Sync with Tramp 2.2.3.
[emacs.git] / lisp / simple.el
blob79de6aea3dde90e692e1799dea483a7ccc7b2eae
1 ;;; simple.el --- basic editing commands for Emacs
3 ;; Copyright (C) 1985-1987, 1993-2011 Free Software Foundation, Inc.
5 ;; Maintainer: FSF
6 ;; Keywords: internal
7 ;; Package: emacs
9 ;; This file is part of GNU Emacs.
11 ;; GNU Emacs is free software: you can redistribute it and/or modify
12 ;; it under the terms of the GNU General Public License as published by
13 ;; the Free Software Foundation, either version 3 of the License, or
14 ;; (at your option) any later version.
16 ;; GNU Emacs is distributed in the hope that it will be useful,
17 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
18 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 ;; GNU General Public License for more details.
21 ;; You should have received a copy of the GNU General Public License
22 ;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
24 ;;; Commentary:
26 ;; A grab-bag of basic Emacs commands not specifically related to some
27 ;; major mode or to file-handling.
29 ;;; Code:
31 (eval-when-compile (require 'cl)) ;For define-minor-mode.
33 (declare-function widget-convert "wid-edit" (type &rest args))
34 (declare-function shell-mode "shell" ())
36 ;;; From compile.el
37 (defvar compilation-current-error)
38 (defvar compilation-context-lines)
40 (defcustom idle-update-delay 0.5
41 "Idle time delay before updating various things on the screen.
42 Various Emacs features that update auxiliary information when point moves
43 wait this many seconds after Emacs becomes idle before doing an update."
44 :type 'number
45 :group 'display
46 :version "22.1")
48 (defgroup killing nil
49 "Killing and yanking commands."
50 :group 'editing)
52 (defgroup paren-matching nil
53 "Highlight (un)matching of parens and expressions."
54 :group 'matching)
56 ;;; next-error support framework
58 (defgroup next-error nil
59 "`next-error' support framework."
60 :group 'compilation
61 :version "22.1")
63 (defface next-error
64 '((t (:inherit region)))
65 "Face used to highlight next error locus."
66 :group 'next-error
67 :version "22.1")
69 (defcustom next-error-highlight 0.5
70 "Highlighting of locations in selected source buffers.
71 If a number, highlight the locus in `next-error' face for the given time
72 in seconds, or until the next command is executed.
73 If t, highlight the locus until the next command is executed, or until
74 some other locus replaces it.
75 If nil, don't highlight the locus in the source buffer.
76 If `fringe-arrow', indicate the locus by the fringe arrow
77 indefinitely until some other locus replaces it."
78 :type '(choice (number :tag "Highlight for specified time")
79 (const :tag "Semipermanent highlighting" t)
80 (const :tag "No highlighting" nil)
81 (const :tag "Fringe arrow" fringe-arrow))
82 :group 'next-error
83 :version "22.1")
85 (defcustom next-error-highlight-no-select 0.5
86 "Highlighting of locations in `next-error-no-select'.
87 If number, highlight the locus in `next-error' face for given time in seconds.
88 If t, highlight the locus indefinitely until some other locus replaces it.
89 If nil, don't highlight the locus in the source buffer.
90 If `fringe-arrow', indicate the locus by the fringe arrow
91 indefinitely until some other locus replaces it."
92 :type '(choice (number :tag "Highlight for specified time")
93 (const :tag "Semipermanent highlighting" t)
94 (const :tag "No highlighting" nil)
95 (const :tag "Fringe arrow" fringe-arrow))
96 :group 'next-error
97 :version "22.1")
99 (defcustom next-error-recenter nil
100 "Display the line in the visited source file recentered as specified.
101 If non-nil, the value is passed directly to `recenter'."
102 :type '(choice (integer :tag "Line to recenter to")
103 (const :tag "Center of window" (4))
104 (const :tag "No recentering" nil))
105 :group 'next-error
106 :version "23.1")
108 (defcustom next-error-hook nil
109 "List of hook functions run by `next-error' after visiting source file."
110 :type 'hook
111 :group 'next-error)
113 (defvar next-error-highlight-timer nil)
115 (defvar next-error-overlay-arrow-position nil)
116 (put 'next-error-overlay-arrow-position 'overlay-arrow-string (purecopy "=>"))
117 (add-to-list 'overlay-arrow-variable-list 'next-error-overlay-arrow-position)
119 (defvar next-error-last-buffer nil
120 "The most recent `next-error' buffer.
121 A buffer becomes most recent when its compilation, grep, or
122 similar mode is started, or when it is used with \\[next-error]
123 or \\[compile-goto-error].")
125 (defvar next-error-function nil
126 "Function to use to find the next error in the current buffer.
127 The function is called with 2 parameters:
128 ARG is an integer specifying by how many errors to move.
129 RESET is a boolean which, if non-nil, says to go back to the beginning
130 of the errors before moving.
131 Major modes providing compile-like functionality should set this variable
132 to indicate to `next-error' that this is a candidate buffer and how
133 to navigate in it.")
134 (make-variable-buffer-local 'next-error-function)
136 (defvar next-error-move-function nil
137 "Function to use to move to an error locus.
138 It takes two arguments, a buffer position in the error buffer
139 and a buffer position in the error locus buffer.
140 The buffer for the error locus should already be current.
141 nil means use goto-char using the second argument position.")
142 (make-variable-buffer-local 'next-error-move-function)
144 (defsubst next-error-buffer-p (buffer
145 &optional avoid-current
146 extra-test-inclusive
147 extra-test-exclusive)
148 "Test if BUFFER is a `next-error' capable buffer.
150 If AVOID-CURRENT is non-nil, treat the current buffer
151 as an absolute last resort only.
153 The function EXTRA-TEST-INCLUSIVE, if non-nil, is called in each buffer
154 that normally would not qualify. If it returns t, the buffer
155 in question is treated as usable.
157 The function EXTRA-TEST-EXCLUSIVE, if non-nil, is called in each buffer
158 that would normally be considered usable. If it returns nil,
159 that buffer is rejected."
160 (and (buffer-name buffer) ;First make sure it's live.
161 (not (and avoid-current (eq buffer (current-buffer))))
162 (with-current-buffer buffer
163 (if next-error-function ; This is the normal test.
164 ;; Optionally reject some buffers.
165 (if extra-test-exclusive
166 (funcall extra-test-exclusive)
168 ;; Optionally accept some other buffers.
169 (and extra-test-inclusive
170 (funcall extra-test-inclusive))))))
172 (defun next-error-find-buffer (&optional avoid-current
173 extra-test-inclusive
174 extra-test-exclusive)
175 "Return a `next-error' capable buffer.
177 If AVOID-CURRENT is non-nil, treat the current buffer
178 as an absolute last resort only.
180 The function EXTRA-TEST-INCLUSIVE, if non-nil, is called in each buffer
181 that normally would not qualify. If it returns t, the buffer
182 in question is treated as usable.
184 The function EXTRA-TEST-EXCLUSIVE, if non-nil, is called in each buffer
185 that would normally be considered usable. If it returns nil,
186 that buffer is rejected."
188 ;; 1. If one window on the selected frame displays such buffer, return it.
189 (let ((window-buffers
190 (delete-dups
191 (delq nil (mapcar (lambda (w)
192 (if (next-error-buffer-p
193 (window-buffer w)
194 avoid-current
195 extra-test-inclusive extra-test-exclusive)
196 (window-buffer w)))
197 (window-list))))))
198 (if (eq (length window-buffers) 1)
199 (car window-buffers)))
200 ;; 2. If next-error-last-buffer is an acceptable buffer, use that.
201 (if (and next-error-last-buffer
202 (next-error-buffer-p next-error-last-buffer avoid-current
203 extra-test-inclusive extra-test-exclusive))
204 next-error-last-buffer)
205 ;; 3. If the current buffer is acceptable, choose it.
206 (if (next-error-buffer-p (current-buffer) avoid-current
207 extra-test-inclusive extra-test-exclusive)
208 (current-buffer))
209 ;; 4. Look for any acceptable buffer.
210 (let ((buffers (buffer-list)))
211 (while (and buffers
212 (not (next-error-buffer-p
213 (car buffers) avoid-current
214 extra-test-inclusive extra-test-exclusive)))
215 (setq buffers (cdr buffers)))
216 (car buffers))
217 ;; 5. Use the current buffer as a last resort if it qualifies,
218 ;; even despite AVOID-CURRENT.
219 (and avoid-current
220 (next-error-buffer-p (current-buffer) nil
221 extra-test-inclusive extra-test-exclusive)
222 (progn
223 (message "This is the only buffer with error message locations")
224 (current-buffer)))
225 ;; 6. Give up.
226 (error "No buffers contain error message locations")))
228 (defun next-error (&optional arg reset)
229 "Visit next `next-error' message and corresponding source code.
231 If all the error messages parsed so far have been processed already,
232 the message buffer is checked for new ones.
234 A prefix ARG specifies how many error messages to move;
235 negative means move back to previous error messages.
236 Just \\[universal-argument] as a prefix means reparse the error message buffer
237 and start at the first error.
239 The RESET argument specifies that we should restart from the beginning.
241 \\[next-error] normally uses the most recently started
242 compilation, grep, or occur buffer. It can also operate on any
243 buffer with output from the \\[compile], \\[grep] commands, or,
244 more generally, on any buffer in Compilation mode or with
245 Compilation Minor mode enabled, or any buffer in which
246 `next-error-function' is bound to an appropriate function.
247 To specify use of a particular buffer for error messages, type
248 \\[next-error] in that buffer when it is the only one displayed
249 in the current frame.
251 Once \\[next-error] has chosen the buffer for error messages, it
252 runs `next-error-hook' with `run-hooks', and stays with that buffer
253 until you use it in some other buffer which uses Compilation mode
254 or Compilation Minor mode.
256 To control which errors are matched, customize the variable
257 `compilation-error-regexp-alist'."
258 (interactive "P")
259 (if (consp arg) (setq reset t arg nil))
260 (when (setq next-error-last-buffer (next-error-find-buffer))
261 ;; we know here that next-error-function is a valid symbol we can funcall
262 (with-current-buffer next-error-last-buffer
263 (funcall next-error-function (prefix-numeric-value arg) reset)
264 (when next-error-recenter
265 (recenter next-error-recenter))
266 (run-hooks 'next-error-hook))))
268 (defun next-error-internal ()
269 "Visit the source code corresponding to the `next-error' message at point."
270 (setq next-error-last-buffer (current-buffer))
271 ;; we know here that next-error-function is a valid symbol we can funcall
272 (with-current-buffer next-error-last-buffer
273 (funcall next-error-function 0 nil)
274 (when next-error-recenter
275 (recenter next-error-recenter))
276 (run-hooks 'next-error-hook)))
278 (defalias 'goto-next-locus 'next-error)
279 (defalias 'next-match 'next-error)
281 (defun previous-error (&optional n)
282 "Visit previous `next-error' message and corresponding source code.
284 Prefix arg N says how many error messages to move backwards (or
285 forwards, if negative).
287 This operates on the output from the \\[compile] and \\[grep] commands."
288 (interactive "p")
289 (next-error (- (or n 1))))
291 (defun first-error (&optional n)
292 "Restart at the first error.
293 Visit corresponding source code.
294 With prefix arg N, visit the source code of the Nth error.
295 This operates on the output from the \\[compile] command, for instance."
296 (interactive "p")
297 (next-error n t))
299 (defun next-error-no-select (&optional n)
300 "Move point to the next error in the `next-error' buffer and highlight match.
301 Prefix arg N says how many error messages to move forwards (or
302 backwards, if negative).
303 Finds and highlights the source line like \\[next-error], but does not
304 select the source buffer."
305 (interactive "p")
306 (let ((next-error-highlight next-error-highlight-no-select))
307 (next-error n))
308 (pop-to-buffer next-error-last-buffer))
310 (defun previous-error-no-select (&optional n)
311 "Move point to the previous error in the `next-error' buffer and highlight match.
312 Prefix arg N says how many error messages to move backwards (or
313 forwards, if negative).
314 Finds and highlights the source line like \\[previous-error], but does not
315 select the source buffer."
316 (interactive "p")
317 (next-error-no-select (- (or n 1))))
319 ;; Internal variable for `next-error-follow-mode-post-command-hook'.
320 (defvar next-error-follow-last-line nil)
322 (define-minor-mode next-error-follow-minor-mode
323 "Minor mode for compilation, occur and diff modes.
324 When turned on, cursor motion in the compilation, grep, occur or diff
325 buffer causes automatic display of the corresponding source code
326 location."
327 :group 'next-error :init-value nil :lighter " Fol"
328 (if (not next-error-follow-minor-mode)
329 (remove-hook 'post-command-hook 'next-error-follow-mode-post-command-hook t)
330 (add-hook 'post-command-hook 'next-error-follow-mode-post-command-hook nil t)
331 (make-local-variable 'next-error-follow-last-line)))
333 ;; Used as a `post-command-hook' by `next-error-follow-mode'
334 ;; for the *Compilation* *grep* and *Occur* buffers.
335 (defun next-error-follow-mode-post-command-hook ()
336 (unless (equal next-error-follow-last-line (line-number-at-pos))
337 (setq next-error-follow-last-line (line-number-at-pos))
338 (condition-case nil
339 (let ((compilation-context-lines nil))
340 (setq compilation-current-error (point))
341 (next-error-no-select 0))
342 (error t))))
347 (defun fundamental-mode ()
348 "Major mode not specialized for anything in particular.
349 Other major modes are defined by comparison with this one."
350 (interactive)
351 (kill-all-local-variables)
352 (run-mode-hooks 'fundamental-mode-hook))
354 ;; Special major modes to view specially formatted data rather than files.
356 (defvar special-mode-map
357 (let ((map (make-sparse-keymap)))
358 (suppress-keymap map)
359 (define-key map "q" 'quit-window)
360 (define-key map " " 'scroll-up-command)
361 (define-key map "\C-?" 'scroll-down-command)
362 (define-key map "?" 'describe-mode)
363 (define-key map "h" 'describe-mode)
364 (define-key map ">" 'end-of-buffer)
365 (define-key map "<" 'beginning-of-buffer)
366 (define-key map "g" 'revert-buffer)
367 (define-key map "z" 'kill-this-buffer)
368 map))
370 (put 'special-mode 'mode-class 'special)
371 (define-derived-mode special-mode nil "Special"
372 "Parent major mode from which special major modes should inherit."
373 (setq buffer-read-only t))
375 ;; Major mode meant to be the parent of programming modes.
377 (defvar prog-mode-map
378 (let ((map (make-sparse-keymap)))
379 (define-key map [?\C-\M-q] 'prog-indent-sexp)
380 map)
381 "Keymap used for programming modes.")
383 (defun prog-indent-sexp ()
384 "Indent the expression after point."
385 (interactive)
386 (let ((start (point))
387 (end (save-excursion (forward-sexp 1) (point))))
388 (indent-region start end nil)))
390 (define-derived-mode prog-mode fundamental-mode "Prog"
391 "Major mode for editing programming language source code."
392 (set (make-local-variable 'require-final-newline) mode-require-final-newline)
393 (set (make-local-variable 'parse-sexp-ignore-comments) t)
394 ;; Any programming language is always written left to right.
395 (setq bidi-paragraph-direction 'left-to-right))
397 ;; Making and deleting lines.
399 (defvar hard-newline (propertize "\n" 'hard t 'rear-nonsticky '(hard))
400 "Propertized string representing a hard newline character.")
402 (defun newline (&optional arg)
403 "Insert a newline, and move to left margin of the new line if it's blank.
404 If `use-hard-newlines' is non-nil, the newline is marked with the
405 text-property `hard'.
406 With ARG, insert that many newlines.
407 Call `auto-fill-function' if the current column number is greater
408 than the value of `fill-column' and ARG is nil."
409 (interactive "*P")
410 (barf-if-buffer-read-only)
411 ;; Call self-insert so that auto-fill, abbrev expansion etc. happens.
412 ;; Set last-command-event to tell self-insert what to insert.
413 (let* ((was-page-start (and (bolp) (looking-at page-delimiter)))
414 (beforepos (point))
415 (last-command-event ?\n)
416 ;; Don't auto-fill if we have a numeric argument.
417 (auto-fill-function (if arg nil auto-fill-function))
418 (postproc
419 ;; Do the rest in post-self-insert-hook, because we want to do it
420 ;; *before* other functions on that hook.
421 (lambda ()
422 ;; Mark the newline(s) `hard'.
423 (if use-hard-newlines
424 (set-hard-newline-properties
425 (- (point) (prefix-numeric-value arg)) (point)))
426 ;; If the newline leaves the previous line blank, and we
427 ;; have a left margin, delete that from the blank line.
428 (save-excursion
429 (goto-char beforepos)
430 (beginning-of-line)
431 (and (looking-at "[ \t]$")
432 (> (current-left-margin) 0)
433 (delete-region (point)
434 (line-end-position))))
435 ;; Indent the line after the newline, except in one case:
436 ;; when we added the newline at the beginning of a line which
437 ;; starts a page.
438 (or was-page-start
439 (move-to-left-margin nil t)))))
440 (unwind-protect
441 (progn
442 (add-hook 'post-self-insert-hook postproc)
443 (self-insert-command (prefix-numeric-value arg)))
444 ;; We first used let-binding to protect the hook, but that was naive
445 ;; since add-hook affects the symbol-default value of the variable,
446 ;; whereas the let-binding might only protect the buffer-local value.
447 (remove-hook 'post-self-insert-hook postproc)))
448 nil)
450 (defun set-hard-newline-properties (from to)
451 (let ((sticky (get-text-property from 'rear-nonsticky)))
452 (put-text-property from to 'hard 't)
453 ;; If rear-nonsticky is not "t", add 'hard to rear-nonsticky list
454 (if (and (listp sticky) (not (memq 'hard sticky)))
455 (put-text-property from (point) 'rear-nonsticky
456 (cons 'hard sticky)))))
458 (defun open-line (n)
459 "Insert a newline and leave point before it.
460 If there is a fill prefix and/or a `left-margin', insert them
461 on the new line if the line would have been blank.
462 With arg N, insert N newlines."
463 (interactive "*p")
464 (let* ((do-fill-prefix (and fill-prefix (bolp)))
465 (do-left-margin (and (bolp) (> (current-left-margin) 0)))
466 (loc (point-marker))
467 ;; Don't expand an abbrev before point.
468 (abbrev-mode nil))
469 (newline n)
470 (goto-char loc)
471 (while (> n 0)
472 (cond ((bolp)
473 (if do-left-margin (indent-to (current-left-margin)))
474 (if do-fill-prefix (insert-and-inherit fill-prefix))))
475 (forward-line 1)
476 (setq n (1- n)))
477 (goto-char loc)
478 (end-of-line)))
480 (defun split-line (&optional arg)
481 "Split current line, moving portion beyond point vertically down.
482 If the current line starts with `fill-prefix', insert it on the new
483 line as well. With prefix ARG, don't insert `fill-prefix' on new line.
485 When called from Lisp code, ARG may be a prefix string to copy."
486 (interactive "*P")
487 (skip-chars-forward " \t")
488 (let* ((col (current-column))
489 (pos (point))
490 ;; What prefix should we check for (nil means don't).
491 (prefix (cond ((stringp arg) arg)
492 (arg nil)
493 (t fill-prefix)))
494 ;; Does this line start with it?
495 (have-prfx (and prefix
496 (save-excursion
497 (beginning-of-line)
498 (looking-at (regexp-quote prefix))))))
499 (newline 1)
500 (if have-prfx (insert-and-inherit prefix))
501 (indent-to col 0)
502 (goto-char pos)))
504 (defun delete-indentation (&optional arg)
505 "Join this line to previous and fix up whitespace at join.
506 If there is a fill prefix, delete it from the beginning of this line.
507 With argument, join this line to following line."
508 (interactive "*P")
509 (beginning-of-line)
510 (if arg (forward-line 1))
511 (if (eq (preceding-char) ?\n)
512 (progn
513 (delete-region (point) (1- (point)))
514 ;; If the second line started with the fill prefix,
515 ;; delete the prefix.
516 (if (and fill-prefix
517 (<= (+ (point) (length fill-prefix)) (point-max))
518 (string= fill-prefix
519 (buffer-substring (point)
520 (+ (point) (length fill-prefix)))))
521 (delete-region (point) (+ (point) (length fill-prefix))))
522 (fixup-whitespace))))
524 (defalias 'join-line #'delete-indentation) ; easier to find
526 (defun delete-blank-lines ()
527 "On blank line, delete all surrounding blank lines, leaving just one.
528 On isolated blank line, delete that one.
529 On nonblank line, delete any immediately following blank lines."
530 (interactive "*")
531 (let (thisblank singleblank)
532 (save-excursion
533 (beginning-of-line)
534 (setq thisblank (looking-at "[ \t]*$"))
535 ;; Set singleblank if there is just one blank line here.
536 (setq singleblank
537 (and thisblank
538 (not (looking-at "[ \t]*\n[ \t]*$"))
539 (or (bobp)
540 (progn (forward-line -1)
541 (not (looking-at "[ \t]*$")))))))
542 ;; Delete preceding blank lines, and this one too if it's the only one.
543 (if thisblank
544 (progn
545 (beginning-of-line)
546 (if singleblank (forward-line 1))
547 (delete-region (point)
548 (if (re-search-backward "[^ \t\n]" nil t)
549 (progn (forward-line 1) (point))
550 (point-min)))))
551 ;; Delete following blank lines, unless the current line is blank
552 ;; and there are no following blank lines.
553 (if (not (and thisblank singleblank))
554 (save-excursion
555 (end-of-line)
556 (forward-line 1)
557 (delete-region (point)
558 (if (re-search-forward "[^ \t\n]" nil t)
559 (progn (beginning-of-line) (point))
560 (point-max)))))
561 ;; Handle the special case where point is followed by newline and eob.
562 ;; Delete the line, leaving point at eob.
563 (if (looking-at "^[ \t]*\n\\'")
564 (delete-region (point) (point-max)))))
566 (defun delete-trailing-whitespace (&optional start end)
567 "Delete all the trailing whitespace across the current buffer.
568 All whitespace after the last non-whitespace character in a line is deleted.
569 This respects narrowing, created by \\[narrow-to-region] and friends.
570 A formfeed is not considered whitespace by this function.
571 If END is nil, also delete all trailing lines at the end of the buffer.
572 If the region is active, only delete whitespace within the region."
573 (interactive (progn
574 (barf-if-buffer-read-only)
575 (if (use-region-p)
576 (list (region-beginning) (region-end))
577 (list nil nil))))
578 (save-match-data
579 (save-excursion
580 (let ((end-marker (copy-marker (or end (point-max))))
581 (start (or start (point-min))))
582 (goto-char start)
583 (while (re-search-forward "\\s-$" end-marker t)
584 (skip-syntax-backward "-" (line-beginning-position))
585 ;; Don't delete formfeeds, even if they are considered whitespace.
586 (if (looking-at-p ".*\f")
587 (goto-char (match-end 0)))
588 (delete-region (point) (match-end 0)))
589 ;; Delete trailing empty lines.
