 @kbd{a +}, but we'll use loops just to get more practice with them.)
9305 @smallexample
9306 @group
9307 3:  -0.5749       3:  -0.5749        4:  -0.5749      2:  -0.5749
9308 2:  2             2:  1:6            3:  1:6          1:  2.3148e-3
9309 1:  40            1:  2              2:  2                .
9310     .                 .              1:  36.
9311                                          .
9313    2 @key{RET} 40        Z ( @key{RET} k b @key{TAB}     @key{RET} r 1 @key{TAB} ^      * /
9315 @end group
9316 @end smallexample
9317 @noindent
9318 @smallexample
9319 @group
9320 3:  -0.5749       3:  -0.5772      2:  -0.5772     1:  -0.577215664892
9321 2:  -0.5749       2:  -0.5772      1:  0               .
9322 1:  2.3148e-3     1:  -0.5749          .
9323     .                 .
9325   @key{TAB} @key{RET} M-@key{TAB}       - @key{RET} M-@key{TAB}      a =     Z /    2  Z )  Z ' C-x )
9326 @end group
9327 @end smallexample
9329 This is the value of 
9330 @texline @math{-\gamma},
9331 @infoline @expr{- gamma}, 
9332 with a slight bit of roundoff error.  To get a full 12 digits, let's use
9333 a higher precision:
9335 @smallexample
9336 @group
9337 2:  -0.577215664892      2:  -0.577215664892
9338 1:  1.                   1:  -0.577215664901532
9340     1. @key{RET}                   p 16 @key{RET} X
9341 @end group
9342 @end smallexample
9344 Here's the complete sequence of keystrokes:
9346 @example
9347 @group
9348 C-x ( Z `  s 1  0 t 2
9349            @key{RET} 5 a <  Z [  5 Z (  & s + 2  1 s + 1  1 Z ) r 1  Z ]
9350            L r 1 2 * & - r 2 -
9351            2 @key{RET} 40  Z (  @key{RET} k b @key{TAB} @key{RET} r 1 @key{TAB} ^ * /
9352                           @key{TAB} @key{RET} M-@key{TAB} - @key{RET} M-@key{TAB} a = Z /
9353                   2  Z )
9354       Z '
9355 C-x )
9356 @end group
9357 @end example
9359 @node Programming Answer 10, Programming Answer 11, Programming Answer 9, Answers to Exercises
9360 @subsection Programming Tutorial Exercise 10
9362 @noindent
9363 Taking the derivative of a term of the form @expr{x^n} will produce
9364 a term like 
9365 @texline @math{n x^{n-1}}.
9366 @infoline @expr{n x^(n-1)}.  
9367 Taking the derivative of a constant
9368 produces zero.  From this it is easy to see that the @expr{n}th
9369 derivative of a polynomial, evaluated at @expr{x = 0}, will equal the
9370 coefficient on the @expr{x^n} term times @expr{n!}.
9372 (Because this definition is long, it will be repeated in concise form
9373 below.  You can use @w{@kbd{C-x * m}} to load it from there.  While you are
9374 entering a @kbd{Z ` Z '} body in a macro, Calc simply collects
9375 keystrokes without executing them.  In the following diagrams we'll
9376 pretend Calc actually executed the keystrokes as you typed them,
9377 just for purposes of illustration.)
9379 @smallexample
9380 @group
9381 2:  5 x^4 + (x + 1)^2          3:  5 x^4 + (x + 1)^2
9382 1:  6                          2:  0
9383     .                          1:  6
9384                                    .
9386   ' 5 x^4 + (x+1)^2 @key{RET} 6        C-x ( Z `  [ ] t 1  0 @key{TAB}
9387 @end group
9388 @end smallexample
9390 @noindent
9391 Variable 1 will accumulate the vector of coefficients.
9393 @smallexample
9394 @group
9395 2:  0              3:  0                  2:  5 x^4 + ...
9396 1:  5 x^4 + ...    2:  5 x^4 + ...        1:  1
9397     .              1:  1                      .
9398                        .
9400    Z ( @key{TAB}         @key{RET} 0 s l x @key{RET}            M-@key{TAB} ! /  s | 1
9401 @end group
9402 @end smallexample
9404 @noindent
9405 Note that @kbd{s | 1} appends the top-of-stack value to the vector
9406 in a variable; it is completely analogous to @kbd{s + 1}.  We could
9407 have written instead, @kbd{r 1 @key{TAB} | t 1}.
9409 @smallexample
9410 @group
9411 1:  20 x^3 + 2 x + 2      1:  0         1:  [1, 2, 1, 0, 5, 0, 0]
9412     .                         .             .
9414     a d x @key{RET}                 1 Z )         @key{DEL} r 1  Z ' C-x )
9415 @end group
9416 @end smallexample
9418 To convert back, a simple method is just to map the coefficients
9419 against a table of powers of @expr{x}.
9421 @smallexample
9422 @group
9423 2:  [1, 2, 1, 0, 5, 0, 0]    2:  [1, 2, 1, 0, 5, 0, 0]
9424 1:  6                        1:  [0, 1, 2, 3, 4, 5, 6]
9425     .                            .
9427     6 @key{RET}                        1 + 0 @key{RET} 1 C-u v x
9429 @end group
9430 @end smallexample
9431 @noindent
9432 @smallexample
9433 @group
9434 2:  [1, 2, 1, 0, 5, 0, 0]    2:  1 + 2 x + x^2 + 5 x^4
9435 1:  [1, x, x^2, x^3, ... ]       .
9436     .
9438     ' x @key{RET} @key{TAB} V M ^            *
9439 @end group
9440 @end smallexample
9442 Once again, here are the whole polynomial to/from vector programs:
9444 @example
9445 @group
9446 C-x ( Z `  [ ] t 1  0 @key{TAB}
9447            Z (  @key{TAB} @key{RET} 0 s l x @key{RET} M-@key{TAB} ! /  s | 1
9448                 a d x @key{RET}
9449          1 Z ) r 1
9450       Z '
9451 C-x )
9453 C-x (  1 + 0 @key{RET} 1 C-u v x ' x @key{RET} @key{TAB} V M ^ *  C-x )
9454 @end group
9455 @end example
9457 @node Programming Answer 11, Programming Answer 12, Programming Answer 10, Answers to Exercises
9458 @subsection Programming Tutorial Exercise 11
9460 @noindent
9461 First we define a dummy program to go on the @kbd{z s} key.  The true
9462 @w{@kbd{z s}} key is supposed to take two numbers from the stack and
9463 return one number, so @key{DEL} as a dummy definition will make
9464 sure the stack comes out right.
9466 @smallexample
9467 @group
9468 2:  4          1:  4                         2:  4
9469 1:  2              .                         1:  2
9470     .                                            .
9472   4 @key{RET} 2       C-x ( @key{DEL} C-x )  Z K s @key{RET}       2
9473 @end group
9474 @end smallexample
9476 The last step replaces the 2 that was eaten during the creation
9477 of the dummy @kbd{z s} command.  Now we move on to the real
9478 definition.  The recurrence needs to be rewritten slightly,
9479 to the form @expr{s(n,m) = s(n-1,m-1) - (n-1) s(n-1,m)}.
9481 (Because this definition is long, it will be repeated in concise form
9482 below.  You can use @kbd{C-x * m} to load it from there.)
9484 @smallexample
9485 @group
9486 2:  4        4:  4       3:  4       2:  4
9487 1:  2        3:  2       2:  2       1:  2
9488     .        2:  4       1:  0           .
9489              1:  2           .
9490                  .
9492   C-x (       M-2 @key{RET}        a =         Z [  @key{DEL} @key{DEL} 1  Z :
9494 @end group
9495 @end smallexample
9496 @noindent
9497 @smallexample
9498 @group
9499 4:  4       2:  4                     2:  3      4:  3    4:  3    3:  3
9500 3:  2       1:  2                     1:  2      3:  2    3:  2    2:  2
9501 2:  2           .                         .      2:  3    2:  3    1:  3
9502 1:  0                                            1:  2    1:  1        .
9503     .                                                .        .
9505   @key{RET} 0   a = Z [  @key{DEL} @key{DEL} 0  Z :  @key{TAB} 1 - @key{TAB}   M-2 @key{RET}     1 -      z s
9506 @end group
9507 @end smallexample
9509 @noindent
9510 (Note that the value 3 that our dummy @kbd{z s} produces is not correct;
9511 it is merely a placeholder that will do just as well for now.)
9513 @smallexample
9514 @group
9515 3:  3               4:  3           3:  3       2:  3      1:  -6
9516 2:  3               3:  3           2:  3       1:  9          .
9517 1:  2               2:  3           1:  3           .
9518     .               1:  2               .
9519                         .
9521  M-@key{TAB} M-@key{TAB}     @key{TAB} @key{RET} M-@key{TAB}         z s          *          -
9523 @end group
9524 @end smallexample
9525 @noindent
9526 @smallexample
9527 @group
9528 1:  -6                          2:  4          1:  11      2:  11
9529     .                           1:  2              .       1:  11
9530                                     .                          .
9532   Z ] Z ] C-x )   Z K s @key{RET}      @key{DEL} 4 @key{RET} 2       z s      M-@key{RET} k s
9533 @end group
9534 @end smallexample
9536 Even though the result that we got during the definition was highly
9537 bogus, once the definition is complete the @kbd{z s} command gets
9538 the right answers.
9540 Here's the full program once again:
9542 @example
9543 @group
9544 C-x (  M-2 @key{RET} a =
9545        Z [  @key{DEL} @key{DEL} 1
9546        Z :  @key{RET} 0 a =
9547             Z [  @key{DEL} @key{DEL} 0
9548             Z :  @key{TAB} 1 - @key{TAB} M-2 @key{RET} 1 - z s
9549                  M-@key{TAB} M-@key{TAB} @key{TAB} @key{RET} M-@key{TAB} z s * -
9550             Z ]
9551        Z ]
9552 C-x )
9553 @end group
9554 @end example
9556 You can read this definition using @kbd{C-x * m} (@code{read-kbd-macro})
9557 followed by @kbd{Z K s}, without having to make a dummy definition
9558 first, because @code{read-kbd-macro} doesn't need to execute the
9559 definition as it reads it in.  For this reason, @code{C-x * m} is often
9560 the easiest way to create recursive programs in Calc.
9562 @node Programming Answer 12,  , Programming Answer 11, Answers to Exercises
9563 @subsection Programming Tutorial Exercise 12
9565 @noindent
9566 This turns out to be a much easier way to solve the problem.  Let's
9567 denote Stirling numbers as calls of the function @samp{s}.
9569 First, we store the rewrite rules corresponding to the definition of
9570 Stirling numbers in a convenient variable:
9572 @smallexample
9573 s e StirlingRules @key{RET}
9574 [ s(n,n) := 1  :: n >= 0,
9575   s(n,0) := 0  :: n > 0,
9576   s(n,m) := s(n-1,m-1) - (n-1) s(n-1,m) :: n >= m :: m >= 1 ]
9577 C-c C-c
9578 @end smallexample
9580 Now, it's just a matter of applying the rules:
9582 @smallexample
9583 @group
9584 2:  4          1:  s(4, 2)              1:  11
9585 1:  2              .                        .
9586     .
9588   4 @key{RET} 2       C-x (  ' s($$,$) @key{RET}     a r StirlingRules @key{RET}  C-x )
9589 @end group
9590 @end smallexample
9592 As in the case of the @code{fib} rules, it would be useful to put these
9593 rules in @code{EvalRules} and to add a @samp{:: remember} condition to
9594 the last rule.
9596 @c This ends the table-of-contents kludge from above:
9597 @tex
9598 \global\let\chapternofonts=\oldchapternofonts
9599 @end tex
9601 @c [reference]
9603 @node Introduction, Data Types, Tutorial, Top
9604 @chapter Introduction
9606 @noindent
9607 This chapter is the beginning of the Calc reference manual.
9608 It covers basic concepts such as the stack, algebraic and
9609 numeric entry, undo, numeric prefix arguments, etc.
9611 @c [when-split]
9612 @c (Chapter 2, the Tutorial, has been printed in a separate volume.)
9614 @menu
9615 * Basic Commands::
9616 * Help Commands::
9617 * Stack Basics::
9618 * Numeric Entry::
9619 * Algebraic Entry::
9620 * Quick Calculator::
9621 * Prefix Arguments::
9622 * Undo::
9623 * Error Messages::
9624 * Multiple Calculators::
9625 * Troubleshooting Commands::
9626 @end menu
9628 @node Basic Commands, Help Commands, Introduction, Introduction
9629 @section Basic Commands
9631 @noindent
9632 @pindex calc
9633 @pindex calc-mode
9634 @cindex Starting the Calculator
9635 @cindex Running the Calculator
9636 To start the Calculator in its standard interface, type @kbd{M-x calc}.
9637 By default this creates a pair of small windows, @samp{*Calculator*}
9638 and @samp{*Calc Trail*}.  The former displays the contents of the
9639 Calculator stack and is manipulated exclusively through Calc commands.
9640 It is possible (though not usually necessary) to create several Calc
9641 mode buffers each of which has an independent stack, undo list, and
9642 mode settings.  There is exactly one Calc Trail buffer; it records a
9643 list of the results of all calculations that have been done.  The
9644 Calc Trail buffer uses a variant of Calc mode, so Calculator commands
9645 still work when the trail buffer's window is selected.  It is possible
9646 to turn the trail window off, but the @samp{*Calc Trail*} buffer itself
9647 still exists and is updated silently.  @xref{Trail Commands}.
9649 @kindex C-x * c
9650 @kindex C-x * *
9651 @ignore
9652 @mindex @null
9653 @end ignore
9654 In most installations, the @kbd{C-x * c} key sequence is a more
9655 convenient way to start the Calculator.  Also, @kbd{C-x * *} 
9656 is a synonym for @kbd{C-x * c} unless you last used Calc
9657 in its Keypad mode.
9659 @kindex x
9660 @kindex M-x
9661 @pindex calc-execute-extended-command
9662 Most Calc commands use one or two keystrokes.  Lower- and upper-case
9663 letters are distinct.  Commands may also be entered in full @kbd{M-x} form;
9664 for some commands this is the only form.  As a convenience, the @kbd{x}
9665 key (@code{calc-execute-extended-command})
9666 is like @kbd{M-x} except that it enters the initial string @samp{calc-}
9667 for you.  For example, the following key sequences are equivalent:
9668 @kbd{S}, @kbd{M-x calc-sin @key{RET}}, @kbd{x sin @key{RET}}.
9670 Although Calc is designed to be used from the keyboard, some of
9671 Calc's more common commands are available from a menu.  In the menu, the
9672 arguments to the functions are given by referring to their stack level
9673 numbers.
9675 @cindex Extensions module
9676 @cindex @file{calc-ext} module
9677 The Calculator exists in many parts.  When you type @kbd{C-x * c}, the
9678 Emacs ``auto-load'' mechanism will bring in only the first part, which
9679 contains the basic arithmetic functions.  The other parts will be
9680 auto-loaded the first time you use the more advanced commands like trig
9681 functions or matrix operations.  This is done to improve the response time
9682 of the Calculator in the common case when all you need to do is a
9683 little arithmetic.  If for some reason the Calculator fails to load an
9684 extension module automatically, you can force it to load all the
9685 extensions by using the @kbd{C-x * L} (@code{calc-load-everything})
9686 command.  @xref{Mode Settings}.
9688 If you type @kbd{M-x calc} or @kbd{C-x * c} with any numeric prefix argument,
9689 the Calculator is loaded if necessary, but it is not actually started.
9690 If the argument is positive, the @file{calc-ext} extensions are also
9691 loaded if necessary.  User-written Lisp code that wishes to make use
9692 of Calc's arithmetic routines can use @samp{(calc 0)} or @samp{(calc 1)}
9693 to auto-load the Calculator.
9695 @kindex C-x * b
9696 @pindex full-calc
9697 If you type @kbd{C-x * b}, then next time you use @kbd{C-x * c} you
9698 will get a Calculator that uses the full height of the Emacs screen.
9699 When full-screen mode is on, @kbd{C-x * c} runs the @code{full-calc}
9700 command instead of @code{calc}.  From the Unix shell you can type
9701 @samp{emacs -f full-calc} to start a new Emacs specifically for use
9702 as a calculator.  When Calc is started from the Emacs command line
9703 like this, Calc's normal ``quit'' commands actually quit Emacs itself.
9705 @kindex C-x * o
9706 @pindex calc-other-window
9707 The @kbd{C-x * o} command is like @kbd{C-x * c} except that the Calc
9708 window is not actually selected.  If you are already in the Calc
9709 window, @kbd{C-x * o} switches you out of it.  (The regular Emacs
9710 @kbd{C-x o} command would also work for this, but it has a
9711 tendency to drop you into the Calc Trail window instead, which
9712 @kbd{C-x * o} takes care not to do.)
9714 @ignore
9715 @mindex C-x * q
9716 @end ignore
9717 For one quick calculation, you can type @kbd{C-x * q} (@code{quick-calc})
9718 which prompts you for a formula (like @samp{2+3/4}).  The result is
9719 displayed at the bottom of the Emacs screen without ever creating
9720 any special Calculator windows.  @xref{Quick Calculator}.
9722 @ignore
9723 @mindex C-x * k
9724 @end ignore
9725 Finally, if you are using the X window system you may want to try
9726 @kbd{C-x * k} (@code{calc-keypad}) which runs Calc with a
9727 ``calculator keypad'' picture as well as a stack display.  Click on
9728 the keys with the mouse to operate the calculator.  @xref{Keypad Mode}.
9730 @kindex q
9731 @pindex calc-quit
9732 @cindex Quitting the Calculator
9733 @cindex Exiting the Calculator
9734 The @kbd{q} key (@code{calc-quit}) exits Calc mode and closes the
9735 Calculator's window(s).  It does not delete the Calculator buffers.
9736 If you type @kbd{M-x calc} again, the Calculator will reappear with the
9737 contents of the stack intact.  Typing @kbd{C-x * c} or @kbd{C-x * *}
9738 again from inside the Calculator buffer is equivalent to executing
9739 @code{calc-quit}; you can think of @kbd{C-x * *} as toggling the
9740 Calculator on and off.
9742 @kindex C-x * x
9743 The @kbd{C-x * x} command also turns the Calculator off, no matter which
9744 user interface (standard, Keypad, or Embedded) is currently active.
9745 It also cancels @code{calc-edit} mode if used from there.
9747 @kindex d @key{SPC}
9748 @pindex calc-refresh
9749 @cindex Refreshing a garbled display
9750 @cindex Garbled displays, refreshing
9751 The @kbd{d @key{SPC}} key sequence (@code{calc-refresh}) redraws the contents
9752 of the Calculator buffer from memory.  Use this if the contents of the
9753 buffer have been damaged somehow.
9755 @ignore
9756 @mindex o
9757 @end ignore
9758 The @kbd{o} key (@code{calc-realign}) moves the cursor back to its
9759 ``home'' position at the bottom of the Calculator buffer.
9761 @kindex <
9762 @kindex >
9763 @pindex calc-scroll-left
9764 @pindex calc-scroll-right
9765 @cindex Horizontal scrolling
9766 @cindex Scrolling
9767 @cindex Wide text, scrolling
9768 The @kbd{<} and @kbd{>} keys are bound to @code{calc-scroll-left} and
9769 @code{calc-scroll-right}.  These are just like the normal horizontal
9770 scrolling commands except that they scroll one half-screen at a time by
9771 default.  (Calc formats its output to fit within the bounds of the
9772 window whenever it can.)
9774 @kindex @{
9775 @kindex @}
9776 @pindex calc-scroll-down
9777 @pindex calc-scroll-up
9778 @cindex Vertical scrolling
9779 The @kbd{@{} and @kbd{@}} keys are bound to @code{calc-scroll-down}
9780 and @code{calc-scroll-up}.  They scroll up or down by one-half the
9781 height of the Calc window.
9783 @kindex C-x * 0
9784 @pindex calc-reset
9785 The @kbd{C-x * 0} command (@code{calc-reset}; that's @kbd{C-x *} followed
9786 by a zero) resets the Calculator to its initial state.  This clears
9787 the stack, resets all the modes to their initial values (the values
9788 that were saved with @kbd{m m} (@code{calc-save-modes})), clears the
9789 caches (@pxref{Caches}), and so on.  (It does @emph{not} erase the
9790 values of any variables.) With an argument of 0, Calc will be reset to
9791 its default state; namely, the modes will be given their default values.
9792 With a positive prefix argument, @kbd{C-x * 0} preserves the contents of
9793 the stack but resets everything else to its initial state; with a
9794 negative prefix argument, @kbd{C-x * 0} preserves the contents of the
9795 stack but resets everything else to its default state.
9797 @pindex calc-version
9798 The @kbd{M-x calc-version} command displays the current version number
9799 of Calc and the name of the person who installed it on your system.
9800 (This information is also present in the @samp{*Calc Trail*} buffer,
9801 and in the output of the @kbd{h h} command.)
9803 @node Help Commands, Stack Basics, Basic Commands, Introduction
9804 @section Help Commands
9806 @noindent
9807 @cindex Help commands
9808 @kindex ?
9809 @pindex calc-help
9810 The @kbd{?} key (@code{calc-help}) displays a series of brief help messages.
9811 Some keys (such as @kbd{b} and @kbd{d}) are prefix keys, like Emacs'
9812 @key{ESC} and @kbd{C-x} prefixes.  You can type
9813 @kbd{?} after a prefix to see a list of commands beginning with that
9814 prefix.  (If the message includes @samp{[MORE]}, press @kbd{?} again
9815 to see additional commands for that prefix.)
9817 @kindex h h
9818 @pindex calc-full-help
9819 The @kbd{h h} (@code{calc-full-help}) command displays all the @kbd{?}
9820 responses at once.  When printed, this makes a nice, compact (three pages)
9821 summary of Calc keystrokes.
9823 In general, the @kbd{h} key prefix introduces various commands that
9824 provide help within Calc.  Many of the @kbd{h} key functions are
9825 Calc-specific analogues to the @kbd{C-h} functions for Emacs help.
9827 @kindex h i
9828 @kindex C-x * i
9829 @kindex i
9830 @pindex calc-info
9831 The @kbd{h i} (@code{calc-info}) command runs the Emacs Info system
9832 to read this manual on-line.  This is basically the same as typing
9833 @kbd{C-h i} (the regular way to run the Info system), then, if Info
9834 is not already in the Calc manual, selecting the beginning of the
9835 manual.  The @kbd{C-x * i} command is another way to read the Calc
9836 manual; it is different from @kbd{h i} in that it works any time,
9837 not just inside Calc.  The plain @kbd{i} key is also equivalent to
9838 @kbd{h i}, though this key is obsolete and may be replaced with a
9839 different command in a future version of Calc.
9841 @kindex h t
9842 @kindex C-x * t
9843 @pindex calc-tutorial
9844 The @kbd{h t} (@code{calc-tutorial}) command runs the Info system on
9845 the Tutorial section of the Calc manual.  It is like @kbd{h i},
9846 except that it selects the starting node of the tutorial rather
9847 than the beginning of the whole manual.  (It actually selects the
9848 node ``Interactive Tutorial'' which tells a few things about
9849 using the Info system before going on to the actual tutorial.)
9850 The @kbd{C-x * t} key is equivalent to @kbd{h t} (but it works at
9851 all times).
9853 @kindex h s
9854 @kindex C-x * s
9855 @pindex calc-info-summary
9856 The @kbd{h s} (@code{calc-info-summary}) command runs the Info system
9857 on the Summary node of the Calc manual.  @xref{Summary}.  The @kbd{C-x * s}
9858 key is equivalent to @kbd{h s}.
9860 @kindex h k
9861 @pindex calc-describe-key
9862 The @kbd{h k} (@code{calc-describe-key}) command looks up a key
9863 sequence in the Calc manual.  For example, @kbd{h k H a S} looks
9864 up the documentation on the @kbd{H a S} (@code{calc-solve-for})
9865 command.  This works by looking up the textual description of
9866 the key(s) in the Key Index of the manual, then jumping to the
9867 node indicated by the index.
9869 Most Calc commands do not have traditional Emacs documentation
9870 strings, since the @kbd{h k} command is both more convenient and
9871 more instructive.  This means the regular Emacs @kbd{C-h k}
9872 (@code{describe-key}) command will not be useful for Calc keystrokes.
9874 @kindex h c
9875 @pindex calc-describe-key-briefly
9876 The @kbd{h c} (@code{calc-describe-key-briefly}) command reads a
9877 key sequence and displays a brief one-line description of it at
9878 the bottom of the screen.  It looks for the key sequence in the
9879 Summary node of the Calc manual; if it doesn't find the sequence
9880 there, it acts just like its regular Emacs counterpart @kbd{C-h c}
9881 (@code{describe-key-briefly}).  For example, @kbd{h c H a S}
9882 gives the description:
9884 @smallexample
9885 H a S runs calc-solve-for:  a `H a S' v  => fsolve(a,v)  (?=notes)
9886 @end smallexample
9888 @noindent
9889 which means the command @kbd{H a S} or @kbd{H M-x calc-solve-for}
9890 takes a value @expr{a} from the stack, prompts for a value @expr{v},
9891 then applies the algebraic function @code{fsolve} to these values.
9892 The @samp{?=notes} message means you can now type @kbd{?} to see
9893 additional notes from the summary that apply to this command.
9895 @kindex h f
9896 @pindex calc-describe-function
9897 The @kbd{h f} (@code{calc-describe-function}) command looks up an
9898 algebraic function or a command name in the Calc manual.  Enter an
9899 algebraic function name to look up that function in the Function
9900 Index or enter a command name beginning with @samp{calc-} to look it 
9901 up in the Command Index.  This command will also look up operator
9902 symbols that can appear in algebraic formulas, like @samp{%} and 
9903 @samp{=>}.
9905 @kindex h v
9906 @pindex calc-describe-variable
9907 The @kbd{h v} (@code{calc-describe-variable}) command looks up a
9908 variable in the Calc manual.  Enter a variable name like @code{pi} or
9909 @code{PlotRejects}.
9911 @kindex h b
9912 @pindex describe-bindings
9913 The @kbd{h b} (@code{calc-describe-bindings}) command is just like
9914 @kbd{C-h b}, except that only local (Calc-related) key bindings are
9915 listed.
9917 @kindex h n
9918 The @kbd{h n} or @kbd{h C-n} (@code{calc-view-news}) command displays
9919 the ``news'' or change history of Calc.  This is kept in the file
9920 @file{README}, which Calc looks for in the same directory as the Calc
9921 source files.
9923 @kindex h C-c
9924 @kindex h C-d
9925 @kindex h C-w
9926 The @kbd{h C-c}, @kbd{h C-d}, and @kbd{h C-w} keys display copying,
9927 distribution, and warranty information about Calc.  These work by
9928 pulling up the appropriate parts of the ``Copying'' or ``Reporting
9929 Bugs'' sections of the manual.
9931 @node Stack Basics, Numeric Entry, Help Commands, Introduction
9932 @section Stack Basics
9934 @noindent
9935 @cindex Stack basics
9936 @c [fix-tut RPN Calculations and the Stack]
9937 Calc uses RPN notation.  If you are not familiar with RPN, @pxref{RPN
9938 Tutorial}.
9940 To add the numbers 1 and 2 in Calc you would type the keys:
9941 @kbd{1 @key{RET} 2 +}.
9942 (@key{RET} corresponds to the @key{ENTER} key on most calculators.)
9943 The first three keystrokes ``push'' the numbers 1 and 2 onto the stack.  The
9944 @kbd{+} key always ``pops'' the top two numbers from the stack, adds them,
9945 and pushes the result (3) back onto the stack.  This number is ready for
9946 further calculations:  @kbd{5 -} pushes 5 onto the stack, then pops the
9947 3 and 5, subtracts them, and pushes the result (@mathit{-2}).
9949 Note that the ``top'' of the stack actually appears at the @emph{bottom}
9950 of the buffer.  A line containing a single @samp{.} character signifies
9951 the end of the buffer; Calculator commands operate on the number(s)
9952 directly above this line.  The @kbd{d t} (@code{calc-truncate-stack})
9953 command allows you to move the @samp{.} marker up and down in the stack;
9954 @pxref{Truncating the Stack}.
9956 @kindex d l
9957 @pindex calc-line-numbering
9958 Stack elements are numbered consecutively, with number 1 being the top of
9959 the stack.  These line numbers are ordinarily displayed on the lefthand side
9960 of the window.  The @kbd{d l} (@code{calc-line-numbering}) command controls
9961 whether these numbers appear.  (Line numbers may be turned off since they
9962 slow the Calculator down a bit and also clutter the display.)
9964 @kindex o
9965 @pindex calc-realign
9966 The unshifted letter @kbd{o} (@code{calc-realign}) command repositions
9967 the cursor to its top-of-stack ``home'' position.  It also undoes any
9968 horizontal scrolling in the window.  If you give it a numeric prefix
9969 argument, it instead moves the cursor to the specified stack element.
9971 The @key{RET} (or equivalent @key{SPC}) key is only required to separate
9972 two consecutive numbers.
9973 (After all, if you typed @kbd{1 2} by themselves the Calculator
9974 would enter the number 12.)  If you press @key{RET} or @key{SPC} @emph{not}
9975 right after typing a number, the key duplicates the number on the top of
9976 the stack.  @kbd{@key{RET} *} is thus a handy way to square a number.
9978 The @key{DEL} key pops and throws away the top number on the stack.
9979 The @key{TAB} key swaps the top two objects on the stack.
9980 @xref{Stack and Trail}, for descriptions of these and other stack-related
9981 commands.
9983 @node Numeric Entry, Algebraic Entry, Stack Basics, Introduction
9984 @section Numeric Entry
9986 @noindent
9987 @kindex 0-9
9988 @kindex .
9989 @kindex e
9990 @cindex Numeric entry
9991 @cindex Entering numbers
9992 Pressing a digit or other numeric key begins numeric entry using the
9993 minibuffer.  The number is pushed on the stack when you press the @key{RET}
9994 or @key{SPC} keys.  If you press any other non-numeric key, the number is
9995 pushed onto the stack and the appropriate operation is performed.  If
9996 you press a numeric key which is not valid, the key is ignored.
9998 @cindex Minus signs
9999 @cindex Negative numbers, entering
10000 @kindex _
10001 There are three different concepts corresponding to the word ``minus,''
10002 typified by @expr{a-b} (subtraction), @expr{-x}
10003 (change-sign), and @expr{-5} (negative number).  Calc uses three
10004 different keys for these operations, respectively:
10005 @kbd{-}, @kbd{n}, and @kbd{_} (the underscore).  The @kbd{-} key subtracts
10006 the two numbers on the top of the stack.  The @kbd{n} key changes the sign
10007 of the number on the top of the stack or the number currently being entered.
10008 The @kbd{_} key begins entry of a negative number or changes the sign of
10009 the number currently being entered.  The following sequences all enter the
10010 number @mathit{-5} onto the stack:  @kbd{0 @key{RET} 5 -}, @kbd{5 n @key{RET}},
10011 @kbd{5 @key{RET} n}, @kbd{_ 5 @key{RET}}, @kbd{5 _ @key{RET}}.
10013 Some other keys are active during numeric entry, such as @kbd{#} for
10014 non-decimal numbers, @kbd{:} for fractions, and @kbd{@@} for HMS forms.
10015 These notations are described later in this manual with the corresponding
10016 data types.  @xref{Data Types}.
10018 During numeric entry, the only editing key available is @key{DEL}.
10020 @node Algebraic Entry, Quick Calculator, Numeric Entry, Introduction
10021 @section Algebraic Entry
10023 @noindent
10024 @kindex '
10025 @pindex calc-algebraic-entry
10026 @cindex Algebraic notation
10027 @cindex Formulas, entering
10028 Calculations can also be entered in algebraic form.  This is accomplished
10029 by typing the apostrophe key, ', followed by the expression in
10030 standard format:  
10032 @example
10033 ' 2+3*4 @key{RET}.
10034 @end example
10036 @noindent
10037 This will compute
10038 @texline @math{2+(3\times4) = 14}
10039 @infoline @expr{2+(3*4) = 14} 
10040 and push it on the stack.  If you wish you can
10041 ignore the RPN aspect of Calc altogether and simply enter algebraic
10042 expressions in this way.  You may want to use @key{DEL} every so often to
10043 clear previous results off the stack.
10045 You can press the apostrophe key during normal numeric entry to switch
10046 the half-entered number into Algebraic entry mode.  One reason to do this
10047 would be to use the full Emacs cursor motion and editing keys, which are
10048 available during algebraic entry but not during numeric entry.
10050 In the same vein, during either numeric or algebraic entry you can
10051 press @kbd{`} (backquote) to switch to @code{calc-edit} mode, where
10052 you complete your half-finished entry in a separate buffer.
10053 @xref{Editing Stack Entries}.
10055 @kindex m a
10056 @pindex calc-algebraic-mode
10057 @cindex Algebraic Mode
10058 If you prefer algebraic entry, you can use the command @kbd{m a}
10059 (@code{calc-algebraic-mode}) to set Algebraic mode.  In this mode,
10060 digits and other keys that would normally start numeric entry instead
10061 start full algebraic entry; as long as your formula begins with a digit
10062 you can omit the apostrophe.  Open parentheses and square brackets also
10063 begin algebraic entry.  You can still do RPN calculations in this mode,
10064 but you will have to press @key{RET} to terminate every number:
10065 @kbd{2 @key{RET} 3 @key{RET} * 4 @key{RET} +} would accomplish the same
10066 thing as @kbd{2*3+4 @key{RET}}.
10068 @cindex Incomplete Algebraic Mode
10069 If you give a numeric prefix argument like @kbd{C-u} to the @kbd{m a}
10070 command, it enables Incomplete Algebraic mode; this is like regular
10071 Algebraic mode except that it applies to the @kbd{(} and @kbd{[} keys
10072 only.  Numeric keys still begin a numeric entry in this mode.
10074 @kindex m t
10075 @pindex calc-total-algebraic-mode
10076 @cindex Total Algebraic Mode
10077 The @kbd{m t} (@code{calc-total-algebraic-mode}) gives you an even
10078 stronger algebraic-entry mode, in which @emph{all} regular letter and
10079 punctuation keys begin algebraic entry.  Use this if you prefer typing
10080 @w{@kbd{sqrt( )}} instead of @kbd{Q}, @w{@kbd{factor( )}} instead of
10081 @kbd{a f}, and so on.  To type regular Calc commands when you are in
10082 Total Algebraic mode, hold down the @key{META} key.  Thus @kbd{M-q}
10083 is the command to quit Calc, @kbd{M-p} sets the precision, and
10084 @kbd{M-m t} (or @kbd{M-m M-t}, if you prefer) turns Total Algebraic
10085 mode back off again.  Meta keys also terminate algebraic entry, so
10086 that @kbd{2+3 M-S} is equivalent to @kbd{2+3 @key{RET} M-S}.  The symbol
10087 @samp{Alg*} will appear in the mode line whenever you are in this mode.
10089 Pressing @kbd{'} (the apostrophe) a second time re-enters the previous
10090 algebraic formula.  You can then use the normal Emacs editing keys to
10091 modify this formula to your liking before pressing @key{RET}.
10093 @kindex $
10094 @cindex Formulas, referring to stack
10095 Within a formula entered from the keyboard, the symbol @kbd{$}
10096 represents the number on the top of the stack.  If an entered formula
10097 contains any @kbd{$} characters, the Calculator replaces the top of
10098 stack with that formula rather than simply pushing the formula onto the
10099 stack.  Thus, @kbd{' 1+2 @key{RET}} pushes 3 on the stack, and @kbd{$*2
10100 @key{RET}} replaces it with 6.  Note that the @kbd{$} key always
10101 initiates algebraic entry; the @kbd{'} is unnecessary if @kbd{$} is the
10102 first character in the new formula.
10104 Higher stack elements can be accessed from an entered formula with the
10105 symbols @kbd{$$}, @kbd{$$$}, and so on.  The number of stack elements
10106 removed (to be replaced by the entered values) equals the number of dollar
10107 signs in the longest such symbol in the formula.  For example, @samp{$$+$$$}
10108 adds the second and third stack elements, replacing the top three elements
10109 with the answer.  (All information about the top stack element is thus lost
10110 since no single @samp{$} appears in this formula.)
10112 A slightly different way to refer to stack elements is with a dollar
10113 sign followed by a number:  @samp{$1}, @samp{$2}, and so on are much
10114 like @samp{$}, @samp{$$}, etc., except that stack entries referred
10115 to numerically are not replaced by the algebraic entry.  That is, while
10116 @samp{$+1} replaces 5 on the stack with 6, @samp{$1+1} leaves the 5
10117 on the stack and pushes an additional 6.
10119 If a sequence of formulas are entered separated by commas, each formula
10120 is pushed onto the stack in turn.  For example, @samp{1,2,3} pushes
10121 those three numbers onto the stack (leaving the 3 at the top), and
10122 @samp{$+1,$-1} replaces a 5 on the stack with 4 followed by 6.  Also,
10123 @samp{$,$$} exchanges the top two elements of the stack, just like the
10124 @key{TAB} key.
10126 You can finish an algebraic entry with @kbd{M-=} or @kbd{M-@key{RET}} instead
10127 of @key{RET}.  This uses @kbd{=} to evaluate the variables in each
10128 formula that goes onto the stack.  (Thus @kbd{' pi @key{RET}} pushes
10129 the variable @samp{pi}, but @kbd{' pi M-@key{RET}} pushes 3.1415.)
10131 If you finish your algebraic entry by pressing @key{LFD} (or @kbd{C-j})
10132 instead of @key{RET}, Calc disables the default simplifications
10133 (as if by @kbd{m O}; @pxref{Simplification Modes}) while the entry
10134 is being pushed on the stack.  Thus @kbd{' 1+2 @key{RET}} pushes 3
10135 on the stack, but @kbd{' 1+2 @key{LFD}} pushes the formula @expr{1+2};
10136 you might then press @kbd{=} when it is time to evaluate this formula.
10138 @node Quick Calculator, Prefix Arguments, Algebraic Entry, Introduction
10139 @section ``Quick Calculator'' Mode
10141 @noindent
10142 @kindex C-x * q
10143 @pindex quick-calc
10144 @cindex Quick Calculator
10145 There is another way to invoke the Calculator if all you need to do
10146 is make one or two quick calculations.  Type @kbd{C-x * q} (or
10147 @kbd{M-x quick-calc}), then type any formula as an algebraic entry.
10148 The Calculator will compute the result and display it in the echo
10149 area, without ever actually putting up a Calc window.
10151 You can use the @kbd{$} character in a Quick Calculator formula to
10152 refer to the previous Quick Calculator result.  Older results are
10153 not retained; the Quick Calculator has no effect on the full
10154 Calculator's stack or trail.  If you compute a result and then
10155 forget what it was, just run @code{C-x * q} again and enter
10156 @samp{$} as the formula.
10158 If this is the first time you have used the Calculator in this Emacs
10159 session, the @kbd{C-x * q} command will create the @code{*Calculator*}
10160 buffer and perform all the usual initializations; it simply will
10161 refrain from putting that buffer up in a new window.  The Quick
10162 Calculator refers to the @code{*Calculator*} buffer for all mode
10163 settings.  Thus, for example, to set the precision that the Quick
10164 Calculator uses, simply run the full Calculator momentarily and use
10165 the regular @kbd{p} command.
10167 If you use @code{C-x * q} from inside the Calculator buffer, the
10168 effect is the same as pressing the apostrophe key (algebraic entry).
10170 The result of a Quick calculation is placed in the Emacs ``kill ring''
10171 as well as being displayed.  A subsequent @kbd{C-y} command will
10172 yank the result into the editing buffer.  You can also use this
10173 to yank the result into the next @kbd{C-x * q} input line as a more
10174 explicit alternative to @kbd{$} notation, or to yank the result
10175 into the Calculator stack after typing @kbd{C-x * c}.
10177 If you finish your formula by typing @key{LFD} (or @kbd{C-j}) instead
10178 of @key{RET}, the result is inserted immediately into the current
10179 buffer rather than going into the kill ring.
10181 Quick Calculator results are actually evaluated as if by the @kbd{=}
10182 key (which replaces variable names by their stored values, if any).
10183 If the formula you enter is an assignment to a variable using the
10184 @samp{:=} operator, say, @samp{foo := 2 + 3} or @samp{foo := foo + 1},
10185 then the result of the evaluation is stored in that Calc variable.
10186 @xref{Store and Recall}.
10188 If the result is an integer and the current display radix is decimal,
10189 the number will also be displayed in hex, octal and binary formats.  If
10190 the integer is in the range from 1 to 126, it will also be displayed as
10191 an ASCII character.
10193 For example, the quoted character @samp{"x"} produces the vector
10194 result @samp{[120]} (because 120 is the ASCII code of the lower-case
10195 `x'; @pxref{Strings}).  Since this is a vector, not an integer, it
10196 is displayed only according to the current mode settings.  But
10197 running Quick Calc again and entering @samp{120} will produce the
10198 result @samp{120 (16#78, 8#170, x)} which shows the number in its
10199 decimal, hexadecimal, octal, and ASCII forms.
10201 Please note that the Quick Calculator is not any faster at loading
10202 or computing the answer than the full Calculator; the name ``quick''
10203 merely refers to the fact that it's much less hassle to use for
10204 small calculations.
10206 @node Prefix Arguments, Undo, Quick Calculator, Introduction
10207 @section Numeric Prefix Arguments
10209 @noindent
10210 Many Calculator commands use numeric prefix arguments.  Some, such as
10211 @kbd{d s} (@code{calc-sci-notation}), set a parameter to the value of
10212 the prefix argument or use a default if you don't use a prefix.
10213 Others (like @kbd{d f} (@code{calc-fix-notation})) require an argument
10214 and prompt for a number if you don't give one as a prefix.
10216 As a rule, stack-manipulation commands accept a numeric prefix argument
10217 which is interpreted as an index into the stack.  A positive argument
10218 operates on the top @var{n} stack entries; a negative argument operates
10219 on the @var{n}th stack entry in isolation; and a zero argument operates
10220 on the entire stack.
10222 Most commands that perform computations (such as the arithmetic and
10223 scientific functions) accept a numeric prefix argument that allows the
10224 operation to be applied across many stack elements.  For unary operations
10225 (that is, functions of one argument like absolute value or complex
10226 conjugate), a positive prefix argument applies that function to the top
10227 @var{n} stack entries simultaneously, and a negative argument applies it
10228 to the @var{n}th stack entry only.  For binary operations (functions of
10229 two arguments like addition, GCD, and vector concatenation), a positive
10230 prefix argument ``reduces'' the function across the top @var{n}
10231 stack elements (for example, @kbd{C-u 5 +} sums the top 5 stack entries;
10232 @pxref{Reducing and Mapping}), and a negative argument maps the next-to-top
10233 @var{n} stack elements with the top stack element as a second argument
10234 (for example, @kbd{7 c-u -5 +} adds 7 to the top 5 stack elements).
10235 This feature is not available for operations which use the numeric prefix
10236 argument for some other purpose.
10238 Numeric prefixes are specified the same way as always in Emacs:  Press
10239 a sequence of @key{META}-digits, or press @key{ESC} followed by digits,
10240 or press @kbd{C-u} followed by digits.  Some commands treat plain
10241 @kbd{C-u} (without any actual digits) specially.
10243 @kindex ~
10244 @pindex calc-num-prefix
10245 You can type @kbd{~} (@code{calc-num-prefix}) to pop an integer from the
10246 top of the stack and enter it as the numeric prefix for the next command.
10247 For example, @kbd{C-u 16 p} sets the precision to 16 digits; an alternate
10248 (silly) way to do this would be @kbd{2 @key{RET} 4 ^ ~ p}, i.e., compute 2
10249 to the fourth power and set the precision to that value.
10251 Conversely, if you have typed a numeric prefix argument the @kbd{~} key
10252 pushes it onto the stack in the form of an integer.
10254 @node Undo, Error Messages, Prefix Arguments, Introduction
10255 @section Undoing Mistakes
10257 @noindent
10258 @kindex U
10259 @kindex C-_
10260 @pindex calc-undo
10261 @cindex Mistakes, undoing
10262 @cindex Undoing mistakes
10263 @cindex Errors, undoing
10264 The shift-@kbd{U} key (@code{calc-undo}) undoes the most recent operation.
10265 If that operation added or dropped objects from the stack, those objects
10266 are removed or restored.  If it was a ``store'' operation, you are
10267 queried whether or not to restore the variable to its original value.
10268 The @kbd{U} key may be pressed any number of times to undo successively
10269 farther back in time; with a numeric prefix argument it undoes a
10270 specified number of operations.  The undo history is cleared only by the
10271 @kbd{q} (@code{calc-quit}) command.  (Recall that @kbd{C-x * c} is
10272 synonymous with @code{calc-quit} while inside the Calculator; this
10273 also clears the undo history.)
10275 Currently the mode-setting commands (like @code{calc-precision}) are not
10276 undoable.  You can undo past a point where you changed a mode, but you
10277 will need to reset the mode yourself.
10279 @kindex D
10280 @pindex calc-redo
10281 @cindex Redoing after an Undo
10282 The shift-@kbd{D} key (@code{calc-redo}) redoes an operation that was
10283 mistakenly undone.  Pressing @kbd{U} with a negative prefix argument is
10284 equivalent to executing @code{calc-redo}.  You can redo any number of
10285 times, up to the number of recent consecutive undo commands.  Redo
10286 information is cleared whenever you give any command that adds new undo
10287 information, i.e., if you undo, then enter a number on the stack or make
10288 any other change, then it will be too late to redo.
10290 @kindex M-@key{RET}
10291 @pindex calc-last-args
10292 @cindex Last-arguments feature
10293 @cindex Arguments, restoring
10294 The @kbd{M-@key{RET}} key (@code{calc-last-args}) is like undo in that
10295 it restores the arguments of the most recent command onto the stack;
10296 however, it does not remove the result of that command.  Given a numeric
10297 prefix argument, this command applies to the @expr{n}th most recent
10298 command which removed items from the stack; it pushes those items back
10299 onto the stack.
10301 The @kbd{K} (@code{calc-keep-args}) command provides a related function
10302 to @kbd{M-@key{RET}}.  @xref{Stack and Trail}.
10304 It is also possible to recall previous results or inputs using the trail.
10305 @xref{Trail Commands}.
10307 The standard Emacs @kbd{C-_} undo key is recognized as a synonym for @kbd{U}.
10309 @node Error Messages, Multiple Calculators, Undo, Introduction
10310 @section Error Messages
10312 @noindent
10313 @kindex w
10314 @pindex calc-why
10315 @cindex Errors, messages
10316 @cindex Why did an error occur?
10317 Many situations that would produce an error message in other calculators
10318 simply create unsimplified formulas in the Emacs Calculator.  For example,
10319 @kbd{1 @key{RET} 0 /} pushes the formula @expr{1 / 0}; @w{@kbd{0 L}} pushes
10320 the formula @samp{ln(0)}.  Floating-point overflow and underflow are also
10321 reasons for this to happen.
10323 When a function call must be left in symbolic form, Calc usually
10324 produces a message explaining why.  Messages that are probably
10325 surprising or indicative of user errors are displayed automatically.
10326 Other messages are simply kept in Calc's memory and are displayed only
10327 if you type @kbd{w} (@code{calc-why}).  You can also press @kbd{w} if
10328 the same computation results in several messages.  (The first message
10329 will end with @samp{[w=more]} in this case.)
10331 @kindex d w
10332 @pindex calc-auto-why
10333 The @kbd{d w} (@code{calc-auto-why}) command controls when error messages
10334 are displayed automatically.  (Calc effectively presses @kbd{w} for you
10335 after your computation finishes.)  By default, this occurs only for
10336 ``important'' messages.  The other possible modes are to report
10337 @emph{all} messages automatically, or to report none automatically (so
10338 that you must always press @kbd{w} yourself to see the messages).
10340 @node Multiple Calculators, Troubleshooting Commands, Error Messages, Introduction
10341 @section Multiple Calculators
10343 @noindent
10344 @pindex another-calc
10345 It is possible to have any number of Calc mode buffers at once.
10346 Usually this is done by executing @kbd{M-x another-calc}, which
10347 is similar to @kbd{C-x * c} except that if a @samp{*Calculator*}
10348 buffer already exists, a new, independent one with a name of the
10349 form @samp{*Calculator*<@var{n}>} is created.  You can also use the
10350 command @code{calc-mode} to put any buffer into Calculator mode, but
10351 this would ordinarily never be done.
10353 The @kbd{q} (@code{calc-quit}) command does not destroy a Calculator buffer;
10354 it only closes its window.  Use @kbd{M-x kill-buffer} to destroy a
10355 Calculator buffer.
10357 Each Calculator buffer keeps its own stack, undo list, and mode settings
10358 such as precision, angular mode, and display formats.  In Emacs terms,
10359 variables such as @code{calc-stack} are buffer-local variables.  The
10360 global default values of these variables are used only when a new
10361 Calculator buffer is created.  The @code{calc-quit} command saves
10362 the stack and mode settings of the buffer being quit as the new defaults.
10364 There is only one trail buffer, @samp{*Calc Trail*}, used by all
10365 Calculator buffers.
10367 @node Troubleshooting Commands,  , Multiple Calculators, Introduction
10368 @section Troubleshooting Commands
10370 @noindent
10371 This section describes commands you can use in case a computation
10372 incorrectly fails or gives the wrong answer.
10374 @xref{Reporting Bugs}, if you find a problem that appears to be due
10375 to a bug or deficiency in Calc.
10377 @menu
10378 * Autoloading Problems::
10379 * Recursion Depth::
10380 * Caches::
10381 * Debugging Calc::
10382 @end menu
10384 @node Autoloading Problems, Recursion Depth, Troubleshooting Commands, Troubleshooting Commands
10385 @subsection Autoloading Problems
10387 @noindent
10388 The Calc program is split into many component files; components are
10389 loaded automatically as you use various commands that require them.
10390 Occasionally Calc may lose track of when a certain component is
10391 necessary; typically this means you will type a command and it won't
10392 work because some function you've never heard of was undefined.
10394 @kindex C-x * L
10395 @pindex calc-load-everything
10396 If this happens, the easiest workaround is to type @kbd{C-x * L}
10397 (@code{calc-load-everything}) to force all the parts of Calc to be
10398 loaded right away.  This will cause Emacs to take up a lot more
10399 memory than it would otherwise, but it's guaranteed to fix the problem.
10401 @node Recursion Depth, Caches, Autoloading Problems, Troubleshooting Commands
10402 @subsection Recursion Depth
10404 @noindent
10405 @kindex M
10406 @kindex I M
10407 @pindex calc-more-recursion-depth
10408 @pindex calc-less-recursion-depth
10409 @cindex Recursion depth
10410 @cindex ``Computation got stuck'' message
10411 @cindex @code{max-lisp-eval-depth}
10412 @cindex @code{max-specpdl-size}
10413 Calc uses recursion in many of its calculations.  Emacs Lisp keeps a
10414 variable @code{max-lisp-eval-depth} which limits the amount of recursion
10415 possible in an attempt to recover from program bugs.  If a calculation
10416 ever halts incorrectly with the message ``Computation got stuck or
10417 ran too long,'' use the @kbd{M} command (@code{calc-more-recursion-depth})
10418 to increase this limit.  (Of course, this will not help if the
10419 calculation really did get stuck due to some problem inside Calc.)
10421 The limit is always increased (multiplied) by a factor of two.  There
10422 is also an @kbd{I M} (@code{calc-less-recursion-depth}) command which
10423 decreases this limit by a factor of two, down to a minimum value of 200.
10424 The default value is 1000.
10426 These commands also double or halve @code{max-specpdl-size}, another
10427 internal Lisp recursion limit.  The minimum value for this limit is 600.
10429 @node Caches, Debugging Calc, Recursion Depth, Troubleshooting Commands
10430 @subsection Caches
10432 @noindent
10433 @cindex Caches
10434 @cindex Flushing caches
10435 Calc saves certain values after they have been computed once.  For
10436 example, the @kbd{P} (@code{calc-pi}) command initially ``knows'' the
10437 constant @cpi{} to about 20 decimal places; if the current precision
10438 is greater than this, it will recompute @cpi{} using a series
10439 approximation.  This value will not need to be recomputed ever again
10440 unless you raise the precision still further.  Many operations such as
10441 logarithms and sines make use of similarly cached values such as
10442 @cpiover{4} and 
10443 @texline @math{\ln 2}.
10444 @infoline @expr{ln(2)}.  
10445 The visible effect of caching is that
10446 high-precision computations may seem to do extra work the first time.
10447 Other things cached include powers of two (for the binary arithmetic
10448 functions), matrix inverses and determinants, symbolic integrals, and
10449 data points computed by the graphing commands.
10451 @pindex calc-flush-caches
10452 If you suspect a Calculator cache has become corrupt, you can use the
10453 @code{calc-flush-caches} command to reset all caches to the empty state.
10454 (This should only be necessary in the event of bugs in the Calculator.)
10455 The @kbd{C-x * 0} (with the zero key) command also resets caches along
10456 with all other aspects of the Calculator's state.
10458 @node Debugging Calc,  , Caches, Troubleshooting Commands
10459 @subsection Debugging Calc
10461 @noindent
10462 A few commands exist to help in the debugging of Calc commands.
10463 @xref{Programming}, to see the various ways that you can write
10464 your own Calc commands.
10466 @kindex Z T
10467 @pindex calc-timing
10468 The @kbd{Z T} (@code{calc-timing}) command turns on and off a mode
10469 in which the timing of slow commands is reported in the Trail.
10470 Any Calc command that takes two seconds or longer writes a line
10471 to the Trail showing how many seconds it took.  This value is
10472 accurate only to within one second.
10474 All steps of executing a command are included; in particular, time
10475 taken to format the result for display in the stack and trail is
10476 counted.  Some prompts also count time taken waiting for them to
10477 be answered, while others do not; this depends on the exact
10478 implementation of the command.  For best results, if you are timing
10479 a sequence that includes prompts or multiple commands, define a
10480 keyboard macro to run the whole sequence at once.  Calc's @kbd{X}
10481 command (@pxref{Keyboard Macros}) will then report the time taken
10482 to execute the whole macro.
10484 Another advantage of the @kbd{X} command is that while it is
10485 executing, the stack and trail are not updated from step to step.
10486 So if you expect the output of your test sequence to leave a result
10487 that may take a long time to format and you don't wish to count
10488 this formatting time, end your sequence with a @key{DEL} keystroke
10489 to clear the result from the stack.  When you run the sequence with
10490 @kbd{X}, Calc will never bother to format the large result.
10492 Another thing @kbd{Z T} does is to increase the Emacs variable
10493 @code{gc-cons-threshold} to a much higher value (two million; the
10494 usual default in Calc is 250,000) for the duration of each command.
10495 This generally prevents garbage collection during the timing of
10496 the command, though it may cause your Emacs process to grow
10497 abnormally large.  (Garbage collection time is a major unpredictable
10498 factor in the timing of Emacs operations.)
10500 Another command that is useful when debugging your own Lisp
10501 extensions to Calc is @kbd{M-x calc-pass-errors}, which disables
10502 the error handler that changes the ``@code{max-lisp-eval-depth}
10503 exceeded'' message to the much more friendly ``Computation got
10504 stuck or ran too long.''  This handler interferes with the Emacs
10505 Lisp debugger's @code{debug-on-error} mode.  Errors are reported
10506 in the handler itself rather than at the true location of the
10507 error.  After you have executed @code{calc-pass-errors}, Lisp
10508 errors will be reported correctly but the user-friendly message
10509 will be lost.
10511 @node Data Types, Stack and Trail, Introduction, Top
10512 @chapter Data Types
10514 @noindent
10515 This chapter discusses the various types of objects that can be placed
10516 on the Calculator stack, how they are displayed, and how they are
10517 entered.  (@xref{Data Type Formats}, for information on how these data
10518 types are represented as underlying Lisp objects.)
10520 Integers, fractions, and floats are various ways of describing real
10521 numbers.  HMS forms also for many purposes act as real numbers.  These
10522 types can be combined to form complex numbers, modulo forms, error forms,
10523 or interval forms.  (But these last four types cannot be combined
10524 arbitrarily:@: error forms may not contain modulo forms, for example.)
10525 Finally, all these types of numbers may be combined into vectors,
10526 matrices, or algebraic formulas.
10528 @menu
10529 * Integers::                The most basic data type.
10530 * Fractions::               This and above are called @dfn{rationals}.
10531 * Floats::                  This and above are called @dfn{reals}.
10532 * Complex Numbers::         This and above are called @dfn{numbers}.
10533 * Infinities::
10534 * Vectors and Matrices::
10535 * Strings::
10536 * HMS Forms::
10537 * Date Forms::
10538 * Modulo Forms::
10539 * Error Forms::
10540 * Interval Forms::
10541 * Incomplete Objects::
10542 * Variables::
10543 * Formulas::
10544 @end menu
10546 @node Integers, Fractions, Data Types, Data Types
10547 @section Integers
10549 @noindent
10550 @cindex Integers
10551 The Calculator stores integers to arbitrary precision.  Addition,
10552 subtraction, and multiplication of integers always yields an exact
10553 integer result.  (If the result of a division or exponentiation of
10554 integers is not an integer, it is expressed in fractional or
10555 floating-point form according to the current Fraction mode.
10556 @xref{Fraction Mode}.)
10558 A decimal integer is represented as an optional sign followed by a
10559 sequence of digits.  Grouping (@pxref{Grouping Digits}) can be used to
10560 insert a comma at every third digit for display purposes, but you
10561 must not type commas during the entry of numbers.
10563 @kindex #
10564 A non-decimal integer is represented as an optional sign, a radix
10565 between 2 and 36, a @samp{#} symbol, and one or more digits.  For radix 11
10566 and above, the letters A through Z (upper- or lower-case) count as
10567 digits and do not terminate numeric entry mode.  @xref{Radix Modes}, for how
10568 to set the default radix for display of integers.  Numbers of any radix
10569 may be entered at any time.  If you press @kbd{#} at the beginning of a
10570 number, the current display radix is used.
10572 @node Fractions, Floats, Integers, Data Types
10573 @section Fractions
10575 @noindent
10576 @cindex Fractions
10577 A @dfn{fraction} is a ratio of two integers.  Fractions are traditionally
10578 written ``2/3'' but Calc uses the notation @samp{2:3}.  (The @kbd{/} key
10579 performs RPN division; the following two sequences push the number
10580 @samp{2:3} on the stack:  @kbd{2 :@: 3 @key{RET}}, or @kbd{2 @key{RET} 3 /}
10581 assuming Fraction mode has been enabled.)
10582 When the Calculator produces a fractional result it always reduces it to
10583 simplest form, which may in fact be an integer.
10585 Fractions may also be entered in a three-part form, where @samp{2:3:4}
10586 represents two-and-three-quarters.  @xref{Fraction Formats}, for fraction
10587 display formats.
10589 Non-decimal fractions are entered and displayed as
10590 @samp{@var{radix}#@var{num}:@var{denom}} (or in the analogous three-part
10591 form).  The numerator and denominator always use the same radix.
10593 @node Floats, Complex Numbers, Fractions, Data Types
10594 @section Floats
10596 @noindent
10597 @cindex Floating-point numbers
10598 A floating-point number or @dfn{float} is a number stored in scientific
10599 notation.  The number of significant digits in the fractional part is
10600 governed by the current floating precision (@pxref{Precision}).  The
10601 range of acceptable values is from 
10602 @texline @math{10^{-3999999}}
10603 @infoline @expr{10^-3999999} 
10604 (inclusive) to 
10605 @texline @math{10^{4000000}}
10606 @infoline @expr{10^4000000}
10607 (exclusive), plus the corresponding negative values and zero.
10609 Calculations that would exceed the allowable range of values (such
10610 as @samp{exp(exp(20))}) are left in symbolic form by Calc.  The
10611 messages ``floating-point overflow'' or ``floating-point underflow''
10612 indicate that during the calculation a number would have been produced
10613 that was too large or too close to zero, respectively, to be represented
10614 by Calc.  This does not necessarily mean the final result would have
10615 overflowed, just that an overflow occurred while computing the result.
10616 (In fact, it could report an underflow even though the final result
10617 would have overflowed!)
10619 If a rational number and a float are mixed in a calculation, the result
10620 will in general be expressed as a float.  Commands that require an integer
10621 value (such as @kbd{k g} [@code{gcd}]) will also accept integer-valued
10622 floats, i.e., floating-point numbers with nothing after the decimal point.
10624 Floats are identified by the presence of a decimal point and/or an
10625 exponent.  In general a float consists of an optional sign, digits
10626 including an optional decimal point, and an optional exponent consisting
10627 of an @samp{e}, an optional sign, and up to seven exponent digits.
10628 For example, @samp{23.5e-2} is 23.5 times ten to the minus-second power,
10629 or 0.235.
10631 Floating-point numbers are normally displayed in decimal notation with
10632 all significant figures shown.  Exceedingly large or small numbers are
10633 displayed in scientific notation.  Various other display options are
10634 available.  @xref{Float Formats}.
10636 @cindex Accuracy of calculations
10637 Floating-point numbers are stored in decimal, not binary.  The result
10638 of each operation is rounded to the nearest value representable in the
10639 number of significant digits specified by the current precision,
10640 rounding away from zero in the case of a tie.  Thus (in the default
10641 display mode) what you see is exactly what you get.  Some operations such
10642 as square roots and transcendental functions are performed with several
10643 digits of extra precision and then rounded down, in an effort to make the
10644 final result accurate to the full requested precision.  However,
10645 accuracy is not rigorously guaranteed.  If you suspect the validity of a
10646 result, try doing the same calculation in a higher precision.  The
10647 Calculator's arithmetic is not intended to be IEEE-conformant in any
10648 way.
10650 While floats are always @emph{stored} in decimal, they can be entered
10651 and displayed in any radix just like integers and fractions.  Since a
10652 float that is entered in a radix other that 10 will be converted to
10653 decimal, the number that Calc stores may not be exactly the number that
10654 was entered, it will be the closest decimal approximation given the
10655 current precison.  The notation @samp{@var{radix}#@var{ddd}.@var{ddd}}
10656 is a floating-point number whose digits are in the specified radix.
10657 Note that the @samp{.}  is more aptly referred to as a ``radix point''
10658 than as a decimal point in this case.  The number @samp{8#123.4567} is
10659 defined as @samp{8#1234567 * 8^-4}.  If the radix is 14 or less, you can
10660 use @samp{e} notation to write a non-decimal number in scientific
10661 notation.  The exponent is written in decimal, and is considered to be a
10662 power of the radix: @samp{8#1234567e-4}.  If the radix is 15 or above,
10663 the letter @samp{e} is a digit, so scientific notation must be written
10664 out, e.g., @samp{16#123.4567*16^2}.  The first two exercises of the
10665 Modes Tutorial explore some of the properties of non-decimal floats.
10667 @node Complex Numbers, Infinities, Floats, Data Types
10668 @section Complex Numbers
10670 @noindent
10671 @cindex Complex numbers
10672 There are two supported formats for complex numbers: rectangular and
10673 polar.  The default format is rectangular, displayed in the form
10674 @samp{(@var{real},@var{imag})} where @var{real} is the real part and
10675 @var{imag} is the imaginary part, each of which may be any real number.
10676 Rectangular complex numbers can also be displayed in @samp{@var{a}+@var{b}i}
10677 notation; @pxref{Complex Formats}.
10679 Polar complex numbers are displayed in the form 
10680 @texline `@tfn{(}@var{r}@tfn{;}@math{\theta}@tfn{)}'
10681 @infoline `@tfn{(}@var{r}@tfn{;}@var{theta}@tfn{)}'
10682 where @var{r} is the nonnegative magnitude and 
10683 @texline @math{\theta}
10684 @infoline @var{theta} 
10685 is the argument or phase angle.  The range of 
10686 @texline @math{\theta}
10687 @infoline @var{theta} 
10688 depends on the current angular mode (@pxref{Angular Modes}); it is
10689 generally between @mathit{-180} and @mathit{+180} degrees or the equivalent range
10690 in radians. 
10692 Complex numbers are entered in stages using incomplete objects.
10693 @xref{Incomplete Objects}.
10695 Operations on rectangular complex numbers yield rectangular complex
10696 results, and similarly for polar complex numbers.  Where the two types
10697 are mixed, or where new complex numbers arise (as for the square root of
10698 a negative real), the current @dfn{Polar mode} is used to determine the
10699 type.  @xref{Polar Mode}.
10701 A complex result in which the imaginary part is zero (or the phase angle
10702 is 0 or 180 degrees or @cpi{} radians) is automatically converted to a real
10703 number.
10705 @node Infinities, Vectors and Matrices, Complex Numbers, Data Types
10706 @section Infinities
10708 @noindent
10709 @cindex Infinity
10710 @cindex @code{inf} variable
10711 @cindex @code{uinf} variable
10712 @cindex @code{nan} variable
10713 @vindex inf
10714 @vindex uinf
10715 @vindex nan
10716 The word @code{inf} represents the mathematical concept of @dfn{infinity}.
10717 Calc actually has three slightly different infinity-like values:
10718 @code{inf}, @code{uinf}, and @code{nan}.  These are just regular
10719 variable names (@pxref{Variables}); you should avoid using these
10720 names for your own variables because Calc gives them special
10721 treatment.  Infinities, like all variable names, are normally
10722 entered using algebraic entry.
10724 Mathematically speaking, it is not rigorously correct to treat
10725 ``infinity'' as if it were a number, but mathematicians often do
10726 so informally.  When they say that @samp{1 / inf = 0}, what they
10727 really mean is that @expr{1 / x}, as @expr{x} becomes larger and
10728 larger, becomes arbitrarily close to zero.  So you can imagine
10729 that if @expr{x} got ``all the way to infinity,'' then @expr{1 / x}
10730 would go all the way to zero.  Similarly, when they say that
10731 @samp{exp(inf) = inf}, they mean that 
10732 @texline @math{e^x}
10733 @infoline @expr{exp(x)} 
10734 grows without bound as @expr{x} grows.  The symbol @samp{-inf} likewise
10735 stands for an infinitely negative real value; for example, we say that
10736 @samp{exp(-inf) = 0}.  You can have an infinity pointing in any
10737 direction on the complex plane:  @samp{sqrt(-inf) = i inf}.
10739 The same concept of limits can be used to define @expr{1 / 0}.  We
10740 really want the value that @expr{1 / x} approaches as @expr{x}
10741 approaches zero.  But if all we have is @expr{1 / 0}, we can't
10742 tell which direction @expr{x} was coming from.  If @expr{x} was
10743 positive and decreasing toward zero, then we should say that
10744 @samp{1 / 0 = inf}.  But if @expr{x} was negative and increasing
10745 toward zero, the answer is @samp{1 / 0 = -inf}.  In fact, @expr{x}
10746 could be an imaginary number, giving the answer @samp{i inf} or
10747 @samp{-i inf}.  Calc uses the special symbol @samp{uinf} to mean
10748 @dfn{undirected infinity}, i.e., a value which is infinitely
10749 large but with an unknown sign (or direction on the complex plane).
10751 Calc actually has three modes that say how infinities are handled.
10752 Normally, infinities never arise from calculations that didn't
10753 already have them.  Thus, @expr{1 / 0} is treated simply as an
10754 error and left unevaluated.  The @kbd{m i} (@code{calc-infinite-mode})
10755 command (@pxref{Infinite Mode}) enables a mode in which
10756 @expr{1 / 0} evaluates to @code{uinf} instead.  There is also
10757 an alternative type of infinite mode which says to treat zeros
10758 as if they were positive, so that @samp{1 / 0 = inf}.  While this
10759 is less mathematically correct, it may be the answer you want in
10760 some cases.
10762 Since all infinities are ``as large'' as all others, Calc simplifies,
10763 e.g., @samp{5 inf} to @samp{inf}.  Another example is
10764 @samp{5 - inf = -inf}, where the @samp{-inf} is so large that
10765 adding a finite number like five to it does not affect it.
10766 Note that @samp{a - inf} also results in @samp{-inf}; Calc assumes
10767 that variables like @code{a} always stand for finite quantities.
10768 Just to show that infinities really are all the same size,
10769 note that @samp{sqrt(inf) = inf^2 = exp(inf) = inf} in Calc's
10770 notation.
10772 It's not so easy to define certain formulas like @samp{0 * inf} and
10773 @samp{inf / inf}.  Depending on where these zeros and infinities
10774 came from, the answer could be literally anything.  The latter
10775 formula could be the limit of @expr{x / x} (giving a result of one),
10776 or @expr{2 x / x} (giving two), or @expr{x^2 / x} (giving @code{inf}),
10777 or @expr{x / x^2} (giving zero).  Calc uses the symbol @code{nan}
10778 to represent such an @dfn{indeterminate} value.  (The name ``nan''
10779 comes from analogy with the ``NAN'' concept of IEEE standard
10780 arithmetic; it stands for ``Not A Number.''  This is somewhat of a
10781 misnomer, since @code{nan} @emph{does} stand for some number or
10782 infinity, it's just that @emph{which} number it stands for
10783 cannot be determined.)  In Calc's notation, @samp{0 * inf = nan}
10784 and @samp{inf / inf = nan}.  A few other common indeterminate
10785 expressions are @samp{inf - inf} and @samp{inf ^ 0}.  Also,
10786 @samp{0 / 0 = nan} if you have turned on Infinite mode
10787 (as described above).
10789 Infinities are especially useful as parts of @dfn{intervals}.
10790 @xref{Interval Forms}.
10792 @node Vectors and Matrices, Strings, Infinities, Data Types
10793 @section Vectors and Matrices
10795 @noindent
10796 @cindex Vectors
10797 @cindex Plain vectors
10798 @cindex Matrices
10799 The @dfn{vector} data type is flexible and general.  A vector is simply a
10800 list of zero or more data objects.  When these objects are numbers, the
10801 whole is a vector in the mathematical sense.  When these objects are
10802 themselves vectors of equal (nonzero) length, the whole is a @dfn{matrix}.
10803 A vector which is not a matrix is referred to here as a @dfn{plain vector}.
10805 A vector is displayed as a list of values separated by commas and enclosed
10806 in square brackets:  @samp{[1, 2, 3]}.  Thus the following is a 2 row by
10807 3 column matrix:  @samp{[[1, 2, 3], [4, 5, 6]]}.  Vectors, like complex
10808 numbers, are entered as incomplete objects.  @xref{Incomplete Objects}.
10809 During algebraic entry, vectors are entered all at once in the usual
10810 brackets-and-commas form.  Matrices may be entered algebraically as nested
10811 vectors, or using the shortcut notation @w{@samp{[1, 2, 3; 4, 5, 6]}},
10812 with rows separated by semicolons.  The commas may usually be omitted
10813 when entering vectors:  @samp{[1 2 3]}.  Curly braces may be used in
10814 place of brackets: @samp{@{1, 2, 3@}}, but the commas are required in
10815 this case.
10817 Traditional vector and matrix arithmetic is also supported;
10818 @pxref{Basic Arithmetic} and @pxref{Matrix Functions}.
10819 Many other operations are applied to vectors element-wise.  For example,
10820 the complex conjugate of a vector is a vector of the complex conjugates
10821 of its elements.
10823 @ignore
10824 @starindex
10825 @end ignore
10826 @tindex vec
10827 Algebraic functions for building vectors include @samp{vec(a, b, c)}
10828 to build @samp{[a, b, c]}, @samp{cvec(a, n, m)} to build an 
10829 @texline @math{n\times m}
10830 @infoline @var{n}x@var{m}
10831 matrix of @samp{a}s, and @samp{index(n)} to build a vector of integers
10832 from 1 to @samp{n}.
10834 @node Strings, HMS Forms, Vectors and Matrices, Data Types
10835 @section Strings
10837 @noindent
10838 @kindex "
10839 @cindex Strings
10840 @cindex Character strings
10841 Character strings are not a special data type in the Calculator.
10842 Rather, a string is represented simply as a vector all of whose
10843 elements are integers in the range 0 to 255 (ASCII codes).  You can
10844 enter a string at any time by pressing the @kbd{"} key.  Quotation
10845 marks and backslashes are written @samp{\"} and @samp{\\}, respectively,
10846 inside strings.  Other notations introduced by backslashes are:
10848 @example
10849 @group
10850 \a     7          \^@@    0
10851 \b     8          \^a-z  1-26
10852 \e     27         \^[    27
10853 \f     12         \^\\   28
10854 \n     10         \^]    29
10855 \r     13         \^^    30
10856 \t     9          \^_    31
10857                   \^?    127
10858 @end group
10859 @end example
10861 @noindent
10862 Finally, a backslash followed by three octal digits produces any
10863 character from its ASCII code.
10865 @kindex d "
10866 @pindex calc-display-strings
10867 Strings are normally displayed in vector-of-integers form.  The
10868 @w{@kbd{d "}} (@code{calc-display-strings}) command toggles a mode in
10869 which any vectors of small integers are displayed as quoted strings
10870 instead.
10872 The backslash notations shown above are also used for displaying
10873 strings.  Characters 128 and above are not translated by Calc; unless
10874 you have an Emacs modified for 8-bit fonts, these will show up in
10875 backslash-octal-digits notation.  For characters below 32, and
10876 for character 127, Calc uses the backslash-letter combination if
10877 there is one, or otherwise uses a @samp{\^} sequence.
10879 The only Calc feature that uses strings is @dfn{compositions};
10880 @pxref{Compositions}.  Strings also provide a convenient
10881 way to do conversions between ASCII characters and integers.
10883 @ignore
10884 @starindex
10885 @end ignore
10886 @tindex string
10887 There is a @code{string} function which provides a different display
10888 format for strings.  Basically, @samp{string(@var{s})}, where @var{s}
10889 is a vector of integers in the proper range, is displayed as the
10890 corresponding string of characters with no surrounding quotation
10891 marks or other modifications.  Thus @samp{string("ABC")} (or
10892 @samp{string([65 66 67])}) will look like @samp{ABC} on the stack.
10893 This happens regardless of whether @w{@kbd{d "}} has been used.  The
10894 only way to turn it off is to use @kbd{d U} (unformatted language
10895 mode) which will display @samp{string("ABC")} instead.
10897 Control characters are displayed somewhat differently by @code{string}.
10898 Characters below 32, and character 127, are shown using @samp{^} notation
10899 (same as shown above, but without the backslash).  The quote and
10900 backslash characters are left alone, as are characters 128 and above.
10902 @ignore
10903 @starindex
10904 @end ignore
10905 @tindex bstring
10906 The @code{bstring} function is just like @code{string} except that
10907 the resulting string is breakable across multiple lines if it doesn't
10908 fit all on one line.  Potential break points occur at every space
10909 character in the string.
10911 @node HMS Forms, Date Forms, Strings, Data Types
10912 @section HMS Forms
10914 @noindent
10915 @cindex Hours-minutes-seconds forms
10916 @cindex Degrees-minutes-seconds forms
10917 @dfn{HMS} stands for Hours-Minutes-Seconds; when used as an angular
10918 argument, the interpretation is Degrees-Minutes-Seconds.  All functions
10919 that operate on angles accept HMS forms.  These are interpreted as
10920 degrees regardless of the current angular mode.  It is also possible to
10921 use HMS as the angular mode so that calculated angles are expressed in
10922 degrees, minutes, and seconds.
10924 @kindex @@
10925 @ignore
10926 @mindex @null
10927 @end ignore
10928 @kindex ' (HMS forms)
10929 @ignore
10930 @mindex @null
10931 @end ignore
10932 @kindex " (HMS forms)
10933 @ignore
10934 @mindex @null
10935 @end ignore
10936 @kindex h (HMS forms)
10937 @ignore
10938 @mindex @null
10939 @end ignore
10940 @kindex o (HMS forms)
10941 @ignore
10942 @mindex @null
10943 @end ignore
10944 @kindex m (HMS forms)
10945 @ignore
10946 @mindex @null
10947 @end ignore
10948 @kindex s (HMS forms)
10949 The default format for HMS values is
10950 @samp{@var{hours}@@ @var{mins}' @var{secs}"}.  During entry, the letters
10951 @samp{h} (for ``hours'') or
10952 @samp{o} (approximating the ``degrees'' symbol) are accepted as well as
10953 @samp{@@}, @samp{m} is accepted in place of @samp{'}, and @samp{s} is
10954 accepted in place of @samp{"}.
10955 The @var{hours} value is an integer (or integer-valued float).
10956 The @var{mins} value is an integer or integer-valued float between 0 and 59.
10957 The @var{secs} value is a real number between 0 (inclusive) and 60
10958 (exclusive).  A positive HMS form is interpreted as @var{hours} +
10959 @var{mins}/60 + @var{secs}/3600.  A negative HMS form is interpreted
10960 as @mathit{- @var{hours}} @mathit{-} @var{mins}/60 @mathit{-} @var{secs}/3600.
10961 Display format for HMS forms is quite flexible.  @xref{HMS Formats}.
10963 HMS forms can be added and subtracted.  When they are added to numbers,
10964 the numbers are interpreted according to the current angular mode.  HMS
10965 forms can also be multiplied and divided by real numbers.  Dividing
10966 two HMS forms produces a real-valued ratio of the two angles.
10968 @pindex calc-time
10969 @cindex Time of day
10970 Just for kicks, @kbd{M-x calc-time} pushes the current time of day on
10971 the stack as an HMS form.
10973 @node Date Forms, Modulo Forms, HMS Forms, Data Types
10974 @section Date Forms
10976 @noindent
10977 @cindex Date forms
10978 A @dfn{date form} represents a date and possibly an associated time.
10979 Simple date arithmetic is supported:  Adding a number to a date
10980 produces a new date shifted by that many days; adding an HMS form to
10981 a date shifts it by that many hours.  Subtracting two date forms
10982 computes the number of days between them (represented as a simple
10983 number).  Many other operations, such as multiplying two date forms,
10984 are nonsensical and are not allowed by Calc.
10986 Date forms are entered and displayed enclosed in @samp{< >} brackets.
10987 The default format is, e.g., @samp{<Wed Jan 9, 1991>} for dates,
10988 or @samp{<3:32:20pm Wed Jan 9, 1991>} for dates with times.
10989 Input is flexible; date forms can be entered in any of the usual
10990 notations for dates and times.  @xref{Date Formats}.
10992 Date forms are stored internally as numbers, specifically the number
10993 of days since midnight on the morning of January 1 of the year 1 AD.
10994 If the internal number is an integer, the form represents a date only;
10995 if the internal number is a fraction or float, the form represents
10996 a date and time.  For example, @samp{<6:00am Wed Jan 9, 1991>}
10997 is represented by the number 726842.25.  The standard precision of
10998 12 decimal digits is enough to ensure that a (reasonable) date and
10999 time can be stored without roundoff error.
11001 If the current precision is greater than 12, date forms will keep
11002 additional digits in the seconds position.  For example, if the
11003 precision is 15, the seconds will keep three digits after the
11004 decimal point.  Decreasing the precision below 12 may cause the
11005 time part of a date form to become inaccurate.  This can also happen
11006 if astronomically high years are used, though this will not be an
11007 issue in everyday (or even everymillennium) use.  Note that date
11008 forms without times are stored as exact integers, so roundoff is
11009 never an issue for them.
11011 You can use the @kbd{v p} (@code{calc-pack}) and @kbd{v u}
11012 (@code{calc-unpack}) commands to get at the numerical representation
11013 of a date form.  @xref{Packing and Unpacking}.
11015 Date forms can go arbitrarily far into the future or past.  Negative
11016 year numbers represent years BC.  Calc uses a combination of the
11017 Gregorian and Julian calendars, following the history of Great
11018 Britain and the British colonies.  This is the same calendar that
11019 is used by the @code{cal} program in most Unix implementations.
11021 @cindex Julian calendar
11022 @cindex Gregorian calendar
11023 Some historical background:  The Julian calendar was created by
11024 Julius Caesar in the year 46 BC as an attempt to fix the gradual
11025 drift caused by the lack of leap years in the calendar used
11026 until that time.  The Julian calendar introduced an extra day in
11027 all years divisible by four.  After some initial confusion, the
11028 calendar was adopted around the year we call 8 AD.  Some centuries
11029 later it became apparent that the Julian year of 365.25 days was
11030 itself not quite right.  In 1582 Pope Gregory XIII introduced the
11031 Gregorian calendar, which added the new rule that years divisible
11032 by 100, but not by 400, were not to be considered leap years
11033 despite being divisible by four.  Many countries delayed adoption
11034 of the Gregorian calendar because of religious differences;
11035 in Britain it was put off until the year 1752, by which time
11036 the Julian calendar had fallen eleven days behind the true
11037 seasons.  So the switch to the Gregorian calendar in early
11038 September 1752 introduced a discontinuity:  The day after
11039 Sep 2, 1752 is Sep 14, 1752.  Calc follows this convention.
11040 To take another example, Russia waited until 1918 before
11041 adopting the new calendar, and thus needed to remove thirteen
11042 days (between Feb 1, 1918 and Feb 14, 1918).  This means that
11043 Calc's reckoning will be inconsistent with Russian history between
11044 1752 and 1918, and similarly for various other countries.
11046 Today's timekeepers introduce an occasional ``leap second'' as
11047 well, but Calc does not take these minor effects into account.
11048 (If it did, it would have to report a non-integer number of days
11049 between, say, @samp{<12:00am Mon Jan 1, 1900>} and
11050 @samp{<12:00am Sat Jan 1, 2000>}.)
11052 Calc uses the Julian calendar for all dates before the year 1752,
11053 including dates BC when the Julian calendar technically had not
11054 yet been invented.  Thus the claim that day number @mathit{-10000} is
11055 called ``August 16, 28 BC'' should be taken with a grain of salt.
11057 Please note that there is no ``year 0''; the day before
11058 @samp{<Sat Jan 1, +1>} is @samp{<Fri Dec 31, -1>}.  These are
11059 days 0 and @mathit{-1} respectively in Calc's internal numbering scheme.
11061 @cindex Julian day counting
11062 Another day counting system in common use is, confusingly, also called
11063 ``Julian.''  The Julian day number is the numbers of days since 
11064 12:00 noon (GMT) on Jan 1, 4713 BC, which in Calc's scheme (in GMT) 
11065 is @mathit{-1721423.5} (recall that Calc starts at midnight instead
11066 of noon).  Thus to convert a Calc date code obtained by unpacking a
11067 date form into a Julian day number, simply add 1721423.5 after
11068 compensating for the time zone difference.  The built-in @kbd{t J}
11069 command performs this conversion for you.
11071 The Julian day number is based on the Julian cycle, which was invented 
11072 in 1583 by Joseph Justus Scaliger.  Scaliger named it the Julian cycle
11073 since it is involves the Julian calendar, but some have suggested that
11074 Scaliger named it in honor of his father, Julius Caesar Scaliger.  The
11075 Julian cycle is based it on three other cycles: the indiction cycle,
11076 the Metonic cycle, and the solar cycle.  The indiction cycle is a 15
11077 year cycle originally used by the Romans for tax purposes but later
11078 used to date medieval documents.  The Metonic cycle is a 19 year
11079 cycle; 19 years is close to being a common multiple of a solar year
11080 and a lunar month, and so every 19 years the phases of the moon will
11081 occur on the same days of the year.  The solar cycle is a 28 year
11082 cycle; the Julian calendar repeats itself every 28 years.  The
11083 smallest time period which contains multiples of all three cycles is
11084 the least common multiple of 15 years, 19 years and 28 years, which
11085 (since they're pairwise relatively prime) is 
11086 @texline @math{15\times 19\times 28 = 7980} years.
11087 @infoline 15*19*28 = 7980 years.
11088 This is the length of a Julian cycle.  Working backwards, the previous
11089 year in which all three cycles began was 4713 BC, and so Scalinger
11090 chose that year as the beginning of a Julian cycle.  Since at the time
11091 there were no historical records from before 4713 BC, using this year
11092 as a starting point had the advantage of avoiding negative year
11093 numbers.  In 1849, the astronomer John Herschel (son of William
11094 Herschel) suggested using the number of days since the beginning of
11095 the Julian cycle as an astronomical dating system; this idea was taken
11096 up by other astronomers.  (At the time, noon was the start of the
11097 astronomical day.  Herschel originally suggested counting the days
11098 since Jan 1, 4713 BC at noon Alexandria time; this was later amended to
11099 noon GMT.)  Julian day numbering is largely used in astronomy.
11101 @cindex Unix time format
11102 The Unix operating system measures time as an integer number of
11103 seconds since midnight, Jan 1, 1970.  To convert a Calc date
11104 value into a Unix time stamp, first subtract 719164 (the code
11105 for @samp{<Jan 1, 1970>}), then multiply by 86400 (the number of
11106 seconds in a day) and press @kbd{R} to round to the nearest
11107 integer.  If you have a date form, you can simply subtract the
11108 day @samp{<Jan 1, 1970>} instead of unpacking and subtracting
11109 719164.  Likewise, divide by 86400 and add @samp{<Jan 1, 1970>}
11110 to convert from Unix time to a Calc date form.  (Note that
11111 Unix normally maintains the time in the GMT time zone; you may
11112 need to subtract five hours to get New York time, or eight hours
11113 for California time.  The same is usually true of Julian day
11114 counts.)  The built-in @kbd{t U} command performs these
11115 conversions.
11117 @node Modulo Forms, Error Forms, Date Forms, Data Types
11118 @section Modulo Forms
11120 @noindent
11121 @cindex Modulo forms
11122 A @dfn{modulo form} is a real number which is taken modulo (i.e., within
11123 an integer multiple of) some value @var{M}.  Arithmetic modulo @var{M}
11124 often arises in number theory.  Modulo forms are written
11125 `@var{a} @tfn{mod} @var{M}',
11126 where @var{a} and @var{M} are real numbers or HMS forms, and
11127 @texline @math{0 \le a < M}.
11128 @infoline @expr{0 <= a < @var{M}}.
11129 In many applications @expr{a} and @expr{M} will be
11130 integers but this is not required.
11132 @ignore
11133 @mindex M
11134 @end ignore
11135 @kindex M (modulo forms)
11136 @ignore
11137 @mindex mod
11138 @end ignore
11139 @tindex mod (operator)
11140 To create a modulo form during numeric entry, press the shift-@kbd{M}
11141 key to enter the word @samp{mod}.  As a special convenience, pressing
11142 shift-@kbd{M} a second time automatically enters the value of @expr{M}
11143 that was most recently used before.  During algebraic entry, either
11144 type @samp{mod} by hand or press @kbd{M-m} (that's @kbd{@key{META}-m}).
11145 Once again, pressing this a second time enters the current modulo.
11147 Modulo forms are not to be confused with the modulo operator @samp{%}.
11148 The expression @samp{27 % 10} means to compute 27 modulo 10 to produce
11149 the result 7.  Further computations treat this 7 as just a regular integer.
11150 The expression @samp{27 mod 10} produces the result @samp{7 mod 10};
11151 further computations with this value are again reduced modulo 10 so that
11152 the result always lies in the desired range.
11154 When two modulo forms with identical @expr{M}'s are added or multiplied,
11155 the Calculator simply adds or multiplies the values, then reduces modulo
11156 @expr{M}.  If one argument is a modulo form and the other a plain number,
11157 the plain number is treated like a compatible modulo form.  It is also
11158 possible to raise modulo forms to powers; the result is the value raised
11159 to the power, then reduced modulo @expr{M}.  (When all values involved
11160 are integers, this calculation is done much more efficiently than
11161 actually computing the power and then reducing.)
11163 @cindex Modulo division
11164 Two modulo forms `@var{a} @tfn{mod} @var{M}' and `@var{b} @tfn{mod} @var{M}'
11165 can be divided if @expr{a}, @expr{b}, and @expr{M} are all
11166 integers.  The result is the modulo form which, when multiplied by
11167 `@var{b} @tfn{mod} @var{M}', produces `@var{a} @tfn{mod} @var{M}'.  If
11168 there is no solution to this equation (which can happen only when
11169 @expr{M} is non-prime), or if any of the arguments are non-integers, the
11170 division is left in symbolic form.  Other operations, such as square
11171 roots, are not yet supported for modulo forms.  (Note that, although
11172 @w{`@tfn{(}@var{a} @tfn{mod} @var{M}@tfn{)^.5}'} will compute a ``modulo square root''
11173 in the sense of reducing 
11174 @texline @math{\sqrt a}
11175 @infoline @expr{sqrt(a)} 
11176 modulo @expr{M}, this is not a useful definition from the
11177 number-theoretical point of view.)
11179 It is possible to mix HMS forms and modulo forms.  For example, an
11180 HMS form modulo 24 could be used to manipulate clock times; an HMS
11181 form modulo 360 would be suitable for angles.  Making the modulo @expr{M}
11182 also be an HMS form eliminates troubles that would arise if the angular
11183 mode were inadvertently set to Radians, in which case
11184 @w{@samp{2@@ 0' 0" mod 24}} would be interpreted as two degrees modulo
11185 24 radians!
11187 Modulo forms cannot have variables or formulas for components.  If you
11188 enter the formula @samp{(x + 2) mod 5}, Calc propagates the modulus
11189 to each of the coefficients:  @samp{(1 mod 5) x + (2 mod 5)}.
11191 You can use @kbd{v p} and @kbd{%} to modify modulo forms.
11192 @xref{Packing and Unpacking}.  @xref{Basic Arithmetic}.
11194 @ignore
11195 @starindex
11196 @end ignore
11197 @tindex makemod
11198 The algebraic function @samp{makemod(a, m)} builds the modulo form
11199 @w{@samp{a mod m}}.
11201 @node Error Forms, Interval Forms, Modulo Forms, Data Types
11202 @section Error Forms
11204 @noindent
11205 @cindex Error forms
11206 @cindex Standard deviations
11207 An @dfn{error form} is a number with an associated standard
11208 deviation, as in @samp{2.3 +/- 0.12}.  The notation
11209 @texline `@var{x} @tfn{+/-} @math{\sigma}' 
11210 @infoline `@var{x} @tfn{+/-} sigma' 
11211 stands for an uncertain value which follows
11212 a normal or Gaussian distribution of mean @expr{x} and standard
11213 deviation or ``error'' 
11214 @texline @math{\sigma}.
11215 @infoline @expr{sigma}.
11216 Both the mean and the error can be either numbers or
11217 formulas.  Generally these are real numbers but the mean may also be
11218 complex.  If the error is negative or complex, it is changed to its
11219 absolute value.  An error form with zero error is converted to a
11220 regular number by the Calculator.
11222 All arithmetic and transcendental functions accept error forms as input.
11223 Operations on the mean-value part work just like operations on regular
11224 numbers.  The error part for any function @expr{f(x)} (such as 
11225 @texline @math{\sin x}
11226 @infoline @expr{sin(x)})
11227 is defined by the error of @expr{x} times the derivative of @expr{f}
11228 evaluated at the mean value of @expr{x}.  For a two-argument function
11229 @expr{f(x,y)} (such as addition) the error is the square root of the sum
11230 of the squares of the errors due to @expr{x} and @expr{y}.
11231 @tex
11232 $$ \eqalign{
11233   f(x \hbox{\code{ +/- }} \sigma)
11234     &= f(x) \hbox{\code{ +/- }} \sigma \left| {df(x) \over dx} \right| \cr
11235   f(x \hbox{\code{ +/- }} \sigma_x, y \hbox{\code{ +/- }} \sigma_y)
11236     &= f(x,y) \hbox{\code{ +/- }}
11237         \sqrt{\left(\sigma_x \left| {\partial f(x,y) \over \partial x}
11238                              \right| \right)^2
11239              +\left(\sigma_y \left| {\partial f(x,y) \over \partial y}
11240                              \right| \right)^2 } \cr
11241 } $$
11242 @end tex
11243 Note that this
11244 definition assumes the errors in @expr{x} and @expr{y} are uncorrelated.
11245 A side effect of this definition is that @samp{(2 +/- 1) * (2 +/- 1)}
11246 is not the same as @samp{(2 +/- 1)^2}; the former represents the product
11247 of two independent values which happen to have the same probability
11248 distributions, and the latter is the product of one random value with itself.
11249 The former will produce an answer with less error, since on the average
11250 the two independent errors can be expected to cancel out.
11252 Consult a good text on error analysis for a discussion of the proper use
11253 of standard deviations.  Actual errors often are neither Gaussian-distributed
11254 nor uncorrelated, and the above formulas are valid only when errors
11255 are small.  As an example, the error arising from
11256 @texline `@tfn{sin(}@var{x} @tfn{+/-} @math{\sigma}@tfn{)}' 
11257 @infoline `@tfn{sin(}@var{x} @tfn{+/-} @var{sigma}@tfn{)}' 
11258 is 
11259 @texline `@math{\sigma} @tfn{abs(cos(}@var{x}@tfn{))}'.  
11260 @infoline `@var{sigma} @tfn{abs(cos(}@var{x}@tfn{))}'.  
11261 When @expr{x} is close to zero,
11262 @texline @math{\cos x}
11263 @infoline @expr{cos(x)} 
11264 is close to one so the error in the sine is close to 
11265 @texline @math{\sigma};
11266 @infoline @expr{sigma};
11267 this makes sense, since 
11268 @texline @math{\sin x}
11269 @infoline @expr{sin(x)} 
11270 is approximately @expr{x} near zero, so a given error in @expr{x} will
11271 produce about the same error in the sine.  Likewise, near 90 degrees
11272 @texline @math{\cos x}
11273 @infoline @expr{cos(x)} 
11274 is nearly zero and so the computed error is
11275 small:  The sine curve is nearly flat in that region, so an error in @expr{x}
11276 has relatively little effect on the value of 
11277 @texline @math{\sin x}.
11278 @infoline @expr{sin(x)}.  
11279 However, consider @samp{sin(90 +/- 1000)}.  The cosine of 90 is zero, so
11280 Calc will report zero error!  We get an obviously wrong result because
11281 we have violated the small-error approximation underlying the error
11282 analysis.  If the error in @expr{x} had been small, the error in
11283 @texline @math{\sin x}
11284 @infoline @expr{sin(x)} 
11285 would indeed have been negligible.
11287 @ignore
11288 @mindex p
11289 @end ignore
11290 @kindex p (error forms)
11291 @tindex +/-
11292 To enter an error form during regular numeric entry, use the @kbd{p}
11293 (``plus-or-minus'') key to type the @samp{+/-} symbol.  (If you try actually
11294 typing @samp{+/-} the @kbd{+} key will be interpreted as the Calculator's
11295 @kbd{+} command!)  Within an algebraic formula, you can press @kbd{M-+} to
11296 type the @samp{+/-} symbol, or type it out by hand.
11298 Error forms and complex numbers can be mixed; the formulas shown above
11299 are used for complex numbers, too; note that if the error part evaluates
11300 to a complex number its absolute value (or the square root of the sum of
11301 the squares of the absolute values of the two error contributions) is
11302 used.  Mathematically, this corresponds to a radially symmetric Gaussian
11303 distribution of numbers on the complex plane.  However, note that Calc
11304 considers an error form with real components to represent a real number,
11305 not a complex distribution around a real mean.
11307 Error forms may also be composed of HMS forms.  For best results, both
11308 the mean and the error should be HMS forms if either one is.
11310 @ignore
11311 @starindex
11312 @end ignore
11313 @tindex sdev
11314 The algebraic function @samp{sdev(a, b)} builds the error form @samp{a +/- b}.
11316 @node Interval Forms, Incomplete Objects, Error Forms, Data Types
11317 @section Interval Forms
11319 @noindent
11320 @cindex Interval forms
11321 An @dfn{interval} is a subset of consecutive real numbers.  For example,
11322 the interval @samp{[2 ..@: 4]} represents all the numbers from 2 to 4,
11323 inclusive.  If you multiply it by the interval @samp{[0.5 ..@: 2]} you
11324 obtain @samp{[1 ..@: 8]}.  This calculation represents the fact that if
11325 you multiply some number in the range @samp{[2 ..@: 4]} by some other
11326 number in the range @samp{[0.5 ..@: 2]}, your result will lie in the range
11327 from 1 to 8.  Interval arithmetic is used to get a worst-case estimate
11328 of the possible range of values a computation will produce, given the
11329 set of possible values of the input.
11331 @ifnottex
11332 Calc supports several varieties of intervals, including @dfn{closed}
11333 intervals of the type shown above, @dfn{open} intervals such as
11334 @samp{(2 ..@: 4)}, which represents the range of numbers from 2 to 4
11335 @emph{exclusive}, and @dfn{semi-open} intervals in which one end
11336 uses a round parenthesis and the other a square bracket.  In mathematical
11337 terms,
11338 @samp{[2 ..@: 4]} means @expr{2 <= x <= 4}, whereas
11339 @samp{[2 ..@: 4)} represents @expr{2 <= x < 4},
11340 @samp{(2 ..@: 4]} represents @expr{2 < x <= 4}, and
11341 @samp{(2 ..@: 4)} represents @expr{2 < x < 4}.
11342 @end ifnottex
11343 @tex
11344 Calc supports several varieties of intervals, including \dfn{closed}
11345 intervals of the type shown above, \dfn{open} intervals such as
11346 \samp{(2 ..\: 4)}, which represents the range of numbers from 2 to 4
11347 \emph{exclusive}, and \dfn{semi-open} intervals in which one end
11348 uses a round parenthesis and the other a square bracket.  In mathematical
11349 terms,
11350 $$ \eqalign{
11351    [2 \hbox{\cite{..}} 4]  &\quad\hbox{means}\quad  2 \le x \le 4  \cr
11352    [2 \hbox{\cite{..}} 4)  &\quad\hbox{means}\quad  2 \le x  <  4  \cr
11353    (2 \hbox{\cite{..}} 4]  &\quad\hbox{means}\quad  2  <  x \le 4  \cr
11354    (2 \hbox{\cite{..}} 4)  &\quad\hbox{means}\quad  2  <  x  <  4  \cr
11355 } $$
11356 @end tex
11358 The lower and upper limits of an interval must be either real numbers
11359 (or HMS or date forms), or symbolic expressions which are assumed to be
11360 real-valued, or @samp{-inf} and @samp{inf}.  In general the lower limit
11361 must be less than the upper limit.  A closed interval containing only
11362 one value, @samp{[3 ..@: 3]}, is converted to a plain number (3)
11363 automatically.  An interval containing no values at all (such as
11364 @samp{[3 ..@: 2]} or @samp{[2 ..@: 2)}) can be represented but is not
11365 guaranteed to behave well when used in arithmetic.  Note that the
11366 interval @samp{[3 .. inf)} represents all real numbers greater than
11367 or equal to 3, and @samp{(-inf .. inf)} represents all real numbers.
11368 In fact, @samp{[-inf .. inf]} represents all real numbers including
11369 the real infinities.
11371 Intervals are entered in the notation shown here, either as algebraic
11372 formulas, or using incomplete forms.  (@xref{Incomplete Objects}.)
11373 In algebraic formulas, multiple periods in a row are collected from
11374 left to right, so that @samp{1...1e2} is interpreted as @samp{1.0 ..@: 1e2}
11375 rather than @samp{1 ..@: 0.1e2}.  Add spaces or zeros if you want to
11376 get the other interpretation.  If you omit the lower or upper limit,
11377 a default of @samp{-inf} or @samp{inf} (respectively) is furnished.
11379 Infinite mode also affects operations on intervals
11380 (@pxref{Infinities}).  Calc will always introduce an open infinity,
11381 as in @samp{1 / (0 .. 2] = [0.5 .. inf)}.  But closed infinities,
11382 @w{@samp{1 / [0 .. 2] = [0.5 .. inf]}}, arise only in Infinite mode;
11383 otherwise they are left unevaluated.  Note that the ``direction'' of
11384 a zero is not an issue in this case since the zero is always assumed
11385 to be continuous with the rest of the interval.  For intervals that
11386 contain zero inside them Calc is forced to give the result,
11387 @samp{1 / (-2 .. 2) = [-inf .. inf]}.
11389 While it may seem that intervals and error forms are similar, they are
11390 based on entirely different concepts of inexact quantities.  An error
11391 form 
11392 @texline `@var{x} @tfn{+/-} @math{\sigma}' 
11393 @infoline `@var{x} @tfn{+/-} @var{sigma}' 
11394 means a variable is random, and its value could
11395 be anything but is ``probably'' within one 
11396 @texline @math{\sigma} 
11397 @infoline @var{sigma} 
11398 of the mean value @expr{x}. An interval 
11399 `@tfn{[}@var{a} @tfn{..@:} @var{b}@tfn{]}' means a
11400 variable's value is unknown, but guaranteed to lie in the specified
11401 range.  Error forms are statistical or ``average case'' approximations;
11402 interval arithmetic tends to produce ``worst case'' bounds on an
11403 answer.
11405 Intervals may not contain complex numbers, but they may contain
11406 HMS forms or date forms.
11408 @xref{Set Operations}, for commands that interpret interval forms
11409 as subsets of the set of real numbers.
11411 @ignore
11412 @starindex
11413 @end ignore
11414 @tindex intv
11415 The algebraic function @samp{intv(n, a, b)} builds an interval form
11416 from @samp{a} to @samp{b}; @samp{n} is an integer code which must
11417 be 0 for @samp{(..)}, 1 for @samp{(..]}, 2 for @samp{[..)}, or
11418 3 for @samp{[..]}.
11420 Please note that in fully rigorous interval arithmetic, care would be
11421 taken to make sure that the computation of the lower bound rounds toward
11422 minus infinity, while upper bound computations round toward plus
11423 infinity.  Calc's arithmetic always uses a round-to-nearest mode,
11424 which means that roundoff errors could creep into an interval
11425 calculation to produce intervals slightly smaller than they ought to
11426 be.  For example, entering @samp{[1..2]} and pressing @kbd{Q 2 ^}
11427 should yield the interval @samp{[1..2]} again, but in fact it yields the
11428 (slightly too small) interval @samp{[1..1.9999999]} due to roundoff
11429 error.
11431 @node Incomplete Objects, Variables, Interval Forms, Data Types
11432 @section Incomplete Objects
11434 @noindent
11435 @ignore
11436 @mindex [ ]
11437 @end ignore
11438 @kindex [
11439 @ignore
11440 @mindex ( )
11441 @end ignore
11442 @kindex (
11443 @kindex ,
11444 @ignore
11445 @mindex @null
11446 @end ignore
11447 @kindex ]
11448 @ignore
11449 @mindex @null
11450 @end ignore
11451 @kindex )
11452 @cindex Incomplete vectors
11453 @cindex Incomplete complex numbers
11454 @cindex Incomplete interval forms
11455 When @kbd{(} or @kbd{[} is typed to begin entering a complex number or
11456 vector, respectively, the effect is to push an @dfn{incomplete} complex
11457 number or vector onto the stack.  The @kbd{,} key adds the value(s) at
11458 the top of the stack onto the current incomplete object.  The @kbd{)}
11459 and @kbd{]} keys ``close'' the incomplete object after adding any values
11460 on the top of the stack in front of the incomplete object.
11462 As a result, the sequence of keystrokes @kbd{[ 2 , 3 @key{RET} 2 * , 9 ]}
11463 pushes the vector @samp{[2, 6, 9]} onto the stack.  Likewise, @kbd{( 1 , 2 Q )}
11464 pushes the complex number @samp{(1, 1.414)} (approximately).
11466 If several values lie on the stack in front of the incomplete object,
11467 all are collected and appended to the object.  Thus the @kbd{,} key
11468 is redundant:  @kbd{[ 2 @key{RET} 3 @key{RET} 2 * 9 ]}.  Some people
11469 prefer the equivalent @key{SPC} key to @key{RET}.
11471 As a special case, typing @kbd{,} immediately after @kbd{(}, @kbd{[}, or
11472 @kbd{,} adds a zero or duplicates the preceding value in the list being
11473 formed.  Typing @key{DEL} during incomplete entry removes the last item
11474 from the list.
11476 @kindex ;
11477 The @kbd{;} key is used in the same way as @kbd{,} to create polar complex
11478 numbers:  @kbd{( 1 ; 2 )}.  When entering a vector, @kbd{;} is useful for
11479 creating a matrix.  In particular, @kbd{[ [ 1 , 2 ; 3 , 4 ; 5 , 6 ] ]} is
11480 equivalent to @kbd{[ [ 1 , 2 ] , [ 3 , 4 ] , [ 5 , 6 ] ]}.
11482 @kindex ..
11483 @pindex calc-dots
11484 Incomplete entry is also used to enter intervals.  For example,
11485 @kbd{[ 2 ..@: 4 )} enters a semi-open interval.  Note that when you type
11486 the first period, it will be interpreted as a decimal point, but when
11487 you type a second period immediately afterward, it is re-interpreted as
11488 part of the interval symbol.  Typing @kbd{..} corresponds to executing
11489 the @code{calc-dots} command.
11491 If you find incomplete entry distracting, you may wish to enter vectors
11492 and complex numbers as algebraic formulas by pressing the apostrophe key.
11494 @node Variables, Formulas, Incomplete Objects, Data Types
11495 @section Variables
11497 @noindent
11498 @cindex Variables, in formulas
11499 A @dfn{variable} is somewhere between a storage register on a conventional
11500 calculator, and a variable in a programming language.  (In fact, a Calc
11501 variable is really just an Emacs Lisp variable that contains a Calc number
11502 or formula.)  A variable's name is normally composed of letters and digits.
11503 Calc also allows apostrophes and @code{#} signs in variable names.
11504 (The Calc variable @code{foo} corresponds to the Emacs Lisp variable
11505 @code{var-foo}, but unless you access the variable from within Emacs
11506 Lisp, you don't need to worry about it.  Variable names in algebraic
11507 formulas implicitly have @samp{var-} prefixed to their names.  The
11508 @samp{#} character in variable names used in algebraic formulas
11509 corresponds to a dash @samp{-} in the Lisp variable name.  If the name
11510 contains any dashes, the prefix @samp{var-} is @emph{not} automatically
11511 added.  Thus the two formulas @samp{foo + 1} and @samp{var#foo + 1} both
11512 refer to the same variable.)
11514 In a command that takes a variable name, you can either type the full
11515 name of a variable, or type a single digit to use one of the special
11516 convenience variables @code{q0} through @code{q9}.  For example,
11517 @kbd{3 s s 2} stores the number 3 in variable @code{q2}, and
11518 @w{@kbd{3 s s foo @key{RET}}} stores that number in variable
11519 @code{foo}.
11521 To push a variable itself (as opposed to the variable's value) on the
11522 stack, enter its name as an algebraic expression using the apostrophe
11523 (@key{'}) key.
11525 @kindex =
11526 @pindex calc-evaluate
11527 @cindex Evaluation of variables in a formula
11528 @cindex Variables, evaluation
11529 @cindex Formulas, evaluation
11530 The @kbd{=} (@code{calc-evaluate}) key ``evaluates'' a formula by
11531 replacing all variables in the formula which have been given values by a
11532 @code{calc-store} or @code{calc-let} command by their stored values.
11533 Other variables are left alone.  Thus a variable that has not been
11534 stored acts like an abstract variable in algebra; a variable that has
11535 been stored acts more like a register in a traditional calculator.
11536 With a positive numeric prefix argument, @kbd{=} evaluates the top
11537 @var{n} stack entries; with a negative argument, @kbd{=} evaluates
11538 the @var{n}th stack entry.
11540 @cindex @code{e} variable
11541 @cindex @code{pi} variable
11542 @cindex @code{i} variable
11543 @cindex @code{phi} variable
11544 @cindex @code{gamma} variable
11545 @vindex e
11546 @vindex pi
11547 @vindex i
11548 @vindex phi
11549 @vindex gamma
11550 A few variables are called @dfn{special constants}.  Their names are
11551 @samp{e}, @samp{pi}, @samp{i}, @samp{phi}, and @samp{gamma}.
11552 (@xref{Scientific Functions}.)  When they are evaluated with @kbd{=},
11553 their values are calculated if necessary according to the current precision
11554 or complex polar mode.  If you wish to use these symbols for other purposes,
11555 simply undefine or redefine them using @code{calc-store}.
11557 The variables @samp{inf}, @samp{uinf}, and @samp{nan} stand for
11558 infinite or indeterminate values.  It's best not to use them as
11559 regular variables, since Calc uses special algebraic rules when
11560 it manipulates them.  Calc displays a warning message if you store
11561 a value into any of these special variables.
11563 @xref{Store and Recall}, for a discussion of commands dealing with variables.
11565 @node Formulas,  , Variables, Data Types
11566 @section Formulas
11568 @noindent
11569 @cindex Formulas
11570 @cindex Expressions
11571 @cindex Operators in formulas
11572 @cindex Precedence of operators
11573 When you press the apostrophe key you may enter any expression or formula
11574 in algebraic form.  (Calc uses the terms ``expression'' and ``formula''
11575 interchangeably.)  An expression is built up of numbers, variable names,
11576 and function calls, combined with various arithmetic operators.
11577 Parentheses may
11578 be used to indicate grouping.  Spaces are ignored within formulas, except
11579 that spaces are not permitted within variable names or numbers.
11580 Arithmetic operators, in order from highest to lowest precedence, and
11581 with their equivalent function names, are:
11583 @samp{_} [@code{subscr}] (subscripts);
11585 postfix @samp{%} [@code{percent}] (as in @samp{25% = 0.25});
11587 prefix @samp{!} [@code{lnot}] (logical ``not,'' as in @samp{!x});
11589 @samp{+/-} [@code{sdev}] (the standard deviation symbol) and
11590 @samp{mod} [@code{makemod}] (the symbol for modulo forms);
11592 postfix @samp{!} [@code{fact}] (factorial, as in @samp{n!})
11593 and postfix @samp{!!} [@code{dfact}] (double factorial);
11595 @samp{^} [@code{pow}] (raised-to-the-power-of);
11597 prefix @samp{+} and @samp{-} [@code{neg}] (as in @samp{-x});
11599 @samp{*} [@code{mul}];
11601 @samp{/} [@code{div}], @samp{%} [@code{mod}] (modulo), and
11602 @samp{\} [@code{idiv}] (integer division);
11604 infix @samp{+} [@code{add}] and @samp{-} [@code{sub}] (as in @samp{x-y});
11606 @samp{|} [@code{vconcat}] (vector concatenation);
11608 relations @samp{=} [@code{eq}], @samp{!=} [@code{neq}], @samp{<} [@code{lt}],
11609 @samp{>} [@code{gt}], @samp{<=} [@code{leq}], and @samp{>=} [@code{geq}];
11611 @samp{&&} [@code{land}] (logical ``and'');
11613 @samp{||} [@code{lor}] (logical ``or'');
11615 the C-style ``if'' operator @samp{a?b:c} [@code{if}];
11617 @samp{!!!} [@code{pnot}] (rewrite pattern ``not'');
11619 @samp{&&&} [@code{pand}] (rewrite pattern ``and'');
11621 @samp{|||} [@code{por}] (rewrite pattern ``or'');
11623 @samp{:=} [@code{assign}] (for assignments and rewrite rules);
11625 @samp{::} [@code{condition}] (rewrite pattern condition);
11627 @samp{=>} [@code{evalto}].
11629 Note that, unlike in usual computer notation, multiplication binds more
11630 strongly than division:  @samp{a*b/c*d} is equivalent to 
11631 @texline @math{a b \over c d}.
11632 @infoline @expr{(a*b)/(c*d)}.
11634 @cindex Multiplication, implicit
11635 @cindex Implicit multiplication
11636 The multiplication sign @samp{*} may be omitted in many cases.  In particular,
11637 if the righthand side is a number, variable name, or parenthesized
11638 expression, the @samp{*} may be omitted.  Implicit multiplication has the
11639 same precedence as the explicit @samp{*} operator.  The one exception to
11640 the rule is that a variable name followed by a parenthesized expression,
11641 as in @samp{f(x)},
11642 is interpreted as a function call, not an implicit @samp{*}.  In many
11643 cases you must use a space if you omit the @samp{*}:  @samp{2a} is the
11644 same as @samp{2*a}, and @samp{a b} is the same as @samp{a*b}, but @samp{ab}
11645 is a variable called @code{ab}, @emph{not} the product of @samp{a} and
11646 @samp{b}!  Also note that @samp{f (x)} is still a function call.
11648 @cindex Implicit comma in vectors
11649 The rules are slightly different for vectors written with square brackets.
11650 In vectors, the space character is interpreted (like the comma) as a
11651 separator of elements of the vector.  Thus @w{@samp{[ 2a b+c d ]}} is
11652 equivalent to @samp{[2*a, b+c, d]}, whereas @samp{2a b+c d} is equivalent
11653 to @samp{2*a*b + c*d}.
11654 Note that spaces around the brackets, and around explicit commas, are
11655 ignored.  To force spaces to be interpreted as multiplication you can
11656 enclose a formula in parentheses as in @samp{[(a b) 2(c d)]}, which is
11657 interpreted as @samp{[a*b, 2*c*d]}.  An implicit comma is also inserted
11658 between @samp{][}, as in the matrix @samp{[[1 2][3 4]]}.
11660 Vectors that contain commas (not embedded within nested parentheses or
11661 brackets) do not treat spaces specially:  @samp{[a b, 2 c d]} is a vector
11662 of two elements.  Also, if it would be an error to treat spaces as
11663 separators, but not otherwise, then Calc will ignore spaces:
11664 @w{@samp{[a - b]}} is a vector of one element, but @w{@samp{[a -b]}} is
11665 a vector of two elements.  Finally, vectors entered with curly braces
11666 instead of square brackets do not give spaces any special treatment.
11667 When Calc displays a vector that does not contain any commas, it will
11668 insert parentheses if necessary to make the meaning clear:
11669 @w{@samp{[(a b)]}}.
11671 The expression @samp{5%-2} is ambiguous; is this five-percent minus two,
11672 or five modulo minus-two?  Calc always interprets the leftmost symbol as
11673 an infix operator preferentially (modulo, in this case), so you would
11674 need to write @samp{(5%)-2} to get the former interpretation.
11676 @cindex Function call notation
11677 A function call is, e.g., @samp{sin(1+x)}.  (The Calc algebraic function
11678 @code{foo} corresponds to the Emacs Lisp function @code{calcFunc-foo},
11679 but unless you access the function from within Emacs Lisp, you don't
11680 need to worry about it.)  Most mathematical Calculator commands like
11681 @code{calc-sin} have function equivalents like @code{sin}.
11682 If no Lisp function is defined for a function called by a formula, the
11683 call is left as it is during algebraic manipulation: @samp{f(x+y)} is
11684 left alone.  Beware that many innocent-looking short names like @code{in}
11685 and @code{re} have predefined meanings which could surprise you; however,
11686 single letters or single letters followed by digits are always safe to
11687 use for your own function names.  @xref{Function Index}.
11689 In the documentation for particular commands, the notation @kbd{H S}
11690 (@code{calc-sinh}) [@code{sinh}] means that the key sequence @kbd{H S}, the
11691 command @kbd{M-x calc-sinh}, and the algebraic function @code{sinh(x)} all
11692 represent the same operation.
11694 Commands that interpret (``parse'') text as algebraic formulas include
11695 algebraic entry (@kbd{'}), editing commands like @kbd{`} which parse
11696 the contents of the editing buffer when you finish, the @kbd{C-x * g}
11697 and @w{@kbd{C-x * r}} commands, the @kbd{C-y} command, the X window system
11698 ``paste'' mouse operation, and Embedded mode.  All of these operations
11699 use the same rules for parsing formulas; in particular, language modes
11700 (@pxref{Language Modes}) affect them all in the same way.
11702 When you read a large amount of text into the Calculator (say a vector
11703 which represents a big set of rewrite rules; @pxref{Rewrite Rules}),
11704 you may wish to include comments in the text.  Calc's formula parser
11705 ignores the symbol @samp{%%} and anything following it on a line:
11707 @example
11708 [ a + b,   %% the sum of "a" and "b"
11709   c + d,
11710   %% last line is coming up:
11711   e + f ]
11712 @end example
11714 @noindent
11715 This is parsed exactly the same as @samp{[ a + b, c + d, e + f ]}.
11717 @xref{Syntax Tables}, for a way to create your own operators and other
11718 input notations.  @xref{Compositions}, for a way to create new display
11719 formats.
11721 @xref{Algebra}, for commands for manipulating formulas symbolically.
11723 @node Stack and Trail, Mode Settings, Data Types, Top
11724 @chapter Stack and Trail Commands
11726 @noindent
11727 This chapter describes the Calc commands for manipulating objects on the
11728 stack and in the trail buffer.  (These commands operate on objects of any
11729 type, such as numbers, vectors, formulas, and incomplete objects.)
11731 @menu
11732 * Stack Manipulation::
11733 * Editing Stack Entries::
11734 * Trail Commands::
11735 * Keep Arguments::
11736 @end menu
11738 @node Stack Manipulation, Editing Stack Entries, Stack and Trail, Stack and Trail
11739 @section Stack Manipulation Commands
11741 @noindent
11742 @kindex @key{RET}
11743 @kindex @key{SPC}
11744 @pindex calc-enter
11745 @cindex Duplicating stack entries
11746 To duplicate the top object on the stack, press @key{RET} or @key{SPC}
11747 (two equivalent keys for the @code{calc-enter} command).
11748 Given a positive numeric prefix argument, these commands duplicate
11749 several elements at the top of the stack.
11750 Given a negative argument,
11751 these commands duplicate the specified element of the stack.
11752 Given an argument of zero, they duplicate the entire stack.
11753 For example, with @samp{10 20 30} on the stack,
11754 @key{RET} creates @samp{10 20 30 30},
11755 @kbd{C-u 2 @key{RET}} creates @samp{10 20 30 20 30},
11756 @kbd{C-u - 2 @key{RET}} creates @samp{10 20 30 20}, and
11757 @kbd{C-u 0 @key{RET}} creates @samp{10 20 30 10 20 30}.
11759 @kindex @key{LFD}
11760 @pindex calc-over
11761 The @key{LFD} (@code{calc-over}) command (on a key marked Line-Feed if you
11762 have it, else on @kbd{C-j}) is like @code{calc-enter}
11763 except that the sign of the numeric prefix argument is interpreted
11764 oppositely.  Also, with no prefix argument the default argument is 2.
11765 Thus with @samp{10 20 30} on the stack, @key{LFD} and @kbd{C-u 2 @key{LFD}}
11766 are both equivalent to @kbd{C-u - 2 @key{RET}}, producing
11767 @samp{10 20 30 20}.
11769 @kindex @key{DEL}
11770 @kindex C-d
11771 @pindex calc-pop
11772 @cindex Removing stack entries
11773 @cindex Deleting stack entries
11774 To remove the top element from the stack, press @key{DEL} (@code{calc-pop}).
11775 The @kbd{C-d} key is a synonym for @key{DEL}.
11776 (If the top element is an incomplete object with at least one element, the
11777 last element is removed from it.)  Given a positive numeric prefix argument,
11778 several elements are removed.  Given a negative argument, the specified
11779 element of the stack is deleted.  Given an argument of zero, the entire
11780 stack is emptied.
11781 For example, with @samp{10 20 30} on the stack,
11782 @key{DEL} leaves @samp{10 20},
11783 @kbd{C-u 2 @key{DEL}} leaves @samp{10},
11784 @kbd{C-u - 2 @key{DEL}} leaves @samp{10 30}, and
11785 @kbd{C-u 0 @key{DEL}} leaves an empty stack.
11787 @kindex M-@key{DEL}
11788 @pindex calc-pop-above
11789 The @kbd{M-@key{DEL}} (@code{calc-pop-above}) command is to @key{DEL} what
11790 @key{LFD} is to @key{RET}:  It interprets the sign of the numeric
11791 prefix argument in the opposite way, and the default argument is 2.
11792 Thus @kbd{M-@key{DEL}} by itself removes the second-from-top stack element,
11793 leaving the first, third, fourth, and so on; @kbd{M-3 M-@key{DEL}} deletes
11794 the third stack element.
11796 @kindex @key{TAB}
11797 @pindex calc-roll-down
11798 To exchange the top two elements of the stack, press @key{TAB}
11799 (@code{calc-roll-down}).  Given a positive numeric prefix argument, the
11800 specified number of elements at the top of the stack are rotated downward.
11801 Given a negative argument, the entire stack is rotated downward the specified
11802 number of times.  Given an argument of zero, the entire stack is reversed
11803 top-for-bottom.
11804 For example, with @samp{10 20 30 40 50} on the stack,
11805 @key{TAB} creates @samp{10 20 30 50 40},
11806 @kbd{C-u 3 @key{TAB}} creates @samp{10 20 50 30 40},
11807 @kbd{C-u - 2 @key{TAB}} creates @samp{40 50 10 20 30}, and
11808 @kbd{C-u 0 @key{TAB}} creates @samp{50 40 30 20 10}.
11810 @kindex M-@key{TAB}
11811 @pindex calc-roll-up
11812 The command @kbd{M-@key{TAB}} (@code{calc-roll-up}) is analogous to @key{TAB}
11813 except that it rotates upward instead of downward.  Also, the default
11814 with no prefix argument is to rotate the top 3 elements.
11815 For example, with @samp{10 20 30 40 50} on the stack,
11816 @kbd{M-@key{TAB}} creates @samp{10 20 40 50 30},
11817 @kbd{C-u 4 M-@key{TAB}} creates @samp{10 30 40 50 20},
11818 @kbd{C-u - 2 M-@key{TAB}} creates @samp{30 40 50 10 20}, and
11819 @kbd{C-u 0 M-@key{TAB}} creates @samp{50 40 30 20 10}.
11821 A good way to view the operation of @key{TAB} and @kbd{M-@key{TAB}} is in
11822 terms of moving a particular element to a new position in the stack.
11823 With a positive argument @var{n}, @key{TAB} moves the top stack
11824 element down to level @var{n}, making room for it by pulling all the
11825 intervening stack elements toward the top.  @kbd{M-@key{TAB}} moves the
11826 element at level @var{n} up to the top.  (Compare with @key{LFD},
11827 which copies instead of moving the element in level @var{n}.)
11829 With a negative argument @mathit{-@var{n}}, @key{TAB} rotates the stack
11830 to move the object in level @var{n} to the deepest place in the
11831 stack, and the object in level @mathit{@var{n}+1} to the top.  @kbd{M-@key{TAB}}
11832 rotates the deepest stack element to be in level @mathit{n}, also
11833 putting the top stack element in level @mathit{@var{n}+1}.
11835 @xref{Selecting Subformulas}, for a way to apply these commands to
11836 any portion of a vector or formula on the stack.
11838 @node Editing Stack Entries, Trail Commands, Stack Manipulation, Stack and Trail
11839 @section Editing Stack Entries
11841 @noindent
11842 @kindex `
11843 @pindex calc-edit
11844 @pindex calc-edit-finish
11845 @cindex Editing the stack with Emacs
11846 The backquote, @kbd{`} (@code{calc-edit}) command creates a temporary
11847 buffer (@samp{*Calc Edit*}) for editing the top-of-stack value using
11848 regular Emacs commands.  With a numeric prefix argument, it edits the
11849 specified number of stack entries at once.  (An argument of zero edits
11850 the entire stack; a negative argument edits one specific stack entry.)
11852 When you are done editing, press @kbd{C-c C-c} to finish and return
11853 to Calc.  The @key{RET} and @key{LFD} keys also work to finish most
11854 sorts of editing, though in some cases Calc leaves @key{RET} with its
11855 usual meaning (``insert a newline'') if it's a situation where you
11856 might want to insert new lines into the editing buffer.
11858 When you finish editing, the Calculator parses the lines of text in
11859 the @samp{*Calc Edit*} buffer as numbers or formulas, replaces the
11860 original stack elements in the original buffer with these new values,
11861 then kills the @samp{*Calc Edit*} buffer.  The original Calculator buffer
11862 continues to exist during editing, but for best results you should be
11863 careful not to change it until you have finished the edit.  You can
11864 also cancel the edit by killing the buffer with @kbd{C-x k}.
11866 The formula is normally reevaluated as it is put onto the stack.
11867 For example, editing @samp{a + 2} to @samp{3 + 2} and pressing
11868 @kbd{C-c C-c} will push 5 on the stack.  If you use @key{LFD} to
11869 finish, Calc will put the result on the stack without evaluating it.
11871 If you give a prefix argument to @kbd{C-c C-c},
11872 Calc will not kill the @samp{*Calc Edit*} buffer.  You can switch
11873 back to that buffer and continue editing if you wish.  However, you
11874 should understand that if you initiated the edit with @kbd{`}, the
11875 @kbd{C-c C-c} operation will be programmed to replace the top of the
11876 stack with the new edited value, and it will do this even if you have
11877 rearranged the stack in the meanwhile.  This is not so much of a problem
11878 with other editing commands, though, such as @kbd{s e}
11879 (@code{calc-edit-variable}; @pxref{Operations on Variables}).
11881 If the @code{calc-edit} command involves more than one stack entry,
11882 each line of the @samp{*Calc Edit*} buffer is interpreted as a
11883 separate formula.  Otherwise, the entire buffer is interpreted as
11884 one formula, with line breaks ignored.  (You can use @kbd{C-o} or
11885 @kbd{C-q C-j} to insert a newline in the buffer without pressing @key{RET}.)
11887 The @kbd{`} key also works during numeric or algebraic entry.  The
11888 text entered so far is moved to the @code{*Calc Edit*} buffer for
11889 more extensive editing than is convenient in the minibuffer.
11891 @node Trail Commands, Keep Arguments, Editing Stack Entries, Stack and Trail
11892 @section Trail Commands
11894 @noindent
11895 @cindex Trail buffer
11896 The commands for manipulating the Calc Trail buffer are two-key sequences
11897 beginning with the @kbd{t} prefix.
11899 @kindex t d
11900 @pindex calc-trail-display
11901 The @kbd{t d} (@code{calc-trail-display}) command turns display of the
11902 trail on and off.  Normally the trail display is toggled on if it was off,
11903 off if it was on.  With a numeric prefix of zero, this command always
11904 turns the trail off; with a prefix of one, it always turns the trail on.
11905 The other trail-manipulation commands described here automatically turn
11906 the trail on.  Note that when the trail is off values are still recorded
11907 there; they are simply not displayed.  To set Emacs to turn the trail
11908 off by default, type @kbd{t d} and then save the mode settings with
11909 @kbd{m m} (@code{calc-save-modes}).
11911 @kindex t i
11912 @pindex calc-trail-in
11913 @kindex t o
11914 @pindex calc-trail-out
11915 The @kbd{t i} (@code{calc-trail-in}) and @kbd{t o}
11916 (@code{calc-trail-out}) commands switch the cursor into and out of the
11917 Calc Trail window.  In practice they are rarely used, since the commands
11918 shown below are a more convenient way to move around in the
11919 trail, and they work ``by remote control'' when the cursor is still
11920 in the Calculator window.
11922 @cindex Trail pointer
11923 There is a @dfn{trail pointer} which selects some entry of the trail at
11924 any given time.  The trail pointer looks like a @samp{>} symbol right
11925 before the selected number.  The following commands operate on the
11926 trail pointer in various ways.
11928 @kindex t y
11929 @pindex calc-trail-yank
11930 @cindex Retrieving previous results
11931 The @kbd{t y} (@code{calc-trail-yank}) command reads the selected value in
11932 the trail and pushes it onto the Calculator stack.  It allows you to
11933 re-use any previously computed value without retyping.  With a numeric
11934 prefix argument @var{n}, it yanks the value @var{n} lines above the current
11935 trail pointer.
11937 @kindex t <
11938 @pindex calc-trail-scroll-left
11939 @kindex t >
11940 @pindex calc-trail-scroll-right
11941 The @kbd{t <} (@code{calc-trail-scroll-left}) and @kbd{t >}
11942 (@code{calc-trail-scroll-right}) commands horizontally scroll the trail
11943 window left or right by one half of its width.
11945 @kindex t n
11946 @pindex calc-trail-next
11947 @kindex t p
11948 @pindex calc-trail-previous
11949 @kindex t f
11950 @pindex calc-trail-forward
11951 @kindex t b
11952 @pindex calc-trail-backward
11953 The @kbd{t n} (@code{calc-trail-next}) and @kbd{t p}
11954 (@code{calc-trail-previous)} commands move the trail pointer down or up
11955 one line.  The @kbd{t f} (@code{calc-trail-forward}) and @kbd{t b}
11956 (@code{calc-trail-backward}) commands move the trail pointer down or up
11957 one screenful at a time.  All of these commands accept numeric prefix
11958 arguments to move several lines or screenfuls at a time.
11960 @kindex t [
11961 @pindex calc-trail-first
11962 @kindex t ]
11963 @pindex calc-trail-last
11964 @kindex t h
11965 @pindex calc-trail-here
11966 The @kbd{t [} (@code{calc-trail-first}) and @kbd{t ]}
11967 (@code{calc-trail-last}) commands move the trail pointer to the first or
11968 last line of the trail.  The @kbd{t h} (@code{calc-trail-here}) command
11969 moves the trail pointer to the cursor position; unlike the other trail
11970 commands, @kbd{t h} works only when Calc Trail is the selected window.
11972 @kindex t s
11973 @pindex calc-trail-isearch-forward
11974 @kindex t r
11975 @pindex calc-trail-isearch-backward
11976 @ifnottex
11977 The @kbd{t s} (@code{calc-trail-isearch-forward}) and @kbd{t r}
11978 (@code{calc-trail-isearch-backward}) commands perform an incremental
11979 search forward or backward through the trail.  You can press @key{RET}
11980 to terminate the search; the trail pointer moves to the current line.
11981 If you cancel the search with @kbd{C-g}, the trail pointer stays where
11982 it was when the search began.
11983 @end ifnottex
11984 @tex
11985 The @kbd{t s} (@code{calc-trail-isearch-forward}) and @kbd{t r}
11986 (@code{calc-trail-isearch-backward}) com\-mands perform an incremental
11987 search forward or backward through the trail.  You can press @key{RET}
11988 to terminate the search; the trail pointer moves to the current line.
11989 If you cancel the search with @kbd{C-g}, the trail pointer stays where
11990 it was when the search began.
11991 @end tex
11993 @kindex t m
11994 @pindex calc-trail-marker
11995 The @kbd{t m} (@code{calc-trail-marker}) command allows you to enter a
11996 line of text of your own choosing into the trail.  The text is inserted
11997 after the line containing the trail pointer; this usually means it is
11998 added to the end of the trail.  Trail markers are useful mainly as the
11999 targets for later incremental searches in the trail.
12001 @kindex t k
12002 @pindex calc-trail-kill
12003 The @kbd{t k} (@code{calc-trail-kill}) command removes the selected line
12004 from the trail.  The line is saved in the Emacs kill ring suitable for
12005 yanking into another buffer, but it is not easy to yank the text back
12006 into the trail buffer.  With a numeric prefix argument, this command
12007 kills the @var{n} lines below or above the selected one.
12009 The @kbd{t .} (@code{calc-full-trail-vectors}) command is described
12010 elsewhere; @pxref{Vector and Matrix Formats}.
12012 @node Keep Arguments,  , Trail Commands, Stack and Trail
12013 @section Keep Arguments
12015 @noindent
12016 @kindex K
12017 @pindex calc-keep-args
12018 The @kbd{K} (@code{calc-keep-args}) command acts like a prefix for
12019 the following command.  It prevents that command from removing its
12020 arguments from the stack.  For example, after @kbd{2 @key{RET} 3 +},
12021 the stack contains the sole number 5, but after @kbd{2 @key{RET} 3 K +},
12022 the stack contains the arguments and the result: @samp{2 3 5}.
12024 With the exception of keyboard macros, this works for all commands that
12025 take arguments off the stack. (To avoid potentially unpleasant behavior,
12026 a @kbd{K} prefix before a keyboard macro will be ignored.  A @kbd{K}
12027 prefix called @emph{within} the keyboard macro will still take effect.)  
12028 As another example, @kbd{K a s} simplifies a formula, pushing the
12029 simplified version of the formula onto the stack after the original
12030 formula (rather than replacing the original formula).  Note that you
12031 could get the same effect by typing @kbd{@key{RET} a s}, copying the
12032 formula and then simplifying the copy. One difference is that for a very
12033 large formula the time taken to format the intermediate copy in
12034 @kbd{@key{RET} a s} could be noticeable; @kbd{K a s} would avoid this
12035 extra work. 
12037 Even stack manipulation commands are affected.  @key{TAB} works by
12038 popping two values and pushing them back in the opposite order,
12039 so @kbd{2 @key{RET} 3 K @key{TAB}} produces @samp{2 3 3 2}.
12041 A few Calc commands provide other ways of doing the same thing.
12042 For example, @kbd{' sin($)} replaces the number on the stack with
12043 its sine using algebraic entry; to push the sine and keep the
12044 original argument you could use either @kbd{' sin($1)} or
12045 @kbd{K ' sin($)}.  @xref{Algebraic Entry}.  Also, the @kbd{s s}
12046 command is effectively the same as @kbd{K s t}.  @xref{Storing Variables}.
12048 If you execute a command and then decide you really wanted to keep
12049 the argument, you can press @kbd{M-@key{RET}} (@code{calc-last-args}).
12050 This command pushes the last arguments that were popped by any command
12051 onto the stack.  Note that the order of things on the stack will be
12052 different than with @kbd{K}:  @kbd{2 @key{RET} 3 + M-@key{RET}} leaves
12053 @samp{5 2 3} on the stack instead of @samp{2 3 5}.  @xref{Undo}.
12055 @node Mode Settings, Arithmetic, Stack and Trail, Top
12056 @chapter Mode Settings
12058 @noindent
12059 This chapter describes commands that set modes in the Calculator.
12060 They do not affect the contents of the stack, although they may change
12061 the @emph{appearance} or @emph{interpretation} of the stack's contents.
12063 @menu
12064 * General Mode Commands::
12065 * Precision::
12066 * Inverse and Hyperbolic::
12067 * Calculation Modes::
12068 * Simplification Modes::
12069 * Declarations::
12070 * Display Modes::
12071 * Language Modes::
12072 * Modes Variable::
12073 * Calc Mode Line::
12074 @end menu
12076 @node General Mode Commands, Precision, Mode Settings, Mode Settings
12077 @section General Mode Commands
12079 @noindent
12080 @kindex m m
12081 @pindex calc-save-modes
12082 @cindex Continuous memory
12083 @cindex Saving mode settings
12084 @cindex Permanent mode settings
12085 @cindex Calc init file, mode settings
12086 You can save all of the current mode settings in your Calc init file 
12087 (the file given by the variable @code{calc-settings-file}, typically
12088 @file{~/.calc.el}) with the @kbd{m m} (@code{calc-save-modes}) command.
12089 This will cause Emacs to reestablish these modes each time it starts up.
12090 The modes saved in the file include everything controlled by the @kbd{m}
12091 and @kbd{d} prefix keys, the current precision and binary word size,
12092 whether or not the trail is displayed, the current height of the Calc
12093 window, and more.  The current interface (used when you type @kbd{C-x * *}) 
12094 is also saved.  If there were already saved mode settings in the
12095 file, they are replaced.  Otherwise, the new mode information is
12096 appended to the end of the file.
12098 @kindex m R
12099 @pindex calc-mode-record-mode
12100 The @kbd{m R} (@code{calc-mode-record-mode}) command tells Calc to
12101 record all the mode settings (as if by pressing @kbd{m m}) every
12102 time a mode setting changes.  If the modes are saved this way, then this
12103 ``automatic mode recording'' mode is also saved.
12104 Type @kbd{m R} again to disable this method of recording the mode
12105 settings.  To turn it off permanently, the @kbd{m m} command will also be
12106 necessary.   (If Embedded mode is enabled, other options for recording
12107 the modes are available; @pxref{Mode Settings in Embedded Mode}.)
12109 @kindex m F
12110 @pindex calc-settings-file-name
12111 The @kbd{m F} (@code{calc-settings-file-name}) command allows you to
12112 choose a different file than the current value of @code{calc-settings-file}
12113 for @kbd{m m}, @kbd{Z P}, and similar commands to save permanent information.
12114 You are prompted for a file name.  All Calc modes are then reset to
12115 their default values, then settings from the file you named are loaded
12116 if this file exists, and this file becomes the one that Calc will
12117 use in the future for commands like @kbd{m m}.  The default settings
12118 file name is @file{~/.calc.el}.  You can see the current file name by
12119 giving a blank response to the @kbd{m F} prompt.  See also the
12120 discussion of the @code{calc-settings-file} variable; @pxref{Customizing Calc}.
12122 If the file name you give is your user init file (typically
12123 @file{~/.emacs}), @kbd{m F} will not automatically load the new file.  This
12124 is because your user init file may contain other things you don't want
12125 to reread.  You can give 
12126 a numeric prefix argument of 1 to @kbd{m F} to force it to read the
12127 file no matter what.  Conversely, an argument of @mathit{-1} tells
12128 @kbd{m F} @emph{not} to read the new file.  An argument of 2 or @mathit{-2}
12129 tells @kbd{m F} not to reset the modes to their defaults beforehand,
12130 which is useful if you intend your new file to have a variant of the
12131 modes present in the file you were using before.
12133 @kindex m x
12134 @pindex calc-always-load-extensions
12135 The @kbd{m x} (@code{calc-always-load-extensions}) command enables a mode
12136 in which the first use of Calc loads the entire program, including all
12137 extensions modules.  Otherwise, the extensions modules will not be loaded
12138 until the various advanced Calc features are used.  Since this mode only
12139 has effect when Calc is first loaded, @kbd{m x} is usually followed by
12140 @kbd{m m} to make the mode-setting permanent.  To load all of Calc just
12141 once, rather than always in the future, you can press @kbd{C-x * L}.
12143 @kindex m S
12144 @pindex calc-shift-prefix
12145 The @kbd{m S} (@code{calc-shift-prefix}) command enables a mode in which
12146 all of Calc's letter prefix keys may be typed shifted as well as unshifted.
12147 If you are typing, say, @kbd{a S} (@code{calc-solve-for}) quite often
12148 you might find it easier to turn this mode on so that you can type
12149 @kbd{A S} instead.  When this mode is enabled, the commands that used to
12150 be on those single shifted letters (e.g., @kbd{A} (@code{calc-abs})) can
12151 now be invoked by pressing the shifted letter twice: @kbd{A A}.  Note
12152 that the @kbd{v} prefix key always works both shifted and unshifted, and
12153 the @kbd{z} and @kbd{Z} prefix keys are always distinct.  Also, the @kbd{h}
12154 prefix is not affected by this mode.  Press @kbd{m S} again to disable
12155 shifted-prefix mode.
12157 @node Precision, Inverse and Hyperbolic, General Mode Commands, Mode Settings
12158 @section Precision
12160 @noindent
12161 @kindex p
12162 @pindex calc-precision
12163 @cindex Precision of calculations
12164 The @kbd{p} (@code{calc-precision}) command controls the precision to
12165 which floating-point calculations are carried.  The precision must be
12166 at least 3 digits and may be arbitrarily high, within the limits of
12167 memory and time.  This affects only floats:  Integer and rational
12168 calculations are always carried out with as many digits as necessary.
12170 The @kbd{p} key prompts for the current precision.  If you wish you
12171 can instead give the precision as a numeric prefix argument.
12173 Many internal calculations are carried to one or two digits higher
12174 precision than normal.  Results are rounded down afterward to the
12175 current precision.  Unless a special display mode has been selected,
12176 floats are always displayed with their full stored precision, i.e.,
12177 what you see is what you get.  Reducing the current precision does not
12178 round values already on the stack, but those values will be rounded
12179 down before being used in any calculation.  The @kbd{c 0} through
12180 @kbd{c 9} commands (@pxref{Conversions}) can be used to round an
12181 existing value to a new precision.
12183 @cindex Accuracy of calculations
12184 It is important to distinguish the concepts of @dfn{precision} and
12185 @dfn{accuracy}.  In the normal usage of these words, the number
12186 123.4567 has a precision of 7 digits but an accuracy of 4 digits.
12187 The precision is the total number of digits not counting leading
12188 or trailing zeros (regardless of the position of the decimal point).
12189 The accuracy is simply the number of digits after the decimal point
12190 (again not counting trailing zeros).  In Calc you control the precision,
12191 not the accuracy of computations.  If you were to set the accuracy
12192 instead, then calculations like @samp{exp(100)} would generate many
12193 more digits than you would typically need, while @samp{exp(-100)} would
12194 probably round to zero!  In Calc, both these computations give you
12195 exactly 12 (or the requested number of) significant digits.
12197 The only Calc features that deal with accuracy instead of precision
12198 are fixed-point display mode for floats (@kbd{d f}; @pxref{Float Formats}),
12199 and the rounding functions like @code{floor} and @code{round}
12200 (@pxref{Integer Truncation}).  Also, @kbd{c 0} through @kbd{c 9}
12201 deal with both precision and accuracy depending on the magnitudes
12202 of the numbers involved.
12204 If you need to work with a particular fixed accuracy (say, dollars and
12205 cents with two digits after the decimal point), one solution is to work
12206 with integers and an ``implied'' decimal point.  For example, $8.99
12207 divided by 6 would be entered @kbd{899 @key{RET} 6 /}, yielding 149.833
12208 (actually $1.49833 with our implied decimal point); pressing @kbd{R}
12209 would round this to 150 cents, i.e., $1.50.
12211 @xref{Floats}, for still more on floating-point precision and related
12212 issues.
12214 @node Inverse and Hyperbolic, Calculation Modes, Precision, Mode Settings
12215 @section Inverse and Hyperbolic Flags
12217 @noindent
12218 @kindex I
12219 @pindex calc-inverse
12220 There is no single-key equivalent to the @code{calc-arcsin} function.
12221 Instead, you must first press @kbd{I} (@code{calc-inverse}) to set
12222 the @dfn{Inverse Flag}, then press @kbd{S} (@code{calc-sin}).
12223 The @kbd{I} key actually toggles the Inverse Flag.  When this flag
12224 is set, the word @samp{Inv} appears in the mode line.
12226 @kindex H
12227 @pindex calc-hyperbolic
12228 Likewise, the @kbd{H} key (@code{calc-hyperbolic}) sets or clears the
12229 Hyperbolic Flag, which transforms @code{calc-sin} into @code{calc-sinh}.
12230 If both of these flags are set at once, the effect will be
12231 @code{calc-arcsinh}.  (The Hyperbolic flag is also used by some
12232 non-trigonometric commands; for example @kbd{H L} computes a base-10,
12233 instead of base-@mathit{e}, logarithm.)
12235 Command names like @code{calc-arcsin} are provided for completeness, and
12236 may be executed with @kbd{x} or @kbd{M-x}.  Their effect is simply to
12237 toggle the Inverse and/or Hyperbolic flags and then execute the
12238 corresponding base command (@code{calc-sin} in this case).
12240 The Inverse and Hyperbolic flags apply only to the next Calculator
12241 command, after which they are automatically cleared.  (They are also
12242 cleared if the next keystroke is not a Calc command.)  Digits you
12243 type after @kbd{I} or @kbd{H} (or @kbd{K}) are treated as prefix
12244 arguments for the next command, not as numeric entries.  The same
12245 is true of @kbd{C-u}, but not of the minus sign (@kbd{K -} means to
12246 subtract and keep arguments).
12248 The third Calc prefix flag, @kbd{K} (keep-arguments), is discussed
12249 elsewhere.  @xref{Keep Arguments}.
12251 @node Calculation Modes, Simplification Modes, Inverse and Hyperbolic, Mode Settings
12252 @section Calculation Modes
12254 @noindent
12255 The commands in this section are two-key sequences beginning with
12256 the @kbd{m} prefix.  (That's the letter @kbd{m}, not the @key{META} key.)
12257 The @samp{m a} (@code{calc-algebraic-mode}) command is described elsewhere
12258 (@pxref{Algebraic Entry}).
12260 @menu
12261 * Angular Modes::
12262 * Polar Mode::
12263 * Fraction Mode::
12264 * Infinite Mode::
12265 * Symbolic Mode::
12266 * Matrix Mode::
12267 * Automatic Recomputation::
12268 * Working Message::
12269 @end menu
12271 @node Angular Modes, Polar Mode, Calculation Modes, Calculation Modes
12272 @subsection Angular Modes
12274 @noindent
12275 @cindex Angular mode
12276 The Calculator supports three notations for angles: radians, degrees,
12277 and degrees-minutes-seconds.  When a number is presented to a function
12278 like @code{sin} that requires an angle, the current angular mode is
12279 used to interpret the number as either radians or degrees.  If an HMS
12280 form is presented to @code{sin}, it is always interpreted as
12281 degrees-minutes-seconds.
12283 Functions that compute angles produce a number in radians, a number in
12284 degrees, or an HMS form depending on the current angular mode.  If the
12285 result is a complex number and the current mode is HMS, the number is
12286 instead expressed in degrees.  (Complex-number calculations would
12287 normally be done in Radians mode, though.  Complex numbers are converted
12288 to degrees by calculating the complex result in radians and then
12289 multiplying by 180 over @cpi{}.)
12291 @kindex m r
12292 @pindex calc-radians-mode
12293 @kindex m d
12294 @pindex calc-degrees-mode
12295 @kindex m h
12296 @pindex calc-hms-mode
12297 The @kbd{m r} (@code{calc-radians-mode}), @kbd{m d} (@code{calc-degrees-mode}),
12298 and @kbd{m h} (@code{calc-hms-mode}) commands control the angular mode.
12299 The current angular mode is displayed on the Emacs mode line.
12300 The default angular mode is Degrees.
12302 @node Polar Mode, Fraction Mode, Angular Modes, Calculation Modes
12303 @subsection Polar Mode
12305 @noindent
12306 @cindex Polar mode
12307 The Calculator normally ``prefers'' rectangular complex numbers in the
12308 sense that rectangular form is used when the proper form can not be
12309 decided from the input.  This might happen by multiplying a rectangular
12310 number by a polar one, by taking the square root of a negative real
12311 number, or by entering @kbd{( 2 @key{SPC} 3 )}.
12313 @kindex m p
12314 @pindex calc-polar-mode
12315 The @kbd{m p} (@code{calc-polar-mode}) command toggles complex-number
12316 preference between rectangular and polar forms.  In Polar mode, all
12317 of the above example situations would produce polar complex numbers.
12319 @node Fraction Mode, Infinite Mode, Polar Mode, Calculation Modes
12320 @subsection Fraction Mode
12322 @noindent
12323 @cindex Fraction mode
12324 @cindex Division of integers
12325 Division of two integers normally yields a floating-point number if the
12326 result cannot be expressed as an integer.  In some cases you would
12327 rather get an exact fractional answer.  One way to accomplish this is
12328 to use the @kbd{:} (@code{calc-fdiv}) [@code{fdiv}] command, which
12329 divides the two integers on the top of the stack to produce a fraction:
12330 @kbd{6 @key{RET} 4 :} produces @expr{3:2} even though 
12331 @kbd{6 @key{RET} 4 /} produces @expr{1.5}.
12333 @kindex m f
12334 @pindex calc-frac-mode
12335 To set the Calculator to produce fractional results for normal integer
12336 divisions, use the @kbd{m f} (@code{calc-frac-mode}) command.
12337 For example, @expr{8/4} produces @expr{2} in either mode,
12338 but @expr{6/4} produces @expr{3:2} in Fraction mode, @expr{1.5} in
12339 Float mode.
12341 At any time you can use @kbd{c f} (@code{calc-float}) to convert a
12342 fraction to a float, or @kbd{c F} (@code{calc-fraction}) to convert a
12343 float to a fraction.  @xref{Conversions}.
12345 @node Infinite Mode, Symbolic Mode, Fraction Mode, Calculation Modes
12346 @subsection Infinite Mode
12348 @noindent
12349 @cindex Infinite mode
12350 The Calculator normally treats results like @expr{1 / 0} as errors;
12351 formulas like this are left in unsimplified form.  But Calc can be
12352 put into a mode where such calculations instead produce ``infinite''
12353 results.
12355 @kindex m i
12356 @pindex calc-infinite-mode
12357 The @kbd{m i} (@code{calc-infinite-mode}) command turns this mode
12358 on and off.  When the mode is off, infinities do not arise except
12359 in calculations that already had infinities as inputs.  (One exception
12360 is that infinite open intervals like @samp{[0 .. inf)} can be
12361 generated; however, intervals closed at infinity (@samp{[0 .. inf]})
12362 will not be generated when Infinite mode is off.)
12364 With Infinite mode turned on, @samp{1 / 0} will generate @code{uinf},
12365 an undirected infinity.  @xref{Infinities}, for a discussion of the
12366 difference between @code{inf} and @code{uinf}.  Also, @expr{0 / 0}
12367 evaluates to @code{nan}, the ``indeterminate'' symbol.  Various other
12368 functions can also return infinities in this mode; for example,
12369 @samp{ln(0) = -inf}, and @samp{gamma(-7) = uinf}.  Once again,
12370 note that @samp{exp(inf) = inf} regardless of Infinite mode because
12371 this calculation has infinity as an input.
12373 @cindex Positive Infinite mode
12374 The @kbd{m i} command with a numeric prefix argument of zero,
12375 i.e., @kbd{C-u 0 m i}, turns on a Positive Infinite mode in
12376 which zero is treated as positive instead of being directionless.
12377 Thus, @samp{1 / 0 = inf} and @samp{-1 / 0 = -inf} in this mode.
12378 Note that zero never actually has a sign in Calc; there are no
12379 separate representations for @mathit{+0} and @mathit{-0}.  Positive
12380 Infinite mode merely changes the interpretation given to the
12381 single symbol, @samp{0}.  One consequence of this is that, while
12382 you might expect @samp{1 / -0 = -inf}, actually @samp{1 / -0}
12383 is equivalent to @samp{1 / 0}, which is equal to positive @code{inf}.
12385 @node Symbolic Mode, Matrix Mode, Infinite Mode, Calculation Modes
12386 @subsection Symbolic Mode
12388 @noindent
12389 @cindex Symbolic mode
12390 @cindex Inexact results
12391 Calculations are normally performed numerically wherever possible.
12392 For example, the @code{calc-sqrt} command, or @code{sqrt} function in an
12393 algebraic expression, produces a numeric answer if the argument is a
12394 number or a symbolic expression if the argument is an expression:
12395 @kbd{2 Q} pushes 1.4142 but @kbd{@key{'} x+1 @key{RET} Q} pushes @samp{sqrt(x+1)}.
12397 @kindex m s
12398 @pindex calc-symbolic-mode
12399 In @dfn{Symbolic mode}, controlled by the @kbd{m s} (@code{calc-symbolic-mode})
12400 command, functions which would produce inexact, irrational results are
12401 left in symbolic form.  Thus @kbd{16 Q} pushes 4, but @kbd{2 Q} pushes
12402 @samp{sqrt(2)}.
12404 @kindex N
12405 @pindex calc-eval-num
12406 The shift-@kbd{N} (@code{calc-eval-num}) command evaluates numerically
12407 the expression at the top of the stack, by temporarily disabling
12408 @code{calc-symbolic-mode} and executing @kbd{=} (@code{calc-evaluate}).
12409 Given a numeric prefix argument, it also
12410 sets the floating-point precision to the specified value for the duration
12411 of the command.
12413 To evaluate a formula numerically without expanding the variables it
12414 contains, you can use the key sequence @kbd{m s a v m s} (this uses
12415 @code{calc-alg-evaluate}, which resimplifies but doesn't evaluate
12416 variables.)
12418 @node Matrix Mode, Automatic Recomputation, Symbolic Mode, Calculation Modes
12419 @subsection Matrix and Scalar Modes
12421 @noindent
12422 @cindex Matrix mode
12423 @cindex Scalar mode
12424 Calc sometimes makes assumptions during algebraic manipulation that
12425 are awkward or incorrect when vectors and matrices are involved.
12426 Calc has two modes, @dfn{Matrix mode} and @dfn{Scalar mode}, which
12427 modify its behavior around vectors in useful ways.
12429 @kindex m v
12430 @pindex calc-matrix-mode
12431 Press @kbd{m v} (@code{calc-matrix-mode}) once to enter Matrix mode.
12432 In this mode, all objects are assumed to be matrices unless provably
12433 otherwise.  One major effect is that Calc will no longer consider
12434 multiplication to be commutative.  (Recall that in matrix arithmetic,
12435 @samp{A*B} is not the same as @samp{B*A}.)  This assumption affects
12436 rewrite rules and algebraic simplification.  Another effect of this
12437 mode is that calculations that would normally produce constants like
12438 0 and 1 (e.g., @expr{a - a} and @expr{a / a}, respectively) will now
12439 produce function calls that represent ``generic'' zero or identity
12440 matrices: @samp{idn(0)}, @samp{idn(1)}.  The @code{idn} function
12441 @samp{idn(@var{a},@var{n})} returns @var{a} times an @var{n}x@var{n}
12442 identity matrix; if @var{n} is omitted, it doesn't know what
12443 dimension to use and so the @code{idn} call remains in symbolic
12444 form.  However, if this generic identity matrix is later combined
12445 with a matrix whose size is known, it will be converted into
12446 a true identity matrix of the appropriate size.  On the other hand,
12447 if it is combined with a scalar (as in @samp{idn(1) + 2}), Calc
12448 will assume it really was a scalar after all and produce, e.g., 3.
12450 Press @kbd{m v} a second time to get Scalar mode.  Here, objects are
12451 assumed @emph{not} to be vectors or matrices unless provably so.
12452 For example, normally adding a variable to a vector, as in
12453 @samp{[x, y, z] + a}, will leave the sum in symbolic form because
12454 as far as Calc knows, @samp{a} could represent either a number or
12455 another 3-vector.  In Scalar mode, @samp{a} is assumed to be a
12456 non-vector, and the addition is evaluated to @samp{[x+a, y+a, z+a]}.
12458 Press @kbd{m v} a third time to return to the normal mode of operation.
12460 If you press @kbd{m v} with a numeric prefix argument @var{n}, you
12461 get a special ``dimensioned'' Matrix mode in which matrices of
12462 unknown size are assumed to be @var{n}x@var{n} square matrices.
12463 Then, the function call @samp{idn(1)} will expand into an actual
12464 matrix rather than representing a ``generic'' matrix.  Simply typing
12465 @kbd{C-u m v} will get you a square Matrix mode, in which matrices of
12466 unknown size are assumed to be square matrices of unspecified size.
12468 @cindex Declaring scalar variables
12469 Of course these modes are approximations to the true state of
12470 affairs, which is probably that some quantities will be matrices
12471 and others will be scalars.  One solution is to ``declare''
12472 certain variables or functions to be scalar-valued.
12473 @xref{Declarations}, to see how to make declarations in Calc.
12475 There is nothing stopping you from declaring a variable to be
12476 scalar and then storing a matrix in it; however, if you do, the
12477 results you get from Calc may not be valid.  Suppose you let Calc
12478 get the result @samp{[x+a, y+a, z+a]} shown above, and then stored
12479 @samp{[1, 2, 3]} in @samp{a}.  The result would not be the same as
12480 for @samp{[x, y, z] + [1, 2, 3]}, but that's because you have broken
12481 your earlier promise to Calc that @samp{a} would be scalar.
12483 Another way to mix scalars and matrices is to use selections
12484 (@pxref{Selecting Subformulas}).  Use Matrix mode when operating on
12485 your formula normally; then, to apply Scalar mode to a certain part
12486 of the formula without affecting the rest just select that part,
12487 change into Scalar mode and press @kbd{=} to resimplify the part
12488 under this mode, then change back to Matrix mode before deselecting.
12490 @node Automatic Recomputation, Working Message, Matrix Mode, Calculation Modes
12491 @subsection Automatic Recomputation
12493 @noindent
12494 The @dfn{evaluates-to} operator, @samp{=>}, has the special
12495 property that any @samp{=>} formulas on the stack are recomputed
12496 whenever variable values or mode settings that might affect them
12497 are changed.  @xref{Evaluates-To Operator}.
12499 @kindex m C
12500 @pindex calc-auto-recompute
12501 The @kbd{m C} (@code{calc-auto-recompute}) command turns this
12502 automatic recomputation on and off.  If you turn it off, Calc will
12503 not update @samp{=>} operators on the stack (nor those in the
12504 attached Embedded mode buffer, if there is one).  They will not
12505 be updated unless you explicitly do so by pressing @kbd{=} or until
12506 you press @kbd{m C} to turn recomputation back on.  (While automatic
12507 recomputation is off, you can think of @kbd{m C m C} as a command
12508 to update all @samp{=>} operators while leaving recomputation off.)
12510 To update @samp{=>} operators in an Embedded buffer while
12511 automatic recomputation is off, use @w{@kbd{C-x * u}}.
12512 @xref{Embedded Mode}.
12514 @node Working Message,  , Automatic Recomputation, Calculation Modes
12515 @subsection Working Messages
12517 @noindent
12518 @cindex Performance
12519 @cindex Working messages
12520 Since the Calculator is written entirely in Emacs Lisp, which is not
12521 designed for heavy numerical work, many operations are quite slow.
12522 The Calculator normally displays the message @samp{Working...} in the
12523 echo area during any command that may be slow.  In addition, iterative
12524 operations such as square roots and trigonometric functions display the
12525 intermediate result at each step.  Both of these types of messages can
12526 be disabled if you find them distracting.
12528 @kindex m w
12529 @pindex calc-working
12530 Type @kbd{m w} (@code{calc-working}) with a numeric prefix of 0 to
12531 disable all ``working'' messages.  Use a numeric prefix of 1 to enable
12532 only the plain @samp{Working...} message.  Use a numeric prefix of 2 to
12533 see intermediate results as well.  With no numeric prefix this displays
12534 the current mode.
12536 While it may seem that the ``working'' messages will slow Calc down
12537 considerably, experiments have shown that their impact is actually
12538 quite small.  But if your terminal is slow you may find that it helps
12539 to turn the messages off.
12541 @node Simplification Modes, Declarations, Calculation Modes, Mode Settings
12542 @section Simplification Modes
12544 @noindent
12545 The current @dfn{simplification mode} controls how numbers and formulas
12546 are ``normalized'' when being taken from or pushed onto the stack.
12547 Some normalizations are unavoidable, such as rounding floating-point
12548 results to the current precision, and reducing fractions to simplest
12549 form.  Others, such as simplifying a formula like @expr{a+a} (or @expr{2+3}),
12550 are done by default but can be turned off when necessary.
12552 When you press a key like @kbd{+} when @expr{2} and @expr{3} are on the
12553 stack, Calc pops these numbers, normalizes them, creates the formula
12554 @expr{2+3}, normalizes it, and pushes the result.  Of course the standard
12555 rules for normalizing @expr{2+3} will produce the result @expr{5}.
12557 Simplification mode commands consist of the lower-case @kbd{m} prefix key
12558 followed by a shifted letter.
12560 @kindex m O
12561 @pindex calc-no-simplify-mode
12562 The @kbd{m O} (@code{calc-no-simplify-mode}) command turns off all optional
12563 simplifications.  These would leave a formula like @expr{2+3} alone.  In
12564 fact, nothing except simple numbers are ever affected by normalization
12565 in this mode.
12567 @kindex m N
12568 @pindex calc-num-simplify-mode
12569 The @kbd{m N} (@code{calc-num-simplify-mode}) command turns off simplification
12570 of any formulas except those for which all arguments are constants.  For
12571 example, @expr{1+2} is simplified to @expr{3}, and @expr{a+(2-2)} is
12572 simplified to @expr{a+0} but no further, since one argument of the sum
12573 is not a constant.  Unfortunately, @expr{(a+2)-2} is @emph{not} simplified
12574 because the top-level @samp{-} operator's arguments are not both
12575 constant numbers (one of them is the formula @expr{a+2}).
12576 A constant is a number or other numeric object (such as a constant
12577 error form or modulo form), or a vector all of whose
12578 elements are constant.
12580 @kindex m D
12581 @pindex calc-default-simplify-mode
12582 The @kbd{m D} (@code{calc-default-simplify-mode}) command restores the
12583 default simplifications for all formulas.  This includes many easy and
12584 fast algebraic simplifications such as @expr{a+0} to @expr{a}, and
12585 @expr{a + 2 a} to @expr{3 a}, as well as evaluating functions like
12586 @expr{@tfn{deriv}(x^2, x)} to @expr{2 x}.
12588 @kindex m B
12589 @pindex calc-bin-simplify-mode
12590 The @kbd{m B} (@code{calc-bin-simplify-mode}) mode applies the default
12591 simplifications to a result and then, if the result is an integer,
12592 uses the @kbd{b c} (@code{calc-clip}) command to clip the integer according
12593 to the current binary word size.  @xref{Binary Functions}.  Real numbers
12594 are rounded to the nearest integer and then clipped; other kinds of
12595 results (after the default simplifications) are left alone.
12597 @kindex m A
12598 @pindex calc-alg-simplify-mode
12599 The @kbd{m A} (@code{calc-alg-simplify-mode}) mode does algebraic
12600 simplification; it applies all the default simplifications, and also
12601 the more powerful (and slower) simplifications made by @kbd{a s}
12602 (@code{calc-simplify}).  @xref{Algebraic Simplifications}.
12604 @kindex m E
12605 @pindex calc-ext-simplify-mode
12606 The @kbd{m E} (@code{calc-ext-simplify-mode}) mode does ``extended''
12607 algebraic simplification, as by the @kbd{a e} (@code{calc-simplify-extended})
12608 command.  @xref{Unsafe Simplifications}.
12610 @kindex m U
12611 @pindex calc-units-simplify-mode
12612 The @kbd{m U} (@code{calc-units-simplify-mode}) mode does units
12613 simplification; it applies the command @kbd{u s}
12614 (@code{calc-simplify-units}), which in turn
12615 is a superset of @kbd{a s}.  In this mode, variable names which
12616 are identifiable as unit names (like @samp{mm} for ``millimeters'')
12617 are simplified with their unit definitions in mind.
12619 A common technique is to set the simplification mode down to the lowest
12620 amount of simplification you will allow to be applied automatically, then
12621 use manual commands like @kbd{a s} and @kbd{c c} (@code{calc-clean}) to
12622 perform higher types of simplifications on demand.  @xref{Algebraic
12623 Definitions}, for another sample use of No-Simplification mode.
12625 @node Declarations, Display Modes, Simplification Modes, Mode Settings
12626 @section Declarations
12628 @noindent
12629 A @dfn{declaration} is a statement you make that promises you will
12630 use a certain variable or function in a restricted way.  This may
12631 give Calc the freedom to do things that it couldn't do if it had to
12632 take the fully general situation into account.
12634 @menu
12635 * Declaration Basics::
12636 * Kinds of Declarations::
12637 * Functions for Declarations::
12638 @end menu
12640 @node Declaration Basics, Kinds of Declarations, Declarations, Declarations
12641 @subsection Declaration Basics
12643 @noindent
12644 @kindex s d
12645 @pindex calc-declare-variable
12646 The @kbd{s d} (@code{calc-declare-variable}) command is the easiest
12647 way to make a declaration for a variable.  This command prompts for
12648 the variable name, then prompts for the declaration.  The default
12649 at the declaration prompt is the previous declaration, if any.
12650 You can edit this declaration, or press @kbd{C-k} to erase it and
12651 type a new declaration.  (Or, erase it and press @key{RET} to clear
12652 the declaration, effectively ``undeclaring'' the variable.)
12654 A declaration is in general a vector of @dfn{type symbols} and
12655 @dfn{range} values.  If there is only one type symbol or range value,
12656 you can write it directly rather than enclosing it in a vector.
12657 For example, @kbd{s d foo @key{RET} real @key{RET}} declares @code{foo} to
12658 be a real number, and @kbd{s d bar @key{RET} [int, const, [1..6]] @key{RET}}
12659 declares @code{bar} to be a constant integer between 1 and 6.
12660 (Actually, you can omit the outermost brackets and Calc will
12661 provide them for you: @kbd{s d bar @key{RET} int, const, [1..6] @key{RET}}.)
12663 @cindex @code{Decls} variable
12664 @vindex Decls
12665 Declarations in Calc are kept in a special variable called @code{Decls}.
12666 This variable encodes the set of all outstanding declarations in
12667 the form of a matrix.  Each row has two elements:  A variable or
12668 vector of variables declared by that row, and the declaration
12669 specifier as described above.  You can use the @kbd{s D} command to
12670 edit this variable if you wish to see all the declarations at once.
12671 @xref{Operations on Variables}, for a description of this command
12672 and the @kbd{s p} command that allows you to save your declarations
12673 permanently if you wish.
12675 Items being declared can also be function calls.  The arguments in
12676 the call are ignored; the effect is to say that this function returns
12677 values of the declared type for any valid arguments.  The @kbd{s d}
12678 command declares only variables, so if you wish to make a function
12679 declaration you will have to edit the @code{Decls} matrix yourself.
12681 For example, the declaration matrix
12683 @smallexample
12684 @group
12685 [ [ foo,       real       ]
12686   [ [j, k, n], int        ]
12687   [ f(1,2,3),  [0 .. inf) ] ]
12688 @end group
12689 @end smallexample
12691 @noindent
12692 declares that @code{foo} represents a real number, @code{j}, @code{k}
12693 and @code{n} represent integers, and the function @code{f} always
12694 returns a real number in the interval shown.
12696 @vindex All
12697 If there is a declaration for the variable @code{All}, then that
12698 declaration applies to all variables that are not otherwise declared.
12699 It does not apply to function names.  For example, using the row
12700 @samp{[All, real]} says that all your variables are real unless they
12701 are explicitly declared without @code{real} in some other row.
12702 The @kbd{s d} command declares @code{All} if you give a blank
12703 response to the variable-name prompt.
12705 @node Kinds of Declarations, Functions for Declarations, Declaration Basics, Declarations
12706 @subsection Kinds of Declarations
12708 @noindent
12709 The type-specifier part of a declaration (that is, the second prompt
12710 in the @kbd{s d} command) can be a type symbol, an interval, or a
12711 vector consisting of zero or more type symbols followed by zero or
12712 more intervals or numbers that represent the set of possible values
12713 for the variable.
12715 @smallexample
12716 @group
12717 [ [ a, [1, 2, 3, 4, 5] ]
12718   [ b, [1 .. 5]        ]
12719   [ c, [int, 1 .. 5]   ] ]
12720 @end group
12721 @end smallexample
12723 Here @code{a} is declared to contain one of the five integers shown;
12724 @code{b} is any number in the interval from 1 to 5 (any real number
12725 since we haven't specified), and @code{c} is any integer in that
12726 interval.  Thus the declarations for @code{a} and @code{c} are
12727 nearly equivalent (see below).
12729 The type-specifier can be the empty vector @samp{[]} to say that
12730 nothing is known about a given variable's value.  This is the same
12731 as not declaring the variable at all except that it overrides any
12732 @code{All} declaration which would otherwise apply.
12734 The initial value of @code{Decls} is the empty vector @samp{[]}.
12735 If @code{Decls} has no stored value or if the value stored in it
12736 is not valid, it is ignored and there are no declarations as far
12737 as Calc is concerned.  (The @kbd{s d} command will replace such a
12738 malformed value with a fresh empty matrix, @samp{[]}, before recording
12739 the new declaration.)  Unrecognized type symbols are ignored.
12741 The following type symbols describe what sorts of numbers will be
12742 stored in a variable:
12744 @table @code
12745 @item int
12746 Integers.
12747 @item numint
12748 Numerical integers.  (Integers or integer-valued floats.)
12749 @item frac
12750 Fractions.  (Rational numbers which are not integers.)
12751 @item rat
12752 Rational numbers.  (Either integers or fractions.)
12753 @item float
12754 Floating-point numbers.
12755 @item real
12756 Real numbers.  (Integers, fractions, or floats.  Actually,
12757 intervals and error forms with real components also count as
12758 reals here.)
12759 @item pos
12760 Positive real numbers.  (Strictly greater than zero.)
12761 @item nonneg
12762 Nonnegative real numbers.  (Greater than or equal to zero.)
12763 @item number
12764 Numbers.  (Real or complex.)
12765 @end table
12767 Calc uses this information to determine when certain simplifications
12768 of formulas are safe.  For example, @samp{(x^y)^z} cannot be
12769 simplified to @samp{x^(y z)} in general; for example,
12770 @samp{((-3)^2)^1:2} is 3, but @samp{(-3)^(2*1:2) = (-3)^1} is @mathit{-3}.
12771 However, this simplification @emph{is} safe if @code{z} is known
12772 to be an integer, or if @code{x} is known to be a nonnegative
12773 real number.  If you have given declarations that allow Calc to
12774 deduce either of these facts, Calc will perform this simplification
12775 of the formula.
12777 Calc can apply a certain amount of logic when using declarations.
12778 For example, @samp{(x^y)^(2n+1)} will be simplified if @code{n}
12779 has been declared @code{int}; Calc knows that an integer times an
12780 integer, plus an integer, must always be an integer.  (In fact,
12781 Calc would simplify @samp{(-x)^(2n+1)} to @samp{-(x^(2n+1))} since
12782 it is able to determine that @samp{2n+1} must be an odd integer.)
12784 Similarly, @samp{(abs(x)^y)^z} will be simplified to @samp{abs(x)^(y z)}
12785 because Calc knows that the @code{abs} function always returns a
12786 nonnegative real.  If you had a @code{myabs} function that also had
12787 this property, you could get Calc to recognize it by adding the row
12788 @samp{[myabs(), nonneg]} to the @code{Decls} matrix.
12790 One instance of this simplification is @samp{sqrt(x^2)} (since the
12791 @code{sqrt} function is effectively a one-half power).  Normally
12792 Calc leaves this formula alone.  After the command
12793 @kbd{s d x @key{RET} real @key{RET}}, however, it can simplify the formula to
12794 @samp{abs(x)}.  And after @kbd{s d x @key{RET} nonneg @key{RET}}, Calc can
12795 simplify this formula all the way to @samp{x}.
12797 If there are any intervals or real numbers in the type specifier,
12798 they comprise the set of possible values that the variable or
12799 function being declared can have.  In particular, the type symbol
12800 @code{real} is effectively the same as the range @samp{[-inf .. inf]}
12801 (note that infinity is included in the range of possible values);
12802 @code{pos} is the same as @samp{(0 .. inf]}, and @code{nonneg} is
12803 the same as @samp{[0 .. inf]}.  Saying @samp{[real, [-5 .. 5]]} is
12804 redundant because the fact that the variable is real can be
12805 deduced just from the interval, but @samp{[int, [-5 .. 5]]} and
12806 @samp{[rat, [-5 .. 5]]} are useful combinations.
12808 Note that the vector of intervals or numbers is in the same format
12809 used by Calc's set-manipulation commands.  @xref{Set Operations}.
12811 The type specifier @samp{[1, 2, 3]} is equivalent to
12812 @samp{[numint, 1, 2, 3]}, @emph{not} to @samp{[int, 1, 2, 3]}.
12813 In other words, the range of possible values means only that
12814 the variable's value must be numerically equal to a number in
12815 that range, but not that it must be equal in type as well.
12816 Calc's set operations act the same way; @samp{in(2, [1., 2., 3.])}
12817 and @samp{in(1.5, [1:2, 3:2, 5:2])} both report ``true.''
12819 If you use a conflicting combination of type specifiers, the
12820 results are unpredictable.  An example is @samp{[pos, [0 .. 5]]},
12821 where the interval does not lie in the range described by the
12822 type symbol.
12824 ``Real'' declarations mostly affect simplifications involving powers
12825 like the one described above.  Another case where they are used
12826 is in the @kbd{a P} command which returns a list of all roots of a
12827 polynomial; if the variable has been declared real, only the real
12828 roots (if any) will be included in the list.
12830 ``Integer'' declarations are used for simplifications which are valid
12831 only when certain values are integers (such as @samp{(x^y)^z}
12832 shown above).
12834 Another command that makes use of declarations is @kbd{a s}, when
12835 simplifying equations and inequalities.  It will cancel @code{x}
12836 from both sides of @samp{a x = b x} only if it is sure @code{x}
12837 is non-zero, say, because it has a @code{pos} declaration.
12838 To declare specifically that @code{x} is real and non-zero,
12839 use @samp{[[-inf .. 0), (0 .. inf]]}.  (There is no way in the
12840 current notation to say that @code{x} is nonzero but not necessarily
12841 real.)  The @kbd{a e} command does ``unsafe'' simplifications,
12842 including cancelling @samp{x} from the equation when @samp{x} is
12843 not known to be nonzero.
12845 Another set of type symbols distinguish between scalars and vectors.
12847 @table @code
12848 @item scalar
12849 The value is not a vector.
12850 @item vector
12851 The value is a vector.
12852 @item matrix
12853 The value is a matrix (a rectangular vector of vectors).
12854 @item sqmatrix
12855 The value is a square matrix.
12856 @end table
12858 These type symbols can be combined with the other type symbols
12859 described above; @samp{[int, matrix]} describes an object which
12860 is a matrix of integers.
12862 Scalar/vector declarations are used to determine whether certain
12863 algebraic operations are safe.  For example, @samp{[a, b, c] + x}
12864 is normally not simplified to @samp{[a + x, b + x, c + x]}, but
12865 it will be if @code{x} has been declared @code{scalar}.  On the
12866 other hand, multiplication is usually assumed to be commutative,
12867 but the terms in @samp{x y} will never be exchanged if both @code{x}
12868 and @code{y} are known to be vectors or matrices.  (Calc currently
12869 never distinguishes between @code{vector} and @code{matrix}
12870 declarations.)
12872 @xref{Matrix Mode}, for a discussion of Matrix mode and
12873 Scalar mode, which are similar to declaring @samp{[All, matrix]}
12874 or @samp{[All, scalar]} but much more convenient.
12876 One more type symbol that is recognized is used with the @kbd{H a d}
12877 command for taking total derivatives of a formula.  @xref{Calculus}.
12879 @table @code
12880 @item const
12881 The value is a constant with respect to other variables.
12882 @end table
12884 Calc does not check the declarations for a variable when you store
12885 a value in it.  However, storing @mathit{-3.5} in a variable that has
12886 been declared @code{pos}, @code{int}, or @code{matrix} may have
12887 unexpected effects; Calc may evaluate @samp{sqrt(x^2)} to @expr{3.5}
12888 if it substitutes the value first, or to @expr{-3.5} if @code{x}
12889 was declared @code{pos} and the formula @samp{sqrt(x^2)} is
12890 simplified to @samp{x} before the value is substituted.  Before
12891 using a variable for a new purpose, it is best to use @kbd{s d}
12892 or @kbd{s D} to check to make sure you don't still have an old
12893 declaration for the variable that will conflict with its new meaning.
12895 @node Functions for Declarations,  , Kinds of Declarations, Declarations
12896 @subsection Functions for Declarations
12898 @noindent
12899 Calc has a set of functions for accessing the current declarations
12900 in a convenient manner.  These functions return 1 if the argument
12901 can be shown to have the specified property, or 0 if the argument
12902 can be shown @emph{not} to have that property; otherwise they are
12903 left unevaluated.  These functions are suitable for use with rewrite
12904 rules (@pxref{Conditional Rewrite Rules}) or programming constructs
12905 (@pxref{Conditionals in Macros}).  They can be entered only using
12906 algebraic notation.  @xref{Logical Operations}, for functions
12907 that perform other tests not related to declarations.
12909 For example, @samp{dint(17)} returns 1 because 17 is an integer, as
12910 do @samp{dint(n)} and @samp{dint(2 n - 3)} if @code{n} has been declared
12911 @code{int}, but @samp{dint(2.5)} and @samp{dint(n + 0.5)} return 0.
12912 Calc consults knowledge of its own built-in functions as well as your
12913 own declarations: @samp{dint(floor(x))} returns 1.
12915 @ignore
12916 @starindex
12917 @end ignore
12918 @tindex dint
12919 @ignore
12920 @starindex
12921 @end ignore
12922 @tindex dnumint
12923 @ignore
12924 @starindex
12925 @end ignore
12926 @tindex dnatnum
12927 The @code{dint} function checks if its argument is an integer.
12928 The @code{dnatnum} function checks if its argument is a natural
12929 number, i.e., a nonnegative integer.  The @code{dnumint} function
12930 checks if its argument is numerically an integer, i.e., either an
12931 integer or an integer-valued float.  Note that these and the other
12932 data type functions also accept vectors or matrices composed of
12933 suitable elements, and that real infinities @samp{inf} and @samp{-inf}
12934 are considered to be integers for the purposes of these functions.
12936 @ignore
12937 @starindex
12938 @end ignore
12939 @tindex drat
12940 The @code{drat} function checks if its argument is rational, i.e.,
12941 an integer or fraction.  Infinities count as rational, but intervals
12942 and error forms do not.
12944 @ignore
12945 @starindex
12946 @end ignore
12947 @tindex dreal
12948 The @code{dreal} function checks if its argument is real.  This
12949 includes integers, fractions, floats, real error forms, and intervals.
12951 @ignore
12952 @starindex
12953 @end ignore
12954 @tindex dimag
12955 The @code{dimag} function checks if its argument is imaginary,
12956 i.e., is mathematically equal to a real number times @expr{i}.
12958 @ignore
12959 @starindex
12960 @end ignore
12961 @tindex dpos
12962 @ignore
12963 @starindex
12964 @end ignore
12965 @tindex dneg
12966 @ignore
12967 @starindex
12968 @end ignore
12969 @tindex dnonneg
12970 The @code{dpos} function checks for positive (but nonzero) reals.
12971 The @code{dneg} function checks for negative reals.  The @code{dnonneg}
12972 function checks for nonnegative reals, i.e., reals greater than or
12973 equal to zero.  Note that the @kbd{a s} command can simplify an
12974 expression like @expr{x > 0} to 1 or 0 using @code{dpos}, and that
12975 @kbd{a s} is effectively applied to all conditions in rewrite rules,
12976 so the actual functions @code{dpos}, @code{dneg}, and @code{dnonneg}
12977 are rarely necessary.
12979 @ignore
12980 @starindex
12981 @end ignore
12982 @tindex dnonzero
12983 The @code{dnonzero} function checks that its argument is nonzero.
12984 This includes all nonzero real or complex numbers, all intervals that
12985 do not include zero, all nonzero modulo forms, vectors all of whose
12986 elements are nonzero, and variables or formulas whose values can be
12987 deduced to be nonzero.  It does not include error forms, since they
12988 represent values which could be anything including zero.  (This is
12989 also the set of objects considered ``true'' in conditional contexts.)
12991 @ignore
12992 @starindex
12993 @end ignore
12994 @tindex deven
12995 @ignore
12996 @starindex
12997 @end ignore
12998 @tindex dodd
12999 The @code{deven} function returns 1 if its argument is known to be
13000 an even integer (or integer-valued float); it returns 0 if its argument
13001 is known not to be even (because it is known to be odd or a non-integer).
13002 The @kbd{a s} command uses this to simplify a test of the form
13003 @samp{x % 2 = 0}.  There is also an analogous @code{dodd} function.
13005 @ignore
13006 @starindex
13007 @end ignore
13008 @tindex drange
13009 The @code{drange} function returns a set (an interval or a vector
13010 of intervals and/or numbers; @pxref{Set Operations}) that describes
13011 the set of possible values of its argument.  If the argument is
13012 a variable or a function with a declaration, the range is copied
13013 from the declaration.  Otherwise, the possible signs of the
13014 expression are determined using a method similar to @code{dpos},
13015 etc., and a suitable set like @samp{[0 .. inf]} is returned.  If
13016 the expression is not provably real, the @code{drange} function
13017 remains unevaluated.
13019 @ignore
13020 @starindex
13021 @end ignore
13022 @tindex dscalar
13023 The @code{dscalar} function returns 1 if its argument is provably
13024 scalar, or 0 if its argument is provably non-scalar.  It is left
13025 unevaluated if this cannot be determined.  (If Matrix mode or Scalar
13026 mode is in effect, this function returns 1 or 0, respectively,
13027 if it has no other information.)  When Calc interprets a condition
13028 (say, in a rewrite rule) it considers an unevaluated formula to be
13029 ``false.''  Thus, @samp{dscalar(a)} is ``true'' only if @code{a} is
13030 provably scalar, and @samp{!dscalar(a)} is ``true'' only if @code{a}
13031 is provably non-scalar; both are ``false'' if there is insufficient
13032 information to tell.
13034 @node Display Modes, Language Modes, Declarations, Mode Settings
13035 @section Display Modes
13037 @noindent
13038 The commands in this section are two-key sequences beginning with the
13039 @kbd{d} prefix.  The @kbd{d l} (@code{calc-line-numbering}) and @kbd{d b}
13040 (@code{calc-line-breaking}) commands are described elsewhere;
13041 @pxref{Stack Basics} and @pxref{Normal Language Modes}, respectively.
13042 Display formats for vectors and matrices are also covered elsewhere;
13043 @pxref{Vector and Matrix Formats}.
13045 One thing all display modes have in common is their treatment of the
13046 @kbd{H} prefix.  This prefix causes any mode command that would normally
13047 refresh the stack to leave the stack display alone.  The word ``Dirty''
13048 will appear in the mode line when Calc thinks the stack display may not
13049 reflect the latest mode settings.
13051 @kindex d @key{RET}
13052 @pindex calc-refresh-top
13053 The @kbd{d @key{RET}} (@code{calc-refresh-top}) command reformats the
13054 top stack entry according to all the current modes.  Positive prefix
13055 arguments reformat the top @var{n} entries; negative prefix arguments
13056 reformat the specified entry, and a prefix of zero is equivalent to
13057 @kbd{d @key{SPC}} (@code{calc-refresh}), which reformats the entire stack.
13058 For example, @kbd{H d s M-2 d @key{RET}} changes to scientific notation
13059 but reformats only the top two stack entries in the new mode.
13061 The @kbd{I} prefix has another effect on the display modes.  The mode
13062 is set only temporarily; the top stack entry is reformatted according
13063 to that mode, then the original mode setting is restored.  In other
13064 words, @kbd{I d s} is equivalent to @kbd{H d s d @key{RET} H d (@var{old mode})}.
13066 @menu
13067 * Radix Modes::
13068 * Grouping Digits::
13069 * Float Formats::
13070 * Complex Formats::
13071 * Fraction Formats::
13072 * HMS Formats::
13073 * Date Formats::
13074 * Truncating the Stack::
13075 * Justification::
13076 * Labels::
13077 @end menu
13079 @node Radix Modes, Grouping Digits, Display Modes, Display Modes
13080 @subsection Radix Modes
13082 @noindent
13083 @cindex Radix display
13084 @cindex Non-decimal numbers
13085 @cindex Decimal and non-decimal numbers
13086 Calc normally displays numbers in decimal (@dfn{base-10} or @dfn{radix-10})
13087 notation.  Calc can actually display in any radix from two (binary) to 36.
13088 When the radix is above 10, the letters @code{A} to @code{Z} are used as
13089 digits.  When entering such a number, letter keys are interpreted as
13090 potential digits rather than terminating numeric entry mode.
13092 @kindex d 2
13093 @kindex d 8
13094 @kindex d 6
13095 @kindex d 0
13096 @cindex Hexadecimal integers
13097 @cindex Octal integers
13098 The key sequences @kbd{d 2}, @kbd{d 8}, @kbd{d 6}, and @kbd{d 0} select
13099 binary, octal, hexadecimal, and decimal as the current display radix,
13100 respectively.  Numbers can always be entered in any radix, though the
13101 current radix is used as a default if you press @kbd{#} without any initial
13102 digits.  A number entered without a @kbd{#} is @emph{always} interpreted
13103 as decimal.
13105 @kindex d r
13106 @pindex calc-radix
13107 To set the radix generally, use @kbd{d r} (@code{calc-radix}) and enter
13108 an integer from 2 to 36.  You can specify the radix as a numeric prefix
13109 argument; otherwise you will be prompted for it.
13111 @kindex d z
13112 @pindex calc-leading-zeros
13113 @cindex Leading zeros
13114 Integers normally are displayed with however many digits are necessary to
13115 represent the integer and no more.  The @kbd{d z} (@code{calc-leading-zeros})
13116 command causes integers to be padded out with leading zeros according to the
13117 current binary word size.  (@xref{Binary Functions}, for a discussion of
13118 word size.)  If the absolute value of the word size is @expr{w}, all integers
13119 are displayed with at least enough digits to represent 
13120 @texline @math{2^w-1}
13121 @infoline @expr{(2^w)-1} 
13122 in the current radix.  (Larger integers will still be displayed in their
13123 entirety.) 
13125 @node Grouping Digits, Float Formats, Radix Modes, Display Modes
13126 @subsection Grouping Digits
13128 @noindent
13129 @kindex d g
13130 @pindex calc-group-digits
13131 @cindex Grouping digits
13132 @cindex Digit grouping
13133 Long numbers can be hard to read if they have too many digits.  For
13134 example, the factorial of 30 is 33 digits long!  Press @kbd{d g}
13135 (@code{calc-group-digits}) to enable @dfn{Grouping} mode, in which digits
13136 are displayed in clumps of 3 or 4 (depending on the current radix)
13137 separated by commas.
13139 The @kbd{d g} command toggles grouping on and off.
13140 With a numeric prefix of 0, this command displays the current state of
13141 the grouping flag; with an argument of minus one it disables grouping;
13142 with a positive argument @expr{N} it enables grouping on every @expr{N}
13143 digits.  For floating-point numbers, grouping normally occurs only
13144 before the decimal point.  A negative prefix argument @expr{-N} enables
13145 grouping every @expr{N} digits both before and after the decimal point.
13147 @kindex d ,
13148 @pindex calc-group-char
13149 The @kbd{d ,} (@code{calc-group-char}) command allows you to choose any
13150 character as the grouping separator.  The default is the comma character.
13151 If you find it difficult to read vectors of large integers grouped with
13152 commas, you may wish to use spaces or some other character instead.
13153 This command takes the next character you type, whatever it is, and
13154 uses it as the digit separator.  As a special case, @kbd{d , \} selects
13155 @samp{\,} (@TeX{}'s thin-space symbol) as the digit separator.
13157 Please note that grouped numbers will not generally be parsed correctly
13158 if re-read in textual form, say by the use of @kbd{C-x * y} and @kbd{C-x * g}.
13159 (@xref{Kill and Yank}, for details on these commands.)  One exception is
13160 the @samp{\,} separator, which doesn't interfere with parsing because it
13161 is ignored by @TeX{} language mode.
13163 @node Float Formats, Complex Formats, Grouping Digits, Display Modes
13164 @subsection Float Formats
13166 @noindent
13167 Floating-point quantities are normally displayed in standard decimal
13168 form, with scientific notation used if the exponent is especially high
13169 or low.  All significant digits are normally displayed.  The commands
13170 in this section allow you to choose among several alternative display
13171 formats for floats.
13173 @kindex d n
13174 @pindex calc-normal-notation
13175 The @kbd{d n} (@code{calc-normal-notation}) command selects the normal
13176 display format.  All significant figures in a number are displayed.
13177 With a positive numeric prefix, numbers are rounded if necessary to
13178 that number of significant digits.  With a negative numerix prefix,
13179 the specified number of significant digits less than the current
13180 precision is used.  (Thus @kbd{C-u -2 d n} displays 10 digits if the
13181 current precision is 12.)
13183 @kindex d f
13184 @pindex calc-fix-notation
13185 The @kbd{d f} (@code{calc-fix-notation}) command selects fixed-point
13186 notation.  The numeric argument is the number of digits after the
13187 decimal point, zero or more.  This format will relax into scientific
13188 notation if a nonzero number would otherwise have been rounded all the
13189 way to zero.  Specifying a negative number of digits is the same as
13190 for a positive number, except that small nonzero numbers will be rounded
13191 to zero rather than switching to scientific notation.
13193 @kindex d s
13194 @pindex calc-sci-notation
13195 @cindex Scientific notation, display of
13196 The @kbd{d s} (@code{calc-sci-notation}) command selects scientific
13197 notation.  A positive argument sets the number of significant figures
13198 displayed, of which one will be before and the rest after the decimal
13199 point.  A negative argument works the same as for @kbd{d n} format.
13200 The default is to display all significant digits.
13202 @kindex d e
13203 @pindex calc-eng-notation
13204 @cindex Engineering notation, display of
13205 The @kbd{d e} (@code{calc-eng-notation}) command selects engineering
13206 notation.  This is similar to scientific notation except that the
13207 exponent is rounded down to a multiple of three, with from one to three
13208 digits before the decimal point.  An optional numeric prefix sets the
13209 number of significant digits to display, as for @kbd{d s}.
13211 It is important to distinguish between the current @emph{precision} and
13212 the current @emph{display format}.  After the commands @kbd{C-u 10 p}
13213 and @kbd{C-u 6 d n} the Calculator computes all results to ten
13214 significant figures but displays only six.  (In fact, intermediate
13215 calculations are often carried to one or two more significant figures,
13216 but values placed on the stack will be rounded down to ten figures.)
13217 Numbers are never actually rounded to the display precision for storage,
13218 except by commands like @kbd{C-k} and @kbd{C-x * y} which operate on the
13219 actual displayed text in the Calculator buffer.
13221 @kindex d .
13222 @pindex calc-point-char
13223 The @kbd{d .} (@code{calc-point-char}) command selects the character used
13224 as a decimal point.  Normally this is a period; users in some countries
13225 may wish to change this to a comma.  Note that this is only a display
13226 style; on entry, periods must always be used to denote floating-point
13227 numbers, and commas to separate elements in a list.
13229 @node Complex Formats, Fraction Formats, Float Formats, Display Modes
13230 @subsection Complex Formats
13232 @noindent
13233 @kindex d c
13234 @pindex calc-complex-notation
13235 There are three supported notations for complex numbers in rectangular
13236 form.  The default is as a pair of real numbers enclosed in parentheses
13237 and separated by a comma: @samp{(a,b)}.  The @kbd{d c}
13238 (@code{calc-complex-notation}) command selects this style.
13240 @kindex d i
13241 @pindex calc-i-notation
13242 @kindex d j
13243 @pindex calc-j-notation
13244 The other notations are @kbd{d i} (@code{calc-i-notation}), in which
13245 numbers are displayed in @samp{a+bi} form, and @kbd{d j}
13246 (@code{calc-j-notation}) which displays the form @samp{a+bj} preferred
13247 in some disciplines.
13249 @cindex @code{i} variable
13250 @vindex i
13251 Complex numbers are normally entered in @samp{(a,b)} format.
13252 If you enter @samp{2+3i} as an algebraic formula, it will be stored as
13253 the formula @samp{2 + 3 * i}.  However, if you use @kbd{=} to evaluate
13254 this formula and you have not changed the variable @samp{i}, the @samp{i}
13255 will be interpreted as @samp{(0,1)} and the formula will be simplified
13256 to @samp{(2,3)}.  Other commands (like @code{calc-sin}) will @emph{not}
13257 interpret the formula @samp{2 + 3 * i} as a complex number.
13258 @xref{Variables}, under ``special constants.''
13260 @node Fraction Formats, HMS Formats, Complex Formats, Display Modes
13261 @subsection Fraction Formats
13263 @noindent
13264 @kindex d o
13265 @pindex calc-over-notation
13266 Display of fractional numbers is controlled by the @kbd{d o}
13267 (@code{calc-over-notation}) command.  By default, a number like
13268 eight thirds is displayed in the form @samp{8:3}.  The @kbd{d o} command
13269 prompts for a one- or two-character format.  If you give one character,
13270 that character is used as the fraction separator.  Common separators are
13271 @samp{:} and @samp{/}.  (During input of numbers, the @kbd{:} key must be
13272 used regardless of the display format; in particular, the @kbd{/} is used
13273 for RPN-style division, @emph{not} for entering fractions.)
13275 If you give two characters, fractions use ``integer-plus-fractional-part''
13276 notation.  For example, the format @samp{+/} would display eight thirds
13277 as @samp{2+2/3}.  If two colons are present in a number being entered,
13278 the number is interpreted in this form (so that the entries @kbd{2:2:3}
13279 and @kbd{8:3} are equivalent).
13281 It is also possible to follow the one- or two-character format with
13282 a number.  For example:  @samp{:10} or @samp{+/3}.  In this case,
13283 Calc adjusts all fractions that are displayed to have the specified
13284 denominator, if possible.  Otherwise it adjusts the denominator to
13285 be a multiple of the specified value.  For example, in @samp{:6} mode
13286 the fraction @expr{1:6} will be unaffected, but @expr{2:3} will be
13287 displayed as @expr{4:6}, @expr{1:2} will be displayed as @expr{3:6},
13288 and @expr{1:8} will be displayed as @expr{3:24}.  Integers are also
13289 affected by this mode:  3 is displayed as @expr{18:6}.  Note that the
13290 format @samp{:1} writes fractions the same as @samp{:}, but it writes
13291 integers as @expr{n:1}.
13293 The fraction format does not affect the way fractions or integers are
13294 stored, only the way they appear on the screen.  The fraction format
13295 never affects floats.
13297 @node HMS Formats, Date Formats, Fraction Formats, Display Modes
13298 @subsection HMS Formats
13300 @noindent
13301 @kindex d h
13302 @pindex calc-hms-notation
13303 The @kbd{d h} (@code{calc-hms-notation}) command controls the display of
13304 HMS (hours-minutes-seconds) forms.  It prompts for a string which
13305 consists basically of an ``hours'' marker, optional punctuation, a
13306 ``minutes'' marker, more optional punctuation, and a ``seconds'' marker.
13307 Punctuation is zero or more spaces, commas, or semicolons.  The hours
13308 marker is one or more non-punctuation characters.  The minutes and
13309 seconds markers must be single non-punctuation characters.
13311 The default HMS format is @samp{@@ ' "}, producing HMS values of the form
13312 @samp{23@@ 30' 15.75"}.  The format @samp{deg, ms} would display this same
13313 value as @samp{23deg, 30m15.75s}.  During numeric entry, the @kbd{h} or @kbd{o}
13314 keys are recognized as synonyms for @kbd{@@} regardless of display format.
13315 The @kbd{m} and @kbd{s} keys are recognized as synonyms for @kbd{'} and
13316 @kbd{"}, respectively, but only if an @kbd{@@} (or @kbd{h} or @kbd{o}) has
13317 already been typed; otherwise, they have their usual meanings
13318 (@kbd{m-} prefix and @kbd{s-} prefix).  Thus, @kbd{5 "}, @kbd{0 @@ 5 "}, and
13319 @kbd{0 h 5 s} are some of the ways to enter the quantity ``five seconds.''
13320 The @kbd{'} key is recognized as ``minutes'' only if @kbd{@@} (or @kbd{h} or
13321 @kbd{o}) has already been pressed; otherwise it means to switch to algebraic
13322 entry.
13324 @node Date Formats, Truncating the Stack, HMS Formats, Display Modes
13325 @subsection Date Formats
13327 @noindent
13328 @kindex d d
13329 @pindex calc-date-notation
13330 The @kbd{d d} (@code{calc-date-notation}) command controls the display
13331 of date forms (@pxref{Date Forms}).  It prompts for a string which
13332 contains letters that represent the various parts of a date and time.
13333 To show which parts should be omitted when the form represents a pure
13334 date with no time, parts of the string can be enclosed in @samp{< >}
13335 marks.  If you don't include @samp{< >} markers in the format, Calc
13336 guesses at which parts, if any, should be omitted when formatting
13337 pure dates.
13339 The default format is:  @samp{<H:mm:SSpp >Www Mmm D, YYYY}.
13340 An example string in this format is @samp{3:32pm Wed Jan 9, 1991}.
13341 If you enter a blank format string, this default format is
13342 reestablished.
13344 Calc uses @samp{< >} notation for nameless functions as well as for
13345 dates.  @xref{Specifying Operators}.  To avoid confusion with nameless
13346 functions, your date formats should avoid using the @samp{#} character.
13348 @menu
13349 * Date Formatting Codes::
13350 * Free-Form Dates::
13351 * Standard Date Formats::
13352 @end menu
13354 @node Date Formatting Codes, Free-Form Dates, Date Formats, Date Formats
13355 @subsubsection Date Formatting Codes
13357 @noindent
13358 When displaying a date, the current date format is used.  All
13359 characters except for letters and @samp{<} and @samp{>} are
13360 copied literally when dates are formatted.  The portion between
13361 @samp{< >} markers is omitted for pure dates, or included for
13362 date/time forms.  Letters are interpreted according to the table
13363 below.
13365 When dates are read in during algebraic entry, Calc first tries to
13366 match the input string to the current format either with or without
13367 the time part.  The punctuation characters (including spaces) must
13368 match exactly; letter fields must correspond to suitable text in
13369 the input.  If this doesn't work, Calc checks if the input is a
13370 simple number; if so, the number is interpreted as a number of days
13371 since Jan 1, 1 AD.  Otherwise, Calc tries a much more relaxed and
13372 flexible algorithm which is described in the next section.
13374 Weekday names are ignored during reading.
13376 Two-digit year numbers are interpreted as lying in the range
13377 from 1941 to 2039.  Years outside that range are always
13378 entered and displayed in full.  Year numbers with a leading
13379 @samp{+} sign are always interpreted exactly, allowing the
13380 entry and display of the years 1 through 99 AD.
13382 Here is a complete list of the formatting codes for dates:
13384 @table @asis
13385 @item Y
13386 Year:  ``91'' for 1991, ``7'' for 2007, ``+23'' for 23 AD.
13387 @item YY
13388 Year:  ``91'' for 1991, ``07'' for 2007, ``+23'' for 23 AD.
13389 @item BY
13390 Year:  ``91'' for 1991, `` 7'' for 2007, ``+23'' for 23 AD.
13391 @item YYY
13392 Year:  ``1991'' for 1991, ``23'' for 23 AD.
13393 @item YYYY
13394 Year:  ``1991'' for 1991, ``+23'' for 23 AD.
13395 @item aa
13396 Year:  ``ad'' or blank.
13397 @item AA
13398 Year:  ``AD'' or blank.
13399 @item aaa
13400 Year:  ``ad '' or blank.  (Note trailing space.)
13401 @item AAA
13402 Year:  ``AD '' or blank.
13403 @item aaaa
13404 Year:  ``a.d.'' or blank.
13405 @item AAAA
13406 Year:  ``A.D.'' or blank.
13407 @item bb
13408 Year:  ``bc'' or blank.
13409 @item BB
13410 Year:  ``BC'' or blank.
13411 @item bbb
13412 Year:  `` bc'' or blank.  (Note leading space.)
13413 @item BBB
13414 Year:  `` BC'' or blank.
13415 @item bbbb
13416 Year:  ``b.c.'' or blank.
13417 @item BBBB
13418 Year:  ``B.C.'' or blank.
13419 @item M
13420 Month:  ``8'' for August.
13421 @item MM
13422 Month:  ``08'' for August.
13423 @item BM
13424 Month:  `` 8'' for August.
13425 @item MMM
13426 Month:  ``AUG'' for August.
13427 @item Mmm
13428 Month:  ``Aug'' for August.
13429 @item mmm
13430 Month:  ``aug'' for August.
13431 @item MMMM
13432 Month:  ``AUGUST'' for August.
13433 @item Mmmm
13434 Month:  ``August'' for August.
13435 @item D
13436 Day:  ``7'' for 7th day of month.
13437 @item DD
13438 Day:  ``07'' for 7th day of month.
13439 @item BD
13440 Day:  `` 7'' for 7th day of month.
13441 @item W
13442 Weekday:  ``0'' for Sunday, ``6'' for Saturday.
13443 @item WWW
13444 Weekday:  ``SUN'' for Sunday.
13445 @item Www
13446 Weekday:  ``Sun'' for Sunday.
13447 @item www
13448 Weekday:  ``sun'' for Sunday.
13449 @item WWWW
13450 Weekday:  ``SUNDAY'' for Sunday.
13451 @item Wwww
13452 Weekday:  ``Sunday'' for Sunday.
13453 @item d
13454 Day of year:  ``34'' for Feb. 3.
13455 @item ddd
13456 Day of year:  ``034'' for Feb. 3.
13457 @item bdd
13458 Day of year:  `` 34'' for Feb. 3.
13459 @item h
13460 Hour:  ``5'' for 5 AM; ``17'' for 5 PM.
13461 @item hh
13462 Hour:  ``05'' for 5 AM; ``17'' for 5 PM.
13463 @item bh
13464 Hour:  `` 5'' for 5 AM; ``17'' for 5 PM.
13465 @item H
13466 Hour:  ``5'' for 5 AM and 5 PM.
13467 @item HH
13468 Hour:  ``05'' for 5 AM and 5 PM.
13469 @item BH
13470 Hour:  `` 5'' for 5 AM and 5 PM.
13471 @item p
13472 AM/PM:  ``a'' or ``p''.
13473 @item P
13474 AM/PM:  ``A'' or ``P''.
13475 @item pp
13476 AM/PM:  ``am'' or ``pm''.
13477 @item PP
13478 AM/PM:  ``AM'' or ``PM''.
13479 @item pppp
13480 AM/PM:  ``a.m.'' or ``p.m.''.
13481 @item PPPP
13482 AM/PM:  ``A.M.'' or ``P.M.''.
13483 @item m
13484 Minutes:  ``7'' for 7.
13485 @item mm
13486 Minutes:  ``07'' for 7.
13487 @item bm
13488 Minutes:  `` 7'' for 7.
13489 @item s
13490 Seconds:  ``7'' for 7;  ``7.23'' for 7.23.
13491 @item ss
13492 Seconds:  ``07'' for 7;  ``07.23'' for 7.23.
13493 @item bs
13494 Seconds:  `` 7'' for 7;  `` 7.23'' for 7.23.
13495 @item SS
13496 Optional seconds:  ``07'' for 7;  blank for 0.
13497 @item BS
13498 Optional seconds:  `` 7'' for 7;  blank for 0.
13499 @item N
13500 Numeric date/time:  ``726842.25'' for 6:00am Wed Jan 9, 1991.
13501 @item n
13502 Numeric date:  ``726842'' for any time on Wed Jan 9, 1991.
13503 @item J
13504 Julian date/time:  ``2448265.75'' for 6:00am Wed Jan 9, 1991.
13505 @item j
13506 Julian date:  ``2448266'' for any time on Wed Jan 9, 1991.
13507 @item U
13508 Unix time:  ``663400800'' for 6:00am Wed Jan 9, 1991.
13509 @item X
13510 Brackets suppression.  An ``X'' at the front of the format
13511 causes the surrounding @w{@samp{< >}} delimiters to be omitted
13512 when formatting dates.  Note that the brackets are still
13513 required for algebraic entry.
13514 @end table
13516 If ``SS'' or ``BS'' (optional seconds) is preceded by a colon, the
13517 colon is also omitted if the seconds part is zero.
13519 If ``bb,'' ``bbb'' or ``bbbb'' or their upper-case equivalents
13520 appear in the format, then negative year numbers are displayed
13521 without a minus sign.  Note that ``aa'' and ``bb'' are mutually
13522 exclusive.  Some typical usages would be @samp{YYYY AABB};
13523 @samp{AAAYYYYBBB}; @samp{YYYYBBB}.
13525 The formats ``YY,'' ``YYYY,'' ``MM,'' ``DD,'' ``ddd,'' ``hh,'' ``HH,''
13526 ``mm,'' ``ss,'' and ``SS'' actually match any number of digits during
13527 reading unless several of these codes are strung together with no
13528 punctuation in between, in which case the input must have exactly as
13529 many digits as there are letters in the format.
13531 The ``j,'' ``J,'' and ``U'' formats do not make any time zone
13532 adjustment.  They effectively use @samp{julian(x,0)} and
13533 @samp{unixtime(x,0)} to make the conversion; @pxref{Date Arithmetic}.
13535 @node Free-Form Dates, Standard Date Formats, Date Formatting Codes, Date Formats
13536 @subsubsection Free-Form Dates
13538 @noindent
13539 When reading a date form during algebraic entry, Calc falls back
13540 on the algorithm described here if the input does not exactly
13541 match the current date format.  This algorithm generally
13542 ``does the right thing'' and you don't have to worry about it,
13543 but it is described here in full detail for the curious.
13545 Calc does not distinguish between upper- and lower-case letters
13546 while interpreting dates.
13548 First, the time portion, if present, is located somewhere in the
13549 text and then removed.  The remaining text is then interpreted as
13550 the date.
13552 A time is of the form @samp{hh:mm:ss}, possibly with the seconds
13553 part omitted and possibly with an AM/PM indicator added to indicate
13554 12-hour time.  If the AM/PM is present, the minutes may also be
13555 omitted.  The AM/PM part may be any of the words @samp{am},
13556 @samp{pm}, @samp{noon}, or @samp{midnight}; each of these may be
13557 abbreviated to one letter, and the alternate forms @samp{a.m.},
13558 @samp{p.m.}, and @samp{mid} are also understood.  Obviously
13559 @samp{noon} and @samp{midnight} are allowed only on 12:00:00.
13560 The words @samp{noon}, @samp{mid}, and @samp{midnight} are also
13561 recognized with no number attached.
13563 If there is no AM/PM indicator, the time is interpreted in 24-hour
13564 format.
13566 To read the date portion, all words and numbers are isolated
13567 from the string; other characters are ignored.  All words must
13568 be either month names or day-of-week names (the latter of which
13569 are ignored).  Names can be written in full or as three-letter
13570 abbreviations.
13572 Large numbers, or numbers with @samp{+} or @samp{-} signs,
13573 are interpreted as years.  If one of the other numbers is
13574 greater than 12, then that must be the day and the remaining
13575 number in the input is therefore the month.  Otherwise, Calc
13576 assumes the month, day and year are in the same order that they
13577 appear in the current date format.  If the year is omitted, the
13578 current year is taken from the system clock.
13580 If there are too many or too few numbers, or any unrecognizable
13581 words, then the input is rejected.
13583 If there are any large numbers (of five digits or more) other than
13584 the year, they are ignored on the assumption that they are something
13585 like Julian dates that were included along with the traditional
13586 date components when the date was formatted.
13588 One of the words @samp{ad}, @samp{a.d.}, @samp{bc}, or @samp{b.c.}
13589 may optionally be used; the latter two are equivalent to a
13590 minus sign on the year value.
13592 If you always enter a four-digit year, and use a name instead
13593 of a number for the month, there is no danger of ambiguity.
13595 @node Standard Date Formats,  , Free-Form Dates, Date Formats
13596 @subsubsection Standard Date Formats
13598 @noindent
13599 There are actually ten standard date formats, numbered 0 through 9.
13600 Entering a blank line at the @kbd{d d} command's prompt gives
13601 you format number 1, Calc's usual format.  You can enter any digit
13602 to select the other formats.
13604 To create your own standard date formats, give a numeric prefix
13605 argument from 0 to 9 to the @w{@kbd{d d}} command.  The format you
13606 enter will be recorded as the new standard format of that
13607 number, as well as becoming the new current date format.
13608 You can save your formats permanently with the @w{@kbd{m m}}
13609 command (@pxref{Mode Settings}).
13611 @table @asis
13612 @item 0
13613 @samp{N}  (Numerical format)
13614 @item 1
13615 @samp{<H:mm:SSpp >Www Mmm D, YYYY}  (American format)
13616 @item 2
13617 @samp{D Mmm YYYY<, h:mm:SS>}  (European format)
13618 @item 3
13619 @samp{Www Mmm BD< hh:mm:ss> YYYY}  (Unix written date format)
13620 @item 4
13621 @samp{M/D/Y< H:mm:SSpp>}  (American slashed format)
13622 @item 5
13623 @samp{D.M.Y< h:mm:SS>}  (European dotted format)
13624 @item 6
13625 @samp{M-D-Y< H:mm:SSpp>}  (American dashed format)
13626 @item 7
13627 @samp{D-M-Y< h:mm:SS>}  (European dashed format)
13628 @item 8
13629 @samp{j<, h:mm:ss>}  (Julian day plus time)
13630 @item 9
13631 @samp{YYddd< hh:mm:ss>}  (Year-day format)
13632 @end table
13634 @node Truncating the Stack, Justification, Date Formats, Display Modes
13635 @subsection Truncating the Stack
13637 @noindent
13638 @kindex d t
13639 @pindex calc-truncate-stack
13640 @cindex Truncating the stack
13641 @cindex Narrowing the stack
13642 The @kbd{d t} (@code{calc-truncate-stack}) command moves the @samp{.}@:
13643 line that marks the top-of-stack up or down in the Calculator buffer.
13644 The number right above that line is considered to the be at the top of
13645 the stack.  Any numbers below that line are ``hidden'' from all stack
13646 operations (although still visible to the user).  This is similar to the
13647 Emacs ``narrowing'' feature, except that the values below the @samp{.}
13648 are @emph{visible}, just temporarily frozen.  This feature allows you to
13649 keep several independent calculations running at once in different parts
13650 of the stack, or to apply a certain command to an element buried deep in
13651 the stack.
13653 Pressing @kbd{d t} by itself moves the @samp{.} to the line the cursor
13654 is on.  Thus, this line and all those below it become hidden.  To un-hide
13655 these lines, move down to the end of the buffer and press @w{@kbd{d t}}.
13656 With a positive numeric prefix argument @expr{n}, @kbd{d t} hides the
13657 bottom @expr{n} values in the buffer.  With a negative argument, it hides
13658 all but the top @expr{n} values.  With an argument of zero, it hides zero
13659 values, i.e., moves the @samp{.} all the way down to the bottom.
13661 @kindex d [
13662 @pindex calc-truncate-up
13663 @kindex d ]
13664 @pindex calc-truncate-down
13665 The @kbd{d [} (@code{calc-truncate-up}) and @kbd{d ]}
13666 (@code{calc-truncate-down}) commands move the @samp{.} up or down one
13667 line at a time (or several lines with a prefix argument).
13669 @node Justification, Labels, Truncating the Stack, Display Modes
13670 @subsection Justification
13672 @noindent
13673 @kindex d <
13674 @pindex calc-left-justify
13675 @kindex d =
13676 @pindex calc-center-justify
13677 @kindex d >
13678 @pindex calc-right-justify
13679 Values on the stack are normally left-justified in the window.  You can
13680 control this arrangement by typing @kbd{d <} (@code{calc-left-justify}),
13681 @kbd{d >} (@code{calc-right-justify}), or @kbd{d =}
13682 (@code{calc-center-justify}).  For example, in Right-Justification mode,
13683 stack entries are displayed flush-right against the right edge of the
13684 window.
13686 If you change the width of the Calculator window you may have to type
13687 @kbd{d @key{SPC}} (@code{calc-refresh}) to re-align right-justified or centered
13688 text.
13690 Right-justification is especially useful together with fixed-point
13691 notation (see @code{d f}; @code{calc-fix-notation}).  With these modes
13692 together, the decimal points on numbers will always line up.
13694 With a numeric prefix argument, the justification commands give you
13695 a little extra control over the display.  The argument specifies the
13696 horizontal ``origin'' of a display line.  It is also possible to
13697 specify a maximum line width using the @kbd{d b} command (@pxref{Normal
13698 Language Modes}).  For reference, the precise rules for formatting and
13699 breaking lines are given below.  Notice that the interaction between
13700 origin and line width is slightly different in each justification
13701 mode.
13703 In Left-Justified mode, the line is indented by a number of spaces
13704 given by the origin (default zero).  If the result is longer than the
13705 maximum line width, if given, or too wide to fit in the Calc window
13706 otherwise, then it is broken into lines which will fit; each broken
13707 line is indented to the origin.
13709 In Right-Justified mode, lines are shifted right so that the rightmost
13710 character is just before the origin, or just before the current
13711 window width if no origin was specified.  If the line is too long
13712 for this, then it is broken; the current line width is used, if
13713 specified, or else the origin is used as a width if that is
13714 specified, or else the line is broken to fit in the window.
13716 In Centering mode, the origin is the column number of the center of
13717 each stack entry.  If a line width is specified, lines will not be
13718 allowed to go past that width; Calc will either indent less or
13719 break the lines if necessary.  If no origin is specified, half the
13720 line width or Calc window width is used.
13722 Note that, in each case, if line numbering is enabled the display
13723 is indented an additional four spaces to make room for the line
13724 number.  The width of the line number is taken into account when
13725 positioning according to the current Calc window width, but not
13726 when positioning by explicit origins and widths.  In the latter
13727 case, the display is formatted as specified, and then uniformly
13728 shifted over four spaces to fit the line numbers.
13730 @node Labels,  , Justification, Display Modes
13731 @subsection Labels
13733 @noindent
13734 @kindex d @{
13735 @pindex calc-left-label
13736 The @kbd{d @{} (@code{calc-left-label}) command prompts for a string,
13737 then displays that string to the left of every stack entry.  If the
13738 entries are left-justified (@pxref{Justification}), then they will
13739 appear immediately after the label (unless you specified an origin
13740 greater than the length of the label).  If the entries are centered
13741 or right-justified, the label appears on the far left and does not
13742 affect the horizontal position of the stack entry.
13744 Give a blank string (with @kbd{d @{ @key{RET}}) to turn the label off.
13746 @kindex d @}
13747 @pindex calc-right-label
13748 The @kbd{d @}} (@code{calc-right-label}) command similarly adds a
13749 label on the righthand side.  It does not affect positioning of
13750 the stack entries unless they are right-justified.  Also, if both
13751 a line width and an origin are given in Right-Justified mode, the
13752 stack entry is justified to the origin and the righthand label is
13753 justified to the line width.
13755 One application of labels would be to add equation numbers to
13756 formulas you are manipulating in Calc and then copying into a
13757 document (possibly using Embedded mode).  The equations would
13758 typically be centered, and the equation numbers would be on the
13759 left or right as you prefer.
13761 @node Language Modes, Modes Variable, Display Modes, Mode Settings
13762 @section Language Modes
13764 @noindent
13765 The commands in this section change Calc to use a different notation for
13766 entry and display of formulas, corresponding to the conventions of some
13767 other common language such as Pascal or La@TeX{}.  Objects displayed on the
13768 stack or yanked from the Calculator to an editing buffer will be formatted
13769 in the current language; objects entered in algebraic entry or yanked from
13770 another buffer will be interpreted according to the current language.
13772 The current language has no effect on things written to or read from the
13773 trail buffer, nor does it affect numeric entry.  Only algebraic entry is
13774 affected.  You can make even algebraic entry ignore the current language
13775 and use the standard notation by giving a numeric prefix, e.g., @kbd{C-u '}.
13777 For example, suppose the formula @samp{2*a[1] + atan(a[2])} occurs in a C
13778 program; elsewhere in the program you need the derivatives of this formula
13779 with respect to @samp{a[1]} and @samp{a[2]}.  First, type @kbd{d C}
13780 to switch to C notation.  Now use @code{C-u C-x * g} to grab the formula
13781 into the Calculator, @kbd{a d a[1] @key{RET}} to differentiate with respect
13782 to the first variable, and @kbd{C-x * y} to yank the formula for the derivative
13783 back into your C program.  Press @kbd{U} to undo the differentiation and
13784 repeat with @kbd{a d a[2] @key{RET}} for the other derivative.
13786 Without being switched into C mode first, Calc would have misinterpreted
13787 the brackets in @samp{a[1]} and @samp{a[2]}, would not have known that
13788 @code{atan} was equivalent to Calc's built-in @code{arctan} function,
13789 and would have written the formula back with notations (like implicit
13790 multiplication) which would not have been valid for a C program.
13792 As another example, suppose you are maintaining a C program and a La@TeX{}
13793 document, each of which needs a copy of the same formula.  You can grab the
13794 formula from the program in C mode, switch to La@TeX{} mode, and yank the
13795 formula into the document in La@TeX{} math-mode format.
13797 Language modes are selected by typing the letter @kbd{d} followed by a
13798 shifted letter key.
13800 @menu
13801 * Normal Language Modes::
13802 * C FORTRAN Pascal::
13803 * TeX and LaTeX Language Modes::
13804 * Eqn Language Mode::
13805 * Yacas Language Mode::
13806 * Maxima Language Mode::
13807 * Giac Language Mode::
13808 * Mathematica Language Mode::
13809 * Maple Language Mode::
13810 * Compositions::
13811 * Syntax Tables::
13812 @end menu
13814 @node Normal Language Modes, C FORTRAN Pascal, Language Modes, Language Modes
13815 @subsection Normal Language Modes
13817 @noindent
13818 @kindex d N
13819 @pindex calc-normal-language
13820 The @kbd{d N} (@code{calc-normal-language}) command selects the usual
13821 notation for Calc formulas, as described in the rest of this manual.
13822 Matrices are displayed in a multi-line tabular format, but all other
13823 objects are written in linear form, as they would be typed from the
13824 keyboard.
13826 @kindex d O
13827 @pindex calc-flat-language
13828 @cindex Matrix display
13829 The @kbd{d O} (@code{calc-flat-language}) command selects a language
13830 identical with the normal one, except that matrices are written in
13831 one-line form along with everything else.  In some applications this
13832 form may be more suitable for yanking data into other buffers.
13834 @kindex d b
13835 @pindex calc-line-breaking
13836 @cindex Line breaking
13837 @cindex Breaking up long lines
13838 Even in one-line mode, long formulas or vectors will still be split
13839 across multiple lines if they exceed the width of the Calculator window.
13840 The @kbd{d b} (@code{calc-line-breaking}) command turns this line-breaking
13841 feature on and off.  (It works independently of the current language.)
13842 If you give a numeric prefix argument of five or greater to the @kbd{d b}
13843 command, that argument will specify the line width used when breaking
13844 long lines.
13846 @kindex d B
13847 @pindex calc-big-language
13848 The @kbd{d B} (@code{calc-big-language}) command selects a language
13849 which uses textual approximations to various mathematical notations,
13850 such as powers, quotients, and square roots:
13852 @example
13853   ____________
13854  | a + 1    2
13855  | ----- + c
13856 \|   b
13857 @end example
13859 @noindent
13860 in place of @samp{sqrt((a+1)/b + c^2)}.
13862 Subscripts like @samp{a_i} are displayed as actual subscripts in Big
13863 mode.  Double subscripts, @samp{a_i_j} (@samp{subscr(subscr(a, i), j)})
13864 are displayed as @samp{a} with subscripts separated by commas:
13865 @samp{i, j}.  They must still be entered in the usual underscore
13866 notation.
13868 One slight ambiguity of Big notation is that
13870 @example
13871   3
13872 - -
13873   4
13874 @end example
13876 @noindent
13877 can represent either the negative rational number @expr{-3:4}, or the
13878 actual expression @samp{-(3/4)}; but the latter formula would normally
13879 never be displayed because it would immediately be evaluated to
13880 @expr{-3:4} or @expr{-0.75}, so this ambiguity is not a problem in
13881 typical use.
13883 Non-decimal numbers are displayed with subscripts.  Thus there is no
13884 way to tell the difference between @samp{16#C2} and @samp{C2_16},
13885 though generally you will know which interpretation is correct.
13886 Logarithms @samp{log(x,b)} and @samp{log10(x)} also use subscripts
13887 in Big mode.
13889 In Big mode, stack entries often take up several lines.  To aid
13890 readability, stack entries are separated by a blank line in this mode.
13891 You may find it useful to expand the Calc window's height using
13892 @kbd{C-x ^} (@code{enlarge-window}) or to make the Calc window the only
13893 one on the screen with @kbd{C-x 1} (@code{delete-other-windows}).
13895 Long lines are currently not rearranged to fit the window width in
13896 Big mode, so you may need to use the @kbd{<} and @kbd{>} keys
13897 to scroll across a wide formula.  For really big formulas, you may
13898 even need to use @kbd{@{} and @kbd{@}} to scroll up and down.
13900 @kindex d U
13901 @pindex calc-unformatted-language
13902 The @kbd{d U} (@code{calc-unformatted-language}) command altogether disables
13903 the use of operator notation in formulas.  In this mode, the formula
13904 shown above would be displayed:
13906 @example
13907 sqrt(add(div(add(a, 1), b), pow(c, 2)))
13908 @end example
13910 These four modes differ only in display format, not in the format
13911 expected for algebraic entry.  The standard Calc operators work in
13912 all four modes, and unformatted notation works in any language mode
13913 (except that Mathematica mode expects square brackets instead of
13914 parentheses).
13916 @node C FORTRAN Pascal, TeX and LaTeX Language Modes, Normal Language Modes, Language Modes
13917 @subsection C, FORTRAN, and Pascal Modes
13919 @noindent
13920 @kindex d C
13921 @pindex calc-c-language
13922 @cindex C language
13923 The @kbd{d C} (@code{calc-c-language}) command selects the conventions
13924 of the C language for display and entry of formulas.  This differs from
13925 the normal language mode in a variety of (mostly minor) ways.  In
13926 particular, C language operators and operator precedences are used in
13927 place of Calc's usual ones.  For example, @samp{a^b} means @samp{xor(a,b)}
13928 in C mode; a value raised to a power is written as a function call,
13929 @samp{pow(a,b)}.
13931 In C mode, vectors and matrices use curly braces instead of brackets.
13932 Octal and hexadecimal values are written with leading @samp{0} or @samp{0x}
13933 rather than using the @samp{#} symbol.  Array subscripting is
13934 translated into @code{subscr} calls, so that @samp{a[i]} in C
13935 mode is the same as @samp{a_i} in Normal mode.  Assignments
13936 turn into the @code{assign} function, which Calc normally displays
13937 using the @samp{:=} symbol.
13939 The variables @code{pi} and @code{e} would be displayed @samp{pi}
13940 and @samp{e} in Normal mode, but in C mode they are displayed as
13941 @samp{M_PI} and @samp{M_E}, corresponding to the names of constants
13942 typically provided in the @file{<math.h>} header.  Functions whose
13943 names are different in C are translated automatically for entry and
13944 display purposes.  For example, entering @samp{asin(x)} will push the
13945 formula @samp{arcsin(x)} onto the stack; this formula will be displayed
13946 as @samp{asin(x)} as long as C mode is in effect.
13948 @kindex d P
13949 @pindex calc-pascal-language
13950 @cindex Pascal language
13951 The @kbd{d P} (@code{calc-pascal-language}) command selects Pascal
13952 conventions.  Like C mode, Pascal mode interprets array brackets and uses
13953 a different table of operators.  Hexadecimal numbers are entered and
13954 displayed with a preceding dollar sign.  (Thus the regular meaning of
13955 @kbd{$2} during algebraic entry does not work in Pascal mode, though
13956 @kbd{$} (and @kbd{$$}, etc.) not followed by digits works the same as
13957 always.)  No special provisions are made for other non-decimal numbers,
13958 vectors, and so on, since there is no universally accepted standard way
13959 of handling these in Pascal.
13961 @kindex d F
13962 @pindex calc-fortran-language
13963 @cindex FORTRAN language
13964 The @kbd{d F} (@code{calc-fortran-language}) command selects FORTRAN
13965 conventions.  Various function names are transformed into FORTRAN
13966 equivalents.  Vectors are written as @samp{/1, 2, 3/}, and may be
13967 entered this way or using square brackets.  Since FORTRAN uses round
13968 parentheses for both function calls and array subscripts, Calc displays
13969 both in the same way; @samp{a(i)} is interpreted as a function call
13970 upon reading, and subscripts must be entered as @samp{subscr(a, i)}.
13971 If the variable @code{a} has been declared to have type
13972 @code{vector} or @code{matrix}, however,  then @samp{a(i)} will be
13973 parsed as a subscript.  (@xref{Declarations}.)  Usually it doesn't
13974 matter, though; if you enter the subscript expression @samp{a(i)} and
13975 Calc interprets it as a function call, you'll never know the difference
13976 unless you switch to another language mode or replace @code{a} with an
13977 actual vector (or unless @code{a} happens to be the name of a built-in
13978 function!).
13980 Underscores are allowed in variable and function names in all of these
13981 language modes.  The underscore here is equivalent to the @samp{#} in
13982 Normal mode, or to hyphens in the underlying Emacs Lisp variable names.
13984 FORTRAN and Pascal modes normally do not adjust the case of letters in
13985 formulas.  Most built-in Calc names use lower-case letters.  If you use a
13986 positive numeric prefix argument with @kbd{d P} or @kbd{d F}, these
13987 modes will use upper-case letters exclusively for display, and will
13988 convert to lower-case on input.  With a negative prefix, these modes
13989 convert to lower-case for display and input.
13991 @node TeX and LaTeX Language Modes, Eqn Language Mode, C FORTRAN Pascal, Language Modes
13992 @subsection @TeX{} and La@TeX{} Language Modes
13994 @noindent
13995 @kindex d T
13996 @pindex calc-tex-language
13997 @cindex TeX language
13998 @kindex d L
13999 @pindex calc-latex-language
14000 @cindex LaTeX language
14001 The @kbd{d T} (@code{calc-tex-language}) command selects the conventions
14002 of ``math mode'' in Donald Knuth's @TeX{} typesetting language,
14003 and the @kbd{d L} (@code{calc-latex-language}) command selects the
14004 conventions of ``math mode'' in La@TeX{}, a typesetting language that
14005 uses @TeX{} as its formatting engine.  Calc's La@TeX{} language mode can
14006 read any formula that the @TeX{} language mode can, although La@TeX{}
14007 mode may display it differently.
14009 Formulas are entered and displayed in the appropriate notation;
14010 @texline @math{\sin(a/b)}
14011 @infoline @expr{sin(a/b)}
14012 will appear as @samp{\sin\left( @{a \over b@} \right)} in @TeX{} mode and
14013 @samp{\sin\left(\frac@{a@}@{b@}\right)} in La@TeX{} mode.
14014 Math formulas are often enclosed by @samp{$ $} signs in @TeX{} and
14015 La@TeX{}; these should be omitted when interfacing with Calc.  To Calc,
14016 the @samp{$} sign has the same meaning it always does in algebraic
14017 formulas (a reference to an existing entry on the stack).
14019 Complex numbers are displayed as in @samp{3 + 4i}.  Fractions and
14020 quotients are written using @code{\over} in @TeX{} mode (as in 
14021 @code{@{a \over b@}}) and @code{\frac} in La@TeX{} mode (as in
14022 @code{\frac@{a@}@{b@}});  binomial coefficients are written with
14023 @code{\choose} in @TeX{} mode (as in @code{@{a \choose b@}}) and
14024 @code{\binom} in La@TeX{} mode (as in @code{\binom@{a@}@{b@}}).
14025 Interval forms are written with @code{\ldots}, and error forms are
14026 written with @code{\pm}. Absolute values are written as in 
14027 @samp{|x + 1|}, and the floor and ceiling functions are written with
14028 @code{\lfloor}, @code{\rfloor}, etc. The words @code{\left} and
14029 @code{\right} are ignored when reading formulas in @TeX{} and La@TeX{}
14030 modes.  Both @code{inf} and @code{uinf} are written as @code{\infty};
14031 when read, @code{\infty} always translates to @code{inf}.
14033 Function calls are written the usual way, with the function name followed
14034 by the arguments in parentheses.  However, functions for which @TeX{}
14035 and La@TeX{} have special names (like @code{\sin}) will use curly braces
14036 instead of parentheses for very simple arguments.  During input, curly
14037 braces and parentheses work equally well for grouping, but when the
14038 document is formatted the curly braces will be invisible.  Thus the
14039 printed result is 
14040 @texline @math{\sin{2 x}}
14041 @infoline @expr{sin 2x} 
14042 but 
14043 @texline @math{\sin(2 + x)}.
14044 @infoline @expr{sin(2 + x)}.
14046 Function and variable names not treated specially by @TeX{} and La@TeX{}
14047 are simply written out as-is, which will cause them to come out in
14048 italic letters in the printed document.  If you invoke @kbd{d T} or
14049 @kbd{d L} with a positive numeric prefix argument, names of more than
14050 one character will instead be enclosed in a protective commands that
14051 will prevent them from being typeset in the math italics; they will be
14052 written @samp{\hbox@{@var{name}@}} in @TeX{} mode and 
14053 @samp{\text@{@var{name}@}} in La@TeX{} mode.  The
14054 @samp{\hbox@{ @}} and @samp{\text@{ @}} notations are ignored during
14055 reading.  If you use a negative prefix argument, such function names are
14056 written @samp{\@var{name}}, and function names that begin with @code{\} during
14057 reading have the @code{\} removed.  (Note that in this mode, long
14058 variable names are still written with @code{\hbox} or @code{\text}.
14059 However, you can always make an actual variable name like @code{\bar} in
14060 any @TeX{} mode.)
14062 During reading, text of the form @samp{\matrix@{ ...@: @}} is replaced
14063 by @samp{[ ...@: ]}.  The same also applies to @code{\pmatrix} and
14064 @code{\bmatrix}.  In La@TeX{} mode this also applies to 
14065 @samp{\begin@{matrix@} ... \end@{matrix@}},
14066 @samp{\begin@{bmatrix@} ... \end@{bmatrix@}},
14067 @samp{\begin@{pmatrix@} ... \end@{pmatrix@}}, as well as
14068 @samp{\begin@{smallmatrix@} ... \end@{smallmatrix@}}.
14069 The symbol @samp{&} is interpreted as a comma,
14070 and the symbols @samp{\cr} and @samp{\\} are interpreted as semicolons.
14071 During output, matrices are displayed in @samp{\matrix@{ a & b \\ c & d@}}
14072 format in @TeX{} mode and in 
14073 @samp{\begin@{pmatrix@} a & b \\ c & d \end@{pmatrix@}} format in
14074 La@TeX{} mode; you may need to edit this afterwards to change to your
14075 preferred matrix form.  If you invoke @kbd{d T} or @kbd{d L} with an
14076 argument of 2 or -2, then matrices will be displayed in two-dimensional
14077 form, such as 
14079 @example
14080 \begin@{pmatrix@}
14081 a & b \\
14082 c & d
14083 \end@{pmatrix@}
14084 @end example
14086 @noindent
14087 This may be convenient for isolated matrices, but could lead to
14088 expressions being displayed like
14090 @example
14091 \begin@{pmatrix@} \times x
14092 a & b \\
14093 c & d
14094 \end@{pmatrix@}
14095 @end example
14097 @noindent
14098 While this wouldn't bother Calc, it is incorrect La@TeX{}.
14099 (Similarly for @TeX{}.)
14101 Accents like @code{\tilde} and @code{\bar} translate into function
14102 calls internally (@samp{tilde(x)}, @samp{bar(x)}).  The @code{\underline}
14103 sequence is treated as an accent.  The @code{\vec} accent corresponds
14104 to the function name @code{Vec}, because @code{vec} is the name of
14105 a built-in Calc function.  The following table shows the accents
14106 in Calc, @TeX{}, La@TeX{} and @dfn{eqn} (described in the next section):
14108 @iftex
14109 @begingroup
14110 @let@calcindexershow=@calcindexernoshow  @c Suppress marginal notes
14111 @let@calcindexersh=@calcindexernoshow
14112 @end iftex
14113 @ignore
14114 @starindex
14115 @end ignore
14116 @tindex acute
14117 @ignore
14118 @starindex
14119 @end ignore
14120 @tindex Acute
14121 @ignore
14122 @starindex
14123 @end ignore
14124 @tindex bar
14125 @ignore
14126 @starindex
14127 @end ignore
14128 @tindex Bar
14129 @ignore
14130 @starindex
14131 @end ignore
14132 @tindex breve
14133 @ignore
14134 @starindex
14135 @end ignore
14136 @tindex Breve
14137 @ignore
14138 @starindex
14139 @end ignore
14140 @tindex check
14141 @ignore
14142 @starindex
14143 @end ignore
14144 @tindex Check
14145 @ignore
14146 @starindex
14147 @end ignore
14148 @tindex dddot
14149 @ignore
14150 @starindex
14151 @end ignore
14152 @tindex ddddot
14153 @ignore
14154 @starindex
14155 @end ignore
14156 @tindex dot
14157 @ignore
14158 @starindex
14159 @end ignore
14160 @tindex Dot
14161 @ignore
14162 @starindex
14163 @end ignore
14164 @tindex dotdot
14165 @ignore
14166 @starindex
14167 @end ignore
14168 @tindex DotDot
14169 @ignore
14170 @starindex
14171 @end ignore
14172 @tindex dyad
14173 @ignore
14174 @starindex
14175 @end ignore
14176 @tindex grave
14177 @ignore
14178 @starindex
14179 @end ignore
14180 @tindex Grave
14181 @ignore
14182 @starindex
14183 @end ignore
14184 @tindex hat
14185 @ignore
14186 @starindex
14187 @end ignore
14188 @tindex Hat
14189 @ignore
14190 @starindex
14191 @end ignore
14192 @tindex Prime
14193 @ignore
14194 @starindex
14195 @end ignore
14196 @tindex tilde
14197 @ignore
14198 @starindex
14199 @end ignore
14200 @tindex Tilde
14201 @ignore
14202 @starindex
14203 @end ignore
14204 @tindex under
14205 @ignore
14206 @starindex
14207 @end ignore
14208 @tindex Vec
14209 @ignore
14210 @starindex
14211 @end ignore
14212 @tindex VEC
14213 @iftex
14214 @endgroup
14215 @end iftex
14216 @example
14217 Calc      TeX           LaTeX         eqn
14218 ----      ---           -----         ---
14219 acute     \acute        \acute        
14220 Acute                   \Acute        
14221 bar       \bar          \bar          bar
14222 Bar                     \Bar
14223 breve     \breve        \breve        
14224 Breve                   \Breve        
14225 check     \check        \check        
14226 Check                   \Check        
14227 dddot                   \dddot
14228 ddddot                  \ddddot
14229 dot       \dot          \dot          dot
14230 Dot                     \Dot
14231 dotdot    \ddot         \ddot         dotdot
14232 DotDot                  \Ddot         
14233 dyad                                  dyad
14234 grave     \grave        \grave        
14235 Grave                   \Grave        
14236 hat       \hat          \hat          hat
14237 Hat                     \Hat          
14238 Prime                                 prime
14239 tilde     \tilde        \tilde        tilde
14240 Tilde                   \Tilde
14241 under     \underline    \underline    under
14242 Vec       \vec          \vec          vec
14243 VEC                     \Vec
14244 @end example
14246 The @samp{=>} (evaluates-to) operator appears as a @code{\to} symbol:
14247 @samp{@{@var{a} \to @var{b}@}}.  @TeX{} defines @code{\to} as an
14248 alias for @code{\rightarrow}.  However, if the @samp{=>} is the
14249 top-level expression being formatted, a slightly different notation
14250 is used:  @samp{\evalto @var{a} \to @var{b}}.  The @code{\evalto}
14251 word is ignored by Calc's input routines, and is undefined in @TeX{}.
14252 You will typically want to include one of the following definitions
14253 at the top of a @TeX{} file that uses @code{\evalto}:
14255 @example
14256 \def\evalto@{@}
14257 \def\evalto#1\to@{@}
14258 @end example
14260 The first definition formats evaluates-to operators in the usual
14261 way.  The second causes only the @var{b} part to appear in the
14262 printed document; the @var{a} part and the arrow are hidden.
14263 Another definition you may wish to use is @samp{\let\to=\Rightarrow}
14264 which causes @code{\to} to appear more like Calc's @samp{=>} symbol.
14265 @xref{Evaluates-To Operator}, for a discussion of @code{evalto}.
14267 The complete set of @TeX{} control sequences that are ignored during
14268 reading is:
14270 @example
14271 \hbox  \mbox  \text  \left  \right
14272 \,  \>  \:  \;  \!  \quad  \qquad  \hfil  \hfill
14273 \displaystyle  \textstyle  \dsize  \tsize
14274 \scriptstyle  \scriptscriptstyle  \ssize  \ssize
14275 \rm  \bf  \it  \sl  \roman  \bold  \italic  \slanted
14276 \cal  \mit  \Cal  \Bbb  \frak  \goth
14277 \evalto
14278 @end example
14280 Note that, because these symbols are ignored, reading a @TeX{} or
14281 La@TeX{} formula into Calc and writing it back out may lose spacing and
14282 font information. 
14284 Also, the ``discretionary multiplication sign'' @samp{\*} is read
14285 the same as @samp{*}.
14287 @ifnottex
14288 The @TeX{} version of this manual includes some printed examples at the
14289 end of this section.
14290 @end ifnottex
14291 @iftex
14292 Here are some examples of how various Calc formulas are formatted in @TeX{}:
14294 @example
14295 @group
14296 sin(a^2 / b_i)
14297 \sin\left( {a^2 \over b_i} \right)
14298 @end group
14299 @end example
14300 @tex
14301 $$ \sin\left( a^2 \over b_i \right) $$
14302 @end tex
14303 @sp 1
14305 @example
14306 @group
14307 [(3, 4), 3:4, 3 +/- 4, [3 .. inf)]
14308 [3 + 4i, @{3 \over 4@}, 3 \pm 4, [3 \ldots \infty)]
14309 @end group
14310 @end example
14311 @tex
14312 \turnoffactive
14313 $$ [3 + 4i, {3 \over 4}, 3 \pm 4, [ 3 \ldots \infty)] $$
14314 @end tex
14315 @sp 1
14317 @example
14318 @group
14319 [abs(a), abs(a / b), floor(a), ceil(a / b)]
14320 [|a|, \left| a \over b \right|,
14321  \lfloor a \rfloor, \left\lceil a \over b \right\rceil]
14322 @end group
14323 @end example
14324 @tex
14325 $$ [|a|, \left| a \over b \right|,
14326     \lfloor a \rfloor, \left\lceil a \over b \right\rceil] $$
14327 @end tex
14328 @sp 1
14330 @example
14331 @group
14332 [sin(a), sin(2 a), sin(2 + a), sin(a / b)]
14333 [\sin@{a@}, \sin@{2 a@}, \sin(2 + a),
14334  \sin\left( @{a \over b@} \right)]
14335 @end group
14336 @end example
14337 @tex
14338 \turnoffactive
14339 $$ [\sin{a}, \sin{2 a}, \sin(2 + a), \sin\left( {a \over b} \right)] $$
14340 @end tex
14341 @sp 2
14343 First with plain @kbd{d T}, then with @kbd{C-u d T}, then finally with
14344 @kbd{C-u - d T} (using the example definition
14345 @samp{\def\foo#1@{\tilde F(#1)@}}:
14347 @example
14348 @group
14349 [f(a), foo(bar), sin(pi)]
14350 [f(a), foo(bar), \sin{\pi}]
14351 [f(a), \hbox@{foo@}(\hbox@{bar@}), \sin@{\pi@}]
14352 [f(a), \foo@{\hbox@{bar@}@}, \sin@{\pi@}]
14353 @end group
14354 @end example
14355 @tex
14356 $$ [f(a), foo(bar), \sin{\pi}] $$
14357 $$ [f(a), \hbox{foo}(\hbox{bar}), \sin{\pi}] $$
14358 $$ [f(a), \tilde F(\hbox{bar}), \sin{\pi}] $$
14359 @end tex
14360 @sp 2
14362 First with @samp{\def\evalto@{@}}, then with @samp{\def\evalto#1\to@{@}}:
14364 @example
14365 @group
14366 2 + 3 => 5
14367 \evalto 2 + 3 \to 5
14368 @end group
14369 @end example
14370 @tex
14371 \turnoffactive
14372 $$ 2 + 3 \to 5 $$
14373 $$ 5 $$
14374 @end tex
14375 @sp 2
14377 First with standard @code{\to}, then with @samp{\let\to\Rightarrow}:
14379 @example
14380 @group
14381 [2 + 3 => 5, a / 2 => (b + c) / 2]
14382 [@{2 + 3 \to 5@}, @{@{a \over 2@} \to @{b + c \over 2@}@}]
14383 @end group
14384 @end example
14385 @tex
14386 \turnoffactive
14387 $$ [{2 + 3 \to 5}, {{a \over 2} \to {b + c \over 2}}] $$
14388 {\let\to\Rightarrow
14389 $$ [{2 + 3 \to 5}, {{a \over 2} \to {b + c \over 2}}] $$}
14390 @end tex
14391 @sp 2
14393 Matrices normally, then changing @code{\matrix} to @code{\pmatrix}:
14395 @example
14396 @group
14397 [ [ a / b, 0 ], [ 0, 2^(x + 1) ] ]
14398 \matrix@{ @{a \over b@} & 0 \\ 0 & 2^@{(x + 1)@} @}
14399 \pmatrix@{ @{a \over b@} & 0 \\ 0 & 2^@{(x + 1)@} @}
14400 @end group
14401 @end example
14402 @tex
14403 \turnoffactive
14404 $$ \matrix{ {a \over b} & 0 \cr 0 & 2^{(x + 1)} } $$
14405 $$ \pmatrix{ {a \over b} & 0 \cr 0 & 2^{(x + 1)} } $$
14406 @end tex
14407 @sp 2
14408 @end iftex
14410 @node Eqn Language Mode, Yacas Language Mode, TeX and LaTeX Language Modes, Language Modes
14411 @subsection Eqn Language Mode
14413 @noindent
14414 @kindex d E
14415 @pindex calc-eqn-language
14416 @dfn{Eqn} is another popular formatter for math formulas.  It is
14417 designed for use with the TROFF text formatter, and comes standard
14418 with many versions of Unix.  The @kbd{d E} (@code{calc-eqn-language})
14419 command selects @dfn{eqn} notation.
14421 The @dfn{eqn} language's main idiosyncrasy is that whitespace plays
14422 a significant part in the parsing of the language.  For example,
14423 @samp{sqrt x+1 + y} treats @samp{x+1} as the argument of the
14424 @code{sqrt} operator.  @dfn{Eqn} also understands more conventional
14425 grouping using curly braces:  @samp{sqrt@{x+1@} + y}.  Braces are
14426 required only when the argument contains spaces.
14428 In Calc's @dfn{eqn} mode, however, curly braces are required to
14429 delimit arguments of operators like @code{sqrt}.  The first of the
14430 above examples would treat only the @samp{x} as the argument of
14431 @code{sqrt}, and in fact @samp{sin x+1} would be interpreted as
14432 @samp{sin * x + 1}, because @code{sin} is not a special operator
14433 in the @dfn{eqn} language.  If you always surround the argument
14434 with curly braces, Calc will never misunderstand.
14436 Calc also understands parentheses as grouping characters.  Another
14437 peculiarity of @dfn{eqn}'s syntax makes it advisable to separate
14438 words with spaces from any surrounding characters that aren't curly
14439 braces, so Calc writes @samp{sin ( x + y )} in @dfn{eqn} mode.
14440 (The spaces around @code{sin} are important to make @dfn{eqn}
14441 recognize that @code{sin} should be typeset in a roman font, and
14442 the spaces around @code{x} and @code{y} are a good idea just in
14443 case the @dfn{eqn} document has defined special meanings for these
14444 names, too.)
14446 Powers and subscripts are written with the @code{sub} and @code{sup}
14447 operators, respectively.  Note that the caret symbol @samp{^} is
14448 treated the same as a space in @dfn{eqn} mode, as is the @samp{~}
14449 symbol (these are used to introduce spaces of various widths into
14450 the typeset output of @dfn{eqn}).
14452 As in La@TeX{} mode, Calc's formatter omits parentheses around the
14453 arguments of functions like @code{ln} and @code{sin} if they are
14454 ``simple-looking''; in this case Calc surrounds the argument with
14455 braces, separated by a @samp{~} from the function name: @samp{sin~@{x@}}.
14457 Font change codes (like @samp{roman @var{x}}) and positioning codes
14458 (like @samp{~} and @samp{down @var{n} @var{x}}) are ignored by the
14459 @dfn{eqn} reader.  Also ignored are the words @code{left}, @code{right},
14460 @code{mark}, and @code{lineup}.  Quotation marks in @dfn{eqn} mode input
14461 are treated the same as curly braces: @samp{sqrt "1+x"} is equivalent to
14462 @samp{sqrt @{1+x@}}; this is only an approximation to the true meaning
14463 of quotes in @dfn{eqn}, but it is good enough for most uses.
14465 Accent codes (@samp{@var{x} dot}) are handled by treating them as
14466 function calls (@samp{dot(@var{x})}) internally.  
14467 @xref{TeX and LaTeX Language Modes}, for a table of these accent
14468 functions.  The @code{prime} accent is treated specially if it occurs on
14469 a variable or function name: @samp{f prime prime @w{( x prime )}} is
14470 stored internally as @samp{f'@w{'}(x')}.  For example, taking the
14471 derivative of @samp{f(2 x)} with @kbd{a d x} will produce @samp{2 f'(2
14472 x)}, which @dfn{eqn} mode will display as @samp{2 f prime ( 2 x )}.
14474 Assignments are written with the @samp{<-} (left-arrow) symbol,
14475 and @code{evalto} operators are written with @samp{->} or
14476 @samp{evalto ... ->} (@pxref{TeX and LaTeX Language Modes}, for a discussion
14477 of this).  The regular Calc symbols @samp{:=} and @samp{=>} are also
14478 recognized for these operators during reading.
14480 Vectors in @dfn{eqn} mode use regular Calc square brackets, but
14481 matrices are formatted as @samp{matrix @{ ccol @{ a above b @} ... @}}.
14482 The words @code{lcol} and @code{rcol} are recognized as synonyms
14483 for @code{ccol} during input, and are generated instead of @code{ccol}
14484 if the matrix justification mode so specifies.
14486 @node Yacas Language Mode, Maxima Language Mode, Eqn Language Mode, Language Modes
14487 @subsection Yacas Language Mode
14489 @noindent
14490 @kindex d Y
14491 @pindex calc-yacas-language
14492 @cindex Yacas language
14493 The @kbd{d Y} (@code{calc-yacas-language}) command selects the
14494 conventions of Yacas, a free computer algebra system.  While the
14495 operators and functions in Yacas are similar to those of Calc, the names
14496 of built-in functions in Yacas are capitalized.  The Calc formula 
14497 @samp{sin(2 x)}, for example, is entered and displayed @samp{Sin(2 x)}
14498 in Yacas mode,  and `@samp{arcsin(x^2)} is @samp{ArcSin(x^2)} in Yacas
14499 mode.  Complex numbers are written  are written @samp{3 + 4 I}.
14500 The standard special constants are written @code{Pi}, @code{E},
14501 @code{I}, @code{GoldenRatio} and @code{Gamma}.  @code{Infinity}
14502 represents both @code{inf} and @code{uinf}, and @code{Undefined}
14503 represents @code{nan}.
14505 Certain operators on functions, such as @code{D} for differentiation 
14506 and @code{Integrate} for integration, take a prefix form in Yacas.  For
14507 example, the derivative of @w{@samp{e^x sin(x)}} can be computed with 
14508 @w{@samp{D(x) Exp(x)*Sin(x)}}.
14510 Other notable differences between Yacas and standard Calc expressions
14511 are that vectors and matrices use curly braces in Yacas, and subscripts
14512 use square brackets.  If, for example, @samp{A} represents the list
14513 @samp{@{a,2,c,4@}}, then @samp{A[3]} would equal @samp{c}.
14516 @node Maxima Language Mode, Giac Language Mode, Yacas Language Mode, Language Modes
14517 @subsection Maxima Language Mode
14519 @noindent
14520 @kindex d X
14521 @pindex calc-maxima-language
14522 @cindex Maxima language
14523 The @kbd{d X} (@code{calc-maxima-language}) command selects the
14524 conventions of Maxima, another free computer algebra system.  The
14525 function names in Maxima are similar, but not always identical, to Calc.
14526 For example, instead of @samp{arcsin(x)}, Maxima will use 
14527 @samp{asin(x)}.  Complex numbers are written @samp{3 + 4 %i}.  The
14528 standard special constants are written @code{%pi},  @code{%e},
14529 @code{%i}, @code{%phi} and @code{%gamma}.  In Maxima,  @code{inf} means
14530 the same as in Calc, but @code{infinity} represents Calc's @code{uinf}.
14532 Underscores as well as percent signs are allowed in function and
14533 variable names in Maxima mode.  The underscore again is equivalent to
14534 the @samp{#} in Normal mode, and the percent sign is equivalent to 
14535 @samp{o'o}.  
14537 Maxima uses square brackets for lists and vectors, and matrices are
14538 written as calls to the function @code{matrix}, given the row vectors of
14539 the matrix as arguments.  Square brackets are also used as subscripts.
14541 @node Giac Language Mode, Mathematica Language Mode, Maxima Language Mode, Language Modes
14542 @subsection Giac Language Mode
14544 @noindent
14545 @kindex d A
14546 @pindex calc-giac-language
14547 @cindex Giac language
14548 The @kbd{d A} (@code{calc-giac-language}) command selects the
14549 conventions of Giac, another free computer algebra system.  The function
14550 names in Giac are similar to Maxima.  Complex numbers are written
14551 @samp{3 + 4 i}.  The standard special constants in Giac are the same as
14552 in Calc, except that @code{infinity} represents both Calc's @code{inf}
14553 and @code{uinf}. 
14555 Underscores are allowed in function and variable names in Giac mode.
14556 Brackets are used for subscripts.  In Giac, indexing of lists begins at
14557 0, instead of 1 as in Calc.  So if  @samp{A} represents the list
14558 @samp{[a,2,c,4]}, then @samp{A[2]} would equal @samp{c}.  In general,
14559 @samp{A[n]} in Giac mode corresponds to @samp{A_(n+1)} in Normal mode.
14561 The Giac interval notation @samp{2 .. 3} has no surrounding brackets;
14562 Calc reads @samp{2 .. 3} as the closed interval @samp{[2 .. 3]} and
14563 writes any kind of interval as @samp{2 .. 3}.  This means you cannot see
14564 the difference between an open and a closed interval while in Giac mode.
14566 @node Mathematica Language Mode, Maple Language Mode, Giac Language Mode, Language Modes
14567 @subsection Mathematica Language Mode
14569 @noindent
14570 @kindex d M
14571 @pindex calc-mathematica-language
14572 @cindex Mathematica language
14573 The @kbd{d M} (@code{calc-mathematica-language}) command selects the
14574 conventions of Mathematica.  Notable differences in Mathematica mode
14575 are that the names of built-in functions are capitalized, and function
14576 calls use square brackets instead of parentheses.  Thus the Calc
14577 formula @samp{sin(2 x)} is entered and displayed @w{@samp{Sin[2 x]}} in
14578 Mathematica mode.
14580 Vectors and matrices use curly braces in Mathematica.  Complex numbers
14581 are written @samp{3 + 4 I}.  The standard special constants in Calc are
14582 written @code{Pi}, @code{E}, @code{I}, @code{GoldenRatio}, @code{EulerGamma},
14583 @code{Infinity}, @code{ComplexInfinity}, and @code{Indeterminate} in
14584 Mathematica mode.
14585 Non-decimal numbers are written, e.g., @samp{16^^7fff}.  Floating-point
14586 numbers in scientific notation are written @samp{1.23*10.^3}.
14587 Subscripts use double square brackets: @samp{a[[i]]}.
14589 @node Maple Language Mode, Compositions, Mathematica Language Mode, Language Modes
14590 @subsection Maple Language Mode
14592 @noindent
14593 @kindex d W
14594 @pindex calc-maple-language
14595 @cindex Maple language
14596 The @kbd{d W} (@code{calc-maple-language}) command selects the
14597 conventions of Maple.
14599 Maple's language is much like C.  Underscores are allowed in symbol
14600 names; square brackets are used for subscripts; explicit @samp{*}s for
14601 multiplications are required.  Use either @samp{^} or @samp{**} to
14602 denote powers.
14604 Maple uses square brackets for lists and curly braces for sets.  Calc
14605 interprets both notations as vectors, and displays vectors with square
14606 brackets.  This means Maple sets will be converted to lists when they
14607 pass through Calc.  As a special case, matrices are written as calls
14608 to the function @code{matrix}, given a list of lists as the argument,
14609 and can be read in this form or with all-capitals @code{MATRIX}.
14611 The Maple interval notation @samp{2 .. 3} is like Giac's interval
14612 notation, and is handled the same by Calc.
14614 Maple writes complex numbers as @samp{3 + 4*I}.  Its special constants
14615 are @code{Pi}, @code{E}, @code{I}, and @code{infinity} (all three of
14616 @code{inf}, @code{uinf}, and @code{nan} display as @code{infinity}).
14617 Floating-point numbers are written @samp{1.23*10.^3}.
14619 Among things not currently handled by Calc's Maple mode are the
14620 various quote symbols, procedures and functional operators, and
14621 inert (@samp{&}) operators.
14623 @node Compositions, Syntax Tables, Maple Language Mode, Language Modes
14624 @subsection Compositions
14626 @noindent
14627 @cindex Compositions
14628 There are several @dfn{composition functions} which allow you to get
14629 displays in a variety of formats similar to those in Big language
14630 mode.  Most of these functions do not evaluate to anything; they are
14631 placeholders which are left in symbolic form by Calc's evaluator but
14632 are recognized by Calc's display formatting routines.
14634 Two of these, @code{string} and @code{bstring}, are described elsewhere.
14635 @xref{Strings}.  For example, @samp{string("ABC")} is displayed as
14636 @samp{ABC}.  When viewed on the stack it will be indistinguishable from
14637 the variable @code{ABC}, but internally it will be stored as
14638 @samp{string([65, 66, 67])} and can still be manipulated this way; for
14639 example, the selection and vector commands @kbd{j 1 v v j u} would
14640 select the vector portion of this object and reverse the elements, then
14641 deselect to reveal a string whose characters had been reversed.
14643 The composition functions do the same thing in all language modes
14644 (although their components will of course be formatted in the current
14645 language mode).  The one exception is Unformatted mode (@kbd{d U}),
14646 which does not give the composition functions any special treatment.
14647 The functions are discussed here because of their relationship to
14648 the language modes.
14650 @menu
14651 * Composition Basics::
14652 * Horizontal Compositions::
14653 * Vertical Compositions::
14654 * Other Compositions::
14655 * Information about Compositions::
14656 * User-Defined Compositions::
14657 @end menu
14659 @node Composition Basics, Horizontal Compositions, Compositions, Compositions
14660 @subsubsection Composition Basics
14662 @noindent
14663 Compositions are generally formed by stacking formulas together
14664 horizontally or vertically in various ways.  Those formulas are
14665 themselves compositions.  @TeX{} users will find this analogous
14666 to @TeX{}'s ``boxes.''  Each multi-line composition has a
14667 @dfn{baseline}; horizontal compositions use the baselines to
14668 decide how formulas should be positioned relative to one another.
14669 For example, in the Big mode formula
14671 @example
14672 @group
14673           2
14674      a + b
14675 17 + ------
14676        c
14677 @end group
14678 @end example
14680 @noindent
14681 the second term of the sum is four lines tall and has line three as
14682 its baseline.  Thus when the term is combined with 17, line three
14683 is placed on the same level as the baseline of 17.
14685 @tex
14686 \bigskip
14687 @end tex
14689 Another important composition concept is @dfn{precedence}.  This is
14690 an integer that represents the binding strength of various operators.
14691 For example, @samp{*} has higher precedence (195) than @samp{+} (180),
14692 which means that @samp{(a * b) + c} will be formatted without the
14693 parentheses, but @samp{a * (b + c)} will keep the parentheses.
14695 The operator table used by normal and Big language modes has the
14696 following precedences:
14698 @example
14699 _     1200    @r{(subscripts)}
14700 %     1100    @r{(as in n}%@r{)}
14701 !     1000    @r{(as in }!@r{n)}
14702 mod    400
14703 +/-    300
14704 !!     210    @r{(as in n}!!@r{)}
14705 !      210    @r{(as in n}!@r{)}
14706 ^      200
14707 -      197    @r{(as in }-@r{n)}
14708 *      195    @r{(or implicit multiplication)}
14709 / % \  190
14710 + -    180    @r{(as in a}+@r{b)}
14711 |      170
14712 < =    160    @r{(and other relations)}
14713 &&     110
14714 ||     100
14715 ? :     90
14716 !!!     85
14717 &&&     80
14718 |||     75
14719 :=      50
14720 ::      45
14721 =>      40
14722 @end example
14724 The general rule is that if an operator with precedence @expr{n}
14725 occurs as an argument to an operator with precedence @expr{m}, then
14726 the argument is enclosed in parentheses if @expr{n < m}.  Top-level
14727 expressions and expressions which are function arguments, vector
14728 components, etc., are formatted with precedence zero (so that they
14729 normally never get additional parentheses).
14731 For binary left-associative operators like @samp{+}, the righthand
14732 argument is actually formatted with one-higher precedence than shown
14733 in the table.  This makes sure @samp{(a + b) + c} omits the parentheses,
14734 but the unnatural form @samp{a + (b + c)} keeps its parentheses.
14735 Right-associative operators like @samp{^} format the lefthand argument
14736 with one-higher precedence.
14738 @ignore
14739 @starindex
14740 @end ignore
14741 @tindex cprec
14742 The @code{cprec} function formats an expression with an arbitrary
14743 precedence.  For example, @samp{cprec(abc, 185)} will combine into
14744 sums and products as follows:  @samp{7 + abc}, @samp{7 (abc)} (because
14745 this @code{cprec} form has higher precedence than addition, but lower
14746 precedence than multiplication).
14748 @tex
14749 \bigskip
14750 @end tex
14752 A final composition issue is @dfn{line breaking}.  Calc uses two
14753 different strategies for ``flat'' and ``non-flat'' compositions.
14754 A non-flat composition is anything that appears on multiple lines
14755 (not counting line breaking).  Examples would be matrices and Big
14756 mode powers and quotients.  Non-flat compositions are displayed
14757 exactly as specified.  If they come out wider than the current
14758 window, you must use horizontal scrolling (@kbd{<} and @kbd{>}) to
14759 view them.
14761 Flat compositions, on the other hand, will be broken across several
14762 lines if they are too wide to fit the window.  Certain points in a
14763 composition are noted internally as @dfn{break points}.  Calc's
14764 general strategy is to fill each line as much as possible, then to
14765 move down to the next line starting at the first break point that
14766 didn't fit.  However, the line breaker understands the hierarchical
14767 structure of formulas.  It will not break an ``inner'' formula if
14768 it can use an earlier break point from an ``outer'' formula instead.
14769 For example, a vector of sums might be formatted as:
14771 @example
14772 @group
14773 [ a + b + c, d + e + f,
14774   g + h + i, j + k + l, m ]
14775 @end group
14776 @end example
14778 @noindent
14779 If the @samp{m} can fit, then so, it seems, could the @samp{g}.
14780 But Calc prefers to break at the comma since the comma is part
14781 of a ``more outer'' formula.  Calc would break at a plus sign
14782 only if it had to, say, if the very first sum in the vector had
14783 itself been too large to fit.
14785 Of the composition functions described below, only @code{choriz}
14786 generates break points.  The @code{bstring} function (@pxref{Strings})
14787 also generates breakable items:  A break point is added after every
14788 space (or group of spaces) except for spaces at the very beginning or
14789 end of the string.
14791 Composition functions themselves count as levels in the formula
14792 hierarchy, so a @code{choriz} that is a component of a larger
14793 @code{choriz} will be less likely to be broken.  As a special case,
14794 if a @code{bstring} occurs as a component of a @code{choriz} or
14795 @code{choriz}-like object (such as a vector or a list of arguments
14796 in a function call), then the break points in that @code{bstring}
14797 will be on the same level as the break points of the surrounding
14798 object.
14800 @node Horizontal Compositions, Vertical Compositions, Composition Basics, Compositions
14801 @subsubsection Horizontal Compositions
14803 @noindent
14804 @ignore
14805 @starindex
14806 @end ignore
14807 @tindex choriz
14808 The @code{choriz} function takes a vector of objects and composes
14809 them horizontally.  For example, @samp{choriz([17, a b/c, d])} formats
14810 as @w{@samp{17a b / cd}} in Normal language mode, or as
14812 @example
14813 @group
14814   a b
14815 17---d
14816    c
14817 @end group
14818 @end example
14820 @noindent
14821 in Big language mode.  This is actually one case of the general
14822 function @samp{choriz(@var{vec}, @var{sep}, @var{prec})}, where
14823 either or both of @var{sep} and @var{prec} may be omitted.
14824 @var{Prec} gives the @dfn{precedence} to use when formatting
14825 each of the components of @var{vec}.  The default precedence is
14826 the precedence from the surrounding environment.
14828 @var{Sep} is a string (i.e., a vector of character codes as might
14829 be entered with @code{" "} notation) which should separate components
14830 of the composition.  Also, if @var{sep} is given, the line breaker
14831 will allow lines to be broken after each occurrence of @var{sep}.
14832 If @var{sep} is omitted, the composition will not be breakable
14833 (unless any of its component compositions are breakable).
14835 For example, @samp{2 choriz([a, b c, d = e], " + ", 180)} is
14836 formatted as @samp{2 a + b c + (d = e)}.  To get the @code{choriz}
14837 to have precedence 180 ``outwards'' as well as ``inwards,''
14838 enclose it in a @code{cprec} form:  @samp{2 cprec(choriz(...), 180)}
14839 formats as @samp{2 (a + b c + (d = e))}.
14841 The baseline of a horizontal composition is the same as the
14842 baselines of the component compositions, which are all aligned.
14844 @node Vertical Compositions, Other Compositions, Horizontal Compositions, Compositions
14845 @subsubsection Vertical Compositions
14847 @noindent
14848 @ignore
14849 @starindex
14850 @end ignore
14851 @tindex cvert
14852 The @code{cvert} function makes a vertical composition.  Each
14853 component of the vector is centered in a column.  The baseline of
14854 the result is by default the top line of the resulting composition.
14855 For example, @samp{f(cvert([a, bb, ccc]), cvert([a^2 + 1, b^2]))}
14856 formats in Big mode as
14858 @example
14859 @group
14860 f( a ,  2    )
14861   bb   a  + 1
14862   ccc     2
14863          b
14864 @end group
14865 @end example
14867 @ignore
14868 @starindex
14869 @end ignore
14870 @tindex cbase
14871 There are several special composition functions that work only as
14872 components of a vertical composition.  The @code{cbase} function
14873 controls the baseline of the vertical composition; the baseline
14874 will be the same as the baseline of whatever component is enclosed
14875 in @code{cbase}.  Thus @samp{f(cvert([a, cbase(bb), ccc]),
14876 cvert([a^2 + 1, cbase(b^2)]))} displays as
14878 @example
14879 @group
14880         2
14881        a  + 1
14882    a      2
14883 f(bb ,   b   )
14884   ccc
14885 @end group
14886 @end example
14888 @ignore
14889 @starindex
14890 @end ignore
14891 @tindex ctbase
14892 @ignore
14893 @starindex
14894 @end ignore
14895 @tindex cbbase
14896 There are also @code{ctbase} and @code{cbbase} functions which
14897 make the baseline of the vertical composition equal to the top
14898 or bottom line (rather than the baseline) of that component.
14899 Thus @samp{cvert([cbase(a / b)]) + cvert([ctbase(a / b)]) +
14900 cvert([cbbase(a / b)])} gives
14902 @example
14903 @group
14904         a
14905 a       -
14906 - + a + b
14907 b   -
14908     b
14909 @end group
14910 @end example
14912 There should be only one @code{cbase}, @code{ctbase}, or @code{cbbase}
14913 function in a given vertical composition.  These functions can also
14914 be written with no arguments:  @samp{ctbase()} is a zero-height object
14915 which means the baseline is the top line of the following item, and
14916 @samp{cbbase()} means the baseline is the bottom line of the preceding
14917 item.
14919 @ignore
14920 @starindex
14921 @end ignore
14922 @tindex crule
14923 The @code{crule} function builds a ``rule,'' or horizontal line,
14924 across a vertical composition.  By itself @samp{crule()} uses @samp{-}
14925 characters to build the rule.  You can specify any other character,
14926 e.g., @samp{crule("=")}.  The argument must be a character code or
14927 vector of exactly one character code.  It is repeated to match the
14928 width of the widest item in the stack.  For example, a quotient
14929 with a thick line is @samp{cvert([a + 1, cbase(crule("=")), b^2])}:
14931 @example
14932 @group
14933 a + 1
14934 =====
14935   2
14937 @end group
14938 @end example
14940 @ignore
14941 @starindex
14942 @end ignore
14943 @tindex clvert
14944 @ignore
14945 @starindex
14946 @end ignore
14947 @tindex crvert
14948 Finally, the functions @code{clvert} and @code{crvert} act exactly
14949 like @code{cvert} except that the items are left- or right-justified
14950 in the stack.  Thus @samp{clvert([a, bb, ccc]) + crvert([a, bb, ccc])}
14951 gives:
14953 @example
14954 @group
14955 a   +   a
14956 bb     bb
14957 ccc   ccc
14958 @end group
14959 @end example
14961 Like @code{choriz}, the vertical compositions accept a second argument
14962 which gives the precedence to use when formatting the components.
14963 Vertical compositions do not support separator strings.
14965 @node Other Compositions, Information about Compositions, Vertical Compositions, Compositions
14966 @subsubsection Other Compositions
14968 @noindent
14969 @ignore
14970 @starindex
14971 @end ignore
14972 @tindex csup
14973 The @code{csup} function builds a superscripted expression.  For
14974 example, @samp{csup(a, b)} looks the same as @samp{a^b} does in Big
14975 language mode.  This is essentially a horizontal composition of
14976 @samp{a} and @samp{b}, where @samp{b} is shifted up so that its
14977 bottom line is one above the baseline.
14979 @ignore
14980 @starindex
14981 @end ignore
14982 @tindex csub
14983 Likewise, the @code{csub} function builds a subscripted expression.
14984 This shifts @samp{b} down so that its top line is one below the
14985 bottom line of @samp{a} (note that this is not quite analogous to
14986 @code{csup}).  Other arrangements can be obtained by using
14987 @code{choriz} and @code{cvert} directly.
14989 @ignore
14990 @starindex
14991 @end ignore
14992 @tindex cflat
14993 The @code{cflat} function formats its argument in ``flat'' mode,
14994 as obtained by @samp{d O}, if the current language mode is normal
14995 or Big.  It has no effect in other language modes.  For example,
14996 @samp{a^(b/c)} is formatted by Big mode like @samp{csup(a, cflat(b/c))}
14997 to improve its readability.
14999 @ignore
15000 @starindex
15001 @end ignore
15002 @tindex cspace
15003 The @code{cspace} function creates horizontal space.  For example,
15004 @samp{cspace(4)} is effectively the same as @samp{string("    ")}.
15005 A second string (i.e., vector of characters) argument is repeated
15006 instead of the space character.  For example, @samp{cspace(4, "ab")}
15007 looks like @samp{abababab}.  If the second argument is not a string,
15008 it is formatted in the normal way and then several copies of that
15009 are composed together:  @samp{cspace(4, a^2)} yields
15011 @example
15012 @group
15013  2 2 2 2
15014 a a a a
15015 @end group
15016 @end example
15018 @noindent
15019 If the number argument is zero, this is a zero-width object.
15021 @ignore
15022 @starindex
15023 @end ignore
15024 @tindex cvspace
15025 The @code{cvspace} function creates vertical space, or a vertical
15026 stack of copies of a certain string or formatted object.  The
15027 baseline is the center line of the resulting stack.  A numerical
15028 argument of zero will produce an object which contributes zero
15029 height if used in a vertical composition.
15031 @ignore
15032 @starindex
15033 @end ignore
15034 @tindex ctspace
15035 @ignore
15036 @starindex
15037 @end ignore
15038 @tindex cbspace
15039 There are also @code{ctspace} and @code{cbspace} functions which
15040 create vertical space with the baseline the same as the baseline
15041 of the top or bottom copy, respectively, of the second argument.
15042 Thus @samp{cvspace(2, a/b) + ctspace(2, a/b) + cbspace(2, a/b)}
15043 displays as:
15045 @example
15046 @group
15047         a
15048         -
15049 a       b
15050 -   a   a
15051 b + - + -
15052 a   b   b
15053 -   a
15054 b   -
15055     b
15056 @end group
15057 @end example
15059 @node Information about Compositions, User-Defined Compositions, Other Compositions, Compositions
15060 @subsubsection Information about Compositions
15062 @noindent
15063 The functions in this section are actual functions; they compose their
15064 arguments according to the current language and other display modes,
15065 then return a certain measurement of the composition as an integer.
15067 @ignore
15068 @starindex
15069 @end ignore
15070 @tindex cwidth
15071 The @code{cwidth} function measures the width, in characters, of a
15072 composition.  For example, @samp{cwidth(a + b)} is 5, and
15073 @samp{cwidth(a / b)} is 5 in Normal mode, 1 in Big mode, and 11 in
15074 @TeX{} mode (for @samp{@{a \over b@}}).  The argument may involve
15075 the composition functions described in this section.
15077 @ignore
15078 @starindex
15079 @end ignore
15080 @tindex cheight
15081 The @code{cheight} function measures the height of a composition.
15082 This is the total number of lines in the argument's printed form.
15084 @ignore
15085 @starindex
15086 @end ignore
15087 @tindex cascent
15088 @ignore
15089 @starindex
15090 @end ignore
15091 @tindex cdescent
15092 The functions @code{cascent} and @code{cdescent} measure the amount
15093 of the height that is above (and including) the baseline, or below
15094 the baseline, respectively.  Thus @samp{cascent(@var{x}) + cdescent(@var{x})}
15095 always equals @samp{cheight(@var{x})}.  For a one-line formula like
15096 @samp{a + b}, @code{cascent} returns 1 and @code{cdescent} returns 0.
15097 For @samp{a / b} in Big mode, @code{cascent} returns 2 and @code{cdescent}
15098 returns 1.  The only formula for which @code{cascent} will return zero
15099 is @samp{cvspace(0)} or equivalents.
15101 @node User-Defined Compositions,  , Information about Compositions, Compositions
15102 @subsubsection User-Defined Compositions
15104 @noindent
15105 @kindex Z C
15106 @pindex calc-user-define-composition
15107 The @kbd{Z C} (@code{calc-user-define-composition}) command lets you
15108 define the display format for any algebraic function.  You provide a
15109 formula containing a certain number of argument variables on the stack.
15110 Any time Calc formats a call to the specified function in the current
15111 language mode and with that number of arguments, Calc effectively
15112 replaces the function call with that formula with the arguments
15113 replaced.
15115 Calc builds the default argument list by sorting all the variable names
15116 that appear in the formula into alphabetical order.  You can edit this
15117 argument list before pressing @key{RET} if you wish.  Any variables in
15118 the formula that do not appear in the argument list will be displayed
15119 literally; any arguments that do not appear in the formula will not
15120 affect the display at all.
15122 You can define formats for built-in functions, for functions you have
15123 defined with @kbd{Z F} (@pxref{Algebraic Definitions}), or for functions
15124 which have no definitions but are being used as purely syntactic objects.
15125 You can define different formats for each language mode, and for each
15126 number of arguments, using a succession of @kbd{Z C} commands.  When
15127 Calc formats a function call, it first searches for a format defined
15128 for the current language mode (and number of arguments); if there is
15129 none, it uses the format defined for the Normal language mode.  If
15130 neither format exists, Calc uses its built-in standard format for that
15131 function (usually just @samp{@var{func}(@var{args})}).
15133 If you execute @kbd{Z C} with the number 0 on the stack instead of a
15134 formula, any defined formats for the function in the current language
15135 mode will be removed.  The function will revert to its standard format.
15137 For example, the default format for the binomial coefficient function
15138 @samp{choose(n, m)} in the Big language mode is
15140 @example
15141 @group
15143 ( )
15145 @end group
15146 @end example
15148 @noindent
15149 You might prefer the notation,
15151 @example
15152 @group
15154 n m
15155 @end group
15156 @end example
15158 @noindent
15159 To define this notation, first make sure you are in Big mode,
15160 then put the formula
15162 @smallexample
15163 choriz([cvert([cvspace(1), n]), C, cvert([cvspace(1), m])])
15164 @end smallexample
15166 @noindent
15167 on the stack and type @kbd{Z C}.  Answer the first prompt with
15168 @code{choose}.  The second prompt will be the default argument list
15169 of @samp{(C m n)}.  Edit this list to be @samp{(n m)} and press
15170 @key{RET}.  Now, try it out:  For example, turn simplification
15171 off with @kbd{m O} and enter @samp{choose(a,b) + choose(7,3)}
15172 as an algebraic entry.
15174 @example
15175 @group
15176  C  +  C
15177 a b   7 3
15178 @end group
15179 @end example
15181 As another example, let's define the usual notation for Stirling
15182 numbers of the first kind, @samp{stir1(n, m)}.  This is just like
15183 the regular format for binomial coefficients but with square brackets
15184 instead of parentheses.
15186 @smallexample
15187 choriz([string("["), cvert([n, cbase(cvspace(1)), m]), string("]")])
15188 @end smallexample
15190 Now type @kbd{Z C stir1 @key{RET}}, edit the argument list to
15191 @samp{(n m)}, and type @key{RET}.
15193 The formula provided to @kbd{Z C} usually will involve composition
15194 functions, but it doesn't have to.  Putting the formula @samp{a + b + c}
15195 onto the stack and typing @kbd{Z C foo @key{RET} @key{RET}} would define
15196 the function @samp{foo(x,y,z)} to display like @samp{x + y + z}.
15197 This ``sum'' will act exactly like a real sum for all formatting
15198 purposes (it will be parenthesized the same, and so on).  However
15199 it will be computationally unrelated to a sum.  For example, the
15200 formula @samp{2 * foo(1, 2, 3)} will display as @samp{2 (1 + 2 + 3)}.
15201 Operator precedences have caused the ``sum'' to be written in
15202 parentheses, but the arguments have not actually been summed.
15203 (Generally a display format like this would be undesirable, since
15204 it can easily be confused with a real sum.)
15206 The special function @code{eval} can be used inside a @kbd{Z C}
15207 composition formula to cause all or part of the formula to be
15208 evaluated at display time.  For example, if the formula is
15209 @samp{a + eval(b + c)}, then @samp{foo(1, 2, 3)} will be displayed
15210 as @samp{1 + 5}.  Evaluation will use the default simplifications,
15211 regardless of the current simplification mode.  There are also
15212 @code{evalsimp} and @code{evalextsimp} which simplify as if by
15213 @kbd{a s} and @kbd{a e} (respectively).  Note that these ``functions''
15214 operate only in the context of composition formulas (and also in
15215 rewrite rules, where they serve a similar purpose; @pxref{Rewrite
15216 Rules}).  On the stack, a call to @code{eval} will be left in
15217 symbolic form.
15219 It is not a good idea to use @code{eval} except as a last resort.
15220 It can cause the display of formulas to be extremely slow.  For
15221 example, while @samp{eval(a + b)} might seem quite fast and simple,
15222 there are several situations where it could be slow.  For example,
15223 @samp{a} and/or @samp{b} could be polar complex numbers, in which
15224 case doing the sum requires trigonometry.  Or, @samp{a} could be
15225 the factorial @samp{fact(100)} which is unevaluated because you
15226 have typed @kbd{m O}; @code{eval} will evaluate it anyway to
15227 produce a large, unwieldy integer.
15229 You can save your display formats permanently using the @kbd{Z P}
15230 command (@pxref{Creating User Keys}).
15232 @node Syntax Tables,  , Compositions, Language Modes
15233 @subsection Syntax Tables
15235 @noindent
15236 @cindex Syntax tables
15237 @cindex Parsing formulas, customized
15238 Syntax tables do for input what compositions do for output:  They
15239 allow you to teach custom notations to Calc's formula parser.
15240 Calc keeps a separate syntax table for each language mode.
15242 (Note that the Calc ``syntax tables'' discussed here are completely
15243 unrelated to the syntax tables described in the Emacs manual.)
15245 @kindex Z S
15246 @pindex calc-edit-user-syntax
15247 The @kbd{Z S} (@code{calc-edit-user-syntax}) command edits the
15248 syntax table for the current language mode.  If you want your
15249 syntax to work in any language, define it in the Normal language
15250 mode.  Type @kbd{C-c C-c} to finish editing the syntax table, or
15251 @kbd{C-x k} to cancel the edit.  The @kbd{m m} command saves all
15252 the syntax tables along with the other mode settings;
15253 @pxref{General Mode Commands}.
15255 @menu
15256 * Syntax Table Basics::
15257 * Precedence in Syntax Tables::
15258 * Advanced Syntax Patterns::
15259 * Conditional Syntax Rules::
15260 @end menu
15262 @node Syntax Table Basics, Precedence in Syntax Tables, Syntax Tables, Syntax Tables
15263 @subsubsection Syntax Table Basics
15265 @noindent
15266 @dfn{Parsing} is the process of converting a raw string of characters,
15267 such as you would type in during algebraic entry, into a Calc formula.
15268 Calc's parser works in two stages.  First, the input is broken down
15269 into @dfn{tokens}, such as words, numbers, and punctuation symbols
15270 like @samp{+}, @samp{:=}, and @samp{+/-}.  Space between tokens is
15271 ignored (except when it serves to separate adjacent words).  Next,
15272 the parser matches this string of tokens against various built-in
15273 syntactic patterns, such as ``an expression followed by @samp{+}
15274 followed by another expression'' or ``a name followed by @samp{(},
15275 zero or more expressions separated by commas, and @samp{)}.''
15277 A @dfn{syntax table} is a list of user-defined @dfn{syntax rules},
15278 which allow you to specify new patterns to define your own
15279 favorite input notations.  Calc's parser always checks the syntax
15280 table for the current language mode, then the table for the Normal
15281 language mode, before it uses its built-in rules to parse an
15282 algebraic formula you have entered.  Each syntax rule should go on
15283 its own line; it consists of a @dfn{pattern}, a @samp{:=} symbol,
15284 and a Calc formula with an optional @dfn{condition}.  (Syntax rules
15285 resemble algebraic rewrite rules, but the notation for patterns is
15286 completely different.)
15288 A syntax pattern is a list of tokens, separated by spaces.
15289 Except for a few special symbols, tokens in syntax patterns are
15290 matched literally, from left to right.  For example, the rule,
15292 @example
15293 foo ( ) := 2+3
15294 @end example
15296 @noindent
15297 would cause Calc to parse the formula @samp{4+foo()*5} as if it
15298 were @samp{4+(2+3)*5}.  Notice that the parentheses were written
15299 as two separate tokens in the rule.  As a result, the rule works
15300 for both @samp{foo()} and @w{@samp{foo (  )}}.  If we had written
15301 the rule as @samp{foo () := 2+3}, then Calc would treat @samp{()}
15302 as a single, indivisible token, so that @w{@samp{foo( )}} would
15303 not be recognized by the rule.  (It would be parsed as a regular
15304 zero-argument function call instead.)  In fact, this rule would
15305 also make trouble for the rest of Calc's parser:  An unrelated
15306 formula like @samp{bar()} would now be tokenized into @samp{bar ()}
15307 instead of @samp{bar ( )}, so that the standard parser for function
15308 calls would no longer recognize it!
15310 While it is possible to make a token with a mixture of letters
15311 and punctuation symbols, this is not recommended.  It is better to
15312 break it into several tokens, as we did with @samp{foo()} above.
15314 The symbol @samp{#} in a syntax pattern matches any Calc expression.
15315 On the righthand side, the things that matched the @samp{#}s can
15316 be referred to as @samp{#1}, @samp{#2}, and so on (where @samp{#1}
15317 matches the leftmost @samp{#} in the pattern).  For example, these
15318 rules match a user-defined function, prefix operator, infix operator,
15319 and postfix operator, respectively:
15321 @example
15322 foo ( # ) := myfunc(#1)
15323 foo # := myprefix(#1)
15324 # foo # := myinfix(#1,#2)
15325 # foo := mypostfix(#1)
15326 @end example
15328 Thus @samp{foo(3)} will parse as @samp{myfunc(3)}, and @samp{2+3 foo}
15329 will parse as @samp{mypostfix(2+3)}.
15331 It is important to write the first two rules in the order shown,
15332 because Calc tries rules in order from first to last.  If the
15333 pattern @samp{foo #} came first, it would match anything that could
15334 match the @samp{foo ( # )} rule, since an expression in parentheses
15335 is itself a valid expression.  Thus the @w{@samp{foo ( # )}} rule would
15336 never get to match anything.  Likewise, the last two rules must be
15337 written in the order shown or else @samp{3 foo 4} will be parsed as
15338 @samp{mypostfix(3) * 4}.  (Of course, the best way to avoid these
15339 ambiguities is not to use the same symbol in more than one way at
15340 the same time!  In case you're not convinced, try the following
15341 exercise:  How will the above rules parse the input @samp{foo(3,4)},
15342 if at all?  Work it out for yourself, then try it in Calc and see.)
15344 Calc is quite flexible about what sorts of patterns are allowed.
15345 The only rule is that every pattern must begin with a literal
15346 token (like @samp{foo} in the first two patterns above), or with
15347 a @samp{#} followed by a literal token (as in the last two
15348 patterns).  After that, any mixture is allowed, although putting
15349 two @samp{#}s in a row will not be very useful since two
15350 expressions with nothing between them will be parsed as one
15351 expression that uses implicit multiplication.
15353 As a more practical example, Maple uses the notation
15354 @samp{sum(a(i), i=1..10)} for sums, which Calc's Maple mode doesn't
15355 recognize at present.  To handle this syntax, we simply add the
15356 rule,
15358 @example
15359 sum ( # , # = # .. # ) := sum(#1,#2,#3,#4)
15360 @end example
15362 @noindent
15363 to the Maple mode syntax table.  As another example, C mode can't
15364 read assignment operators like @samp{++} and @samp{*=}.  We can
15365 define these operators quite easily:
15367 @example
15368 # *= # := muleq(#1,#2)
15369 # ++ := postinc(#1)
15370 ++ # := preinc(#1)
15371 @end example
15373 @noindent
15374 To complete the job, we would use corresponding composition functions
15375 and @kbd{Z C} to cause these functions to display in their respective
15376 Maple and C notations.  (Note that the C example ignores issues of
15377 operator precedence, which are discussed in the next section.)
15379 You can enclose any token in quotes to prevent its usual
15380 interpretation in syntax patterns:
15382 @example
15383 # ":=" # := becomes(#1,#2)
15384 @end example
15386 Quotes also allow you to include spaces in a token, although once
15387 again it is generally better to use two tokens than one token with
15388 an embedded space.  To include an actual quotation mark in a quoted
15389 token, precede it with a backslash.  (This also works to include
15390 backslashes in tokens.)
15392 @example
15393 # "bad token" # "/\"\\" # := silly(#1,#2,#3)
15394 @end example
15396 @noindent
15397 This will parse @samp{3 bad token 4 /"\ 5} to @samp{silly(3,4,5)}.
15399 The token @kbd{#} has a predefined meaning in Calc's formula parser;
15400 it is not valid to use @samp{"#"} in a syntax rule.  However, longer
15401 tokens that include the @samp{#} character are allowed.  Also, while
15402 @samp{"$"} and @samp{"\""} are allowed as tokens, their presence in
15403 the syntax table will prevent those characters from working in their
15404 usual ways (referring to stack entries and quoting strings,
15405 respectively).
15407 Finally, the notation @samp{%%} anywhere in a syntax table causes
15408 the rest of the line to be ignored as a comment.
15410 @node Precedence in Syntax Tables, Advanced Syntax Patterns, Syntax Table Basics, Syntax Tables
15411 @subsubsection Precedence
15413 @noindent
15414 Different operators are generally assigned different @dfn{precedences}.
15415 By default, an operator defined by a rule like
15417 @example
15418 # foo # := foo(#1,#2)
15419 @end example
15421 @noindent
15422 will have an extremely low precedence, so that @samp{2*3+4 foo 5 == 6}
15423 will be parsed as @samp{(2*3+4) foo (5 == 6)}.  To change the
15424 precedence of an operator, use the notation @samp{#/@var{p}} in
15425 place of @samp{#}, where @var{p} is an integer precedence level.
15426 For example, 185 lies between the precedences for @samp{+} and
15427 @samp{*}, so if we change this rule to
15429 @example
15430 #/185 foo #/186 := foo(#1,#2)
15431 @end example
15433 @noindent
15434 then @samp{2+3 foo 4*5} will be parsed as @samp{2+(3 foo (4*5))}.
15435 Also, because we've given the righthand expression slightly higher
15436 precedence, our new operator will be left-associative:
15437 @samp{1 foo 2 foo 3} will be parsed as @samp{(1 foo 2) foo 3}.
15438 By raising the precedence of the lefthand expression instead, we
15439 can create a right-associative operator.
15441 @xref{Composition Basics}, for a table of precedences of the
15442 standard Calc operators.  For the precedences of operators in other
15443 language modes, look in the Calc source file @file{calc-lang.el}.
15445 @node Advanced Syntax Patterns, Conditional Syntax Rules, Precedence in Syntax Tables, Syntax Tables
15446 @subsubsection Advanced Syntax Patterns
15448 @noindent
15449 To match a function with a variable number of arguments, you could
15450 write
15452 @example
15453 foo ( # ) := myfunc(#1)
15454 foo ( # , # ) := myfunc(#1,#2)
15455 foo ( # , # , # ) := myfunc(#1,#2,#3)
15456 @end example
15458 @noindent
15459 but this isn't very elegant.  To match variable numbers of items,
15460 Calc uses some notations inspired regular expressions and the
15461 ``extended BNF'' style used by some language designers.
15463 @example
15464 foo ( @{ # @}*, ) := apply(myfunc,#1)
15465 @end example
15467 The token @samp{@{} introduces a repeated or optional portion.
15468 One of the three tokens @samp{@}*}, @samp{@}+}, or @samp{@}?}
15469 ends the portion.  These will match zero or more, one or more,
15470 or zero or one copies of the enclosed pattern, respectively.
15471 In addition, @samp{@}*} and @samp{@}+} can be followed by a
15472 separator token (with no space in between, as shown above).
15473 Thus @samp{@{ # @}*,} matches nothing, or one expression, or
15474 several expressions separated by commas.
15476 A complete @samp{@{ ... @}} item matches as a vector of the
15477 items that matched inside it.  For example, the above rule will
15478 match @samp{foo(1,2,3)} to get @samp{apply(myfunc,[1,2,3])}.
15479 The Calc @code{apply} function takes a function name and a vector
15480 of arguments and builds a call to the function with those
15481 arguments, so the net result is the formula @samp{myfunc(1,2,3)}.
15483 If the body of a @samp{@{ ... @}} contains several @samp{#}s
15484 (or nested @samp{@{ ... @}} constructs), then the items will be
15485 strung together into the resulting vector.  If the body
15486 does not contain anything but literal tokens, the result will
15487 always be an empty vector.
15489 @example
15490 foo ( @{ # , # @}+, ) := bar(#1)
15491 foo ( @{ @{ # @}*, @}*; ) := matrix(#1)
15492 @end example
15494 @noindent
15495 will parse @samp{foo(1, 2, 3, 4)} as @samp{bar([1, 2, 3, 4])}, and
15496 @samp{foo(1, 2; 3, 4)} as @samp{matrix([[1, 2], [3, 4]])}.  Also, after
15497 some thought it's easy to see how this pair of rules will parse
15498 @samp{foo(1, 2, 3)} as @samp{matrix([[1, 2, 3]])}, since the first
15499 rule will only match an even number of arguments.  The rule
15501 @example
15502 foo ( # @{ , # , # @}? ) := bar(#1,#2)
15503 @end example
15505 @noindent
15506 will parse @samp{foo(2,3,4)} as @samp{bar(2,[3,4])}, and
15507 @samp{foo(2)} as @samp{bar(2,[])}.
15509 The notation @samp{@{ ... @}?.} (note the trailing period) works
15510 just the same as regular @samp{@{ ... @}?}, except that it does not
15511 count as an argument; the following two rules are equivalent:
15513 @example
15514 foo ( # , @{ also @}? # ) := bar(#1,#3)
15515 foo ( # , @{ also @}?. # ) := bar(#1,#2)
15516 @end example
15518 @noindent
15519 Note that in the first case the optional text counts as @samp{#2},
15520 which will always be an empty vector, but in the second case no
15521 empty vector is produced.
15523 Another variant is @samp{@{ ... @}?$}, which means the body is
15524 optional only at the end of the input formula.  All built-in syntax
15525 rules in Calc use this for closing delimiters, so that during
15526 algebraic entry you can type @kbd{[sqrt(2), sqrt(3 @key{RET}}, omitting
15527 the closing parenthesis and bracket.  Calc does this automatically
15528 for trailing @samp{)}, @samp{]}, and @samp{>} tokens in syntax
15529 rules, but you can use @samp{@{ ... @}?$} explicitly to get
15530 this effect with any token (such as @samp{"@}"} or @samp{end}).
15531 Like @samp{@{ ... @}?.}, this notation does not count as an
15532 argument.  Conversely, you can use quotes, as in @samp{")"}, to
15533 prevent a closing-delimiter token from being automatically treated
15534 as optional.
15536 Calc's parser does not have full backtracking, which means some
15537 patterns will not work as you might expect:
15539 @example
15540 foo ( @{ # , @}? # , # ) := bar(#1,#2,#3)
15541 @end example
15543 @noindent
15544 Here we are trying to make the first argument optional, so that
15545 @samp{foo(2,3)} parses as @samp{bar([],2,3)}.  Unfortunately, Calc
15546 first tries to match @samp{2,} against the optional part of the
15547 pattern, finds a match, and so goes ahead to match the rest of the
15548 pattern.  Later on it will fail to match the second comma, but it
15549 doesn't know how to go back and try the other alternative at that
15550 point.  One way to get around this would be to use two rules:
15552 @example
15553 foo ( # , # , # ) := bar([#1],#2,#3)
15554 foo ( # , # ) := bar([],#1,#2)
15555 @end example
15557 More precisely, when Calc wants to match an optional or repeated
15558 part of a pattern, it scans forward attempting to match that part.
15559 If it reaches the end of the optional part without failing, it
15560 ``finalizes'' its choice and proceeds.  If it fails, though, it
15561 backs up and tries the other alternative.  Thus Calc has ``partial''
15562 backtracking.  A fully backtracking parser would go on to make sure
15563 the rest of the pattern matched before finalizing the choice.
15565 @node Conditional Syntax Rules,  , Advanced Syntax Patterns, Syntax Tables
15566 @subsubsection Conditional Syntax Rules
15568 @noindent
15569 It is possible to attach a @dfn{condition} to a syntax rule.  For
15570 example, the rules
15572 @example
15573 foo ( # ) := ifoo(#1) :: integer(#1)
15574 foo ( # ) := gfoo(#1)
15575 @end example
15577 @noindent
15578 will parse @samp{foo(3)} as @samp{ifoo(3)}, but will parse
15579 @samp{foo(3.5)} and @samp{foo(x)} as calls to @code{gfoo}.  Any
15580 number of conditions may be attached; all must be true for the
15581 rule to succeed.  A condition is ``true'' if it evaluates to a
15582 nonzero number.  @xref{Logical Operations}, for a list of Calc
15583 functions like @code{integer} that perform logical tests.
15585 The exact sequence of events is as follows:  When Calc tries a
15586 rule, it first matches the pattern as usual.  It then substitutes
15587 @samp{#1}, @samp{#2}, etc., in the conditions, if any.  Next, the
15588 conditions are simplified and evaluated in order from left to right,
15589 as if by the @w{@kbd{a s}} algebra command (@pxref{Simplifying Formulas}).
15590 Each result is true if it is a nonzero number, or an expression
15591 that can be proven to be nonzero (@pxref{Declarations}).  If the
15592 results of all conditions are true, the expression (such as
15593 @samp{ifoo(#1)}) has its @samp{#}s substituted, and that is the
15594 result of the parse.  If the result of any condition is false, Calc
15595 goes on to try the next rule in the syntax table.
15597 Syntax rules also support @code{let} conditions, which operate in
15598 exactly the same way as they do in algebraic rewrite rules.
15599 @xref{Other Features of Rewrite Rules}, for details.  A @code{let}
15600 condition is always true, but as a side effect it defines a
15601 variable which can be used in later conditions, and also in the
15602 expression after the @samp{:=} sign:
15604 @example
15605 foo ( # ) := hifoo(x) :: let(x := #1 + 0.5) :: dnumint(x)
15606 @end example
15608 @noindent
15609 The @code{dnumint} function tests if a value is numerically an
15610 integer, i.e., either a true integer or an integer-valued float.
15611 This rule will parse @code{foo} with a half-integer argument,
15612 like @samp{foo(3.5)}, to a call like @samp{hifoo(4.)}.
15614 The lefthand side of a syntax rule @code{let} must be a simple
15615 variable, not the arbitrary pattern that is allowed in rewrite
15616 rules.
15618 The @code{matches} function is also treated specially in syntax
15619 rule conditions (again, in the same way as in rewrite rules).
15620 @xref{Matching Commands}.  If the matching pattern contains
15621 meta-variables, then those meta-variables may be used in later
15622 conditions and in the result expression.  The arguments to
15623 @code{matches} are not evaluated in this situation.
15625 @example
15626 sum ( # , # ) := sum(#1,a,b,c) :: matches(#2, a=[b..c])
15627 @end example
15629 @noindent
15630 This is another way to implement the Maple mode @code{sum} notation.
15631 In this approach, we allow @samp{#2} to equal the whole expression
15632 @samp{i=1..10}.  Then, we use @code{matches} to break it apart into
15633 its components.  If the expression turns out not to match the pattern,
15634 the syntax rule will fail.  Note that @kbd{Z S} always uses Calc's
15635 Normal language mode for editing expressions in syntax rules, so we
15636 must use regular Calc notation for the interval @samp{[b..c]} that
15637 will correspond to the Maple mode interval @samp{1..10}.
15639 @node Modes Variable, Calc Mode Line, Language Modes, Mode Settings
15640 @section The @code{Modes} Variable
15642 @noindent
15643 @kindex m g
15644 @pindex calc-get-modes
15645 The @kbd{m g} (@code{calc-get-modes}) command pushes onto the stack
15646 a vector of numbers that describes the various mode settings that
15647 are in effect.  With a numeric prefix argument, it pushes only the
15648 @var{n}th mode, i.e., the @var{n}th element of this vector.  Keyboard
15649 macros can use the @kbd{m g} command to modify their behavior based
15650 on the current mode settings.
15652 @cindex @code{Modes} variable
15653 @vindex Modes
15654 The modes vector is also available in the special variable
15655 @code{Modes}.  In other words, @kbd{m g} is like @kbd{s r Modes @key{RET}}.
15656 It will not work to store into this variable; in fact, if you do,
15657 @code{Modes} will cease to track the current modes.  (The @kbd{m g}
15658 command will continue to work, however.)
15660 In general, each number in this vector is suitable as a numeric
15661 prefix argument to the associated mode-setting command.  (Recall
15662 that the @kbd{~} key takes a number from the stack and gives it as
15663 a numeric prefix to the next command.)
15665 The elements of the modes vector are as follows:
15667 @enumerate
15668 @item
15669 Current precision.  Default is 12; associated command is @kbd{p}.
15671 @item
15672 Binary word size.  Default is 32; associated command is @kbd{b w}.
15674 @item
15675 Stack size (not counting the value about to be pushed by @kbd{m g}).
15676 This is zero if @kbd{m g} is executed with an empty stack.
15678 @item
15679 Number radix.  Default is 10; command is @kbd{d r}.
15681 @item
15682 Floating-point format.  This is the number of digits, plus the
15683 constant 0 for normal notation, 10000 for scientific notation,
15684 20000 for engineering notation, or 30000 for fixed-point notation.
15685 These codes are acceptable as prefix arguments to the @kbd{d n}
15686 command, but note that this may lose information:  For example,
15687 @kbd{d s} and @kbd{C-u 12 d s} have similar (but not quite
15688 identical) effects if the current precision is 12, but they both
15689 produce a code of 10012, which will be treated by @kbd{d n} as
15690 @kbd{C-u 12 d s}.  If the precision then changes, the float format
15691 will still be frozen at 12 significant figures.
15693 @item
15694 Angular mode.  Default is 1 (degrees).  Other values are 2 (radians)
15695 and 3 (HMS).  The @kbd{m d} command accepts these prefixes.
15697 @item
15698 Symbolic mode.  Value is 0 or 1; default is 0.  Command is @kbd{m s}.
15700 @item
15701 Fraction mode.  Value is 0 or 1; default is 0.  Command is @kbd{m f}.
15703 @item
15704 Polar mode.  Value is 0 (rectangular) or 1 (polar); default is 0.
15705 Command is @kbd{m p}.
15707 @item
15708 Matrix/Scalar mode.  Default value is @mathit{-1}.  Value is 0 for Scalar
15709 mode, @mathit{-2} for Matrix mode, @mathit{-3} for square Matrix mode,
15710 or @var{N} for  
15711 @texline @math{N\times N}
15712 @infoline @var{N}x@var{N} 
15713 Matrix mode.  Command is @kbd{m v}.
15715 @item
15716 Simplification mode.  Default is 1.  Value is @mathit{-1} for off (@kbd{m O}),
15717 0 for @kbd{m N}, 2 for @kbd{m B}, 3 for @kbd{m A}, 4 for @kbd{m E},
15718 or 5 for @w{@kbd{m U}}.  The @kbd{m D} command accepts these prefixes.
15720 @item
15721 Infinite mode.  Default is @mathit{-1} (off).  Value is 1 if the mode is on,
15722 or 0 if the mode is on with positive zeros.  Command is @kbd{m i}.
15723 @end enumerate
15725 For example, the sequence @kbd{M-1 m g @key{RET} 2 + ~ p} increases the
15726 precision by two, leaving a copy of the old precision on the stack.
15727 Later, @kbd{~ p} will restore the original precision using that
15728 stack value.  (This sequence might be especially useful inside a
15729 keyboard macro.)
15731 As another example, @kbd{M-3 m g 1 - ~ @key{DEL}} deletes all but the
15732 oldest (bottommost) stack entry.
15734 Yet another example:  The HP-48 ``round'' command rounds a number
15735 to the current displayed precision.  You could roughly emulate this
15736 in Calc with the sequence @kbd{M-5 m g 10000 % ~ c c}.  (This
15737 would not work for fixed-point mode, but it wouldn't be hard to
15738 do a full emulation with the help of the @kbd{Z [} and @kbd{Z ]}
15739 programming commands.  @xref{Conditionals in Macros}.)
15741 @node Calc Mode Line,  , Modes Variable, Mode Settings
15742 @section The Calc Mode Line
15744 @noindent
15745 @cindex Mode line indicators
15746 This section is a summary of all symbols that can appear on the
15747 Calc mode line, the highlighted bar that appears under the Calc
15748 stack window (or under an editing window in Embedded mode).
15750 The basic mode line format is:
15752 @example
15753 --%%-Calc: 12 Deg @var{other modes}       (Calculator)
15754 @end example
15756 The @samp{%%} is the Emacs symbol for ``read-only''; it shows that
15757 regular Emacs commands are not allowed to edit the stack buffer
15758 as if it were text.
15760 The word @samp{Calc:} changes to @samp{CalcEmbed:} if Embedded mode
15761 is enabled.  The words after this describe the various Calc modes
15762 that are in effect.
15764 The first mode is always the current precision, an integer.
15765 The second mode is always the angular mode, either @code{Deg},
15766 @code{Rad}, or @code{Hms}.
15768 Here is a complete list of the remaining symbols that can appear
15769 on the mode line:
15771 @table @code
15772 @item Alg
15773 Algebraic mode (@kbd{m a}; @pxref{Algebraic Entry}).
15775 @item Alg[(
15776 Incomplete algebraic mode (@kbd{C-u m a}).
15778 @item Alg*
15779 Total algebraic mode (@kbd{m t}).
15781 @item Symb
15782 Symbolic mode (@kbd{m s}; @pxref{Symbolic Mode}).
15784 @item Matrix
15785 Matrix mode (@kbd{m v}; @pxref{Matrix Mode}).
15787 @item Matrix@var{n}
15788 Dimensioned Matrix mode (@kbd{C-u @var{n} m v}; @pxref{Matrix Mode}).
15790 @item SqMatrix
15791 Square Matrix mode (@kbd{C-u m v}; @pxref{Matrix Mode}).
15793 @item Scalar
15794 Scalar mode (@kbd{m v}; @pxref{Matrix Mode}).
15796 @item Polar
15797 Polar complex mode (@kbd{m p}; @pxref{Polar Mode}).
15799 @item Frac
15800 Fraction mode (@kbd{m f}; @pxref{Fraction Mode}).
15802 @item Inf
15803 Infinite mode (@kbd{m i}; @pxref{Infinite Mode}).
15805 @item +Inf
15806 Positive Infinite mode (@kbd{C-u 0 m i}).
15808 @item NoSimp
15809 Default simplifications off (@kbd{m O}; @pxref{Simplification Modes}).
15811 @item NumSimp
15812 Default simplifications for numeric arguments only (@kbd{m N}).
15814 @item BinSimp@var{w}
15815 Binary-integer simplification mode; word size @var{w} (@kbd{m B}, @kbd{b w}).
15817 @item AlgSimp
15818 Algebraic simplification mode (@kbd{m A}).
15820 @item ExtSimp
15821 Extended algebraic simplification mode (@kbd{m E}).
15823 @item UnitSimp
15824 Units simplification mode (@kbd{m U}).
15826 @item Bin
15827 Current radix is 2 (@kbd{d 2}; @pxref{Radix Modes}).
15829 @item Oct
15830 Current radix is 8 (@kbd{d 8}).
15832 @item Hex
15833 Current radix is 16 (@kbd{d 6}).
15835 @item Radix@var{n}
15836 Current radix is @var{n} (@kbd{d r}).
15838 @item Zero
15839 Leading zeros (@kbd{d z}; @pxref{Radix Modes}).
15841 @item Big
15842 Big language mode (@kbd{d B}; @pxref{Normal Language Modes}).
15844 @item Flat
15845 One-line normal language mode (@kbd{d O}).
15847 @item Unform
15848 Unformatted language mode (@kbd{d U}).
15850 @item C
15851 C language mode (@kbd{d C}; @pxref{C FORTRAN Pascal}).
15853 @item Pascal
15854 Pascal language mode (@kbd{d P}).
15856 @item Fortran
15857 FORTRAN language mode (@kbd{d F}).
15859 @item TeX
15860 @TeX{} language mode (@kbd{d T}; @pxref{TeX and LaTeX Language Modes}).
15862 @item LaTeX
15863 La@TeX{} language mode (@kbd{d L}; @pxref{TeX and LaTeX Language Modes}).
15865 @item Eqn
15866 @dfn{Eqn} language mode (@kbd{d E}; @pxref{Eqn Language Mode}).
15868 @item Math
15869 Mathematica language mode (@kbd{d M}; @pxref{Mathematica Language Mode}).
15871 @item Maple
15872 Maple language mode (@kbd{d W}; @pxref{Maple Language Mode}).
15874 @item Norm@var{n}
15875 Normal float mode with @var{n} digits (@kbd{d n}; @pxref{Float Formats}).
15877 @item Fix@var{n}
15878 Fixed point mode with @var{n} digits after the point (@kbd{d f}).
15880 @item Sci
15881 Scientific notation mode (@kbd{d s}).
15883 @item Sci@var{n}
15884 Scientific notation with @var{n} digits (@kbd{d s}).
15886 @item Eng
15887 Engineering notation mode (@kbd{d e}).
15889 @item Eng@var{n}
15890 Engineering notation with @var{n} digits (@kbd{d e}).
15892 @item Left@var{n}
15893 Left-justified display indented by @var{n} (@kbd{d <}; @pxref{Justification}).
15895 @item Right
15896 Right-justified display (@kbd{d >}).
15898 @item Right@var{n}
15899 Right-justified display with width @var{n} (@kbd{d >}).
15901 @item Center
15902 Centered display (@kbd{d =}).
15904 @item Center@var{n}
15905 Centered display with center column @var{n} (@kbd{d =}).
15907 @item Wid@var{n}
15908 Line breaking with width @var{n} (@kbd{d b}; @pxref{Normal Language Modes}).
15910 @item Wide
15911 No line breaking (@kbd{d b}).
15913 @item Break
15914 Selections show deep structure (@kbd{j b}; @pxref{Making Selections}).
15916 @item Save
15917 Record modes in @file{~/.calc.el} (@kbd{m R}; @pxref{General Mode Commands}).
15919 @item Local
15920 Record modes in Embedded buffer (@kbd{m R}).
15922 @item LocEdit
15923 Record modes as editing-only in Embedded buffer (@kbd{m R}).
15925 @item LocPerm
15926 Record modes as permanent-only in Embedded buffer (@kbd{m R}).
15928 @item Global
15929 Record modes as global in Embedded buffer (@kbd{m R}).
15931 @item Manual
15932 Automatic recomputation turned off (@kbd{m C}; @pxref{Automatic
15933 Recomputation}).
15935 @item Graph
15936 GNUPLOT process is alive in background (@pxref{Graphics}).
15938 @item Sel
15939 Top-of-stack has a selection (Embedded only; @pxref{Making Selections}).
15941 @item Dirty
15942 The stack display may not be up-to-date (@pxref{Display Modes}).
15944 @item Inv
15945 ``Inverse'' prefix was pressed (@kbd{I}; @pxref{Inverse and Hyperbolic}).
15947 @item Hyp
15948 ``Hyperbolic'' prefix was pressed (@kbd{H}).
15950 @item Keep
15951 ``Keep-arguments'' prefix was pressed (@kbd{K}).
15953 @item Narrow
15954 Stack is truncated (@kbd{d t}; @pxref{Truncating the Stack}).
15955 @end table
15957 In addition, the symbols @code{Active} and @code{~Active} can appear
15958 as minor modes on an Embedded buffer's mode line.  @xref{Embedded Mode}.
15960 @node Arithmetic, Scientific Functions, Mode Settings, Top
15961 @chapter Arithmetic Functions
15963 @noindent
15964 This chapter describes the Calc commands for doing simple calculations
15965 on numbers, such as addition, absolute value, and square roots.  These
15966 commands work by removing the top one or two values from the stack,
15967 performing the desired operation, and pushing the result back onto the
15968 stack.  If the operation cannot be performed, the result pushed is a
15969 formula instead of a number, such as @samp{2/0} (because division by zero
15970 is invalid) or @samp{sqrt(x)} (because the argument @samp{x} is a formula).
15972 Most of the commands described here can be invoked by a single keystroke.
15973 Some of the more obscure ones are two-letter sequences beginning with
15974 the @kbd{f} (``functions'') prefix key.
15976 @xref{Prefix Arguments}, for a discussion of the effect of numeric
15977 prefix arguments on commands in this chapter which do not otherwise
15978 interpret a prefix argument.
15980 @menu
15981 * Basic Arithmetic::
15982 * Integer Truncation::
15983 * Complex Number Functions::
15984 * Conversions::
15985 * Date Arithmetic::
15986 * Financial Functions::
15987 * Binary Functions::
15988 @end menu
15990 @node Basic Arithmetic, Integer Truncation, Arithmetic, Arithmetic
15991 @section Basic Arithmetic
15993 @noindent
15994 @kindex +
15995 @pindex calc-plus
15996 @ignore
15997 @mindex @null
15998 @end ignore
15999 @tindex +
16000 The @kbd{+} (@code{calc-plus}) command adds two numbers.  The numbers may
16001 be any of the standard Calc data types.  The resulting sum is pushed back
16002 onto the stack.
16004 If both arguments of @kbd{+} are vectors or matrices (of matching dimensions),
16005 the result is a vector or matrix sum.  If one argument is a vector and the
16006 other a scalar (i.e., a non-vector), the scalar is added to each of the
16007 elements of the vector to form a new vector.  If the scalar is not a
16008 number, the operation is left in symbolic form:  Suppose you added @samp{x}
16009 to the vector @samp{[1,2]}.  You may want the result @samp{[1+x,2+x]}, or
16010 you may plan to substitute a 2-vector for @samp{x} in the future.  Since
16011 the Calculator can't tell which interpretation you want, it makes the
16012 safest assumption.  @xref{Reducing and Mapping}, for a way to add @samp{x}
16013 to every element of a vector.
16015 If either argument of @kbd{+} is a complex number, the result will in general
16016 be complex.  If one argument is in rectangular form and the other polar,
16017 the current Polar mode determines the form of the result.  If Symbolic
16018 mode is enabled, the sum may be left as a formula if the necessary
16019 conversions for polar addition are non-trivial.
16021 If both arguments of @kbd{+} are HMS forms, the forms are added according to
16022 the usual conventions of hours-minutes-seconds notation.  If one argument
16023 is an HMS form and the other is a number, that number is converted from
16024 degrees or radians (depending on the current Angular mode) to HMS format
16025 and then the two HMS forms are added.
16027 If one argument of @kbd{+} is a date form, the other can be either a
16028 real number, which advances the date by a certain number of days, or
16029 an HMS form, which advances the date by a certain amount of time.
16030 Subtracting two date forms yields the number of days between them.
16031 Adding two date forms is meaningless, but Calc interprets it as the
16032 subtraction of one date form and the negative of the other.  (The
16033 negative of a date form can be understood by remembering that dates
16034 are stored as the number of days before or after Jan 1, 1 AD.)
16036 If both arguments of @kbd{+} are error forms, the result is an error form
16037 with an appropriately computed standard deviation.  If one argument is an
16038 error form and the other is a number, the number is taken to have zero error.
16039 Error forms may have symbolic formulas as their mean and/or error parts;
16040 adding these will produce a symbolic error form result.  However, adding an
16041 error form to a plain symbolic formula (as in @samp{(a +/- b) + c}) will not
16042 work, for the same reasons just mentioned for vectors.  Instead you must
16043 write @samp{(a +/- b) + (c +/- 0)}.
16045 If both arguments of @kbd{+} are modulo forms with equal values of @expr{M},
16046 or if one argument is a modulo form and the other a plain number, the
16047 result is a modulo form which represents the sum, modulo @expr{M}, of
16048 the two values.
16050 If both arguments of @kbd{+} are intervals, the result is an interval
16051 which describes all possible sums of the possible input values.  If
16052 one argument is a plain number, it is treated as the interval
16053 @w{@samp{[x ..@: x]}}.
16055 If one argument of @kbd{+} is an infinity and the other is not, the
16056 result is that same infinity.  If both arguments are infinite and in
16057 the same direction, the result is the same infinity, but if they are
16058 infinite in different directions the result is @code{nan}.
16060 @kindex -
16061 @pindex calc-minus
16062 @ignore
16063 @mindex @null
16064 @end ignore
16065 @tindex -
16066 The @kbd{-} (@code{calc-minus}) command subtracts two values.  The top
16067 number on the stack is subtracted from the one behind it, so that the
16068 computation @kbd{5 @key{RET} 2 -} produces 3, not @mathit{-3}.  All options
16069 available for @kbd{+} are available for @kbd{-} as well.
16071 @kindex *
16072 @pindex calc-times
16073 @ignore
16074 @mindex @null
16075 @end ignore
16076 @tindex *
16077 The @kbd{*} (@code{calc-times}) command multiplies two numbers.  If one
16078 argument is a vector and the other a scalar, the scalar is multiplied by
16079 the elements of the vector to produce a new vector.  If both arguments
16080 are vectors, the interpretation depends on the dimensions of the
16081 vectors:  If both arguments are matrices, a matrix multiplication is
16082 done.  If one argument is a matrix and the other a plain vector, the
16083 vector is interpreted as a row vector or column vector, whichever is
16084 dimensionally correct.  If both arguments are plain vectors, the result
16085 is a single scalar number which is the dot product of the two vectors.
16087 If one argument of @kbd{*} is an HMS form and the other a number, the
16088 HMS form is multiplied by that amount.  It is an error to multiply two
16089 HMS forms together, or to attempt any multiplication involving date
16090 forms.  Error forms, modulo forms, and intervals can be multiplied;
16091 see the comments for addition of those forms.  When two error forms
16092 or intervals are multiplied they are considered to be statistically
16093 independent; thus, @samp{[-2 ..@: 3] * [-2 ..@: 3]} is @samp{[-6 ..@: 9]},
16094 whereas @w{@samp{[-2 ..@: 3] ^ 2}} is @samp{[0 ..@: 9]}.
16096 @kindex /
16097 @pindex calc-divide
16098 @ignore
16099 @mindex @null
16100 @end ignore
16101 @tindex /
16102 The @kbd{/} (@code{calc-divide}) command divides two numbers.  
16104 When combining multiplication and division in an algebraic formula, it
16105 is good style to use parentheses to distinguish between possible
16106 interpretations; the expression @samp{a/b*c} should be written
16107 @samp{(a/b)*c} or @samp{a/(b*c)}, as appropriate.  Without the
16108 parentheses, Calc will interpret @samp{a/b*c} as @samp{a/(b*c)}, since
16109 in algebraic entry Calc gives division a lower precedence than
16110 multiplication. (This is not standard across all computer languages, and
16111 Calc may change the precedence depending on the language mode being used.  
16112 @xref{Language Modes}.)  This default ordering can be changed by setting
16113 the customizable variable @code{calc-multiplication-has-precedence} to
16114 @code{nil} (@pxref{Customizing Calc}); this will give multiplication and
16115 division equal precedences.  Note that Calc's default choice of
16116 precedence allows @samp{a b / c d} to be used as a shortcut for
16117 @smallexample
16118 @group
16119 a b
16120 ---.
16121 c d
16122 @end group
16123 @end smallexample
16125 When dividing a scalar @expr{B} by a square matrix @expr{A}, the
16126 computation performed is @expr{B} times the inverse of @expr{A}.  This
16127 also occurs if @expr{B} is itself a vector or matrix, in which case the
16128 effect is to solve the set of linear equations represented by @expr{B}.
16129 If @expr{B} is a matrix with the same number of rows as @expr{A}, or a
16130 plain vector (which is interpreted here as a column vector), then the
16131 equation @expr{A X = B} is solved for the vector or matrix @expr{X}.
16132 Otherwise, if @expr{B} is a non-square matrix with the same number of
16133 @emph{columns} as @expr{A}, the equation @expr{X A = B} is solved.  If
16134 you wish a vector @expr{B} to be interpreted as a row vector to be
16135 solved as @expr{X A = B}, make it into a one-row matrix with @kbd{C-u 1
16136 v p} first.  To force a left-handed solution with a square matrix
16137 @expr{B}, transpose @expr{A} and @expr{B} before dividing, then
16138 transpose the result.
16140 HMS forms can be divided by real numbers or by other HMS forms.  Error
16141 forms can be divided in any combination of ways.  Modulo forms where both
16142 values and the modulo are integers can be divided to get an integer modulo
16143 form result.  Intervals can be divided; dividing by an interval that
16144 encompasses zero or has zero as a limit will result in an infinite
16145 interval.
16147 @kindex ^
16148 @pindex calc-power
16149 @ignore
16150 @mindex @null
16151 @end ignore
16152 @tindex ^
16153 The @kbd{^} (@code{calc-power}) command raises a number to a power.  If
16154 the power is an integer, an exact result is computed using repeated
16155 multiplications.  For non-integer powers, Calc uses Newton's method or
16156 logarithms and exponentials.  Square matrices can be raised to integer
16157 powers.  If either argument is an error (or interval or modulo) form,
16158 the result is also an error (or interval or modulo) form.
16160 @kindex I ^
16161 @tindex nroot
16162 If you press the @kbd{I} (inverse) key first, the @kbd{I ^} command
16163 computes an Nth root:  @kbd{125 @key{RET} 3 I ^} computes the number 5.
16164 (This is entirely equivalent to @kbd{125 @key{RET} 1:3 ^}.)
16166 @kindex \
16167 @pindex calc-idiv
16168 @tindex idiv
16169 @ignore
16170 @mindex @null
16171 @end ignore
16172 @tindex \
16173 The @kbd{\} (@code{calc-idiv}) command divides two numbers on the stack
16174 to produce an integer result.  It is equivalent to dividing with
16175 @key{/}, then rounding down with @kbd{F} (@code{calc-floor}), only a bit
16176 more convenient and efficient.  Also, since it is an all-integer
16177 operation when the arguments are integers, it avoids problems that
16178 @kbd{/ F} would have with floating-point roundoff.
16180 @kindex %
16181 @pindex calc-mod
16182 @ignore
16183 @mindex @null
16184 @end ignore
16185 @tindex %
16186 The @kbd{%} (@code{calc-mod}) command performs a ``modulo'' (or ``remainder'')
16187 operation.  Mathematically, @samp{a%b = a - (a\b)*b}, and is defined
16188 for all real numbers @expr{a} and @expr{b} (except @expr{b=0}).  For
16189 positive @expr{b}, the result will always be between 0 (inclusive) and
16190 @expr{b} (exclusive).  Modulo does not work for HMS forms and error forms.
16191 If @expr{a} is a modulo form, its modulo is changed to @expr{b}, which
16192 must be positive real number.
16194 @kindex :
16195 @pindex calc-fdiv
16196 @tindex fdiv
16197 The @kbd{:} (@code{calc-fdiv}) [@code{fdiv}] command
16198 divides the two integers on the top of the stack to produce a fractional
16199 result.  This is a convenient shorthand for enabling Fraction mode (with
16200 @kbd{m f}) temporarily and using @samp{/}.  Note that during numeric entry
16201 the @kbd{:} key is interpreted as a fraction separator, so to divide 8 by 6
16202 you would have to type @kbd{8 @key{RET} 6 @key{RET} :}.  (Of course, in
16203 this case, it would be much easier simply to enter the fraction directly
16204 as @kbd{8:6 @key{RET}}!)
16206 @kindex n
16207 @pindex calc-change-sign
16208 The @kbd{n} (@code{calc-change-sign}) command negates the number on the top
16209 of the stack.  It works on numbers, vectors and matrices, HMS forms, date
16210 forms, error forms, intervals, and modulo forms.
16212 @kindex A
16213 @pindex calc-abs
16214 @tindex abs
16215 The @kbd{A} (@code{calc-abs}) [@code{abs}] command computes the absolute
16216 value of a number.  The result of @code{abs} is always a nonnegative
16217 real number:  With a complex argument, it computes the complex magnitude.
16218 With a vector or matrix argument, it computes the Frobenius norm, i.e.,
16219 the square root of the sum of the squares of the absolute values of the
16220 elements.  The absolute value of an error form is defined by replacing
16221 the mean part with its absolute value and leaving the error part the same.
16222 The absolute value of a modulo form is undefined.  The absolute value of
16223 an interval is defined in the obvious way.
16225 @kindex f A
16226 @pindex calc-abssqr
16227 @tindex abssqr
16228 The @kbd{f A} (@code{calc-abssqr}) [@code{abssqr}] command computes the
16229 absolute value squared of a number, vector or matrix, or error form.
16231 @kindex f s
16232 @pindex calc-sign
16233 @tindex sign
16234 The @kbd{f s} (@code{calc-sign}) [@code{sign}] command returns 1 if its
16235 argument is positive, @mathit{-1} if its argument is negative, or 0 if its
16236 argument is zero.  In algebraic form, you can also write @samp{sign(a,x)}
16237 which evaluates to @samp{x * sign(a)}, i.e., either @samp{x}, @samp{-x}, or
16238 zero depending on the sign of @samp{a}.
16240 @kindex &
16241 @pindex calc-inv
16242 @tindex inv
16243 @cindex Reciprocal
16244 The @kbd{&} (@code{calc-inv}) [@code{inv}] command computes the
16245 reciprocal of a number, i.e., @expr{1 / x}.  Operating on a square
16246 matrix, it computes the inverse of that matrix.
16248 @kindex Q
16249 @pindex calc-sqrt
16250 @tindex sqrt
16251 The @kbd{Q} (@code{calc-sqrt}) [@code{sqrt}] command computes the square
16252 root of a number.  For a negative real argument, the result will be a
16253 complex number whose form is determined by the current Polar mode.
16255 @kindex f h
16256 @pindex calc-hypot
16257 @tindex hypot
16258 The @kbd{f h} (@code{calc-hypot}) [@code{hypot}] command computes the square
16259 root of the sum of the squares of two numbers.  That is, @samp{hypot(a,b)}
16260 is the length of the hypotenuse of a right triangle with sides @expr{a}
16261 and @expr{b}.  If the arguments are complex numbers, their squared
16262 magnitudes are used.
16264 @kindex f Q
16265 @pindex calc-isqrt
16266 @tindex isqrt
16267 The @kbd{f Q} (@code{calc-isqrt}) [@code{isqrt}] command computes the
16268 integer square root of an integer.  This is the true square root of the
16269 number, rounded down to an integer.  For example, @samp{isqrt(10)}
16270 produces 3.  Note that, like @kbd{\} [@code{idiv}], this uses exact
16271 integer arithmetic throughout to avoid roundoff problems.  If the input
16272 is a floating-point number or other non-integer value, this is exactly
16273 the same as @samp{floor(sqrt(x))}.
16275 @kindex f n
16276 @kindex f x
16277 @pindex calc-min
16278 @tindex min
16279 @pindex calc-max
16280 @tindex max
16281 The @kbd{f n} (@code{calc-min}) [@code{min}] and @kbd{f x} (@code{calc-max})
16282 [@code{max}] commands take the minimum or maximum of two real numbers,
16283 respectively.  These commands also work on HMS forms, date forms,
16284 intervals, and infinities.  (In algebraic expressions, these functions
16285 take any number of arguments and return the maximum or minimum among
16286 all the arguments.)
16288 @kindex f M
16289 @kindex f X
16290 @pindex calc-mant-part
16291 @tindex mant
16292 @pindex calc-xpon-part
16293 @tindex xpon
16294 The @kbd{f M} (@code{calc-mant-part}) [@code{mant}] function extracts
16295 the ``mantissa'' part @expr{m} of its floating-point argument; @kbd{f X}
16296 (@code{calc-xpon-part}) [@code{xpon}] extracts the ``exponent'' part
16297 @expr{e}.  The original number is equal to 
16298 @texline @math{m \times 10^e},
16299 @infoline @expr{m * 10^e},
16300 where @expr{m} is in the interval @samp{[1.0 ..@: 10.0)} except that
16301 @expr{m=e=0} if the original number is zero.  For integers
16302 and fractions, @code{mant} returns the number unchanged and @code{xpon}
16303 returns zero.  The @kbd{v u} (@code{calc-unpack}) command can also be
16304 used to ``unpack'' a floating-point number; this produces an integer
16305 mantissa and exponent, with the constraint that the mantissa is not
16306 a multiple of ten (again except for the @expr{m=e=0} case).