590 (goto-char end-marker)
591 (when (and (not end)
592 ;; Really the end of buffer.
593 (save-restriction (widen) (eobp))
594 (<= (skip-chars-backward "\n") -2))
595 (delete-region (1+ (point)) end-marker))
596 (set-marker end-marker nil))))
597 ;; Return nil for the benefit of `write-file-functions'.
598 nil)
600 (defun newline-and-indent ()
601 "Insert a newline, then indent according to major mode.
602 Indentation is done using the value of `indent-line-function'.
603 In programming language modes, this is the same as TAB.
604 In some text modes, where TAB inserts a tab, this command indents to the
605 column specified by the function `current-left-margin'."
606 (interactive "*")
607 (delete-horizontal-space t)
608 (newline)
609 (indent-according-to-mode))
611 (defun reindent-then-newline-and-indent ()
612 "Reindent current line, insert newline, then indent the new line.
613 Indentation of both lines is done according to the current major mode,
614 which means calling the current value of `indent-line-function'.
615 In programming language modes, this is the same as TAB.
616 In some text modes, where TAB inserts a tab, this indents to the
617 column specified by the function `current-left-margin'."
618 (interactive "*")
619 (let ((pos (point)))
620 ;; Be careful to insert the newline before indenting the line.
621 ;; Otherwise, the indentation might be wrong.
622 (newline)
623 (save-excursion
624 (goto-char pos)
625 ;; We are at EOL before the call to indent-according-to-mode, and
626 ;; after it we usually are as well, but not always. We tried to
627 ;; address it with `save-excursion' but that uses a normal marker
628 ;; whereas we need `move after insertion', so we do the save/restore
629 ;; by hand.
630 (setq pos (copy-marker pos t))
631 (indent-according-to-mode)
632 (goto-char pos)
633 ;; Remove the trailing white-space after indentation because
634 ;; indentation may introduce the whitespace.
635 (delete-horizontal-space t))
636 (indent-according-to-mode)))
638 (defun quoted-insert (arg)
639 "Read next input character and insert it.
640 This is useful for inserting control characters.
641 With argument, insert ARG copies of the character.
643 If the first character you type after this command is an octal digit,
644 you should type a sequence of octal digits which specify a character code.
645 Any nondigit terminates the sequence. If the terminator is a RET,
646 it is discarded; any other terminator is used itself as input.
647 The variable `read-quoted-char-radix' specifies the radix for this feature;
648 set it to 10 or 16 to use decimal or hex instead of octal.
650 In overwrite mode, this function inserts the character anyway, and
651 does not handle octal digits specially. This means that if you use
652 overwrite as your normal editing mode, you can use this function to
653 insert characters when necessary.
655 In binary overwrite mode, this function does overwrite, and octal
656 digits are interpreted as a character code. This is intended to be
657 useful for editing binary files."
658 (interactive "*p")
659 (let* ((char
660 ;; Avoid "obsolete" warnings for translation-table-for-input.
661 (with-no-warnings
662 (let (translation-table-for-input input-method-function)
663 (if (or (not overwrite-mode)
664 (eq overwrite-mode 'overwrite-mode-binary))
665 (read-quoted-char)
666 (read-char))))))
667 ;; This used to assume character codes 0240 - 0377 stand for
668 ;; characters in some single-byte character set, and converted them
669 ;; to Emacs characters. But in 23.1 this feature is deprecated
670 ;; in favor of inserting the corresponding Unicode characters.
671 ;; (if (and enable-multibyte-characters
672 ;; (>= char ?\240)
673 ;; (<= char ?\377))
674 ;; (setq char (unibyte-char-to-multibyte char)))
675 (if (> arg 0)
676 (if (eq overwrite-mode 'overwrite-mode-binary)
677 (delete-char arg)))
678 (while (> arg 0)
679 (insert-and-inherit char)
680 (setq arg (1- arg)))))
682 (defun forward-to-indentation (&optional arg)
683 "Move forward ARG lines and position at first nonblank character."
684 (interactive "^p")
685 (forward-line (or arg 1))
686 (skip-chars-forward " \t"))
688 (defun backward-to-indentation (&optional arg)
689 "Move backward ARG lines and position at first nonblank character."
690 (interactive "^p")
691 (forward-line (- (or arg 1)))
692 (skip-chars-forward " \t"))
694 (defun back-to-indentation ()
695 "Move point to the first non-whitespace character on this line."
696 (interactive "^")
697 (beginning-of-line 1)
698 (skip-syntax-forward " " (line-end-position))
699 ;; Move back over chars that have whitespace syntax but have the p flag.
700 (backward-prefix-chars))
702 (defun fixup-whitespace ()
703 "Fixup white space between objects around point.
704 Leave one space or none, according to the context."
705 (interactive "*")
706 (save-excursion
707 (delete-horizontal-space)
708 (if (or (looking-at "^\\|\\s)")
709 (save-excursion (forward-char -1)
710 (looking-at "$\\|\\s(\\|\\s'")))
712 (insert ?\s))))
714 (defun delete-horizontal-space (&optional backward-only)
715 "Delete all spaces and tabs around point.
716 If BACKWARD-ONLY is non-nil, only delete them before point."
717 (interactive "*P")
718 (let ((orig-pos (point)))
719 (delete-region
720 (if backward-only
721 orig-pos
722 (progn
723 (skip-chars-forward " \t")
724 (constrain-to-field nil orig-pos t)))
725 (progn
726 (skip-chars-backward " \t")
727 (constrain-to-field nil orig-pos)))))
729 (defun just-one-space (&optional n)
730 "Delete all spaces and tabs around point, leaving one space (or N spaces).
731 If N is negative, delete newlines as well."
732 (interactive "*p")
733 (unless n (setq n 1))
734 (let ((orig-pos (point))
735 (skip-characters (if (< n 0) " \t\n\r" " \t"))
736 (n (abs n)))
737 (skip-chars-backward skip-characters)
738 (constrain-to-field nil orig-pos)
739 (dotimes (i n)
740 (if (= (following-char) ?\s)
741 (forward-char 1)
742 (insert ?\s)))
743 (delete-region
744 (point)
745 (progn
746 (skip-chars-forward skip-characters)
747 (constrain-to-field nil orig-pos t)))))
749 (defun beginning-of-buffer (&optional arg)
750 "Move point to the beginning of the buffer.
751 With numeric arg N, put point N/10 of the way from the beginning.
752 If the buffer is narrowed, this command uses the beginning of the
753 accessible part of the buffer.
755 If Transient Mark mode is disabled, leave mark at previous
756 position, unless a \\[universal-argument] prefix is supplied.
758 Don't use this command in Lisp programs!
759 \(goto-char (point-min)) is faster."
760 (interactive "^P")
761 (or (consp arg)
762 (region-active-p)
763 (push-mark))
764 (let ((size (- (point-max) (point-min))))
765 (goto-char (if (and arg (not (consp arg)))
766 (+ (point-min)
767 (if (> size 10000)
768 ;; Avoid overflow for large buffer sizes!
769 (* (prefix-numeric-value arg)
770 (/ size 10))
771 (/ (+ 10 (* size (prefix-numeric-value arg))) 10)))
772 (point-min))))
773 (if (and arg (not (consp arg))) (forward-line 1)))
775 (defun end-of-buffer (&optional arg)
776 "Move point to the end of the buffer.
777 With numeric arg N, put point N/10 of the way from the end.
778 If the buffer is narrowed, this command uses the end of the
779 accessible part of the buffer.
781 If Transient Mark mode is disabled, leave mark at previous
782 position, unless a \\[universal-argument] prefix is supplied.
784 Don't use this command in Lisp programs!
785 \(goto-char (point-max)) is faster."
786 (interactive "^P")
787 (or (consp arg) (region-active-p) (push-mark))
788 (let ((size (- (point-max) (point-min))))
789 (goto-char (if (and arg (not (consp arg)))
790 (- (point-max)
791 (if (> size 10000)
792 ;; Avoid overflow for large buffer sizes!
793 (* (prefix-numeric-value arg)
794 (/ size 10))
795 (/ (* size (prefix-numeric-value arg)) 10)))
796 (point-max))))
797 ;; If we went to a place in the middle of the buffer,
798 ;; adjust it to the beginning of a line.
799 (cond ((and arg (not (consp arg))) (forward-line 1))
800 ((> (point) (window-end nil t))
801 ;; If the end of the buffer is not already on the screen,
802 ;; then scroll specially to put it near, but not at, the bottom.
803 (overlay-recenter (point))
804 (recenter -3))))
806 (defcustom delete-active-region t
807 "Whether single-char deletion commands delete an active region.
808 This has an effect only if Transient Mark mode is enabled, and
809 affects `delete-forward-char' and `delete-backward-char', though
810 not `delete-char'.
812 If the value is the symbol `kill', the active region is killed
813 instead of deleted."
814 :type '(choice (const :tag "Delete active region" t)
815 (const :tag "Kill active region" kill)
816 (const :tag "Do ordinary deletion" nil))
817 :group 'editing
818 :version "24.1")
820 (defun delete-backward-char (n &optional killflag)
821 "Delete the previous N characters (following if N is negative).
822 If Transient Mark mode is enabled, the mark is active, and N is 1,
823 delete the text in the region and deactivate the mark instead.
824 To disable this, set `delete-active-region' to nil.
826 Optional second arg KILLFLAG, if non-nil, means to kill (save in
827 kill ring) instead of delete. Interactively, N is the prefix
828 arg, and KILLFLAG is set if N is explicitly specified.
830 In Overwrite mode, single character backward deletion may replace
831 tabs with spaces so as to back over columns, unless point is at
832 the end of the line."
833 (interactive "p\nP")
834 (unless (integerp n)
835 (signal 'wrong-type-argument (list 'integerp n)))
836 (cond ((and (use-region-p)
837 delete-active-region
838 (= n 1))
839 ;; If a region is active, kill or delete it.
840 (if (eq delete-active-region 'kill)
841 (kill-region (region-beginning) (region-end))
842 (delete-region (region-beginning) (region-end))))
843 ;; In Overwrite mode, maybe untabify while deleting
844 ((null (or (null overwrite-mode)
845 (<= n 0)
846 (memq (char-before) '(?\t ?\n))
847 (eobp)
848 (eq (char-after) ?\n)))
849 (let ((ocol (current-column)))
850 (delete-char (- n) killflag)
851 (save-excursion
852 (insert-char ?\s (- ocol (current-column)) nil))))
853 ;; Otherwise, do simple deletion.
854 (t (delete-char (- n) killflag))))
856 (defun delete-forward-char (n &optional killflag)
857 "Delete the following N characters (previous if N is negative).
858 If Transient Mark mode is enabled, the mark is active, and N is 1,
859 delete the text in the region and deactivate the mark instead.
860 To disable this, set `delete-active-region' to nil.
862 Optional second arg KILLFLAG non-nil means to kill (save in kill
863 ring) instead of delete. Interactively, N is the prefix arg, and
864 KILLFLAG is set if N was explicitly specified."
865 (interactive "p\nP")
866 (unless (integerp n)
867 (signal 'wrong-type-argument (list 'integerp n)))
868 (cond ((and (use-region-p)
869 delete-active-region
870 (= n 1))
871 ;; If a region is active, kill or delete it.
872 (if (eq delete-active-region 'kill)
873 (kill-region (region-beginning) (region-end))
874 (delete-region (region-beginning) (region-end))))
875 ;; Otherwise, do simple deletion.
876 (t (delete-char n killflag))))
878 (defun mark-whole-buffer ()
879 "Put point at beginning and mark at end of buffer.
880 You probably should not use this function in Lisp programs;
881 it is usually a mistake for a Lisp function to use any subroutine
882 that uses or sets the mark."
883 (interactive)
884 (push-mark (point))
885 (push-mark (point-max) nil t)
886 (goto-char (point-min)))
889 ;; Counting lines, one way or another.
891 (defun goto-line (line &optional buffer)
892 "Goto LINE, counting from line 1 at beginning of buffer.
893 Normally, move point in the current buffer, and leave mark at the
894 previous position. With just \\[universal-argument] as argument,
895 move point in the most recently selected other buffer, and switch to it.
897 If there's a number in the buffer at point, it is the default for LINE.
899 This function is usually the wrong thing to use in a Lisp program.
900 What you probably want instead is something like:
901 (goto-char (point-min)) (forward-line (1- N))
902 If at all possible, an even better solution is to use char counts
903 rather than line counts."
904 (interactive
905 (if (and current-prefix-arg (not (consp current-prefix-arg)))
906 (list (prefix-numeric-value current-prefix-arg))
907 ;; Look for a default, a number in the buffer at point.
908 (let* ((default
909 (save-excursion
910 (skip-chars-backward "0-9")
911 (if (looking-at "[0-9]")
912 (string-to-number
913 (buffer-substring-no-properties
914 (point)
915 (progn (skip-chars-forward "0-9")
916 (point)))))))
917 ;; Decide if we're switching buffers.
918 (buffer
919 (if (consp current-prefix-arg)
920 (other-buffer (current-buffer) t)))
921 (buffer-prompt
922 (if buffer
923 (concat " in " (buffer-name buffer))
924 "")))
925 ;; Read the argument, offering that number (if any) as default.
926 (list (read-number (format (if default "Goto line%s (%s): "
927 "Goto line%s: ")
928 buffer-prompt
929 default)
930 default)
931 buffer))))
932 ;; Switch to the desired buffer, one way or another.
933 (if buffer
934 (let ((window (get-buffer-window buffer)))
935 (if window (select-window window)
936 (switch-to-buffer-other-window buffer))))
937 ;; Leave mark at previous position
938 (or (region-active-p) (push-mark))
939 ;; Move to the specified line number in that buffer.
940 (save-restriction
941 (widen)
942 (goto-char (point-min))
943 (if (eq selective-display t)
944 (re-search-forward "[\n\C-m]" nil 'end (1- line))
945 (forward-line (1- line)))))
947 (defun count-words-region (start end)
948 "Return the number of words between START and END.
949 If called interactively, print a message reporting the number of
950 lines, words, and characters in the region."
951 (interactive "r")
952 (let ((words 0))
953 (save-excursion
954 (save-restriction
955 (narrow-to-region start end)
956 (goto-char (point-min))
957 (while (forward-word 1)
958 (setq words (1+ words)))))
959 (when (called-interactively-p 'interactive)
960 (count-words--message "Region"
961 (count-lines start end)
962 words
963 (- end start)))
964 words))
966 (defun count-words ()
967 "Display the number of lines, words, and characters in the buffer.
968 In Transient Mark mode when the mark is active, display the
969 number of lines, words, and characters in the region."
970 (interactive)
971 (if (use-region-p)
972 (call-interactively 'count-words-region)
973 (let* ((beg (point-min))
974 (end (point-max))
975 (lines (count-lines beg end))
976 (words (count-words-region beg end))
977 (chars (- end beg)))
978 (count-words--message "Buffer" lines words chars))))
980 (defun count-words--message (str lines words chars)
981 (message "%s has %d line%s, %d word%s, and %d character%s."
983 lines (if (= lines 1) "" "s")
984 words (if (= words 1) "" "s")
985 chars (if (= chars 1) "" "s")))
987 (defalias 'count-lines-region 'count-words-region)
989 (defun what-line ()
990 "Print the current buffer line number and narrowed line number of point."
991 (interactive)
992 (let ((start (point-min))
993 (n (line-number-at-pos)))
994 (if (= start 1)
995 (message "Line %d" n)
996 (save-excursion
997 (save-restriction
998 (widen)
999 (message "line %d (narrowed line %d)"
1000 (+ n (line-number-at-pos start) -1) n))))))
1002 (defun count-lines (start end)
1003 "Return number of lines between START and END.
1004 This is usually the number of newlines between them,
1005 but can be one more if START is not equal to END
1006 and the greater of them is not at the start of a line."
1007 (save-excursion
1008 (save-restriction
1009 (narrow-to-region start end)
1010 (goto-char (point-min))
1011 (if (eq selective-display t)
1012 (save-match-data
1013 (let ((done 0))
1014 (while (re-search-forward "[\n\C-m]" nil t 40)
1015 (setq done (+ 40 done)))
1016 (while (re-search-forward "[\n\C-m]" nil t 1)
1017 (setq done (+ 1 done)))
1018 (goto-char (point-max))
1019 (if (and (/= start end)
1020 (not (bolp)))
1021 (1+ done)
1022 done)))
1023 (- (buffer-size) (forward-line (buffer-size)))))))
1025 (defun line-number-at-pos (&optional pos)
1026 "Return (narrowed) buffer line number at position POS.
1027 If POS is nil, use current buffer location.
1028 Counting starts at (point-min), so the value refers
1029 to the contents of the accessible portion of the buffer."
1030 (let ((opoint (or pos (point))) start)
1031 (save-excursion
1032 (goto-char (point-min))
1033 (setq start (point))
1034 (goto-char opoint)
1035 (forward-line 0)
1036 (1+ (count-lines start (point))))))
1038 (defun what-cursor-position (&optional detail)
1039 "Print info on cursor position (on screen and within buffer).
1040 Also describe the character after point, and give its character code
1041 in octal, decimal and hex.
1043 For a non-ASCII multibyte character, also give its encoding in the
1044 buffer's selected coding system if the coding system encodes the
1045 character safely. If the character is encoded into one byte, that
1046 code is shown in hex. If the character is encoded into more than one
1047 byte, just \"...\" is shown.
1049 In addition, with prefix argument, show details about that character
1050 in *Help* buffer. See also the command `describe-char'."
1051 (interactive "P")
1052 (let* ((char (following-char))
1053 ;; If the character is one of LRE, LRO, RLE, RLO, it will
1054 ;; start a directional embedding, which could completely
1055 ;; disrupt the rest of the line (e.g., RLO will display the
1056 ;; rest of the line right-to-left). So we put an invisible
1057 ;; PDF character after these characters, to end the
1058 ;; embedding, which eliminates any effects on the rest of the
1059 ;; line.
1060 (pdf (if (memq char '(?\x202a ?\x202b ?\x202d ?\x202e))
1061 (propertize (string ?\x202c) 'invisible t)
1062 ""))
1063 (beg (point-min))
1064 (end (point-max))
1065 (pos (point))
1066 (total (buffer-size))
1067 (percent (if (> total 50000)
1068 ;; Avoid overflow from multiplying by 100!
1069 (/ (+ (/ total 200) (1- pos)) (max (/ total 100) 1))
1070 (/ (+ (/ total 2) (* 100 (1- pos))) (max total 1))))
1071 (hscroll (if (= (window-hscroll) 0)
1073 (format " Hscroll=%d" (window-hscroll))))
1074 (col (current-column)))
1075 (if (= pos end)
1076 (if (or (/= beg 1) (/= end (1+ total)))
1077 (message "point=%d of %d (%d%%) <%d-%d> column=%d%s"
1078 pos total percent beg end col hscroll)
1079 (message "point=%d of %d (EOB) column=%d%s"
1080 pos total col hscroll))
1081 (let ((coding buffer-file-coding-system)
1082 encoded encoding-msg display-prop under-display)
1083 (if (or (not coding)
1084 (eq (coding-system-type coding) t))
1085 (setq coding (default-value 'buffer-file-coding-system)))
1086 (if (eq (char-charset char) 'eight-bit)
1087 (setq encoding-msg
1088 (format "(%d, #o%o, #x%x, raw-byte)" char char char))
1089 ;; Check if the character is displayed with some `display'
1090 ;; text property. In that case, set under-display to the
1091 ;; buffer substring covered by that property.
1092 (setq display-prop (get-char-property pos 'display))
1093 (if display-prop
1094 (let ((to (or (next-single-char-property-change pos 'display)
1095 (point-max))))
1096 (if (< to (+ pos 4))
1097 (setq under-display "")
1098 (setq under-display "..."
1099 to (+ pos 4)))
1100 (setq under-display
1101 (concat (buffer-substring-no-properties pos to)
1102 under-display)))
1103 (setq encoded (and (>= char 128) (encode-coding-char char coding))))
1104 (setq encoding-msg
1105 (if display-prop
1106 (if (not (stringp display-prop))
1107 (format "(%d, #o%o, #x%x, part of display \"%s\")"
1108 char char char under-display)
1109 (format "(%d, #o%o, #x%x, part of display \"%s\"->\"%s\")"
1110 char char char under-display display-prop))
1111 (if encoded
1112 (format "(%d, #o%o, #x%x, file %s)"
1113 char char char
1114 (if (> (length encoded) 1)
1115 "..."
1116 (encoded-string-description encoded coding)))
1117 (format "(%d, #o%o, #x%x)" char char char)))))
1118 (if detail
1119 ;; We show the detailed information about CHAR.
1120 (describe-char (point)))
1121 (if (or (/= beg 1) (/= end (1+ total)))
1122 (message "Char: %s%s %s point=%d of %d (%d%%) <%d-%d> column=%d%s"
1123 (if (< char 256)
1124 (single-key-description char)
1125 (buffer-substring-no-properties (point) (1+ (point))))
1126 pdf encoding-msg pos total percent beg end col hscroll)
1127 (message "Char: %s%s %s point=%d of %d (%d%%) column=%d%s"
1128 (if enable-multibyte-characters
1129 (if (< char 128)
1130 (single-key-description char)
1131 (buffer-substring-no-properties (point) (1+ (point))))
1132 (single-key-description char))
1133 pdf encoding-msg pos total percent col hscroll))))))
1135 ;; Initialize read-expression-map. It is defined at C level.
1136 (let ((m (make-sparse-keymap)))
1137 (define-key m "\M-\t" 'lisp-complete-symbol)
1138 ;; Might as well bind TAB to completion, since inserting a TAB char is much
1139 ;; too rarely useful.
1140 (define-key m "\t" 'lisp-complete-symbol)
1141 (set-keymap-parent m minibuffer-local-map)
1142 (setq read-expression-map m))
1144 (defvar minibuffer-completing-symbol nil
1145 "Non-nil means completing a Lisp symbol in the minibuffer.")
1146 (make-obsolete-variable 'minibuffer-completing-symbol nil "24.1" 'get)
1148 (defvar minibuffer-default nil
1149 "The current default value or list of default values in the minibuffer.
1150 The functions `read-from-minibuffer' and `completing-read' bind
1151 this variable locally.")
1153 (defcustom eval-expression-print-level 4
1154 "Value for `print-level' while printing value in `eval-expression'.
1155 A value of nil means no limit."
1156 :group 'lisp
1157 :type '(choice (const :tag "No Limit" nil) integer)
1158 :version "21.1")
1160 (defcustom eval-expression-print-length 12
1161 "Value for `print-length' while printing value in `eval-expression'.
1162 A value of nil means no limit."
1163 :group 'lisp
1164 :type '(choice (const :tag "No Limit" nil) integer)
1165 :version "21.1")
1167 (defcustom eval-expression-debug-on-error t
1168 "If non-nil set `debug-on-error' to t in `eval-expression'.
1169 If nil, don't change the value of `debug-on-error'."
1170 :group 'lisp
1171 :type 'boolean
1172 :version "21.1")
1174 (defun eval-expression-print-format (value)
1175 "Format VALUE as a result of evaluated expression.
1176 Return a formatted string which is displayed in the echo area
1177 in addition to the value printed by prin1 in functions which
1178 display the result of expression evaluation."
1179 (if (and (integerp value)
1180 (or (not (memq this-command '(eval-last-sexp eval-print-last-sexp)))
1181 (eq this-command last-command)
1182 (if (boundp 'edebug-active) edebug-active)))
1183 (let ((char-string
1184 (if (or (if (boundp 'edebug-active) edebug-active)
1185 (memq this-command '(eval-last-sexp eval-print-last-sexp)))
1186 (prin1-char value))))
1187 (if char-string
1188 (format " (#o%o, #x%x, %s)" value value char-string)
1189 (format " (#o%o, #x%x)" value value)))))
1191 ;; We define this, rather than making `eval' interactive,
1192 ;; for the sake of completion of names like eval-region, eval-buffer.
1193 (defun eval-expression (eval-expression-arg
1194 &optional eval-expression-insert-value)
1195 "Evaluate EVAL-EXPRESSION-ARG and print value in the echo area.
1196 When called interactively, read an Emacs Lisp expression and
1197 evaluate it.
1198 Value is also consed on to front of the variable `values'.
1199 Optional argument EVAL-EXPRESSION-INSERT-VALUE non-nil (interactively,
1200 with prefix argument) means insert the result into the current buffer
1201 instead of printing it in the echo area. Truncates long output
1202 according to the value of the variables `eval-expression-print-length'
1203 and `eval-expression-print-level'.
1205 If `eval-expression-debug-on-error' is non-nil, which is the default,
1206 this command arranges for all errors to enter the debugger."
1207 (interactive
1208 (list (let ((minibuffer-completing-symbol t))
1209 (read-from-minibuffer "Eval: "
1210 nil read-expression-map t
1211 'read-expression-history))
1212 current-prefix-arg))
1214 (if (null eval-expression-debug-on-error)
1215 (push (eval eval-expression-arg lexical-binding) values)
1216 (let ((old-value (make-symbol "t")) new-value)
1217 ;; Bind debug-on-error to something unique so that we can
1218 ;; detect when evaled code changes it.
1219 (let ((debug-on-error old-value))
1220 (push (eval eval-expression-arg lexical-binding) values)
1221 (setq new-value debug-on-error))
1222 ;; If evaled code has changed the value of debug-on-error,
1223 ;; propagate that change to the global binding.
1224 (unless (eq old-value new-value)
1225 (setq debug-on-error new-value))))
1227 (let ((print-length eval-expression-print-length)
1228 (print-level eval-expression-print-level))
1229 (if eval-expression-insert-value
1230 (with-no-warnings
1231 (let ((standard-output (current-buffer)))
1232 (prin1 (car values))))
1233 (prog1
1234 (prin1 (car values) t)
1235 (let ((str (eval-expression-print-format (car values))))
1236 (if str (princ str t)))))))
1238 (defun edit-and-eval-command (prompt command)
1239 "Prompting with PROMPT, let user edit COMMAND and eval result.
1240 COMMAND is a Lisp expression. Let user edit that expression in
1241 the minibuffer, then read and evaluate the result."
1242 (let ((command
1243 (let ((print-level nil)
1244 (minibuffer-history-sexp-flag (1+ (minibuffer-depth))))
1245 (unwind-protect
1246 (read-from-minibuffer prompt
1247 (prin1-to-string command)
1248 read-expression-map t
1249 'command-history)
1250 ;; If command was added to command-history as a string,
1251 ;; get rid of that. We want only evaluable expressions there.
1252 (if (stringp (car command-history))
1253 (setq command-history (cdr command-history)))))))
1255 ;; If command to be redone does not match front of history,
1256 ;; add it to the history.
1257 (or (equal command (car command-history))
1258 (setq command-history (cons command command-history)))
1259 (eval command)))
1261 (defun repeat-complex-command (arg)
1262 "Edit and re-evaluate last complex command, or ARGth from last.
1263 A complex command is one which used the minibuffer.
1264 The command is placed in the minibuffer as a Lisp form for editing.
1265 The result is executed, repeating the command as changed.
1266 If the command has been changed or is not the most recent previous
1267 command it is added to the front of the command history.
1268 You can use the minibuffer history commands \
1269 \\<minibuffer-local-map>\\[next-history-element] and \\[previous-history-element]
1270 to get different commands to edit and resubmit."
1271 (interactive "p")
1272 (let ((elt (nth (1- arg) command-history))
1273 newcmd)
1274 (if elt
1275 (progn
1276 (setq newcmd
1277 (let ((print-level nil)
1278 (minibuffer-history-position arg)
1279 (minibuffer-history-sexp-flag (1+ (minibuffer-depth))))
1280 (unwind-protect
1281 (read-from-minibuffer
1282 "Redo: " (prin1-to-string elt) read-expression-map t
1283 (cons 'command-history arg))
1285 ;; If command was added to command-history as a
1286 ;; string, get rid of that. We want only
1287 ;; evaluable expressions there.
1288 (if (stringp (car command-history))
1289 (setq command-history (cdr command-history))))))
1291 ;; If command to be redone does not match front of history,
1292 ;; add it to the history.
1293 (or (equal newcmd (car command-history))
1294 (setq command-history (cons newcmd command-history)))
1295 (eval newcmd))
1296 (if command-history
1297 (error "Argument %d is beyond length of command history" arg)
1298 (error "There are no previous complex commands to repeat")))))
1300 (defun read-extended-command ()
1301 "Read command name to invoke in `execute-extended-command'."
1302 (minibuffer-with-setup-hook
1303 (lambda ()
1304 (set (make-local-variable 'minibuffer-default-add-function)
1305 (lambda ()
1306 ;; Get a command name at point in the original buffer
1307 ;; to propose it after M-n.
1308 (with-current-buffer (window-buffer (minibuffer-selected-window))
1309 (and (commandp (function-called-at-point))
1310 (format "%S" (function-called-at-point)))))))
1311 ;; Read a string, completing from and restricting to the set of
1312 ;; all defined commands. Don't provide any initial input.
1313 ;; Save the command read on the extended-command history list.
1314 (completing-read
1315 (concat (cond
1316 ((eq current-prefix-arg '-) "- ")
1317 ((and (consp current-prefix-arg)
1318 (eq (car current-prefix-arg) 4)) "C-u ")
1319 ((and (consp current-prefix-arg)
1320 (integerp (car current-prefix-arg)))
1321 (format "%d " (car current-prefix-arg)))
1322 ((integerp current-prefix-arg)
1323 (format "%d " current-prefix-arg)))
1324 ;; This isn't strictly correct if `execute-extended-command'
1325 ;; is bound to anything else (e.g. [menu]).
1326 ;; It could use (key-description (this-single-command-keys)),
1327 ;; but actually a prompt other than "M-x" would be confusing,
1328 ;; because "M-x" is a well-known prompt to read a command
1329 ;; and it serves as a shorthand for "Extended command: ".
1330 "M-x ")
1331 obarray 'commandp t nil 'extended-command-history)))
1334 (defvar minibuffer-history nil
1335 "Default minibuffer history list.
1336 This is used for all minibuffer input
1337 except when an alternate history list is specified.
1339 Maximum length of the history list is determined by the value
1340 of `history-length', which see.")
1341 (defvar minibuffer-history-sexp-flag nil
1342 "Control whether history list elements are expressions or strings.
1343 If the value of this variable equals current minibuffer depth,
1344 they are expressions; otherwise they are strings.
1345 \(That convention is designed to do the right thing for
1346 recursive uses of the minibuffer.)")
1347 (setq minibuffer-history-variable 'minibuffer-history)
1348 (setq minibuffer-history-position nil) ;; Defvar is in C code.
1349 (defvar minibuffer-history-search-history nil)
1351 (defvar minibuffer-text-before-history nil
1352 "Text that was in this minibuffer before any history commands.
1353 This is nil if there have not yet been any history commands
1354 in this use of the minibuffer.")
1356 (add-hook 'minibuffer-setup-hook 'minibuffer-history-initialize)
1358 (defun minibuffer-history-initialize ()
1359 (setq minibuffer-text-before-history nil))
1361 (defun minibuffer-avoid-prompt (_new _old)
1362 "A point-motion hook for the minibuffer, that moves point out of the prompt."
1363 (constrain-to-field nil (point-max)))
1365 (defcustom minibuffer-history-case-insensitive-variables nil
1366 "Minibuffer history variables for which matching should ignore case.
1367 If a history variable is a member of this list, then the
1368 \\[previous-matching-history-element] and \\[next-matching-history-element]\
1369 commands ignore case when searching it, regardless of `case-fold-search'."
1370 :type '(repeat variable)
1371 :group 'minibuffer)
1373 (defun previous-matching-history-element (regexp n)
1374 "Find the previous history element that matches REGEXP.
1375 \(Previous history elements refer to earlier actions.)
1376 With prefix argument N, search for Nth previous match.
1377 If N is negative, find the next or Nth next match.
1378 Normally, history elements are matched case-insensitively if
1379 `case-fold-search' is non-nil, but an uppercase letter in REGEXP
1380 makes the search case-sensitive.
1381 See also `minibuffer-history-case-insensitive-variables'."
1382 (interactive
1383 (let* ((enable-recursive-minibuffers t)
1384 (regexp (read-from-minibuffer "Previous element matching (regexp): "
1386 minibuffer-local-map
1388 'minibuffer-history-search-history
1389 (car minibuffer-history-search-history))))
1390 ;; Use the last regexp specified, by default, if input is empty.
1391 (list (if (string= regexp "")
1392 (if minibuffer-history-search-history
1393 (car minibuffer-history-search-history)
1394 (error "No previous history search regexp"))
1395 regexp)
1396 (prefix-numeric-value current-prefix-arg))))
1397 (unless (zerop n)
1398 (if (and (zerop minibuffer-history-position)
1399 (null minibuffer-text-before-history))
1400 (setq minibuffer-text-before-history
1401 (minibuffer-contents-no-properties)))
1402 (let ((history (symbol-value minibuffer-history-variable))
1403 (case-fold-search
1404 (if (isearch-no-upper-case-p regexp t) ; assume isearch.el is dumped
1405 ;; On some systems, ignore case for file names.
1406 (if (memq minibuffer-history-variable
1407 minibuffer-history-case-insensitive-variables)
1409 ;; Respect the user's setting for case-fold-search:
1410 case-fold-search)
1411 nil))
1412 prevpos
1413 match-string
1414 match-offset
1415 (pos minibuffer-history-position))
1416 (while (/= n 0)
1417 (setq prevpos pos)
1418 (setq pos (min (max 1 (+ pos (if (< n 0) -1 1))) (length history)))
1419 (when (= pos prevpos)
1420 (error (if (= pos 1)
1421 "No later matching history item"
1422 "No earlier matching history item")))
1423 (setq match-string
1424 (if (eq minibuffer-history-sexp-flag (minibuffer-depth))
1425 (let ((print-level nil))
1426 (prin1-to-string (nth (1- pos) history)))
1427 (nth (1- pos) history)))
1428 (setq match-offset
1429 (if (< n 0)
1430 (and (string-match regexp match-string)
1431 (match-end 0))
1432 (and (string-match (concat ".*\\(" regexp "\\)") match-string)
1433 (match-beginning 1))))
1434 (when match-offset
1435 (setq n (+ n (if (< n 0) 1 -1)))))
1436 (setq minibuffer-history-position pos)
1437 (goto-char (point-max))
1438 (delete-minibuffer-contents)
1439 (insert match-string)
1440 (goto-char (+ (minibuffer-prompt-end) match-offset))))
1441 (if (memq (car (car command-history)) '(previous-matching-history-element
1442 next-matching-history-element))
1443 (setq command-history (cdr command-history))))
1445 (defun next-matching-history-element (regexp n)
1446 "Find the next history element that matches REGEXP.
1447 \(The next history element refers to a more recent action.)
1448 With prefix argument N, search for Nth next match.
1449 If N is negative, find the previous or Nth previous match.
1450 Normally, history elements are matched case-insensitively if
1451 `case-fold-search' is non-nil, but an uppercase letter in REGEXP
1452 makes the search case-sensitive."
1453 (interactive
1454 (let* ((enable-recursive-minibuffers t)
1455 (regexp (read-from-minibuffer "Next element matching (regexp): "
1457 minibuffer-local-map
1459 'minibuffer-history-search-history
1460 (car minibuffer-history-search-history))))
1461 ;; Use the last regexp specified, by default, if input is empty.
1462 (list (if (string= regexp "")
1463 (if minibuffer-history-search-history
1464 (car minibuffer-history-search-history)
1465 (error "No previous history search regexp"))
1466 regexp)
1467 (prefix-numeric-value current-prefix-arg))))
1468 (previous-matching-history-element regexp (- n)))
1470 (defvar minibuffer-temporary-goal-position nil)
1472 (defvar minibuffer-default-add-function 'minibuffer-default-add-completions
1473 "Function run by `goto-history-element' before consuming default values.
1474 This is useful to dynamically add more elements to the list of default values
1475 when `goto-history-element' reaches the end of this list.
1476 Before calling this function `goto-history-element' sets the variable
1477 `minibuffer-default-add-done' to t, so it will call this function only
1478 once. In special cases, when this function needs to be called more
1479 than once, it can set `minibuffer-default-add-done' to nil explicitly,
1480 overriding the setting of this variable to t in `goto-history-element'.")
1482 (defvar minibuffer-default-add-done nil
1483 "When nil, add more elements to the end of the list of default values.
1484 The value nil causes `goto-history-element' to add more elements to
1485 the list of defaults when it reaches the end of this list. It does
1486 this by calling a function defined by `minibuffer-default-add-function'.")
1488 (make-variable-buffer-local 'minibuffer-default-add-done)
1490 (defun minibuffer-default-add-completions ()
1491 "Return a list of all completions without the default value.
1492 This function is used to add all elements of the completion table to
1493 the end of the list of defaults just after the default value."
1494 (let ((def minibuffer-default)
1495 (all (all-completions ""
1496 minibuffer-completion-table
1497 minibuffer-completion-predicate)))
1498 (if (listp def)
1499 (append def all)
1500 (cons def (delete def all)))))
1502 (defun goto-history-element (nabs)
1503 "Puts element of the minibuffer history in the minibuffer.
1504 The argument NABS specifies the absolute history position."
1505 (interactive "p")
1506 (when (and (not minibuffer-default-add-done)
1507 (functionp minibuffer-default-add-function)
1508 (< nabs (- (if (listp minibuffer-default)
1509 (length minibuffer-default)
1510 1))))
1511 (setq minibuffer-default-add-done t
1512 minibuffer-default (funcall minibuffer-default-add-function)))
1513 (let ((minimum (if minibuffer-default
1514 (- (if (listp minibuffer-default)
1515 (length minibuffer-default)
1518 elt minibuffer-returned-to-present)
1519 (if (and (zerop minibuffer-history-position)
1520 (null minibuffer-text-before-history))
1521 (setq minibuffer-text-before-history
1522 (minibuffer-contents-no-properties)))
1523 (if (< nabs minimum)
1524 (if minibuffer-default
1525 (error "End of defaults; no next item")
1526 (error "End of history; no default available")))
1527 (if (> nabs (length (symbol-value minibuffer-history-variable)))
1528 (error "Beginning of history; no preceding item"))
1529 (unless (memq last-command '(next-history-element
1530 previous-history-element))
1531 (let ((prompt-end (minibuffer-prompt-end)))
1532 (set (make-local-variable 'minibuffer-temporary-goal-position)
1533 (cond ((<= (point) prompt-end) prompt-end)
1534 ((eobp) nil)
1535 (t (point))))))
1536 (goto-char (point-max))
1537 (delete-minibuffer-contents)
1538 (setq minibuffer-history-position nabs)
1539 (cond ((< nabs 0)
1540 (setq elt (if (listp minibuffer-default)
1541 (nth (1- (abs nabs)) minibuffer-default)
1542 minibuffer-default)))
1543 ((= nabs 0)
1544 (setq elt (or minibuffer-text-before-history ""))
1545 (setq minibuffer-returned-to-present t)
1546 (setq minibuffer-text-before-history nil))
1547 (t (setq elt (nth (1- minibuffer-history-position)
1548 (symbol-value minibuffer-history-variable)))))
1549 (insert
1550 (if (and (eq minibuffer-history-sexp-flag (minibuffer-depth))
1551 (not minibuffer-returned-to-present))
1552 (let ((print-level nil))
1553 (prin1-to-string elt))
1554 elt))
1555 (goto-char (or minibuffer-temporary-goal-position (point-max)))))
1557 (defun next-history-element (n)
1558 "Puts next element of the minibuffer history in the minibuffer.
1559 With argument N, it uses the Nth following element."
1560 (interactive "p")
1561 (or (zerop n)
1562 (goto-history-element (- minibuffer-history-position n))))
1564 (defun previous-history-element (n)
1565 "Puts previous element of the minibuffer history in the minibuffer.
1566 With argument N, it uses the Nth previous element."
1567 (interactive "p")
1568 (or (zerop n)
1569 (goto-history-element (+ minibuffer-history-position n))))
1571 (defun next-complete-history-element (n)
1572 "Get next history element which completes the minibuffer before the point.
1573 The contents of the minibuffer after the point are deleted, and replaced
1574 by the new completion."
1575 (interactive "p")
1576 (let ((point-at-start (point)))
1577 (next-matching-history-element
1578 (concat
1579 "^" (regexp-quote (buffer-substring (minibuffer-prompt-end) (point))))
1581 ;; next-matching-history-element always puts us at (point-min).
1582 ;; Move to the position we were at before changing the buffer contents.
1583 ;; This is still sensical, because the text before point has not changed.
1584 (goto-char point-at-start)))
1586 (defun previous-complete-history-element (n)
1588 Get previous history element which completes the minibuffer before the point.
1589 The contents of the minibuffer after the point are deleted, and replaced
1590 by the new completion."
1591 (interactive "p")
1592 (next-complete-history-element (- n)))
1594 ;; For compatibility with the old subr of the same name.
1595 (defun minibuffer-prompt-width ()
1596 "Return the display width of the minibuffer prompt.
1597 Return 0 if current buffer is not a minibuffer."
1598 ;; Return the width of everything before the field at the end of
1599 ;; the buffer; this should be 0 for normal buffers.
1600 (1- (minibuffer-prompt-end)))
1602 ;; isearch minibuffer history
1603 (add-hook 'minibuffer-setup-hook 'minibuffer-history-isearch-setup)
1605 (defvar minibuffer-history-isearch-message-overlay)
1606 (make-variable-buffer-local 'minibuffer-history-isearch-message-overlay)
1608 (defun minibuffer-history-isearch-setup ()
1609 "Set up a minibuffer for using isearch to search the minibuffer history.
1610 Intended to be added to `minibuffer-setup-hook'."
1611 (set (make-local-variable 'isearch-search-fun-function)
1612 'minibuffer-history-isearch-search)
1613 (set (make-local-variable 'isearch-message-function)
1614 'minibuffer-history-isearch-message)
1615 (set (make-local-variable 'isearch-wrap-function)
1616 'minibuffer-history-isearch-wrap)
1617 (set (make-local-variable 'isearch-push-state-function)
1618 'minibuffer-history-isearch-push-state)
1619 (add-hook 'isearch-mode-end-hook 'minibuffer-history-isearch-end nil t))
1621 (defun minibuffer-history-isearch-end ()
1622 "Clean up the minibuffer after terminating isearch in the minibuffer."
1623 (if minibuffer-history-isearch-message-overlay
1624 (delete-overlay minibuffer-history-isearch-message-overlay)))
1626 (defun minibuffer-history-isearch-search ()
1627 "Return the proper search function, for isearch in minibuffer history."
1628 (cond
1629 (isearch-word
1630 (if isearch-forward 'word-search-forward 'word-search-backward))
1632 (lambda (string bound noerror)
1633 (let ((search-fun
1634 ;; Use standard functions to search within minibuffer text
1635 (cond
1636 (isearch-regexp
1637 (if isearch-forward 're-search-forward 're-search-backward))
1639 (if isearch-forward 'search-forward 'search-backward))))
1640 found)
1641 ;; Avoid lazy-highlighting matches in the minibuffer prompt when
1642 ;; searching forward. Lazy-highlight calls this lambda with the
1643 ;; bound arg, so skip the minibuffer prompt.
1644 (if (and bound isearch-forward (< (point) (minibuffer-prompt-end)))
1645 (goto-char (minibuffer-prompt-end)))
1647 ;; 1. First try searching in the initial minibuffer text
1648 (funcall search-fun string
1649 (if isearch-forward bound (minibuffer-prompt-end))
1650 noerror)
1651 ;; 2. If the above search fails, start putting next/prev history
1652 ;; elements in the minibuffer successively, and search the string
1653 ;; in them. Do this only when bound is nil (i.e. not while
1654 ;; lazy-highlighting search strings in the current minibuffer text).
1655 (unless bound
1656 (condition-case nil
1657 (progn
1658 (while (not found)
1659 (cond (isearch-forward
1660 (next-history-element 1)
1661 (goto-char (minibuffer-prompt-end)))
1663 (previous-history-element 1)
1664 (goto-char (point-max))))
1665 (setq isearch-barrier (point) isearch-opoint (point))
1666 ;; After putting the next/prev history element, search
1667 ;; the string in them again, until next-history-element
1668 ;; or previous-history-element raises an error at the
1669 ;; beginning/end of history.
1670 (setq found (funcall search-fun string
1671 (unless isearch-forward
1672 ;; For backward search, don't search
1673 ;; in the minibuffer prompt
1674 (minibuffer-prompt-end))
1675 noerror)))
1676 ;; Return point of the new search result
1677 (point))
1678 ;; Return nil when next(prev)-history-element fails
1679 (error nil)))))))))
1681 (defun minibuffer-history-isearch-message (&optional c-q-hack ellipsis)
1682 "Display the minibuffer history search prompt.
1683 If there are no search errors, this function displays an overlay with
1684 the isearch prompt which replaces the original minibuffer prompt.
1685 Otherwise, it displays the standard isearch message returned from
1686 `isearch-message'."
1687 (if (not (and (minibufferp) isearch-success (not isearch-error)))
1688 ;; Use standard function `isearch-message' when not in the minibuffer,
1689 ;; or search fails, or has an error (like incomplete regexp).
1690 ;; This function overwrites minibuffer text with isearch message,
1691 ;; so it's possible to see what is wrong in the search string.
1692 (isearch-message c-q-hack ellipsis)
1693 ;; Otherwise, put the overlay with the standard isearch prompt over
1694 ;; the initial minibuffer prompt.
1695 (if (overlayp minibuffer-history-isearch-message-overlay)
1696 (move-overlay minibuffer-history-isearch-message-overlay
1697 (point-min) (minibuffer-prompt-end))
1698 (setq minibuffer-history-isearch-message-overlay
1699 (make-overlay (point-min) (minibuffer-prompt-end)))
1700 (overlay-put minibuffer-history-isearch-message-overlay 'evaporate t))
1701 (overlay-put minibuffer-history-isearch-message-overlay
1702 'display (isearch-message-prefix c-q-hack ellipsis))
1703 ;; And clear any previous isearch message.