16308 @kindex f S
16309 @pindex calc-scale-float
16310 @tindex scf
16311 The @kbd{f S} (@code{calc-scale-float}) [@code{scf}] function scales a number
16312 by a given power of ten.  Thus, @samp{scf(mant(x), xpon(x)) = x} for any
16313 real @samp{x}.  The second argument must be an integer, but the first
16314 may actually be any numeric value.  For example, @samp{scf(5,-2) = 0.05}
16315 or @samp{1:20} depending on the current Fraction mode.
16317 @kindex f [
16318 @kindex f ]
16319 @pindex calc-decrement
16320 @pindex calc-increment
16321 @tindex decr
16322 @tindex incr
16323 The @kbd{f [} (@code{calc-decrement}) [@code{decr}] and @kbd{f ]}
16324 (@code{calc-increment}) [@code{incr}] functions decrease or increase
16325 a number by one unit.  For integers, the effect is obvious.  For
16326 floating-point numbers, the change is by one unit in the last place.
16327 For example, incrementing @samp{12.3456} when the current precision
16328 is 6 digits yields @samp{12.3457}.  If the current precision had been
16329 8 digits, the result would have been @samp{12.345601}.  Incrementing
16330 @samp{0.0} produces 
16331 @texline @math{10^{-p}},
16332 @infoline @expr{10^-p}, 
16333 where @expr{p} is the current
16334 precision.  These operations are defined only on integers and floats.
16335 With numeric prefix arguments, they change the number by @expr{n} units.
16337 Note that incrementing followed by decrementing, or vice-versa, will
16338 almost but not quite always cancel out.  Suppose the precision is
16339 6 digits and the number @samp{9.99999} is on the stack.  Incrementing
16340 will produce @samp{10.0000}; decrementing will produce @samp{9.9999}.
16341 One digit has been dropped.  This is an unavoidable consequence of the
16342 way floating-point numbers work.
16344 Incrementing a date/time form adjusts it by a certain number of seconds.
16345 Incrementing a pure date form adjusts it by a certain number of days.
16347 @node Integer Truncation, Complex Number Functions, Basic Arithmetic, Arithmetic
16348 @section Integer Truncation
16350 @noindent
16351 There are four commands for truncating a real number to an integer,
16352 differing mainly in their treatment of negative numbers.  All of these
16353 commands have the property that if the argument is an integer, the result
16354 is the same integer.  An integer-valued floating-point argument is converted
16355 to integer form.
16357 If you press @kbd{H} (@code{calc-hyperbolic}) first, the result will be
16358 expressed as an integer-valued floating-point number.
16360 @cindex Integer part of a number
16361 @kindex F
16362 @pindex calc-floor
16363 @tindex floor
16364 @tindex ffloor
16365 @ignore
16366 @mindex @null
16367 @end ignore
16368 @kindex H F
16369 The @kbd{F} (@code{calc-floor}) [@code{floor} or @code{ffloor}] command
16370 truncates a real number to the next lower integer, i.e., toward minus
16371 infinity.  Thus @kbd{3.6 F} produces 3, but @kbd{_3.6 F} produces
16372 @mathit{-4}.
16374 @kindex I F
16375 @pindex calc-ceiling
16376 @tindex ceil
16377 @tindex fceil
16378 @ignore
16379 @mindex @null
16380 @end ignore
16381 @kindex H I F
16382 The @kbd{I F} (@code{calc-ceiling}) [@code{ceil} or @code{fceil}]
16383 command truncates toward positive infinity.  Thus @kbd{3.6 I F} produces
16384 4, and @kbd{_3.6 I F} produces @mathit{-3}.
16386 @kindex R
16387 @pindex calc-round
16388 @tindex round
16389 @tindex fround
16390 @ignore
16391 @mindex @null
16392 @end ignore
16393 @kindex H R
16394 The @kbd{R} (@code{calc-round}) [@code{round} or @code{fround}] command
16395 rounds to the nearest integer.  When the fractional part is .5 exactly,
16396 this command rounds away from zero.  (All other rounding in the
16397 Calculator uses this convention as well.)  Thus @kbd{3.5 R} produces 4
16398 but @kbd{3.4 R} produces 3; @kbd{_3.5 R} produces @mathit{-4}.
16400 @kindex I R
16401 @pindex calc-trunc
16402 @tindex trunc
16403 @tindex ftrunc
16404 @ignore
16405 @mindex @null
16406 @end ignore
16407 @kindex H I R
16408 The @kbd{I R} (@code{calc-trunc}) [@code{trunc} or @code{ftrunc}]
16409 command truncates toward zero.  In other words, it ``chops off''
16410 everything after the decimal point.  Thus @kbd{3.6 I R} produces 3 and
16411 @kbd{_3.6 I R} produces @mathit{-3}.
16413 These functions may not be applied meaningfully to error forms, but they
16414 do work for intervals.  As a convenience, applying @code{floor} to a
16415 modulo form floors the value part of the form.  Applied to a vector,
16416 these functions operate on all elements of the vector one by one.
16417 Applied to a date form, they operate on the internal numerical
16418 representation of dates, converting a date/time form into a pure date.
16420 @ignore
16421 @starindex
16422 @end ignore
16423 @tindex rounde
16424 @ignore
16425 @starindex
16426 @end ignore
16427 @tindex roundu
16428 @ignore
16429 @starindex
16430 @end ignore
16431 @tindex frounde
16432 @ignore
16433 @starindex
16434 @end ignore
16435 @tindex froundu
16436 There are two more rounding functions which can only be entered in
16437 algebraic notation.  The @code{roundu} function is like @code{round}
16438 except that it rounds up, toward plus infinity, when the fractional
16439 part is .5.  This distinction matters only for negative arguments.
16440 Also, @code{rounde} rounds to an even number in the case of a tie,
16441 rounding up or down as necessary.  For example, @samp{rounde(3.5)} and
16442 @samp{rounde(4.5)} both return 4, but @samp{rounde(5.5)} returns 6.
16443 The advantage of round-to-even is that the net error due to rounding
16444 after a long calculation tends to cancel out to zero.  An important
16445 subtle point here is that the number being fed to @code{rounde} will
16446 already have been rounded to the current precision before @code{rounde}
16447 begins.  For example, @samp{rounde(2.500001)} with a current precision
16448 of 6 will incorrectly, or at least surprisingly, yield 2 because the
16449 argument will first have been rounded down to @expr{2.5} (which
16450 @code{rounde} sees as an exact tie between 2 and 3).
16452 Each of these functions, when written in algebraic formulas, allows
16453 a second argument which specifies the number of digits after the
16454 decimal point to keep.  For example, @samp{round(123.4567, 2)} will
16455 produce the answer 123.46, and @samp{round(123.4567, -1)} will
16456 produce 120 (i.e., the cutoff is one digit to the @emph{left} of
16457 the decimal point).  A second argument of zero is equivalent to
16458 no second argument at all.
16460 @cindex Fractional part of a number
16461 To compute the fractional part of a number (i.e., the amount which, when
16462 added to `@tfn{floor(}@var{n}@tfn{)}', will produce @var{n}) just take @var{n}
16463 modulo 1 using the @code{%} command.
16465 Note also the @kbd{\} (integer quotient), @kbd{f I} (integer logarithm),
16466 and @kbd{f Q} (integer square root) commands, which are analogous to
16467 @kbd{/}, @kbd{B}, and @kbd{Q}, respectively, except that they take integer
16468 arguments and return the result rounded down to an integer.
16470 @node Complex Number Functions, Conversions, Integer Truncation, Arithmetic
16471 @section Complex Number Functions
16473 @noindent
16474 @kindex J
16475 @pindex calc-conj
16476 @tindex conj
16477 The @kbd{J} (@code{calc-conj}) [@code{conj}] command computes the
16478 complex conjugate of a number.  For complex number @expr{a+bi}, the
16479 complex conjugate is @expr{a-bi}.  If the argument is a real number,
16480 this command leaves it the same.  If the argument is a vector or matrix,
16481 this command replaces each element by its complex conjugate.
16483 @kindex G
16484 @pindex calc-argument
16485 @tindex arg
16486 The @kbd{G} (@code{calc-argument}) [@code{arg}] command computes the
16487 ``argument'' or polar angle of a complex number.  For a number in polar
16488 notation, this is simply the second component of the pair
16489 @texline `@tfn{(}@var{r}@tfn{;}@math{\theta}@tfn{)}'.
16490 @infoline `@tfn{(}@var{r}@tfn{;}@var{theta}@tfn{)}'.
16491 The result is expressed according to the current angular mode and will
16492 be in the range @mathit{-180} degrees (exclusive) to @mathit{+180} degrees
16493 (inclusive), or the equivalent range in radians.
16495 @pindex calc-imaginary
16496 The @code{calc-imaginary} command multiplies the number on the
16497 top of the stack by the imaginary number @expr{i = (0,1)}.  This
16498 command is not normally bound to a key in Calc, but it is available
16499 on the @key{IMAG} button in Keypad mode.
16501 @kindex f r
16502 @pindex calc-re
16503 @tindex re
16504 The @kbd{f r} (@code{calc-re}) [@code{re}] command replaces a complex number
16505 by its real part.  This command has no effect on real numbers.  (As an
16506 added convenience, @code{re} applied to a modulo form extracts
16507 the value part.)
16509 @kindex f i
16510 @pindex calc-im
16511 @tindex im
16512 The @kbd{f i} (@code{calc-im}) [@code{im}] command replaces a complex number
16513 by its imaginary part; real numbers are converted to zero.  With a vector
16514 or matrix argument, these functions operate element-wise.
16516 @ignore
16517 @mindex v p
16518 @end ignore
16519 @kindex v p (complex)
16520 @pindex calc-pack
16521 The @kbd{v p} (@code{calc-pack}) command can pack the top two numbers on
16522 the stack into a composite object such as a complex number.  With
16523 a prefix argument of @mathit{-1}, it produces a rectangular complex number;
16524 with an argument of @mathit{-2}, it produces a polar complex number.
16525 (Also, @pxref{Building Vectors}.)
16527 @ignore
16528 @mindex v u
16529 @end ignore
16530 @kindex v u (complex)
16531 @pindex calc-unpack
16532 The @kbd{v u} (@code{calc-unpack}) command takes the complex number
16533 (or other composite object) on the top of the stack and unpacks it
16534 into its separate components.
16536 @node Conversions, Date Arithmetic, Complex Number Functions, Arithmetic
16537 @section Conversions
16539 @noindent
16540 The commands described in this section convert numbers from one form
16541 to another; they are two-key sequences beginning with the letter @kbd{c}.
16543 @kindex c f
16544 @pindex calc-float
16545 @tindex pfloat
16546 The @kbd{c f} (@code{calc-float}) [@code{pfloat}] command converts the
16547 number on the top of the stack to floating-point form.  For example,
16548 @expr{23} is converted to @expr{23.0}, @expr{3:2} is converted to
16549 @expr{1.5}, and @expr{2.3} is left the same.  If the value is a composite
16550 object such as a complex number or vector, each of the components is
16551 converted to floating-point.  If the value is a formula, all numbers
16552 in the formula are converted to floating-point.  Note that depending
16553 on the current floating-point precision, conversion to floating-point
16554 format may lose information.
16556 As a special exception, integers which appear as powers or subscripts
16557 are not floated by @kbd{c f}.  If you really want to float a power,
16558 you can use a @kbd{j s} command to select the power followed by @kbd{c f}.
16559 Because @kbd{c f} cannot examine the formula outside of the selection,
16560 it does not notice that the thing being floated is a power.
16561 @xref{Selecting Subformulas}.
16563 The normal @kbd{c f} command is ``pervasive'' in the sense that it
16564 applies to all numbers throughout the formula.  The @code{pfloat}
16565 algebraic function never stays around in a formula; @samp{pfloat(a + 1)}
16566 changes to @samp{a + 1.0} as soon as it is evaluated.
16568 @kindex H c f
16569 @tindex float
16570 With the Hyperbolic flag, @kbd{H c f} [@code{float}] operates
16571 only on the number or vector of numbers at the top level of its
16572 argument.  Thus, @samp{float(1)} is 1.0, but @samp{float(a + 1)}
16573 is left unevaluated because its argument is not a number.
16575 You should use @kbd{H c f} if you wish to guarantee that the final
16576 value, once all the variables have been assigned, is a float; you
16577 would use @kbd{c f} if you wish to do the conversion on the numbers
16578 that appear right now.
16580 @kindex c F
16581 @pindex calc-fraction
16582 @tindex pfrac
16583 The @kbd{c F} (@code{calc-fraction}) [@code{pfrac}] command converts a
16584 floating-point number into a fractional approximation.  By default, it
16585 produces a fraction whose decimal representation is the same as the
16586 input number, to within the current precision.  You can also give a
16587 numeric prefix argument to specify a tolerance, either directly, or,
16588 if the prefix argument is zero, by using the number on top of the stack
16589 as the tolerance.  If the tolerance is a positive integer, the fraction
16590 is correct to within that many significant figures.  If the tolerance is
16591 a non-positive integer, it specifies how many digits fewer than the current
16592 precision to use.  If the tolerance is a floating-point number, the
16593 fraction is correct to within that absolute amount.
16595 @kindex H c F
16596 @tindex frac
16597 The @code{pfrac} function is pervasive, like @code{pfloat}.
16598 There is also a non-pervasive version, @kbd{H c F} [@code{frac}],
16599 which is analogous to @kbd{H c f} discussed above.
16601 @kindex c d
16602 @pindex calc-to-degrees
16603 @tindex deg
16604 The @kbd{c d} (@code{calc-to-degrees}) [@code{deg}] command converts a
16605 number into degrees form.  The value on the top of the stack may be an
16606 HMS form (interpreted as degrees-minutes-seconds), or a real number which
16607 will be interpreted in radians regardless of the current angular mode.
16609 @kindex c r
16610 @pindex calc-to-radians
16611 @tindex rad
16612 The @kbd{c r} (@code{calc-to-radians}) [@code{rad}] command converts an
16613 HMS form or angle in degrees into an angle in radians.
16615 @kindex c h
16616 @pindex calc-to-hms
16617 @tindex hms
16618 The @kbd{c h} (@code{calc-to-hms}) [@code{hms}] command converts a real
16619 number, interpreted according to the current angular mode, to an HMS
16620 form describing the same angle.  In algebraic notation, the @code{hms}
16621 function also accepts three arguments: @samp{hms(@var{h}, @var{m}, @var{s})}.
16622 (The three-argument version is independent of the current angular mode.)
16624 @pindex calc-from-hms
16625 The @code{calc-from-hms} command converts the HMS form on the top of the
16626 stack into a real number according to the current angular mode.
16628 @kindex c p
16629 @kindex I c p
16630 @pindex calc-polar
16631 @tindex polar
16632 @tindex rect
16633 The @kbd{c p} (@code{calc-polar}) command converts the complex number on
16634 the top of the stack from polar to rectangular form, or from rectangular
16635 to polar form, whichever is appropriate.  Real numbers are left the same.
16636 This command is equivalent to the @code{rect} or @code{polar}
16637 functions in algebraic formulas, depending on the direction of
16638 conversion.  (It uses @code{polar}, except that if the argument is
16639 already a polar complex number, it uses @code{rect} instead.  The
16640 @kbd{I c p} command always uses @code{rect}.)
16642 @kindex c c
16643 @pindex calc-clean
16644 @tindex pclean
16645 The @kbd{c c} (@code{calc-clean}) [@code{pclean}] command ``cleans'' the
16646 number on the top of the stack.  Floating point numbers are re-rounded
16647 according to the current precision.  Polar numbers whose angular
16648 components have strayed from the @mathit{-180} to @mathit{+180} degree range
16649 are normalized.  (Note that results will be undesirable if the current
16650 angular mode is different from the one under which the number was
16651 produced!)  Integers and fractions are generally unaffected by this
16652 operation.  Vectors and formulas are cleaned by cleaning each component
16653 number (i.e., pervasively).
16655 If the simplification mode is set below the default level, it is raised
16656 to the default level for the purposes of this command.  Thus, @kbd{c c}
16657 applies the default simplifications even if their automatic application
16658 is disabled.  @xref{Simplification Modes}.
16660 @cindex Roundoff errors, correcting
16661 A numeric prefix argument to @kbd{c c} sets the floating-point precision
16662 to that value for the duration of the command.  A positive prefix (of at
16663 least 3) sets the precision to the specified value; a negative or zero
16664 prefix decreases the precision by the specified amount.
16666 @kindex c 0-9
16667 @pindex calc-clean-num
16668 The keystroke sequences @kbd{c 0} through @kbd{c 9} are equivalent
16669 to @kbd{c c} with the corresponding negative prefix argument.  If roundoff
16670 errors have changed 2.0 into 1.999999, typing @kbd{c 1} to clip off one
16671 decimal place often conveniently does the trick.
16673 The @kbd{c c} command with a numeric prefix argument, and the @kbd{c 0}
16674 through @kbd{c 9} commands, also ``clip'' very small floating-point
16675 numbers to zero.  If the exponent is less than or equal to the negative
16676 of the specified precision, the number is changed to 0.0.  For example,
16677 if the current precision is 12, then @kbd{c 2} changes the vector
16678 @samp{[1e-8, 1e-9, 1e-10, 1e-11]} to @samp{[1e-8, 1e-9, 0, 0]}.
16679 Numbers this small generally arise from roundoff noise.
16681 If the numbers you are using really are legitimately this small,
16682 you should avoid using the @kbd{c 0} through @kbd{c 9} commands.
16683 (The plain @kbd{c c} command rounds to the current precision but
16684 does not clip small numbers.)
16686 One more property of @kbd{c 0} through @kbd{c 9}, and of @kbd{c c} with
16687 a prefix argument, is that integer-valued floats are converted to
16688 plain integers, so that @kbd{c 1} on @samp{[1., 1.5, 2., 2.5, 3.]}
16689 produces @samp{[1, 1.5, 2, 2.5, 3]}.  This is not done for huge
16690 numbers (@samp{1e100} is technically an integer-valued float, but
16691 you wouldn't want it automatically converted to a 100-digit integer).
16693 @kindex H c 0-9
16694 @kindex H c c
16695 @tindex clean
16696 With the Hyperbolic flag, @kbd{H c c} and @kbd{H c 0} through @kbd{H c 9}
16697 operate non-pervasively [@code{clean}].
16699 @node Date Arithmetic, Financial Functions, Conversions, Arithmetic
16700 @section Date Arithmetic
16702 @noindent
16703 @cindex Date arithmetic, additional functions
16704 The commands described in this section perform various conversions
16705 and calculations involving date forms (@pxref{Date Forms}).  They
16706 use the @kbd{t} (for time/date) prefix key followed by shifted
16707 letters.
16709 The simplest date arithmetic is done using the regular @kbd{+} and @kbd{-}
16710 commands.  In particular, adding a number to a date form advances the
16711 date form by a certain number of days; adding an HMS form to a date
16712 form advances the date by a certain amount of time; and subtracting two
16713 date forms produces a difference measured in days.  The commands
16714 described here provide additional, more specialized operations on dates.
16716 Many of these commands accept a numeric prefix argument; if you give
16717 plain @kbd{C-u} as the prefix, these commands will instead take the
16718 additional argument from the top of the stack.
16720 @menu
16721 * Date Conversions::
16722 * Date Functions::
16723 * Time Zones::
16724 * Business Days::
16725 @end menu
16727 @node Date Conversions, Date Functions, Date Arithmetic, Date Arithmetic
16728 @subsection Date Conversions
16730 @noindent
16731 @kindex t D
16732 @pindex calc-date
16733 @tindex date
16734 The @kbd{t D} (@code{calc-date}) [@code{date}] command converts a
16735 date form into a number, measured in days since Jan 1, 1 AD.  The
16736 result will be an integer if @var{date} is a pure date form, or a
16737 fraction or float if @var{date} is a date/time form.  Or, if its
16738 argument is a number, it converts this number into a date form.
16740 With a numeric prefix argument, @kbd{t D} takes that many objects
16741 (up to six) from the top of the stack and interprets them in one
16742 of the following ways:
16744 The @samp{date(@var{year}, @var{month}, @var{day})} function
16745 builds a pure date form out of the specified year, month, and
16746 day, which must all be integers.  @var{Year} is a year number,
16747 such as 1991 (@emph{not} the same as 91!).  @var{Month} must be
16748 an integer in the range 1 to 12; @var{day} must be in the range
16749 1 to 31.  If the specified month has fewer than 31 days and
16750 @var{day} is too large, the equivalent day in the following
16751 month will be used.
16753 The @samp{date(@var{month}, @var{day})} function builds a
16754 pure date form using the current year, as determined by the
16755 real-time clock.
16757 The @samp{date(@var{year}, @var{month}, @var{day}, @var{hms})}
16758 function builds a date/time form using an @var{hms} form.
16760 The @samp{date(@var{year}, @var{month}, @var{day}, @var{hour},
16761 @var{minute}, @var{second})} function builds a date/time form.
16762 @var{hour} should be an integer in the range 0 to 23;
16763 @var{minute} should be an integer in the range 0 to 59;
16764 @var{second} should be any real number in the range @samp{[0 .. 60)}.
16765 The last two arguments default to zero if omitted.
16767 @kindex t J
16768 @pindex calc-julian
16769 @tindex julian
16770 @cindex Julian day counts, conversions
16771 The @kbd{t J} (@code{calc-julian}) [@code{julian}] command converts
16772 a date form into a Julian day count, which is the number of days
16773 since noon (GMT) on Jan 1, 4713 BC.  A pure date is converted to an
16774 integer Julian count representing noon of that day.  A date/time form 
16775 is converted to an exact floating-point Julian count, adjusted to
16776 interpret the date form in the current time zone but the Julian
16777 day count in Greenwich Mean Time.  A numeric prefix argument allows
16778 you to specify the time zone; @pxref{Time Zones}.  Use a prefix of
16779 zero to suppress the time zone adjustment.  Note that pure date forms
16780 are never time-zone adjusted.
16782 This command can also do the opposite conversion, from a Julian day
16783 count (either an integer day, or a floating-point day and time in
16784 the GMT zone), into a pure date form or a date/time form in the
16785 current or specified time zone.
16787 @kindex t U
16788 @pindex calc-unix-time
16789 @tindex unixtime
16790 @cindex Unix time format, conversions
16791 The @kbd{t U} (@code{calc-unix-time}) [@code{unixtime}] command
16792 converts a date form into a Unix time value, which is the number of
16793 seconds since midnight on Jan 1, 1970, or vice-versa.  The numeric result
16794 will be an integer if the current precision is 12 or less; for higher
16795 precisions, the result may be a float with (@var{precision}@minus{}12)
16796 digits after the decimal.  Just as for @kbd{t J}, the numeric time
16797 is interpreted in the GMT time zone and the date form is interpreted
16798 in the current or specified zone.  Some systems use Unix-like
16799 numbering but with the local time zone; give a prefix of zero to
16800 suppress the adjustment if so.
16802 @kindex t C
16803 @pindex calc-convert-time-zones
16804 @tindex tzconv
16805 @cindex Time Zones, converting between
16806 The @kbd{t C} (@code{calc-convert-time-zones}) [@code{tzconv}]
16807 command converts a date form from one time zone to another.  You
16808 are prompted for each time zone name in turn; you can answer with
16809 any suitable Calc time zone expression (@pxref{Time Zones}).
16810 If you answer either prompt with a blank line, the local time
16811 zone is used for that prompt.  You can also answer the first
16812 prompt with @kbd{$} to take the two time zone names from the
16813 stack (and the date to be converted from the third stack level).
16815 @node Date Functions, Business Days, Date Conversions, Date Arithmetic
16816 @subsection Date Functions
16818 @noindent
16819 @kindex t N
16820 @pindex calc-now
16821 @tindex now
16822 The @kbd{t N} (@code{calc-now}) [@code{now}] command pushes the
16823 current date and time on the stack as a date form.  The time is
16824 reported in terms of the specified time zone; with no numeric prefix
16825 argument, @kbd{t N} reports for the current time zone.
16827 @kindex t P
16828 @pindex calc-date-part
16829 The @kbd{t P} (@code{calc-date-part}) command extracts one part
16830 of a date form.  The prefix argument specifies the part; with no
16831 argument, this command prompts for a part code from 1 to 9.
16832 The various part codes are described in the following paragraphs.
16834 @tindex year
16835 The @kbd{M-1 t P} [@code{year}] function extracts the year number
16836 from a date form as an integer, e.g., 1991.  This and the
16837 following functions will also accept a real number for an
16838 argument, which is interpreted as a standard Calc day number.
16839 Note that this function will never return zero, since the year
16840 1 BC immediately precedes the year 1 AD.
16842 @tindex month
16843 The @kbd{M-2 t P} [@code{month}] function extracts the month number
16844 from a date form as an integer in the range 1 to 12.
16846 @tindex day
16847 The @kbd{M-3 t P} [@code{day}] function extracts the day number
16848 from a date form as an integer in the range 1 to 31.
16850 @tindex hour
16851 The @kbd{M-4 t P} [@code{hour}] function extracts the hour from
16852 a date form as an integer in the range 0 (midnight) to 23.  Note
16853 that 24-hour time is always used.  This returns zero for a pure
16854 date form.  This function (and the following two) also accept
16855 HMS forms as input.
16857 @tindex minute
16858 The @kbd{M-5 t P} [@code{minute}] function extracts the minute
16859 from a date form as an integer in the range 0 to 59.
16861 @tindex second
16862 The @kbd{M-6 t P} [@code{second}] function extracts the second
16863 from a date form.  If the current precision is 12 or less,
16864 the result is an integer in the range 0 to 59.  For higher
16865 precisions, the result may instead be a floating-point number.
16867 @tindex weekday
16868 The @kbd{M-7 t P} [@code{weekday}] function extracts the weekday
16869 number from a date form as an integer in the range 0 (Sunday)
16870 to 6 (Saturday).
16872 @tindex yearday
16873 The @kbd{M-8 t P} [@code{yearday}] function extracts the day-of-year
16874 number from a date form as an integer in the range 1 (January 1)
16875 to 366 (December 31 of a leap year).
16877 @tindex time
16878 The @kbd{M-9 t P} [@code{time}] function extracts the time portion
16879 of a date form as an HMS form.  This returns @samp{0@@ 0' 0"}
16880 for a pure date form.
16882 @kindex t M
16883 @pindex calc-new-month
16884 @tindex newmonth
16885 The @kbd{t M} (@code{calc-new-month}) [@code{newmonth}] command
16886 computes a new date form that represents the first day of the month
16887 specified by the input date.  The result is always a pure date
16888 form; only the year and month numbers of the input are retained.
16889 With a numeric prefix argument @var{n} in the range from 1 to 31,
16890 @kbd{t M} computes the @var{n}th day of the month.  (If @var{n}
16891 is greater than the actual number of days in the month, or if
16892 @var{n} is zero, the last day of the month is used.)
16894 @kindex t Y
16895 @pindex calc-new-year
16896 @tindex newyear
16897 The @kbd{t Y} (@code{calc-new-year}) [@code{newyear}] command
16898 computes a new pure date form that represents the first day of
16899 the year specified by the input.  The month, day, and time
16900 of the input date form are lost.  With a numeric prefix argument
16901 @var{n} in the range from 1 to 366, @kbd{t Y} computes the
16902 @var{n}th day of the year (366 is treated as 365 in non-leap
16903 years).  A prefix argument of 0 computes the last day of the
16904 year (December 31).  A negative prefix argument from @mathit{-1} to
16905 @mathit{-12} computes the first day of the @var{n}th month of the year.
16907 @kindex t W
16908 @pindex calc-new-week
16909 @tindex newweek
16910 The @kbd{t W} (@code{calc-new-week}) [@code{newweek}] command
16911 computes a new pure date form that represents the Sunday on or before
16912 the input date.  With a numeric prefix argument, it can be made to
16913 use any day of the week as the starting day; the argument must be in
16914 the range from 0 (Sunday) to 6 (Saturday).  This function always
16915 subtracts between 0 and 6 days from the input date.
16917 Here's an example use of @code{newweek}:  Find the date of the next
16918 Wednesday after a given date.  Using @kbd{M-3 t W} or @samp{newweek(d, 3)}
16919 will give you the @emph{preceding} Wednesday, so @samp{newweek(d+7, 3)}
16920 will give you the following Wednesday.  A further look at the definition
16921 of @code{newweek} shows that if the input date is itself a Wednesday,
16922 this formula will return the Wednesday one week in the future.  An
16923 exercise for the reader is to modify this formula to yield the same day
16924 if the input is already a Wednesday.  Another interesting exercise is
16925 to preserve the time-of-day portion of the input (@code{newweek} resets
16926 the time to midnight; hint:@: how can @code{newweek} be defined in terms
16927 of the @code{weekday} function?).
16929 @ignore
16930 @starindex
16931 @end ignore
16932 @tindex pwday
16933 The @samp{pwday(@var{date})} function (not on any key) computes the
16934 day-of-month number of the Sunday on or before @var{date}.  With
16935 two arguments, @samp{pwday(@var{date}, @var{day})} computes the day
16936 number of the Sunday on or before day number @var{day} of the month
16937 specified by @var{date}.  The @var{day} must be in the range from
16938 7 to 31; if the day number is greater than the actual number of days
16939 in the month, the true number of days is used instead.  Thus
16940 @samp{pwday(@var{date}, 7)} finds the first Sunday of the month, and
16941 @samp{pwday(@var{date}, 31)} finds the last Sunday of the month.
16942 With a third @var{weekday} argument, @code{pwday} can be made to look
16943 for any day of the week instead of Sunday.
16945 @kindex t I
16946 @pindex calc-inc-month
16947 @tindex incmonth
16948 The @kbd{t I} (@code{calc-inc-month}) [@code{incmonth}] command
16949 increases a date form by one month, or by an arbitrary number of
16950 months specified by a numeric prefix argument.  The time portion,
16951 if any, of the date form stays the same.  The day also stays the
16952 same, except that if the new month has fewer days the day
16953 number may be reduced to lie in the valid range.  For example,
16954 @samp{incmonth(<Jan 31, 1991>)} produces @samp{<Feb 28, 1991>}.
16955 Because of this, @kbd{t I t I} and @kbd{M-2 t I} do not always give
16956 the same results (@samp{<Mar 28, 1991>} versus @samp{<Mar 31, 1991>}
16957 in this case).
16959 @ignore
16960 @starindex
16961 @end ignore
16962 @tindex incyear
16963 The @samp{incyear(@var{date}, @var{step})} function increases
16964 a date form by the specified number of years, which may be
16965 any positive or negative integer.  Note that @samp{incyear(d, n)}
16966 is equivalent to @w{@samp{incmonth(d, 12*n)}}, but these do not have
16967 simple equivalents in terms of day arithmetic because
16968 months and years have varying lengths.  If the @var{step}
16969 argument is omitted, 1 year is assumed.  There is no keyboard
16970 command for this function; use @kbd{C-u 12 t I} instead.
16972 There is no @code{newday} function at all because @kbd{F} [@code{floor}]
16973 serves this purpose.  Similarly, instead of @code{incday} and
16974 @code{incweek} simply use @expr{d + n} or @expr{d + 7 n}.
16976 @xref{Basic Arithmetic}, for the @kbd{f ]} [@code{incr}] command
16977 which can adjust a date/time form by a certain number of seconds.
16979 @node Business Days, Time Zones, Date Functions, Date Arithmetic
16980 @subsection Business Days
16982 @noindent
16983 Often time is measured in ``business days'' or ``working days,''
16984 where weekends and holidays are skipped.  Calc's normal date
16985 arithmetic functions use calendar days, so that subtracting two
16986 consecutive Mondays will yield a difference of 7 days.  By contrast,
16987 subtracting two consecutive Mondays would yield 5 business days
16988 (assuming two-day weekends and the absence of holidays).
16990 @kindex t +
16991 @kindex t -
16992 @tindex badd
16993 @tindex bsub
16994 @pindex calc-business-days-plus
16995 @pindex calc-business-days-minus
16996 The @kbd{t +} (@code{calc-business-days-plus}) [@code{badd}]
16997 and @kbd{t -} (@code{calc-business-days-minus}) [@code{bsub}]
16998 commands perform arithmetic using business days.  For @kbd{t +},
16999 one argument must be a date form and the other must be a real
17000 number (positive or negative).  If the number is not an integer,
17001 then a certain amount of time is added as well as a number of
17002 days; for example, adding 0.5 business days to a time in Friday
17003 evening will produce a time in Monday morning.  It is also
17004 possible to add an HMS form; adding @samp{12@@ 0' 0"} also adds
17005 half a business day.  For @kbd{t -}, the arguments are either a
17006 date form and a number or HMS form, or two date forms, in which
17007 case the result is the number of business days between the two
17008 dates.
17010 @cindex @code{Holidays} variable
17011 @vindex Holidays
17012 By default, Calc considers any day that is not a Saturday or
17013 Sunday to be a business day.  You can define any number of
17014 additional holidays by editing the variable @code{Holidays}.
17015 (There is an @w{@kbd{s H}} convenience command for editing this
17016 variable.)  Initially, @code{Holidays} contains the vector
17017 @samp{[sat, sun]}.  Entries in the @code{Holidays} vector may
17018 be any of the following kinds of objects:
17020 @itemize @bullet
17021 @item
17022 Date forms (pure dates, not date/time forms).  These specify
17023 particular days which are to be treated as holidays.
17025 @item
17026 Intervals of date forms.  These specify a range of days, all of
17027 which are holidays (e.g., Christmas week).  @xref{Interval Forms}.
17029 @item
17030 Nested vectors of date forms.  Each date form in the vector is
17031 considered to be a holiday.
17033 @item
17034 Any Calc formula which evaluates to one of the above three things.
17035 If the formula involves the variable @expr{y}, it stands for a
17036 yearly repeating holiday; @expr{y} will take on various year
17037 numbers like 1992.  For example, @samp{date(y, 12, 25)} specifies
17038 Christmas day, and @samp{newweek(date(y, 11, 7), 4) + 21} specifies
17039 Thanksgiving (which is held on the fourth Thursday of November).
17040 If the formula involves the variable @expr{m}, that variable
17041 takes on month numbers from 1 to 12:  @samp{date(y, m, 15)} is
17042 a holiday that takes place on the 15th of every month.
17044 @item
17045 A weekday name, such as @code{sat} or @code{sun}.  This is really
17046 a variable whose name is a three-letter, lower-case day name.
17048 @item
17049 An interval of year numbers (integers).  This specifies the span of
17050 years over which this holiday list is to be considered valid.  Any
17051 business-day arithmetic that goes outside this range will result
17052 in an error message.  Use this if you are including an explicit
17053 list of holidays, rather than a formula to generate them, and you
17054 want to make sure you don't accidentally go beyond the last point
17055 where the holidays you entered are complete.  If there is no
17056 limiting interval in the @code{Holidays} vector, the default
17057 @samp{[1 .. 2737]} is used.  (This is the absolute range of years
17058 for which Calc's business-day algorithms will operate.)
17060 @item
17061 An interval of HMS forms.  This specifies the span of hours that
17062 are to be considered one business day.  For example, if this
17063 range is @samp{[9@@ 0' 0" .. 17@@ 0' 0"]} (i.e., 9am to 5pm), then
17064 the business day is only eight hours long, so that @kbd{1.5 t +}
17065 on @samp{<4:00pm Fri Dec 13, 1991>} will add one business day and
17066 four business hours to produce @samp{<12:00pm Tue Dec 17, 1991>}.
17067 Likewise, @kbd{t -} will now express differences in time as
17068 fractions of an eight-hour day.  Times before 9am will be treated
17069 as 9am by business date arithmetic, and times at or after 5pm will
17070 be treated as 4:59:59pm.  If there is no HMS interval in @code{Holidays},
17071 the full 24-hour day @samp{[0@ 0' 0" .. 24@ 0' 0"]} is assumed.
17072 (Regardless of the type of bounds you specify, the interval is
17073 treated as inclusive on the low end and exclusive on the high end,
17074 so that the work day goes from 9am up to, but not including, 5pm.)
17075 @end itemize
17077 If the @code{Holidays} vector is empty, then @kbd{t +} and
17078 @kbd{t -} will act just like @kbd{+} and @kbd{-} because there will
17079 then be no difference between business days and calendar days.
17081 Calc expands the intervals and formulas you give into a complete
17082 list of holidays for internal use.  This is done mainly to make
17083 sure it can detect multiple holidays.  (For example,
17084 @samp{<Jan 1, 1989>} is both New Year's Day and a Sunday, but
17085 Calc's algorithms take care to count it only once when figuring
17086 the number of holidays between two dates.)
17088 Since the complete list of holidays for all the years from 1 to
17089 2737 would be huge, Calc actually computes only the part of the
17090 list between the smallest and largest years that have been involved
17091 in business-day calculations so far.  Normally, you won't have to
17092 worry about this.  Keep in mind, however, that if you do one
17093 calculation for 1992, and another for 1792, even if both involve
17094 only a small range of years, Calc will still work out all the
17095 holidays that fall in that 200-year span.
17097 If you add a (positive) number of days to a date form that falls on a
17098 weekend or holiday, the date form is treated as if it were the most
17099 recent business day.  (Thus adding one business day to a Friday,
17100 Saturday, or Sunday will all yield the following Monday.)  If you
17101 subtract a number of days from a weekend or holiday, the date is
17102 effectively on the following business day.  (So subtracting one business
17103 day from Saturday, Sunday, or Monday yields the preceding Friday.)  The
17104 difference between two dates one or both of which fall on holidays
17105 equals the number of actual business days between them.  These
17106 conventions are consistent in the sense that, if you add @var{n}
17107 business days to any date, the difference between the result and the
17108 original date will come out to @var{n} business days.  (It can't be
17109 completely consistent though; a subtraction followed by an addition
17110 might come out a bit differently, since @kbd{t +} is incapable of
17111 producing a date that falls on a weekend or holiday.)
17113 @ignore
17114 @starindex
17115 @end ignore
17116 @tindex holiday
17117 There is a @code{holiday} function, not on any keys, that takes
17118 any date form and returns 1 if that date falls on a weekend or
17119 holiday, as defined in @code{Holidays}, or 0 if the date is a
17120 business day.
17122 @node Time Zones,  , Business Days, Date Arithmetic
17123 @subsection Time Zones
17125 @noindent
17126 @cindex Time zones
17127 @cindex Daylight saving time
17128 Time zones and daylight saving time are a complicated business.
17129 The conversions to and from Julian and Unix-style dates automatically
17130 compute the correct time zone and daylight saving adjustment to use,
17131 provided they can figure out this information.  This section describes
17132 Calc's time zone adjustment algorithm in detail, in case you want to
17133 do conversions in different time zones or in case Calc's algorithms
17134 can't determine the right correction to use.
17136 Adjustments for time zones and daylight saving time are done by
17137 @kbd{t U}, @kbd{t J}, @kbd{t N}, and @kbd{t C}, but not by any other
17138 commands.  In particular, @samp{<may 1 1991> - <apr 1 1991>} evaluates
17139 to exactly 30 days even though there is a daylight-saving
17140 transition in between.  This is also true for Julian pure dates:
17141 @samp{julian(<may 1 1991>) - julian(<apr 1 1991>)}.  But Julian
17142 and Unix date/times will adjust for daylight saving time:  using Calc's
17143 default daylight saving time rule (see the explanation below),
17144 @samp{julian(<12am may 1 1991>) - julian(<12am apr 1 1991>)}
17145 evaluates to @samp{29.95833} (that's 29 days and 23 hours)
17146 because one hour was lost when daylight saving commenced on
17147 April 7, 1991.
17149 In brief, the idiom @samp{julian(@var{date1}) - julian(@var{date2})}
17150 computes the actual number of 24-hour periods between two dates, whereas
17151 @samp{@var{date1} - @var{date2}} computes the number of calendar
17152 days between two dates without taking daylight saving into account.
17154 @pindex calc-time-zone
17155 @ignore
17156 @starindex
17157 @end ignore
17158 @tindex tzone
17159 The @code{calc-time-zone} [@code{tzone}] command converts the time
17160 zone specified by its numeric prefix argument into a number of
17161 seconds difference from Greenwich mean time (GMT).  If the argument
17162 is a number, the result is simply that value multiplied by 3600.
17163 Typical arguments for North America are 5 (Eastern) or 8 (Pacific).  If
17164 Daylight Saving time is in effect, one hour should be subtracted from
17165 the normal difference.
17167 If you give a prefix of plain @kbd{C-u}, @code{calc-time-zone} (like other
17168 date arithmetic commands that include a time zone argument) takes the
17169 zone argument from the top of the stack.  (In the case of @kbd{t J}
17170 and @kbd{t U}, the normal argument is then taken from the second-to-top
17171 stack position.)  This allows you to give a non-integer time zone
17172 adjustment.  The time-zone argument can also be an HMS form, or
17173 it can be a variable which is a time zone name in upper- or lower-case.
17174 For example @samp{tzone(PST) = tzone(8)} and @samp{tzone(pdt) = tzone(7)}
17175 (for Pacific standard and daylight saving times, respectively).
17177 North American and European time zone names are defined as follows;
17178 note that for each time zone there is one name for standard time,
17179 another for daylight saving time, and a third for ``generalized'' time
17180 in which the daylight saving adjustment is computed from context.
17182 @smallexample
17183 @group
17184 YST  PST  MST  CST  EST  AST    NST    GMT   WET     MET    MEZ
17185  9    8    7    6    5    4     3.5     0     -1      -2     -2
17187 YDT  PDT  MDT  CDT  EDT  ADT    NDT    BST  WETDST  METDST  MESZ
17188  8    7    6    5    4    3     2.5     -1    -2      -3     -3
17190 YGT  PGT  MGT  CGT  EGT  AGT    NGT    BGT   WEGT    MEGT   MEGZ
17191 9/8  8/7  7/6  6/5  5/4  4/3  3.5/2.5  0/-1 -1/-2   -2/-3  -2/-3
17192 @end group
17193 @end smallexample
17195 @vindex math-tzone-names
17196 To define time zone names that do not appear in the above table,
17197 you must modify the Lisp variable @code{math-tzone-names}.  This
17198 is a list of lists describing the different time zone names; its
17199 structure is best explained by an example.  The three entries for
17200 Pacific Time look like this:
17202 @smallexample
17203 @group
17204 ( ( "PST" 8 0 )    ; Name as an upper-case string, then standard
17205   ( "PDT" 8 -1 )   ; adjustment, then daylight saving adjustment.
17206   ( "PGT" 8 "PST" "PDT" ) )   ; Generalized time zone.
17207 @end group
17208 @end smallexample
17210 @cindex @code{TimeZone} variable
17211 @vindex TimeZone
17212 With no arguments, @code{calc-time-zone} or @samp{tzone()} will by
17213 default get the time zone and daylight saving information from the
17214 calendar (@pxref{Daylight Saving,Calendar/Diary,The Calendar and the Diary,
17215 emacs,The GNU Emacs Manual}).  To use a different time zone, or if the
17216 calendar does not give the desired result, you can set the Calc variable 
17217 @code{TimeZone} (which is by default @code{nil}) to an appropriate
17218 time zone name.  (The easiest way to do this is to edit the
17219 @code{TimeZone} variable using Calc's @kbd{s T} command, then use the
17220 @kbd{s p} (@code{calc-permanent-variable}) command to save the value of
17221 @code{TimeZone} permanently.)  
17222 If the time zone given by @code{TimeZone} is a generalized time zone,
17223 e.g., @code{EGT}, Calc examines the date being converted to tell whether
17224 to use standard or daylight saving time.  But if the current time zone
17225 is explicit, e.g., @code{EST} or @code{EDT}, then that adjustment is
17226 used exactly and Calc's daylight saving algorithm is not consulted.
17227 The special time zone name @code{local}
17228 is equivalent to no argument; i.e., it uses the information obtained
17229 from the calendar.
17231 The @kbd{t J} and @code{t U} commands with no numeric prefix
17232 arguments do the same thing as @samp{tzone()}; namely, use the
17233 information from the calendar if @code{TimeZone} is @code{nil}, 
17234 otherwise use the time zone given by @code{TimeZone}.
17236 @vindex math-daylight-savings-hook
17237 @findex math-std-daylight-savings
17238 When Calc computes the daylight saving information itself (i.e., when 
17239 the @code{TimeZone} variable is set), it will by default consider
17240 daylight saving time to begin at 2 a.m.@: on the second Sunday of March
17241 (for years from 2007 on) or on the last Sunday in April (for years
17242 before 2007), and to end at 2 a.m.@: on the first Sunday of
17243 November. (for years from 2007 on) or the last Sunday in October (for
17244 years before 2007).  These are the rules that have been in effect in
17245 much of North America since 1966 and take into account the rule change
17246 that began in 2007.  If you are in a country that uses different rules
17247 for computing daylight saving time, you have two choices: Write your own
17248 daylight saving hook, or control time zones explicitly by setting the
17249 @code{TimeZone} variable and/or always giving a time-zone argument for
17250 the conversion functions.
17252 The Lisp variable @code{math-daylight-savings-hook} holds the
17253 name of a function that is used to compute the daylight saving
17254 adjustment for a given date.  The default is
17255 @code{math-std-daylight-savings}, which computes an adjustment
17256 (either 0 or @mathit{-1}) using the North American rules given above.
17258 The daylight saving hook function is called with four arguments:
17259 The date, as a floating-point number in standard Calc format;
17260 a six-element list of the date decomposed into year, month, day,
17261 hour, minute, and second, respectively; a string which contains
17262 the generalized time zone name in upper-case, e.g., @code{"WEGT"};
17263 and a special adjustment to be applied to the hour value when
17264 converting into a generalized time zone (see below).
17266 @findex math-prev-weekday-in-month
17267 The Lisp function @code{math-prev-weekday-in-month} is useful for
17268 daylight saving computations.  This is an internal version of
17269 the user-level @code{pwday} function described in the previous
17270 section. It takes four arguments:  The floating-point date value,
17271 the corresponding six-element date list, the day-of-month number,
17272 and the weekday number (0-6).
17274 The default daylight saving hook ignores the time zone name, but a
17275 more sophisticated hook could use different algorithms for different
17276 time zones.  It would also be possible to use different algorithms
17277 depending on the year number, but the default hook always uses the
17278 algorithm for 1987 and later.  Here is a listing of the default
17279 daylight saving hook:
17281 @smallexample
17282 (defun math-std-daylight-savings (date dt zone bump)
17283   (cond ((< (nth 1 dt) 4) 0)
17284         ((= (nth 1 dt) 4)
17285          (let ((sunday (math-prev-weekday-in-month date dt 7 0)))
17286            (cond ((< (nth 2 dt) sunday) 0)
17287                  ((= (nth 2 dt) sunday)
17288                   (if (>= (nth 3 dt) (+ 3 bump)) -1 0))
17289                  (t -1))))
17290         ((< (nth 1 dt) 10) -1)
17291         ((= (nth 1 dt) 10)
17292          (let ((sunday (math-prev-weekday-in-month date dt 31 0)))
17293            (cond ((< (nth 2 dt) sunday) -1)
17294                  ((= (nth 2 dt) sunday)
17295                   (if (>= (nth 3 dt) (+ 2 bump)) 0 -1))
17296                  (t 0))))
17297         (t 0))
17299 @end smallexample
17301 @noindent
17302 The @code{bump} parameter is equal to zero when Calc is converting
17303 from a date form in a generalized time zone into a GMT date value.
17304 It is @mathit{-1} when Calc is converting in the other direction.  The
17305 adjustments shown above ensure that the conversion behaves correctly
17306 and reasonably around the 2 a.m.@: transition in each direction.
17308 There is a ``missing'' hour between 2 a.m.@: and 3 a.m.@: at the
17309 beginning of daylight saving time; converting a date/time form that
17310 falls in this hour results in a time value for the following hour,
17311 from 3 a.m.@: to 4 a.m.  At the end of daylight saving time, the
17312 hour from 1 a.m.@: to 2 a.m.@: repeats itself; converting a date/time
17313 form that falls in this hour results in a time value for the first
17314 manifestation of that time (@emph{not} the one that occurs one hour 
17315 later).
17317 If @code{math-daylight-savings-hook} is @code{nil}, then the
17318 daylight saving adjustment is always taken to be zero.
17320 In algebraic formulas, @samp{tzone(@var{zone}, @var{date})}
17321 computes the time zone adjustment for a given zone name at a
17322 given date.  The @var{date} is ignored unless @var{zone} is a
17323 generalized time zone.  If @var{date} is a date form, the
17324 daylight saving computation is applied to it as it appears.
17325 If @var{date} is a numeric date value, it is adjusted for the
17326 daylight-saving version of @var{zone} before being given to
17327 the daylight saving hook.  This odd-sounding rule ensures
17328 that the daylight-saving computation is always done in
17329 local time, not in the GMT time that a numeric @var{date}
17330 is typically represented in.
17332 @ignore
17333 @starindex
17334 @end ignore
17335 @tindex dsadj
17336 The @samp{dsadj(@var{date}, @var{zone})} function computes the
17337 daylight saving adjustment that is appropriate for @var{date} in
17338 time zone @var{zone}.  If @var{zone} is explicitly in or not in
17339 daylight saving time (e.g., @code{PDT} or @code{PST}) the
17340 @var{date} is ignored.  If @var{zone} is a generalized time zone,
17341 the algorithms described above are used.  If @var{zone} is omitted,
17342 the computation is done for the current time zone.
17344 @node Financial Functions, Binary Functions, Date Arithmetic, Arithmetic
17345 @section Financial Functions
17347 @noindent
17348 Calc's financial or business functions use the @kbd{b} prefix
17349 key followed by a shifted letter.  (The @kbd{b} prefix followed by
17350 a lower-case letter is used for operations on binary numbers.)
17352 Note that the rate and the number of intervals given to these
17353 functions must be on the same time scale, e.g., both months or
17354 both years.  Mixing an annual interest rate with a time expressed
17355 in months will give you very wrong answers!
17357 It is wise to compute these functions to a higher precision than
17358 you really need, just to make sure your answer is correct to the
17359 last penny; also, you may wish to check the definitions at the end
17360 of this section to make sure the functions have the meaning you expect.
17362 @menu
17363 * Percentages::
17364 * Future Value::
17365 * Present Value::
17366 * Related Financial Functions::
17367 * Depreciation Functions::
17368 * Definitions of Financial Functions::
17369 @end menu
17371 @node Percentages, Future Value, Financial Functions, Financial Functions
17372 @subsection Percentages
17374 @kindex M-%
17375 @pindex calc-percent
17376 @tindex %
17377 @tindex percent
17378 The @kbd{M-%} (@code{calc-percent}) command takes a percentage value,
17379 say 5.4, and converts it to an equivalent actual number.  For example,
17380 @kbd{5.4 M-%} enters 0.054 on the stack.  (That's the @key{META} or
17381 @key{ESC} key combined with @kbd{%}.)
17383 Actually, @kbd{M-%} creates a formula of the form @samp{5.4%}.
17384 You can enter @samp{5.4%} yourself during algebraic entry.  The
17385 @samp{%} operator simply means, ``the preceding value divided by
17386 100.''  The @samp{%} operator has very high precedence, so that
17387 @samp{1+8%} is interpreted as @samp{1+(8%)}, not as @samp{(1+8)%}.
17388 (The @samp{%} operator is just a postfix notation for the
17389 @code{percent} function, just like @samp{20!} is the notation for
17390 @samp{fact(20)}, or twenty-factorial.)
17392 The formula @samp{5.4%} would normally evaluate immediately to
17393 0.054, but the @kbd{M-%} command suppresses evaluation as it puts
17394 the formula onto the stack.  However, the next Calc command that
17395 uses the formula @samp{5.4%} will evaluate it as its first step.
17396 The net effect is that you get to look at @samp{5.4%} on the stack,
17397 but Calc commands see it as @samp{0.054}, which is what they expect.
17399 In particular, @samp{5.4%} and @samp{0.054} are suitable values
17400 for the @var{rate} arguments of the various financial functions,
17401 but the number @samp{5.4} is probably @emph{not} suitable---it
17402 represents a rate of 540 percent!
17404 The key sequence @kbd{M-% *} effectively means ``percent-of.''
17405 For example, @kbd{68 @key{RET} 25 M-% *} computes 17, which is 25% of
17406 68 (and also 68% of 25, which comes out to the same thing).
17408 @kindex c %
17409 @pindex calc-convert-percent
17410 The @kbd{c %} (@code{calc-convert-percent}) command converts the
17411 value on the top of the stack from numeric to percentage form.
17412 For example, if 0.08 is on the stack, @kbd{c %} converts it to
17413 @samp{8%}.  The quantity is the same, it's just represented
17414 differently.  (Contrast this with @kbd{M-%}, which would convert
17415 this number to @samp{0.08%}.)  The @kbd{=} key is a convenient way
17416 to convert a formula like @samp{8%} back to numeric form, 0.08.
17418 To compute what percentage one quantity is of another quantity,
17419 use @kbd{/ c %}.  For example, @w{@kbd{17 @key{RET} 68 / c %}} displays
17420 @samp{25%}.
17422 @kindex b %
17423 @pindex calc-percent-change
17424 @tindex relch
17425 The @kbd{b %} (@code{calc-percent-change}) [@code{relch}] command
17426 calculates the percentage change from one number to another.
17427 For example, @kbd{40 @key{RET} 50 b %} produces the answer @samp{25%},
17428 since 50 is 25% larger than 40.  A negative result represents a
17429 decrease:  @kbd{50 @key{RET} 40 b %} produces @samp{-20%}, since 40 is
17430 20% smaller than 50.  (The answers are different in magnitude
17431 because, in the first case, we're increasing by 25% of 40, but
17432 in the second case, we're decreasing by 20% of 50.)  The effect
17433 of @kbd{40 @key{RET} 50 b %} is to compute @expr{(50-40)/40}, converting
17434 the answer to percentage form as if by @kbd{c %}.
17436 @node Future Value, Present Value, Percentages, Financial Functions
17437 @subsection Future Value
17439 @noindent
17440 @kindex b F
17441 @pindex calc-fin-fv
17442 @tindex fv
17443 The @kbd{b F} (@code{calc-fin-fv}) [@code{fv}] command computes
17444 the future value of an investment.  It takes three arguments
17445 from the stack:  @samp{fv(@var{rate}, @var{n}, @var{payment})}.
17446 If you give payments of @var{payment} every year for @var{n}
17447 years, and the money you have paid earns interest at @var{rate} per
17448 year, then this function tells you what your investment would be
17449 worth at the end of the period.  (The actual interval doesn't
17450 have to be years, as long as @var{n} and @var{rate} are expressed
17451 in terms of the same intervals.)  This function assumes payments
17452 occur at the @emph{end} of each interval.
17454 @kindex I b F
17455 @tindex fvb
17456 The @kbd{I b F} [@code{fvb}] command does the same computation,
17457 but assuming your payments are at the beginning of each interval.
17458 Suppose you plan to deposit $1000 per year in a savings account
17459 earning 5.4% interest, starting right now.  How much will be
17460 in the account after five years?  @code{fvb(5.4%, 5, 1000) = 5870.73}.
17461 Thus you will have earned $870 worth of interest over the years.
17462 Using the stack, this calculation would have been
17463 @kbd{5.4 M-% 5 @key{RET} 1000 I b F}.  Note that the rate is expressed
17464 as a number between 0 and 1, @emph{not} as a percentage.
17466 @kindex H b F
17467 @tindex fvl
17468 The @kbd{H b F} [@code{fvl}] command computes the future value
17469 of an initial lump sum investment.  Suppose you could deposit
17470 those five thousand dollars in the bank right now; how much would
17471 they be worth in five years?  @code{fvl(5.4%, 5, 5000) = 6503.89}.
17473 The algebraic functions @code{fv} and @code{fvb} accept an optional
17474 fourth argument, which is used as an initial lump sum in the sense
17475 of @code{fvl}.  In other words, @code{fv(@var{rate}, @var{n},
17476 @var{payment}, @var{initial}) = fv(@var{rate}, @var{n}, @var{payment})
17477 + fvl(@var{rate}, @var{n}, @var{initial})}.
17479 To illustrate the relationships between these functions, we could
17480 do the @code{fvb} calculation ``by hand'' using @code{fvl}.  The
17481 final balance will be the sum of the contributions of our five
17482 deposits at various times.  The first deposit earns interest for
17483 five years:  @code{fvl(5.4%, 5, 1000) = 1300.78}.  The second
17484 deposit only earns interest for four years:  @code{fvl(5.4%, 4, 1000) =
17485 1234.13}.  And so on down to the last deposit, which earns one
17486 year's interest:  @code{fvl(5.4%, 1, 1000) = 1054.00}.  The sum of
17487 these five values is, sure enough, $5870.73, just as was computed
17488 by @code{fvb} directly.
17490 What does @code{fv(5.4%, 5, 1000) = 5569.96} mean?  The payments
17491 are now at the ends of the periods.  The end of one year is the same
17492 as the beginning of the next, so what this really means is that we've
17493 lost the payment at year zero (which contributed $1300.78), but we're
17494 now counting the payment at year five (which, since it didn't have
17495 a chance to earn interest, counts as $1000).  Indeed, @expr{5569.96 =
17496 5870.73 - 1300.78 + 1000} (give or take a bit of roundoff error).
17498 @node Present Value, Related Financial Functions, Future Value, Financial Functions
17499 @subsection Present Value
17501 @noindent
17502 @kindex b P
17503 @pindex calc-fin-pv
17504 @tindex pv
17505 The @kbd{b P} (@code{calc-fin-pv}) [@code{pv}] command computes
17506 the present value of an investment.  Like @code{fv}, it takes
17507 three arguments:  @code{pv(@var{rate}, @var{n}, @var{payment})}.
17508 It computes the present value of a series of regular payments.
17509 Suppose you have the chance to make an investment that will
17510 pay $2000 per year over the next four years; as you receive
17511 these payments you can put them in the bank at 9% interest.
17512 You want to know whether it is better to make the investment, or
17513 to keep the money in the bank where it earns 9% interest right
17514 from the start.  The calculation @code{pv(9%, 4, 2000)} gives the
17515 result 6479.44.  If your initial investment must be less than this,
17516 say, $6000, then the investment is worthwhile.  But if you had to
17517 put up $7000, then it would be better just to leave it in the bank.
17519 Here is the interpretation of the result of @code{pv}:  You are
17520 trying to compare the return from the investment you are
17521 considering, which is @code{fv(9%, 4, 2000) = 9146.26}, with
17522 the return from leaving the money in the bank, which is
17523 @code{fvl(9%, 4, @var{x})} where @var{x} is the amount of money
17524 you would have to put up in advance.  The @code{pv} function
17525 finds the break-even point, @expr{x = 6479.44}, at which
17526 @code{fvl(9%, 4, 6479.44)} is also equal to 9146.26.  This is
17527 the largest amount you should be willing to invest.
17529 @kindex I b P
17530 @tindex pvb
17531 The @kbd{I b P} [@code{pvb}] command solves the same problem,
17532 but with payments occurring at the beginning of each interval.
17533 It has the same relationship to @code{fvb} as @code{pv} has
17534 to @code{fv}.  For example @code{pvb(9%, 4, 2000) = 7062.59},
17535 a larger number than @code{pv} produced because we get to start
17536 earning interest on the return from our investment sooner.
17538 @kindex H b P
17539 @tindex pvl
17540 The @kbd{H b P} [@code{pvl}] command computes the present value of
17541 an investment that will pay off in one lump sum at the end of the
17542 period.  For example, if we get our $8000 all at the end of the
17543 four years, @code{pvl(9%, 4, 8000) = 5667.40}.  This is much
17544 less than @code{pv} reported, because we don't earn any interest
17545 on the return from this investment.  Note that @code{pvl} and
17546 @code{fvl} are simple inverses:  @code{fvl(9%, 4, 5667.40) = 8000}.
17548 You can give an optional fourth lump-sum argument to @code{pv}
17549 and @code{pvb}; this is handled in exactly the same way as the
17550 fourth argument for @code{fv} and @code{fvb}.
17552 @kindex b N
17553 @pindex calc-fin-npv
17554 @tindex npv
17555 The @kbd{b N} (@code{calc-fin-npv}) [@code{npv}] command computes
17556 the net present value of a series of irregular investments.
17557 The first argument is the interest rate.  The second argument is
17558 a vector which represents the expected return from the investment
17559 at the end of each interval.  For example, if the rate represents
17560 a yearly interest rate, then the vector elements are the return
17561 from the first year, second year, and so on.
17563 Thus, @code{npv(9%, [2000,2000,2000,2000]) = pv(9%, 4, 2000) = 6479.44}.
17564 Obviously this function is more interesting when the payments are
17565 not all the same!
17567 The @code{npv} function can actually have two or more arguments.
17568 Multiple arguments are interpreted in the same way as for the
17569 vector statistical functions like @code{vsum}.
17570 @xref{Single-Variable Statistics}.  Basically, if there are several
17571 payment arguments, each either a vector or a plain number, all these
17572 values are collected left-to-right into the complete list of payments.
17573 A numeric prefix argument on the @kbd{b N} command says how many
17574 payment values or vectors to take from the stack.
17576 @kindex I b N
17577 @tindex npvb
17578 The @kbd{I b N} [@code{npvb}] command computes the net present
17579 value where payments occur at the beginning of each interval
17580 rather than at the end.
17582 @node Related Financial Functions, Depreciation Functions, Present Value, Financial Functions
17583 @subsection Related Financial Functions
17585 @noindent
17586 The functions in this section are basically inverses of the
17587 present value functions with respect to the various arguments.
17589 @kindex b M
17590 @pindex calc-fin-pmt
17591 @tindex pmt
17592 The @kbd{b M} (@code{calc-fin-pmt}) [@code{pmt}] command computes
17593 the amount of periodic payment necessary to amortize a loan.
17594 Thus @code{pmt(@var{rate}, @var{n}, @var{amount})} equals the
17595 value of @var{payment} such that @code{pv(@var{rate}, @var{n},
17596 @var{payment}) = @var{amount}}.
17598 @kindex I b M
17599 @tindex pmtb
17600 The @kbd{I b M} [@code{pmtb}] command does the same computation
17601 but using @code{pvb} instead of @code{pv}.  Like @code{pv} and
17602 @code{pvb}, these functions can also take a fourth argument which
17603 represents an initial lump-sum investment.
17605 @kindex H b M
17606 The @kbd{H b M} key just invokes the @code{fvl} function, which is
17607 the inverse of @code{pvl}.  There is no explicit @code{pmtl} function.
17609 @kindex b #
17610 @pindex calc-fin-nper
17611 @tindex nper
17612 The @kbd{b #} (@code{calc-fin-nper}) [@code{nper}] command computes
17613 the number of regular payments necessary to amortize a loan.
17614 Thus @code{nper(@var{rate}, @var{payment}, @var{amount})} equals
17615 the value of @var{n} such that @code{pv(@var{rate}, @var{n},
17616 @var{payment}) = @var{amount}}.  If @var{payment} is too small
17617 ever to amortize a loan for @var{amount} at interest rate @var{rate},
17618 the @code{nper} function is left in symbolic form.
17620 @kindex I b #
17621 @tindex nperb
17622 The @kbd{I b #} [@code{nperb}] command does the same computation
17623 but using @code{pvb} instead of @code{pv}.  You can give a fourth
17624 lump-sum argument to these functions, but the computation will be
17625 rather slow in the four-argument case.
17627 @kindex H b #
17628 @tindex nperl
17629 The @kbd{H b #} [@code{nperl}] command does the same computation
17630 using @code{pvl}.  By exchanging @var{payment} and @var{amount} you
17631 can also get the solution for @code{fvl}.  For example,
17632 @code{nperl(8%, 2000, 1000) = 9.006}, so if you place $1000 in a
17633 bank account earning 8%, it will take nine years to grow to $2000.
17635 @kindex b T
17636 @pindex calc-fin-rate
17637 @tindex rate
17638 The @kbd{b T} (@code{calc-fin-rate}) [@code{rate}] command computes
17639 the rate of return on an investment.  This is also an inverse of @code{pv}:
17640 @code{rate(@var{n}, @var{payment}, @var{amount})} computes the value of
17641 @var{rate} such that @code{pv(@var{rate}, @var{n}, @var{payment}) =
17642 @var{amount}}.  The result is expressed as a formula like @samp{6.3%}.
17644 @kindex I b T
17645 @kindex H b T
17646 @tindex rateb
17647 @tindex ratel
17648 The @kbd{I b T} [@code{rateb}] and @kbd{H b T} [@code{ratel}]
17649 commands solve the analogous equations with @code{pvb} or @code{pvl}
17650 in place of @code{pv}.  Also, @code{rate} and @code{rateb} can
17651 accept an optional fourth argument just like @code{pv} and @code{pvb}.
17652 To redo the above example from a different perspective,
17653 @code{ratel(9, 2000, 1000) = 8.00597%}, which says you will need an
17654 interest rate of 8% in order to double your account in nine years.
17656 @kindex b I
17657 @pindex calc-fin-irr
17658 @tindex irr
17659 The @kbd{b I} (@code{calc-fin-irr}) [@code{irr}] command is the
17660 analogous function to @code{rate} but for net present value.
17661 Its argument is a vector of payments.  Thus @code{irr(@var{payments})}
17662 computes the @var{rate} such that @code{npv(@var{rate}, @var{payments}) = 0};
17663 this rate is known as the @dfn{internal rate of return}.
17665 @kindex I b I
17666 @tindex irrb
17667 The @kbd{I b I} [@code{irrb}] command computes the internal rate of
17668 return assuming payments occur at the beginning of each period.
17670 @node Depreciation Functions, Definitions of Financial Functions, Related Financial Functions, Financial Functions
17671 @subsection Depreciation Functions
17673 @noindent
17674 The functions in this section calculate @dfn{depreciation}, which is
17675 the amount of value that a possession loses over time.  These functions
17676 are characterized by three parameters:  @var{cost}, the original cost
17677 of the asset; @var{salvage}, the value the asset will have at the end
17678 of its expected ``useful life''; and @var{life}, the number of years
17679 (or other periods) of the expected useful life.
17681 There are several methods for calculating depreciation that differ in
17682 the way they spread the depreciation over the lifetime of the asset.
17684 @kindex b S
17685 @pindex calc-fin-sln
17686 @tindex sln
17687 The @kbd{b S} (@code{calc-fin-sln}) [@code{sln}] command computes the
17688 ``straight-line'' depreciation.  In this method, the asset depreciates
17689 by the same amount every year (or period).  For example,
17690 @samp{sln(12000, 2000, 5)} returns 2000.  The asset costs $12000
17691 initially and will be worth $2000 after five years; it loses $2000
17692 per year.
17694 @kindex b Y
17695 @pindex calc-fin-syd
17696 @tindex syd
17697 The @kbd{b Y} (@code{calc-fin-syd}) [@code{syd}] command computes the
17698 accelerated ``sum-of-years'-digits'' depreciation.  Here the depreciation
17699 is higher during the early years of the asset's life.  Since the
17700 depreciation is different each year, @kbd{b Y} takes a fourth @var{period}
17701 parameter which specifies which year is requested, from 1 to @var{life}.
17702 If @var{period} is outside this range, the @code{syd} function will
17703 return zero.
17705 @kindex b D
17706 @pindex calc-fin-ddb
17707 @tindex ddb
17708 The @kbd{b D} (@code{calc-fin-ddb}) [@code{ddb}] command computes an
17709 accelerated depreciation using the double-declining balance method.
17710 It also takes a fourth @var{period} parameter.
17712 For symmetry, the @code{sln} function will accept a @var{period}
17713 parameter as well, although it will ignore its value except that the
17714 return value will as usual be zero if @var{period} is out of range.
17716 For example, pushing the vector @expr{[1,2,3,4,5]} (perhaps with @kbd{v x 5})
17717 and then mapping @kbd{V M ' [sln(12000,2000,5,$), syd(12000,2000,5,$),
17718 ddb(12000,2000,5,$)] @key{RET}} produces a matrix that allows us to compare
17719 the three depreciation methods:
17721 @example
17722 @group
17723 [ [ 2000, 3333, 4800 ]
17724   [ 2000, 2667, 2880 ]
17725   [ 2000, 2000, 1728 ]
17726   [ 2000, 1333,  592 ]
17727   [ 2000,  667,   0  ] ]
17728 @end group
17729 @end example
17731 @noindent
17732 (Values have been rounded to nearest integers in this figure.)
17733 We see that @code{sln} depreciates by the same amount each year,
17734 @kbd{syd} depreciates more at the beginning and less at the end,
17735 and @kbd{ddb} weights the depreciation even more toward the beginning.
17737 Summing columns with @kbd{V R : +} yields @expr{[10000, 10000, 10000]};
17738 the total depreciation in any method is (by definition) the
17739 difference between the cost and the salvage value.
17741 @node Definitions of Financial Functions,  , Depreciation Functions, Financial Functions
17742 @subsection Definitions
17744 @noindent
17745 For your reference, here are the actual formulas used to compute
17746 Calc's financial functions.
17748 Calc will not evaluate a financial function unless the @var{rate} or
17749 @var{n} argument is known.  However, @var{payment} or @var{amount} can
17750 be a variable.  Calc expands these functions according to the
17751 formulas below for symbolic arguments only when you use the @kbd{a "}
17752 (@code{calc-expand-formula}) command, or when taking derivatives or
17753 integrals or solving equations involving the functions.
17755 @ifnottex
17756 These formulas are shown using the conventions of Big display
17757 mode (@kbd{d B}); for example, the formula for @code{fv} written
17758 linearly is @samp{pmt * ((1 + rate)^n) - 1) / rate}.
17760 @example
17761                                         n
17762                               (1 + rate)  - 1
17763 fv(rate, n, pmt) =      pmt * ---------------
17764                                    rate
17766                                          n
17767                               ((1 + rate)  - 1) (1 + rate)
17768 fvb(rate, n, pmt) =     pmt * ----------------------------
17769                                          rate
17771                                         n
17772 fvl(rate, n, pmt) =     pmt * (1 + rate)
17774                                             -n
17775                               1 - (1 + rate)
17776 pv(rate, n, pmt) =      pmt * ----------------
17777                                     rate
17779                                              -n
17780                               (1 - (1 + rate)  ) (1 + rate)
17781 pvb(rate, n, pmt) =     pmt * -----------------------------
17782                                          rate
17784                                         -n
17785 pvl(rate, n, pmt) =     pmt * (1 + rate)
17787                                     -1               -2               -3
17788 npv(rate, [a, b, c]) =  a*(1 + rate)   + b*(1 + rate)   + c*(1 + rate)
17790                                         -1               -2
17791 npvb(rate, [a, b, c]) = a + b*(1 + rate)   + c*(1 + rate)
17793                                              -n
17794                         (amt - x * (1 + rate)  ) * rate
17795 pmt(rate, n, amt, x) =  -------------------------------
17796                                              -n
17797                                1 - (1 + rate)
17799                                              -n
17800                         (amt - x * (1 + rate)  ) * rate
17801 pmtb(rate, n, amt, x) = -------------------------------
17802                                         -n
17803                          (1 - (1 + rate)  ) (1 + rate)
17805                                    amt * rate
17806 nper(rate, pmt, amt) =  - log(1 - ------------, 1 + rate)
17807                                       pmt
17809                                     amt * rate
17810 nperb(rate, pmt, amt) = - log(1 - ---------------, 1 + rate)
17811                                   pmt * (1 + rate)
17813                               amt
17814 nperl(rate, pmt, amt) = - log(---, 1 + rate)
17815                               pmt
17817                            1/n
17818                         pmt
17819 ratel(n, pmt, amt) =    ------ - 1
17820                            1/n
17821                         amt
17823                         cost - salv
17824 sln(cost, salv, life) = -----------
17825                            life
17827                              (cost - salv) * (life - per + 1)
17828 syd(cost, salv, life, per) = --------------------------------
17829                                   life * (life + 1) / 2
17831                              book * 2
17832 ddb(cost, salv, life, per) = --------,  book = cost - depreciation so far
17833                                life
17834 @end example
17835 @end ifnottex
17836 @tex
17837 \turnoffactive
17838 $$ \code{fv}(r, n, p) = p { (1 + r)^n - 1 \over r } $$
17839 $$ \code{fvb}(r, n, p) = p { ((1 + r)^n - 1) (1 + r) \over r } $$
17840 $$ \code{fvl}(r, n, p) = p (1 + r)^n $$
17841 $$ \code{pv}(r, n, p) = p { 1 - (1 + r)^{-n} \over r } $$
17842 $$ \code{pvb}(r, n, p) = p { (1 - (1 + r)^{-n}) (1 + r) \over r } $$
17843 $$ \code{pvl}(r, n, p) = p (1 + r)^{-n} $$
17844 $$ \code{npv}(r, [a,b,c]) = a (1 + r)^{-1} + b (1 + r)^{-2} + c (1 + r)^{-3} $$
17845 $$ \code{npvb}(r, [a,b,c]) = a + b (1 + r)^{-1} + c (1 + r)^{-2} $$
17846 $$ \code{pmt}(r, n, a, x) = { (a - x (1 + r)^{-n}) r \over 1 - (1 + r)^{-n} }$$
17847 $$ \code{pmtb}(r, n, a, x) = { (a - x (1 + r)^{-n}) r \over
17848                                (1 - (1 + r)^{-n}) (1 + r) } $$
17849 $$ \code{nper}(r, p, a) = -\code{log}(1 - { a r \over p }, 1 + r) $$
17850 $$ \code{nperb}(r, p, a) = -\code{log}(1 - { a r \over p (1 + r) }, 1 + r) $$
17851 $$ \code{nperl}(r, p, a) = -\code{log}({a \over p}, 1 + r) $$
17852 $$ \code{ratel}(n, p, a) = { p^{1/n} \over a^{1/n} } - 1 $$
17853 $$ \code{sln}(c, s, l) = { c - s \over l } $$
17854 $$ \code{syd}(c, s, l, p) = { (c - s) (l - p + 1) \over l (l+1) / 2 } $$
17855 $$ \code{ddb}(c, s, l, p) = { 2 (c - \hbox{depreciation so far}) \over l } $$
17856 @end tex
17858 @noindent
17859 In @code{pmt} and @code{pmtb}, @expr{x=0} if omitted.
17861 These functions accept any numeric objects, including error forms,
17862 intervals, and even (though not very usefully) complex numbers.  The
17863 above formulas specify exactly the behavior of these functions with
17864 all sorts of inputs.
17866 Note that if the first argument to the @code{log} in @code{nper} is
17867 negative, @code{nper} leaves itself in symbolic form rather than
17868 returning a (financially meaningless) complex number.
17870 @samp{rate(num, pmt, amt)} solves the equation
17871 @samp{pv(rate, num, pmt) = amt} for @samp{rate} using @kbd{H a R}
17872 (@code{calc-find-root}), with the interval @samp{[.01% .. 100%]}
17873 for an initial guess.  The @code{rateb} function is the same except
17874 that it uses @code{pvb}.  Note that @code{ratel} can be solved
17875 directly; its formula is shown in the above list.
17877 Similarly, @samp{irr(pmts)} solves the equation @samp{npv(rate, pmts) = 0}
17878 for @samp{rate}.
17880 If you give a fourth argument to @code{nper} or @code{nperb}, Calc
17881 will also use @kbd{H a R} to solve the equation using an initial
17882 guess interval of @samp{[0 .. 100]}.
17884 A fourth argument to @code{fv} simply sums the two components
17885 calculated from the above formulas for @code{fv} and @code{fvl}.
17886 The same is true of @code{fvb}, @code{pv}, and @code{pvb}.
17888 The @kbd{ddb} function is computed iteratively; the ``book'' value
17889 starts out equal to @var{cost}, and decreases according to the above
17890 formula for the specified number of periods.  If the book value
17891 would decrease below @var{salvage}, it only decreases to @var{salvage}
17892 and the depreciation is zero for all subsequent periods.  The @code{ddb}
17893 function returns the amount the book value decreased in the specified
17894 period.
17896 @node Binary Functions,  , Financial Functions, Arithmetic
17897 @section Binary Number Functions
17899 @noindent
17900 The commands in this chapter all use two-letter sequences beginning with
17901 the @kbd{b} prefix.
17903 @cindex Binary numbers
17904 The ``binary'' operations actually work regardless of the currently
17905 displayed radix, although their results make the most sense in a radix
17906 like 2, 8, or 16 (as obtained by the @kbd{d 2}, @kbd{d 8}, or @w{@kbd{d 6}}
17907 commands, respectively).  You may also wish to enable display of leading
17908 zeros with @kbd{d z}.  @xref{Radix Modes}.
17910 @cindex Word size for binary operations
17911 The Calculator maintains a current @dfn{word size} @expr{w}, an
17912 arbitrary positive or negative integer.  For a positive word size, all
17913 of the binary operations described here operate modulo @expr{2^w}.  In
17914 particular, negative arguments are converted to positive integers modulo
17915 @expr{2^w} by all binary functions.
17917 If the word size is negative, binary operations produce 2's complement
17918 integers from 
17919 @texline @math{-2^{-w-1}}
17920 @infoline @expr{-(2^(-w-1))} 
17921 to 
17922 @texline @math{2^{-w-1}-1}
17923 @infoline @expr{2^(-w-1)-1} 
17924 inclusive.  Either mode accepts inputs in any range; the sign of
17925 @expr{w} affects only the results produced.
17927 @kindex b c
17928 @pindex calc-clip
17929 @tindex clip
17930 The @kbd{b c} (@code{calc-clip})
17931 [@code{clip}] command can be used to clip a number by reducing it modulo
17932 @expr{2^w}.  The commands described in this chapter automatically clip
17933 their results to the current word size.  Note that other operations like
17934 addition do not use the current word size, since integer addition
17935 generally is not ``binary.''  (However, @pxref{Simplification Modes},
17936 @code{calc-bin-simplify-mode}.)  For example, with a word size of 8
17937 bits @kbd{b c} converts a number to the range 0 to 255; with a word
17938 size of @mathit{-8} @kbd{b c} converts to the range @mathit{-128} to 127.
17940 @kindex b w
17941 @pindex calc-word-size
17942 The default word size is 32 bits.  All operations except the shifts and
17943 rotates allow you to specify a different word size for that one
17944 operation by giving a numeric prefix argument:  @kbd{C-u 8 b c} clips the
17945 top of stack to the range 0 to 255 regardless of the current word size.
17946 To set the word size permanently, use @kbd{b w} (@code{calc-word-size}).
17947 This command displays a prompt with the current word size; press @key{RET}
17948 immediately to keep this word size, or type a new word size at the prompt.
17950 When the binary operations are written in symbolic form, they take an
17951 optional second (or third) word-size parameter.  When a formula like
17952 @samp{and(a,b)} is finally evaluated, the word size current at that time
17953 will be used, but when @samp{and(a,b,-8)} is evaluated, a word size of
17954 @mathit{-8} will always be used.  A symbolic binary function will be left
17955 in symbolic form unless the all of its argument(s) are integers or
17956 integer-valued floats.
17958 If either or both arguments are modulo forms for which @expr{M} is a
17959 power of two, that power of two is taken as the word size unless a
17960 numeric prefix argument overrides it.  The current word size is never
17961 consulted when modulo-power-of-two forms are involved.
17963 @kindex b a
17964 @pindex calc-and
17965 @tindex and
17966 The @kbd{b a} (@code{calc-and}) [@code{and}] command computes the bitwise
17967 AND of the two numbers on the top of the stack.  In other words, for each
17968 of the @expr{w} binary digits of the two numbers (pairwise), the corresponding
17969 bit of the result is 1 if and only if both input bits are 1:
17970 @samp{and(2#1100, 2#1010) = 2#1000}.
17972 @kindex b o
17973 @pindex calc-or
17974 @tindex or
17975 The @kbd{b o} (@code{calc-or}) [@code{or}] command computes the bitwise
17976 inclusive OR of two numbers.  A bit is 1 if either of the input bits, or
17977 both, are 1:  @samp{or(2#1100, 2#1010) = 2#1110}.
17979 @kindex b x
17980 @pindex calc-xor
17981 @tindex xor
17982 The @kbd{b x} (@code{calc-xor}) [@code{xor}] command computes the bitwise
17983 exclusive OR of two numbers.  A bit is 1 if exactly one of the input bits
17984 is 1:  @samp{xor(2#1100, 2#1010) = 2#0110}.
17986 @kindex b d
17987 @pindex calc-diff
17988 @tindex diff
17989 The @kbd{b d} (@code{calc-diff}) [@code{diff}] command computes the bitwise
17990 difference of two numbers; this is defined by @samp{diff(a,b) = and(a,not(b))},
17991 so that @samp{diff(2#1100, 2#1010) = 2#0100}.
17993 @kindex b n
17994 @pindex calc-not
17995 @tindex not
17996 The @kbd{b n} (@code{calc-not}) [@code{not}] command computes the bitwise
17997 NOT of a number.  A bit is 1 if the input bit is 0 and vice-versa.
17999 @kindex b l
18000 @pindex calc-lshift-binary
18001 @tindex lsh
18002 The @kbd{b l} (@code{calc-lshift-binary}) [@code{lsh}] command shifts a
18003 number left by one bit, or by the number of bits specified in the numeric
18004 prefix argument.  A negative prefix argument performs a logical right shift,
18005 in which zeros are shifted in on the left.  In symbolic form, @samp{lsh(a)}
18006 is short for @samp{lsh(a,1)}, which in turn is short for @samp{lsh(a,n,w)}.
18007 Bits shifted ``off the end,'' according to the current word size, are lost.
18009 @kindex H b l
18010 @kindex H b r
18011 @ignore
18012 @mindex @idots
18013 @end ignore
18014 @kindex H b L
18015 @ignore
18016 @mindex @null
18017 @end ignore
18018 @kindex H b R
18019 @ignore
18020 @mindex @null
18021 @end ignore
18022 @kindex H b t
18023 The @kbd{H b l} command also does a left shift, but it takes two arguments
18024 from the stack (the value to shift, and, at top-of-stack, the number of
18025 bits to shift).  This version interprets the prefix argument just like
18026 the regular binary operations, i.e., as a word size.  The Hyperbolic flag
18027 has a similar effect on the rest of the binary shift and rotate commands.
18029 @kindex b r
18030 @pindex calc-rshift-binary
18031 @tindex rsh
18032 The @kbd{b r} (@code{calc-rshift-binary}) [@code{rsh}] command shifts a
18033 number right by one bit, or by the number of bits specified in the numeric
18034 prefix argument:  @samp{rsh(a,n) = lsh(a,-n)}.
18036 @kindex b L
18037 @pindex calc-lshift-arith
18038 @tindex ash
18039 The @kbd{b L} (@code{calc-lshift-arith}) [@code{ash}] command shifts a
18040 number left.  It is analogous to @code{lsh}, except that if the shift
18041 is rightward (the prefix argument is negative), an arithmetic shift
18042 is performed as described below.
18044 @kindex b R
18045 @pindex calc-rshift-arith
18046 @tindex rash
18047 The @kbd{b R} (@code{calc-rshift-arith}) [@code{rash}] command performs
18048 an ``arithmetic'' shift to the right, in which the leftmost bit (according
18049 to the current word size) is duplicated rather than shifting in zeros.
18050 This corresponds to dividing by a power of two where the input is interpreted
18051 as a signed, twos-complement number.  (The distinction between the @samp{rsh}
18052 and @samp{rash} operations is totally independent from whether the word
18053 size is positive or negative.)  With a negative prefix argument, this
18054 performs a standard left shift.
18056 @kindex b t
18057 @pindex calc-rotate-binary
18058 @tindex rot
18059 The @kbd{b t} (@code{calc-rotate-binary}) [@code{rot}] command rotates a
18060 number one bit to the left.  The leftmost bit (according to the current
18061 word size) is dropped off the left and shifted in on the right.  With a
18062 numeric prefix argument, the number is rotated that many bits to the left
18063 or right.
18065 @xref{Set Operations}, for the @kbd{b p} and @kbd{b u} commands that
18066 pack and unpack binary integers into sets.  (For example, @kbd{b u}
18067 unpacks the number @samp{2#11001} to the set of bit-numbers
18068 @samp{[0, 3, 4]}.)  Type @kbd{b u V #} to count the number of ``1''
18069 bits in a binary integer.
18071 Another interesting use of the set representation of binary integers
18072 is to reverse the bits in, say, a 32-bit integer.  Type @kbd{b u} to
18073 unpack; type @kbd{31 @key{TAB} -} to replace each bit-number in the set
18074 with 31 minus that bit-number; type @kbd{b p} to pack the set back
18075 into a binary integer.
18077 @node Scientific Functions, Matrix Functions, Arithmetic, Top
18078 @chapter Scientific Functions
18080 @noindent
18081 The functions described here perform trigonometric and other transcendental
18082 calculations.  They generally produce floating-point answers correct to the
18083 full current precision.  The @kbd{H} (Hyperbolic) and @kbd{I} (Inverse)
18084 flag keys must be used to get some of these functions from the keyboard.
18086 @kindex P
18087 @pindex calc-pi
18088 @cindex @code{pi} variable
18089 @vindex pi
18090 @kindex H P
18091 @cindex @code{e} variable
18092 @vindex e
18093 @kindex I P
18094 @cindex @code{gamma} variable
18095 @vindex gamma
18096 @cindex Gamma constant, Euler's
18097 @cindex Euler's gamma constant
18098 @kindex H I P
18099 @cindex @code{phi} variable
18100 @cindex Phi, golden ratio
18101 @cindex Golden ratio
18102 One miscellaneous command is shift-@kbd{P} (@code{calc-pi}), which pushes
18103 the value of @cpi{} (at the current precision) onto the stack.  With the
18104 Hyperbolic flag, it pushes the value @expr{e}, the base of natural logarithms.
18105 With the Inverse flag, it pushes Euler's constant 
18106 @texline @math{\gamma}
18107 @infoline @expr{gamma} 
18108 (about 0.5772).  With both Inverse and Hyperbolic, it
18109 pushes the ``golden ratio'' 
18110 @texline @math{\phi}
18111 @infoline @expr{phi} 
18112 (about 1.618).  (At present, Euler's constant is not available
18113 to unlimited precision; Calc knows only the first 100 digits.)
18114 In Symbolic mode, these commands push the
18115 actual variables @samp{pi}, @samp{e}, @samp{gamma}, and @samp{phi},
18116 respectively, instead of their values; @pxref{Symbolic Mode}.
18118 @ignore
18119 @mindex Q
18120 @end ignore
18121 @ignore
18122 @mindex I Q
18123 @end ignore
18124 @kindex I Q
18125 @tindex sqr
18126 The @kbd{Q} (@code{calc-sqrt}) [@code{sqrt}] function is described elsewhere;
18127 @pxref{Basic Arithmetic}.  With the Inverse flag [@code{sqr}], this command
18128 computes the square of the argument.
18130 @xref{Prefix Arguments}, for a discussion of the effect of numeric
18131 prefix arguments on commands in this chapter which do not otherwise
18132 interpret a prefix argument.
18134 @menu
18135 * Logarithmic Functions::
18136 * Trigonometric and Hyperbolic Functions::
18137 * Advanced Math Functions::
18138 * Branch Cuts::
18139 * Random Numbers::
18140 * Combinatorial Functions::
18141 * Probability Distribution Functions::
18142 @end menu
18144 @node Logarithmic Functions, Trigonometric and Hyperbolic Functions, Scientific Functions, Scientific Functions
18145 @section Logarithmic Functions
18147 @noindent
18148 @kindex L
18149 @pindex calc-ln
18150 @tindex ln
18151 @ignore
18152 @mindex @null
18153 @end ignore
18154 @kindex I E
18155 The shift-@kbd{L} (@code{calc-ln}) [@code{ln}] command computes the natural
18156 logarithm of the real or complex number on the top of the stack.  With
18157 the Inverse flag it computes the exponential function instead, although
18158 this is redundant with the @kbd{E} command.
18160 @kindex E
18161 @pindex calc-exp
18162 @tindex exp
18163 @ignore
18164 @mindex @null
18165 @end ignore
18166 @kindex I L
18167 The shift-@kbd{E} (@code{calc-exp}) [@code{exp}] command computes the
18168 exponential, i.e., @expr{e} raised to the power of the number on the stack.
18169 The meanings of the Inverse and Hyperbolic flags follow from those for
18170 the @code{calc-ln} command.
18172 @kindex H L
18173 @kindex H E
18174 @pindex calc-log10
18175 @tindex log10
18176 @tindex exp10
18177 @ignore
18178 @mindex @null
18179 @end ignore
18180 @kindex H I L
18181 @ignore
18182 @mindex @null
18183 @end ignore
18184 @kindex H I E
18185 The @kbd{H L} (@code{calc-log10}) [@code{log10}] command computes the common
18186 (base-10) logarithm of a number.  (With the Inverse flag [@code{exp10}],
18187 it raises ten to a given power.)  Note that the common logarithm of a
18188 complex number is computed by taking the natural logarithm and dividing
18189 by 
18190 @texline @math{\ln10}.
18191 @infoline @expr{ln(10)}.
18193 @kindex B
18194 @kindex I B
18195 @pindex calc-log
18196 @tindex log
18197 @tindex alog
18198 The @kbd{B} (@code{calc-log}) [@code{log}] command computes a logarithm
18199 to any base.  For example, @kbd{1024 @key{RET} 2 B} produces 10, since
18200 @texline @math{2^{10} = 1024}.
18201 @infoline @expr{2^10 = 1024}.  
18202 In certain cases like @samp{log(3,9)}, the result
18203 will be either @expr{1:2} or @expr{0.5} depending on the current Fraction
18204 mode setting.  With the Inverse flag [@code{alog}], this command is
18205 similar to @kbd{^} except that the order of the arguments is reversed.
18207 @kindex f I
18208 @pindex calc-ilog
18209 @tindex ilog
18210 The @kbd{f I} (@code{calc-ilog}) [@code{ilog}] command computes the
18211 integer logarithm of a number to any base.  The number and the base must
18212 themselves be positive integers.  This is the true logarithm, rounded
18213 down to an integer.  Thus @kbd{ilog(x,10)} is 3 for all @expr{x} in the
18214 range from 1000 to 9999.  If both arguments are positive integers, exact
18215 integer arithmetic is used; otherwise, this is equivalent to
18216 @samp{floor(log(x,b))}.
18218 @kindex f E
18219 @pindex calc-expm1
18220 @tindex expm1
18221 The @kbd{f E} (@code{calc-expm1}) [@code{expm1}] command computes
18222 @texline @math{e^x - 1},
18223 @infoline @expr{exp(x)-1}, 
18224 but using an algorithm that produces a more accurate
18225 answer when the result is close to zero, i.e., when 
18226 @texline @math{e^x}
18227 @infoline @expr{exp(x)} 
18228 is close to one.
18230 @kindex f L
18231 @pindex calc-lnp1
18232 @tindex lnp1
18233 The @kbd{f L} (@code{calc-lnp1}) [@code{lnp1}] command computes
18234 @texline @math{\ln(x+1)},
18235 @infoline @expr{ln(x+1)}, 
18236 producing a more accurate answer when @expr{x} is close to zero.
18238 @node Trigonometric and Hyperbolic Functions, Advanced Math Functions, Logarithmic Functions, Scientific Functions
18239 @section Trigonometric/Hyperbolic Functions
18241 @noindent
18242 @kindex S
18243 @pindex calc-sin
18244 @tindex sin
18245 The shift-@kbd{S} (@code{calc-sin}) [@code{sin}] command computes the sine
18246 of an angle or complex number.  If the input is an HMS form, it is interpreted
18247 as degrees-minutes-seconds; otherwise, the input is interpreted according
18248 to the current angular mode.  It is best to use Radians mode when operating
18249 on complex numbers.
18251 Calc's ``units'' mechanism includes angular units like @code{deg},
18252 @code{rad}, and @code{grad}.  While @samp{sin(45 deg)} is not evaluated
18253 all the time, the @kbd{u s} (@code{calc-simplify-units}) command will
18254 simplify @samp{sin(45 deg)} by taking the sine of 45 degrees, regardless
18255 of the current angular mode.  @xref{Basic Operations on Units}.
18257 Also, the symbolic variable @code{pi} is not ordinarily recognized in
18258 arguments to trigonometric functions, as in @samp{sin(3 pi / 4)}, but
18259 the @kbd{a s} (@code{calc-simplify}) command recognizes many such
18260 formulas when the current angular mode is Radians @emph{and} Symbolic
18261 mode is enabled; this example would be replaced by @samp{sqrt(2) / 2}.
18262 @xref{Symbolic Mode}.  Beware, this simplification occurs even if you
18263 have stored a different value in the variable @samp{pi}; this is one
18264 reason why changing built-in variables is a bad idea.  Arguments of
18265 the form @expr{x} plus a multiple of @cpiover{2} are also simplified.
18266 Calc includes similar formulas for @code{cos} and @code{tan}.
18268 The @kbd{a s} command knows all angles which are integer multiples of
18269 @cpiover{12}, @cpiover{10}, or @cpiover{8} radians.  In Degrees mode,
18270 analogous simplifications occur for integer multiples of 15 or 18
18271 degrees, and for arguments plus multiples of 90 degrees.
18273 @kindex I S
18274 @pindex calc-arcsin
18275 @tindex arcsin
18276 With the Inverse flag, @code{calc-sin} computes an arcsine.  This is also
18277 available as the @code{calc-arcsin} command or @code{arcsin} algebraic
18278 function.  The returned argument is converted to degrees, radians, or HMS
18279 notation depending on the current angular mode.
18281 @kindex H S
18282 @pindex calc-sinh
18283 @tindex sinh
18284 @kindex H I S
18285 @pindex calc-arcsinh
18286 @tindex arcsinh
18287 With the Hyperbolic flag, @code{calc-sin} computes the hyperbolic
18288 sine, also available as @code{calc-sinh} [@code{sinh}].  With the
18289 Hyperbolic and Inverse flags, it computes the hyperbolic arcsine
18290 (@code{calc-arcsinh}) [@code{arcsinh}].
18292 @kindex C
18293 @pindex calc-cos
18294 @tindex cos
18295 @ignore
18296 @mindex @idots
18297 @end ignore
18298 @kindex I C
18299 @pindex calc-arccos
18300 @ignore
18301 @mindex @null
18302 @end ignore
18303 @tindex arccos
18304 @ignore
18305 @mindex @null
18306 @end ignore
18307 @kindex H C
18308 @pindex calc-cosh
18309 @ignore
18310 @mindex @null
18311 @end ignore
18312 @tindex cosh
18313 @ignore
18314 @mindex @null
18315 @end ignore
18316 @kindex H I C
18317 @pindex calc-arccosh
18318 @ignore
18319 @mindex @null
18320 @end ignore
18321 @tindex arccosh
18322 @ignore
18323 @mindex @null
18324 @end ignore
18325 @kindex T
18326 @pindex calc-tan
18327 @ignore
18328 @mindex @null
18329 @end ignore
18330 @tindex tan
18331 @ignore
18332 @mindex @null
18333 @end ignore
18334 @kindex I T
18335 @pindex calc-arctan
18336 @ignore
18337 @mindex @null
18338 @end ignore
18339 @tindex arctan
18340 @ignore
18341 @mindex @null
18342 @end ignore
18343 @kindex H T
18344 @pindex calc-tanh
18345 @ignore
18346 @mindex @null
18347 @end ignore
18348 @tindex tanh
18349 @ignore
18350 @mindex @null
18351 @end ignore
18352 @kindex H I T
18353 @pindex calc-arctanh
18354 @ignore
18355 @mindex @null
18356 @end ignore
18357 @tindex arctanh
18358 The shift-@kbd{C} (@code{calc-cos}) [@code{cos}] command computes the cosine
18359 of an angle or complex number, and shift-@kbd{T} (@code{calc-tan}) [@code{tan}]
18360 computes the tangent, along with all the various inverse and hyperbolic
18361 variants of these functions.
18363 @kindex f T
18364 @pindex calc-arctan2
18365 @tindex arctan2
18366 The @kbd{f T} (@code{calc-arctan2}) [@code{arctan2}] command takes two
18367 numbers from the stack and computes the arc tangent of their ratio.  The
18368 result is in the full range from @mathit{-180} (exclusive) to @mathit{+180}
18369 (inclusive) degrees, or the analogous range in radians.  A similar
18370 result would be obtained with @kbd{/} followed by @kbd{I T}, but the
18371 value would only be in the range from @mathit{-90} to @mathit{+90} degrees
18372 since the division loses information about the signs of the two
18373 components, and an error might result from an explicit division by zero
18374 which @code{arctan2} would avoid.  By (arbitrary) definition,
18375 @samp{arctan2(0,0)=0}.
18377 @pindex calc-sincos
18378 @ignore
18379 @starindex
18380 @end ignore
18381 @tindex sincos
18382 @ignore
18383 @starindex
18384 @end ignore
18385 @ignore
18386 @mindex arc@idots
18387 @end ignore
18388 @tindex arcsincos
18389 The @code{calc-sincos} [@code{sincos}] command computes the sine and
18390 cosine of a number, returning them as a vector of the form
18391 @samp{[@var{cos}, @var{sin}]}.
18392 With the Inverse flag [@code{arcsincos}], this command takes a two-element
18393 vector as an argument and computes @code{arctan2} of the elements.
18394 (This command does not accept the Hyperbolic flag.)
18396 @pindex calc-sec
18397 @tindex sec
18398 @pindex calc-csc
18399 @tindex csc
18400 @pindex calc-cot
18401 @tindex cot
18402 @pindex calc-sech
18403 @tindex sech
18404 @pindex calc-csch
18405 @tindex csch
18406 @pindex calc-coth
18407 @tindex coth
18408 The remaining trigonometric functions, @code{calc-sec} [@code{sec}],
18409 @code{calc-csc} [@code{csc}] and @code{calc-cot} [@code{cot}], are also
18410 available.  With the Hyperbolic flag, these compute their hyperbolic
18411 counterparts, which are also available separately as @code{calc-sech}
18412 [@code{sech}], @code{calc-csch} [@code{csch}] and @code{calc-coth}
18413 [@code{coth}].  (These commands do not accept the Inverse flag.)
18415 @node Advanced Math Functions, Branch Cuts, Trigonometric and Hyperbolic Functions, Scientific Functions
18416 @section Advanced Mathematical Functions
18418 @noindent
18419 Calc can compute a variety of less common functions that arise in
18420 various branches of mathematics.  All of the functions described in
18421 this section allow arbitrary complex arguments and, except as noted,
18422 will work to arbitrarily large precisions.  They can not at present
18423 handle error forms or intervals as arguments.
18425 NOTE:  These functions are still experimental.  In particular, their
18426 accuracy is not guaranteed in all domains.  It is advisable to set the
18427 current precision comfortably higher than you actually need when
18428 using these functions.  Also, these functions may be impractically
18429 slow for some values of the arguments.
18431 @kindex f g
18432 @pindex calc-gamma
18433 @tindex gamma
18434 The @kbd{f g} (@code{calc-gamma}) [@code{gamma}] command computes the Euler
18435 gamma function.  For positive integer arguments, this is related to the
18436 factorial function:  @samp{gamma(n+1) = fact(n)}.  For general complex
18437 arguments the gamma function can be defined by the following definite
18438 integral:  
18439 @texline @math{\Gamma(a) = \int_0^\infty t^{a-1} e^t dt}.
18440 @infoline @expr{gamma(a) = integ(t^(a-1) exp(t), t, 0, inf)}.  
18441 (The actual implementation uses far more efficient computational methods.)
18443 @kindex f G
18444 @tindex gammaP
18445 @ignore
18446 @mindex @idots
18447 @end ignore
18448 @kindex I f G
18449 @ignore
18450 @mindex @null
18451 @end ignore
18452 @kindex H f G
18453 @ignore
18454 @mindex @null
18455 @end ignore
18456 @kindex H I f G
18457 @pindex calc-inc-gamma
18458 @ignore
18459 @mindex @null
18460 @end ignore
18461 @tindex gammaQ
18462 @ignore
18463 @mindex @null
18464 @end ignore
18465 @tindex gammag
18466 @ignore
18467 @mindex @null
18468 @end ignore
18469 @tindex gammaG
18470 The @kbd{f G} (@code{calc-inc-gamma}) [@code{gammaP}] command computes
18471 the incomplete gamma function, denoted @samp{P(a,x)}.  This is defined by
18472 the integral, 
18473 @texline @math{P(a,x) = \left( \int_0^x t^{a-1} e^t dt \right) / \Gamma(a)}.
18474 @infoline @expr{gammaP(a,x) = integ(t^(a-1) exp(t), t, 0, x) / gamma(a)}.
18475 This implies that @samp{gammaP(a,inf) = 1} for any @expr{a} (see the
18476 definition of the normal gamma function).
18478 Several other varieties of incomplete gamma function are defined.
18479 The complement of @expr{P(a,x)}, called @expr{Q(a,x) = 1-P(a,x)} by
18480 some authors, is computed by the @kbd{I f G} [@code{gammaQ}] command.
18481 You can think of this as taking the other half of the integral, from
18482 @expr{x} to infinity.
18484 @ifnottex
18485 The functions corresponding to the integrals that define @expr{P(a,x)}
18486 and @expr{Q(a,x)} but without the normalizing @expr{1/gamma(a)}
18487 factor are called @expr{g(a,x)} and @expr{G(a,x)}, respectively
18488 (where @expr{g} and @expr{G} represent the lower- and upper-case Greek
18489 letter gamma).  You can obtain these using the @kbd{H f G} [@code{gammag}]
18490 and @kbd{H I f G} [@code{gammaG}] commands.
18491 @end ifnottex
18492 @tex
18493 \turnoffactive
18494 The functions corresponding to the integrals that define $P(a,x)$
18495 and $Q(a,x)$ but without the normalizing $1/\Gamma(a)$
18496 factor are called $\gamma(a,x)$ and $\Gamma(a,x)$, respectively.
18497 You can obtain these using the \kbd{H f G} [\code{gammag}] and
18498 \kbd{I H f G} [\code{gammaG}] commands.
18499 @end tex
18501 @kindex f b
18502 @pindex calc-beta
18503 @tindex beta
18504 The @kbd{f b} (@code{calc-beta}) [@code{beta}] command computes the
18505 Euler beta function, which is defined in terms of the gamma function as
18506 @texline @math{B(a,b) = \Gamma(a) \Gamma(b) / \Gamma(a+b)},
18507 @infoline @expr{beta(a,b) = gamma(a) gamma(b) / gamma(a+b)}, 
18508 or by
18509 @texline @math{B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt}.
18510 @infoline @expr{beta(a,b) = integ(t^(a-1) (1-t)^(b-1), t, 0, 1)}.
18512 @kindex f B
18513 @kindex H f B
18514 @pindex calc-inc-beta
18515 @tindex betaI
18516 @tindex betaB
18517 The @kbd{f B} (@code{calc-inc-beta}) [@code{betaI}] command computes
18518 the incomplete beta function @expr{I(x,a,b)}.  It is defined by
18519 @texline @math{I(x,a,b) = \left( \int_0^x t^{a-1} (1-t)^{b-1} dt \right) / B(a,b)}.
18520 @infoline @expr{betaI(x,a,b) = integ(t^(a-1) (1-t)^(b-1), t, 0, x) / beta(a,b)}.
18521 Once again, the @kbd{H} (hyperbolic) prefix gives the corresponding
18522 un-normalized version [@code{betaB}].
18524 @kindex f e
18525 @kindex I f e
18526 @pindex calc-erf
18527 @tindex erf
18528 @tindex erfc
18529 The @kbd{f e} (@code{calc-erf}) [@code{erf}] command computes the
18530 error function 
18531 @texline @math{\hbox{erf}(x) = {2 \over \sqrt{\pi}} \int_0^x e^{-t^2} dt}.
18532 @infoline @expr{erf(x) = 2 integ(exp(-(t^2)), t, 0, x) / sqrt(pi)}.
18533 The complementary error function @kbd{I f e} (@code{calc-erfc}) [@code{erfc}]
18534 is the corresponding integral from @samp{x} to infinity; the sum
18535 @texline @math{\hbox{erf}(x) + \hbox{erfc}(x) = 1}.
18536 @infoline @expr{erf(x) + erfc(x) = 1}.
18538 @kindex f j
18539 @kindex f y
18540 @pindex calc-bessel-J
18541 @pindex calc-bessel-Y
18542 @tindex besJ
18543 @tindex besY
18544 The @kbd{f j} (@code{calc-bessel-J}) [@code{besJ}] and @kbd{f y}
18545 (@code{calc-bessel-Y}) [@code{besY}] commands compute the Bessel
18546 functions of the first and second kinds, respectively.
18547 In @samp{besJ(n,x)} and @samp{besY(n,x)} the ``order'' parameter
18548 @expr{n} is often an integer, but is not required to be one.
18549 Calc's implementation of the Bessel functions currently limits the
18550 precision to 8 digits, and may not be exact even to that precision.
18551 Use with care!
18553 @node Branch Cuts, Random Numbers, Advanced Math Functions, Scientific Functions
18554 @section Branch Cuts and Principal Values
18556 @noindent
18557 @cindex Branch cuts
18558 @cindex Principal values
18559 All of the logarithmic, trigonometric, and other scientific functions are
18560 defined for complex numbers as well as for reals.
18561 This section describes the values
18562 returned in cases where the general result is a family of possible values.
18563 Calc follows section 12.5.3 of Steele's @dfn{Common Lisp, the Language},
18564 second edition, in these matters.  This section will describe each
18565 function briefly; for a more detailed discussion (including some nifty
18566 diagrams), consult Steele's book.
18568 Note that the branch cuts for @code{arctan} and @code{arctanh} were
18569 changed between the first and second editions of Steele.  Versions of
18570 Calc starting with 2.00 follow the second edition.
18572 The new branch cuts exactly match those of the HP-28/48 calculators.
18573 They also match those of Mathematica 1.2, except that Mathematica's
18574 @code{arctan} cut is always in the right half of the complex plane,
18575 and its @code{arctanh} cut is always in the top half of the plane.
18576 Calc's cuts are continuous with quadrants I and III for @code{arctan},
18577 or II and IV for @code{arctanh}.
18579 Note:  The current implementations of these functions with complex arguments
18580 are designed with proper behavior around the branch cuts in mind, @emph{not}
18581 efficiency or accuracy.  You may need to increase the floating precision
18582 and wait a while to get suitable answers from them.
18584 For @samp{sqrt(a+bi)}:  When @expr{a<0} and @expr{b} is small but positive
18585 or zero, the result is close to the @expr{+i} axis.  For @expr{b} small and
18586 negative, the result is close to the @expr{-i} axis.  The result always lies
18587 in the right half of the complex plane.
18589 For @samp{ln(a+bi)}:  The real part is defined as @samp{ln(abs(a+bi))}.
18590 The imaginary part is defined as @samp{arg(a+bi) = arctan2(b,a)}.
18591 Thus the branch cuts for @code{sqrt} and @code{ln} both lie on the
18592 negative real axis.
18594 The following table describes these branch cuts in another way.
18595 If the real and imaginary parts of @expr{z} are as shown, then
18596 the real and imaginary parts of @expr{f(z)} will be as shown.
18597 Here @code{eps} stands for a small positive value; each
18598 occurrence of @code{eps} may stand for a different small value.
18600 @smallexample
18601      z           sqrt(z)       ln(z)
18602 ----------------------------------------
18603    +,   0         +,  0       any, 0
18604    -,   0         0,  +       any, pi
18605    -, +eps      +eps, +      +eps, +
18606    -, -eps      +eps, -      +eps, -
18607 @end smallexample
18609 For @samp{z1^z2}:  This is defined by @samp{exp(ln(z1)*z2)}.
18610 One interesting consequence of this is that @samp{(-8)^1:3} does
18611 not evaluate to @mathit{-2} as you might expect, but to the complex
18612 number @expr{(1., 1.732)}.  Both of these are valid cube roots
18613 of @mathit{-8} (as is @expr{(1., -1.732)}); Calc chooses a perhaps
18614 less-obvious root for the sake of mathematical consistency.
18616 For @samp{arcsin(z)}:  This is defined by @samp{-i*ln(i*z + sqrt(1-z^2))}.
18617 The branch cuts are on the real axis, less than @mathit{-1} and greater than 1.
18619 For @samp{arccos(z)}:  This is defined by @samp{-i*ln(z + i*sqrt(1-z^2))},
18620 or equivalently by @samp{pi/2 - arcsin(z)}.  The branch cuts are on
18621 the real axis, less than @mathit{-1} and greater than 1.
18623 For @samp{arctan(z)}:  This is defined by
18624 @samp{(ln(1+i*z) - ln(1-i*z)) / (2*i)}.  The branch cuts are on the
18625 imaginary axis, below @expr{-i} and above @expr{i}.
18627 For @samp{arcsinh(z)}:  This is defined by @samp{ln(z + sqrt(1+z^2))}.
18628 The branch cuts are on the imaginary axis, below @expr{-i} and
18629 above @expr{i}.
18631 For @samp{arccosh(z)}:  This is defined by
18632 @samp{ln(z + (z+1)*sqrt((z-1)/(z+1)))}.  The branch cut is on the
18633 real axis less than 1.
18635 For @samp{arctanh(z)}:  This is defined by @samp{(ln(1+z) - ln(1-z)) / 2}.
18636 The branch cuts are on the real axis, less than @mathit{-1} and greater than 1.
18638 The following tables for @code{arcsin}, @code{arccos}, and
18639 @code{arctan} assume the current angular mode is Radians.  The
18640 hyperbolic functions operate independently of the angular mode.
18642 @smallexample
18643        z             arcsin(z)            arccos(z)
18644 -------------------------------------------------------
18645  (-1..1),  0      (-pi/2..pi/2), 0       (0..pi), 0
18646  (-1..1), +eps    (-pi/2..pi/2), +eps    (0..pi), -eps
18647  (-1..1), -eps    (-pi/2..pi/2), -eps    (0..pi), +eps
18648    <-1,    0          -pi/2,     +         pi,    -
18649    <-1,  +eps      -pi/2 + eps,  +      pi - eps, -
18650    <-1,  -eps      -pi/2 + eps,  -      pi - eps, +
18651     >1,    0           pi/2,     -          0,    +
18652     >1,  +eps       pi/2 - eps,  +        +eps,   -
18653     >1,  -eps       pi/2 - eps,  -        +eps,   +
18654 @end smallexample
18656 @smallexample
18657        z            arccosh(z)         arctanh(z)
18658 -----------------------------------------------------
18659  (-1..1),  0        0,  (0..pi)       any,     0
18660  (-1..1), +eps    +eps, (0..pi)       any,    +eps
18661  (-1..1), -eps    +eps, (-pi..0)      any,    -eps
18662    <-1,    0        +,    pi           -,     pi/2
18663    <-1,  +eps       +,  pi - eps       -,  pi/2 - eps
18664    <-1,  -eps       +, -pi + eps       -, -pi/2 + eps
18665     >1,    0        +,     0           +,    -pi/2
18666     >1,  +eps       +,   +eps          +,  pi/2 - eps
18667     >1,  -eps       +,   -eps          +, -pi/2 + eps
18668 @end smallexample
18670 @smallexample
18671        z           arcsinh(z)           arctan(z)
18672 -----------------------------------------------------
18673    0, (-1..1)    0, (-pi/2..pi/2)         0,     any
18674    0,   <-1      -,    -pi/2            -pi/2,    -
18675  +eps,  <-1      +, -pi/2 + eps       pi/2 - eps, -
18676  -eps,  <-1      -, -pi/2 + eps      -pi/2 + eps, -
18677    0,    >1      +,     pi/2             pi/2,    +
18678  +eps,   >1      +,  pi/2 - eps       pi/2 - eps, +
18679  -eps,   >1      -,  pi/2 - eps      -pi/2 + eps, +
18680 @end smallexample
18682 Finally, the following identities help to illustrate the relationship
18683 between the complex trigonometric and hyperbolic functions.  They
18684 are valid everywhere, including on the branch cuts.
18686 @smallexample
18687 sin(i*z)  = i*sinh(z)       arcsin(i*z)  = i*arcsinh(z)
18688 cos(i*z)  =   cosh(z)       arcsinh(i*z) = i*arcsin(z)
18689 tan(i*z)  = i*tanh(z)       arctan(i*z)  = i*arctanh(z)
18690 sinh(i*z) = i*sin(z)        cosh(i*z)    =   cos(z)
18691 @end smallexample
18693 The ``advanced math'' functions (gamma, Bessel, etc.@:) are also defined
18694 for general complex arguments, but their branch cuts and principal values
18695 are not rigorously specified at present.
18697 @node Random Numbers, Combinatorial Functions, Branch Cuts, Scientific Functions
18698 @section Random Numbers
18700 @noindent
18701 @kindex k r
18702 @pindex calc-random
18703 @tindex random
18704 The @kbd{k r} (@code{calc-random}) [@code{random}] command produces
18705 random numbers of various sorts.
18707 Given a positive numeric prefix argument @expr{M}, it produces a random
18708 integer @expr{N} in the range 
18709 @texline @math{0 \le N < M}.
18710 @infoline @expr{0 <= N < M}.  
18711 Each possible value @expr{N} appears with equal probability.
18713 With no numeric prefix argument, the @kbd{k r} command takes its argument
18714 from the stack instead.  Once again, if this is a positive integer @expr{M}
18715 the result is a random integer less than @expr{M}.  However, note that
18716 while numeric prefix arguments are limited to six digits or so, an @expr{M}
18717 taken from the stack can be arbitrarily large.  If @expr{M} is negative,
18718 the result is a random integer in the range 
18719 @texline @math{M < N \le 0}.
18720 @infoline @expr{M < N <= 0}.
18722 If the value on the stack is a floating-point number @expr{M}, the result
18723 is a random floating-point number @expr{N} in the range 
18724 @texline @math{0 \le N < M}
18725 @infoline @expr{0 <= N < M}
18726 or 
18727 @texline @math{M < N \le 0},
18728 @infoline @expr{M < N <= 0}, 
18729 according to the sign of @expr{M}.
18731 If @expr{M} is zero, the result is a Gaussian-distributed random real
18732 number; the distribution has a mean of zero and a standard deviation
18733 of one.  The algorithm used generates random numbers in pairs; thus,
18734 every other call to this function will be especially fast.
18736 If @expr{M} is an error form 
18737 @texline @math{m} @code{+/-} @math{\sigma}
18738 @infoline @samp{m +/- s} 
18739 where @var{m} and 
18740 @texline @math{\sigma}
18741 @infoline @var{s} 
18742 are both real numbers, the result uses a Gaussian distribution with mean
18743 @var{m} and standard deviation 
18744 @texline @math{\sigma}.
18745 @infoline @var{s}.
18747 If @expr{M} is an interval form, the lower and upper bounds specify the
18748 acceptable limits of the random numbers.  If both bounds are integers,
18749 the result is a random integer in the specified range.  If either bound
18750 is floating-point, the result is a random real number in the specified
18751 range.  If the interval is open at either end, the result will be sure
18752 not to equal that end value.  (This makes a big difference for integer
18753 intervals, but for floating-point intervals it's relatively minor:
18754 with a precision of 6, @samp{random([1.0..2.0))} will return any of one
18755 million numbers from 1.00000 to 1.99999; @samp{random([1.0..2.0])} may
18756 additionally return 2.00000, but the probability of this happening is
18757 extremely small.)
18759 If @expr{M} is a vector, the result is one element taken at random from
18760 the vector.  All elements of the vector are given equal probabilities.
18762 @vindex RandSeed
18763 The sequence of numbers produced by @kbd{k r} is completely random by
18764 default, i.e., the sequence is seeded each time you start Calc using
18765 the current time and other information.  You can get a reproducible
18766 sequence by storing a particular ``seed value'' in the Calc variable
18767 @code{RandSeed}.  Any integer will do for a seed; integers of from 1
18768 to 12 digits are good.  If you later store a different integer into
18769 @code{RandSeed}, Calc will switch to a different pseudo-random
18770 sequence.  If you ``unstore'' @code{RandSeed}, Calc will re-seed itself
18771 from the current time.  If you store the same integer that you used
18772 before back into @code{RandSeed}, you will get the exact same sequence
18773 of random numbers as before.
18775 @pindex calc-rrandom
18776 The @code{calc-rrandom} command (not on any key) produces a random real
18777 number between zero and one.  It is equivalent to @samp{random(1.0)}.
18779 @kindex k a
18780 @pindex calc-random-again
18781 The @kbd{k a} (@code{calc-random-again}) command produces another random
18782 number, re-using the most recent value of @expr{M}.  With a numeric
18783 prefix argument @var{n}, it produces @var{n} more random numbers using
18784 that value of @expr{M}.
18786 @kindex k h
18787 @pindex calc-shuffle
18788 @tindex shuffle
18789 The @kbd{k h} (@code{calc-shuffle}) command produces a vector of several
18790 random values with no duplicates.  The value on the top of the stack
18791 specifies the set from which the random values are drawn, and may be any
18792 of the @expr{M} formats described above.  The numeric prefix argument
18793 gives the length of the desired list.  (If you do not provide a numeric
18794 prefix argument, the length of the list is taken from the top of the
18795 stack, and @expr{M} from second-to-top.)
18797 If @expr{M} is a floating-point number, zero, or an error form (so
18798 that the random values are being drawn from the set of real numbers)
18799 there is little practical difference between using @kbd{k h} and using
18800 @kbd{k r} several times.  But if the set of possible values consists
18801 of just a few integers, or the elements of a vector, then there is
18802 a very real chance that multiple @kbd{k r}'s will produce the same
18803 number more than once.  The @kbd{k h} command produces a vector whose
18804 elements are always distinct.  (Actually, there is a slight exception:
18805 If @expr{M} is a vector, no given vector element will be drawn more
18806 than once, but if several elements of @expr{M} are equal, they may
18807 each make it into the result vector.)
18809 One use of @kbd{k h} is to rearrange a list at random.  This happens
18810 if the prefix argument is equal to the number of values in the list:
18811 @kbd{[1, 1.5, 2, 2.5, 3] 5 k h} might produce the permuted list
18812 @samp{[2.5, 1, 1.5, 3, 2]}.  As a convenient feature, if the argument
18813 @var{n} is negative it is replaced by the size of the set represented
18814 by @expr{M}.  Naturally, this is allowed only when @expr{M} specifies
18815 a small discrete set of possibilities.
18817 To do the equivalent of @kbd{k h} but with duplications allowed,
18818 given @expr{M} on the stack and with @var{n} just entered as a numeric
18819 prefix, use @kbd{v b} to build a vector of copies of @expr{M}, then use
18820 @kbd{V M k r} to ``map'' the normal @kbd{k r} function over the
18821 elements of this vector.  @xref{Matrix Functions}.
18823 @menu
18824 * Random Number Generator::     (Complete description of Calc's algorithm)
18825 @end menu
18827 @node Random Number Generator,  , Random Numbers, Random Numbers
18828 @subsection Random Number Generator
18830 Calc's random number generator uses several methods to ensure that
18831 the numbers it produces are highly random.  Knuth's @emph{Art of
18832 Computer Programming}, Volume II, contains a thorough description
18833 of the theory of random number generators and their measurement and
18834 characterization.
18836 If @code{RandSeed} has no stored value, Calc calls Emacs' built-in
18837 @code{random} function to get a stream of random numbers, which it
18838 then treats in various ways to avoid problems inherent in the simple
18839 random number generators that many systems use to implement @code{random}.
18841 When Calc's random number generator is first invoked, it ``seeds''
18842 the low-level random sequence using the time of day, so that the
18843 random number sequence will be different every time you use Calc.
18845 Since Emacs Lisp doesn't specify the range of values that will be
18846 returned by its @code{random} function, Calc exercises the function
18847 several times to estimate the range.  When Calc subsequently uses
18848 the @code{random} function, it takes only 10 bits of the result
18849 near the most-significant end.  (It avoids at least the bottom
18850 four bits, preferably more, and also tries to avoid the top two
18851 bits.)  This strategy works well with the linear congruential
18852 generators that are typically used to implement @code{random}.
18854 If @code{RandSeed} contains an integer, Calc uses this integer to
18855 seed an ``additive congruential'' method (Knuth's algorithm 3.2.2A,
18856 computing 
18857 @texline @math{X_{n-55} - X_{n-24}}.
18858 @infoline @expr{X_n-55 - X_n-24}).  
18859 This method expands the seed
18860 value into a large table which is maintained internally; the variable
18861 @code{RandSeed} is changed from, e.g., 42 to the vector @expr{[42]}
18862 to indicate that the seed has been absorbed into this table.  When
18863 @code{RandSeed} contains a vector, @kbd{k r} and related commands
18864 continue to use the same internal table as last time.  There is no
18865 way to extract the complete state of the random number generator
18866 so that you can restart it from any point; you can only restart it
18867 from the same initial seed value.  A simple way to restart from the
18868 same seed is to type @kbd{s r RandSeed} to get the seed vector,
18869 @kbd{v u} to unpack it back into a number, then @kbd{s t RandSeed}
18870 to reseed the generator with that number.
18872 Calc uses a ``shuffling'' method as described in algorithm 3.2.2B
18873 of Knuth.  It fills a table with 13 random 10-bit numbers.  Then,
18874 to generate a new random number, it uses the previous number to
18875 index into the table, picks the value it finds there as the new
18876 random number, then replaces that table entry with a new value
18877 obtained from a call to the base random number generator (either
18878 the additive congruential generator or the @code{random} function
18879 supplied by the system).  If there are any flaws in the base
18880 generator, shuffling will tend to even them out.  But if the system
18881 provides an excellent @code{random} function, shuffling will not
18882 damage its randomness.
18884 To create a random integer of a certain number of digits, Calc
18885 builds the integer three decimal digits at a time.  For each group
18886 of three digits, Calc calls its 10-bit shuffling random number generator
18887 (which returns a value from 0 to 1023); if the random value is 1000
18888 or more, Calc throws it out and tries again until it gets a suitable
18889 value.
18891 To create a random floating-point number with precision @var{p}, Calc
18892 simply creates a random @var{p}-digit integer and multiplies by
18893 @texline @math{10^{-p}}.
18894 @infoline @expr{10^-p}.  
18895 The resulting random numbers should be very clean, but note
18896 that relatively small numbers will have few significant random digits.
18897 In other words, with a precision of 12, you will occasionally get
18898 numbers on the order of 
18899 @texline @math{10^{-9}}
18900 @infoline @expr{10^-9} 
18901 or 
18902 @texline @math{10^{-10}},
18903 @infoline @expr{10^-10}, 
18904 but those numbers will only have two or three random digits since they
18905 correspond to small integers times 
18906 @texline @math{10^{-12}}.
18907 @infoline @expr{10^-12}.
18909 To create a random integer in the interval @samp{[0 .. @var{m})}, Calc
18910 counts the digits in @var{m}, creates a random integer with three
18911 additional digits, then reduces modulo @var{m}.  Unless @var{m} is a
18912 power of ten the resulting values will be very slightly biased toward
18913 the lower numbers, but this bias will be less than 0.1%.  (For example,
18914 if @var{m} is 42, Calc will reduce a random integer less than 100000
18915 modulo 42 to get a result less than 42.  It is easy to show that the
18916 numbers 40 and 41 will be only 2380/2381 as likely to result from this
18917 modulo operation as numbers 39 and below.)  If @var{m} is a power of
18918 ten, however, the numbers should be completely unbiased.
18920 The Gaussian random numbers generated by @samp{random(0.0)} use the
18921 ``polar'' method described in Knuth section 3.4.1C.  This method
18922 generates a pair of Gaussian random numbers at a time, so only every
18923 other call to @samp{random(0.0)} will require significant calculations.
18925 @node Combinatorial Functions, Probability Distribution Functions, Random Numbers, Scientific Functions
18926 @section Combinatorial Functions
18928 @noindent
18929 Commands relating to combinatorics and number theory begin with the
18930 @kbd{k} key prefix.
18932 @kindex k g
18933 @pindex calc-gcd
18934 @tindex gcd
18935 The @kbd{k g} (@code{calc-gcd}) [@code{gcd}] command computes the
18936 Greatest Common Divisor of two integers.  It also accepts fractions;
18937 the GCD of two fractions is defined by taking the GCD of the
18938 numerators, and the LCM of the denominators.  This definition is
18939 consistent with the idea that @samp{a / gcd(a,x)} should yield an
18940 integer for any @samp{a} and @samp{x}.  For other types of arguments,
18941 the operation is left in symbolic form.
18943 @kindex k l
18944 @pindex calc-lcm
18945 @tindex lcm
18946 The @kbd{k l} (@code{calc-lcm}) [@code{lcm}] command computes the
18947 Least Common Multiple of two integers or fractions.  The product of
18948 the LCM and GCD of two numbers is equal to the product of the
18949 numbers.
18951 @kindex k E
18952 @pindex calc-extended-gcd
18953 @tindex egcd
18954 The @kbd{k E} (@code{calc-extended-gcd}) [@code{egcd}] command computes
18955 the GCD of two integers @expr{x} and @expr{y} and returns a vector
18956 @expr{[g, a, b]} where 
18957 @texline @math{g = \gcd(x,y) = a x + b y}.
18958 @infoline @expr{g = gcd(x,y) = a x + b y}.
18960 @kindex !
18961 @pindex calc-factorial
18962 @tindex fact
18963 @ignore
18964 @mindex @null
18965 @end ignore
18966 @tindex !
18967 The @kbd{!} (@code{calc-factorial}) [@code{fact}] command computes the
18968 factorial of the number at the top of the stack.  If the number is an
18969 integer, the result is an exact integer.  If the number is an
18970 integer-valued float, the result is a floating-point approximation.  If
18971 the number is a non-integral real number, the generalized factorial is used,
18972 as defined by the Euler Gamma function.  Please note that computation of
18973 large factorials can be slow; using floating-point format will help
18974 since fewer digits must be maintained.  The same is true of many of
18975 the commands in this section.
18977 @kindex k d
18978 @pindex calc-double-factorial
18979 @tindex dfact
18980 @ignore
18981 @mindex @null
18982 @end ignore
18983 @tindex !!
18984 The @kbd{k d} (@code{calc-double-factorial}) [@code{dfact}] command
18985 computes the ``double factorial'' of an integer.  For an even integer,
18986 this is the product of even integers from 2 to @expr{N}.  For an odd
18987 integer, this is the product of odd integers from 3 to @expr{N}.  If
18988 the argument is an integer-valued float, the result is a floating-point
18989 approximation.  This function is undefined for negative even integers.
18990 The notation @expr{N!!} is also recognized for double factorials.
18992 @kindex k c
18993 @pindex calc-choose
18994 @tindex choose
18995 The @kbd{k c} (@code{calc-choose}) [@code{choose}] command computes the
18996 binomial coefficient @expr{N}-choose-@expr{M}, where @expr{M} is the number
18997 on the top of the stack and @expr{N} is second-to-top.  If both arguments
18998 are integers, the result is an exact integer.  Otherwise, the result is a
18999 floating-point approximation.  The binomial coefficient is defined for all
19000 real numbers by
19001 @texline @math{N! \over M! (N-M)!\,}.
19002 @infoline @expr{N! / M! (N-M)!}.
19004 @kindex H k c
19005 @pindex calc-perm
19006 @tindex perm
19007 @ifnottex
19008 The @kbd{H k c} (@code{calc-perm}) [@code{perm}] command computes the
19009 number-of-permutations function @expr{N! / (N-M)!}.
19010 @end ifnottex
19011 @tex
19012 The \kbd{H k c} (\code{calc-perm}) [\code{perm}] command computes the
19013 number-of-perm\-utations function $N! \over (N-M)!\,$.
19014 @end tex
19016 @kindex k b
19017 @kindex H k b
19018 @pindex calc-bernoulli-number
19019 @tindex bern
19020 The @kbd{k b} (@code{calc-bernoulli-number}) [@code{bern}] command
19021 computes a given Bernoulli number.  The value at the top of the stack
19022 is a nonnegative integer @expr{n} that specifies which Bernoulli number
19023 is desired.  The @kbd{H k b} command computes a Bernoulli polynomial,
19024 taking @expr{n} from the second-to-top position and @expr{x} from the
19025 top of the stack.  If @expr{x} is a variable or formula the result is
19026 a polynomial in @expr{x}; if @expr{x} is a number the result is a number.
19028 @kindex k e
19029 @kindex H k e
19030 @pindex calc-euler-number
19031 @tindex euler
19032 The @kbd{k e} (@code{calc-euler-number}) [@code{euler}] command similarly
19033 computes an Euler number, and @w{@kbd{H k e}} computes an Euler polynomial.
19034 Bernoulli and Euler numbers occur in the Taylor expansions of several
19035 functions.
19037 @kindex k s
19038 @kindex H k s
19039 @pindex calc-stirling-number
19040 @tindex stir1
19041 @tindex stir2
19042 The @kbd{k s} (@code{calc-stirling-number}) [@code{stir1}] command
19043 computes a Stirling number of the first 
19044 @texline kind@tie{}@math{n \brack m},
19045 @infoline kind,
19046 given two integers @expr{n} and @expr{m} on the stack.  The @kbd{H k s}
19047 [@code{stir2}] command computes a Stirling number of the second 
19048 @texline kind@tie{}@math{n \brace m}.
19049 @infoline kind.
19050 These are the number of @expr{m}-cycle permutations of @expr{n} objects,
19051 and the number of ways to partition @expr{n} objects into @expr{m}
19052 non-empty sets, respectively.
19054 @kindex k p
19055 @pindex calc-prime-test
19056 @cindex Primes
19057 The @kbd{k p} (@code{calc-prime-test}) command checks if the integer on
19058 the top of the stack is prime.  For integers less than eight million, the
19059 answer is always exact and reasonably fast.  For larger integers, a
19060 probabilistic method is used (see Knuth vol. II, section 4.5.4, algorithm P).
19061 The number is first checked against small prime factors (up to 13).  Then,
19062 any number of iterations of the algorithm are performed.  Each step either
19063 discovers that the number is non-prime, or substantially increases the
19064 certainty that the number is prime.  After a few steps, the chance that
19065 a number was mistakenly described as prime will be less than one percent.
19066 (Indeed, this is a worst-case estimate of the probability; in practice
19067 even a single iteration is quite reliable.)  After the @kbd{k p} command,
19068 the number will be reported as definitely prime or non-prime if possible,
19069 or otherwise ``probably'' prime with a certain probability of error.
19071 @ignore
19072 @starindex
19073 @end ignore
19074 @tindex prime
19075 The normal @kbd{k p} command performs one iteration of the primality
19076 test.  Pressing @kbd{k p} repeatedly for the same integer will perform
19077 additional iterations.  Also, @kbd{k p} with a numeric prefix performs
19078 the specified number of iterations.  There is also an algebraic function
19079 @samp{prime(n)} or @samp{prime(n,iters)} which returns 1 if @expr{n}
19080 is (probably) prime and 0 if not.
19082 @kindex k f
19083 @pindex calc-prime-factors
19084 @tindex prfac
19085 The @kbd{k f} (@code{calc-prime-factors}) [@code{prfac}] command
19086 attempts to decompose an integer into its prime factors.  For numbers up
19087 to 25 million, the answer is exact although it may take some time.  The
19088 result is a vector of the prime factors in increasing order.  For larger
19089 inputs, prime factors above 5000 may not be found, in which case the
19090 last number in the vector will be an unfactored integer greater than 25
19091 million (with a warning message).  For negative integers, the first
19092 element of the list will be @mathit{-1}.  For inputs @mathit{-1}, @mathit{0}, and
19093 @mathit{1}, the result is a list of the same number.
19095 @kindex k n
19096 @pindex calc-next-prime
19097 @ignore
19098 @mindex nextpr@idots
19099 @end ignore
19100 @tindex nextprime
19101 The @kbd{k n} (@code{calc-next-prime}) [@code{nextprime}] command finds
19102 the next prime above a given number.  Essentially, it searches by calling
19103 @code{calc-prime-test} on successive integers until it finds one that
19104 passes the test.  This is quite fast for integers less than eight million,
19105 but once the probabilistic test comes into play the search may be rather
19106 slow.  Ordinarily this command stops for any prime that passes one iteration
19107 of the primality test.  With a numeric prefix argument, a number must pass
19108 the specified number of iterations before the search stops.  (This only
19109 matters when searching above eight million.)  You can always use additional
19110 @kbd{k p} commands to increase your certainty that the number is indeed
19111 prime.
19113 @kindex I k n
19114 @pindex calc-prev-prime
19115 @ignore
19116 @mindex prevpr@idots
19117 @end ignore
19118 @tindex prevprime
19119 The @kbd{I k n} (@code{calc-prev-prime}) [@code{prevprime}] command
19120 analogously finds the next prime less than a given number.
19122 @kindex k t
19123 @pindex calc-totient
19124 @tindex totient
19125 The @kbd{k t} (@code{calc-totient}) [@code{totient}] command computes the
19126 Euler ``totient'' 
19127 @texline function@tie{}@math{\phi(n)},
19128 @infoline function,
19129 the number of integers less than @expr{n} which
19130 are relatively prime to @expr{n}.
19132 @kindex k m
19133 @pindex calc-moebius
19134 @tindex moebius
19135 The @kbd{k m} (@code{calc-moebius}) [@code{moebius}] command computes the
19136 @texline M@"obius @math{\mu}
19137 @infoline Moebius ``mu''
19138 function.  If the input number is a product of @expr{k}
19139 distinct factors, this is @expr{(-1)^k}.  If the input number has any
19140 duplicate factors (i.e., can be divided by the same prime more than once),
19141 the result is zero.
19143 @node Probability Distribution Functions,  , Combinatorial Functions, Scientific Functions
19144 @section Probability Distribution Functions
19146 @noindent
19147 The functions in this section compute various probability distributions.
19148 For continuous distributions, this is the integral of the probability
19149 density function from @expr{x} to infinity.  (These are the ``upper
19150 tail'' distribution functions; there are also corresponding ``lower
19151 tail'' functions which integrate from minus infinity to @expr{x}.)
19152 For discrete distributions, the upper tail function gives the sum
19153 from @expr{x} to infinity; the lower tail function gives the sum
19154 from minus infinity up to, but not including,@w{ }@expr{x}.
19156 To integrate from @expr{x} to @expr{y}, just use the distribution
19157 function twice and subtract.  For example, the probability that a
19158 Gaussian random variable with mean 2 and standard deviation 1 will
19159 lie in the range from 2.5 to 2.8 is @samp{utpn(2.5,2,1) - utpn(2.8,2,1)}
19160 (``the probability that it is greater than 2.5, but not greater than 2.8''),
19161 or equivalently @samp{ltpn(2.8,2,1) - ltpn(2.5,2,1)}.
19163 @kindex k B
19164 @kindex I k B
19165 @pindex calc-utpb
19166 @tindex utpb
19167 @tindex ltpb
19168 The @kbd{k B} (@code{calc-utpb}) [@code{utpb}] function uses the
19169 binomial distribution.  Push the parameters @var{n}, @var{p}, and
19170 then @var{x} onto the stack; the result (@samp{utpb(x,n,p)}) is the
19171 probability that an event will occur @var{x} or more times out
19172 of @var{n} trials, if its probability of occurring in any given
19173 trial is @var{p}.  The @kbd{I k B} [@code{ltpb}] function is
19174 the probability that the event will occur fewer than @var{x} times.
19176 The other probability distribution functions similarly take the
19177 form @kbd{k @var{X}} (@code{calc-utp@var{x}}) [@code{utp@var{x}}]
19178 and @kbd{I k @var{X}} [@code{ltp@var{x}}], for various letters
19179 @var{x}.  The arguments to the algebraic functions are the value of
19180 the random variable first, then whatever other parameters define the
19181 distribution.  Note these are among the few Calc functions where the
19182 order of the arguments in algebraic form differs from the order of
19183 arguments as found on the stack.  (The random variable comes last on
19184 the stack, so that you can type, e.g., @kbd{2 @key{RET} 1 @key{RET} 2.5
19185 k N M-@key{RET} @key{DEL} 2.8 k N -}, using @kbd{M-@key{RET} @key{DEL}} to
19186 recover the original arguments but substitute a new value for @expr{x}.)
19188 @kindex k C
19189 @pindex calc-utpc
19190 @tindex utpc
19191 @ignore
19192 @mindex @idots
19193 @end ignore
19194 @kindex I k C
19195 @ignore
19196 @mindex @null
19197 @end ignore
19198 @tindex ltpc
19199 The @samp{utpc(x,v)} function uses the chi-square distribution with
19200 @texline @math{\nu}
19201 @infoline @expr{v} 
19202 degrees of freedom.  It is the probability that a model is
19203 correct if its chi-square statistic is @expr{x}.
19205 @kindex k F
19206 @pindex calc-utpf
19207 @tindex utpf
19208 @ignore
19209 @mindex @idots
19210 @end ignore
19211 @kindex I k F
19212 @ignore
19213 @mindex @null
19214 @end ignore
19215 @tindex ltpf
19216 The @samp{utpf(F,v1,v2)} function uses the F distribution, used in
19217 various statistical tests.  The parameters 
19218 @texline @math{\nu_1}
19219 @infoline @expr{v1} 
19220 and 
19221 @texline @math{\nu_2}
19222 @infoline @expr{v2}
19223 are the degrees of freedom in the numerator and denominator,
19224 respectively, used in computing the statistic @expr{F}.
19226 @kindex k N
19227 @pindex calc-utpn
19228 @tindex utpn
19229 @ignore
19230 @mindex @idots
19231 @end ignore
19232 @kindex I k N
19233 @ignore
19234 @mindex @null
19235 @end ignore
19236 @tindex ltpn
19237 The @samp{utpn(x,m,s)} function uses a normal (Gaussian) distribution
19238 with mean @expr{m} and standard deviation 
19239 @texline @math{\sigma}.
19240 @infoline @expr{s}.  
19241 It is the probability that such a normal-distributed random variable
19242 would exceed @expr{x}.
19244 @kindex k P
19245 @pindex calc-utpp
19246 @tindex utpp
19247 @ignore
19248 @mindex @idots
19249 @end ignore
19250 @kindex I k P
19251 @ignore
19252 @mindex @null
19253 @end ignore
19254 @tindex ltpp
19255 The @samp{utpp(n,x)} function uses a Poisson distribution with
19256 mean @expr{x}.  It is the probability that @expr{n} or more such
19257 Poisson random events will occur.
19259 @kindex k T
19260 @pindex calc-ltpt
19261 @tindex utpt
19262 @ignore
19263 @mindex @idots
19264 @end ignore
19265 @kindex I k T
19266 @ignore
19267 @mindex @null
19268 @end ignore
19269 @tindex ltpt
19270 The @samp{utpt(t,v)} function uses the Student's ``t'' distribution
19271 with 
19272 @texline @math{\nu}
19273 @infoline @expr{v} 
19274 degrees of freedom.  It is the probability that a
19275 t-distributed random variable will be greater than @expr{t}.
19276 (Note:  This computes the distribution function 
19277 @texline @math{A(t|\nu)}
19278 @infoline @expr{A(t|v)}
19279 where 
19280 @texline @math{A(0|\nu) = 1}
19281 @infoline @expr{A(0|v) = 1} 
19282 and 
19283 @texline @math{A(\infty|\nu) \to 0}.
19284 @infoline @expr{A(inf|v) -> 0}.  
19285 The @code{UTPT} operation on the HP-48 uses a different definition which
19286 returns half of Calc's value:  @samp{UTPT(t,v) = .5*utpt(t,v)}.)
19288 While Calc does not provide inverses of the probability distribution
19289 functions, the @kbd{a R} command can be used to solve for the inverse.
19290 Since the distribution functions are monotonic, @kbd{a R} is guaranteed
19291 to be able to find a solution given any initial guess.
19292 @xref{Numerical Solutions}.
19294 @node Matrix Functions, Algebra, Scientific Functions, Top
19295 @chapter Vector/Matrix Functions
19297 @noindent
19298 Many of the commands described here begin with the @kbd{v} prefix.
19299 (For convenience, the shift-@kbd{V} prefix is equivalent to @kbd{v}.)
19300 The commands usually apply to both plain vectors and matrices; some
19301 apply only to matrices or only to square matrices.  If the argument
19302 has the wrong dimensions the operation is left in symbolic form.
19304 Vectors are entered and displayed using @samp{[a,b,c]} notation.
19305 Matrices are vectors of which all elements are vectors of equal length.
19306 (Though none of the standard Calc commands use this concept, a
19307 three-dimensional matrix or rank-3 tensor could be defined as a
19308 vector of matrices, and so on.)
19310 @menu
19311 * Packing and Unpacking::
19312 * Building Vectors::
19313 * Extracting Elements::
19314 * Manipulating Vectors::
19315 * Vector and Matrix Arithmetic::
19316 * Set Operations::
19317 * Statistical Operations::
19318 * Reducing and Mapping::
19319 * Vector and Matrix Formats::
19320 @end menu
19322 @node Packing and Unpacking, Building Vectors, Matrix Functions, Matrix Functions
19323 @section Packing and Unpacking
19325 @noindent
19326 Calc's ``pack'' and ``unpack'' commands collect stack entries to build
19327 composite objects such as vectors and complex numbers.  They are
19328 described in this chapter because they are most often used to build
19329 vectors.
19331 @kindex v p
19332 @pindex calc-pack
19333 The @kbd{v p} (@code{calc-pack}) [@code{pack}] command collects several
19334 elements from the stack into a matrix, complex number, HMS form, error
19335 form, etc.  It uses a numeric prefix argument to specify the kind of
19336 object to be built; this argument is referred to as the ``packing mode.''
19337 If the packing mode is a nonnegative integer, a vector of that
19338 length is created.  For example, @kbd{C-u 5 v p} will pop the top
19339 five stack elements and push back a single vector of those five
19340 elements.  (@kbd{C-u 0 v p} simply creates an empty vector.)
19342 The same effect can be had by pressing @kbd{[} to push an incomplete
19343 vector on the stack, using @key{TAB} (@code{calc-roll-down}) to sneak
19344 the incomplete object up past a certain number of elements, and
19345 then pressing @kbd{]} to complete the vector.
19347 Negative packing modes create other kinds of composite objects:
19349 @table @cite
19350 @item -1
19351 Two values are collected to build a complex number.  For example,
19352 @kbd{5 @key{RET} 7 C-u -1 v p} creates the complex number
19353 @expr{(5, 7)}.  The result is always a rectangular complex
19354 number.  The two input values must both be real numbers,
19355 i.e., integers, fractions, or floats.  If they are not, Calc
19356 will instead build a formula like @samp{a + (0, 1) b}.  (The
19357 other packing modes also create a symbolic answer if the
19358 components are not suitable.)
19360 @item -2
19361 Two values are collected to build a polar complex number.
19362 The first is the magnitude; the second is the phase expressed
19363 in either degrees or radians according to the current angular
19364 mode.
19366 @item -3
19367 Three values are collected into an HMS form.  The first
19368 two values (hours and minutes) must be integers or
19369 integer-valued floats.  The third value may be any real
19370 number.
19372 @item -4
19373 Two values are collected into an error form.  The inputs
19374 may be real numbers or formulas.
19376 @item -5
19377 Two values are collected into a modulo form.  The inputs
19378 must be real numbers.
19380 @item -6
19381 Two values are collected into the interval @samp{[a .. b]}.
19382 The inputs may be real numbers, HMS or date forms, or formulas.
19384 @item -7
19385 Two values are collected into the interval @samp{[a .. b)}.
19387 @item -8
19388 Two values are collected into the interval @samp{(a .. b]}.
19390 @item -9
19391 Two values are collected into the interval @samp{(a .. b)}.
19393 @item -10
19394 Two integer values are collected into a fraction.
19396 @item -11
19397 Two values are collected into a floating-point number.
19398 The first is the mantissa; the second, which must be an
19399 integer, is the exponent.  The result is the mantissa
19400 times ten to the power of the exponent.
19402 @item -12
19403 This is treated the same as @mathit{-11} by the @kbd{v p} command.
19404 When unpacking, @mathit{-12} specifies that a floating-point mantissa
19405 is desired.
19407 @item -13
19408 A real number is converted into a date form.
19410 @item -14
19411 Three numbers (year, month, day) are packed into a pure date form.
19413 @item -15
19414 Six numbers are packed into a date/time form.
19415 @end table
19417 With any of the two-input negative packing modes, either or both
19418 of the inputs may be vectors.  If both are vectors of the same
19419 length, the result is another vector made by packing corresponding
19420 elements of the input vectors.  If one input is a vector and the
19421 other is a plain number, the number is packed along with each vector
19422 element to produce a new vector.  For example, @kbd{C-u -4 v p}
19423 could be used to convert a vector of numbers and a vector of errors
19424 into a single vector of error forms; @kbd{C-u -5 v p} could convert
19425 a vector of numbers and a single number @var{M} into a vector of
19426 numbers modulo @var{M}.
19428 If you don't give a prefix argument to @kbd{v p}, it takes
19429 the packing mode from the top of the stack.  The elements to
19430 be packed then begin at stack level 2.  Thus
19431 @kbd{1 @key{RET} 2 @key{RET} 4 n v p} is another way to
19432 enter the error form @samp{1 +/- 2}.
19434 If the packing mode taken from the stack is a vector, the result is a
19435 matrix with the dimensions specified by the elements of the vector,
19436 which must each be integers.  For example, if the packing mode is
19437 @samp{[2, 3]}, then six numbers will be taken from the stack and
19438 returned in the form @samp{[@w{[a, b, c]}, [d, e, f]]}.
19440 If any elements of the vector are negative, other kinds of
19441 packing are done at that level as described above.  For
19442 example, @samp{[2, 3, -4]} takes 12 objects and creates a
19443 @texline @math{2\times3}
19444 @infoline 2x3
19445 matrix of error forms: @samp{[[a +/- b, c +/- d ... ]]}.
19446 Also, @samp{[-4, -10]} will convert four integers into an
19447 error form consisting of two fractions:  @samp{a:b +/- c:d}.
19449 @ignore
19450 @starindex
19451 @end ignore
19452 @tindex pack
19453 There is an equivalent algebraic function,
19454 @samp{pack(@var{mode}, @var{items})} where @var{mode} is a
19455 packing mode (an integer or a vector of integers) and @var{items}
19456 is a vector of objects to be packed (re-packed, really) according
19457 to that mode.  For example, @samp{pack([3, -4], [a,b,c,d,e,f])}
19458 yields @samp{[a +/- b, @w{c +/- d}, e +/- f]}.  The function is
19459 left in symbolic form if the packing mode is invalid, or if the
19460 number of data items does not match the number of items required
19461 by the mode.
19463 @kindex v u
19464 @pindex calc-unpack
19465 The @kbd{v u} (@code{calc-unpack}) command takes the vector, complex
19466 number, HMS form, or other composite object on the top of the stack and
19467 ``unpacks'' it, pushing each of its elements onto the stack as separate
19468 objects.  Thus, it is the ``inverse'' of @kbd{v p}.  If the value
19469 at the top of the stack is a formula, @kbd{v u} unpacks it by pushing
19470 each of the arguments of the top-level operator onto the stack.
19472 You can optionally give a numeric prefix argument to @kbd{v u}
19473 to specify an explicit (un)packing mode.  If the packing mode is
19474 negative and the input is actually a vector or matrix, the result
19475 will be two or more similar vectors or matrices of the elements.
19476 For example, given the vector @samp{[@w{a +/- b}, c^2, d +/- 7]},
19477 the result of @kbd{C-u -4 v u} will be the two vectors
19478 @samp{[a, c^2, d]} and @w{@samp{[b, 0, 7]}}.
19480 Note that the prefix argument can have an effect even when the input is
19481 not a vector.  For example, if the input is the number @mathit{-5}, then
19482 @kbd{c-u -1 v u} yields @mathit{-5} and 0 (the components of @mathit{-5}
19483 when viewed as a rectangular complex number); @kbd{C-u -2 v u} yields 5
19484 and 180 (assuming Degrees mode); and @kbd{C-u -10 v u} yields @mathit{-5}
19485 and 1 (the numerator and denominator of @mathit{-5}, viewed as a rational
19486 number).  Plain @kbd{v u} with this input would complain that the input
19487 is not a composite object.
19489 Unpacking mode @mathit{-11} converts a float into an integer mantissa and
19490 an integer exponent, where the mantissa is not divisible by 10
19491 (except that 0.0 is represented by a mantissa and exponent of 0).
19492 Unpacking mode @mathit{-12} converts a float into a floating-point mantissa
19493 and integer exponent, where the mantissa (for non-zero numbers)
19494 is guaranteed to lie in the range [1 .. 10).  In both cases,
19495 the mantissa is shifted left or right (and the exponent adjusted
19496 to compensate) in order to satisfy these constraints.
19498 Positive unpacking modes are treated differently than for @kbd{v p}.
19499 A mode of 1 is much like plain @kbd{v u} with no prefix argument,
19500 except that in addition to the components of the input object,
19501 a suitable packing mode to re-pack the object is also pushed.
19502 Thus, @kbd{C-u 1 v u} followed by @kbd{v p} will re-build the
19503 original object.
19505 A mode of 2 unpacks two levels of the object; the resulting
19506 re-packing mode will be a vector of length 2.  This might be used
19507 to unpack a matrix, say, or a vector of error forms.  Higher
19508 unpacking modes unpack the input even more deeply.
19510 @ignore
19511 @starindex
19512 @end ignore
19513 @tindex unpack
19514 There are two algebraic functions analogous to @kbd{v u}.
19515 The @samp{unpack(@var{mode}, @var{item})} function unpacks the
19516 @var{item} using the given @var{mode}, returning the result as
19517 a vector of components.  Here the @var{mode} must be an
19518 integer, not a vector.  For example, @samp{unpack(-4, a +/- b)}
19519 returns @samp{[a, b]}, as does @samp{unpack(1, a +/- b)}.
19521 @ignore
19522 @starindex
19523 @end ignore
19524 @tindex unpackt
19525 The @code{unpackt} function is like @code{unpack} but instead
19526 of returning a simple vector of items, it returns a vector of
19527 two things:  The mode, and the vector of items.  For example,
19528 @samp{unpackt(1, 2:3 +/- 1:4)} returns @samp{[-4, [2:3, 1:4]]},
19529 and @samp{unpackt(2, 2:3 +/- 1:4)} returns @samp{[[-4, -10], [2, 3, 1, 4]]}.
19530 The identity for re-building the original object is
19531 @samp{apply(pack, unpackt(@var{n}, @var{x})) = @var{x}}.  (The
19532 @code{apply} function builds a function call given the function
19533 name and a vector of arguments.)
19535 @cindex Numerator of a fraction, extracting
19536 Subscript notation is a useful way to extract a particular part
19537 of an object.  For example, to get the numerator of a rational
19538 number, you can use @samp{unpack(-10, @var{x})_1}.
19540 @node Building Vectors, Extracting Elements, Packing and Unpacking, Matrix Functions
19541 @section Building Vectors
19543 @noindent
19544 Vectors and matrices can be added,
19545 subtracted, multiplied, and divided; @pxref{Basic Arithmetic}.
19547 @kindex |
19548 @pindex calc-concat
19549 @ignore
19550 @mindex @null
19551 @end ignore
19552 @tindex |
19553 The @kbd{|} (@code{calc-concat}) [@code{vconcat}] command ``concatenates'' two vectors
19554 into one.  For example, after @kbd{@w{[ 1 , 2 ]} [ 3 , 4 ] |}, the stack
19555 will contain the single vector @samp{[1, 2, 3, 4]}.  If the arguments
19556 are matrices, the rows of the first matrix are concatenated with the
19557 rows of the second.  (In other words, two matrices are just two vectors
19558 of row-vectors as far as @kbd{|} is concerned.)
19560 If either argument to @kbd{|} is a scalar (a non-vector), it is treated
19561 like a one-element vector for purposes of concatenation:  @kbd{1 [ 2 , 3 ] |}
19562 produces the vector @samp{[1, 2, 3]}.  Likewise, if one argument is a
19563 matrix and the other is a plain vector, the vector is treated as a
19564 one-row matrix.
19566 @kindex H |
19567 @tindex append
19568 The @kbd{H |} (@code{calc-append}) [@code{append}] command concatenates
19569 two vectors without any special cases.  Both inputs must be vectors.
19570 Whether or not they are matrices is not taken into account.  If either
19571 argument is a scalar, the @code{append} function is left in symbolic form.
19572 See also @code{cons} and @code{rcons} below.
19574 @kindex I |
19575 @kindex H I |
19576 The @kbd{I |} and @kbd{H I |} commands are similar, but they use their
19577 two stack arguments in the opposite order.  Thus @kbd{I |} is equivalent
19578 to @kbd{@key{TAB} |}, but possibly more convenient and also a bit faster.
19580 @kindex v d
19581 @pindex calc-diag
19582 @tindex diag
19583 The @kbd{v d} (@code{calc-diag}) [@code{diag}] function builds a diagonal
19584 square matrix.  The optional numeric prefix gives the number of rows
19585 and columns in the matrix.  If the value at the top of the stack is a
19586 vector, the elements of the vector are used as the diagonal elements; the
19587 prefix, if specified, must match the size of the vector.  If the value on
19588 the stack is a scalar, it is used for each element on the diagonal, and
19589 the prefix argument is required.
19591 To build a constant square matrix, e.g., a 
19592 @texline @math{3\times3}
19593 @infoline 3x3
19594 matrix filled with ones, use @kbd{0 M-3 v d 1 +}, i.e., build a zero
19595 matrix first and then add a constant value to that matrix.  (Another
19596 alternative would be to use @kbd{v b} and @kbd{v a}; see below.)
19598 @kindex v i
19599 @pindex calc-ident
19600 @tindex idn
19601 The @kbd{v i} (@code{calc-ident}) [@code{idn}] function builds an identity
19602 matrix of the specified size.  It is a convenient form of @kbd{v d}
19603 where the diagonal element is always one.  If no prefix argument is given,
19604 this command prompts for one.
19606 In algebraic notation, @samp{idn(a,n)} acts much like @samp{diag(a,n)},
19607 except that @expr{a} is required to be a scalar (non-vector) quantity.
19608 If @expr{n} is omitted, @samp{idn(a)} represents @expr{a} times an
19609 identity matrix of unknown size.  Calc can operate algebraically on
19610 such generic identity matrices, and if one is combined with a matrix
19611 whose size is known, it is converted automatically to an identity
19612 matrix of a suitable matching size.  The @kbd{v i} command with an
19613 argument of zero creates a generic identity matrix, @samp{idn(1)}.
19614 Note that in dimensioned Matrix mode (@pxref{Matrix Mode}), generic
19615 identity matrices are immediately expanded to the current default
19616 dimensions.
19618 @kindex v x
19619 @pindex calc-index
19620 @tindex index
19621 The @kbd{v x} (@code{calc-index}) [@code{index}] function builds a vector
19622 of consecutive integers from 1 to @var{n}, where @var{n} is the numeric
19623 prefix argument.  If you do not provide a prefix argument, you will be
19624 prompted to enter a suitable number.  If @var{n} is negative, the result
19625 is a vector of negative integers from @var{n} to @mathit{-1}.
19627 With a prefix argument of just @kbd{C-u}, the @kbd{v x} command takes
19628 three values from the stack: @var{n}, @var{start}, and @var{incr} (with
19629 @var{incr} at top-of-stack).  Counting starts at @var{start} and increases
19630 by @var{incr} for successive vector elements.  If @var{start} or @var{n}
19631 is in floating-point format, the resulting vector elements will also be
19632 floats.  Note that @var{start} and @var{incr} may in fact be any kind
19633 of numbers or formulas.
19635 When @var{start} and @var{incr} are specified, a negative @var{n} has a
19636 different interpretation:  It causes a geometric instead of arithmetic
19637 sequence to be generated.  For example, @samp{index(-3, a, b)} produces
19638 @samp{[a, a b, a b^2]}.  If you omit @var{incr} in the algebraic form,
19639 @samp{index(@var{n}, @var{start})}, the default value for @var{incr}
19640 is one for positive @var{n} or two for negative @var{n}.
19642 @kindex v b
19643 @pindex calc-build-vector
19644 @tindex cvec
19645 The @kbd{v b} (@code{calc-build-vector}) [@code{cvec}] function builds a
19646 vector of @var{n} copies of the value on the top of the stack, where @var{n}
19647 is the numeric prefix argument.  In algebraic formulas, @samp{cvec(x,n,m)}
19648 can also be used to build an @var{n}-by-@var{m} matrix of copies of @var{x}.
19649 (Interactively, just use @kbd{v b} twice: once to build a row, then again
19650 to build a matrix of copies of that row.)
19652 @kindex v h
19653 @kindex I v h
19654 @pindex calc-head
19655 @pindex calc-tail
19656 @tindex head
19657 @tindex tail
19658 The @kbd{v h} (@code{calc-head}) [@code{head}] function returns the first
19659 element of a vector.  The @kbd{I v h} (@code{calc-tail}) [@code{tail}]
19660 function returns the vector with its first element removed.  In both
19661 cases, the argument must be a non-empty vector.
19663 @kindex v k
19664 @pindex calc-cons
19665 @tindex cons
19666 The @kbd{v k} (@code{calc-cons}) [@code{cons}] function takes a value @var{h}
19667 and a vector @var{t} from the stack, and produces the vector whose head is
19668 @var{h} and whose tail is @var{t}.  This is similar to @kbd{|}, except
19669 if @var{h} is itself a vector, @kbd{|} will concatenate the two vectors
19670 whereas @code{cons} will insert @var{h} at the front of the vector @var{t}.
19672 @kindex H v h
19673 @tindex rhead
19674 @ignore
19675 @mindex @idots
19676 @end ignore
19677 @kindex H I v h
19678 @ignore
19679 @mindex @null
19680 @end ignore
19681 @kindex H v k
19682 @ignore
19683 @mindex @null
19684 @end ignore
19685 @tindex rtail
19686 @ignore
19687 @mindex @null
19688 @end ignore
19689 @tindex rcons
19690 Each of these three functions also accepts the Hyperbolic flag [@code{rhead},
19691 @code{rtail}, @code{rcons}] in which case @var{t} instead represents
19692 the @emph{last} single element of the vector, with @var{h}
19693 representing the remainder of the vector.  Thus the vector
19694 @samp{[a, b, c, d] = cons(a, [b, c, d]) = rcons([a, b, c], d)}.
19695 Also, @samp{head([a, b, c, d]) = a}, @samp{tail([a, b, c, d]) = [b, c, d]},
19696 @samp{rhead([a, b, c, d]) = [a, b, c]}, and @samp{rtail([a, b, c, d]) = d}.
19698 @node Extracting Elements, Manipulating Vectors, Building Vectors, Matrix Functions
19699 @section Extracting Vector Elements
19701 @noindent
19702 @kindex v r
19703 @pindex calc-mrow
19704 @tindex mrow
19705 The @kbd{v r} (@code{calc-mrow}) [@code{mrow}] command extracts one row of
19706 the matrix on the top of the stack, or one element of the plain vector on
19707 the top of the stack.  The row or element is specified by the numeric
19708 prefix argument; the default is to prompt for the row or element number.
19709 The matrix or vector is replaced by the specified row or element in the
19710 form of a vector or scalar, respectively.
19712 @cindex Permutations, applying
19713 With a prefix argument of @kbd{C-u} only, @kbd{v r} takes the index of
19714 the element or row from the top of the stack, and the vector or matrix
19715 from the second-to-top position.  If the index is itself a vector of
19716 integers, the result is a vector of the corresponding elements of the
19717 input vector, or a matrix of the corresponding rows of the input matrix.
19718 This command can be used to obtain any permutation of a vector.
19720 With @kbd{C-u}, if the index is an interval form with integer components,
19721 it is interpreted as a range of indices and the corresponding subvector or
19722 submatrix is returned.
19724 @cindex Subscript notation
19725 @kindex a _
19726 @pindex calc-subscript
19727 @tindex subscr
19728 @tindex _
19729 Subscript notation in algebraic formulas (@samp{a_b}) stands for the
19730 Calc function @code{subscr}, which is synonymous with @code{mrow}.
19731 Thus, @samp{[x, y, z]_k} produces @expr{x}, @expr{y}, or @expr{z} if
19732 @expr{k} is one, two, or three, respectively.  A double subscript
19733 (@samp{M_i_j}, equivalent to @samp{subscr(subscr(M, i), j)}) will
19734 access the element at row @expr{i}, column @expr{j} of a matrix.