1704 (message "")))
1706 (defun minibuffer-history-isearch-wrap ()
1707 "Wrap the minibuffer history search when search fails.
1708 Move point to the first history element for a forward search,
1709 or to the last history element for a backward search."
1710 (unless isearch-word
1711 ;; When `minibuffer-history-isearch-search' fails on reaching the
1712 ;; beginning/end of the history, wrap the search to the first/last
1713 ;; minibuffer history element.
1714 (if isearch-forward
1715 (goto-history-element (length (symbol-value minibuffer-history-variable)))
1716 (goto-history-element 0))
1717 (setq isearch-success t))
1718 (goto-char (if isearch-forward (minibuffer-prompt-end) (point-max))))
1720 (defun minibuffer-history-isearch-push-state ()
1721 "Save a function restoring the state of minibuffer history search.
1722 Save `minibuffer-history-position' to the additional state parameter
1723 in the search status stack."
1724 `(lambda (cmd)
1725 (minibuffer-history-isearch-pop-state cmd ,minibuffer-history-position)))
1727 (defun minibuffer-history-isearch-pop-state (_cmd hist-pos)
1728 "Restore the minibuffer history search state.
1729 Go to the history element by the absolute history position HIST-POS."
1730 (goto-history-element hist-pos))
1733 ;Put this on C-x u, so we can force that rather than C-_ into startup msg
1734 (define-obsolete-function-alias 'advertised-undo 'undo "23.2")
1736 (defconst undo-equiv-table (make-hash-table :test 'eq :weakness t)
1737 "Table mapping redo records to the corresponding undo one.
1738 A redo record for undo-in-region maps to t.
1739 A redo record for ordinary undo maps to the following (earlier) undo.")
1741 (defvar undo-in-region nil
1742 "Non-nil if `pending-undo-list' is not just a tail of `buffer-undo-list'.")
1744 (defvar undo-no-redo nil
1745 "If t, `undo' doesn't go through redo entries.")
1747 (defvar pending-undo-list nil
1748 "Within a run of consecutive undo commands, list remaining to be undone.
1749 If t, we undid all the way to the end of it.")
1751 (defun undo (&optional arg)
1752 "Undo some previous changes.
1753 Repeat this command to undo more changes.
1754 A numeric ARG serves as a repeat count.
1756 In Transient Mark mode when the mark is active, only undo changes within
1757 the current region. Similarly, when not in Transient Mark mode, just \\[universal-argument]
1758 as an argument limits undo to changes within the current region."
1759 (interactive "*P")
1760 ;; Make last-command indicate for the next command that this was an undo.
1761 ;; That way, another undo will undo more.
1762 ;; If we get to the end of the undo history and get an error,
1763 ;; another undo command will find the undo history empty
1764 ;; and will get another error. To begin undoing the undos,
1765 ;; you must type some other command.
1766 (let ((modified (buffer-modified-p))
1767 (recent-save (recent-auto-save-p))
1768 message)
1769 ;; If we get an error in undo-start,
1770 ;; the next command should not be a "consecutive undo".
1771 ;; So set `this-command' to something other than `undo'.
1772 (setq this-command 'undo-start)
1774 (unless (and (eq last-command 'undo)
1775 (or (eq pending-undo-list t)
1776 ;; If something (a timer or filter?) changed the buffer
1777 ;; since the previous command, don't continue the undo seq.
1778 (let ((list buffer-undo-list))
1779 (while (eq (car list) nil)
1780 (setq list (cdr list)))
1781 ;; If the last undo record made was made by undo
1782 ;; it shows nothing else happened in between.
1783 (gethash list undo-equiv-table))))
1784 (setq undo-in-region
1785 (or (region-active-p) (and arg (not (numberp arg)))))
1786 (if undo-in-region
1787 (undo-start (region-beginning) (region-end))
1788 (undo-start))
1789 ;; get rid of initial undo boundary
1790 (undo-more 1))
1791 ;; If we got this far, the next command should be a consecutive undo.
1792 (setq this-command 'undo)
1793 ;; Check to see whether we're hitting a redo record, and if
1794 ;; so, ask the user whether she wants to skip the redo/undo pair.
1795 (let ((equiv (gethash pending-undo-list undo-equiv-table)))
1796 (or (eq (selected-window) (minibuffer-window))
1797 (setq message (if undo-in-region
1798 (if equiv "Redo in region!" "Undo in region!")
1799 (if equiv "Redo!" "Undo!"))))
1800 (when (and (consp equiv) undo-no-redo)
1801 ;; The equiv entry might point to another redo record if we have done
1802 ;; undo-redo-undo-redo-... so skip to the very last equiv.
1803 (while (let ((next (gethash equiv undo-equiv-table)))
1804 (if next (setq equiv next))))
1805 (setq pending-undo-list equiv)))
1806 (undo-more
1807 (if (numberp arg)
1808 (prefix-numeric-value arg)
1810 ;; Record the fact that the just-generated undo records come from an
1811 ;; undo operation--that is, they are redo records.
1812 ;; In the ordinary case (not within a region), map the redo
1813 ;; record to the following undos.
1814 ;; I don't know how to do that in the undo-in-region case.
1815 (let ((list buffer-undo-list))
1816 ;; Strip any leading undo boundaries there might be, like we do
1817 ;; above when checking.
1818 (while (eq (car list) nil)
1819 (setq list (cdr list)))
1820 (puthash list (if undo-in-region t pending-undo-list)
1821 undo-equiv-table))
1822 ;; Don't specify a position in the undo record for the undo command.
1823 ;; Instead, undoing this should move point to where the change is.
1824 (let ((tail buffer-undo-list)
1825 (prev nil))
1826 (while (car tail)
1827 (when (integerp (car tail))
1828 (let ((pos (car tail)))
1829 (if prev
1830 (setcdr prev (cdr tail))
1831 (setq buffer-undo-list (cdr tail)))
1832 (setq tail (cdr tail))
1833 (while (car tail)
1834 (if (eq pos (car tail))
1835 (if prev
1836 (setcdr prev (cdr tail))
1837 (setq buffer-undo-list (cdr tail)))
1838 (setq prev tail))
1839 (setq tail (cdr tail)))
1840 (setq tail nil)))
1841 (setq prev tail tail (cdr tail))))
1842 ;; Record what the current undo list says,
1843 ;; so the next command can tell if the buffer was modified in between.
1844 (and modified (not (buffer-modified-p))
1845 (delete-auto-save-file-if-necessary recent-save))
1846 ;; Display a message announcing success.
1847 (if message
1848 (message "%s" message))))
1850 (defun buffer-disable-undo (&optional buffer)
1851 "Make BUFFER stop keeping undo information.
1852 No argument or nil as argument means do this for the current buffer."
1853 (interactive)
1854 (with-current-buffer (if buffer (get-buffer buffer) (current-buffer))
1855 (setq buffer-undo-list t)))
1857 (defun undo-only (&optional arg)
1858 "Undo some previous changes.
1859 Repeat this command to undo more changes.
1860 A numeric ARG serves as a repeat count.
1861 Contrary to `undo', this will not redo a previous undo."
1862 (interactive "*p")
1863 (let ((undo-no-redo t)) (undo arg)))
1865 (defvar undo-in-progress nil
1866 "Non-nil while performing an undo.
1867 Some change-hooks test this variable to do something different.")
1869 (defun undo-more (n)
1870 "Undo back N undo-boundaries beyond what was already undone recently.
1871 Call `undo-start' to get ready to undo recent changes,
1872 then call `undo-more' one or more times to undo them."
1873 (or (listp pending-undo-list)
1874 (error (concat "No further undo information"
1875 (and undo-in-region " for region"))))
1876 (let ((undo-in-progress t))
1877 ;; Note: The following, while pulling elements off
1878 ;; `pending-undo-list' will call primitive change functions which
1879 ;; will push more elements onto `buffer-undo-list'.
1880 (setq pending-undo-list (primitive-undo n pending-undo-list))
1881 (if (null pending-undo-list)
1882 (setq pending-undo-list t))))
1884 ;; Deep copy of a list
1885 (defun undo-copy-list (list)
1886 "Make a copy of undo list LIST."
1887 (mapcar 'undo-copy-list-1 list))
1889 (defun undo-copy-list-1 (elt)
1890 (if (consp elt)
1891 (cons (car elt) (undo-copy-list-1 (cdr elt)))
1892 elt))
1894 (defun undo-start (&optional beg end)
1895 "Set `pending-undo-list' to the front of the undo list.
1896 The next call to `undo-more' will undo the most recently made change.
1897 If BEG and END are specified, then only undo elements
1898 that apply to text between BEG and END are used; other undo elements
1899 are ignored. If BEG and END are nil, all undo elements are used."
1900 (if (eq buffer-undo-list t)
1901 (error "No undo information in this buffer"))
1902 (setq pending-undo-list
1903 (if (and beg end (not (= beg end)))
1904 (undo-make-selective-list (min beg end) (max beg end))
1905 buffer-undo-list)))
1907 (defvar undo-adjusted-markers)
1909 (defun undo-make-selective-list (start end)
1910 "Return a list of undo elements for the region START to END.
1911 The elements come from `buffer-undo-list', but we keep only
1912 the elements inside this region, and discard those outside this region.
1913 If we find an element that crosses an edge of this region,
1914 we stop and ignore all further elements."
1915 (let ((undo-list-copy (undo-copy-list buffer-undo-list))
1916 (undo-list (list nil))
1917 undo-adjusted-markers
1918 some-rejected
1919 undo-elt temp-undo-list delta)
1920 (while undo-list-copy
1921 (setq undo-elt (car undo-list-copy))
1922 (let ((keep-this
1923 (cond ((and (consp undo-elt) (eq (car undo-elt) t))
1924 ;; This is a "was unmodified" element.
1925 ;; Keep it if we have kept everything thus far.
1926 (not some-rejected))
1928 (undo-elt-in-region undo-elt start end)))))
1929 (if keep-this
1930 (progn
1931 (setq end (+ end (cdr (undo-delta undo-elt))))
1932 ;; Don't put two nils together in the list
1933 (if (not (and (eq (car undo-list) nil)
1934 (eq undo-elt nil)))
1935 (setq undo-list (cons undo-elt undo-list))))
1936 (if (undo-elt-crosses-region undo-elt start end)
1937 (setq undo-list-copy nil)
1938 (setq some-rejected t)
1939 (setq temp-undo-list (cdr undo-list-copy))
1940 (setq delta (undo-delta undo-elt))
1942 (when (/= (cdr delta) 0)
1943 (let ((position (car delta))
1944 (offset (cdr delta)))
1946 ;; Loop down the earlier events adjusting their buffer
1947 ;; positions to reflect the fact that a change to the buffer
1948 ;; isn't being undone. We only need to process those element
1949 ;; types which undo-elt-in-region will return as being in
1950 ;; the region since only those types can ever get into the
1951 ;; output
1953 (while temp-undo-list
1954 (setq undo-elt (car temp-undo-list))
1955 (cond ((integerp undo-elt)
1956 (if (>= undo-elt position)
1957 (setcar temp-undo-list (- undo-elt offset))))
1958 ((atom undo-elt) nil)
1959 ((stringp (car undo-elt))
1960 ;; (TEXT . POSITION)
1961 (let ((text-pos (abs (cdr undo-elt)))
1962 (point-at-end (< (cdr undo-elt) 0 )))
1963 (if (>= text-pos position)
1964 (setcdr undo-elt (* (if point-at-end -1 1)
1965 (- text-pos offset))))))
1966 ((integerp (car undo-elt))
1967 ;; (BEGIN . END)
1968 (when (>= (car undo-elt) position)
1969 (setcar undo-elt (- (car undo-elt) offset))
1970 (setcdr undo-elt (- (cdr undo-elt) offset))))
1971 ((null (car undo-elt))
1972 ;; (nil PROPERTY VALUE BEG . END)
1973 (let ((tail (nthcdr 3 undo-elt)))
1974 (when (>= (car tail) position)
1975 (setcar tail (- (car tail) offset))
1976 (setcdr tail (- (cdr tail) offset))))))
1977 (setq temp-undo-list (cdr temp-undo-list))))))))
1978 (setq undo-list-copy (cdr undo-list-copy)))
1979 (nreverse undo-list)))
1981 (defun undo-elt-in-region (undo-elt start end)
1982 "Determine whether UNDO-ELT falls inside the region START ... END.
1983 If it crosses the edge, we return nil."
1984 (cond ((integerp undo-elt)
1985 (and (>= undo-elt start)
1986 (<= undo-elt end)))
1987 ((eq undo-elt nil)
1989 ((atom undo-elt)
1990 nil)
1991 ((stringp (car undo-elt))
1992 ;; (TEXT . POSITION)
1993 (and (>= (abs (cdr undo-elt)) start)
1994 (< (abs (cdr undo-elt)) end)))
1995 ((and (consp undo-elt) (markerp (car undo-elt)))
1996 ;; This is a marker-adjustment element (MARKER . ADJUSTMENT).
1997 ;; See if MARKER is inside the region.
1998 (let ((alist-elt (assq (car undo-elt) undo-adjusted-markers)))
1999 (unless alist-elt
2000 (setq alist-elt (cons (car undo-elt)
2001 (marker-position (car undo-elt))))
2002 (setq undo-adjusted-markers
2003 (cons alist-elt undo-adjusted-markers)))
2004 (and (cdr alist-elt)
2005 (>= (cdr alist-elt) start)
2006 (<= (cdr alist-elt) end))))
2007 ((null (car undo-elt))
2008 ;; (nil PROPERTY VALUE BEG . END)
2009 (let ((tail (nthcdr 3 undo-elt)))
2010 (and (>= (car tail) start)
2011 (<= (cdr tail) end))))
2012 ((integerp (car undo-elt))
2013 ;; (BEGIN . END)
2014 (and (>= (car undo-elt) start)
2015 (<= (cdr undo-elt) end)))))
2017 (defun undo-elt-crosses-region (undo-elt start end)
2018 "Test whether UNDO-ELT crosses one edge of that region START ... END.
2019 This assumes we have already decided that UNDO-ELT
2020 is not *inside* the region START...END."
2021 (cond ((atom undo-elt) nil)
2022 ((null (car undo-elt))
2023 ;; (nil PROPERTY VALUE BEG . END)
2024 (let ((tail (nthcdr 3 undo-elt)))
2025 (and (< (car tail) end)
2026 (> (cdr tail) start))))
2027 ((integerp (car undo-elt))
2028 ;; (BEGIN . END)
2029 (and (< (car undo-elt) end)
2030 (> (cdr undo-elt) start)))))
2032 ;; Return the first affected buffer position and the delta for an undo element
2033 ;; delta is defined as the change in subsequent buffer positions if we *did*
2034 ;; the undo.
2035 (defun undo-delta (undo-elt)
2036 (if (consp undo-elt)
2037 (cond ((stringp (car undo-elt))
2038 ;; (TEXT . POSITION)
2039 (cons (abs (cdr undo-elt)) (length (car undo-elt))))
2040 ((integerp (car undo-elt))
2041 ;; (BEGIN . END)
2042 (cons (car undo-elt) (- (car undo-elt) (cdr undo-elt))))
2044 '(0 . 0)))
2045 '(0 . 0)))
2047 (defcustom undo-ask-before-discard nil
2048 "If non-nil ask about discarding undo info for the current command.
2049 Normally, Emacs discards the undo info for the current command if
2050 it exceeds `undo-outer-limit'. But if you set this option
2051 non-nil, it asks in the echo area whether to discard the info.
2052 If you answer no, there is a slight risk that Emacs might crash, so
2053 only do it if you really want to undo the command.
2055 This option is mainly intended for debugging. You have to be
2056 careful if you use it for other purposes. Garbage collection is
2057 inhibited while the question is asked, meaning that Emacs might
2058 leak memory. So you should make sure that you do not wait
2059 excessively long before answering the question."
2060 :type 'boolean
2061 :group 'undo
2062 :version "22.1")
2064 (defvar undo-extra-outer-limit nil
2065 "If non-nil, an extra level of size that's ok in an undo item.
2066 We don't ask the user about truncating the undo list until the
2067 current item gets bigger than this amount.
2069 This variable only matters if `undo-ask-before-discard' is non-nil.")
2070 (make-variable-buffer-local 'undo-extra-outer-limit)
2072 ;; When the first undo batch in an undo list is longer than
2073 ;; undo-outer-limit, this function gets called to warn the user that
2074 ;; the undo info for the current command was discarded. Garbage
2075 ;; collection is inhibited around the call, so it had better not do a
2076 ;; lot of consing.
2077 (setq undo-outer-limit-function 'undo-outer-limit-truncate)
2078 (defun undo-outer-limit-truncate (size)
2079 (if undo-ask-before-discard
2080 (when (or (null undo-extra-outer-limit)
2081 (> size undo-extra-outer-limit))
2082 ;; Don't ask the question again unless it gets even bigger.
2083 ;; This applies, in particular, if the user quits from the question.
2084 ;; Such a quit quits out of GC, but something else will call GC
2085 ;; again momentarily. It will call this function again,
2086 ;; but we don't want to ask the question again.
2087 (setq undo-extra-outer-limit (+ size 50000))
2088 (if (let (use-dialog-box track-mouse executing-kbd-macro )
2089 (yes-or-no-p (format "Buffer `%s' undo info is %d bytes long; discard it? "
2090 (buffer-name) size)))
2091 (progn (setq buffer-undo-list nil)
2092 (setq undo-extra-outer-limit nil)
2094 nil))
2095 (display-warning '(undo discard-info)
2096 (concat
2097 (format "Buffer `%s' undo info was %d bytes long.\n"
2098 (buffer-name) size)
2099 "The undo info was discarded because it exceeded \
2100 `undo-outer-limit'.
2102 This is normal if you executed a command that made a huge change
2103 to the buffer. In that case, to prevent similar problems in the
2104 future, set `undo-outer-limit' to a value that is large enough to
2105 cover the maximum size of normal changes you expect a single
2106 command to make, but not so large that it might exceed the
2107 maximum memory allotted to Emacs.
2109 If you did not execute any such command, the situation is
2110 probably due to a bug and you should report it.
2112 You can disable the popping up of this buffer by adding the entry
2113 \(undo discard-info) to the user option `warning-suppress-types',
2114 which is defined in the `warnings' library.\n")
2115 :warning)
2116 (setq buffer-undo-list nil)
2119 (defvar shell-command-history nil
2120 "History list for some commands that read shell commands.
2122 Maximum length of the history list is determined by the value
2123 of `history-length', which see.")
2125 (defvar shell-command-switch (purecopy "-c")
2126 "Switch used to have the shell execute its command line argument.")
2128 (defvar shell-command-default-error-buffer nil
2129 "*Buffer name for `shell-command' and `shell-command-on-region' error output.
2130 This buffer is used when `shell-command' or `shell-command-on-region'
2131 is run interactively. A value of nil means that output to stderr and
2132 stdout will be intermixed in the output stream.")
2134 (declare-function mailcap-file-default-commands "mailcap" (files))
2135 (declare-function dired-get-filename "dired" (&optional localp no-error-if-not-filep))
2137 (defun minibuffer-default-add-shell-commands ()
2138 "Return a list of all commands associated with the current file.
2139 This function is used to add all related commands retrieved by `mailcap'
2140 to the end of the list of defaults just after the default value."
2141 (interactive)
2142 (let* ((filename (if (listp minibuffer-default)
2143 (car minibuffer-default)
2144 minibuffer-default))
2145 (commands (and filename (require 'mailcap nil t)
2146 (mailcap-file-default-commands (list filename)))))
2147 (setq commands (mapcar (lambda (command)
2148 (concat command " " filename))
2149 commands))
2150 (if (listp minibuffer-default)
2151 (append minibuffer-default commands)
2152 (cons minibuffer-default commands))))
2154 (declare-function shell-completion-vars "shell" ())
2156 (defvar minibuffer-local-shell-command-map
2157 (let ((map (make-sparse-keymap)))
2158 (set-keymap-parent map minibuffer-local-map)
2159 (define-key map "\t" 'completion-at-point)
2160 map)
2161 "Keymap used for completing shell commands in minibuffer.")
2163 (defun read-shell-command (prompt &optional initial-contents hist &rest args)
2164 "Read a shell command from the minibuffer.
2165 The arguments are the same as the ones of `read-from-minibuffer',
2166 except READ and KEYMAP are missing and HIST defaults
2167 to `shell-command-history'."
2168 (require 'shell)
2169 (minibuffer-with-setup-hook
2170 (lambda ()
2171 (shell-completion-vars)
2172 (set (make-local-variable 'minibuffer-default-add-function)
2173 'minibuffer-default-add-shell-commands))
2174 (apply 'read-from-minibuffer prompt initial-contents
2175 minibuffer-local-shell-command-map
2177 (or hist 'shell-command-history)
2178 args)))
2180 (defun async-shell-command (command &optional output-buffer error-buffer)
2181 "Execute string COMMAND asynchronously in background.
2183 Like `shell-command' but if COMMAND doesn't end in ampersand, adds `&'
2184 surrounded by whitespace and executes the command asynchronously.
2185 The output appears in the buffer `*Async Shell Command*'.
2187 In Elisp, you will often be better served by calling `start-process'
2188 directly, since it offers more control and does not impose the use of a
2189 shell (with its need to quote arguments)."
2190 (interactive
2191 (list
2192 (read-shell-command "Async shell command: " nil nil
2193 (and buffer-file-name
2194 (file-relative-name buffer-file-name)))
2195 current-prefix-arg
2196 shell-command-default-error-buffer))
2197 (unless (string-match "&[ \t]*\\'" command)
2198 (setq command (concat command " &")))
2199 (shell-command command output-buffer error-buffer))
2201 (defun shell-command (command &optional output-buffer error-buffer)
2202 "Execute string COMMAND in inferior shell; display output, if any.
2203 With prefix argument, insert the COMMAND's output at point.
2205 If COMMAND ends in ampersand, execute it asynchronously.
2206 The output appears in the buffer `*Async Shell Command*'.
2207 That buffer is in shell mode.
2209 Otherwise, COMMAND is executed synchronously. The output appears in
2210 the buffer `*Shell Command Output*'. If the output is short enough to
2211 display in the echo area (which is determined by the variables
2212 `resize-mini-windows' and `max-mini-window-height'), it is shown
2213 there, but it is nonetheless available in buffer `*Shell Command
2214 Output*' even though that buffer is not automatically displayed.
2216 To specify a coding system for converting non-ASCII characters
2217 in the shell command output, use \\[universal-coding-system-argument] \
2218 before this command.
2220 Noninteractive callers can specify coding systems by binding
2221 `coding-system-for-read' and `coding-system-for-write'.
2223 The optional second argument OUTPUT-BUFFER, if non-nil,
2224 says to put the output in some other buffer.
2225 If OUTPUT-BUFFER is a buffer or buffer name, put the output there.
2226 If OUTPUT-BUFFER is not a buffer and not nil,
2227 insert output in current buffer. (This cannot be done asynchronously.)
2228 In either case, the buffer is first erased, and the output is
2229 inserted after point (leaving mark after it).