19735 The @kbd{a _} (@code{calc-subscript}) command creates a subscript
19736 formula @samp{a_b} out of two stack entries.  (It is on the @kbd{a}
19737 ``algebra'' prefix because subscripted variables are often used
19738 purely as an algebraic notation.)
19740 @tindex mrrow
19741 Given a negative prefix argument, @kbd{v r} instead deletes one row or
19742 element from the matrix or vector on the top of the stack.  Thus
19743 @kbd{C-u 2 v r} replaces a matrix with its second row, but @kbd{C-u -2 v r}
19744 replaces the matrix with the same matrix with its second row removed.
19745 In algebraic form this function is called @code{mrrow}.
19747 @tindex getdiag
19748 Given a prefix argument of zero, @kbd{v r} extracts the diagonal elements
19749 of a square matrix in the form of a vector.  In algebraic form this
19750 function is called @code{getdiag}.
19752 @kindex v c
19753 @pindex calc-mcol
19754 @tindex mcol
19755 @tindex mrcol
19756 The @kbd{v c} (@code{calc-mcol}) [@code{mcol} or @code{mrcol}] command is
19757 the analogous operation on columns of a matrix.  Given a plain vector
19758 it extracts (or removes) one element, just like @kbd{v r}.  If the
19759 index in @kbd{C-u v c} is an interval or vector and the argument is a
19760 matrix, the result is a submatrix with only the specified columns
19761 retained (and possibly permuted in the case of a vector index).
19763 To extract a matrix element at a given row and column, use @kbd{v r} to
19764 extract the row as a vector, then @kbd{v c} to extract the column element
19765 from that vector.  In algebraic formulas, it is often more convenient to
19766 use subscript notation:  @samp{m_i_j} gives row @expr{i}, column @expr{j}
19767 of matrix @expr{m}.
19769 @kindex v s
19770 @pindex calc-subvector
19771 @tindex subvec
19772 The @kbd{v s} (@code{calc-subvector}) [@code{subvec}] command extracts
19773 a subvector of a vector.  The arguments are the vector, the starting
19774 index, and the ending index, with the ending index in the top-of-stack
19775 position.  The starting index indicates the first element of the vector
19776 to take.  The ending index indicates the first element @emph{past} the
19777 range to be taken.  Thus, @samp{subvec([a, b, c, d, e], 2, 4)} produces
19778 the subvector @samp{[b, c]}.  You could get the same result using
19779 @samp{mrow([a, b, c, d, e], @w{[2 .. 4)})}.
19781 If either the start or the end index is zero or negative, it is
19782 interpreted as relative to the end of the vector.  Thus
19783 @samp{subvec([a, b, c, d, e], 2, -2)} also produces @samp{[b, c]}.  In
19784 the algebraic form, the end index can be omitted in which case it
19785 is taken as zero, i.e., elements from the starting element to the
19786 end of the vector are used.  The infinity symbol, @code{inf}, also
19787 has this effect when used as the ending index.
19789 @kindex I v s
19790 @tindex rsubvec
19791 With the Inverse flag, @kbd{I v s} [@code{rsubvec}] removes a subvector
19792 from a vector.  The arguments are interpreted the same as for the
19793 normal @kbd{v s} command.  Thus, @samp{rsubvec([a, b, c, d, e], 2, 4)}
19794 produces @samp{[a, d, e]}.  It is always true that @code{subvec} and
19795 @code{rsubvec} return complementary parts of the input vector.
19797 @xref{Selecting Subformulas}, for an alternative way to operate on
19798 vectors one element at a time.
19800 @node Manipulating Vectors, Vector and Matrix Arithmetic, Extracting Elements, Matrix Functions
19801 @section Manipulating Vectors
19803 @noindent
19804 @kindex v l
19805 @pindex calc-vlength
19806 @tindex vlen
19807 The @kbd{v l} (@code{calc-vlength}) [@code{vlen}] command computes the
19808 length of a vector.  The length of a non-vector is considered to be zero.
19809 Note that matrices are just vectors of vectors for the purposes of this
19810 command.
19812 @kindex H v l
19813 @tindex mdims
19814 With the Hyperbolic flag, @kbd{H v l} [@code{mdims}] computes a vector
19815 of the dimensions of a vector, matrix, or higher-order object.  For
19816 example, @samp{mdims([[a,b,c],[d,e,f]])} returns @samp{[2, 3]} since
19817 its argument is a 
19818 @texline @math{2\times3}
19819 @infoline 2x3
19820 matrix.
19822 @kindex v f
19823 @pindex calc-vector-find
19824 @tindex find
19825 The @kbd{v f} (@code{calc-vector-find}) [@code{find}] command searches
19826 along a vector for the first element equal to a given target.  The target
19827 is on the top of the stack; the vector is in the second-to-top position.
19828 If a match is found, the result is the index of the matching element.
19829 Otherwise, the result is zero.  The numeric prefix argument, if given,
19830 allows you to select any starting index for the search.
19832 @kindex v a
19833 @pindex calc-arrange-vector
19834 @tindex arrange
19835 @cindex Arranging a matrix
19836 @cindex Reshaping a matrix
19837 @cindex Flattening a matrix
19838 The @kbd{v a} (@code{calc-arrange-vector}) [@code{arrange}] command
19839 rearranges a vector to have a certain number of columns and rows.  The
19840 numeric prefix argument specifies the number of columns; if you do not
19841 provide an argument, you will be prompted for the number of columns.
19842 The vector or matrix on the top of the stack is @dfn{flattened} into a
19843 plain vector.  If the number of columns is nonzero, this vector is
19844 then formed into a matrix by taking successive groups of @var{n} elements.
19845 If the number of columns does not evenly divide the number of elements
19846 in the vector, the last row will be short and the result will not be
19847 suitable for use as a matrix.  For example, with the matrix
19848 @samp{[[1, 2], @w{[3, 4]}]} on the stack, @kbd{v a 4} produces
19849 @samp{[[1, 2, 3, 4]]} (a 
19850 @texline @math{1\times4}
19851 @infoline 1x4
19852 matrix), @kbd{v a 1} produces @samp{[[1], [2], [3], [4]]} (a 
19853 @texline @math{4\times1}
19854 @infoline 4x1
19855 matrix), @kbd{v a 2} produces @samp{[[1, 2], [3, 4]]} (the original 
19856 @texline @math{2\times2}
19857 @infoline 2x2
19858 matrix), @w{@kbd{v a 3}} produces @samp{[[1, 2, 3], [4]]} (not a
19859 matrix), and @kbd{v a 0} produces the flattened list 
19860 @samp{[1, 2, @w{3, 4}]}.
19862 @cindex Sorting data
19863 @kindex V S
19864 @kindex I V S
19865 @pindex calc-sort
19866 @tindex sort
19867 @tindex rsort
19868 The @kbd{V S} (@code{calc-sort}) [@code{sort}] command sorts the elements of
19869 a vector into increasing order.  Real numbers, real infinities, and
19870 constant interval forms come first in this ordering; next come other
19871 kinds of numbers, then variables (in alphabetical order), then finally
19872 come formulas and other kinds of objects; these are sorted according
19873 to a kind of lexicographic ordering with the useful property that
19874 one vector is less or greater than another if the first corresponding
19875 unequal elements are less or greater, respectively.  Since quoted strings
19876 are stored by Calc internally as vectors of ASCII character codes
19877 (@pxref{Strings}), this means vectors of strings are also sorted into
19878 alphabetical order by this command.
19880 The @kbd{I V S} [@code{rsort}] command sorts a vector into decreasing order.
19882 @cindex Permutation, inverse of
19883 @cindex Inverse of permutation
19884 @cindex Index tables
19885 @cindex Rank tables
19886 @kindex V G
19887 @kindex I V G
19888 @pindex calc-grade
19889 @tindex grade
19890 @tindex rgrade
19891 The @kbd{V G} (@code{calc-grade}) [@code{grade}, @code{rgrade}] command
19892 produces an index table or permutation vector which, if applied to the
19893 input vector (as the index of @kbd{C-u v r}, say), would sort the vector.
19894 A permutation vector is just a vector of integers from 1 to @var{n}, where
19895 each integer occurs exactly once.  One application of this is to sort a
19896 matrix of data rows using one column as the sort key; extract that column,
19897 grade it with @kbd{V G}, then use the result to reorder the original matrix
19898 with @kbd{C-u v r}.  Another interesting property of the @code{V G} command
19899 is that, if the input is itself a permutation vector, the result will
19900 be the inverse of the permutation.  The inverse of an index table is
19901 a rank table, whose @var{k}th element says where the @var{k}th original
19902 vector element will rest when the vector is sorted.  To get a rank
19903 table, just use @kbd{V G V G}.
19905 With the Inverse flag, @kbd{I V G} produces an index table that would
19906 sort the input into decreasing order.  Note that @kbd{V S} and @kbd{V G}
19907 use a ``stable'' sorting algorithm, i.e., any two elements which are equal
19908 will not be moved out of their original order.  Generally there is no way
19909 to tell with @kbd{V S}, since two elements which are equal look the same,
19910 but with @kbd{V G} this can be an important issue.  In the matrix-of-rows
19911 example, suppose you have names and telephone numbers as two columns and
19912 you wish to sort by phone number primarily, and by name when the numbers
19913 are equal.  You can sort the data matrix by names first, and then again
19914 by phone numbers.  Because the sort is stable, any two rows with equal
19915 phone numbers will remain sorted by name even after the second sort.
19917 @cindex Histograms
19918 @kindex V H
19919 @pindex calc-histogram
19920 @ignore
19921 @mindex histo@idots
19922 @end ignore
19923 @tindex histogram
19924 The @kbd{V H} (@code{calc-histogram}) [@code{histogram}] command builds a
19925 histogram of a vector of numbers.  Vector elements are assumed to be
19926 integers or real numbers in the range [0..@var{n}) for some ``number of
19927 bins'' @var{n}, which is the numeric prefix argument given to the
19928 command.  The result is a vector of @var{n} counts of how many times
19929 each value appeared in the original vector.  Non-integers in the input
19930 are rounded down to integers.  Any vector elements outside the specified
19931 range are ignored.  (You can tell if elements have been ignored by noting
19932 that the counts in the result vector don't add up to the length of the
19933 input vector.)
19935 @kindex H V H
19936 With the Hyperbolic flag, @kbd{H V H} pulls two vectors from the stack.
19937 The second-to-top vector is the list of numbers as before.  The top
19938 vector is an equal-sized list of ``weights'' to attach to the elements
19939 of the data vector.  For example, if the first data element is 4.2 and
19940 the first weight is 10, then 10 will be added to bin 4 of the result
19941 vector.  Without the hyperbolic flag, every element has a weight of one.
19943 @kindex v t
19944 @pindex calc-transpose
19945 @tindex trn
19946 The @kbd{v t} (@code{calc-transpose}) [@code{trn}] command computes
19947 the transpose of the matrix at the top of the stack.  If the argument
19948 is a plain vector, it is treated as a row vector and transposed into
19949 a one-column matrix.
19951 @kindex v v
19952 @pindex calc-reverse-vector
19953 @tindex rev
19954 The @kbd{v v} (@code{calc-reverse-vector}) [@code{rev}] command reverses
19955 a vector end-for-end.  Given a matrix, it reverses the order of the rows.
19956 (To reverse the columns instead, just use @kbd{v t v v v t}.  The same
19957 principle can be used to apply other vector commands to the columns of
19958 a matrix.)
19960 @kindex v m
19961 @pindex calc-mask-vector
19962 @tindex vmask
19963 The @kbd{v m} (@code{calc-mask-vector}) [@code{vmask}] command uses
19964 one vector as a mask to extract elements of another vector.  The mask
19965 is in the second-to-top position; the target vector is on the top of
19966 the stack.  These vectors must have the same length.  The result is
19967 the same as the target vector, but with all elements which correspond
19968 to zeros in the mask vector deleted.  Thus, for example,
19969 @samp{vmask([1, 0, 1, 0, 1], [a, b, c, d, e])} produces @samp{[a, c, e]}.
19970 @xref{Logical Operations}.
19972 @kindex v e
19973 @pindex calc-expand-vector
19974 @tindex vexp
19975 The @kbd{v e} (@code{calc-expand-vector}) [@code{vexp}] command
19976 expands a vector according to another mask vector.  The result is a
19977 vector the same length as the mask, but with nonzero elements replaced
19978 by successive elements from the target vector.  The length of the target
19979 vector is normally the number of nonzero elements in the mask.  If the
19980 target vector is longer, its last few elements are lost.  If the target
19981 vector is shorter, the last few nonzero mask elements are left
19982 unreplaced in the result.  Thus @samp{vexp([2, 0, 3, 0, 7], [a, b])}
19983 produces @samp{[a, 0, b, 0, 7]}.
19985 @kindex H v e
19986 With the Hyperbolic flag, @kbd{H v e} takes a filler value from the
19987 top of the stack; the mask and target vectors come from the third and
19988 second elements of the stack.  This filler is used where the mask is
19989 zero:  @samp{vexp([2, 0, 3, 0, 7], [a, b], z)} produces
19990 @samp{[a, z, c, z, 7]}.  If the filler value is itself a vector,
19991 then successive values are taken from it, so that the effect is to
19992 interleave two vectors according to the mask:
19993 @samp{vexp([2, 0, 3, 7, 0, 0], [a, b], [x, y])} produces
19994 @samp{[a, x, b, 7, y, 0]}.
19996 Another variation on the masking idea is to combine @samp{[a, b, c, d, e]}
19997 with the mask @samp{[1, 0, 1, 0, 1]} to produce @samp{[a, 0, c, 0, e]}.
19998 You can accomplish this with @kbd{V M a &}, mapping the logical ``and''
19999 operation across the two vectors.  @xref{Logical Operations}.  Note that
20000 the @code{? :} operation also discussed there allows other types of
20001 masking using vectors.
20003 @node Vector and Matrix Arithmetic, Set Operations, Manipulating Vectors, Matrix Functions
20004 @section Vector and Matrix Arithmetic
20006 @noindent
20007 Basic arithmetic operations like addition and multiplication are defined
20008 for vectors and matrices as well as for numbers.  Division of matrices, in
20009 the sense of multiplying by the inverse, is supported.  (Division by a
20010 matrix actually uses LU-decomposition for greater accuracy and speed.)
20011 @xref{Basic Arithmetic}.
20013 The following functions are applied element-wise if their arguments are
20014 vectors or matrices: @code{change-sign}, @code{conj}, @code{arg},
20015 @code{re}, @code{im}, @code{polar}, @code{rect}, @code{clean},
20016 @code{float}, @code{frac}.  @xref{Function Index}.
20018 @kindex V J
20019 @pindex calc-conj-transpose
20020 @tindex ctrn
20021 The @kbd{V J} (@code{calc-conj-transpose}) [@code{ctrn}] command computes
20022 the conjugate transpose of its argument, i.e., @samp{conj(trn(x))}.
20024 @ignore
20025 @mindex A
20026 @end ignore
20027 @kindex A (vectors)
20028 @pindex calc-abs (vectors)
20029 @ignore
20030 @mindex abs
20031 @end ignore
20032 @tindex abs (vectors)
20033 The @kbd{A} (@code{calc-abs}) [@code{abs}] command computes the
20034 Frobenius norm of a vector or matrix argument.  This is the square
20035 root of the sum of the squares of the absolute values of the
20036 elements of the vector or matrix.  If the vector is interpreted as
20037 a point in two- or three-dimensional space, this is the distance
20038 from that point to the origin.
20040 @kindex v n
20041 @pindex calc-rnorm
20042 @tindex rnorm
20043 The @kbd{v n} (@code{calc-rnorm}) [@code{rnorm}] command computes
20044 the row norm, or infinity-norm, of a vector or matrix.  For a plain
20045 vector, this is the maximum of the absolute values of the elements.
20046 For a matrix, this is the maximum of the row-absolute-value-sums,
20047 i.e., of the sums of the absolute values of the elements along the
20048 various rows.
20050 @kindex V N
20051 @pindex calc-cnorm
20052 @tindex cnorm
20053 The @kbd{V N} (@code{calc-cnorm}) [@code{cnorm}] command computes
20054 the column norm, or one-norm, of a vector or matrix.  For a plain
20055 vector, this is the sum of the absolute values of the elements.
20056 For a matrix, this is the maximum of the column-absolute-value-sums.
20057 General @expr{k}-norms for @expr{k} other than one or infinity are
20058 not provided.
20060 @kindex V C
20061 @pindex calc-cross
20062 @tindex cross
20063 The @kbd{V C} (@code{calc-cross}) [@code{cross}] command computes the
20064 right-handed cross product of two vectors, each of which must have
20065 exactly three elements.
20067 @ignore
20068 @mindex &
20069 @end ignore
20070 @kindex & (matrices)
20071 @pindex calc-inv (matrices)
20072 @ignore
20073 @mindex inv
20074 @end ignore
20075 @tindex inv (matrices)
20076 The @kbd{&} (@code{calc-inv}) [@code{inv}] command computes the
20077 inverse of a square matrix.  If the matrix is singular, the inverse
20078 operation is left in symbolic form.  Matrix inverses are recorded so
20079 that once an inverse (or determinant) of a particular matrix has been
20080 computed, the inverse and determinant of the matrix can be recomputed
20081 quickly in the future.
20083 If the argument to @kbd{&} is a plain number @expr{x}, this
20084 command simply computes @expr{1/x}.  This is okay, because the
20085 @samp{/} operator also does a matrix inversion when dividing one
20086 by a matrix.
20088 @kindex V D
20089 @pindex calc-mdet
20090 @tindex det
20091 The @kbd{V D} (@code{calc-mdet}) [@code{det}] command computes the
20092 determinant of a square matrix.
20094 @kindex V L
20095 @pindex calc-mlud
20096 @tindex lud
20097 The @kbd{V L} (@code{calc-mlud}) [@code{lud}] command computes the
20098 LU decomposition of a matrix.  The result is a list of three matrices
20099 which, when multiplied together left-to-right, form the original matrix.
20100 The first is a permutation matrix that arises from pivoting in the
20101 algorithm, the second is lower-triangular with ones on the diagonal,
20102 and the third is upper-triangular.
20104 @kindex V T
20105 @pindex calc-mtrace
20106 @tindex tr
20107 The @kbd{V T} (@code{calc-mtrace}) [@code{tr}] command computes the
20108 trace of a square matrix.  This is defined as the sum of the diagonal
20109 elements of the matrix.
20111 @node Set Operations, Statistical Operations, Vector and Matrix Arithmetic, Matrix Functions
20112 @section Set Operations using Vectors
20114 @noindent
20115 @cindex Sets, as vectors
20116 Calc includes several commands which interpret vectors as @dfn{sets} of
20117 objects.  A set is a collection of objects; any given object can appear
20118 only once in the set.  Calc stores sets as vectors of objects in
20119 sorted order.  Objects in a Calc set can be any of the usual things,
20120 such as numbers, variables, or formulas.  Two set elements are considered
20121 equal if they are identical, except that numerically equal numbers like
20122 the integer 4 and the float 4.0 are considered equal even though they
20123 are not ``identical.''  Variables are treated like plain symbols without
20124 attached values by the set operations; subtracting the set @samp{[b]}
20125 from @samp{[a, b]} always yields the set @samp{[a]} even though if
20126 the variables @samp{a} and @samp{b} both equaled 17, you might
20127 expect the answer @samp{[]}.
20129 If a set contains interval forms, then it is assumed to be a set of
20130 real numbers.  In this case, all set operations require the elements
20131 of the set to be only things that are allowed in intervals:  Real
20132 numbers, plus and minus infinity, HMS forms, and date forms.  If
20133 there are variables or other non-real objects present in a real set,
20134 all set operations on it will be left in unevaluated form.
20136 If the input to a set operation is a plain number or interval form
20137 @var{a}, it is treated like the one-element vector @samp{[@var{a}]}.
20138 The result is always a vector, except that if the set consists of a
20139 single interval, the interval itself is returned instead.
20141 @xref{Logical Operations}, for the @code{in} function which tests if
20142 a certain value is a member of a given set.  To test if the set @expr{A}
20143 is a subset of the set @expr{B}, use @samp{vdiff(A, B) = []}.
20145 @kindex V +
20146 @pindex calc-remove-duplicates
20147 @tindex rdup
20148 The @kbd{V +} (@code{calc-remove-duplicates}) [@code{rdup}] command
20149 converts an arbitrary vector into set notation.  It works by sorting
20150 the vector as if by @kbd{V S}, then removing duplicates.  (For example,
20151 @kbd{[a, 5, 4, a, 4.0]} is sorted to @samp{[4, 4.0, 5, a, a]} and then
20152 reduced to @samp{[4, 5, a]}).  Overlapping intervals are merged as
20153 necessary.  You rarely need to use @kbd{V +} explicitly, since all the
20154 other set-based commands apply @kbd{V +} to their inputs before using
20155 them.
20157 @kindex V V
20158 @pindex calc-set-union
20159 @tindex vunion
20160 The @kbd{V V} (@code{calc-set-union}) [@code{vunion}] command computes
20161 the union of two sets.  An object is in the union of two sets if and
20162 only if it is in either (or both) of the input sets.  (You could
20163 accomplish the same thing by concatenating the sets with @kbd{|},
20164 then using @kbd{V +}.)
20166 @kindex V ^
20167 @pindex calc-set-intersect
20168 @tindex vint
20169 The @kbd{V ^} (@code{calc-set-intersect}) [@code{vint}] command computes
20170 the intersection of two sets.  An object is in the intersection if
20171 and only if it is in both of the input sets.  Thus if the input
20172 sets are disjoint, i.e., if they share no common elements, the result
20173 will be the empty vector @samp{[]}.  Note that the characters @kbd{V}
20174 and @kbd{^} were chosen to be close to the conventional mathematical
20175 notation for set 
20176 @texline union@tie{}(@math{A \cup B})
20177 @infoline union
20178 and 
20179 @texline intersection@tie{}(@math{A \cap B}).
20180 @infoline intersection.
20182 @kindex V -
20183 @pindex calc-set-difference
20184 @tindex vdiff
20185 The @kbd{V -} (@code{calc-set-difference}) [@code{vdiff}] command computes
20186 the difference between two sets.  An object is in the difference
20187 @expr{A - B} if and only if it is in @expr{A} but not in @expr{B}.
20188 Thus subtracting @samp{[y,z]} from a set will remove the elements
20189 @samp{y} and @samp{z} if they are present.  You can also think of this
20190 as a general @dfn{set complement} operator; if @expr{A} is the set of
20191 all possible values, then @expr{A - B} is the ``complement'' of @expr{B}.
20192 Obviously this is only practical if the set of all possible values in
20193 your problem is small enough to list in a Calc vector (or simple
20194 enough to express in a few intervals).
20196 @kindex V X
20197 @pindex calc-set-xor
20198 @tindex vxor
20199 The @kbd{V X} (@code{calc-set-xor}) [@code{vxor}] command computes
20200 the ``exclusive-or,'' or ``symmetric difference'' of two sets.
20201 An object is in the symmetric difference of two sets if and only
20202 if it is in one, but @emph{not} both, of the sets.  Objects that
20203 occur in both sets ``cancel out.''
20205 @kindex V ~
20206 @pindex calc-set-complement
20207 @tindex vcompl
20208 The @kbd{V ~} (@code{calc-set-complement}) [@code{vcompl}] command
20209 computes the complement of a set with respect to the real numbers.
20210 Thus @samp{vcompl(x)} is equivalent to @samp{vdiff([-inf .. inf], x)}.
20211 For example, @samp{vcompl([2, (3 .. 4]])} evaluates to
20212 @samp{[[-inf .. 2), (2 .. 3], (4 .. inf]]}.
20214 @kindex V F
20215 @pindex calc-set-floor
20216 @tindex vfloor
20217 The @kbd{V F} (@code{calc-set-floor}) [@code{vfloor}] command
20218 reinterprets a set as a set of integers.  Any non-integer values,
20219 and intervals that do not enclose any integers, are removed.  Open
20220 intervals are converted to equivalent closed intervals.  Successive
20221 integers are converted into intervals of integers.  For example, the
20222 complement of the set @samp{[2, 6, 7, 8]} is messy, but if you wanted
20223 the complement with respect to the set of integers you could type
20224 @kbd{V ~ V F} to get @samp{[[-inf .. 1], [3 .. 5], [9 .. inf]]}.
20226 @kindex V E
20227 @pindex calc-set-enumerate
20228 @tindex venum
20229 The @kbd{V E} (@code{calc-set-enumerate}) [@code{venum}] command
20230 converts a set of integers into an explicit vector.  Intervals in
20231 the set are expanded out to lists of all integers encompassed by
20232 the intervals.  This only works for finite sets (i.e., sets which
20233 do not involve @samp{-inf} or @samp{inf}).
20235 @kindex V :
20236 @pindex calc-set-span
20237 @tindex vspan
20238 The @kbd{V :} (@code{calc-set-span}) [@code{vspan}] command converts any
20239 set of reals into an interval form that encompasses all its elements.
20240 The lower limit will be the smallest element in the set; the upper
20241 limit will be the largest element.  For an empty set, @samp{vspan([])}
20242 returns the empty interval @w{@samp{[0 .. 0)}}.
20244 @kindex V #
20245 @pindex calc-set-cardinality
20246 @tindex vcard
20247 The @kbd{V #} (@code{calc-set-cardinality}) [@code{vcard}] command counts
20248 the number of integers in a set.  The result is the length of the vector
20249 that would be produced by @kbd{V E}, although the computation is much
20250 more efficient than actually producing that vector.
20252 @cindex Sets, as binary numbers
20253 Another representation for sets that may be more appropriate in some
20254 cases is binary numbers.  If you are dealing with sets of integers
20255 in the range 0 to 49, you can use a 50-bit binary number where a
20256 particular bit is 1 if the corresponding element is in the set.
20257 @xref{Binary Functions}, for a list of commands that operate on
20258 binary numbers.  Note that many of the above set operations have
20259 direct equivalents in binary arithmetic:  @kbd{b o} (@code{calc-or}),
20260 @kbd{b a} (@code{calc-and}), @kbd{b d} (@code{calc-diff}),
20261 @kbd{b x} (@code{calc-xor}), and @kbd{b n} (@code{calc-not}),
20262 respectively.  You can use whatever representation for sets is most
20263 convenient to you.
20265 @kindex b p
20266 @kindex b u
20267 @pindex calc-pack-bits
20268 @pindex calc-unpack-bits
20269 @tindex vpack
20270 @tindex vunpack
20271 The @kbd{b u} (@code{calc-unpack-bits}) [@code{vunpack}] command
20272 converts an integer that represents a set in binary into a set
20273 in vector/interval notation.  For example, @samp{vunpack(67)}
20274 returns @samp{[[0 .. 1], 6]}.  If the input is negative, the set
20275 it represents is semi-infinite: @samp{vunpack(-4) = [2 .. inf)}.
20276 Use @kbd{V E} afterwards to expand intervals to individual
20277 values if you wish.  Note that this command uses the @kbd{b}
20278 (binary) prefix key.
20280 The @kbd{b p} (@code{calc-pack-bits}) [@code{vpack}] command
20281 converts the other way, from a vector or interval representing
20282 a set of nonnegative integers into a binary integer describing
20283 the same set.  The set may include positive infinity, but must
20284 not include any negative numbers.  The input is interpreted as a
20285 set of integers in the sense of @kbd{V F} (@code{vfloor}).  Beware
20286 that a simple input like @samp{[100]} can result in a huge integer
20287 representation 
20288 @texline (@math{2^{100}}, a 31-digit integer, in this case).
20289 @infoline (@expr{2^100}, a 31-digit integer, in this case).
20291 @node Statistical Operations, Reducing and Mapping, Set Operations, Matrix Functions
20292 @section Statistical Operations on Vectors
20294 @noindent
20295 @cindex Statistical functions
20296 The commands in this section take vectors as arguments and compute
20297 various statistical measures on the data stored in the vectors.  The
20298 references used in the definitions of these functions are Bevington's
20299 @emph{Data Reduction and Error Analysis for the Physical Sciences},
20300 and @emph{Numerical Recipes} by Press, Flannery, Teukolsky and
20301 Vetterling.
20303 The statistical commands use the @kbd{u} prefix key followed by
20304 a shifted letter or other character.
20306 @xref{Manipulating Vectors}, for a description of @kbd{V H}
20307 (@code{calc-histogram}).
20309 @xref{Curve Fitting}, for the @kbd{a F} command for doing
20310 least-squares fits to statistical data.
20312 @xref{Probability Distribution Functions}, for several common
20313 probability distribution functions.
20315 @menu
20316 * Single-Variable Statistics::
20317 * Paired-Sample Statistics::
20318 @end menu
20320 @node Single-Variable Statistics, Paired-Sample Statistics, Statistical Operations, Statistical Operations
20321 @subsection Single-Variable Statistics
20323 @noindent
20324 These functions do various statistical computations on single
20325 vectors.  Given a numeric prefix argument, they actually pop
20326 @var{n} objects from the stack and combine them into a data
20327 vector.  Each object may be either a number or a vector; if a
20328 vector, any sub-vectors inside it are ``flattened'' as if by
20329 @kbd{v a 0}; @pxref{Manipulating Vectors}.  By default one object
20330 is popped, which (in order to be useful) is usually a vector.
20332 If an argument is a variable name, and the value stored in that
20333 variable is a vector, then the stored vector is used.  This method
20334 has the advantage that if your data vector is large, you can avoid
20335 the slow process of manipulating it directly on the stack.
20337 These functions are left in symbolic form if any of their arguments
20338 are not numbers or vectors, e.g., if an argument is a formula, or
20339 a non-vector variable.  However, formulas embedded within vector
20340 arguments are accepted; the result is a symbolic representation
20341 of the computation, based on the assumption that the formula does
20342 not itself represent a vector.  All varieties of numbers such as
20343 error forms and interval forms are acceptable.
20345 Some of the functions in this section also accept a single error form
20346 or interval as an argument.  They then describe a property of the
20347 normal or uniform (respectively) statistical distribution described
20348 by the argument.  The arguments are interpreted in the same way as
20349 the @var{M} argument of the random number function @kbd{k r}.  In
20350 particular, an interval with integer limits is considered an integer
20351 distribution, so that @samp{[2 .. 6)} is the same as @samp{[2 .. 5]}.
20352 An interval with at least one floating-point limit is a continuous
20353 distribution:  @samp{[2.0 .. 6.0)} is @emph{not} the same as
20354 @samp{[2.0 .. 5.0]}!
20356 @kindex u #
20357 @pindex calc-vector-count
20358 @tindex vcount
20359 The @kbd{u #} (@code{calc-vector-count}) [@code{vcount}] command
20360 computes the number of data values represented by the inputs.
20361 For example, @samp{vcount(1, [2, 3], [[4, 5], [], x, y])} returns 7.
20362 If the argument is a single vector with no sub-vectors, this
20363 simply computes the length of the vector.
20365 @kindex u +
20366 @kindex u *
20367 @pindex calc-vector-sum
20368 @pindex calc-vector-prod
20369 @tindex vsum
20370 @tindex vprod
20371 @cindex Summations (statistical)
20372 The @kbd{u +} (@code{calc-vector-sum}) [@code{vsum}] command
20373 computes the sum of the data values.  The @kbd{u *}
20374 (@code{calc-vector-prod}) [@code{vprod}] command computes the
20375 product of the data values.  If the input is a single flat vector,
20376 these are the same as @kbd{V R +} and @kbd{V R *}
20377 (@pxref{Reducing and Mapping}).
20379 @kindex u X
20380 @kindex u N
20381 @pindex calc-vector-max
20382 @pindex calc-vector-min
20383 @tindex vmax
20384 @tindex vmin
20385 The @kbd{u X} (@code{calc-vector-max}) [@code{vmax}] command
20386 computes the maximum of the data values, and the @kbd{u N}
20387 (@code{calc-vector-min}) [@code{vmin}] command computes the minimum.
20388 If the argument is an interval, this finds the minimum or maximum
20389 value in the interval.  (Note that @samp{vmax([2..6)) = 5} as
20390 described above.)  If the argument is an error form, this returns
20391 plus or minus infinity.
20393 @kindex u M
20394 @pindex calc-vector-mean
20395 @tindex vmean
20396 @cindex Mean of data values
20397 The @kbd{u M} (@code{calc-vector-mean}) [@code{vmean}] command
20398 computes the average (arithmetic mean) of the data values.
20399 If the inputs are error forms 
20400 @texline @math{x \pm \sigma},
20401 @infoline @samp{x +/- s}, 
20402 this is the weighted mean of the @expr{x} values with weights 
20403 @texline @math{1 /\sigma^2}.
20404 @infoline @expr{1 / s^2}.
20405 @tex
20406 \turnoffactive
20407 $$ \mu = { \displaystyle \sum { x_i \over \sigma_i^2 } \over
20408            \displaystyle \sum { 1 \over \sigma_i^2 } } $$
20409 @end tex
20410 If the inputs are not error forms, this is simply the sum of the
20411 values divided by the count of the values.
20413 Note that a plain number can be considered an error form with
20414 error 
20415 @texline @math{\sigma = 0}.
20416 @infoline @expr{s = 0}.  
20417 If the input to @kbd{u M} is a mixture of
20418 plain numbers and error forms, the result is the mean of the
20419 plain numbers, ignoring all values with non-zero errors.  (By the
20420 above definitions it's clear that a plain number effectively
20421 has an infinite weight, next to which an error form with a finite
20422 weight is completely negligible.)
20424 This function also works for distributions (error forms or
20425 intervals).  The mean of an error form `@var{a} @tfn{+/-} @var{b}' is simply
20426 @expr{a}.  The mean of an interval is the mean of the minimum
20427 and maximum values of the interval.
20429 @kindex I u M
20430 @pindex calc-vector-mean-error
20431 @tindex vmeane
20432 The @kbd{I u M} (@code{calc-vector-mean-error}) [@code{vmeane}]
20433 command computes the mean of the data points expressed as an
20434 error form.  This includes the estimated error associated with
20435 the mean.  If the inputs are error forms, the error is the square
20436 root of the reciprocal of the sum of the reciprocals of the squares
20437 of the input errors.  (I.e., the variance is the reciprocal of the
20438 sum of the reciprocals of the variances.)
20439 @tex
20440 \turnoffactive
20441 $$ \sigma_\mu^2 = {1 \over \displaystyle \sum {1 \over \sigma_i^2}} $$
20442 @end tex
20443 If the inputs are plain
20444 numbers, the error is equal to the standard deviation of the values
20445 divided by the square root of the number of values.  (This works
20446 out to be equivalent to calculating the standard deviation and
20447 then assuming each value's error is equal to this standard
20448 deviation.)
20449 @tex
20450 \turnoffactive
20451 $$ \sigma_\mu^2 = {\sigma^2 \over N} $$
20452 @end tex
20454 @kindex H u M
20455 @pindex calc-vector-median
20456 @tindex vmedian
20457 @cindex Median of data values
20458 The @kbd{H u M} (@code{calc-vector-median}) [@code{vmedian}]
20459 command computes the median of the data values.  The values are
20460 first sorted into numerical order; the median is the middle
20461 value after sorting.  (If the number of data values is even,
20462 the median is taken to be the average of the two middle values.)
20463 The median function is different from the other functions in
20464 this section in that the arguments must all be real numbers;
20465 variables are not accepted even when nested inside vectors.
20466 (Otherwise it is not possible to sort the data values.)  If
20467 any of the input values are error forms, their error parts are
20468 ignored.
20470 The median function also accepts distributions.  For both normal
20471 (error form) and uniform (interval) distributions, the median is
20472 the same as the mean.
20474 @kindex H I u M
20475 @pindex calc-vector-harmonic-mean
20476 @tindex vhmean
20477 @cindex Harmonic mean
20478 The @kbd{H I u M} (@code{calc-vector-harmonic-mean}) [@code{vhmean}]
20479 command computes the harmonic mean of the data values.  This is
20480 defined as the reciprocal of the arithmetic mean of the reciprocals
20481 of the values.
20482 @tex
20483 \turnoffactive
20484 $$ { N \over \displaystyle \sum {1 \over x_i} } $$
20485 @end tex
20487 @kindex u G
20488 @pindex calc-vector-geometric-mean
20489 @tindex vgmean
20490 @cindex Geometric mean
20491 The @kbd{u G} (@code{calc-vector-geometric-mean}) [@code{vgmean}]
20492 command computes the geometric mean of the data values.  This
20493 is the @var{n}th root of the product of the values.  This is also
20494 equal to the @code{exp} of the arithmetic mean of the logarithms
20495 of the data values.
20496 @tex
20497 \turnoffactive
20498 $$ \exp \left ( \sum { \ln x_i } \right ) =
20499    \left ( \prod { x_i } \right)^{1 / N} $$
20500 @end tex
20502 @kindex H u G
20503 @tindex agmean
20504 The @kbd{H u G} [@code{agmean}] command computes the ``arithmetic-geometric
20505 mean'' of two numbers taken from the stack.  This is computed by
20506 replacing the two numbers with their arithmetic mean and geometric
20507 mean, then repeating until the two values converge.
20508 @tex
20509 \turnoffactive
20510 $$ a_{i+1} = { a_i + b_i \over 2 } , \qquad b_{i+1} = \sqrt{a_i b_i} $$
20511 @end tex
20513 @cindex Root-mean-square
20514 Another commonly used mean, the RMS (root-mean-square), can be computed
20515 for a vector of numbers simply by using the @kbd{A} command.
20517 @kindex u S
20518 @pindex calc-vector-sdev
20519 @tindex vsdev
20520 @cindex Standard deviation
20521 @cindex Sample statistics
20522 The @kbd{u S} (@code{calc-vector-sdev}) [@code{vsdev}] command
20523 computes the standard 
20524 @texline deviation@tie{}@math{\sigma}
20525 @infoline deviation
20526 of the data values.  If the values are error forms, the errors are used
20527 as weights just as for @kbd{u M}.  This is the @emph{sample} standard
20528 deviation, whose value is the square root of the sum of the squares of
20529 the differences between the values and the mean of the @expr{N} values,
20530 divided by @expr{N-1}.
20531 @tex
20532 \turnoffactive
20533 $$ \sigma^2 = {1 \over N - 1} \sum (x_i - \mu)^2 $$
20534 @end tex
20536 This function also applies to distributions.  The standard deviation
20537 of a single error form is simply the error part.  The standard deviation
20538 of a continuous interval happens to equal the difference between the
20539 limits, divided by 
20540 @texline @math{\sqrt{12}}.
20541 @infoline @expr{sqrt(12)}.  
20542 The standard deviation of an integer interval is the same as the
20543 standard deviation of a vector of those integers.
20545 @kindex I u S
20546 @pindex calc-vector-pop-sdev
20547 @tindex vpsdev
20548 @cindex Population statistics
20549 The @kbd{I u S} (@code{calc-vector-pop-sdev}) [@code{vpsdev}]
20550 command computes the @emph{population} standard deviation.
20551 It is defined by the same formula as above but dividing
20552 by @expr{N} instead of by @expr{N-1}.  The population standard
20553 deviation is used when the input represents the entire set of
20554 data values in the distribution; the sample standard deviation
20555 is used when the input represents a sample of the set of all
20556 data values, so that the mean computed from the input is itself
20557 only an estimate of the true mean.
20558 @tex
20559 \turnoffactive
20560 $$ \sigma^2 = {1 \over N} \sum (x_i - \mu)^2 $$
20561 @end tex
20563 For error forms and continuous intervals, @code{vpsdev} works
20564 exactly like @code{vsdev}.  For integer intervals, it computes the
20565 population standard deviation of the equivalent vector of integers.
20567 @kindex H u S
20568 @kindex H I u S
20569 @pindex calc-vector-variance
20570 @pindex calc-vector-pop-variance
20571 @tindex vvar
20572 @tindex vpvar
20573 @cindex Variance of data values
20574 The @kbd{H u S} (@code{calc-vector-variance}) [@code{vvar}] and
20575 @kbd{H I u S} (@code{calc-vector-pop-variance}) [@code{vpvar}]
20576 commands compute the variance of the data values.  The variance
20577 is the 
20578 @texline square@tie{}@math{\sigma^2}
20579 @infoline square
20580 of the standard deviation, i.e., the sum of the
20581 squares of the deviations of the data values from the mean.
20582 (This definition also applies when the argument is a distribution.)
20584 @ignore
20585 @starindex
20586 @end ignore
20587 @tindex vflat
20588 The @code{vflat} algebraic function returns a vector of its
20589 arguments, interpreted in the same way as the other functions
20590 in this section.  For example, @samp{vflat(1, [2, [3, 4]], 5)}
20591 returns @samp{[1, 2, 3, 4, 5]}.
20593 @node Paired-Sample Statistics,  , Single-Variable Statistics, Statistical Operations
20594 @subsection Paired-Sample Statistics
20596 @noindent
20597 The functions in this section take two arguments, which must be
20598 vectors of equal size.  The vectors are each flattened in the same
20599 way as by the single-variable statistical functions.  Given a numeric
20600 prefix argument of 1, these functions instead take one object from
20601 the stack, which must be an 
20602 @texline @math{N\times2}
20603 @infoline Nx2
20604 matrix of data values.  Once again, variable names can be used in place
20605 of actual vectors and matrices.
20607 @kindex u C
20608 @pindex calc-vector-covariance
20609 @tindex vcov
20610 @cindex Covariance
20611 The @kbd{u C} (@code{calc-vector-covariance}) [@code{vcov}] command
20612 computes the sample covariance of two vectors.  The covariance
20613 of vectors @var{x} and @var{y} is the sum of the products of the
20614 differences between the elements of @var{x} and the mean of @var{x}
20615 times the differences between the corresponding elements of @var{y}
20616 and the mean of @var{y}, all divided by @expr{N-1}.  Note that
20617 the variance of a vector is just the covariance of the vector
20618 with itself.  Once again, if the inputs are error forms the
20619 errors are used as weight factors.  If both @var{x} and @var{y}
20620 are composed of error forms, the error for a given data point
20621 is taken as the square root of the sum of the squares of the two
20622 input errors.
20623 @tex
20624 \turnoffactive
20625 $$ \sigma_{x\!y}^2 = {1 \over N-1} \sum (x_i - \mu_x) (y_i - \mu_y) $$
20626 $$ \sigma_{x\!y}^2 =
20627     {\displaystyle {1 \over N-1}
20628                    \sum {(x_i - \mu_x) (y_i - \mu_y) \over \sigma_i^2}
20629      \over \displaystyle {1 \over N} \sum {1 \over \sigma_i^2}}
20631 @end tex
20633 @kindex I u C
20634 @pindex calc-vector-pop-covariance
20635 @tindex vpcov
20636 The @kbd{I u C} (@code{calc-vector-pop-covariance}) [@code{vpcov}]
20637 command computes the population covariance, which is the same as the
20638 sample covariance computed by @kbd{u C} except dividing by @expr{N}
20639 instead of @expr{N-1}.
20641 @kindex H u C
20642 @pindex calc-vector-correlation
20643 @tindex vcorr
20644 @cindex Correlation coefficient
20645 @cindex Linear correlation
20646 The @kbd{H u C} (@code{calc-vector-correlation}) [@code{vcorr}]
20647 command computes the linear correlation coefficient of two vectors.
20648 This is defined by the covariance of the vectors divided by the
20649 product of their standard deviations.  (There is no difference
20650 between sample or population statistics here.)
20651 @tex
20652 \turnoffactive
20653 $$ r_{x\!y} = { \sigma_{x\!y}^2 \over \sigma_x^2 \sigma_y^2 } $$
20654 @end tex
20656 @node Reducing and Mapping, Vector and Matrix Formats, Statistical Operations, Matrix Functions
20657 @section Reducing and Mapping Vectors
20659 @noindent
20660 The commands in this section allow for more general operations on the
20661 elements of vectors.
20663 @kindex V A
20664 @pindex calc-apply
20665 @tindex apply
20666 The simplest of these operations is @kbd{V A} (@code{calc-apply})
20667 [@code{apply}], which applies a given operator to the elements of a vector.
20668 For example, applying the hypothetical function @code{f} to the vector
20669 @w{@samp{[1, 2, 3]}} would produce the function call @samp{f(1, 2, 3)}.
20670 Applying the @code{+} function to the vector @samp{[a, b]} gives
20671 @samp{a + b}.  Applying @code{+} to the vector @samp{[a, b, c]} is an
20672 error, since the @code{+} function expects exactly two arguments.
20674 While @kbd{V A} is useful in some cases, you will usually find that either
20675 @kbd{V R} or @kbd{V M}, described below, is closer to what you want.
20677 @menu
20678 * Specifying Operators::
20679 * Mapping::
20680 * Reducing::
20681 * Nesting and Fixed Points::
20682 * Generalized Products::
20683 @end menu
20685 @node Specifying Operators, Mapping, Reducing and Mapping, Reducing and Mapping
20686 @subsection Specifying Operators
20688 @noindent
20689 Commands in this section (like @kbd{V A}) prompt you to press the key
20690 corresponding to the desired operator.  Press @kbd{?} for a partial
20691 list of the available operators.  Generally, an operator is any key or
20692 sequence of keys that would normally take one or more arguments from
20693 the stack and replace them with a result.  For example, @kbd{V A H C}
20694 uses the hyperbolic cosine operator, @code{cosh}.  (Since @code{cosh}
20695 expects one argument, @kbd{V A H C} requires a vector with a single
20696 element as its argument.)
20698 You can press @kbd{x} at the operator prompt to select any algebraic
20699 function by name to use as the operator.  This includes functions you
20700 have defined yourself using the @kbd{Z F} command.  (@xref{Algebraic
20701 Definitions}.)  If you give a name for which no function has been
20702 defined, the result is left in symbolic form, as in @samp{f(1, 2, 3)}.
20703 Calc will prompt for the number of arguments the function takes if it
20704 can't figure it out on its own (say, because you named a function that
20705 is currently undefined).  It is also possible to type a digit key before
20706 the function name to specify the number of arguments, e.g.,
20707 @kbd{V M 3 x f @key{RET}} calls @code{f} with three arguments even if it
20708 looks like it ought to have only two.  This technique may be necessary
20709 if the function allows a variable number of arguments.  For example,
20710 the @kbd{v e} [@code{vexp}] function accepts two or three arguments;
20711 if you want to map with the three-argument version, you will have to
20712 type @kbd{V M 3 v e}.
20714 It is also possible to apply any formula to a vector by treating that
20715 formula as a function.  When prompted for the operator to use, press
20716 @kbd{'} (the apostrophe) and type your formula as an algebraic entry.
20717 You will then be prompted for the argument list, which defaults to a
20718 list of all variables that appear in the formula, sorted into alphabetic
20719 order.  For example, suppose you enter the formula @w{@samp{x + 2y^x}}.
20720 The default argument list would be @samp{(x y)}, which means that if
20721 this function is applied to the arguments @samp{[3, 10]} the result will
20722 be @samp{3 + 2*10^3}.  (If you plan to use a certain formula in this
20723 way often, you might consider defining it as a function with @kbd{Z F}.)
20725 Another way to specify the arguments to the formula you enter is with
20726 @kbd{$}, @kbd{$$}, and so on.  For example, @kbd{V A ' $$ + 2$^$$}
20727 has the same effect as the previous example.  The argument list is
20728 automatically taken to be @samp{($$ $)}.  (The order of the arguments
20729 may seem backwards, but it is analogous to the way normal algebraic
20730 entry interacts with the stack.)
20732 If you press @kbd{$} at the operator prompt, the effect is similar to
20733 the apostrophe except that the relevant formula is taken from top-of-stack
20734 instead.  The actual vector arguments of the @kbd{V A $} or related command
20735 then start at the second-to-top stack position.  You will still be
20736 prompted for an argument list.
20738 @cindex Nameless functions
20739 @cindex Generic functions
20740 A function can be written without a name using the notation @samp{<#1 - #2>},
20741 which means ``a function of two arguments that computes the first
20742 argument minus the second argument.''  The symbols @samp{#1} and @samp{#2}
20743 are placeholders for the arguments.  You can use any names for these
20744 placeholders if you wish, by including an argument list followed by a
20745 colon:  @samp{<x, y : x - y>}.  When you type @kbd{V A ' $$ + 2$^$$ @key{RET}},
20746 Calc builds the nameless function @samp{<#1 + 2 #2^#1>} as the function
20747 to map across the vectors.  When you type @kbd{V A ' x + 2y^x @key{RET} @key{RET}},
20748 Calc builds the nameless function @w{@samp{<x, y : x + 2 y^x>}}.  In both
20749 cases, Calc also writes the nameless function to the Trail so that you
20750 can get it back later if you wish.
20752 If there is only one argument, you can write @samp{#} in place of @samp{#1}.
20753 (Note that @samp{< >} notation is also used for date forms.  Calc tells
20754 that @samp{<@var{stuff}>} is a nameless function by the presence of
20755 @samp{#} signs inside @var{stuff}, or by the fact that @var{stuff}
20756 begins with a list of variables followed by a colon.)
20758 You can type a nameless function directly to @kbd{V A '}, or put one on
20759 the stack and use it with @w{@kbd{V A $}}.  Calc will not prompt for an
20760 argument list in this case, since the nameless function specifies the
20761 argument list as well as the function itself.  In @kbd{V A '}, you can
20762 omit the @samp{< >} marks if you use @samp{#} notation for the arguments,
20763 so that @kbd{V A ' #1+#2 @key{RET}} is the same as @kbd{V A ' <#1+#2> @key{RET}},
20764 which in turn is the same as @kbd{V A ' $$+$ @key{RET}}.
20766 @cindex Lambda expressions
20767 @ignore
20768 @starindex
20769 @end ignore
20770 @tindex lambda
20771 The internal format for @samp{<x, y : x + y>} is @samp{lambda(x, y, x + y)}.
20772 (The word @code{lambda} derives from Lisp notation and the theory of
20773 functions.)  The internal format for @samp{<#1 + #2>} is @samp{lambda(ArgA,
20774 ArgB, ArgA + ArgB)}.  Note that there is no actual Calc function called
20775 @code{lambda}; the whole point is that the @code{lambda} expression is
20776 used in its symbolic form, not evaluated for an answer until it is applied
20777 to specific arguments by a command like @kbd{V A} or @kbd{V M}.
20779 (Actually, @code{lambda} does have one special property:  Its arguments
20780 are never evaluated; for example, putting @samp{<(2/3) #>} on the stack
20781 will not simplify the @samp{2/3} until the nameless function is actually
20782 called.)
20784 @tindex add
20785 @tindex sub
20786 @ignore
20787 @mindex @idots
20788 @end ignore
20789 @tindex mul
20790 @ignore
20791 @mindex @null
20792 @end ignore
20793 @tindex div
20794 @ignore
20795 @mindex @null
20796 @end ignore
20797 @tindex pow
20798 @ignore
20799 @mindex @null
20800 @end ignore
20801 @tindex neg
20802 @ignore
20803 @mindex @null
20804 @end ignore
20805 @tindex mod
20806 @ignore
20807 @mindex @null
20808 @end ignore
20809 @tindex vconcat
20810 As usual, commands like @kbd{V A} have algebraic function name equivalents.
20811 For example, @kbd{V A k g} with an argument of @samp{v} is equivalent to
20812 @samp{apply(gcd, v)}.  The first argument specifies the operator name,
20813 and is either a variable whose name is the same as the function name,
20814 or a nameless function like @samp{<#^3+1>}.  Operators that are normally
20815 written as algebraic symbols have the names @code{add}, @code{sub},
20816 @code{mul}, @code{div}, @code{pow}, @code{neg}, @code{mod}, and
20817 @code{vconcat}.
20819 @ignore
20820 @starindex
20821 @end ignore
20822 @tindex call
20823 The @code{call} function builds a function call out of several arguments:
20824 @samp{call(gcd, x, y)} is the same as @samp{apply(gcd, [x, y])}, which
20825 in turn is the same as @samp{gcd(x, y)}.  The first argument of @code{call},
20826 like the other functions described here, may be either a variable naming a
20827 function, or a nameless function (@samp{call(<#1+2#2>, x, y)} is the same
20828 as @samp{x + 2y}).
20830 (Experts will notice that it's not quite proper to use a variable to name
20831 a function, since the name @code{gcd} corresponds to the Lisp variable
20832 @code{var-gcd} but to the Lisp function @code{calcFunc-gcd}.  Calc
20833 automatically makes this translation, so you don't have to worry
20834 about it.)
20836 @node Mapping, Reducing, Specifying Operators, Reducing and Mapping
20837 @subsection Mapping
20839 @noindent
20840 @kindex V M
20841 @pindex calc-map
20842 @tindex map
20843 The @kbd{V M} (@code{calc-map}) [@code{map}] command applies a given
20844 operator elementwise to one or more vectors.  For example, mapping
20845 @code{A} [@code{abs}] produces a vector of the absolute values of the
20846 elements in the input vector.  Mapping @code{+} pops two vectors from
20847 the stack, which must be of equal length, and produces a vector of the
20848 pairwise sums of the elements.  If either argument is a non-vector, it
20849 is duplicated for each element of the other vector.  For example,
20850 @kbd{[1,2,3] 2 V M ^} squares the elements of the specified vector.
20851 With the 2 listed first, it would have computed a vector of powers of
20852 two.  Mapping a user-defined function pops as many arguments from the
20853 stack as the function requires.  If you give an undefined name, you will
20854 be prompted for the number of arguments to use.
20856 If any argument to @kbd{V M} is a matrix, the operator is normally mapped
20857 across all elements of the matrix.  For example, given the matrix
20858 @expr{[[1, -2, 3], [-4, 5, -6]]}, @kbd{V M A} takes six absolute values to
20859 produce another 
20860 @texline @math{3\times2}
20861 @infoline 3x2
20862 matrix, @expr{[[1, 2, 3], [4, 5, 6]]}.
20864 @tindex mapr
20865 The command @kbd{V M _} [@code{mapr}] (i.e., type an underscore at the
20866 operator prompt) maps by rows instead.  For example, @kbd{V M _ A} views
20867 the above matrix as a vector of two 3-element row vectors.  It produces
20868 a new vector which contains the absolute values of those row vectors,
20869 namely @expr{[3.74, 8.77]}.  (Recall, the absolute value of a vector is
20870 defined as the square root of the sum of the squares of the elements.)
20871 Some operators accept vectors and return new vectors; for example,
20872 @kbd{v v} reverses a vector, so @kbd{V M _ v v} would reverse each row
20873 of the matrix to get a new matrix, @expr{[[3, -2, 1], [-6, 5, -4]]}.
20875 Sometimes a vector of vectors (representing, say, strings, sets, or lists)
20876 happens to look like a matrix.  If so, remember to use @kbd{V M _} if you
20877 want to map a function across the whole strings or sets rather than across
20878 their individual elements.
20880 @tindex mapc
20881 The command @kbd{V M :} [@code{mapc}] maps by columns.  Basically, it
20882 transposes the input matrix, maps by rows, and then, if the result is a
20883 matrix, transposes again.  For example, @kbd{V M : A} takes the absolute
20884 values of the three columns of the matrix, treating each as a 2-vector,
20885 and @kbd{V M : v v} reverses the columns to get the matrix
20886 @expr{[[-4, 5, -6], [1, -2, 3]]}.
20888 (The symbols @kbd{_} and @kbd{:} were chosen because they had row-like
20889 and column-like appearances, and were not already taken by useful
20890 operators.  Also, they appear shifted on most keyboards so they are easy
20891 to type after @kbd{V M}.)
20893 The @kbd{_} and @kbd{:} modifiers have no effect on arguments that are
20894 not matrices (so if none of the arguments are matrices, they have no
20895 effect at all).  If some of the arguments are matrices and others are
20896 plain numbers, the plain numbers are held constant for all rows of the
20897 matrix (so that @kbd{2 V M _ ^} squares every row of a matrix; squaring
20898 a vector takes a dot product of the vector with itself).
20900 If some of the arguments are vectors with the same lengths as the
20901 rows (for @kbd{V M _}) or columns (for @kbd{V M :}) of the matrix
20902 arguments, those vectors are also held constant for every row or
20903 column.
20905 Sometimes it is useful to specify another mapping command as the operator
20906 to use with @kbd{V M}.  For example, @kbd{V M _ V A +} applies @kbd{V A +}
20907 to each row of the input matrix, which in turn adds the two values on that
20908 row.  If you give another vector-operator command as the operator for
20909 @kbd{V M}, it automatically uses map-by-rows mode if you don't specify
20910 otherwise; thus @kbd{V M V A +} is equivalent to @kbd{V M _ V A +}.  (If
20911 you really want to map-by-elements another mapping command, you can use
20912 a triple-nested mapping command:  @kbd{V M V M V A +} means to map
20913 @kbd{V M V A +} over the rows of the matrix; in turn, @kbd{V A +} is
20914 mapped over the elements of each row.)
20916 @tindex mapa
20917 @tindex mapd
20918 Previous versions of Calc had ``map across'' and ``map down'' modes
20919 that are now considered obsolete; the old ``map across'' is now simply
20920 @kbd{V M V A}, and ``map down'' is now @kbd{V M : V A}.  The algebraic
20921 functions @code{mapa} and @code{mapd} are still supported, though.
20922 Note also that, while the old mapping modes were persistent (once you
20923 set the mode, it would apply to later mapping commands until you reset
20924 it), the new @kbd{:} and @kbd{_} modifiers apply only to the current
20925 mapping command.  The default @kbd{V M} always means map-by-elements.
20927 @xref{Algebraic Manipulation}, for the @kbd{a M} command, which is like
20928 @kbd{V M} but for equations and inequalities instead of vectors.
20929 @xref{Storing Variables}, for the @kbd{s m} command which modifies a
20930 variable's stored value using a @kbd{V M}-like operator.
20932 @node Reducing, Nesting and Fixed Points, Mapping, Reducing and Mapping
20933 @subsection Reducing
20935 @noindent
20936 @kindex V R
20937 @pindex calc-reduce
20938 @tindex reduce
20939 The @kbd{V R} (@code{calc-reduce}) [@code{reduce}] command applies a given
20940 binary operator across all the elements of a vector.  A binary operator is
20941 a function such as @code{+} or @code{max} which takes two arguments.  For
20942 example, reducing @code{+} over a vector computes the sum of the elements
20943 of the vector.  Reducing @code{-} computes the first element minus each of
20944 the remaining elements.  Reducing @code{max} computes the maximum element
20945 and so on.  In general, reducing @code{f} over the vector @samp{[a, b, c, d]}
20946 produces @samp{f(f(f(a, b), c), d)}.
20948 @kindex I V R
20949 @tindex rreduce
20950 The @kbd{I V R} [@code{rreduce}] command is similar to @kbd{V R} except
20951 that works from right to left through the vector.  For example, plain
20952 @kbd{V R -} on the vector @samp{[a, b, c, d]} produces @samp{a - b - c - d}
20953 but @kbd{I V R -} on the same vector produces @samp{a - (b - (c - d))},
20954 or @samp{a - b + c - d}.  This ``alternating sum'' occurs frequently
20955 in power series expansions.
20957 @kindex V U
20958 @tindex accum
20959 The @kbd{V U} (@code{calc-accumulate}) [@code{accum}] command does an
20960 accumulation operation.  Here Calc does the corresponding reduction
20961 operation, but instead of producing only the final result, it produces
20962 a vector of all the intermediate results.  Accumulating @code{+} over
20963 the vector @samp{[a, b, c, d]} produces the vector
20964 @samp{[a, a + b, a + b + c, a + b + c + d]}.
20966 @kindex I V U
20967 @tindex raccum
20968 The @kbd{I V U} [@code{raccum}] command does a right-to-left accumulation.
20969 For example, @kbd{I V U -} on the vector @samp{[a, b, c, d]} produces the
20970 vector @samp{[a - b + c - d, b - c + d, c - d, d]}.
20972 @tindex reducea
20973 @tindex rreducea
20974 @tindex reduced
20975 @tindex rreduced
20976 As for @kbd{V M}, @kbd{V R} normally reduces a matrix elementwise.  For
20977 example, given the matrix @expr{[[a, b, c], [d, e, f]]}, @kbd{V R +} will
20978 compute @expr{a + b + c + d + e + f}.  You can type @kbd{V R _} or
20979 @kbd{V R :} to modify this behavior.  The @kbd{V R _} [@code{reducea}]
20980 command reduces ``across'' the matrix; it reduces each row of the matrix
20981 as a vector, then collects the results.  Thus @kbd{V R _ +} of this
20982 matrix would produce @expr{[a + b + c, d + e + f]}.  Similarly, @kbd{V R :}
20983 [@code{reduced}] reduces down; @kbd{V R : +} would produce @expr{[a + d,
20984 b + e, c + f]}.
20986 @tindex reducer
20987 @tindex rreducer
20988 There is a third ``by rows'' mode for reduction that is occasionally
20989 useful; @kbd{V R =} [@code{reducer}] simply reduces the operator over
20990 the rows of the matrix themselves.  Thus @kbd{V R = +} on the above
20991 matrix would get the same result as @kbd{V R : +}, since adding two
20992 row vectors is equivalent to adding their elements.  But @kbd{V R = *}
20993 would multiply the two rows (to get a single number, their dot product),
20994 while @kbd{V R : *} would produce a vector of the products of the columns.
20996 These three matrix reduction modes work with @kbd{V R} and @kbd{I V R},
20997 but they are not currently supported with @kbd{V U} or @kbd{I V U}.
20999 @tindex reducec
21000 @tindex rreducec
21001 The obsolete reduce-by-columns function, @code{reducec}, is still
21002 supported but there is no way to get it through the @kbd{V R} command.
21004 The commands @kbd{C-x * :} and @kbd{C-x * _} are equivalent to typing
21005 @kbd{C-x * r} to grab a rectangle of data into Calc, and then typing
21006 @kbd{V R : +} or @kbd{V R _ +}, respectively, to sum the columns or
21007 rows of the matrix.  @xref{Grabbing From Buffers}.
21009 @node Nesting and Fixed Points, Generalized Products, Reducing, Reducing and Mapping
21010 @subsection Nesting and Fixed Points
21012 @noindent
21013 @kindex H V R
21014 @tindex nest
21015 The @kbd{H V R} [@code{nest}] command applies a function to a given
21016 argument repeatedly.  It takes two values, @samp{a} and @samp{n}, from
21017 the stack, where @samp{n} must be an integer.  It then applies the
21018 function nested @samp{n} times; if the function is @samp{f} and @samp{n}
21019 is 3, the result is @samp{f(f(f(a)))}.  The number @samp{n} may be
21020 negative if Calc knows an inverse for the function @samp{f}; for
21021 example, @samp{nest(sin, a, -2)} returns @samp{arcsin(arcsin(a))}.
21023 @kindex H V U
21024 @tindex anest
21025 The @kbd{H V U} [@code{anest}] command is an accumulating version of
21026 @code{nest}:  It returns a vector of @samp{n+1} values, e.g.,
21027 @samp{[a, f(a), f(f(a)), f(f(f(a)))]}.  If @samp{n} is negative and
21028 @samp{F} is the inverse of @samp{f}, then the result is of the
21029 form @samp{[a, F(a), F(F(a)), F(F(F(a)))]}.
21031 @kindex H I V R
21032 @tindex fixp
21033 @cindex Fixed points
21034 The @kbd{H I V R} [@code{fixp}] command is like @kbd{H V R}, except
21035 that it takes only an @samp{a} value from the stack; the function is
21036 applied until it reaches a ``fixed point,'' i.e., until the result
21037 no longer changes.
21039 @kindex H I V U
21040 @tindex afixp
21041 The @kbd{H I V U} [@code{afixp}] command is an accumulating @code{fixp}.
21042 The first element of the return vector will be the initial value @samp{a};
21043 the last element will be the final result that would have been returned
21044 by @code{fixp}.
21046 For example, 0.739085 is a fixed point of the cosine function (in radians):
21047 @samp{cos(0.739085) = 0.739085}.  You can find this value by putting, say,
21048 1.0 on the stack and typing @kbd{H I V U C}.  (We use the accumulating
21049 version so we can see the intermediate results:  @samp{[1, 0.540302, 0.857553,
21050 0.65329, ...]}.  With a precision of six, this command will take 36 steps
21051 to converge to 0.739085.)
21053 Newton's method for finding roots is a classic example of iteration
21054 to a fixed point.  To find the square root of five starting with an
21055 initial guess, Newton's method would look for a fixed point of the
21056 function @samp{(x + 5/x) / 2}.  Putting a guess of 1 on the stack
21057 and typing @kbd{H I V R ' ($ + 5/$)/2 @key{RET}} quickly yields the result
21058 2.23607.  This is equivalent to using the @kbd{a R} (@code{calc-find-root})
21059 command to find a root of the equation @samp{x^2 = 5}.
21061 These examples used numbers for @samp{a} values.  Calc keeps applying
21062 the function until two successive results are equal to within the
21063 current precision.  For complex numbers, both the real parts and the
21064 imaginary parts must be equal to within the current precision.  If
21065 @samp{a} is a formula (say, a variable name), then the function is
21066 applied until two successive results are exactly the same formula.
21067 It is up to you to ensure that the function will eventually converge;
21068 if it doesn't, you may have to press @kbd{C-g} to stop the Calculator.
21070 The algebraic @code{fixp} function takes two optional arguments, @samp{n}
21071 and @samp{tol}.  The first is the maximum number of steps to be allowed,
21072 and must be either an integer or the symbol @samp{inf} (infinity, the
21073 default).  The second is a convergence tolerance.  If a tolerance is
21074 specified, all results during the calculation must be numbers, not
21075 formulas, and the iteration stops when the magnitude of the difference
21076 between two successive results is less than or equal to the tolerance.
21077 (This implies that a tolerance of zero iterates until the results are
21078 exactly equal.)
21080 Putting it all together, @samp{fixp(<(# + A/#)/2>, B, 20, 1e-10)}
21081 computes the square root of @samp{A} given the initial guess @samp{B},
21082 stopping when the result is correct within the specified tolerance, or
21083 when 20 steps have been taken, whichever is sooner.
21085 @node Generalized Products,  , Nesting and Fixed Points, Reducing and Mapping
21086 @subsection Generalized Products
21088 @kindex V O
21089 @pindex calc-outer-product
21090 @tindex outer
21091 The @kbd{V O} (@code{calc-outer-product}) [@code{outer}] command applies
21092 a given binary operator to all possible pairs of elements from two
21093 vectors, to produce a matrix.  For example, @kbd{V O *} with @samp{[a, b]}
21094 and @samp{[x, y, z]} on the stack produces a multiplication table:
21095 @samp{[[a x, a y, a z], [b x, b y, b z]]}.  Element @var{r},@var{c} of
21096 the result matrix is obtained by applying the operator to element @var{r}
21097 of the lefthand vector and element @var{c} of the righthand vector.
21099 @kindex V I
21100 @pindex calc-inner-product
21101 @tindex inner
21102 The @kbd{V I} (@code{calc-inner-product}) [@code{inner}] command computes
21103 the generalized inner product of two vectors or matrices, given a
21104 ``multiplicative'' operator and an ``additive'' operator.  These can each
21105 actually be any binary operators; if they are @samp{*} and @samp{+},
21106 respectively, the result is a standard matrix multiplication.  Element
21107 @var{r},@var{c} of the result matrix is obtained by mapping the
21108 multiplicative operator across row @var{r} of the lefthand matrix and
21109 column @var{c} of the righthand matrix, and then reducing with the additive
21110 operator.  Just as for the standard @kbd{*} command, this can also do a
21111 vector-matrix or matrix-vector inner product, or a vector-vector
21112 generalized dot product.
21114 Since @kbd{V I} requires two operators, it prompts twice.  In each case,
21115 you can use any of the usual methods for entering the operator.  If you
21116 use @kbd{$} twice to take both operator formulas from the stack, the
21117 first (multiplicative) operator is taken from the top of the stack
21118 and the second (additive) operator is taken from second-to-top.
21120 @node Vector and Matrix Formats,  , Reducing and Mapping, Matrix Functions
21121 @section Vector and Matrix Display Formats
21123 @noindent
21124 Commands for controlling vector and matrix display use the @kbd{v} prefix
21125 instead of the usual @kbd{d} prefix.  But they are display modes; in
21126 particular, they are influenced by the @kbd{I} and @kbd{H} prefix keys
21127 in the same way (@pxref{Display Modes}).  Matrix display is also
21128 influenced by the @kbd{d O} (@code{calc-flat-language}) mode;
21129 @pxref{Normal Language Modes}.
21131 @kindex V <
21132 @pindex calc-matrix-left-justify
21133 @kindex V =
21134 @pindex calc-matrix-center-justify
21135 @kindex V >
21136 @pindex calc-matrix-right-justify
21137 The commands @kbd{v <} (@code{calc-matrix-left-justify}), @kbd{v >}
21138 (@code{calc-matrix-right-justify}), and @w{@kbd{v =}}
21139 (@code{calc-matrix-center-justify}) control whether matrix elements
21140 are justified to the left, right, or center of their columns.
21142 @kindex V [
21143 @pindex calc-vector-brackets
21144 @kindex V @{
21145 @pindex calc-vector-braces
21146 @kindex V (
21147 @pindex calc-vector-parens
21148 The @kbd{v [} (@code{calc-vector-brackets}) command turns the square
21149 brackets that surround vectors and matrices displayed in the stack on
21150 and off.  The @kbd{v @{} (@code{calc-vector-braces}) and @kbd{v (}
21151 (@code{calc-vector-parens}) commands use curly braces or parentheses,
21152 respectively, instead of square brackets.  For example, @kbd{v @{} might
21153 be used in preparation for yanking a matrix into a buffer running
21154 Mathematica.  (In fact, the Mathematica language mode uses this mode;
21155 @pxref{Mathematica Language Mode}.)  Note that, regardless of the
21156 display mode, either brackets or braces may be used to enter vectors,
21157 and parentheses may never be used for this purpose.
21159 @kindex V ]
21160 @pindex calc-matrix-brackets
21161 The @kbd{v ]} (@code{calc-matrix-brackets}) command controls the
21162 ``big'' style display of matrices.  It prompts for a string of code
21163 letters; currently implemented letters are @code{R}, which enables
21164 brackets on each row of the matrix; @code{O}, which enables outer
21165 brackets in opposite corners of the matrix; and @code{C}, which
21166 enables commas or semicolons at the ends of all rows but the last.
21167 The default format is @samp{RO}.  (Before Calc 2.00, the format
21168 was fixed at @samp{ROC}.)  Here are some example matrices:
21170 @example
21171 @group
21172 [ [ 123,  0,   0  ]       [ [ 123,  0,   0  ],
21173   [  0,  123,  0  ]         [  0,  123,  0  ],
21174   [  0,   0,  123 ] ]       [  0,   0,  123 ] ]
21176          RO                        ROC
21178 @end group
21179 @end example
21180 @noindent
21181 @example
21182 @group
21183   [ 123,  0,   0            [ 123,  0,   0 ;
21184      0,  123,  0               0,  123,  0 ;
21185      0,   0,  123 ]            0,   0,  123 ]
21187           O                        OC
21189 @end group
21190 @end example
21191 @noindent
21192 @example
21193 @group
21194   [ 123,  0,   0  ]           123,  0,   0
21195   [  0,  123,  0  ]            0,  123,  0
21196   [  0,   0,  123 ]            0,   0,  123
21198           R                       @r{blank}
21199 @end group
21200 @end example
21202 @noindent
21203 Note that of the formats shown here, @samp{RO}, @samp{ROC}, and
21204 @samp{OC} are all recognized as matrices during reading, while
21205 the others are useful for display only.
21207 @kindex V ,
21208 @pindex calc-vector-commas
21209 The @kbd{v ,} (@code{calc-vector-commas}) command turns commas on and
21210 off in vector and matrix display.
21212 In vectors of length one, and in all vectors when commas have been
21213 turned off, Calc adds extra parentheses around formulas that might
21214 otherwise be ambiguous.  For example, @samp{[a b]} could be a vector
21215 of the one formula @samp{a b}, or it could be a vector of two
21216 variables with commas turned off.  Calc will display the former
21217 case as @samp{[(a b)]}.  You can disable these extra parentheses
21218 (to make the output less cluttered at the expense of allowing some
21219 ambiguity) by adding the letter @code{P} to the control string you
21220 give to @kbd{v ]} (as described above).
21222 @kindex V .
21223 @pindex calc-full-vectors
21224 The @kbd{v .} (@code{calc-full-vectors}) command turns abbreviated
21225 display of long vectors on and off.  In this mode, vectors of six
21226 or more elements, or matrices of six or more rows or columns, will
21227 be displayed in an abbreviated form that displays only the first
21228 three elements and the last element:  @samp{[a, b, c, ..., z]}.
21229 When very large vectors are involved this will substantially
21230 improve Calc's display speed.
21232 @kindex t .
21233 @pindex calc-full-trail-vectors
21234 The @kbd{t .} (@code{calc-full-trail-vectors}) command controls a
21235 similar mode for recording vectors in the Trail.  If you turn on
21236 this mode, vectors of six or more elements and matrices of six or
21237 more rows or columns will be abbreviated when they are put in the
21238 Trail.  The @kbd{t y} (@code{calc-trail-yank}) command will be
21239 unable to recover those vectors.  If you are working with very
21240 large vectors, this mode will improve the speed of all operations
21241 that involve the trail.
21243 @kindex V /
21244 @pindex calc-break-vectors
21245 The @kbd{v /} (@code{calc-break-vectors}) command turns multi-line
21246 vector display on and off.  Normally, matrices are displayed with one
21247 row per line but all other types of vectors are displayed in a single
21248 line.  This mode causes all vectors, whether matrices or not, to be
21249 displayed with a single element per line.  Sub-vectors within the
21250 vectors will still use the normal linear form.
21252 @node Algebra, Units, Matrix Functions, Top
21253 @chapter Algebra
21255 @noindent
21256 This section covers the Calc features that help you work with
21257 algebraic formulas.  First, the general sub-formula selection
21258 mechanism is described; this works in conjunction with any Calc
21259 commands.  Then, commands for specific algebraic operations are
21260 described.  Finally, the flexible @dfn{rewrite rule} mechanism
21261 is discussed.
21263 The algebraic commands use the @kbd{a} key prefix; selection
21264 commands use the @kbd{j} (for ``just a letter that wasn't used
21265 for anything else'') prefix.
21267 @xref{Editing Stack Entries}, to see how to manipulate formulas
21268 using regular Emacs editing commands.
21270 When doing algebraic work, you may find several of the Calculator's
21271 modes to be helpful, including Algebraic Simplification mode (@kbd{m A})
21272 or No-Simplification mode (@kbd{m O}),
21273 Algebraic entry mode (@kbd{m a}), Fraction mode (@kbd{m f}), and
21274 Symbolic mode (@kbd{m s}).  @xref{Mode Settings}, for discussions
21275 of these modes.  You may also wish to select Big display mode (@kbd{d B}).
21276 @xref{Normal Language Modes}.
21278 @menu
21279 * Selecting Subformulas::
21280 * Algebraic Manipulation::
21281 * Simplifying Formulas::
21282 * Polynomials::
21283 * Calculus::
21284 * Solving Equations::
21285 * Numerical Solutions::
21286 * Curve Fitting::
21287 * Summations::
21288 * Logical Operations::
21289 * Rewrite Rules::
21290 @end menu
21292 @node Selecting Subformulas, Algebraic Manipulation, Algebra, Algebra
21293 @section Selecting Sub-Formulas
21295 @noindent
21296 @cindex Selections
21297 @cindex Sub-formulas
21298 @cindex Parts of formulas
21299 When working with an algebraic formula it is often necessary to
21300 manipulate a portion of the formula rather than the formula as a
21301 whole.  Calc allows you to ``select'' a portion of any formula on
21302 the stack.  Commands which would normally operate on that stack
21303 entry will now operate only on the sub-formula, leaving the
21304 surrounding part of the stack entry alone.
21306 One common non-algebraic use for selection involves vectors.  To work
21307 on one element of a vector in-place, simply select that element as a
21308 ``sub-formula'' of the vector.
21310 @menu
21311 * Making Selections::
21312 * Changing Selections::
21313 * Displaying Selections::
21314 * Operating on Selections::
21315 * Rearranging with Selections::
21316 @end menu
21318 @node Making Selections, Changing Selections, Selecting Subformulas, Selecting Subformulas
21319 @subsection Making Selections
21321 @noindent
21322 @kindex j s
21323 @pindex calc-select-here
21324 To select a sub-formula, move the Emacs cursor to any character in that
21325 sub-formula, and press @w{@kbd{j s}} (@code{calc-select-here}).  Calc will
21326 highlight the smallest portion of the formula that contains that
21327 character.  By default the sub-formula is highlighted by blanking out
21328 all of the rest of the formula with dots.  Selection works in any
21329 display mode but is perhaps easiest in Big mode (@kbd{d B}).
21330 Suppose you enter the following formula:
21332 @smallexample
21333 @group
21334            3    ___
21335     (a + b)  + V c
21336 1:  ---------------
21337         2 x + 1
21338 @end group
21339 @end smallexample
21341 @noindent
21342 (by typing @kbd{' ((a+b)^3 + sqrt(c)) / (2x+1)}).  If you move the
21343 cursor to the letter @samp{b} and press @w{@kbd{j s}}, the display changes
21346 @smallexample
21347 @group
21348            .    ...
21349     .. . b.  . . .
21350 1*  ...............
21351         . . . .
21352 @end group
21353 @end smallexample
21355 @noindent
21356 Every character not part of the sub-formula @samp{b} has been changed
21357 to a dot.  The @samp{*} next to the line number is to remind you that
21358 the formula has a portion of it selected.  (In this case, it's very
21359 obvious, but it might not always be.  If Embedded mode is enabled,
21360 the word @samp{Sel} also appears in the mode line because the stack
21361 may not be visible.  @pxref{Embedded Mode}.)
21363 If you had instead placed the cursor on the parenthesis immediately to
21364 the right of the @samp{b}, the selection would have been:
21366 @smallexample
21367 @group
21368            .    ...
21369     (a + b)  . . .
21370 1*  ...............
21371         . . . .
21372 @end group
21373 @end smallexample
21375 @noindent
21376 The portion selected is always large enough to be considered a complete
21377 formula all by itself, so selecting the parenthesis selects the whole
21378 formula that it encloses.  Putting the cursor on the @samp{+} sign
21379 would have had the same effect.
21381 (Strictly speaking, the Emacs cursor is really the manifestation of
21382 the Emacs ``point,'' which is a position @emph{between} two characters
21383 in the buffer.  So purists would say that Calc selects the smallest
21384 sub-formula which contains the character to the right of ``point.'')
21386 If you supply a numeric prefix argument @var{n}, the selection is
21387 expanded to the @var{n}th enclosing sub-formula.  Thus, positioning
21388 the cursor on the @samp{b} and typing @kbd{C-u 1 j s} will select
21389 @samp{a + b}; typing @kbd{C-u 2 j s} will select @samp{(a + b)^3},
21390 and so on.
21392 If the cursor is not on any part of the formula, or if you give a
21393 numeric prefix that is too large, the entire formula is selected.
21395 If the cursor is on the @samp{.} line that marks the top of the stack
21396 (i.e., its normal ``rest position''), this command selects the entire
21397 formula at stack level 1.  Most selection commands similarly operate
21398 on the formula at the top of the stack if you haven't positioned the
21399 cursor on any stack entry.
21401 @kindex j a
21402 @pindex calc-select-additional
21403 The @kbd{j a} (@code{calc-select-additional}) command enlarges the
21404 current selection to encompass the cursor.  To select the smallest
21405 sub-formula defined by two different points, move to the first and
21406 press @kbd{j s}, then move to the other and press @kbd{j a}.  This
21407 is roughly analogous to using @kbd{C-@@} (@code{set-mark-command}) to
21408 select the two ends of a region of text during normal Emacs editing.
21410 @kindex j o
21411 @pindex calc-select-once
21412 The @kbd{j o} (@code{calc-select-once}) command selects a formula in
21413 exactly the same way as @kbd{j s}, except that the selection will
21414 last only as long as the next command that uses it.  For example,
21415 @kbd{j o 1 +} is a handy way to add one to the sub-formula indicated
21416 by the cursor.
21418 (A somewhat more precise definition: The @kbd{j o} command sets a flag
21419 such that the next command involving selected stack entries will clear
21420 the selections on those stack entries afterwards.  All other selection
21421 commands except @kbd{j a} and @kbd{j O} clear this flag.)
21423 @kindex j S
21424 @kindex j O
21425 @pindex calc-select-here-maybe
21426 @pindex calc-select-once-maybe
21427 The @kbd{j S} (@code{calc-select-here-maybe}) and @kbd{j O}
21428 (@code{calc-select-once-maybe}) commands are equivalent to @kbd{j s}
21429 and @kbd{j o}, respectively, except that if the formula already
21430 has a selection they have no effect.  This is analogous to the
21431 behavior of some commands such as @kbd{j r} (@code{calc-rewrite-selection};
21432 @pxref{Selections with Rewrite Rules}) and is mainly intended to be
21433 used in keyboard macros that implement your own selection-oriented
21434 commands.
21436 Selection of sub-formulas normally treats associative terms like
21437 @samp{a + b - c + d} and @samp{x * y * z} as single levels of the formula.
21438 If you place the cursor anywhere inside @samp{a + b - c + d} except
21439 on one of the variable names and use @kbd{j s}, you will select the
21440 entire four-term sum.
21442 @kindex j b
21443 @pindex calc-break-selections
21444 The @kbd{j b} (@code{calc-break-selections}) command controls a mode
21445 in which the ``deep structure'' of these associative formulas shows
21446 through.  Calc actually stores the above formulas as 
21447 @samp{((a + b) - c) + d} and @samp{x * (y * z)}.  (Note that for certain 
21448 obscure reasons, by default Calc treats multiplication as
21449 right-associative.)  Once you have enabled @kbd{j b} mode, selecting
21450 with the cursor on the @samp{-} sign would only select the @samp{a + b -
21451 c} portion, which makes sense when the deep structure of the sum is
21452 considered.  There is no way to select the @samp{b - c + d} portion;
21453 although this might initially look like just as legitimate a sub-formula
21454 as @samp{a + b - c}, the deep structure shows that it isn't.  The @kbd{d
21455 U} command can be used to view the deep structure of any formula
21456 (@pxref{Normal Language Modes}).
21458 When @kbd{j b} mode has not been enabled, the deep structure is
21459 generally hidden by the selection commands---what you see is what
21460 you get.
21462 @kindex j u
21463 @pindex calc-unselect
21464 The @kbd{j u} (@code{calc-unselect}) command unselects the formula
21465 that the cursor is on.  If there was no selection in the formula,
21466 this command has no effect.  With a numeric prefix argument, it
21467 unselects the @var{n}th stack element rather than using the cursor
21468 position.
21470 @kindex j c
21471 @pindex calc-clear-selections
21472 The @kbd{j c} (@code{calc-clear-selections}) command unselects all
21473 stack elements.
21475 @node Changing Selections, Displaying Selections, Making Selections, Selecting Subformulas
21476 @subsection Changing Selections
21478 @noindent
21479 @kindex j m
21480 @pindex calc-select-more
21481 Once you have selected a sub-formula, you can expand it using the
21482 @w{@kbd{j m}} (@code{calc-select-more}) command.  If @samp{a + b} is
21483 selected, pressing @w{@kbd{j m}} repeatedly works as follows:
21485 @smallexample
21486 @group
21487            3    ...                3    ___                3    ___
21488     (a + b)  . . .          (a + b)  + V c          (a + b)  + V c
21489 1*  ...............     1*  ...............     1*  ---------------
21490         . . . .                 . . . .                 2 x + 1
21491 @end group
21492 @end smallexample
21494 @noindent
21495 In the last example, the entire formula is selected.  This is roughly
21496 the same as having no selection at all, but because there are subtle
21497 differences the @samp{*} character is still there on the line number.
21499 With a numeric prefix argument @var{n}, @kbd{j m} expands @var{n}
21500 times (or until the entire formula is selected).  Note that @kbd{j s}
21501 with argument @var{n} is equivalent to plain @kbd{j s} followed by
21502 @kbd{j m} with argument @var{n}.  If @w{@kbd{j m}} is used when there
21503 is no current selection, it is equivalent to @w{@kbd{j s}}.
21505 Even though @kbd{j m} does not explicitly use the location of the
21506 cursor within the formula, it nevertheless uses the cursor to determine
21507 which stack element to operate on.  As usual, @kbd{j m} when the cursor
21508 is not on any stack element operates on the top stack element.
21510 @kindex j l
21511 @pindex calc-select-less
21512 The @kbd{j l} (@code{calc-select-less}) command reduces the current
21513 selection around the cursor position.  That is, it selects the
21514 immediate sub-formula of the current selection which contains the
21515 cursor, the opposite of @kbd{j m}.  If the cursor is not inside the
21516 current selection, the command de-selects the formula.
21518 @kindex j 1-9
21519 @pindex calc-select-part
21520 The @kbd{j 1} through @kbd{j 9} (@code{calc-select-part}) commands
21521 select the @var{n}th sub-formula of the current selection.  They are
21522 like @kbd{j l} (@code{calc-select-less}) except they use counting
21523 rather than the cursor position to decide which sub-formula to select.
21524 For example, if the current selection is @kbd{a + b + c} or
21525 @kbd{f(a, b, c)} or @kbd{[a, b, c]}, then @kbd{j 1} selects @samp{a},
21526 @kbd{j 2} selects @samp{b}, and @kbd{j 3} selects @samp{c}; in each of
21527 these cases, @kbd{j 4} through @kbd{j 9} would be errors.
21529 If there is no current selection, @kbd{j 1} through @kbd{j 9} select
21530 the @var{n}th top-level sub-formula.  (In other words, they act as if
21531 the entire stack entry were selected first.)  To select the @var{n}th
21532 sub-formula where @var{n} is greater than nine, you must instead invoke
21533 @w{@kbd{j 1}} with @var{n} as a numeric prefix argument.
21535 @kindex j n
21536 @kindex j p
21537 @pindex calc-select-next
21538 @pindex calc-select-previous
21539 The @kbd{j n} (@code{calc-select-next}) and @kbd{j p}
21540 (@code{calc-select-previous}) commands change the current selection
21541 to the next or previous sub-formula at the same level.  For example,
21542 if @samp{b} is selected in @w{@samp{2 + a*b*c + x}}, then @kbd{j n}
21543 selects @samp{c}.  Further @kbd{j n} commands would be in error because,
21544 even though there is something to the right of @samp{c} (namely, @samp{x}),
21545 it is not at the same level; in this case, it is not a term of the
21546 same product as @samp{b} and @samp{c}.  However, @kbd{j m} (to select
21547 the whole product @samp{a*b*c} as a term of the sum) followed by
21548 @w{@kbd{j n}} would successfully select the @samp{x}.
21550 Similarly, @kbd{j p} moves the selection from the @samp{b} in this
21551 sample formula to the @samp{a}.  Both commands accept numeric prefix
21552 arguments to move several steps at a time.
21554 It is interesting to compare Calc's selection commands with the
21555 Emacs Info system's commands for navigating through hierarchically
21556 organized documentation.  Calc's @kbd{j n} command is completely
21557 analogous to Info's @kbd{n} command.  Likewise, @kbd{j p} maps to
21558 @kbd{p}, @kbd{j 2} maps to @kbd{2}, and Info's @kbd{u} is like @kbd{j m}.
21559 (Note that @kbd{j u} stands for @code{calc-unselect}, not ``up''.)
21560 The Info @kbd{m} command is somewhat similar to Calc's @kbd{j s} and
21561 @kbd{j l}; in each case, you can jump directly to a sub-component
21562 of the hierarchy simply by pointing to it with the cursor.
21564 @node Displaying Selections, Operating on Selections, Changing Selections, Selecting Subformulas
21565 @subsection Displaying Selections
21567 @noindent
21568 @kindex j d
21569 @pindex calc-show-selections
21570 The @kbd{j d} (@code{calc-show-selections}) command controls how
21571 selected sub-formulas are displayed.  One of the alternatives is
21572 illustrated in the above examples; if we press @kbd{j d} we switch
21573 to the other style in which the selected portion itself is obscured
21574 by @samp{#} signs:
21576 @smallexample
21577 @group
21578            3    ...                  #    ___
21579     (a + b)  . . .            ## # ##  + V c
21580 1*  ...............       1*  ---------------
21581         . . . .                   2 x + 1
21582 @end group
21583 @end smallexample
21585 @node Operating on Selections, Rearranging with Selections, Displaying Selections, Selecting Subformulas
21586 @subsection Operating on Selections
21588 @noindent
21589 Once a selection is made, all Calc commands that manipulate items
21590 on the stack will operate on the selected portions of the items
21591 instead.  (Note that several stack elements may have selections
21592 at once, though there can be only one selection at a time in any
21593 given stack element.)
21595 @kindex j e
21596 @pindex calc-enable-selections
21597 The @kbd{j e} (@code{calc-enable-selections}) command disables the
21598 effect that selections have on Calc commands.  The current selections
21599 still exist, but Calc commands operate on whole stack elements anyway.
21600 This mode can be identified by the fact that the @samp{*} markers on
21601 the line numbers are gone, even though selections are visible.  To
21602 reactivate the selections, press @kbd{j e} again.
21604 To extract a sub-formula as a new formula, simply select the
21605 sub-formula and press @key{RET}.  This normally duplicates the top
21606 stack element; here it duplicates only the selected portion of that
21607 element.
21609 To replace a sub-formula with something different, you can enter the
21610 new value onto the stack and press @key{TAB}.  This normally exchanges
21611 the top two stack elements; here it swaps the value you entered into
21612 the selected portion of the formula, returning the old selected
21613 portion to the top of the stack.
21615 @smallexample
21616 @group
21617            3    ...                    ...                    ___
21618     (a + b)  . . .           17 x y . . .           17 x y + V c
21619 2*  ...............      2*  .............      2:  -------------
21620         . . . .                 . . . .                2 x + 1
21622                                     3                      3
21623 1:  17 x y               1:  (a + b)            1:  (a + b)
21624 @end group
21625 @end smallexample
21627 In this example we select a sub-formula of our original example,
21628 enter a new formula, @key{TAB} it into place, then deselect to see
21629 the complete, edited formula.
21631 If you want to swap whole formulas around even though they contain
21632 selections, just use @kbd{j e} before and after.
21634 @kindex j '
21635 @pindex calc-enter-selection
21636 The @kbd{j '} (@code{calc-enter-selection}) command is another way
21637 to replace a selected sub-formula.  This command does an algebraic
21638 entry just like the regular @kbd{'} key.  When you press @key{RET},
21639 the formula you type replaces the original selection.  You can use
21640 the @samp{$} symbol in the formula to refer to the original
21641 selection.  If there is no selection in the formula under the cursor,
21642 the cursor is used to make a temporary selection for the purposes of
21643 the command.  Thus, to change a term of a formula, all you have to
21644 do is move the Emacs cursor to that term and press @kbd{j '}.
21646 @kindex j `
21647 @pindex calc-edit-selection
21648 The @kbd{j `} (@code{calc-edit-selection}) command is a similar
21649 analogue of the @kbd{`} (@code{calc-edit}) command.  It edits the
21650 selected sub-formula in a separate buffer.  If there is no
21651 selection, it edits the sub-formula indicated by the cursor.
21653 To delete a sub-formula, press @key{DEL}.  This generally replaces
21654 the sub-formula with the constant zero, but in a few suitable contexts
21655 it uses the constant one instead.  The @key{DEL} key automatically
21656 deselects and re-simplifies the entire formula afterwards.  Thus:
21658 @smallexample
21659 @group
21660               ###
21661     17 x y + # #          17 x y         17 # y          17 y
21662 1*  -------------     1:  -------    1*  -------    1:  -------
21663        2 x + 1            2 x + 1        2 x + 1        2 x + 1
21664 @end group
21665 @end smallexample
21667 In this example, we first delete the @samp{sqrt(c)} term; Calc
21668 accomplishes this by replacing @samp{sqrt(c)} with zero and
21669 resimplifying.  We then delete the @kbd{x} in the numerator;
21670 since this is part of a product, Calc replaces it with @samp{1}
21671 and resimplifies.
21673 If you select an element of a vector and press @key{DEL}, that
21674 element is deleted from the vector.  If you delete one side of
21675 an equation or inequality, only the opposite side remains.
21677 @kindex j @key{DEL}
21678 @pindex calc-del-selection
21679 The @kbd{j @key{DEL}} (@code{calc-del-selection}) command is like
21680 @key{DEL} but with the auto-selecting behavior of @kbd{j '} and
21681 @kbd{j `}.  It deletes the selected portion of the formula
21682 indicated by the cursor, or, in the absence of a selection, it
21683 deletes the sub-formula indicated by the cursor position.
21685 @kindex j @key{RET}
21686 @pindex calc-grab-selection
21687 (There is also an auto-selecting @kbd{j @key{RET}} (@code{calc-copy-selection})
21688 command.)
21690 Normal arithmetic operations also apply to sub-formulas.  Here we
21691 select the denominator, press @kbd{5 -} to subtract five from the
21692 denominator, press @kbd{n} to negate the denominator, then
21693 press @kbd{Q} to take the square root.
21695 @smallexample
21696 @group
21697      .. .           .. .           .. .             .. .
21698 1*  .......    1*  .......    1*  .......    1*  ..........
21699     2 x + 1        2 x - 4        4 - 2 x         _________
21700                                                  V 4 - 2 x
21701 @end group
21702 @end smallexample
21704 Certain types of operations on selections are not allowed.  For
21705 example, for an arithmetic function like @kbd{-} no more than one of
21706 the arguments may be a selected sub-formula.  (As the above example
21707 shows, the result of the subtraction is spliced back into the argument
21708 which had the selection; if there were more than one selection involved,
21709 this would not be well-defined.)  If you try to subtract two selections,
21710 the command will abort with an error message.
21712 Operations on sub-formulas sometimes leave the formula as a whole
21713 in an ``un-natural'' state.  Consider negating the @samp{2 x} term
21714 of our sample formula by selecting it and pressing @kbd{n}
21715 (@code{calc-change-sign}).
21717 @smallexample
21718 @group
21719        .. .                .. .
21720 1*  ..........      1*  ...........
21721      .........           ..........
21722     . . . 2 x           . . . -2 x
21723 @end group
21724 @end smallexample
21726 Unselecting the sub-formula reveals that the minus sign, which would
21727 normally have cancelled out with the subtraction automatically, has
21728 not been able to do so because the subtraction was not part of the
21729 selected portion.  Pressing @kbd{=} (@code{calc-evaluate}) or doing
21730 any other mathematical operation on the whole formula will cause it
21731 to be simplified.
21733 @smallexample
21734 @group
21735        17 y                17 y
21736 1:  -----------     1:  ----------
21737      __________          _________
21738     V 4 - -2 x          V 4 + 2 x
21739 @end group
21740 @end smallexample
21742 @node Rearranging with Selections,  , Operating on Selections, Selecting Subformulas
21743 @subsection Rearranging Formulas using Selections
21745 @noindent
21746 @kindex j R
21747 @pindex calc-commute-right
21748 The @kbd{j R} (@code{calc-commute-right}) command moves the selected
21749 sub-formula to the right in its surrounding formula.  Generally the
21750 selection is one term of a sum or product; the sum or product is
21751 rearranged according to the commutative laws of algebra.
21753 As with @kbd{j '} and @kbd{j @key{DEL}}, the term under the cursor is used
21754 if there is no selection in the current formula.  All commands described
21755 in this section share this property.  In this example, we place the
21756 cursor on the @samp{a} and type @kbd{j R}, then repeat.
21758 @smallexample
21759 1:  a + b - c          1:  b + a - c          1:  b - c + a
21760 @end smallexample
21762 @noindent
21763 Note that in the final step above, the @samp{a} is switched with
21764 the @samp{c} but the signs are adjusted accordingly.  When moving
21765 terms of sums and products, @kbd{j R} will never change the
21766 mathematical meaning of the formula.
21768 The selected term may also be an element of a vector or an argument
21769 of a function.  The term is exchanged with the one to its right.
21770 In this case, the ``meaning'' of the vector or function may of
21771 course be drastically changed.
21773 @smallexample
21774 1:  [a, b, c]          1:  [b, a, c]          1:  [b, c, a]
21776 1:  f(a, b, c)         1:  f(b, a, c)         1:  f(b, c, a)
21777 @end smallexample
21779 @kindex j L
21780 @pindex calc-commute-left
21781 The @kbd{j L} (@code{calc-commute-left}) command is like @kbd{j R}
21782 except that it swaps the selected term with the one to its left.
21784 With numeric prefix arguments, these commands move the selected
21785 term several steps at a time.  It is an error to try to move a
21786 term left or right past the end of its enclosing formula.
21787 With numeric prefix arguments of zero, these commands move the
21788 selected term as far as possible in the given direction.
21790 @kindex j D
21791 @pindex calc-sel-distribute
21792 The @kbd{j D} (@code{calc-sel-distribute}) command mixes the selected
21793 sum or product into the surrounding formula using the distributive
21794 law.  For example, in @samp{a * (b - c)} with the @samp{b - c}
21795 selected, the result is @samp{a b - a c}.  This also distributes
21796 products or quotients into surrounding powers, and can also do
21797 transformations like @samp{exp(a + b)} to @samp{exp(a) exp(b)},
21798 where @samp{a + b} is the selected term, and @samp{ln(a ^ b)}
21799 to @samp{ln(a) b}, where @samp{a ^ b} is the selected term.
21801 For multiple-term sums or products, @kbd{j D} takes off one term
21802 at a time:  @samp{a * (b + c - d)} goes to @samp{a * (c - d) + a b}
21803 with the @samp{c - d} selected so that you can type @kbd{j D}
21804 repeatedly to expand completely.  The @kbd{j D} command allows a
21805 numeric prefix argument which specifies the maximum number of
21806 times to expand at once; the default is one time only.
21808 @vindex DistribRules
21809 The @kbd{j D} command is implemented using rewrite rules.
21810 @xref{Selections with Rewrite Rules}.  The rules are stored in
21811 the Calc variable @code{DistribRules}.  A convenient way to view
21812 these rules is to use @kbd{s e} (@code{calc-edit-variable}) which
21813 displays and edits the stored value of a variable.  Press @kbd{C-c C-c}
21814 to return from editing mode; be careful not to make any actual changes
21815 or else you will affect the behavior of future @kbd{j D} commands!
21817 To extend @kbd{j D} to handle new cases, just edit @code{DistribRules}
21818 as described above.  You can then use the @kbd{s p} command to save
21819 this variable's value permanently for future Calc sessions.
21820 @xref{Operations on Variables}.
21822 @kindex j M
21823 @pindex calc-sel-merge
21824 @vindex MergeRules
21825 The @kbd{j M} (@code{calc-sel-merge}) command is the complement
21826 of @kbd{j D}; given @samp{a b - a c} with either @samp{a b} or
21827 @samp{a c} selected, the result is @samp{a * (b - c)}.  Once
21828 again, @kbd{j M} can also merge calls to functions like @code{exp}
21829 and @code{ln}; examine the variable @code{MergeRules} to see all
21830 the relevant rules.
21832 @kindex j C
21833 @pindex calc-sel-commute
21834 @vindex CommuteRules
21835 The @kbd{j C} (@code{calc-sel-commute}) command swaps the arguments
21836 of the selected sum, product, or equation.  It always behaves as
21837 if @kbd{j b} mode were in effect, i.e., the sum @samp{a + b + c} is
21838 treated as the nested sums @samp{(a + b) + c} by this command.
21839 If you put the cursor on the first @samp{+}, the result is
21840 @samp{(b + a) + c}; if you put the cursor on the second @samp{+}, the
21841 result is @samp{c + (a + b)} (which the default simplifications
21842 will rearrange to @samp{(c + a) + b}).  The relevant rules are stored
21843 in the variable @code{CommuteRules}.
21845 You may need to turn default simplifications off (with the @kbd{m O}
21846 command) in order to get the full benefit of @kbd{j C}.  For example,
21847 commuting @samp{a - b} produces @samp{-b + a}, but the default
21848 simplifications will ``simplify'' this right back to @samp{a - b} if
21849 you don't turn them off.  The same is true of some of the other
21850 manipulations described in this section.
21852 @kindex j N
21853 @pindex calc-sel-negate
21854 @vindex NegateRules
21855 The @kbd{j N} (@code{calc-sel-negate}) command replaces the selected
21856 term with the negative of that term, then adjusts the surrounding
21857 formula in order to preserve the meaning.  For example, given
21858 @samp{exp(a - b)} where @samp{a - b} is selected, the result is
21859 @samp{1 / exp(b - a)}.  By contrast, selecting a term and using the
21860 regular @kbd{n} (@code{calc-change-sign}) command negates the
21861 term without adjusting the surroundings, thus changing the meaning
21862 of the formula as a whole.  The rules variable is @code{NegateRules}.
21864 @kindex j &
21865 @pindex calc-sel-invert
21866 @vindex InvertRules
21867 The @kbd{j &} (@code{calc-sel-invert}) command is similar to @kbd{j N}
21868 except it takes the reciprocal of the selected term.  For example,
21869 given @samp{a - ln(b)} with @samp{b} selected, the result is
21870 @samp{a + ln(1/b)}.  The rules variable is @code{InvertRules}.
21872 @kindex j E
21873 @pindex calc-sel-jump-equals
21874 @vindex JumpRules
21875 The @kbd{j E} (@code{calc-sel-jump-equals}) command moves the
21876 selected term from one side of an equation to the other.  Given
21877 @samp{a + b = c + d} with @samp{c} selected, the result is
21878 @samp{a + b - c = d}.  This command also works if the selected
21879 term is part of a @samp{*}, @samp{/}, or @samp{^} formula.  The
21880 relevant rules variable is @code{JumpRules}.
21882 @kindex j I
21883 @kindex H j I
21884 @pindex calc-sel-isolate
21885 The @kbd{j I} (@code{calc-sel-isolate}) command isolates the
21886 selected term on its side of an equation.  It uses the @kbd{a S}
21887 (@code{calc-solve-for}) command to solve the equation, and the
21888 Hyperbolic flag affects it in the same way.  @xref{Solving Equations}.
21889 When it applies, @kbd{j I} is often easier to use than @kbd{j E}.
21890 It understands more rules of algebra, and works for inequalities
21891 as well as equations.
21893 @kindex j *
21894 @kindex j /
21895 @pindex calc-sel-mult-both-sides
21896 @pindex calc-sel-div-both-sides
21897 The @kbd{j *} (@code{calc-sel-mult-both-sides}) command prompts for a
21898 formula using algebraic entry, then multiplies both sides of the
21899 selected quotient or equation by that formula.  It simplifies each
21900 side with @kbd{a s} (@code{calc-simplify}) before re-forming the
21901 quotient or equation.  You can suppress this simplification by
21902 providing any numeric prefix argument.  There is also a @kbd{j /}
21903 (@code{calc-sel-div-both-sides}) which is similar to @kbd{j *} but
21904 dividing instead of multiplying by the factor you enter.
21906 As a special feature, if the numerator of the quotient is 1, then
21907 the denominator is expanded at the top level using the distributive
21908 law (i.e., using the @kbd{C-u -1 a x} command).  Suppose the
21909 formula on the stack is @samp{1 / (sqrt(a) + 1)}, and you wish
21910 to eliminate the square root in the denominator by multiplying both
21911 sides by @samp{sqrt(a) - 1}.  Calc's default simplifications would
21912 change the result @samp{(sqrt(a) - 1) / (sqrt(a) - 1) (sqrt(a) + 1)}
21913 right back to the original form by cancellation; Calc expands the
21914 denominator to @samp{sqrt(a) (sqrt(a) - 1) + sqrt(a) - 1} to prevent
21915 this.  (You would now want to use an @kbd{a x} command to expand
21916 the rest of the way, whereupon the denominator would cancel out to
21917 the desired form, @samp{a - 1}.)  When the numerator is not 1, this
21918 initial expansion is not necessary because Calc's default
21919 simplifications will not notice the potential cancellation.
21921 If the selection is an inequality, @kbd{j *} and @kbd{j /} will
21922 accept any factor, but will warn unless they can prove the factor
21923 is either positive or negative.  (In the latter case the direction
21924 of the inequality will be switched appropriately.)  @xref{Declarations},
21925 for ways to inform Calc that a given variable is positive or
21926 negative.  If Calc can't tell for sure what the sign of the factor
21927 will be, it will assume it is positive and display a warning
21928 message.
21930 For selections that are not quotients, equations, or inequalities,
21931 these commands pull out a multiplicative factor:  They divide (or
21932 multiply) by the entered formula, simplify, then multiply (or divide)
21933 back by the formula.
21935 @kindex j +
21936 @kindex j -
21937 @pindex calc-sel-add-both-sides
21938 @pindex calc-sel-sub-both-sides
21939 The @kbd{j +} (@code{calc-sel-add-both-sides}) and @kbd{j -}
21940 (@code{calc-sel-sub-both-sides}) commands analogously add to or
21941 subtract from both sides of an equation or inequality.  For other
21942 types of selections, they extract an additive factor.  A numeric
21943 prefix argument suppresses simplification of the intermediate
21944 results.
21946 @kindex j U
21947 @pindex calc-sel-unpack
21948 The @kbd{j U} (@code{calc-sel-unpack}) command replaces the
21949 selected function call with its argument.  For example, given
21950 @samp{a + sin(x^2)} with @samp{sin(x^2)} selected, the result
21951 is @samp{a + x^2}.  (The @samp{x^2} will remain selected; if you
21952 wanted to change the @code{sin} to @code{cos}, just press @kbd{C}
21953 now to take the cosine of the selected part.)
21955 @kindex j v
21956 @pindex calc-sel-evaluate
21957 The @kbd{j v} (@code{calc-sel-evaluate}) command performs the
21958 normal default simplifications on the selected sub-formula.
21959 These are the simplifications that are normally done automatically
21960 on all results, but which may have been partially inhibited by
21961 previous selection-related operations, or turned off altogether
21962 by the @kbd{m O} command.  This command is just an auto-selecting
21963 version of the @w{@kbd{a v}} command (@pxref{Algebraic Manipulation}).
21965 With a numeric prefix argument of 2, @kbd{C-u 2 j v} applies
21966 the @kbd{a s} (@code{calc-simplify}) command to the selected
21967 sub-formula.  With a prefix argument of 3 or more, e.g., @kbd{C-u j v}
21968 applies the @kbd{a e} (@code{calc-simplify-extended}) command.
21969 @xref{Simplifying Formulas}.  With a negative prefix argument
21970 it simplifies at the top level only, just as with @kbd{a v}.
21971 Here the ``top'' level refers to the top level of the selected
21972 sub-formula.
21974 @kindex j "
21975 @pindex calc-sel-expand-formula
21976 The @kbd{j "} (@code{calc-sel-expand-formula}) command is to @kbd{a "}
21977 (@pxref{Algebraic Manipulation}) what @kbd{j v} is to @kbd{a v}.
21979 You can use the @kbd{j r} (@code{calc-rewrite-selection}) command
21980 to define other algebraic operations on sub-formulas.  @xref{Rewrite Rules}.
21982 @node Algebraic Manipulation, Simplifying Formulas, Selecting Subformulas, Algebra
21983 @section Algebraic Manipulation
21985 @noindent
21986 The commands in this section perform general-purpose algebraic
21987 manipulations.  They work on the whole formula at the top of the
21988 stack (unless, of course, you have made a selection in that
21989 formula).
21991 Many algebra commands prompt for a variable name or formula.  If you
21992 answer the prompt with a blank line, the variable or formula is taken
21993 from top-of-stack, and the normal argument for the command is taken
21994 from the second-to-top stack level.
21996 @kindex a v
21997 @pindex calc-alg-evaluate
21998 The @kbd{a v} (@code{calc-alg-evaluate}) command performs the normal
21999 default simplifications on a formula; for example, @samp{a - -b} is
22000 changed to @samp{a + b}.  These simplifications are normally done
22001 automatically on all Calc results, so this command is useful only if
22002 you have turned default simplifications off with an @kbd{m O}
22003 command.  @xref{Simplification Modes}.
22005 It is often more convenient to type @kbd{=}, which is like @kbd{a v}
22006 but which also substitutes stored values for variables in the formula.
22007 Use @kbd{a v} if you want the variables to ignore their stored values.
22009 If you give a numeric prefix argument of 2 to @kbd{a v}, it simplifies
22010 as if in Algebraic Simplification mode.  This is equivalent to typing
22011 @kbd{a s}; @pxref{Simplifying Formulas}.  If you give a numeric prefix
22012 of 3 or more, it uses Extended Simplification mode (@kbd{a e}).
22014 If you give a negative prefix argument @mathit{-1}, @mathit{-2}, or @mathit{-3},
22015 it simplifies in the corresponding mode but only works on the top-level
22016 function call of the formula.  For example, @samp{(2 + 3) * (2 + 3)} will
22017 simplify to @samp{(2 + 3)^2}, without simplifying the sub-formulas
22018 @samp{2 + 3}.  As another example, typing @kbd{V R +} to sum the vector
22019 @samp{[1, 2, 3, 4]} produces the formula @samp{reduce(add, [1, 2, 3, 4])}
22020 in No-Simplify mode.  Using @kbd{a v} will evaluate this all the way to
22021 10; using @kbd{C-u - a v} will evaluate it only to @samp{1 + 2 + 3 + 4}.
22022 (@xref{Reducing and Mapping}.)
22024 @tindex evalv
22025 @tindex evalvn
22026 The @kbd{=} command corresponds to the @code{evalv} function, and
22027 the related @kbd{N} command, which is like @kbd{=} but temporarily
22028 disables Symbolic mode (@kbd{m s}) during the evaluation, corresponds
22029 to the @code{evalvn} function.  (These commands interpret their prefix
22030 arguments differently than @kbd{a v}; @kbd{=} treats the prefix as
22031 the number of stack elements to evaluate at once, and @kbd{N} treats
22032 it as a temporary different working precision.)
22034 The @code{evalvn} function can take an alternate working precision
22035 as an optional second argument.  This argument can be either an
22036 integer, to set the precision absolutely, or a vector containing
22037 a single integer, to adjust the precision relative to the current
22038 precision.  Note that @code{evalvn} with a larger than current
22039 precision will do the calculation at this higher precision, but the
22040 result will as usual be rounded back down to the current precision
22041 afterward.  For example, @samp{evalvn(pi - 3.1415)} at a precision
22042 of 12 will return @samp{9.265359e-5}; @samp{evalvn(pi - 3.1415, 30)}
22043 will return @samp{9.26535897932e-5} (computing a 25-digit result which
22044 is then rounded down to 12); and @samp{evalvn(pi - 3.1415, [-2])}
22045 will return @samp{9.2654e-5}.
22047 @kindex a "
22048 @pindex calc-expand-formula
22049 The @kbd{a "} (@code{calc-expand-formula}) command expands functions
22050 into their defining formulas wherever possible.  For example,
22051 @samp{deg(x^2)} is changed to @samp{180 x^2 / pi}.  Most functions,
22052 like @code{sin} and @code{gcd}, are not defined by simple formulas
22053 and so are unaffected by this command.  One important class of
22054 functions which @emph{can} be expanded is the user-defined functions
22055 created by the @kbd{Z F} command.  @xref{Algebraic Definitions}.
22056 Other functions which @kbd{a "} can expand include the probability
22057 distribution functions, most of the financial functions, and the
22058 hyperbolic and inverse hyperbolic functions.  A numeric prefix argument
22059 affects @kbd{a "} in the same way as it does @kbd{a v}:  A positive
22060 argument expands all functions in the formula and then simplifies in
22061 various ways; a negative argument expands and simplifies only the
22062 top-level function call.
22064 @kindex a M
22065 @pindex calc-map-equation
22066 @tindex mapeq
22067 The @kbd{a M} (@code{calc-map-equation}) [@code{mapeq}] command applies
22068 a given function or operator to one or more equations.  It is analogous
22069 to @kbd{V M}, which operates on vectors instead of equations.
22070 @pxref{Reducing and Mapping}.  For example, @kbd{a M S} changes
22071 @samp{x = y+1} to @samp{sin(x) = sin(y+1)}, and @kbd{a M +} with
22072 @samp{x = y+1} and @expr{6} on the stack produces @samp{x+6 = y+7}.
22073 With two equations on the stack, @kbd{a M +} would add the lefthand
22074 sides together and the righthand sides together to get the two
22075 respective sides of a new equation.
22077 Mapping also works on inequalities.  Mapping two similar inequalities
22078 produces another inequality of the same type.  Mapping an inequality
22079 with an equation produces an inequality of the same type.  Mapping a
22080 @samp{<=} with a @samp{<} or @samp{!=} (not-equal) produces a @samp{<}.
22081 If inequalities with opposite direction (e.g., @samp{<} and @samp{>})
22082 are mapped, the direction of the second inequality is reversed to
22083 match the first:  Using @kbd{a M +} on @samp{a < b} and @samp{a > 2}
22084 reverses the latter to get @samp{2 < a}, which then allows the
22085 combination @samp{a + 2 < b + a}, which the @kbd{a s} command can
22086 then simplify to get @samp{2 < b}.
22088 Using @kbd{a M *}, @kbd{a M /}, @kbd{a M n}, or @kbd{a M &} to negate
22089 or invert an inequality will reverse the direction of the inequality.
22090 Other adjustments to inequalities are @emph{not} done automatically;
22091 @kbd{a M S} will change @w{@samp{x < y}} to @samp{sin(x) < sin(y)} even
22092 though this is not true for all values of the variables.
22094 @kindex H a M
22095 @tindex mapeqp
22096 With the Hyperbolic flag, @kbd{H a M} [@code{mapeqp}] does a plain
22097 mapping operation without reversing the direction of any inequalities.
22098 Thus, @kbd{H a M &} would change @kbd{x > 2} to @kbd{1/x > 0.5}.
22099 (This change is mathematically incorrect, but perhaps you were
22100 fixing an inequality which was already incorrect.)
22102 @kindex I a M
22103 @tindex mapeqr
22104 With the Inverse flag, @kbd{I a M} [@code{mapeqr}] always reverses
22105 the direction of the inequality.  You might use @kbd{I a M C} to
22106 change @samp{x < y} to @samp{cos(x) > cos(y)} if you know you are
22107 working with small positive angles.
22109 @kindex a b
22110 @pindex calc-substitute
22111 @tindex subst
22112 The @kbd{a b} (@code{calc-substitute}) [@code{subst}] command substitutes
22113 all occurrences
22114 of some variable or sub-expression of an expression with a new
22115 sub-expression.  For example, substituting @samp{sin(x)} with @samp{cos(y)}
22116 in @samp{2 sin(x)^2 + x sin(x) + sin(2 x)} produces
22117 @samp{2 cos(y)^2 + x cos(y) + @w{sin(2 x)}}.
22118 Note that this is a purely structural substitution; the lone @samp{x} and
22119 the @samp{sin(2 x)} stayed the same because they did not look like
22120 @samp{sin(x)}.  @xref{Rewrite Rules}, for a more general method for
22121 doing substitutions.
22123 The @kbd{a b} command normally prompts for two formulas, the old
22124 one and the new one.  If you enter a blank line for the first
22125 prompt, all three arguments are taken from the stack (new, then old,
22126 then target expression).  If you type an old formula but then enter a
22127 blank line for the new one, the new formula is taken from top-of-stack
22128 and the target from second-to-top.  If you answer both prompts, the
22129 target is taken from top-of-stack as usual.
22131 Note that @kbd{a b} has no understanding of commutativity or
22132 associativity.  The pattern @samp{x+y} will not match the formula
22133 @samp{y+x}.  Also, @samp{y+z} will not match inside the formula @samp{x+y+z}
22134 because the @samp{+} operator is left-associative, so the ``deep
22135 structure'' of that formula is @samp{(x+y) + z}.  Use @kbd{d U}
22136 (@code{calc-unformatted-language}) mode to see the true structure of
22137 a formula.  The rewrite rule mechanism, discussed later, does not have
22138 these limitations.
22140 As an algebraic function, @code{subst} takes three arguments:
22141 Target expression, old, new.  Note that @code{subst} is always
22142 evaluated immediately, even if its arguments are variables, so if
22143 you wish to put a call to @code{subst} onto the stack you must
22144 turn the default simplifications off first (with @kbd{m O}).
22146 @node Simplifying Formulas, Polynomials, Algebraic Manipulation, Algebra
22147 @section Simplifying Formulas
22149 @noindent
22150 @kindex a s
22151 @pindex calc-simplify
22152 @tindex simplify
22153 The @kbd{a s} (@code{calc-simplify}) [@code{simplify}] command applies
22154 various algebraic rules to simplify a formula.  This includes rules which
22155 are not part of the default simplifications because they may be too slow
22156 to apply all the time, or may not be desirable all of the time.  For
22157 example, non-adjacent terms of sums are combined, as in @samp{a + b + 2 a}
22158 to @samp{b + 3 a}, and some formulas like @samp{sin(arcsin(x))} are
22159 simplified to @samp{x}.
22161 The sections below describe all the various kinds of algebraic
22162 simplifications Calc provides in full detail.  None of Calc's
22163 simplification commands are designed to pull rabbits out of hats;
22164 they simply apply certain specific rules to put formulas into
22165 less redundant or more pleasing forms.  Serious algebra in Calc
22166 must be done manually, usually with a combination of selections
22167 and rewrite rules.  @xref{Rearranging with Selections}.
22168 @xref{Rewrite Rules}.
22170 @xref{Simplification Modes}, for commands to control what level of
22171 simplification occurs automatically.  Normally only the ``default
22172 simplifications'' occur.
22174 @menu
22175 * Default Simplifications::
22176 * Algebraic Simplifications::
22177 * Unsafe Simplifications::
22178 * Simplification of Units::
22179 @end menu
22181 @node Default Simplifications, Algebraic Simplifications, Simplifying Formulas, Simplifying Formulas
22182 @subsection Default Simplifications
22184 @noindent
22185 @cindex Default simplifications
22186 This section describes the ``default simplifications,'' those which are
22187 normally applied to all results.  For example, if you enter the variable
22188 @expr{x} on the stack twice and push @kbd{+}, Calc's default
22189 simplifications automatically change @expr{x + x} to @expr{2 x}.
22191 The @kbd{m O} command turns off the default simplifications, so that
22192 @expr{x + x} will remain in this form unless you give an explicit
22193 ``simplify'' command like @kbd{=} or @kbd{a v}.  @xref{Algebraic
22194 Manipulation}.  The @kbd{m D} command turns the default simplifications
22195 back on.
22197 The most basic default simplification is the evaluation of functions.
22198 For example, @expr{2 + 3} is evaluated to @expr{5}, and @expr{@tfn{sqrt}(9)}
22199 is evaluated to @expr{3}.  Evaluation does not occur if the arguments
22200 to a function are somehow of the wrong type @expr{@tfn{tan}([2,3,4])}),
22201 range (@expr{@tfn{tan}(90)}), or number (@expr{@tfn{tan}(3,5)}), 
22202 or if the function name is not recognized (@expr{@tfn{f}(5)}), or if
22203 Symbolic mode (@pxref{Symbolic Mode}) prevents evaluation
22204 (@expr{@tfn{sqrt}(2)}).
22206 Calc simplifies (evaluates) the arguments to a function before it
22207 simplifies the function itself.  Thus @expr{@tfn{sqrt}(5+4)} is
22208 simplified to @expr{@tfn{sqrt}(9)} before the @code{sqrt} function
22209 itself is applied.  There are very few exceptions to this rule:
22210 @code{quote}, @code{lambda}, and @code{condition} (the @code{::}
22211 operator) do not evaluate their arguments, @code{if} (the @code{? :}
22212 operator) does not evaluate all of its arguments, and @code{evalto}
22213 does not evaluate its lefthand argument.
22215 Most commands apply the default simplifications to all arguments they
22216 take from the stack, perform a particular operation, then simplify
22217 the result before pushing it back on the stack.  In the common special
22218 case of regular arithmetic commands like @kbd{+} and @kbd{Q} [@code{sqrt}],
22219 the arguments are simply popped from the stack and collected into a
22220 suitable function call, which is then simplified (the arguments being
22221 simplified first as part of the process, as described above).
22223 The default simplifications are too numerous to describe completely
22224 here, but this section will describe the ones that apply to the
22225 major arithmetic operators.  This list will be rather technical in
22226 nature, and will probably be interesting to you only if you are
22227 a serious user of Calc's algebra facilities.
22229 @tex
22230 \bigskip
22231 @end tex
22233 As well as the simplifications described here, if you have stored
22234 any rewrite rules in the variable @code{EvalRules} then these rules
22235 will also be applied before any built-in default simplifications.
22236 @xref{Automatic Rewrites}, for details.
22238 @tex
22239 \bigskip
22240 @end tex
22242 And now, on with the default simplifications:
22244 Arithmetic operators like @kbd{+} and @kbd{*} always take two
22245 arguments in Calc's internal form.  Sums and products of three or
22246 more terms are arranged by the associative law of algebra into
22247 a left-associative form for sums, @expr{((a + b) + c) + d}, and
22248 (by default) a right-associative form for products, 
22249 @expr{a * (b * (c * d))}.  Formulas like @expr{(a + b) + (c + d)} are
22250 rearranged to left-associative form, though this rarely matters since
22251 Calc's algebra commands are designed to hide the inner structure of sums
22252 and products as much as possible.  Sums and products in their proper
22253 associative form will be written without parentheses in the examples
22254 below.
22256 Sums and products are @emph{not} rearranged according to the
22257 commutative law (@expr{a + b} to @expr{b + a}) except in a few
22258 special cases described below.  Some algebra programs always
22259 rearrange terms into a canonical order, which enables them to
22260 see that @expr{a b + b a} can be simplified to @expr{2 a b}.
22261 Calc assumes you have put the terms into the order you want
22262 and generally leaves that order alone, with the consequence
22263 that formulas like the above will only be simplified if you
22264 explicitly give the @kbd{a s} command.  @xref{Algebraic
22265 Simplifications}.
22267 Differences @expr{a - b} are treated like sums @expr{a + (-b)}
22268 for purposes of simplification; one of the default simplifications
22269 is to rewrite @expr{a + (-b)} or @expr{(-b) + a}, where @expr{-b}
22270 represents a ``negative-looking'' term, into @expr{a - b} form.
22271 ``Negative-looking'' means negative numbers, negated formulas like
22272 @expr{-x}, and products or quotients in which either term is
22273 negative-looking.
22275 Other simplifications involving negation are @expr{-(-x)} to @expr{x};
22276 @expr{-(a b)} or @expr{-(a/b)} where either @expr{a} or @expr{b} is
22277 negative-looking, simplified by negating that term, or else where
22278 @expr{a} or @expr{b} is any number, by negating that number;
22279 @expr{-(a + b)} to @expr{-a - b}, and @expr{-(b - a)} to @expr{a - b}.
22280 (This, and rewriting @expr{(-b) + a} to @expr{a - b}, are the only
22281 cases where the order of terms in a sum is changed by the default
22282 simplifications.)
22284 The distributive law is used to simplify sums in some cases:
22285 @expr{a x + b x} to @expr{(a + b) x}, where @expr{a} represents
22286 a number or an implicit 1 or @mathit{-1} (as in @expr{x} or @expr{-x})
22287 and similarly for @expr{b}.  Use the @kbd{a c}, @w{@kbd{a f}}, or
22288 @kbd{j M} commands to merge sums with non-numeric coefficients
22289 using the distributive law.
22291 The distributive law is only used for sums of two terms, or
22292 for adjacent terms in a larger sum.  Thus @expr{a + b + b + c}
22293 is simplified to @expr{a + 2 b + c}, but @expr{a + b + c + b}
22294 is not simplified.  The reason is that comparing all terms of a
22295 sum with one another would require time proportional to the
22296 square of the number of terms; Calc relegates potentially slow
22297 operations like this to commands that have to be invoked
22298 explicitly, like @kbd{a s}.
22300 Finally, @expr{a + 0} and @expr{0 + a} are simplified to @expr{a}.
22301 A consequence of the above rules is that @expr{0 - a} is simplified
22302 to @expr{-a}.
22304 @tex
22305 \bigskip
22306 @end tex
22308 The products @expr{1 a} and @expr{a 1} are simplified to @expr{a};
22309 @expr{(-1) a} and @expr{a (-1)} are simplified to @expr{-a};
22310 @expr{0 a} and @expr{a 0} are simplified to @expr{0}, except that
22311 in Matrix mode where @expr{a} is not provably scalar the result
22312 is the generic zero matrix @samp{idn(0)}, and that if @expr{a} is
22313 infinite the result is @samp{nan}.
22315 Also, @expr{(-a) b} and @expr{a (-b)} are simplified to @expr{-(a b)},
22316 where this occurs for negated formulas but not for regular negative
22317 numbers.
22319 Products are commuted only to move numbers to the front:
22320 @expr{a b 2} is commuted to @expr{2 a b}.
22322 The product @expr{a (b + c)} is distributed over the sum only if
22323 @expr{a} and at least one of @expr{b} and @expr{c} are numbers:
22324 @expr{2 (x + 3)} goes to @expr{2 x + 6}.  The formula
22325 @expr{(-a) (b - c)}, where @expr{-a} is a negative number, is
22326 rewritten to @expr{a (c - b)}.
22328 The distributive law of products and powers is used for adjacent
22329 terms of the product: @expr{x^a x^b} goes to 
22330 @texline @math{x^{a+b}}
22331 @infoline @expr{x^(a+b)}
22332 where @expr{a} is a number, or an implicit 1 (as in @expr{x}),
22333 or the implicit one-half of @expr{@tfn{sqrt}(x)}, and similarly for
22334 @expr{b}.  The result is written using @samp{sqrt} or @samp{1/sqrt}
22335 if the sum of the powers is @expr{1/2} or @expr{-1/2}, respectively.
22336 If the sum of the powers is zero, the product is simplified to
22337 @expr{1} or to @samp{idn(1)} if Matrix mode is enabled.
22339 The product of a negative power times anything but another negative
22340 power is changed to use division:  
22341 @texline @math{x^{-2} y}
22342 @infoline @expr{x^(-2) y} 
22343 goes to @expr{y / x^2} unless Matrix mode is
22344 in effect and neither @expr{x} nor @expr{y} are scalar (in which
22345 case it is considered unsafe to rearrange the order of the terms).
22347 Finally, @expr{a (b/c)} is rewritten to @expr{(a b)/c}, and also
22348 @expr{(a/b) c} is changed to @expr{(a c)/b} unless in Matrix mode.
22350 @tex
22351 \bigskip
22352 @end tex
22354 Simplifications for quotients are analogous to those for products.
22355 The quotient @expr{0 / x} is simplified to @expr{0}, with the same
22356 exceptions that were noted for @expr{0 x}.  Likewise, @expr{x / 1}
22357 and @expr{x / (-1)} are simplified to @expr{x} and @expr{-x},
22358 respectively.
22360 The quotient @expr{x / 0} is left unsimplified or changed to an
22361 infinite quantity, as directed by the current infinite mode.
22362 @xref{Infinite Mode}.
22364 The expression 
22365 @texline @math{a / b^{-c}}
22366 @infoline @expr{a / b^(-c)} 
22367 is changed to @expr{a b^c}, where @expr{-c} is any negative-looking
22368 power.  Also, @expr{1 / b^c} is changed to 
22369 @texline @math{b^{-c}}
22370 @infoline @expr{b^(-c)} 
22371 for any power @expr{c}.
22373 Also, @expr{(-a) / b} and @expr{a / (-b)} go to @expr{-(a/b)};
22374 @expr{(a/b) / c} goes to @expr{a / (b c)}; and @expr{a / (b/c)}
22375 goes to @expr{(a c) / b} unless Matrix mode prevents this
22376 rearrangement.  Similarly, @expr{a / (b:c)} is simplified to
22377 @expr{(c:b) a} for any fraction @expr{b:c}.
22379 The distributive law is applied to @expr{(a + b) / c} only if
22380 @expr{c} and at least one of @expr{a} and @expr{b} are numbers.
22381 Quotients of powers and square roots are distributed just as
22382 described for multiplication.
22384 Quotients of products cancel only in the leading terms of the
22385 numerator and denominator.  In other words, @expr{a x b / a y b}
22386 is cancelled to @expr{x b / y b} but not to @expr{x / y}.  Once
22387 again this is because full cancellation can be slow; use @kbd{a s}
22388 to cancel all terms of the quotient.
22390 Quotients of negative-looking values are simplified according
22391 to @expr{(-a) / (-b)} to @expr{a / b}, @expr{(-a) / (b - c)}
22392 to @expr{a / (c - b)}, and @expr{(a - b) / (-c)} to @expr{(b - a) / c}.
22394 @tex
22395 \bigskip
22396 @end tex
22398 The formula @expr{x^0} is simplified to @expr{1}, or to @samp{idn(1)}
22399 in Matrix mode.  The formula @expr{0^x} is simplified to @expr{0}
22400 unless @expr{x} is a negative number, complex number or zero.
22401 If @expr{x} is negative, complex or @expr{0.0}, @expr{0^x} is an
22402 infinity or an unsimplified formula according to the current infinite
22403 mode.  The expression @expr{0^0} is simplified to @expr{1}.
22405 Powers of products or quotients @expr{(a b)^c}, @expr{(a/b)^c}
22406 are distributed to @expr{a^c b^c}, @expr{a^c / b^c} only if @expr{c}
22407 is an integer, or if either @expr{a} or @expr{b} are nonnegative
22408 real numbers.  Powers of powers @expr{(a^b)^c} are simplified to
22409 @texline @math{a^{b c}}
22410 @infoline @expr{a^(b c)} 
22411 only when @expr{c} is an integer and @expr{b c} also
22412 evaluates to an integer.  Without these restrictions these simplifications
22413 would not be safe because of problems with principal values.
22414 (In other words, 
22415 @texline @math{((-3)^{1/2})^2}
22416 @infoline @expr{((-3)^1:2)^2} 
22417 is safe to simplify, but
22418 @texline @math{((-3)^2)^{1/2}}
22419 @infoline @expr{((-3)^2)^1:2} 
22420 is not.)  @xref{Declarations}, for ways to inform Calc that your
22421 variables satisfy these requirements.
22423 As a special case of this rule, @expr{@tfn{sqrt}(x)^n} is simplified to
22424 @texline @math{x^{n/2}}
22425 @infoline @expr{x^(n/2)} 
22426 only for even integers @expr{n}.
22428 If @expr{a} is known to be real, @expr{b} is an even integer, and
22429 @expr{c} is a half- or quarter-integer, then @expr{(a^b)^c} is
22430 simplified to @expr{@tfn{abs}(a^(b c))}.
22432 Also, @expr{(-a)^b} is simplified to @expr{a^b} if @expr{b} is an
22433 even integer, or to @expr{-(a^b)} if @expr{b} is an odd integer,
22434 for any negative-looking expression @expr{-a}.
22436 Square roots @expr{@tfn{sqrt}(x)} generally act like one-half powers
22437 @texline @math{x^{1:2}}
22438 @infoline @expr{x^1:2} 
22439 for the purposes of the above-listed simplifications.
22441 Also, note that 
22442 @texline @math{1 / x^{1:2}}
22443 @infoline @expr{1 / x^1:2} 
22444 is changed to 
22445 @texline @math{x^{-1:2}},
22446 @infoline @expr{x^(-1:2)},
22447 but @expr{1 / @tfn{sqrt}(x)} is left alone.
22449 @tex
22450 \bigskip
22451 @end tex
22453 Generic identity matrices (@pxref{Matrix Mode}) are simplified by the
22454 following rules:  @expr{@tfn{idn}(a) + b} to @expr{a + b} if @expr{b}
22455 is provably scalar, or expanded out if @expr{b} is a matrix;
22456 @expr{@tfn{idn}(a) + @tfn{idn}(b)} to @expr{@tfn{idn}(a + b)}; 
22457 @expr{-@tfn{idn}(a)} to @expr{@tfn{idn}(-a)}; @expr{a @tfn{idn}(b)} to 
22458 @expr{@tfn{idn}(a b)} if @expr{a} is provably scalar, or to @expr{a b} 
22459 if @expr{a} is provably non-scalar;  @expr{@tfn{idn}(a) @tfn{idn}(b)} to
22460 @expr{@tfn{idn}(a b)}; analogous simplifications for quotients involving
22461 @code{idn}; and @expr{@tfn{idn}(a)^n} to @expr{@tfn{idn}(a^n)} where
22462 @expr{n} is an integer.
22464 @tex
22465 \bigskip
22466 @end tex
22468 The @code{floor} function and other integer truncation functions
22469 vanish if the argument is provably integer-valued, so that
22470 @expr{@tfn{floor}(@tfn{round}(x))} simplifies to @expr{@tfn{round}(x)}.
22471 Also, combinations of @code{float}, @code{floor} and its friends,
22472 and @code{ffloor} and its friends, are simplified in appropriate
22473 ways.  @xref{Integer Truncation}.
22475 The expression @expr{@tfn{abs}(-x)} changes to @expr{@tfn{abs}(x)}.
22476 The expression @expr{@tfn{abs}(@tfn{abs}(x))} changes to
22477 @expr{@tfn{abs}(x)};  in fact, @expr{@tfn{abs}(x)} changes to @expr{x} or
22478 @expr{-x} if @expr{x} is provably nonnegative or nonpositive
22479 (@pxref{Declarations}). 
22481 While most functions do not recognize the variable @code{i} as an
22482 imaginary number, the @code{arg} function does handle the two cases
22483 @expr{@tfn{arg}(@tfn{i})} and @expr{@tfn{arg}(-@tfn{i})} just for convenience.
22485 The expression @expr{@tfn{conj}(@tfn{conj}(x))} simplifies to @expr{x}.
22486 Various other expressions involving @code{conj}, @code{re}, and
22487 @code{im} are simplified, especially if some of the arguments are
22488 provably real or involve the constant @code{i}.  For example,
22489 @expr{@tfn{conj}(a + b i)} is changed to 
22490 @expr{@tfn{conj}(a) - @tfn{conj}(b) i},  or to @expr{a - b i} if @expr{a}
22491 and @expr{b} are known to be real.
22493 Functions like @code{sin} and @code{arctan} generally don't have
22494 any default simplifications beyond simply evaluating the functions
22495 for suitable numeric arguments and infinity.  The @kbd{a s} command
22496 described in the next section does provide some simplifications for
22497 these functions, though.
22499 One important simplification that does occur is that
22500 @expr{@tfn{ln}(@tfn{e})} is simplified to 1, and @expr{@tfn{ln}(@tfn{e}^x)} is
22501 simplified to @expr{x} for any @expr{x}.  This occurs even if you have
22502 stored a different value in the Calc variable @samp{e}; but this would
22503 be a bad idea in any case if you were also using natural logarithms!
22505 Among the logical functions, @tfn{!(@var{a} <= @var{b})} changes to
22506 @tfn{@var{a} > @var{b}} and so on.  Equations and inequalities where both sides
22507 are either negative-looking or zero are simplified by negating both sides
22508 and reversing the inequality.  While it might seem reasonable to simplify
22509 @expr{!!x} to @expr{x}, this would not be valid in general because
22510 @expr{!!2} is 1, not 2.
22512 Most other Calc functions have few if any default simplifications
22513 defined, aside of course from evaluation when the arguments are
22514 suitable numbers.
22516 @node Algebraic Simplifications, Unsafe Simplifications, Default Simplifications, Simplifying Formulas
22517 @subsection Algebraic Simplifications
22519 @noindent
22520 @cindex Algebraic simplifications
22521 The @kbd{a s} command makes simplifications that may be too slow to
22522 do all the time, or that may not be desirable all of the time.
22523 If you find these simplifications are worthwhile, you can type
22524 @kbd{m A} to have Calc apply them automatically.
22526 This section describes all simplifications that are performed by
22527 the @kbd{a s} command.  Note that these occur in addition to the
22528 default simplifications; even if the default simplifications have
22529 been turned off by an @kbd{m O} command, @kbd{a s} will turn them
22530 back on temporarily while it simplifies the formula.
22532 There is a variable, @code{AlgSimpRules}, in which you can put rewrites
22533 to be applied by @kbd{a s}.  Its use is analogous to @code{EvalRules},
22534 but without the special restrictions.  Basically, the simplifier does
22535 @samp{@w{a r} AlgSimpRules} with an infinite repeat count on the whole
22536 expression being simplified, then it traverses the expression applying
22537 the built-in rules described below.  If the result is different from
22538 the original expression, the process repeats with the default
22539 simplifications (including @code{EvalRules}), then @code{AlgSimpRules},
22540 then the built-in simplifications, and so on.
22542 @tex
22543 \bigskip
22544 @end tex
22546 Sums are simplified in two ways.  Constant terms are commuted to the
22547 end of the sum, so that @expr{a + 2 + b} changes to @expr{a + b + 2}.
22548 The only exception is that a constant will not be commuted away
22549 from the first position of a difference, i.e., @expr{2 - x} is not
22550 commuted to @expr{-x + 2}.
22552 Also, terms of sums are combined by the distributive law, as in
22553 @expr{x + y + 2 x} to @expr{y + 3 x}.  This always occurs for
22554 adjacent terms, but @kbd{a s} compares all pairs of terms including
22555 non-adjacent ones.
22557 @tex
22558 \bigskip
22559 @end tex
22561 Products are sorted into a canonical order using the commutative
22562 law.  For example, @expr{b c a} is commuted to @expr{a b c}.
22563 This allows easier comparison of products; for example, the default
22564 simplifications will not change @expr{x y + y x} to @expr{2 x y},
22565 but @kbd{a s} will; it first rewrites the sum to @expr{x y + x y},
22566 and then the default simplifications are able to recognize a sum
22567 of identical terms.
22569 The canonical ordering used to sort terms of products has the
22570 property that real-valued numbers, interval forms and infinities
22571 come first, and are sorted into increasing order.  The @kbd{V S}
22572 command uses the same ordering when sorting a vector.
22574 Sorting of terms of products is inhibited when Matrix mode is
22575 turned on; in this case, Calc will never exchange the order of
22576 two terms unless it knows at least one of the terms is a scalar.
22578 Products of powers are distributed by comparing all pairs of
22579 terms, using the same method that the default simplifications
22580 use for adjacent terms of products.
22582 Even though sums are not sorted, the commutative law is still
22583 taken into account when terms of a product are being compared.
22584 Thus @expr{(x + y) (y + x)} will be simplified to @expr{(x + y)^2}.
22585 A subtle point is that @expr{(x - y) (y - x)} will @emph{not}
22586 be simplified to @expr{-(x - y)^2}; Calc does not notice that
22587 one term can be written as a constant times the other, even if
22588 that constant is @mathit{-1}.
22590 A fraction times any expression, @expr{(a:b) x}, is changed to
22591 a quotient involving integers:  @expr{a x / b}.  This is not
22592 done for floating-point numbers like @expr{0.5}, however.  This
22593 is one reason why you may find it convenient to turn Fraction mode
22594 on while doing algebra; @pxref{Fraction Mode}.
22596 @tex
22597 \bigskip
22598 @end tex
22600 Quotients are simplified by comparing all terms in the numerator
22601 with all terms in the denominator for possible cancellation using
22602 the distributive law.  For example, @expr{a x^2 b / c x^3 d} will
22603 cancel @expr{x^2} from the top and bottom to get @expr{a b / c x d}.
22604 (The terms in the denominator will then be rearranged to @expr{c d x}
22605 as described above.)  If there is any common integer or fractional
22606 factor in the numerator and denominator, it is cancelled out;
22607 for example, @expr{(4 x + 6) / 8 x} simplifies to @expr{(2 x + 3) / 4 x}.
22609 Non-constant common factors are not found even by @kbd{a s}.  To
22610 cancel the factor @expr{a} in @expr{(a x + a) / a^2} you could first
22611 use @kbd{j M} on the product @expr{a x} to Merge the numerator to
22612 @expr{a (1+x)}, which can then be simplified successfully.
22614 @tex
22615 \bigskip
22616 @end tex
22618 Integer powers of the variable @code{i} are simplified according
22619 to the identity @expr{i^2 = -1}.  If you store a new value other
22620 than the complex number @expr{(0,1)} in @code{i}, this simplification
22621 will no longer occur.  This is done by @kbd{a s} instead of by default
22622 in case someone (unwisely) uses the name @code{i} for a variable
22623 unrelated to complex numbers; it would be unfortunate if Calc
22624 quietly and automatically changed this formula for reasons the
22625 user might not have been thinking of.
22627 Square roots of integer or rational arguments are simplified in
22628 several ways.  (Note that these will be left unevaluated only in
22629 Symbolic mode.)  First, square integer or rational factors are
22630 pulled out so that @expr{@tfn{sqrt}(8)} is rewritten as
22631 @texline @math{2\,@tfn{sqrt}(2)}.
22632 @infoline @expr{2 sqrt(2)}.  
22633 Conceptually speaking this implies factoring the argument into primes
22634 and moving pairs of primes out of the square root, but for reasons of
22635 efficiency Calc only looks for primes up to 29.
22637 Square roots in the denominator of a quotient are moved to the
22638 numerator:  @expr{1 / @tfn{sqrt}(3)} changes to @expr{@tfn{sqrt}(3) / 3}.
22639 The same effect occurs for the square root of a fraction:
22640 @expr{@tfn{sqrt}(2:3)} changes to @expr{@tfn{sqrt}(6) / 3}.
22642 @tex
22643 \bigskip
22644 @end tex
22646 The @code{%} (modulo) operator is simplified in several ways
22647 when the modulus @expr{M} is a positive real number.  First, if
22648 the argument is of the form @expr{x + n} for some real number
22649 @expr{n}, then @expr{n} is itself reduced modulo @expr{M}.  For
22650 example, @samp{(x - 23) % 10} is simplified to @samp{(x + 7) % 10}.
22652 If the argument is multiplied by a constant, and this constant
22653 has a common integer divisor with the modulus, then this factor is
22654 cancelled out.  For example, @samp{12 x % 15} is changed to
22655 @samp{3 (4 x % 5)} by factoring out 3.  Also, @samp{(12 x + 1) % 15}
22656 is changed to @samp{3 ((4 x + 1:3) % 5)}.  While these forms may
22657 not seem ``simpler,'' they allow Calc to discover useful information
22658 about modulo forms in the presence of declarations.
22660 If the modulus is 1, then Calc can use @code{int} declarations to
22661 evaluate the expression.  For example, the idiom @samp{x % 2} is
22662 often used to check whether a number is odd or even.  As described
22663 above, @w{@samp{2 n % 2}} and @samp{(2 n + 1) % 2} are simplified to
22664 @samp{2 (n % 1)} and @samp{2 ((n + 1:2) % 1)}, respectively; Calc
22665 can simplify these to 0 and 1 (respectively) if @code{n} has been
22666 declared to be an integer.
22668 @tex
22669 \bigskip
22670 @end tex
22672 Trigonometric functions are simplified in several ways.  Whenever a
22673 products of two trigonometric functions can be replaced by a single
22674 function, the replacement is made; for example,
22675 @expr{@tfn{tan}(x) @tfn{cos}(x)} is simplified to @expr{@tfn{sin}(x)}. 
22676 Reciprocals of trigonometric functions are replaced by their reciprocal
22677 function; for example, @expr{1/@tfn{sec}(x)} is simplified to
22678 @expr{@tfn{cos}(x)}.  The corresponding simplifications for the
22679 hyperbolic functions are also handled.
22681 Trigonometric functions of their inverse functions are
22682 simplified. The expression @expr{@tfn{sin}(@tfn{arcsin}(x))} is
22683 simplified to @expr{x}, and similarly for @code{cos} and @code{tan}.  
22684 Trigonometric functions of inverses of different trigonometric
22685 functions can also be simplified, as in @expr{@tfn{sin}(@tfn{arccos}(x))}
22686 to @expr{@tfn{sqrt}(1 - x^2)}.
22688 If the argument to @code{sin} is negative-looking, it is simplified to
22689 @expr{-@tfn{sin}(x)}, and similarly for @code{cos} and @code{tan}.
22690 Finally, certain special values of the argument are recognized;
22691 @pxref{Trigonometric and Hyperbolic Functions}.
22693 Hyperbolic functions of their inverses and of negative-looking
22694 arguments are also handled, as are exponentials of inverse
22695 hyperbolic functions.
22697 No simplifications for inverse trigonometric and hyperbolic
22698 functions are known, except for negative arguments of @code{arcsin},
22699 @code{arctan}, @code{arcsinh}, and @code{arctanh}.  Note that
22700 @expr{@tfn{arcsin}(@tfn{sin}(x))} can @emph{not} safely change to
22701 @expr{x}, since this only correct within an integer multiple of 
22702 @texline @math{2 \pi}
22703 @infoline @expr{2 pi} 
22704 radians or 360 degrees.  However, @expr{@tfn{arcsinh}(@tfn{sinh}(x))} is
22705 simplified to @expr{x} if @expr{x} is known to be real.
22707 Several simplifications that apply to logarithms and exponentials
22708 are that @expr{@tfn{exp}(@tfn{ln}(x))}, 
22709 @texline @tfn{e}@math{^{\ln(x)}},
22710 @infoline @expr{e^@tfn{ln}(x)}, 
22712 @texline @math{10^{{\rm log10}(x)}}
22713 @infoline @expr{10^@tfn{log10}(x)} 
22714 all reduce to @expr{x}.  Also, @expr{@tfn{ln}(@tfn{exp}(x))}, etc., can
22715 reduce to @expr{x} if @expr{x} is provably real.  The form
22716 @expr{@tfn{exp}(x)^y} is simplified to @expr{@tfn{exp}(x y)}.  If @expr{x}
22717 is a suitable multiple of 
22718 @texline @math{\pi i} 
22719 @infoline @expr{pi i}
22720 (as described above for the trigonometric functions), then
22721 @expr{@tfn{exp}(x)} or @expr{e^x} will be expanded.  Finally,
22722 @expr{@tfn{ln}(x)} is simplified to a form involving @code{pi} and
22723 @code{i} where @expr{x} is provably negative, positive imaginary, or
22724 negative imaginary. 
22726 The error functions @code{erf} and @code{erfc} are simplified when
22727 their arguments are negative-looking or are calls to the @code{conj}
22728 function.
22730 @tex
22731 \bigskip
22732 @end tex
22734 Equations and inequalities are simplified by cancelling factors
22735 of products, quotients, or sums on both sides.  Inequalities
22736 change sign if a negative multiplicative factor is cancelled.
22737 Non-constant multiplicative factors as in @expr{a b = a c} are
22738 cancelled from equations only if they are provably nonzero (generally
22739 because they were declared so; @pxref{Declarations}).  Factors
22740 are cancelled from inequalities only if they are nonzero and their
22741 sign is known.
22743 Simplification also replaces an equation or inequality with
22744 1 or 0 (``true'' or ``false'') if it can through the use of
22745 declarations.  If @expr{x} is declared to be an integer greater
22746 than 5, then @expr{x < 3}, @expr{x = 3}, and @expr{x = 7.5} are
22747 all simplified to 0, but @expr{x > 3} is simplified to 1.
22748 By a similar analysis, @expr{abs(x) >= 0} is simplified to 1,
22749 as is @expr{x^2 >= 0} if @expr{x} is known to be real.
22751 @node Unsafe Simplifications, Simplification of Units, Algebraic Simplifications, Simplifying Formulas
22752 @subsection ``Unsafe'' Simplifications
22754 @noindent
22755 @cindex Unsafe simplifications
22756 @cindex Extended simplification
22757 @kindex a e
22758 @pindex calc-simplify-extended
22759 @ignore
22760 @mindex esimpl@idots
22761 @end ignore
22762 @tindex esimplify
22763 The @kbd{a e} (@code{calc-simplify-extended}) [@code{esimplify}] command
22764 is like @kbd{a s}
22765 except that it applies some additional simplifications which are not
22766 ``safe'' in all cases.  Use this only if you know the values in your
22767 formula lie in the restricted ranges for which these simplifications
22768 are valid.  The symbolic integrator uses @kbd{a e};
22769 one effect of this is that the integrator's results must be used with
22770 caution.  Where an integral table will often attach conditions like
22771 ``for positive @expr{a} only,'' Calc (like most other symbolic
22772 integration programs) will simply produce an unqualified result.
22774 Because @kbd{a e}'s simplifications are unsafe, it is sometimes better
22775 to type @kbd{C-u -3 a v}, which does extended simplification only
22776 on the top level of the formula without affecting the sub-formulas.
22777 In fact, @kbd{C-u -3 j v} allows you to target extended simplification
22778 to any specific part of a formula.
22780 The variable @code{ExtSimpRules} contains rewrites to be applied by
22781 the @kbd{a e} command.  These are applied in addition to
22782 @code{EvalRules} and @code{AlgSimpRules}.  (The @kbd{a r AlgSimpRules}
22783 step described above is simply followed by an @kbd{a r ExtSimpRules} step.)
22785 Following is a complete list of ``unsafe'' simplifications performed
22786 by @kbd{a e}.
22788 @tex
22789 \bigskip
22790 @end tex
22792 Inverse trigonometric or hyperbolic functions, called with their
22793 corresponding non-inverse functions as arguments, are simplified
22794 by @kbd{a e}.  For example, @expr{@tfn{arcsin}(@tfn{sin}(x))} changes
22795 to @expr{x}.  Also, @expr{@tfn{arcsin}(@tfn{cos}(x))} and
22796 @expr{@tfn{arccos}(@tfn{sin}(x))} both change to @expr{@tfn{pi}/2 - x}.
22797 These simplifications are unsafe because they are valid only for
22798 values of @expr{x} in a certain range; outside that range, values
22799 are folded down to the 360-degree range that the inverse trigonometric
22800 functions always produce.
22802 Powers of powers @expr{(x^a)^b} are simplified to 
22803 @texline @math{x^{a b}}
22804 @infoline @expr{x^(a b)}
22805 for all @expr{a} and @expr{b}.  These results will be valid only
22806 in a restricted range of @expr{x}; for example, in 
22807 @texline @math{(x^2)^{1:2}}
22808 @infoline @expr{(x^2)^1:2}
22809 the powers cancel to get @expr{x}, which is valid for positive values
22810 of @expr{x} but not for negative or complex values.
22812 Similarly, @expr{@tfn{sqrt}(x^a)} and @expr{@tfn{sqrt}(x)^a} are both
22813 simplified (possibly unsafely) to 
22814 @texline @math{x^{a/2}}.
22815 @infoline @expr{x^(a/2)}.
22817 Forms like @expr{@tfn{sqrt}(1 - sin(x)^2)} are simplified to, e.g.,
22818 @expr{@tfn{cos}(x)}.  Calc has identities of this sort for @code{sin},
22819 @code{cos}, @code{tan}, @code{sinh}, and @code{cosh}.
22821 Arguments of square roots are partially factored to look for
22822 squared terms that can be extracted.  For example,
22823 @expr{@tfn{sqrt}(a^2 b^3 + a^3 b^2)} simplifies to 
22824 @expr{a b @tfn{sqrt}(a+b)}.
22826 The simplifications of @expr{@tfn{ln}(@tfn{exp}(x))},
22827 @expr{@tfn{ln}(@tfn{e}^x)}, and @expr{@tfn{log10}(10^x)} to @expr{x} are also
22828 unsafe because of problems with principal values (although these
22829 simplifications are safe if @expr{x} is known to be real).
22831 Common factors are cancelled from products on both sides of an
22832 equation, even if those factors may be zero:  @expr{a x / b x}
22833 to @expr{a / b}.  Such factors are never cancelled from
22834 inequalities:  Even @kbd{a e} is not bold enough to reduce
22835 @expr{a x < b x} to @expr{a < b} (or @expr{a > b}, depending
22836 on whether you believe @expr{x} is positive or negative).
22837 The @kbd{a M /} command can be used to divide a factor out of
22838 both sides of an inequality.
22840 @node Simplification of Units,  , Unsafe Simplifications, Simplifying Formulas
22841 @subsection Simplification of Units
22843 @noindent
22844 The simplifications described in this section are applied by the
22845 @kbd{u s} (@code{calc-simplify-units}) command.  These are in addition
22846 to the regular @kbd{a s} (but not @kbd{a e}) simplifications described
22847 earlier.  @xref{Basic Operations on Units}.
22849 The variable @code{UnitSimpRules} contains rewrites to be applied by
22850 the @kbd{u s} command.  These are applied in addition to @code{EvalRules}
22851 and @code{AlgSimpRules}.
22853 Scalar mode is automatically put into effect when simplifying units.
22854 @xref{Matrix Mode}.
22856 Sums @expr{a + b} involving units are simplified by extracting the
22857 units of @expr{a} as if by the @kbd{u x} command (call the result
22858 @expr{u_a}), then simplifying the expression @expr{b / u_a}
22859 using @kbd{u b} and @kbd{u s}.  If the result has units then the sum
22860 is inconsistent and is left alone.  Otherwise, it is rewritten
22861 in terms of the units @expr{u_a}.
22863 If units auto-ranging mode is enabled, products or quotients in
22864 which the first argument is a number which is out of range for the
22865 leading unit are modified accordingly.
22867 When cancelling and combining units in products and quotients,
22868 Calc accounts for unit names that differ only in the prefix letter.
22869 For example, @samp{2 km m} is simplified to @samp{2000 m^2}.
22870 However, compatible but different units like @code{ft} and @code{in}
22871 are not combined in this way.
22873 Quotients @expr{a / b} are simplified in three additional ways.  First,
22874 if @expr{b} is a number or a product beginning with a number, Calc
22875 computes the reciprocal of this number and moves it to the numerator.
22877 Second, for each pair of unit names from the numerator and denominator
22878 of a quotient, if the units are compatible (e.g., they are both
22879 units of area) then they are replaced by the ratio between those
22880 units.  For example, in @samp{3 s in N / kg cm} the units
22881 @samp{in / cm} will be replaced by @expr{2.54}.
22883 Third, if the units in the quotient exactly cancel out, so that
22884 a @kbd{u b} command on the quotient would produce a dimensionless
22885 number for an answer, then the quotient simplifies to that number.
22887 For powers and square roots, the ``unsafe'' simplifications
22888 @expr{(a b)^c} to @expr{a^c b^c}, @expr{(a/b)^c} to @expr{a^c / b^c},
22889 and @expr{(a^b)^c} to 
22890 @texline @math{a^{b c}}
22891 @infoline @expr{a^(b c)} 
22892 are done if the powers are real numbers.  (These are safe in the context
22893 of units because all numbers involved can reasonably be assumed to be
22894 real.)
22896 Also, if a unit name is raised to a fractional power, and the
22897 base units in that unit name all occur to powers which are a
22898 multiple of the denominator of the power, then the unit name
22899 is expanded out into its base units, which can then be simplified
22900 according to the previous paragraph.  For example, @samp{acre^1.5}
22901 is simplified by noting that @expr{1.5 = 3:2}, that @samp{acre}
22902 is defined in terms of @samp{m^2}, and that the 2 in the power of
22903 @code{m} is a multiple of 2 in @expr{3:2}.  Thus, @code{acre^1.5} is
22904 replaced by approximately 
22905 @texline @math{(4046 m^2)^{1.5}}
22906 @infoline @expr{(4046 m^2)^1.5}, 
22907 which is then changed to 
22908 @texline @math{4046^{1.5} \, (m^2)^{1.5}},
22909 @infoline @expr{4046^1.5 (m^2)^1.5}, 
22910 then to @expr{257440 m^3}.
22912 The functions @code{float}, @code{frac}, @code{clean}, @code{abs},
22913 as well as @code{floor} and the other integer truncation functions,
22914 applied to unit names or products or quotients involving units, are
22915 simplified.  For example, @samp{round(1.6 in)} is changed to
22916 @samp{round(1.6) round(in)}; the lefthand term evaluates to 2,
22917 and the righthand term simplifies to @code{in}.
22919 The functions @code{sin}, @code{cos}, and @code{tan} with arguments
22920 that have angular units like @code{rad} or @code{arcmin} are
22921 simplified by converting to base units (radians), then evaluating
22922 with the angular mode temporarily set to radians.
22924 @node Polynomials, Calculus, Simplifying Formulas, Algebra
22925 @section Polynomials
22927 A @dfn{polynomial} is a sum of terms which are coefficients times
22928 various powers of a ``base'' variable.  For example, @expr{2 x^2 + 3 x - 4}
22929 is a polynomial in @expr{x}.  Some formulas can be considered
22930 polynomials in several different variables:  @expr{1 + 2 x + 3 y + 4 x y^2}
22931 is a polynomial in both @expr{x} and @expr{y}.  Polynomial coefficients
22932 are often numbers, but they may in general be any formulas not
22933 involving the base variable.
22935 @kindex a f
22936 @pindex calc-factor
22937 @tindex factor
22938 The @kbd{a f} (@code{calc-factor}) [@code{factor}] command factors a
22939 polynomial into a product of terms.  For example, the polynomial
22940 @expr{x^3 + 2 x^2 + x} is factored into @samp{x*(x+1)^2}.  As another
22941 example, @expr{a c + b d + b c + a d} is factored into the product
22942 @expr{(a + b) (c + d)}.
22944 Calc currently has three algorithms for factoring.  Formulas which are
22945 linear in several variables, such as the second example above, are
22946 merged according to the distributive law.  Formulas which are
22947 polynomials in a single variable, with constant integer or fractional
22948 coefficients, are factored into irreducible linear and/or quadratic
22949 terms.  The first example above factors into three linear terms
22950 (@expr{x}, @expr{x+1}, and @expr{x+1} again).  Finally, formulas
22951 which do not fit the above criteria are handled by the algebraic
22952 rewrite mechanism.
22954 Calc's polynomial factorization algorithm works by using the general
22955 root-finding command (@w{@kbd{a P}}) to solve for the roots of the
22956 polynomial.  It then looks for roots which are rational numbers
22957 or complex-conjugate pairs, and converts these into linear and
22958 quadratic terms, respectively.  Because it uses floating-point
22959 arithmetic, it may be unable to find terms that involve large
22960 integers (whose number of digits approaches the current precision).
22961 Also, irreducible factors of degree higher than quadratic are not
22962 found, and polynomials in more than one variable are not treated.
22963 (A more robust factorization algorithm may be included in a future
22964 version of Calc.)
22966 @vindex FactorRules
22967 @ignore
22968 @starindex
22969 @end ignore
22970 @tindex thecoefs
22971 @ignore
22972 @starindex
22973 @end ignore
22974 @ignore
22975 @mindex @idots
22976 @end ignore
22977 @tindex thefactors
22978 The rewrite-based factorization method uses rules stored in the variable
22979 @code{FactorRules}.  @xref{Rewrite Rules}, for a discussion of the
22980 operation of rewrite rules.  The default @code{FactorRules} are able
22981 to factor quadratic forms symbolically into two linear terms,
22982 @expr{(a x + b) (c x + d)}.  You can edit these rules to include other
22983 cases if you wish.  To use the rules, Calc builds the formula
22984 @samp{thecoefs(x, [a, b, c, ...])} where @code{x} is the polynomial
22985 base variable and @code{a}, @code{b}, etc., are polynomial coefficients
22986 (which may be numbers or formulas).  The constant term is written first,
22987 i.e., in the @code{a} position.  When the rules complete, they should have
22988 changed the formula into the form @samp{thefactors(x, [f1, f2, f3, ...])}
22989 where each @code{fi} should be a factored term, e.g., @samp{x - ai}.
22990 Calc then multiplies these terms together to get the complete
22991 factored form of the polynomial.  If the rules do not change the
22992 @code{thecoefs} call to a @code{thefactors} call, @kbd{a f} leaves the
22993 polynomial alone on the assumption that it is unfactorable.  (Note that
22994 the function names @code{thecoefs} and @code{thefactors} are used only
22995 as placeholders; there are no actual Calc functions by those names.)
22997 @kindex H a f
22998 @tindex factors
22999 The @kbd{H a f} [@code{factors}] command also factors a polynomial,
23000 but it returns a list of factors instead of an expression which is the
23001 product of the factors.  Each factor is represented by a sub-vector
23002 of the factor, and the power with which it appears.  For example,
23003 @expr{x^5 + x^4 - 33 x^3 + 63 x^2} factors to @expr{(x + 7) x^2 (x - 3)^2}
23004 in @kbd{a f}, or to @expr{[ [x, 2], [x+7, 1], [x-3, 2] ]} in @kbd{H a f}.