2231 If the command terminates without error, but generates output,
2232 and you did not specify \"insert it in the current buffer\",
2233 the output can be displayed in the echo area or in its buffer.
2234 If the output is short enough to display in the echo area
2235 \(determined by the variable `max-mini-window-height' if
2236 `resize-mini-windows' is non-nil), it is shown there.
2237 Otherwise,the buffer containing the output is displayed.
2239 If there is output and an error, and you did not specify \"insert it
2240 in the current buffer\", a message about the error goes at the end
2241 of the output.
2243 If there is no output, or if output is inserted in the current buffer,
2244 then `*Shell Command Output*' is deleted.
2246 If the optional third argument ERROR-BUFFER is non-nil, it is a buffer
2247 or buffer name to which to direct the command's standard error output.
2248 If it is nil, error output is mingled with regular output.
2249 In an interactive call, the variable `shell-command-default-error-buffer'
2250 specifies the value of ERROR-BUFFER.
2252 In Elisp, you will often be better served by calling `call-process' or
2253 `start-process' directly, since it offers more control and does not impose
2254 the use of a shell (with its need to quote arguments)."
2256 (interactive
2257 (list
2258 (read-shell-command "Shell command: " nil nil
2259 (let ((filename
2260 (cond
2261 (buffer-file-name)
2262 ((eq major-mode 'dired-mode)
2263 (dired-get-filename nil t)))))
2264 (and filename (file-relative-name filename))))
2265 current-prefix-arg
2266 shell-command-default-error-buffer))
2267 ;; Look for a handler in case default-directory is a remote file name.
2268 (let ((handler
2269 (find-file-name-handler (directory-file-name default-directory)
2270 'shell-command)))
2271 (if handler
2272 (funcall handler 'shell-command command output-buffer error-buffer)
2273 (if (and output-buffer
2274 (not (or (bufferp output-buffer) (stringp output-buffer))))
2275 ;; Output goes in current buffer.
2276 (let ((error-file
2277 (if error-buffer
2278 (make-temp-file
2279 (expand-file-name "scor"
2280 (or small-temporary-file-directory
2281 temporary-file-directory)))
2282 nil)))
2283 (barf-if-buffer-read-only)
2284 (push-mark nil t)
2285 ;; We do not use -f for csh; we will not support broken use of
2286 ;; .cshrcs. Even the BSD csh manual says to use
2287 ;; "if ($?prompt) exit" before things which are not useful
2288 ;; non-interactively. Besides, if someone wants their other
2289 ;; aliases for shell commands then they can still have them.
2290 (call-process shell-file-name nil
2291 (if error-file
2292 (list t error-file)
2294 nil shell-command-switch command)
2295 (when (and error-file (file-exists-p error-file))
2296 (if (< 0 (nth 7 (file-attributes error-file)))
2297 (with-current-buffer (get-buffer-create error-buffer)
2298 (let ((pos-from-end (- (point-max) (point))))
2299 (or (bobp)
2300 (insert "\f\n"))
2301 ;; Do no formatting while reading error file,
2302 ;; because that can run a shell command, and we
2303 ;; don't want that to cause an infinite recursion.
2304 (format-insert-file error-file nil)
2305 ;; Put point after the inserted errors.
2306 (goto-char (- (point-max) pos-from-end)))
2307 (display-buffer (current-buffer))))
2308 (delete-file error-file))
2309 ;; This is like exchange-point-and-mark, but doesn't
2310 ;; activate the mark. It is cleaner to avoid activation,
2311 ;; even though the command loop would deactivate the mark
2312 ;; because we inserted text.
2313 (goto-char (prog1 (mark t)
2314 (set-marker (mark-marker) (point)
2315 (current-buffer)))))
2316 ;; Output goes in a separate buffer.
2317 ;; Preserve the match data in case called from a program.
2318 (save-match-data
2319 (if (string-match "[ \t]*&[ \t]*\\'" command)
2320 ;; Command ending with ampersand means asynchronous.
2321 (let ((buffer (get-buffer-create
2322 (or output-buffer "*Async Shell Command*")))
2323 (directory default-directory)
2324 proc)
2325 ;; Remove the ampersand.
2326 (setq command (substring command 0 (match-beginning 0)))
2327 ;; If will kill a process, query first.
2328 (setq proc (get-buffer-process buffer))
2329 (if proc
2330 (if (yes-or-no-p "A command is running. Kill it? ")
2331 (kill-process proc)
2332 (error "Shell command in progress")))
2333 (with-current-buffer buffer
2334 (setq buffer-read-only nil)
2335 ;; Setting buffer-read-only to nil doesn't suffice
2336 ;; if some text has a non-nil read-only property,
2337 ;; which comint sometimes adds for prompts.
2338 (let ((inhibit-read-only t))
2339 (erase-buffer))
2340 (display-buffer buffer)
2341 (setq default-directory directory)
2342 (setq proc (start-process "Shell" buffer shell-file-name
2343 shell-command-switch command))
2344 (setq mode-line-process '(":%s"))
2345 (require 'shell) (shell-mode)
2346 (set-process-sentinel proc 'shell-command-sentinel)
2347 ;; Use the comint filter for proper handling of carriage motion
2348 ;; (see `comint-inhibit-carriage-motion'),.
2349 (set-process-filter proc 'comint-output-filter)
2351 ;; Otherwise, command is executed synchronously.
2352 (shell-command-on-region (point) (point) command
2353 output-buffer nil error-buffer)))))))
2355 (defun display-message-or-buffer (message
2356 &optional buffer-name not-this-window frame)
2357 "Display MESSAGE in the echo area if possible, otherwise in a pop-up buffer.
2358 MESSAGE may be either a string or a buffer.
2360 A buffer is displayed using `display-buffer' if MESSAGE is too long for
2361 the maximum height of the echo area, as defined by `max-mini-window-height'
2362 if `resize-mini-windows' is non-nil.
2364 Returns either the string shown in the echo area, or when a pop-up
2365 buffer is used, the window used to display it.
2367 If MESSAGE is a string, then the optional argument BUFFER-NAME is the
2368 name of the buffer used to display it in the case where a pop-up buffer
2369 is used, defaulting to `*Message*'. In the case where MESSAGE is a
2370 string and it is displayed in the echo area, it is not specified whether
2371 the contents are inserted into the buffer anyway.
2373 Optional arguments NOT-THIS-WINDOW and FRAME are as for `display-buffer',
2374 and only used if a buffer is displayed."
2375 (cond ((and (stringp message) (not (string-match "\n" message)))
2376 ;; Trivial case where we can use the echo area
2377 (message "%s" message))
2378 ((and (stringp message)
2379 (= (string-match "\n" message) (1- (length message))))
2380 ;; Trivial case where we can just remove single trailing newline
2381 (message "%s" (substring message 0 (1- (length message)))))
2383 ;; General case
2384 (with-current-buffer
2385 (if (bufferp message)
2386 message
2387 (get-buffer-create (or buffer-name "*Message*")))
2389 (unless (bufferp message)
2390 (erase-buffer)
2391 (insert message))
2393 (let ((lines
2394 (if (= (buffer-size) 0)
2396 (count-screen-lines nil nil nil (minibuffer-window)))))
2397 (cond ((= lines 0))
2398 ((and (or (<= lines 1)
2399 (<= lines
2400 (if resize-mini-windows
2401 (cond ((floatp max-mini-window-height)
2402 (* (frame-height)
2403 max-mini-window-height))
2404 ((integerp max-mini-window-height)
2405 max-mini-window-height)
2408 1)))
2409 ;; Don't use the echo area if the output buffer is
2410 ;; already dispayed in the selected frame.
2411 (not (get-buffer-window (current-buffer))))
2412 ;; Echo area
2413 (goto-char (point-max))
2414 (when (bolp)
2415 (backward-char 1))
2416 (message "%s" (buffer-substring (point-min) (point))))
2418 ;; Buffer
2419 (goto-char (point-min))
2420 (display-buffer (current-buffer)
2421 not-this-window frame))))))))
2424 ;; We have a sentinel to prevent insertion of a termination message
2425 ;; in the buffer itself.
2426 (defun shell-command-sentinel (process signal)
2427 (if (memq (process-status process) '(exit signal))
2428 (message "%s: %s."
2429 (car (cdr (cdr (process-command process))))
2430 (substring signal 0 -1))))
2432 (defun shell-command-on-region (start end command
2433 &optional output-buffer replace
2434 error-buffer display-error-buffer)
2435 "Execute string COMMAND in inferior shell with region as input.
2436 Normally display output (if any) in temp buffer `*Shell Command Output*';
2437 Prefix arg means replace the region with it. Return the exit code of
2438 COMMAND.
2440 To specify a coding system for converting non-ASCII characters
2441 in the input and output to the shell command, use \\[universal-coding-system-argument]
2442 before this command. By default, the input (from the current buffer)
2443 is encoded in the same coding system that will be used to save the file,
2444 `buffer-file-coding-system'. If the output is going to replace the region,
2445 then it is decoded from that same coding system.
2447 The noninteractive arguments are START, END, COMMAND,
2448 OUTPUT-BUFFER, REPLACE, ERROR-BUFFER, and DISPLAY-ERROR-BUFFER.
2449 Noninteractive callers can specify coding systems by binding
2450 `coding-system-for-read' and `coding-system-for-write'.
2452 If the command generates output, the output may be displayed
2453 in the echo area or in a buffer.
2454 If the output is short enough to display in the echo area
2455 \(determined by the variable `max-mini-window-height' if
2456 `resize-mini-windows' is non-nil), it is shown there. Otherwise
2457 it is displayed in the buffer `*Shell Command Output*'. The output
2458 is available in that buffer in both cases.
2460 If there is output and an error, a message about the error
2461 appears at the end of the output.
2463 If there is no output, or if output is inserted in the current buffer,
2464 then `*Shell Command Output*' is deleted.
2466 If the optional fourth argument OUTPUT-BUFFER is non-nil,
2467 that says to put the output in some other buffer.
2468 If OUTPUT-BUFFER is a buffer or buffer name, put the output there.
2469 If OUTPUT-BUFFER is not a buffer and not nil,
2470 insert output in the current buffer.
2471 In either case, the output is inserted after point (leaving mark after it).
2473 If REPLACE, the optional fifth argument, is non-nil, that means insert
2474 the output in place of text from START to END, putting point and mark
2475 around it.
2477 If optional sixth argument ERROR-BUFFER is non-nil, it is a buffer
2478 or buffer name to which to direct the command's standard error output.
2479 If it is nil, error output is mingled with regular output.
2480 If DISPLAY-ERROR-BUFFER is non-nil, display the error buffer if there
2481 were any errors. (This is always t, interactively.)
2482 In an interactive call, the variable `shell-command-default-error-buffer'
2483 specifies the value of ERROR-BUFFER."
2484 (interactive (let (string)
2485 (unless (mark)
2486 (error "The mark is not set now, so there is no region"))
2487 ;; Do this before calling region-beginning
2488 ;; and region-end, in case subprocess output
2489 ;; relocates them while we are in the minibuffer.
2490 (setq string (read-shell-command "Shell command on region: "))
2491 ;; call-interactively recognizes region-beginning and
2492 ;; region-end specially, leaving them in the history.
2493 (list (region-beginning) (region-end)
2494 string
2495 current-prefix-arg
2496 current-prefix-arg
2497 shell-command-default-error-buffer
2498 t)))
2499 (let ((error-file
2500 (if error-buffer
2501 (make-temp-file
2502 (expand-file-name "scor"
2503 (or small-temporary-file-directory
2504 temporary-file-directory)))
2505 nil))
2506 exit-status)
2507 (if (or replace
2508 (and output-buffer
2509 (not (or (bufferp output-buffer) (stringp output-buffer)))))
2510 ;; Replace specified region with output from command.
2511 (let ((swap (and replace (< start end))))
2512 ;; Don't muck with mark unless REPLACE says we should.
2513 (goto-char start)
2514 (and replace (push-mark (point) 'nomsg))
2515 (setq exit-status
2516 (call-process-region start end shell-file-name t
2517 (if error-file
2518 (list t error-file)
2520 nil shell-command-switch command))
2521 ;; It is rude to delete a buffer which the command is not using.
2522 ;; (let ((shell-buffer (get-buffer "*Shell Command Output*")))
2523 ;; (and shell-buffer (not (eq shell-buffer (current-buffer)))
2524 ;; (kill-buffer shell-buffer)))
2525 ;; Don't muck with mark unless REPLACE says we should.
2526 (and replace swap (exchange-point-and-mark)))
2527 ;; No prefix argument: put the output in a temp buffer,
2528 ;; replacing its entire contents.
2529 (let ((buffer (get-buffer-create
2530 (or output-buffer "*Shell Command Output*"))))
2531 (unwind-protect
2532 (if (eq buffer (current-buffer))
2533 ;; If the input is the same buffer as the output,
2534 ;; delete everything but the specified region,
2535 ;; then replace that region with the output.
2536 (progn (setq buffer-read-only nil)
2537 (delete-region (max start end) (point-max))
2538 (delete-region (point-min) (min start end))
2539 (setq exit-status
2540 (call-process-region (point-min) (point-max)
2541 shell-file-name t
2542 (if error-file
2543 (list t error-file)
2545 nil shell-command-switch
2546 command)))
2547 ;; Clear the output buffer, then run the command with
2548 ;; output there.
2549 (let ((directory default-directory))
2550 (with-current-buffer buffer
2551 (setq buffer-read-only nil)
2552 (if (not output-buffer)
2553 (setq default-directory directory))
2554 (erase-buffer)))
2555 (setq exit-status
2556 (call-process-region start end shell-file-name nil
2557 (if error-file
2558 (list buffer error-file)
2559 buffer)
2560 nil shell-command-switch command)))
2561 ;; Report the output.
2562 (with-current-buffer buffer
2563 (setq mode-line-process
2564 (cond ((null exit-status)
2565 " - Error")
2566 ((stringp exit-status)
2567 (format " - Signal [%s]" exit-status))
2568 ((not (equal 0 exit-status))
2569 (format " - Exit [%d]" exit-status)))))
2570 (if (with-current-buffer buffer (> (point-max) (point-min)))
2571 ;; There's some output, display it
2572 (display-message-or-buffer buffer)
2573 ;; No output; error?
2574 (let ((output
2575 (if (and error-file
2576 (< 0 (nth 7 (file-attributes error-file))))
2577 (format "some error output%s"
2578 (if shell-command-default-error-buffer
2579 (format " to the \"%s\" buffer"
2580 shell-command-default-error-buffer)
2581 ""))
2582 "no output")))
2583 (cond ((null exit-status)
2584 (message "(Shell command failed with error)"))
2585 ((equal 0 exit-status)
2586 (message "(Shell command succeeded with %s)"
2587 output))
2588 ((stringp exit-status)
2589 (message "(Shell command killed by signal %s)"
2590 exit-status))
2592 (message "(Shell command failed with code %d and %s)"
2593 exit-status output))))
2594 ;; Don't kill: there might be useful info in the undo-log.
2595 ;; (kill-buffer buffer)
2596 ))))
2598 (when (and error-file (file-exists-p error-file))
2599 (if (< 0 (nth 7 (file-attributes error-file)))
2600 (with-current-buffer (get-buffer-create error-buffer)
2601 (let ((pos-from-end (- (point-max) (point))))
2602 (or (bobp)
2603 (insert "\f\n"))
2604 ;; Do no formatting while reading error file,
2605 ;; because that can run a shell command, and we
2606 ;; don't want that to cause an infinite recursion.
2607 (format-insert-file error-file nil)
2608 ;; Put point after the inserted errors.
2609 (goto-char (- (point-max) pos-from-end)))
2610 (and display-error-buffer
2611 (display-buffer (current-buffer)))))
2612 (delete-file error-file))
2613 exit-status))
2615 (defun shell-command-to-string (command)
2616 "Execute shell command COMMAND and return its output as a string."
2617 (with-output-to-string
2618 (with-current-buffer
2619 standard-output
2620 (process-file shell-file-name nil t nil shell-command-switch command))))
2622 (defun process-file (program &optional infile buffer display &rest args)
2623 "Process files synchronously in a separate process.
2624 Similar to `call-process', but may invoke a file handler based on
2625 `default-directory'. The current working directory of the
2626 subprocess is `default-directory'.
2628 File names in INFILE and BUFFER are handled normally, but file
2629 names in ARGS should be relative to `default-directory', as they
2630 are passed to the process verbatim. \(This is a difference to
2631 `call-process' which does not support file handlers for INFILE
2632 and BUFFER.\)
2634 Some file handlers might not support all variants, for example
2635 they might behave as if DISPLAY was nil, regardless of the actual
2636 value passed."
2637 (let ((fh (find-file-name-handler default-directory 'process-file))
2638 lc stderr-file)
2639 (unwind-protect
2640 (if fh (apply fh 'process-file program infile buffer display args)
2641 (when infile (setq lc (file-local-copy infile)))
2642 (setq stderr-file (when (and (consp buffer) (stringp (cadr buffer)))
2643 (make-temp-file "emacs")))
2644 (prog1
2645 (apply 'call-process program
2646 (or lc infile)
2647 (if stderr-file (list (car buffer) stderr-file) buffer)
2648 display args)
2649 (when stderr-file (copy-file stderr-file (cadr buffer)))))
2650 (when stderr-file (delete-file stderr-file))
2651 (when lc (delete-file lc)))))
2653 (defvar process-file-side-effects t
2654 "Whether a call of `process-file' changes remote files.
2656 Per default, this variable is always set to `t', meaning that a
2657 call of `process-file' could potentially change any file on a
2658 remote host. When set to `nil', a file handler could optimize
2659 its behaviour with respect to remote file attributes caching.
2661 This variable should never be changed by `setq'. Instead of, it
2662 shall be set only by let-binding.")
2664 (defun start-file-process (name buffer program &rest program-args)
2665 "Start a program in a subprocess. Return the process object for it.
2667 Similar to `start-process', but may invoke a file handler based on
2668 `default-directory'. See Info node `(elisp)Magic File Names'.
2670 This handler ought to run PROGRAM, perhaps on the local host,
2671 perhaps on a remote host that corresponds to `default-directory'.
2672 In the latter case, the local part of `default-directory' becomes
2673 the working directory of the process.
2675 PROGRAM and PROGRAM-ARGS might be file names. They are not
2676 objects of file handler invocation. File handlers might not
2677 support pty association, if PROGRAM is nil."
2678 (let ((fh (find-file-name-handler default-directory 'start-file-process)))
2679 (if fh (apply fh 'start-file-process name buffer program program-args)
2680 (apply 'start-process name buffer program program-args))))
2682 ;;;; Process menu
2684 (defvar tabulated-list-format)
2685 (defvar tabulated-list-entries)
2686 (defvar tabulated-list-sort-key)
2687 (declare-function tabulated-list-init-header "tabulated-list" ())
2688 (declare-function tabulated-list-print "tabulated-list"
2689 (&optional remember-pos))
2691 (defvar process-menu-query-only nil)
2693 (define-derived-mode process-menu-mode tabulated-list-mode "Process Menu"
2694 "Major mode for listing the processes called by Emacs."
2695 (setq tabulated-list-format [("Process" 15 t)
2696 ("Status" 7 t)
2697 ("Buffer" 15 t)
2698 ("TTY" 12 t)
2699 ("Command" 0 t)])
2700 (make-local-variable 'process-menu-query-only)
2701 (setq tabulated-list-sort-key (cons "Process" nil))
2702 (add-hook 'tabulated-list-revert-hook 'list-processes--refresh nil t)
2703 (tabulated-list-init-header))
2705 (defun list-processes--refresh ()
2706 "Recompute the list of processes for the Process List buffer."
2707 (setq tabulated-list-entries nil)
2708 (dolist (p (process-list))
2709 (when (or (not process-menu-query-only)
2710 (process-query-on-exit-flag p))
2711 (let* ((buf (process-buffer p))
2712 (type (process-type p))
2713 (name (process-name p))
2714 (status (symbol-name (process-status p)))
2715 (buf-label (if (buffer-live-p buf)
2716 `(,(buffer-name buf)
2717 face link
2718 help-echo ,(concat "Visit buffer `"
2719 (buffer-name buf) "'")
2720 follow-link t
2721 process-buffer ,buf
2722 action process-menu-visit-buffer)
2723 "--"))
2724 (tty (or (process-tty-name p) "--"))
2725 (cmd
2726 (if (memq type '(network serial))
2727 (let ((contact (process-contact p t)))
2728 (if (eq type 'network)
2729 (format "(%s %s)"
2730 (if (plist-get contact :type)
2731 "datagram"
2732 "network")
2733 (if (plist-get contact :server)
2734 (format "server on %s"
2735 (plist-get contact :server))
2736 (format "connection to %s"
2737 (plist-get contact :host))))
2738 (format "(serial port %s%s)"
2739 (or (plist-get contact :port) "?")
2740 (let ((speed (plist-get contact :speed)))
2741 (if speed
2742 (format " at %s b/s" speed)
2743 "")))))
2744 (mapconcat 'identity (process-command p) " "))))
2745 (push (list p (vector name status buf-label tty cmd))
2746 tabulated-list-entries)))))
2748 (defun process-menu-visit-buffer (button)
2749 (display-buffer (button-get button 'process-buffer)))
2751 (defun list-processes (&optional query-only buffer)
2752 "Display a list of all processes.
2753 If optional argument QUERY-ONLY is non-nil, only processes with
2754 the query-on-exit flag set are listed.
2755 Any process listed as exited or signaled is actually eliminated
2756 after the listing is made.
2757 Optional argument BUFFER specifies a buffer to use, instead of
2758 \"*Process List\".
2759 The return value is always nil."
2760 (interactive)
2761 (or (fboundp 'process-list)
2762 (error "Asynchronous subprocesses are not supported on this system"))
2763 (unless (bufferp buffer)
2764 (setq buffer (get-buffer-create "*Process List*")))
2765 (with-current-buffer buffer
2766 (process-menu-mode)
2767 (setq process-menu-query-only query-only)
2768 (list-processes--refresh)
2769 (tabulated-list-print))
2770 (display-buffer buffer)
2771 nil)
2773 (defvar universal-argument-map
2774 (let ((map (make-sparse-keymap)))
2775 (define-key map [t] 'universal-argument-other-key)
2776 (define-key map (vector meta-prefix-char t) 'universal-argument-other-key)
2777 (define-key map [switch-frame] nil)
2778 (define-key map [?\C-u] 'universal-argument-more)
2779 (define-key map [?-] 'universal-argument-minus)
2780 (define-key map [?0] 'digit-argument)
2781 (define-key map [?1] 'digit-argument)
2782 (define-key map [?2] 'digit-argument)
2783 (define-key map [?3] 'digit-argument)
2784 (define-key map [?4] 'digit-argument)
2785 (define-key map [?5] 'digit-argument)
2786 (define-key map [?6] 'digit-argument)
2787 (define-key map [?7] 'digit-argument)
2788 (define-key map [?8] 'digit-argument)
2789 (define-key map [?9] 'digit-argument)
2790 (define-key map [kp-0] 'digit-argument)
2791 (define-key map [kp-1] 'digit-argument)
2792 (define-key map [kp-2] 'digit-argument)
2793 (define-key map [kp-3] 'digit-argument)
2794 (define-key map [kp-4] 'digit-argument)
2795 (define-key map [kp-5] 'digit-argument)
2796 (define-key map [kp-6] 'digit-argument)
2797 (define-key map [kp-7] 'digit-argument)
2798 (define-key map [kp-8] 'digit-argument)
2799 (define-key map [kp-9] 'digit-argument)
2800 (define-key map [kp-subtract] 'universal-argument-minus)
2801 map)
2802 "Keymap used while processing \\[universal-argument].")