23005 If there is an overall numeric factor, it always comes first in the list.
23006 The functions @code{factor} and @code{factors} allow a second argument
23007 when written in algebraic form; @samp{factor(x,v)} factors @expr{x} with
23008 respect to the specific variable @expr{v}.  The default is to factor with
23009 respect to all the variables that appear in @expr{x}.
23011 @kindex a c
23012 @pindex calc-collect
23013 @tindex collect
23014 The @kbd{a c} (@code{calc-collect}) [@code{collect}] command rearranges a
23015 formula as a
23016 polynomial in a given variable, ordered in decreasing powers of that
23017 variable.  For example, given @expr{1 + 2 x + 3 y + 4 x y^2} on
23018 the stack, @kbd{a c x} would produce @expr{(2 + 4 y^2) x + (1 + 3 y)},
23019 and @kbd{a c y} would produce @expr{(4 x) y^2 + 3 y + (1 + 2 x)}.
23020 The polynomial will be expanded out using the distributive law as
23021 necessary:  Collecting @expr{x} in @expr{(x - 1)^3} produces
23022 @expr{x^3 - 3 x^2 + 3 x - 1}.  Terms not involving @expr{x} will
23023 not be expanded.
23025 The ``variable'' you specify at the prompt can actually be any
23026 expression: @kbd{a c ln(x+1)} will collect together all terms multiplied
23027 by @samp{ln(x+1)} or integer powers thereof.  If @samp{x} also appears
23028 in the formula in a context other than @samp{ln(x+1)}, @kbd{a c} will
23029 treat those occurrences as unrelated to @samp{ln(x+1)}, i.e., as constants.
23031 @kindex a x
23032 @pindex calc-expand
23033 @tindex expand
23034 The @kbd{a x} (@code{calc-expand}) [@code{expand}] command expands an
23035 expression by applying the distributive law everywhere.  It applies to
23036 products, quotients, and powers involving sums.  By default, it fully
23037 distributes all parts of the expression.  With a numeric prefix argument,
23038 the distributive law is applied only the specified number of times, then
23039 the partially expanded expression is left on the stack.
23041 The @kbd{a x} and @kbd{j D} commands are somewhat redundant.  Use
23042 @kbd{a x} if you want to expand all products of sums in your formula.
23043 Use @kbd{j D} if you want to expand a particular specified term of
23044 the formula.  There is an exactly analogous correspondence between
23045 @kbd{a f} and @kbd{j M}.  (The @kbd{j D} and @kbd{j M} commands
23046 also know many other kinds of expansions, such as
23047 @samp{exp(a + b) = exp(a) exp(b)}, which @kbd{a x} and @kbd{a f}
23048 do not do.)
23050 Calc's automatic simplifications will sometimes reverse a partial
23051 expansion.  For example, the first step in expanding @expr{(x+1)^3} is
23052 to write @expr{(x+1) (x+1)^2}.  If @kbd{a x} stops there and tries
23053 to put this formula onto the stack, though, Calc will automatically
23054 simplify it back to @expr{(x+1)^3} form.  The solution is to turn
23055 simplification off first (@pxref{Simplification Modes}), or to run
23056 @kbd{a x} without a numeric prefix argument so that it expands all
23057 the way in one step.
23059 @kindex a a
23060 @pindex calc-apart
23061 @tindex apart
23062 The @kbd{a a} (@code{calc-apart}) [@code{apart}] command expands a
23063 rational function by partial fractions.  A rational function is the
23064 quotient of two polynomials; @code{apart} pulls this apart into a
23065 sum of rational functions with simple denominators.  In algebraic
23066 notation, the @code{apart} function allows a second argument that
23067 specifies which variable to use as the ``base''; by default, Calc
23068 chooses the base variable automatically.
23070 @kindex a n
23071 @pindex calc-normalize-rat
23072 @tindex nrat
23073 The @kbd{a n} (@code{calc-normalize-rat}) [@code{nrat}] command
23074 attempts to arrange a formula into a quotient of two polynomials.
23075 For example, given @expr{1 + (a + b/c) / d}, the result would be
23076 @expr{(b + a c + c d) / c d}.  The quotient is reduced, so that
23077 @kbd{a n} will simplify @expr{(x^2 + 2x + 1) / (x^2 - 1)} by dividing
23078 out the common factor @expr{x + 1}, yielding @expr{(x + 1) / (x - 1)}.
23080 @kindex a \
23081 @pindex calc-poly-div
23082 @tindex pdiv
23083 The @kbd{a \} (@code{calc-poly-div}) [@code{pdiv}] command divides
23084 two polynomials @expr{u} and @expr{v}, yielding a new polynomial
23085 @expr{q}.  If several variables occur in the inputs, the inputs are
23086 considered multivariate polynomials.  (Calc divides by the variable
23087 with the largest power in @expr{u} first, or, in the case of equal
23088 powers, chooses the variables in alphabetical order.)  For example,
23089 dividing @expr{x^2 + 3 x + 2} by @expr{x + 2} yields @expr{x + 1}.
23090 The remainder from the division, if any, is reported at the bottom
23091 of the screen and is also placed in the Trail along with the quotient.
23093 Using @code{pdiv} in algebraic notation, you can specify the particular
23094 variable to be used as the base: @code{pdiv(@var{a},@var{b},@var{x})}.
23095 If @code{pdiv} is given only two arguments (as is always the case with
23096 the @kbd{a \} command), then it does a multivariate division as outlined
23097 above.
23099 @kindex a %
23100 @pindex calc-poly-rem
23101 @tindex prem
23102 The @kbd{a %} (@code{calc-poly-rem}) [@code{prem}] command divides
23103 two polynomials and keeps the remainder @expr{r}.  The quotient
23104 @expr{q} is discarded.  For any formulas @expr{a} and @expr{b}, the
23105 results of @kbd{a \} and @kbd{a %} satisfy @expr{a = q b + r}.
23106 (This is analogous to plain @kbd{\} and @kbd{%}, which compute the
23107 integer quotient and remainder from dividing two numbers.)
23109 @kindex a /
23110 @kindex H a /
23111 @pindex calc-poly-div-rem
23112 @tindex pdivrem
23113 @tindex pdivide
23114 The @kbd{a /} (@code{calc-poly-div-rem}) [@code{pdivrem}] command
23115 divides two polynomials and reports both the quotient and the
23116 remainder as a vector @expr{[q, r]}.  The @kbd{H a /} [@code{pdivide}]
23117 command divides two polynomials and constructs the formula
23118 @expr{q + r/b} on the stack.  (Naturally if the remainder is zero,
23119 this will immediately simplify to @expr{q}.)
23121 @kindex a g
23122 @pindex calc-poly-gcd
23123 @tindex pgcd
23124 The @kbd{a g} (@code{calc-poly-gcd}) [@code{pgcd}] command computes
23125 the greatest common divisor of two polynomials.  (The GCD actually
23126 is unique only to within a constant multiplier; Calc attempts to
23127 choose a GCD which will be unsurprising.)  For example, the @kbd{a n}
23128 command uses @kbd{a g} to take the GCD of the numerator and denominator
23129 of a quotient, then divides each by the result using @kbd{a \}.  (The
23130 definition of GCD ensures that this division can take place without
23131 leaving a remainder.)
23133 While the polynomials used in operations like @kbd{a /} and @kbd{a g}
23134 often have integer coefficients, this is not required.  Calc can also
23135 deal with polynomials over the rationals or floating-point reals.
23136 Polynomials with modulo-form coefficients are also useful in many
23137 applications; if you enter @samp{(x^2 + 3 x - 1) mod 5}, Calc
23138 automatically transforms this into a polynomial over the field of
23139 integers mod 5:  @samp{(1 mod 5) x^2 + (3 mod 5) x + (4 mod 5)}.
23141 Congratulations and thanks go to Ove Ewerlid
23142 (@code{ewerlid@@mizar.DoCS.UU.SE}), who contributed many of the
23143 polynomial routines used in the above commands.
23145 @xref{Decomposing Polynomials}, for several useful functions for
23146 extracting the individual coefficients of a polynomial.
23148 @node Calculus, Solving Equations, Polynomials, Algebra
23149 @section Calculus
23151 @noindent
23152 The following calculus commands do not automatically simplify their
23153 inputs or outputs using @code{calc-simplify}.  You may find it helps
23154 to do this by hand by typing @kbd{a s} or @kbd{a e}.  It may also help
23155 to use @kbd{a x} and/or @kbd{a c} to arrange a result in the most
23156 readable way.
23158 @menu
23159 * Differentiation::
23160 * Integration::
23161 * Customizing the Integrator::
23162 * Numerical Integration::
23163 * Taylor Series::
23164 @end menu
23166 @node Differentiation, Integration, Calculus, Calculus
23167 @subsection Differentiation
23169 @noindent
23170 @kindex a d
23171 @kindex H a d
23172 @pindex calc-derivative
23173 @tindex deriv
23174 @tindex tderiv
23175 The @kbd{a d} (@code{calc-derivative}) [@code{deriv}] command computes
23176 the derivative of the expression on the top of the stack with respect to
23177 some variable, which it will prompt you to enter.  Normally, variables
23178 in the formula other than the specified differentiation variable are
23179 considered constant, i.e., @samp{deriv(y,x)} is reduced to zero.  With
23180 the Hyperbolic flag, the @code{tderiv} (total derivative) operation is used
23181 instead, in which derivatives of variables are not reduced to zero
23182 unless those variables are known to be ``constant,'' i.e., independent
23183 of any other variables.  (The built-in special variables like @code{pi}
23184 are considered constant, as are variables that have been declared
23185 @code{const}; @pxref{Declarations}.)
23187 With a numeric prefix argument @var{n}, this command computes the
23188 @var{n}th derivative.
23190 When working with trigonometric functions, it is best to switch to
23191 Radians mode first (with @w{@kbd{m r}}).  The derivative of @samp{sin(x)}
23192 in degrees is @samp{(pi/180) cos(x)}, probably not the expected
23193 answer!
23195 If you use the @code{deriv} function directly in an algebraic formula,
23196 you can write @samp{deriv(f,x,x0)} which represents the derivative
23197 of @expr{f} with respect to @expr{x}, evaluated at the point 
23198 @texline @math{x=x_0}.
23199 @infoline @expr{x=x0}.
23201 If the formula being differentiated contains functions which Calc does
23202 not know, the derivatives of those functions are produced by adding
23203 primes (apostrophe characters).  For example, @samp{deriv(f(2x), x)}
23204 produces @samp{2 f'(2 x)}, where the function @code{f'} represents the
23205 derivative of @code{f}.
23207 For functions you have defined with the @kbd{Z F} command, Calc expands
23208 the functions according to their defining formulas unless you have
23209 also defined @code{f'} suitably.  For example, suppose we define
23210 @samp{sinc(x) = sin(x)/x} using @kbd{Z F}.  If we then differentiate
23211 the formula @samp{sinc(2 x)}, the formula will be expanded to
23212 @samp{sin(2 x) / (2 x)} and differentiated.  However, if we also
23213 define @samp{sinc'(x) = dsinc(x)}, say, then Calc will write the
23214 result as @samp{2 dsinc(2 x)}.  @xref{Algebraic Definitions}.
23216 For multi-argument functions @samp{f(x,y,z)}, the derivative with respect
23217 to the first argument is written @samp{f'(x,y,z)}; derivatives with
23218 respect to the other arguments are @samp{f'2(x,y,z)} and @samp{f'3(x,y,z)}.
23219 Various higher-order derivatives can be formed in the obvious way, e.g.,
23220 @samp{f'@var{}'(x)} (the second derivative of @code{f}) or
23221 @samp{f'@var{}'2'3(x,y,z)} (@code{f} differentiated with respect to each
23222 argument once).
23224 @node Integration, Customizing the Integrator, Differentiation, Calculus
23225 @subsection Integration
23227 @noindent
23228 @kindex a i
23229 @pindex calc-integral
23230 @tindex integ
23231 The @kbd{a i} (@code{calc-integral}) [@code{integ}] command computes the
23232 indefinite integral of the expression on the top of the stack with
23233 respect to a prompted-for variable.  The integrator is not guaranteed to
23234 work for all integrable functions, but it is able to integrate several
23235 large classes of formulas.  In particular, any polynomial or rational
23236 function (a polynomial divided by a polynomial) is acceptable.
23237 (Rational functions don't have to be in explicit quotient form, however; 
23238 @texline @math{x/(1+x^{-2})}
23239 @infoline @expr{x/(1+x^-2)}
23240 is not strictly a quotient of polynomials, but it is equivalent to
23241 @expr{x^3/(x^2+1)}, which is.)  Also, square roots of terms involving
23242 @expr{x} and @expr{x^2} may appear in rational functions being
23243 integrated.  Finally, rational functions involving trigonometric or
23244 hyperbolic functions can be integrated.
23246 With an argument (@kbd{C-u a i}), this command will compute the definite
23247 integral of the expression on top of the stack.  In this case, the
23248 command will again prompt for an integration variable, then prompt for a
23249 lower limit and an upper limit.
23251 @ifnottex
23252 If you use the @code{integ} function directly in an algebraic formula,
23253 you can also write @samp{integ(f,x,v)} which expresses the resulting
23254 indefinite integral in terms of variable @code{v} instead of @code{x}.
23255 With four arguments, @samp{integ(f(x),x,a,b)} represents a definite
23256 integral from @code{a} to @code{b}.
23257 @end ifnottex
23258 @tex
23259 If you use the @code{integ} function directly in an algebraic formula,
23260 you can also write @samp{integ(f,x,v)} which expresses the resulting
23261 indefinite integral in terms of variable @code{v} instead of @code{x}.
23262 With four arguments, @samp{integ(f(x),x,a,b)} represents a definite
23263 integral $\int_a^b f(x) \, dx$.
23264 @end tex
23266 Please note that the current implementation of Calc's integrator sometimes
23267 produces results that are significantly more complex than they need to
23268 be.  For example, the integral Calc finds for 
23269 @texline @math{1/(x+\sqrt{x^2+1})}
23270 @infoline @expr{1/(x+sqrt(x^2+1))}
23271 is several times more complicated than the answer Mathematica
23272 returns for the same input, although the two forms are numerically
23273 equivalent.  Also, any indefinite integral should be considered to have
23274 an arbitrary constant of integration added to it, although Calc does not
23275 write an explicit constant of integration in its result.  For example,
23276 Calc's solution for 
23277 @texline @math{1/(1+\tan x)}
23278 @infoline @expr{1/(1+tan(x))} 
23279 differs from the solution given in the @emph{CRC Math Tables} by a
23280 constant factor of  
23281 @texline @math{\pi i / 2}
23282 @infoline @expr{pi i / 2},
23283 due to a different choice of constant of integration.
23285 The Calculator remembers all the integrals it has done.  If conditions
23286 change in a way that would invalidate the old integrals, say, a switch
23287 from Degrees to Radians mode, then they will be thrown out.  If you
23288 suspect this is not happening when it should, use the
23289 @code{calc-flush-caches} command; @pxref{Caches}.
23291 @vindex IntegLimit
23292 Calc normally will pursue integration by substitution or integration by
23293 parts up to 3 nested times before abandoning an approach as fruitless.
23294 If the integrator is taking too long, you can lower this limit by storing
23295 a number (like 2) in the variable @code{IntegLimit}.  (The @kbd{s I}
23296 command is a convenient way to edit @code{IntegLimit}.)  If this variable
23297 has no stored value or does not contain a nonnegative integer, a limit
23298 of 3 is used.  The lower this limit is, the greater the chance that Calc
23299 will be unable to integrate a function it could otherwise handle.  Raising
23300 this limit allows the Calculator to solve more integrals, though the time
23301 it takes may grow exponentially.  You can monitor the integrator's actions
23302 by creating an Emacs buffer called @code{*Trace*}.  If such a buffer
23303 exists, the @kbd{a i} command will write a log of its actions there.
23305 If you want to manipulate integrals in a purely symbolic way, you can
23306 set the integration nesting limit to 0 to prevent all but fast
23307 table-lookup solutions of integrals.  You might then wish to define
23308 rewrite rules for integration by parts, various kinds of substitutions,
23309 and so on.  @xref{Rewrite Rules}.
23311 @node Customizing the Integrator, Numerical Integration, Integration, Calculus
23312 @subsection Customizing the Integrator
23314 @noindent
23315 @vindex IntegRules
23316 Calc has two built-in rewrite rules called @code{IntegRules} and
23317 @code{IntegAfterRules} which you can edit to define new integration
23318 methods.  @xref{Rewrite Rules}.  At each step of the integration process,
23319 Calc wraps the current integrand in a call to the fictitious function
23320 @samp{integtry(@var{expr},@var{var})}, where @var{expr} is the
23321 integrand and @var{var} is the integration variable.  If your rules
23322 rewrite this to be a plain formula (not a call to @code{integtry}), then
23323 Calc will use this formula as the integral of @var{expr}.  For example,
23324 the rule @samp{integtry(mysin(x),x) := -mycos(x)} would define a rule to
23325 integrate a function @code{mysin} that acts like the sine function.
23326 Then, putting @samp{4 mysin(2y+1)} on the stack and typing @kbd{a i y}
23327 will produce the integral @samp{-2 mycos(2y+1)}.  Note that Calc has
23328 automatically made various transformations on the integral to allow it
23329 to use your rule; integral tables generally give rules for
23330 @samp{mysin(a x + b)}, but you don't need to use this much generality
23331 in your @code{IntegRules}.
23333 @cindex Exponential integral Ei(x)
23334 @ignore
23335 @starindex
23336 @end ignore
23337 @tindex Ei
23338 As a more serious example, the expression @samp{exp(x)/x} cannot be
23339 integrated in terms of the standard functions, so the ``exponential
23340 integral'' function 
23341 @texline @math{{\rm Ei}(x)}
23342 @infoline @expr{Ei(x)} 
23343 was invented to describe it.
23344 We can get Calc to do this integral in terms of a made-up @code{Ei}
23345 function by adding the rule @samp{[integtry(exp(x)/x, x) := Ei(x)]}
23346 to @code{IntegRules}.  Now entering @samp{exp(2x)/x} on the stack
23347 and typing @kbd{a i x} yields @samp{Ei(2 x)}.  This new rule will
23348 work with Calc's various built-in integration methods (such as
23349 integration by substitution) to solve a variety of other problems
23350 involving @code{Ei}:  For example, now Calc will also be able to
23351 integrate @samp{exp(exp(x))} and @samp{ln(ln(x))} (to get @samp{Ei(exp(x))}
23352 and @samp{x ln(ln(x)) - Ei(ln(x))}, respectively).
23354 Your rule may do further integration by calling @code{integ}.  For
23355 example, @samp{integtry(twice(u),x) := twice(integ(u))} allows Calc
23356 to integrate @samp{twice(sin(x))} to get @samp{twice(-cos(x))}.
23357 Note that @code{integ} was called with only one argument.  This notation
23358 is allowed only within @code{IntegRules}; it means ``integrate this
23359 with respect to the same integration variable.''  If Calc is unable
23360 to integrate @code{u}, the integration that invoked @code{IntegRules}
23361 also fails.  Thus integrating @samp{twice(f(x))} fails, returning the
23362 unevaluated integral @samp{integ(twice(f(x)), x)}.  It is still valid
23363 to call @code{integ} with two or more arguments, however; in this case,
23364 if @code{u} is not integrable, @code{twice} itself will still be
23365 integrated:  If the above rule is changed to @samp{... := twice(integ(u,x))},
23366 then integrating @samp{twice(f(x))} will yield @samp{twice(integ(f(x),x))}.
23368 If a rule instead produces the formula @samp{integsubst(@var{sexpr},
23369 @var{svar})}, either replacing the top-level @code{integtry} call or
23370 nested anywhere inside the expression, then Calc will apply the
23371 substitution @samp{@var{u} = @var{sexpr}(@var{svar})} to try to
23372 integrate the original @var{expr}.  For example, the rule
23373 @samp{sqrt(a) := integsubst(sqrt(x),x)} says that if Calc ever finds
23374 a square root in the integrand, it should attempt the substitution
23375 @samp{u = sqrt(x)}.  (This particular rule is unnecessary because
23376 Calc always tries ``obvious'' substitutions where @var{sexpr} actually
23377 appears in the integrand.)  The variable @var{svar} may be the same
23378 as the @var{var} that appeared in the call to @code{integtry}, but
23379 it need not be.
23381 When integrating according to an @code{integsubst}, Calc uses the
23382 equation solver to find the inverse of @var{sexpr} (if the integrand
23383 refers to @var{var} anywhere except in subexpressions that exactly
23384 match @var{sexpr}).  It uses the differentiator to find the derivative
23385 of @var{sexpr} and/or its inverse (it has two methods that use one
23386 derivative or the other).  You can also specify these items by adding
23387 extra arguments to the @code{integsubst} your rules construct; the
23388 general form is @samp{integsubst(@var{sexpr}, @var{svar}, @var{sinv},
23389 @var{sprime})}, where @var{sinv} is the inverse of @var{sexpr} (still
23390 written as a function of @var{svar}), and @var{sprime} is the
23391 derivative of @var{sexpr} with respect to @var{svar}.  If you don't
23392 specify these things, and Calc is not able to work them out on its
23393 own with the information it knows, then your substitution rule will
23394 work only in very specific, simple cases.
23396 Calc applies @code{IntegRules} as if by @kbd{C-u 1 a r IntegRules};
23397 in other words, Calc stops rewriting as soon as any rule in your rule
23398 set succeeds.  (If it weren't for this, the @samp{integsubst(sqrt(x),x)}
23399 example above would keep on adding layers of @code{integsubst} calls
23400 forever!)
23402 @vindex IntegSimpRules
23403 Another set of rules, stored in @code{IntegSimpRules}, are applied
23404 every time the integrator uses @kbd{a s} to simplify an intermediate
23405 result.  For example, putting the rule @samp{twice(x) := 2 x} into
23406 @code{IntegSimpRules} would tell Calc to convert the @code{twice}
23407 function into a form it knows whenever integration is attempted.
23409 One more way to influence the integrator is to define a function with
23410 the @kbd{Z F} command (@pxref{Algebraic Definitions}).  Calc's
23411 integrator automatically expands such functions according to their
23412 defining formulas, even if you originally asked for the function to
23413 be left unevaluated for symbolic arguments.  (Certain other Calc
23414 systems, such as the differentiator and the equation solver, also
23415 do this.)
23417 @vindex IntegAfterRules
23418 Sometimes Calc is able to find a solution to your integral, but it
23419 expresses the result in a way that is unnecessarily complicated.  If
23420 this happens, you can either use @code{integsubst} as described
23421 above to try to hint at a more direct path to the desired result, or
23422 you can use @code{IntegAfterRules}.  This is an extra rule set that
23423 runs after the main integrator returns its result; basically, Calc does
23424 an @kbd{a r IntegAfterRules} on the result before showing it to you.
23425 (It also does an @kbd{a s}, without @code{IntegSimpRules}, after that
23426 to further simplify the result.)  For example, Calc's integrator
23427 sometimes produces expressions of the form @samp{ln(1+x) - ln(1-x)};
23428 the default @code{IntegAfterRules} rewrite this into the more readable
23429 form @samp{2 arctanh(x)}.  Note that, unlike @code{IntegRules},
23430 @code{IntegSimpRules} and @code{IntegAfterRules} are applied any number
23431 of times until no further changes are possible.  Rewriting by
23432 @code{IntegAfterRules} occurs only after the main integrator has
23433 finished, not at every step as for @code{IntegRules} and
23434 @code{IntegSimpRules}.
23436 @node Numerical Integration, Taylor Series, Customizing the Integrator, Calculus
23437 @subsection Numerical Integration
23439 @noindent
23440 @kindex a I
23441 @pindex calc-num-integral
23442 @tindex ninteg
23443 If you want a purely numerical answer to an integration problem, you can
23444 use the @kbd{a I} (@code{calc-num-integral}) [@code{ninteg}] command.  This
23445 command prompts for an integration variable, a lower limit, and an
23446 upper limit.  Except for the integration variable, all other variables
23447 that appear in the integrand formula must have stored values.  (A stored
23448 value, if any, for the integration variable itself is ignored.)
23450 Numerical integration works by evaluating your formula at many points in
23451 the specified interval.  Calc uses an ``open Romberg'' method; this means
23452 that it does not evaluate the formula actually at the endpoints (so that
23453 it is safe to integrate @samp{sin(x)/x} from zero, for example).  Also,
23454 the Romberg method works especially well when the function being
23455 integrated is fairly smooth.  If the function is not smooth, Calc will
23456 have to evaluate it at quite a few points before it can accurately
23457 determine the value of the integral.
23459 Integration is much faster when the current precision is small.  It is
23460 best to set the precision to the smallest acceptable number of digits
23461 before you use @kbd{a I}.  If Calc appears to be taking too long, press
23462 @kbd{C-g} to halt it and try a lower precision.  If Calc still appears
23463 to need hundreds of evaluations, check to make sure your function is
23464 well-behaved in the specified interval.
23466 It is possible for the lower integration limit to be @samp{-inf} (minus
23467 infinity).  Likewise, the upper limit may be plus infinity.  Calc
23468 internally transforms the integral into an equivalent one with finite
23469 limits.  However, integration to or across singularities is not supported:
23470 The integral of @samp{1/sqrt(x)} from 0 to 1 exists (it can be found
23471 by Calc's symbolic integrator, for example), but @kbd{a I} will fail
23472 because the integrand goes to infinity at one of the endpoints.
23474 @node Taylor Series,  , Numerical Integration, Calculus
23475 @subsection Taylor Series
23477 @noindent
23478 @kindex a t
23479 @pindex calc-taylor
23480 @tindex taylor
23481 The @kbd{a t} (@code{calc-taylor}) [@code{taylor}] command computes a
23482 power series expansion or Taylor series of a function.  You specify the
23483 variable and the desired number of terms.  You may give an expression of
23484 the form @samp{@var{var} = @var{a}} or @samp{@var{var} - @var{a}} instead
23485 of just a variable to produce a Taylor expansion about the point @var{a}.
23486 You may specify the number of terms with a numeric prefix argument;
23487 otherwise the command will prompt you for the number of terms.  Note that
23488 many series expansions have coefficients of zero for some terms, so you
23489 may appear to get fewer terms than you asked for.
23491 If the @kbd{a i} command is unable to find a symbolic integral for a
23492 function, you can get an approximation by integrating the function's
23493 Taylor series.
23495 @node Solving Equations, Numerical Solutions, Calculus, Algebra
23496 @section Solving Equations
23498 @noindent
23499 @kindex a S
23500 @pindex calc-solve-for
23501 @tindex solve
23502 @cindex Equations, solving
23503 @cindex Solving equations
23504 The @kbd{a S} (@code{calc-solve-for}) [@code{solve}] command rearranges
23505 an equation to solve for a specific variable.  An equation is an
23506 expression of the form @expr{L = R}.  For example, the command @kbd{a S x}
23507 will rearrange @expr{y = 3x + 6} to the form, @expr{x = y/3 - 2}.  If the
23508 input is not an equation, it is treated like an equation of the
23509 form @expr{X = 0}.
23511 This command also works for inequalities, as in @expr{y < 3x + 6}.
23512 Some inequalities cannot be solved where the analogous equation could
23513 be; for example, solving 
23514 @texline @math{a < b \, c}
23515 @infoline @expr{a < b c} 
23516 for @expr{b} is impossible
23517 without knowing the sign of @expr{c}.  In this case, @kbd{a S} will
23518 produce the result 
23519 @texline @math{b \mathbin{\hbox{\code{!=}}} a/c}
23520 @infoline @expr{b != a/c} 
23521 (using the not-equal-to operator) to signify that the direction of the
23522 inequality is now unknown.  The inequality 
23523 @texline @math{a \le b \, c}
23524 @infoline @expr{a <= b c} 
23525 is not even partially solved.  @xref{Declarations}, for a way to tell
23526 Calc that the signs of the variables in a formula are in fact known.
23528 Two useful commands for working with the result of @kbd{a S} are
23529 @kbd{a .} (@pxref{Logical Operations}), which converts @expr{x = y/3 - 2}
23530 to @expr{y/3 - 2}, and @kbd{s l} (@pxref{Let Command}) which evaluates
23531 another formula with @expr{x} set equal to @expr{y/3 - 2}.
23533 @menu
23534 * Multiple Solutions::
23535 * Solving Systems of Equations::
23536 * Decomposing Polynomials::
23537 @end menu
23539 @node Multiple Solutions, Solving Systems of Equations, Solving Equations, Solving Equations
23540 @subsection Multiple Solutions
23542 @noindent
23543 @kindex H a S
23544 @tindex fsolve
23545 Some equations have more than one solution.  The Hyperbolic flag
23546 (@code{H a S}) [@code{fsolve}] tells the solver to report the fully
23547 general family of solutions.  It will invent variables @code{n1},
23548 @code{n2}, @dots{}, which represent independent arbitrary integers, and
23549 @code{s1}, @code{s2}, @dots{}, which represent independent arbitrary
23550 signs (either @mathit{+1} or @mathit{-1}).  If you don't use the Hyperbolic
23551 flag, Calc will use zero in place of all arbitrary integers, and plus
23552 one in place of all arbitrary signs.  Note that variables like @code{n1}
23553 and @code{s1} are not given any special interpretation in Calc except by
23554 the equation solver itself.  As usual, you can use the @w{@kbd{s l}}
23555 (@code{calc-let}) command to obtain solutions for various actual values
23556 of these variables.
23558 For example, @kbd{' x^2 = y @key{RET} H a S x @key{RET}} solves to
23559 get @samp{x = s1 sqrt(y)}, indicating that the two solutions to the
23560 equation are @samp{sqrt(y)} and @samp{-sqrt(y)}.  Another way to
23561 think about it is that the square-root operation is really a
23562 two-valued function; since every Calc function must return a
23563 single result, @code{sqrt} chooses to return the positive result.
23564 Then @kbd{H a S} doctors this result using @code{s1} to indicate
23565 the full set of possible values of the mathematical square-root.
23567 There is a similar phenomenon going the other direction:  Suppose
23568 we solve @samp{sqrt(y) = x} for @code{y}.  Calc squares both sides
23569 to get @samp{y = x^2}.  This is correct, except that it introduces
23570 some dubious solutions.  Consider solving @samp{sqrt(y) = -3}:
23571 Calc will report @expr{y = 9} as a valid solution, which is true
23572 in the mathematical sense of square-root, but false (there is no
23573 solution) for the actual Calc positive-valued @code{sqrt}.  This
23574 happens for both @kbd{a S} and @kbd{H a S}.
23576 @cindex @code{GenCount} variable
23577 @vindex GenCount
23578 @ignore
23579 @starindex
23580 @end ignore
23581 @tindex an
23582 @ignore
23583 @starindex
23584 @end ignore
23585 @tindex as
23586 If you store a positive integer in the Calc variable @code{GenCount},
23587 then Calc will generate formulas of the form @samp{as(@var{n})} for
23588 arbitrary signs, and @samp{an(@var{n})} for arbitrary integers,
23589 where @var{n} represents successive values taken by incrementing
23590 @code{GenCount} by one.  While the normal arbitrary sign and
23591 integer symbols start over at @code{s1} and @code{n1} with each
23592 new Calc command, the @code{GenCount} approach will give each
23593 arbitrary value a name that is unique throughout the entire Calc
23594 session.  Also, the arbitrary values are function calls instead
23595 of variables, which is advantageous in some cases.  For example,
23596 you can make a rewrite rule that recognizes all arbitrary signs
23597 using a pattern like @samp{as(n)}.  The @kbd{s l} command only works
23598 on variables, but you can use the @kbd{a b} (@code{calc-substitute})
23599 command to substitute actual values for function calls like @samp{as(3)}.
23601 The @kbd{s G} (@code{calc-edit-GenCount}) command is a convenient
23602 way to create or edit this variable.  Press @kbd{C-c C-c} to finish.
23604 If you have not stored a value in @code{GenCount}, or if the value
23605 in that variable is not a positive integer, the regular
23606 @code{s1}/@code{n1} notation is used.
23608 @kindex I a S
23609 @kindex H I a S
23610 @tindex finv
23611 @tindex ffinv
23612 With the Inverse flag, @kbd{I a S} [@code{finv}] treats the expression
23613 on top of the stack as a function of the specified variable and solves
23614 to find the inverse function, written in terms of the same variable.
23615 For example, @kbd{I a S x} inverts @expr{2x + 6} to @expr{x/2 - 3}.
23616 You can use both Inverse and Hyperbolic [@code{ffinv}] to obtain a
23617 fully general inverse, as described above.
23619 @kindex a P
23620 @pindex calc-poly-roots
23621 @tindex roots
23622 Some equations, specifically polynomials, have a known, finite number
23623 of solutions.  The @kbd{a P} (@code{calc-poly-roots}) [@code{roots}]
23624 command uses @kbd{H a S} to solve an equation in general form, then, for
23625 all arbitrary-sign variables like @code{s1}, and all arbitrary-integer
23626 variables like @code{n1} for which @code{n1} only usefully varies over
23627 a finite range, it expands these variables out to all their possible
23628 values.  The results are collected into a vector, which is returned.
23629 For example, @samp{roots(x^4 = 1, x)} returns the four solutions
23630 @samp{[1, -1, (0, 1), (0, -1)]}.  Generally an @var{n}th degree
23631 polynomial will always have @var{n} roots on the complex plane.
23632 (If you have given a @code{real} declaration for the solution
23633 variable, then only the real-valued solutions, if any, will be
23634 reported; @pxref{Declarations}.)
23636 Note that because @kbd{a P} uses @kbd{H a S}, it is able to deliver
23637 symbolic solutions if the polynomial has symbolic coefficients.  Also
23638 note that Calc's solver is not able to get exact symbolic solutions
23639 to all polynomials.  Polynomials containing powers up to @expr{x^4}
23640 can always be solved exactly; polynomials of higher degree sometimes
23641 can be:  @expr{x^6 + x^3 + 1} is converted to @expr{(x^3)^2 + (x^3) + 1},
23642 which can be solved for @expr{x^3} using the quadratic equation, and then
23643 for @expr{x} by taking cube roots.  But in many cases, like
23644 @expr{x^6 + x + 1}, Calc does not know how to rewrite the polynomial
23645 into a form it can solve.  The @kbd{a P} command can still deliver a
23646 list of numerical roots, however, provided that Symbolic mode (@kbd{m s})
23647 is not turned on.  (If you work with Symbolic mode on, recall that the
23648 @kbd{N} (@code{calc-eval-num}) key is a handy way to reevaluate the
23649 formula on the stack with Symbolic mode temporarily off.)  Naturally,
23650 @kbd{a P} can only provide numerical roots if the polynomial coefficients
23651 are all numbers (real or complex).
23653 @node Solving Systems of Equations, Decomposing Polynomials, Multiple Solutions, Solving Equations
23654 @subsection Solving Systems of Equations
23656 @noindent
23657 @cindex Systems of equations, symbolic
23658 You can also use the commands described above to solve systems of
23659 simultaneous equations.  Just create a vector of equations, then
23660 specify a vector of variables for which to solve.  (You can omit
23661 the surrounding brackets when entering the vector of variables
23662 at the prompt.)
23664 For example, putting @samp{[x + y = a, x - y = b]} on the stack
23665 and typing @kbd{a S x,y @key{RET}} produces the vector of solutions
23666 @samp{[x = a - (a-b)/2, y = (a-b)/2]}.  The result vector will
23667 have the same length as the variables vector, and the variables
23668 will be listed in the same order there.  Note that the solutions
23669 are not always simplified as far as possible; the solution for
23670 @expr{x} here could be improved by an application of the @kbd{a n}
23671 command.
23673 Calc's algorithm works by trying to eliminate one variable at a
23674 time by solving one of the equations for that variable and then
23675 substituting into the other equations.  Calc will try all the
23676 possibilities, but you can speed things up by noting that Calc
23677 first tries to eliminate the first variable with the first
23678 equation, then the second variable with the second equation,
23679 and so on.  It also helps to put the simpler (e.g., more linear)
23680 equations toward the front of the list.  Calc's algorithm will
23681 solve any system of linear equations, and also many kinds of
23682 nonlinear systems.
23684 @ignore
23685 @starindex
23686 @end ignore
23687 @tindex elim
23688 Normally there will be as many variables as equations.  If you
23689 give fewer variables than equations (an ``over-determined'' system
23690 of equations), Calc will find a partial solution.  For example,
23691 typing @kbd{a S y @key{RET}} with the above system of equations
23692 would produce @samp{[y = a - x]}.  There are now several ways to
23693 express this solution in terms of the original variables; Calc uses
23694 the first one that it finds.  You can control the choice by adding
23695 variable specifiers of the form @samp{elim(@var{v})} to the
23696 variables list.  This says that @var{v} should be eliminated from
23697 the equations; the variable will not appear at all in the solution.
23698 For example, typing @kbd{a S y,elim(x)} would yield
23699 @samp{[y = a - (b+a)/2]}.
23701 If the variables list contains only @code{elim} specifiers,
23702 Calc simply eliminates those variables from the equations
23703 and then returns the resulting set of equations.  For example,
23704 @kbd{a S elim(x)} produces @samp{[a - 2 y = b]}.  Every variable
23705 eliminated will reduce the number of equations in the system
23706 by one.
23708 Again, @kbd{a S} gives you one solution to the system of
23709 equations.  If there are several solutions, you can use @kbd{H a S}
23710 to get a general family of solutions, or, if there is a finite
23711 number of solutions, you can use @kbd{a P} to get a list.  (In
23712 the latter case, the result will take the form of a matrix where
23713 the rows are different solutions and the columns correspond to the
23714 variables you requested.)
23716 Another way to deal with certain kinds of overdetermined systems of
23717 equations is the @kbd{a F} command, which does least-squares fitting
23718 to satisfy the equations.  @xref{Curve Fitting}.
23720 @node Decomposing Polynomials,  , Solving Systems of Equations, Solving Equations
23721 @subsection Decomposing Polynomials
23723 @noindent
23724 @ignore
23725 @starindex
23726 @end ignore
23727 @tindex poly
23728 The @code{poly} function takes a polynomial and a variable as
23729 arguments, and returns a vector of polynomial coefficients (constant
23730 coefficient first).  For example, @samp{poly(x^3 + 2 x, x)} returns
23731 @expr{[0, 2, 0, 1]}.  If the input is not a polynomial in @expr{x},
23732 the call to @code{poly} is left in symbolic form.  If the input does
23733 not involve the variable @expr{x}, the input is returned in a list
23734 of length one, representing a polynomial with only a constant
23735 coefficient.  The call @samp{poly(x, x)} returns the vector @expr{[0, 1]}.
23736 The last element of the returned vector is guaranteed to be nonzero;
23737 note that @samp{poly(0, x)} returns the empty vector @expr{[]}.
23738 Note also that @expr{x} may actually be any formula; for example,
23739 @samp{poly(sin(x)^2 - sin(x) + 3, sin(x))} returns @expr{[3, -1, 1]}.
23741 @cindex Coefficients of polynomial
23742 @cindex Degree of polynomial
23743 To get the @expr{x^k} coefficient of polynomial @expr{p}, use
23744 @samp{poly(p, x)_(k+1)}.  To get the degree of polynomial @expr{p},
23745 use @samp{vlen(poly(p, x)) - 1}.  For example, @samp{poly((x+1)^4, x)}
23746 returns @samp{[1, 4, 6, 4, 1]}, so @samp{poly((x+1)^4, x)_(2+1)}
23747 gives the @expr{x^2} coefficient of this polynomial, 6.
23749 @ignore
23750 @starindex
23751 @end ignore
23752 @tindex gpoly
23753 One important feature of the solver is its ability to recognize
23754 formulas which are ``essentially'' polynomials.  This ability is
23755 made available to the user through the @code{gpoly} function, which
23756 is used just like @code{poly}:  @samp{gpoly(@var{expr}, @var{var})}.
23757 If @var{expr} is a polynomial in some term which includes @var{var}, then
23758 this function will return a vector @samp{[@var{x}, @var{c}, @var{a}]}
23759 where @var{x} is the term that depends on @var{var}, @var{c} is a
23760 vector of polynomial coefficients (like the one returned by @code{poly}),
23761 and @var{a} is a multiplier which is usually 1.  Basically,
23762 @samp{@var{expr} = @var{a}*(@var{c}_1 + @var{c}_2 @var{x} +
23763 @var{c}_3 @var{x}^2 + ...)}.  The last element of @var{c} is
23764 guaranteed to be non-zero, and @var{c} will not equal @samp{[1]}
23765 (i.e., the trivial decomposition @var{expr} = @var{x} is not
23766 considered a polynomial).  One side effect is that @samp{gpoly(x, x)}
23767 and @samp{gpoly(6, x)}, both of which might be expected to recognize
23768 their arguments as polynomials, will not because the decomposition
23769 is considered trivial.
23771 For example, @samp{gpoly((x-2)^2, x)} returns @samp{[x, [4, -4, 1], 1]},
23772 since the expanded form of this polynomial is @expr{4 - 4 x + x^2}.
23774 The term @var{x} may itself be a polynomial in @var{var}.  This is
23775 done to reduce the size of the @var{c} vector.  For example,
23776 @samp{gpoly(x^4 + x^2 - 1, x)} returns @samp{[x^2, [-1, 1, 1], 1]},
23777 since a quadratic polynomial in @expr{x^2} is easier to solve than
23778 a quartic polynomial in @expr{x}.
23780 A few more examples of the kinds of polynomials @code{gpoly} can
23781 discover:
23783 @smallexample
23784 sin(x) - 1               [sin(x), [-1, 1], 1]
23785 x + 1/x - 1              [x, [1, -1, 1], 1/x]
23786 x + 1/x                  [x^2, [1, 1], 1/x]
23787 x^3 + 2 x                [x^2, [2, 1], x]
23788 x + x^2:3 + sqrt(x)      [x^1:6, [1, 1, 0, 1], x^1:2]
23789 x^(2a) + 2 x^a + 5       [x^a, [5, 2, 1], 1]
23790 (exp(-x) + exp(x)) / 2   [e^(2 x), [0.5, 0.5], e^-x]
23791 @end smallexample
23793 The @code{poly} and @code{gpoly} functions accept a third integer argument
23794 which specifies the largest degree of polynomial that is acceptable.
23795 If this is @expr{n}, then only @var{c} vectors of length @expr{n+1}
23796 or less will be returned.  Otherwise, the @code{poly} or @code{gpoly}
23797 call will remain in symbolic form.  For example, the equation solver
23798 can handle quartics and smaller polynomials, so it calls
23799 @samp{gpoly(@var{expr}, @var{var}, 4)} to discover whether @var{expr}
23800 can be treated by its linear, quadratic, cubic, or quartic formulas.
23802 @ignore
23803 @starindex
23804 @end ignore
23805 @tindex pdeg
23806 The @code{pdeg} function computes the degree of a polynomial;
23807 @samp{pdeg(p,x)} is the highest power of @code{x} that appears in
23808 @code{p}.  This is the same as @samp{vlen(poly(p,x))-1}, but is
23809 much more efficient.  If @code{p} is constant with respect to @code{x},
23810 then @samp{pdeg(p,x) = 0}.  If @code{p} is not a polynomial in @code{x}
23811 (e.g., @samp{pdeg(2 cos(x), x)}, the function remains unevaluated.
23812 It is possible to omit the second argument @code{x}, in which case
23813 @samp{pdeg(p)} returns the highest total degree of any term of the
23814 polynomial, counting all variables that appear in @code{p}.  Note
23815 that @code{pdeg(c) = pdeg(c,x) = 0} for any nonzero constant @code{c};
23816 the degree of the constant zero is considered to be @code{-inf}
23817 (minus infinity).
23819 @ignore
23820 @starindex
23821 @end ignore
23822 @tindex plead
23823 The @code{plead} function finds the leading term of a polynomial.
23824 Thus @samp{plead(p,x)} is equivalent to @samp{poly(p,x)_vlen(poly(p,x))},
23825 though again more efficient.  In particular, @samp{plead((2x+1)^10, x)}
23826 returns 1024 without expanding out the list of coefficients.  The
23827 value of @code{plead(p,x)} will be zero only if @expr{p = 0}.
23829 @ignore
23830 @starindex
23831 @end ignore
23832 @tindex pcont
23833 The @code{pcont} function finds the @dfn{content} of a polynomial.  This
23834 is the greatest common divisor of all the coefficients of the polynomial.
23835 With two arguments, @code{pcont(p,x)} effectively uses @samp{poly(p,x)}
23836 to get a list of coefficients, then uses @code{pgcd} (the polynomial
23837 GCD function) to combine these into an answer.  For example,
23838 @samp{pcont(4 x y^2 + 6 x^2 y, x)} is @samp{2 y}.  The content is
23839 basically the ``biggest'' polynomial that can be divided into @code{p}
23840 exactly.  The sign of the content is the same as the sign of the leading
23841 coefficient.
23843 With only one argument, @samp{pcont(p)} computes the numerical
23844 content of the polynomial, i.e., the @code{gcd} of the numerical
23845 coefficients of all the terms in the formula.  Note that @code{gcd}
23846 is defined on rational numbers as well as integers; it computes
23847 the @code{gcd} of the numerators and the @code{lcm} of the
23848 denominators.  Thus @samp{pcont(4:3 x y^2 + 6 x^2 y)} returns 2:3.
23849 Dividing the polynomial by this number will clear all the
23850 denominators, as well as dividing by any common content in the
23851 numerators.  The numerical content of a polynomial is negative only
23852 if all the coefficients in the polynomial are negative.
23854 @ignore
23855 @starindex
23856 @end ignore
23857 @tindex pprim
23858 The @code{pprim} function finds the @dfn{primitive part} of a
23859 polynomial, which is simply the polynomial divided (using @code{pdiv}
23860 if necessary) by its content.  If the input polynomial has rational
23861 coefficients, the result will have integer coefficients in simplest
23862 terms.
23864 @node Numerical Solutions, Curve Fitting, Solving Equations, Algebra
23865 @section Numerical Solutions
23867 @noindent
23868 Not all equations can be solved symbolically.  The commands in this
23869 section use numerical algorithms that can find a solution to a specific
23870 instance of an equation to any desired accuracy.  Note that the
23871 numerical commands are slower than their algebraic cousins; it is a
23872 good idea to try @kbd{a S} before resorting to these commands.
23874 (@xref{Curve Fitting}, for some other, more specialized, operations
23875 on numerical data.)
23877 @menu
23878 * Root Finding::
23879 * Minimization::
23880 * Numerical Systems of Equations::
23881 @end menu
23883 @node Root Finding, Minimization, Numerical Solutions, Numerical Solutions
23884 @subsection Root Finding
23886 @noindent
23887 @kindex a R
23888 @pindex calc-find-root
23889 @tindex root
23890 @cindex Newton's method
23891 @cindex Roots of equations
23892 @cindex Numerical root-finding
23893 The @kbd{a R} (@code{calc-find-root}) [@code{root}] command finds a
23894 numerical solution (or @dfn{root}) of an equation.  (This command treats
23895 inequalities the same as equations.  If the input is any other kind
23896 of formula, it is interpreted as an equation of the form @expr{X = 0}.)
23898 The @kbd{a R} command requires an initial guess on the top of the
23899 stack, and a formula in the second-to-top position.  It prompts for a
23900 solution variable, which must appear in the formula.  All other variables
23901 that appear in the formula must have assigned values, i.e., when
23902 a value is assigned to the solution variable and the formula is
23903 evaluated with @kbd{=}, it should evaluate to a number.  Any assigned
23904 value for the solution variable itself is ignored and unaffected by
23905 this command.
23907 When the command completes, the initial guess is replaced on the stack
23908 by a vector of two numbers:  The value of the solution variable that
23909 solves the equation, and the difference between the lefthand and
23910 righthand sides of the equation at that value.  Ordinarily, the second
23911 number will be zero or very nearly zero.  (Note that Calc uses a
23912 slightly higher precision while finding the root, and thus the second
23913 number may be slightly different from the value you would compute from
23914 the equation yourself.)
23916 The @kbd{v h} (@code{calc-head}) command is a handy way to extract
23917 the first element of the result vector, discarding the error term.
23919 The initial guess can be a real number, in which case Calc searches
23920 for a real solution near that number, or a complex number, in which
23921 case Calc searches the whole complex plane near that number for a
23922 solution, or it can be an interval form which restricts the search
23923 to real numbers inside that interval.
23925 Calc tries to use @kbd{a d} to take the derivative of the equation.
23926 If this succeeds, it uses Newton's method.  If the equation is not
23927 differentiable Calc uses a bisection method.  (If Newton's method
23928 appears to be going astray, Calc switches over to bisection if it
23929 can, or otherwise gives up.  In this case it may help to try again
23930 with a slightly different initial guess.)  If the initial guess is a
23931 complex number, the function must be differentiable.
23933 If the formula (or the difference between the sides of an equation)
23934 is negative at one end of the interval you specify and positive at
23935 the other end, the root finder is guaranteed to find a root.
23936 Otherwise, Calc subdivides the interval into small parts looking for
23937 positive and negative values to bracket the root.  When your guess is
23938 an interval, Calc will not look outside that interval for a root.
23940 @kindex H a R
23941 @tindex wroot
23942 The @kbd{H a R} [@code{wroot}] command is similar to @kbd{a R}, except
23943 that if the initial guess is an interval for which the function has
23944 the same sign at both ends, then rather than subdividing the interval
23945 Calc attempts to widen it to enclose a root.  Use this mode if
23946 you are not sure if the function has a root in your interval.
23948 If the function is not differentiable, and you give a simple number
23949 instead of an interval as your initial guess, Calc uses this widening
23950 process even if you did not type the Hyperbolic flag.  (If the function
23951 @emph{is} differentiable, Calc uses Newton's method which does not
23952 require a bounding interval in order to work.)
23954 If Calc leaves the @code{root} or @code{wroot} function in symbolic
23955 form on the stack, it will normally display an explanation for why
23956 no root was found.  If you miss this explanation, press @kbd{w}
23957 (@code{calc-why}) to get it back.
23959 @node Minimization, Numerical Systems of Equations, Root Finding, Numerical Solutions
23960 @subsection Minimization
23962 @noindent
23963 @kindex a N
23964 @kindex H a N
23965 @kindex a X
23966 @kindex H a X
23967 @pindex calc-find-minimum
23968 @pindex calc-find-maximum
23969 @tindex minimize
23970 @tindex maximize
23971 @cindex Minimization, numerical
23972 The @kbd{a N} (@code{calc-find-minimum}) [@code{minimize}] command
23973 finds a minimum value for a formula.  It is very similar in operation
23974 to @kbd{a R} (@code{calc-find-root}):  You give the formula and an initial
23975 guess on the stack, and are prompted for the name of a variable.  The guess
23976 may be either a number near the desired minimum, or an interval enclosing
23977 the desired minimum.  The function returns a vector containing the
23978 value of the variable which minimizes the formula's value, along
23979 with the minimum value itself.
23981 Note that this command looks for a @emph{local} minimum.  Many functions
23982 have more than one minimum; some, like 
23983 @texline @math{x \sin x},
23984 @infoline @expr{x sin(x)}, 
23985 have infinitely many.  In fact, there is no easy way to define the
23986 ``global'' minimum of 
23987 @texline @math{x \sin x}
23988 @infoline @expr{x sin(x)} 
23989 but Calc can still locate any particular local minimum
23990 for you.  Calc basically goes downhill from the initial guess until it
23991 finds a point at which the function's value is greater both to the left
23992 and to the right.  Calc does not use derivatives when minimizing a function.
23994 If your initial guess is an interval and it looks like the minimum
23995 occurs at one or the other endpoint of the interval, Calc will return
23996 that endpoint only if that endpoint is closed; thus, minimizing @expr{17 x}
23997 over @expr{[2..3]} will return @expr{[2, 38]}, but minimizing over
23998 @expr{(2..3]} would report no minimum found.  In general, you should
23999 use closed intervals to find literally the minimum value in that
24000 range of @expr{x}, or open intervals to find the local minimum, if
24001 any, that happens to lie in that range.
24003 Most functions are smooth and flat near their minimum values.  Because
24004 of this flatness, if the current precision is, say, 12 digits, the
24005 variable can only be determined meaningfully to about six digits.  Thus
24006 you should set the precision to twice as many digits as you need in your
24007 answer.
24009 @ignore
24010 @mindex wmin@idots
24011 @end ignore
24012 @tindex wminimize
24013 @ignore
24014 @mindex wmax@idots
24015 @end ignore
24016 @tindex wmaximize
24017 The @kbd{H a N} [@code{wminimize}] command, analogously to @kbd{H a R},
24018 expands the guess interval to enclose a minimum rather than requiring
24019 that the minimum lie inside the interval you supply.
24021 The @kbd{a X} (@code{calc-find-maximum}) [@code{maximize}] and
24022 @kbd{H a X} [@code{wmaximize}] commands effectively minimize the
24023 negative of the formula you supply.
24025 The formula must evaluate to a real number at all points inside the
24026 interval (or near the initial guess if the guess is a number).  If
24027 the initial guess is a complex number the variable will be minimized
24028 over the complex numbers; if it is real or an interval it will
24029 be minimized over the reals.
24031 @node Numerical Systems of Equations,  , Minimization, Numerical Solutions
24032 @subsection Systems of Equations
24034 @noindent
24035 @cindex Systems of equations, numerical
24036 The @kbd{a R} command can also solve systems of equations.  In this
24037 case, the equation should instead be a vector of equations, the
24038 guess should instead be a vector of numbers (intervals are not
24039 supported), and the variable should be a vector of variables.  You
24040 can omit the brackets while entering the list of variables.  Each
24041 equation must be differentiable by each variable for this mode to
24042 work.  The result will be a vector of two vectors:  The variable
24043 values that solved the system of equations, and the differences
24044 between the sides of the equations with those variable values.
24045 There must be the same number of equations as variables.  Since
24046 only plain numbers are allowed as guesses, the Hyperbolic flag has
24047 no effect when solving a system of equations.
24049 It is also possible to minimize over many variables with @kbd{a N}
24050 (or maximize with @kbd{a X}).  Once again the variable name should
24051 be replaced by a vector of variables, and the initial guess should
24052 be an equal-sized vector of initial guesses.  But, unlike the case of
24053 multidimensional @kbd{a R}, the formula being minimized should
24054 still be a single formula, @emph{not} a vector.  Beware that
24055 multidimensional minimization is currently @emph{very} slow.
24057 @node Curve Fitting, Summations, Numerical Solutions, Algebra
24058 @section Curve Fitting
24060 @noindent
24061 The @kbd{a F} command fits a set of data to a @dfn{model formula},
24062 such as @expr{y = m x + b} where @expr{m} and @expr{b} are parameters
24063 to be determined.  For a typical set of measured data there will be
24064 no single @expr{m} and @expr{b} that exactly fit the data; in this
24065 case, Calc chooses values of the parameters that provide the closest
24066 possible fit.  The model formula can be entered in various ways after
24067 the key sequence @kbd{a F} is pressed.  
24069 If the letter @kbd{P} is pressed after @kbd{a F} but before the model
24070 description is entered, the data as well as the model formula will be
24071 plotted after the formula is determined.  This will be indicated by a
24072 ``P'' in the minibuffer after the help message.
24074 @menu
24075 * Linear Fits::
24076 * Polynomial and Multilinear Fits::
24077 * Error Estimates for Fits::
24078 * Standard Nonlinear Models::
24079 * Curve Fitting Details::
24080 * Interpolation::
24081 @end menu
24083 @node Linear Fits, Polynomial and Multilinear Fits, Curve Fitting, Curve Fitting
24084 @subsection Linear Fits
24086 @noindent
24087 @kindex a F
24088 @pindex calc-curve-fit
24089 @tindex fit
24090 @cindex Linear regression
24091 @cindex Least-squares fits
24092 The @kbd{a F} (@code{calc-curve-fit}) [@code{fit}] command attempts
24093 to fit a set of data (@expr{x} and @expr{y} vectors of numbers) to a
24094 straight line, polynomial, or other function of @expr{x}.  For the
24095 moment we will consider only the case of fitting to a line, and we
24096 will ignore the issue of whether or not the model was in fact a good
24097 fit for the data.
24099 In a standard linear least-squares fit, we have a set of @expr{(x,y)}
24100 data points that we wish to fit to the model @expr{y = m x + b}
24101 by adjusting the parameters @expr{m} and @expr{b} to make the @expr{y}
24102 values calculated from the formula be as close as possible to the actual
24103 @expr{y} values in the data set.  (In a polynomial fit, the model is
24104 instead, say, @expr{y = a x^3 + b x^2 + c x + d}.  In a multilinear fit,
24105 we have data points of the form @expr{(x_1,x_2,x_3,y)} and our model is
24106 @expr{y = a x_1 + b x_2 + c x_3 + d}.  These will be discussed later.)
24108 In the model formula, variables like @expr{x} and @expr{x_2} are called
24109 the @dfn{independent variables}, and @expr{y} is the @dfn{dependent
24110 variable}.  Variables like @expr{m}, @expr{a}, and @expr{b} are called
24111 the @dfn{parameters} of the model.
24113 The @kbd{a F} command takes the data set to be fitted from the stack.
24114 By default, it expects the data in the form of a matrix.  For example,
24115 for a linear or polynomial fit, this would be a 
24116 @texline @math{2\times N}
24117 @infoline 2xN
24118 matrix where the first row is a list of @expr{x} values and the second
24119 row has the corresponding @expr{y} values.  For the multilinear fit
24120 shown above, the matrix would have four rows (@expr{x_1}, @expr{x_2},
24121 @expr{x_3}, and @expr{y}, respectively).
24123 If you happen to have an 
24124 @texline @math{N\times2}
24125 @infoline Nx2
24126 matrix instead of a 
24127 @texline @math{2\times N}
24128 @infoline 2xN
24129 matrix, just press @kbd{v t} first to transpose the matrix.
24131 After you type @kbd{a F}, Calc prompts you to select a model.  For a
24132 linear fit, press the digit @kbd{1}.
24134 Calc then prompts for you to name the variables.  By default it chooses
24135 high letters like @expr{x} and @expr{y} for independent variables and
24136 low letters like @expr{a} and @expr{b} for parameters.  (The dependent
24137 variable doesn't need a name.)  The two kinds of variables are separated
24138 by a semicolon.  Since you generally care more about the names of the
24139 independent variables than of the parameters, Calc also allows you to
24140 name only those and let the parameters use default names.
24142 For example, suppose the data matrix
24144 @ifnottex
24145 @example
24146 @group
24147 [ [ 1, 2, 3, 4,  5  ]
24148   [ 5, 7, 9, 11, 13 ] ]
24149 @end group
24150 @end example
24151 @end ifnottex
24152 @tex
24153 \turnoffactive
24154 \turnoffactive
24155 \beforedisplay
24156 $$ \pmatrix{ 1 & 2 & 3 & 4  & 5  \cr
24157              5 & 7 & 9 & 11 & 13 }
24159 \afterdisplay
24160 @end tex
24162 @noindent
24163 is on the stack and we wish to do a simple linear fit.  Type
24164 @kbd{a F}, then @kbd{1} for the model, then @key{RET} to use
24165 the default names.  The result will be the formula @expr{3. + 2. x}
24166 on the stack.  Calc has created the model expression @kbd{a + b x},
24167 then found the optimal values of @expr{a} and @expr{b} to fit the
24168 data.  (In this case, it was able to find an exact fit.)  Calc then
24169 substituted those values for @expr{a} and @expr{b} in the model
24170 formula.
24172 The @kbd{a F} command puts two entries in the trail.  One is, as
24173 always, a copy of the result that went to the stack; the other is
24174 a vector of the actual parameter values, written as equations:
24175 @expr{[a = 3, b = 2]}, in case you'd rather read them in a list
24176 than pick them out of the formula.  (You can type @kbd{t y}
24177 to move this vector to the stack; see @ref{Trail Commands}.
24179 Specifying a different independent variable name will affect the
24180 resulting formula: @kbd{a F 1 k @key{RET}} produces @kbd{3 + 2 k}.
24181 Changing the parameter names (say, @kbd{a F 1 k;b,m @key{RET}}) will affect
24182 the equations that go into the trail.
24184 @tex
24185 \bigskip
24186 @end tex
24188 To see what happens when the fit is not exact, we could change
24189 the number 13 in the data matrix to 14 and try the fit again.
24190 The result is:
24192 @example
24193 2.6 + 2.2 x
24194 @end example
24196 Evaluating this formula, say with @kbd{v x 5 @key{RET} @key{TAB} V M $ @key{RET}}, shows
24197 a reasonably close match to the y-values in the data.
24199 @example
24200 [4.8, 7., 9.2, 11.4, 13.6]
24201 @end example
24203 Since there is no line which passes through all the @var{n} data points,
24204 Calc has chosen a line that best approximates the data points using
24205 the method of least squares.  The idea is to define the @dfn{chi-square}
24206 error measure
24208 @ifnottex
24209 @example
24210 chi^2 = sum((y_i - (a + b x_i))^2, i, 1, N)
24211 @end example
24212 @end ifnottex
24213 @tex
24214 \turnoffactive
24215 \beforedisplay
24216 $$ \chi^2 = \sum_{i=1}^N (y_i - (a + b x_i))^2 $$
24217 \afterdisplay
24218 @end tex
24220 @noindent
24221 which is clearly zero if @expr{a + b x} exactly fits all data points,
24222 and increases as various @expr{a + b x_i} values fail to match the
24223 corresponding @expr{y_i} values.  There are several reasons why the
24224 summand is squared, one of them being to ensure that 
24225 @texline @math{\chi^2 \ge 0}.
24226 @infoline @expr{chi^2 >= 0}.
24227 Least-squares fitting simply chooses the values of @expr{a} and @expr{b}
24228 for which the error 
24229 @texline @math{\chi^2}
24230 @infoline @expr{chi^2} 
24231 is as small as possible.
24233 Other kinds of models do the same thing but with a different model
24234 formula in place of @expr{a + b x_i}.
24236 @tex
24237 \bigskip
24238 @end tex
24240 A numeric prefix argument causes the @kbd{a F} command to take the
24241 data in some other form than one big matrix.  A positive argument @var{n}
24242 will take @var{N} items from the stack, corresponding to the @var{n} rows
24243 of a data matrix.  In the linear case, @var{n} must be 2 since there
24244 is always one independent variable and one dependent variable.
24246 A prefix of zero or plain @kbd{C-u} is a compromise; Calc takes two
24247 items from the stack, an @var{n}-row matrix of @expr{x} values, and a
24248 vector of @expr{y} values.  If there is only one independent variable,
24249 the @expr{x} values can be either a one-row matrix or a plain vector,
24250 in which case the @kbd{C-u} prefix is the same as a @w{@kbd{C-u 2}} prefix.
24252 @node Polynomial and Multilinear Fits, Error Estimates for Fits, Linear Fits, Curve Fitting
24253 @subsection Polynomial and Multilinear Fits
24255 @noindent
24256 To fit the data to higher-order polynomials, just type one of the
24257 digits @kbd{2} through @kbd{9} when prompted for a model.  For example,
24258 we could fit the original data matrix from the previous section
24259 (with 13, not 14) to a parabola instead of a line by typing
24260 @kbd{a F 2 @key{RET}}.
24262 @example
24263 2.00000000001 x - 1.5e-12 x^2 + 2.99999999999
24264 @end example
24266 Note that since the constant and linear terms are enough to fit the
24267 data exactly, it's no surprise that Calc chose a tiny contribution
24268 for @expr{x^2}.  (The fact that it's not exactly zero is due only
24269 to roundoff error.  Since our data are exact integers, we could get
24270 an exact answer by typing @kbd{m f} first to get Fraction mode.
24271 Then the @expr{x^2} term would vanish altogether.  Usually, though,
24272 the data being fitted will be approximate floats so Fraction mode
24273 won't help.)
24275 Doing the @kbd{a F 2} fit on the data set with 14 instead of 13
24276 gives a much larger @expr{x^2} contribution, as Calc bends the
24277 line slightly to improve the fit.
24279 @example
24280 0.142857142855 x^2 + 1.34285714287 x + 3.59999999998
24281 @end example
24283 An important result from the theory of polynomial fitting is that it
24284 is always possible to fit @var{n} data points exactly using a polynomial
24285 of degree @mathit{@var{n}-1}, sometimes called an @dfn{interpolating polynomial}.
24286 Using the modified (14) data matrix, a model number of 4 gives
24287 a polynomial that exactly matches all five data points:
24289 @example
24290 0.04167 x^4 - 0.4167 x^3 + 1.458 x^2 - 0.08333 x + 4.
24291 @end example
24293 The actual coefficients we get with a precision of 12, like
24294 @expr{0.0416666663588}, clearly suffer from loss of precision.
24295 It is a good idea to increase the working precision to several
24296 digits beyond what you need when you do a fitting operation.
24297 Or, if your data are exact, use Fraction mode to get exact
24298 results.
24300 You can type @kbd{i} instead of a digit at the model prompt to fit
24301 the data exactly to a polynomial.  This just counts the number of
24302 columns of the data matrix to choose the degree of the polynomial
24303 automatically.
24305 Fitting data ``exactly'' to high-degree polynomials is not always
24306 a good idea, though.  High-degree polynomials have a tendency to
24307 wiggle uncontrollably in between the fitting data points.  Also,
24308 if the exact-fit polynomial is going to be used to interpolate or
24309 extrapolate the data, it is numerically better to use the @kbd{a p}
24310 command described below.  @xref{Interpolation}.
24312 @tex
24313 \bigskip
24314 @end tex
24316 Another generalization of the linear model is to assume the
24317 @expr{y} values are a sum of linear contributions from several
24318 @expr{x} values.  This is a @dfn{multilinear} fit, and it is also
24319 selected by the @kbd{1} digit key.  (Calc decides whether the fit
24320 is linear or multilinear by counting the rows in the data matrix.)
24322 Given the data matrix,
24324 @example
24325 @group
24326 [ [  1,   2,   3,    4,   5  ]
24327   [  7,   2,   3,    5,   2  ]
24328   [ 14.5, 15, 18.5, 22.5, 24 ] ]
24329 @end group
24330 @end example
24332 @noindent
24333 the command @kbd{a F 1 @key{RET}} will call the first row @expr{x} and the
24334 second row @expr{y}, and will fit the values in the third row to the
24335 model @expr{a + b x + c y}.
24337 @example
24338 8. + 3. x + 0.5 y
24339 @end example
24341 Calc can do multilinear fits with any number of independent variables
24342 (i.e., with any number of data rows).
24344 @tex
24345 \bigskip
24346 @end tex
24348 Yet another variation is @dfn{homogeneous} linear models, in which
24349 the constant term is known to be zero.  In the linear case, this
24350 means the model formula is simply @expr{a x}; in the multilinear
24351 case, the model might be @expr{a x + b y + c z}; and in the polynomial
24352 case, the model could be @expr{a x + b x^2 + c x^3}.  You can get
24353 a homogeneous linear or multilinear model by pressing the letter
24354 @kbd{h} followed by a regular model key, like @kbd{1} or @kbd{2}.
24355 This will be indicated by an ``h'' in the minibuffer after the help
24356 message.
24358 It is certainly possible to have other constrained linear models,
24359 like @expr{2.3 + a x} or @expr{a - 4 x}.  While there is no single
24360 key to select models like these, a later section shows how to enter
24361 any desired model by hand.  In the first case, for example, you
24362 would enter @kbd{a F ' 2.3 + a x}.
24364 Another class of models that will work but must be entered by hand
24365 are multinomial fits, e.g., @expr{a + b x + c y + d x^2 + e y^2 + f x y}.
24367 @node Error Estimates for Fits, Standard Nonlinear Models, Polynomial and Multilinear Fits, Curve Fitting
24368 @subsection Error Estimates for Fits
24370 @noindent
24371 @kindex H a F
24372 @tindex efit
24373 With the Hyperbolic flag, @kbd{H a F} [@code{efit}] performs the same
24374 fitting operation as @kbd{a F}, but reports the coefficients as error
24375 forms instead of plain numbers.  Fitting our two data matrices (first
24376 with 13, then with 14) to a line with @kbd{H a F} gives the results,
24378 @example
24379 3. + 2. x
24380 2.6 +/- 0.382970843103 + 2.2 +/- 0.115470053838 x
24381 @end example
24383 In the first case the estimated errors are zero because the linear
24384 fit is perfect.  In the second case, the errors are nonzero but
24385 moderately small, because the data are still very close to linear.
24387 It is also possible for the @emph{input} to a fitting operation to
24388 contain error forms.  The data values must either all include errors
24389 or all be plain numbers.  Error forms can go anywhere but generally
24390 go on the numbers in the last row of the data matrix.  If the last
24391 row contains error forms
24392 @texline `@var{y_i}@w{ @tfn{+/-} }@math{\sigma_i}', 
24393 @infoline `@var{y_i}@w{ @tfn{+/-} }@var{sigma_i}', 
24394 then the 
24395 @texline @math{\chi^2}
24396 @infoline @expr{chi^2}
24397 statistic is now,
24399 @ifnottex
24400 @example
24401 chi^2 = sum(((y_i - (a + b x_i)) / sigma_i)^2, i, 1, N)
24402 @end example
24403 @end ifnottex
24404 @tex
24405 \turnoffactive
24406 \beforedisplay
24407 $$ \chi^2 = \sum_{i=1}^N \left(y_i - (a + b x_i) \over \sigma_i\right)^2 $$
24408 \afterdisplay
24409 @end tex
24411 @noindent
24412 so that data points with larger error estimates contribute less to
24413 the fitting operation.
24415 If there are error forms on other rows of the data matrix, all the
24416 errors for a given data point are combined; the square root of the
24417 sum of the squares of the errors forms the 
24418 @texline @math{\sigma_i}
24419 @infoline @expr{sigma_i} 
24420 used for the data point.
24422 Both @kbd{a F} and @kbd{H a F} can accept error forms in the input
24423 matrix, although if you are concerned about error analysis you will
24424 probably use @kbd{H a F} so that the output also contains error
24425 estimates.
24427 If the input contains error forms but all the 
24428 @texline @math{\sigma_i}
24429 @infoline @expr{sigma_i} 
24430 values are the same, it is easy to see that the resulting fitted model
24431 will be the same as if the input did not have error forms at all 
24432 @texline (@math{\chi^2}
24433 @infoline (@expr{chi^2}
24434 is simply scaled uniformly by 
24435 @texline @math{1 / \sigma^2},
24436 @infoline @expr{1 / sigma^2}, 
24437 which doesn't affect where it has a minimum).  But there @emph{will} be
24438 a difference in the estimated errors of the coefficients reported by
24439 @kbd{H a F}. 
24441 Consult any text on statistical modeling of data for a discussion
24442 of where these error estimates come from and how they should be
24443 interpreted.
24445 @tex
24446 \bigskip
24447 @end tex
24449 @kindex I a F
24450 @tindex xfit
24451 With the Inverse flag, @kbd{I a F} [@code{xfit}] produces even more
24452 information.  The result is a vector of six items:
24454 @enumerate
24455 @item
24456 The model formula with error forms for its coefficients or
24457 parameters.  This is the result that @kbd{H a F} would have
24458 produced.
24460 @item
24461 A vector of ``raw'' parameter values for the model.  These are the
24462 polynomial coefficients or other parameters as plain numbers, in the
24463 same order as the parameters appeared in the final prompt of the
24464 @kbd{I a F} command.  For polynomials of degree @expr{d}, this vector
24465 will have length @expr{M = d+1} with the constant term first.
24467 @item
24468 The covariance matrix @expr{C} computed from the fit.  This is
24469 an @var{m}x@var{m} symmetric matrix; the diagonal elements
24470 @texline @math{C_{jj}}
24471 @infoline @expr{C_j_j} 
24472 are the variances 
24473 @texline @math{\sigma_j^2}
24474 @infoline @expr{sigma_j^2} 
24475 of the parameters.  The other elements are covariances
24476 @texline @math{\sigma_{ij}^2} 
24477 @infoline @expr{sigma_i_j^2} 
24478 that describe the correlation between pairs of parameters.  (A related
24479 set of numbers, the @dfn{linear correlation coefficients} 
24480 @texline @math{r_{ij}},
24481 @infoline @expr{r_i_j},
24482 are defined as 
24483 @texline @math{\sigma_{ij}^2 / \sigma_i \, \sigma_j}.)
24484 @infoline @expr{sigma_i_j^2 / sigma_i sigma_j}.)
24486 @item
24487 A vector of @expr{M} ``parameter filter'' functions whose
24488 meanings are described below.  If no filters are necessary this
24489 will instead be an empty vector; this is always the case for the
24490 polynomial and multilinear fits described so far.
24492 @item
24493 The value of 
24494 @texline @math{\chi^2}
24495 @infoline @expr{chi^2} 
24496 for the fit, calculated by the formulas shown above.  This gives a
24497 measure of the quality of the fit; statisticians consider
24498 @texline @math{\chi^2 \approx N - M}
24499 @infoline @expr{chi^2 = N - M} 
24500 to indicate a moderately good fit (where again @expr{N} is the number of
24501 data points and @expr{M} is the number of parameters).
24503 @item
24504 A measure of goodness of fit expressed as a probability @expr{Q}.
24505 This is computed from the @code{utpc} probability distribution
24506 function using 
24507 @texline @math{\chi^2}
24508 @infoline @expr{chi^2} 
24509 with @expr{N - M} degrees of freedom.  A
24510 value of 0.5 implies a good fit; some texts recommend that often
24511 @expr{Q = 0.1} or even 0.001 can signify an acceptable fit.  In
24512 particular, 
24513 @texline @math{\chi^2}
24514 @infoline @expr{chi^2} 
24515 statistics assume the errors in your inputs
24516 follow a normal (Gaussian) distribution; if they don't, you may
24517 have to accept smaller values of @expr{Q}.
24519 The @expr{Q} value is computed only if the input included error
24520 estimates.  Otherwise, Calc will report the symbol @code{nan}
24521 for @expr{Q}.  The reason is that in this case the 
24522 @texline @math{\chi^2}
24523 @infoline @expr{chi^2}
24524 value has effectively been used to estimate the original errors
24525 in the input, and thus there is no redundant information left
24526 over to use for a confidence test.
24527 @end enumerate
24529 @node Standard Nonlinear Models, Curve Fitting Details, Error Estimates for Fits, Curve Fitting
24530 @subsection Standard Nonlinear Models
24532 @noindent
24533 The @kbd{a F} command also accepts other kinds of models besides
24534 lines and polynomials.  Some common models have quick single-key
24535 abbreviations; others must be entered by hand as algebraic formulas.
24537 Here is a complete list of the standard models recognized by @kbd{a F}:
24539 @table @kbd
24540 @item 1
24541 Linear or multilinear.  @mathit{a + b x + c y + d z}.
24542 @item 2-9
24543 Polynomials.  @mathit{a + b x + c x^2 + d x^3}.
24544 @item e
24545 Exponential.  @mathit{a} @tfn{exp}@mathit{(b x)} @tfn{exp}@mathit{(c y)}.
24546 @item E
24547 Base-10 exponential.  @mathit{a} @tfn{10^}@mathit{(b x)} @tfn{10^}@mathit{(c y)}.
24548 @item x
24549 Exponential (alternate notation).  @tfn{exp}@mathit{(a + b x + c y)}.
24550 @item X
24551 Base-10 exponential (alternate).  @tfn{10^}@mathit{(a + b x + c y)}.
24552 @item l
24553 Logarithmic.  @mathit{a + b} @tfn{ln}@mathit{(x) + c} @tfn{ln}@mathit{(y)}.
24554 @item L
24555 Base-10 logarithmic.  @mathit{a + b} @tfn{log10}@mathit{(x) + c} @tfn{log10}@mathit{(y)}.
24556 @item ^
24557 General exponential.  @mathit{a b^x c^y}.
24558 @item p
24559 Power law.  @mathit{a x^b y^c}.
24560 @item q
24561 Quadratic.  @mathit{a + b (x-c)^2 + d (x-e)^2}.
24562 @item g
24563 Gaussian.  
24564 @texline @math{{a \over b \sqrt{2 \pi}} \exp\left( -{1 \over 2} \left( x - c \over b \right)^2 \right)}.
24565 @infoline @mathit{(a / b sqrt(2 pi)) exp(-0.5*((x-c)/b)^2)}.
24566 @item s
24567 Logistic @emph{s} curve.
24568 @texline @math{a/(1+e^{b(x-c)})}.
24569 @infoline @mathit{a/(1 + exp(b (x - c)))}.
24570 @item b
24571 Logistic bell curve.
24572 @texline @math{ae^{b(x-c)}/(1+e^{b(x-c)})^2}.
24573 @infoline @mathit{a exp(b (x - c))/(1 + exp(b (x - c)))^2}.
24574 @item o
24575 Hubbert linearization.
24576 @texline @math{{y \over x} = a(1-x/b)}.
24577 @infoline @mathit{(y/x) = a (1 - x/b)}.
24578 @end table
24580 All of these models are used in the usual way; just press the appropriate
24581 letter at the model prompt, and choose variable names if you wish.  The
24582 result will be a formula as shown in the above table, with the best-fit
24583 values of the parameters substituted.  (You may find it easier to read
24584 the parameter values from the vector that is placed in the trail.)
24586 All models except Gaussian, logistics, Hubbert and polynomials can
24587 generalize as shown to any number of independent variables.  Also, all
24588 the built-in models except for the logistic and Hubbert curves have an 
24589 additive or multiplicative parameter shown as @expr{a} in the above table
24590 which can be replaced by zero or one, as appropriate, by typing @kbd{h}
24591 before the model key.
24593 Note that many of these models are essentially equivalent, but express
24594 the parameters slightly differently.  For example, @expr{a b^x} and
24595 the other two exponential models are all algebraic rearrangements of
24596 each other.  Also, the ``quadratic'' model is just a degree-2 polynomial
24597 with the parameters expressed differently.  Use whichever form best
24598 matches the problem.
24600 The HP-28/48 calculators support four different models for curve
24601 fitting, called @code{LIN}, @code{LOG}, @code{EXP}, and @code{PWR}.
24602 These correspond to Calc models @samp{a + b x}, @samp{a + b ln(x)},
24603 @samp{a exp(b x)}, and @samp{a x^b}, respectively.  In each case,
24604 @expr{a} is what the HP-48 identifies as the ``intercept,'' and
24605 @expr{b} is what it calls the ``slope.''
24607 @tex
24608 \bigskip
24609 @end tex
24611 If the model you want doesn't appear on this list, press @kbd{'}
24612 (the apostrophe key) at the model prompt to enter any algebraic
24613 formula, such as @kbd{m x - b}, as the model.  (Not all models
24614 will work, though---see the next section for details.)
24616 The model can also be an equation like @expr{y = m x + b}.
24617 In this case, Calc thinks of all the rows of the data matrix on
24618 equal terms; this model effectively has two parameters
24619 (@expr{m} and @expr{b}) and two independent variables (@expr{x}
24620 and @expr{y}), with no ``dependent'' variables.  Model equations
24621 do not need to take this @expr{y =} form.  For example, the
24622 implicit line equation @expr{a x + b y = 1} works fine as a
24623 model.
24625 When you enter a model, Calc makes an alphabetical list of all
24626 the variables that appear in the model.  These are used for the
24627 default parameters, independent variables, and dependent variable
24628 (in that order).  If you enter a plain formula (not an equation),
24629 Calc assumes the dependent variable does not appear in the formula
24630 and thus does not need a name.
24632 For example, if the model formula has the variables @expr{a,mu,sigma,t,x},
24633 and the data matrix has three rows (meaning two independent variables),
24634 Calc will use @expr{a,mu,sigma} as the default parameters, and the
24635 data rows will be named @expr{t} and @expr{x}, respectively.  If you
24636 enter an equation instead of a plain formula, Calc will use @expr{a,mu}
24637 as the parameters, and @expr{sigma,t,x} as the three independent
24638 variables.
24640 You can, of course, override these choices by entering something
24641 different at the prompt.  If you leave some variables out of the list,
24642 those variables must have stored values and those stored values will
24643 be used as constants in the model.  (Stored values for the parameters
24644 and independent variables are ignored by the @kbd{a F} command.)
24645 If you list only independent variables, all the remaining variables
24646 in the model formula will become parameters.
24648 If there are @kbd{$} signs in the model you type, they will stand
24649 for parameters and all other variables (in alphabetical order)
24650 will be independent.  Use @kbd{$} for one parameter, @kbd{$$} for
24651 another, and so on.  Thus @kbd{$ x + $$} is another way to describe
24652 a linear model.
24654 If you type a @kbd{$} instead of @kbd{'} at the model prompt itself,
24655 Calc will take the model formula from the stack.  (The data must then
24656 appear at the second stack level.)  The same conventions are used to
24657 choose which variables in the formula are independent by default and
24658 which are parameters.
24660 Models taken from the stack can also be expressed as vectors of
24661 two or three elements, @expr{[@var{model}, @var{vars}]} or
24662 @expr{[@var{model}, @var{vars}, @var{params}]}.  Each of @var{vars}
24663 and @var{params} may be either a variable or a vector of variables.
24664 (If @var{params} is omitted, all variables in @var{model} except
24665 those listed as @var{vars} are parameters.)
24667 When you enter a model manually with @kbd{'}, Calc puts a 3-vector
24668 describing the model in the trail so you can get it back if you wish.
24670 @tex
24671 \bigskip
24672 @end tex
24674 @vindex Model1
24675 @vindex Model2
24676 Finally, you can store a model in one of the Calc variables
24677 @code{Model1} or @code{Model2}, then use this model by typing
24678 @kbd{a F u} or @kbd{a F U} (respectively).  The value stored in
24679 the variable can be any of the formats that @kbd{a F $} would
24680 accept for a model on the stack.
24682 @tex
24683 \bigskip
24684 @end tex
24686 Calc uses the principal values of inverse functions like @code{ln}
24687 and @code{arcsin} when doing fits.  For example, when you enter
24688 the model @samp{y = sin(a t + b)} Calc actually uses the easier
24689 form @samp{arcsin(y) = a t + b}.  The @code{arcsin} function always
24690 returns results in the range from @mathit{-90} to 90 degrees (or the
24691 equivalent range in radians).  Suppose you had data that you
24692 believed to represent roughly three oscillations of a sine wave,
24693 so that the argument of the sine might go from zero to 
24694 @texline @math{3\times360}
24695 @infoline @mathit{3*360} 
24696 degrees.
24697 The above model would appear to be a good way to determine the
24698 true frequency and phase of the sine wave, but in practice it
24699 would fail utterly.  The righthand side of the actual model
24700 @samp{arcsin(y) = a t + b} will grow smoothly with @expr{t}, but
24701 the lefthand side will bounce back and forth between @mathit{-90} and 90.
24702 No values of @expr{a} and @expr{b} can make the two sides match,
24703 even approximately.
24705 There is no good solution to this problem at present.  You could
24706 restrict your data to small enough ranges so that the above problem
24707 doesn't occur (i.e., not straddling any peaks in the sine wave).
24708 Or, in this case, you could use a totally different method such as
24709 Fourier analysis, which is beyond the scope of the @kbd{a F} command.
24710 (Unfortunately, Calc does not currently have any facilities for
24711 taking Fourier and related transforms.)
24713 @node Curve Fitting Details, Interpolation, Standard Nonlinear Models, Curve Fitting
24714 @subsection Curve Fitting Details
24716 @noindent
24717 Calc's internal least-squares fitter can only handle multilinear
24718 models.  More precisely, it can handle any model of the form
24719 @expr{a f(x,y,z) + b g(x,y,z) + c h(x,y,z)}, where @expr{a,b,c}
24720 are the parameters and @expr{x,y,z} are the independent variables
24721 (of course there can be any number of each, not just three).
24723 In a simple multilinear or polynomial fit, it is easy to see how
24724 to convert the model into this form.  For example, if the model
24725 is @expr{a + b x + c x^2}, then @expr{f(x) = 1}, @expr{g(x) = x},
24726 and @expr{h(x) = x^2} are suitable functions.
24728 For most other models, Calc uses a variety of algebraic manipulations
24729 to try to put the problem into the form
24731 @smallexample
24732 Y(x,y,z) = A(a,b,c) F(x,y,z) + B(a,b,c) G(x,y,z) + C(a,b,c) H(x,y,z)
24733 @end smallexample
24735 @noindent
24736 where @expr{Y,A,B,C,F,G,H} are arbitrary functions.  It computes
24737 @expr{Y}, @expr{F}, @expr{G}, and @expr{H} for all the data points,
24738 does a standard linear fit to find the values of @expr{A}, @expr{B},
24739 and @expr{C}, then uses the equation solver to solve for @expr{a,b,c}
24740 in terms of @expr{A,B,C}.
24742 A remarkable number of models can be cast into this general form.
24743 We'll look at two examples here to see how it works.  The power-law
24744 model @expr{y = a x^b} with two independent variables and two parameters
24745 can be rewritten as follows:
24747 @example
24748 y = a x^b
24749 y = a exp(b ln(x))
24750 y = exp(ln(a) + b ln(x))
24751 ln(y) = ln(a) + b ln(x)
24752 @end example
24754 @noindent
24755 which matches the desired form with 
24756 @texline @math{Y = \ln(y)},
24757 @infoline @expr{Y = ln(y)}, 
24758 @texline @math{A = \ln(a)},
24759 @infoline @expr{A = ln(a)},
24760 @expr{F = 1}, @expr{B = b}, and 
24761 @texline @math{G = \ln(x)}.
24762 @infoline @expr{G = ln(x)}.  
24763 Calc thus computes the logarithms of your @expr{y} and @expr{x} values,
24764 does a linear fit for @expr{A} and @expr{B}, then solves to get 
24765 @texline @math{a = \exp(A)} 
24766 @infoline @expr{a = exp(A)} 
24767 and @expr{b = B}.
24769 Another interesting example is the ``quadratic'' model, which can
24770 be handled by expanding according to the distributive law.
24772 @example
24773 y = a + b*(x - c)^2
24774 y = a + b c^2 - 2 b c x + b x^2
24775 @end example
24777 @noindent
24778 which matches with @expr{Y = y}, @expr{A = a + b c^2}, @expr{F = 1},
24779 @expr{B = -2 b c}, @expr{G = x} (the @mathit{-2} factor could just as easily
24780 have been put into @expr{G} instead of @expr{B}), @expr{C = b}, and
24781 @expr{H = x^2}.
24783 The Gaussian model looks quite complicated, but a closer examination
24784 shows that it's actually similar to the quadratic model but with an
24785 exponential that can be brought to the top and moved into @expr{Y}.
24787 The logistic models cannot be put into general linear form.  For these
24788 models, and the Hubbert linearization, Calc computes a rough
24789 approximation for the parameters, then uses the Levenberg-Marquardt
24790 iterative method to refine the approximations.
24792 Another model that cannot be put into general linear
24793 form is a Gaussian with a constant background added on, i.e.,
24794 @expr{d} + the regular Gaussian formula.  If you have a model like
24795 this, your best bet is to replace enough of your parameters with
24796 constants to make the model linearizable, then adjust the constants
24797 manually by doing a series of fits.  You can compare the fits by
24798 graphing them, by examining the goodness-of-fit measures returned by
24799 @kbd{I a F}, or by some other method suitable to your application.
24800 Note that some models can be linearized in several ways.  The
24801 Gaussian-plus-@var{d} model can be linearized by setting @expr{d}
24802 (the background) to a constant, or by setting @expr{b} (the standard
24803 deviation) and @expr{c} (the mean) to constants.
24805 To fit a model with constants substituted for some parameters, just
24806 store suitable values in those parameter variables, then omit them
24807 from the list of parameters when you answer the variables prompt.
24809 @tex
24810 \bigskip
24811 @end tex
24813 A last desperate step would be to use the general-purpose
24814 @code{minimize} function rather than @code{fit}.  After all, both
24815 functions solve the problem of minimizing an expression (the 
24816 @texline @math{\chi^2}
24817 @infoline @expr{chi^2}
24818 sum) by adjusting certain parameters in the expression.  The @kbd{a F}
24819 command is able to use a vastly more efficient algorithm due to its
24820 special knowledge about linear chi-square sums, but the @kbd{a N}
24821 command can do the same thing by brute force.
24823 A compromise would be to pick out a few parameters without which the
24824 fit is linearizable, and use @code{minimize} on a call to @code{fit}
24825 which efficiently takes care of the rest of the parameters.  The thing
24826 to be minimized would be the value of 
24827 @texline @math{\chi^2}
24828 @infoline @expr{chi^2} 
24829 returned as the fifth result of the @code{xfit} function:
24831 @smallexample
24832 minimize(xfit(gaus(a,b,c,d,x), x, [a,b,c], data)_5, d, guess)
24833 @end smallexample
24835 @noindent
24836 where @code{gaus} represents the Gaussian model with background,
24837 @code{data} represents the data matrix, and @code{guess} represents
24838 the initial guess for @expr{d} that @code{minimize} requires.
24839 This operation will only be, shall we say, extraordinarily slow
24840 rather than astronomically slow (as would be the case if @code{minimize}
24841 were used by itself to solve the problem).
24843 @tex
24844 \bigskip
24845 @end tex
24847 The @kbd{I a F} [@code{xfit}] command is somewhat trickier when
24848 nonlinear models are used.  The second item in the result is the
24849 vector of ``raw'' parameters @expr{A}, @expr{B}, @expr{C}.  The
24850 covariance matrix is written in terms of those raw parameters.
24851 The fifth item is a vector of @dfn{filter} expressions.  This
24852 is the empty vector @samp{[]} if the raw parameters were the same
24853 as the requested parameters, i.e., if @expr{A = a}, @expr{B = b},
24854 and so on (which is always true if the model is already linear
24855 in the parameters as written, e.g., for polynomial fits).  If the
24856 parameters had to be rearranged, the fifth item is instead a vector
24857 of one formula per parameter in the original model.  The raw
24858 parameters are expressed in these ``filter'' formulas as
24859 @samp{fitdummy(1)} for @expr{A}, @samp{fitdummy(2)} for @expr{B},
24860 and so on.
24862 When Calc needs to modify the model to return the result, it replaces
24863 @samp{fitdummy(1)} in all the filters with the first item in the raw
24864 parameters list, and so on for the other raw parameters, then
24865 evaluates the resulting filter formulas to get the actual parameter
24866 values to be substituted into the original model.  In the case of
24867 @kbd{H a F} and @kbd{I a F} where the parameters must be error forms,
24868 Calc uses the square roots of the diagonal entries of the covariance
24869 matrix as error values for the raw parameters, then lets Calc's
24870 standard error-form arithmetic take it from there.
24872 If you use @kbd{I a F} with a nonlinear model, be sure to remember
24873 that the covariance matrix is in terms of the raw parameters,
24874 @emph{not} the actual requested parameters.  It's up to you to
24875 figure out how to interpret the covariances in the presence of
24876 nontrivial filter functions.
24878 Things are also complicated when the input contains error forms.
24879 Suppose there are three independent and dependent variables, @expr{x},
24880 @expr{y}, and @expr{z}, one or more of which are error forms in the
24881 data.  Calc combines all the error values by taking the square root
24882 of the sum of the squares of the errors.  It then changes @expr{x}
24883 and @expr{y} to be plain numbers, and makes @expr{z} into an error
24884 form with this combined error.  The @expr{Y(x,y,z)} part of the
24885 linearized model is evaluated, and the result should be an error
24886 form.  The error part of that result is used for 
24887 @texline @math{\sigma_i}
24888 @infoline @expr{sigma_i} 
24889 for the data point.  If for some reason @expr{Y(x,y,z)} does not return 
24890 an error form, the combined error from @expr{z} is used directly for 
24891 @texline @math{\sigma_i}.
24892 @infoline @expr{sigma_i}.  
24893 Finally, @expr{z} is also stripped of its error
24894 for use in computing @expr{F(x,y,z)}, @expr{G(x,y,z)} and so on;
24895 the righthand side of the linearized model is computed in regular
24896 arithmetic with no error forms.
24898 (While these rules may seem complicated, they are designed to do
24899 the most reasonable thing in the typical case that @expr{Y(x,y,z)}
24900 depends only on the dependent variable @expr{z}, and in fact is
24901 often simply equal to @expr{z}.  For common cases like polynomials
24902 and multilinear models, the combined error is simply used as the
24903 @texline @math{\sigma}
24904 @infoline @expr{sigma} 
24905 for the data point with no further ado.)
24907 @tex
24908 \bigskip
24909 @end tex
24911 @vindex FitRules
24912 It may be the case that the model you wish to use is linearizable,
24913 but Calc's built-in rules are unable to figure it out.  Calc uses
24914 its algebraic rewrite mechanism to linearize a model.  The rewrite
24915 rules are kept in the variable @code{FitRules}.  You can edit this
24916 variable using the @kbd{s e FitRules} command; in fact, there is
24917 a special @kbd{s F} command just for editing @code{FitRules}.
24918 @xref{Operations on Variables}.
24920 @xref{Rewrite Rules}, for a discussion of rewrite rules.
24922 @ignore
24923 @starindex
24924 @end ignore
24925 @tindex fitvar
24926 @ignore
24927 @starindex
24928 @end ignore
24929 @ignore
24930 @mindex @idots
24931 @end ignore
24932 @tindex fitparam
24933 @ignore
24934 @starindex
24935 @end ignore
24936 @ignore
24937 @mindex @null
24938 @end ignore
24939 @tindex fitmodel
24940 @ignore
24941 @starindex
24942 @end ignore
24943 @ignore
24944 @mindex @null
24945 @end ignore
24946 @tindex fitsystem
24947 @ignore
24948 @starindex
24949 @end ignore
24950 @ignore
24951 @mindex @null
24952 @end ignore
24953 @tindex fitdummy
24954 Calc uses @code{FitRules} as follows.  First, it converts the model
24955 to an equation if necessary and encloses the model equation in a
24956 call to the function @code{fitmodel} (which is not actually a defined
24957 function in Calc; it is only used as a placeholder by the rewrite rules).
24958 Parameter variables are renamed to function calls @samp{fitparam(1)},
24959 @samp{fitparam(2)}, and so on, and independent variables are renamed
24960 to @samp{fitvar(1)}, @samp{fitvar(2)}, etc.  The dependent variable
24961 is the highest-numbered @code{fitvar}.  For example, the power law
24962 model @expr{a x^b} is converted to @expr{y = a x^b}, then to
24964 @smallexample
24965 @group
24966 fitmodel(fitvar(2) = fitparam(1) fitvar(1)^fitparam(2))
24967 @end group
24968 @end smallexample
24970 Calc then applies the rewrites as if by @samp{C-u 0 a r FitRules}.
24971 (The zero prefix means that rewriting should continue until no further
24972 changes are possible.)
24974 When rewriting is complete, the @code{fitmodel} call should have
24975 been replaced by a @code{fitsystem} call that looks like this:
24977 @example
24978 fitsystem(@var{Y}, @var{FGH}, @var{abc})
24979 @end example
24981 @noindent
24982 where @var{Y} is a formula that describes the function @expr{Y(x,y,z)},
24983 @var{FGH} is the vector of formulas @expr{[F(x,y,z), G(x,y,z), H(x,y,z)]},
24984 and @var{abc} is the vector of parameter filters which refer to the
24985 raw parameters as @samp{fitdummy(1)} for @expr{A}, @samp{fitdummy(2)}
24986 for @expr{B}, etc.  While the number of raw parameters (the length of
24987 the @var{FGH} vector) is usually the same as the number of original
24988 parameters (the length of the @var{abc} vector), this is not required.
24990 The power law model eventually boils down to
24992 @smallexample
24993 @group
24994 fitsystem(ln(fitvar(2)),
24995           [1, ln(fitvar(1))],
24996           [exp(fitdummy(1)), fitdummy(2)])
24997 @end group
24998 @end smallexample
25000 The actual implementation of @code{FitRules} is complicated; it
25001 proceeds in four phases.  First, common rearrangements are done
25002 to try to bring linear terms together and to isolate functions like
25003 @code{exp} and @code{ln} either all the way ``out'' (so that they
25004 can be put into @var{Y}) or all the way ``in'' (so that they can
25005 be put into @var{abc} or @var{FGH}).  In particular, all
25006 non-constant powers are converted to logs-and-exponentials form,
25007 and the distributive law is used to expand products of sums.
25008 Quotients are rewritten to use the @samp{fitinv} function, where
25009 @samp{fitinv(x)} represents @expr{1/x} while the @code{FitRules}
25010 are operating.  (The use of @code{fitinv} makes recognition of
25011 linear-looking forms easier.)  If you modify @code{FitRules}, you
25012 will probably only need to modify the rules for this phase.
25014 Phase two, whose rules can actually also apply during phases one
25015 and three, first rewrites @code{fitmodel} to a two-argument
25016 form @samp{fitmodel(@var{Y}, @var{model})}, where @var{Y} is
25017 initially zero and @var{model} has been changed from @expr{a=b}
25018 to @expr{a-b} form.  It then tries to peel off invertible functions
25019 from the outside of @var{model} and put them into @var{Y} instead,
25020 calling the equation solver to invert the functions.  Finally, when
25021 this is no longer possible, the @code{fitmodel} is changed to a
25022 four-argument @code{fitsystem}, where the fourth argument is
25023 @var{model} and the @var{FGH} and @var{abc} vectors are initially
25024 empty.  (The last vector is really @var{ABC}, corresponding to
25025 raw parameters, for now.)
25027 Phase three converts a sum of items in the @var{model} to a sum
25028 of @samp{fitpart(@var{a}, @var{b}, @var{c})} terms which represent
25029 terms @samp{@var{a}*@var{b}*@var{c}} of the sum, where @var{a}
25030 is all factors that do not involve any variables, @var{b} is all
25031 factors that involve only parameters, and @var{c} is the factors
25032 that involve only independent variables.  (If this decomposition
25033 is not possible, the rule set will not complete and Calc will
25034 complain that the model is too complex.)  Then @code{fitpart}s
25035 with equal @var{b} or @var{c} components are merged back together
25036 using the distributive law in order to minimize the number of
25037 raw parameters needed.
25039 Phase four moves the @code{fitpart} terms into the @var{FGH} and
25040 @var{ABC} vectors.  Also, some of the algebraic expansions that
25041 were done in phase 1 are undone now to make the formulas more
25042 computationally efficient.  Finally, it calls the solver one more
25043 time to convert the @var{ABC} vector to an @var{abc} vector, and
25044 removes the fourth @var{model} argument (which by now will be zero)
25045 to obtain the three-argument @code{fitsystem} that the linear
25046 least-squares solver wants to see.
25048 @ignore
25049 @starindex
25050 @end ignore
25051 @ignore
25052 @mindex hasfit@idots
25053 @end ignore
25054 @tindex hasfitparams
25055 @ignore
25056 @starindex
25057 @end ignore
25058 @ignore
25059 @mindex @null
25060 @end ignore
25061 @tindex hasfitvars
25062 Two functions which are useful in connection with @code{FitRules}
25063 are @samp{hasfitparams(x)} and @samp{hasfitvars(x)}, which check
25064 whether @expr{x} refers to any parameters or independent variables,
25065 respectively.  Specifically, these functions return ``true'' if the
25066 argument contains any @code{fitparam} (or @code{fitvar}) function
25067 calls, and ``false'' otherwise.  (Recall that ``true'' means a
25068 nonzero number, and ``false'' means zero.  The actual nonzero number
25069 returned is the largest @var{n} from all the @samp{fitparam(@var{n})}s
25070 or @samp{fitvar(@var{n})}s, respectively, that appear in the formula.)
25072 @tex
25073 \bigskip
25074 @end tex
25076 The @code{fit} function in algebraic notation normally takes four
25077 arguments, @samp{fit(@var{model}, @var{vars}, @var{params}, @var{data})},
25078 where @var{model} is the model formula as it would be typed after
25079 @kbd{a F '}, @var{vars} is the independent variable or a vector of
25080 independent variables, @var{params} likewise gives the parameter(s),
25081 and @var{data} is the data matrix.  Note that the length of @var{vars}
25082 must be equal to the number of rows in @var{data} if @var{model} is
25083 an equation, or one less than the number of rows if @var{model} is
25084 a plain formula.  (Actually, a name for the dependent variable is
25085 allowed but will be ignored in the plain-formula case.)
25087 If @var{params} is omitted, the parameters are all variables in
25088 @var{model} except those that appear in @var{vars}.  If @var{vars}
25089 is also omitted, Calc sorts all the variables that appear in
25090 @var{model} alphabetically and uses the higher ones for @var{vars}
25091 and the lower ones for @var{params}.
25093 Alternatively, @samp{fit(@var{modelvec}, @var{data})} is allowed
25094 where @var{modelvec} is a 2- or 3-vector describing the model
25095 and variables, as discussed previously.
25097 If Calc is unable to do the fit, the @code{fit} function is left
25098 in symbolic form, ordinarily with an explanatory message.  The
25099 message will be ``Model expression is too complex'' if the
25100 linearizer was unable to put the model into the required form.
25102 The @code{efit} (corresponding to @kbd{H a F}) and @code{xfit}
25103 (for @kbd{I a F}) functions are completely analogous.
25105 @node Interpolation,  , Curve Fitting Details, Curve Fitting
25106 @subsection Polynomial Interpolation
25108 @kindex a p
25109 @pindex calc-poly-interp
25110 @tindex polint
25111 The @kbd{a p} (@code{calc-poly-interp}) [@code{polint}] command does
25112 a polynomial interpolation at a particular @expr{x} value.  It takes
25113 two arguments from the stack:  A data matrix of the sort used by
25114 @kbd{a F}, and a single number which represents the desired @expr{x}
25115 value.  Calc effectively does an exact polynomial fit as if by @kbd{a F i},
25116 then substitutes the @expr{x} value into the result in order to get an
25117 approximate @expr{y} value based on the fit.  (Calc does not actually
25118 use @kbd{a F i}, however; it uses a direct method which is both more
25119 efficient and more numerically stable.)
25121 The result of @kbd{a p} is actually a vector of two values:  The @expr{y}
25122 value approximation, and an error measure @expr{dy} that reflects Calc's
25123 estimation of the probable error of the approximation at that value of
25124 @expr{x}.  If the input @expr{x} is equal to any of the @expr{x} values
25125 in the data matrix, the output @expr{y} will be the corresponding @expr{y}
25126 value from the matrix, and the output @expr{dy} will be exactly zero.
25128 A prefix argument of 2 causes @kbd{a p} to take separate x- and
25129 y-vectors from the stack instead of one data matrix.
25131 If @expr{x} is a vector of numbers, @kbd{a p} will return a matrix of
25132 interpolated results for each of those @expr{x} values.  (The matrix will
25133 have two columns, the @expr{y} values and the @expr{dy} values.)
25134 If @expr{x} is a formula instead of a number, the @code{polint} function
25135 remains in symbolic form; use the @kbd{a "} command to expand it out to
25136 a formula that describes the fit in symbolic terms.
25138 In all cases, the @kbd{a p} command leaves the data vectors or matrix
25139 on the stack.  Only the @expr{x} value is replaced by the result.
25141 @kindex H a p
25142 @tindex ratint
25143 The @kbd{H a p} [@code{ratint}] command does a rational function
25144 interpolation.  It is used exactly like @kbd{a p}, except that it
25145 uses as its model the quotient of two polynomials.  If there are
25146 @expr{N} data points, the numerator and denominator polynomials will
25147 each have degree @expr{N/2} (if @expr{N} is odd, the denominator will
25148 have degree one higher than the numerator).
25150 Rational approximations have the advantage that they can accurately
25151 describe functions that have poles (points at which the function's value
25152 goes to infinity, so that the denominator polynomial of the approximation
25153 goes to zero).  If @expr{x} corresponds to a pole of the fitted rational
25154 function, then the result will be a division by zero.  If Infinite mode
25155 is enabled, the result will be @samp{[uinf, uinf]}.
25157 There is no way to get the actual coefficients of the rational function
25158 used by @kbd{H a p}.  (The algorithm never generates these coefficients
25159 explicitly, and quotients of polynomials are beyond @w{@kbd{a F}}'s
25160 capabilities to fit.)
25162 @node Summations, Logical Operations, Curve Fitting, Algebra
25163 @section Summations
25165 @noindent
25166 @cindex Summation of a series
25167 @kindex a +
25168 @pindex calc-summation
25169 @tindex sum
25170 The @kbd{a +} (@code{calc-summation}) [@code{sum}] command computes
25171 the sum of a formula over a certain range of index values.  The formula
25172 is taken from the top of the stack; the command prompts for the
25173 name of the summation index variable, the lower limit of the
25174 sum (any formula), and the upper limit of the sum.  If you
25175 enter a blank line at any of these prompts, that prompt and
25176 any later ones are answered by reading additional elements from
25177 the stack.  Thus, @kbd{' k^2 @key{RET} ' k @key{RET} 1 @key{RET} 5 @key{RET} a + @key{RET}}
25178 produces the result 55.
25179 @tex
25180 \turnoffactive
25181 $$ \sum_{k=1}^5 k^2 = 55 $$
25182 @end tex
25184 The choice of index variable is arbitrary, but it's best not to
25185 use a variable with a stored value.  In particular, while
25186 @code{i} is often a favorite index variable, it should be avoided
25187 in Calc because @code{i} has the imaginary constant @expr{(0, 1)}
25188 as a value.  If you pressed @kbd{=} on a sum over @code{i}, it would
25189 be changed to a nonsensical sum over the ``variable'' @expr{(0, 1)}!
25190 If you really want to use @code{i} as an index variable, use
25191 @w{@kbd{s u i @key{RET}}} first to ``unstore'' this variable.
25192 (@xref{Storing Variables}.)
25194 A numeric prefix argument steps the index by that amount rather
25195 than by one.  Thus @kbd{' a_k @key{RET} C-u -2 a + k @key{RET} 10 @key{RET} 0 @key{RET}}
25196 yields @samp{a_10 + a_8 + a_6 + a_4 + a_2 + a_0}.  A prefix
25197 argument of plain @kbd{C-u} causes @kbd{a +} to prompt for the
25198 step value, in which case you can enter any formula or enter
25199 a blank line to take the step value from the stack.  With the
25200 @kbd{C-u} prefix, @kbd{a +} can take up to five arguments from
25201 the stack:  The formula, the variable, the lower limit, the
25202 upper limit, and (at the top of the stack), the step value.
25204 Calc knows how to do certain sums in closed form.  For example,
25205 @samp{sum(6 k^2, k, 1, n) = @w{2 n^3} + 3 n^2 + n}.  In particular,
25206 this is possible if the formula being summed is polynomial or
25207 exponential in the index variable.  Sums of logarithms are
25208 transformed into logarithms of products.  Sums of trigonometric
25209 and hyperbolic functions are transformed to sums of exponentials
25210 and then done in closed form.  Also, of course, sums in which the
25211 lower and upper limits are both numbers can always be evaluated
25212 just by grinding them out, although Calc will use closed forms
25213 whenever it can for the sake of efficiency.
25215 The notation for sums in algebraic formulas is
25216 @samp{sum(@var{expr}, @var{var}, @var{low}, @var{high}, @var{step})}.
25217 If @var{step} is omitted, it defaults to one.  If @var{high} is
25218 omitted, @var{low} is actually the upper limit and the lower limit
25219 is one.  If @var{low} is also omitted, the limits are @samp{-inf}
25220 and @samp{inf}, respectively.
25222 Infinite sums can sometimes be evaluated:  @samp{sum(.5^k, k, 1, inf)}
25223 returns @expr{1}.  This is done by evaluating the sum in closed
25224 form (to @samp{1. - 0.5^n} in this case), then evaluating this
25225 formula with @code{n} set to @code{inf}.  Calc's usual rules
25226 for ``infinite'' arithmetic can find the answer from there.  If
25227 infinite arithmetic yields a @samp{nan}, or if the sum cannot be
25228 solved in closed form, Calc leaves the @code{sum} function in
25229 symbolic form.  @xref{Infinities}.
25231 As a special feature, if the limits are infinite (or omitted, as
25232 described above) but the formula includes vectors subscripted by
25233 expressions that involve the iteration variable, Calc narrows
25234 the limits to include only the range of integers which result in
25235 valid subscripts for the vector.  For example, the sum
25236 @samp{sum(k [a,b,c,d,e,f,g]_(2k),k)} evaluates to @samp{b + 2 d + 3 f}.
25238 The limits of a sum do not need to be integers.  For example,
25239 @samp{sum(a_k, k, 0, 2 n, n)} produces @samp{a_0 + a_n + a_(2 n)}.
25240 Calc computes the number of iterations using the formula
25241 @samp{1 + (@var{high} - @var{low}) / @var{step}}, which must,
25242 after simplification as if by @kbd{a s}, evaluate to an integer.
25244 If the number of iterations according to the above formula does
25245 not come out to an integer, the sum is invalid and will be left
25246 in symbolic form.  However, closed forms are still supplied, and
25247 you are on your honor not to misuse the resulting formulas by
25248 substituting mismatched bounds into them.  For example,
25249 @samp{sum(k, k, 1, 10, 2)} is invalid, but Calc will go ahead and
25250 evaluate the closed form solution for the limits 1 and 10 to get
25251 the rather dubious answer, 29.25.
25253 If the lower limit is greater than the upper limit (assuming a
25254 positive step size), the result is generally zero.  However,
25255 Calc only guarantees a zero result when the upper limit is
25256 exactly one step less than the lower limit, i.e., if the number
25257 of iterations is @mathit{-1}.  Thus @samp{sum(f(k), k, n, n-1)} is zero
25258 but the sum from @samp{n} to @samp{n-2} may report a nonzero value
25259 if Calc used a closed form solution.
25261 Calc's logical predicates like @expr{a < b} return 1 for ``true''
25262 and 0 for ``false.''  @xref{Logical Operations}.  This can be
25263 used to advantage for building conditional sums.  For example,
25264 @samp{sum(prime(k)*k^2, k, 1, 20)} is the sum of the squares of all
25265 prime numbers from 1 to 20; the @code{prime} predicate returns 1 if
25266 its argument is prime and 0 otherwise.  You can read this expression
25267 as ``the sum of @expr{k^2}, where @expr{k} is prime.''  Indeed,
25268 @samp{sum(prime(k)*k^2, k)} would represent the sum of @emph{all} primes
25269 squared, since the limits default to plus and minus infinity, but
25270 there are no such sums that Calc's built-in rules can do in
25271 closed form.
25273 As another example, @samp{sum((k != k_0) * f(k), k, 1, n)} is the
25274 sum of @expr{f(k)} for all @expr{k} from 1 to @expr{n}, excluding
25275 one value @expr{k_0}.  Slightly more tricky is the summand
25276 @samp{(k != k_0) / (k - k_0)}, which is an attempt to describe
25277 the sum of all @expr{1/(k-k_0)} except at @expr{k = k_0}, where
25278 this would be a division by zero.  But at @expr{k = k_0}, this
25279 formula works out to the indeterminate form @expr{0 / 0}, which
25280 Calc will not assume is zero.  Better would be to use
25281 @samp{(k != k_0) ? 1/(k-k_0) : 0}; the @samp{? :} operator does
25282 an ``if-then-else'' test:  This expression says, ``if 
25283 @texline @math{k \ne k_0},
25284 @infoline @expr{k != k_0},
25285 then @expr{1/(k-k_0)}, else zero.''  Now the formula @expr{1/(k-k_0)}
25286 will not even be evaluated by Calc when @expr{k = k_0}.
25288 @cindex Alternating sums
25289 @kindex a -
25290 @pindex calc-alt-summation
25291 @tindex asum
25292 The @kbd{a -} (@code{calc-alt-summation}) [@code{asum}] command
25293 computes an alternating sum.  Successive terms of the sequence
25294 are given alternating signs, with the first term (corresponding
25295 to the lower index value) being positive.  Alternating sums
25296 are converted to normal sums with an extra term of the form
25297 @samp{(-1)^(k-@var{low})}.  This formula is adjusted appropriately
25298 if the step value is other than one.  For example, the Taylor
25299 series for the sine function is @samp{asum(x^k / k!, k, 1, inf, 2)}.
25300 (Calc cannot evaluate this infinite series, but it can approximate
25301 it if you replace @code{inf} with any particular odd number.)
25302 Calc converts this series to a regular sum with a step of one,
25303 namely @samp{sum((-1)^k x^(2k+1) / (2k+1)!, k, 0, inf)}.
25305 @cindex Product of a sequence
25306 @kindex a *
25307 @pindex calc-product
25308 @tindex prod
25309 The @kbd{a *} (@code{calc-product}) [@code{prod}] command is
25310 the analogous way to take a product of many terms.  Calc also knows
25311 some closed forms for products, such as @samp{prod(k, k, 1, n) = n!}.
25312 Conditional products can be written @samp{prod(k^prime(k), k, 1, n)}
25313 or @samp{prod(prime(k) ? k : 1, k, 1, n)}.
25315 @kindex a T
25316 @pindex calc-tabulate
25317 @tindex table
25318 The @kbd{a T} (@code{calc-tabulate}) [@code{table}] command
25319 evaluates a formula at a series of iterated index values, just
25320 like @code{sum} and @code{prod}, but its result is simply a
25321 vector of the results.  For example, @samp{table(a_i, i, 1, 7, 2)}
25322 produces @samp{[a_1, a_3, a_5, a_7]}.
25324 @node Logical Operations, Rewrite Rules, Summations, Algebra
25325 @section Logical Operations
25327 @noindent
25328 The following commands and algebraic functions return true/false values,
25329 where 1 represents ``true'' and 0 represents ``false.''  In cases where
25330 a truth value is required (such as for the condition part of a rewrite
25331 rule, or as the condition for a @w{@kbd{Z [ Z ]}} control structure), any
25332 nonzero value is accepted to mean ``true.''  (Specifically, anything
25333 for which @code{dnonzero} returns 1 is ``true,'' and anything for
25334 which @code{dnonzero} returns 0 or cannot decide is assumed ``false.''
25335 Note that this means that @w{@kbd{Z [ Z ]}} will execute the ``then''
25336 portion if its condition is provably true, but it will execute the
25337 ``else'' portion for any condition like @expr{a = b} that is not
25338 provably true, even if it might be true.  Algebraic functions that
25339 have conditions as arguments, like @code{? :} and @code{&&}, remain
25340 unevaluated if the condition is neither provably true nor provably
25341 false.  @xref{Declarations}.)
25343 @kindex a =
25344 @pindex calc-equal-to
25345 @tindex eq
25346 @tindex =
25347 @tindex ==
25348 The @kbd{a =} (@code{calc-equal-to}) command, or @samp{eq(a,b)} function
25349 (which can also be written @samp{a = b} or @samp{a == b} in an algebraic
25350 formula) is true if @expr{a} and @expr{b} are equal, either because they
25351 are identical expressions, or because they are numbers which are
25352 numerically equal.  (Thus the integer 1 is considered equal to the float
25353 1.0.)  If the equality of @expr{a} and @expr{b} cannot be determined,
25354 the comparison is left in symbolic form.  Note that as a command, this
25355 operation pops two values from the stack and pushes back either a 1 or
25356 a 0, or a formula @samp{a = b} if the values' equality cannot be determined.
25358 Many Calc commands use @samp{=} formulas to represent @dfn{equations}.
25359 For example, the @kbd{a S} (@code{calc-solve-for}) command rearranges
25360 an equation to solve for a given variable.  The @kbd{a M}
25361 (@code{calc-map-equation}) command can be used to apply any
25362 function to both sides of an equation; for example, @kbd{2 a M *}
25363 multiplies both sides of the equation by two.  Note that just
25364 @kbd{2 *} would not do the same thing; it would produce the formula
25365 @samp{2 (a = b)} which represents 2 if the equality is true or
25366 zero if not.
25368 The @code{eq} function with more than two arguments (e.g., @kbd{C-u 3 a =}
25369 or @samp{a = b = c}) tests if all of its arguments are equal.  In
25370 algebraic notation, the @samp{=} operator is unusual in that it is
25371 neither left- nor right-associative:  @samp{a = b = c} is not the
25372 same as @samp{(a = b) = c} or @samp{a = (b = c)} (which each compare
25373 one variable with the 1 or 0 that results from comparing two other
25374 variables).
25376 @kindex a #
25377 @pindex calc-not-equal-to
25378 @tindex neq
25379 @tindex !=
25380 The @kbd{a #} (@code{calc-not-equal-to}) command, or @samp{neq(a,b)} or
25381 @samp{a != b} function, is true if @expr{a} and @expr{b} are not equal.
25382 This also works with more than two arguments; @samp{a != b != c != d}
25383 tests that all four of @expr{a}, @expr{b}, @expr{c}, and @expr{d} are
25384 distinct numbers.
25386 @kindex a <
25387 @tindex lt
25388 @ignore
25389 @mindex @idots
25390 @end ignore
25391 @kindex a >
25392 @ignore
25393 @mindex @null
25394 @end ignore
25395 @kindex a [
25396 @ignore
25397 @mindex @null
25398 @end ignore
25399 @kindex a ]
25400 @pindex calc-less-than
25401 @pindex calc-greater-than
25402 @pindex calc-less-equal
25403 @pindex calc-greater-equal
25404 @ignore
25405 @mindex @null
25406 @end ignore
25407 @tindex gt
25408 @ignore
25409 @mindex @null
25410 @end ignore
25411 @tindex leq
25412 @ignore
25413 @mindex @null
25414 @end ignore
25415 @tindex geq
25416 @ignore
25417 @mindex @null
25418 @end ignore
25419 @tindex <
25420 @ignore
25421 @mindex @null
25422 @end ignore
25423 @tindex >
25424 @ignore
25425 @mindex @null
25426 @end ignore
25427 @tindex <=
25428 @ignore
25429 @mindex @null
25430 @end ignore
25431 @tindex >=
25432 The @kbd{a <} (@code{calc-less-than}) [@samp{lt(a,b)} or @samp{a < b}]
25433 operation is true if @expr{a} is less than @expr{b}.  Similar functions
25434 are @kbd{a >} (@code{calc-greater-than}) [@samp{gt(a,b)} or @samp{a > b}],
25435 @kbd{a [} (@code{calc-less-equal}) [@samp{leq(a,b)} or @samp{a <= b}], and
25436 @kbd{a ]} (@code{calc-greater-equal}) [@samp{geq(a,b)} or @samp{a >= b}].
25438 While the inequality functions like @code{lt} do not accept more
25439 than two arguments, the syntax @w{@samp{a <= b < c}} is translated to an
25440 equivalent expression involving intervals: @samp{b in [a .. c)}.
25441 (See the description of @code{in} below.)  All four combinations
25442 of @samp{<} and @samp{<=} are allowed, or any of the four combinations
25443 of @samp{>} and @samp{>=}.  Four-argument constructions like
25444 @samp{a < b < c < d}, and mixtures like @w{@samp{a < b = c}} that
25445 involve both equalities and inequalities, are not allowed.
25447 @kindex a .
25448 @pindex calc-remove-equal
25449 @tindex rmeq
25450 The @kbd{a .} (@code{calc-remove-equal}) [@code{rmeq}] command extracts
25451 the righthand side of the equation or inequality on the top of the
25452 stack.  It also works elementwise on vectors.  For example, if
25453 @samp{[x = 2.34, y = z / 2]} is on the stack, then @kbd{a .} produces
25454 @samp{[2.34, z / 2]}.  As a special case, if the righthand side is a
25455 variable and the lefthand side is a number (as in @samp{2.34 = x}), then
25456 Calc keeps the lefthand side instead.  Finally, this command works with
25457 assignments @samp{x := 2.34} as well as equations, always taking the
25458 righthand side, and for @samp{=>} (evaluates-to) operators, always
25459 taking the lefthand side.
25461 @kindex a &
25462 @pindex calc-logical-and
25463 @tindex land
25464 @tindex &&
25465 The @kbd{a &} (@code{calc-logical-and}) [@samp{land(a,b)} or @samp{a && b}]
25466 function is true if both of its arguments are true, i.e., are
25467 non-zero numbers.  In this case, the result will be either @expr{a} or
25468 @expr{b}, chosen arbitrarily.  If either argument is zero, the result is
25469 zero.  Otherwise, the formula is left in symbolic form.
25471 @kindex a |
25472 @pindex calc-logical-or
25473 @tindex lor
25474 @tindex ||
25475 The @kbd{a |} (@code{calc-logical-or}) [@samp{lor(a,b)} or @samp{a || b}]
25476 function is true if either or both of its arguments are true (nonzero).
25477 The result is whichever argument was nonzero, choosing arbitrarily if both
25478 are nonzero.  If both @expr{a} and @expr{b} are zero, the result is
25479 zero.
25481 @kindex a !
25482 @pindex calc-logical-not
25483 @tindex lnot
25484 @tindex !
25485 The @kbd{a !} (@code{calc-logical-not}) [@samp{lnot(a)} or @samp{!@: a}]
25486 function is true if @expr{a} is false (zero), or false if @expr{a} is
25487 true (nonzero).  It is left in symbolic form if @expr{a} is not a
25488 number.
25490 @kindex a :
25491 @pindex calc-logical-if
25492 @tindex if
25493 @ignore
25494 @mindex ? :
25495 @end ignore
25496 @tindex ?
25497 @ignore
25498 @mindex @null
25499 @end ignore
25500 @tindex :
25501 @cindex Arguments, not evaluated
25502 The @kbd{a :} (@code{calc-logical-if}) [@samp{if(a,b,c)} or @samp{a ? b :@: c}]
25503 function is equal to either @expr{b} or @expr{c} if @expr{a} is a nonzero
25504 number or zero, respectively.  If @expr{a} is not a number, the test is
25505 left in symbolic form and neither @expr{b} nor @expr{c} is evaluated in
25506 any way.  In algebraic formulas, this is one of the few Calc functions
25507 whose arguments are not automatically evaluated when the function itself
25508 is evaluated.  The others are @code{lambda}, @code{quote}, and
25509 @code{condition}.
25511 One minor surprise to watch out for is that the formula @samp{a?3:4}
25512 will not work because the @samp{3:4} is parsed as a fraction instead of
25513 as three separate symbols.  Type something like @samp{a ? 3 : 4} or
25514 @samp{a?(3):4} instead.
25516 As a special case, if @expr{a} evaluates to a vector, then both @expr{b}
25517 and @expr{c} are evaluated; the result is a vector of the same length
25518 as @expr{a} whose elements are chosen from corresponding elements of
25519 @expr{b} and @expr{c} according to whether each element of @expr{a}
25520 is zero or nonzero.  Each of @expr{b} and @expr{c} must be either a
25521 vector of the same length as @expr{a}, or a non-vector which is matched
25522 with all elements of @expr{a}.
25524 @kindex a @{
25525 @pindex calc-in-set
25526 @tindex in
25527 The @kbd{a @{} (@code{calc-in-set}) [@samp{in(a,b)}] function is true if
25528 the number @expr{a} is in the set of numbers represented by @expr{b}.
25529 If @expr{b} is an interval form, @expr{a} must be one of the values
25530 encompassed by the interval.  If @expr{b} is a vector, @expr{a} must be
25531 equal to one of the elements of the vector.  (If any vector elements are
25532 intervals, @expr{a} must be in any of the intervals.)  If @expr{b} is a
25533 plain number, @expr{a} must be numerically equal to @expr{b}.
25534 @xref{Set Operations}, for a group of commands that manipulate sets
25535 of this sort.
25537 @ignore
25538 @starindex
25539 @end ignore
25540 @tindex typeof
25541 The @samp{typeof(a)} function produces an integer or variable which
25542 characterizes @expr{a}.  If @expr{a} is a number, vector, or variable,
25543 the result will be one of the following numbers:
25545 @example
25546  1   Integer
25547  2   Fraction
25548  3   Floating-point number
25549  4   HMS form
25550  5   Rectangular complex number
25551  6   Polar complex number
25552  7   Error form
25553  8   Interval form
25554  9   Modulo form
25555 10   Date-only form
25556 11   Date/time form
25557 12   Infinity (inf, uinf, or nan)
25558 100  Variable
25559 101  Vector (but not a matrix)
25560 102  Matrix
25561 @end example
25563 Otherwise, @expr{a} is a formula, and the result is a variable which
25564 represents the name of the top-level function call.
25566 @ignore
25567 @starindex
25568 @end ignore
25569 @tindex integer
25570 @ignore
25571 @starindex
25572 @end ignore
25573 @tindex real
25574 @ignore
25575 @starindex
25576 @end ignore
25577 @tindex constant
25578 The @samp{integer(a)} function returns true if @expr{a} is an integer.
25579 The @samp{real(a)} function
25580 is true if @expr{a} is a real number, either integer, fraction, or
25581 float.  The @samp{constant(a)} function returns true if @expr{a} is
25582 any of the objects for which @code{typeof} would produce an integer
25583 code result except for variables, and provided that the components of
25584 an object like a vector or error form are themselves constant.
25585 Note that infinities do not satisfy any of these tests, nor do
25586 special constants like @code{pi} and @code{e}.
25588 @xref{Declarations}, for a set of similar functions that recognize
25589 formulas as well as actual numbers.  For example, @samp{dint(floor(x))}
25590 is true because @samp{floor(x)} is provably integer-valued, but
25591 @samp{integer(floor(x))} does not because @samp{floor(x)} is not
25592 literally an integer constant.
25594 @ignore
25595 @starindex
25596 @end ignore
25597 @tindex refers
25598 The @samp{refers(a,b)} function is true if the variable (or sub-expression)
25599 @expr{b} appears in @expr{a}, or false otherwise.  Unlike the other
25600 tests described here, this function returns a definite ``no'' answer
25601 even if its arguments are still in symbolic form.  The only case where
25602 @code{refers} will be left unevaluated is if @expr{a} is a plain
25603 variable (different from @expr{b}).
25605 @ignore
25606 @starindex
25607 @end ignore
25608 @tindex negative
25609 The @samp{negative(a)} function returns true if @expr{a} ``looks'' negative,
25610 because it is a negative number, because it is of the form @expr{-x},
25611 or because it is a product or quotient with a term that looks negative.
25612 This is most useful in rewrite rules.  Beware that @samp{negative(a)}
25613 evaluates to 1 or 0 for @emph{any} argument @expr{a}, so it can only
25614 be stored in a formula if the default simplifications are turned off
25615 first with @kbd{m O} (or if it appears in an unevaluated context such
25616 as a rewrite rule condition).
25618 @ignore
25619 @starindex
25620 @end ignore
25621 @tindex variable
25622 The @samp{variable(a)} function is true if @expr{a} is a variable,
25623 or false if not.  If @expr{a} is a function call, this test is left
25624 in symbolic form.  Built-in variables like @code{pi} and @code{inf}
25625 are considered variables like any others by this test.
25627 @ignore
25628 @starindex
25629 @end ignore
25630 @tindex nonvar
25631 The @samp{nonvar(a)} function is true if @expr{a} is a non-variable.
25632 If its argument is a variable it is left unsimplified; it never
25633 actually returns zero.  However, since Calc's condition-testing
25634 commands consider ``false'' anything not provably true, this is
25635 often good enough.
25637 @ignore
25638 @starindex
25639 @end ignore
25640 @tindex lin
25641 @ignore
25642 @starindex
25643 @end ignore
25644 @tindex linnt
25645 @ignore
25646 @starindex
25647 @end ignore
25648 @tindex islin
25649 @ignore
25650 @starindex
25651 @end ignore
25652 @tindex islinnt
25653 @cindex Linearity testing
25654 The functions @code{lin}, @code{linnt}, @code{islin}, and @code{islinnt}
25655 check if an expression is ``linear,'' i.e., can be written in the form
25656 @expr{a + b x} for some constants @expr{a} and @expr{b}, and some
25657 variable or subformula @expr{x}.  The function @samp{islin(f,x)} checks
25658 if formula @expr{f} is linear in @expr{x}, returning 1 if so.  For
25659 example, @samp{islin(x,x)}, @samp{islin(-x,x)}, @samp{islin(3,x)}, and
25660 @samp{islin(x y / 3 - 2, x)} all return 1.  The @samp{lin(f,x)} function
25661 is similar, except that instead of returning 1 it returns the vector
25662 @expr{[a, b, x]}.  For the above examples, this vector would be
25663 @expr{[0, 1, x]}, @expr{[0, -1, x]}, @expr{[3, 0, x]}, and
25664 @expr{[-2, y/3, x]}, respectively.  Both @code{lin} and @code{islin}
25665 generally remain unevaluated for expressions which are not linear,
25666 e.g., @samp{lin(2 x^2, x)} and @samp{lin(sin(x), x)}.  The second
25667 argument can also be a formula; @samp{islin(2 + 3 sin(x), sin(x))}
25668 returns true.
25670 The @code{linnt} and @code{islinnt} functions perform a similar check,
25671 but require a ``non-trivial'' linear form, which means that the
25672 @expr{b} coefficient must be non-zero.  For example, @samp{lin(2,x)}
25673 returns @expr{[2, 0, x]} and @samp{lin(y,x)} returns @expr{[y, 0, x]},
25674 but @samp{linnt(2,x)} and @samp{linnt(y,x)} are left unevaluated
25675 (in other words, these formulas are considered to be only ``trivially''
25676 linear in @expr{x}).
25678 All four linearity-testing functions allow you to omit the second
25679 argument, in which case the input may be linear in any non-constant
25680 formula.  Here, the @expr{a=0}, @expr{b=1} case is also considered
25681 trivial, and only constant values for @expr{a} and @expr{b} are
25682 recognized.  Thus, @samp{lin(2 x y)} returns @expr{[0, 2, x y]},
25683 @samp{lin(2 - x y)} returns @expr{[2, -1, x y]}, and @samp{lin(x y)}
25684 returns @expr{[0, 1, x y]}.  The @code{linnt} function would allow the
25685 first two cases but not the third.  Also, neither @code{lin} nor
25686 @code{linnt} accept plain constants as linear in the one-argument
25687 case: @samp{islin(2,x)} is true, but @samp{islin(2)} is false.
25689 @ignore
25690 @starindex
25691 @end ignore
25692 @tindex istrue
25693 The @samp{istrue(a)} function returns 1 if @expr{a} is a nonzero
25694 number or provably nonzero formula, or 0 if @expr{a} is anything else.
25695 Calls to @code{istrue} can only be manipulated if @kbd{m O} mode is
25696 used to make sure they are not evaluated prematurely.  (Note that
25697 declarations are used when deciding whether a formula is true;
25698 @code{istrue} returns 1 when @code{dnonzero} would return 1, and
25699 it returns 0 when @code{dnonzero} would return 0 or leave itself
25700 in symbolic form.)
25702 @node Rewrite Rules,  , Logical Operations, Algebra
25703 @section Rewrite Rules
25705 @noindent
25706 @cindex Rewrite rules
25707 @cindex Transformations
25708 @cindex Pattern matching
25709 @kindex a r
25710 @pindex calc-rewrite
25711 @tindex rewrite
25712 The @kbd{a r} (@code{calc-rewrite}) [@code{rewrite}] command makes
25713 substitutions in a formula according to a specified pattern or patterns
25714 known as @dfn{rewrite rules}.  Whereas @kbd{a b} (@code{calc-substitute})
25715 matches literally, so that substituting @samp{sin(x)} with @samp{cos(x)}
25716 matches only the @code{sin} function applied to the variable @code{x},
25717 rewrite rules match general kinds of formulas; rewriting using the rule
25718 @samp{sin(x) := cos(x)} matches @code{sin} of any argument and replaces
25719 it with @code{cos} of that same argument.  The only significance of the
25720 name @code{x} is that the same name is used on both sides of the rule.
25722 Rewrite rules rearrange formulas already in Calc's memory.
25723 @xref{Syntax Tables}, to read about @dfn{syntax rules}, which are
25724 similar to algebraic rewrite rules but operate when new algebraic
25725 entries are being parsed, converting strings of characters into
25726 Calc formulas.
25728 @menu
25729 * Entering Rewrite Rules::
25730 * Basic Rewrite Rules::
25731 * Conditional Rewrite Rules::
25732 * Algebraic Properties of Rewrite Rules::
25733 * Other Features of Rewrite Rules::
25734 * Composing Patterns in Rewrite Rules::
25735 * Nested Formulas with Rewrite Rules::
25736 * Multi-Phase Rewrite Rules::
25737 * Selections with Rewrite Rules::
25738 * Matching Commands::
25739 * Automatic Rewrites::
25740 * Debugging Rewrites::
25741 * Examples of Rewrite Rules::
25742 @end menu
25744 @node Entering Rewrite Rules, Basic Rewrite Rules, Rewrite Rules, Rewrite Rules
25745 @subsection Entering Rewrite Rules
25747 @noindent
25748 Rewrite rules normally use the ``assignment'' operator
25749 @samp{@var{old} := @var{new}}.
25750 This operator is equivalent to the function call @samp{assign(old, new)}.
25751 The @code{assign} function is undefined by itself in Calc, so an
25752 assignment formula such as a rewrite rule will be left alone by ordinary
25753 Calc commands.  But certain commands, like the rewrite system, interpret
25754 assignments in special ways.
25756 For example, the rule @samp{sin(x)^2 := 1-cos(x)^2} says to replace
25757 every occurrence of the sine of something, squared, with one minus the
25758 square of the cosine of that same thing.  All by itself as a formula
25759 on the stack it does nothing, but when given to the @kbd{a r} command
25760 it turns that command into a sine-squared-to-cosine-squared converter.
25762 To specify a set of rules to be applied all at once, make a vector of
25763 rules.
25765 When @kbd{a r} prompts you to enter the rewrite rules, you can answer
25766 in several ways:
25768 @enumerate
25769 @item
25770 With a rule:  @kbd{f(x) := g(x) @key{RET}}.
25771 @item
25772 With a vector of rules:  @kbd{[f1(x) := g1(x), f2(x) := g2(x)] @key{RET}}.
25773 (You can omit the enclosing square brackets if you wish.)
25774 @item
25775 With the name of a variable that contains the rule or rules vector:
25776 @kbd{myrules @key{RET}}.
25777 @item
25778 With any formula except a rule, a vector, or a variable name; this
25779 will be interpreted as the @var{old} half of a rewrite rule,
25780 and you will be prompted a second time for the @var{new} half:
25781 @kbd{f(x) @key{RET} g(x) @key{RET}}.
25782 @item
25783 With a blank line, in which case the rule, rules vector, or variable
25784 will be taken from the top of the stack (and the formula to be
25785 rewritten will come from the second-to-top position).
25786 @end enumerate
25788 If you enter the rules directly (as opposed to using rules stored
25789 in a variable), those rules will be put into the Trail so that you
25790 can retrieve them later.  @xref{Trail Commands}.
25792 It is most convenient to store rules you use often in a variable and
25793 invoke them by giving the variable name.  The @kbd{s e}
25794 (@code{calc-edit-variable}) command is an easy way to create or edit a
25795 rule set stored in a variable.  You may also wish to use @kbd{s p}
25796 (@code{calc-permanent-variable}) to save your rules permanently;
25797 @pxref{Operations on Variables}.
25799 Rewrite rules are compiled into a special internal form for faster
25800 matching.  If you enter a rule set directly it must be recompiled
25801 every time.  If you store the rules in a variable and refer to them
25802 through that variable, they will be compiled once and saved away
25803 along with the variable for later reference.  This is another good
25804 reason to store your rules in a variable.
25806 Calc also accepts an obsolete notation for rules, as vectors
25807 @samp{[@var{old}, @var{new}]}.  But because it is easily confused with a
25808 vector of two rules, the use of this notation is no longer recommended.
25810 @node Basic Rewrite Rules, Conditional Rewrite Rules, Entering Rewrite Rules, Rewrite Rules
25811 @subsection Basic Rewrite Rules
25813 @noindent
25814 To match a particular formula @expr{x} with a particular rewrite rule
25815 @samp{@var{old} := @var{new}}, Calc compares the structure of @expr{x} with
25816 the structure of @var{old}.  Variables that appear in @var{old} are
25817 treated as @dfn{meta-variables}; the corresponding positions in @expr{x}
25818 may contain any sub-formulas.  For example, the pattern @samp{f(x,y)}
25819 would match the expression @samp{f(12, a+1)} with the meta-variable
25820 @samp{x} corresponding to 12 and with @samp{y} corresponding to
25821 @samp{a+1}.  However, this pattern would not match @samp{f(12)} or
25822 @samp{g(12, a+1)}, since there is no assignment of the meta-variables
25823 that will make the pattern match these expressions.  Notice that if
25824 the pattern is a single meta-variable, it will match any expression.
25826 If a given meta-variable appears more than once in @var{old}, the
25827 corresponding sub-formulas of @expr{x} must be identical.  Thus
25828 the pattern @samp{f(x,x)} would match @samp{f(12, 12)} and
25829 @samp{f(a+1, a+1)} but not @samp{f(12, a+1)} or @samp{f(a+b, b+a)}.
25830 (@xref{Conditional Rewrite Rules}, for a way to match the latter.)
25832 Things other than variables must match exactly between the pattern
25833 and the target formula.  To match a particular variable exactly, use
25834 the pseudo-function @samp{quote(v)} in the pattern.  For example, the
25835 pattern @samp{x+quote(y)} matches @samp{x+y}, @samp{2+y}, or
25836 @samp{sin(a)+y}.
25838 The special variable names @samp{e}, @samp{pi}, @samp{i}, @samp{phi},
25839 @samp{gamma}, @samp{inf}, @samp{uinf}, and @samp{nan} always match
25840 literally.  Thus the pattern @samp{sin(d + e + f)} acts exactly like
25841 @samp{sin(d + quote(e) + f)}.
25843 If the @var{old} pattern is found to match a given formula, that
25844 formula is replaced by @var{new}, where any occurrences in @var{new}
25845 of meta-variables from the pattern are replaced with the sub-formulas
25846 that they matched.  Thus, applying the rule @samp{f(x,y) := g(y+x,x)}
25847 to @samp{f(12, a+1)} would produce @samp{g(a+13, 12)}.
25849 The normal @kbd{a r} command applies rewrite rules over and over
25850 throughout the target formula until no further changes are possible
25851 (up to a limit of 100 times).  Use @kbd{C-u 1 a r} to make only one
25852 change at a time.
25854 @node Conditional Rewrite Rules, Algebraic Properties of Rewrite Rules, Basic Rewrite Rules, Rewrite Rules
25855 @subsection Conditional Rewrite Rules
25857 @noindent
25858 A rewrite rule can also be @dfn{conditional}, written in the form
25859 @samp{@var{old} := @var{new} :: @var{cond}}.  (There is also the obsolete
25860 form @samp{[@var{old}, @var{new}, @var{cond}]}.)  If a @var{cond} part
25861 is present in the
25862 rule, this is an additional condition that must be satisfied before
25863 the rule is accepted.  Once @var{old} has been successfully matched
25864 to the target expression, @var{cond} is evaluated (with all the
25865 meta-variables substituted for the values they matched) and simplified
25866 with @kbd{a s} (@code{calc-simplify}).  If the result is a nonzero
25867 number or any other object known to be nonzero (@pxref{Declarations}),
25868 the rule is accepted.  If the result is zero or if it is a symbolic
25869 formula that is not known to be nonzero, the rule is rejected.
25870 @xref{Logical Operations}, for a number of functions that return
25871 1 or 0 according to the results of various tests.
25873 For example, the formula @samp{n > 0} simplifies to 1 or 0 if @expr{n}
25874 is replaced by a positive or nonpositive number, respectively (or if
25875 @expr{n} has been declared to be positive or nonpositive).  Thus,
25876 the rule @samp{f(x,y) := g(y+x,x) :: x+y > 0} would apply to
25877 @samp{f(0, 4)} but not to @samp{f(-3, 2)} or @samp{f(12, a+1)}
25878 (assuming no outstanding declarations for @expr{a}).  In the case of
25879 @samp{f(-3, 2)}, the condition can be shown not to be satisfied; in
25880 the case of @samp{f(12, a+1)}, the condition merely cannot be shown
25881 to be satisfied, but that is enough to reject the rule.
25883 While Calc will use declarations to reason about variables in the
25884 formula being rewritten, declarations do not apply to meta-variables.
25885 For example, the rule @samp{f(a) := g(a+1)} will match for any values
25886 of @samp{a}, such as complex numbers, vectors, or formulas, even if
25887 @samp{a} has been declared to be real or scalar.  If you want the
25888 meta-variable @samp{a} to match only literal real numbers, use
25889 @samp{f(a) := g(a+1) :: real(a)}.  If you want @samp{a} to match only
25890 reals and formulas which are provably real, use @samp{dreal(a)} as
25891 the condition.
25893 The @samp{::} operator is a shorthand for the @code{condition}
25894 function; @samp{@var{old} := @var{new} :: @var{cond}} is equivalent to
25895 the formula @samp{condition(assign(@var{old}, @var{new}), @var{cond})}.
25897 If you have several conditions, you can use @samp{... :: c1 :: c2 :: c3}
25898 or @samp{... :: c1 && c2 && c3}.  The two are entirely equivalent.
25900 It is also possible to embed conditions inside the pattern:
25901 @samp{f(x :: x>0, y) := g(y+x, x)}.  This is purely a notational
25902 convenience, though; where a condition appears in a rule has no
25903 effect on when it is tested.  The rewrite-rule compiler automatically
25904 decides when it is best to test each condition while a rule is being
25905 matched.
25907 Certain conditions are handled as special cases by the rewrite rule
25908 system and are tested very efficiently:  Where @expr{x} is any
25909 meta-variable, these conditions are @samp{integer(x)}, @samp{real(x)},
25910 @samp{constant(x)}, @samp{negative(x)}, @samp{x >= y} where @expr{y}
25911 is either a constant or another meta-variable and @samp{>=} may be
25912 replaced by any of the six relational operators, and @samp{x % a = b}
25913 where @expr{a} and @expr{b} are constants.  Other conditions, like
25914 @samp{x >= y+1} or @samp{dreal(x)}, will be less efficient to check
25915 since Calc must bring the whole evaluator and simplifier into play.
25917 An interesting property of @samp{::} is that neither of its arguments
25918 will be touched by Calc's default simplifications.  This is important
25919 because conditions often are expressions that cannot safely be
25920 evaluated early.  For example, the @code{typeof} function never
25921 remains in symbolic form; entering @samp{typeof(a)} will put the
25922 number 100 (the type code for variables like @samp{a}) on the stack.
25923 But putting the condition @samp{... :: typeof(a) = 6} on the stack
25924 is safe since @samp{::} prevents the @code{typeof} from being
25925 evaluated until the condition is actually used by the rewrite system.
25927 Since @samp{::} protects its lefthand side, too, you can use a dummy
25928 condition to protect a rule that must itself not evaluate early.
25929 For example, it's not safe to put @samp{a(f,x) := apply(f, [x])} on
25930 the stack because it will immediately evaluate to @samp{a(f,x) := f(x)},
25931 where the meta-variable-ness of @code{f} on the righthand side has been
25932 lost.  But @samp{a(f,x) := apply(f, [x]) :: 1} is safe, and of course
25933 the condition @samp{1} is always true (nonzero) so it has no effect on
25934 the functioning of the rule.  (The rewrite compiler will ensure that
25935 it doesn't even impact the speed of matching the rule.)
25937 @node Algebraic Properties of Rewrite Rules, Other Features of Rewrite Rules, Conditional Rewrite Rules, Rewrite Rules
25938 @subsection Algebraic Properties of Rewrite Rules
25940 @noindent
25941 The rewrite mechanism understands the algebraic properties of functions
25942 like @samp{+} and @samp{*}.  In particular, pattern matching takes
25943 the associativity and commutativity of the following functions into
25944 account:
25946 @smallexample
25947 + - *  = !=  && ||  and or xor  vint vunion vxor  gcd lcm  max min  beta
25948 @end smallexample
25950 For example, the rewrite rule:
25952 @example
25953 a x + b x  :=  (a + b) x
25954 @end example
25956 @noindent
25957 will match formulas of the form,
25959 @example
25960 a x + b x,  x a + x b,  a x + x b,  x a + b x
25961 @end example
25963 Rewrites also understand the relationship between the @samp{+} and @samp{-}
25964 operators.  The above rewrite rule will also match the formulas,
25966 @example
25967 a x - b x,  x a - x b,  a x - x b,  x a - b x
25968 @end example
25970 @noindent
25971 by matching @samp{b} in the pattern to @samp{-b} from the formula.
25973 Applied to a sum of many terms like @samp{r + a x + s + b x + t}, this
25974 pattern will check all pairs of terms for possible matches.  The rewrite
25975 will take whichever suitable pair it discovers first.
25977 In general, a pattern using an associative operator like @samp{a + b}
25978 will try @var{2 n} different ways to match a sum of @var{n} terms
25979 like @samp{x + y + z - w}.  First, @samp{a} is matched against each
25980 of @samp{x}, @samp{y}, @samp{z}, and @samp{-w} in turn, with @samp{b}
25981 being matched to the remainders @samp{y + z - w}, @samp{x + z - w}, etc.
25982 If none of these succeed, then @samp{b} is matched against each of the
25983 four terms with @samp{a} matching the remainder.  Half-and-half matches,
25984 like @samp{(x + y) + (z - w)}, are not tried.
25986 Note that @samp{*} is not commutative when applied to matrices, but
25987 rewrite rules pretend that it is.  If you type @kbd{m v} to enable
25988 Matrix mode (@pxref{Matrix Mode}), rewrite rules will match @samp{*}
25989 literally, ignoring its usual commutativity property.  (In the
25990 current implementation, the associativity also vanishes---it is as
25991 if the pattern had been enclosed in a @code{plain} marker; see below.)
25992 If you are applying rewrites to formulas with matrices, it's best to
25993 enable Matrix mode first to prevent algebraically incorrect rewrites
25994 from occurring.
25996 The pattern @samp{-x} will actually match any expression.  For example,
25997 the rule
25999 @example
26000 f(-x)  :=  -f(x)
26001 @end example
26003 @noindent
26004 will rewrite @samp{f(a)} to @samp{-f(-a)}.  To avoid this, either use
26005 a @code{plain} marker as described below, or add a @samp{negative(x)}
26006 condition.  The @code{negative} function is true if its argument
26007 ``looks'' negative, for example, because it is a negative number or
26008 because it is a formula like @samp{-x}.  The new rule using this
26009 condition is:
26011 @example
26012 f(x)  :=  -f(-x)  :: negative(x)    @r{or, equivalently,}
26013 f(-x)  :=  -f(x)  :: negative(-x)
26014 @end example
26016 In the same way, the pattern @samp{x - y} will match the sum @samp{a + b}
26017 by matching @samp{y} to @samp{-b}.
26019 The pattern @samp{a b} will also match the formula @samp{x/y} if
26020 @samp{y} is a number.  Thus the rule @samp{a x + @w{b x} := (a+b) x}
26021 will also convert @samp{a x + x / 2} to @samp{(a + 0.5) x} (or
26022 @samp{(a + 1:2) x}, depending on the current fraction mode).
26024 Calc will @emph{not} take other liberties with @samp{*}, @samp{/}, and
26025 @samp{^}.  For example, the pattern @samp{f(a b)} will not match
26026 @samp{f(x^2)}, and @samp{f(a + b)} will not match @samp{f(2 x)}, even
26027 though conceivably these patterns could match with @samp{a = b = x}.
26028 Nor will @samp{f(a b)} match @samp{f(x / y)} if @samp{y} is not a
26029 constant, even though it could be considered to match with @samp{a = x}
26030 and @samp{b = 1/y}.  The reasons are partly for efficiency, and partly
26031 because while few mathematical operations are substantively different
26032 for addition and subtraction, often it is preferable to treat the cases
26033 of multiplication, division, and integer powers separately.
26035 Even more subtle is the rule set
26037 @example
26038 [ f(a) + f(b) := f(a + b),  -f(a) := f(-a) ]
26039 @end example
26041 @noindent
26042 attempting to match @samp{f(x) - f(y)}.  You might think that Calc
26043 will view this subtraction as @samp{f(x) + (-f(y))} and then apply
26044 the above two rules in turn, but actually this will not work because
26045 Calc only does this when considering rules for @samp{+} (like the
26046 first rule in this set).  So it will see first that @samp{f(x) + (-f(y))}
26047 does not match @samp{f(a) + f(b)} for any assignments of the
26048 meta-variables, and then it will see that @samp{f(x) - f(y)} does
26049 not match @samp{-f(a)} for any assignment of @samp{a}.  Because Calc
26050 tries only one rule at a time, it will not be able to rewrite
26051 @samp{f(x) - f(y)} with this rule set.  An explicit @samp{f(a) - f(b)}
26052 rule will have to be added.
26054 Another thing patterns will @emph{not} do is break up complex numbers.
26055 The pattern @samp{myconj(a + @w{b i)} := a - b i} will work for formulas
26056 involving the special constant @samp{i} (such as @samp{3 - 4 i}), but
26057 it will not match actual complex numbers like @samp{(3, -4)}.  A version
26058 of the above rule for complex numbers would be
26060 @example
26061 myconj(a)  :=  re(a) - im(a) (0,1)  :: im(a) != 0
26062 @end example
26064 @noindent
26065 (Because the @code{re} and @code{im} functions understand the properties
26066 of the special constant @samp{i}, this rule will also work for
26067 @samp{3 - 4 i}.  In fact, this particular rule would probably be better
26068 without the @samp{im(a) != 0} condition, since if @samp{im(a) = 0} the
26069 righthand side of the rule will still give the correct answer for the
26070 conjugate of a real number.)
26072 It is also possible to specify optional arguments in patterns.  The rule
26074 @example
26075 opt(a) x + opt(b) (x^opt(c) + opt(d))  :=  f(a, b, c, d)
26076 @end example
26078 @noindent
26079 will match the formula
26081 @example
26082 5 (x^2 - 4) + 3 x
26083 @end example
26085 @noindent
26086 in a fairly straightforward manner, but it will also match reduced
26087 formulas like
26089 @example
26090 x + x^2,    2(x + 1) - x,    x + x
26091 @end example
26093 @noindent
26094 producing, respectively,
26096 @example
26097 f(1, 1, 2, 0),   f(-1, 2, 1, 1),   f(1, 1, 1, 0)
26098 @end example
26100 (The latter two formulas can be entered only if default simplifications
26101 have been turned off with @kbd{m O}.)
26103 The default value for a term of a sum is zero.  The default value
26104 for a part of a product, for a power, or for the denominator of a
26105 quotient, is one.  Also, @samp{-x} matches the pattern @samp{opt(a) b}
26106 with @samp{a = -1}.
26108 In particular, the distributive-law rule can be refined to
26110 @example
26111 opt(a) x + opt(b) x  :=  (a + b) x
26112 @end example
26114 @noindent
26115 so that it will convert, e.g., @samp{a x - x}, to @samp{(a - 1) x}.
26117 The pattern @samp{opt(a) + opt(b) x} matches almost any formulas which
26118 are linear in @samp{x}.  You can also use the @code{lin} and @code{islin}
26119 functions with rewrite conditions to test for this; @pxref{Logical
26120 Operations}.  These functions are not as convenient to use in rewrite
26121 rules, but they recognize more kinds of formulas as linear:
26122 @samp{x/z} is considered linear with @expr{b = 1/z} by @code{lin},
26123 but it will not match the above pattern because that pattern calls
26124 for a multiplication, not a division.
26126 As another example, the obvious rule to replace @samp{sin(x)^2 + cos(x)^2}
26127 by 1,
26129 @example
26130 sin(x)^2 + cos(x)^2  :=  1
26131 @end example
26133 @noindent
26134 misses many cases because the sine and cosine may both be multiplied by
26135 an equal factor.  Here's a more successful rule:
26137 @example
26138 opt(a) sin(x)^2 + opt(a) cos(x)^2  :=  a
26139 @end example
26141 Note that this rule will @emph{not} match @samp{sin(x)^2 + 6 cos(x)^2}
26142 because one @expr{a} would have ``matched'' 1 while the other matched 6.
26144 Calc automatically converts a rule like
26146 @example
26147 f(x-1, x)  :=  g(x)
26148 @end example
26150 @noindent
26151 into the form
26153 @example
26154 f(temp, x)  :=  g(x)  :: temp = x-1
26155 @end example
26157 @noindent
26158 (where @code{temp} stands for a new, invented meta-variable that
26159 doesn't actually have a name).  This modified rule will successfully
26160 match @samp{f(6, 7)}, binding @samp{temp} and @samp{x} to 6 and 7,
26161 respectively, then verifying that they differ by one even though
26162 @samp{6} does not superficially look like @samp{x-1}.
26164 However, Calc does not solve equations to interpret a rule.  The
26165 following rule,
26167 @example
26168 f(x-1, x+1)  :=  g(x)
26169 @end example
26171 @noindent
26172 will not work.  That is, it will match @samp{f(a - 1 + b, a + 1 + b)}
26173 but not @samp{f(6, 8)}.  Calc always interprets at least one occurrence
26174 of a variable by literal matching.  If the variable appears ``isolated''
26175 then Calc is smart enough to use it for literal matching.  But in this
26176 last example, Calc is forced to rewrite the rule to @samp{f(x-1, temp)
26177 := g(x) :: temp = x+1} where the @samp{x-1} term must correspond to an
26178 actual ``something-minus-one'' in the target formula.
26180 A successful way to write this would be @samp{f(x, x+2) := g(x+1)}.
26181 You could make this resemble the original form more closely by using
26182 @code{let} notation, which is described in the next section:
26184 @example
26185 f(xm1, x+1)  :=  g(x)  :: let(x := xm1+1)
26186 @end example
26188 Calc does this rewriting or ``conditionalizing'' for any sub-pattern
26189 which involves only the functions in the following list, operating
26190 only on constants and meta-variables which have already been matched
26191 elsewhere in the pattern.  When matching a function call, Calc is
26192 careful to match arguments which are plain variables before arguments
26193 which are calls to any of the functions below, so that a pattern like
26194 @samp{f(x-1, x)} can be conditionalized even though the isolated
26195 @samp{x} comes after the @samp{x-1}.
26197 @smallexample
26198 + - * / \ % ^  abs sign  round rounde roundu trunc floor ceil
26199 max min  re im conj arg
26200 @end smallexample
26202 You can suppress all of the special treatments described in this
26203 section by surrounding a function call with a @code{plain} marker.
26204 This marker causes the function call which is its argument to be
26205 matched literally, without regard to commutativity, associativity,
26206 negation, or conditionalization.  When you use @code{plain}, the
26207 ``deep structure'' of the formula being matched can show through.
26208 For example,
26210 @example
26211 plain(a - a b)  :=  f(a, b)
26212 @end example
26214 @noindent
26215 will match only literal subtractions.  However, the @code{plain}
26216 marker does not affect its arguments' arguments.  In this case,
26217 commutativity and associativity is still considered while matching
26218 the @w{@samp{a b}} sub-pattern, so the whole pattern will match
26219 @samp{x - y x} as well as @samp{x - x y}.  We could go still
26220 further and use
26222 @example
26223 plain(a - plain(a b))  :=  f(a, b)
26224 @end example
26226 @noindent
26227 which would do a completely strict match for the pattern.
26229 By contrast, the @code{quote} marker means that not only the
26230 function name but also the arguments must be literally the same.
26231 The above pattern will match @samp{x - x y} but
26233 @example
26234 quote(a - a b)  :=  f(a, b)
26235 @end example
26237 @noindent
26238 will match only the single formula @samp{a - a b}.  Also,
26240 @example
26241 quote(a - quote(a b))  :=  f(a, b)
26242 @end example
26244 @noindent
26245 will match only @samp{a - quote(a b)}---probably not the desired
26246 effect!
26248 A certain amount of algebra is also done when substituting the
26249 meta-variables on the righthand side of a rule.  For example,
26250 in the rule
26252 @example
26253 a + f(b)  :=  f(a + b)
26254 @end example
26256 @noindent
26257 matching @samp{f(x) - y} would produce @samp{f((-y) + x)} if
26258 taken literally, but the rewrite mechanism will simplify the
26259 righthand side to @samp{f(x - y)} automatically.  (Of course,
26260 the default simplifications would do this anyway, so this
26261 special simplification is only noticeable if you have turned the
26262 default simplifications off.)  This rewriting is done only when
26263 a meta-variable expands to a ``negative-looking'' expression.
26264 If this simplification is not desirable, you can use a @code{plain}
26265 marker on the righthand side:
26267 @example
26268 a + f(b)  :=  f(plain(a + b))
26269 @end example
26271 @noindent
26272 In this example, we are still allowing the pattern-matcher to
26273 use all the algebra it can muster, but the righthand side will
26274 always simplify to a literal addition like @samp{f((-y) + x)}.
26276 @node Other Features of Rewrite Rules, Composing Patterns in Rewrite Rules, Algebraic Properties of Rewrite Rules, Rewrite Rules
26277 @subsection Other Features of Rewrite Rules
26279 @noindent
26280 Certain ``function names'' serve as markers in rewrite rules.
26281 Here is a complete list of these markers.  First are listed the
26282 markers that work inside a pattern; then come the markers that
26283 work in the righthand side of a rule.
26285 @ignore
26286 @starindex
26287 @end ignore
26288 @tindex import
26289 One kind of marker, @samp{import(x)}, takes the place of a whole
26290 rule.  Here @expr{x} is the name of a variable containing another
26291 rule set; those rules are ``spliced into'' the rule set that
26292 imports them.  For example, if @samp{[f(a+b) := f(a) + f(b),
26293 f(a b) := a f(b) :: real(a)]} is stored in variable @samp{linearF},
26294 then the rule set @samp{[f(0) := 0, import(linearF)]} will apply
26295 all three rules.  It is possible to modify the imported rules
26296 slightly:  @samp{import(x, v1, x1, v2, x2, @dots{})} imports
26297 the rule set @expr{x} with all occurrences of 
26298 @texline @math{v_1},
26299 @infoline @expr{v1}, 
26300 as either a variable name or a function name, replaced with 
26301 @texline @math{x_1}
26302 @infoline @expr{x1} 
26303 and so on.  (If 
26304 @texline @math{v_1}
26305 @infoline @expr{v1} 
26306 is used as a function name, then 
26307 @texline @math{x_1}
26308 @infoline @expr{x1}
26309 must be either a function name itself or a @w{@samp{< >}} nameless
26310 function; @pxref{Specifying Operators}.)  For example, @samp{[g(0) := 0,
26311 import(linearF, f, g)]} applies the linearity rules to the function
26312 @samp{g} instead of @samp{f}.  Imports can be nested, but the
26313 import-with-renaming feature may fail to rename sub-imports properly.
26315 The special functions allowed in patterns are:
26317 @table @samp
26318 @item quote(x)
26319 @ignore
26320 @starindex
26321 @end ignore
26322 @tindex quote
26323 This pattern matches exactly @expr{x}; variable names in @expr{x} are
26324 not interpreted as meta-variables.  The only flexibility is that
26325 numbers are compared for numeric equality, so that the pattern
26326 @samp{f(quote(12))} will match both @samp{f(12)} and @samp{f(12.0)}.
26327 (Numbers are always treated this way by the rewrite mechanism:
26328 The rule @samp{f(x,x) := g(x)} will match @samp{f(12, 12.0)}.
26329 The rewrite may produce either @samp{g(12)} or @samp{g(12.0)}
26330 as a result in this case.)
26332 @item plain(x)
26333 @ignore
26334 @starindex
26335 @end ignore
26336 @tindex plain
26337 Here @expr{x} must be a function call @samp{f(x1,x2,@dots{})}.  This
26338 pattern matches a call to function @expr{f} with the specified
26339 argument patterns.  No special knowledge of the properties of the
26340 function @expr{f} is used in this case; @samp{+} is not commutative or
26341 associative.  Unlike @code{quote}, the arguments @samp{x1,x2,@dots{}}
26342 are treated as patterns.  If you wish them to be treated ``plainly''
26343 as well, you must enclose them with more @code{plain} markers:
26344 @samp{plain(plain(@w{-a}) + plain(b c))}.
26346 @item opt(x,def)
26347 @ignore
26348 @starindex
26349 @end ignore
26350 @tindex opt
26351 Here @expr{x} must be a variable name.  This must appear as an
26352 argument to a function or an element of a vector; it specifies that
26353 the argument or element is optional.
26354 As an argument to @samp{+}, @samp{-}, @samp{*}, @samp{&&}, or @samp{||},
26355 or as the second argument to @samp{/} or @samp{^}, the value @var{def}
26356 may be omitted.  The pattern @samp{x + opt(y)} matches a sum by
26357 binding one summand to @expr{x} and the other to @expr{y}, and it
26358 matches anything else by binding the whole expression to @expr{x} and
26359 zero to @expr{y}.  The other operators above work similarly.
26361 For general miscellaneous functions, the default value @code{def}
26362 must be specified.  Optional arguments are dropped starting with
26363 the rightmost one during matching.  For example, the pattern
26364 @samp{f(opt(a,0), b, opt(c,b))} will match @samp{f(b)}, @samp{f(a,b)},
26365 or @samp{f(a,b,c)}.  Default values of zero and @expr{b} are
26366 supplied in this example for the omitted arguments.  Note that
26367 the literal variable @expr{b} will be the default in the latter
26368 case, @emph{not} the value that matched the meta-variable @expr{b}.
26369 In other words, the default @var{def} is effectively quoted.
26371 @item condition(x,c)
26372 @ignore
26373 @starindex
26374 @end ignore
26375 @tindex condition
26376 @tindex ::
26377 This matches the pattern @expr{x}, with the attached condition
26378 @expr{c}.  It is the same as @samp{x :: c}.
26380 @item pand(x,y)
26381 @ignore
26382 @starindex
26383 @end ignore
26384 @tindex pand
26385 @tindex &&&
26386 This matches anything that matches both pattern @expr{x} and
26387 pattern @expr{y}.  It is the same as @samp{x &&& y}.
26388 @pxref{Composing Patterns in Rewrite Rules}.
26390 @item por(x,y)
26391 @ignore
26392 @starindex
26393 @end ignore
26394 @tindex por
26395 @tindex |||
26396 This matches anything that matches either pattern @expr{x} or
26397 pattern @expr{y}.  It is the same as @w{@samp{x ||| y}}.
26399 @item pnot(x)
26400 @ignore
26401 @starindex
26402 @end ignore
26403 @tindex pnot
26404 @tindex !!!
26405 This matches anything that does not match pattern @expr{x}.
26406 It is the same as @samp{!!! x}.
26408 @item cons(h,t)
26409 @ignore
26410 @mindex cons
26411 @end ignore
26412 @tindex cons (rewrites)
26413 This matches any vector of one or more elements.  The first
26414 element is matched to @expr{h}; a vector of the remaining
26415 elements is matched to @expr{t}.  Note that vectors of fixed
26416 length can also be matched as actual vectors:  The rule
26417 @samp{cons(a,cons(b,[])) := cons(a+b,[])} is equivalent
26418 to the rule @samp{[a,b] := [a+b]}.
26420 @item rcons(t,h)
26421 @ignore
26422 @mindex rcons
26423 @end ignore
26424 @tindex rcons (rewrites)
26425 This is like @code{cons}, except that the @emph{last} element
26426 is matched to @expr{h}, with the remaining elements matched
26427 to @expr{t}.
26429 @item apply(f,args)
26430 @ignore
26431 @mindex apply
26432 @end ignore
26433 @tindex apply (rewrites)
26434 This matches any function call.  The name of the function, in
26435 the form of a variable, is matched to @expr{f}.  The arguments
26436 of the function, as a vector of zero or more objects, are
26437 matched to @samp{args}.  Constants, variables, and vectors
26438 do @emph{not} match an @code{apply} pattern.  For example,
26439 @samp{apply(f,x)} matches any function call, @samp{apply(quote(f),x)}
26440 matches any call to the function @samp{f}, @samp{apply(f,[a,b])}
26441 matches any function call with exactly two arguments, and
26442 @samp{apply(quote(f), cons(a,cons(b,x)))} matches any call
26443 to the function @samp{f} with two or more arguments.  Another
26444 way to implement the latter, if the rest of the rule does not
26445 need to refer to the first two arguments of @samp{f} by name,
26446 would be @samp{apply(quote(f), x :: vlen(x) >= 2)}.
26447 Here's a more interesting sample use of @code{apply}:
26449 @example
26450 apply(f,[x+n])  :=  n + apply(f,[x])
26451    :: in(f, [floor,ceil,round,trunc]) :: integer(n)
26452 @end example
26454 Note, however, that this will be slower to match than a rule
26455 set with four separate rules.  The reason is that Calc sorts
26456 the rules of a rule set according to top-level function name;
26457 if the top-level function is @code{apply}, Calc must try the
26458 rule for every single formula and sub-formula.  If the top-level
26459 function in the pattern is, say, @code{floor}, then Calc invokes
26460 the rule only for sub-formulas which are calls to @code{floor}.
26462 Formulas normally written with operators like @code{+} are still
26463 considered function calls:  @code{apply(f,x)} matches @samp{a+b}
26464 with @samp{f = add}, @samp{x = [a,b]}.
26466 You must use @code{apply} for meta-variables with function names
26467 on both sides of a rewrite rule:  @samp{apply(f, [x]) := f(x+1)}
26468 is @emph{not} correct, because it rewrites @samp{spam(6)} into
26469 @samp{f(7)}.  The righthand side should be @samp{apply(f, [x+1])}.
26470 Also note that you will have to use No-Simplify mode (@kbd{m O})
26471 when entering this rule so that the @code{apply} isn't
26472 evaluated immediately to get the new rule @samp{f(x) := f(x+1)}.
26473 Or, use @kbd{s e} to enter the rule without going through the stack,
26474 or enter the rule as @samp{apply(f, [x]) := apply(f, [x+1]) @w{:: 1}}.
26475 @xref{Conditional Rewrite Rules}.
26477 @item select(x)
26478 @ignore
26479 @starindex
26480 @end ignore
26481 @tindex select
26482 This is used for applying rules to formulas with selections;
26483 @pxref{Selections with Rewrite Rules}.
26484 @end table
26486 Special functions for the righthand sides of rules are:
26488 @table @samp
26489 @item quote(x)
26490 The notation @samp{quote(x)} is changed to @samp{x} when the
26491 righthand side is used.  As far as the rewrite rule is concerned,
26492 @code{quote} is invisible.  However, @code{quote} has the special
26493 property in Calc that its argument is not evaluated.  Thus,
26494 while it will not work to put the rule @samp{t(a) := typeof(a)}
26495 on the stack because @samp{typeof(a)} is evaluated immediately
26496 to produce @samp{t(a) := 100}, you can use @code{quote} to
26497 protect the righthand side:  @samp{t(a) := quote(typeof(a))}.
26498 (@xref{Conditional Rewrite Rules}, for another trick for
26499 protecting rules from evaluation.)
26501 @item plain(x)
26502 Special properties of and simplifications for the function call
26503 @expr{x} are not used.  One interesting case where @code{plain}
26504 is useful is the rule, @samp{q(x) := quote(x)}, trying to expand a
26505 shorthand notation for the @code{quote} function.  This rule will
26506 not work as shown; instead of replacing @samp{q(foo)} with
26507 @samp{quote(foo)}, it will replace it with @samp{foo}!  The correct
26508 rule would be @samp{q(x) := plain(quote(x))}.
26510 @item cons(h,t)
26511 Where @expr{t} is a vector, this is converted into an expanded
26512 vector during rewrite processing.  Note that @code{cons} is a regular
26513 Calc function which normally does this anyway; the only way @code{cons}
26514 is treated specially by rewrites is that @code{cons} on the righthand
26515 side of a rule will be evaluated even if default simplifications
26516 have been turned off.
26518 @item rcons(t,h)
26519 Analogous to @code{cons} except putting @expr{h} at the @emph{end} of
26520 the vector @expr{t}.
26522 @item apply(f,args)
26523 Where @expr{f} is a variable and @var{args} is a vector, this
26524 is converted to a function call.  Once again, note that @code{apply}
26525 is also a regular Calc function.
26527 @item eval(x)
26528 @ignore
26529 @starindex
26530 @end ignore
26531 @tindex eval
26532 The formula @expr{x} is handled in the usual way, then the
26533 default simplifications are applied to it even if they have
26534 been turned off normally.  This allows you to treat any function
26535 similarly to the way @code{cons} and @code{apply} are always
26536 treated.  However, there is a slight difference:  @samp{cons(2+3, [])}
26537 with default simplifications off will be converted to @samp{[2+3]},
26538 whereas @samp{eval(cons(2+3, []))} will be converted to @samp{[5]}.
26540 @item evalsimp(x)
26541 @ignore
26542 @starindex
26543 @end ignore
26544 @tindex evalsimp
26545 The formula @expr{x} has meta-variables substituted in the usual
26546 way, then algebraically simplified as if by the @kbd{a s} command.
26548 @item evalextsimp(x)
26549 @ignore
26550 @starindex
26551 @end ignore
26552 @tindex evalextsimp
26553 The formula @expr{x} has meta-variables substituted in the normal
26554 way, then ``extendedly'' simplified as if by the @kbd{a e} command.
26556 @item select(x)
26557 @xref{Selections with Rewrite Rules}.
26558 @end table
26560 There are also some special functions you can use in conditions.
26562 @table @samp
26563 @item let(v := x)
26564 @ignore
26565 @starindex
26566 @end ignore
26567 @tindex let
26568 The expression @expr{x} is evaluated with meta-variables substituted.
26569 The @kbd{a s} command's simplifications are @emph{not} applied by
26570 default, but @expr{x} can include calls to @code{evalsimp} or
26571 @code{evalextsimp} as described above to invoke higher levels
26572 of simplification.  The
26573 result of @expr{x} is then bound to the meta-variable @expr{v}.  As
26574 usual, if this meta-variable has already been matched to something
26575 else the two values must be equal; if the meta-variable is new then
26576 it is bound to the result of the expression.  This variable can then
26577 appear in later conditions, and on the righthand side of the rule.
26578 In fact, @expr{v} may be any pattern in which case the result of
26579 evaluating @expr{x} is matched to that pattern, binding any
26580 meta-variables that appear in that pattern.  Note that @code{let}
26581 can only appear by itself as a condition, or as one term of an
26582 @samp{&&} which is a whole condition:  It cannot be inside
26583 an @samp{||} term or otherwise buried.
26585 The alternate, equivalent form @samp{let(v, x)} is also recognized.
26586 Note that the use of @samp{:=} by @code{let}, while still being
26587 assignment-like in character, is unrelated to the use of @samp{:=}
26588 in the main part of a rewrite rule.
26590 As an example, @samp{f(a) := g(ia) :: let(ia := 1/a) :: constant(ia)}
26591 replaces @samp{f(a)} with @samp{g} of the inverse of @samp{a}, if
26592 that inverse exists and is constant.  For example, if @samp{a} is a
26593 singular matrix the operation @samp{1/a} is left unsimplified and
26594 @samp{constant(ia)} fails, but if @samp{a} is an invertible matrix
26595 then the rule succeeds.  Without @code{let} there would be no way
26596 to express this rule that didn't have to invert the matrix twice.
26597 Note that, because the meta-variable @samp{ia} is otherwise unbound
26598 in this rule, the @code{let} condition itself always ``succeeds''
26599 because no matter what @samp{1/a} evaluates to, it can successfully
26600 be bound to @code{ia}.
26602 Here's another example, for integrating cosines of linear
26603 terms:  @samp{myint(cos(y),x) := sin(y)/b :: let([a,b,x] := lin(y,x))}.
26604 The @code{lin} function returns a 3-vector if its argument is linear,
26605 or leaves itself unevaluated if not.  But an unevaluated @code{lin}
26606 call will not match the 3-vector on the lefthand side of the @code{let},
26607 so this @code{let} both verifies that @code{y} is linear, and binds
26608 the coefficients @code{a} and @code{b} for use elsewhere in the rule.
26609 (It would have been possible to use @samp{sin(a x + b)/b} for the
26610 righthand side instead, but using @samp{sin(y)/b} avoids gratuitous
26611 rearrangement of the argument of the sine.)
26613 @ignore
26614 @starindex
26615 @end ignore
26616 @tindex ierf
26617 Similarly, here is a rule that implements an inverse-@code{erf}
26618 function.  It uses @code{root} to search for a solution.  If
26619 @code{root} succeeds, it will return a vector of two numbers
26620 where the first number is the desired solution.  If no solution
26621 is found, @code{root} remains in symbolic form.  So we use
26622 @code{let} to check that the result was indeed a vector.
26624 @example
26625 ierf(x)  :=  y  :: let([y,z] := root(erf(a) = x, a, .5))
26626 @end example
26628 @item matches(v,p)
26629 The meta-variable @var{v}, which must already have been matched
26630 to something elsewhere in the rule, is compared against pattern
26631 @var{p}.  Since @code{matches} is a standard Calc function, it
26632 can appear anywhere in a condition.  But if it appears alone or
26633 as a term of a top-level @samp{&&}, then you get the special
26634 extra feature that meta-variables which are bound to things
26635 inside @var{p} can be used elsewhere in the surrounding rewrite
26636 rule.
26638 The only real difference between @samp{let(p := v)} and
26639 @samp{matches(v, p)} is that the former evaluates @samp{v} using
26640 the default simplifications, while the latter does not.
26642 @item remember
26643 @vindex remember
26644 This is actually a variable, not a function.  If @code{remember}
26645 appears as a condition in a rule, then when that rule succeeds
26646 the original expression and rewritten expression are added to the
26647 front of the rule set that contained the rule.  If the rule set
26648 was not stored in a variable, @code{remember} is ignored.  The
26649 lefthand side is enclosed in @code{quote} in the added rule if it
26650 contains any variables.
26652 For example, the rule @samp{f(n) := n f(n-1) :: remember} applied
26653 to @samp{f(7)} will add the rule @samp{f(7) := 7 f(6)} to the front
26654 of the rule set.  The rule set @code{EvalRules} works slightly
26655 differently:  There, the evaluation of @samp{f(6)} will complete before
26656 the result is added to the rule set, in this case as @samp{f(7) := 5040}.
26657 Thus @code{remember} is most useful inside @code{EvalRules}.
26659 It is up to you to ensure that the optimization performed by
26660 @code{remember} is safe.  For example, the rule @samp{foo(n) := n
26661 :: evalv(eatfoo) > 0 :: remember} is a bad idea (@code{evalv} is
26662 the function equivalent of the @kbd{=} command); if the variable
26663 @code{eatfoo} ever contains 1, rules like @samp{foo(7) := 7} will
26664 be added to the rule set and will continue to operate even if
26665 @code{eatfoo} is later changed to 0.
26667 @item remember(c)
26668 @ignore
26669 @starindex
26670 @end ignore
26671 @tindex remember
26672 Remember the match as described above, but only if condition @expr{c}
26673 is true.  For example, @samp{remember(n % 4 = 0)} in the above factorial
26674 rule remembers only every fourth result.  Note that @samp{remember(1)}
26675 is equivalent to @samp{remember}, and @samp{remember(0)} has no effect.
26676 @end table
26678 @node Composing Patterns in Rewrite Rules, Nested Formulas with Rewrite Rules, Other Features of Rewrite Rules, Rewrite Rules
26679 @subsection Composing Patterns in Rewrite Rules
26681 @noindent
26682 There are three operators, @samp{&&&}, @samp{|||}, and @samp{!!!},
26683 that combine rewrite patterns to make larger patterns.  The
26684 combinations are ``and,'' ``or,'' and ``not,'' respectively, and
26685 these operators are the pattern equivalents of @samp{&&}, @samp{||}
26686 and @samp{!} (which operate on zero-or-nonzero logical values).
26688 Note that @samp{&&&}, @samp{|||}, and @samp{!!!} are left in symbolic
26689 form by all regular Calc features; they have special meaning only in
26690 the context of rewrite rule patterns.
26692 The pattern @samp{@var{p1} &&& @var{p2}} matches anything that
26693 matches both @var{p1} and @var{p2}.  One especially useful case is
26694 when one of @var{p1} or @var{p2} is a meta-variable.  For example,
26695 here is a rule that operates on error forms:
26697 @example
26698 f(x &&& a +/- b, x)  :=  g(x)
26699 @end example
26701 This does the same thing, but is arguably simpler than, the rule
26703 @example
26704 f(a +/- b, a +/- b)  :=  g(a +/- b)
26705 @end example
26707 @ignore
26708 @starindex
26709 @end ignore
26710 @tindex ends
26711 Here's another interesting example:
26713 @example
26714 ends(cons(a, x) &&& rcons(y, b))  :=  [a, b]
26715 @end example
26717 @noindent
26718 which effectively clips out the middle of a vector leaving just
26719 the first and last elements.  This rule will change a one-element
26720 vector @samp{[a]} to @samp{[a, a]}.  The similar rule
26722 @example
26723 ends(cons(a, rcons(y, b)))  :=  [a, b]
26724 @end example
26726 @noindent
26727 would do the same thing except that it would fail to match a
26728 one-element vector.
26730 @tex
26731 \bigskip
26732 @end tex
26734 The pattern @samp{@var{p1} ||| @var{p2}} matches anything that
26735 matches either @var{p1} or @var{p2}.  Calc first tries matching
26736 against @var{p1}; if that fails, it goes on to try @var{p2}.
26738 @ignore
26739 @starindex
26740 @end ignore
26741 @tindex curve
26742 A simple example of @samp{|||} is
26744 @example
26745 curve(inf ||| -inf)  :=  0
26746 @end example
26748 @noindent
26749 which converts both @samp{curve(inf)} and @samp{curve(-inf)} to zero.
26751 Here is a larger example:
26753 @example
26754 log(a, b) ||| (ln(a) :: let(b := e))  :=  mylog(a, b)
26755 @end example
26757 This matches both generalized and natural logarithms in a single rule.
26758 Note that the @samp{::} term must be enclosed in parentheses because
26759 that operator has lower precedence than @samp{|||} or @samp{:=}.
26761 (In practice this rule would probably include a third alternative,
26762 omitted here for brevity, to take care of @code{log10}.)
26764 While Calc generally treats interior conditions exactly the same as
26765 conditions on the outside of a rule, it does guarantee that if all the
26766 variables in the condition are special names like @code{e}, or already
26767 bound in the pattern to which the condition is attached (say, if
26768 @samp{a} had appeared in this condition), then Calc will process this
26769 condition right after matching the pattern to the left of the @samp{::}.
26770 Thus, we know that @samp{b} will be bound to @samp{e} only if the
26771 @code{ln} branch of the @samp{|||} was taken.
26773 Note that this rule was careful to bind the same set of meta-variables
26774 on both sides of the @samp{|||}.  Calc does not check this, but if
26775 you bind a certain meta-variable only in one branch and then use that
26776 meta-variable elsewhere in the rule, results are unpredictable:
26778 @example
26779 f(a,b) ||| g(b)  :=  h(a,b)
26780 @end example
26782 Here if the pattern matches @samp{g(17)}, Calc makes no promises about
26783 the value that will be substituted for @samp{a} on the righthand side.
26785 @tex
26786 \bigskip
26787 @end tex
26789 The pattern @samp{!!! @var{pat}} matches anything that does not
26790 match @var{pat}.  Any meta-variables that are bound while matching
26791 @var{pat} remain unbound outside of @var{pat}.
26793 For example,
26795 @example
26796 f(x &&& !!! a +/- b, !!![])  :=  g(x)
26797 @end example
26799 @noindent
26800 converts @code{f} whose first argument is anything @emph{except} an
26801 error form, and whose second argument is not the empty vector, into
26802 a similar call to @code{g} (but without the second argument).
26804 If we know that the second argument will be a vector (empty or not),
26805 then an equivalent rule would be:
26807 @example
26808 f(x, y)  :=  g(x)  :: typeof(x) != 7 :: vlen(y) > 0
26809 @end example
26811 @noindent
26812 where of course 7 is the @code{typeof} code for error forms.
26813 Another final condition, that works for any kind of @samp{y},
26814 would be @samp{!istrue(y == [])}.  (The @code{istrue} function
26815 returns an explicit 0 if its argument was left in symbolic form;
26816 plain @samp{!(y == [])} or @samp{y != []} would not work to replace
26817 @samp{!!![]} since these would be left unsimplified, and thus cause
26818 the rule to fail, if @samp{y} was something like a variable name.)
26820 It is possible for a @samp{!!!} to refer to meta-variables bound
26821 elsewhere in the pattern.  For example,
26823 @example
26824 f(a, !!!a)  :=  g(a)
26825 @end example
26827 @noindent
26828 matches any call to @code{f} with different arguments, changing
26829 this to @code{g} with only the first argument.
26831 If a function call is to be matched and one of the argument patterns
26832 contains a @samp{!!!} somewhere inside it, that argument will be
26833 matched last.  Thus
26835 @example
26836 f(!!!a, a)  :=  g(a)
26837 @end example
26839 @noindent
26840 will be careful to bind @samp{a} to the second argument of @code{f}
26841 before testing the first argument.  If Calc had tried to match the
26842 first argument of @code{f} first, the results would have been
26843 disastrous: since @code{a} was unbound so far, the pattern @samp{a}
26844 would have matched anything at all, and the pattern @samp{!!!a}
26845 therefore would @emph{not} have matched anything at all!
26847 @node Nested Formulas with Rewrite Rules, Multi-Phase Rewrite Rules, Composing Patterns in Rewrite Rules, Rewrite Rules
26848 @subsection Nested Formulas with Rewrite Rules
26850 @noindent
26851 When @kbd{a r} (@code{calc-rewrite}) is used, it takes an expression from
26852 the top of the stack and attempts to match any of the specified rules
26853 to any part of the expression, starting with the whole expression
26854 and then, if that fails, trying deeper and deeper sub-expressions.
26855 For each part of the expression, the rules are tried in the order
26856 they appear in the rules vector.  The first rule to match the first
26857 sub-expression wins; it replaces the matched sub-expression according
26858 to the @var{new} part of the rule.
26860 Often, the rule set will match and change the formula several times.
26861 The top-level formula is first matched and substituted repeatedly until
26862 it no longer matches the pattern; then, sub-formulas are tried, and
26863 so on.  Once every part of the formula has gotten its chance, the
26864 rewrite mechanism starts over again with the top-level formula
26865 (in case a substitution of one of its arguments has caused it again
26866 to match).  This continues until no further matches can be made
26867 anywhere in the formula.
26869 It is possible for a rule set to get into an infinite loop.  The
26870 most obvious case, replacing a formula with itself, is not a problem
26871 because a rule is not considered to ``succeed'' unless the righthand
26872 side actually comes out to something different than the original
26873 formula or sub-formula that was matched.  But if you accidentally
26874 had both @samp{ln(a b) := ln(a) + ln(b)} and the reverse
26875 @samp{ln(a) + ln(b) := ln(a b)} in your rule set, Calc would
26876 run forever switching a formula back and forth between the two
26877 forms.
26879 To avoid disaster, Calc normally stops after 100 changes have been
26880 made to the formula.  This will be enough for most multiple rewrites,
26881 but it will keep an endless loop of rewrites from locking up the
26882 computer forever.  (On most systems, you can also type @kbd{C-g} to
26883 halt any Emacs command prematurely.)
26885 To change this limit, give a positive numeric prefix argument.
26886 In particular, @kbd{M-1 a r} applies only one rewrite at a time,
26887 useful when you are first testing your rule (or just if repeated
26888 rewriting is not what is called for by your application).
26890 @ignore
26891 @starindex
26892 @end ignore
26893 @ignore
26894 @mindex iter@idots
26895 @end ignore
26896 @tindex iterations
26897 You can also put a ``function call'' @samp{iterations(@var{n})}
26898 in place of a rule anywhere in your rules vector (but usually at
26899 the top).  Then, @var{n} will be used instead of 100 as the default
26900 number of iterations for this rule set.  You can use
26901 @samp{iterations(inf)} if you want no iteration limit by default.
26902 A prefix argument will override the @code{iterations} limit in the
26903 rule set.
26905 @example
26906 [ iterations(1),
26907   f(x) := f(x+1) ]
26908 @end example
26910 More precisely, the limit controls the number of ``iterations,''
26911 where each iteration is a successful matching of a rule pattern whose
26912 righthand side, after substituting meta-variables and applying the
26913 default simplifications, is different from the original sub-formula
26914 that was matched.
26916 A prefix argument of zero sets the limit to infinity.  Use with caution!
26918 Given a negative numeric prefix argument, @kbd{a r} will match and
26919 substitute the top-level expression up to that many times, but
26920 will not attempt to match the rules to any sub-expressions.
26922 In a formula, @code{rewrite(@var{expr}, @var{rules}, @var{n})}
26923 does a rewriting operation.  Here @var{expr} is the expression
26924 being rewritten, @var{rules} is the rule, vector of rules, or
26925 variable containing the rules, and @var{n} is the optional
26926 iteration limit, which may be a positive integer, a negative
26927 integer, or @samp{inf} or @samp{-inf}.  If @var{n} is omitted
26928 the @code{iterations} value from the rule set is used; if both
26929 are omitted, 100 is used.
26931 @node Multi-Phase Rewrite Rules, Selections with Rewrite Rules, Nested Formulas with Rewrite Rules, Rewrite Rules
26932 @subsection Multi-Phase Rewrite Rules
26934 @noindent
26935 It is possible to separate a rewrite rule set into several @dfn{phases}.
26936 During each phase, certain rules will be enabled while certain others
26937 will be disabled.  A @dfn{phase schedule} controls the order in which
26938 phases occur during the rewriting process.
26940 @ignore
26941 @starindex
26942 @end ignore
26943 @tindex phase
26944 @vindex all
26945 If a call to the marker function @code{phase} appears in the rules
26946 vector in place of a rule, all rules following that point will be
26947 members of the phase(s) identified in the arguments to @code{phase}.
26948 Phases are given integer numbers.  The markers @samp{phase()} and
26949 @samp{phase(all)} both mean the following rules belong to all phases;
26950 this is the default at the start of the rule set.
26952 If you do not explicitly schedule the phases, Calc sorts all phase
26953 numbers that appear in the rule set and executes the phases in
26954 ascending order.  For example, the rule set
26956 @example
26957 @group
26958 [ f0(x) := g0(x),
26959   phase(1),
26960   f1(x) := g1(x),
26961   phase(2),
26962   f2(x) := g2(x),
26963   phase(3),
26964   f3(x) := g3(x),
26965   phase(1,2),
26966   f4(x) := g4(x) ]
26967 @end group
26968 @end example
26970 @noindent
26971 has three phases, 1 through 3.  Phase 1 consists of the @code{f0},
26972 @code{f1}, and @code{f4} rules (in that order).  Phase 2 consists of
26973 @code{f0}, @code{f2}, and @code{f4}.  Phase 3 consists of @code{f0}
26974 and @code{f3}.
26976 When Calc rewrites a formula using this rule set, it first rewrites
26977 the formula using only the phase 1 rules until no further changes are
26978 possible.  Then it switches to the phase 2 rule set and continues
26979 until no further changes occur, then finally rewrites with phase 3.
26980 When no more phase 3 rules apply, rewriting finishes.  (This is
26981 assuming @kbd{a r} with a large enough prefix argument to allow the
26982 rewriting to run to completion; the sequence just described stops
26983 early if the number of iterations specified in the prefix argument,
26984 100 by default, is reached.)
26986 During each phase, Calc descends through the nested levels of the
26987 formula as described previously.  (@xref{Nested Formulas with Rewrite
26988 Rules}.)  Rewriting starts at the top of the formula, then works its
26989 way down to the parts, then goes back to the top and works down again.
26990 The phase 2 rules do not begin until no phase 1 rules apply anywhere
26991 in the formula.
26993 @ignore
26994 @starindex
26995 @end ignore
26996 @tindex schedule
26997 A @code{schedule} marker appearing in the rule set (anywhere, but
26998 conventionally at the top) changes the default schedule of phases.
26999 In the simplest case, @code{schedule} has a sequence of phase numbers
27000 for arguments; each phase number is invoked in turn until the
27001 arguments to @code{schedule} are exhausted.  Thus adding
27002 @samp{schedule(3,2,1)} at the top of the above rule set would
27003 reverse the order of the phases; @samp{schedule(1,2,3)} would have
27004 no effect since this is the default schedule; and @samp{schedule(1,2,1,3)}
27005 would give phase 1 a second chance after phase 2 has completed, before
27006 moving on to phase 3.
27008 Any argument to @code{schedule} can instead be a vector of phase
27009 numbers (or even of sub-vectors).  Then the sub-sequence of phases
27010 described by the vector are tried repeatedly until no change occurs
27011 in any phase in the sequence.  For example, @samp{schedule([1, 2], 3)}
27012 tries phase 1, then phase 2, then, if either phase made any changes
27013 to the formula, repeats these two phases until they can make no
27014 further progress.  Finally, it goes on to phase 3 for finishing
27015 touches.
27017 Also, items in @code{schedule} can be variable names as well as
27018 numbers.  A variable name is interpreted as the name of a function
27019 to call on the whole formula.  For example, @samp{schedule(1, simplify)}
27020 says to apply the phase-1 rules (presumably, all of them), then to
27021 call @code{simplify} which is the function name equivalent of @kbd{a s}.
27022 Likewise, @samp{schedule([1, simplify])} says to alternate between
27023 phase 1 and @kbd{a s} until no further changes occur.
27025 Phases can be used purely to improve efficiency; if it is known that
27026 a certain group of rules will apply only at the beginning of rewriting,
27027 and a certain other group will apply only at the end, then rewriting
27028 will be faster if these groups are identified as separate phases.
27029 Once the phase 1 rules are done, Calc can put them aside and no longer
27030 spend any time on them while it works on phase 2.
27032 There are also some problems that can only be solved with several
27033 rewrite phases.  For a real-world example of a multi-phase rule set,
27034 examine the set @code{FitRules}, which is used by the curve-fitting
27035 command to convert a model expression to linear form.
27036 @xref{Curve Fitting Details}.  This set is divided into four phases.
27037 The first phase rewrites certain kinds of expressions to be more
27038 easily linearizable, but less computationally efficient.  After the
27039 linear components have been picked out, the final phase includes the
27040 opposite rewrites to put each component back into an efficient form.
27041 If both sets of rules were included in one big phase, Calc could get
27042 into an infinite loop going back and forth between the two forms.
27044 Elsewhere in @code{FitRules}, the components are first isolated,
27045 then recombined where possible to reduce the complexity of the linear
27046 fit, then finally packaged one component at a time into vectors.
27047 If the packaging rules were allowed to begin before the recombining
27048 rules were finished, some components might be put away into vectors
27049 before they had a chance to recombine.  By putting these rules in
27050 two separate phases, this problem is neatly avoided.
27052 @node Selections with Rewrite Rules, Matching Commands, Multi-Phase Rewrite Rules, Rewrite Rules
27053 @subsection Selections with Rewrite Rules
27055 @noindent
27056 If a sub-formula of the current formula is selected (as by @kbd{j s};
27057 @pxref{Selecting Subformulas}), the @kbd{a r} (@code{calc-rewrite})
27058 command applies only to that sub-formula.  Together with a negative
27059 prefix argument, you can use this fact to apply a rewrite to one
27060 specific part of a formula without affecting any other parts.
27062 @kindex j r
27063 @pindex calc-rewrite-selection
27064 The @kbd{j r} (@code{calc-rewrite-selection}) command allows more
27065 sophisticated operations on selections.  This command prompts for
27066 the rules in the same way as @kbd{a r}, but it then applies those
27067 rules to the whole formula in question even though a sub-formula
27068 of it has been selected.  However, the selected sub-formula will
27069 first have been surrounded by a @samp{select( )} function call.
27070 (Calc's evaluator does not understand the function name @code{select};
27071 this is only a tag used by the @kbd{j r} command.)
27073 For example, suppose the formula on the stack is @samp{2 (a + b)^2}
27074 and the sub-formula @samp{a + b} is selected.  This formula will
27075 be rewritten to @samp{2 select(a + b)^2} and then the rewrite
27076 rules will be applied in the usual way.  The rewrite rules can
27077 include references to @code{select} to tell where in the pattern
27078 the selected sub-formula should appear.
27080 If there is still exactly one @samp{select( )} function call in
27081 the formula after rewriting is done, it indicates which part of
27082 the formula should be selected afterwards.  Otherwise, the
27083 formula will be unselected.
27085 You can make @kbd{j r} act much like @kbd{a r} by enclosing both parts
27086 of the rewrite rule with @samp{select()}.  However, @kbd{j r}
27087 allows you to use the current selection in more flexible ways.
27088 Suppose you wished to make a rule which removed the exponent from
27089 the selected term; the rule @samp{select(a)^x := select(a)} would
27090 work.  In the above example, it would rewrite @samp{2 select(a + b)^2}
27091 to @samp{2 select(a + b)}.  This would then be returned to the
27092 stack as @samp{2 (a + b)} with the @samp{a + b} selected.
27094 The @kbd{j r} command uses one iteration by default, unlike
27095 @kbd{a r} which defaults to 100 iterations.  A numeric prefix
27096 argument affects @kbd{j r} in the same way as @kbd{a r}.
27097 @xref{Nested Formulas with Rewrite Rules}.
27099 As with other selection commands, @kbd{j r} operates on the stack
27100 entry that contains the cursor.  (If the cursor is on the top-of-stack
27101 @samp{.} marker, it works as if the cursor were on the formula
27102 at stack level 1.)
27104 If you don't specify a set of rules, the rules are taken from the
27105 top of the stack, just as with @kbd{a r}.  In this case, the
27106 cursor must indicate stack entry 2 or above as the formula to be
27107 rewritten (otherwise the same formula would be used as both the
27108 target and the rewrite rules).
27110 If the indicated formula has no selection, the cursor position within
27111 the formula temporarily selects a sub-formula for the purposes of this
27112 command.  If the cursor is not on any sub-formula (e.g., it is in
27113 the line-number area to the left of the formula), the @samp{select( )}
27114 markers are ignored by the rewrite mechanism and the rules are allowed
27115 to apply anywhere in the formula.
27117 As a special feature, the normal @kbd{a r} command also ignores
27118 @samp{select( )} calls in rewrite rules.  For example, if you used the
27119 above rule @samp{select(a)^x := select(a)} with @kbd{a r}, it would apply
27120 the rule as if it were @samp{a^x := a}.  Thus, you can write general
27121 purpose rules with @samp{select( )} hints inside them so that they
27122 will ``do the right thing'' in both @kbd{a r} and @kbd{j r},
27123 both with and without selections.
27125 @node Matching Commands, Automatic Rewrites, Selections with Rewrite Rules, Rewrite Rules
27126 @subsection Matching Commands
27128 @noindent
27129 @kindex a m
27130 @pindex calc-match
27131 @tindex match
27132 The @kbd{a m} (@code{calc-match}) [@code{match}] function takes a
27133 vector of formulas and a rewrite-rule-style pattern, and produces
27134 a vector of all formulas which match the pattern.  The command
27135 prompts you to enter the pattern; as for @kbd{a r}, you can enter
27136 a single pattern (i.e., a formula with meta-variables), or a
27137 vector of patterns, or a variable which contains patterns, or
27138 you can give a blank response in which case the patterns are taken
27139 from the top of the stack.  The pattern set will be compiled once
27140 and saved if it is stored in a variable.  If there are several
27141 patterns in the set, vector elements are kept if they match any
27142 of the patterns.
27144 For example, @samp{match(a+b, [x, x+y, x-y, 7, x+y+z])}
27145 will return @samp{[x+y, x-y, x+y+z]}.
27147 The @code{import} mechanism is not available for pattern sets.
27149 The @kbd{a m} command can also be used to extract all vector elements
27150 which satisfy any condition:  The pattern @samp{x :: x>0} will select
27151 all the positive vector elements.
27153 @kindex I a m
27154 @tindex matchnot
27155 With the Inverse flag [@code{matchnot}], this command extracts all
27156 vector elements which do @emph{not} match the given pattern.
27158 @ignore
27159 @starindex
27160 @end ignore
27161 @tindex matches
27162 There is also a function @samp{matches(@var{x}, @var{p})} which
27163 evaluates to 1 if expression @var{x} matches pattern @var{p}, or
27164 to 0 otherwise.  This is sometimes useful for including into the
27165 conditional clauses of other rewrite rules.
27167 @ignore
27168 @starindex
27169 @end ignore
27170 @tindex vmatches
27171 The function @code{vmatches} is just like @code{matches}, except
27172 that if the match succeeds it returns a vector of assignments to
27173 the meta-variables instead of the number 1.  For example,
27174 @samp{vmatches(f(1,2), f(a,b))} returns @samp{[a := 1, b := 2]}.
27175 If the match fails, the function returns the number 0.
27177 @node Automatic Rewrites, Debugging Rewrites, Matching Commands, Rewrite Rules
27178 @subsection Automatic Rewrites
27180 @noindent
27181 @cindex @code{EvalRules} variable
27182 @vindex EvalRules
27183 It is possible to get Calc to apply a set of rewrite rules on all
27184 results, effectively adding to the built-in set of default
27185 simplifications.  To do this, simply store your rule set in the
27186 variable @code{EvalRules}.  There is a convenient @kbd{s E} command
27187 for editing @code{EvalRules}; @pxref{Operations on Variables}.
27189 For example, suppose you want @samp{sin(a + b)} to be expanded out
27190 to @samp{sin(b) cos(a) + cos(b) sin(a)} wherever it appears, and
27191 similarly for @samp{cos(a + b)}.  The corresponding rewrite rule
27192 set would be,
27194 @smallexample
27195 @group
27196 [ sin(a + b)  :=  cos(a) sin(b) + sin(a) cos(b),
27197   cos(a + b)  :=  cos(a) cos(b) - sin(a) sin(b) ]
27198 @end group
27199 @end smallexample
27201 To apply these manually, you could put them in a variable called
27202 @code{trigexp} and then use @kbd{a r trigexp} every time you wanted
27203 to expand trig functions.  But if instead you store them in the
27204 variable @code{EvalRules}, they will automatically be applied to all
27205 sines and cosines of sums.  Then, with @samp{2 x} and @samp{45} on
27206 the stack, typing @kbd{+ S} will (assuming Degrees mode) result in
27207 @samp{0.7071 sin(2 x) + 0.7071 cos(2 x)} automatically.
27209 As each level of a formula is evaluated, the rules from
27210 @code{EvalRules} are applied before the default simplifications.
27211 Rewriting continues until no further @code{EvalRules} apply.
27212 Note that this is different from the usual order of application of
27213 rewrite rules:  @code{EvalRules} works from the bottom up, simplifying
27214 the arguments to a function before the function itself, while @kbd{a r}
27215 applies rules from the top down.
27217 Because the @code{EvalRules} are tried first, you can use them to
27218 override the normal behavior of any built-in Calc function.
27220 It is important not to write a rule that will get into an infinite
27221 loop.  For example, the rule set @samp{[f(0) := 1, f(n) := n f(n-1)]}
27222 appears to be a good definition of a factorial function, but it is
27223 unsafe.  Imagine what happens if @samp{f(2.5)} is simplified.  Calc
27224 will continue to subtract 1 from this argument forever without reaching
27225 zero.  A safer second rule would be @samp{f(n) := n f(n-1) :: n>0}.
27226 Another dangerous rule is @samp{g(x, y) := g(y, x)}.  Rewriting
27227 @samp{g(2, 4)}, this would bounce back and forth between that and
27228 @samp{g(4, 2)} forever.  If an infinite loop in @code{EvalRules}
27229 occurs, Emacs will eventually stop with a ``Computation got stuck
27230 or ran too long'' message.
27232 Another subtle difference between @code{EvalRules} and regular rewrites
27233 concerns rules that rewrite a formula into an identical formula.  For
27234 example, @samp{f(n) := f(floor(n))} ``fails to match'' when @expr{n} is
27235 already an integer.  But in @code{EvalRules} this case is detected only
27236 if the righthand side literally becomes the original formula before any
27237 further simplification.  This means that @samp{f(n) := f(floor(n))} will
27238 get into an infinite loop if it occurs in @code{EvalRules}.  Calc will
27239 replace @samp{f(6)} with @samp{f(floor(6))}, which is different from
27240 @samp{f(6)}, so it will consider the rule to have matched and will
27241 continue simplifying that formula; first the argument is simplified
27242 to get @samp{f(6)}, then the rule matches again to get @samp{f(floor(6))}
27243 again, ad infinitum.  A much safer rule would check its argument first,
27244 say, with @samp{f(n) := f(floor(n)) :: !dint(n)}.
27246 (What really happens is that the rewrite mechanism substitutes the
27247 meta-variables in the righthand side of a rule, compares to see if the
27248 result is the same as the original formula and fails if so, then uses
27249 the default simplifications to simplify the result and compares again
27250 (and again fails if the formula has simplified back to its original
27251 form).  The only special wrinkle for the @code{EvalRules} is that the
27252 same rules will come back into play when the default simplifications
27253 are used.  What Calc wants to do is build @samp{f(floor(6))}, see that
27254 this is different from the original formula, simplify to @samp{f(6)},
27255 see that this is the same as the original formula, and thus halt the
27256 rewriting.  But while simplifying, @samp{f(6)} will again trigger
27257 the same @code{EvalRules} rule and Calc will get into a loop inside
27258 the rewrite mechanism itself.)
27260 The @code{phase}, @code{schedule}, and @code{iterations} markers do
27261 not work in @code{EvalRules}.  If the rule set is divided into phases,
27262 only the phase 1 rules are applied, and the schedule is ignored.
27263 The rules are always repeated as many times as possible.
27265 The @code{EvalRules} are applied to all function calls in a formula,
27266 but not to numbers (and other number-like objects like error forms),
27267 nor to vectors or individual variable names.  (Though they will apply
27268 to @emph{components} of vectors and error forms when appropriate.)  You
27269 might try to make a variable @code{phihat} which automatically expands
27270 to its definition without the need to press @kbd{=} by writing the
27271 rule @samp{quote(phihat) := (1-sqrt(5))/2}, but unfortunately this rule
27272 will not work as part of @code{EvalRules}.
27274 Finally, another limitation is that Calc sometimes calls its built-in
27275 functions directly rather than going through the default simplifications.
27276 When it does this, @code{EvalRules} will not be able to override those
27277 functions.  For example, when you take the absolute value of the complex
27278 number @expr{(2, 3)}, Calc computes @samp{sqrt(2*2 + 3*3)} by calling
27279 the multiplication, addition, and square root functions directly rather
27280 than applying the default simplifications to this formula.  So an
27281 @code{EvalRules} rule that (perversely) rewrites @samp{sqrt(13) := 6}
27282 would not apply.  (However, if you put Calc into Symbolic mode so that
27283 @samp{sqrt(13)} will be left in symbolic form by the built-in square
27284 root function, your rule will be able to apply.  But if the complex
27285 number were @expr{(3,4)}, so that @samp{sqrt(25)} must be calculated,
27286 then Symbolic mode will not help because @samp{sqrt(25)} can be
27287 evaluated exactly to 5.)
27289 One subtle restriction that normally only manifests itself with
27290 @code{EvalRules} is that while a given rewrite rule is in the process
27291 of being checked, that same rule cannot be recursively applied.  Calc
27292 effectively removes the rule from its rule set while checking the rule,
27293 then puts it back once the match succeeds or fails.  (The technical
27294 reason for this is that compiled pattern programs are not reentrant.)
27295 For example, consider the rule @samp{foo(x) := x :: foo(x/2) > 0}
27296 attempting to match @samp{foo(8)}.  This rule will be inactive while
27297 the condition @samp{foo(4) > 0} is checked, even though it might be
27298 an integral part of evaluating that condition.  Note that this is not
27299 a problem for the more usual recursive type of rule, such as
27300 @samp{foo(x) := foo(x/2)}, because there the rule has succeeded and
27301 been reactivated by the time the righthand side is evaluated.
27303 If @code{EvalRules} has no stored value (its default state), or if
27304 anything but a vector is stored in it, then it is ignored.
27306 Even though Calc's rewrite mechanism is designed to compare rewrite
27307 rules to formulas as quickly as possible, storing rules in
27308 @code{EvalRules} may make Calc run substantially slower.  This is
27309 particularly true of rules where the top-level call is a commonly used
27310 function, or is not fixed.  The rule @samp{f(n) := n f(n-1) :: n>0} will
27311 only activate the rewrite mechanism for calls to the function @code{f},
27312 but @samp{lg(n) + lg(m) := lg(n m)} will check every @samp{+} operator.
27314 @smallexample
27315 apply(f, [a*b]) := apply(f, [a]) + apply(f, [b]) :: in(f, [ln, log10])
27316 @end smallexample
27318 @noindent
27319 may seem more ``efficient'' than two separate rules for @code{ln} and
27320 @code{log10}, but actually it is vastly less efficient because rules
27321 with @code{apply} as the top-level pattern must be tested against
27322 @emph{every} function call that is simplified.
27324 @cindex @code{AlgSimpRules} variable
27325 @vindex AlgSimpRules
27326 Suppose you want @samp{sin(a + b)} to be expanded out not all the time,
27327 but only when @kbd{a s} is used to simplify the formula.  The variable
27328 @code{AlgSimpRules} holds rules for this purpose.  The @kbd{a s} command
27329 will apply @code{EvalRules} and @code{AlgSimpRules} to the formula, as
27330 well as all of its built-in simplifications.
27332 Most of the special limitations for @code{EvalRules} don't apply to
27333 @code{AlgSimpRules}.  Calc simply does an @kbd{a r AlgSimpRules}
27334 command with an infinite repeat count as the first step of @kbd{a s}.
27335 It then applies its own built-in simplifications throughout the
27336 formula, and then repeats these two steps (along with applying the
27337 default simplifications) until no further changes are possible.
27339 @cindex @code{ExtSimpRules} variable
27340 @cindex @code{UnitSimpRules} variable
27341 @vindex ExtSimpRules
27342 @vindex UnitSimpRules
27343 There are also @code{ExtSimpRules} and @code{UnitSimpRules} variables
27344 that are used by @kbd{a e} and @kbd{u s}, respectively; these commands
27345 also apply @code{EvalRules} and @code{AlgSimpRules}.  The variable
27346 @code{IntegSimpRules} contains simplification rules that are used
27347 only during integration by @kbd{a i}.
27349 @node Debugging Rewrites, Examples of Rewrite Rules, Automatic Rewrites, Rewrite Rules
27350 @subsection Debugging Rewrites
27352 @noindent
27353 If a buffer named @samp{*Trace*} exists, the rewrite mechanism will
27354 record some useful information there as it operates.  The original
27355 formula is written there, as is the result of each successful rewrite,
27356 and the final result of the rewriting.  All phase changes are also
27357 noted.
27359 Calc always appends to @samp{*Trace*}.  You must empty this buffer
27360 yourself periodically if it is in danger of growing unwieldy.
27362 Note that the rewriting mechanism is substantially slower when the
27363 @samp{*Trace*} buffer exists, even if the buffer is not visible on
27364 the screen.  Once you are done, you will probably want to kill this
27365 buffer (with @kbd{C-x k *Trace* @key{RET}}).  If you leave it in
27366 existence and forget about it, all your future rewrite commands will
27367 be needlessly slow.
27369 @node Examples of Rewrite Rules,  , Debugging Rewrites, Rewrite Rules
27370 @subsection Examples of Rewrite Rules
27372 @noindent
27373 Returning to the example of substituting the pattern
27374 @samp{sin(x)^2 + cos(x)^2} with 1, we saw that the rule
27375 @samp{opt(a) sin(x)^2 + opt(a) cos(x)^2 := a} does a good job of
27376 finding suitable cases.  Another solution would be to use the rule
27377 @samp{cos(x)^2 := 1 - sin(x)^2}, followed by algebraic simplification
27378 if necessary.  This rule will be the most effective way to do the job,
27379 but at the expense of making some changes that you might not desire.
27381 Another algebraic rewrite rule is @samp{exp(x+y) := exp(x) exp(y)}.
27382 To make this work with the @w{@kbd{j r}} command so that it can be
27383 easily targeted to a particular exponential in a large formula,
27384 you might wish to write the rule as @samp{select(exp(x+y)) :=
27385 select(exp(x) exp(y))}.  The @samp{select} markers will be
27386 ignored by the regular @kbd{a r} command
27387 (@pxref{Selections with Rewrite Rules}).
27389 A surprisingly useful rewrite rule is @samp{a/(b-c) := a*(b+c)/(b^2-c^2)}.
27390 This will simplify the formula whenever @expr{b} and/or @expr{c} can
27391 be made simpler by squaring.  For example, applying this rule to
27392 @samp{2 / (sqrt(2) + 3)} yields @samp{6:7 - 2:7 sqrt(2)} (assuming
27393 Symbolic mode has been enabled to keep the square root from being
27394 evaluated to a floating-point approximation).  This rule is also
27395 useful when working with symbolic complex numbers, e.g.,
27396 @samp{(a + b i) / (c + d i)}.
27398 As another example, we could define our own ``triangular numbers'' function
27399 with the rules @samp{[tri(0) := 0, tri(n) := n + tri(n-1) :: n>0]}.  Enter
27400 this vector and store it in a variable:  @kbd{@w{s t} trirules}.  Now, given
27401 a suitable formula like @samp{tri(5)} on the stack, type @samp{a r trirules}
27402 to apply these rules repeatedly.  After six applications, @kbd{a r} will
27403 stop with 15 on the stack.  Once these rules are debugged, it would probably
27404 be most useful to add them to @code{EvalRules} so that Calc will evaluate
27405 the new @code{tri} function automatically.  We could then use @kbd{Z K} on
27406 the keyboard macro @kbd{' tri($) @key{RET}} to make a command that applies
27407 @code{tri} to the value on the top of the stack.  @xref{Programming}.
27409 @cindex Quaternions
27410 The following rule set, contributed by 
27411 @texline Fran\c cois
27412 @infoline Francois
27413 Pinard, implements @dfn{quaternions}, a generalization of the concept of
27414 complex numbers.  Quaternions have four components, and are here
27415 represented by function calls @samp{quat(@var{w}, [@var{x}, @var{y},
27416 @var{z}])} with ``real part'' @var{w} and the three ``imaginary'' parts
27417 collected into a vector.  Various arithmetical operations on quaternions
27418 are supported.  To use these rules, either add them to @code{EvalRules},
27419 or create a command based on @kbd{a r} for simplifying quaternion
27420 formulas.  A convenient way to enter quaternions would be a command
27421 defined by a keyboard macro containing: @kbd{' quat($$$$, [$$$, $$, $])
27422 @key{RET}}.
27424 @smallexample
27425 [ quat(w, x, y, z) := quat(w, [x, y, z]),
27426   quat(w, [0, 0, 0]) := w,
27427   abs(quat(w, v)) := hypot(w, v),
27428   -quat(w, v) := quat(-w, -v),
27429   r + quat(w, v) := quat(r + w, v) :: real(r),
27430   r - quat(w, v) := quat(r - w, -v) :: real(r),
27431   quat(w1, v1) + quat(w2, v2) := quat(w1 + w2, v1 + v2),
27432   r * quat(w, v) := quat(r * w, r * v) :: real(r),
27433   plain(quat(w1, v1) * quat(w2, v2))
27434      := quat(w1 * w2 - v1 * v2, w1 * v2 + w2 * v1 + cross(v1, v2)),
27435   quat(w1, v1) / r := quat(w1 / r, v1 / r) :: real(r),
27436   z / quat(w, v) := z * quatinv(quat(w, v)),
27437   quatinv(quat(w, v)) := quat(w, -v) / (w^2 + v^2),
27438   quatsqr(quat(w, v)) := quat(w^2 - v^2, 2 * w * v),
27439   quat(w, v)^k := quatsqr(quat(w, v)^(k / 2))
27440                :: integer(k) :: k > 0 :: k % 2 = 0,
27441   quat(w, v)^k := quatsqr(quat(w, v)^((k - 1) / 2)) * quat(w, v)
27442                :: integer(k) :: k > 2,
27443   quat(w, v)^-k := quatinv(quat(w, v)^k) :: integer(k) :: k > 0 ]
27444 @end smallexample
27446 Quaternions, like matrices, have non-commutative multiplication.
27447 In other words, @expr{q1 * q2 = q2 * q1} is not necessarily true if
27448 @expr{q1} and @expr{q2} are @code{quat} forms.  The @samp{quat*quat}
27449 rule above uses @code{plain} to prevent Calc from rearranging the
27450 product.  It may also be wise to add the line @samp{[quat(), matrix]}
27451 to the @code{Decls} matrix, to ensure that Calc's other algebraic
27452 operations will not rearrange a quaternion product.  @xref{Declarations}.
27454 These rules also accept a four-argument @code{quat} form, converting
27455 it to the preferred form in the first rule.  If you would rather see
27456 results in the four-argument form, just append the two items
27457 @samp{phase(2), quat(w, [x, y, z]) := quat(w, x, y, z)} to the end
27458 of the rule set.  (But remember that multi-phase rule sets don't work
27459 in @code{EvalRules}.)
27461 @node Units, Store and Recall, Algebra, Top
27462 @chapter Operating on Units
27464 @noindent
27465 One special interpretation of algebraic formulas is as numbers with units.
27466 For example, the formula @samp{5 m / s^2} can be read ``five meters
27467 per second squared.''  The commands in this chapter help you
27468 manipulate units expressions in this form.  Units-related commands
27469 begin with the @kbd{u} prefix key.
27471 @menu
27472 * Basic Operations on Units::
27473 * The Units Table::
27474 * Predefined Units::
27475 * User-Defined Units::
27476 @end menu
27478 @node Basic Operations on Units, The Units Table, Units, Units
27479 @section Basic Operations on Units
27481 @noindent
27482 A @dfn{units expression} is a formula which is basically a number
27483 multiplied and/or divided by one or more @dfn{unit names}, which may
27484 optionally be raised to integer powers.  Actually, the value part need not
27485 be a number; any product or quotient involving unit names is a units
27486 expression.  Many of the units commands will also accept any formula,
27487 where the command applies to all units expressions which appear in the
27488 formula.
27490 A unit name is a variable whose name appears in the @dfn{unit table},
27491 or a variable whose name is a prefix character like @samp{k} (for ``kilo'')
27492 or @samp{u} (for ``micro'') followed by a name in the unit table.
27493 A substantial table of built-in units is provided with Calc;
27494 @pxref{Predefined Units}.  You can also define your own unit names;
27495 @pxref{User-Defined Units}.
27497 Note that if the value part of a units expression is exactly @samp{1},
27498 it will be removed by the Calculator's automatic algebra routines:  The
27499 formula @samp{1 mm} is ``simplified'' to @samp{mm}.  This is only a
27500 display anomaly, however; @samp{mm} will work just fine as a
27501 representation of one millimeter.
27503 You may find that Algebraic mode (@pxref{Algebraic Entry}) makes working
27504 with units expressions easier.  Otherwise, you will have to remember
27505 to hit the apostrophe key every time you wish to enter units.
27507 @kindex u s
27508 @pindex calc-simplify-units
27509 @ignore
27510 @mindex usimpl@idots
27511 @end ignore
27512 @tindex usimplify
27513 The @kbd{u s} (@code{calc-simplify-units}) [@code{usimplify}] command
27514 simplifies a units
27515 expression.  It uses @kbd{a s} (@code{calc-simplify}) to simplify the
27516 expression first as a regular algebraic formula; it then looks for
27517 features that can be further simplified by converting one object's units
27518 to be compatible with another's.  For example, @samp{5 m + 23 mm} will
27519 simplify to @samp{5.023 m}.  When different but compatible units are
27520 added, the righthand term's units are converted to match those of the
27521 lefthand term.  @xref{Simplification Modes}, for a way to have this done
27522 automatically at all times.
27524 Units simplification also handles quotients of two units with the same
27525 dimensionality, as in @w{@samp{2 in s/L cm}} to @samp{5.08 s/L}; fractional
27526 powers of unit expressions, as in @samp{sqrt(9 mm^2)} to @samp{3 mm} and
27527 @samp{sqrt(9 acre)} to a quantity in meters; and @code{floor},
27528 @code{ceil}, @code{round}, @code{rounde}, @code{roundu}, @code{trunc},
27529 @code{float}, @code{frac}, @code{abs}, and @code{clean}
27530 applied to units expressions, in which case
27531 the operation in question is applied only to the numeric part of the
27532 expression.  Finally, trigonometric functions of quantities with units
27533 of angle are evaluated, regardless of the current angular mode.
27535 @kindex u c
27536 @pindex calc-convert-units
27537 The @kbd{u c} (@code{calc-convert-units}) command converts a units
27538 expression to new, compatible units.  For example, given the units
27539 expression @samp{55 mph}, typing @kbd{u c m/s @key{RET}} produces
27540 @samp{24.5872 m/s}.  If you have previously converted a units expression
27541 with the same type of units (in this case, distance over time), you will
27542 be offered the previous choice of new units as a default.  Continuing
27543 the above example, entering the units expression @samp{100 km/hr} and
27544 typing @kbd{u c @key{RET}} (without specifying new units) produces
27545 @samp{27.7777777778 m/s}.
27547 While many of Calc's conversion factors are exact, some are necessarily
27548 approximate.  If Calc is in fraction mode (@pxref{Fraction Mode}), then
27549 unit conversions will try to give exact, rational conversions, but it
27550 isn't always possible.  Given @samp{55 mph} in fraction mode, typing 
27551 @kbd{u c m/s @key{RET}} produces  @samp{15367:625 m/s}, for example, 
27552 while typing @kbd{u c au/yr @key{RET}} produces 
27553 @samp{5.18665819999e-3 au/yr}.
27555 If the units you request are inconsistent with the original units, the
27556 number will be converted into your units times whatever ``remainder''
27557 units are left over.  For example, converting @samp{55 mph} into acres
27558 produces @samp{6.08e-3 acre / m s}.  (Recall that multiplication binds
27559 more strongly than division in Calc formulas, so the units here are
27560 acres per meter-second.)  Remainder units are expressed in terms of
27561 ``fundamental'' units like @samp{m} and @samp{s}, regardless of the
27562 input units.
27564 One special exception is that if you specify a single unit name, and
27565 a compatible unit appears somewhere in the units expression, then
27566 that compatible unit will be converted to the new unit and the
27567 remaining units in the expression will be left alone.  For example,
27568 given the input @samp{980 cm/s^2}, the command @kbd{u c ms} will
27569 change the @samp{s} to @samp{ms} to get @samp{9.8e-4 cm/ms^2}.
27570 The ``remainder unit'' @samp{cm} is left alone rather than being
27571 changed to the base unit @samp{m}.
27573 You can use explicit unit conversion instead of the @kbd{u s} command
27574 to gain more control over the units of the result of an expression.
27575 For example, given @samp{5 m + 23 mm}, you can type @kbd{u c m} or
27576 @kbd{u c mm} to express the result in either meters or millimeters.
27577 (For that matter, you could type @kbd{u c fath} to express the result
27578 in fathoms, if you preferred!)
27580 In place of a specific set of units, you can also enter one of the
27581 units system names @code{si}, @code{mks} (equivalent), or @code{cgs}.
27582 For example, @kbd{u c si @key{RET}} converts the expression into
27583 International System of Units (SI) base units.  Also, @kbd{u c base}
27584 converts to Calc's base units, which are the same as @code{si} units
27585 except that @code{base} uses @samp{g} as the fundamental unit of mass
27586 whereas @code{si} uses @samp{kg}.
27588 @cindex Composite units
27589 The @kbd{u c} command also accepts @dfn{composite units}, which
27590 are expressed as the sum of several compatible unit names.  For
27591 example, converting @samp{30.5 in} to units @samp{mi+ft+in} (miles,
27592 feet, and inches) produces @samp{2 ft + 6.5 in}.  Calc first
27593 sorts the unit names into order of decreasing relative size.
27594 It then accounts for as much of the input quantity as it can
27595 using an integer number times the largest unit, then moves on
27596 to the next smaller unit, and so on.  Only the smallest unit
27597 may have a non-integer amount attached in the result.  A few
27598 standard unit names exist for common combinations, such as
27599 @code{mfi} for @samp{mi+ft+in}, and @code{tpo} for @samp{ton+lb+oz}.
27600 Composite units are expanded as if by @kbd{a x}, so that
27601 @samp{(ft+in)/hr} is first converted to @samp{ft/hr+in/hr}.
27603 If the value on the stack does not contain any units, @kbd{u c} will
27604 prompt first for the old units which this value should be considered
27605 to have, then for the new units.  Assuming the old and new units you
27606 give are consistent with each other, the result also will not contain
27607 any units.  For example, @kbd{@w{u c} cm @key{RET} in @key{RET}}
27608 converts the number 2 on the stack to 5.08.
27610 @kindex u b
27611 @pindex calc-base-units
27612 The @kbd{u b} (@code{calc-base-units}) command is shorthand for
27613 @kbd{u c base}; it converts the units expression on the top of the
27614 stack into @code{base} units.  If @kbd{u s} does not simplify a
27615 units expression as far as you would like, try @kbd{u b}.
27617 The @kbd{u c} and @kbd{u b} commands treat temperature units (like
27618 @samp{degC} and @samp{K}) as relative temperatures.  For example,
27619 @kbd{u c} converts @samp{10 degC} to @samp{18 degF}: A change of 10
27620 degrees Celsius corresponds to a change of 18 degrees Fahrenheit.
27622 @kindex u t
27623 @pindex calc-convert-temperature
27624 @cindex Temperature conversion
27625 The @kbd{u t} (@code{calc-convert-temperature}) command converts
27626 absolute temperatures.  The value on the stack must be a simple units
27627 expression with units of temperature only.  This command would convert
27628 @samp{10 degC} to @samp{50 degF}, the equivalent temperature on the
27629 Fahrenheit scale.
27631 @kindex u r
27632 @pindex calc-remove-units
27633 @kindex u x
27634 @pindex calc-extract-units
27635 The @kbd{u r} (@code{calc-remove-units}) command removes units from the
27636 formula at the top of the stack.  The @kbd{u x}
27637 (@code{calc-extract-units}) command extracts only the units portion of a
27638 formula.  These commands essentially replace every term of the formula
27639 that does or doesn't (respectively) look like a unit name by the
27640 constant 1, then resimplify the formula.
27642 @kindex u a
27643 @pindex calc-autorange-units
27644 The @kbd{u a} (@code{calc-autorange-units}) command turns on and off a
27645 mode in which unit prefixes like @code{k} (``kilo'') are automatically
27646 applied to keep the numeric part of a units expression in a reasonable
27647 range.  This mode affects @kbd{u s} and all units conversion commands
27648 except @kbd{u b}.  For example, with autoranging on, @samp{12345 Hz}
27649 will be simplified to @samp{12.345 kHz}.  Autoranging is useful for
27650 some kinds of units (like @code{Hz} and @code{m}), but is probably
27651 undesirable for non-metric units like @code{ft} and @code{tbsp}.
27652 (Composite units are more appropriate for those; see above.)
27654 Autoranging always applies the prefix to the leftmost unit name.
27655 Calc chooses the largest prefix that causes the number to be greater
27656 than or equal to 1.0.  Thus an increasing sequence of adjusted times
27657 would be @samp{1 ms, 10 ms, 100 ms, 1 s, 10 s, 100 s, 1 ks}.
27658 Generally the rule of thumb is that the number will be adjusted
27659 to be in the interval @samp{[1 .. 1000)}, although there are several
27660 exceptions to this rule.  First, if the unit has a power then this
27661 is not possible; @samp{0.1 s^2} simplifies to @samp{100000 ms^2}.
27662 Second, the ``centi-'' prefix is allowed to form @code{cm} (centimeters),
27663 but will not apply to other units.  The ``deci-,'' ``deka-,'' and
27664 ``hecto-'' prefixes are never used.  Thus the allowable interval is
27665 @samp{[1 .. 10)} for millimeters and @samp{[1 .. 100)} for centimeters.
27666 Finally, a prefix will not be added to a unit if the resulting name
27667 is also the actual name of another unit; @samp{1e-15 t} would normally
27668 be considered a ``femto-ton,'' but it is written as @samp{1000 at}
27669 (1000 atto-tons) instead because @code{ft} would be confused with feet.
27671 @node The Units Table, Predefined Units, Basic Operations on Units, Units
27672 @section The Units Table
27674 @noindent
27675 @kindex u v
27676 @pindex calc-enter-units-table
27677 The @kbd{u v} (@code{calc-enter-units-table}) command displays the units table
27678 in another buffer called @code{*Units Table*}.  Each entry in this table
27679 gives the unit name as it would appear in an expression, the definition
27680 of the unit in terms of simpler units, and a full name or description of
27681 the unit.  Fundamental units are defined as themselves; these are the
27682 units produced by the @kbd{u b} command.  The fundamental units are
27683 meters, seconds, grams, kelvins, amperes, candelas, moles, radians,
27684 and steradians.
27686 The Units Table buffer also displays the Unit Prefix Table.  Note that
27687 two prefixes, ``kilo'' and ``hecto,'' accept either upper- or lower-case
27688 prefix letters.  @samp{Meg} is also accepted as a synonym for the @samp{M}
27689 prefix.  Whenever a unit name can be interpreted as either a built-in name
27690 or a prefix followed by another built-in name, the former interpretation
27691 wins.  For example, @samp{2 pt} means two pints, not two pico-tons.
27693 The Units Table buffer, once created, is not rebuilt unless you define
27694 new units.  To force the buffer to be rebuilt, give any numeric prefix
27695 argument to @kbd{u v}.
27697 @kindex u V
27698 @pindex calc-view-units-table
27699 The @kbd{u V} (@code{calc-view-units-table}) command is like @kbd{u v} except
27700 that the cursor is not moved into the Units Table buffer.  You can
27701 type @kbd{u V} again to remove the Units Table from the display.  To
27702 return from the Units Table buffer after a @kbd{u v}, type @kbd{C-x * c}
27703 again or use the regular Emacs @w{@kbd{C-x o}} (@code{other-window})
27704 command.  You can also kill the buffer with @kbd{C-x k} if you wish;
27705 the actual units table is safely stored inside the Calculator.
27707 @kindex u g
27708 @pindex calc-get-unit-definition
27709 The @kbd{u g} (@code{calc-get-unit-definition}) command retrieves a unit's
27710 defining expression and pushes it onto the Calculator stack.  For example,
27711 @kbd{u g in} will produce the expression @samp{2.54 cm}.  This is the
27712 same definition for the unit that would appear in the Units Table buffer.
27713 Note that this command works only for actual unit names; @kbd{u g km}
27714 will report that no such unit exists, for example, because @code{km} is
27715 really the unit @code{m} with a @code{k} (``kilo'') prefix.  To see a
27716 definition of a unit in terms of base units, it is easier to push the
27717 unit name on the stack and then reduce it to base units with @kbd{u b}.
27719 @kindex u e
27720 @pindex calc-explain-units
27721 The @kbd{u e} (@code{calc-explain-units}) command displays an English
27722 description of the units of the expression on the stack.  For example,
27723 for the expression @samp{62 km^2 g / s^2 mol K}, the description is
27724 ``Square-Kilometer Gram per (Second-squared Mole Degree-Kelvin).''  This
27725 command uses the English descriptions that appear in the righthand
27726 column of the Units Table.
27728 @node Predefined Units, User-Defined Units, The Units Table, Units
27729 @section Predefined Units
27731 @noindent
27732 The definitions of many units have changed over the years.  For example,
27733 the meter was originally defined in 1791 as one ten-millionth of the
27734 distance from the equator to the north pole.  In order to be more
27735 precise, the definition was adjusted several times, and now a meter is
27736 defined as the distance that light will travel in a vacuum in
27737 1/299792458 of a second; consequently, the speed of light in a
27738 vacuum is exactly 299792458 m/s.  Many other units have been
27739 redefined in terms of fundamental physical processes; a second, for
27740 example, is currently defined as 9192631770 periods of a certain
27741 radiation related to the cesium-133 atom.  The only SI unit that is not
27742 based on a fundamental physical process (although there are efforts to
27743 change this) is the kilogram, which was originally defined as the mass
27744 of one liter of water, but is now defined as the mass of the
27745 International Prototype Kilogram (IPK), a cylinder of platinum-iridium
27746 kept at the Bureau International des Poids et Mesures in S@`evres,
27747 France.  (There are several copies of the IPK throughout the world.)
27748 The British imperial units, once defined in terms of physical objects,
27749 were redefined in 1963 in terms of SI units.  The US customary units,
27750 which were the same as British units until the British imperial system
27751 was created in 1824, were also defined in terms of the SI units in 1893.
27752 Because of these redefinitions, conversions between metric, British
27753 Imperial, and US customary units can often be done precisely.
27755 Since the exact definitions of many kinds of units have evolved over the
27756 years, and since certain countries sometimes have local differences in
27757 their definitions, it is a good idea to examine Calc's definition of a
27758 unit before depending on its exact value.  For example, there are three
27759 different units for gallons, corresponding to the US (@code{gal}),
27760 Canadian (@code{galC}), and British (@code{galUK}) definitions.  Also,
27761 note that @code{oz} is a standard ounce of mass, @code{ozt} is a Troy
27762 ounce, and @code{ozfl} is a fluid ounce.
27764 The temperature units corresponding to degrees Kelvin and Centigrade
27765 (Celsius) are the same in this table, since most units commands treat
27766 temperatures as being relative.  The @code{calc-convert-temperature}
27767 command has special rules for handling the different absolute magnitudes
27768 of the various temperature scales.
27770 The unit of volume ``liters'' can be referred to by either the lower-case
27771 @code{l} or the upper-case @code{L}.
27773 The unit @code{A} stands for Amperes; the name @code{Ang} is used
27774 @tex
27775 for \AA ngstroms.
27776 @end tex
27777 @ifnottex
27778 for Angstroms.
27779 @end ifnottex
27781 The unit @code{pt} stands for pints; the name @code{point} stands for
27782 a typographical point, defined by @samp{72 point = 1 in}.  This is
27783 slightly different than the point defined by the American Typefounder's
27784 Association in 1886, but the point used by Calc has become standard
27785 largely due to its use by the PostScript page description language.
27786 There is also @code{texpt}, which stands for a printer's point as
27787 defined by the @TeX{} typesetting system:  @samp{72.27 texpt = 1 in}.
27788 Other units used by @TeX{} are available; they are @code{texpc} (a pica),
27789 @code{texbp} (a ``big point'', equal to a standard point which is larger
27790 than the point used by @TeX{}), @code{texdd} (a Didot point),
27791 @code{texcc} (a Cicero) and @code{texsp} (a scaled @TeX{} point, 
27792 all dimensions representable in @TeX{} are multiples of this value).
27794 The unit @code{e} stands for the elementary (electron) unit of charge;
27795 because algebra command could mistake this for the special constant
27796 @expr{e}, Calc provides the alternate unit name @code{ech} which is
27797 preferable to @code{e}.
27799 The name @code{g} stands for one gram of mass; there is also @code{gf},
27800 one gram of force.  (Likewise for @kbd{lb}, pounds, and @kbd{lbf}.)
27801 Meanwhile, one ``@expr{g}'' of acceleration is denoted @code{ga}.
27803 The unit @code{ton} is a U.S. ton of @samp{2000 lb}, and @code{t} is
27804 a metric ton of @samp{1000 kg}.
27806 The names @code{s} (or @code{sec}) and @code{min} refer to units of
27807 time; @code{arcsec} and @code{arcmin} are units of angle.
27809 Some ``units'' are really physical constants; for example, @code{c}
27810 represents the speed of light, and @code{h} represents Planck's
27811 constant.  You can use these just like other units: converting
27812 @samp{.5 c} to @samp{m/s} expresses one-half the speed of light in
27813 meters per second.  You can also use this merely as a handy reference;
27814 the @kbd{u g} command gets the definition of one of these constants
27815 in its normal terms, and @kbd{u b} expresses the definition in base
27816 units.
27818 Two units, @code{pi} and @code{alpha} (the fine structure constant,
27819 approximately @mathit{1/137}) are dimensionless.  The units simplification
27820 commands simply treat these names as equivalent to their corresponding
27821 values.  However you can, for example, use @kbd{u c} to convert a pure
27822 number into multiples of the fine structure constant, or @kbd{u b} to
27823 convert this back into a pure number.  (When @kbd{u c} prompts for the
27824 ``old units,'' just enter a blank line to signify that the value
27825 really is unitless.)
27827 @c Describe angular units, luminosity vs. steradians problem.
27829 @node User-Defined Units,  , Predefined Units, Units
27830 @section User-Defined Units
27832 @noindent
27833 Calc provides ways to get quick access to your selected ``favorite''
27834 units, as well as ways to define your own new units.
27836 @kindex u 0-9
27837 @pindex calc-quick-units
27838 @vindex Units
27839 @cindex @code{Units} variable
27840 @cindex Quick units
27841 To select your favorite units, store a vector of unit names or
27842 expressions in the Calc variable @code{Units}.  The @kbd{u 1}
27843 through @kbd{u 9} commands (@code{calc-quick-units}) provide access
27844 to these units.  If the value on the top of the stack is a plain
27845 number (with no units attached), then @kbd{u 1} gives it the
27846 specified units.  (Basically, it multiplies the number by the
27847 first item in the @code{Units} vector.)  If the number on the
27848 stack @emph{does} have units, then @kbd{u 1} converts that number
27849 to the new units.  For example, suppose the vector @samp{[in, ft]}
27850 is stored in @code{Units}.  Then @kbd{30 u 1} will create the
27851 expression @samp{30 in}, and @kbd{u 2} will convert that expression
27852 to @samp{2.5 ft}.
27854 The @kbd{u 0} command accesses the tenth element of @code{Units}.
27855 Only ten quick units may be defined at a time.  If the @code{Units}
27856 variable has no stored value (the default), or if its value is not
27857 a vector, then the quick-units commands will not function.  The
27858 @kbd{s U} command is a convenient way to edit the @code{Units}
27859 variable; @pxref{Operations on Variables}.
27861 @kindex u d
27862 @pindex calc-define-unit
27863 @cindex User-defined units
27864 The @kbd{u d} (@code{calc-define-unit}) command records the units
27865 expression on the top of the stack as the definition for a new,
27866 user-defined unit.  For example, putting @samp{16.5 ft} on the stack and
27867 typing @kbd{u d rod} defines the new unit @samp{rod} to be equivalent to
27868 16.5 feet.  The unit conversion and simplification commands will now
27869 treat @code{rod} just like any other unit of length.  You will also be
27870 prompted for an optional English description of the unit, which will
27871 appear in the Units Table.
27873 @kindex u u
27874 @pindex calc-undefine-unit
27875 The @kbd{u u} (@code{calc-undefine-unit}) command removes a user-defined
27876 unit.  It is not possible to remove one of the predefined units,
27877 however.
27879 If you define a unit with an existing unit name, your new definition
27880 will replace the original definition of that unit.  If the unit was a
27881 predefined unit, the old definition will not be replaced, only
27882 ``shadowed.''  The built-in definition will reappear if you later use
27883 @kbd{u u} to remove the shadowing definition.
27885 To create a new fundamental unit, use either 1 or the unit name itself
27886 as the defining expression.  Otherwise the expression can involve any
27887 other units that you like (except for composite units like @samp{mfi}).
27888 You can create a new composite unit with a sum of other units as the
27889 defining expression.  The next unit operation like @kbd{u c} or @kbd{u v}
27890 will rebuild the internal unit table incorporating your modifications.
27891 Note that erroneous definitions (such as two units defined in terms of
27892 each other) will not be detected until the unit table is next rebuilt;
27893 @kbd{u v} is a convenient way to force this to happen.
27895 Temperature units are treated specially inside the Calculator; it is not
27896 possible to create user-defined temperature units.
27898 @kindex u p
27899 @pindex calc-permanent-units
27900 @cindex Calc init file, user-defined units
27901 The @kbd{u p} (@code{calc-permanent-units}) command stores the user-defined
27902 units in your Calc init file (the file given by the variable
27903 @code{calc-settings-file}, typically @file{~/.calc.el}), so that the
27904 units will still be available in subsequent Emacs sessions.  If there
27905 was already a set of user-defined units in your Calc init file, it
27906 is replaced by the new set.  (@xref{General Mode Commands}, for a way to
27907 tell Calc to use a different file for the Calc init file.)
27909 @node Store and Recall, Graphics, Units, Top
27910 @chapter Storing and Recalling
27912 @noindent
27913 Calculator variables are really just Lisp variables that contain numbers
27914 or formulas in a form that Calc can understand.  The commands in this
27915 section allow you to manipulate variables conveniently.  Commands related
27916 to variables use the @kbd{s} prefix key.
27918 @menu
27919 * Storing Variables::
27920 * Recalling Variables::
27921 * Operations on Variables::
27922 * Let Command::
27923 * Evaluates-To Operator::
27924 @end menu
27926 @node Storing Variables, Recalling Variables, Store and Recall, Store and Recall
27927 @section Storing Variables
27929 @noindent
27930 @kindex s s
27931 @pindex calc-store
27932 @cindex Storing variables
27933 @cindex Quick variables
27934 @vindex q0
27935 @vindex q9
27936 The @kbd{s s} (@code{calc-store}) command stores the value at the top of
27937 the stack into a specified variable.  It prompts you to enter the
27938 name of the variable.  If you press a single digit, the value is stored
27939 immediately in one of the ``quick'' variables @code{q0} through
27940 @code{q9}.  Or you can enter any variable name.  
27942 @kindex s t
27943 @pindex calc-store-into
27944 The @kbd{s s} command leaves the stored value on the stack.  There is
27945 also an @kbd{s t} (@code{calc-store-into}) command, which removes a
27946 value from the stack and stores it in a variable.
27948 If the top of stack value is an equation @samp{a = 7} or assignment
27949 @samp{a := 7} with a variable on the lefthand side, then Calc will
27950 assign that variable with that value by default, i.e., if you type
27951 @kbd{s s @key{RET}} or @kbd{s t @key{RET}}.  In this example, the
27952 value 7 would be stored in the variable @samp{a}.  (If you do type
27953 a variable name at the prompt, the top-of-stack value is stored in
27954 its entirety, even if it is an equation:  @samp{s s b @key{RET}}
27955 with @samp{a := 7} on the stack stores @samp{a := 7} in @code{b}.)
27957 In fact, the top of stack value can be a vector of equations or
27958 assignments with different variables on their lefthand sides; the
27959 default will be to store all the variables with their corresponding
27960 righthand sides simultaneously.
27962 It is also possible to type an equation or assignment directly at
27963 the prompt for the @kbd{s s} or @kbd{s t} command:  @kbd{s s foo = 7}.
27964 In this case the expression to the right of the @kbd{=} or @kbd{:=}
27965 symbol is evaluated as if by the @kbd{=} command, and that value is
27966 stored in the variable.  No value is taken from the stack; @kbd{s s}
27967 and @kbd{s t} are equivalent when used in this way.
27969 @kindex s 0-9
27970 @kindex t 0-9
27971 The prefix keys @kbd{s} and @kbd{t} may be followed immediately by a
27972 digit; @kbd{s 9} is equivalent to @kbd{s s 9}, and @kbd{t 9} is
27973 equivalent to @kbd{s t 9}.  (The @kbd{t} prefix is otherwise used
27974 for trail and time/date commands.)
27976 @kindex s +
27977 @kindex s -
27978 @ignore
27979 @mindex @idots
27980 @end ignore
27981 @kindex s *
27982 @ignore
27983 @mindex @null
27984 @end ignore
27985 @kindex s /
27986 @ignore
27987 @mindex @null
27988 @end ignore
27989 @kindex s ^
27990 @ignore
27991 @mindex @null
27992 @end ignore
27993 @kindex s |
27994 @ignore
27995 @mindex @null
27996 @end ignore
27997 @kindex s n
27998 @ignore
27999 @mindex @null
28000 @end ignore
28001 @kindex s &
28002 @ignore
28003 @mindex @null
28004 @end ignore
28005 @kindex s [
28006 @ignore
28007 @mindex @null
28008 @end ignore
28009 @kindex s ]
28010 @pindex calc-store-plus
28011 @pindex calc-store-minus
28012 @pindex calc-store-times
28013 @pindex calc-store-div
28014 @pindex calc-store-power
28015 @pindex calc-store-concat
28016 @pindex calc-store-neg
28017 @pindex calc-store-inv
28018 @pindex calc-store-decr
28019 @pindex calc-store-incr
28020 There are also several ``arithmetic store'' commands.  For example,
28021 @kbd{s +} removes a value from the stack and adds it to the specified
28022 variable.  The other arithmetic stores are @kbd{s -}, @kbd{s *}, @kbd{s /},
28023 @kbd{s ^}, and @w{@kbd{s |}} (vector concatenation), plus @kbd{s n} and
28024 @kbd{s &} which negate or invert the value in a variable, and @w{@kbd{s [}}
28025 and @kbd{s ]} which decrease or increase a variable by one.
28027 All the arithmetic stores accept the Inverse prefix to reverse the
28028 order of the operands.  If @expr{v} represents the contents of the
28029 variable, and @expr{a} is the value drawn from the stack, then regular
28030 @w{@kbd{s -}} assigns 
28031 @texline @math{v \coloneq v - a},
28032 @infoline @expr{v := v - a}, 
28033 but @kbd{I s -} assigns
28034 @texline @math{v \coloneq a - v}.
28035 @infoline @expr{v := a - v}.  
28036 While @kbd{I s *} might seem pointless, it is
28037 useful if matrix multiplication is involved.  Actually, all the
28038 arithmetic stores use formulas designed to behave usefully both
28039 forwards and backwards:
28041 @example
28042 @group
28043 s +        v := v + a          v := a + v
28044 s -        v := v - a          v := a - v
28045 s *        v := v * a          v := a * v
28046 s /        v := v / a          v := a / v
28047 s ^        v := v ^ a          v := a ^ v
28048 s |        v := v | a          v := a | v
28049 s n        v := v / (-1)       v := (-1) / v
28050 s &        v := v ^ (-1)       v := (-1) ^ v
28051 s [        v := v - 1          v := 1 - v
28052 s ]        v := v - (-1)       v := (-1) - v
28053 @end group
28054 @end example
28056 In the last four cases, a numeric prefix argument will be used in
28057 place of the number one.  (For example, @kbd{M-2 s ]} increases
28058 a variable by 2, and @kbd{M-2 I s ]} replaces a variable by
28059 minus-two minus the variable.
28061 The first six arithmetic stores can also be typed @kbd{s t +}, @kbd{s t -},
28062 etc.  The commands @kbd{s s +}, @kbd{s s -}, and so on are analogous
28063 arithmetic stores that don't remove the value @expr{a} from the stack.
28065 All arithmetic stores report the new value of the variable in the
28066 Trail for your information.  They signal an error if the variable
28067 previously had no stored value.  If default simplifications have been
28068 turned off, the arithmetic stores temporarily turn them on for numeric
28069 arguments only (i.e., they temporarily do an @kbd{m N} command).
28070 @xref{Simplification Modes}.  Large vectors put in the trail by
28071 these commands always use abbreviated (@kbd{t .}) mode.
28073 @kindex s m
28074 @pindex calc-store-map
28075 The @kbd{s m} command is a general way to adjust a variable's value
28076 using any Calc function.  It is a ``mapping'' command analogous to
28077 @kbd{V M}, @kbd{V R}, etc.  @xref{Reducing and Mapping}, to see
28078 how to specify a function for a mapping command.  Basically,
28079 all you do is type the Calc command key that would invoke that
28080 function normally.  For example, @kbd{s m n} applies the @kbd{n}
28081 key to negate the contents of the variable, so @kbd{s m n} is
28082 equivalent to @kbd{s n}.  Also, @kbd{s m Q} takes the square root
28083 of the value stored in a variable, @kbd{s m v v} uses @kbd{v v} to
28084 reverse the vector stored in the variable, and @kbd{s m H I S}
28085 takes the hyperbolic arcsine of the variable contents.
28087 If the mapping function takes two or more arguments, the additional
28088 arguments are taken from the stack; the old value of the variable
28089 is provided as the first argument.  Thus @kbd{s m -} with @expr{a}
28090 on the stack computes @expr{v - a}, just like @kbd{s -}.  With the
28091 Inverse prefix, the variable's original value becomes the @emph{last}
28092 argument instead of the first.  Thus @kbd{I s m -} is also
28093 equivalent to @kbd{I s -}.
28095 @kindex s x
28096 @pindex calc-store-exchange
28097 The @kbd{s x} (@code{calc-store-exchange}) command exchanges the value
28098 of a variable with the value on the top of the stack.  Naturally, the
28099 variable must already have a stored value for this to work.
28101 You can type an equation or assignment at the @kbd{s x} prompt.  The
28102 command @kbd{s x a=6} takes no values from the stack; instead, it
28103 pushes the old value of @samp{a} on the stack and stores @samp{a = 6}.
28105 @kindex s u
28106 @pindex calc-unstore
28107 @cindex Void variables
28108 @cindex Un-storing variables
28109 Until you store something in them, most variables are ``void,'' that is,
28110 they contain no value at all.  If they appear in an algebraic formula
28111 they will be left alone even if you press @kbd{=} (@code{calc-evaluate}).
28112 The @kbd{s u} (@code{calc-unstore}) command returns a variable to the
28113 void state.
28115 @kindex s c
28116 @pindex calc-copy-variable
28117 The @kbd{s c} (@code{calc-copy-variable}) command copies the stored
28118 value of one variable to another.  One way it differs from a simple
28119 @kbd{s r} followed by an @kbd{s t} (aside from saving keystrokes) is
28120 that the value never goes on the stack and thus is never rounded,
28121 evaluated, or simplified in any way; it is not even rounded down to the
28122 current precision.
28124 The only variables with predefined values are the ``special constants''
28125 @code{pi}, @code{e}, @code{i}, @code{phi}, and @code{gamma}.  You are free
28126 to unstore these variables or to store new values into them if you like,
28127 although some of the algebraic-manipulation functions may assume these
28128 variables represent their standard values.  Calc displays a warning if
28129 you change the value of one of these variables, or of one of the other
28130 special variables @code{inf}, @code{uinf}, and @code{nan} (which are
28131 normally void).
28133 Note that @code{pi} doesn't actually have 3.14159265359 stored in it,
28134 but rather a special magic value that evaluates to @cpi{} at the current
28135 precision.  Likewise @code{e}, @code{i}, and @code{phi} evaluate
28136 according to the current precision or polar mode.  If you recall a value
28137 from @code{pi} and store it back, this magic property will be lost.  The
28138 magic property is preserved, however, when a variable is copied with
28139 @kbd{s c}.
28141 @kindex s k
28142 @pindex calc-copy-special-constant
28143 If one of the ``special constants'' is redefined (or undefined) so that
28144 it no longer has its magic property, the property can be restored with 
28145 @kbd{s k} (@code{calc-copy-special-constant}).  This command will prompt
28146 for a special constant and a variable to store it in, and so a special
28147 constant can be stored in any variable.  Here, the special constant that
28148 you enter doesn't depend on the value of the corresponding variable;
28149 @code{pi} will represent 3.14159@dots{} regardless of what is currently
28150 stored in the Calc variable @code{pi}.  If one of the other special
28151 variables, @code{inf}, @code{uinf} or @code{nan}, is given a value, its
28152 original behavior can be restored by voiding it with @kbd{s u}.
28154 @node Recalling Variables, Operations on Variables, Storing Variables, Store and Recall
28155 @section Recalling Variables
28157 @noindent
28158 @kindex s r
28159 @pindex calc-recall
28160 @cindex Recalling variables
28161 The most straightforward way to extract the stored value from a variable
28162 is to use the @kbd{s r} (@code{calc-recall}) command.  This command prompts
28163 for a variable name (similarly to @code{calc-store}), looks up the value
28164 of the specified variable, and pushes that value onto the stack.  It is
28165 an error to try to recall a void variable.
28167 It is also possible to recall the value from a variable by evaluating a
28168 formula containing that variable.  For example, @kbd{' a @key{RET} =} is
28169 the same as @kbd{s r a @key{RET}} except that if the variable is void, the
28170 former will simply leave the formula @samp{a} on the stack whereas the
28171 latter will produce an error message.
28173 @kindex r 0-9
28174 The @kbd{r} prefix may be followed by a digit, so that @kbd{r 9} is
28175 equivalent to @kbd{s r 9}.  (The @kbd{r} prefix is otherwise unused
28176 in the current version of Calc.)
28178 @node Operations on Variables, Let Command, Recalling Variables, Store and Recall
28179 @section Other Operations on Variables
28181 @noindent
28182 @kindex s e
28183 @pindex calc-edit-variable
28184 The @kbd{s e} (@code{calc-edit-variable}) command edits the stored
28185 value of a variable without ever putting that value on the stack
28186 or simplifying or evaluating the value.  It prompts for the name of
28187 the variable to edit.  If the variable has no stored value, the
28188 editing buffer will start out empty.  If the editing buffer is
28189 empty when you press @kbd{C-c C-c} to finish, the variable will
28190 be made void.  @xref{Editing Stack Entries}, for a general
28191 description of editing.
28193 The @kbd{s e} command is especially useful for creating and editing
28194 rewrite rules which are stored in variables.  Sometimes these rules
28195 contain formulas which must not be evaluated until the rules are
28196 actually used.  (For example, they may refer to @samp{deriv(x,y)},
28197 where @code{x} will someday become some expression involving @code{y};
28198 if you let Calc evaluate the rule while you are defining it, Calc will
28199 replace @samp{deriv(x,y)} with 0 because the formula @code{x} does
28200 not itself refer to @code{y}.)  By contrast, recalling the variable,
28201 editing with @kbd{`}, and storing will evaluate the variable's value
28202 as a side effect of putting the value on the stack.
28204 @kindex s A
28205 @kindex s D
28206 @ignore
28207 @mindex @idots
28208 @end ignore
28209 @kindex s E
28210 @ignore
28211 @mindex @null
28212 @end ignore
28213 @kindex s F
28214 @ignore
28215 @mindex @null
28216 @end ignore
28217 @kindex s G
28218 @ignore
28219 @mindex @null
28220 @end ignore
28221 @kindex s H
28222 @ignore
28223 @mindex @null
28224 @end ignore
28225 @kindex s I
28226 @ignore
28227 @mindex @null
28228 @end ignore
28229 @kindex s L
28230 @ignore
28231 @mindex @null
28232 @end ignore
28233 @kindex s P
28234 @ignore
28235 @mindex @null
28236 @end ignore
28237 @kindex s R
28238 @ignore
28239 @mindex @null
28240 @end ignore
28241 @kindex s T
28242 @ignore
28243 @mindex @null
28244 @end ignore
28245 @kindex s U
28246 @ignore
28247 @mindex @null
28248 @end ignore
28249 @kindex s X
28250 @pindex calc-store-AlgSimpRules
28251 @pindex calc-store-Decls
28252 @pindex calc-store-EvalRules
28253 @pindex calc-store-FitRules
28254 @pindex calc-store-GenCount
28255 @pindex calc-store-Holidays
28256 @pindex calc-store-IntegLimit
28257 @pindex calc-store-LineStyles
28258 @pindex calc-store-PointStyles
28259 @pindex calc-store-PlotRejects
28260 @pindex calc-store-TimeZone
28261 @pindex calc-store-Units
28262 @pindex calc-store-ExtSimpRules
28263 There are several special-purpose variable-editing commands that
28264 use the @kbd{s} prefix followed by a shifted letter:
28266 @table @kbd
28267 @item s A
28268 Edit @code{AlgSimpRules}.  @xref{Algebraic Simplifications}.
28269 @item s D
28270 Edit @code{Decls}.  @xref{Declarations}.
28271 @item s E
28272 Edit @code{EvalRules}.  @xref{Default Simplifications}.
28273 @item s F
28274 Edit @code{FitRules}.  @xref{Curve Fitting}.
28275 @item s G
28276 Edit @code{GenCount}.  @xref{Solving Equations}.
28277 @item s H
28278 Edit @code{Holidays}.  @xref{Business Days}.
28279 @item s I
28280 Edit @code{IntegLimit}.  @xref{Calculus}.
28281 @item s L
28282 Edit @code{LineStyles}.  @xref{Graphics}.
28283 @item s P
28284 Edit @code{PointStyles}.  @xref{Graphics}.
28285 @item s R
28286 Edit @code{PlotRejects}.  @xref{Graphics}.
28287 @item s T
28288 Edit @code{TimeZone}.  @xref{Time Zones}.
28289 @item s U
28290 Edit @code{Units}.  @xref{User-Defined Units}.
28291 @item s X
28292 Edit @code{ExtSimpRules}.  @xref{Unsafe Simplifications}.
28293 @end table
28295 These commands are just versions of @kbd{s e} that use fixed variable
28296 names rather than prompting for the variable name.
28298 @kindex s p
28299 @pindex calc-permanent-variable
28300 @cindex Storing variables
28301 @cindex Permanent variables
28302 @cindex Calc init file, variables
28303 The @kbd{s p} (@code{calc-permanent-variable}) command saves a
28304 variable's value permanently in your Calc init file (the file given by
28305 the variable @code{calc-settings-file}, typically @file{~/.calc.el}), so
28306 that its value will still be available in future Emacs sessions.  You
28307 can re-execute @w{@kbd{s p}} later on to update the saved value, but the
28308 only way to remove a saved variable is to edit your calc init file
28309 by hand.  (@xref{General Mode Commands}, for a way to tell Calc to
28310 use a different file for the Calc init file.)
28312 If you do not specify the name of a variable to save (i.e.,
28313 @kbd{s p @key{RET}}), all Calc variables with defined values
28314 are saved except for the special constants @code{pi}, @code{e},
28315 @code{i}, @code{phi}, and @code{gamma}; the variables @code{TimeZone}
28316 and @code{PlotRejects};
28317 @code{FitRules}, @code{DistribRules}, and other built-in rewrite
28318 rules; and @code{PlotData@var{n}} variables generated
28319 by the graphics commands.  (You can still save these variables by
28320 explicitly naming them in an @kbd{s p} command.)
28322 @kindex s i
28323 @pindex calc-insert-variables
28324 The @kbd{s i} (@code{calc-insert-variables}) command writes
28325 the values of all Calc variables into a specified buffer.
28326 The variables are written with the prefix @code{var-} in the form of
28327 Lisp @code{setq} commands 
28328 which store the values in string form.  You can place these commands
28329 in your Calc init file (or @file{.emacs}) if you wish, though in this case it
28330 would be easier to use @kbd{s p @key{RET}}.  (Note that @kbd{s i}
28331 omits the same set of variables as @w{@kbd{s p @key{RET}}}; the difference
28332 is that @kbd{s i} will store the variables in any buffer, and it also
28333 stores in a more human-readable format.)
28335 @node Let Command, Evaluates-To Operator, Operations on Variables, Store and Recall
28336 @section The Let Command
28338 @noindent
28339 @kindex s l
28340 @pindex calc-let
28341 @cindex Variables, temporary assignment
28342 @cindex Temporary assignment to variables
28343 If you have an expression like @samp{a+b^2} on the stack and you wish to
28344 compute its value where @expr{b=3}, you can simply store 3 in @expr{b} and
28345 then press @kbd{=} to reevaluate the formula.  This has the side-effect
28346 of leaving the stored value of 3 in @expr{b} for future operations.
28348 The @kbd{s l} (@code{calc-let}) command evaluates a formula under a
28349 @emph{temporary} assignment of a variable.  It stores the value on the
28350 top of the stack into the specified variable, then evaluates the
28351 second-to-top stack entry, then restores the original value (or lack of one)
28352 in the variable.  Thus after @kbd{'@w{ }a+b^2 @key{RET} 3 s l b @key{RET}},
28353 the stack will contain the formula @samp{a + 9}.  The subsequent command
28354 @kbd{@w{5 s l a} @key{RET}} will replace this formula with the number 14.
28355 The variables @samp{a} and @samp{b} are not permanently affected in any way
28356 by these commands.
28358 The value on the top of the stack may be an equation or assignment, or
28359 a vector of equations or assignments, in which case the default will be
28360 analogous to the case of @kbd{s t @key{RET}}.  @xref{Storing Variables}.
28362 Also, you can answer the variable-name prompt with an equation or
28363 assignment:  @kbd{s l b=3 @key{RET}} is the same as storing 3 on the stack
28364 and typing @kbd{s l b @key{RET}}.
28366 The @kbd{a b} (@code{calc-substitute}) command is another way to substitute
28367 a variable with a value in a formula.  It does an actual substitution
28368 rather than temporarily assigning the variable and evaluating.  For
28369 example, letting @expr{n=2} in @samp{f(n pi)} with @kbd{a b} will
28370 produce @samp{f(2 pi)}, whereas @kbd{s l} would give @samp{f(6.28)}
28371 since the evaluation step will also evaluate @code{pi}.
28373 @node Evaluates-To Operator,  , Let Command, Store and Recall
28374 @section The Evaluates-To Operator
28376 @noindent
28377 @tindex evalto
28378 @tindex =>
28379 @cindex Evaluates-to operator
28380 @cindex @samp{=>} operator
28381 The special algebraic symbol @samp{=>} is known as the @dfn{evaluates-to
28382 operator}.  (It will show up as an @code{evalto} function call in
28383 other language modes like Pascal and La@TeX{}.)  This is a binary
28384 operator, that is, it has a lefthand and a righthand argument,
28385 although it can be entered with the righthand argument omitted.
28387 A formula like @samp{@var{a} => @var{b}} is evaluated by Calc as
28388 follows:  First, @var{a} is not simplified or modified in any
28389 way.  The previous value of argument @var{b} is thrown away; the
28390 formula @var{a} is then copied and evaluated as if by the @kbd{=}
28391 command according to all current modes and stored variable values,
28392 and the result is installed as the new value of @var{b}.
28394 For example, suppose you enter the algebraic formula @samp{2 + 3 => 17}.
28395 The number 17 is ignored, and the lefthand argument is left in its
28396 unevaluated form; the result is the formula @samp{2 + 3 => 5}.
28398 @kindex s =
28399 @pindex calc-evalto
28400 You can enter an @samp{=>} formula either directly using algebraic
28401 entry (in which case the righthand side may be omitted since it is
28402 going to be replaced right away anyhow), or by using the @kbd{s =}
28403 (@code{calc-evalto}) command, which takes @var{a} from the stack
28404 and replaces it with @samp{@var{a} => @var{b}}.
28406 Calc keeps track of all @samp{=>} operators on the stack, and
28407 recomputes them whenever anything changes that might affect their
28408 values, i.e., a mode setting or variable value.  This occurs only
28409 if the @samp{=>} operator is at the top level of the formula, or
28410 if it is part of a top-level vector.  In other words, pushing
28411 @samp{2 + (a => 17)} will change the 17 to the actual value of
28412 @samp{a} when you enter the formula, but the result will not be
28413 dynamically updated when @samp{a} is changed later because the
28414 @samp{=>} operator is buried inside a sum.  However, a vector
28415 of @samp{=>} operators will be recomputed, since it is convenient
28416 to push a vector like @samp{[a =>, b =>, c =>]} on the stack to
28417 make a concise display of all the variables in your problem.
28418 (Another way to do this would be to use @samp{[a, b, c] =>},
28419 which provides a slightly different format of display.  You
28420 can use whichever you find easiest to read.)
28422 @kindex m C
28423 @pindex calc-auto-recompute
28424 The @kbd{m C} (@code{calc-auto-recompute}) command allows you to
28425 turn this automatic recomputation on or off.  If you turn
28426 recomputation off, you must explicitly recompute an @samp{=>}
28427 operator on the stack in one of the usual ways, such as by
28428 pressing @kbd{=}.  Turning recomputation off temporarily can save
28429 a lot of time if you will be changing several modes or variables
28430 before you look at the @samp{=>} entries again.
28432 Most commands are not especially useful with @samp{=>} operators
28433 as arguments.  For example, given @samp{x + 2 => 17}, it won't
28434 work to type @kbd{1 +} to get @samp{x + 3 => 18}.  If you want
28435 to operate on the lefthand side of the @samp{=>} operator on
28436 the top of the stack, type @kbd{j 1} (that's the digit ``one'')
28437 to select the lefthand side, execute your commands, then type
28438 @kbd{j u} to unselect.
28440 All current modes apply when an @samp{=>} operator is computed,
28441 including the current simplification mode.  Recall that the
28442 formula @samp{x + y + x} is not handled by Calc's default
28443 simplifications, but the @kbd{a s} command will reduce it to
28444 the simpler form @samp{y + 2 x}.  You can also type @kbd{m A}
28445 to enable an Algebraic Simplification mode in which the
28446 equivalent of @kbd{a s} is used on all of Calc's results.
28447 If you enter @samp{x + y + x =>} normally, the result will
28448 be @samp{x + y + x => x + y + x}.  If you change to
28449 Algebraic Simplification mode, the result will be
28450 @samp{x + y + x => y + 2 x}.  However, just pressing @kbd{a s}
28451 once will have no effect on @samp{x + y + x => x + y + x},
28452 because the righthand side depends only on the lefthand side
28453 and the current mode settings, and the lefthand side is not
28454 affected by commands like @kbd{a s}.
28456 The ``let'' command (@kbd{s l}) has an interesting interaction
28457 with the @samp{=>} operator.  The @kbd{s l} command evaluates the
28458 second-to-top stack entry with the top stack entry supplying
28459 a temporary value for a given variable.  As you might expect,
28460 if that stack entry is an @samp{=>} operator its righthand
28461 side will temporarily show this value for the variable.  In
28462 fact, all @samp{=>}s on the stack will be updated if they refer
28463 to that variable.  But this change is temporary in the sense
28464 that the next command that causes Calc to look at those stack
28465 entries will make them revert to the old variable value.
28467 @smallexample
28468 @group
28469 2:  a => a             2:  a => 17         2:  a => a
28470 1:  a + 1 => a + 1     1:  a + 1 => 18     1:  a + 1 => a + 1
28471     .                      .                   .
28473                            17 s l a @key{RET}        p 8 @key{RET}
28474 @end group
28475 @end smallexample
28477 Here the @kbd{p 8} command changes the current precision,
28478 thus causing the @samp{=>} forms to be recomputed after the
28479 influence of the ``let'' is gone.  The @kbd{d @key{SPC}} command
28480 (@code{calc-refresh}) is a handy way to force the @samp{=>}
28481 operators on the stack to be recomputed without any other
28482 side effects.
28484 @kindex s :
28485 @pindex calc-assign
28486 @tindex assign
28487 @tindex :=
28488 Embedded mode also uses @samp{=>} operators.  In Embedded mode,
28489 the lefthand side of an @samp{=>} operator can refer to variables
28490 assigned elsewhere in the file by @samp{:=} operators.  The
28491 assignment operator @samp{a := 17} does not actually do anything
28492 by itself.  But Embedded mode recognizes it and marks it as a sort
28493 of file-local definition of the variable.  You can enter @samp{:=}
28494 operators in Algebraic mode, or by using the @kbd{s :}
28495 (@code{calc-assign}) [@code{assign}] command which takes a variable
28496 and value from the stack and replaces them with an assignment.
28498 @xref{TeX and LaTeX Language Modes}, for the way @samp{=>} appears in
28499 @TeX{} language output.  The @dfn{eqn} mode gives similar
28500 treatment to @samp{=>}.
28502 @node Graphics, Kill and Yank, Store and Recall, Top
28503 @chapter Graphics
28505 @noindent
28506 The commands for graphing data begin with the @kbd{g} prefix key.  Calc
28507 uses GNUPLOT 2.0 or later to do graphics.  These commands will only work
28508 if GNUPLOT is available on your system.  (While GNUPLOT sounds like
28509 a relative of GNU Emacs, it is actually completely unrelated.
28510 However, it is free software.   It can be obtained from
28511 @samp{http://www.gnuplot.info}.)
28513 @vindex calc-gnuplot-name
28514 If you have GNUPLOT installed on your system but Calc is unable to
28515 find it, you may need to set the @code{calc-gnuplot-name} variable
28516 in your Calc init file or @file{.emacs}.  You may also need to set some Lisp
28517 variables to show Calc how to run GNUPLOT on your system; these
28518 are described under @kbd{g D} and @kbd{g O} below.  If you are
28519 using the X window system, Calc will configure GNUPLOT for you
28520 automatically.  If you have GNUPLOT 3.0 or later and you are not using X,
28521 Calc will configure GNUPLOT to display graphs using simple character
28522 graphics that will work on any terminal.
28524 @menu
28525 * Basic Graphics::
28526 * Three Dimensional Graphics::
28527 * Managing Curves::
28528 * Graphics Options::
28529 * Devices::
28530 @end menu
28532 @node Basic Graphics, Three Dimensional Graphics, Graphics, Graphics
28533 @section Basic Graphics
28535 @noindent
28536 @kindex g f
28537 @pindex calc-graph-fast
28538 The easiest graphics command is @kbd{g f} (@code{calc-graph-fast}).
28539 This command takes two vectors of equal length from the stack.
28540 The vector at the top of the stack represents the ``y'' values of
28541 the various data points.  The vector in the second-to-top position
28542 represents the corresponding ``x'' values.  This command runs
28543 GNUPLOT (if it has not already been started by previous graphing
28544 commands) and displays the set of data points.  The points will
28545 be connected by lines, and there will also be some kind of symbol
28546 to indicate the points themselves.
28548 The ``x'' entry may instead be an interval form, in which case suitable
28549 ``x'' values are interpolated between the minimum and maximum values of
28550 the interval (whether the interval is open or closed is ignored).
28552 The ``x'' entry may also be a number, in which case Calc uses the
28553 sequence of ``x'' values @expr{x}, @expr{x+1}, @expr{x+2}, etc.
28554 (Generally the number 0 or 1 would be used for @expr{x} in this case.)
28556 The ``y'' entry may be any formula instead of a vector.  Calc effectively
28557 uses @kbd{N} (@code{calc-eval-num}) to evaluate variables in the formula;
28558 the result of this must be a formula in a single (unassigned) variable.
28559 The formula is plotted with this variable taking on the various ``x''
28560 values.  Graphs of formulas by default use lines without symbols at the
28561 computed data points.  Note that if neither ``x'' nor ``y'' is a vector,
28562 Calc guesses at a reasonable number of data points to use.  See the
28563 @kbd{g N} command below.  (The ``x'' values must be either a vector
28564 or an interval if ``y'' is a formula.)
28566 @ignore
28567 @starindex
28568 @end ignore
28569 @tindex xy
28570 If ``y'' is (or evaluates to) a formula of the form
28571 @samp{xy(@var{x}, @var{y})} then the result is a
28572 parametric plot.  The two arguments of the fictitious @code{xy} function
28573 are used as the ``x'' and ``y'' coordinates of the curve, respectively.
28574 In this case the ``x'' vector or interval you specified is not directly
28575 visible in the graph.  For example, if ``x'' is the interval @samp{[0..360]}
28576 and ``y'' is the formula @samp{xy(sin(t), cos(t))}, the resulting graph
28577 will be a circle.
28579 Also, ``x'' and ``y'' may each be variable names, in which case Calc
28580 looks for suitable vectors, intervals, or formulas stored in those
28581 variables.
28583 The ``x'' and ``y'' values for the data points (as pulled from the vectors,
28584 calculated from the formulas, or interpolated from the intervals) should
28585 be real numbers (integers, fractions, or floats).  One exception to this
28586 is that the ``y'' entry can consist of a vector of numbers combined with
28587 error forms, in which case the points will be plotted with the
28588 appropriate error bars.  Other than this, if either the ``x''
28589 value or the ``y'' value of a given data point is not a real number, that
28590 data point will be omitted from the graph.  The points on either side
28591 of the invalid point will @emph{not} be connected by a line.
28593 See the documentation for @kbd{g a} below for a description of the way
28594 numeric prefix arguments affect @kbd{g f}.
28596 @cindex @code{PlotRejects} variable
28597 @vindex PlotRejects
28598 If you store an empty vector in the variable @code{PlotRejects}
28599 (i.e., @kbd{[ ] s t PlotRejects}), Calc will append information to
28600 this vector for every data point which was rejected because its
28601 ``x'' or ``y'' values were not real numbers.  The result will be
28602 a matrix where each row holds the curve number, data point number,
28603 ``x'' value, and ``y'' value for a rejected data point.
28604 @xref{Evaluates-To Operator}, for a handy way to keep tabs on the
28605 current value of @code{PlotRejects}.  @xref{Operations on Variables},
28606 for the @kbd{s R} command which is another easy way to examine
28607 @code{PlotRejects}.
28609 @kindex g c
28610 @pindex calc-graph-clear
28611 To clear the graphics display, type @kbd{g c} (@code{calc-graph-clear}).
28612 If the GNUPLOT output device is an X window, the window will go away.
28613 Effects on other kinds of output devices will vary.  You don't need
28614 to use @kbd{g c} if you don't want to---if you give another @kbd{g f}
28615 or @kbd{g p} command later on, it will reuse the existing graphics
28616 window if there is one.
28618 @node Three Dimensional Graphics, Managing Curves, Basic Graphics, Graphics
28619 @section Three-Dimensional Graphics
28621 @kindex g F
28622 @pindex calc-graph-fast-3d
28623 The @kbd{g F} (@code{calc-graph-fast-3d}) command makes a three-dimensional
28624 graph.  It works only if you have GNUPLOT 3.0 or later; with GNUPLOT 2.0,
28625 you will see a GNUPLOT error message if you try this command.
28627 The @kbd{g F} command takes three values from the stack, called ``x'',
28628 ``y'', and ``z'', respectively.  As was the case for 2D graphs, there
28629 are several options for these values.
28631 In the first case, ``x'' and ``y'' are each vectors (not necessarily of
28632 the same length); either or both may instead be interval forms.  The
28633 ``z'' value must be a matrix with the same number of rows as elements
28634 in ``x'', and the same number of columns as elements in ``y''.  The
28635 result is a surface plot where 
28636 @texline @math{z_{ij}}
28637 @infoline @expr{z_ij} 
28638 is the height of the point
28639 at coordinate @expr{(x_i, y_j)} on the surface.  The 3D graph will
28640 be displayed from a certain default viewpoint; you can change this
28641 viewpoint by adding a @samp{set view} to the @samp{*Gnuplot Commands*}
28642 buffer as described later.  See the GNUPLOT documentation for a
28643 description of the @samp{set view} command.
28645 Each point in the matrix will be displayed as a dot in the graph,
28646 and these points will be connected by a grid of lines (@dfn{isolines}).
28648 In the second case, ``x'', ``y'', and ``z'' are all vectors of equal
28649 length.  The resulting graph displays a 3D line instead of a surface,
28650 where the coordinates of points along the line are successive triplets
28651 of values from the input vectors.
28653 In the third case, ``x'' and ``y'' are vectors or interval forms, and
28654 ``z'' is any formula involving two variables (not counting variables
28655 with assigned values).  These variables are sorted into alphabetical
28656 order; the first takes on values from ``x'' and the second takes on
28657 values from ``y'' to form a matrix of results that are graphed as a
28658 3D surface.
28660 @ignore
28661 @starindex
28662 @end ignore
28663 @tindex xyz
28664 If the ``z'' formula evaluates to a call to the fictitious function
28665 @samp{xyz(@var{x}, @var{y}, @var{z})}, then the result is a
28666 ``parametric surface.''  In this case, the axes of the graph are
28667 taken from the @var{x} and @var{y} values in these calls, and the
28668 ``x'' and ``y'' values from the input vectors or intervals are used only
28669 to specify the range of inputs to the formula.  For example, plotting
28670 @samp{[0..360], [0..180], xyz(sin(x)*sin(y), cos(x)*sin(y), cos(y))}
28671 will draw a sphere.  (Since the default resolution for 3D plots is
28672 5 steps in each of ``x'' and ``y'', this will draw a very crude
28673 sphere.  You could use the @kbd{g N} command, described below, to
28674 increase this resolution, or specify the ``x'' and ``y'' values as
28675 vectors with more than 5 elements.
28677 It is also possible to have a function in a regular @kbd{g f} plot
28678 evaluate to an @code{xyz} call.  Since @kbd{g f} plots a line, not
28679 a surface, the result will be a 3D parametric line.  For example,
28680 @samp{[[0..720], xyz(sin(x), cos(x), x)]} will plot two turns of a
28681 helix (a three-dimensional spiral).
28683 As for @kbd{g f}, each of ``x'', ``y'', and ``z'' may instead be
28684 variables containing the relevant data.
28686 @node Managing Curves, Graphics Options, Three Dimensional Graphics, Graphics
28687 @section Managing Curves
28689 @noindent
28690 The @kbd{g f} command is really shorthand for the following commands:
28691 @kbd{C-u g d  g a  g p}.  Likewise, @w{@kbd{g F}} is shorthand for
28692 @kbd{C-u g d  g A  g p}.  You can gain more control over your graph
28693 by using these commands directly.
28695 @kindex g a
28696 @pindex calc-graph-add
28697 The @kbd{g a} (@code{calc-graph-add}) command adds the ``curve''
28698 represented by the two values on the top of the stack to the current
28699 graph.  You can have any number of curves in the same graph.  When
28700 you give the @kbd{g p} command, all the curves will be drawn superimposed
28701 on the same axes.
28703 The @kbd{g a} command (and many others that affect the current graph)
28704 will cause a special buffer, @samp{*Gnuplot Commands*}, to be displayed
28705 in another window.  This buffer is a template of the commands that will
28706 be sent to GNUPLOT when it is time to draw the graph.  The first
28707 @kbd{g a} command adds a @code{plot} command to this buffer.  Succeeding
28708 @kbd{g a} commands add extra curves onto that @code{plot} command.
28709 Other graph-related commands put other GNUPLOT commands into this
28710 buffer.  In normal usage you never need to work with this buffer
28711 directly, but you can if you wish.  The only constraint is that there
28712 must be only one @code{plot} command, and it must be the last command
28713 in the buffer.  If you want to save and later restore a complete graph
28714 configuration, you can use regular Emacs commands to save and restore
28715 the contents of the @samp{*Gnuplot Commands*} buffer.
28717 @vindex PlotData1
28718 @vindex PlotData2
28719 If the values on the stack are not variable names, @kbd{g a} will invent
28720 variable names for them (of the form @samp{PlotData@var{n}}) and store
28721 the values in those variables.  The ``x'' and ``y'' variables are what
28722 go into the @code{plot} command in the template.  If you add a curve
28723 that uses a certain variable and then later change that variable, you
28724 can replot the graph without having to delete and re-add the curve.
28725 That's because the variable name, not the vector, interval or formula
28726 itself, is what was added by @kbd{g a}.
28728 A numeric prefix argument on @kbd{g a} or @kbd{g f} changes the way
28729 stack entries are interpreted as curves.  With a positive prefix
28730 argument @expr{n}, the top @expr{n} stack entries are ``y'' values
28731 for @expr{n} different curves which share a common ``x'' value in
28732 the @expr{n+1}st stack entry.  (Thus @kbd{g a} with no prefix
28733 argument is equivalent to @kbd{C-u 1 g a}.)
28735 A prefix of zero or plain @kbd{C-u} means to take two stack entries,
28736 ``x'' and ``y'' as usual, but to interpret ``y'' as a vector of
28737 ``y'' values for several curves that share a common ``x''.
28739 A negative prefix argument tells Calc to read @expr{n} vectors from
28740 the stack; each vector @expr{[x, y]} describes an independent curve.
28741 This is the only form of @kbd{g a} that creates several curves at once
28742 that don't have common ``x'' values.  (Of course, the range of ``x''
28743 values covered by all the curves ought to be roughly the same if
28744 they are to look nice on the same graph.)
28746 For example, to plot 
28747 @texline @math{\sin n x}
28748 @infoline @expr{sin(n x)} 
28749 for integers @expr{n}
28750 from 1 to 5, you could use @kbd{v x} to create a vector of integers
28751 (@expr{n}), then @kbd{V M '} or @kbd{V M $} to map @samp{sin(n x)}
28752 across this vector.  The resulting vector of formulas is suitable
28753 for use as the ``y'' argument to a @kbd{C-u g a} or @kbd{C-u g f}
28754 command.
28756 @kindex g A
28757 @pindex calc-graph-add-3d
28758 The @kbd{g A} (@code{calc-graph-add-3d}) command adds a 3D curve
28759 to the graph.  It is not valid to intermix 2D and 3D curves in a
28760 single graph.  This command takes three arguments, ``x'', ``y'',
28761 and ``z'', from the stack.  With a positive prefix @expr{n}, it
28762 takes @expr{n+2} arguments (common ``x'' and ``y'', plus @expr{n}
28763 separate ``z''s).  With a zero prefix, it takes three stack entries
28764 but the ``z'' entry is a vector of curve values.  With a negative
28765 prefix @expr{-n}, it takes @expr{n} vectors of the form @expr{[x, y, z]}.
28766 The @kbd{g A} command works by adding a @code{splot} (surface-plot)
28767 command to the @samp{*Gnuplot Commands*} buffer.
28769 (Although @kbd{g a} adds a 2D @code{plot} command to the
28770 @samp{*Gnuplot Commands*} buffer, Calc changes this to @code{splot}
28771 before sending it to GNUPLOT if it notices that the data points are
28772 evaluating to @code{xyz} calls.  It will not work to mix 2D and 3D
28773 @kbd{g a} curves in a single graph, although Calc does not currently
28774 check for this.)
28776 @kindex g d
28777 @pindex calc-graph-delete
28778 The @kbd{g d} (@code{calc-graph-delete}) command deletes the most
28779 recently added curve from the graph.  It has no effect if there are
28780 no curves in the graph.  With a numeric prefix argument of any kind,
28781 it deletes all of the curves from the graph.
28783 @kindex g H
28784 @pindex calc-graph-hide
28785 The @kbd{g H} (@code{calc-graph-hide}) command ``hides'' or ``unhides''
28786 the most recently added curve.  A hidden curve will not appear in
28787 the actual plot, but information about it such as its name and line and
28788 point styles will be retained.
28790 @kindex g j
28791 @pindex calc-graph-juggle
28792 The @kbd{g j} (@code{calc-graph-juggle}) command moves the curve
28793 at the end of the list (the ``most recently added curve'') to the
28794 front of the list.  The next-most-recent curve is thus exposed for
28795 @w{@kbd{g d}} or similar commands to use.  With @kbd{g j} you can work
28796 with any curve in the graph even though curve-related commands only
28797 affect the last curve in the list.
28799 @kindex g p
28800 @pindex calc-graph-plot
28801 The @kbd{g p} (@code{calc-graph-plot}) command uses GNUPLOT to draw
28802 the graph described in the @samp{*Gnuplot Commands*} buffer.  Any
28803 GNUPLOT parameters which are not defined by commands in this buffer
28804 are reset to their default values.  The variables named in the @code{plot}
28805 command are written to a temporary data file and the variable names
28806 are then replaced by the file name in the template.  The resulting
28807 plotting commands are fed to the GNUPLOT program.  See the documentation
28808 for the GNUPLOT program for more specific information.  All temporary
28809 files are removed when Emacs or GNUPLOT exits.
28811 If you give a formula for ``y'', Calc will remember all the values that
28812 it calculates for the formula so that later plots can reuse these values.
28813 Calc throws out these saved values when you change any circumstances
28814 that may affect the data, such as switching from Degrees to Radians
28815 mode, or changing the value of a parameter in the formula.  You can
28816 force Calc to recompute the data from scratch by giving a negative
28817 numeric prefix argument to @kbd{g p}.
28819 Calc uses a fairly rough step size when graphing formulas over intervals.
28820 This is to ensure quick response.  You can ``refine'' a plot by giving
28821 a positive numeric prefix argument to @kbd{g p}.  Calc goes through
28822 the data points it has computed and saved from previous plots of the
28823 function, and computes and inserts a new data point midway between
28824 each of the existing points.  You can refine a plot any number of times,
28825 but beware that the amount of calculation involved doubles each time.
28827 Calc does not remember computed values for 3D graphs.  This means the
28828 numerix prefix argument, if any, to @kbd{g p} is effectively ignored if
28829 the current graph is three-dimensional.
28831 @kindex g P
28832 @pindex calc-graph-print
28833 The @kbd{g P} (@code{calc-graph-print}) command is like @kbd{g p},
28834 except that it sends the output to a printer instead of to the
28835 screen.  More precisely, @kbd{g p} looks for @samp{set terminal}
28836 or @samp{set output} commands in the @samp{*Gnuplot Commands*} buffer;
28837 lacking these it uses the default settings.  However, @kbd{g P}
28838 ignores @samp{set terminal} and @samp{set output} commands and
28839 uses a different set of default values.  All of these values are
28840 controlled by the @kbd{g D} and @kbd{g O} commands discussed below.
28841 Provided everything is set up properly, @kbd{g p} will plot to
28842 the screen unless you have specified otherwise and @kbd{g P} will
28843 always plot to the printer.
28845 @node Graphics Options, Devices, Managing Curves, Graphics
28846 @section Graphics Options
28848 @noindent
28849 @kindex g g
28850 @pindex calc-graph-grid
28851 The @kbd{g g} (@code{calc-graph-grid}) command turns the ``grid''
28852 on and off.  It is off by default; tick marks appear only at the
28853 edges of the graph.  With the grid turned on, dotted lines appear
28854 across the graph at each tick mark.  Note that this command only
28855 changes the setting in @samp{*Gnuplot Commands*}; to see the effects
28856 of the change you must give another @kbd{g p} command.
28858 @kindex g b
28859 @pindex calc-graph-border
28860 The @kbd{g b} (@code{calc-graph-border}) command turns the border
28861 (the box that surrounds the graph) on and off.  It is on by default.
28862 This command will only work with GNUPLOT 3.0 and later versions.
28864 @kindex g k
28865 @pindex calc-graph-key
28866 The @kbd{g k} (@code{calc-graph-key}) command turns the ``key''
28867 on and off.  The key is a chart in the corner of the graph that
28868 shows the correspondence between curves and line styles.  It is
28869 off by default, and is only really useful if you have several
28870 curves on the same graph.
28872 @kindex g N
28873 @pindex calc-graph-num-points
28874 The @kbd{g N} (@code{calc-graph-num-points}) command allows you
28875 to select the number of data points in the graph.  This only affects
28876 curves where neither ``x'' nor ``y'' is specified as a vector.
28877 Enter a blank line to revert to the default value (initially 15).
28878 With no prefix argument, this command affects only the current graph.
28879 With a positive prefix argument this command changes or, if you enter
28880 a blank line, displays the default number of points used for all
28881 graphs created by @kbd{g a} that don't specify the resolution explicitly.
28882 With a negative prefix argument, this command changes or displays
28883 the default value (initially 5) used for 3D graphs created by @kbd{g A}.
28884 Note that a 3D setting of 5 means that a total of @expr{5^2 = 25} points
28885 will be computed for the surface.
28887 Data values in the graph of a function are normally computed to a
28888 precision of five digits, regardless of the current precision at the
28889 time. This is usually more than adequate, but there are cases where
28890 it will not be.  For example, plotting @expr{1 + x} with @expr{x} in the
28891 interval @samp{[0 ..@: 1e-6]} will round all the data points down
28892 to 1.0!  Putting the command @samp{set precision @var{n}} in the
28893 @samp{*Gnuplot Commands*} buffer will cause the data to be computed
28894 at precision @var{n} instead of 5.  Since this is such a rare case,
28895 there is no keystroke-based command to set the precision.
28897 @kindex g h
28898 @pindex calc-graph-header
28899 The @kbd{g h} (@code{calc-graph-header}) command sets the title
28900 for the graph.  This will show up centered above the graph.
28901 The default title is blank (no title).
28903 @kindex g n
28904 @pindex calc-graph-name
28905 The @kbd{g n} (@code{calc-graph-name}) command sets the title of an
28906 individual curve.  Like the other curve-manipulating commands, it
28907 affects the most recently added curve, i.e., the last curve on the
28908 list in the @samp{*Gnuplot Commands*} buffer.  To set the title of
28909 the other curves you must first juggle them to the end of the list
28910 with @kbd{g j}, or edit the @samp{*Gnuplot Commands*} buffer by hand.
28911 Curve titles appear in the key; if the key is turned off they are
28912 not used.
28914 @kindex g t
28915 @kindex g T
28916 @pindex calc-graph-title-x
28917 @pindex calc-graph-title-y
28918 The @kbd{g t} (@code{calc-graph-title-x}) and @kbd{g T}
28919 (@code{calc-graph-title-y}) commands set the titles on the ``x''
28920 and ``y'' axes, respectively.  These titles appear next to the
28921 tick marks on the left and bottom edges of the graph, respectively.
28922 Calc does not have commands to control the tick marks themselves,
28923 but you can edit them into the @samp{*Gnuplot Commands*} buffer if
28924 you wish.  See the GNUPLOT documentation for details.
28926 @kindex g r
28927 @kindex g R
28928 @pindex calc-graph-range-x
28929 @pindex calc-graph-range-y
28930 The @kbd{g r} (@code{calc-graph-range-x}) and @kbd{g R}
28931 (@code{calc-graph-range-y}) commands set the range of values on the
28932 ``x'' and ``y'' axes, respectively.  You are prompted to enter a
28933 suitable range.  This should be either a pair of numbers of the
28934 form, @samp{@var{min}:@var{max}}, or a blank line to revert to the
28935 default behavior of setting the range based on the range of values
28936 in the data, or @samp{$} to take the range from the top of the stack.
28937 Ranges on the stack can be represented as either interval forms or
28938 vectors:  @samp{[@var{min} ..@: @var{max}]} or @samp{[@var{min}, @var{max}]}.
28940 @kindex g l
28941 @kindex g L
28942 @pindex calc-graph-log-x
28943 @pindex calc-graph-log-y
28944 The @kbd{g l} (@code{calc-graph-log-x}) and @kbd{g L} (@code{calc-graph-log-y})
28945 commands allow you to set either or both of the axes of the graph to
28946 be logarithmic instead of linear.
28948 @kindex g C-l
28949 @kindex g C-r
28950 @kindex g C-t
28951 @pindex calc-graph-log-z
28952 @pindex calc-graph-range-z
28953 @pindex calc-graph-title-z
28954 For 3D plots, @kbd{g C-t}, @kbd{g C-r}, and @kbd{g C-l} (those are
28955 letters with the Control key held down) are the corresponding commands
28956 for the ``z'' axis.
28958 @kindex g z
28959 @kindex g Z
28960 @pindex calc-graph-zero-x
28961 @pindex calc-graph-zero-y
28962 The @kbd{g z} (@code{calc-graph-zero-x}) and @kbd{g Z}
28963 (@code{calc-graph-zero-y}) commands control whether a dotted line is
28964 drawn to indicate the ``x'' and/or ``y'' zero axes.  (These are the same
28965 dotted lines that would be drawn there anyway if you used @kbd{g g} to
28966 turn the ``grid'' feature on.)  Zero-axis lines are on by default, and
28967 may be turned off only in GNUPLOT 3.0 and later versions.  They are
28968 not available for 3D plots.
28970 @kindex g s
28971 @pindex calc-graph-line-style
28972 The @kbd{g s} (@code{calc-graph-line-style}) command turns the connecting
28973 lines on or off for the most recently added curve, and optionally selects
28974 the style of lines to be used for that curve.  Plain @kbd{g s} simply
28975 toggles the lines on and off.  With a numeric prefix argument, @kbd{g s}
28976 turns lines on and sets a particular line style.  Line style numbers
28977 start at one and their meanings vary depending on the output device.
28978 GNUPLOT guarantees that there will be at least six different line styles
28979 available for any device.
28981 @kindex g S
28982 @pindex calc-graph-point-style
28983 The @kbd{g S} (@code{calc-graph-point-style}) command similarly turns
28984 the symbols at the data points on or off, or sets the point style.
28985 If you turn both lines and points off, the data points will show as
28986 tiny dots.  If the ``y'' values being plotted contain error forms and 
28987 the connecting lines are turned off, then this command will also turn 
28988 the error bars on or off.
28990 @cindex @code{LineStyles} variable
28991 @cindex @code{PointStyles} variable
28992 @vindex LineStyles
28993 @vindex PointStyles
28994 Another way to specify curve styles is with the @code{LineStyles} and
28995 @code{PointStyles} variables.  These variables initially have no stored
28996 values, but if you store a vector of integers in one of these variables,
28997 the @kbd{g a} and @kbd{g f} commands will use those style numbers
28998 instead of the defaults for new curves that are added to the graph.
28999 An entry should be a positive integer for a specific style, or 0 to let
29000 the style be chosen automatically, or @mathit{-1} to turn off lines or points
29001 altogether.  If there are more curves than elements in the vector, the
29002 last few curves will continue to have the default styles.  Of course,
29003 you can later use @kbd{g s} and @kbd{g S} to change any of these styles.
29005 For example, @kbd{'[2 -1 3] @key{RET} s t LineStyles} causes the first curve
29006 to have lines in style number 2, the second curve to have no connecting
29007 lines, and the third curve to have lines in style 3.  Point styles will
29008 still be assigned automatically, but you could store another vector in
29009 @code{PointStyles} to define them, too.
29011 @node Devices,  , Graphics Options, Graphics
29012 @section Graphical Devices
29014 @noindent
29015 @kindex g D
29016 @pindex calc-graph-device
29017 The @kbd{g D} (@code{calc-graph-device}) command sets the device name
29018 (or ``terminal name'' in GNUPLOT lingo) to be used by @kbd{g p} commands
29019 on this graph.  It does not affect the permanent default device name.
29020 If you enter a blank name, the device name reverts to the default.
29021 Enter @samp{?} to see a list of supported devices.
29023 With a positive numeric prefix argument, @kbd{g D} instead sets
29024 the default device name, used by all plots in the future which do
29025 not override it with a plain @kbd{g D} command.  If you enter a
29026 blank line this command shows you the current default.  The special
29027 name @code{default} signifies that Calc should choose @code{x11} if
29028 the X window system is in use (as indicated by the presence of a
29029 @code{DISPLAY} environment variable), or otherwise @code{dumb} under
29030 GNUPLOT 3.0 and later, or @code{postscript} under GNUPLOT 2.0.
29031 This is the initial default value.
29033 The @code{dumb} device is an interface to ``dumb terminals,'' i.e.,
29034 terminals with no special graphics facilities.  It writes a crude
29035 picture of the graph composed of characters like @code{-} and @code{|}
29036 to a buffer called @samp{*Gnuplot Trail*}, which Calc then displays.
29037 The graph is made the same size as the Emacs screen, which on most
29038 dumb terminals will be 
29039 @texline @math{80\times24}
29040 @infoline 80x24
29041 characters.  The graph is displayed in
29042 an Emacs ``recursive edit''; type @kbd{q} or @kbd{C-c C-c} to exit
29043 the recursive edit and return to Calc.  Note that the @code{dumb}
29044 device is present only in GNUPLOT 3.0 and later versions.
29046 The word @code{dumb} may be followed by two numbers separated by
29047 spaces.  These are the desired width and height of the graph in
29048 characters.  Also, the device name @code{big} is like @code{dumb}
29049 but creates a graph four times the width and height of the Emacs
29050 screen.  You will then have to scroll around to view the entire
29051 graph.  In the @samp{*Gnuplot Trail*} buffer, @key{SPC}, @key{DEL},
29052 @kbd{<}, and @kbd{>} are defined to scroll by one screenful in each
29053 of the four directions.
29055 With a negative numeric prefix argument, @kbd{g D} sets or displays
29056 the device name used by @kbd{g P} (@code{calc-graph-print}).  This
29057 is initially @code{postscript}.  If you don't have a PostScript
29058 printer, you may decide once again to use @code{dumb} to create a
29059 plot on any text-only printer.
29061 @kindex g O
29062 @pindex calc-graph-output
29063 The @kbd{g O} (@code{calc-graph-output}) command sets the name of
29064 the output file used by GNUPLOT.  For some devices, notably @code{x11},
29065 there is no output file and this information is not used.  Many other
29066 ``devices'' are really file formats like @code{postscript}; in these
29067 cases the output in the desired format goes into the file you name
29068 with @kbd{g O}.  Type @kbd{g O stdout @key{RET}} to set GNUPLOT to write
29069 to its standard output stream, i.e., to @samp{*Gnuplot Trail*}.
29070 This is the default setting.
29072 Another special output name is @code{tty}, which means that GNUPLOT
29073 is going to write graphics commands directly to its standard output,
29074 which you wish Emacs to pass through to your terminal.  Tektronix
29075 graphics terminals, among other devices, operate this way.  Calc does
29076 this by telling GNUPLOT to write to a temporary file, then running a
29077 sub-shell executing the command @samp{cat tempfile >/dev/tty}.  On
29078 typical Unix systems, this will copy the temporary file directly to
29079 the terminal, bypassing Emacs entirely.  You will have to type @kbd{C-l}
29080 to Emacs afterwards to refresh the screen.
29082 Once again, @kbd{g O} with a positive or negative prefix argument
29083 sets the default or printer output file names, respectively.  In each
29084 case you can specify @code{auto}, which causes Calc to invent a temporary
29085 file name for each @kbd{g p} (or @kbd{g P}) command.  This temporary file
29086 will be deleted once it has been displayed or printed.  If the output file
29087 name is not @code{auto}, the file is not automatically deleted.
29089 The default and printer devices and output files can be saved
29090 permanently by the @kbd{m m} (@code{calc-save-modes}) command.  The
29091 default number of data points (see @kbd{g N}) and the X geometry
29092 (see @kbd{g X}) are also saved.  Other graph information is @emph{not}
29093 saved; you can save a graph's configuration simply by saving the contents
29094 of the @samp{*Gnuplot Commands*} buffer.
29096 @vindex calc-gnuplot-plot-command
29097 @vindex calc-gnuplot-default-device
29098 @vindex calc-gnuplot-default-output
29099 @vindex calc-gnuplot-print-command
29100 @vindex calc-gnuplot-print-device
29101 @vindex calc-gnuplot-print-output
29102 You may wish to configure the default and
29103 printer devices and output files for the whole system.  The relevant
29104 Lisp variables are @code{calc-gnuplot-default-device} and @code{-output},
29105 and @code{calc-gnuplot-print-device} and @code{-output}.  The output
29106 file names must be either strings as described above, or Lisp
29107 expressions which are evaluated on the fly to get the output file names.
29109 Other important Lisp variables are @code{calc-gnuplot-plot-command} and
29110 @code{calc-gnuplot-print-command}, which give the system commands to
29111 display or print the output of GNUPLOT, respectively.  These may be
29112 @code{nil} if no command is necessary, or strings which can include
29113 @samp{%s} to signify the name of the file to be displayed or printed.
29114 Or, these variables may contain Lisp expressions which are evaluated
29115 to display or print the output.  These variables are customizable
29116 (@pxref{Customizing Calc}).
29118 @kindex g x
29119 @pindex calc-graph-display
29120 The @kbd{g x} (@code{calc-graph-display}) command lets you specify
29121 on which X window system display your graphs should be drawn.  Enter
29122 a blank line to see the current display name.  This command has no
29123 effect unless the current device is @code{x11}.
29125 @kindex g X
29126 @pindex calc-graph-geometry
29127 The @kbd{g X} (@code{calc-graph-geometry}) command is a similar
29128 command for specifying the position and size of the X window.
29129 The normal value is @code{default}, which generally means your
29130 window manager will let you place the window interactively.
29131 Entering @samp{800x500+0+0} would create an 800-by-500 pixel
29132 window in the upper-left corner of the screen.
29134 The buffer called @samp{*Gnuplot Trail*} holds a transcript of the
29135 session with GNUPLOT.  This shows the commands Calc has ``typed'' to
29136 GNUPLOT and the responses it has received.  Calc tries to notice when an
29137 error message has appeared here and display the buffer for you when
29138 this happens.  You can check this buffer yourself if you suspect
29139 something has gone wrong.
29141 @kindex g C
29142 @pindex calc-graph-command
29143 The @kbd{g C} (@code{calc-graph-command}) command prompts you to
29144 enter any line of text, then simply sends that line to the current
29145 GNUPLOT process.  The @samp{*Gnuplot Trail*} buffer looks deceptively
29146 like a Shell buffer but you can't type commands in it yourself.
29147 Instead, you must use @kbd{g C} for this purpose.
29149 @kindex g v
29150 @kindex g V
29151 @pindex calc-graph-view-commands
29152 @pindex calc-graph-view-trail
29153 The @kbd{g v} (@code{calc-graph-view-commands}) and @kbd{g V}
29154 (@code{calc-graph-view-trail}) commands display the @samp{*Gnuplot Commands*}
29155 and @samp{*Gnuplot Trail*} buffers, respectively, in another window.
29156 This happens automatically when Calc thinks there is something you
29157 will want to see in either of these buffers.  If you type @kbd{g v}
29158 or @kbd{g V} when the relevant buffer is already displayed, the
29159 buffer is hidden again.
29161 One reason to use @kbd{g v} is to add your own commands to the
29162 @samp{*Gnuplot Commands*} buffer.  Press @kbd{g v}, then use
29163 @kbd{C-x o} to switch into that window.  For example, GNUPLOT has
29164 @samp{set label} and @samp{set arrow} commands that allow you to
29165 annotate your plots.  Since Calc doesn't understand these commands,
29166 you have to add them to the @samp{*Gnuplot Commands*} buffer
29167 yourself, then use @w{@kbd{g p}} to replot using these new commands.  Note
29168 that your commands must appear @emph{before} the @code{plot} command.
29169 To get help on any GNUPLOT feature, type, e.g., @kbd{g C help set label}.
29170 You may have to type @kbd{g C @key{RET}} a few times to clear the
29171 ``press return for more'' or ``subtopic of @dots{}'' requests.
29172 Note that Calc always sends commands (like @samp{set nolabel}) to
29173 reset all plotting parameters to the defaults before each plot, so
29174 to delete a label all you need to do is delete the @samp{set label}
29175 line you added (or comment it out with @samp{#}) and then replot
29176 with @kbd{g p}.
29178 @kindex g q
29179 @pindex calc-graph-quit
29180 You can use @kbd{g q} (@code{calc-graph-quit}) to kill the GNUPLOT
29181 process that is running.  The next graphing command you give will
29182 start a fresh GNUPLOT process.  The word @samp{Graph} appears in
29183 the Calc window's mode line whenever a GNUPLOT process is currently
29184 running.  The GNUPLOT process is automatically killed when you
29185 exit Emacs if you haven't killed it manually by then.
29187 @kindex g K
29188 @pindex calc-graph-kill
29189 The @kbd{g K} (@code{calc-graph-kill}) command is like @kbd{g q}
29190 except that it also views the @samp{*Gnuplot Trail*} buffer so that
29191 you can see the process being killed.  This is better if you are
29192 killing GNUPLOT because you think it has gotten stuck.
29194 @node Kill and Yank, Keypad Mode, Graphics, Top
29195 @chapter Kill and Yank Functions
29197 @noindent
29198 The commands in this chapter move information between the Calculator and
29199 other Emacs editing buffers.
29201 In many cases Embedded mode is an easier and more natural way to
29202 work with Calc from a regular editing buffer.  @xref{Embedded Mode}.
29204 @menu
29205 * Killing From Stack::
29206 * Yanking Into Stack::
29207 * Grabbing From Buffers::
29208 * Yanking Into Buffers::
29209 * X Cut and Paste::
29210 @end menu
29212 @node Killing From Stack, Yanking Into Stack, Kill and Yank, Kill and Yank
29213 @section Killing from the Stack
29215 @noindent
29216 @kindex C-k
29217 @pindex calc-kill
29218 @kindex M-k
29219 @pindex calc-copy-as-kill
29220 @kindex C-w
29221 @pindex calc-kill-region
29222 @kindex M-w
29223 @pindex calc-copy-region-as-kill
29224 @cindex Kill ring
29225 @dfn{Kill} commands are Emacs commands that insert text into the
29226 ``kill ring,'' from which it can later be ``yanked'' by a @kbd{C-y}
29227 command.  Three common kill commands in normal Emacs are @kbd{C-k}, which
29228 kills one line, @kbd{C-w}, which kills the region between mark and point,
29229 and @kbd{M-w}, which puts the region into the kill ring without actually
29230 deleting it.  All of these commands work in the Calculator, too.  Also,
29231 @kbd{M-k} has been provided to complete the set; it puts the current line
29232 into the kill ring without deleting anything.
29234 The kill commands are unusual in that they pay attention to the location
29235 of the cursor in the Calculator buffer.  If the cursor is on or below the
29236 bottom line, the kill commands operate on the top of the stack.  Otherwise,
29237 they operate on whatever stack element the cursor is on.  Calc's kill
29238 commands always operate on whole stack entries.  (They act the same as their
29239 standard Emacs cousins except they ``round up'' the specified region to
29240 encompass full lines.)  The text is copied into the kill ring exactly as
29241 it appears on the screen, including line numbers if they are enabled.
29243 A numeric prefix argument to @kbd{C-k} or @kbd{M-k} affects the number
29244 of lines killed.  A positive argument kills the current line and @expr{n-1}
29245 lines below it.  A negative argument kills the @expr{-n} lines above the
29246 current line.  Again this mirrors the behavior of the standard Emacs
29247 @kbd{C-k} command.  Although a whole line is always deleted, @kbd{C-k}
29248 with no argument copies only the number itself into the kill ring, whereas
29249 @kbd{C-k} with a prefix argument of 1 copies the number with its trailing
29250 newline.
29252 @node Yanking Into Stack, Grabbing From Buffers, Killing From Stack, Kill and Yank
29253 @section Yanking into the Stack
29255 @noindent
29256 @kindex C-y
29257 @pindex calc-yank
29258 The @kbd{C-y} command yanks the most recently killed text back into the
29259 Calculator.  It pushes this value onto the top of the stack regardless of
29260 the cursor position.  In general it re-parses the killed text as a number
29261 or formula (or a list of these separated by commas or newlines).  However if
29262 the thing being yanked is something that was just killed from the Calculator
29263 itself, its full internal structure is yanked.  For example, if you have
29264 set the floating-point display mode to show only four significant digits,
29265 then killing and re-yanking 3.14159 (which displays as 3.142) will yank the
29266 full 3.14159, even though yanking it into any other buffer would yank the
29267 number in its displayed form, 3.142.  (Since the default display modes
29268 show all objects to their full precision, this feature normally makes no
29269 difference.)
29271 @node Grabbing From Buffers, Yanking Into Buffers, Yanking Into Stack, Kill and Yank
29272 @section Grabbing from Other Buffers
29274 @noindent
29275 @kindex C-x * g
29276 @pindex calc-grab-region
29277 The @kbd{C-x * g} (@code{calc-grab-region}) command takes the text between
29278 point and mark in the current buffer and attempts to parse it as a
29279 vector of values.  Basically, it wraps the text in vector brackets
29280 @samp{[ ]} unless the text already is enclosed in vector brackets,
29281 then reads the text as if it were an algebraic entry.  The contents
29282 of the vector may be numbers, formulas, or any other Calc objects.
29283 If the @kbd{C-x * g} command works successfully, it does an automatic
29284 @kbd{C-x * c} to enter the Calculator buffer.
29286 A numeric prefix argument grabs the specified number of lines around
29287 point, ignoring the mark.  A positive prefix grabs from point to the
29288 @expr{n}th following newline (so that @kbd{M-1 C-x * g} grabs from point
29289 to the end of the current line); a negative prefix grabs from point
29290 back to the @expr{n+1}st preceding newline.  In these cases the text
29291 that is grabbed is exactly the same as the text that @kbd{C-k} would
29292 delete given that prefix argument.
29294 A prefix of zero grabs the current line; point may be anywhere on the
29295 line.
29297 A plain @kbd{C-u} prefix interprets the region between point and mark
29298 as a single number or formula rather than a vector.  For example,
29299 @kbd{C-x * g} on the text @samp{2 a b} produces the vector of three
29300 values @samp{[2, a, b]}, but @kbd{C-u C-x * g} on the same region
29301 reads a formula which is a product of three things:  @samp{2 a b}.
29302 (The text @samp{a + b}, on the other hand, will be grabbed as a
29303 vector of one element by plain @kbd{C-x * g} because the interpretation
29304 @samp{[a, +, b]} would be a syntax error.)
29306 If a different language has been specified (@pxref{Language Modes}),
29307 the grabbed text will be interpreted according to that language.
29309 @kindex C-x * r
29310 @pindex calc-grab-rectangle
29311 The @kbd{C-x * r} (@code{calc-grab-rectangle}) command takes the text between
29312 point and mark and attempts to parse it as a matrix.  If point and mark
29313 are both in the leftmost column, the lines in between are parsed in their
29314 entirety.  Otherwise, point and mark define the corners of a rectangle
29315 whose contents are parsed.
29317 Each line of the grabbed area becomes a row of the matrix.  The result
29318 will actually be a vector of vectors, which Calc will treat as a matrix
29319 only if every row contains the same number of values.
29321 If a line contains a portion surrounded by square brackets (or curly
29322 braces), that portion is interpreted as a vector which becomes a row
29323 of the matrix.  Any text surrounding the bracketed portion on the line
29324 is ignored.
29326 Otherwise, the entire line is interpreted as a row vector as if it
29327 were surrounded by square brackets.  Leading line numbers (in the
29328 format used in the Calc stack buffer) are ignored.  If you wish to
29329 force this interpretation (even if the line contains bracketed
29330 portions), give a negative numeric prefix argument to the
29331 @kbd{C-x * r} command.
29333 If you give a numeric prefix argument of zero or plain @kbd{C-u}, each
29334 line is instead interpreted as a single formula which is converted into
29335 a one-element vector.  Thus the result of @kbd{C-u C-x * r} will be a
29336 one-column matrix.  For example, suppose one line of the data is the
29337 expression @samp{2 a}.  A plain @w{@kbd{C-x * r}} will interpret this as
29338 @samp{[2 a]}, which in turn is read as a two-element vector that forms
29339 one row of the matrix.  But a @kbd{C-u C-x * r} will interpret this row
29340 as @samp{[2*a]}.
29342 If you give a positive numeric prefix argument @var{n}, then each line
29343 will be split up into columns of width @var{n}; each column is parsed
29344 separately as a matrix element.  If a line contained
29345 @w{@samp{2 +/- 3 4 +/- 5}}, then grabbing with a prefix argument of 8
29346 would correctly split the line into two error forms.
29348 @xref{Matrix Functions}, to see how to pull the matrix apart into its
29349 constituent rows and columns.  (If it is a 
29350 @texline @math{1\times1}
29351 @infoline 1x1
29352 matrix, just hit @kbd{v u} (@code{calc-unpack}) twice.)
29354 @kindex C-x * :
29355 @kindex C-x * _
29356 @pindex calc-grab-sum-across
29357 @pindex calc-grab-sum-down
29358 @cindex Summing rows and columns of data
29359 The @kbd{C-x * :} (@code{calc-grab-sum-down}) command is a handy way to
29360 grab a rectangle of data and sum its columns.  It is equivalent to
29361 typing @kbd{C-x * r}, followed by @kbd{V R : +} (the vector reduction
29362 command that sums the columns of a matrix; @pxref{Reducing}).  The
29363 result of the command will be a vector of numbers, one for each column
29364 in the input data.  The @kbd{C-x * _} (@code{calc-grab-sum-across}) command
29365 similarly grabs a rectangle and sums its rows by executing @w{@kbd{V R _ +}}.
29367 As well as being more convenient, @kbd{C-x * :} and @kbd{C-x * _} are also
29368 much faster because they don't actually place the grabbed vector on
29369 the stack.  In a @kbd{C-x * r V R : +} sequence, formatting the vector
29370 for display on the stack takes a large fraction of the total time
29371 (unless you have planned ahead and used @kbd{v .} and @kbd{t .} modes).
29373 For example, suppose we have a column of numbers in a file which we
29374 wish to sum.  Go to one corner of the column and press @kbd{C-@@} to
29375 set the mark; go to the other corner and type @kbd{C-x * :}.  Since there
29376 is only one column, the result will be a vector of one number, the sum.
29377 (You can type @kbd{v u} to unpack this vector into a plain number if
29378 you want to do further arithmetic with it.)
29380 To compute the product of the column of numbers, we would have to do
29381 it ``by hand'' since there's no special grab-and-multiply command.
29382 Use @kbd{C-x * r} to grab the column of numbers into the calculator in
29383 the form of a column matrix.  The statistics command @kbd{u *} is a
29384 handy way to find the product of a vector or matrix of numbers.
29385 @xref{Statistical Operations}.  Another approach would be to use
29386 an explicit column reduction command, @kbd{V R : *}.
29388 @node Yanking Into Buffers, X Cut and Paste, Grabbing From Buffers, Kill and Yank
29389 @section Yanking into Other Buffers
29391 @noindent
29392 @kindex y
29393 @pindex calc-copy-to-buffer
29394 The plain @kbd{y} (@code{calc-copy-to-buffer}) command inserts the number
29395 at the top of the stack into the most recently used normal editing buffer.
29396 (More specifically, this is the most recently used buffer which is displayed
29397 in a window and whose name does not begin with @samp{*}.  If there is no
29398 such buffer, this is the most recently used buffer except for Calculator
29399 and Calc Trail buffers.)  The number is inserted exactly as it appears and
29400 without a newline.  (If line-numbering is enabled, the line number is
29401 normally not included.)  The number is @emph{not} removed from the stack.
29403 With a prefix argument, @kbd{y} inserts several numbers, one per line.
29404 A positive argument inserts the specified number of values from the top
29405 of the stack.  A negative argument inserts the @expr{n}th value from the
29406 top of the stack.  An argument of zero inserts the entire stack.  Note
29407 that @kbd{y} with an argument of 1 is slightly different from @kbd{y}
29408 with no argument; the former always copies full lines, whereas the
29409 latter strips off the trailing newline.
29411 With a lone @kbd{C-u} as a prefix argument, @kbd{y} @emph{replaces} the
29412 region in the other buffer with the yanked text, then quits the
29413 Calculator, leaving you in that buffer.  A typical use would be to use
29414 @kbd{C-x * g} to read a region of data into the Calculator, operate on the
29415 data to produce a new matrix, then type @kbd{C-u y} to replace the
29416 original data with the new data.  One might wish to alter the matrix
29417 display style (@pxref{Vector and Matrix Formats}) or change the current
29418 display language (@pxref{Language Modes}) before doing this.  Also, note
29419 that this command replaces a linear region of text (as grabbed by
29420 @kbd{C-x * g}), not a rectangle (as grabbed by @kbd{C-x * r}).
29422 If the editing buffer is in overwrite (as opposed to insert) mode,
29423 and the @kbd{C-u} prefix was not used, then the yanked number will
29424 overwrite the characters following point rather than being inserted
29425 before those characters.  The usual conventions of overwrite mode
29426 are observed; for example, characters will be inserted at the end of
29427 a line rather than overflowing onto the next line.  Yanking a multi-line
29428 object such as a matrix in overwrite mode overwrites the next @var{n}
29429 lines in the buffer, lengthening or shortening each line as necessary.
29430 Finally, if the thing being yanked is a simple integer or floating-point
29431 number (like @samp{-1.2345e-3}) and the characters following point also
29432 make up such a number, then Calc will replace that number with the new
29433 number, lengthening or shortening as necessary.  The concept of
29434 ``overwrite mode'' has thus been generalized from overwriting characters
29435 to overwriting one complete number with another.
29437 @kindex C-x * y
29438 The @kbd{C-x * y} key sequence is equivalent to @kbd{y} except that
29439 it can be typed anywhere, not just in Calc.  This provides an easy
29440 way to guarantee that Calc knows which editing buffer you want to use!
29442 @node X Cut and Paste,  , Yanking Into Buffers, Kill and Yank
29443 @section X Cut and Paste
29445 @noindent
29446 If you are using Emacs with the X window system, there is an easier
29447 way to move small amounts of data into and out of the calculator:
29448 Use the mouse-oriented cut and paste facilities of X.
29450 The default bindings for a three-button mouse cause the left button
29451 to move the Emacs cursor to the given place, the right button to
29452 select the text between the cursor and the clicked location, and
29453 the middle button to yank the selection into the buffer at the
29454 clicked location.  So, if you have a Calc window and an editing
29455 window on your Emacs screen, you can use left-click/right-click
29456 to select a number, vector, or formula from one window, then
29457 middle-click to paste that value into the other window.  When you
29458 paste text into the Calc window, Calc interprets it as an algebraic
29459 entry.  It doesn't matter where you click in the Calc window; the
29460 new value is always pushed onto the top of the stack.
29462 The @code{xterm} program that is typically used for general-purpose
29463 shell windows in X interprets the mouse buttons in the same way.
29464 So you can use the mouse to move data between Calc and any other
29465 Unix program.  One nice feature of @code{xterm} is that a double
29466 left-click selects one word, and a triple left-click selects a
29467 whole line.  So you can usually transfer a single number into Calc
29468 just by double-clicking on it in the shell, then middle-clicking
29469 in the Calc window.
29471 @node Keypad Mode, Embedded Mode, Kill and Yank, Top
29472 @chapter Keypad Mode
29474 @noindent
29475 @kindex C-x * k
29476 @pindex calc-keypad
29477 The @kbd{C-x * k} (@code{calc-keypad}) command starts the Calculator
29478 and displays a picture of a calculator-style keypad.  If you are using
29479 the X window system, you can click on any of the ``keys'' in the
29480 keypad using the left mouse button to operate the calculator.
29481 The original window remains the selected window; in Keypad mode
29482 you can type in your file while simultaneously performing
29483 calculations with the mouse.
29485 @pindex full-calc-keypad
29486 If you have used @kbd{C-x * b} first, @kbd{C-x * k} instead invokes
29487 the @code{full-calc-keypad} command, which takes over the whole
29488 Emacs screen and displays the keypad, the Calc stack, and the Calc
29489 trail all at once.  This mode would normally be used when running
29490 Calc standalone (@pxref{Standalone Operation}).
29492 If you aren't using the X window system, you must switch into
29493 the @samp{*Calc Keypad*} window, place the cursor on the desired
29494 ``key,'' and type @key{SPC} or @key{RET}.  If you think this
29495 is easier than using Calc normally, go right ahead.
29497 Calc commands are more or less the same in Keypad mode.  Certain
29498 keypad keys differ slightly from the corresponding normal Calc
29499 keystrokes; all such deviations are described below.
29501 Keypad mode includes many more commands than will fit on the keypad
29502 at once.  Click the right mouse button [@code{calc-keypad-menu}]
29503 to switch to the next menu.  The bottom five rows of the keypad
29504 stay the same; the top three rows change to a new set of commands.
29505 To return to earlier menus, click the middle mouse button
29506 [@code{calc-keypad-menu-back}] or simply advance through the menus
29507 until you wrap around.  Typing @key{TAB} inside the keypad window
29508 is equivalent to clicking the right mouse button there.
29510 You can always click the @key{EXEC} button and type any normal
29511 Calc key sequence.  This is equivalent to switching into the
29512 Calc buffer, typing the keys, then switching back to your
29513 original buffer.
29515 @menu
29516 * Keypad Main Menu::
29517 * Keypad Functions Menu::
29518 * Keypad Binary Menu::
29519 * Keypad Vectors Menu::
29520 * Keypad Modes Menu::
29521 @end menu
29523 @node Keypad Main Menu, Keypad Functions Menu, Keypad Mode, Keypad Mode
29524 @section Main Menu
29526 @smallexample
29527 @group
29528 |----+-----Calc 2.1------+----1
29529 |FLR |CEIL|RND |TRNC|CLN2|FLT |
29530 |----+----+----+----+----+----|
29531 | LN |EXP |    |ABS |IDIV|MOD |
29532 |----+----+----+----+----+----|
29533 |SIN |COS |TAN |SQRT|y^x |1/x |
29534 |----+----+----+----+----+----|
29535 |  ENTER  |+/- |EEX |UNDO| <- |
29536 |-----+---+-+--+--+-+---++----|
29537 | INV |  7  |  8  |  9  |  /  |
29538 |-----+-----+-----+-----+-----|
29539 | HYP |  4  |  5  |  6  |  *  |
29540 |-----+-----+-----+-----+-----|
29541 |EXEC |  1  |  2  |  3  |  -  |
29542 |-----+-----+-----+-----+-----|
29543 | OFF |  0  |  .  | PI  |  +  |
29544 |-----+-----+-----+-----+-----+
29545 @end group
29546 @end smallexample
29548 @noindent
29549 This is the menu that appears the first time you start Keypad mode.
29550 It will show up in a vertical window on the right side of your screen.
29551 Above this menu is the traditional Calc stack display.  On a 24-line
29552 screen you will be able to see the top three stack entries.
29554 The ten digit keys, decimal point, and @key{EEX} key are used for
29555 entering numbers in the obvious way.  @key{EEX} begins entry of an
29556 exponent in scientific notation.  Just as with regular Calc, the
29557 number is pushed onto the stack as soon as you press @key{ENTER}
29558 or any other function key.
29560 The @key{+/-} key corresponds to normal Calc's @kbd{n} key.  During
29561 numeric entry it changes the sign of the number or of the exponent.
29562 At other times it changes the sign of the number on the top of the
29563 stack.
29565 The @key{INV} and @key{HYP} keys modify other keys.  As well as
29566 having the effects described elsewhere in this manual, Keypad mode
29567 defines several other ``inverse'' operations.  These are described
29568 below and in the following sections.
29570 The @key{ENTER} key finishes the current numeric entry, or otherwise
29571 duplicates the top entry on the stack.
29573 The @key{UNDO} key undoes the most recent Calc operation.
29574 @kbd{INV UNDO} is the ``redo'' command, and @kbd{HYP UNDO} is
29575 ``last arguments'' (@kbd{M-@key{RET}}).
29577 The @key{<-} key acts as a ``backspace'' during numeric entry.
29578 At other times it removes the top stack entry.  @kbd{INV <-}
29579 clears the entire stack.  @kbd{HYP <-} takes an integer from
29580 the stack, then removes that many additional stack elements.
29582 The @key{EXEC} key prompts you to enter any keystroke sequence
29583 that would normally work in Calc mode.  This can include a
29584 numeric prefix if you wish.  It is also possible simply to
29585 switch into the Calc window and type commands in it; there is
29586 nothing ``magic'' about this window when Keypad mode is active.
29588 The other keys in this display perform their obvious calculator
29589 functions.  @key{CLN2} rounds the top-of-stack by temporarily
29590 reducing the precision by 2 digits.  @key{FLT} converts an
29591 integer or fraction on the top of the stack to floating-point.
29593 The @key{INV} and @key{HYP} keys combined with several of these keys
29594 give you access to some common functions even if the appropriate menu
29595 is not displayed.  Obviously you don't need to learn these keys
29596 unless you find yourself wasting time switching among the menus.
29598 @table @kbd
29599 @item INV +/-
29600 is the same as @key{1/x}.
29601 @item INV +
29602 is the same as @key{SQRT}.
29603 @item INV -
29604 is the same as @key{CONJ}.
29605 @item INV *
29606 is the same as @key{y^x}.
29607 @item INV /
29608 is the same as @key{INV y^x} (the @expr{x}th root of @expr{y}).
29609 @item HYP/INV 1
29610 are the same as @key{SIN} / @kbd{INV SIN}.
29611 @item HYP/INV 2
29612 are the same as @key{COS} / @kbd{INV COS}.
29613 @item HYP/INV 3
29614 are the same as @key{TAN} / @kbd{INV TAN}.
29615 @item INV/HYP 4
29616 are the same as @key{LN} / @kbd{HYP LN}.
29617 @item INV/HYP 5
29618 are the same as @key{EXP} / @kbd{HYP EXP}.
29619 @item INV 6
29620 is the same as @key{ABS}.
29621 @item INV 7
29622 is the same as @key{RND} (@code{calc-round}).
29623 @item INV 8
29624 is the same as @key{CLN2}.
29625 @item INV 9
29626 is the same as @key{FLT} (@code{calc-float}).
29627 @item INV 0
29628 is the same as @key{IMAG}.
29629 @item INV .
29630 is the same as @key{PREC}.
29631 @item INV ENTER
29632 is the same as @key{SWAP}.
29633 @item HYP ENTER
29634 is the same as @key{RLL3}.
29635 @item INV HYP ENTER
29636 is the same as @key{OVER}.
29637 @item HYP +/-
29638 packs the top two stack entries as an error form.
29639 @item HYP EEX
29640 packs the top two stack entries as a modulo form.
29641 @item INV EEX
29642 creates an interval form; this removes an integer which is one
29643 of 0 @samp{[]}, 1 @samp{[)}, 2 @samp{(]} or 3 @samp{()}, followed
29644 by the two limits of the interval.
29645 @end table
29647 The @kbd{OFF} key turns Calc off; typing @kbd{C-x * k} or @kbd{C-x * *}
29648 again has the same effect.  This is analogous to typing @kbd{q} or
29649 hitting @kbd{C-x * c} again in the normal calculator.  If Calc is
29650 running standalone (the @code{full-calc-keypad} command appeared in the
29651 command line that started Emacs), then @kbd{OFF} is replaced with
29652 @kbd{EXIT}; clicking on this actually exits Emacs itself.
29654 @node Keypad Functions Menu, Keypad Binary Menu, Keypad Main Menu, Keypad Mode
29655 @section Functions Menu
29657 @smallexample
29658 @group
29659 |----+----+----+----+----+----2
29660 |IGAM|BETA|IBET|ERF |BESJ|BESY|
29661 |----+----+----+----+----+----|
29662 |IMAG|CONJ| RE |ATN2|RAND|RAGN|
29663 |----+----+----+----+----+----|
29664 |GCD |FACT|DFCT|BNOM|PERM|NXTP|
29665 |----+----+----+----+----+----|
29666 @end group
29667 @end smallexample
29669 @noindent
29670 This menu provides various operations from the @kbd{f} and @kbd{k}
29671 prefix keys.