2804 (defvar universal-argument-num-events nil
2805 "Number of argument-specifying events read by `universal-argument'.
2806 `universal-argument-other-key' uses this to discard those events
2807 from (this-command-keys), and reread only the final command.")
2809 (defvar saved-overriding-map t
2810 "The saved value of `overriding-terminal-local-map'.
2811 That variable gets restored to this value on exiting \"universal
2812 argument mode\".")
2814 (defun save&set-overriding-map (map)
2815 "Set `overriding-terminal-local-map' to MAP."
2816 (when (eq saved-overriding-map t)
2817 (setq saved-overriding-map overriding-terminal-local-map)
2818 (setq overriding-terminal-local-map map)))
2820 (defun restore-overriding-map ()
2821 "Restore `overriding-terminal-local-map' to its saved value."
2822 (setq overriding-terminal-local-map saved-overriding-map)
2823 (setq saved-overriding-map t))
2825 (defun universal-argument ()
2826 "Begin a numeric argument for the following command.
2827 Digits or minus sign following \\[universal-argument] make up the numeric argument.
2828 \\[universal-argument] following the digits or minus sign ends the argument.
2829 \\[universal-argument] without digits or minus sign provides 4 as argument.
2830 Repeating \\[universal-argument] without digits or minus sign
2831 multiplies the argument by 4 each time.
2832 For some commands, just \\[universal-argument] by itself serves as a flag
2833 which is different in effect from any particular numeric argument.
2834 These commands include \\[set-mark-command] and \\[start-kbd-macro]."
2835 (interactive)
2836 (setq prefix-arg (list 4))
2837 (setq universal-argument-num-events (length (this-command-keys)))
2838 (save&set-overriding-map universal-argument-map))
2840 ;; A subsequent C-u means to multiply the factor by 4 if we've typed
2841 ;; nothing but C-u's; otherwise it means to terminate the prefix arg.
2842 (defun universal-argument-more (arg)
2843 (interactive "P")
2844 (if (consp arg)
2845 (setq prefix-arg (list (* 4 (car arg))))
2846 (if (eq arg '-)
2847 (setq prefix-arg (list -4))
2848 (setq prefix-arg arg)
2849 (restore-overriding-map)))
2850 (setq universal-argument-num-events (length (this-command-keys))))
2852 (defun negative-argument (arg)
2853 "Begin a negative numeric argument for the next command.
2854 \\[universal-argument] following digits or minus sign ends the argument."
2855 (interactive "P")
2856 (cond ((integerp arg)
2857 (setq prefix-arg (- arg)))
2858 ((eq arg '-)
2859 (setq prefix-arg nil))
2861 (setq prefix-arg '-)))
2862 (setq universal-argument-num-events (length (this-command-keys)))
2863 (save&set-overriding-map universal-argument-map))
2865 (defun digit-argument (arg)
2866 "Part of the numeric argument for the next command.
2867 \\[universal-argument] following digits or minus sign ends the argument."
2868 (interactive "P")
2869 (let* ((char (if (integerp last-command-event)
2870 last-command-event
2871 (get last-command-event 'ascii-character)))
2872 (digit (- (logand char ?\177) ?0)))
2873 (cond ((integerp arg)
2874 (setq prefix-arg (+ (* arg 10)
2875 (if (< arg 0) (- digit) digit))))
2876 ((eq arg '-)
2877 ;; Treat -0 as just -, so that -01 will work.
2878 (setq prefix-arg (if (zerop digit) '- (- digit))))
2880 (setq prefix-arg digit))))
2881 (setq universal-argument-num-events (length (this-command-keys)))
2882 (save&set-overriding-map universal-argument-map))
2884 ;; For backward compatibility, minus with no modifiers is an ordinary
2885 ;; command if digits have already been entered.
2886 (defun universal-argument-minus (arg)
2887 (interactive "P")
2888 (if (integerp arg)
2889 (universal-argument-other-key arg)
2890 (negative-argument arg)))
2892 ;; Anything else terminates the argument and is left in the queue to be
2893 ;; executed as a command.
2894 (defun universal-argument-other-key (arg)
2895 (interactive "P")
2896 (setq prefix-arg arg)
2897 (let* ((key (this-command-keys))
2898 (keylist (listify-key-sequence key)))
2899 (setq unread-command-events
2900 (append (nthcdr universal-argument-num-events keylist)
2901 unread-command-events)))
2902 (reset-this-command-lengths)
2903 (restore-overriding-map))
2906 (defvar filter-buffer-substring-functions nil
2907 "Wrapper hook around `filter-buffer-substring'.
2908 The functions on this special hook are called with 4 arguments:
2909 NEXT-FUN BEG END DELETE
2910 NEXT-FUN is a function of 3 arguments (BEG END DELETE)
2911 that performs the default operation. The other 3 arguments are like
2912 the ones passed to `filter-buffer-substring'.")
2914 (defvar buffer-substring-filters nil
2915 "List of filter functions for `filter-buffer-substring'.
2916 Each function must accept a single argument, a string, and return
2917 a string. The buffer substring is passed to the first function
2918 in the list, and the return value of each function is passed to
2919 the next. The return value of the last function is used as the
2920 return value of `filter-buffer-substring'.
2922 If this variable is nil, no filtering is performed.")
2923 (make-obsolete-variable 'buffer-substring-filters
2924 'filter-buffer-substring-functions "24.1")
2926 (defun filter-buffer-substring (beg end &optional delete)
2927 "Return the buffer substring between BEG and END, after filtering.
2928 The filtering is performed by `filter-buffer-substring-functions'.
2930 If DELETE is non-nil, the text between BEG and END is deleted
2931 from the buffer.
2933 This function should be used instead of `buffer-substring',
2934 `buffer-substring-no-properties', or `delete-and-extract-region'
2935 when you want to allow filtering to take place. For example,
2936 major or minor modes can use `filter-buffer-substring-functions' to
2937 extract characters that are special to a buffer, and should not
2938 be copied into other buffers."
2939 (with-wrapper-hook filter-buffer-substring-functions (beg end delete)
2940 (cond
2941 ((or delete buffer-substring-filters)
2942 (save-excursion
2943 (goto-char beg)
2944 (let ((string (if delete (delete-and-extract-region beg end)
2945 (buffer-substring beg end))))
2946 (dolist (filter buffer-substring-filters)
2947 (setq string (funcall filter string)))
2948 string)))
2950 (buffer-substring beg end)))))
2953 ;;;; Window system cut and paste hooks.
2955 (defvar interprogram-cut-function nil
2956 "Function to call to make a killed region available to other programs.
2958 Most window systems provide some sort of facility for cutting and
2959 pasting text between the windows of different programs.
2960 This variable holds a function that Emacs calls whenever text
2961 is put in the kill ring, to make the new kill available to other
2962 programs.
2964 The function takes one argument, TEXT, which is a string containing
2965 the text which should be made available.")
2967 (defvar interprogram-paste-function nil
2968 "Function to call to get text cut from other programs.
2970 Most window systems provide some sort of facility for cutting and
2971 pasting text between the windows of different programs.
2972 This variable holds a function that Emacs calls to obtain
2973 text that other programs have provided for pasting.
2975 The function should be called with no arguments. If the function
2976 returns nil, then no other program has provided such text, and the top
2977 of the Emacs kill ring should be used. If the function returns a
2978 string, then the caller of the function \(usually `current-kill')
2979 should put this string in the kill ring as the latest kill.
2981 This function may also return a list of strings if the window
2982 system supports multiple selections. The first string will be
2983 used as the pasted text, but the other will be placed in the
2984 kill ring for easy access via `yank-pop'.
2986 Note that the function should return a string only if a program other
2987 than Emacs has provided a string for pasting; if Emacs provided the
2988 most recent string, the function should return nil. If it is
2989 difficult to tell whether Emacs or some other program provided the
2990 current string, it is probably good enough to return nil if the string
2991 is equal (according to `string=') to the last text Emacs provided.")
2995 ;;;; The kill ring data structure.
2997 (defvar kill-ring nil
2998 "List of killed text sequences.
2999 Since the kill ring is supposed to interact nicely with cut-and-paste
3000 facilities offered by window systems, use of this variable should
3001 interact nicely with `interprogram-cut-function' and
3002 `interprogram-paste-function'. The functions `kill-new',
3003 `kill-append', and `current-kill' are supposed to implement this
3004 interaction; you may want to use them instead of manipulating the kill
3005 ring directly.")
3007 (defcustom kill-ring-max 60
3008 "Maximum length of kill ring before oldest elements are thrown away."
3009 :type 'integer
3010 :group 'killing)
3012 (defvar kill-ring-yank-pointer nil
3013 "The tail of the kill ring whose car is the last thing yanked.")
3015 (defcustom save-interprogram-paste-before-kill nil
3016 "Save clipboard strings into kill ring before replacing them.
3017 When one selects something in another program to paste it into Emacs,
3018 but kills something in Emacs before actually pasting it,
3019 this selection is gone unless this variable is non-nil,
3020 in which case the other program's selection is saved in the `kill-ring'
3021 before the Emacs kill and one can still paste it using \\[yank] \\[yank-pop]."
3022 :type 'boolean
3023 :group 'killing
3024 :version "23.2")
3026 (defcustom kill-do-not-save-duplicates nil
3027 "Do not add a new string to `kill-ring' when it is the same as the last one."
3028 :type 'boolean
3029 :group 'killing
3030 :version "23.2")
3032 (defun kill-new (string &optional replace yank-handler)
3033 "Make STRING the latest kill in the kill ring.
3034 Set `kill-ring-yank-pointer' to point to it.
3035 If `interprogram-cut-function' is non-nil, apply it to STRING.
3036 Optional second argument REPLACE non-nil means that STRING will replace
3037 the front of the kill ring, rather than being added to the list.
3039 When `save-interprogram-paste-before-kill' and `interprogram-paste-function'
3040 are non-nil, saves the interprogram paste string(s) into `kill-ring' before
3041 STRING.
3043 When the yank handler has a non-nil PARAM element, the original STRING
3044 argument is not used by `insert-for-yank'. However, since Lisp code
3045 may access and use elements from the kill ring directly, the STRING
3046 argument should still be a \"useful\" string for such uses."
3047 (if (> (length string) 0)
3048 (if yank-handler
3049 (put-text-property 0 (length string)
3050 'yank-handler yank-handler string))
3051 (if yank-handler
3052 (signal 'args-out-of-range
3053 (list string "yank-handler specified for empty string"))))
3054 (unless (and kill-do-not-save-duplicates
3055 (equal string (car kill-ring)))
3056 (if (fboundp 'menu-bar-update-yank-menu)
3057 (menu-bar-update-yank-menu string (and replace (car kill-ring)))))
3058 (when save-interprogram-paste-before-kill
3059 (let ((interprogram-paste (and interprogram-paste-function
3060 (funcall interprogram-paste-function))))
3061 (when interprogram-paste
3062 (dolist (s (if (listp interprogram-paste)
3063 (nreverse interprogram-paste)
3064 (list interprogram-paste)))
3065 (unless (and kill-do-not-save-duplicates
3066 (equal s (car kill-ring)))
3067 (push s kill-ring))))))
3068 (unless (and kill-do-not-save-duplicates
3069 (equal string (car kill-ring)))
3070 (if (and replace kill-ring)
3071 (setcar kill-ring string)
3072 (push string kill-ring)
3073 (if (> (length kill-ring) kill-ring-max)
3074 (setcdr (nthcdr (1- kill-ring-max) kill-ring) nil))))
3075 (setq kill-ring-yank-pointer kill-ring)
3076 (if interprogram-cut-function
3077 (funcall interprogram-cut-function string)))
3078 (set-advertised-calling-convention
3079 'kill-new '(string &optional replace) "23.3")
3081 (defun kill-append (string before-p &optional yank-handler)
3082 "Append STRING to the end of the latest kill in the kill ring.
3083 If BEFORE-P is non-nil, prepend STRING to the kill.
3084 If `interprogram-cut-function' is set, pass the resulting kill to it."
3085 (let* ((cur (car kill-ring)))
3086 (kill-new (if before-p (concat string cur) (concat cur string))
3087 (or (= (length cur) 0)
3088 (equal yank-handler (get-text-property 0 'yank-handler cur)))
3089 yank-handler)))
3090 (set-advertised-calling-convention 'kill-append '(string before-p) "23.3")
3092 (defcustom yank-pop-change-selection nil
3093 "If non-nil, rotating the kill ring changes the window system selection."
3094 :type 'boolean
3095 :group 'killing
3096 :version "23.1")
3098 (defun current-kill (n &optional do-not-move)
3099 "Rotate the yanking point by N places, and then return that kill.
3100 If N is zero and `interprogram-paste-function' is set to a
3101 function that returns a string or a list of strings, and if that
3102 function doesn't return nil, then that string (or list) is added
3103 to the front of the kill ring and the string (or first string in
3104 the list) is returned as the latest kill.
3106 If N is not zero, and if `yank-pop-change-selection' is
3107 non-nil, use `interprogram-cut-function' to transfer the
3108 kill at the new yank point into the window system selection.
3110 If optional arg DO-NOT-MOVE is non-nil, then don't actually
3111 move the yanking point; just return the Nth kill forward."
3113 (let ((interprogram-paste (and (= n 0)
3114 interprogram-paste-function
3115 (funcall interprogram-paste-function))))
3116 (if interprogram-paste
3117 (progn
3118 ;; Disable the interprogram cut function when we add the new
3119 ;; text to the kill ring, so Emacs doesn't try to own the
3120 ;; selection, with identical text.
3121 (let ((interprogram-cut-function nil))
3122 (if (listp interprogram-paste)
3123 (mapc 'kill-new (nreverse interprogram-paste))
3124 (kill-new interprogram-paste)))
3125 (car kill-ring))
3126 (or kill-ring (error "Kill ring is empty"))
3127 (let ((ARGth-kill-element
3128 (nthcdr (mod (- n (length kill-ring-yank-pointer))
3129 (length kill-ring))
3130 kill-ring)))
3131 (unless do-not-move
3132 (setq kill-ring-yank-pointer ARGth-kill-element)
3133 (when (and yank-pop-change-selection
3134 (> n 0)
3135 interprogram-cut-function)
3136 (funcall interprogram-cut-function (car ARGth-kill-element))))
3137 (car ARGth-kill-element)))))
3141 ;;;; Commands for manipulating the kill ring.
3143 (defcustom kill-read-only-ok nil
3144 "Non-nil means don't signal an error for killing read-only text."
3145 :type 'boolean
3146 :group 'killing)
3148 (put 'text-read-only 'error-conditions
3149 '(text-read-only buffer-read-only error))
3150 (put 'text-read-only 'error-message (purecopy "Text is read-only"))
3152 (defun kill-region (beg end &optional yank-handler)
3153 "Kill (\"cut\") text between point and mark.
3154 This deletes the text from the buffer and saves it in the kill ring.
3155 The command \\[yank] can retrieve it from there.
3156 \(If you want to save the region without killing it, use \\[kill-ring-save].)
3158 If you want to append the killed region to the last killed text,
3159 use \\[append-next-kill] before \\[kill-region].
3161 If the buffer is read-only, Emacs will beep and refrain from deleting
3162 the text, but put the text in the kill ring anyway. This means that
3163 you can use the killing commands to copy text from a read-only buffer.
3165 Lisp programs should use this function for killing text.
3166 (To delete text, use `delete-region'.)
3167 Supply two arguments, character positions indicating the stretch of text
3168 to be killed.
3169 Any command that calls this function is a \"kill command\".
3170 If the previous command was also a kill command,
3171 the text killed this time appends to the text killed last time
3172 to make one entry in the kill ring."
3173 ;; Pass point first, then mark, because the order matters
3174 ;; when calling kill-append.
3175 (interactive (list (point) (mark)))
3176 (unless (and beg end)
3177 (error "The mark is not set now, so there is no region"))
3178 (condition-case nil
3179 (let ((string (filter-buffer-substring beg end t)))
3180 (when string ;STRING is nil if BEG = END
3181 ;; Add that string to the kill ring, one way or another.
3182 (if (eq last-command 'kill-region)
3183 (kill-append string (< end beg) yank-handler)
3184 (kill-new string nil yank-handler)))
3185 (when (or string (eq last-command 'kill-region))
3186 (setq this-command 'kill-region))
3187 nil)
3188 ((buffer-read-only text-read-only)
3189 ;; The code above failed because the buffer, or some of the characters
3190 ;; in the region, are read-only.
3191 ;; We should beep, in case the user just isn't aware of this.
3192 ;; However, there's no harm in putting
3193 ;; the region's text in the kill ring, anyway.
3194 (copy-region-as-kill beg end)
3195 ;; Set this-command now, so it will be set even if we get an error.
3196 (setq this-command 'kill-region)
3197 ;; This should barf, if appropriate, and give us the correct error.
3198 (if kill-read-only-ok
3199 (progn (message "Read only text copied to kill ring") nil)
3200 ;; Signal an error if the buffer is read-only.
3201 (barf-if-buffer-read-only)
3202 ;; If the buffer isn't read-only, the text is.
3203 (signal 'text-read-only (list (current-buffer)))))))
3204 (set-advertised-calling-convention 'kill-region '(beg end) "23.3")
3206 ;; copy-region-as-kill no longer sets this-command, because it's confusing
3207 ;; to get two copies of the text when the user accidentally types M-w and
3208 ;; then corrects it with the intended C-w.
3209 (defun copy-region-as-kill (beg end)
3210 "Save the region as if killed, but don't kill it.
3211 In Transient Mark mode, deactivate the mark.
3212 If `interprogram-cut-function' is non-nil, also save the text for a window
3213 system cut and paste.
3215 This command's old key binding has been given to `kill-ring-save'."
3216 (interactive "r")
3217 (if (eq last-command 'kill-region)
3218 (kill-append (filter-buffer-substring beg end) (< end beg))
3219 (kill-new (filter-buffer-substring beg end)))
3220 (setq deactivate-mark t)
3221 nil)
3223 (defun kill-ring-save (beg end)
3224 "Save the region as if killed, but don't kill it.
3225 In Transient Mark mode, deactivate the mark.
3226 If `interprogram-cut-function' is non-nil, also save the text for a window
3227 system cut and paste.
3229 If you want to append the killed line to the last killed text,
3230 use \\[append-next-kill] before \\[kill-ring-save].
3232 This command is similar to `copy-region-as-kill', except that it gives
3233 visual feedback indicating the extent of the region being copied."
3234 (interactive "r")
3235 (copy-region-as-kill beg end)
3236 ;; This use of called-interactively-p is correct
3237 ;; because the code it controls just gives the user visual feedback.
3238 (if (called-interactively-p 'interactive)
3239 (let ((other-end (if (= (point) beg) end beg))
3240 (opoint (point))
3241 ;; Inhibit quitting so we can make a quit here
3242 ;; look like a C-g typed as a command.
3243 (inhibit-quit t))
3244 (if (pos-visible-in-window-p other-end (selected-window))
3245 ;; Swap point-and-mark quickly so as to show the region that
3246 ;; was selected. Don't do it if the region is highlighted.
3247 (unless (and (region-active-p)
3248 (face-background 'region))
3249 ;; Swap point and mark.
3250 (set-marker (mark-marker) (point) (current-buffer))
3251 (goto-char other-end)
3252 (sit-for blink-matching-delay)
3253 ;; Swap back.
3254 (set-marker (mark-marker) other-end (current-buffer))
3255 (goto-char opoint)
3256 ;; If user quit, deactivate the mark
3257 ;; as C-g would as a command.
3258 (and quit-flag mark-active
3259 (deactivate-mark)))
3260 (let* ((killed-text (current-kill 0))
3261 (message-len (min (length killed-text) 40)))
3262 (if (= (point) beg)
3263 ;; Don't say "killed"; that is misleading.
3264 (message "Saved text until \"%s\""
3265 (substring killed-text (- message-len)))
3266 (message "Saved text from \"%s\""
3267 (substring killed-text 0 message-len))))))))
3269 (defun append-next-kill (&optional interactive)
3270 "Cause following command, if it kills, to append to previous kill.
3271 The argument is used for internal purposes; do not supply one."
3272 (interactive "p")
3273 ;; We don't use (interactive-p), since that breaks kbd macros.
3274 (if interactive
3275 (progn
3276 (setq this-command 'kill-region)
3277 (message "If the next command is a kill, it will append"))
3278 (setq last-command 'kill-region)))
3280 ;; Yanking.
3282 ;; This is actually used in subr.el but defcustom does not work there.
3283 (defcustom yank-excluded-properties
3284 '(read-only invisible intangible field mouse-face help-echo local-map keymap
3285 yank-handler follow-link fontified)
3286 "Text properties to discard when yanking.
3287 The value should be a list of text properties to discard or t,
3288 which means to discard all text properties."
3289 :type '(choice (const :tag "All" t) (repeat symbol))
3290 :group 'killing
3291 :version "22.1")
3293 (defvar yank-window-start nil)
3294 (defvar yank-undo-function nil
3295 "If non-nil, function used by `yank-pop' to delete last stretch of yanked text.
3296 Function is called with two parameters, START and END corresponding to
3297 the value of the mark and point; it is guaranteed that START <= END.
3298 Normally set from the UNDO element of a yank-handler; see `insert-for-yank'.")
3300 (defun yank-pop (&optional arg)
3301 "Replace just-yanked stretch of killed text with a different stretch.
3302 This command is allowed only immediately after a `yank' or a `yank-pop'.
3303 At such a time, the region contains a stretch of reinserted
3304 previously-killed text. `yank-pop' deletes that text and inserts in its
3305 place a different stretch of killed text.
3307 With no argument, the previous kill is inserted.
3308 With argument N, insert the Nth previous kill.
3309 If N is negative, this is a more recent kill.
3311 The sequence of kills wraps around, so that after the oldest one
3312 comes the newest one.
3314 When this command inserts killed text into the buffer, it honors
3315 `yank-excluded-properties' and `yank-handler' as described in the
3316 doc string for `insert-for-yank-1', which see."
3317 (interactive "*p")
3318 (if (not (eq last-command 'yank))
3319 (error "Previous command was not a yank"))
3320 (setq this-command 'yank)
3321 (unless arg (setq arg 1))
3322 (let ((inhibit-read-only t)
3323 (before (< (point) (mark t))))
3324 (if before
3325 (funcall (or yank-undo-function 'delete-region) (point) (mark t))
3326 (funcall (or yank-undo-function 'delete-region) (mark t) (point)))
3327 (setq yank-undo-function nil)
3328 (set-marker (mark-marker) (point) (current-buffer))
3329 (insert-for-yank (current-kill arg))
3330 ;; Set the window start back where it was in the yank command,
3331 ;; if possible.
3332 (set-window-start (selected-window) yank-window-start t)
3333 (if before
3334 ;; This is like exchange-point-and-mark, but doesn't activate the mark.
3335 ;; It is cleaner to avoid activation, even though the command
3336 ;; loop would deactivate the mark because we inserted text.
3337 (goto-char (prog1 (mark t)
3338 (set-marker (mark-marker) (point) (current-buffer))))))
3339 nil)
3341 (defun yank (&optional arg)
3342 "Reinsert (\"paste\") the last stretch of killed text.
3343 More precisely, reinsert the stretch of killed text most recently
3344 killed OR yanked. Put point at end, and set mark at beginning.
3345 With just \\[universal-argument] as argument, same but put point at beginning (and mark at end).
3346 With argument N, reinsert the Nth most recently killed stretch of killed
3347 text.
3349 When this command inserts killed text into the buffer, it honors
3350 `yank-excluded-properties' and `yank-handler' as described in the
3351 doc string for `insert-for-yank-1', which see.
3353 See also the command `yank-pop' (\\[yank-pop])."
3354 (interactive "*P")
3355 (setq yank-window-start (window-start))
3356 ;; If we don't get all the way thru, make last-command indicate that
3357 ;; for the following command.
3358 (setq this-command t)
3359 (push-mark (point))
3360 (insert-for-yank (current-kill (cond
3361 ((listp arg) 0)
3362 ((eq arg '-) -2)
3363 (t (1- arg)))))
3364 (if (consp arg)
3365 ;; This is like exchange-point-and-mark, but doesn't activate the mark.
3366 ;; It is cleaner to avoid activation, even though the command
3367 ;; loop would deactivate the mark because we inserted text.
3368 (goto-char (prog1 (mark t)
3369 (set-marker (mark-marker) (point) (current-buffer)))))
3370 ;; If we do get all the way thru, make this-command indicate that.
3371 (if (eq this-command t)
3372 (setq this-command 'yank))
3373 nil)
3375 (defun rotate-yank-pointer (arg)
3376 "Rotate the yanking point in the kill ring.
3377 With ARG, rotate that many kills forward (or backward, if negative)."
3378 (interactive "p")
3379 (current-kill arg))
3381 ;; Some kill commands.
3383 ;; Internal subroutine of delete-char
3384 (defun kill-forward-chars (arg)
3385 (if (listp arg) (setq arg (car arg)))
3386 (if (eq arg '-) (setq arg -1))
3387 (kill-region (point) (+ (point) arg)))
3389 ;; Internal subroutine of backward-delete-char
3390 (defun kill-backward-chars (arg)
3391 (if (listp arg) (setq arg (car arg)))
3392 (if (eq arg '-) (setq arg -1))
3393 (kill-region (point) (- (point) arg)))
3395 (defcustom backward-delete-char-untabify-method 'untabify
3396 "The method for untabifying when deleting backward.
3397 Can be `untabify' -- turn a tab to many spaces, then delete one space;
3398 `hungry' -- delete all whitespace, both tabs and spaces;
3399 `all' -- delete all whitespace, including tabs, spaces and newlines;
3400 nil -- just delete one character."
3401 :type '(choice (const untabify) (const hungry) (const all) (const nil))
3402 :version "20.3"
3403 :group 'killing)
3405 (defun backward-delete-char-untabify (arg &optional killp)
3406 "Delete characters backward, changing tabs into spaces.
3407 The exact behavior depends on `backward-delete-char-untabify-method'.
3408 Delete ARG chars, and kill (save in kill ring) if KILLP is non-nil.
3409 Interactively, ARG is the prefix arg (default 1)
3410 and KILLP is t if a prefix arg was specified."
3411 (interactive "*p\nP")
3412 (when (eq backward-delete-char-untabify-method 'untabify)
3413 (let ((count arg))
3414 (save-excursion
3415 (while (and (> count 0) (not (bobp)))
3416 (if (= (preceding-char) ?\t)
3417 (let ((col (current-column)))
3418 (forward-char -1)
3419 (setq col (- col (current-column)))
3420 (insert-char ?\s col)
3421 (delete-char 1)))
3422 (forward-char -1)
3423 (setq count (1- count))))))
3424 (let* ((skip (cond ((eq backward-delete-char-untabify-method 'hungry) " \t")
3425 ((eq backward-delete-char-untabify-method 'all)
3426 " \t\n\r")))
3427 (n (if skip
3428 (let ((wh (- (point) (save-excursion (skip-chars-backward skip)
3429 (point)))))
3430 (+ arg (if (zerop wh) 0 (1- wh))))
3431 arg)))
3432 ;; Avoid warning about delete-backward-char
3433 (with-no-warnings (delete-backward-char n killp))))
3435 (defun zap-to-char (arg char)
3436 "Kill up to and including ARGth occurrence of CHAR.
3437 Case is ignored if `case-fold-search' is non-nil in the current buffer.
3438 Goes backward if ARG is negative; error if CHAR not found."
3439 (interactive "p\ncZap to char: ")
3440 ;; Avoid "obsolete" warnings for translation-table-for-input.
3441 (with-no-warnings
3442 (if (char-table-p translation-table-for-input)
3443 (setq char (or (aref translation-table-for-input char) char))))
3444 (kill-region (point) (progn
3445 (search-forward (char-to-string char) nil nil arg)
3446 ; (goto-char (if (> arg 0) (1- (point)) (1+ (point))))
3447 (point))))
3449 ;; kill-line and its subroutines.
3451 (defcustom kill-whole-line nil
3452 "If non-nil, `kill-line' with no arg at beg of line kills the whole line."
3453 :type 'boolean
3454 :group 'killing)
3456 (defun kill-line (&optional arg)
3457 "Kill the rest of the current line; if no nonblanks there, kill thru newline.
3458 With prefix argument ARG, kill that many lines from point.
3459 Negative arguments kill lines backward.
3460 With zero argument, kills the text before point on the current line.
3462 When calling from a program, nil means \"no arg\",
3463 a number counts as a prefix arg.
3465 To kill a whole line, when point is not at the beginning, type \
3466 \\[move-beginning-of-line] \\[kill-line] \\[kill-line].
3468 If `show-trailing-whitespace' is non-nil, this command will just
3469 kill the rest of the current line, even if there are only
3470 nonblanks there.
3472 If `kill-whole-line' is non-nil, then this command kills the whole line
3473 including its terminating newline, when used at the beginning of a line
3474 with no argument. As a consequence, you can always kill a whole line
3475 by typing \\[move-beginning-of-line] \\[kill-line].
3477 If you want to append the killed line to the last killed text,
3478 use \\[append-next-kill] before \\[kill-line].
3480 If the buffer is read-only, Emacs will beep and refrain from deleting
3481 the line, but put the line in the kill ring anyway. This means that
3482 you can use this command to copy text from a read-only buffer.
3483 \(If the variable `kill-read-only-ok' is non-nil, then this won't
3484 even beep.)"
3485 (interactive "P")
3486 (kill-region (point)
3487 ;; It is better to move point to the other end of the kill
3488 ;; before killing. That way, in a read-only buffer, point
3489 ;; moves across the text that is copied to the kill ring.
3490 ;; The choice has no effect on undo now that undo records
3491 ;; the value of point from before the command was run.
3492 (progn
3493 (if arg
3494 (forward-visible-line (prefix-numeric-value arg))
3495 (if (eobp)
3496 (signal 'end-of-buffer nil))
3497 (let ((end
3498 (save-excursion
3499 (end-of-visible-line) (point))))
3500 (if (or (save-excursion
3501 ;; If trailing whitespace is visible,
3502 ;; don't treat it as nothing.
3503 (unless show-trailing-whitespace
3504 (skip-chars-forward " \t" end))
3505 (= (point) end))
3506 (and kill-whole-line (bolp)))
3507 (forward-visible-line 1)
3508 (goto-char end))))
3509 (point))))
3511 (defun kill-whole-line (&optional arg)
3512 "Kill current line.
3513 With prefix ARG, kill that many lines starting from the current line.
3514 If ARG is negative, kill backward. Also kill the preceding newline.
3515 \(This is meant to make \\[repeat] work well with negative arguments.\)
3516 If ARG is zero, kill current line but exclude the trailing newline."
3517 (interactive "p")
3518 (or arg (setq arg 1))
3519 (if (and (> arg 0) (eobp) (save-excursion (forward-visible-line 0) (eobp)))
3520 (signal 'end-of-buffer nil))
3521 (if (and (< arg 0) (bobp) (save-excursion (end-of-visible-line) (bobp)))
3522 (signal 'beginning-of-buffer nil))
3523 (unless (eq last-command 'kill-region)
3524 (kill-new "")
3525 (setq last-command 'kill-region))
3526 (cond ((zerop arg)
3527 ;; We need to kill in two steps, because the previous command
3528 ;; could have been a kill command, in which case the text
3529 ;; before point needs to be prepended to the current kill
3530 ;; ring entry and the text after point appended. Also, we
3531 ;; need to use save-excursion to avoid copying the same text
3532 ;; twice to the kill ring in read-only buffers.
3533 (save-excursion
3534 (kill-region (point) (progn (forward-visible-line 0) (point))))
3535 (kill-region (point) (progn (end-of-visible-line) (point))))
3536 ((< arg 0)
3537 (save-excursion
3538 (kill-region (point) (progn (end-of-visible-line) (point))))
3539 (kill-region (point)
3540 (progn (forward-visible-line (1+ arg))
3541 (unless (bobp) (backward-char))
3542 (point))))
3544 (save-excursion
3545 (kill-region (point) (progn (forward-visible-line 0) (point))))
3546 (kill-region (point)
3547 (progn (forward-visible-line arg) (point))))))
3549 (defun forward-visible-line (arg)
3550 "Move forward by ARG lines, ignoring currently invisible newlines only.
3551 If ARG is negative, move backward -ARG lines.
3552 If ARG is zero, move to the beginning of the current line."
3553 (condition-case nil
3554 (if (> arg 0)
3555 (progn
3556 (while (> arg 0)
3557 (or (zerop (forward-line 1))
3558 (signal 'end-of-buffer nil))
3559 ;; If the newline we just skipped is invisible,
3560 ;; don't count it.
3561 (let ((prop
3562 (get-char-property (1- (point)) 'invisible)))
3563 (if (if (eq buffer-invisibility-spec t)
3564 prop
3565 (or (memq prop buffer-invisibility-spec)
3566 (assq prop buffer-invisibility-spec)))
3567 (setq arg (1+ arg))))
3568 (setq arg (1- arg)))
3569 ;; If invisible text follows, and it is a number of complete lines,
3570 ;; skip it.
3571 (let ((opoint (point)))
3572 (while (and (not (eobp))
3573 (let ((prop
3574 (get-char-property (point) 'invisible)))
3575 (if (eq buffer-invisibility-spec t)
3576 prop
3577 (or (memq prop buffer-invisibility-spec)
3578 (assq prop buffer-invisibility-spec)))))
3579 (goto-char
3580 (if (get-text-property (point) 'invisible)
3581 (or (next-single-property-change (point) 'invisible)
3582 (point-max))
3583 (next-overlay-change (point)))))
3584 (unless (bolp)
3585 (goto-char opoint))))
3586 (let ((first t))
3587 (while (or first (<= arg 0))
3588 (if first
3589 (beginning-of-line)
3590 (or (zerop (forward-line -1))
3591 (signal 'beginning-of-buffer nil)))
3592 ;; If the newline we just moved to is invisible,
3593 ;; don't count it.
3594 (unless (bobp)
3595 (let ((prop
3596 (get-char-property (1- (point)) 'invisible)))
3597 (unless (if (eq buffer-invisibility-spec t)
3598 prop
3599 (or (memq prop buffer-invisibility-spec)
3600 (assq prop buffer-invisibility-spec)))
3601 (setq arg (1+ arg)))))
3602 (setq first nil))
3603 ;; If invisible text follows, and it is a number of complete lines,
3604 ;; skip it.
3605 (let ((opoint (point)))
3606 (while (and (not (bobp))
3607 (let ((prop
3608 (get-char-property (1- (point)) 'invisible)))
3609 (if (eq buffer-invisibility-spec t)
3610 prop
3611 (or (memq prop buffer-invisibility-spec)
3612 (assq prop buffer-invisibility-spec)))))
3613 (goto-char
3614 (if (get-text-property (1- (point)) 'invisible)
3615 (or (previous-single-property-change (point) 'invisible)
3616 (point-min))
3617 (previous-overlay-change (point)))))
3618 (unless (bolp)
3619 (goto-char opoint)))))
3620 ((beginning-of-buffer end-of-buffer)
3621 nil)))
3623 (defun end-of-visible-line ()
3624 "Move to end of current visible line."
3625 (end-of-line)
3626 ;; If the following character is currently invisible,
3627 ;; skip all characters with that same `invisible' property value,
3628 ;; then find the next newline.
3629 (while (and (not (eobp))
3630 (save-excursion
3631 (skip-chars-forward "^\n")
3632 (let ((prop
3633 (get-char-property (point) 'invisible)))
3634 (if (eq buffer-invisibility-spec t)
3635 prop
3636 (or (memq prop buffer-invisibility-spec)
3637 (assq prop buffer-invisibility-spec))))))
3638 (skip-chars-forward "^\n")
3639 (if (get-text-property (point) 'invisible)
3640 (goto-char (next-single-property-change (point) 'invisible))
3641 (goto-char (next-overlay-change (point))))
3642 (end-of-line)))
3644 (defun insert-buffer (buffer)
3645 "Insert after point the contents of BUFFER.
3646 Puts mark after the inserted text.
3647 BUFFER may be a buffer or a buffer name.
3649 This function is meant for the user to run interactively.
3650 Don't call it from programs: use `insert-buffer-substring' instead!"
3651 (interactive
3652 (list
3653 (progn
3654 (barf-if-buffer-read-only)
3655 (read-buffer "Insert buffer: "
3656 (if (eq (selected-window) (next-window (selected-window)))
3657 (other-buffer (current-buffer))
3658 (window-buffer (next-window (selected-window))))
3659 t))))
3660 (push-mark
3661 (save-excursion
3662 (insert-buffer-substring (get-buffer buffer))
3663 (point)))
3664 nil)
3666 (defun append-to-buffer (buffer start end)
3667 "Append to specified buffer the text of the region.
3668 It is inserted into that buffer before its point.
3670 When calling from a program, give three arguments:
3671 BUFFER (or buffer name), START and END.
3672 START and END specify the portion of the current buffer to be copied."
3673 (interactive
3674 (list (read-buffer "Append to buffer: " (other-buffer (current-buffer) t))
3675 (region-beginning) (region-end)))
3676 (let* ((oldbuf (current-buffer))
3677 (append-to (get-buffer-create buffer))
3678 (windows (get-buffer-window-list append-to t t))
3679 point)
3680 (save-excursion
3681 (with-current-buffer append-to
3682 (setq point (point))
3683 (barf-if-buffer-read-only)
3684 (insert-buffer-substring oldbuf start end)
3685 (dolist (window windows)
3686 (when (= (window-point window) point)
3687 (set-window-point window (point))))))))
3689 (defun prepend-to-buffer (buffer start end)
3690 "Prepend to specified buffer the text of the region.
3691 It is inserted into that buffer after its point.
3693 When calling from a program, give three arguments:
3694 BUFFER (or buffer name), START and END.
3695 START and END specify the portion of the current buffer to be copied."
3696 (interactive "BPrepend to buffer: \nr")
3697 (let ((oldbuf (current-buffer)))
3698 (with-current-buffer (get-buffer-create buffer)
3699 (barf-if-buffer-read-only)
3700 (save-excursion
3701 (insert-buffer-substring oldbuf start end)))))
3703 (defun copy-to-buffer (buffer start end)
3704 "Copy to specified buffer the text of the region.
3705 It is inserted into that buffer, replacing existing text there.
3707 When calling from a program, give three arguments:
3708 BUFFER (or buffer name), START and END.
3709 START and END specify the portion of the current buffer to be copied."
3710 (interactive "BCopy to buffer: \nr")
3711 (let ((oldbuf (current-buffer)))
3712 (with-current-buffer (get-buffer-create buffer)
3713 (barf-if-buffer-read-only)
3714 (erase-buffer)
3715 (save-excursion
3716 (insert-buffer-substring oldbuf start end)))))
3718 (put 'mark-inactive 'error-conditions '(mark-inactive error))
3719 (put 'mark-inactive 'error-message (purecopy "The mark is not active now"))
3721 (defvar activate-mark-hook nil
3722 "Hook run when the mark becomes active.
3723 It is also run at the end of a command, if the mark is active and
3724 it is possible that the region may have changed.")
3726 (defvar deactivate-mark-hook nil
3727 "Hook run when the mark becomes inactive.")
3729 (defun mark (&optional force)
3730 "Return this buffer's mark value as integer, or nil if never set.
3732 In Transient Mark mode, this function signals an error if
3733 the mark is not active. However, if `mark-even-if-inactive' is non-nil,
3734 or the argument FORCE is non-nil, it disregards whether the mark
3735 is active, and returns an integer or nil in the usual way.
3737 If you are using this in an editing command, you are most likely making
3738 a mistake; see the documentation of `set-mark'."
3739 (if (or force (not transient-mark-mode) mark-active mark-even-if-inactive)
3740 (marker-position (mark-marker))
3741 (signal 'mark-inactive nil)))
3743 (defsubst deactivate-mark (&optional force)
3744 "Deactivate the mark by setting `mark-active' to nil.
3745 Unless FORCE is non-nil, this function does nothing if Transient
3746 Mark mode is disabled.
3747 This function also runs `deactivate-mark-hook'."
3748 (when (or transient-mark-mode force)
3749 (when (and (if (eq select-active-regions 'only)
3750 (eq (car-safe transient-mark-mode) 'only)
3751 select-active-regions)
3752 (region-active-p)
3753 (display-selections-p))
3754 ;; The var `saved-region-selection', if non-nil, is the text in
3755 ;; the region prior to the last command modifying the buffer.
3756 ;; Set the selection to that, or to the current region.
3757 (cond (saved-region-selection
3758 (x-set-selection 'PRIMARY saved-region-selection)
3759 (setq saved-region-selection nil))
3760 ((/= (region-beginning) (region-end))
3761 (x-set-selection 'PRIMARY
3762 (buffer-substring-no-properties
3763 (region-beginning)
3764 (region-end))))))
3765 (if (and (null force)
3766 (or (eq transient-mark-mode 'lambda)
3767 (and (eq (car-safe transient-mark-mode) 'only)
3768 (null (cdr transient-mark-mode)))))
3769 ;; When deactivating a temporary region, don't change
3770 ;; `mark-active' or run `deactivate-mark-hook'.
3771 (setq transient-mark-mode nil)
3772 (if (eq (car-safe transient-mark-mode) 'only)
3773 (setq transient-mark-mode (cdr transient-mark-mode)))
3774 (setq mark-active nil)
3775 (run-hooks 'deactivate-mark-hook))))
3777 (defun activate-mark ()
3778 "Activate the mark."
3779 (when (mark t)
3780 (setq mark-active t)
3781 (unless transient-mark-mode
3782 (setq transient-mark-mode 'lambda))))
3784 (defun set-mark (pos)
3785 "Set this buffer's mark to POS. Don't use this function!
3786 That is to say, don't use this function unless you want
3787 the user to see that the mark has moved, and you want the previous
3788 mark position to be lost.
3790 Normally, when a new mark is set, the old one should go on the stack.
3791 This is why most applications should use `push-mark', not `set-mark'.
3793 Novice Emacs Lisp programmers often try to use the mark for the wrong
3794 purposes. The mark saves a location for the user's convenience.
3795 Most editing commands should not alter the mark.
3796 To remember a location for internal use in the Lisp program,
3797 store it in a Lisp variable. Example:
3799 (let ((beg (point))) (forward-line 1) (delete-region beg (point)))."
3801 (if pos
3802 (progn
3803 (setq mark-active t)
3804 (run-hooks 'activate-mark-hook)
3805 (set-marker (mark-marker) pos (current-buffer)))
3806 ;; Normally we never clear mark-active except in Transient Mark mode.
3807 ;; But when we actually clear out the mark value too, we must
3808 ;; clear mark-active in any mode.
3809 (deactivate-mark t)
3810 (set-marker (mark-marker) nil)))
3812 (defcustom use-empty-active-region nil
3813 "Whether \"region-aware\" commands should act on empty regions.
3814 If nil, region-aware commands treat empty regions as inactive.
3815 If non-nil, region-aware commands treat the region as active as
3816 long as the mark is active, even if the region is empty.
3818 Region-aware commands are those that act on the region if it is
3819 active and Transient Mark mode is enabled, and on the text near
3820 point otherwise."
3821 :type 'boolean
3822 :version "23.1"
3823 :group 'editing-basics)
3825 (defun use-region-p ()
3826 "Return t if the region is active and it is appropriate to act on it.
3827 This is used by commands that act specially on the region under
3828 Transient Mark mode.
3830 The return value is t if Transient Mark mode is enabled and the
3831 mark is active; furthermore, if `use-empty-active-region' is nil,
3832 the region must not be empty. Otherwise, the return value is nil.
3834 For some commands, it may be appropriate to ignore the value of
3835 `use-empty-active-region'; in that case, use `region-active-p'."
3836 (and (region-active-p)
3837 (or use-empty-active-region (> (region-end) (region-beginning)))))
3839 (defun region-active-p ()
3840 "Return t if Transient Mark mode is enabled and the mark is active.
3842 Some commands act specially on the region when Transient Mark
3843 mode is enabled. Usually, such commands should use
3844 `use-region-p' instead of this function, because `use-region-p'
3845 also checks the value of `use-empty-active-region'."
3846 (and transient-mark-mode mark-active))
3848 (defvar mark-ring nil
3849 "The list of former marks of the current buffer, most recent first.")
3850 (make-variable-buffer-local 'mark-ring)
3851 (put 'mark-ring 'permanent-local t)
3853 (defcustom mark-ring-max 16
3854 "Maximum size of mark ring. Start discarding off end if gets this big."
3855 :type 'integer
3856 :group 'editing-basics)
3858 (defvar global-mark-ring nil
3859 "The list of saved global marks, most recent first.")
3861 (defcustom global-mark-ring-max 16
3862 "Maximum size of global mark ring. \
3863 Start discarding off end if gets this big."
3864 :type 'integer
3865 :group 'editing-basics)
3867 (defun pop-to-mark-command ()
3868 "Jump to mark, and pop a new position for mark off the ring.
3869 \(Does not affect global mark ring\)."
3870 (interactive)
3871 (if (null (mark t))
3872 (error "No mark set in this buffer")
3873 (if (= (point) (mark t))
3874 (message "Mark popped"))
3875 (goto-char (mark t))
3876 (pop-mark)))
3878 (defun push-mark-command (arg &optional nomsg)
3879 "Set mark at where point is.