29673 @key{IMAG} multiplies the number on the stack by the imaginary
29674 number @expr{i = (0, 1)}.
29676 @key{RE} extracts the real part a complex number.  @kbd{INV RE}
29677 extracts the imaginary part.
29679 @key{RAND} takes a number from the top of the stack and computes
29680 a random number greater than or equal to zero but less than that
29681 number.  (@xref{Random Numbers}.)  @key{RAGN} is the ``random
29682 again'' command; it computes another random number using the
29683 same limit as last time.
29685 @key{INV GCD} computes the LCM (least common multiple) function.
29687 @key{INV FACT} is the gamma function.  
29688 @texline @math{\Gamma(x) = (x-1)!}.
29689 @infoline @expr{gamma(x) = (x-1)!}.
29691 @key{PERM} is the number-of-permutations function, which is on the
29692 @kbd{H k c} key in normal Calc.
29694 @key{NXTP} finds the next prime after a number.  @kbd{INV NXTP}
29695 finds the previous prime.
29697 @node Keypad Binary Menu, Keypad Vectors Menu, Keypad Functions Menu, Keypad Mode
29698 @section Binary Menu
29700 @smallexample
29701 @group
29702 |----+----+----+----+----+----3
29703 |AND | OR |XOR |NOT |LSH |RSH |
29704 |----+----+----+----+----+----|
29705 |DEC |HEX |OCT |BIN |WSIZ|ARSH|
29706 |----+----+----+----+----+----|
29707 | A  | B  | C  | D  | E  | F  |
29708 |----+----+----+----+----+----|
29709 @end group
29710 @end smallexample
29712 @noindent
29713 The keys in this menu perform operations on binary integers.
29714 Note that both logical and arithmetic right-shifts are provided.
29715 @key{INV LSH} rotates one bit to the left.
29717 The ``difference'' function (normally on @kbd{b d}) is on @key{INV AND}.
29718 The ``clip'' function (normally on @w{@kbd{b c}}) is on @key{INV NOT}.
29720 The @key{DEC}, @key{HEX}, @key{OCT}, and @key{BIN} keys select the
29721 current radix for display and entry of numbers:  Decimal, hexadecimal,
29722 octal, or binary.  The six letter keys @key{A} through @key{F} are used
29723 for entering hexadecimal numbers.
29725 The @key{WSIZ} key displays the current word size for binary operations
29726 and allows you to enter a new word size.  You can respond to the prompt
29727 using either the keyboard or the digits and @key{ENTER} from the keypad.
29728 The initial word size is 32 bits.
29730 @node Keypad Vectors Menu, Keypad Modes Menu, Keypad Binary Menu, Keypad Mode
29731 @section Vectors Menu
29733 @smallexample
29734 @group
29735 |----+----+----+----+----+----4
29736 |SUM |PROD|MAX |MAP*|MAP^|MAP$|
29737 |----+----+----+----+----+----|
29738 |MINV|MDET|MTRN|IDNT|CRSS|"x" |
29739 |----+----+----+----+----+----|
29740 |PACK|UNPK|INDX|BLD |LEN |... |
29741 |----+----+----+----+----+----|
29742 @end group
29743 @end smallexample
29745 @noindent
29746 The keys in this menu operate on vectors and matrices.
29748 @key{PACK} removes an integer @var{n} from the top of the stack;
29749 the next @var{n} stack elements are removed and packed into a vector,
29750 which is replaced onto the stack.  Thus the sequence
29751 @kbd{1 ENTER 3 ENTER 5 ENTER 3 PACK} enters the vector
29752 @samp{[1, 3, 5]} onto the stack.  To enter a matrix, build each row
29753 on the stack as a vector, then use a final @key{PACK} to collect the
29754 rows into a matrix.
29756 @key{UNPK} unpacks the vector on the stack, pushing each of its
29757 components separately.
29759 @key{INDX} removes an integer @var{n}, then builds a vector of
29760 integers from 1 to @var{n}.  @kbd{INV INDX} takes three numbers
29761 from the stack:  The vector size @var{n}, the starting number,
29762 and the increment.  @kbd{BLD} takes an integer @var{n} and any
29763 value @var{x} and builds a vector of @var{n} copies of @var{x}.
29765 @key{IDNT} removes an integer @var{n}, then builds an @var{n}-by-@var{n}
29766 identity matrix.
29768 @key{LEN} replaces a vector by its length, an integer.
29770 @key{...} turns on or off ``abbreviated'' display mode for large vectors.
29772 @key{MINV}, @key{MDET}, @key{MTRN}, and @key{CROSS} are the matrix
29773 inverse, determinant, and transpose, and vector cross product.
29775 @key{SUM} replaces a vector by the sum of its elements.  It is
29776 equivalent to @kbd{u +} in normal Calc (@pxref{Statistical Operations}).
29777 @key{PROD} computes the product of the elements of a vector, and
29778 @key{MAX} computes the maximum of all the elements of a vector.
29780 @key{INV SUM} computes the alternating sum of the first element
29781 minus the second, plus the third, minus the fourth, and so on.
29782 @key{INV MAX} computes the minimum of the vector elements.
29784 @key{HYP SUM} computes the mean of the vector elements.
29785 @key{HYP PROD} computes the sample standard deviation.
29786 @key{HYP MAX} computes the median.
29788 @key{MAP*} multiplies two vectors elementwise.  It is equivalent
29789 to the @kbd{V M *} command.  @key{MAP^} computes powers elementwise.
29790 The arguments must be vectors of equal length, or one must be a vector
29791 and the other must be a plain number.  For example, @kbd{2 MAP^} squares
29792 all the elements of a vector.
29794 @key{MAP$} maps the formula on the top of the stack across the
29795 vector in the second-to-top position.  If the formula contains
29796 several variables, Calc takes that many vectors starting at the
29797 second-to-top position and matches them to the variables in
29798 alphabetical order.  The result is a vector of the same size as
29799 the input vectors, whose elements are the formula evaluated with
29800 the variables set to the various sets of numbers in those vectors.
29801 For example, you could simulate @key{MAP^} using @key{MAP$} with
29802 the formula @samp{x^y}.
29804 The @kbd{"x"} key pushes the variable name @expr{x} onto the
29805 stack.  To build the formula @expr{x^2 + 6}, you would use the
29806 key sequence @kbd{"x" 2 y^x 6 +}.  This formula would then be
29807 suitable for use with the @key{MAP$} key described above.
29808 With @key{INV}, @key{HYP}, or @key{INV} and @key{HYP}, the
29809 @kbd{"x"} key pushes the variable names @expr{y}, @expr{z}, and
29810 @expr{t}, respectively.
29812 @node Keypad Modes Menu,  , Keypad Vectors Menu, Keypad Mode
29813 @section Modes Menu
29815 @smallexample
29816 @group
29817 |----+----+----+----+----+----5
29818 |FLT |FIX |SCI |ENG |GRP |    |
29819 |----+----+----+----+----+----|
29820 |RAD |DEG |FRAC|POLR|SYMB|PREC|
29821 |----+----+----+----+----+----|
29822 |SWAP|RLL3|RLL4|OVER|STO |RCL |
29823 |----+----+----+----+----+----|
29824 @end group
29825 @end smallexample
29827 @noindent
29828 The keys in this menu manipulate modes, variables, and the stack.
29830 The @key{FLT}, @key{FIX}, @key{SCI}, and @key{ENG} keys select
29831 floating-point, fixed-point, scientific, or engineering notation.
29832 @key{FIX} displays two digits after the decimal by default; the
29833 others display full precision.  With the @key{INV} prefix, these
29834 keys pop a number-of-digits argument from the stack.
29836 The @key{GRP} key turns grouping of digits with commas on or off.
29837 @kbd{INV GRP} enables grouping to the right of the decimal point as
29838 well as to the left.
29840 The @key{RAD} and @key{DEG} keys switch between radians and degrees
29841 for trigonometric functions.
29843 The @key{FRAC} key turns Fraction mode on or off.  This affects
29844 whether commands like @kbd{/} with integer arguments produce
29845 fractional or floating-point results.
29847 The @key{POLR} key turns Polar mode on or off, determining whether
29848 polar or rectangular complex numbers are used by default.
29850 The @key{SYMB} key turns Symbolic mode on or off, in which
29851 operations that would produce inexact floating-point results
29852 are left unevaluated as algebraic formulas.
29854 The @key{PREC} key selects the current precision.  Answer with
29855 the keyboard or with the keypad digit and @key{ENTER} keys.
29857 The @key{SWAP} key exchanges the top two stack elements.
29858 The @key{RLL3} key rotates the top three stack elements upwards.
29859 The @key{RLL4} key rotates the top four stack elements upwards.
29860 The @key{OVER} key duplicates the second-to-top stack element.
29862 The @key{STO} and @key{RCL} keys are analogous to @kbd{s t} and
29863 @kbd{s r} in regular Calc.  @xref{Store and Recall}.  Click the
29864 @key{STO} or @key{RCL} key, then one of the ten digits.  (Named
29865 variables are not available in Keypad mode.)  You can also use,
29866 for example, @kbd{STO + 3} to add to register 3.
29868 @node Embedded Mode, Programming, Keypad Mode, Top
29869 @chapter Embedded Mode
29871 @noindent
29872 Embedded mode in Calc provides an alternative to copying numbers
29873 and formulas back and forth between editing buffers and the Calc
29874 stack.  In Embedded mode, your editing buffer becomes temporarily
29875 linked to the stack and this copying is taken care of automatically.
29877 @menu
29878 * Basic Embedded Mode::
29879 * More About Embedded Mode::
29880 * Assignments in Embedded Mode::
29881 * Mode Settings in Embedded Mode::
29882 * Customizing Embedded Mode::
29883 @end menu
29885 @node Basic Embedded Mode, More About Embedded Mode, Embedded Mode, Embedded Mode
29886 @section Basic Embedded Mode
29888 @noindent
29889 @kindex C-x * e
29890 @pindex calc-embedded
29891 To enter Embedded mode, position the Emacs point (cursor) on a
29892 formula in any buffer and press @kbd{C-x * e} (@code{calc-embedded}).
29893 Note that @kbd{C-x * e} is not to be used in the Calc stack buffer
29894 like most Calc commands, but rather in regular editing buffers that
29895 are visiting your own files.
29897 Calc will try to guess an appropriate language based on the major mode
29898 of the editing buffer. (@xref{Language Modes}.) If the current buffer is
29899 in @code{latex-mode}, for example, Calc will set its language to La@TeX{}.
29900 Similarly, Calc will use @TeX{} language for @code{tex-mode},
29901 @code{plain-tex-mode} and @code{context-mode}, C language for
29902 @code{c-mode} and @code{c++-mode}, FORTRAN language for
29903 @code{fortran-mode} and @code{f90-mode}, Pascal for @code{pascal-mode},
29904 and eqn for @code{nroff-mode} (@pxref{Customizing Calc}).  
29905 These can be overridden with Calc's mode
29906 changing commands (@pxref{Mode Settings in Embedded Mode}).  If no
29907 suitable language is available, Calc will continue with its current language.
29909 Calc normally scans backward and forward in the buffer for the
29910 nearest opening and closing @dfn{formula delimiters}.  The simplest
29911 delimiters are blank lines.  Other delimiters that Embedded mode
29912 understands are:
29914 @enumerate
29915 @item
29916 The @TeX{} and La@TeX{} math delimiters @samp{$ $}, @samp{$$ $$},
29917 @samp{\[ \]}, and @samp{\( \)};
29918 @item
29919 Lines beginning with @samp{\begin} and @samp{\end} (except matrix delimiters);
29920 @item
29921 Lines beginning with @samp{@@} (Texinfo delimiters).
29922 @item
29923 Lines beginning with @samp{.EQ} and @samp{.EN} (@dfn{eqn} delimiters);
29924 @item
29925 Lines containing a single @samp{%} or @samp{.\"} symbol and nothing else.
29926 @end enumerate
29928 @xref{Customizing Embedded Mode}, to see how to make Calc recognize
29929 your own favorite delimiters.  Delimiters like @samp{$ $} can appear
29930 on their own separate lines or in-line with the formula.
29932 If you give a positive or negative numeric prefix argument, Calc
29933 instead uses the current point as one end of the formula, and includes
29934 that many lines forward or backward (respectively, including the current
29935 line). Explicit delimiters are not necessary in this case.
29937 With a prefix argument of zero, Calc uses the current region (delimited
29938 by point and mark) instead of formula delimiters.  With a prefix
29939 argument of @kbd{C-u} only, Calc uses the current line as the formula.
29941 @kindex C-x * w
29942 @pindex calc-embedded-word
29943 The @kbd{C-x * w} (@code{calc-embedded-word}) command will start Embedded
29944 mode on the current ``word''; in this case Calc will scan for the first
29945 non-numeric character (i.e., the first character that is not a digit,
29946 sign, decimal point, or upper- or lower-case @samp{e}) forward and
29947 backward to delimit the formula.
29949 When you enable Embedded mode for a formula, Calc reads the text
29950 between the delimiters and tries to interpret it as a Calc formula.
29951 Calc can generally identify @TeX{} formulas and
29952 Big-style formulas even if the language mode is wrong.  If Calc
29953 can't make sense of the formula, it beeps and refuses to enter
29954 Embedded mode.  But if the current language is wrong, Calc can
29955 sometimes parse the formula successfully (but incorrectly);
29956 for example, the C expression @samp{atan(a[1])} can be parsed
29957 in Normal language mode, but the @code{atan} won't correspond to
29958 the built-in @code{arctan} function, and the @samp{a[1]} will be
29959 interpreted as @samp{a} times the vector @samp{[1]}!
29961 If you press @kbd{C-x * e} or @kbd{C-x * w} to activate an embedded
29962 formula which is blank, say with the cursor on the space between
29963 the two delimiters @samp{$ $}, Calc will immediately prompt for
29964 an algebraic entry.
29966 Only one formula in one buffer can be enabled at a time.  If you
29967 move to another area of the current buffer and give Calc commands,
29968 Calc turns Embedded mode off for the old formula and then tries
29969 to restart Embedded mode at the new position.  Other buffers are
29970 not affected by Embedded mode.
29972 When Embedded mode begins, Calc pushes the current formula onto
29973 the stack.  No Calc stack window is created; however, Calc copies
29974 the top-of-stack position into the original buffer at all times.
29975 You can create a Calc window by hand with @kbd{C-x * o} if you
29976 find you need to see the entire stack.
29978 For example, typing @kbd{C-x * e} while somewhere in the formula
29979 @samp{n>2} in the following line enables Embedded mode on that
29980 inequality:
29982 @example
29983 We define $F_n = F_(n-1)+F_(n-2)$ for all $n>2$.
29984 @end example
29986 @noindent
29987 The formula @expr{n>2} will be pushed onto the Calc stack, and
29988 the top of stack will be copied back into the editing buffer.
29989 This means that spaces will appear around the @samp{>} symbol
29990 to match Calc's usual display style:
29992 @example
29993 We define $F_n = F_(n-1)+F_(n-2)$ for all $n > 2$.
29994 @end example
29996 @noindent
29997 No spaces have appeared around the @samp{+} sign because it's
29998 in a different formula, one which we have not yet touched with
29999 Embedded mode.
30001 Now that Embedded mode is enabled, keys you type in this buffer
30002 are interpreted as Calc commands.  At this point we might use
30003 the ``commute'' command @kbd{j C} to reverse the inequality.
30004 This is a selection-based command for which we first need to
30005 move the cursor onto the operator (@samp{>} in this case) that
30006 needs to be commuted.
30008 @example
30009 We define $F_n = F_(n-1)+F_(n-2)$ for all $2 < n$.
30010 @end example
30012 The @kbd{C-x * o} command is a useful way to open a Calc window
30013 without actually selecting that window.  Giving this command
30014 verifies that @samp{2 < n} is also on the Calc stack.  Typing
30015 @kbd{17 @key{RET}} would produce:
30017 @example
30018 We define $F_n = F_(n-1)+F_(n-2)$ for all $17$.
30019 @end example
30021 @noindent
30022 with @samp{2 < n} and @samp{17} on the stack; typing @key{TAB}
30023 at this point will exchange the two stack values and restore
30024 @samp{2 < n} to the embedded formula.  Even though you can't
30025 normally see the stack in Embedded mode, it is still there and
30026 it still operates in the same way.  But, as with old-fashioned
30027 RPN calculators, you can only see the value at the top of the
30028 stack at any given time (unless you use @kbd{C-x * o}).
30030 Typing @kbd{C-x * e} again turns Embedded mode off.  The Calc
30031 window reveals that the formula @w{@samp{2 < n}} is automatically
30032 removed from the stack, but the @samp{17} is not.  Entering
30033 Embedded mode always pushes one thing onto the stack, and
30034 leaving Embedded mode always removes one thing.  Anything else
30035 that happens on the stack is entirely your business as far as
30036 Embedded mode is concerned.
30038 If you press @kbd{C-x * e} in the wrong place by accident, it is
30039 possible that Calc will be able to parse the nearby text as a
30040 formula and will mangle that text in an attempt to redisplay it
30041 ``properly'' in the current language mode.  If this happens,
30042 press @kbd{C-x * e} again to exit Embedded mode, then give the
30043 regular Emacs ``undo'' command (@kbd{C-_} or @kbd{C-x u}) to put
30044 the text back the way it was before Calc edited it.  Note that Calc's
30045 own Undo command (typed before you turn Embedded mode back off)
30046 will not do you any good, because as far as Calc is concerned
30047 you haven't done anything with this formula yet.
30049 @node More About Embedded Mode, Assignments in Embedded Mode, Basic Embedded Mode, Embedded Mode
30050 @section More About Embedded Mode
30052 @noindent
30053 When Embedded mode ``activates'' a formula, i.e., when it examines
30054 the formula for the first time since the buffer was created or
30055 loaded, Calc tries to sense the language in which the formula was
30056 written.  If the formula contains any La@TeX{}-like @samp{\} sequences,
30057 it is parsed (i.e., read) in La@TeX{} mode.  If the formula appears to
30058 be written in multi-line Big mode, it is parsed in Big mode.  Otherwise,
30059 it is parsed according to the current language mode.
30061 Note that Calc does not change the current language mode according
30062 the formula it reads in.  Even though it can read a La@TeX{} formula when
30063 not in La@TeX{} mode, it will immediately rewrite this formula using
30064 whatever language mode is in effect.
30066 @tex
30067 \bigskip
30068 @end tex
30070 @kindex d p
30071 @pindex calc-show-plain
30072 Calc's parser is unable to read certain kinds of formulas.  For
30073 example, with @kbd{v ]} (@code{calc-matrix-brackets}) you can
30074 specify matrix display styles which the parser is unable to
30075 recognize as matrices.  The @kbd{d p} (@code{calc-show-plain})
30076 command turns on a mode in which a ``plain'' version of a
30077 formula is placed in front of the fully-formatted version.
30078 When Calc reads a formula that has such a plain version in
30079 front, it reads the plain version and ignores the formatted
30080 version.
30082 Plain formulas are preceded and followed by @samp{%%%} signs
30083 by default.  This notation has the advantage that the @samp{%}
30084 character begins a comment in @TeX{} and La@TeX{}, so if your formula is 
30085 embedded in a @TeX{} or La@TeX{} document its plain version will be
30086 invisible in the final printed copy.  Certain major modes have different
30087 delimiters to ensure that the ``plain'' version will be 
30088 in a comment for those modes, also.  
30089 See @ref{Customizing Embedded Mode} to see how to change the ``plain''
30090 formula delimiters. 
30092 There are several notations which Calc's parser for ``big''
30093 formatted formulas can't yet recognize.  In particular, it can't
30094 read the large symbols for @code{sum}, @code{prod}, and @code{integ},
30095 and it can't handle @samp{=>} with the righthand argument omitted.
30096 Also, Calc won't recognize special formats you have defined with
30097 the @kbd{Z C} command (@pxref{User-Defined Compositions}).  In
30098 these cases it is important to use ``plain'' mode to make sure
30099 Calc will be able to read your formula later.
30101 Another example where ``plain'' mode is important is if you have
30102 specified a float mode with few digits of precision.  Normally
30103 any digits that are computed but not displayed will simply be
30104 lost when you save and re-load your embedded buffer, but ``plain''
30105 mode allows you to make sure that the complete number is present
30106 in the file as well as the rounded-down number.
30108 @tex
30109 \bigskip
30110 @end tex
30112 Embedded buffers remember active formulas for as long as they
30113 exist in Emacs memory.  Suppose you have an embedded formula
30114 which is @cpi{} to the normal 12 decimal places, and then
30115 type @w{@kbd{C-u 5 d n}} to display only five decimal places.
30116 If you then type @kbd{d n}, all 12 places reappear because the
30117 full number is still there on the Calc stack.  More surprisingly,
30118 even if you exit Embedded mode and later re-enter it for that
30119 formula, typing @kbd{d n} will restore all 12 places because
30120 each buffer remembers all its active formulas.  However, if you
30121 save the buffer in a file and reload it in a new Emacs session,
30122 all non-displayed digits will have been lost unless you used
30123 ``plain'' mode.
30125 @tex
30126 \bigskip
30127 @end tex
30129 In some applications of Embedded mode, you will want to have a
30130 sequence of copies of a formula that show its evolution as you
30131 work on it.  For example, you might want to have a sequence
30132 like this in your file (elaborating here on the example from
30133 the ``Getting Started'' chapter):
30135 @smallexample
30136 The derivative of
30138                               ln(ln(x))
30142                   @r{(the derivative of }ln(ln(x))@r{)}
30144 whose value at x = 2 is
30146                             @r{(the value)}
30148 and at x = 3 is
30150                             @r{(the value)}
30151 @end smallexample
30153 @kindex C-x * d
30154 @pindex calc-embedded-duplicate
30155 The @kbd{C-x * d} (@code{calc-embedded-duplicate}) command is a
30156 handy way to make sequences like this.  If you type @kbd{C-x * d},
30157 the formula under the cursor (which may or may not have Embedded
30158 mode enabled for it at the time) is copied immediately below and
30159 Embedded mode is then enabled for that copy.
30161 For this example, you would start with just
30163 @smallexample
30164 The derivative of
30166                               ln(ln(x))
30167 @end smallexample
30169 @noindent
30170 and press @kbd{C-x * d} with the cursor on this formula.  The result
30173 @smallexample
30174 The derivative of
30176                               ln(ln(x))
30179                               ln(ln(x))
30180 @end smallexample
30182 @noindent
30183 with the second copy of the formula enabled in Embedded mode.
30184 You can now press @kbd{a d x @key{RET}} to take the derivative, and
30185 @kbd{C-x * d C-x * d} to make two more copies of the derivative.
30186 To complete the computations, type @kbd{3 s l x @key{RET}} to evaluate
30187 the last formula, then move up to the second-to-last formula
30188 and type @kbd{2 s l x @key{RET}}.
30190 Finally, you would want to press @kbd{C-x * e} to exit Embedded
30191 mode, then go up and insert the necessary text in between the
30192 various formulas and numbers.
30194 @tex
30195 \bigskip
30196 @end tex
30198 @kindex C-x * f
30199 @kindex C-x * '
30200 @pindex calc-embedded-new-formula
30201 The @kbd{C-x * f} (@code{calc-embedded-new-formula}) command
30202 creates a new embedded formula at the current point.  It inserts
30203 some default delimiters, which are usually just blank lines,
30204 and then does an algebraic entry to get the formula (which is
30205 then enabled for Embedded mode).  This is just shorthand for
30206 typing the delimiters yourself, positioning the cursor between
30207 the new delimiters, and pressing @kbd{C-x * e}.  The key sequence
30208 @kbd{C-x * '} is equivalent to @kbd{C-x * f}.
30210 @kindex C-x * n
30211 @kindex C-x * p
30212 @pindex calc-embedded-next
30213 @pindex calc-embedded-previous
30214 The @kbd{C-x * n} (@code{calc-embedded-next}) and @kbd{C-x * p}
30215 (@code{calc-embedded-previous}) commands move the cursor to the
30216 next or previous active embedded formula in the buffer.  They
30217 can take positive or negative prefix arguments to move by several
30218 formulas.  Note that these commands do not actually examine the
30219 text of the buffer looking for formulas; they only see formulas
30220 which have previously been activated in Embedded mode.  In fact,
30221 @kbd{C-x * n} and @kbd{C-x * p} are a useful way to tell which
30222 embedded formulas are currently active.  Also, note that these
30223 commands do not enable Embedded mode on the next or previous
30224 formula, they just move the cursor.
30226 @kindex C-x * `
30227 @pindex calc-embedded-edit
30228 The @kbd{C-x * `} (@code{calc-embedded-edit}) command edits the
30229 embedded formula at the current point as if by @kbd{`} (@code{calc-edit}).
30230 Embedded mode does not have to be enabled for this to work.  Press
30231 @kbd{C-c C-c} to finish the edit, or @kbd{C-x k} to cancel.
30233 @node Assignments in Embedded Mode, Mode Settings in Embedded Mode, More About Embedded Mode, Embedded Mode
30234 @section Assignments in Embedded Mode
30236 @noindent
30237 The @samp{:=} (assignment) and @samp{=>} (``evaluates-to'') operators
30238 are especially useful in Embedded mode.  They allow you to make
30239 a definition in one formula, then refer to that definition in
30240 other formulas embedded in the same buffer.
30242 An embedded formula which is an assignment to a variable, as in
30244 @example
30245 foo := 5
30246 @end example
30248 @noindent
30249 records @expr{5} as the stored value of @code{foo} for the
30250 purposes of Embedded mode operations in the current buffer.  It
30251 does @emph{not} actually store @expr{5} as the ``global'' value
30252 of @code{foo}, however.  Regular Calc operations, and Embedded
30253 formulas in other buffers, will not see this assignment.
30255 One way to use this assigned value is simply to create an
30256 Embedded formula elsewhere that refers to @code{foo}, and to press
30257 @kbd{=} in that formula.  However, this permanently replaces the
30258 @code{foo} in the formula with its current value.  More interesting
30259 is to use @samp{=>} elsewhere:
30261 @example
30262 foo + 7 => 12
30263 @end example
30265 @xref{Evaluates-To Operator}, for a general discussion of @samp{=>}.
30267 If you move back and change the assignment to @code{foo}, any
30268 @samp{=>} formulas which refer to it are automatically updated.
30270 @example
30271 foo := 17
30273 foo + 7 => 24
30274 @end example
30276 The obvious question then is, @emph{how} can one easily change the
30277 assignment to @code{foo}?  If you simply select the formula in
30278 Embedded mode and type 17, the assignment itself will be replaced
30279 by the 17.  The effect on the other formula will be that the
30280 variable @code{foo} becomes unassigned:
30282 @example
30285 foo + 7 => foo + 7
30286 @end example
30288 The right thing to do is first to use a selection command (@kbd{j 2}
30289 will do the trick) to select the righthand side of the assignment.
30290 Then, @kbd{17 @key{TAB} @key{DEL}} will swap the 17 into place (@pxref{Selecting
30291 Subformulas}, to see how this works).
30293 @kindex C-x * j
30294 @pindex calc-embedded-select
30295 The @kbd{C-x * j} (@code{calc-embedded-select}) command provides an
30296 easy way to operate on assignments.  It is just like @kbd{C-x * e},
30297 except that if the enabled formula is an assignment, it uses
30298 @kbd{j 2} to select the righthand side.  If the enabled formula
30299 is an evaluates-to, it uses @kbd{j 1} to select the lefthand side.
30300 A formula can also be a combination of both:
30302 @example
30303 bar := foo + 3 => 20
30304 @end example
30306 @noindent
30307 in which case @kbd{C-x * j} will select the middle part (@samp{foo + 3}).
30309 The formula is automatically deselected when you leave Embedded
30310 mode.
30312 @kindex C-x * u
30313 @pindex calc-embedded-update-formula
30314 Another way to change the assignment to @code{foo} would simply be
30315 to edit the number using regular Emacs editing rather than Embedded
30316 mode.  Then, we have to find a way to get Embedded mode to notice
30317 the change.  The @kbd{C-x * u} (@code{calc-embedded-update-formula})
30318 command is a convenient way to do this.
30320 @example
30321 foo := 6
30323 foo + 7 => 13
30324 @end example
30326 Pressing @kbd{C-x * u} is much like pressing @kbd{C-x * e = C-x * e}, that
30327 is, temporarily enabling Embedded mode for the formula under the
30328 cursor and then evaluating it with @kbd{=}.  But @kbd{C-x * u} does
30329 not actually use @kbd{C-x * e}, and in fact another formula somewhere
30330 else can be enabled in Embedded mode while you use @kbd{C-x * u} and
30331 that formula will not be disturbed.
30333 With a numeric prefix argument, @kbd{C-x * u} updates all active
30334 @samp{=>} formulas in the buffer.  Formulas which have not yet
30335 been activated in Embedded mode, and formulas which do not have
30336 @samp{=>} as their top-level operator, are not affected by this.
30337 (This is useful only if you have used @kbd{m C}; see below.)
30339 With a plain @kbd{C-u} prefix, @kbd{C-u C-x * u} updates only in the
30340 region between mark and point rather than in the whole buffer.
30342 @kbd{C-x * u} is also a handy way to activate a formula, such as an
30343 @samp{=>} formula that has freshly been typed in or loaded from a
30344 file.
30346 @kindex C-x * a
30347 @pindex calc-embedded-activate
30348 The @kbd{C-x * a} (@code{calc-embedded-activate}) command scans
30349 through the current buffer and activates all embedded formulas
30350 that contain @samp{:=} or @samp{=>} symbols.  This does not mean
30351 that Embedded mode is actually turned on, but only that the
30352 formulas' positions are registered with Embedded mode so that
30353 the @samp{=>} values can be properly updated as assignments are
30354 changed.
30356 It is a good idea to type @kbd{C-x * a} right after loading a file
30357 that uses embedded @samp{=>} operators.  Emacs includes a nifty
30358 ``buffer-local variables'' feature that you can use to do this
30359 automatically.  The idea is to place near the end of your file
30360 a few lines that look like this:
30362 @example
30363 --- Local Variables: ---
30364 --- eval:(calc-embedded-activate) ---
30365 --- End: ---
30366 @end example
30368 @noindent
30369 where the leading and trailing @samp{---} can be replaced by
30370 any suitable strings (which must be the same on all three lines)
30371 or omitted altogether; in a @TeX{} or La@TeX{} file, @samp{%} would be a good
30372 leading string and no trailing string would be necessary.  In a
30373 C program, @samp{/*} and @samp{*/} would be good leading and
30374 trailing strings.
30376 When Emacs loads a file into memory, it checks for a Local Variables
30377 section like this one at the end of the file.  If it finds this
30378 section, it does the specified things (in this case, running
30379 @kbd{C-x * a} automatically) before editing of the file begins.
30380 The Local Variables section must be within 3000 characters of the
30381 end of the file for Emacs to find it, and it must be in the last
30382 page of the file if the file has any page separators.
30383 @xref{File Variables, , Local Variables in Files, emacs, the
30384 Emacs manual}.
30386 Note that @kbd{C-x * a} does not update the formulas it finds.
30387 To do this, type, say, @kbd{M-1 C-x * u} after @w{@kbd{C-x * a}}.
30388 Generally this should not be a problem, though, because the
30389 formulas will have been up-to-date already when the file was
30390 saved.
30392 Normally, @kbd{C-x * a} activates all the formulas it finds, but
30393 any previous active formulas remain active as well.  With a
30394 positive numeric prefix argument, @kbd{C-x * a} first deactivates
30395 all current active formulas, then actives the ones it finds in
30396 its scan of the buffer.  With a negative prefix argument,
30397 @kbd{C-x * a} simply deactivates all formulas.
30399 Embedded mode has two symbols, @samp{Active} and @samp{~Active},
30400 which it puts next to the major mode name in a buffer's mode line.
30401 It puts @samp{Active} if it has reason to believe that all
30402 formulas in the buffer are active, because you have typed @kbd{C-x * a}
30403 and Calc has not since had to deactivate any formulas (which can
30404 happen if Calc goes to update an @samp{=>} formula somewhere because
30405 a variable changed, and finds that the formula is no longer there
30406 due to some kind of editing outside of Embedded mode).  Calc puts
30407 @samp{~Active} in the mode line if some, but probably not all,
30408 formulas in the buffer are active.  This happens if you activate
30409 a few formulas one at a time but never use @kbd{C-x * a}, or if you
30410 used @kbd{C-x * a} but then Calc had to deactivate a formula
30411 because it lost track of it.  If neither of these symbols appears
30412 in the mode line, no embedded formulas are active in the buffer
30413 (e.g., before Embedded mode has been used, or after a @kbd{M-- C-x * a}).
30415 Embedded formulas can refer to assignments both before and after them
30416 in the buffer.  If there are several assignments to a variable, the
30417 nearest preceding assignment is used if there is one, otherwise the
30418 following assignment is used.
30420 @example
30421 x => 1
30423 x := 1
30425 x => 1
30427 x := 2
30429 x => 2
30430 @end example
30432 As well as simple variables, you can also assign to subscript
30433 expressions of the form @samp{@var{var}_@var{number}} (as in
30434 @code{x_0}), or @samp{@var{var}_@var{var}} (as in @code{x_max}).
30435 Assignments to other kinds of objects can be represented by Calc,
30436 but the automatic linkage between assignments and references works
30437 only for plain variables and these two kinds of subscript expressions.
30439 If there are no assignments to a given variable, the global
30440 stored value for the variable is used (@pxref{Storing Variables}),
30441 or, if no value is stored, the variable is left in symbolic form.
30442 Note that global stored values will be lost when the file is saved
30443 and loaded in a later Emacs session, unless you have used the
30444 @kbd{s p} (@code{calc-permanent-variable}) command to save them;
30445 @pxref{Operations on Variables}.
30447 The @kbd{m C} (@code{calc-auto-recompute}) command turns automatic
30448 recomputation of @samp{=>} forms on and off.  If you turn automatic
30449 recomputation off, you will have to use @kbd{C-x * u} to update these
30450 formulas manually after an assignment has been changed.  If you
30451 plan to change several assignments at once, it may be more efficient
30452 to type @kbd{m C}, change all the assignments, then use @kbd{M-1 C-x * u}
30453 to update the entire buffer afterwards.  The @kbd{m C} command also
30454 controls @samp{=>} formulas on the stack; @pxref{Evaluates-To
30455 Operator}.  When you turn automatic recomputation back on, the
30456 stack will be updated but the Embedded buffer will not; you must
30457 use @kbd{C-x * u} to update the buffer by hand.
30459 @node Mode Settings in Embedded Mode, Customizing Embedded Mode, Assignments in Embedded Mode, Embedded Mode
30460 @section Mode Settings in Embedded Mode
30462 @kindex m e
30463 @pindex calc-embedded-preserve-modes
30464 @noindent
30465 The mode settings can be changed while Calc is in embedded mode, but
30466 by default they will revert to their original values when embedded mode
30467 is ended. However, the modes saved when the mode-recording mode is
30468 @code{Save} (see below) and the modes in effect when the @kbd{m e}
30469 (@code{calc-embedded-preserve-modes}) command is given
30470 will be preserved when embedded mode is ended.
30472 Embedded mode has a rather complicated mechanism for handling mode
30473 settings in Embedded formulas.  It is possible to put annotations
30474 in the file that specify mode settings either global to the entire
30475 file or local to a particular formula or formulas.  In the latter
30476 case, different modes can be specified for use when a formula
30477 is the enabled Embedded mode formula.
30479 When you give any mode-setting command, like @kbd{m f} (for Fraction
30480 mode) or @kbd{d s} (for scientific notation), Embedded mode adds
30481 a line like the following one to the file just before the opening
30482 delimiter of the formula.
30484 @example
30485 % [calc-mode: fractions: t]
30486 % [calc-mode: float-format: (sci 0)]
30487 @end example
30489 When Calc interprets an embedded formula, it scans the text before
30490 the formula for mode-setting annotations like these and sets the
30491 Calc buffer to match these modes.  Modes not explicitly described
30492 in the file are not changed.  Calc scans all the way to the top of
30493 the file, or up to a line of the form
30495 @example
30496 % [calc-defaults]
30497 @end example
30499 @noindent
30500 which you can insert at strategic places in the file if this backward
30501 scan is getting too slow, or just to provide a barrier between one
30502 ``zone'' of mode settings and another.
30504 If the file contains several annotations for the same mode, the
30505 closest one before the formula is used.  Annotations after the
30506 formula are never used (except for global annotations, described
30507 below).
30509 The scan does not look for the leading @samp{% }, only for the
30510 square brackets and the text they enclose.  In fact, the leading
30511 characters are different for different major modes.  You can edit the
30512 mode annotations to a style that works better in context if you wish.
30513 @xref{Customizing Embedded Mode}, to see how to change the style
30514 that Calc uses when it generates the annotations.  You can write
30515 mode annotations into the file yourself if you know the syntax;
30516 the easiest way to find the syntax for a given mode is to let
30517 Calc write the annotation for it once and see what it does.
30519 If you give a mode-changing command for a mode that already has
30520 a suitable annotation just above the current formula, Calc will
30521 modify that annotation rather than generating a new, conflicting
30522 one.
30524 Mode annotations have three parts, separated by colons.  (Spaces
30525 after the colons are optional.)  The first identifies the kind
30526 of mode setting, the second is a name for the mode itself, and
30527 the third is the value in the form of a Lisp symbol, number,
30528 or list.  Annotations with unrecognizable text in the first or
30529 second parts are ignored.  The third part is not checked to make
30530 sure the value is of a valid type or range; if you write an
30531 annotation by hand, be sure to give a proper value or results
30532 will be unpredictable.  Mode-setting annotations are case-sensitive.
30534 While Embedded mode is enabled, the word @code{Local} appears in
30535 the mode line.  This is to show that mode setting commands generate
30536 annotations that are ``local'' to the current formula or set of
30537 formulas.  The @kbd{m R} (@code{calc-mode-record-mode}) command
30538 causes Calc to generate different kinds of annotations.  Pressing
30539 @kbd{m R} repeatedly cycles through the possible modes.
30541 @code{LocEdit} and @code{LocPerm} modes generate annotations
30542 that look like this, respectively:
30544 @example
30545 % [calc-edit-mode: float-format: (sci 0)]
30546 % [calc-perm-mode: float-format: (sci 5)]
30547 @end example
30549 The first kind of annotation will be used only while a formula
30550 is enabled in Embedded mode.  The second kind will be used only
30551 when the formula is @emph{not} enabled.  (Whether the formula
30552 is ``active'' or not, i.e., whether Calc has seen this formula
30553 yet, is not relevant here.)
30555 @code{Global} mode generates an annotation like this at the end
30556 of the file:
30558 @example
30559 % [calc-global-mode: fractions t]
30560 @end example
30562 Global mode annotations affect all formulas throughout the file,
30563 and may appear anywhere in the file.  This allows you to tuck your
30564 mode annotations somewhere out of the way, say, on a new page of
30565 the file, as long as those mode settings are suitable for all
30566 formulas in the file.
30568 Enabling a formula with @kbd{C-x * e} causes a fresh scan for local
30569 mode annotations; you will have to use this after adding annotations
30570 above a formula by hand to get the formula to notice them.  Updating
30571 a formula with @kbd{C-x * u} will also re-scan the local modes, but
30572 global modes are only re-scanned by @kbd{C-x * a}.
30574 Another way that modes can get out of date is if you add a local
30575 mode annotation to a formula that has another formula after it.
30576 In this example, we have used the @kbd{d s} command while the
30577 first of the two embedded formulas is active.  But the second
30578 formula has not changed its style to match, even though by the
30579 rules of reading annotations the @samp{(sci 0)} applies to it, too.
30581 @example
30582 % [calc-mode: float-format: (sci 0)]
30583 1.23e2
30585 456.
30586 @end example
30588 We would have to go down to the other formula and press @kbd{C-x * u}
30589 on it in order to get it to notice the new annotation.
30591 Two more mode-recording modes selectable by @kbd{m R} are available
30592 which are also available outside of Embedded mode.  
30593 (@pxref{General Mode Commands}.) They are @code{Save},  in which mode
30594 settings are recorded permanently in your Calc init file (the file given
30595 by the variable @code{calc-settings-file}, typically @file{~/.calc.el})
30596 rather than by annotating the current document, and no-recording
30597 mode (where there is no symbol like @code{Save} or @code{Local} in
30598 the mode line), in which mode-changing commands do not leave any
30599 annotations at all.
30601 When Embedded mode is not enabled, mode-recording modes except
30602 for @code{Save} have no effect.
30604 @node Customizing Embedded Mode,  , Mode Settings in Embedded Mode, Embedded Mode
30605 @section Customizing Embedded Mode
30607 @noindent
30608 You can modify Embedded mode's behavior by setting various Lisp
30609 variables described here.  These variables are customizable 
30610 (@pxref{Customizing Calc}), or you can use @kbd{M-x set-variable}
30611 or @kbd{M-x edit-options} to adjust a variable on the fly.
30612 (Another possibility would be to use a file-local variable annotation at
30613 the end of the file; 
30614 @pxref{File Variables, , Local Variables in Files, emacs, the Emacs manual}.)
30615 Many of the variables given mentioned here can be set to depend on the
30616 major mode of the editing buffer (@pxref{Customizing Calc}).
30618 @vindex calc-embedded-open-formula
30619 The @code{calc-embedded-open-formula} variable holds a regular
30620 expression for the opening delimiter of a formula.  @xref{Regexp Search,
30621 , Regular Expression Search, emacs, the Emacs manual}, to see
30622 how regular expressions work.  Basically, a regular expression is a
30623 pattern that Calc can search for.  A regular expression that considers
30624 blank lines, @samp{$}, and @samp{$$} to be opening delimiters is
30625 @code{"\\`\\|^\n\\|\\$\\$?"}.  Just in case the meaning of this
30626 regular expression is not completely plain, let's go through it
30627 in detail.
30629 The surrounding @samp{" "} marks quote the text between them as a
30630 Lisp string.  If you left them off, @code{set-variable} or
30631 @code{edit-options} would try to read the regular expression as a
30632 Lisp program.
30634 The most obvious property of this regular expression is that it
30635 contains indecently many backslashes.  There are actually two levels
30636 of backslash usage going on here.  First, when Lisp reads a quoted
30637 string, all pairs of characters beginning with a backslash are
30638 interpreted as special characters.  Here, @code{\n} changes to a
30639 new-line character, and @code{\\} changes to a single backslash.
30640 So the actual regular expression seen by Calc is
30641 @samp{\`\|^ @r{(newline)} \|\$\$?}.
30643 Regular expressions also consider pairs beginning with backslash
30644 to have special meanings.  Sometimes the backslash is used to quote
30645 a character that otherwise would have a special meaning in a regular
30646 expression, like @samp{$}, which normally means ``end-of-line,''
30647 or @samp{?}, which means that the preceding item is optional.  So
30648 @samp{\$\$?} matches either one or two dollar signs.
30650 The other codes in this regular expression are @samp{^}, which matches
30651 ``beginning-of-line,'' @samp{\|}, which means ``or,'' and @samp{\`},
30652 which matches ``beginning-of-buffer.''  So the whole pattern means
30653 that a formula begins at the beginning of the buffer, or on a newline
30654 that occurs at the beginning of a line (i.e., a blank line), or at
30655 one or two dollar signs.
30657 The default value of @code{calc-embedded-open-formula} looks just
30658 like this example, with several more alternatives added on to
30659 recognize various other common kinds of delimiters.
30661 By the way, the reason to use @samp{^\n} rather than @samp{^$}
30662 or @samp{\n\n}, which also would appear to match blank lines,
30663 is that the former expression actually ``consumes'' only one
30664 newline character as @emph{part of} the delimiter, whereas the
30665 latter expressions consume zero or two newlines, respectively.
30666 The former choice gives the most natural behavior when Calc
30667 must operate on a whole formula including its delimiters.
30669 See the Emacs manual for complete details on regular expressions.
30670 But just for your convenience, here is a list of all characters
30671 which must be quoted with backslash (like @samp{\$}) to avoid
30672 some special interpretation:  @samp{. * + ? [ ] ^ $ \}.  (Note
30673 the backslash in this list; for example, to match @samp{\[} you
30674 must use @code{"\\\\\\["}.  An exercise for the reader is to
30675 account for each of these six backslashes!)
30677 @vindex calc-embedded-close-formula
30678 The @code{calc-embedded-close-formula} variable holds a regular
30679 expression for the closing delimiter of a formula.  A closing
30680 regular expression to match the above example would be
30681 @code{"\\'\\|\n$\\|\\$\\$?"}.  This is almost the same as the
30682 other one, except it now uses @samp{\'} (``end-of-buffer'') and
30683 @samp{\n$} (newline occurring at end of line, yet another way
30684 of describing a blank line that is more appropriate for this
30685 case).
30687 @vindex calc-embedded-open-word
30688 @vindex calc-embedded-close-word
30689 The @code{calc-embedded-open-word} and @code{calc-embedded-close-word}
30690 variables are similar expressions used when you type @kbd{C-x * w}
30691 instead of @kbd{C-x * e} to enable Embedded mode.
30693 @vindex calc-embedded-open-plain
30694 The @code{calc-embedded-open-plain} variable is a string which
30695 begins a ``plain'' formula written in front of the formatted
30696 formula when @kbd{d p} mode is turned on.  Note that this is an
30697 actual string, not a regular expression, because Calc must be able
30698 to write this string into a buffer as well as to recognize it.
30699 The default string is @code{"%%% "} (note the trailing space), but may
30700 be different for certain major modes.
30702 @vindex calc-embedded-close-plain
30703 The @code{calc-embedded-close-plain} variable is a string which
30704 ends a ``plain'' formula.  The default is @code{" %%%\n"}, but may be
30705 different for different major modes.  Without
30706 the trailing newline here, the first line of a Big mode formula
30707 that followed might be shifted over with respect to the other lines.
30709 @vindex calc-embedded-open-new-formula
30710 The @code{calc-embedded-open-new-formula} variable is a string
30711 which is inserted at the front of a new formula when you type
30712 @kbd{C-x * f}.  Its default value is @code{"\n\n"}.  If this
30713 string begins with a newline character and the @kbd{C-x * f} is
30714 typed at the beginning of a line, @kbd{C-x * f} will skip this
30715 first newline to avoid introducing unnecessary blank lines in
30716 the file.
30718 @vindex calc-embedded-close-new-formula
30719 The @code{calc-embedded-close-new-formula} variable is the corresponding
30720 string which is inserted at the end of a new formula.  Its default
30721 value is also @code{"\n\n"}.  The final newline is omitted by
30722 @w{@kbd{C-x * f}} if typed at the end of a line.  (It follows that if
30723 @kbd{C-x * f} is typed on a blank line, both a leading opening
30724 newline and a trailing closing newline are omitted.)
30726 @vindex calc-embedded-announce-formula
30727 The @code{calc-embedded-announce-formula} variable is a regular
30728 expression which is sure to be followed by an embedded formula.
30729 The @kbd{C-x * a} command searches for this pattern as well as for
30730 @samp{=>} and @samp{:=} operators.  Note that @kbd{C-x * a} will
30731 not activate just anything surrounded by formula delimiters; after
30732 all, blank lines are considered formula delimiters by default!
30733 But if your language includes a delimiter which can only occur
30734 actually in front of a formula, you can take advantage of it here.
30735 The default pattern is @code{"%Embed\n\\(% .*\n\\)*"}, but may be
30736 different for different major modes.
30737 This pattern will check for @samp{%Embed} followed by any number of
30738 lines beginning with @samp{%} and a space.  This last is important to
30739 make Calc consider mode annotations part of the pattern, so that the
30740 formula's opening delimiter really is sure to follow the pattern.
30742 @vindex calc-embedded-open-mode
30743 The @code{calc-embedded-open-mode} variable is a string (not a
30744 regular expression) which should precede a mode annotation.
30745 Calc never scans for this string; Calc always looks for the
30746 annotation itself.  But this is the string that is inserted before
30747 the opening bracket when Calc adds an annotation on its own.
30748 The default is @code{"% "}, but may be different for different major
30749 modes. 
30751 @vindex calc-embedded-close-mode
30752 The @code{calc-embedded-close-mode} variable is a string which
30753 follows a mode annotation written by Calc.  Its default value
30754 is simply a newline, @code{"\n"}, but may be different for different
30755 major modes.  If you change this, it is a good idea still to end with a
30756 newline so that mode annotations will appear on lines by themselves.
30758 @node Programming, Copying, Embedded Mode, Top
30759 @chapter Programming
30761 @noindent
30762 There are several ways to ``program'' the Emacs Calculator, depending
30763 on the nature of the problem you need to solve.
30765 @enumerate
30766 @item
30767 @dfn{Keyboard macros} allow you to record a sequence of keystrokes
30768 and play them back at a later time.  This is just the standard Emacs
30769 keyboard macro mechanism, dressed up with a few more features such
30770 as loops and conditionals.
30772 @item
30773 @dfn{Algebraic definitions} allow you to use any formula to define a
30774 new function.  This function can then be used in algebraic formulas or
30775 as an interactive command.
30777 @item
30778 @dfn{Rewrite rules} are discussed in the section on algebra commands.
30779 @xref{Rewrite Rules}.  If you put your rewrite rules in the variable
30780 @code{EvalRules}, they will be applied automatically to all Calc
30781 results in just the same way as an internal ``rule'' is applied to
30782 evaluate @samp{sqrt(9)} to 3 and so on.  @xref{Automatic Rewrites}.
30784 @item
30785 @dfn{Lisp} is the programming language that Calc (and most of Emacs)
30786 is written in.  If the above techniques aren't powerful enough, you
30787 can write Lisp functions to do anything that built-in Calc commands
30788 can do.  Lisp code is also somewhat faster than keyboard macros or
30789 rewrite rules.
30790 @end enumerate
30792 @kindex z
30793 Programming features are available through the @kbd{z} and @kbd{Z}
30794 prefix keys.  New commands that you define are two-key sequences
30795 beginning with @kbd{z}.  Commands for managing these definitions
30796 use the shift-@kbd{Z} prefix.  (The @kbd{Z T} (@code{calc-timing})
30797 command is described elsewhere; @pxref{Troubleshooting Commands}.
30798 The @kbd{Z C} (@code{calc-user-define-composition}) command is also
30799 described elsewhere; @pxref{User-Defined Compositions}.)
30801 @menu
30802 * Creating User Keys::
30803 * Keyboard Macros::
30804 * Invocation Macros::
30805 * Algebraic Definitions::
30806 * Lisp Definitions::
30807 @end menu
30809 @node Creating User Keys, Keyboard Macros, Programming, Programming
30810 @section Creating User Keys
30812 @noindent
30813 @kindex Z D
30814 @pindex calc-user-define
30815 Any Calculator command may be bound to a key using the @kbd{Z D}
30816 (@code{calc-user-define}) command.  Actually, it is bound to a two-key
30817 sequence beginning with the lower-case @kbd{z} prefix.
30819 The @kbd{Z D} command first prompts for the key to define.  For example,
30820 press @kbd{Z D a} to define the new key sequence @kbd{z a}.  You are then
30821 prompted for the name of the Calculator command that this key should
30822 run.  For example, the @code{calc-sincos} command is not normally
30823 available on a key.  Typing @kbd{Z D s sincos @key{RET}} programs the
30824 @kbd{z s} key sequence to run @code{calc-sincos}.  This definition will remain
30825 in effect for the rest of this Emacs session, or until you redefine
30826 @kbd{z s} to be something else.
30828 You can actually bind any Emacs command to a @kbd{z} key sequence by
30829 backspacing over the @samp{calc-} when you are prompted for the command name.
30831 As with any other prefix key, you can type @kbd{z ?} to see a list of
30832 all the two-key sequences you have defined that start with @kbd{z}.
30833 Initially, no @kbd{z} sequences (except @kbd{z ?} itself) are defined.
30835 User keys are typically letters, but may in fact be any key.
30836 (@key{META}-keys are not permitted, nor are a terminal's special
30837 function keys which generate multi-character sequences when pressed.)
30838 You can define different commands on the shifted and unshifted versions
30839 of a letter if you wish.
30841 @kindex Z U
30842 @pindex calc-user-undefine
30843 The @kbd{Z U} (@code{calc-user-undefine}) command unbinds a user key.
30844 For example, the key sequence @kbd{Z U s} will undefine the @code{sincos}
30845 key we defined above.
30847 @kindex Z P
30848 @pindex calc-user-define-permanent
30849 @cindex Storing user definitions
30850 @cindex Permanent user definitions
30851 @cindex Calc init file, user-defined commands
30852 The @kbd{Z P} (@code{calc-user-define-permanent}) command makes a key
30853 binding permanent so that it will remain in effect even in future Emacs
30854 sessions.  (It does this by adding a suitable bit of Lisp code into
30855 your Calc init file; that is, the file given by the variable
30856 @code{calc-settings-file}, typically @file{~/.calc.el}.)  For example,
30857 @kbd{Z P s} would register our @code{sincos} command permanently.  If
30858 you later wish to unregister this command you must edit your Calc init
30859 file by hand.  (@xref{General Mode Commands}, for a way to tell Calc to
30860 use a different file for the Calc init file.)
30862 The @kbd{Z P} command also saves the user definition, if any, for the
30863 command bound to the key.  After @kbd{Z F} and @kbd{Z C}, a given user
30864 key could invoke a command, which in turn calls an algebraic function,
30865 which might have one or more special display formats.  A single @kbd{Z P}
30866 command will save all of these definitions.
30867 To save an algebraic function, type @kbd{'} (the apostrophe)
30868 when prompted for a key, and type the function name.  To save a command
30869 without its key binding, type @kbd{M-x} and enter a function name.  (The
30870 @samp{calc-} prefix will automatically be inserted for you.)
30871 (If the command you give implies a function, the function will be saved,
30872 and if the function has any display formats, those will be saved, but
30873 not the other way around:  Saving a function will not save any commands
30874 or key bindings associated with the function.) 
30876 @kindex Z E
30877 @pindex calc-user-define-edit
30878 @cindex Editing user definitions
30879 The @kbd{Z E} (@code{calc-user-define-edit}) command edits the definition
30880 of a user key.  This works for keys that have been defined by either
30881 keyboard macros or formulas; further details are contained in the relevant
30882 following sections.
30884 @node Keyboard Macros, Invocation Macros, Creating User Keys, Programming
30885 @section Programming with Keyboard Macros
30887 @noindent
30888 @kindex X
30889 @cindex Programming with keyboard macros
30890 @cindex Keyboard macros
30891 The easiest way to ``program'' the Emacs Calculator is to use standard
30892 keyboard macros.  Press @w{@kbd{C-x (}} to begin recording a macro.  From
30893 this point on, keystrokes you type will be saved away as well as
30894 performing their usual functions.  Press @kbd{C-x )} to end recording.
30895 Press shift-@kbd{X} (or the standard Emacs key sequence @kbd{C-x e}) to
30896 execute your keyboard macro by replaying the recorded keystrokes.
30897 @xref{Keyboard Macros, , , emacs, the Emacs Manual}, for further
30898 information.
30900 When you use @kbd{X} to invoke a keyboard macro, the entire macro is
30901 treated as a single command by the undo and trail features.  The stack
30902 display buffer is not updated during macro execution, but is instead
30903 fixed up once the macro completes.  Thus, commands defined with keyboard
30904 macros are convenient and efficient.  The @kbd{C-x e} command, on the
30905 other hand, invokes the keyboard macro with no special treatment: Each
30906 command in the macro will record its own undo information and trail entry,
30907 and update the stack buffer accordingly.  If your macro uses features
30908 outside of Calc's control to operate on the contents of the Calc stack
30909 buffer, or if it includes Undo, Redo, or last-arguments commands, you
30910 must use @kbd{C-x e} to make sure the buffer and undo list are up-to-date
30911 at all times.  You could also consider using @kbd{K} (@code{calc-keep-args})
30912 instead of @kbd{M-@key{RET}} (@code{calc-last-args}).
30914 Calc extends the standard Emacs keyboard macros in several ways.
30915 Keyboard macros can be used to create user-defined commands.  Keyboard
30916 macros can include conditional and iteration structures, somewhat
30917 analogous to those provided by a traditional programmable calculator.
30919 @menu
30920 * Naming Keyboard Macros::
30921 * Conditionals in Macros::
30922 * Loops in Macros::
30923 * Local Values in Macros::
30924 * Queries in Macros::
30925 @end menu
30927 @node Naming Keyboard Macros, Conditionals in Macros, Keyboard Macros, Keyboard Macros
30928 @subsection Naming Keyboard Macros
30930 @noindent
30931 @kindex Z K
30932 @pindex calc-user-define-kbd-macro
30933 Once you have defined a keyboard macro, you can bind it to a @kbd{z}
30934 key sequence with the @kbd{Z K} (@code{calc-user-define-kbd-macro}) command.
30935 This command prompts first for a key, then for a command name.  For
30936 example, if you type @kbd{C-x ( n @key{TAB} n @key{TAB} C-x )} you will
30937 define a keyboard macro which negates the top two numbers on the stack
30938 (@key{TAB} swaps the top two stack elements).  Now you can type
30939 @kbd{Z K n @key{RET}} to define this keyboard macro onto the @kbd{z n} key
30940 sequence.  The default command name (if you answer the second prompt with
30941 just the @key{RET} key as in this example) will be something like
30942 @samp{calc-User-n}.  The keyboard macro will now be available as both
30943 @kbd{z n} and @kbd{M-x calc-User-n}.  You can backspace and enter a more
30944 descriptive command name if you wish.
30946 Macros defined by @kbd{Z K} act like single commands; they are executed
30947 in the same way as by the @kbd{X} key.  If you wish to define the macro
30948 as a standard no-frills Emacs macro (to be executed as if by @kbd{C-x e}),
30949 give a negative prefix argument to @kbd{Z K}.
30951 Once you have bound your keyboard macro to a key, you can use
30952 @kbd{Z P} to register it permanently with Emacs.  @xref{Creating User Keys}.
30954 @cindex Keyboard macros, editing
30955 The @kbd{Z E} (@code{calc-user-define-edit}) command on a key that has
30956 been defined by a keyboard macro tries to use the @code{edmacro} package
30957 edit the macro.  Type @kbd{C-c C-c} to finish editing and update 
30958 the definition stored on the key, or, to cancel the edit, kill the
30959 buffer with @kbd{C-x k}.
30960 The special characters @code{RET}, @code{LFD}, @code{TAB}, @code{SPC},
30961 @code{DEL}, and @code{NUL} must be entered as these three character
30962 sequences, written in all uppercase, as must the prefixes @code{C-} and
30963 @code{M-}.  Spaces and line breaks are ignored.  Other characters are
30964 copied verbatim into the keyboard macro.  Basically, the notation is the
30965 same as is used in all of this manual's examples, except that the manual
30966 takes some liberties with spaces: When we say @kbd{' [1 2 3] @key{RET}},
30967 we take it for granted that it is clear we really mean 
30968 @kbd{' [1 @key{SPC} 2 @key{SPC} 3] @key{RET}}.
30970 @kindex C-x * m
30971 @pindex read-kbd-macro
30972 The @kbd{C-x * m} (@code{read-kbd-macro}) command reads an Emacs ``region''
30973 of spelled-out keystrokes and defines it as the current keyboard macro.
30974 It is a convenient way to define a keyboard macro that has been stored
30975 in a file, or to define a macro without executing it at the same time.
30977 @node Conditionals in Macros, Loops in Macros, Naming Keyboard Macros, Keyboard Macros
30978 @subsection Conditionals in Keyboard Macros
30980 @noindent
30981 @kindex Z [
30982 @kindex Z ]
30983 @pindex calc-kbd-if
30984 @pindex calc-kbd-else
30985 @pindex calc-kbd-else-if
30986 @pindex calc-kbd-end-if
30987 @cindex Conditional structures
30988 The @kbd{Z [} (@code{calc-kbd-if}) and @kbd{Z ]} (@code{calc-kbd-end-if})
30989 commands allow you to put simple tests in a keyboard macro.  When Calc
30990 sees the @kbd{Z [}, it pops an object from the stack and, if the object is
30991 a non-zero value, continues executing keystrokes.  But if the object is
30992 zero, or if it is not provably nonzero, Calc skips ahead to the matching
30993 @kbd{Z ]} keystroke.  @xref{Logical Operations}, for a set of commands for
30994 performing tests which conveniently produce 1 for true and 0 for false.
30996 For example, @kbd{@key{RET} 0 a < Z [ n Z ]} implements an absolute-value
30997 function in the form of a keyboard macro.  This macro duplicates the
30998 number on the top of the stack, pushes zero and compares using @kbd{a <}
30999 (@code{calc-less-than}), then, if the number was less than zero,
31000 executes @kbd{n} (@code{calc-change-sign}).  Otherwise, the change-sign
31001 command is skipped.
31003 To program this macro, type @kbd{C-x (}, type the above sequence of
31004 keystrokes, then type @kbd{C-x )}.  Note that the keystrokes will be
31005 executed while you are making the definition as well as when you later
31006 re-execute the macro by typing @kbd{X}.  Thus you should make sure a
31007 suitable number is on the stack before defining the macro so that you
31008 don't get a stack-underflow error during the definition process.
31010 Conditionals can be nested arbitrarily.  However, there should be exactly
31011 one @kbd{Z ]} for each @kbd{Z [} in a keyboard macro.
31013 @kindex Z :
31014 The @kbd{Z :} (@code{calc-kbd-else}) command allows you to choose between
31015 two keystroke sequences.  The general format is @kbd{@var{cond} Z [
31016 @var{then-part} Z : @var{else-part} Z ]}.  If @var{cond} is true
31017 (i.e., if the top of stack contains a non-zero number after @var{cond}
31018 has been executed), the @var{then-part} will be executed and the
31019 @var{else-part} will be skipped.  Otherwise, the @var{then-part} will
31020 be skipped and the @var{else-part} will be executed.
31022 @kindex Z |
31023 The @kbd{Z |} (@code{calc-kbd-else-if}) command allows you to choose
31024 between any number of alternatives.  For example,
31025 @kbd{@var{cond1} Z [ @var{part1} Z : @var{cond2} Z | @var{part2} Z :
31026 @var{part3} Z ]} will execute @var{part1} if @var{cond1} is true,
31027 otherwise it will execute @var{part2} if @var{cond2} is true, otherwise
31028 it will execute @var{part3}.
31030 More precisely, @kbd{Z [} pops a number and conditionally skips to the
31031 next matching @kbd{Z :} or @kbd{Z ]} key.  @w{@kbd{Z ]}} has no effect when
31032 actually executed.  @kbd{Z :} skips to the next matching @kbd{Z ]}.
31033 @kbd{Z |} pops a number and conditionally skips to the next matching
31034 @kbd{Z :} or @kbd{Z ]}; thus, @kbd{Z [} and @kbd{Z |} are functionally
31035 equivalent except that @kbd{Z [} participates in nesting but @kbd{Z |}
31036 does not.
31038 Calc's conditional and looping constructs work by scanning the
31039 keyboard macro for occurrences of character sequences like @samp{Z:}
31040 and @samp{Z]}.  One side-effect of this is that if you use these
31041 constructs you must be careful that these character pairs do not
31042 occur by accident in other parts of the macros.  Since Calc rarely
31043 uses shift-@kbd{Z} for any purpose except as a prefix character, this
31044 is not likely to be a problem.  Another side-effect is that it will
31045 not work to define your own custom key bindings for these commands.
31046 Only the standard shift-@kbd{Z} bindings will work correctly.
31048 @kindex Z C-g
31049 If Calc gets stuck while skipping characters during the definition of a
31050 macro, type @kbd{Z C-g} to cancel the definition.  (Typing plain @kbd{C-g}
31051 actually adds a @kbd{C-g} keystroke to the macro.)
31053 @node Loops in Macros, Local Values in Macros, Conditionals in Macros, Keyboard Macros
31054 @subsection Loops in Keyboard Macros
31056 @noindent
31057 @kindex Z <
31058 @kindex Z >
31059 @pindex calc-kbd-repeat
31060 @pindex calc-kbd-end-repeat
31061 @cindex Looping structures
31062 @cindex Iterative structures
31063 The @kbd{Z <} (@code{calc-kbd-repeat}) and @kbd{Z >}
31064 (@code{calc-kbd-end-repeat}) commands pop a number from the stack,
31065 which must be an integer, then repeat the keystrokes between the brackets
31066 the specified number of times.  If the integer is zero or negative, the
31067 body is skipped altogether.  For example, @kbd{1 @key{TAB} Z < 2 * Z >}
31068 computes two to a nonnegative integer power.  First, we push 1 on the
31069 stack and then swap the integer argument back to the top.  The @kbd{Z <}
31070 pops that argument leaving the 1 back on top of the stack.  Then, we
31071 repeat a multiply-by-two step however many times.
31073 Once again, the keyboard macro is executed as it is being entered.
31074 In this case it is especially important to set up reasonable initial
31075 conditions before making the definition:  Suppose the integer 1000 just
31076 happened to be sitting on the stack before we typed the above definition!
31077 Another approach is to enter a harmless dummy definition for the macro,
31078 then go back and edit in the real one with a @kbd{Z E} command.  Yet
31079 another approach is to type the macro as written-out keystroke names
31080 in a buffer, then use @kbd{C-x * m} (@code{read-kbd-macro}) to read the
31081 macro.
31083 @kindex Z /
31084 @pindex calc-break
31085 The @kbd{Z /} (@code{calc-kbd-break}) command allows you to break out
31086 of a keyboard macro loop prematurely.  It pops an object from the stack;
31087 if that object is true (a non-zero number), control jumps out of the
31088 innermost enclosing @kbd{Z <} @dots{} @kbd{Z >} loop and continues
31089 after the @kbd{Z >}.  If the object is false, the @kbd{Z /} has no
31090 effect.  Thus @kbd{@var{cond} Z /} is similar to @samp{if (@var{cond}) break;}
31091 in the C language.
31093 @kindex Z (
31094 @kindex Z )
31095 @pindex calc-kbd-for
31096 @pindex calc-kbd-end-for
31097 The @kbd{Z (} (@code{calc-kbd-for}) and @kbd{Z )} (@code{calc-kbd-end-for})
31098 commands are similar to @kbd{Z <} and @kbd{Z >}, except that they make the
31099 value of the counter available inside the loop.  The general layout is
31100 @kbd{@var{init} @var{final} Z ( @var{body} @var{step} Z )}.  The @kbd{Z (}
31101 command pops initial and final values from the stack.  It then creates
31102 a temporary internal counter and initializes it with the value @var{init}.
31103 The @kbd{Z (} command then repeatedly pushes the counter value onto the
31104 stack and executes @var{body} and @var{step}, adding @var{step} to the
31105 counter each time until the loop finishes.
31107 @cindex Summations (by keyboard macros)
31108 By default, the loop finishes when the counter becomes greater than (or
31109 less than) @var{final}, assuming @var{initial} is less than (greater
31110 than) @var{final}.  If @var{initial} is equal to @var{final}, the body
31111 executes exactly once.  The body of the loop always executes at least
31112 once.  For example, @kbd{0 1 10 Z ( 2 ^ + 1 Z )} computes the sum of the
31113 squares of the integers from 1 to 10, in steps of 1.
31115 If you give a numeric prefix argument of 1 to @kbd{Z (}, the loop is
31116 forced to use upward-counting conventions.  In this case, if @var{initial}
31117 is greater than @var{final} the body will not be executed at all.
31118 Note that @var{step} may still be negative in this loop; the prefix
31119 argument merely constrains the loop-finished test.  Likewise, a prefix
31120 argument of @mathit{-1} forces downward-counting conventions.
31122 @kindex Z @{
31123 @kindex Z @}
31124 @pindex calc-kbd-loop
31125 @pindex calc-kbd-end-loop
31126 The @kbd{Z @{} (@code{calc-kbd-loop}) and @kbd{Z @}}
31127 (@code{calc-kbd-end-loop}) commands are similar to @kbd{Z <} and
31128 @kbd{Z >}, except that they do not pop a count from the stack---they
31129 effectively create an infinite loop.  Every @kbd{Z @{} @dots{} @kbd{Z @}}
31130 loop ought to include at least one @kbd{Z /} to make sure the loop
31131 doesn't run forever.  (If any error message occurs which causes Emacs
31132 to beep, the keyboard macro will also be halted; this is a standard
31133 feature of Emacs.  You can also generally press @kbd{C-g} to halt a
31134 running keyboard macro, although not all versions of Unix support
31135 this feature.)
31137 The conditional and looping constructs are not actually tied to
31138 keyboard macros, but they are most often used in that context.
31139 For example, the keystrokes @kbd{10 Z < 23 @key{RET} Z >} push
31140 ten copies of 23 onto the stack.  This can be typed ``live'' just
31141 as easily as in a macro definition.
31143 @xref{Conditionals in Macros}, for some additional notes about
31144 conditional and looping commands.
31146 @node Local Values in Macros, Queries in Macros, Loops in Macros, Keyboard Macros
31147 @subsection Local Values in Macros
31149 @noindent
31150 @cindex Local variables
31151 @cindex Restoring saved modes
31152 Keyboard macros sometimes want to operate under known conditions
31153 without affecting surrounding conditions.  For example, a keyboard
31154 macro may wish to turn on Fraction mode, or set a particular
31155 precision, independent of the user's normal setting for those
31156 modes.
31158 @kindex Z `
31159 @kindex Z '
31160 @pindex calc-kbd-push
31161 @pindex calc-kbd-pop
31162 Macros also sometimes need to use local variables.  Assignments to
31163 local variables inside the macro should not affect any variables
31164 outside the macro.  The @kbd{Z `} (@code{calc-kbd-push}) and @kbd{Z '}
31165 (@code{calc-kbd-pop}) commands give you both of these capabilities.
31167 When you type @kbd{Z `} (with a backquote or accent grave character),
31168 the values of various mode settings are saved away.  The ten ``quick''
31169 variables @code{q0} through @code{q9} are also saved.  When
31170 you type @w{@kbd{Z '}} (with an apostrophe), these values are restored.
31171 Pairs of @kbd{Z `} and @kbd{Z '} commands may be nested.
31173 If a keyboard macro halts due to an error in between a @kbd{Z `} and
31174 a @kbd{Z '}, the saved values will be restored correctly even though
31175 the macro never reaches the @kbd{Z '} command.  Thus you can use
31176 @kbd{Z `} and @kbd{Z '} without having to worry about what happens
31177 in exceptional conditions.
31179 If you type @kbd{Z `} ``live'' (not in a keyboard macro), Calc puts
31180 you into a ``recursive edit.''  You can tell you are in a recursive
31181 edit because there will be extra square brackets in the mode line,
31182 as in @samp{[(Calculator)]}.  These brackets will go away when you
31183 type the matching @kbd{Z '} command.  The modes and quick variables
31184 will be saved and restored in just the same way as if actual keyboard
31185 macros were involved.
31187 The modes saved by @kbd{Z `} and @kbd{Z '} are the current precision
31188 and binary word size, the angular mode (Deg, Rad, or HMS), the
31189 simplification mode, Algebraic mode, Symbolic mode, Infinite mode,
31190 Matrix or Scalar mode, Fraction mode, and the current complex mode
31191 (Polar or Rectangular).  The ten ``quick'' variables' values (or lack
31192 thereof) are also saved.
31194 Most mode-setting commands act as toggles, but with a numeric prefix
31195 they force the mode either on (positive prefix) or off (negative
31196 or zero prefix).  Since you don't know what the environment might
31197 be when you invoke your macro, it's best to use prefix arguments
31198 for all mode-setting commands inside the macro.
31200 In fact, @kbd{C-u Z `} is like @kbd{Z `} except that it sets the modes
31201 listed above to their default values.  As usual, the matching @kbd{Z '}
31202 will restore the modes to their settings from before the @kbd{C-u Z `}.
31203 Also, @w{@kbd{Z `}} with a negative prefix argument resets the algebraic mode
31204 to its default (off) but leaves the other modes the same as they were
31205 outside the construct.
31207 The contents of the stack and trail, values of non-quick variables, and
31208 other settings such as the language mode and the various display modes,
31209 are @emph{not} affected by @kbd{Z `} and @kbd{Z '}.
31211 @node Queries in Macros,  , Local Values in Macros, Keyboard Macros
31212 @subsection Queries in Keyboard Macros
31214 @c @noindent
31215 @c @kindex Z =
31216 @c @pindex calc-kbd-report
31217 @c The @kbd{Z =} (@code{calc-kbd-report}) command displays an informative
31218 @c message including the value on the top of the stack.  You are prompted
31219 @c to enter a string.  That string, along with the top-of-stack value,
31220 @c is displayed unless @kbd{m w} (@code{calc-working}) has been used
31221 @c to turn such messages off.
31223 @noindent
31224 @kindex Z #
31225 @pindex calc-kbd-query
31226 The @kbd{Z #} (@code{calc-kbd-query}) command prompts for an algebraic
31227 entry which takes its input from the keyboard, even during macro
31228 execution.  All the normal conventions of algebraic input, including the
31229 use of @kbd{$} characters, are supported.  The prompt message itself is
31230 taken from the top of the stack, and so must be entered (as a string)
31231 before the @kbd{Z #} command.  (Recall, as a string it can be entered by
31232 pressing the @kbd{"} key and will appear as a vector when it is put on
31233 the stack.  The prompt message is only put on the stack to provide a
31234 prompt for the @kbd{Z #} command; it will not play any role in any
31235 subsequent calculations.)  This command allows your keyboard macros to
31236 accept numbers or formulas as interactive input.
31238 As an example, 
31239 @kbd{2 @key{RET} "Power: " @key{RET} Z # 3 @key{RET} ^} will prompt for
31240 input with ``Power: '' in the minibuffer, then return 2 to the provided
31241 power.  (The response to the prompt that's given, 3 in this example,
31242 will not be part of the macro.)
31244 @xref{Keyboard Macro Query, , , emacs, the Emacs Manual}, for a description of
31245 @kbd{C-x q} (@code{kbd-macro-query}), the standard Emacs way to accept
31246 keyboard input during a keyboard macro.  In particular, you can use
31247 @kbd{C-x q} to enter a recursive edit, which allows the user to perform
31248 any Calculator operations interactively before pressing @kbd{C-M-c} to
31249 return control to the keyboard macro.
31251 @node Invocation Macros, Algebraic Definitions, Keyboard Macros, Programming
31252 @section Invocation Macros
31254 @kindex C-x * z
31255 @kindex Z I
31256 @pindex calc-user-invocation
31257 @pindex calc-user-define-invocation
31258 Calc provides one special keyboard macro, called up by @kbd{C-x * z}
31259 (@code{calc-user-invocation}), that is intended to allow you to define
31260 your own special way of starting Calc.  To define this ``invocation
31261 macro,'' create the macro in the usual way with @kbd{C-x (} and
31262 @kbd{C-x )}, then type @kbd{Z I} (@code{calc-user-define-invocation}).
31263 There is only one invocation macro, so you don't need to type any
31264 additional letters after @kbd{Z I}.  From now on, you can type
31265 @kbd{C-x * z} at any time to execute your invocation macro.
31267 For example, suppose you find yourself often grabbing rectangles of
31268 numbers into Calc and multiplying their columns.  You can do this
31269 by typing @kbd{C-x * r} to grab, and @kbd{V R : *} to multiply columns.
31270 To make this into an invocation macro, just type @kbd{C-x ( C-x * r
31271 V R : * C-x )}, then @kbd{Z I}.  Then, to multiply a rectangle of data,
31272 just mark the data in its buffer in the usual way and type @kbd{C-x * z}.
31274 Invocation macros are treated like regular Emacs keyboard macros;
31275 all the special features described above for @kbd{Z K}-style macros
31276 do not apply.  @kbd{C-x * z} is just like @kbd{C-x e}, except that it
31277 uses the macro that was last stored by @kbd{Z I}.  (In fact, the
31278 macro does not even have to have anything to do with Calc!)
31280 The @kbd{m m} command saves the last invocation macro defined by
31281 @kbd{Z I} along with all the other Calc mode settings.
31282 @xref{General Mode Commands}.
31284 @node Algebraic Definitions, Lisp Definitions, Invocation Macros, Programming
31285 @section Programming with Formulas
31287 @noindent
31288 @kindex Z F
31289 @pindex calc-user-define-formula
31290 @cindex Programming with algebraic formulas
31291 Another way to create a new Calculator command uses algebraic formulas.
31292 The @kbd{Z F} (@code{calc-user-define-formula}) command stores the
31293 formula at the top of the stack as the definition for a key.  This
31294 command prompts for five things: The key, the command name, the function
31295 name, the argument list, and the behavior of the command when given
31296 non-numeric arguments.
31298 For example, suppose we type @kbd{' a+2b @key{RET}} to push the formula
31299 @samp{a + 2*b} onto the stack.  We now type @kbd{Z F m} to define this
31300 formula on the @kbd{z m} key sequence.  The next prompt is for a command
31301 name, beginning with @samp{calc-}, which should be the long (@kbd{M-x}) form
31302 for the new command.  If you simply press @key{RET}, a default name like
31303 @code{calc-User-m} will be constructed.  In our example, suppose we enter
31304 @kbd{spam @key{RET}} to define the new command as @code{calc-spam}.
31306 If you want to give the formula a long-style name only, you can press
31307 @key{SPC} or @key{RET} when asked which single key to use.  For example
31308 @kbd{Z F @key{RET} spam @key{RET}} defines the new command as
31309 @kbd{M-x calc-spam}, with no keyboard equivalent.
31311 The third prompt is for an algebraic function name.  The default is to
31312 use the same name as the command name but without the @samp{calc-}
31313 prefix.  (If this is of the form @samp{User-m}, the hyphen is removed so
31314 it won't be taken for a minus sign in algebraic formulas.)
31315 This is the name you will use if you want to enter your 
31316 new function in an algebraic formula.  Suppose we enter @kbd{yow @key{RET}}.
31317 Then the new function can be invoked by pushing two numbers on the
31318 stack and typing @kbd{z m} or @kbd{x spam}, or by entering the algebraic
31319 formula @samp{yow(x,y)}.
31321 The fourth prompt is for the function's argument list.  This is used to
31322 associate values on the stack with the variables that appear in the formula.
31323 The default is a list of all variables which appear in the formula, sorted
31324 into alphabetical order.  In our case, the default would be @samp{(a b)}.
31325 This means that, when the user types @kbd{z m}, the Calculator will remove
31326 two numbers from the stack, substitute these numbers for @samp{a} and
31327 @samp{b} (respectively) in the formula, then simplify the formula and
31328 push the result on the stack.  In other words, @kbd{10 @key{RET} 100 z m}
31329 would replace the 10 and 100 on the stack with the number 210, which is
31330 @expr{a + 2 b} with @expr{a=10} and @expr{b=100}.  Likewise, the formula
31331 @samp{yow(10, 100)} will be evaluated by substituting @expr{a=10} and
31332 @expr{b=100} in the definition.
31334 You can rearrange the order of the names before pressing @key{RET} to
31335 control which stack positions go to which variables in the formula.  If
31336 you remove a variable from the argument list, that variable will be left
31337 in symbolic form by the command.  Thus using an argument list of @samp{(b)}
31338 for our function would cause @kbd{10 z m} to replace the 10 on the stack
31339 with the formula @samp{a + 20}.  If we had used an argument list of
31340 @samp{(b a)}, the result with inputs 10 and 100 would have been 120.
31342 You can also put a nameless function on the stack instead of just a
31343 formula, as in @samp{<a, b : a + 2 b>}.  @xref{Specifying Operators}.
31344 In this example, the command will be defined by the formula @samp{a + 2 b}
31345 using the argument list @samp{(a b)}.
31347 The final prompt is a y-or-n question concerning what to do if symbolic
31348 arguments are given to your function.  If you answer @kbd{y}, then
31349 executing @kbd{z m} (using the original argument list @samp{(a b)}) with
31350 arguments @expr{10} and @expr{x} will leave the function in symbolic
31351 form, i.e., @samp{yow(10,x)}.  On the other hand, if you answer @kbd{n},
31352 then the formula will always be expanded, even for non-constant
31353 arguments: @samp{10 + 2 x}.  If you never plan to feed algebraic
31354 formulas to your new function, it doesn't matter how you answer this
31355 question.
31357 If you answered @kbd{y} to this question you can still cause a function
31358 call to be expanded by typing @kbd{a "} (@code{calc-expand-formula}).
31359 Also, Calc will expand the function if necessary when you take a
31360 derivative or integral or solve an equation involving the function.
31362 @kindex Z G
31363 @pindex calc-get-user-defn
31364 Once you have defined a formula on a key, you can retrieve this formula
31365 with the @kbd{Z G} (@code{calc-user-define-get-defn}) command.  Press a
31366 key, and this command pushes the formula that was used to define that
31367 key onto the stack.  Actually, it pushes a nameless function that
31368 specifies both the argument list and the defining formula.  You will get
31369 an error message if the key is undefined, or if the key was not defined
31370 by a @kbd{Z F} command.
31372 The @kbd{Z E} (@code{calc-user-define-edit}) command on a key that has
31373 been defined by a formula uses a variant of the @code{calc-edit} command
31374 to edit the defining formula.  Press @kbd{C-c C-c} to finish editing and
31375 store the new formula back in the definition, or kill the buffer with
31376 @kbd{C-x k} to
31377 cancel the edit.  (The argument list and other properties of the
31378 definition are unchanged; to adjust the argument list, you can use
31379 @kbd{Z G} to grab the function onto the stack, edit with @kbd{`}, and
31380 then re-execute the @kbd{Z F} command.)
31382 As usual, the @kbd{Z P} command records your definition permanently.
31383 In this case it will permanently record all three of the relevant
31384 definitions: the key, the command, and the function.
31386 You may find it useful to turn off the default simplifications with
31387 @kbd{m O} (@code{calc-no-simplify-mode}) when entering a formula to be
31388 used as a function definition.  For example, the formula @samp{deriv(a^2,v)}
31389 which might be used to define a new function @samp{dsqr(a,v)} will be
31390 ``simplified'' to 0 immediately upon entry since @code{deriv} considers
31391 @expr{a} to be constant with respect to @expr{v}.  Turning off
31392 default simplifications cures this problem:  The definition will be stored
31393 in symbolic form without ever activating the @code{deriv} function.  Press
31394 @kbd{m D} to turn the default simplifications back on afterwards.
31396 @node Lisp Definitions,  , Algebraic Definitions, Programming
31397 @section Programming with Lisp
31399 @noindent
31400 The Calculator can be programmed quite extensively in Lisp.  All you
31401 do is write a normal Lisp function definition, but with @code{defmath}
31402 in place of @code{defun}.  This has the same form as @code{defun}, but it
31403 automagically replaces calls to standard Lisp functions like @code{+} and
31404 @code{zerop} with calls to the corresponding functions in Calc's own library.
31405 Thus you can write natural-looking Lisp code which operates on all of the
31406 standard Calculator data types.  You can then use @kbd{Z D} if you wish to
31407 bind your new command to a @kbd{z}-prefix key sequence.  The @kbd{Z E} command
31408 will not edit a Lisp-based definition.
31410 Emacs Lisp is described in the GNU Emacs Lisp Reference Manual.  This section
31411 assumes a familiarity with Lisp programming concepts; if you do not know
31412 Lisp, you may find keyboard macros or rewrite rules to be an easier way
31413 to program the Calculator.
31415 This section first discusses ways to write commands, functions, or
31416 small programs to be executed inside of Calc.  Then it discusses how
31417 your own separate programs are able to call Calc from the outside.
31418 Finally, there is a list of internal Calc functions and data structures
31419 for the true Lisp enthusiast.
31421 @menu
31422 * Defining Functions::
31423 * Defining Simple Commands::
31424 * Defining Stack Commands::
31425 * Argument Qualifiers::
31426 * Example Definitions::
31428 * Calling Calc from Your Programs::
31429 * Internals::
31430 @end menu
31432 @node Defining Functions, Defining Simple Commands, Lisp Definitions, Lisp Definitions
31433 @subsection Defining New Functions
31435 @noindent
31436 @findex defmath
31437 The @code{defmath} function (actually a Lisp macro) is like @code{defun}
31438 except that code in the body of the definition can make use of the full
31439 range of Calculator data types.  The prefix @samp{calcFunc-} is added
31440 to the specified name to get the actual Lisp function name.  As a simple
31441 example,
31443 @example
31444 (defmath myfact (n)
31445   (if (> n 0)
31446       (* n (myfact (1- n)))
31447     1))
31448 @end example
31450 @noindent
31451 This actually expands to the code,
31453 @example
31454 (defun calcFunc-myfact (n)
31455   (if (math-posp n)
31456       (math-mul n (calcFunc-myfact (math-add n -1)))
31457     1))
31458 @end example
31460 @noindent
31461 This function can be used in algebraic expressions, e.g., @samp{myfact(5)}.
31463 The @samp{myfact} function as it is defined above has the bug that an
31464 expression @samp{myfact(a+b)} will be simplified to 1 because the
31465 formula @samp{a+b} is not considered to be @code{posp}.  A robust
31466 factorial function would be written along the following lines:
31468 @smallexample
31469 (defmath myfact (n)
31470   (if (> n 0)
31471       (* n (myfact (1- n)))
31472     (if (= n 0)
31473         1
31474       nil)))    ; this could be simplified as: (and (= n 0) 1)
31475 @end smallexample
31477 If a function returns @code{nil}, it is left unsimplified by the Calculator
31478 (except that its arguments will be simplified).  Thus, @samp{myfact(a+1+2)}
31479 will be simplified to @samp{myfact(a+3)} but no further.  Beware that every
31480 time the Calculator reexamines this formula it will attempt to resimplify
31481 it, so your function ought to detect the returning-@code{nil} case as
31482 efficiently as possible.
31484 The following standard Lisp functions are treated by @code{defmath}:
31485 @code{+}, @code{-}, @code{*}, @code{/}, @code{%}, @code{^} or
31486 @code{expt}, @code{=}, @code{<}, @code{>}, @code{<=}, @code{>=},
31487 @code{/=}, @code{1+}, @code{1-}, @code{logand}, @code{logior}, @code{logxor},
31488 @code{logandc2}, @code{lognot}.  Also, @code{~=} is an abbreviation for
31489 @code{math-nearly-equal}, which is useful in implementing Taylor series.
31491 For other functions @var{func}, if a function by the name
31492 @samp{calcFunc-@var{func}} exists it is used, otherwise if a function by the
31493 name @samp{math-@var{func}} exists it is used, otherwise if @var{func} itself
31494 is defined as a function it is used, otherwise @samp{calcFunc-@var{func}} is
31495 used on the assumption that this is a to-be-defined math function.  Also, if
31496 the function name is quoted as in @samp{('integerp a)} the function name is
31497 always used exactly as written (but not quoted).
31499 Variable names have @samp{var-} prepended to them unless they appear in
31500 the function's argument list or in an enclosing @code{let}, @code{let*},
31501 @code{for}, or @code{foreach} form,
31502 or their names already contain a @samp{-} character.  Thus a reference to
31503 @samp{foo} is the same as a reference to @samp{var-foo}.
31505 A few other Lisp extensions are available in @code{defmath} definitions:
31507 @itemize @bullet
31508 @item
31509 The @code{elt} function accepts any number of index variables.
31510 Note that Calc vectors are stored as Lisp lists whose first
31511 element is the symbol @code{vec}; thus, @samp{(elt v 2)} yields
31512 the second element of vector @code{v}, and @samp{(elt m i j)}
31513 yields one element of a Calc matrix.
31515 @item
31516 The @code{setq} function has been extended to act like the Common
31517 Lisp @code{setf} function.  (The name @code{setf} is recognized as
31518 a synonym of @code{setq}.)  Specifically, the first argument of
31519 @code{setq} can be an @code{nth}, @code{elt}, @code{car}, or @code{cdr} form,
31520 in which case the effect is to store into the specified
31521 element of a list.  Thus, @samp{(setq (elt m i j) x)} stores @expr{x}
31522 into one element of a matrix.
31524 @item
31525 A @code{for} looping construct is available.  For example,
31526 @samp{(for ((i 0 10)) body)} executes @code{body} once for each
31527 binding of @expr{i} from zero to 10.  This is like a @code{let}
31528 form in that @expr{i} is temporarily bound to the loop count
31529 without disturbing its value outside the @code{for} construct.
31530 Nested loops, as in @samp{(for ((i 0 10) (j 0 (1- i) 2)) body)},
31531 are also available.  For each value of @expr{i} from zero to 10,
31532 @expr{j} counts from 0 to @expr{i-1} in steps of two.  Note that
31533 @code{for} has the same general outline as @code{let*}, except
31534 that each element of the header is a list of three or four
31535 things, not just two.
31537 @item
31538 The @code{foreach} construct loops over elements of a list.
31539 For example, @samp{(foreach ((x (cdr v))) body)} executes
31540 @code{body} with @expr{x} bound to each element of Calc vector
31541 @expr{v} in turn.  The purpose of @code{cdr} here is to skip over
31542 the initial @code{vec} symbol in the vector.
31544 @item
31545 The @code{break} function breaks out of the innermost enclosing
31546 @code{while}, @code{for}, or @code{foreach} loop.  If given a
31547 value, as in @samp{(break x)}, this value is returned by the
31548 loop.  (Lisp loops otherwise always return @code{nil}.)
31550 @item
31551 The @code{return} function prematurely returns from the enclosing
31552 function.  For example, @samp{(return (+ x y))} returns @expr{x+y}
31553 as the value of a function.  You can use @code{return} anywhere
31554 inside the body of the function.
31555 @end itemize
31557 Non-integer numbers (and extremely large integers) cannot be included
31558 directly into a @code{defmath} definition.  This is because the Lisp
31559 reader will fail to parse them long before @code{defmath} ever gets control.
31560 Instead, use the notation, @samp{:"3.1415"}.  In fact, any algebraic
31561 formula can go between the quotes.  For example,
31563 @smallexample
31564 (defmath sqexp (x)     ; sqexp(x) == sqrt(exp(x)) == exp(x*0.5)
31565   (and (numberp x)
31566        (exp :"x * 0.5")))
31567 @end smallexample
31569 expands to
31571 @smallexample
31572 (defun calcFunc-sqexp (x)
31573   (and (math-numberp x)
31574        (calcFunc-exp (math-mul x '(float 5 -1)))))
31575 @end smallexample
31577 Note the use of @code{numberp} as a guard to ensure that the argument is
31578 a number first, returning @code{nil} if not.  The exponential function
31579 could itself have been included in the expression, if we had preferred:
31580 @samp{:"exp(x * 0.5)"}.  As another example, the multiplication-and-recursion
31581 step of @code{myfact} could have been written
31583 @example
31584 :"n * myfact(n-1)"
31585 @end example
31587 A good place to put your @code{defmath} commands is your Calc init file
31588 (the file given by @code{calc-settings-file}, typically
31589 @file{~/.calc.el}), which will not be loaded until Calc starts.
31590 If a file named @file{.emacs} exists in your home directory, Emacs reads
31591 and executes the Lisp forms in this file as it starts up.  While it may
31592 seem reasonable to put your favorite @code{defmath} commands there,
31593 this has the unfortunate side-effect that parts of the Calculator must be
31594 loaded in to process the @code{defmath} commands whether or not you will
31595 actually use the Calculator!  If you want to put the @code{defmath}
31596 commands there (for example, if you redefine @code{calc-settings-file}
31597 to be @file{.emacs}), a better effect can be had by writing
31599 @example
31600 (put 'calc-define 'thing '(progn
31601  (defmath ... )
31602  (defmath ... )
31604 @end example
31606 @noindent
31607 @vindex calc-define
31608 The @code{put} function adds a @dfn{property} to a symbol.  Each Lisp
31609 symbol has a list of properties associated with it.  Here we add a
31610 property with a name of @code{thing} and a @samp{(progn ...)} form as
31611 its value.  When Calc starts up, and at the start of every Calc command,
31612 the property list for the symbol @code{calc-define} is checked and the
31613 values of any properties found are evaluated as Lisp forms.  The
31614 properties are removed as they are evaluated.  The property names
31615 (like @code{thing}) are not used; you should choose something like the
31616 name of your project so as not to conflict with other properties.
31618 The net effect is that you can put the above code in your @file{.emacs}
31619 file and it will not be executed until Calc is loaded.  Or, you can put
31620 that same code in another file which you load by hand either before or
31621 after Calc itself is loaded.
31623 The properties of @code{calc-define} are evaluated in the same order
31624 that they were added.  They can assume that the Calc modules @file{calc.el},
31625 @file{calc-ext.el}, and @file{calc-macs.el} have been fully loaded, and
31626 that the @samp{*Calculator*} buffer will be the current buffer.
31628 If your @code{calc-define} property only defines algebraic functions,
31629 you can be sure that it will have been evaluated before Calc tries to
31630 call your function, even if the file defining the property is loaded
31631 after Calc is loaded.  But if the property defines commands or key
31632 sequences, it may not be evaluated soon enough.  (Suppose it defines the
31633 new command @code{tweak-calc}; the user can load your file, then type
31634 @kbd{M-x tweak-calc} before Calc has had chance to do anything.)  To
31635 protect against this situation, you can put
31637 @example
31638 (run-hooks 'calc-check-defines)
31639 @end example
31641 @findex calc-check-defines
31642 @noindent
31643 at the end of your file.  The @code{calc-check-defines} function is what
31644 looks for and evaluates properties on @code{calc-define}; @code{run-hooks}
31645 has the advantage that it is quietly ignored if @code{calc-check-defines}
31646 is not yet defined because Calc has not yet been loaded.
31648 Examples of things that ought to be enclosed in a @code{calc-define}
31649 property are @code{defmath} calls, @code{define-key} calls that modify
31650 the Calc key map, and any calls that redefine things defined inside Calc.
31651 Ordinary @code{defun}s need not be enclosed with @code{calc-define}.
31653 @node Defining Simple Commands, Defining Stack Commands, Defining Functions, Lisp Definitions
31654 @subsection Defining New Simple Commands
31656 @noindent
31657 @findex interactive
31658 If a @code{defmath} form contains an @code{interactive} clause, it defines
31659 a Calculator command.  Actually such a @code{defmath} results in @emph{two}
31660 function definitions:  One, a @samp{calcFunc-} function as was just described,
31661 with the @code{interactive} clause removed.  Two, a @samp{calc-} function
31662 with a suitable @code{interactive} clause and some sort of wrapper to make
31663 the command work in the Calc environment.
31665 In the simple case, the @code{interactive} clause has the same form as
31666 for normal Emacs Lisp commands:
31668 @smallexample
31669 (defmath increase-precision (delta)
31670   "Increase precision by DELTA."     ; This is the "documentation string"
31671   (interactive "p")                  ; Register this as a M-x-able command
31672   (setq calc-internal-prec (+ calc-internal-prec delta)))
31673 @end smallexample
31675 This expands to the pair of definitions,
31677 @smallexample
31678 (defun calc-increase-precision (delta)
31679   "Increase precision by DELTA."
31680   (interactive "p")
31681   (calc-wrapper
31682    (setq calc-internal-prec (math-add calc-internal-prec delta))))
31684 (defun calcFunc-increase-precision (delta)
31685   "Increase precision by DELTA."
31686   (setq calc-internal-prec (math-add calc-internal-prec delta)))
31687 @end smallexample
31689 @noindent
31690 where in this case the latter function would never really be used!  Note
31691 that since the Calculator stores small integers as plain Lisp integers,
31692 the @code{math-add} function will work just as well as the native
31693 @code{+} even when the intent is to operate on native Lisp integers.
31695 @findex calc-wrapper
31696 The @samp{calc-wrapper} call invokes a macro which surrounds the body of
31697 the function with code that looks roughly like this:
31699 @smallexample
31700 (let ((calc-command-flags nil))
31701   (unwind-protect
31702       (save-excursion
31703         (calc-select-buffer)
31704         @emph{body of function}
31705         @emph{renumber stack}
31706         @emph{clear} Working @emph{message})
31707     @emph{realign cursor and window}
31708     @emph{clear Inverse, Hyperbolic, and Keep Args flags}
31709     @emph{update Emacs mode line}))
31710 @end smallexample
31712 @findex calc-select-buffer
31713 The @code{calc-select-buffer} function selects the @samp{*Calculator*}
31714 buffer if necessary, say, because the command was invoked from inside
31715 the @samp{*Calc Trail*} window.
31717 @findex calc-set-command-flag
31718 You can call, for example, @code{(calc-set-command-flag 'no-align)} to
31719 set the above-mentioned command flags.  Calc routines recognize the
31720 following command flags:
31722 @table @code
31723 @item renum-stack
31724 Stack line numbers @samp{1:}, @samp{2:}, and so on must be renumbered
31725 after this command completes.  This is set by routines like
31726 @code{calc-push}.
31728 @item clear-message
31729 Calc should call @samp{(message "")} if this command completes normally
31730 (to clear a ``Working@dots{}'' message out of the echo area).
31732 @item no-align
31733 Do not move the cursor back to the @samp{.} top-of-stack marker.
31735 @item position-point
31736 Use the variables @code{calc-position-point-line} and
31737 @code{calc-position-point-column} to position the cursor after
31738 this command finishes.
31740 @item keep-flags
31741 Do not clear @code{calc-inverse-flag}, @code{calc-hyperbolic-flag},
31742 and @code{calc-keep-args-flag} at the end of this command.
31744 @item do-edit
31745 Switch to buffer @samp{*Calc Edit*} after this command.
31747 @item hold-trail
31748 Do not move trail pointer to end of trail when something is recorded
31749 there.
31750 @end table
31752 @kindex Y
31753 @kindex Y ?
31754 @vindex calc-Y-help-msgs
31755 Calc reserves a special prefix key, shift-@kbd{Y}, for user-written
31756 extensions to Calc.  There are no built-in commands that work with
31757 this prefix key; you must call @code{define-key} from Lisp (probably
31758 from inside a @code{calc-define} property) to add to it.  Initially only
31759 @kbd{Y ?} is defined; it takes help messages from a list of strings
31760 (initially @code{nil}) in the variable @code{calc-Y-help-msgs}.  All
31761 other undefined keys except for @kbd{Y} are reserved for use by
31762 future versions of Calc.
31764 If you are writing a Calc enhancement which you expect to give to
31765 others, it is best to minimize the number of @kbd{Y}-key sequences
31766 you use.  In fact, if you have more than one key sequence you should
31767 consider defining three-key sequences with a @kbd{Y}, then a key that
31768 stands for your package, then a third key for the particular command
31769 within your package.
31771 Users may wish to install several Calc enhancements, and it is possible
31772 that several enhancements will choose to use the same key.  In the
31773 example below, a variable @code{inc-prec-base-key} has been defined
31774 to contain the key that identifies the @code{inc-prec} package.  Its
31775 value is initially @code{"P"}, but a user can change this variable
31776 if necessary without having to modify the file.
31778 Here is a complete file, @file{inc-prec.el}, which makes a @kbd{Y P I}
31779 command that increases the precision, and a @kbd{Y P D} command that
31780 decreases the precision.
31782 @smallexample
31783 ;;; Increase and decrease Calc precision.  Dave Gillespie, 5/31/91.
31784 ;; (Include copyright or copyleft stuff here.)
31786 (defvar inc-prec-base-key "P"
31787   "Base key for inc-prec.el commands.")
31789 (put 'calc-define 'inc-prec '(progn
31791 (define-key calc-mode-map (format "Y%sI" inc-prec-base-key)
31792             'increase-precision)
31793 (define-key calc-mode-map (format "Y%sD" inc-prec-base-key)
31794             'decrease-precision)
31796 (setq calc-Y-help-msgs
31797       (cons (format "%s + Inc-prec, Dec-prec" inc-prec-base-key)
31798             calc-Y-help-msgs))
31800 (defmath increase-precision (delta)
31801   "Increase precision by DELTA."
31802   (interactive "p")
31803   (setq calc-internal-prec (+ calc-internal-prec delta)))
31805 (defmath decrease-precision (delta)
31806   "Decrease precision by DELTA."
31807   (interactive "p")
31808   (setq calc-internal-prec (- calc-internal-prec delta)))
31810 ))  ; end of calc-define property
31812 (run-hooks 'calc-check-defines)
31813 @end smallexample
31815 @node Defining Stack Commands, Argument Qualifiers, Defining Simple Commands, Lisp Definitions
31816 @subsection Defining New Stack-Based Commands
31818 @noindent
31819 To define a new computational command which takes and/or leaves arguments
31820 on the stack, a special form of @code{interactive} clause is used.
31822 @example
31823 (interactive @var{num} @var{tag})
31824 @end example
31826 @noindent
31827 where @var{num} is an integer, and @var{tag} is a string.  The effect is
31828 to pop @var{num} values off the stack, resimplify them by calling
31829 @code{calc-normalize}, and hand them to your function according to the
31830 function's argument list.  Your function may include @code{&optional} and
31831 @code{&rest} parameters, so long as calling the function with @var{num}
31832 parameters is valid.
31834 Your function must return either a number or a formula in a form
31835 acceptable to Calc, or a list of such numbers or formulas.  These value(s)
31836 are pushed onto the stack when the function completes.  They are also
31837 recorded in the Calc Trail buffer on a line beginning with @var{tag},
31838 a string of (normally) four characters or less.  If you omit @var{tag}
31839 or use @code{nil} as a tag, the result is not recorded in the trail.
31841 As an example, the definition
31843 @smallexample
31844 (defmath myfact (n)
31845   "Compute the factorial of the integer at the top of the stack."
31846   (interactive 1 "fact")
31847   (if (> n 0)
31848       (* n (myfact (1- n)))
31849     (and (= n 0) 1)))
31850 @end smallexample
31852 @noindent
31853 is a version of the factorial function shown previously which can be used
31854 as a command as well as an algebraic function.  It expands to
31856 @smallexample
31857 (defun calc-myfact ()
31858   "Compute the factorial of the integer at the top of the stack."
31859   (interactive)
31860   (calc-slow-wrapper
31861    (calc-enter-result 1 "fact"
31862      (cons 'calcFunc-myfact (calc-top-list-n 1)))))
31864 (defun calcFunc-myfact (n)
31865   "Compute the factorial of the integer at the top of the stack."
31866   (if (math-posp n)
31867       (math-mul n (calcFunc-myfact (math-add n -1)))
31868     (and (math-zerop n) 1)))
31869 @end smallexample
31871 @findex calc-slow-wrapper
31872 The @code{calc-slow-wrapper} function is a version of @code{calc-wrapper}
31873 that automatically puts up a @samp{Working...} message before the
31874 computation begins.  (This message can be turned off by the user
31875 with an @kbd{m w} (@code{calc-working}) command.)
31877 @findex calc-top-list-n
31878 The @code{calc-top-list-n} function returns a list of the specified number
31879 of values from the top of the stack.  It resimplifies each value by
31880 calling @code{calc-normalize}.  If its argument is zero it returns an
31881 empty list.  It does not actually remove these values from the stack.
31883 @findex calc-enter-result
31884 The @code{calc-enter-result} function takes an integer @var{num} and string
31885 @var{tag} as described above, plus a third argument which is either a
31886 Calculator data object or a list of such objects.  These objects are
31887 resimplified and pushed onto the stack after popping the specified number
31888 of values from the stack.  If @var{tag} is non-@code{nil}, the values
31889 being pushed are also recorded in the trail.
31891 Note that if @code{calcFunc-myfact} returns @code{nil} this represents
31892 ``leave the function in symbolic form.''  To return an actual empty list,
31893 in the sense that @code{calc-enter-result} will push zero elements back
31894 onto the stack, you should return the special value @samp{'(nil)}, a list
31895 containing the single symbol @code{nil}.
31897 The @code{interactive} declaration can actually contain a limited
31898 Emacs-style code string as well which comes just before @var{num} and
31899 @var{tag}.  Currently the only Emacs code supported is @samp{"p"}, as in
31901 @example
31902 (defmath foo (a b &optional c)
31903   (interactive "p" 2 "foo")
31904   @var{body})
31905 @end example
31907 In this example, the command @code{calc-foo} will evaluate the expression
31908 @samp{foo(a,b)} if executed with no argument, or @samp{foo(a,b,n)} if
31909 executed with a numeric prefix argument of @expr{n}.
31911 The other code string allowed is @samp{"m"} (unrelated to the usual @samp{"m"}
31912 code as used with @code{defun}).  It uses the numeric prefix argument as the
31913 number of objects to remove from the stack and pass to the function.
31914 In this case, the integer @var{num} serves as a default number of
31915 arguments to be used when no prefix is supplied.
31917 @node Argument Qualifiers, Example Definitions, Defining Stack Commands, Lisp Definitions
31918 @subsection Argument Qualifiers
31920 @noindent
31921 Anywhere a parameter name can appear in the parameter list you can also use
31922 an @dfn{argument qualifier}.  Thus the general form of a definition is:
31924 @example
31925 (defmath @var{name} (@var{param} @var{param...}
31926                &optional @var{param} @var{param...}
31927                &rest @var{param})
31928   @var{body})
31929 @end example
31931 @noindent
31932 where each @var{param} is either a symbol or a list of the form
31934 @example
31935 (@var{qual} @var{param})
31936 @end example
31938 The following qualifiers are recognized:
31940 @table @samp
31941 @item complete
31942 @findex complete
31943 The argument must not be an incomplete vector, interval, or complex number.
31944 (This is rarely needed since the Calculator itself will never call your
31945 function with an incomplete argument.  But there is nothing stopping your
31946 own Lisp code from calling your function with an incomplete argument.)
31948 @item integer
31949 @findex integer
31950 The argument must be an integer.  If it is an integer-valued float
31951 it will be accepted but converted to integer form.  Non-integers and
31952 formulas are rejected.
31954 @item natnum
31955 @findex natnum
31956 Like @samp{integer}, but the argument must be non-negative.
31958 @item fixnum
31959 @findex fixnum
31960 Like @samp{integer}, but the argument must fit into a native Lisp integer,
31961 which on most systems means less than 2^23 in absolute value.  The
31962 argument is converted into Lisp-integer form if necessary.
31964 @item float
31965 @findex float
31966 The argument is converted to floating-point format if it is a number or
31967 vector.  If it is a formula it is left alone.  (The argument is never
31968 actually rejected by this qualifier.)
31970 @item @var{pred}
31971 The argument must satisfy predicate @var{pred}, which is one of the
31972 standard Calculator predicates.  @xref{Predicates}.
31974 @item not-@var{pred}
31975 The argument must @emph{not} satisfy predicate @var{pred}.
31976 @end table
31978 For example,
31980 @example
31981 (defmath foo (a (constp (not-matrixp b)) &optional (float c)
31982               &rest (integer d))
31983   @var{body})
31984 @end example
31986 @noindent
31987 expands to
31989 @example
31990 (defun calcFunc-foo (a b &optional c &rest d)
31991   (and (math-matrixp b)
31992        (math-reject-arg b 'not-matrixp))
31993   (or (math-constp b)
31994       (math-reject-arg b 'constp))
31995   (and c (setq c (math-check-float c)))
31996   (setq d (mapcar 'math-check-integer d))
31997   @var{body})
31998 @end example
32000 @noindent
32001 which performs the necessary checks and conversions before executing the
32002 body of the function.
32004 @node Example Definitions, Calling Calc from Your Programs, Argument Qualifiers, Lisp Definitions
32005 @subsection Example Definitions
32007 @noindent
32008 This section includes some Lisp programming examples on a larger scale.
32009 These programs make use of some of the Calculator's internal functions;
32010 @pxref{Internals}.
32012 @menu
32013 * Bit Counting Example::
32014 * Sine Example::
32015 @end menu
32017 @node Bit Counting Example, Sine Example, Example Definitions, Example Definitions
32018 @subsubsection Bit-Counting
32020 @noindent
32021 @ignore
32022 @starindex
32023 @end ignore
32024 @tindex bcount
32025 Calc does not include a built-in function for counting the number of
32026 ``one'' bits in a binary integer.  It's easy to invent one using @kbd{b u}
32027 to convert the integer to a set, and @kbd{V #} to count the elements of
32028 that set; let's write a function that counts the bits without having to
32029 create an intermediate set.
32031 @smallexample
32032 (defmath bcount ((natnum n))
32033   (interactive 1 "bcnt")
32034   (let ((count 0))
32035     (while (> n 0)
32036       (if (oddp n)
32037           (setq count (1+ count)))
32038       (setq n (lsh n -1)))
32039     count))
32040 @end smallexample
32042 @noindent
32043 When this is expanded by @code{defmath}, it will become the following
32044 Emacs Lisp function:
32046 @smallexample
32047 (defun calcFunc-bcount (n)
32048   (setq n (math-check-natnum n))
32049   (let ((count 0))
32050     (while (math-posp n)
32051       (if (math-oddp n)
32052           (setq count (math-add count 1)))
32053       (setq n (calcFunc-lsh n -1)))
32054     count))
32055 @end smallexample
32057 If the input numbers are large, this function involves a fair amount
32058 of arithmetic.  A binary right shift is essentially a division by two;
32059 recall that Calc stores integers in decimal form so bit shifts must
32060 involve actual division.
32062 To gain a bit more efficiency, we could divide the integer into
32063 @var{n}-bit chunks, each of which can be handled quickly because
32064 they fit into Lisp integers.  It turns out that Calc's arithmetic
32065 routines are especially fast when dividing by an integer less than
32066 1000, so we can set @var{n = 9} bits and use repeated division by 512:
32068 @smallexample
32069 (defmath bcount ((natnum n))
32070   (interactive 1 "bcnt")
32071   (let ((count 0))
32072     (while (not (fixnump n))
32073       (let ((qr (idivmod n 512)))
32074         (setq count (+ count (bcount-fixnum (cdr qr)))
32075               n (car qr))))
32076     (+ count (bcount-fixnum n))))
32078 (defun bcount-fixnum (n)
32079   (let ((count 0))
32080     (while (> n 0)
32081       (setq count (+ count (logand n 1))
32082             n (lsh n -1)))
32083     count))
32084 @end smallexample
32086 @noindent
32087 Note that the second function uses @code{defun}, not @code{defmath}.
32088 Because this function deals only with native Lisp integers (``fixnums''),
32089 it can use the actual Emacs @code{+} and related functions rather
32090 than the slower but more general Calc equivalents which @code{defmath}
32091 uses.
32093 The @code{idivmod} function does an integer division, returning both
32094 the quotient and the remainder at once.  Again, note that while it
32095 might seem that @samp{(logand n 511)} and @samp{(lsh n -9)} are
32096 more efficient ways to split off the bottom nine bits of @code{n},
32097 actually they are less efficient because each operation is really
32098 a division by 512 in disguise; @code{idivmod} allows us to do the
32099 same thing with a single division by 512.
32101 @node Sine Example,  , Bit Counting Example, Example Definitions
32102 @subsubsection The Sine Function
32104 @noindent
32105 @ignore
32106 @starindex
32107 @end ignore
32108 @tindex mysin
32109 A somewhat limited sine function could be defined as follows, using the
32110 well-known Taylor series expansion for 
32111 @texline @math{\sin x}:
32112 @infoline @samp{sin(x)}:
32114 @smallexample
32115 (defmath mysin ((float (anglep x)))
32116   (interactive 1 "mysn")
32117   (setq x (to-radians x))    ; Convert from current angular mode.
32118   (let ((sum x)              ; Initial term of Taylor expansion of sin.
32119         newsum
32120         (nfact 1)            ; "nfact" equals "n" factorial at all times.
32121         (xnegsqr :"-(x^2)")) ; "xnegsqr" equals -x^2.
32122     (for ((n 3 100 2))       ; Upper limit of 100 is a good precaution.
32123       (working "mysin" sum)  ; Display "Working" message, if enabled.
32124       (setq nfact (* nfact (1- n) n)
32125             x (* x xnegsqr)
32126             newsum (+ sum (/ x nfact)))
32127       (if (~= newsum sum)    ; If newsum is "nearly equal to" sum,
32128           (break))           ;  then we are done.
32129       (setq sum newsum))
32130     sum))
32131 @end smallexample
32133 The actual @code{sin} function in Calc works by first reducing the problem
32134 to a sine or cosine of a nonnegative number less than @cpiover{4}.  This
32135 ensures that the Taylor series will converge quickly.  Also, the calculation
32136 is carried out with two extra digits of precision to guard against cumulative
32137 round-off in @samp{sum}.  Finally, complex arguments are allowed and handled
32138 by a separate algorithm.
32140 @smallexample
32141 (defmath mysin ((float (scalarp x)))
32142   (interactive 1 "mysn")
32143   (setq x (to-radians x))    ; Convert from current angular mode.
32144   (with-extra-prec 2         ; Evaluate with extra precision.
32145     (cond ((complexp x)
32146            (mysin-complex x))
32147           ((< x 0)
32148            (- (mysin-raw (- x)))    ; Always call mysin-raw with x >= 0.
32149           (t (mysin-raw x))))))
32151 (defmath mysin-raw (x)
32152   (cond ((>= x 7)
32153          (mysin-raw (% x (two-pi))))     ; Now x < 7.
32154         ((> x (pi-over-2))
32155          (- (mysin-raw (- x (pi)))))     ; Now -pi/2 <= x <= pi/2.
32156         ((> x (pi-over-4))
32157          (mycos-raw (- x (pi-over-2))))  ; Now -pi/2 <= x <= pi/4.
32158         ((< x (- (pi-over-4)))
32159          (- (mycos-raw (+ x (pi-over-2)))))  ; Now -pi/4 <= x <= pi/4,
32160         (t (mysin-series x))))           ; so the series will be efficient.
32161 @end smallexample
32163 @noindent
32164 where @code{mysin-complex} is an appropriate function to handle complex
32165 numbers, @code{mysin-series} is the routine to compute the sine Taylor
32166 series as before, and @code{mycos-raw} is a function analogous to
32167 @code{mysin-raw} for cosines.
32169 The strategy is to ensure that @expr{x} is nonnegative before calling
32170 @code{mysin-raw}.  This function then recursively reduces its argument
32171 to a suitable range, namely, plus-or-minus @cpiover{4}.  Note that each
32172 test, and particularly the first comparison against 7, is designed so
32173 that small roundoff errors cannot produce an infinite loop.  (Suppose
32174 we compared with @samp{(two-pi)} instead; if due to roundoff problems
32175 the modulo operator ever returned @samp{(two-pi)} exactly, an infinite
32176 recursion could result!)  We use modulo only for arguments that will
32177 clearly get reduced, knowing that the next rule will catch any reductions
32178 that this rule misses.
32180 If a program is being written for general use, it is important to code
32181 it carefully as shown in this second example.  For quick-and-dirty programs,
32182 when you know that your own use of the sine function will never encounter
32183 a large argument, a simpler program like the first one shown is fine.
32185 @node Calling Calc from Your Programs, Internals, Example Definitions, Lisp Definitions
32186 @subsection Calling Calc from Your Lisp Programs
32188 @noindent
32189 A later section (@pxref{Internals}) gives a full description of
32190 Calc's internal Lisp functions.  It's not hard to call Calc from
32191 inside your programs, but the number of these functions can be daunting.
32192 So Calc provides one special ``programmer-friendly'' function called
32193 @code{calc-eval} that can be made to do just about everything you
32194 need.  It's not as fast as the low-level Calc functions, but it's
32195 much simpler to use!
32197 It may seem that @code{calc-eval} itself has a daunting number of
32198 options, but they all stem from one simple operation.
32200 In its simplest manifestation, @samp{(calc-eval "1+2")} parses the
32201 string @code{"1+2"} as if it were a Calc algebraic entry and returns
32202 the result formatted as a string: @code{"3"}.
32204 Since @code{calc-eval} is on the list of recommended @code{autoload}
32205 functions, you don't need to make any special preparations to load
32206 Calc before calling @code{calc-eval} the first time.  Calc will be
32207 loaded and initialized for you.
32209 All the Calc modes that are currently in effect will be used when
32210 evaluating the expression and formatting the result.
32212 @ifinfo
32213 @example
32215 @end example
32216 @end ifinfo
32217 @subsubsection Additional Arguments to @code{calc-eval}
32219 @noindent
32220 If the input string parses to a list of expressions, Calc returns
32221 the results separated by @code{", "}.  You can specify a different
32222 separator by giving a second string argument to @code{calc-eval}:
32223 @samp{(calc-eval "1+2,3+4" ";")} returns @code{"3;7"}.
32225 The ``separator'' can also be any of several Lisp symbols which
32226 request other behaviors from @code{calc-eval}.  These are discussed
32227 one by one below.
32229 You can give additional arguments to be substituted for
32230 @samp{$}, @samp{$$}, and so on in the main expression.  For
32231 example, @samp{(calc-eval "$/$$" nil "7" "1+1")} evaluates the
32232 expression @code{"7/(1+1)"} to yield the result @code{"3.5"}
32233 (assuming Fraction mode is not in effect).  Note the @code{nil}
32234 used as a placeholder for the item-separator argument.
32236 @ifinfo
32237 @example
32239 @end example
32240 @end ifinfo
32241 @subsubsection Error Handling
32243 @noindent
32244 If @code{calc-eval} encounters an error, it returns a list containing
32245 the character position of the error, plus a suitable message as a
32246 string.  Note that @samp{1 / 0} is @emph{not} an error by Calc's
32247 standards; it simply returns the string @code{"1 / 0"} which is the
32248 division left in symbolic form.  But @samp{(calc-eval "1/")} will
32249 return the list @samp{(2 "Expected a number")}.
32251 If you bind the variable @code{calc-eval-error} to @code{t}
32252 using a @code{let} form surrounding the call to @code{calc-eval},
32253 errors instead call the Emacs @code{error} function which aborts
32254 to the Emacs command loop with a beep and an error message.
32256 If you bind this variable to the symbol @code{string}, error messages
32257 are returned as strings instead of lists.  The character position is
32258 ignored.
32260 As a courtesy to other Lisp code which may be using Calc, be sure
32261 to bind @code{calc-eval-error} using @code{let} rather than changing
32262 it permanently with @code{setq}.
32264 @ifinfo
32265 @example
32267 @end example
32268 @end ifinfo
32269 @subsubsection Numbers Only
32271 @noindent
32272 Sometimes it is preferable to treat @samp{1 / 0} as an error
32273 rather than returning a symbolic result.  If you pass the symbol
32274 @code{num} as the second argument to @code{calc-eval}, results
32275 that are not constants are treated as errors.  The error message
32276 reported is the first @code{calc-why} message if there is one,
32277 or otherwise ``Number expected.''
32279 A result is ``constant'' if it is a number, vector, or other
32280 object that does not include variables or function calls.  If it
32281 is a vector, the components must themselves be constants.
32283 @ifinfo
32284 @example
32286 @end example
32287 @end ifinfo
32288 @subsubsection Default Modes
32290 @noindent
32291 If the first argument to @code{calc-eval} is a list whose first
32292 element is a formula string, then @code{calc-eval} sets all the
32293 various Calc modes to their default values while the formula is
32294 evaluated and formatted.  For example, the precision is set to 12
32295 digits, digit grouping is turned off, and the Normal language
32296 mode is used.
32298 This same principle applies to the other options discussed below.
32299 If the first argument would normally be @var{x}, then it can also
32300 be the list @samp{(@var{x})} to use the default mode settings.
32302 If there are other elements in the list, they are taken as
32303 variable-name/value pairs which override the default mode
32304 settings.  Look at the documentation at the front of the
32305 @file{calc.el} file to find the names of the Lisp variables for
32306 the various modes.  The mode settings are restored to their
32307 original values when @code{calc-eval} is done.
32309 For example, @samp{(calc-eval '("$+$$" calc-internal-prec 8) 'num a b)}
32310 computes the sum of two numbers, requiring a numeric result, and
32311 using default mode settings except that the precision is 8 instead
32312 of the default of 12.
32314 It's usually best to use this form of @code{calc-eval} unless your
32315 program actually considers the interaction with Calc's mode settings
32316 to be a feature.  This will avoid all sorts of potential ``gotchas'';
32317 consider what happens with @samp{(calc-eval "sqrt(2)" 'num)}
32318 when the user has left Calc in Symbolic mode or No-Simplify mode.
32320 As another example, @samp{(equal (calc-eval '("$<$$") nil a b) "1")}
32321 checks if the number in string @expr{a} is less than the one in
32322 string @expr{b}.  Without using a list, the integer 1 might
32323 come out in a variety of formats which would be hard to test for
32324 conveniently: @code{"1"}, @code{"8#1"}, @code{"00001"}.  (But
32325 see ``Predicates'' mode, below.)
32327 @ifinfo
32328 @example
32330 @end example
32331 @end ifinfo
32332 @subsubsection Raw Numbers
32334 @noindent
32335 Normally all input and output for @code{calc-eval} is done with strings.
32336 You can do arithmetic with, say, @samp{(calc-eval "$+$$" nil a b)}
32337 in place of @samp{(+ a b)}, but this is very inefficient since the
32338 numbers must be converted to and from string format as they are passed
32339 from one @code{calc-eval} to the next.
32341 If the separator is the symbol @code{raw}, the result will be returned
32342 as a raw Calc data structure rather than a string.  You can read about
32343 how these objects look in the following sections, but usually you can
32344 treat them as ``black box'' objects with no important internal
32345 structure.
32347 There is also a @code{rawnum} symbol, which is a combination of
32348 @code{raw} (returning a raw Calc object) and @code{num} (signaling
32349 an error if that object is not a constant).
32351 You can pass a raw Calc object to @code{calc-eval} in place of a
32352 string, either as the formula itself or as one of the @samp{$}
32353 arguments.  Thus @samp{(calc-eval "$+$$" 'raw a b)} is an
32354 addition function that operates on raw Calc objects.  Of course
32355 in this case it would be easier to call the low-level @code{math-add}
32356 function in Calc, if you can remember its name.
32358 In particular, note that a plain Lisp integer is acceptable to Calc
32359 as a raw object.  (All Lisp integers are accepted on input, but
32360 integers of more than six decimal digits are converted to ``big-integer''
32361 form for output.  @xref{Data Type Formats}.)
32363 When it comes time to display the object, just use @samp{(calc-eval a)}
32364 to format it as a string.
32366 It is an error if the input expression evaluates to a list of
32367 values.  The separator symbol @code{list} is like @code{raw}
32368 except that it returns a list of one or more raw Calc objects.
32370 Note that a Lisp string is not a valid Calc object, nor is a list
32371 containing a string.  Thus you can still safely distinguish all the
32372 various kinds of error returns discussed above.
32374 @ifinfo
32375 @example
32377 @end example
32378 @end ifinfo
32379 @subsubsection Predicates
32381 @noindent
32382 If the separator symbol is @code{pred}, the result of the formula is
32383 treated as a true/false value; @code{calc-eval} returns @code{t} or
32384 @code{nil}, respectively.  A value is considered ``true'' if it is a
32385 non-zero number, or false if it is zero or if it is not a number.
32387 For example, @samp{(calc-eval "$<$$" 'pred a b)} tests whether
32388 one value is less than another.
32390 As usual, it is also possible for @code{calc-eval} to return one of
32391 the error indicators described above.  Lisp will interpret such an
32392 indicator as ``true'' if you don't check for it explicitly.  If you
32393 wish to have an error register as ``false'', use something like
32394 @samp{(eq (calc-eval ...) t)}.
32396 @ifinfo
32397 @example
32399 @end example
32400 @end ifinfo
32401 @subsubsection Variable Values
32403 @noindent
32404 Variables in the formula passed to @code{calc-eval} are not normally
32405 replaced by their values.  If you wish this, you can use the
32406 @code{evalv} function (@pxref{Algebraic Manipulation}).  For example,
32407 if 4 is stored in Calc variable @code{a} (i.e., in Lisp variable
32408 @code{var-a}), then @samp{(calc-eval "a+pi")} will return the
32409 formula @code{"a + pi"}, but @samp{(calc-eval "evalv(a+pi)")}
32410 will return @code{"7.14159265359"}.
32412 To store in a Calc variable, just use @code{setq} to store in the
32413 corresponding Lisp variable.  (This is obtained by prepending
32414 @samp{var-} to the Calc variable name.)  Calc routines will
32415 understand either string or raw form values stored in variables,
32416 although raw data objects are much more efficient.  For example,
32417 to increment the Calc variable @code{a}:
32419 @example
32420 (setq var-a (calc-eval "evalv(a+1)" 'raw))
32421 @end example
32423 @ifinfo
32424 @example
32426 @end example
32427 @end ifinfo
32428 @subsubsection Stack Access
32430 @noindent
32431 If the separator symbol is @code{push}, the formula argument is
32432 evaluated (with possible @samp{$} expansions, as usual).  The
32433 result is pushed onto the Calc stack.  The return value is @code{nil}
32434 (unless there is an error from evaluating the formula, in which
32435 case the return value depends on @code{calc-eval-error} in the
32436 usual way).
32438 If the separator symbol is @code{pop}, the first argument to
32439 @code{calc-eval} must be an integer instead of a string.  That
32440 many values are popped from the stack and thrown away.  A negative
32441 argument deletes the entry at that stack level.  The return value
32442 is the number of elements remaining in the stack after popping;
32443 @samp{(calc-eval 0 'pop)} is a good way to measure the size of
32444 the stack.
32446 If the separator symbol is @code{top}, the first argument to
32447 @code{calc-eval} must again be an integer.  The value at that
32448 stack level is formatted as a string and returned.  Thus
32449 @samp{(calc-eval 1 'top)} returns the top-of-stack value.  If the
32450 integer is out of range, @code{nil} is returned.
32452 The separator symbol @code{rawtop} is just like @code{top} except
32453 that the stack entry is returned as a raw Calc object instead of
32454 as a string.
32456 In all of these cases the first argument can be made a list in
32457 order to force the default mode settings, as described above.
32458 Thus @samp{(calc-eval '(2 calc-number-radix 16) 'top)} returns the
32459 second-to-top stack entry, formatted as a string using the default
32460 instead of current display modes, except that the radix is
32461 hexadecimal instead of decimal.
32463 It is, of course, polite to put the Calc stack back the way you
32464 found it when you are done, unless the user of your program is
32465 actually expecting it to affect the stack.
32467 Note that you do not actually have to switch into the @samp{*Calculator*}
32468 buffer in order to use @code{calc-eval}; it temporarily switches into
32469 the stack buffer if necessary.
32471 @ifinfo
32472 @example
32474 @end example
32475 @end ifinfo
32476 @subsubsection Keyboard Macros
32478 @noindent
32479 If the separator symbol is @code{macro}, the first argument must be a
32480 string of characters which Calc can execute as a sequence of keystrokes.
32481 This switches into the Calc buffer for the duration of the macro.
32482 For example, @samp{(calc-eval "vx5\rVR+" 'macro)} pushes the
32483 vector @samp{[1,2,3,4,5]} on the stack and then replaces it
32484 with the sum of those numbers.  Note that @samp{\r} is the Lisp
32485 notation for the carriage-return, @key{RET}, character.
32487 If your keyboard macro wishes to pop the stack, @samp{\C-d} is
32488 safer than @samp{\177} (the @key{DEL} character) because some
32489 installations may have switched the meanings of @key{DEL} and
32490 @kbd{C-h}.  Calc always interprets @kbd{C-d} as a synonym for
32491 ``pop-stack'' regardless of key mapping.
32493 If you provide a third argument to @code{calc-eval}, evaluation
32494 of the keyboard macro will leave a record in the Trail using
32495 that argument as a tag string.  Normally the Trail is unaffected.
32497 The return value in this case is always @code{nil}.
32499 @ifinfo
32500 @example
32502 @end example
32503 @end ifinfo
32504 @subsubsection Lisp Evaluation
32506 @noindent
32507 Finally, if the separator symbol is @code{eval}, then the Lisp
32508 @code{eval} function is called on the first argument, which must
32509 be a Lisp expression rather than a Calc formula.  Remember to
32510 quote the expression so that it is not evaluated until inside
32511 @code{calc-eval}.
32513 The difference from plain @code{eval} is that @code{calc-eval}
32514 switches to the Calc buffer before evaluating the expression.
32515 For example, @samp{(calc-eval '(setq calc-internal-prec 17) 'eval)}
32516 will correctly affect the buffer-local Calc precision variable.
32518 An alternative would be @samp{(calc-eval '(calc-precision 17) 'eval)}.
32519 This is evaluating a call to the function that is normally invoked
32520 by the @kbd{p} key, giving it 17 as its ``numeric prefix argument.''
32521 Note that this function will leave a message in the echo area as
32522 a side effect.  Also, all Calc functions switch to the Calc buffer
32523 automatically if not invoked from there, so the above call is
32524 also equivalent to @samp{(calc-precision 17)} by itself.
32525 In all cases, Calc uses @code{save-excursion} to switch back to
32526 your original buffer when it is done.
32528 As usual the first argument can be a list that begins with a Lisp
32529 expression to use default instead of current mode settings.
32531 The result of @code{calc-eval} in this usage is just the result
32532 returned by the evaluated Lisp expression.
32534 @ifinfo
32535 @example
32537 @end example
32538 @end ifinfo
32539 @subsubsection Example
32541 @noindent
32542 @findex convert-temp
32543 Here is a sample Emacs command that uses @code{calc-eval}.  Suppose
32544 you have a document with lots of references to temperatures on the
32545 Fahrenheit scale, say ``98.6 F'', and you wish to convert these
32546 references to Centigrade.  The following command does this conversion.
32547 Place the Emacs cursor right after the letter ``F'' and invoke the
32548 command to change ``98.6 F'' to ``37 C''.  Or, if the temperature is
32549 already in Centigrade form, the command changes it back to Fahrenheit.
32551 @example
32552 (defun convert-temp ()
32553   (interactive)
32554   (save-excursion
32555     (re-search-backward "[^-.0-9]\\([-.0-9]+\\) *\\([FC]\\)")
32556     (let* ((top1 (match-beginning 1))
32557            (bot1 (match-end 1))
32558            (number (buffer-substring top1 bot1))
32559            (top2 (match-beginning 2))
32560            (bot2 (match-end 2))
32561            (type (buffer-substring top2 bot2)))
32562       (if (equal type "F")
32563           (setq type "C"
32564                 number (calc-eval "($ - 32)*5/9" nil number))
32565         (setq type "F"
32566               number (calc-eval "$*9/5 + 32" nil number)))
32567       (goto-char top2)
32568       (delete-region top2 bot2)
32569       (insert-before-markers type)
32570       (goto-char top1)
32571       (delete-region top1 bot1)
32572       (if (string-match "\\.$" number)   ; change "37." to "37"
32573           (setq number (substring number 0 -1)))
32574       (insert number))))
32575 @end example
32577 Note the use of @code{insert-before-markers} when changing between
32578 ``F'' and ``C'', so that the character winds up before the cursor
32579 instead of after it.
32581 @node Internals,  , Calling Calc from Your Programs, Lisp Definitions
32582 @subsection Calculator Internals
32584 @noindent
32585 This section describes the Lisp functions defined by the Calculator that
32586 may be of use to user-written Calculator programs (as described in the
32587 rest of this chapter).  These functions are shown by their names as they
32588 conventionally appear in @code{defmath}.  Their full Lisp names are
32589 generally gotten by prepending @samp{calcFunc-} or @samp{math-} to their
32590 apparent names.  (Names that begin with @samp{calc-} are already in
32591 their full Lisp form.)  You can use the actual full names instead if you
32592 prefer them, or if you are calling these functions from regular Lisp.
32594 The functions described here are scattered throughout the various
32595 Calc component files.  Note that @file{calc.el} includes @code{autoload}s
32596 for only a few component files; when Calc wants to call an advanced
32597 function it calls @samp{(calc-extensions)} first; this function
32598 autoloads @file{calc-ext.el}, which in turn autoloads all the functions
32599 in the remaining component files.
32601 Because @code{defmath} itself uses the extensions, user-written code
32602 generally always executes with the extensions already loaded, so
32603 normally you can use any Calc function and be confident that it will
32604 be autoloaded for you when necessary.  If you are doing something
32605 special, check carefully to make sure each function you are using is
32606 from @file{calc.el} or its components, and call @samp{(calc-extensions)}
32607 before using any function based in @file{calc-ext.el} if you can't
32608 prove this file will already be loaded.
32610 @menu
32611 * Data Type Formats::
32612 * Interactive Lisp Functions::
32613 * Stack Lisp Functions::
32614 * Predicates::
32615 * Computational Lisp Functions::
32616 * Vector Lisp Functions::
32617 * Symbolic Lisp Functions::
32618 * Formatting Lisp Functions::
32619 * Hooks::
32620 @end menu
32622 @node Data Type Formats, Interactive Lisp Functions, Internals, Internals
32623 @subsubsection Data Type Formats
32625 @noindent
32626 Integers are stored in either of two ways, depending on their magnitude.
32627 Integers less than one million in absolute value are stored as standard
32628 Lisp integers.  This is the only storage format for Calc data objects
32629 which is not a Lisp list.
32631 Large integers are stored as lists of the form @samp{(bigpos @var{d0}
32632 @var{d1} @var{d2} @dots{})} for positive integers 1000000 or more, or
32633 @samp{(bigneg @var{d0} @var{d1} @var{d2} @dots{})} for negative integers
32634 @mathit{-1000000} or less.  Each @var{d} is a base-1000 ``digit,'' a Lisp integer
32635 from 0 to 999.  The least significant digit is @var{d0}; the last digit,
32636 @var{dn}, which is always nonzero, is the most significant digit.  For
32637 example, the integer @mathit{-12345678} is stored as @samp{(bigneg 678 345 12)}.
32639 The distinction between small and large integers is entirely hidden from
32640 the user.  In @code{defmath} definitions, the Lisp predicate @code{integerp}
32641 returns true for either kind of integer, and in general both big and small
32642 integers are accepted anywhere the word ``integer'' is used in this manual.
32643 If the distinction must be made, native Lisp integers are called @dfn{fixnums}
32644 and large integers are called @dfn{bignums}.
32646 Fractions are stored as a list of the form, @samp{(frac @var{n} @var{d})}
32647 where @var{n} is an integer (big or small) numerator, @var{d} is an
32648 integer denominator greater than one, and @var{n} and @var{d} are relatively
32649 prime.  Note that fractions where @var{d} is one are automatically converted
32650 to plain integers by all math routines; fractions where @var{d} is negative
32651 are normalized by negating the numerator and denominator.
32653 Floating-point numbers are stored in the form, @samp{(float @var{mant}
32654 @var{exp})}, where @var{mant} (the ``mantissa'') is an integer less than
32655 @samp{10^@var{p}} in absolute value (@var{p} represents the current
32656 precision), and @var{exp} (the ``exponent'') is a fixnum.  The value of
32657 the float is @samp{@var{mant} * 10^@var{exp}}.  For example, the number
32658 @mathit{-3.14} is stored as @samp{(float -314 -2) = -314*10^-2}.  Other constraints
32659 are that the number 0.0 is always stored as @samp{(float 0 0)}, and,
32660 except for the 0.0 case, the rightmost base-10 digit of @var{mant} is
32661 always nonzero.  (If the rightmost digit is zero, the number is
32662 rearranged by dividing @var{mant} by ten and incrementing @var{exp}.)
32664 Rectangular complex numbers are stored in the form @samp{(cplx @var{re}
32665 @var{im})}, where @var{re} and @var{im} are each real numbers, either
32666 integers, fractions, or floats.  The value is @samp{@var{re} + @var{im}i}.
32667 The @var{im} part is nonzero; complex numbers with zero imaginary
32668 components are converted to real numbers automatically.
32670 Polar complex numbers are stored in the form @samp{(polar @var{r}
32671 @var{theta})}, where @var{r} is a positive real value and @var{theta}
32672 is a real value or HMS form representing an angle.  This angle is
32673 usually normalized to lie in the interval @samp{(-180 ..@: 180)} degrees,
32674 or @samp{(-pi ..@: pi)} radians, according to the current angular mode.
32675 If the angle is 0 the value is converted to a real number automatically.
32676 (If the angle is 180 degrees, the value is usually also converted to a
32677 negative real number.)
32679 Hours-minutes-seconds forms are stored as @samp{(hms @var{h} @var{m}
32680 @var{s})}, where @var{h} is an integer or an integer-valued float (i.e.,
32681 a float with @samp{@var{exp} >= 0}), @var{m} is an integer or integer-valued
32682 float in the range @w{@samp{[0 ..@: 60)}}, and @var{s} is any real number
32683 in the range @samp{[0 ..@: 60)}.
32685 Date forms are stored as @samp{(date @var{n})}, where @var{n} is
32686 a real number that counts days since midnight on the morning of
32687 January 1, 1 AD.  If @var{n} is an integer, this is a pure date
32688 form.  If @var{n} is a fraction or float, this is a date/time form.
32690 Modulo forms are stored as @samp{(mod @var{n} @var{m})}, where @var{m} is a
32691 positive real number or HMS form, and @var{n} is a real number or HMS
32692 form in the range @samp{[0 ..@: @var{m})}.
32694 Error forms are stored as @samp{(sdev @var{x} @var{sigma})}, where @var{x}
32695 is the mean value and @var{sigma} is the standard deviation.  Each
32696 component is either a number, an HMS form, or a symbolic object
32697 (a variable or function call).  If @var{sigma} is zero, the value is
32698 converted to a plain real number.  If @var{sigma} is negative or
32699 complex, it is automatically normalized to be a positive real.
32701 Interval forms are stored as @samp{(intv @var{mask} @var{lo} @var{hi})},
32702 where @var{mask} is one of the integers 0, 1, 2, or 3, and @var{lo} and
32703 @var{hi} are real numbers, HMS forms, or symbolic objects.  The @var{mask}
32704 is a binary integer where 1 represents the fact that the interval is
32705 closed on the high end, and 2 represents the fact that it is closed on
32706 the low end.  (Thus 3 represents a fully closed interval.)  The interval
32707 @w{@samp{(intv 3 @var{x} @var{x})}} is converted to the plain number @var{x};
32708 intervals @samp{(intv @var{mask} @var{x} @var{x})} for any other @var{mask}
32709 represent empty intervals.  If @var{hi} is less than @var{lo}, the interval
32710 is converted to a standard empty interval by replacing @var{hi} with @var{lo}.
32712 Vectors are stored as @samp{(vec @var{v1} @var{v2} @dots{})}, where @var{v1}
32713 is the first element of the vector, @var{v2} is the second, and so on.
32714 An empty vector is stored as @samp{(vec)}.  A matrix is simply a vector
32715 where all @var{v}'s are themselves vectors of equal lengths.  Note that
32716 Calc vectors are unrelated to the Emacs Lisp ``vector'' type, which is
32717 generally unused by Calc data structures.
32719 Variables are stored as @samp{(var @var{name} @var{sym})}, where
32720 @var{name} is a Lisp symbol whose print name is used as the visible name
32721 of the variable, and @var{sym} is a Lisp symbol in which the variable's
32722 value is actually stored.  Thus, @samp{(var pi var-pi)} represents the
32723 special constant @samp{pi}.  Almost always, the form is @samp{(var
32724 @var{v} var-@var{v})}.  If the variable name was entered with @code{#}
32725 signs (which are converted to hyphens internally), the form is
32726 @samp{(var @var{u} @var{v})}, where @var{u} is a symbol whose name
32727 contains @code{#} characters, and @var{v} is a symbol that contains
32728 @code{-} characters instead.  The value of a variable is the Calc
32729 object stored in its @var{sym} symbol's value cell.  If the symbol's
32730 value cell is void or if it contains @code{nil}, the variable has no
32731 value.  Special constants have the form @samp{(special-const
32732 @var{value})} stored in their value cell, where @var{value} is a formula
32733 which is evaluated when the constant's value is requested.  Variables
32734 which represent units are not stored in any special way; they are units
32735 only because their names appear in the units table.  If the value
32736 cell contains a string, it is parsed to get the variable's value when
32737 the variable is used.
32739 A Lisp list with any other symbol as the first element is a function call.
32740 The symbols @code{+}, @code{-}, @code{*}, @code{/}, @code{%}, @code{^},
32741 and @code{|} represent special binary operators; these lists are always
32742 of the form @samp{(@var{op} @var{lhs} @var{rhs})} where @var{lhs} is the
32743 sub-formula on the lefthand side and @var{rhs} is the sub-formula on the
32744 right.  The symbol @code{neg} represents unary negation; this list is always
32745 of the form @samp{(neg @var{arg})}.  Any other symbol @var{func} represents a
32746 function that would be displayed in function-call notation; the symbol
32747 @var{func} is in general always of the form @samp{calcFunc-@var{name}}.
32748 The function cell of the symbol @var{func} should contain a Lisp function
32749 for evaluating a call to @var{func}.  This function is passed the remaining
32750 elements of the list (themselves already evaluated) as arguments; such
32751 functions should return @code{nil} or call @code{reject-arg} to signify
32752 that they should be left in symbolic form, or they should return a Calc
32753 object which represents their value, or a list of such objects if they
32754 wish to return multiple values.  (The latter case is allowed only for
32755 functions which are the outer-level call in an expression whose value is
32756 about to be pushed on the stack; this feature is considered obsolete
32757 and is not used by any built-in Calc functions.)
32759 @node Interactive Lisp Functions, Stack Lisp Functions, Data Type Formats, Internals
32760 @subsubsection Interactive Functions
32762 @noindent
32763 The functions described here are used in implementing interactive Calc
32764 commands.  Note that this list is not exhaustive!  If there is an
32765 existing command that behaves similarly to the one you want to define,
32766 you may find helpful tricks by checking the source code for that command.
32768 @defun calc-set-command-flag flag
32769 Set the command flag @var{flag}.  This is generally a Lisp symbol, but
32770 may in fact be anything.  The effect is to add @var{flag} to the list
32771 stored in the variable @code{calc-command-flags}, unless it is already
32772 there.  @xref{Defining Simple Commands}.
32773 @end defun
32775 @defun calc-clear-command-flag flag
32776 If @var{flag} appears among the list of currently-set command flags,
32777 remove it from that list.
32778 @end defun
32780 @defun calc-record-undo rec
32781 Add the ``undo record'' @var{rec} to the list of steps to take if the
32782 current operation should need to be undone.  Stack push and pop functions
32783 automatically call @code{calc-record-undo}, so the kinds of undo records
32784 you might need to create take the form @samp{(set @var{sym} @var{value})},
32785 which says that the Lisp variable @var{sym} was changed and had previously
32786 contained @var{value}; @samp{(store @var{var} @var{value})} which says that
32787 the Calc variable @var{var} (a string which is the name of the symbol that
32788 contains the variable's value) was stored and its previous value was
32789 @var{value} (either a Calc data object, or @code{nil} if the variable was
32790 previously void); or @samp{(eval @var{undo} @var{redo} @var{args} @dots{})},
32791 which means that to undo requires calling the function @samp{(@var{undo}
32792 @var{args} @dots{})} and, if the undo is later redone, calling
32793 @samp{(@var{redo} @var{args} @dots{})}.
32794 @end defun
32796 @defun calc-record-why msg args
32797 Record the error or warning message @var{msg}, which is normally a string.
32798 This message will be replayed if the user types @kbd{w} (@code{calc-why});
32799 if the message string begins with a @samp{*}, it is considered important
32800 enough to display even if the user doesn't type @kbd{w}.  If one or more
32801 @var{args} are present, the displayed message will be of the form,
32802 @samp{@var{msg}: @var{arg1}, @var{arg2}, @dots{}}, where the arguments are
32803 formatted on the assumption that they are either strings or Calc objects of
32804 some sort.  If @var{msg} is a symbol, it is the name of a Calc predicate
32805 (such as @code{integerp} or @code{numvecp}) which the arguments did not
32806 satisfy; it is expanded to a suitable string such as ``Expected an
32807 integer.''  The @code{reject-arg} function calls @code{calc-record-why}
32808 automatically; @pxref{Predicates}.
32809 @end defun
32811 @defun calc-is-inverse
32812 This predicate returns true if the current command is inverse,
32813 i.e., if the Inverse (@kbd{I} key) flag was set.
32814 @end defun
32816 @defun calc-is-hyperbolic
32817 This predicate is the analogous function for the @kbd{H} key.
32818 @end defun
32820 @node Stack Lisp Functions, Predicates, Interactive Lisp Functions, Internals
32821 @subsubsection Stack-Oriented Functions
32823 @noindent
32824 The functions described here perform various operations on the Calc
32825 stack and trail.  They are to be used in interactive Calc commands.
32827 @defun calc-push-list vals n
32828 Push the Calc objects in list @var{vals} onto the stack at stack level
32829 @var{n}.  If @var{n} is omitted it defaults to 1, so that the elements
32830 are pushed at the top of the stack.  If @var{n} is greater than 1, the
32831 elements will be inserted into the stack so that the last element will
32832 end up at level @var{n}, the next-to-last at level @var{n}+1, etc.
32833 The elements of @var{vals} are assumed to be valid Calc objects, and
32834 are not evaluated, rounded, or renormalized in any way.  If @var{vals}
32835 is an empty list, nothing happens.
32837 The stack elements are pushed without any sub-formula selections.
32838 You can give an optional third argument to this function, which must
32839 be a list the same size as @var{vals} of selections.  Each selection
32840 must be @code{eq} to some sub-formula of the corresponding formula
32841 in @var{vals}, or @code{nil} if that formula should have no selection.
32842 @end defun
32844 @defun calc-top-list n m
32845 Return a list of the @var{n} objects starting at level @var{m} of the
32846 stack.  If @var{m} is omitted it defaults to 1, so that the elements are
32847 taken from the top of the stack.  If @var{n} is omitted, it also
32848 defaults to 1, so that the top stack element (in the form of a
32849 one-element list) is returned.  If @var{m} is greater than 1, the
32850 @var{m}th stack element will be at the end of the list, the @var{m}+1st
32851 element will be next-to-last, etc.  If @var{n} or @var{m} are out of
32852 range, the command is aborted with a suitable error message.  If @var{n}
32853 is zero, the function returns an empty list.  The stack elements are not
32854 evaluated, rounded, or renormalized.
32856 If any stack elements contain selections, and selections have not
32857 been disabled by the @kbd{j e} (@code{calc-enable-selections}) command,
32858 this function returns the selected portions rather than the entire
32859 stack elements.  It can be given a third ``selection-mode'' argument
32860 which selects other behaviors.  If it is the symbol @code{t}, then
32861 a selection in any of the requested stack elements produces an
32862 ``invalid operation on selections'' error.  If it is the symbol @code{full},
32863 the whole stack entry is always returned regardless of selections.
32864 If it is the symbol @code{sel}, the selected portion is always returned,
32865 or @code{nil} if there is no selection.  (This mode ignores the @kbd{j e}
32866 command.)  If the symbol is @code{entry}, the complete stack entry in
32867 list form is returned; the first element of this list will be the whole
32868 formula, and the third element will be the selection (or @code{nil}).
32869 @end defun
32871 @defun calc-pop-stack n m
32872 Remove the specified elements from the stack.  The parameters @var{n}
32873 and @var{m} are defined the same as for @code{calc-top-list}.  The return
32874 value of @code{calc-pop-stack} is uninteresting.
32876 If there are any selected sub-formulas among the popped elements, and
32877 @kbd{j e} has not been used to disable selections, this produces an
32878 error without changing the stack.  If you supply an optional third
32879 argument of @code{t}, the stack elements are popped even if they
32880 contain selections.
32881 @end defun
32883 @defun calc-record-list vals tag
32884 This function records one or more results in the trail.  The @var{vals}
32885 are a list of strings or Calc objects.  The @var{tag} is the four-character
32886 tag string to identify the values.  If @var{tag} is omitted, a blank tag
32887 will be used.
32888 @end defun
32890 @defun calc-normalize n
32891 This function takes a Calc object and ``normalizes'' it.  At the very
32892 least this involves re-rounding floating-point values according to the
32893 current precision and other similar jobs.  Also, unless the user has
32894 selected No-Simplify mode (@pxref{Simplification Modes}), this involves
32895 actually evaluating a formula object by executing the function calls
32896 it contains, and possibly also doing algebraic simplification, etc.
32897 @end defun
32899 @defun calc-top-list-n n m
32900 This function is identical to @code{calc-top-list}, except that it calls
32901 @code{calc-normalize} on the values that it takes from the stack.  They
32902 are also passed through @code{check-complete}, so that incomplete
32903 objects will be rejected with an error message.  All computational
32904 commands should use this in preference to @code{calc-top-list}; the only
32905 standard Calc commands that operate on the stack without normalizing
32906 are stack management commands like @code{calc-enter} and @code{calc-roll-up}.
32907 This function accepts the same optional selection-mode argument as
32908 @code{calc-top-list}.
32909 @end defun
32911 @defun calc-top-n m
32912 This function is a convenient form of @code{calc-top-list-n} in which only
32913 a single element of the stack is taken and returned, rather than a list
32914 of elements.  This also accepts an optional selection-mode argument.
32915 @end defun
32917 @defun calc-enter-result n tag vals
32918 This function is a convenient interface to most of the above functions.
32919 The @var{vals} argument should be either a single Calc object, or a list
32920 of Calc objects; the object or objects are normalized, and the top @var{n}
32921 stack entries are replaced by the normalized objects.  If @var{tag} is
32922 non-@code{nil}, the normalized objects are also recorded in the trail.
32923 A typical stack-based computational command would take the form,
32925 @smallexample
32926 (calc-enter-result @var{n} @var{tag} (cons 'calcFunc-@var{func}
32927                                (calc-top-list-n @var{n})))
32928 @end smallexample
32930 If any of the @var{n} stack elements replaced contain sub-formula
32931 selections, and selections have not been disabled by @kbd{j e},
32932 this function takes one of two courses of action.  If @var{n} is
32933 equal to the number of elements in @var{vals}, then each element of
32934 @var{vals} is spliced into the corresponding selection; this is what
32935 happens when you use the @key{TAB} key, or when you use a unary
32936 arithmetic operation like @code{sqrt}.  If @var{vals} has only one
32937 element but @var{n} is greater than one, there must be only one
32938 selection among the top @var{n} stack elements; the element from
32939 @var{vals} is spliced into that selection.  This is what happens when
32940 you use a binary arithmetic operation like @kbd{+}.  Any other
32941 combination of @var{n} and @var{vals} is an error when selections
32942 are present.
32943 @end defun
32945 @defun calc-unary-op tag func arg
32946 This function implements a unary operator that allows a numeric prefix
32947 argument to apply the operator over many stack entries.  If the prefix
32948 argument @var{arg} is @code{nil}, this uses @code{calc-enter-result}
32949 as outlined above.  Otherwise, it maps the function over several stack
32950 elements; @pxref{Prefix Arguments}.  For example,
32952 @smallexample
32953 (defun calc-zeta (arg)
32954   (interactive "P")
32955   (calc-unary-op "zeta" 'calcFunc-zeta arg))
32956 @end smallexample
32957 @end defun
32959 @defun calc-binary-op tag func arg ident unary
32960 This function implements a binary operator, analogously to
32961 @code{calc-unary-op}.  The optional @var{ident} and @var{unary}
32962 arguments specify the behavior when the prefix argument is zero or
32963 one, respectively.  If the prefix is zero, the value @var{ident}
32964 is pushed onto the stack, if specified, otherwise an error message
32965 is displayed.  If the prefix is one, the unary function @var{unary}
32966 is applied to the top stack element, or, if @var{unary} is not
32967 specified, nothing happens.  When the argument is two or more,
32968 the binary function @var{func} is reduced across the top @var{arg}
32969 stack elements; when the argument is negative, the function is
32970 mapped between the next-to-top @mathit{-@var{arg}} stack elements and the
32971 top element.
32972 @end defun
32974 @defun calc-stack-size
32975 Return the number of elements on the stack as an integer.  This count
32976 does not include elements that have been temporarily hidden by stack
32977 truncation; @pxref{Truncating the Stack}.
32978 @end defun
32980 @defun calc-cursor-stack-index n
32981 Move the point to the @var{n}th stack entry.  If @var{n} is zero, this
32982 will be the @samp{.} line.  If @var{n} is from 1 to the current stack size,
32983 this will be the beginning of the first line of that stack entry's display.
32984 If line numbers are enabled, this will move to the first character of the
32985 line number, not the stack entry itself.
32986 @end defun
32988 @defun calc-substack-height n
32989 Return the number of lines between the beginning of the @var{n}th stack
32990 entry and the bottom of the buffer.  If @var{n} is zero, this
32991 will be one (assuming no stack truncation).  If all stack entries are
32992 one line long (i.e., no matrices are displayed), the return value will
32993 be equal @var{n}+1 as long as @var{n} is in range.  (Note that in Big
32994 mode, the return value includes the blank lines that separate stack
32995 entries.)
32996 @end defun
32998 @defun calc-refresh
32999 Erase the @code{*Calculator*} buffer and reformat its contents from memory.
33000 This must be called after changing any parameter, such as the current
33001 display radix, which might change the appearance of existing stack
33002 entries.  (During a keyboard macro invoked by the @kbd{X} key, refreshing
33003 is suppressed, but a flag is set so that the entire stack will be refreshed
33004 rather than just the top few elements when the macro finishes.)
33005 @end defun
33007 @node Predicates, Computational Lisp Functions, Stack Lisp Functions, Internals
33008 @subsubsection Predicates
33010 @noindent
33011 The functions described here are predicates, that is, they return a
33012 true/false value where @code{nil} means false and anything else means
33013 true.  These predicates are expanded by @code{defmath}, for example,
33014 from @code{zerop} to @code{math-zerop}.  In many cases they correspond
33015 to native Lisp functions by the same name, but are extended to cover
33016 the full range of Calc data types.
33018 @defun zerop x
33019 Returns true if @var{x} is numerically zero, in any of the Calc data
33020 types.  (Note that for some types, such as error forms and intervals,
33021 it never makes sense to return true.)  In @code{defmath}, the expression
33022 @samp{(= x 0)} will automatically be converted to @samp{(math-zerop x)},
33023 and @samp{(/= x 0)} will be converted to @samp{(not (math-zerop x))}.
33024 @end defun
33026 @defun negp x
33027 Returns true if @var{x} is negative.  This accepts negative real numbers
33028 of various types, negative HMS and date forms, and intervals in which
33029 all included values are negative.  In @code{defmath}, the expression
33030 @samp{(< x 0)} will automatically be converted to @samp{(math-negp x)},
33031 and @samp{(>= x 0)} will be converted to @samp{(not (math-negp x))}.
33032 @end defun
33034 @defun posp x
33035 Returns true if @var{x} is positive (and non-zero).  For complex
33036 numbers, none of these three predicates will return true.
33037 @end defun
33039 @defun looks-negp x
33040 Returns true if @var{x} is ``negative-looking.''  This returns true if
33041 @var{x} is a negative number, or a formula with a leading minus sign
33042 such as @samp{-a/b}.  In other words, this is an object which can be
33043 made simpler by calling @code{(- @var{x})}.
33044 @end defun
33046 @defun integerp x
33047 Returns true if @var{x} is an integer of any size.
33048 @end defun
33050 @defun fixnump x
33051 Returns true if @var{x} is a native Lisp integer.
33052 @end defun
33054 @defun natnump x
33055 Returns true if @var{x} is a nonnegative integer of any size.
33056 @end defun
33058 @defun fixnatnump x
33059 Returns true if @var{x} is a nonnegative Lisp integer.
33060 @end defun
33062 @defun num-integerp x
33063 Returns true if @var{x} is numerically an integer, i.e., either a
33064 true integer or a float with no significant digits to the right of
33065 the decimal point.
33066 @end defun
33068 @defun messy-integerp x
33069 Returns true if @var{x} is numerically, but not literally, an integer.
33070 A value is @code{num-integerp} if it is @code{integerp} or
33071 @code{messy-integerp} (but it is never both at once).
33072 @end defun
33074 @defun num-natnump x
33075 Returns true if @var{x} is numerically a nonnegative integer.
33076 @end defun
33078 @defun evenp x
33079 Returns true if @var{x} is an even integer.
33080 @end defun
33082 @defun looks-evenp x
33083 Returns true if @var{x} is an even integer, or a formula with a leading
33084 multiplicative coefficient which is an even integer.
33085 @end defun
33087 @defun oddp x
33088 Returns true if @var{x} is an odd integer.
33089 @end defun
33091 @defun ratp x
33092 Returns true if @var{x} is a rational number, i.e., an integer or a
33093 fraction.
33094 @end defun
33096 @defun realp x
33097 Returns true if @var{x} is a real number, i.e., an integer, fraction,
33098 or floating-point number.
33099 @end defun
33101 @defun anglep x
33102 Returns true if @var{x} is a real number or HMS form.
33103 @end defun
33105 @defun floatp x
33106 Returns true if @var{x} is a float, or a complex number, error form,
33107 interval, date form, or modulo form in which at least one component
33108 is a float.
33109 @end defun
33111 @defun complexp x
33112 Returns true if @var{x} is a rectangular or polar complex number
33113 (but not a real number).
33114 @end defun
33116 @defun rect-complexp x
33117 Returns true if @var{x} is a rectangular complex number.
33118 @end defun
33120 @defun polar-complexp x
33121 Returns true if @var{x} is a polar complex number.
33122 @end defun
33124 @defun numberp x
33125 Returns true if @var{x} is a real number or a complex number.
33126 @end defun
33128 @defun scalarp x
33129 Returns true if @var{x} is a real or complex number or an HMS form.
33130 @end defun
33132 @defun vectorp x
33133 Returns true if @var{x} is a vector (this simply checks if its argument
33134 is a list whose first element is the symbol @code{vec}).
33135 @end defun
33137 @defun numvecp x
33138 Returns true if @var{x} is a number or vector.
33139 @end defun
33141 @defun matrixp x
33142 Returns true if @var{x} is a matrix, i.e., a vector of one or more vectors,
33143 all of the same size.
33144 @end defun
33146 @defun square-matrixp x
33147 Returns true if @var{x} is a square matrix.
33148 @end defun
33150 @defun objectp x
33151 Returns true if @var{x} is any numeric Calc object, including real and
33152 complex numbers, HMS forms, date forms, error forms, intervals, and
33153 modulo forms.  (Note that error forms and intervals may include formulas
33154 as their components; see @code{constp} below.)
33155 @end defun
33157 @defun objvecp x
33158 Returns true if @var{x} is an object or a vector.  This also accepts
33159 incomplete objects, but it rejects variables and formulas (except as
33160 mentioned above for @code{objectp}).
33161 @end defun
33163 @defun primp x
33164 Returns true if @var{x} is a ``primitive'' or ``atomic'' Calc object,
33165 i.e., one whose components cannot be regarded as sub-formulas.  This
33166 includes variables, and all @code{objectp} types except error forms
33167 and intervals.
33168 @end defun
33170 @defun constp x
33171 Returns true if @var{x} is constant, i.e., a real or complex number,
33172 HMS form, date form, or error form, interval, or vector all of whose
33173 components are @code{constp}.
33174 @end defun
33176 @defun lessp x y
33177 Returns true if @var{x} is numerically less than @var{y}.  Returns false
33178 if @var{x} is greater than or equal to @var{y}, or if the order is
33179 undefined or cannot be determined.  Generally speaking, this works
33180 by checking whether @samp{@var{x} - @var{y}} is @code{negp}.  In
33181 @code{defmath}, the expression @samp{(< x y)} will automatically be
33182 converted to @samp{(lessp x y)}; expressions involving @code{>}, @code{<=},
33183 and @code{>=} are similarly converted in terms of @code{lessp}.
33184 @end defun
33186 @defun beforep x y
33187 Returns true if @var{x} comes before @var{y} in a canonical ordering
33188 of Calc objects.  If @var{x} and @var{y} are both real numbers, this
33189 will be the same as @code{lessp}.  But whereas @code{lessp} considers
33190 other types of objects to be unordered, @code{beforep} puts any two
33191 objects into a definite, consistent order.  The @code{beforep}
33192 function is used by the @kbd{V S} vector-sorting command, and also
33193 by @kbd{a s} to put the terms of a product into canonical order:
33194 This allows @samp{x y + y x} to be simplified easily to @samp{2 x y}.
33195 @end defun
33197 @defun equal x y
33198 This is the standard Lisp @code{equal} predicate; it returns true if
33199 @var{x} and @var{y} are structurally identical.  This is the usual way
33200 to compare numbers for equality, but note that @code{equal} will treat
33201 0 and 0.0 as different.
33202 @end defun
33204 @defun math-equal x y
33205 Returns true if @var{x} and @var{y} are numerically equal, either because
33206 they are @code{equal}, or because their difference is @code{zerop}.  In
33207 @code{defmath}, the expression @samp{(= x y)} will automatically be
33208 converted to @samp{(math-equal x y)}.
33209 @end defun
33211 @defun equal-int x n
33212 Returns true if @var{x} and @var{n} are numerically equal, where @var{n}
33213 is a fixnum which is not a multiple of 10.  This will automatically be
33214 used by @code{defmath} in place of the more general @code{math-equal}
33215 whenever possible.
33216 @end defun
33218 @defun nearly-equal x y
33219 Returns true if @var{x} and @var{y}, as floating-point numbers, are
33220 equal except possibly in the last decimal place.  For example,
33221 314.159 and 314.166 are considered nearly equal if the current
33222 precision is 6 (since they differ by 7 units), but not if the current
33223 precision is 7 (since they differ by 70 units).  Most functions which
33224 use series expansions use @code{with-extra-prec} to evaluate the
33225 series with 2 extra digits of precision, then use @code{nearly-equal}
33226 to decide when the series has converged; this guards against cumulative
33227 error in the series evaluation without doing extra work which would be
33228 lost when the result is rounded back down to the current precision.
33229 In @code{defmath}, this can be written @samp{(~= @var{x} @var{y})}.
33230 The @var{x} and @var{y} can be numbers of any kind, including complex.
33231 @end defun
33233 @defun nearly-zerop x y
33234 Returns true if @var{x} is nearly zero, compared to @var{y}.  This
33235 checks whether @var{x} plus @var{y} would by be @code{nearly-equal}
33236 to @var{y} itself, to within the current precision, in other words,
33237 if adding @var{x} to @var{y} would have a negligible effect on @var{y}
33238 due to roundoff error.  @var{X} may be a real or complex number, but
33239 @var{y} must be real.
33240 @end defun
33242 @defun is-true x
33243 Return true if the formula @var{x} represents a true value in
33244 Calc, not Lisp, terms.  It tests if @var{x} is a non-zero number
33245 or a provably non-zero formula.
33246 @end defun
33248 @defun reject-arg val pred
33249 Abort the current function evaluation due to unacceptable argument values.
33250 This calls @samp{(calc-record-why @var{pred} @var{val})}, then signals a
33251 Lisp error which @code{normalize} will trap.  The net effect is that the
33252 function call which led here will be left in symbolic form.
33253 @end defun
33255 @defun inexact-value
33256 If Symbolic mode is enabled, this will signal an error that causes
33257 @code{normalize} to leave the formula in symbolic form, with the message
33258 ``Inexact result.''  (This function has no effect when not in Symbolic mode.)
33259 Note that if your function calls @samp{(sin 5)} in Symbolic mode, the
33260 @code{sin} function will call @code{inexact-value}, which will cause your
33261 function to be left unsimplified.  You may instead wish to call
33262 @samp{(normalize (list 'calcFunc-sin 5))}, which in Symbolic mode will
33263 return the formula @samp{sin(5)} to your function.
33264 @end defun
33266 @defun overflow
33267 This signals an error that will be reported as a floating-point overflow.
33268 @end defun
33270 @defun underflow
33271 This signals a floating-point underflow.
33272 @end defun
33274 @node Computational Lisp Functions, Vector Lisp Functions, Predicates, Internals
33275 @subsubsection Computational Functions
33277 @noindent
33278 The functions described here do the actual computational work of the
33279 Calculator.  In addition to these, note that any function described in
33280 the main body of this manual may be called from Lisp; for example, if
33281 the documentation refers to the @code{calc-sqrt} [@code{sqrt}] command,
33282 this means @code{calc-sqrt} is an interactive stack-based square-root
33283 command and @code{sqrt} (which @code{defmath} expands to @code{calcFunc-sqrt})
33284 is the actual Lisp function for taking square roots.
33286 The functions @code{math-add}, @code{math-sub}, @code{math-mul},
33287 @code{math-div}, @code{math-mod}, and @code{math-neg} are not included
33288 in this list, since @code{defmath} allows you to write native Lisp
33289 @code{+}, @code{-}, @code{*}, @code{/}, @code{%}, and unary @code{-},
33290 respectively, instead.
33292 @defun normalize val
33293 (Full form: @code{math-normalize}.)
33294 Reduce the value @var{val} to standard form.  For example, if @var{val}
33295 is a fixnum, it will be converted to a bignum if it is too large, and
33296 if @var{val} is a bignum it will be normalized by clipping off trailing
33297 (i.e., most-significant) zero digits and converting to a fixnum if it is
33298 small.  All the various data types are similarly converted to their standard
33299 forms.  Variables are left alone, but function calls are actually evaluated
33300 in formulas.  For example, normalizing @samp{(+ 2 (calcFunc-abs -4))} will
33301 return 6.
33303 If a function call fails, because the function is void or has the wrong
33304 number of parameters, or because it returns @code{nil} or calls
33305 @code{reject-arg} or @code{inexact-result}, @code{normalize} returns
33306 the formula still in symbolic form.
33308 If the current simplification mode is ``none'' or ``numeric arguments
33309 only,'' @code{normalize} will act appropriately.  However, the more
33310 powerful simplification modes (like Algebraic Simplification) are
33311 not handled by @code{normalize}.  They are handled by @code{calc-normalize},
33312 which calls @code{normalize} and possibly some other routines, such
33313 as @code{simplify} or @code{simplify-units}.  Programs generally will
33314 never call @code{calc-normalize} except when popping or pushing values
33315 on the stack.
33316 @end defun
33318 @defun evaluate-expr expr
33319 Replace all variables in @var{expr} that have values with their values,
33320 then use @code{normalize} to simplify the result.  This is what happens
33321 when you press the @kbd{=} key interactively.
33322 @end defun
33324 @defmac with-extra-prec n body
33325 Evaluate the Lisp forms in @var{body} with precision increased by @var{n}
33326 digits.  This is a macro which expands to
33328 @smallexample
33329 (math-normalize
33330   (let ((calc-internal-prec (+ calc-internal-prec @var{n})))
33331     @var{body}))
33332 @end smallexample
33334 The surrounding call to @code{math-normalize} causes a floating-point
33335 result to be rounded down to the original precision afterwards.  This
33336 is important because some arithmetic operations assume a number's
33337 mantissa contains no more digits than the current precision allows.
33338 @end defmac
33340 @defun make-frac n d
33341 Build a fraction @samp{@var{n}:@var{d}}.  This is equivalent to calling
33342 @samp{(normalize (list 'frac @var{n} @var{d}))}, but more efficient.
33343 @end defun
33345 @defun make-float mant exp
33346 Build a floating-point value out of @var{mant} and @var{exp}, both
33347 of which are arbitrary integers.  This function will return a
33348 properly normalized float value, or signal an overflow or underflow
33349 if @var{exp} is out of range.
33350 @end defun
33352 @defun make-sdev x sigma
33353 Build an error form out of @var{x} and the absolute value of @var{sigma}.
33354 If @var{sigma} is zero, the result is the number @var{x} directly.
33355 If @var{sigma} is negative or complex, its absolute value is used.
33356 If @var{x} or @var{sigma} is not a valid type of object for use in
33357 error forms, this calls @code{reject-arg}.
33358 @end defun
33360 @defun make-intv mask lo hi
33361 Build an interval form out of @var{mask} (which is assumed to be an
33362 integer from 0 to 3), and the limits @var{lo} and @var{hi}.  If
33363 @var{lo} is greater than @var{hi}, an empty interval form is returned.
33364 This calls @code{reject-arg} if @var{lo} or @var{hi} is unsuitable.
33365 @end defun
33367 @defun sort-intv mask lo hi
33368 Build an interval form, similar to @code{make-intv}, except that if
33369 @var{lo} is less than @var{hi} they are simply exchanged, and the
33370 bits of @var{mask} are swapped accordingly.
33371 @end defun
33373 @defun make-mod n m
33374 Build a modulo form out of @var{n} and the modulus @var{m}.  Since modulo
33375 forms do not allow formulas as their components, if @var{n} or @var{m}
33376 is not a real number or HMS form the result will be a formula which
33377 is a call to @code{makemod}, the algebraic version of this function.
33378 @end defun
33380 @defun float x
33381 Convert @var{x} to floating-point form.  Integers and fractions are
33382 converted to numerically equivalent floats; components of complex
33383 numbers, vectors, HMS forms, date forms, error forms, intervals, and
33384 modulo forms are recursively floated.  If the argument is a variable
33385 or formula, this calls @code{reject-arg}.
33386 @end defun
33388 @defun compare x y
33389 Compare the numbers @var{x} and @var{y}, and return @mathit{-1} if
33390 @samp{(lessp @var{x} @var{y})}, 1 if @samp{(lessp @var{y} @var{x})},
33391 0 if @samp{(math-equal @var{x} @var{y})}, or 2 if the order is
33392 undefined or cannot be determined.
33393 @end defun
33395 @defun numdigs n
33396 Return the number of digits of integer @var{n}, effectively
33397 @samp{ceil(log10(@var{n}))}, but much more efficient.  Zero is
33398 considered to have zero digits.
33399 @end defun
33401 @defun scale-int x n
33402 Shift integer @var{x} left @var{n} decimal digits, or right @mathit{-@var{n}}
33403 digits with truncation toward zero.
33404 @end defun
33406 @defun scale-rounding x n
33407 Like @code{scale-int}, except that a right shift rounds to the nearest
33408 integer rather than truncating.
33409 @end defun
33411 @defun fixnum n
33412 Return the integer @var{n} as a fixnum, i.e., a native Lisp integer.
33413 If @var{n} is outside the permissible range for Lisp integers (usually
33414 24 binary bits) the result is undefined.
33415 @end defun
33417 @defun sqr x
33418 Compute the square of @var{x}; short for @samp{(* @var{x} @var{x})}.
33419 @end defun
33421 @defun quotient x y
33422 Divide integer @var{x} by integer @var{y}; return an integer quotient
33423 and discard the remainder.  If @var{x} or @var{y} is negative, the
33424 direction of rounding is undefined.
33425 @end defun
33427 @defun idiv x y
33428 Perform an integer division; if @var{x} and @var{y} are both nonnegative
33429 integers, this uses the @code{quotient} function, otherwise it computes
33430 @samp{floor(@var{x}/@var{y})}.  Thus the result is well-defined but
33431 slower than for @code{quotient}.
33432 @end defun
33434 @defun imod x y
33435 Divide integer @var{x} by integer @var{y}; return the integer remainder
33436 and discard the quotient.  Like @code{quotient}, this works only for
33437 integer arguments and is not well-defined for negative arguments.
33438 For a more well-defined result, use @samp{(% @var{x} @var{y})}.
33439 @end defun
33441 @defun idivmod x y
33442 Divide integer @var{x} by integer @var{y}; return a cons cell whose
33443 @code{car} is @samp{(quotient @var{x} @var{y})} and whose @code{cdr}
33444 is @samp{(imod @var{x} @var{y})}.
33445 @end defun
33447 @defun pow x y
33448 Compute @var{x} to the power @var{y}.  In @code{defmath} code, this can
33449 also be written @samp{(^ @var{x} @var{y})} or
33450 @w{@samp{(expt @var{x} @var{y})}}.
33451 @end defun
33453 @defun abs-approx x
33454 Compute a fast approximation to the absolute value of @var{x}.  For
33455 example, for a rectangular complex number the result is the sum of
33456 the absolute values of the components.
33457 @end defun
33459 @findex e
33460 @findex gamma-const
33461 @findex ln-2
33462 @findex ln-10
33463 @findex phi
33464 @findex pi-over-2
33465 @findex pi-over-4
33466 @findex pi-over-180
33467 @findex sqrt-two-pi
33468 @findex sqrt-e
33469 @findex two-pi
33470 @defun pi
33471 The function @samp{(pi)} computes @samp{pi} to the current precision.
33472 Other related constant-generating functions are @code{two-pi},
33473 @code{pi-over-2}, @code{pi-over-4}, @code{pi-over-180}, @code{sqrt-two-pi},
33474 @code{e}, @code{sqrt-e}, @code{ln-2}, @code{ln-10}, @code{phi} and
33475 @code{gamma-const}.  Each function returns a floating-point value in the
33476 current precision, and each uses caching so that all calls after the
33477 first are essentially free.
33478 @end defun
33480 @defmac math-defcache @var{func} @var{initial} @var{form}
33481 This macro, usually used as a top-level call like @code{defun} or
33482 @code{defvar}, defines a new cached constant analogous to @code{pi}, etc.
33483 It defines a function @code{func} which returns the requested value;
33484 if @var{initial} is non-@code{nil} it must be a @samp{(float @dots{})}
33485 form which serves as an initial value for the cache.  If @var{func}
33486 is called when the cache is empty or does not have enough digits to
33487 satisfy the current precision, the Lisp expression @var{form} is evaluated
33488 with the current precision increased by four, and the result minus its
33489 two least significant digits is stored in the cache.  For example,
33490 calling @samp{(pi)} with a precision of 30 computes @samp{pi} to 34
33491 digits, rounds it down to 32 digits for future use, then rounds it
33492 again to 30 digits for use in the present request.
33493 @end defmac
33495 @findex half-circle
33496 @findex quarter-circle
33497 @defun full-circle symb
33498 If the current angular mode is Degrees or HMS, this function returns the
33499 integer 360.  In Radians mode, this function returns either the
33500 corresponding value in radians to the current precision, or the formula
33501 @samp{2*pi}, depending on the Symbolic mode.  There are also similar
33502 function @code{half-circle} and @code{quarter-circle}.
33503 @end defun
33505 @defun power-of-2 n
33506 Compute two to the integer power @var{n}, as a (potentially very large)
33507 integer.  Powers of two are cached, so only the first call for a
33508 particular @var{n} is expensive.
33509 @end defun
33511 @defun integer-log2 n
33512 Compute the base-2 logarithm of @var{n}, which must be an integer which
33513 is a power of two.  If @var{n} is not a power of two, this function will
33514 return @code{nil}.
33515 @end defun
33517 @defun div-mod a b m
33518 Divide @var{a} by @var{b}, modulo @var{m}.  This returns @code{nil} if
33519 there is no solution, or if any of the arguments are not integers.
33520 @end defun
33522 @defun pow-mod a b m
33523 Compute @var{a} to the power @var{b}, modulo @var{m}.  If @var{a},
33524 @var{b}, and @var{m} are integers, this uses an especially efficient
33525 algorithm.  Otherwise, it simply computes @samp{(% (^ a b) m)}.
33526 @end defun
33528 @defun isqrt n
33529 Compute the integer square root of @var{n}.  This is the square root
33530 of @var{n} rounded down toward zero, i.e., @samp{floor(sqrt(@var{n}))}.
33531 If @var{n} is itself an integer, the computation is especially efficient.
33532 @end defun
33534 @defun to-hms a ang
33535 Convert the argument @var{a} into an HMS form.  If @var{ang} is specified,
33536 it is the angular mode in which to interpret @var{a}, either @code{deg}
33537 or @code{rad}.  Otherwise, the current angular mode is used.  If @var{a}
33538 is already an HMS form it is returned as-is.
33539 @end defun
33541 @defun from-hms a ang
33542 Convert the HMS form @var{a} into a real number.  If @var{ang} is specified,
33543 it is the angular mode in which to express the result, otherwise the
33544 current angular mode is used.  If @var{a} is already a real number, it
33545 is returned as-is.
33546 @end defun
33548 @defun to-radians a
33549 Convert the number or HMS form @var{a} to radians from the current
33550 angular mode.
33551 @end defun
33553 @defun from-radians a
33554 Convert the number @var{a} from radians to the current angular mode.
33555 If @var{a} is a formula, this returns the formula @samp{deg(@var{a})}.
33556 @end defun
33558 @defun to-radians-2 a
33559 Like @code{to-radians}, except that in Symbolic mode a degrees to
33560 radians conversion yields a formula like @samp{@var{a}*pi/180}.
33561 @end defun
33563 @defun from-radians-2 a
33564 Like @code{from-radians}, except that in Symbolic mode a radians to
33565 degrees conversion yields a formula like @samp{@var{a}*180/pi}.
33566 @end defun
33568 @defun random-digit
33569 Produce a random base-1000 digit in the range 0 to 999.
33570 @end defun
33572 @defun random-digits n
33573 Produce a random @var{n}-digit integer; this will be an integer
33574 in the interval @samp{[0, 10^@var{n})}.
33575 @end defun
33577 @defun random-float
33578 Produce a random float in the interval @samp{[0, 1)}.
33579 @end defun
33581 @defun prime-test n iters
33582 Determine whether the integer @var{n} is prime.  Return a list which has
33583 one of these forms: @samp{(nil @var{f})} means the number is non-prime
33584 because it was found to be divisible by @var{f}; @samp{(nil)} means it
33585 was found to be non-prime by table look-up (so no factors are known);
33586 @samp{(nil unknown)} means it is definitely non-prime but no factors
33587 are known because @var{n} was large enough that Fermat's probabilistic
33588 test had to be used; @samp{(t)} means the number is definitely prime;
33589 and @samp{(maybe @var{i} @var{p})} means that Fermat's test, after @var{i}
33590 iterations, is @var{p} percent sure that the number is prime.  The
33591 @var{iters} parameter is the number of Fermat iterations to use, in the
33592 case that this is necessary.  If @code{prime-test} returns ``maybe,''
33593 you can call it again with the same @var{n} to get a greater certainty;
33594 @code{prime-test} remembers where it left off.
33595 @end defun
33597 @defun to-simple-fraction f
33598 If @var{f} is a floating-point number which can be represented exactly
33599 as a small rational number. return that number, else return @var{f}.
33600 For example, 0.75 would be converted to 3:4.  This function is very
33601 fast.
33602 @end defun
33604 @defun to-fraction f tol
33605 Find a rational approximation to floating-point number @var{f} to within
33606 a specified tolerance @var{tol}; this corresponds to the algebraic
33607 function @code{frac}, and can be rather slow.
33608 @end defun
33610 @defun quarter-integer n
33611 If @var{n} is an integer or integer-valued float, this function
33612 returns zero.  If @var{n} is a half-integer (i.e., an integer plus
33613 @mathit{1:2} or 0.5), it returns 2.  If @var{n} is a quarter-integer,
33614 it returns 1 or 3.  If @var{n} is anything else, this function
33615 returns @code{nil}.
33616 @end defun
33618 @node Vector Lisp Functions, Symbolic Lisp Functions, Computational Lisp Functions, Internals
33619 @subsubsection Vector Functions
33621 @noindent
33622 The functions described here perform various operations on vectors and
33623 matrices.
33625 @defun math-concat x y
33626 Do a vector concatenation; this operation is written @samp{@var{x} | @var{y}}
33627 in a symbolic formula.  @xref{Building Vectors}.
33628 @end defun
33630 @defun vec-length v
33631 Return the length of vector @var{v}.  If @var{v} is not a vector, the
33632 result is zero.  If @var{v} is a matrix, this returns the number of
33633 rows in the matrix.
33634 @end defun
33636 @defun mat-dimens m
33637 Determine the dimensions of vector or matrix @var{m}.  If @var{m} is not
33638 a vector, the result is an empty list.  If @var{m} is a plain vector
33639 but not a matrix, the result is a one-element list containing the length
33640 of the vector.  If @var{m} is a matrix with @var{r} rows and @var{c} columns,
33641 the result is the list @samp{(@var{r} @var{c})}.  Higher-order tensors
33642 produce lists of more than two dimensions.  Note that the object
33643 @samp{[[1, 2, 3], [4, 5]]} is a vector of vectors not all the same size,
33644 and is treated by this and other Calc routines as a plain vector of two
33645 elements.
33646 @end defun
33648 @defun dimension-error
33649 Abort the current function with a message of ``Dimension error.''
33650 The Calculator will leave the function being evaluated in symbolic
33651 form; this is really just a special case of @code{reject-arg}.
33652 @end defun
33654 @defun build-vector args
33655 Return a Calc vector with @var{args} as elements.
33656 For example, @samp{(build-vector 1 2 3)} returns the Calc vector
33657 @samp{[1, 2, 3]}, stored internally as the list @samp{(vec 1 2 3)}.
33658 @end defun
33660 @defun make-vec obj dims
33661 Return a Calc vector or matrix all of whose elements are equal to
33662 @var{obj}.  For example, @samp{(make-vec 27 3 4)} returns a 3x4 matrix
33663 filled with 27's.
33664 @end defun
33666 @defun row-matrix v
33667 If @var{v} is a plain vector, convert it into a row matrix, i.e.,
33668 a matrix whose single row is @var{v}.  If @var{v} is already a matrix,
33669 leave it alone.
33670 @end defun
33672 @defun col-matrix v
33673 If @var{v} is a plain vector, convert it into a column matrix, i.e., a
33674 matrix with each element of @var{v} as a separate row.  If @var{v} is
33675 already a matrix, leave it alone.
33676 @end defun
33678 @defun map-vec f v
33679 Map the Lisp function @var{f} over the Calc vector @var{v}.  For example,
33680 @samp{(map-vec 'math-floor v)} returns a vector of the floored components
33681 of vector @var{v}.
33682 @end defun
33684 @defun map-vec-2 f a b
33685 Map the Lisp function @var{f} over the two vectors @var{a} and @var{b}.
33686 If @var{a} and @var{b} are vectors of equal length, the result is a
33687 vector of the results of calling @samp{(@var{f} @var{ai} @var{bi})}
33688 for each pair of elements @var{ai} and @var{bi}.  If either @var{a} or
33689 @var{b} is a scalar, it is matched with each value of the other vector.
33690 For example, @samp{(map-vec-2 'math-add v 1)} returns the vector @var{v}
33691 with each element increased by one.  Note that using @samp{'+} would not
33692 work here, since @code{defmath} does not expand function names everywhere,
33693 just where they are in the function position of a Lisp expression.
33694 @end defun
33696 @defun reduce-vec f v
33697 Reduce the function @var{f} over the vector @var{v}.  For example, if
33698 @var{v} is @samp{[10, 20, 30, 40]}, this calls @samp{(f (f (f 10 20) 30) 40)}.
33699 If @var{v} is a matrix, this reduces over the rows of @var{v}.
33700 @end defun
33702 @defun reduce-cols f m
33703 Reduce the function @var{f} over the columns of matrix @var{m}.  For
33704 example, if @var{m} is @samp{[[1, 2], [3, 4], [5, 6]]}, the result
33705 is a vector of the two elements @samp{(f (f 1 3) 5)} and @samp{(f (f 2 4) 6)}.
33706 @end defun
33708 @defun mat-row m n
33709 Return the @var{n}th row of matrix @var{m}.  This is equivalent to
33710 @samp{(elt m n)}.  For a slower but safer version, use @code{mrow}.
33711 (@xref{Extracting Elements}.)
33712 @end defun
33714 @defun mat-col m n
33715 Return the @var{n}th column of matrix @var{m}, in the form of a vector.
33716 The arguments are not checked for correctness.
33717 @end defun
33719 @defun mat-less-row m n
33720 Return a copy of matrix @var{m} with its @var{n}th row deleted.  The
33721 number @var{n} must be in range from 1 to the number of rows in @var{m}.
33722 @end defun
33724 @defun mat-less-col m n
33725 Return a copy of matrix @var{m} with its @var{n}th column deleted.
33726 @end defun
33728 @defun transpose m
33729 Return the transpose of matrix @var{m}.
33730 @end defun
33732 @defun flatten-vector v
33733 Flatten nested vector @var{v} into a vector of scalars.  For example,
33734 if @var{v} is @samp{[[1, 2, 3], [4, 5]]} the result is @samp{[1, 2, 3, 4, 5]}.
33735 @end defun
33737 @defun copy-matrix m
33738 If @var{m} is a matrix, return a copy of @var{m}.  This maps
33739 @code{copy-sequence} over the rows of @var{m}; in Lisp terms, each
33740 element of the result matrix will be @code{eq} to the corresponding
33741 element of @var{m}, but none of the @code{cons} cells that make up
33742 the structure of the matrix will be @code{eq}.  If @var{m} is a plain
33743 vector, this is the same as @code{copy-sequence}.
33744 @end defun
33746 @defun swap-rows m r1 r2
33747 Exchange rows @var{r1} and @var{r2} of matrix @var{m} in-place.  In
33748 other words, unlike most of the other functions described here, this
33749 function changes @var{m} itself rather than building up a new result
33750 matrix.  The return value is @var{m}, i.e., @samp{(eq (swap-rows m 1 2) m)}
33751 is true, with the side effect of exchanging the first two rows of
33752 @var{m}.
33753 @end defun
33755 @node Symbolic Lisp Functions, Formatting Lisp Functions, Vector Lisp Functions, Internals
33756 @subsubsection Symbolic Functions
33758 @noindent
33759 The functions described here operate on symbolic formulas in the
33760 Calculator.
33762 @defun calc-prepare-selection num
33763 Prepare a stack entry for selection operations.  If @var{num} is
33764 omitted, the stack entry containing the cursor is used; otherwise,
33765 it is the number of the stack entry to use.  This function stores
33766 useful information about the current stack entry into a set of
33767 variables.  @code{calc-selection-cache-num} contains the number of
33768 the stack entry involved (equal to @var{num} if you specified it);
33769 @code{calc-selection-cache-entry} contains the stack entry as a
33770 list (such as @code{calc-top-list} would return with @code{entry}
33771 as the selection mode); and @code{calc-selection-cache-comp} contains
33772 a special ``tagged'' composition (@pxref{Formatting Lisp Functions})
33773 which allows Calc to relate cursor positions in the buffer with
33774 their corresponding sub-formulas.
33776 A slight complication arises in the selection mechanism because
33777 formulas may contain small integers.  For example, in the vector
33778 @samp{[1, 2, 1]} the first and last elements are @code{eq} to each
33779 other; selections are recorded as the actual Lisp object that
33780 appears somewhere in the tree of the whole formula, but storing
33781 @code{1} would falsely select both @code{1}'s in the vector.  So
33782 @code{calc-prepare-selection} also checks the stack entry and
33783 replaces any plain integers with ``complex number'' lists of the form
33784 @samp{(cplx @var{n} 0)}.  This list will be displayed the same as a
33785 plain @var{n} and the change will be completely invisible to the
33786 user, but it will guarantee that no two sub-formulas of the stack
33787 entry will be @code{eq} to each other.  Next time the stack entry
33788 is involved in a computation, @code{calc-normalize} will replace
33789 these lists with plain numbers again, again invisibly to the user.
33790 @end defun
33792 @defun calc-encase-atoms x
33793 This modifies the formula @var{x} to ensure that each part of the
33794 formula is a unique atom, using the @samp{(cplx @var{n} 0)} trick
33795 described above.  This function may use @code{setcar} to modify
33796 the formula in-place.
33797 @end defun
33799 @defun calc-find-selected-part
33800 Find the smallest sub-formula of the current formula that contains
33801 the cursor.  This assumes @code{calc-prepare-selection} has been
33802 called already.  If the cursor is not actually on any part of the
33803 formula, this returns @code{nil}.
33804 @end defun
33806 @defun calc-change-current-selection selection
33807 Change the currently prepared stack element's selection to
33808 @var{selection}, which should be @code{eq} to some sub-formula
33809 of the stack element, or @code{nil} to unselect the formula.
33810 The stack element's appearance in the Calc buffer is adjusted
33811 to reflect the new selection.
33812 @end defun
33814 @defun calc-find-nth-part expr n
33815 Return the @var{n}th sub-formula of @var{expr}.  This function is used
33816 by the selection commands, and (unless @kbd{j b} has been used) treats
33817 sums and products as flat many-element formulas.  Thus if @var{expr}
33818 is @samp{((a + b) - c) + d}, calling @code{calc-find-nth-part} with
33819 @var{n} equal to four will return @samp{d}.
33820 @end defun
33822 @defun calc-find-parent-formula expr part
33823 Return the sub-formula of @var{expr} which immediately contains
33824 @var{part}.  If @var{expr} is @samp{a*b + (c+1)*d} and @var{part}
33825 is @code{eq} to the @samp{c+1} term of @var{expr}, then this function
33826 will return @samp{(c+1)*d}.  If @var{part} turns out not to be a
33827 sub-formula of @var{expr}, the function returns @code{nil}.  If
33828 @var{part} is @code{eq} to @var{expr}, the function returns @code{t}.
33829 This function does not take associativity into account.
33830 @end defun
33832 @defun calc-find-assoc-parent-formula expr part
33833 This is the same as @code{calc-find-parent-formula}, except that
33834 (unless @kbd{j b} has been used) it continues widening the selection
33835 to contain a complete level of the formula.  Given @samp{a} from
33836 @samp{((a + b) - c) + d}, @code{calc-find-parent-formula} will
33837 return @samp{a + b} but @code{calc-find-assoc-parent-formula} will
33838 return the whole expression.
33839 @end defun
33841 @defun calc-grow-assoc-formula expr part
33842 This expands sub-formula @var{part} of @var{expr} to encompass a
33843 complete level of the formula.  If @var{part} and its immediate
33844 parent are not compatible associative operators, or if @kbd{j b}
33845 has been used, this simply returns @var{part}.
33846 @end defun
33848 @defun calc-find-sub-formula expr part
33849 This finds the immediate sub-formula of @var{expr} which contains
33850 @var{part}.  It returns an index @var{n} such that
33851 @samp{(calc-find-nth-part @var{expr} @var{n})} would return @var{part}.
33852 If @var{part} is not a sub-formula of @var{expr}, it returns @code{nil}.
33853 If @var{part} is @code{eq} to @var{expr}, it returns @code{t}.  This
33854 function does not take associativity into account.
33855 @end defun
33857 @defun calc-replace-sub-formula expr old new
33858 This function returns a copy of formula @var{expr}, with the
33859 sub-formula that is @code{eq} to @var{old} replaced by @var{new}.
33860 @end defun
33862 @defun simplify expr
33863 Simplify the expression @var{expr} by applying various algebraic rules.
33864 This is what the @w{@kbd{a s}} (@code{calc-simplify}) command uses.  This
33865 always returns a copy of the expression; the structure @var{expr} points
33866 to remains unchanged in memory.
33868 More precisely, here is what @code{simplify} does:  The expression is
33869 first normalized and evaluated by calling @code{normalize}.  If any
33870 @code{AlgSimpRules} have been defined, they are then applied.  Then
33871 the expression is traversed in a depth-first, bottom-up fashion; at
33872 each level, any simplifications that can be made are made until no
33873 further changes are possible.  Once the entire formula has been
33874 traversed in this way, it is compared with the original formula (from
33875 before the call to @code{normalize}) and, if it has changed,
33876 the entire procedure is repeated (starting with @code{normalize})
33877 until no further changes occur.  Usually only two iterations are
33878 needed:@: one to simplify the formula, and another to verify that no
33879 further simplifications were possible.
33880 @end defun
33882 @defun simplify-extended expr
33883 Simplify the expression @var{expr}, with additional rules enabled that
33884 help do a more thorough job, while not being entirely ``safe'' in all
33885 circumstances.  (For example, this mode will simplify @samp{sqrt(x^2)}
33886 to @samp{x}, which is only valid when @var{x} is positive.)  This is
33887 implemented by temporarily binding the variable @code{math-living-dangerously}
33888 to @code{t} (using a @code{let} form) and calling @code{simplify}.
33889 Dangerous simplification rules are written to check this variable
33890 before taking any action.
33891 @end defun
33893 @defun simplify-units expr
33894 Simplify the expression @var{expr}, treating variable names as units
33895 whenever possible.  This works by binding the variable
33896 @code{math-simplifying-units} to @code{t} while calling @code{simplify}.
33897 @end defun
33899 @defmac math-defsimplify funcs body
33900 Register a new simplification rule; this is normally called as a top-level
33901 form, like @code{defun} or @code{defmath}.  If @var{funcs} is a symbol
33902 (like @code{+} or @code{calcFunc-sqrt}), this simplification rule is
33903 applied to the formulas which are calls to the specified function.  Or,
33904 @var{funcs} can be a list of such symbols; the rule applies to all
33905 functions on the list.  The @var{body} is written like the body of a
33906 function with a single argument called @code{expr}.  The body will be
33907 executed with @code{expr} bound to a formula which is a call to one of
33908 the functions @var{funcs}.  If the function body returns @code{nil}, or
33909 if it returns a result @code{equal} to the original @code{expr}, it is
33910 ignored and Calc goes on to try the next simplification rule that applies.
33911 If the function body returns something different, that new formula is
33912 substituted for @var{expr} in the original formula.
33914 At each point in the formula, rules are tried in the order of the
33915 original calls to @code{math-defsimplify}; the search stops after the
33916 first rule that makes a change.  Thus later rules for that same
33917 function will not have a chance to trigger until the next iteration
33918 of the main @code{simplify} loop.
33920 Note that, since @code{defmath} is not being used here, @var{body} must
33921 be written in true Lisp code without the conveniences that @code{defmath}
33922 provides.  If you prefer, you can have @var{body} simply call another
33923 function (defined with @code{defmath}) which does the real work.
33925 The arguments of a function call will already have been simplified
33926 before any rules for the call itself are invoked.  Since a new argument
33927 list is consed up when this happens, this means that the rule's body is
33928 allowed to rearrange the function's arguments destructively if that is
33929 convenient.  Here is a typical example of a simplification rule:
33931 @smallexample
33932 (math-defsimplify calcFunc-arcsinh
33933   (or (and (math-looks-negp (nth 1 expr))
33934            (math-neg (list 'calcFunc-arcsinh
33935                            (math-neg (nth 1 expr)))))
33936       (and (eq (car-safe (nth 1 expr)) 'calcFunc-sinh)
33937            (or math-living-dangerously
33938                (math-known-realp (nth 1 (nth 1 expr))))
33939            (nth 1 (nth 1 expr)))))
33940 @end smallexample
33942 This is really a pair of rules written with one @code{math-defsimplify}
33943 for convenience; the first replaces @samp{arcsinh(-x)} with
33944 @samp{-arcsinh(x)}, and the second, which is safe only for real @samp{x},
33945 replaces @samp{arcsinh(sinh(x))} with @samp{x}.
33946 @end defmac
33948 @defun common-constant-factor expr
33949 Check @var{expr} to see if it is a sum of terms all multiplied by the
33950 same rational value.  If so, return this value.  If not, return @code{nil}.
33951 For example, if called on @samp{6x + 9y + 12z}, it would return 3, since
33952 3 is a common factor of all the terms.
33953 @end defun
33955 @defun cancel-common-factor expr factor
33956 Assuming @var{expr} is a sum with @var{factor} as a common factor,
33957 divide each term of the sum by @var{factor}.  This is done by
33958 destructively modifying parts of @var{expr}, on the assumption that
33959 it is being used by a simplification rule (where such things are
33960 allowed; see above).  For example, consider this built-in rule for
33961 square roots:
33963 @smallexample
33964 (math-defsimplify calcFunc-sqrt
33965   (let ((fac (math-common-constant-factor (nth 1 expr))))
33966     (and fac (not (eq fac 1))
33967          (math-mul (math-normalize (list 'calcFunc-sqrt fac))
33968                    (math-normalize
33969                     (list 'calcFunc-sqrt
33970                           (math-cancel-common-factor
33971                            (nth 1 expr) fac)))))))
33972 @end smallexample
33973 @end defun
33975 @defun frac-gcd a b
33976 Compute a ``rational GCD'' of @var{a} and @var{b}, which must both be
33977 rational numbers.  This is the fraction composed of the GCD of the
33978 numerators of @var{a} and @var{b}, over the GCD of the denominators.
33979 It is used by @code{common-constant-factor}.  Note that the standard
33980 @code{gcd} function uses the LCM to combine the denominators.
33981 @end defun
33983 @defun map-tree func expr many
33984 Try applying Lisp function @var{func} to various sub-expressions of
33985 @var{expr}.  Initially, call @var{func} with @var{expr} itself as an
33986 argument.  If this returns an expression which is not @code{equal} to
33987 @var{expr}, apply @var{func} again until eventually it does return
33988 @var{expr} with no changes.  Then, if @var{expr} is a function call,
33989 recursively apply @var{func} to each of the arguments.  This keeps going
33990 until no changes occur anywhere in the expression; this final expression
33991 is returned by @code{map-tree}.  Note that, unlike simplification rules,
33992 @var{func} functions may @emph{not} make destructive changes to
33993 @var{expr}.  If a third argument @var{many} is provided, it is an
33994 integer which says how many times @var{func} may be applied; the
33995 default, as described above, is infinitely many times.
33996 @end defun
33998 @defun compile-rewrites rules
33999 Compile the rewrite rule set specified by @var{rules}, which should
34000 be a formula that is either a vector or a variable name.  If the latter,
34001 the compiled rules are saved so that later @code{compile-rules} calls
34002 for that same variable can return immediately.  If there are problems
34003 with the rules, this function calls @code{error} with a suitable
34004 message.
34005 @end defun
34007 @defun apply-rewrites expr crules heads
34008 Apply the compiled rewrite rule set @var{crules} to the expression
34009 @var{expr}.  This will make only one rewrite and only checks at the
34010 top level of the expression.  The result @code{nil} if no rules
34011 matched, or if the only rules that matched did not actually change
34012 the expression.  The @var{heads} argument is optional; if is given,
34013 it should be a list of all function names that (may) appear in
34014 @var{expr}.  The rewrite compiler tags each rule with the
34015 rarest-looking function name in the rule; if you specify @var{heads},
34016 @code{apply-rewrites} can use this information to narrow its search
34017 down to just a few rules in the rule set.
34018 @end defun
34020 @defun rewrite-heads expr
34021 Compute a @var{heads} list for @var{expr} suitable for use with
34022 @code{apply-rewrites}, as discussed above.
34023 @end defun
34025 @defun rewrite expr rules many
34026 This is an all-in-one rewrite function.  It compiles the rule set
34027 specified by @var{rules}, then uses @code{map-tree} to apply the
34028 rules throughout @var{expr} up to @var{many} (default infinity)
34029 times.
34030 @end defun
34032 @defun match-patterns pat vec not-flag
34033 Given a Calc vector @var{vec} and an uncompiled pattern set or
34034 pattern set variable @var{pat}, this function returns a new vector
34035 of all elements of @var{vec} which do (or don't, if @var{not-flag} is
34036 non-@code{nil}) match any of the patterns in @var{pat}.
34037 @end defun
34039 @defun deriv expr var value symb
34040 Compute the derivative of @var{expr} with respect to variable @var{var}
34041 (which may actually be any sub-expression).  If @var{value} is specified,
34042 the derivative is evaluated at the value of @var{var}; otherwise, the
34043 derivative is left in terms of @var{var}.  If the expression contains
34044 functions for which no derivative formula is known, new derivative
34045 functions are invented by adding primes to the names; @pxref{Calculus}.
34046 However, if @var{symb} is non-@code{nil}, the presence of undifferentiable
34047 functions in @var{expr} instead cancels the whole differentiation, and
34048 @code{deriv} returns @code{nil} instead.
34050 Derivatives of an @var{n}-argument function can be defined by
34051 adding a @code{math-derivative-@var{n}} property to the property list
34052 of the symbol for the function's derivative, which will be the
34053 function name followed by an apostrophe.  The value of the property
34054 should be a Lisp function; it is called with the same arguments as the
34055 original function call that is being differentiated.  It should return
34056 a formula for the derivative.  For example, the derivative of @code{ln}
34057 is defined by
34059 @smallexample
34060 (put 'calcFunc-ln\' 'math-derivative-1
34061      (function (lambda (u) (math-div 1 u))))
34062 @end smallexample
34064 The two-argument @code{log} function has two derivatives,
34065 @smallexample
34066 (put 'calcFunc-log\' 'math-derivative-2     ; d(log(x,b)) / dx
34067      (function (lambda (x b) ... )))
34068 (put 'calcFunc-log\'2 'math-derivative-2    ; d(log(x,b)) / db
34069      (function (lambda (x b) ... )))
34070 @end smallexample
34071 @end defun
34073 @defun tderiv expr var value symb
34074 Compute the total derivative of @var{expr}.  This is the same as
34075 @code{deriv}, except that variables other than @var{var} are not
34076 assumed to be constant with respect to @var{var}.
34077 @end defun
34079 @defun integ expr var low high
34080 Compute the integral of @var{expr} with respect to @var{var}.
34081 @xref{Calculus}, for further details.
34082 @end defun
34084 @defmac math-defintegral funcs body
34085 Define a rule for integrating a function or functions of one argument;
34086 this macro is very similar in format to @code{math-defsimplify}.
34087 The main difference is that here @var{body} is the body of a function
34088 with a single argument @code{u} which is bound to the argument to the
34089 function being integrated, not the function call itself.  Also, the
34090 variable of integration is available as @code{math-integ-var}.  If
34091 evaluation of the integral requires doing further integrals, the body
34092 should call @samp{(math-integral @var{x})} to find the integral of
34093 @var{x} with respect to @code{math-integ-var}; this function returns
34094 @code{nil} if the integral could not be done.  Some examples:
34096 @smallexample
34097 (math-defintegral calcFunc-conj
34098   (let ((int (math-integral u)))
34099     (and int
34100          (list 'calcFunc-conj int))))
34102 (math-defintegral calcFunc-cos
34103   (and (equal u math-integ-var)
34104        (math-from-radians-2 (list 'calcFunc-sin u))))
34105 @end smallexample
34107 In the @code{cos} example, we define only the integral of @samp{cos(x) dx},
34108 relying on the general integration-by-substitution facility to handle
34109 cosines of more complicated arguments.  An integration rule should return
34110 @code{nil} if it can't do the integral; if several rules are defined for
34111 the same function, they are tried in order until one returns a non-@code{nil}
34112 result.
34113 @end defmac
34115 @defmac math-defintegral-2 funcs body
34116 Define a rule for integrating a function or functions of two arguments.
34117 This is exactly analogous to @code{math-defintegral}, except that @var{body}
34118 is written as the body of a function with two arguments, @var{u} and
34119 @var{v}.
34120 @end defmac
34122 @defun solve-for lhs rhs var full
34123 Attempt to solve the equation @samp{@var{lhs} = @var{rhs}} by isolating
34124 the variable @var{var} on the lefthand side; return the resulting righthand
34125 side, or @code{nil} if the equation cannot be solved.  The variable
34126 @var{var} must appear at least once in @var{lhs} or @var{rhs}.  Note that
34127 the return value is a formula which does not contain @var{var}; this is
34128 different from the user-level @code{solve} and @code{finv} functions,
34129 which return a rearranged equation or a functional inverse, respectively.
34130 If @var{full} is non-@code{nil}, a full solution including dummy signs
34131 and dummy integers will be produced.  User-defined inverses are provided
34132 as properties in a manner similar to derivatives:
34134 @smallexample
34135 (put 'calcFunc-ln 'math-inverse
34136      (function (lambda (x) (list 'calcFunc-exp x))))
34137 @end smallexample
34139 This function can call @samp{(math-solve-get-sign @var{x})} to create
34140 a new arbitrary sign variable, returning @var{x} times that sign, and
34141 @samp{(math-solve-get-int @var{x})} to create a new arbitrary integer
34142 variable multiplied by @var{x}.  These functions simply return @var{x}
34143 if the caller requested a non-``full'' solution.
34144 @end defun
34146 @defun solve-eqn expr var full
34147 This version of @code{solve-for} takes an expression which will
34148 typically be an equation or inequality.  (If it is not, it will be
34149 interpreted as the equation @samp{@var{expr} = 0}.)  It returns an
34150 equation or inequality, or @code{nil} if no solution could be found.
34151 @end defun
34153 @defun solve-system exprs vars full
34154 This function solves a system of equations.  Generally, @var{exprs}
34155 and @var{vars} will be vectors of equal length.
34156 @xref{Solving Systems of Equations}, for other options.
34157 @end defun
34159 @defun expr-contains expr var
34160 Returns a non-@code{nil} value if @var{var} occurs as a subexpression
34161 of @var{expr}.
34163 This function might seem at first to be identical to
34164 @code{calc-find-sub-formula}.  The key difference is that
34165 @code{expr-contains} uses @code{equal} to test for matches, whereas
34166 @code{calc-find-sub-formula} uses @code{eq}.  In the formula
34167 @samp{f(a, a)}, the two @samp{a}s will be @code{equal} but not
34168 @code{eq} to each other.
34169 @end defun
34171 @defun expr-contains-count expr var
34172 Returns the number of occurrences of @var{var} as a subexpression
34173 of @var{expr}, or @code{nil} if there are no occurrences.
34174 @end defun
34176 @defun expr-depends expr var
34177 Returns true if @var{expr} refers to any variable the occurs in @var{var}.
34178 In other words, it checks if @var{expr} and @var{var} have any variables
34179 in common.
34180 @end defun
34182 @defun expr-contains-vars expr
34183 Return true if @var{expr} contains any variables, or @code{nil} if @var{expr}
34184 contains only constants and functions with constant arguments.
34185 @end defun
34187 @defun expr-subst expr old new
34188 Returns a copy of @var{expr}, with all occurrences of @var{old} replaced
34189 by @var{new}.  This treats @code{lambda} forms specially with respect
34190 to the dummy argument variables, so that the effect is always to return
34191 @var{expr} evaluated at @var{old} = @var{new}.
34192 @end defun
34194 @defun multi-subst expr old new
34195 This is like @code{expr-subst}, except that @var{old} and @var{new}
34196 are lists of expressions to be substituted simultaneously.  If one
34197 list is shorter than the other, trailing elements of the longer list
34198 are ignored.
34199 @end defun
34201 @defun expr-weight expr
34202 Returns the ``weight'' of @var{expr}, basically a count of the total
34203 number of objects and function calls that appear in @var{expr}.  For
34204 ``primitive'' objects, this will be one.
34205 @end defun
34207 @defun expr-height expr
34208 Returns the ``height'' of @var{expr}, which is the deepest level to
34209 which function calls are nested.  (Note that @samp{@var{a} + @var{b}}
34210 counts as a function call.)  For primitive objects, this returns zero.
34211 @end defun
34213 @defun polynomial-p expr var
34214 Check if @var{expr} is a polynomial in variable (or sub-expression)
34215 @var{var}.  If so, return the degree of the polynomial, that is, the
34216 highest power of @var{var} that appears in @var{expr}.  For example,
34217 for @samp{(x^2 + 3)^3 + 4} this would return 6.  This function returns
34218 @code{nil} unless @var{expr}, when expanded out by @kbd{a x}
34219 (@code{calc-expand}), would consist of a sum of terms in which @var{var}
34220 appears only raised to nonnegative integer powers.  Note that if
34221 @var{var} does not occur in @var{expr}, then @var{expr} is considered
34222 a polynomial of degree 0.
34223 @end defun
34225 @defun is-polynomial expr var degree loose
34226 Check if @var{expr} is a polynomial in variable or sub-expression
34227 @var{var}, and, if so, return a list representation of the polynomial
34228 where the elements of the list are coefficients of successive powers of
34229 @var{var}: @samp{@var{a} + @var{b} x + @var{c} x^3} would produce the
34230 list @samp{(@var{a} @var{b} 0 @var{c})}, and @samp{(x + 1)^2} would
34231 produce the list @samp{(1 2 1)}.  The highest element of the list will
34232 be non-zero, with the special exception that if @var{expr} is the
34233 constant zero, the returned value will be @samp{(0)}.  Return @code{nil}
34234 if @var{expr} is not a polynomial in @var{var}.  If @var{degree} is
34235 specified, this will not consider polynomials of degree higher than that
34236 value.  This is a good precaution because otherwise an input of
34237 @samp{(x+1)^1000} will cause a huge coefficient list to be built.  If
34238 @var{loose} is non-@code{nil}, then a looser definition of a polynomial
34239 is used in which coefficients are no longer required not to depend on
34240 @var{var}, but are only required not to take the form of polynomials
34241 themselves.  For example, @samp{sin(x) x^2 + cos(x)} is a loose
34242 polynomial with coefficients @samp{((calcFunc-cos x) 0 (calcFunc-sin
34243 x))}.  The result will never be @code{nil} in loose mode, since any
34244 expression can be interpreted as a ``constant'' loose polynomial.
34245 @end defun
34247 @defun polynomial-base expr pred
34248 Check if @var{expr} is a polynomial in any variable that occurs in it;
34249 if so, return that variable.  (If @var{expr} is a multivariate polynomial,
34250 this chooses one variable arbitrarily.)  If @var{pred} is specified, it should
34251 be a Lisp function which is called as @samp{(@var{pred} @var{subexpr})},
34252 and which should return true if @code{mpb-top-expr} (a global name for
34253 the original @var{expr}) is a suitable polynomial in @var{subexpr}.
34254 The default predicate uses @samp{(polynomial-p mpb-top-expr @var{subexpr})};
34255 you can use @var{pred} to specify additional conditions.  Or, you could
34256 have @var{pred} build up a list of every suitable @var{subexpr} that
34257 is found.
34258 @end defun
34260 @defun poly-simplify poly
34261 Simplify polynomial coefficient list @var{poly} by (destructively)
34262 clipping off trailing zeros.
34263 @end defun
34265 @defun poly-mix a ac b bc
34266 Mix two polynomial lists @var{a} and @var{b} (in the form returned by
34267 @code{is-polynomial}) in a linear combination with coefficient expressions
34268 @var{ac} and @var{bc}.  The result is a (not necessarily simplified)
34269 polynomial list representing @samp{@var{ac} @var{a} + @var{bc} @var{b}}.
34270 @end defun
34272 @defun poly-mul a b
34273 Multiply two polynomial coefficient lists @var{a} and @var{b}.  The
34274 result will be in simplified form if the inputs were simplified.
34275 @end defun
34277 @defun build-polynomial-expr poly var
34278 Construct a Calc formula which represents the polynomial coefficient
34279 list @var{poly} applied to variable @var{var}.  The @kbd{a c}
34280 (@code{calc-collect}) command uses @code{is-polynomial} to turn an
34281 expression into a coefficient list, then @code{build-polynomial-expr}
34282 to turn the list back into an expression in regular form.
34283 @end defun
34285 @defun check-unit-name var
34286 Check if @var{var} is a variable which can be interpreted as a unit
34287 name.  If so, return the units table entry for that unit.  This
34288 will be a list whose first element is the unit name (not counting
34289 prefix characters) as a symbol and whose second element is the
34290 Calc expression which defines the unit.  (Refer to the Calc sources
34291 for details on the remaining elements of this list.)  If @var{var}
34292 is not a variable or is not a unit name, return @code{nil}.
34293 @end defun
34295 @defun units-in-expr-p expr sub-exprs
34296 Return true if @var{expr} contains any variables which can be
34297 interpreted as units.  If @var{sub-exprs} is @code{t}, the entire
34298 expression is searched.  If @var{sub-exprs} is @code{nil}, this
34299 checks whether @var{expr} is directly a units expression.
34300 @end defun
34302 @defun single-units-in-expr-p expr
34303 Check whether @var{expr} contains exactly one units variable.  If so,
34304 return the units table entry for the variable.  If @var{expr} does
34305 not contain any units, return @code{nil}.  If @var{expr} contains
34306 two or more units, return the symbol @code{wrong}.
34307 @end defun
34309 @defun to-standard-units expr which
34310 Convert units expression @var{expr} to base units.  If @var{which}
34311 is @code{nil}, use Calc's native base units.  Otherwise, @var{which}
34312 can specify a units system, which is a list of two-element lists,
34313 where the first element is a Calc base symbol name and the second
34314 is an expression to substitute for it.
34315 @end defun
34317 @defun remove-units expr
34318 Return a copy of @var{expr} with all units variables replaced by ones.
34319 This expression is generally normalized before use.
34320 @end defun
34322 @defun extract-units expr
34323 Return a copy of @var{expr} with everything but units variables replaced
34324 by ones.
34325 @end defun
34327 @node Formatting Lisp Functions, Hooks, Symbolic Lisp Functions, Internals
34328 @subsubsection I/O and Formatting Functions
34330 @noindent
34331 The functions described here are responsible for parsing and formatting
34332 Calc numbers and formulas.
34334 @defun calc-eval str sep arg1 arg2 @dots{}
34335 This is the simplest interface to the Calculator from another Lisp program.
34336 @xref{Calling Calc from Your Programs}.
34337 @end defun
34339 @defun read-number str
34340 If string @var{str} contains a valid Calc number, either integer,
34341 fraction, float, or HMS form, this function parses and returns that
34342 number.  Otherwise, it returns @code{nil}.
34343 @end defun
34345 @defun read-expr str
34346 Read an algebraic expression from string @var{str}.  If @var{str} does
34347 not have the form of a valid expression, return a list of the form
34348 @samp{(error @var{pos} @var{msg})} where @var{pos} is an integer index
34349 into @var{str} of the general location of the error, and @var{msg} is
34350 a string describing the problem.
34351 @end defun
34353 @defun read-exprs str
34354 Read a list of expressions separated by commas, and return it as a
34355 Lisp list.  If an error occurs in any expressions, an error list as
34356 shown above is returned instead.
34357 @end defun
34359 @defun calc-do-alg-entry initial prompt no-norm
34360 Read an algebraic formula or formulas using the minibuffer.  All
34361 conventions of regular algebraic entry are observed.  The return value
34362 is a list of Calc formulas; there will be more than one if the user
34363 entered a list of values separated by commas.  The result is @code{nil}
34364 if the user presses Return with a blank line.  If @var{initial} is
34365 given, it is a string which the minibuffer will initially contain.
34366 If @var{prompt} is given, it is the prompt string to use; the default
34367 is ``Algebraic:''.  If @var{no-norm} is @code{t}, the formulas will
34368 be returned exactly as parsed; otherwise, they will be passed through
34369 @code{calc-normalize} first.
34371 To support the use of @kbd{$} characters in the algebraic entry, use
34372 @code{let} to bind @code{calc-dollar-values} to a list of the values
34373 to be substituted for @kbd{$}, @kbd{$$}, and so on, and bind
34374 @code{calc-dollar-used} to 0.  Upon return, @code{calc-dollar-used}
34375 will have been changed to the highest number of consecutive @kbd{$}s
34376 that actually appeared in the input.
34377 @end defun
34379 @defun format-number a
34380 Convert the real or complex number or HMS form @var{a} to string form.
34381 @end defun
34383 @defun format-flat-expr a prec
34384 Convert the arbitrary Calc number or formula @var{a} to string form,
34385 in the style used by the trail buffer and the @code{calc-edit} command.
34386 This is a simple format designed
34387 mostly to guarantee the string is of a form that can be re-parsed by
34388 @code{read-expr}.  Most formatting modes, such as digit grouping,
34389 complex number format, and point character, are ignored to ensure the
34390 result will be re-readable.  The @var{prec} parameter is normally 0; if
34391 you pass a large integer like 1000 instead, the expression will be
34392 surrounded by parentheses unless it is a plain number or variable name.
34393 @end defun
34395 @defun format-nice-expr a width
34396 This is like @code{format-flat-expr} (with @var{prec} equal to 0),
34397 except that newlines will be inserted to keep lines down to the
34398 specified @var{width}, and vectors that look like matrices or rewrite
34399 rules are written in a pseudo-matrix format.  The @code{calc-edit}
34400 command uses this when only one stack entry is being edited.
34401 @end defun
34403 @defun format-value a width
34404 Convert the Calc number or formula @var{a} to string form, using the
34405 format seen in the stack buffer.  Beware the string returned may
34406 not be re-readable by @code{read-expr}, for example, because of digit
34407 grouping.  Multi-line objects like matrices produce strings that
34408 contain newline characters to separate the lines.  The @var{w}
34409 parameter, if given, is the target window size for which to format
34410 the expressions.  If @var{w} is omitted, the width of the Calculator
34411 window is used.
34412 @end defun
34414 @defun compose-expr a prec
34415 Format the Calc number or formula @var{a} according to the current
34416 language mode, returning a ``composition.''  To learn about the
34417 structure of compositions, see the comments in the Calc source code.
34418 You can specify the format of a given type of function call by putting
34419 a @code{math-compose-@var{lang}} property on the function's symbol,
34420 whose value is a Lisp function that takes @var{a} and @var{prec} as
34421 arguments and returns a composition.  Here @var{lang} is a language
34422 mode name, one of @code{normal}, @code{big}, @code{c}, @code{pascal},
34423 @code{fortran}, @code{tex}, @code{eqn}, @code{math}, or @code{maple}.
34424 In Big mode, Calc actually tries @code{math-compose-big} first, then
34425 tries @code{math-compose-normal}.  If this property does not exist,
34426 or if the function returns @code{nil}, the function is written in the
34427 normal function-call notation for that language.
34428 @end defun
34430 @defun composition-to-string c w
34431 Convert a composition structure returned by @code{compose-expr} into
34432 a string.  Multi-line compositions convert to strings containing
34433 newline characters.  The target window size is given by @var{w}.
34434 The @code{format-value} function basically calls @code{compose-expr}
34435 followed by @code{composition-to-string}.
34436 @end defun
34438 @defun comp-width c
34439 Compute the width in characters of composition @var{c}.
34440 @end defun
34442 @defun comp-height c
34443 Compute the height in lines of composition @var{c}.
34444 @end defun
34446 @defun comp-ascent c
34447 Compute the portion of the height of composition @var{c} which is on or
34448 above the baseline.  For a one-line composition, this will be one.
34449 @end defun
34451 @defun comp-descent c
34452 Compute the portion of the height of composition @var{c} which is below
34453 the baseline.  For a one-line composition, this will be zero.
34454 @end defun
34456 @defun comp-first-char c
34457 If composition @var{c} is a ``flat'' composition, return the first
34458 (leftmost) character of the composition as an integer.  Otherwise,
34459 return @code{nil}.
34460 @end defun
34462 @defun comp-last-char c
34463 If composition @var{c} is a ``flat'' composition, return the last
34464 (rightmost) character, otherwise return @code{nil}.
34465 @end defun
34467 @comment @node Lisp Variables, Hooks, Formatting Lisp Functions, Internals
34468 @comment @subsubsection Lisp Variables
34469 @comment
34470 @comment @noindent
34471 @comment (This section is currently unfinished.)
34473 @node Hooks,  , Formatting Lisp Functions, Internals
34474 @subsubsection Hooks
34476 @noindent
34477 Hooks are variables which contain Lisp functions (or lists of functions)
34478 which are called at various times.  Calc defines a number of hooks
34479 that help you to customize it in various ways.  Calc uses the Lisp
34480 function @code{run-hooks} to invoke the hooks shown below.  Several
34481 other customization-related variables are also described here.
34483 @defvar calc-load-hook
34484 This hook is called at the end of @file{calc.el}, after the file has
34485 been loaded, before any functions in it have been called, but after
34486 @code{calc-mode-map} and similar variables have been set up.
34487 @end defvar
34489 @defvar calc-ext-load-hook
34490 This hook is called at the end of @file{calc-ext.el}.
34491 @end defvar
34493 @defvar calc-start-hook
34494 This hook is called as the last step in a @kbd{M-x calc} command.
34495 At this point, the Calc buffer has been created and initialized if
34496 necessary, the Calc window and trail window have been created,
34497 and the ``Welcome to Calc'' message has been displayed.
34498 @end defvar
34500 @defvar calc-mode-hook
34501 This hook is called when the Calc buffer is being created.  Usually
34502 this will only happen once per Emacs session.  The hook is called
34503 after Emacs has switched to the new buffer, the mode-settings file
34504 has been read if necessary, and all other buffer-local variables
34505 have been set up.  After this hook returns, Calc will perform a
34506 @code{calc-refresh} operation, set up the mode line display, then
34507 evaluate any deferred @code{calc-define} properties that have not
34508 been evaluated yet.
34509 @end defvar
34511 @defvar calc-trail-mode-hook
34512 This hook is called when the Calc Trail buffer is being created.
34513 It is called as the very last step of setting up the Trail buffer.
34514 Like @code{calc-mode-hook}, this will normally happen only once
34515 per Emacs session.
34516 @end defvar
34518 @defvar calc-end-hook
34519 This hook is called by @code{calc-quit}, generally because the user
34520 presses @kbd{q} or @kbd{C-x * c} while in Calc.  The Calc buffer will
34521 be the current buffer.  The hook is called as the very first
34522 step, before the Calc window is destroyed.
34523 @end defvar
34525 @defvar calc-window-hook
34526 If this hook is non-@code{nil}, it is called to create the Calc window.
34527 Upon return, this new Calc window should be the current window.
34528 (The Calc buffer will already be the current buffer when the
34529 hook is called.)  If the hook is not defined, Calc will
34530 generally use @code{split-window}, @code{set-window-buffer},
34531 and @code{select-window} to create the Calc window.
34532 @end defvar
34534 @defvar calc-trail-window-hook
34535 If this hook is non-@code{nil}, it is called to create the Calc Trail
34536 window.  The variable @code{calc-trail-buffer} will contain the buffer
34537 which the window should use.  Unlike @code{calc-window-hook}, this hook
34538 must @emph{not} switch into the new window.
34539 @end defvar
34541 @defvar calc-embedded-mode-hook
34542 This hook is called the first time that Embedded mode is entered.
34543 @end defvar
34545 @defvar calc-embedded-new-buffer-hook
34546 This hook is called each time that Embedded mode is entered in a
34547 new buffer.
34548 @end defvar
34550 @defvar calc-embedded-new-formula-hook
34551 This hook is called each time that Embedded mode is enabled for a
34552 new formula.
34553 @end defvar
34555 @defvar calc-edit-mode-hook
34556 This hook is called by @code{calc-edit} (and the other ``edit''
34557 commands) when the temporary editing buffer is being created.
34558 The buffer will have been selected and set up to be in
34559 @code{calc-edit-mode}, but will not yet have been filled with
34560 text.  (In fact it may still have leftover text from a previous
34561 @code{calc-edit} command.)
34562 @end defvar
34564 @defvar calc-mode-save-hook
34565 This hook is called by the @code{calc-save-modes} command,
34566 after Calc's own mode features have been inserted into the
34567 Calc init file and just before the ``End of mode settings''
34568 message is inserted.
34569 @end defvar
34571 @defvar calc-reset-hook
34572 This hook is called after @kbd{C-x * 0} (@code{calc-reset}) has
34573 reset all modes.  The Calc buffer will be the current buffer.
34574 @end defvar
34576 @defvar calc-other-modes
34577 This variable contains a list of strings.  The strings are
34578 concatenated at the end of the modes portion of the Calc
34579 mode line (after standard modes such as ``Deg'', ``Inv'' and
34580 ``Hyp'').  Each string should be a short, single word followed
34581 by a space.  The variable is @code{nil} by default.
34582 @end defvar
34584 @defvar calc-mode-map
34585 This is the keymap that is used by Calc mode.  The best time
34586 to adjust it is probably in a @code{calc-mode-hook}.  If the
34587 Calc extensions package (@file{calc-ext.el}) has not yet been
34588 loaded, many of these keys will be bound to @code{calc-missing-key},
34589 which is a command that loads the extensions package and
34590 ``retypes'' the key.  If your @code{calc-mode-hook} rebinds
34591 one of these keys, it will probably be overridden when the
34592 extensions are loaded.
34593 @end defvar
34595 @defvar calc-digit-map
34596 This is the keymap that is used during numeric entry.  Numeric
34597 entry uses the minibuffer, but this map binds every non-numeric
34598 key to @code{calcDigit-nondigit} which generally calls
34599 @code{exit-minibuffer} and ``retypes'' the key.
34600 @end defvar
34602 @defvar calc-alg-ent-map
34603 This is the keymap that is used during algebraic entry.  This is
34604 mostly a copy of @code{minibuffer-local-map}.
34605 @end defvar
34607 @defvar calc-store-var-map
34608 This is the keymap that is used during entry of variable names for
34609 commands like @code{calc-store} and @code{calc-recall}.  This is
34610 mostly a copy of @code{minibuffer-local-completion-map}.
34611 @end defvar
34613 @defvar calc-edit-mode-map
34614 This is the (sparse) keymap used by @code{calc-edit} and other
34615 temporary editing commands.  It binds @key{RET}, @key{LFD},
34616 and @kbd{C-c C-c} to @code{calc-edit-finish}.
34617 @end defvar
34619 @defvar calc-mode-var-list
34620 This is a list of variables which are saved by @code{calc-save-modes}.
34621 Each entry is a list of two items, the variable (as a Lisp symbol)
34622 and its default value.  When modes are being saved, each variable
34623 is compared with its default value (using @code{equal}) and any
34624 non-default variables are written out.
34625 @end defvar
34627 @defvar calc-local-var-list
34628 This is a list of variables which should be buffer-local to the
34629 Calc buffer.  Each entry is a variable name (as a Lisp symbol).
34630 These variables also have their default values manipulated by
34631 the @code{calc} and @code{calc-quit} commands; @pxref{Multiple Calculators}.
34632 Since @code{calc-mode-hook} is called after this list has been
34633 used the first time, your hook should add a variable to the
34634 list and also call @code{make-local-variable} itself.
34635 @end defvar
34637 @node Copying, GNU Free Documentation License, Programming, Top
34638 @appendix GNU GENERAL PUBLIC LICENSE
34639 @include gpl.texi
34641 @node GNU Free Documentation License, Customizing Calc, Copying, Top
34642 @appendix GNU Free Documentation License
34643 @include doclicense.texi
34645 @node Customizing Calc, Reporting Bugs, GNU Free Documentation License, Top
34646 @appendix Customizing Calc
34648 The usual prefix for Calc is the key sequence @kbd{C-x *}.  If you wish
34649 to use a different prefix, you can put
34651 @example
34652 (global-set-key "NEWPREFIX" 'calc-dispatch)
34653 @end example
34655 @noindent
34656 in your .emacs file.  
34657 (@xref{Key Bindings,,Customizing Key Bindings,emacs,
34658 The GNU Emacs Manual}, for more information on binding keys.)
34659 A convenient way to start Calc is with @kbd{C-x * *}; to make it equally
34660 convenient for users who use a different prefix, the prefix can be
34661 followed by  @kbd{=}, @kbd{&}, @kbd{#}, @kbd{\}, @kbd{/}, @kbd{+} or
34662 @kbd{-} as well as @kbd{*} to start Calc, and so in many cases the last
34663 character of the prefix can simply be typed twice.
34665 Calc is controlled by many variables, most of which can be reset
34666 from within Calc.  Some variables are less involved with actual
34667 calculation, and can be set outside of Calc using Emacs's
34668 customization facilities.  These variables are listed below.
34669 Typing @kbd{M-x customize-variable RET @var{variable-name} RET}
34670 will bring up a buffer in which the variable's value can be redefined.
34671 Typing @kbd{M-x customize-group RET calc RET} will bring up a buffer which
34672 contains all of Calc's customizable variables.  (These variables can
34673 also be reset by putting the appropriate lines in your .emacs file;
34674 @xref{Init File, ,Init File, emacs, The GNU Emacs Manual}.)
34676 Some of the customizable variables are regular expressions.  A regular
34677 expression is basically a pattern that Calc can search for.
34678 See @ref{Regexp Search,, Regular Expression Search, emacs, The GNU Emacs Manual}
34679 to see how regular expressions work.
34681 @defvar calc-settings-file
34682 The variable @code{calc-settings-file} holds the file name in
34683 which commands like @kbd{m m} and @kbd{Z P} store ``permanent''
34684 definitions.  
34685 If @code{calc-settings-file} is not your user init file (typically
34686 @file{~/.emacs}) and if the variable @code{calc-loaded-settings-file} is
34687 @code{nil}, then Calc will automatically load your settings file (if it
34688 exists) the first time Calc is invoked.
34690 The default value for this variable is @code{"~/.calc.el"}.
34691 @end defvar
34693 @defvar calc-gnuplot-name
34694 See @ref{Graphics}.@*
34695 The variable @code{calc-gnuplot-name} should be the name of the
34696 GNUPLOT program (a string).  If you have GNUPLOT installed on your
34697 system but Calc is unable to find it, you may need to set this
34698 variable.  You may also need to set some Lisp variables to show Calc how
34699 to run GNUPLOT on your system, see @ref{Devices, ,Graphical Devices} .
34700 The default value of @code{calc-gnuplot-name} is @code{"gnuplot"}.
34701 @end defvar
34703 @defvar  calc-gnuplot-plot-command
34704 @defvarx calc-gnuplot-print-command
34705 See @ref{Devices, ,Graphical Devices}.@*
34706 The variables @code{calc-gnuplot-plot-command} and
34707 @code{calc-gnuplot-print-command} represent system commands to
34708 display and print the output of GNUPLOT, respectively.  These may be
34709 @code{nil} if no command is necessary, or strings which can include
34710 @samp{%s} to signify the name of the file to be displayed or printed.
34711 Or, these variables may contain Lisp expressions which are evaluated
34712 to display or print the output.
34714 The default value of @code{calc-gnuplot-plot-command} is @code{nil},
34715 and the default value of @code{calc-gnuplot-print-command} is
34716 @code{"lp %s"}.
34717 @end defvar
34719 @defvar calc-language-alist
34720 See @ref{Basic Embedded Mode}.@*
34721 The variable @code{calc-language-alist} controls the languages that
34722 Calc will associate with major modes.  When Calc embedded mode is
34723 enabled, it will try to use the current major mode to
34724 determine what language should be used.  (This can be overridden using
34725 Calc's mode changing commands, @xref{Mode Settings in Embedded Mode}.)
34726 The variable @code{calc-language-alist} consists of a list of pairs of
34727 the form  @code{(@var{MAJOR-MODE} . @var{LANGUAGE})}; for example, 
34728 @code{(latex-mode . latex)} is one such pair.  If Calc embedded is
34729 activated in a buffer whose major mode is @var{MAJOR-MODE}, it will set itself
34730 to use the language @var{LANGUAGE}.
34732 The default value of @code{calc-language-alist} is
34733 @example
34734    ((latex-mode . latex)
34735     (tex-mode   . tex)
34736     (plain-tex-mode . tex)
34737     (context-mode . tex)
34738     (nroff-mode . eqn)
34739     (pascal-mode . pascal)
34740     (c-mode . c)
34741     (c++-mode . c)
34742     (fortran-mode . fortran)
34743     (f90-mode . fortran))
34744 @end example
34745 @end defvar
34747 @defvar calc-embedded-announce-formula
34748 @defvarx calc-embedded-announce-formula-alist
34749 See @ref{Customizing Embedded Mode}.@*
34750 The variable @code{calc-embedded-announce-formula} helps determine
34751 what formulas @kbd{C-x * a} will activate in a buffer.  It is a
34752 regular expression, and when activating embedded formulas with
34753 @kbd{C-x * a}, it will tell Calc that what follows is a formula to be
34754 activated.  (Calc also uses other patterns to find formulas, such as
34755 @samp{=>} and @samp{:=}.)  
34757 The default pattern is @code{"%Embed\n\\(% .*\n\\)*"}, which checks
34758 for @samp{%Embed} followed by any number of lines beginning with
34759 @samp{%} and a space.
34761 The variable @code{calc-embedded-announce-formula-alist} is used to
34762 set @code{calc-embedded-announce-formula} to different regular
34763 expressions depending on the major mode of the editing buffer.
34764 It consists of a list of pairs of the form @code{(@var{MAJOR-MODE} .
34765 @var{REGEXP})}, and its default value is
34766 @example
34767    ((c++-mode     . "//Embed\n\\(// .*\n\\)*")
34768     (c-mode       . "/\\*Embed\\*/\n\\(/\\* .*\\*/\n\\)*")
34769     (f90-mode     . "!Embed\n\\(! .*\n\\)*")
34770     (fortran-mode . "C Embed\n\\(C .*\n\\)*")
34771     (html-helper-mode . "<!-- Embed -->\n\\(<!-- .* -->\n\\)*")
34772     (html-mode    . "<!-- Embed -->\n\\(<!-- .* -->\n\\)*")
34773     (nroff-mode   . "\\\\\"Embed\n\\(\\\\\" .*\n\\)*")
34774     (pascal-mode  . "@{Embed@}\n\\(@{.*@}\n\\)*")
34775     (sgml-mode    . "<!-- Embed -->\n\\(<!-- .* -->\n\\)*")
34776     (xml-mode     . "<!-- Embed -->\n\\(<!-- .* -->\n\\)*")
34777     (texinfo-mode . "@@c Embed\n\\(@@c .*\n\\)*"))
34778 @end example
34779 Any major modes added to @code{calc-embedded-announce-formula-alist}
34780 should also be added to @code{calc-embedded-open-close-plain-alist} 
34781 and @code{calc-embedded-open-close-mode-alist}.
34782 @end defvar
34784 @defvar  calc-embedded-open-formula
34785 @defvarx calc-embedded-close-formula
34786 @defvarx calc-embedded-open-close-formula-alist
34787 See @ref{Customizing Embedded Mode}.@*
34788 The variables @code{calc-embedded-open-formula} and
34789 @code{calc-embedded-open-formula} control the region that Calc will
34790 activate as a formula when Embedded mode is entered with @kbd{C-x * e}.
34791 They are regular expressions; 
34792 Calc normally scans backward and forward in the buffer for the
34793 nearest text matching these regular expressions to be the ``formula
34794 delimiters''.
34796 The simplest delimiters are blank lines.  Other delimiters that
34797 Embedded mode understands by default are:
34798 @enumerate
34799 @item
34800 The @TeX{} and La@TeX{} math delimiters @samp{$ $}, @samp{$$ $$},
34801 @samp{\[ \]}, and @samp{\( \)};
34802 @item
34803 Lines beginning with @samp{\begin} and @samp{\end} (except matrix delimiters);
34804 @item
34805 Lines beginning with @samp{@@} (Texinfo delimiters).
34806 @item
34807 Lines beginning with @samp{.EQ} and @samp{.EN} (@dfn{eqn} delimiters);
34808 @item
34809 Lines containing a single @samp{%} or @samp{.\"} symbol and nothing else.
34810 @end enumerate
34812 The variable @code{calc-embedded-open-close-formula-alist} is used to
34813 set @code{calc-embedded-open-formula} and
34814 @code{calc-embedded-close-formula} to different regular
34815 expressions depending on the major mode of the editing buffer.
34816 It consists of a list of lists of the form 
34817 @code{(@var{MAJOR-MODE}  @var{OPEN-FORMULA-REGEXP}
34818 @var{CLOSE-FORMULA-REGEXP})}, and its default value is
34819 @code{nil}.
34820 @end defvar
34822 @defvar  calc-embedded-open-word
34823 @defvarx calc-embedded-close-word
34824 @defvarx calc-embedded-open-close-word-alist
34825 See @ref{Customizing Embedded Mode}.@*
34826 The variables @code{calc-embedded-open-word} and
34827 @code{calc-embedded-close-word} control the region that Calc will
34828 activate when Embedded mode is entered with @kbd{C-x * w}.  They are
34829 regular expressions.
34831 The default values of @code{calc-embedded-open-word} and
34832 @code{calc-embedded-close-word} are @code{"^\\|[^-+0-9.eE]"} and 
34833 @code{"$\\|[^-+0-9.eE]"} respectively.
34835 The variable @code{calc-embedded-open-close-word-alist} is used to
34836 set @code{calc-embedded-open-word} and
34837 @code{calc-embedded-close-word} to different regular
34838 expressions depending on the major mode of the editing buffer.
34839 It consists of a list of lists of the form 
34840 @code{(@var{MAJOR-MODE}  @var{OPEN-WORD-REGEXP}
34841 @var{CLOSE-WORD-REGEXP})}, and its default value is
34842 @code{nil}.
34843 @end defvar
34845 @defvar  calc-embedded-open-plain
34846 @defvarx calc-embedded-close-plain
34847 @defvarx calc-embedded-open-close-plain-alist
34848 See @ref{Customizing Embedded Mode}.@*
34849 The variables @code{calc-embedded-open-plain} and
34850 @code{calc-embedded-open-plain} are used to delimit ``plain''
34851 formulas.  Note that these are actual strings, not regular
34852 expressions, because Calc must be able to write these string into a
34853 buffer as well as to recognize them.
34855 The default string for @code{calc-embedded-open-plain} is 
34856 @code{"%%% "}, note the trailing space.  The default string for 
34857 @code{calc-embedded-close-plain} is @code{" %%%\n"}, without
34858 the trailing newline here, the first line of a Big mode formula
34859 that followed might be shifted over with respect to the other lines.
34861 The variable @code{calc-embedded-open-close-plain-alist} is used to
34862 set @code{calc-embedded-open-plain} and
34863 @code{calc-embedded-close-plain} to different strings
34864 depending on the major mode of the editing buffer.
34865 It consists of a list of lists of the form 
34866 @code{(@var{MAJOR-MODE}  @var{OPEN-PLAIN-STRING}
34867 @var{CLOSE-PLAIN-STRING})}, and its default value is
34868 @example
34869    ((c++-mode     "// %% "   " %%\n")
34870     (c-mode       "/* %% "   " %% */\n")
34871     (f90-mode     "! %% "    " %%\n")
34872     (fortran-mode "C %% "    " %%\n")
34873     (html-helper-mode "<!-- %% " " %% -->\n")
34874     (html-mode "<!-- %% " " %% -->\n")
34875     (nroff-mode   "\\\" %% " " %%\n")
34876     (pascal-mode  "@{%% "    " %%@}\n")
34877     (sgml-mode     "<!-- %% " " %% -->\n")
34878     (xml-mode     "<!-- %% " " %% -->\n")
34879     (texinfo-mode "@@c %% "   " %%\n"))
34880 @end example
34881 Any major modes added to @code{calc-embedded-open-close-plain-alist}
34882 should also be added to @code{calc-embedded-announce-formula-alist}
34883 and @code{calc-embedded-open-close-mode-alist}.
34884 @end defvar
34886 @defvar  calc-embedded-open-new-formula
34887 @defvarx calc-embedded-close-new-formula
34888 @defvarx calc-embedded-open-close-new-formula-alist
34889 See @ref{Customizing Embedded Mode}.@*
34890 The variables @code{calc-embedded-open-new-formula} and
34891 @code{calc-embedded-close-new-formula} are strings which are
34892 inserted before and after a new formula when you type @kbd{C-x * f}.
34894 The default value of @code{calc-embedded-open-new-formula} is
34895 @code{"\n\n"}.  If this string begins with a newline character and the
34896 @kbd{C-x * f} is typed at the beginning of a line, @kbd{C-x * f} will skip
34897 this first newline to avoid introducing unnecessary blank lines in the
34898 file.  The default value of @code{calc-embedded-close-new-formula} is
34899 also @code{"\n\n"}.  The final newline is omitted by @w{@kbd{C-x * f}}
34900 if typed at the end of a line.  (It follows that if @kbd{C-x * f} is
34901 typed on a blank line, both a leading opening newline and a trailing
34902 closing newline are omitted.)
34904 The variable @code{calc-embedded-open-close-new-formula-alist} is used to
34905 set @code{calc-embedded-open-new-formula} and
34906 @code{calc-embedded-close-new-formula} to different strings
34907 depending on the major mode of the editing buffer.
34908 It consists of a list of lists of the form 
34909 @code{(@var{MAJOR-MODE}  @var{OPEN-NEW-FORMULA-STRING}
34910 @var{CLOSE-NEW-FORMULA-STRING})}, and its default value is
34911 @code{nil}.
34912 @end defvar
34914 @defvar  calc-embedded-open-mode
34915 @defvarx calc-embedded-close-mode
34916 @defvarx calc-embedded-open-close-mode-alist
34917 See @ref{Customizing Embedded Mode}.@*
34918 The variables @code{calc-embedded-open-mode} and
34919 @code{calc-embedded-close-mode} are strings which Calc will place before
34920 and after any mode annotations that it inserts.  Calc never scans for
34921 these strings; Calc always looks for the annotation itself, so it is not
34922 necessary to add them to user-written annotations.
34924 The default value of @code{calc-embedded-open-mode} is @code{"% "}
34925 and the default value of @code{calc-embedded-close-mode} is
34926 @code{"\n"}.  
34927 If you change the value of @code{calc-embedded-close-mode}, it is a good
34928 idea still to end with a newline so that mode annotations will appear on
34929 lines by themselves.
34931 The variable @code{calc-embedded-open-close-mode-alist} is used to
34932 set @code{calc-embedded-open-mode} and
34933 @code{calc-embedded-close-mode} to different strings
34934 expressions depending on the major mode of the editing buffer.
34935 It consists of a list of lists of the form 
34936 @code{(@var{MAJOR-MODE}  @var{OPEN-MODE-STRING}
34937 @var{CLOSE-MODE-STRING})}, and its default value is
34938 @example
34939    ((c++-mode     "// "   "\n")
34940     (c-mode       "/* "   " */\n")
34941     (f90-mode     "! "    "\n")
34942     (fortran-mode "C "    "\n")
34943     (html-helper-mode "<!-- " " -->\n")
34944     (html-mode    "<!-- " " -->\n")
34945     (nroff-mode   "\\\" " "\n")
34946     (pascal-mode  "@{ "    " @}\n")
34947     (sgml-mode    "<!-- " " -->\n")
34948     (xml-mode     "<!-- " " -->\n")
34949     (texinfo-mode "@@c "   "\n"))
34950 @end example
34951 Any major modes added to @code{calc-embedded-open-close-mode-alist}
34952 should also be added to @code{calc-embedded-announce-formula-alist}
34953 and @code{calc-embedded-open-close-plain-alist}.
34954 @end defvar
34956 @defvar calc-multiplication-has-precedence
34957 The variable @code{calc-multiplication-has-precedence} determines
34958 whether multiplication has precedence over division in algebraic
34959 formulas in normal language modes.  If
34960 @code{calc-multiplication-has-precedence} is non-@code{nil}, then
34961 multiplication has precedence (and, for certain obscure reasons, is
34962 right associative), and so for example @samp{a/b*c} will be interpreted
34963 as @samp{a/(b*c)}. If @code{calc-multiplication-has-precedence} is
34964 @code{nil}, then multiplication has the same precedence as division
34965 (and, like division, is left associative), and so for example
34966 @samp{a/b*c} will be interpreted as @samp{(a/b)*c}.  The default value
34967 of @code{calc-multiplication-has-precedence} is @code{t}.
34968 @end defvar
34970 @node Reporting Bugs, Summary, Customizing Calc, Top
34971 @appendix Reporting Bugs
34973 @noindent
34974 If you find a bug in Calc, send e-mail to Jay Belanger,
34976 @example
34977 jay.p.belanger@@gmail.com
34978 @end example
34980 @noindent
34981 There is an automatic command @kbd{M-x report-calc-bug} which helps
34982 you to report bugs.  This command prompts you for a brief subject
34983 line, then leaves you in a mail editing buffer.  Type @kbd{C-c C-c} to
34984 send your mail.  Make sure your subject line indicates that you are
34985 reporting a Calc bug; this command sends mail to the maintainer's
34986 regular mailbox.
34988 If you have suggestions for additional features for Calc, please send
34989 them.  Some have dared to suggest that Calc is already top-heavy with
34990 features; this obviously cannot be the case, so if you have ideas, send
34991 them right in.
34993 At the front of the source file, @file{calc.el}, is a list of ideas for
34994 future work.  If any enthusiastic souls wish to take it upon themselves
34995 to work on these, please send a message (using @kbd{M-x report-calc-bug})
34996 so any efforts can be coordinated.
34998 The latest version of Calc is available from Savannah, in the Emacs
34999 CVS tree.  See @uref{http://savannah.gnu.org/projects/emacs}.
35001 @c [summary]
35002 @node Summary, Key Index, Reporting Bugs, Top
35003 @appendix Calc Summary
35005 @noindent
35006 This section includes a complete list of Calc 2.1 keystroke commands.
35007 Each line lists the stack entries used by the command (top-of-stack
35008 last), the keystrokes themselves, the prompts asked by the command,
35009 and the result of the command (also with top-of-stack last).
35010 The result is expressed using the equivalent algebraic function.
35011 Commands which put no results on the stack show the full @kbd{M-x}
35012 command name in that position.  Numbers preceding the result or
35013 command name refer to notes at the end.
35015 Algebraic functions and @kbd{M-x} commands that don't have corresponding
35016 keystrokes are not listed in this summary.
35017 @xref{Command Index}.  @xref{Function Index}.
35019 @iftex
35020 @begingroup
35021 @tex
35022 \vskip-2\baselineskip \null
35023 \gdef\sumrow#1{\sumrowx#1\relax}%
35024 \gdef\sumrowx#1\:#2\:#3\:#4\:#5\:#6\relax{%
35025 \leavevmode%
35026 {\smallfonts
35027 \hbox to5em{\sl\hss#1}%
35028 \hbox to5em{\tt#2\hss}%
35029 \hbox to4em{\sl#3\hss}%
35030 \hbox to5em{\rm\hss#4}%
35031 \thinspace%
35032 {\tt#5}%
35033 {\sl#6}%
35035 \gdef\sumlpar{{\rm(}}%
35036 \gdef\sumrpar{{\rm)}}%
35037 \gdef\sumcomma{{\rm,\thinspace}}%
35038 \gdef\sumexcl{{\rm!}}%
35039 \gdef\sumbreak{\vskip-2.5\baselineskip\goodbreak}%
35040 \gdef\minus#1{{\tt-}}%
35041 @end tex
35042 @let@:=@sumsep
35043 @let@r=@sumrow
35044 @catcode`@(=@active @let(=@sumlpar
35045 @catcode`@)=@active @let)=@sumrpar
35046 @catcode`@,=@active @let,=@sumcomma
35047 @catcode`@!=@active @let!=@sumexcl
35048 @end iftex
35049 @format
35050 @iftex
35051 @advance@baselineskip-2.5pt
35052 @let@c@sumbreak
35053 @end iftex
35054 @r{       @:     C-x * a  @:             @:    33  @:calc-embedded-activate@:}
35055 @r{       @:     C-x * b  @:             @:        @:calc-big-or-small@:}
35056 @r{       @:     C-x * c  @:             @:        @:calc@:}
35057 @r{       @:     C-x * d  @:             @:        @:calc-embedded-duplicate@:}
35058 @r{       @:     C-x * e  @:             @:    34  @:calc-embedded@:}
35059 @r{       @:     C-x * f  @:formula      @:        @:calc-embedded-new-formula@:}
35060 @r{       @:     C-x * g  @:             @:    35  @:calc-grab-region@:}
35061 @r{       @:     C-x * i  @:             @:        @:calc-info@:}
35062 @r{       @:     C-x * j  @:             @:        @:calc-embedded-select@:}
35063 @r{       @:     C-x * k  @:             @:        @:calc-keypad@:}
35064 @r{       @:     C-x * l  @:             @:        @:calc-load-everything@:}
35065 @r{       @:     C-x * m  @:             @:        @:read-kbd-macro@:}
35066 @r{       @:     C-x * n  @:             @:     4  @:calc-embedded-next@:}
35067 @r{       @:     C-x * o  @:             @:        @:calc-other-window@:}
35068 @r{       @:     C-x * p  @:             @:     4  @:calc-embedded-previous@:}
35069 @r{       @:     C-x * q  @:formula      @:        @:quick-calc@:}
35070 @r{       @:     C-x * r  @:             @:    36  @:calc-grab-rectangle@:}
35071 @r{       @:     C-x * s  @:             @:        @:calc-info-summary@:}
35072 @r{       @:     C-x * t  @:             @:        @:calc-tutorial@:}
35073 @r{       @:     C-x * u  @:             @:        @:calc-embedded-update-formula@:}
35074 @r{       @:     C-x * w  @:             @:        @:calc-embedded-word@:}
35075 @r{       @:     C-x * x  @:             @:        @:calc-quit@:}
35076 @r{       @:     C-x * y  @:            @:1,28,49  @:calc-copy-to-buffer@:}
35077 @r{       @:     C-x * z  @:             @:        @:calc-user-invocation@:}
35078 @r{       @:     C-x * :  @:             @:    36  @:calc-grab-sum-down@:}
35079 @r{       @:     C-x * _  @:             @:    36  @:calc-grab-sum-across@:}
35080 @r{       @:     C-x * `  @:editing      @:    30  @:calc-embedded-edit@:}
35081 @r{       @:     C-x * 0  @:(zero)       @:        @:calc-reset@:}
35084 @r{       @:      0-9   @:number       @:        @:@:number}
35085 @r{       @:      .     @:number       @:        @:@:0.number}
35086 @r{       @:      _     @:number       @:        @:-@:number}
35087 @r{       @:      e     @:number       @:        @:@:1e number}
35088 @r{       @:      #     @:number       @:        @:@:current-radix@tfn{#}number}
35089 @r{       @:      P     @:(in number)  @:        @:+/-@:}
35090 @r{       @:      M     @:(in number)  @:        @:mod@:}
35091 @r{       @:      @@ ' " @:  (in number)@:        @:@:HMS form}
35092 @r{       @:      h m s @:  (in number)@:        @:@:HMS form}
35095 @r{       @:      '     @:formula      @: 37,46  @:@:formula}
35096 @r{       @:      $     @:formula      @: 37,46  @:$@:formula}
35097 @r{       @:      "     @:string       @: 37,46  @:@:string}
35100 @r{    a b@:      +     @:             @:     2  @:add@:(a,b)  a+b}
35101 @r{    a b@:      -     @:             @:     2  @:sub@:(a,b)  a@minus{}b}
35102 @r{    a b@:      *     @:             @:     2  @:mul@:(a,b)  a b, a*b}
35103 @r{    a b@:      /     @:             @:     2  @:div@:(a,b)  a/b}
35104 @r{    a b@:      ^     @:             @:     2  @:pow@:(a,b)  a^b}
35105 @r{    a b@:    I ^     @:             @:     2  @:nroot@:(a,b)  a^(1/b)}
35106 @r{    a b@:      %     @:             @:     2  @:mod@:(a,b)  a%b}
35107 @r{    a b@:      \     @:             @:     2  @:idiv@:(a,b)  a\b}
35108 @r{    a b@:      :     @:             @:     2  @:fdiv@:(a,b)}
35109 @r{    a b@:      |     @:             @:     2  @:vconcat@:(a,b)  a|b}
35110 @r{    a b@:    I |     @:             @:        @:vconcat@:(b,a)  b|a}
35111 @r{    a b@:    H |     @:             @:     2  @:append@:(a,b)}
35112 @r{    a b@:  I H |     @:             @:        @:append@:(b,a)}
35113 @r{      a@:      &     @:             @:     1  @:inv@:(a)  1/a}
35114 @r{      a@:      !     @:             @:     1  @:fact@:(a)  a!}
35115 @r{      a@:      =     @:             @:     1  @:evalv@:(a)}
35116 @r{      a@:      M-%   @:             @:        @:percent@:(a)  a%}
35119 @r{  ... a@:      @key{RET}   @:             @:     1  @:@:... a a}
35120 @r{  ... a@:      @key{SPC}   @:             @:     1  @:@:... a a}
35121 @r{... a b@:      @key{TAB}   @:             @:     3  @:@:... b a}
35122 @r{. a b c@:      M-@key{TAB} @:             @:     3  @:@:... b c a}
35123 @r{... a b@:      @key{LFD}   @:             @:     1  @:@:... a b a}
35124 @r{  ... a@:      @key{DEL}   @:             @:     1  @:@:...}
35125 @r{... a b@:      M-@key{DEL} @:             @:     1  @:@:... b}
35126 @r{       @:      M-@key{RET} @:             @:     4  @:calc-last-args@:}
35127 @r{      a@:      `     @:editing      @:  1,30  @:calc-edit@:}
35130 @r{  ... a@:      C-d   @:             @:     1  @:@:...}
35131 @r{       @:      C-k   @:             @:    27  @:calc-kill@:}
35132 @r{       @:      C-w   @:             @:    27  @:calc-kill-region@:}
35133 @r{       @:      C-y   @:             @:        @:calc-yank@:}
35134 @r{       @:      C-_   @:             @:     4  @:calc-undo@:}
35135 @r{       @:      M-k   @:             @:    27  @:calc-copy-as-kill@:}
35136 @r{       @:      M-w   @:             @:    27  @:calc-copy-region-as-kill@:}
35139 @r{       @:      [     @:             @:        @:@:[...}
35140 @r{[.. a b@:      ]     @:             @:        @:@:[a,b]}
35141 @r{       @:      (     @:             @:        @:@:(...}
35142 @r{(.. a b@:      )     @:             @:        @:@:(a,b)}
35143 @r{       @:      ,     @:             @:        @:@:vector or rect complex}
35144 @r{       @:      ;     @:             @:        @:@:matrix or polar complex}
35145 @r{       @:      ..    @:             @:        @:@:interval}
35148 @r{       @:      ~     @:             @:        @:calc-num-prefix@:}
35149 @r{       @:      <     @:             @:     4  @:calc-scroll-left@:}
35150 @r{       @:      >     @:             @:     4  @:calc-scroll-right@:}
35151 @r{       @:      @{     @:             @:     4  @:calc-scroll-down@:}
35152 @r{       @:      @}     @:             @:     4  @:calc-scroll-up@:}
35153 @r{       @:      ?     @:             @:        @:calc-help@:}
35156 @r{      a@:      n     @:             @:     1  @:neg@:(a)  @minus{}a}
35157 @r{       @:      o     @:             @:     4  @:calc-realign@:}
35158 @r{       @:      p     @:precision    @:    31  @:calc-precision@:}
35159 @r{       @:      q     @:             @:        @:calc-quit@:}
35160 @r{       @:      w     @:             @:        @:calc-why@:}
35161 @r{       @:      x     @:command      @:        @:M-x calc-@:command}
35162 @r{      a@:      y     @:            @:1,28,49  @:calc-copy-to-buffer@:}
35165 @r{      a@:      A     @:             @:     1  @:abs@:(a)}
35166 @r{    a b@:      B     @:             @:     2  @:log@:(a,b)}
35167 @r{    a b@:    I B     @:             @:     2  @:alog@:(a,b)  b^a}
35168 @r{      a@:      C     @:             @:     1  @:cos@:(a)}
35169 @r{      a@:    I C     @:             @:     1  @:arccos@:(a)}
35170 @r{      a@:    H C     @:             @:     1  @:cosh@:(a)}
35171 @r{      a@:  I H C     @:             @:     1  @:arccosh@:(a)}
35172 @r{       @:      D     @:             @:     4  @:calc-redo@:}
35173 @r{      a@:      E     @:             @:     1  @:exp@:(a)}
35174 @r{      a@:    H E     @:             @:     1  @:exp10@:(a)  10.^a}
35175 @r{      a@:      F     @:             @:  1,11  @:floor@:(a,d)}
35176 @r{      a@:    I F     @:             @:  1,11  @:ceil@:(a,d)}
35177 @r{      a@:    H F     @:             @:  1,11  @:ffloor@:(a,d)}
35178 @r{      a@:  I H F     @:             @:  1,11  @:fceil@:(a,d)}
35179 @r{      a@:      G     @:             @:     1  @:arg@:(a)}
35180 @r{       @:      H     @:command      @:    32  @:@:Hyperbolic}
35181 @r{       @:      I     @:command      @:    32  @:@:Inverse}
35182 @r{      a@:      J     @:             @:     1  @:conj@:(a)}
35183 @r{       @:      K     @:command      @:    32  @:@:Keep-args}
35184 @r{      a@:      L     @:             @:     1  @:ln@:(a)}
35185 @r{      a@:    H L     @:             @:     1  @:log10@:(a)}
35186 @r{       @:      M     @:             @:        @:calc-more-recursion-depth@:}
35187 @r{       @:    I M     @:             @:        @:calc-less-recursion-depth@:}
35188 @r{      a@:      N     @:             @:     5  @:evalvn@:(a)}
35189 @r{       @:      P     @:             @:        @:@:pi}
35190 @r{       @:    I P     @:             @:        @:@:gamma}
35191 @r{       @:    H P     @:             @:        @:@:e}
35192 @r{       @:  I H P     @:             @:        @:@:phi}
35193 @r{      a@:      Q     @:             @:     1  @:sqrt@:(a)}
35194 @r{      a@:    I Q     @:             @:     1  @:sqr@:(a)  a^2}
35195 @r{      a@:      R     @:             @:  1,11  @:round@:(a,d)}
35196 @r{      a@:    I R     @:             @:  1,11  @:trunc@:(a,d)}
35197 @r{      a@:    H R     @:             @:  1,11  @:fround@:(a,d)}
35198 @r{      a@:  I H R     @:             @:  1,11  @:ftrunc@:(a,d)}
35199 @r{      a@:      S     @:             @:     1  @:sin@:(a)}
35200 @r{      a@:    I S     @:             @:     1  @:arcsin@:(a)}
35201 @r{      a@:    H S     @:             @:     1  @:sinh@:(a)}
35202 @r{      a@:  I H S     @:             @:     1  @:arcsinh@:(a)}
35203 @r{      a@:      T     @:             @:     1  @:tan@:(a)}
35204 @r{      a@:    I T     @:             @:     1  @:arctan@:(a)}
35205 @r{      a@:    H T     @:             @:     1  @:tanh@:(a)}
35206 @r{      a@:  I H T     @:             @:     1  @:arctanh@:(a)}
35207 @r{       @:      U     @:             @:     4  @:calc-undo@:}
35208 @r{       @:      X     @:             @:     4  @:calc-call-last-kbd-macro@:}
35211 @r{    a b@:      a =   @:             @:     2  @:eq@:(a,b)  a=b}
35212 @r{    a b@:      a #   @:             @:     2  @:neq@:(a,b)  a!=b}
35213 @r{    a b@:      a <   @:             @:     2  @:lt@:(a,b)  a<b}
35214 @r{    a b@:      a >   @:             @:     2  @:gt@:(a,b)  a>b}
35215 @r{    a b@:      a [   @:             @:     2  @:leq@:(a,b)  a<=b}
35216 @r{    a b@:      a ]   @:             @:     2  @:geq@:(a,b)  a>=b}
35217 @r{    a b@:      a @{   @:             @:     2  @:in@:(a,b)}
35218 @r{    a b@:      a &   @:             @:  2,45  @:land@:(a,b)  a&&b}
35219 @r{    a b@:      a |   @:             @:  2,45  @:lor@:(a,b)  a||b}
35220 @r{      a@:      a !   @:             @:  1,45  @:lnot@:(a)  !a}
35221 @r{  a b c@:      a :   @:             @:    45  @:if@:(a,b,c)  a?b:c}
35222 @r{      a@:      a .   @:             @:     1  @:rmeq@:(a)}
35223 @r{      a@:      a "   @:             @:   7,8  @:calc-expand-formula@:}
35226 @r{      a@:      a +   @:i, l, h      @:  6,38  @:sum@:(a,i,l,h)}
35227 @r{      a@:      a -   @:i, l, h      @:  6,38  @:asum@:(a,i,l,h)}
35228 @r{      a@:      a *   @:i, l, h      @:  6,38  @:prod@:(a,i,l,h)}
35229 @r{    a b@:      a _   @:             @:     2  @:subscr@:(a,b)  a_b}
35232 @r{    a b@:      a \   @:             @:     2  @:pdiv@:(a,b)}
35233 @r{    a b@:      a %   @:             @:     2  @:prem@:(a,b)}
35234 @r{    a b@:      a /   @:             @:     2  @:pdivrem@:(a,b)  [q,r]}
35235 @r{    a b@:    H a /   @:             @:     2  @:pdivide@:(a,b)  q+r/b}
35238 @r{      a@:      a a   @:             @:     1  @:apart@:(a)}
35239 @r{      a@:      a b   @:old, new     @:    38  @:subst@:(a,old,new)}
35240 @r{      a@:      a c   @:v            @:    38  @:collect@:(a,v)}
35241 @r{      a@:      a d   @:v            @:  4,38  @:deriv@:(a,v)}
35242 @r{      a@:    H a d   @:v            @:  4,38  @:tderiv@:(a,v)}
35243 @r{      a@:      a e   @:             @:        @:esimplify@:(a)}
35244 @r{      a@:      a f   @:             @:     1  @:factor@:(a)}
35245 @r{      a@:    H a f   @:             @:     1  @:factors@:(a)}
35246 @r{    a b@:      a g   @:             @:     2  @:pgcd@:(a,b)}
35247 @r{      a@:      a i   @:v            @:    38  @:integ@:(a,v)}
35248 @r{      a@:      a m   @:pats         @:    38  @:match@:(a,pats)}
35249 @r{      a@:    I a m   @:pats         @:    38  @:matchnot@:(a,pats)}
35250 @r{ data x@:      a p   @:             @:    28  @:polint@:(data,x)}
35251 @r{ data x@:    H a p   @:             @:    28  @:ratint@:(data,x)}
35252 @r{      a@:      a n   @:             @:     1  @:nrat@:(a)}
35253 @r{      a@:      a r   @:rules        @:4,8,38  @:rewrite@:(a,rules,n)}
35254 @r{      a@:      a s   @:             @:        @:simplify@:(a)}
35255 @r{      a@:      a t   @:v, n         @: 31,39  @:taylor@:(a,v,n)}
35256 @r{      a@:      a v   @:             @:   7,8  @:calc-alg-evaluate@:}
35257 @r{      a@:      a x   @:             @:   4,8  @:expand@:(a)}
35260 @r{   data@:      a F   @:model, vars  @:    48  @:fit@:(m,iv,pv,data)}
35261 @r{   data@:    I a F   @:model, vars  @:    48  @:xfit@:(m,iv,pv,data)}
35262 @r{   data@:    H a F   @:model, vars  @:    48  @:efit@:(m,iv,pv,data)}
35263 @r{      a@:      a I   @:v, l, h      @:    38  @:ninteg@:(a,v,l,h)}
35264 @r{    a b@:      a M   @:op           @:    22  @:mapeq@:(op,a,b)}
35265 @r{    a b@:    I a M   @:op           @:    22  @:mapeqr@:(op,a,b)}
35266 @r{    a b@:    H a M   @:op           @:    22  @:mapeqp@:(op,a,b)}
35267 @r{    a g@:      a N   @:v            @:    38  @:minimize@:(a,v,g)}
35268 @r{    a g@:    H a N   @:v            @:    38  @:wminimize@:(a,v,g)}
35269 @r{      a@:      a P   @:v            @:    38  @:roots@:(a,v)}
35270 @r{    a g@:      a R   @:v            @:    38  @:root@:(a,v,g)}
35271 @r{    a g@:    H a R   @:v            @:    38  @:wroot@:(a,v,g)}
35272 @r{      a@:      a S   @:v            @:    38  @:solve@:(a,v)}
35273 @r{      a@:    I a S   @:v            @:    38  @:finv@:(a,v)}
35274 @r{      a@:    H a S   @:v            @:    38  @:fsolve@:(a,v)}
35275 @r{      a@:  I H a S   @:v            @:    38  @:ffinv@:(a,v)}
35276 @r{      a@:      a T   @:i, l, h      @:  6,38  @:table@:(a,i,l,h)}
35277 @r{    a g@:      a X   @:v            @:    38  @:maximize@:(a,v,g)}
35278 @r{    a g@:    H a X   @:v            @:    38  @:wmaximize@:(a,v,g)}
35281 @r{    a b@:      b a   @:             @:     9  @:and@:(a,b,w)}
35282 @r{      a@:      b c   @:             @:     9  @:clip@:(a,w)}
35283 @r{    a b@:      b d   @:             @:     9  @:diff@:(a,b,w)}
35284 @r{      a@:      b l   @:             @:    10  @:lsh@:(a,n,w)}
35285 @r{    a n@:    H b l   @:             @:     9  @:lsh@:(a,n,w)}
35286 @r{      a@:      b n   @:             @:     9  @:not@:(a,w)}
35287 @r{    a b@:      b o   @:             @:     9  @:or@:(a,b,w)}
35288 @r{      v@:      b p   @:             @:     1  @:vpack@:(v)}
35289 @r{      a@:      b r   @:             @:    10  @:rsh@:(a,n,w)}
35290 @r{    a n@:    H b r   @:             @:     9  @:rsh@:(a,n,w)}
35291 @r{      a@:      b t   @:             @:    10  @:rot@:(a,n,w)}
35292 @r{    a n@:    H b t   @:             @:     9  @:rot@:(a,n,w)}
35293 @r{      a@:      b u   @:             @:     1  @:vunpack@:(a)}
35294 @r{       @:      b w   @:w            @:  9,50  @:calc-word-size@:}
35295 @r{    a b@:      b x   @:             @:     9  @:xor@:(a,b,w)}
35298 @r{c s l p@:      b D   @:             @:        @:ddb@:(c,s,l,p)}
35299 @r{  r n p@:      b F   @:             @:        @:fv@:(r,n,p)}
35300 @r{  r n p@:    I b F   @:             @:        @:fvb@:(r,n,p)}
35301 @r{  r n p@:    H b F   @:             @:        @:fvl@:(r,n,p)}
35302 @r{      v@:      b I   @:             @:    19  @:irr@:(v)}
35303 @r{      v@:    I b I   @:             @:    19  @:irrb@:(v)}
35304 @r{      a@:      b L   @:             @:    10  @:ash@:(a,n,w)}
35305 @r{    a n@:    H b L   @:             @:     9  @:ash@:(a,n,w)}
35306 @r{  r n a@:      b M   @:             @:        @:pmt@:(r,n,a)}
35307 @r{  r n a@:    I b M   @:             @:        @:pmtb@:(r,n,a)}
35308 @r{  r n a@:    H b M   @:             @:        @:pmtl@:(r,n,a)}
35309 @r{    r v@:      b N   @:             @:    19  @:npv@:(r,v)}
35310 @r{    r v@:    I b N   @:             @:    19  @:npvb@:(r,v)}
35311 @r{  r n p@:      b P   @:             @:        @:pv@:(r,n,p)}
35312 @r{  r n p@:    I b P   @:             @:        @:pvb@:(r,n,p)}
35313 @r{  r n p@:    H b P   @:             @:        @:pvl@:(r,n,p)}
35314 @r{      a@:      b R   @:             @:    10  @:rash@:(a,n,w)}
35315 @r{    a n@:    H b R   @:             @:     9  @:rash@:(a,n,w)}
35316 @r{  c s l@:      b S   @:             @:        @:sln@:(c,s,l)}
35317 @r{  n p a@:      b T   @:             @:        @:rate@:(n,p,a)}
35318 @r{  n p a@:    I b T   @:             @:        @:rateb@:(n,p,a)}
35319 @r{  n p a@:    H b T   @:             @:        @:ratel@:(n,p,a)}
35320 @r{c s l p@:      b Y   @:             @:        @:syd@:(c,s,l,p)}
35322 @r{  r p a@:      b #   @:             @:        @:nper@:(r,p,a)}
35323 @r{  r p a@:    I b #   @:             @:        @:nperb@:(r,p,a)}
35324 @r{  r p a@:    H b #   @:             @:        @:nperl@:(r,p,a)}
35325 @r{    a b@:      b %   @:             @:        @:relch@:(a,b)}
35328 @r{      a@:      c c   @:             @:     5  @:pclean@:(a,p)}
35329 @r{      a@:      c 0-9 @:             @:        @:pclean@:(a,p)}
35330 @r{      a@:    H c c   @:             @:     5  @:clean@:(a,p)}
35331 @r{      a@:    H c 0-9 @:             @:        @:clean@:(a,p)}
35332 @r{      a@:      c d   @:             @:     1  @:deg@:(a)}
35333 @r{      a@:      c f   @:             @:     1  @:pfloat@:(a)}
35334 @r{      a@:    H c f   @:             @:     1  @:float@:(a)}
35335 @r{      a@:      c h   @:             @:     1  @:hms@:(a)}
35336 @r{      a@:      c p   @:             @:        @:polar@:(a)}
35337 @r{      a@:    I c p   @:             @:        @:rect@:(a)}
35338 @r{      a@:      c r   @:             @:     1  @:rad@:(a)}
35341 @r{      a@:      c F   @:             @:     5  @:pfrac@:(a,p)}
35342 @r{      a@:    H c F   @:             @:     5  @:frac@:(a,p)}
35345 @r{      a@:      c %   @:             @:        @:percent@:(a*100)}
35348 @r{       @:      d .   @:char         @:    50  @:calc-point-char@:}
35349 @r{       @:      d ,   @:char         @:    50  @:calc-group-char@:}
35350 @r{       @:      d <   @:             @: 13,50  @:calc-left-justify@:}
35351 @r{       @:      d =   @:             @: 13,50  @:calc-center-justify@:}
35352 @r{       @:      d >   @:             @: 13,50  @:calc-right-justify@:}
35353 @r{       @:      d @{   @:label        @:    50  @:calc-left-label@:}
35354 @r{       @:      d @}   @:label        @:    50  @:calc-right-label@:}
35355 @r{       @:      d [   @:             @:     4  @:calc-truncate-up@:}
35356 @r{       @:      d ]   @:             @:     4  @:calc-truncate-down@:}
35357 @r{       @:      d "   @:             @: 12,50  @:calc-display-strings@:}
35358 @r{       @:      d @key{SPC} @:             @:        @:calc-refresh@:}
35359 @r{       @:      d @key{RET} @:             @:     1  @:calc-refresh-top@:}
35362 @r{       @:      d 0   @:             @:    50  @:calc-decimal-radix@:}
35363 @r{       @:      d 2   @:             @:    50  @:calc-binary-radix@:}
35364 @r{       @:      d 6   @:             @:    50  @:calc-hex-radix@:}
35365 @r{       @:      d 8   @:             @:    50  @:calc-octal-radix@:}
35368 @r{       @:      d b   @:           @:12,13,50  @:calc-line-breaking@:}
35369 @r{       @:      d c   @:             @:    50  @:calc-complex-notation@:}
35370 @r{       @:      d d   @:format       @:    50  @:calc-date-notation@:}
35371 @r{       @:      d e   @:             @:  5,50  @:calc-eng-notation@:}
35372 @r{       @:      d f   @:num          @: 31,50  @:calc-fix-notation@:}
35373 @r{       @:      d g   @:           @:12,13,50  @:calc-group-digits@:}
35374 @r{       @:      d h   @:format       @:    50  @:calc-hms-notation@:}
35375 @r{       @:      d i   @:             @:    50  @:calc-i-notation@:}
35376 @r{       @:      d j   @:             @:    50  @:calc-j-notation@:}
35377 @r{       @:      d l   @:             @: 12,50  @:calc-line-numbering@:}
35378 @r{       @:      d n   @:             @:  5,50  @:calc-normal-notation@:}
35379 @r{       @:      d o   @:format       @:    50  @:calc-over-notation@:}
35380 @r{       @:      d p   @:             @: 12,50  @:calc-show-plain@:}
35381 @r{       @:      d r   @:radix        @: 31,50  @:calc-radix@:}
35382 @r{       @:      d s   @:             @:  5,50  @:calc-sci-notation@:}
35383 @r{       @:      d t   @:             @:    27  @:calc-truncate-stack@:}
35384 @r{       @:      d w   @:             @: 12,13  @:calc-auto-why@:}
35385 @r{       @:      d z   @:             @: 12,50  @:calc-leading-zeros@:}
35388 @r{       @:      d B   @:             @:    50  @:calc-big-language@:}
35389 @r{       @:      d C   @:             @:    50  @:calc-c-language@:}
35390 @r{       @:      d E   @:             @:    50  @:calc-eqn-language@:}
35391 @r{       @:      d F   @:             @:    50  @:calc-fortran-language@:}
35392 @r{       @:      d M   @:             @:    50  @:calc-mathematica-language@:}
35393 @r{       @:      d N   @:             @:    50  @:calc-normal-language@:}
35394 @r{       @:      d O   @:             @:    50  @:calc-flat-language@:}
35395 @r{       @:      d P   @:             @:    50  @:calc-pascal-language@:}
35396 @r{       @:      d T   @:             @:    50  @:calc-tex-language@:}
35397 @r{       @:      d L   @:             @:    50  @:calc-latex-language@:}
35398 @r{       @:      d U   @:             @:    50  @:calc-unformatted-language@:}
35399 @r{       @:      d W   @:             @:    50  @:calc-maple-language@:}
35402 @r{      a@:      f [   @:             @:     4  @:decr@:(a,n)}
35403 @r{      a@:      f ]   @:             @:     4  @:incr@:(a,n)}
35406 @r{    a b@:      f b   @:             @:     2  @:beta@:(a,b)}
35407 @r{      a@:      f e   @:             @:     1  @:erf@:(a)}
35408 @r{      a@:    I f e   @:             @:     1  @:erfc@:(a)}
35409 @r{      a@:      f g   @:             @:     1  @:gamma@:(a)}
35410 @r{    a b@:      f h   @:             @:     2  @:hypot@:(a,b)}
35411 @r{      a@:      f i   @:             @:     1  @:im@:(a)}
35412 @r{    n a@:      f j   @:             @:     2  @:besJ@:(n,a)}
35413 @r{    a b@:      f n   @:             @:     2  @:min@:(a,b)}
35414 @r{      a@:      f r   @:             @:     1  @:re@:(a)}
35415 @r{      a@:      f s   @:             @:     1  @:sign@:(a)}
35416 @r{    a b@:      f x   @:             @:     2  @:max@:(a,b)}
35417 @r{    n a@:      f y   @:             @:     2  @:besY@:(n,a)}
35420 @r{      a@:      f A   @:             @:     1  @:abssqr@:(a)}
35421 @r{  x a b@:      f B   @:             @:        @:betaI@:(x,a,b)}
35422 @r{  x a b@:    H f B   @:             @:        @:betaB@:(x,a,b)}
35423 @r{      a@:      f E   @:             @:     1  @:expm1@:(a)}
35424 @r{    a x@:      f G   @:             @:     2  @:gammaP@:(a,x)}
35425 @r{    a x@:    I f G   @:             @:     2  @:gammaQ@:(a,x)}
35426 @r{    a x@:    H f G   @:             @:     2  @:gammag@:(a,x)}
35427 @r{    a x@:  I H f G   @:             @:     2  @:gammaG@:(a,x)}
35428 @r{    a b@:      f I   @:             @:     2  @:ilog@:(a,b)}
35429 @r{    a b@:    I f I   @:             @:     2  @:alog@:(a,b)  b^a}
35430 @r{      a@:      f L   @:             @:     1  @:lnp1@:(a)}
35431 @r{      a@:      f M   @:             @:     1  @:mant@:(a)}
35432 @r{      a@:      f Q   @:             @:     1  @:isqrt@:(a)}
35433 @r{      a@:    I f Q   @:             @:     1  @:sqr@:(a)  a^2}
35434 @r{    a n@:      f S   @:             @:     2  @:scf@:(a,n)}
35435 @r{    y x@:      f T   @:             @:        @:arctan2@:(y,x)}
35436 @r{      a@:      f X   @:             @:     1  @:xpon@:(a)}
35439 @r{    x y@:      g a   @:             @: 28,40  @:calc-graph-add@:}
35440 @r{       @:      g b   @:             @:    12  @:calc-graph-border@:}
35441 @r{       @:      g c   @:             @:        @:calc-graph-clear@:}
35442 @r{       @:      g d   @:             @:    41  @:calc-graph-delete@:}
35443 @r{    x y@:      g f   @:             @: 28,40  @:calc-graph-fast@:}
35444 @r{       @:      g g   @:             @:    12  @:calc-graph-grid@:}
35445 @r{       @:      g h   @:title        @:        @:calc-graph-header@:}
35446 @r{       @:      g j   @:             @:     4  @:calc-graph-juggle@:}
35447 @r{       @:      g k   @:             @:    12  @:calc-graph-key@:}
35448 @r{       @:      g l   @:             @:    12  @:calc-graph-log-x@:}
35449 @r{       @:      g n   @:name         @:        @:calc-graph-name@:}
35450 @r{       @:      g p   @:             @:    42  @:calc-graph-plot@:}
35451 @r{       @:      g q   @:             @:        @:calc-graph-quit@:}
35452 @r{       @:      g r   @:range        @:        @:calc-graph-range-x@:}
35453 @r{       @:      g s   @:             @: 12,13  @:calc-graph-line-style@:}
35454 @r{       @:      g t   @:title        @:        @:calc-graph-title-x@:}
35455 @r{       @:      g v   @:             @:        @:calc-graph-view-commands@:}
35456 @r{       @:      g x   @:display      @:        @:calc-graph-display@:}
35457 @r{       @:      g z   @:             @:    12  @:calc-graph-zero-x@:}
35460 @r{  x y z@:      g A   @:             @: 28,40  @:calc-graph-add-3d@:}
35461 @r{       @:      g C   @:command      @:        @:calc-graph-command@:}
35462 @r{       @:      g D   @:device       @: 43,44  @:calc-graph-device@:}
35463 @r{  x y z@:      g F   @:             @: 28,40  @:calc-graph-fast-3d@:}
35464 @r{       @:      g H   @:             @:    12  @:calc-graph-hide@:}
35465 @r{       @:      g K   @:             @:        @:calc-graph-kill@:}
35466 @r{       @:      g L   @:             @:    12  @:calc-graph-log-y@:}
35467 @r{       @:      g N   @:number       @: 43,51  @:calc-graph-num-points@:}
35468 @r{       @:      g O   @:filename     @: 43,44  @:calc-graph-output@:}
35469 @r{       @:      g P   @:             @:    42  @:calc-graph-print@:}
35470 @r{       @:      g R   @:range        @:        @:calc-graph-range-y@:}
35471 @r{       @:      g S   @:             @: 12,13  @:calc-graph-point-style@:}
35472 @r{       @:      g T   @:title        @:        @:calc-graph-title-y@:}
35473 @r{       @:      g V   @:             @:        @:calc-graph-view-trail@:}
35474 @r{       @:      g X   @:format       @:        @:calc-graph-geometry@:}
35475 @r{       @:      g Z   @:             @:    12  @:calc-graph-zero-y@:}
35478 @r{       @:      g C-l @:             @:    12  @:calc-graph-log-z@:}
35479 @r{       @:      g C-r @:range        @:        @:calc-graph-range-z@:}
35480 @r{       @:      g C-t @:title        @:        @:calc-graph-title-z@:}
35483 @r{       @:      h b   @:             @:        @:calc-describe-bindings@:}
35484 @r{       @:      h c   @:key          @:        @:calc-describe-key-briefly@:}
35485 @r{       @:      h f   @:function     @:        @:calc-describe-function@:}
35486 @r{       @:      h h   @:             @:        @:calc-full-help@:}
35487 @r{       @:      h i   @:             @:        @:calc-info@:}
35488 @r{       @:      h k   @:key          @:        @:calc-describe-key@:}
35489 @r{       @:      h n   @:             @:        @:calc-view-news@:}
35490 @r{       @:      h s   @:             @:        @:calc-info-summary@:}
35491 @r{       @:      h t   @:             @:        @:calc-tutorial@:}
35492 @r{       @:      h v   @:var          @:        @:calc-describe-variable@:}
35495 @r{       @:      j 1-9 @:             @:        @:calc-select-part@:}
35496 @r{       @:      j @key{RET} @:             @:    27  @:calc-copy-selection@:}
35497 @r{       @:      j @key{DEL} @:             @:    27  @:calc-del-selection@:}
35498 @r{       @:      j '   @:formula      @:    27  @:calc-enter-selection@:}
35499 @r{       @:      j `   @:editing      @: 27,30  @:calc-edit-selection@:}
35500 @r{       @:      j "   @:             @:  7,27  @:calc-sel-expand-formula@:}
35503 @r{       @:      j +   @:formula      @:    27  @:calc-sel-add-both-sides@:}
35504 @r{       @:      j -   @:formula      @:    27  @:calc-sel-sub-both-sides@:}
35505 @r{       @:      j *   @:formula      @:    27  @:calc-sel-mul-both-sides@:}
35506 @r{       @:      j /   @:formula      @:    27  @:calc-sel-div-both-sides@:}
35507 @r{       @:      j &   @:             @:    27  @:calc-sel-invert@:}
35510 @r{       @:      j a   @:             @:    27  @:calc-select-additional@:}
35511 @r{       @:      j b   @:             @:    12  @:calc-break-selections@:}
35512 @r{       @:      j c   @:             @:        @:calc-clear-selections@:}
35513 @r{       @:      j d   @:             @: 12,50  @:calc-show-selections@:}
35514 @r{       @:      j e   @:             @:    12  @:calc-enable-selections@:}
35515 @r{       @:      j l   @:             @:  4,27  @:calc-select-less@:}
35516 @r{       @:      j m   @:             @:  4,27  @:calc-select-more@:}
35517 @r{       @:      j n   @:             @:     4  @:calc-select-next@:}
35518 @r{       @:      j o   @:             @:  4,27  @:calc-select-once@:}
35519 @r{       @:      j p   @:             @:     4  @:calc-select-previous@:}
35520 @r{       @:      j r   @:rules        @:4,8,27  @:calc-rewrite-selection@:}
35521 @r{       @:      j s   @:             @:  4,27  @:calc-select-here@:}
35522 @r{       @:      j u   @:             @:    27  @:calc-unselect@:}
35523 @r{       @:      j v   @:             @:  7,27  @:calc-sel-evaluate@:}
35526 @r{       @:      j C   @:             @:    27  @:calc-sel-commute@:}
35527 @r{       @:      j D   @:             @:  4,27  @:calc-sel-distribute@:}
35528 @r{       @:      j E   @:             @:    27  @:calc-sel-jump-equals@:}
35529 @r{       @:      j I   @:             @:    27  @:calc-sel-isolate@:}
35530 @r{       @:    H j I   @:             @:    27  @:calc-sel-isolate@: (full)}
35531 @r{       @:      j L   @:             @:  4,27  @:calc-commute-left@:}
35532 @r{       @:      j M   @:             @:    27  @:calc-sel-merge@:}
35533 @r{       @:      j N   @:             @:    27  @:calc-sel-negate@:}
35534 @r{       @:      j O   @:             @:  4,27  @:calc-select-once-maybe@:}
35535 @r{       @:      j R   @:             @:  4,27  @:calc-commute-right@:}
35536 @r{       @:      j S   @:             @:  4,27  @:calc-select-here-maybe@:}
35537 @r{       @:      j U   @:             @:    27  @:calc-sel-unpack@:}
35540 @r{       @:      k a   @:             @:        @:calc-random-again@:}
35541 @r{      n@:      k b   @:             @:     1  @:bern@:(n)}
35542 @r{    n x@:    H k b   @:             @:     2  @:bern@:(n,x)}
35543 @r{    n m@:      k c   @:             @:     2  @:choose@:(n,m)}
35544 @r{    n m@:    H k c   @:             @:     2  @:perm@:(n,m)}
35545 @r{      n@:      k d   @:             @:     1  @:dfact@:(n)  n!!}
35546 @r{      n@:      k e   @:             @:     1  @:euler@:(n)}
35547 @r{    n x@:    H k e   @:             @:     2  @:euler@:(n,x)}
35548 @r{      n@:      k f   @:             @:     4  @:prfac@:(n)}
35549 @r{    n m@:      k g   @:             @:     2  @:gcd@:(n,m)}
35550 @r{    m n@:      k h   @:             @:    14  @:shuffle@:(n,m)}
35551 @r{    n m@:      k l   @:             @:     2  @:lcm@:(n,m)}
35552 @r{      n@:      k m   @:             @:     1  @:moebius@:(n)}
35553 @r{      n@:      k n   @:             @:     4  @:nextprime@:(n)}
35554 @r{      n@:    I k n   @:             @:     4  @:prevprime@:(n)}
35555 @r{      n@:      k p   @:             @:  4,28  @:calc-prime-test@:}
35556 @r{      m@:      k r   @:             @:    14  @:random@:(m)}
35557 @r{    n m@:      k s   @:             @:     2  @:stir1@:(n,m)}
35558 @r{    n m@:    H k s   @:             @:     2  @:stir2@:(n,m)}
35559 @r{      n@:      k t   @:             @:     1  @:totient@:(n)}
35562 @r{  n p x@:      k B   @:             @:        @:utpb@:(x,n,p)}
35563 @r{  n p x@:    I k B   @:             @:        @:ltpb@:(x,n,p)}
35564 @r{    v x@:      k C   @:             @:        @:utpc@:(x,v)}
35565 @r{    v x@:    I k C   @:             @:        @:ltpc@:(x,v)}
35566 @r{    n m@:      k E   @:             @:        @:egcd@:(n,m)}
35567 @r{v1 v2 x@:      k F   @:             @:        @:utpf@:(x,v1,v2)}
35568 @r{v1 v2 x@:    I k F   @:             @:        @:ltpf@:(x,v1,v2)}
35569 @r{  m s x@:      k N   @:             @:        @:utpn@:(x,m,s)}
35570 @r{  m s x@:    I k N   @:             @:        @:ltpn@:(x,m,s)}
35571 @r{    m x@:      k P   @:             @:        @:utpp@:(x,m)}
35572 @r{    m x@:    I k P   @:             @:        @:ltpp@:(x,m)}
35573 @r{    v x@:      k T   @:             @:        @:utpt@:(x,v)}
35574 @r{    v x@:    I k T   @:             @:        @:ltpt@:(x,v)}
35577 @r{       @:      m a   @:             @: 12,13  @:calc-algebraic-mode@:}
35578 @r{       @:      m d   @:             @:        @:calc-degrees-mode@:}
35579 @r{       @:      m e   @:             @:        @:calc-embedded-preserve-modes@:}
35580 @r{       @:      m f   @:             @:    12  @:calc-frac-mode@:}
35581 @r{       @:      m g   @:             @:    52  @:calc-get-modes@:}
35582 @r{       @:      m h   @:             @:        @:calc-hms-mode@:}
35583 @r{       @:      m i   @:             @: 12,13  @:calc-infinite-mode@:}
35584 @r{       @:      m m   @:             @:        @:calc-save-modes@:}
35585 @r{       @:      m p   @:             @:    12  @:calc-polar-mode@:}
35586 @r{       @:      m r   @:             @:        @:calc-radians-mode@:}
35587 @r{       @:      m s   @:             @:    12  @:calc-symbolic-mode@:}
35588 @r{       @:      m t   @:             @:    12  @:calc-total-algebraic-mode@:}
35589 @r{       @:      m v   @:             @: 12,13  @:calc-matrix-mode@:}
35590 @r{       @:      m w   @:             @:    13  @:calc-working@:}
35591 @r{       @:      m x   @:             @:        @:calc-always-load-extensions@:}
35594 @r{       @:      m A   @:             @:    12  @:calc-alg-simplify-mode@:}
35595 @r{       @:      m B   @:             @:    12  @:calc-bin-simplify-mode@:}
35596 @r{       @:      m C   @:             @:    12  @:calc-auto-recompute@:}
35597 @r{       @:      m D   @:             @:        @:calc-default-simplify-mode@:}
35598 @r{       @:      m E   @:             @:    12  @:calc-ext-simplify-mode@:}
35599 @r{       @:      m F   @:filename     @:    13  @:calc-settings-file-name@:}
35600 @r{       @:      m N   @:             @:    12  @:calc-num-simplify-mode@:}
35601 @r{       @:      m O   @:             @:    12  @:calc-no-simplify-mode@:}
35602 @r{       @:      m R   @:             @: 12,13  @:calc-mode-record-mode@:}
35603 @r{       @:      m S   @:             @:    12  @:calc-shift-prefix@:}
35604 @r{       @:      m U   @:             @:    12  @:calc-units-simplify-mode@:}
35607 @r{       @:      s c   @:var1, var2   @:    29  @:calc-copy-variable@:}
35608 @r{       @:      s d   @:var, decl    @:        @:calc-declare-variable@:}
35609 @r{       @:      s e   @:var, editing @: 29,30  @:calc-edit-variable@:}
35610 @r{       @:      s i   @:buffer       @:        @:calc-insert-variables@:}
35611 @r{       @:      s k   @:const, var   @:    29  @:calc-copy-special-constant@:}
35612 @r{    a b@:      s l   @:var          @:    29  @:@:a  (letting var=b)}
35613 @r{  a ...@:      s m   @:op, var      @: 22,29  @:calc-store-map@:}
35614 @r{       @:      s n   @:var          @: 29,47  @:calc-store-neg@:  (v/-1)}
35615 @r{       @:      s p   @:var          @:    29  @:calc-permanent-variable@:}
35616 @r{       @:      s r   @:var          @:    29  @:@:v  (recalled value)}
35617 @r{       @:      r 0-9 @:             @:        @:calc-recall-quick@:}
35618 @r{      a@:      s s   @:var          @: 28,29  @:calc-store@:}
35619 @r{      a@:      s 0-9 @:             @:        @:calc-store-quick@:}
35620 @r{      a@:      s t   @:var          @:    29  @:calc-store-into@:}
35621 @r{      a@:      t 0-9 @:             @:        @:calc-store-into-quick@:}
35622 @r{       @:      s u   @:var          @:    29  @:calc-unstore@:}
35623 @r{      a@:      s x   @:var          @:    29  @:calc-store-exchange@:}
35626 @r{       @:      s A   @:editing      @:    30  @:calc-edit-AlgSimpRules@:}
35627 @r{       @:      s D   @:editing      @:    30  @:calc-edit-Decls@:}
35628 @r{       @:      s E   @:editing      @:    30  @:calc-edit-EvalRules@:}
35629 @r{       @:      s F   @:editing      @:    30  @:calc-edit-FitRules@:}
35630 @r{       @:      s G   @:editing      @:    30  @:calc-edit-GenCount@:}
35631 @r{       @:      s H   @:editing      @:    30  @:calc-edit-Holidays@:}
35632 @r{       @:      s I   @:editing      @:    30  @:calc-edit-IntegLimit@:}
35633 @r{       @:      s L   @:editing      @:    30  @:calc-edit-LineStyles@:}
35634 @r{       @:      s P   @:editing      @:    30  @:calc-edit-PointStyles@:}
35635 @r{       @:      s R   @:editing      @:    30  @:calc-edit-PlotRejects@:}
35636 @r{       @:      s T   @:editing      @:    30  @:calc-edit-TimeZone@:}
35637 @r{       @:      s U   @:editing      @:    30  @:calc-edit-Units@:}
35638 @r{       @:      s X   @:editing      @:    30  @:calc-edit-ExtSimpRules@:}
35641 @r{      a@:      s +   @:var          @: 29,47  @:calc-store-plus@:  (v+a)}
35642 @r{      a@:      s -   @:var          @: 29,47  @:calc-store-minus@:  (v-a)}
35643 @r{      a@:      s *   @:var          @: 29,47  @:calc-store-times@:  (v*a)}
35644 @r{      a@:      s /   @:var          @: 29,47  @:calc-store-div@:  (v/a)}
35645 @r{      a@:      s ^   @:var          @: 29,47  @:calc-store-power@:  (v^a)}
35646 @r{      a@:      s |   @:var          @: 29,47  @:calc-store-concat@:  (v|a)}
35647 @r{       @:      s &   @:var          @: 29,47  @:calc-store-inv@:  (v^-1)}
35648 @r{       @:      s [   @:var          @: 29,47  @:calc-store-decr@:  (v-1)}
35649 @r{       @:      s ]   @:var          @: 29,47  @:calc-store-incr@:  (v-(-1))}
35650 @r{    a b@:      s :   @:             @:     2  @:assign@:(a,b)  a @tfn{:=} b}
35651 @r{      a@:      s =   @:             @:     1  @:evalto@:(a,b)  a @tfn{=>}}
35654 @r{       @:      t [   @:             @:     4  @:calc-trail-first@:}
35655 @r{       @:      t ]   @:             @:     4  @:calc-trail-last@:}
35656 @r{       @:      t <   @:             @:     4  @:calc-trail-scroll-left@:}
35657 @r{       @:      t >   @:             @:     4  @:calc-trail-scroll-right@:}
35658 @r{       @:      t .   @:             @:    12  @:calc-full-trail-vectors@:}
35661 @r{       @:      t b   @:             @:     4  @:calc-trail-backward@:}
35662 @r{       @:      t d   @:             @: 12,50  @:calc-trail-display@:}
35663 @r{       @:      t f   @:             @:     4  @:calc-trail-forward@:}
35664 @r{       @:      t h   @:             @:        @:calc-trail-here@:}
35665 @r{       @:      t i   @:             @:        @:calc-trail-in@:}
35666 @r{       @:      t k   @:             @:     4  @:calc-trail-kill@:}
35667 @r{       @:      t m   @:string       @:        @:calc-trail-marker@:}
35668 @r{       @:      t n   @:             @:     4  @:calc-trail-next@:}
35669 @r{       @:      t o   @:             @:        @:calc-trail-out@:}
35670 @r{       @:      t p   @:             @:     4  @:calc-trail-previous@:}
35671 @r{       @:      t r   @:string       @:        @:calc-trail-isearch-backward@:}
35672 @r{       @:      t s   @:string       @:        @:calc-trail-isearch-forward@:}
35673 @r{       @:      t y   @:             @:     4  @:calc-trail-yank@:}
35676 @r{      d@:      t C   @:oz, nz       @:        @:tzconv@:(d,oz,nz)}
35677 @r{d oz nz@:      t C   @:$            @:        @:tzconv@:(d,oz,nz)}
35678 @r{      d@:      t D   @:             @:    15  @:date@:(d)}
35679 @r{      d@:      t I   @:             @:     4  @:incmonth@:(d,n)}
35680 @r{      d@:      t J   @:             @:    16  @:julian@:(d,z)}
35681 @r{      d@:      t M   @:             @:    17  @:newmonth@:(d,n)}
35682 @r{       @:      t N   @:             @:    16  @:now@:(z)}
35683 @r{      d@:      t P   @:1            @:    31  @:year@:(d)}
35684 @r{      d@:      t P   @:2            @:    31  @:month@:(d)}
35685 @r{      d@:      t P   @:3            @:    31  @:day@:(d)}
35686 @r{      d@:      t P   @:4            @:    31  @:hour@:(d)}
35687 @r{      d@:      t P   @:5            @:    31  @:minute@:(d)}
35688 @r{      d@:      t P   @:6            @:    31  @:second@:(d)}
35689 @r{      d@:      t P   @:7            @:    31  @:weekday@:(d)}
35690 @r{      d@:      t P   @:8            @:    31  @:yearday@:(d)}
35691 @r{      d@:      t P   @:9            @:    31  @:time@:(d)}
35692 @r{      d@:      t U   @:             @:    16  @:unixtime@:(d,z)}
35693 @r{      d@:      t W   @:             @:    17  @:newweek@:(d,w)}
35694 @r{      d@:      t Y   @:             @:    17  @:newyear@:(d,n)}
35697 @r{    a b@:      t +   @:             @:     2  @:badd@:(a,b)}
35698 @r{    a b@:      t -   @:             @:     2  @:bsub@:(a,b)}
35701 @r{       @:      u a   @:             @:    12  @:calc-autorange-units@:}
35702 @r{      a@:      u b   @:             @:        @:calc-base-units@:}
35703 @r{      a@:      u c   @:units        @:    18  @:calc-convert-units@:}
35704 @r{   defn@:      u d   @:unit, descr  @:        @:calc-define-unit@:}
35705 @r{       @:      u e   @:             @:        @:calc-explain-units@:}
35706 @r{       @:      u g   @:unit         @:        @:calc-get-unit-definition@:}
35707 @r{       @:      u p   @:             @:        @:calc-permanent-units@:}
35708 @r{      a@:      u r   @:             @:        @:calc-remove-units@:}
35709 @r{      a@:      u s   @:             @:        @:usimplify@:(a)}
35710 @r{      a@:      u t   @:units        @:    18  @:calc-convert-temperature@:}
35711 @r{       @:      u u   @:unit         @:        @:calc-undefine-unit@:}
35712 @r{       @:      u v   @:             @:        @:calc-enter-units-table@:}
35713 @r{      a@:      u x   @:             @:        @:calc-extract-units@:}
35714 @r{      a@:      u 0-9 @:             @:        @:calc-quick-units@:}
35717 @r{  v1 v2@:      u C   @:             @:    20  @:vcov@:(v1,v2)}
35718 @r{  v1 v2@:    I u C   @:             @:    20  @:vpcov@:(v1,v2)}
35719 @r{  v1 v2@:    H u C   @:             @:    20  @:vcorr@:(v1,v2)}
35720 @r{      v@:      u G   @:             @:    19  @:vgmean@:(v)}
35721 @r{    a b@:    H u G   @:             @:     2  @:agmean@:(a,b)}
35722 @r{      v@:      u M   @:             @:    19  @:vmean@:(v)}
35723 @r{      v@:    I u M   @:             @:    19  @:vmeane@:(v)}
35724 @r{      v@:    H u M   @:             @:    19  @:vmedian@:(v)}
35725 @r{      v@:  I H u M   @:             @:    19  @:vhmean@:(v)}
35726 @r{      v@:      u N   @:             @:    19  @:vmin@:(v)}
35727 @r{      v@:      u S   @:             @:    19  @:vsdev@:(v)}
35728 @r{      v@:    I u S   @:             @:    19  @:vpsdev@:(v)}
35729 @r{      v@:    H u S   @:             @:    19  @:vvar@:(v)}
35730 @r{      v@:  I H u S   @:             @:    19  @:vpvar@:(v)}
35731 @r{       @:      u V   @:             @:        @:calc-view-units-table@:}
35732 @r{      v@:      u X   @:             @:    19  @:vmax@:(v)}
35735 @r{      v@:      u +   @:             @:    19  @:vsum@:(v)}
35736 @r{      v@:      u *   @:             @:    19  @:vprod@:(v)}
35737 @r{      v@:      u #   @:             @:    19  @:vcount@:(v)}
35740 @r{       @:      V (   @:             @:    50  @:calc-vector-parens@:}
35741 @r{       @:      V @{   @:             @:    50  @:calc-vector-braces@:}
35742 @r{       @:      V [   @:             @:    50  @:calc-vector-brackets@:}
35743 @r{       @:      V ]   @:ROCP         @:    50  @:calc-matrix-brackets@:}
35744 @r{       @:      V ,   @:             @:    50  @:calc-vector-commas@:}
35745 @r{       @:      V <   @:             @:    50  @:calc-matrix-left-justify@:}
35746 @r{       @:      V =   @:             @:    50  @:calc-matrix-center-justify@:}
35747 @r{       @:      V >   @:             @:    50  @:calc-matrix-right-justify@:}
35748 @r{       @:      V /   @:             @: 12,50  @:calc-break-vectors@:}
35749 @r{       @:      V .   @:             @: 12,50  @:calc-full-vectors@:}
35752 @r{    s t@:      V ^   @:             @:     2  @:vint@:(s,t)}
35753 @r{    s t@:      V -   @:             @:     2  @:vdiff@:(s,t)}
35754 @r{      s@:      V ~   @:             @:     1  @:vcompl@:(s)}
35755 @r{      s@:      V #   @:             @:     1  @:vcard@:(s)}
35756 @r{      s@:      V :   @:             @:     1  @:vspan@:(s)}
35757 @r{      s@:      V +   @:             @:     1  @:rdup@:(s)}
35760 @r{      m@:      V &   @:             @:     1  @:inv@:(m)  1/m}
35763 @r{      v@:      v a   @:n            @:        @:arrange@:(v,n)}
35764 @r{      a@:      v b   @:n            @:        @:cvec@:(a,n)}
35765 @r{      v@:      v c   @:n >0         @: 21,31  @:mcol@:(v,n)}
35766 @r{      v@:      v c   @:n <0         @:    31  @:mrcol@:(v,-n)}
35767 @r{      m@:      v c   @:0            @:    31  @:getdiag@:(m)}
35768 @r{      v@:      v d   @:             @:    25  @:diag@:(v,n)}
35769 @r{    v m@:      v e   @:             @:     2  @:vexp@:(v,m)}
35770 @r{  v m f@:    H v e   @:             @:     2  @:vexp@:(v,m,f)}
35771 @r{    v a@:      v f   @:             @:    26  @:find@:(v,a,n)}
35772 @r{      v@:      v h   @:             @:     1  @:head@:(v)}
35773 @r{      v@:    I v h   @:             @:     1  @:tail@:(v)}
35774 @r{      v@:    H v h   @:             @:     1  @:rhead@:(v)}
35775 @r{      v@:  I H v h   @:             @:     1  @:rtail@:(v)}
35776 @r{       @:      v i   @:n            @:    31  @:idn@:(1,n)}
35777 @r{       @:      v i   @:0            @:    31  @:idn@:(1)}
35778 @r{    h t@:      v k   @:             @:     2  @:cons@:(h,t)}
35779 @r{    h t@:    H v k   @:             @:     2  @:rcons@:(h,t)}
35780 @r{      v@:      v l   @:             @:     1  @:vlen@:(v)}
35781 @r{      v@:    H v l   @:             @:     1  @:mdims@:(v)}
35782 @r{    v m@:      v m   @:             @:     2  @:vmask@:(v,m)}
35783 @r{      v@:      v n   @:             @:     1  @:rnorm@:(v)}
35784 @r{  a b c@:      v p   @:             @:    24  @:calc-pack@:}
35785 @r{      v@:      v r   @:n >0         @: 21,31  @:mrow@:(v,n)}
35786 @r{      v@:      v r   @:n <0         @:    31  @:mrrow@:(v,-n)}
35787 @r{      m@:      v r   @:0            @:    31  @:getdiag@:(m)}
35788 @r{  v i j@:      v s   @:             @:        @:subvec@:(v,i,j)}
35789 @r{  v i j@:    I v s   @:             @:        @:rsubvec@:(v,i,j)}
35790 @r{      m@:      v t   @:             @:     1  @:trn@:(m)}
35791 @r{      v@:      v u   @:             @:    24  @:calc-unpack@:}
35792 @r{      v@:      v v   @:             @:     1  @:rev@:(v)}
35793 @r{       @:      v x   @:n            @:    31  @:index@:(n)}
35794 @r{  n s i@:  C-u v x   @:             @:        @:index@:(n,s,i)}
35797 @r{      v@:      V A   @:op           @:    22  @:apply@:(op,v)}
35798 @r{  v1 v2@:      V C   @:             @:     2  @:cross@:(v1,v2)}
35799 @r{      m@:      V D   @:             @:     1  @:det@:(m)}
35800 @r{      s@:      V E   @:             @:     1  @:venum@:(s)}
35801 @r{      s@:      V F   @:             @:     1  @:vfloor@:(s)}
35802 @r{      v@:      V G   @:             @:        @:grade@:(v)}
35803 @r{      v@:    I V G   @:             @:        @:rgrade@:(v)}
35804 @r{      v@:      V H   @:n            @:    31  @:histogram@:(v,n)}
35805 @r{    v w@:    H V H   @:n            @:    31  @:histogram@:(v,w,n)}
35806 @r{  v1 v2@:      V I   @:mop aop      @:    22  @:inner@:(mop,aop,v1,v2)}
35807 @r{      m@:      V J   @:             @:     1  @:ctrn@:(m)}
35808 @r{      m@:      V L   @:             @:     1  @:lud@:(m)}
35809 @r{      v@:      V M   @:op           @: 22,23  @:map@:(op,v)}
35810 @r{      v@:      V N   @:             @:     1  @:cnorm@:(v)}
35811 @r{  v1 v2@:      V O   @:op           @:    22  @:outer@:(op,v1,v2)}
35812 @r{      v@:      V R   @:op           @: 22,23  @:reduce@:(op,v)}
35813 @r{      v@:    I V R   @:op           @: 22,23  @:rreduce@:(op,v)}
35814 @r{    a n@:    H V R   @:op           @:    22  @:nest@:(op,a,n)}
35815 @r{      a@:  I H V R   @:op           @:    22  @:fixp@:(op,a)}
35816 @r{      v@:      V S   @:             @:        @:sort@:(v)}
35817 @r{      v@:    I V S   @:             @:        @:rsort@:(v)}
35818 @r{      m@:      V T   @:             @:     1  @:tr@:(m)}
35819 @r{      v@:      V U   @:op           @:    22  @:accum@:(op,v)}
35820 @r{      v@:    I V U   @:op           @:    22  @:raccum@:(op,v)}
35821 @r{    a n@:    H V U   @:op           @:    22  @:anest@:(op,a,n)}
35822 @r{      a@:  I H V U   @:op           @:    22  @:afixp@:(op,a)}
35823 @r{    s t@:      V V   @:             @:     2  @:vunion@:(s,t)}
35824 @r{    s t@:      V X   @:             @:     2  @:vxor@:(s,t)}
35827 @r{       @:      Y     @:             @:        @:@:user commands}
35830 @r{       @:      z     @:             @:        @:@:user commands}
35833 @r{      c@:      Z [   @:             @:    45  @:calc-kbd-if@:}
35834 @r{      c@:      Z |   @:             @:    45  @:calc-kbd-else-if@:}
35835 @r{       @:      Z :   @:             @:        @:calc-kbd-else@:}
35836 @r{       @:      Z ]   @:             @:        @:calc-kbd-end-if@:}
35839 @r{       @:      Z @{   @:             @:     4  @:calc-kbd-loop@:}
35840 @r{      c@:      Z /   @:             @:    45  @:calc-kbd-break@:}
35841 @r{       @:      Z @}   @:             @:        @:calc-kbd-end-loop@:}
35842 @r{      n@:      Z <   @:             @:        @:calc-kbd-repeat@:}
35843 @r{       @:      Z >   @:             @:        @:calc-kbd-end-repeat@:}
35844 @r{    n m@:      Z (   @:             @:        @:calc-kbd-for@:}
35845 @r{      s@:      Z )   @:             @:        @:calc-kbd-end-for@:}
35848 @r{       @:      Z C-g @:             @:        @:@:cancel if/loop command}
35851 @r{       @:      Z `   @:             @:        @:calc-kbd-push@:}
35852 @r{       @:      Z '   @:             @:        @:calc-kbd-pop@:}
35853 @r{       @:      Z #   @:             @:        @:calc-kbd-query@:}
35856 @r{   comp@:      Z C   @:func, args   @:    50  @:calc-user-define-composition@:}
35857 @r{       @:      Z D   @:key, command @:        @:calc-user-define@:}
35858 @r{       @:      Z E   @:key, editing @:    30  @:calc-user-define-edit@:}
35859 @r{   defn@:      Z F   @:k, c, f, a, n@:    28  @:calc-user-define-formula@:}
35860 @r{       @:      Z G   @:key          @:        @:calc-get-user-defn@:}
35861 @r{       @:      Z I   @:             @:        @:calc-user-define-invocation@:}
35862 @r{       @:      Z K   @:key, command @:        @:calc-user-define-kbd-macro@:}
35863 @r{       @:      Z P   @:key          @:        @:calc-user-define-permanent@:}
35864 @r{       @:      Z S   @:             @:    30  @:calc-edit-user-syntax@:}
35865 @r{       @:      Z T   @:             @:    12  @:calc-timing@:}
35866 @r{       @:      Z U   @:key          @:        @:calc-user-undefine@:}
35868 @end format
35870 @noindent
35871 NOTES
35873 @enumerate
35874 @c 1
35875 @item
35876 Positive prefix arguments apply to @expr{n} stack entries.
35877 Negative prefix arguments apply to the @expr{-n}th stack entry.
35878 A prefix of zero applies to the entire stack.  (For @key{LFD} and
35879 @kbd{M-@key{DEL}}, the meaning of the sign is reversed.)
35881 @c 2
35882 @item
35883 Positive prefix arguments apply to @expr{n} stack entries.
35884 Negative prefix arguments apply to the top stack entry
35885 and the next @expr{-n} stack entries.
35887 @c 3
35888 @item
35889 Positive prefix arguments rotate top @expr{n} stack entries by one.
35890 Negative prefix arguments rotate the entire stack by @expr{-n}.
35891 A prefix of zero reverses the entire stack.
35893 @c 4
35894 @item
35895 Prefix argument specifies a repeat count or distance.
35897 @c 5
35898 @item
35899 Positive prefix arguments specify a precision @expr{p}.
35900 Negative prefix arguments reduce the current precision by @expr{-p}.
35902 @c 6
35903 @item
35904 A prefix argument is interpreted as an additional step-size parameter.
35905 A plain @kbd{C-u} prefix means to prompt for the step size.
35907 @c 7
35908 @item
35909 A prefix argument specifies simplification level and depth.
35910 1=Default, 2=like @kbd{a s}, 3=like @kbd{a e}.
35912 @c 8
35913 @item
35914 A negative prefix operates only on the top level of the input formula.
35916 @c 9
35917 @item
35918 Positive prefix arguments specify a word size of @expr{w} bits, unsigned.
35919 Negative prefix arguments specify a word size of @expr{w} bits, signed.
35921 @c 10
35922 @item
35923 Prefix arguments specify the shift amount @expr{n}.  The @expr{w} argument
35924 cannot be specified in the keyboard version of this command.
35926 @c 11
35927 @item
35928 From the keyboard, @expr{d} is omitted and defaults to zero.
35930 @c 12
35931 @item
35932 Mode is toggled; a positive prefix always sets the mode, and a negative
35933 prefix always clears the mode.
35935 @c 13
35936 @item
35937 Some prefix argument values provide special variations of the mode.
35939 @c 14
35940 @item
35941 A prefix argument, if any, is used for @expr{m} instead of taking
35942 @expr{m} from the stack.  @expr{M} may take any of these values:
35943 @iftex
35944 {@advance@tableindent10pt
35945 @end iftex
35946 @table @asis
35947 @item Integer
35948 Random integer in the interval @expr{[0 .. m)}.
35949 @item Float
35950 Random floating-point number in the interval @expr{[0 .. m)}.
35951 @item 0.0
35952 Gaussian with mean 1 and standard deviation 0.
35953 @item Error form
35954 Gaussian with specified mean and standard deviation.
35955 @item Interval
35956 Random integer or floating-point number in that interval.
35957 @item Vector
35958 Random element from the vector.
35959 @end table
35960 @iftex
35962 @end iftex
35964 @c 15
35965 @item
35966 A prefix argument from 1 to 6 specifies number of date components
35967 to remove from the stack.  @xref{Date Conversions}.
35969 @c 16
35970 @item
35971 A prefix argument specifies a time zone; @kbd{C-u} says to take the
35972 time zone number or name from the top of the stack.  @xref{Time Zones}.
35974 @c 17
35975 @item
35976 A prefix argument specifies a day number (0-6, 0-31, or 0-366).
35978 @c 18
35979 @item
35980 If the input has no units, you will be prompted for both the old and
35981 the new units.
35983 @c 19
35984 @item
35985 With a prefix argument, collect that many stack entries to form the
35986 input data set.  Each entry may be a single value or a vector of values.
35988 @c 20
35989 @item
35990 With a prefix argument of 1, take a single 
35991 @texline @var{n}@math{\times2}
35992 @infoline @mathit{@var{N}x2} 
35993 matrix from the stack instead of two separate data vectors.
35995 @c 21
35996 @item
35997 The row or column number @expr{n} may be given as a numeric prefix
35998 argument instead.  A plain @kbd{C-u} prefix says to take @expr{n}
35999 from the top of the stack.  If @expr{n} is a vector or interval,
36000 a subvector/submatrix of the input is created.
36002 @c 22
36003 @item
36004 The @expr{op} prompt can be answered with the key sequence for the
36005 desired function, or with @kbd{x} or @kbd{z} followed by a function name,
36006 or with @kbd{$} to take a formula from the top of the stack, or with
36007 @kbd{'} and a typed formula.  In the last two cases, the formula may
36008 be a nameless function like @samp{<#1+#2>} or @samp{<x, y : x+y>}, or it
36009 may include @kbd{$}, @kbd{$$}, etc. (where @kbd{$} will correspond to the
36010 last argument of the created function), or otherwise you will be
36011 prompted for an argument list.  The number of vectors popped from the
36012 stack by @kbd{V M} depends on the number of arguments of the function.
36014 @c 23
36015 @item
36016 One of the mapping direction keys @kbd{_} (horizontal, i.e., map
36017 by rows or reduce across), @kbd{:} (vertical, i.e., map by columns or
36018 reduce down), or @kbd{=} (map or reduce by rows) may be used before
36019 entering @expr{op}; these modify the function name by adding the letter
36020 @code{r} for ``rows,'' @code{c} for ``columns,'' @code{a} for ``across,''
36021 or @code{d} for ``down.''
36023 @c 24
36024 @item
36025 The prefix argument specifies a packing mode.  A nonnegative mode
36026 is the number of items (for @kbd{v p}) or the number of levels
36027 (for @kbd{v u}).  A negative mode is as described below.  With no
36028 prefix argument, the mode is taken from the top of the stack and
36029 may be an integer or a vector of integers.
36030 @iftex
36031 {@advance@tableindent-20pt
36032 @end iftex
36033 @table @cite
36034 @item -1
36035 (@var{2})  Rectangular complex number.
36036 @item -2
36037 (@var{2})  Polar complex number.
36038 @item -3
36039 (@var{3})  HMS form.
36040 @item -4
36041 (@var{2})  Error form.
36042 @item -5
36043 (@var{2})  Modulo form.
36044 @item -6
36045 (@var{2})  Closed interval.
36046 @item -7
36047 (@var{2})  Closed .. open interval.
36048 @item -8
36049 (@var{2})  Open .. closed interval.
36050 @item -9
36051 (@var{2})  Open interval.
36052 @item -10
36053 (@var{2})  Fraction.
36054 @item -11
36055 (@var{2})  Float with integer mantissa.
36056 @item -12
36057 (@var{2})  Float with mantissa in @expr{[1 .. 10)}.
36058 @item -13
36059 (@var{1})  Date form (using date numbers).
36060 @item -14
36061 (@var{3})  Date form (using year, month, day).
36062 @item -15
36063 (@var{6})  Date form (using year, month, day, hour, minute, second).
36064 @end table
36065 @iftex
36067 @end iftex
36069 @c 25
36070 @item
36071 A prefix argument specifies the size @expr{n} of the matrix.  With no
36072 prefix argument, @expr{n} is omitted and the size is inferred from
36073 the input vector.
36075 @c 26
36076 @item
36077 The prefix argument specifies the starting position @expr{n} (default 1).
36079 @c 27
36080 @item
36081 Cursor position within stack buffer affects this command.
36083 @c 28
36084 @item
36085 Arguments are not actually removed from the stack by this command.
36087 @c 29
36088 @item
36089 Variable name may be a single digit or a full name.
36091 @c 30
36092 @item
36093 Editing occurs in a separate buffer.  Press @kbd{C-c C-c} (or 
36094 @key{LFD}, or in some cases @key{RET}) to finish the edit, or kill the
36095 buffer with @kbd{C-x k} to cancel the edit.  The @key{LFD} key prevents evaluation
36096 of the result of the edit.
36098 @c 31
36099 @item
36100 The number prompted for can also be provided as a prefix argument.
36102 @c 32
36103 @item
36104 Press this key a second time to cancel the prefix.
36106 @c 33
36107 @item
36108 With a negative prefix, deactivate all formulas.  With a positive
36109 prefix, deactivate and then reactivate from scratch.
36111 @c 34
36112 @item
36113 Default is to scan for nearest formula delimiter symbols.  With a
36114 prefix of zero, formula is delimited by mark and point.  With a
36115 non-zero prefix, formula is delimited by scanning forward or
36116 backward by that many lines.
36118 @c 35
36119 @item
36120 Parse the region between point and mark as a vector.  A nonzero prefix
36121 parses @var{n} lines before or after point as a vector.  A zero prefix
36122 parses the current line as a vector.  A @kbd{C-u} prefix parses the
36123 region between point and mark as a single formula.
36125 @c 36
36126 @item
36127 Parse the rectangle defined by point and mark as a matrix.  A positive
36128 prefix @var{n} divides the rectangle into columns of width @var{n}.
36129 A zero or @kbd{C-u} prefix parses each line as one formula.  A negative
36130 prefix suppresses special treatment of bracketed portions of a line.
36132 @c 37
36133 @item
36134 A numeric prefix causes the current language mode to be ignored.
36136 @c 38
36137 @item
36138 Responding to a prompt with a blank line answers that and all
36139 later prompts by popping additional stack entries.
36141 @c 39
36142 @item
36143 Answer for @expr{v} may also be of the form @expr{v = v_0} or
36144 @expr{v - v_0}.
36146 @c 40
36147 @item
36148 With a positive prefix argument, stack contains many @expr{y}'s and one
36149 common @expr{x}.  With a zero prefix, stack contains a vector of
36150 @expr{y}s and a common @expr{x}.  With a negative prefix, stack
36151 contains many @expr{[x,y]} vectors.  (For 3D plots, substitute
36152 @expr{z} for @expr{y} and @expr{x,y} for @expr{x}.)
36154 @c 41
36155 @item
36156 With any prefix argument, all curves in the graph are deleted.
36158 @c 42
36159 @item
36160 With a positive prefix, refines an existing plot with more data points.
36161 With a negative prefix, forces recomputation of the plot data.
36163 @c 43
36164 @item
36165 With any prefix argument, set the default value instead of the
36166 value for this graph.
36168 @c 44
36169 @item
36170 With a negative prefix argument, set the value for the printer.
36172 @c 45
36173 @item
36174 Condition is considered ``true'' if it is a nonzero real or complex
36175 number, or a formula whose value is known to be nonzero; it is ``false''
36176 otherwise.
36178 @c 46
36179 @item
36180 Several formulas separated by commas are pushed as multiple stack
36181 entries.  Trailing @kbd{)}, @kbd{]}, @kbd{@}}, @kbd{>}, and @kbd{"}
36182 delimiters may be omitted.  The notation @kbd{$$$} refers to the value
36183 in stack level three, and causes the formula to replace the top three
36184 stack levels.  The notation @kbd{$3} refers to stack level three without
36185 causing that value to be removed from the stack.  Use @key{LFD} in place
36186 of @key{RET} to prevent evaluation; use @kbd{M-=} in place of @key{RET}
36187 to evaluate variables.
36189 @c 47
36190 @item
36191 The variable is replaced by the formula shown on the right.  The
36192 Inverse flag reverses the order of the operands, e.g., @kbd{I s - x}
36193 assigns 
36194 @texline @math{x \coloneq a-x}.
36195 @infoline @expr{x := a-x}.
36197 @c 48
36198 @item
36199 Press @kbd{?} repeatedly to see how to choose a model.  Answer the
36200 variables prompt with @expr{iv} or @expr{iv;pv} to specify
36201 independent and parameter variables.  A positive prefix argument
36202 takes @mathit{@var{n}+1} vectors from the stack; a zero prefix takes a matrix
36203 and a vector from the stack.
36205 @c 49
36206 @item
36207 With a plain @kbd{C-u} prefix, replace the current region of the
36208 destination buffer with the yanked text instead of inserting.
36210 @c 50
36211 @item
36212 All stack entries are reformatted; the @kbd{H} prefix inhibits this.
36213 The @kbd{I} prefix sets the mode temporarily, redraws the top stack
36214 entry, then restores the original setting of the mode.
36216 @c 51
36217 @item
36218 A negative prefix sets the default 3D resolution instead of the
36219 default 2D resolution.
36221 @c 52
36222 @item
36223 This grabs a vector of the form [@var{prec}, @var{wsize}, @var{ssize},
36224 @var{radix}, @var{flfmt}, @var{ang}, @var{frac}, @var{symb}, @var{polar},
36225 @var{matrix}, @var{simp}, @var{inf}].  A prefix argument from 1 to 12
36226 grabs the @var{n}th mode value only.
36227 @end enumerate
36229 @iftex
36230 (Space is provided below for you to keep your own written notes.)
36231 @page
36232 @endgroup
36233 @end iftex
36236 @c [end-summary]
36238 @node Key Index, Command Index, Summary, Top
36239 @unnumbered Index of Key Sequences
36241 @printindex ky
36243 @node Command Index, Function Index, Key Index, Top
36244 @unnumbered Index of Calculator Commands
36246 Since all Calculator commands begin with the prefix @samp{calc-}, the
36247 @kbd{x} key has been provided as a variant of @kbd{M-x} which automatically
36248 types @samp{calc-} for you.  Thus, @kbd{x last-args} is short for
36249 @kbd{M-x calc-last-args}.
36251 @printindex pg
36253 @node Function Index, Concept Index, Command Index, Top
36254 @unnumbered Index of Algebraic Functions
36256 This is a list of built-in functions and operators usable in algebraic
36257 expressions.  Their full Lisp names are derived by adding the prefix
36258 @samp{calcFunc-}, as in @code{calcFunc-sqrt}.
36259 @iftex
36260 All functions except those noted with ``*'' have corresponding
36261 Calc keystrokes and can also be found in the Calc Summary.
36262 @end iftex
36264 @printindex tp
36266 @node Concept Index, Variable Index, Function Index, Top
36267 @unnumbered Concept Index
36269 @printindex cp
36271 @node Variable Index, Lisp Function Index, Concept Index, Top
36272 @unnumbered Index of Variables
36274 The variables in this list that do not contain dashes are accessible
36275 as Calc variables.  Add a @samp{var-} prefix to get the name of the
36276 corresponding Lisp variable.
36278 The remaining variables are Lisp variables suitable for @code{setq}ing
36279 in your Calc init file or @file{.emacs} file.
36281 @printindex vr
36283 @node Lisp Function Index,  , Variable Index, Top
36284 @unnumbered Index of Lisp Math Functions
36286 The following functions are meant to be used with @code{defmath}, not
36287 @code{defun} definitions.  For names that do not start with @samp{calc-},
36288 the corresponding full Lisp name is derived by adding a prefix of
36289 @samp{math-}.
36291 @printindex fn
36293 @bye
36296 @ignore
36297    arch-tag: 77a71809-fa4d-40be-b2cc-da3e8fb137c0
36298 @end ignore