3880 If no prefix ARG and mark is already set there, just activate it.
3881 Display `Mark set' unless the optional second arg NOMSG is non-nil."
3882 (interactive "P")
3883 (let ((mark (marker-position (mark-marker))))
3884 (if (or arg (null mark) (/= mark (point)))
3885 (push-mark nil nomsg t)
3886 (setq mark-active t)
3887 (run-hooks 'activate-mark-hook)
3888 (unless nomsg
3889 (message "Mark activated")))))
3891 (defcustom set-mark-command-repeat-pop nil
3892 "Non-nil means repeating \\[set-mark-command] after popping mark pops it again.
3893 That means that C-u \\[set-mark-command] \\[set-mark-command]
3894 will pop the mark twice, and
3895 C-u \\[set-mark-command] \\[set-mark-command] \\[set-mark-command]
3896 will pop the mark three times.
3898 A value of nil means \\[set-mark-command]'s behavior does not change
3899 after C-u \\[set-mark-command]."
3900 :type 'boolean
3901 :group 'editing-basics)
3903 (defcustom set-mark-default-inactive nil
3904 "If non-nil, setting the mark does not activate it.
3905 This causes \\[set-mark-command] and \\[exchange-point-and-mark] to
3906 behave the same whether or not `transient-mark-mode' is enabled."
3907 :type 'boolean
3908 :group 'editing-basics
3909 :version "23.1")
3911 (defun set-mark-command (arg)
3912 "Set the mark where point is, or jump to the mark.
3913 Setting the mark also alters the region, which is the text
3914 between point and mark; this is the closest equivalent in
3915 Emacs to what some editors call the \"selection\".
3917 With no prefix argument, set the mark at point, and push the
3918 old mark position on local mark ring. Also push the old mark on
3919 global mark ring, if the previous mark was set in another buffer.
3921 When Transient Mark Mode is off, immediately repeating this
3922 command activates `transient-mark-mode' temporarily.
3924 With prefix argument \(e.g., \\[universal-argument] \\[set-mark-command]\), \
3925 jump to the mark, and set the mark from
3926 position popped off the local mark ring \(this does not affect the global
3927 mark ring\). Use \\[pop-global-mark] to jump to a mark popped off the global
3928 mark ring \(see `pop-global-mark'\).
3930 If `set-mark-command-repeat-pop' is non-nil, repeating
3931 the \\[set-mark-command] command with no prefix argument pops the next position
3932 off the local (or global) mark ring and jumps there.
3934 With \\[universal-argument] \\[universal-argument] as prefix
3935 argument, unconditionally set mark where point is, even if
3936 `set-mark-command-repeat-pop' is non-nil.
3938 Novice Emacs Lisp programmers often try to use the mark for the wrong
3939 purposes. See the documentation of `set-mark' for more information."
3940 (interactive "P")
3941 (cond ((eq transient-mark-mode 'lambda)
3942 (setq transient-mark-mode nil))
3943 ((eq (car-safe transient-mark-mode) 'only)
3944 (deactivate-mark)))
3945 (cond
3946 ((and (consp arg) (> (prefix-numeric-value arg) 4))
3947 (push-mark-command nil))
3948 ((not (eq this-command 'set-mark-command))
3949 (if arg
3950 (pop-to-mark-command)
3951 (push-mark-command t)))
3952 ((and set-mark-command-repeat-pop
3953 (eq last-command 'pop-to-mark-command))
3954 (setq this-command 'pop-to-mark-command)
3955 (pop-to-mark-command))
3956 ((and set-mark-command-repeat-pop
3957 (eq last-command 'pop-global-mark)
3958 (not arg))
3959 (setq this-command 'pop-global-mark)
3960 (pop-global-mark))
3961 (arg
3962 (setq this-command 'pop-to-mark-command)
3963 (pop-to-mark-command))
3964 ((eq last-command 'set-mark-command)
3965 (if (region-active-p)
3966 (progn
3967 (deactivate-mark)
3968 (message "Mark deactivated"))
3969 (activate-mark)
3970 (message "Mark activated")))
3972 (push-mark-command nil)
3973 (if set-mark-default-inactive (deactivate-mark)))))
3975 (defun push-mark (&optional location nomsg activate)
3976 "Set mark at LOCATION (point, by default) and push old mark on mark ring.
3977 If the last global mark pushed was not in the current buffer,
3978 also push LOCATION on the global mark ring.
3979 Display `Mark set' unless the optional second arg NOMSG is non-nil.
3981 Novice Emacs Lisp programmers often try to use the mark for the wrong
3982 purposes. See the documentation of `set-mark' for more information.
3984 In Transient Mark mode, activate mark if optional third arg ACTIVATE non-nil."
3985 (unless (null (mark t))
3986 (setq mark-ring (cons (copy-marker (mark-marker)) mark-ring))
3987 (when (> (length mark-ring) mark-ring-max)
3988 (move-marker (car (nthcdr mark-ring-max mark-ring)) nil)
3989 (setcdr (nthcdr (1- mark-ring-max) mark-ring) nil)))
3990 (set-marker (mark-marker) (or location (point)) (current-buffer))
3991 ;; Now push the mark on the global mark ring.
3992 (if (and global-mark-ring
3993 (eq (marker-buffer (car global-mark-ring)) (current-buffer)))
3994 ;; The last global mark pushed was in this same buffer.
3995 ;; Don't push another one.
3997 (setq global-mark-ring (cons (copy-marker (mark-marker)) global-mark-ring))
3998 (when (> (length global-mark-ring) global-mark-ring-max)
3999 (move-marker (car (nthcdr global-mark-ring-max global-mark-ring)) nil)
4000 (setcdr (nthcdr (1- global-mark-ring-max) global-mark-ring) nil)))
4001 (or nomsg executing-kbd-macro (> (minibuffer-depth) 0)
4002 (message "Mark set"))
4003 (if (or activate (not transient-mark-mode))
4004 (set-mark (mark t)))
4005 nil)
4007 (defun pop-mark ()
4008 "Pop off mark ring into the buffer's actual mark.
4009 Does not set point. Does nothing if mark ring is empty."
4010 (when mark-ring
4011 (setq mark-ring (nconc mark-ring (list (copy-marker (mark-marker)))))
4012 (set-marker (mark-marker) (+ 0 (car mark-ring)) (current-buffer))
4013 (move-marker (car mark-ring) nil)
4014 (if (null (mark t)) (ding))
4015 (setq mark-ring (cdr mark-ring)))
4016 (deactivate-mark))
4018 (define-obsolete-function-alias
4019 'exchange-dot-and-mark 'exchange-point-and-mark "23.3")
4020 (defun exchange-point-and-mark (&optional arg)
4021 "Put the mark where point is now, and point where the mark is now.
4022 This command works even when the mark is not active,
4023 and it reactivates the mark.
4025 If Transient Mark mode is on, a prefix ARG deactivates the mark
4026 if it is active, and otherwise avoids reactivating it. If
4027 Transient Mark mode is off, a prefix ARG enables Transient Mark
4028 mode temporarily."
4029 (interactive "P")
4030 (let ((omark (mark t))
4031 (temp-highlight (eq (car-safe transient-mark-mode) 'only)))
4032 (if (null omark)
4033 (error "No mark set in this buffer"))
4034 (deactivate-mark)
4035 (set-mark (point))
4036 (goto-char omark)
4037 (if set-mark-default-inactive (deactivate-mark))
4038 (cond (temp-highlight
4039 (setq transient-mark-mode (cons 'only transient-mark-mode)))
4040 ((or (and arg (region-active-p)) ; (xor arg (not (region-active-p)))
4041 (not (or arg (region-active-p))))
4042 (deactivate-mark))
4043 (t (activate-mark)))
4044 nil))
4046 (defcustom shift-select-mode t
4047 "When non-nil, shifted motion keys activate the mark momentarily.
4049 While the mark is activated in this way, any shift-translated point
4050 motion key extends the region, and if Transient Mark mode was off, it
4051 is temporarily turned on. Furthermore, the mark will be deactivated
4052 by any subsequent point motion key that was not shift-translated, or
4053 by any action that normally deactivates the mark in Transient Mark mode.
4055 See `this-command-keys-shift-translated' for the meaning of
4056 shift-translation."
4057 :type 'boolean
4058 :group 'editing-basics)
4060 (defun handle-shift-selection ()
4061 "Activate/deactivate mark depending on invocation thru shift translation.
4062 This function is called by `call-interactively' when a command
4063 with a `^' character in its `interactive' spec is invoked, before
4064 running the command itself.
4066 If `shift-select-mode' is enabled and the command was invoked
4067 through shift translation, set the mark and activate the region
4068 temporarily, unless it was already set in this way. See
4069 `this-command-keys-shift-translated' for the meaning of shift
4070 translation.
4072 Otherwise, if the region has been activated temporarily,
4073 deactivate it, and restore the variable `transient-mark-mode' to
4074 its earlier value."
4075 (cond ((and shift-select-mode this-command-keys-shift-translated)
4076 (unless (and mark-active
4077 (eq (car-safe transient-mark-mode) 'only))
4078 (setq transient-mark-mode
4079 (cons 'only
4080 (unless (eq transient-mark-mode 'lambda)
4081 transient-mark-mode)))
4082 (push-mark nil nil t)))
4083 ((eq (car-safe transient-mark-mode) 'only)
4084 (setq transient-mark-mode (cdr transient-mark-mode))
4085 (deactivate-mark))))
4087 (define-minor-mode transient-mark-mode
4088 "Toggle Transient Mark mode.
4089 With a prefix argument ARG, enable Transient Mark mode if ARG is
4090 positive, and disable it otherwise. If called from Lisp, enable
4091 Transient Mark mode if ARG is omitted or nil.
4093 Transient Mark mode is a global minor mode. When enabled, the
4094 region is highlighted whenever the mark is active. The mark is
4095 \"deactivated\" by changing the buffer, and after certain other
4096 operations that set the mark but whose main purpose is something
4097 else--for example, incremental search, \\[beginning-of-buffer], and \\[end-of-buffer].
4099 You can also deactivate the mark by typing \\[keyboard-quit] or
4100 \\[keyboard-escape-quit].
4102 Many commands change their behavior when Transient Mark mode is in effect
4103 and the mark is active, by acting on the region instead of their usual
4104 default part of the buffer's text. Examples of such commands include
4105 \\[comment-dwim], \\[flush-lines], \\[keep-lines], \
4106 \\[query-replace], \\[query-replace-regexp], \\[ispell], and \\[undo].
4107 Invoke \\[apropos-documentation] and type \"transient\" or
4108 \"mark.*active\" at the prompt, to see the documentation of
4109 commands which are sensitive to the Transient Mark mode."
4110 :global t
4111 ;; It's defined in C/cus-start, this stops the d-m-m macro defining it again.
4112 :variable transient-mark-mode)
4114 (defvar widen-automatically t
4115 "Non-nil means it is ok for commands to call `widen' when they want to.
4116 Some commands will do this in order to go to positions outside
4117 the current accessible part of the buffer.
4119 If `widen-automatically' is nil, these commands will do something else
4120 as a fallback, and won't change the buffer bounds.")
4122 (defvar non-essential nil
4123 "Whether the currently executing code is performing an essential task.
4124 This variable should be non-nil only when running code which should not
4125 disturb the user. E.g. it can be used to prevent Tramp from prompting the
4126 user for a password when we are simply scanning a set of files in the
4127 background or displaying possible completions before the user even asked
4128 for it.")
4130 (defun pop-global-mark ()
4131 "Pop off global mark ring and jump to the top location."
4132 (interactive)
4133 ;; Pop entries which refer to non-existent buffers.
4134 (while (and global-mark-ring (not (marker-buffer (car global-mark-ring))))
4135 (setq global-mark-ring (cdr global-mark-ring)))
4136 (or global-mark-ring
4137 (error "No global mark set"))
4138 (let* ((marker (car global-mark-ring))
4139 (buffer (marker-buffer marker))
4140 (position (marker-position marker)))
4141 (setq global-mark-ring (nconc (cdr global-mark-ring)
4142 (list (car global-mark-ring))))
4143 (set-buffer buffer)
4144 (or (and (>= position (point-min))
4145 (<= position (point-max)))
4146 (if widen-automatically
4147 (widen)
4148 (error "Global mark position is outside accessible part of buffer")))
4149 (goto-char position)
4150 (switch-to-buffer buffer)))
4152 (defcustom next-line-add-newlines nil
4153 "If non-nil, `next-line' inserts newline to avoid `end of buffer' error."
4154 :type 'boolean
4155 :version "21.1"
4156 :group 'editing-basics)
4158 (defun next-line (&optional arg try-vscroll)
4159 "Move cursor vertically down ARG lines.
4160 Interactively, vscroll tall lines if `auto-window-vscroll' is enabled.
4161 If there is no character in the target line exactly under the current column,
4162 the cursor is positioned after the character in that line which spans this
4163 column, or at the end of the line if it is not long enough.
4164 If there is no line in the buffer after this one, behavior depends on the
4165 value of `next-line-add-newlines'. If non-nil, it inserts a newline character
4166 to create a line, and moves the cursor to that line. Otherwise it moves the
4167 cursor to the end of the buffer.
4169 If the variable `line-move-visual' is non-nil, this command moves
4170 by display lines. Otherwise, it moves by buffer lines, without
4171 taking variable-width characters or continued lines into account.
4173 The command \\[set-goal-column] can be used to create
4174 a semipermanent goal column for this command.
4175 Then instead of trying to move exactly vertically (or as close as possible),
4176 this command moves to the specified goal column (or as close as possible).
4177 The goal column is stored in the variable `goal-column', which is nil
4178 when there is no goal column. Note that setting `goal-column'
4179 overrides `line-move-visual' and causes this command to move by buffer
4180 lines rather than by display lines.
4182 If you are thinking of using this in a Lisp program, consider
4183 using `forward-line' instead. It is usually easier to use
4184 and more reliable (no dependence on goal column, etc.)."
4185 (interactive "^p\np")
4186 (or arg (setq arg 1))
4187 (if (and next-line-add-newlines (= arg 1))
4188 (if (save-excursion (end-of-line) (eobp))
4189 ;; When adding a newline, don't expand an abbrev.
4190 (let ((abbrev-mode nil))
4191 (end-of-line)
4192 (insert (if use-hard-newlines hard-newline "\n")))
4193 (line-move arg nil nil try-vscroll))
4194 (if (called-interactively-p 'interactive)
4195 (condition-case err
4196 (line-move arg nil nil try-vscroll)
4197 ((beginning-of-buffer end-of-buffer)
4198 (signal (car err) (cdr err))))
4199 (line-move arg nil nil try-vscroll)))
4200 nil)
4202 (defun previous-line (&optional arg try-vscroll)
4203 "Move cursor vertically up ARG lines.
4204 Interactively, vscroll tall lines if `auto-window-vscroll' is enabled.
4205 If there is no character in the target line exactly over the current column,
4206 the cursor is positioned after the character in that line which spans this
4207 column, or at the end of the line if it is not long enough.
4209 If the variable `line-move-visual' is non-nil, this command moves
4210 by display lines. Otherwise, it moves by buffer lines, without
4211 taking variable-width characters or continued lines into account.
4213 The command \\[set-goal-column] can be used to create
4214 a semipermanent goal column for this command.
4215 Then instead of trying to move exactly vertically (or as close as possible),
4216 this command moves to the specified goal column (or as close as possible).
4217 The goal column is stored in the variable `goal-column', which is nil
4218 when there is no goal column. Note that setting `goal-column'
4219 overrides `line-move-visual' and causes this command to move by buffer
4220 lines rather than by display lines.
4222 If you are thinking of using this in a Lisp program, consider using
4223 `forward-line' with a negative argument instead. It is usually easier
4224 to use and more reliable (no dependence on goal column, etc.)."
4225 (interactive "^p\np")
4226 (or arg (setq arg 1))
4227 (if (called-interactively-p 'interactive)
4228 (condition-case err
4229 (line-move (- arg) nil nil try-vscroll)
4230 ((beginning-of-buffer end-of-buffer)
4231 (signal (car err) (cdr err))))
4232 (line-move (- arg) nil nil try-vscroll))
4233 nil)
4235 (defcustom track-eol nil
4236 "Non-nil means vertical motion starting at end of line keeps to ends of lines.
4237 This means moving to the end of each line moved onto.
4238 The beginning of a blank line does not count as the end of a line.
4239 This has no effect when `line-move-visual' is non-nil."
4240 :type 'boolean
4241 :group 'editing-basics)
4243 (defcustom goal-column nil
4244 "Semipermanent goal column for vertical motion, as set by \\[set-goal-column], or nil.
4245 A non-nil setting overrides `line-move-visual', which see."
4246 :type '(choice integer
4247 (const :tag "None" nil))
4248 :group 'editing-basics)
4249 (make-variable-buffer-local 'goal-column)
4251 (defvar temporary-goal-column 0
4252 "Current goal column for vertical motion.
4253 It is the column where point was at the start of the current run
4254 of vertical motion commands.
4256 When moving by visual lines via `line-move-visual', it is a cons
4257 cell (COL . HSCROLL), where COL is the x-position, in pixels,
4258 divided by the default column width, and HSCROLL is the number of
4259 columns by which window is scrolled from left margin.
4261 When the `track-eol' feature is doing its job, the value is
4262 `most-positive-fixnum'.")
4264 (defcustom line-move-ignore-invisible t
4265 "Non-nil means \\[next-line] and \\[previous-line] ignore invisible lines.
4266 Outline mode sets this."
4267 :type 'boolean
4268 :group 'editing-basics)
4270 (defcustom line-move-visual t
4271 "When non-nil, `line-move' moves point by visual lines.
4272 This movement is based on where the cursor is displayed on the
4273 screen, instead of relying on buffer contents alone. It takes
4274 into account variable-width characters and line continuation.
4275 If nil, `line-move' moves point by logical lines.
4276 A non-nil setting of `goal-column' overrides the value of this variable
4277 and forces movement by logical lines.
4278 Disabling `auto-hscroll-mode' also overrides forces movement by logical
4279 lines when the window is horizontally scrolled."
4280 :type 'boolean
4281 :group 'editing-basics
4282 :version "23.1")
4284 ;; Returns non-nil if partial move was done.
4285 (defun line-move-partial (arg noerror to-end)
4286 (if (< arg 0)
4287 ;; Move backward (up).
4288 ;; If already vscrolled, reduce vscroll
4289 (let ((vs (window-vscroll nil t)))
4290 (when (> vs (frame-char-height))
4291 (set-window-vscroll nil (- vs (frame-char-height)) t)))
4293 ;; Move forward (down).
4294 (let* ((lh (window-line-height -1))
4295 (vpos (nth 1 lh))
4296 (ypos (nth 2 lh))
4297 (rbot (nth 3 lh))
4298 py vs)
4299 (when (or (null lh)
4300 (>= rbot (frame-char-height))
4301 (<= ypos (- (frame-char-height))))
4302 (unless lh
4303 (let ((wend (pos-visible-in-window-p t nil t)))
4304 (setq rbot (nth 3 wend)
4305 vpos (nth 5 wend))))
4306 (cond
4307 ;; If last line of window is fully visible, move forward.
4308 ((or (null rbot) (= rbot 0))
4309 nil)
4310 ;; If cursor is not in the bottom scroll margin, move forward.
4311 ((and (> vpos 0)
4312 (< (setq py
4313 (or (nth 1 (window-line-height))
4314 (let ((ppos (posn-at-point)))
4315 (cdr (or (posn-actual-col-row ppos)
4316 (posn-col-row ppos))))))
4317 (min (- (window-text-height) scroll-margin 1) (1- vpos))))
4318 nil)
4319 ;; When already vscrolled, we vscroll some more if we can,
4320 ;; or clear vscroll and move forward at end of tall image.
4321 ((> (setq vs (window-vscroll nil t)) 0)
4322 (when (> rbot 0)
4323 (set-window-vscroll nil (+ vs (min rbot (frame-char-height))) t)))
4324 ;; If cursor just entered the bottom scroll margin, move forward,
4325 ;; but also vscroll one line so redisplay wont recenter.
4326 ((and (> vpos 0)
4327 (= py (min (- (window-text-height) scroll-margin 1)
4328 (1- vpos))))
4329 (set-window-vscroll nil (frame-char-height) t)
4330 (line-move-1 arg noerror to-end)
4332 ;; If there are lines above the last line, scroll-up one line.
4333 ((> vpos 0)
4334 (scroll-up 1)
4336 ;; Finally, start vscroll.
4338 (set-window-vscroll nil (frame-char-height) t)))))))
4341 ;; This is like line-move-1 except that it also performs
4342 ;; vertical scrolling of tall images if appropriate.
4343 ;; That is not really a clean thing to do, since it mixes
4344 ;; scrolling with cursor motion. But so far we don't have
4345 ;; a cleaner solution to the problem of making C-n do something
4346 ;; useful given a tall image.
4347 (defun line-move (arg &optional noerror to-end try-vscroll)
4348 (unless (and auto-window-vscroll try-vscroll
4349 ;; Only vscroll for single line moves
4350 (= (abs arg) 1)
4351 ;; But don't vscroll in a keyboard macro.
4352 (not defining-kbd-macro)
4353 (not executing-kbd-macro)
4354 (line-move-partial arg noerror to-end))
4355 (set-window-vscroll nil 0 t)
4356 (if (and line-move-visual
4357 ;; Display-based column are incompatible with goal-column.
4358 (not goal-column)
4359 ;; When auto-hscroll-mode is turned off and the text in
4360 ;; the window is scrolled to the left, display-based
4361 ;; motion doesn't make sense (because each logical line
4362 ;; occupies exactly one screen line).
4363 (not (and (null auto-hscroll-mode)
4364 (> (window-hscroll) 0))))
4365 (line-move-visual arg noerror)
4366 (line-move-1 arg noerror to-end))))
4368 ;; Display-based alternative to line-move-1.
4369 ;; Arg says how many lines to move. The value is t if we can move the
4370 ;; specified number of lines.
4371 (defun line-move-visual (arg &optional noerror)
4372 (let ((opoint (point))
4373 (hscroll (window-hscroll))
4374 target-hscroll)
4375 ;; Check if the previous command was a line-motion command, or if
4376 ;; we were called from some other command.
4377 (if (and (consp temporary-goal-column)
4378 (memq last-command `(next-line previous-line ,this-command)))
4379 ;; If so, there's no need to reset `temporary-goal-column',
4380 ;; but we may need to hscroll.
4381 (if (or (/= (cdr temporary-goal-column) hscroll)
4382 (> (cdr temporary-goal-column) 0))
4383 (setq target-hscroll (cdr temporary-goal-column)))
4384 ;; Otherwise, we should reset `temporary-goal-column'.
4385 (let ((posn (posn-at-point)))
4386 (cond
4387 ;; Handle the `overflow-newline-into-fringe' case:
4388 ((eq (nth 1 posn) 'right-fringe)
4389 (setq temporary-goal-column (cons (- (window-width) 1) hscroll)))
4390 ((car (posn-x-y posn))
4391 (setq temporary-goal-column
4392 (cons (/ (float (car (posn-x-y posn)))
4393 (frame-char-width)) hscroll))))))
4394 (if target-hscroll
4395 (set-window-hscroll (selected-window) target-hscroll))
4396 (or (and (= (vertical-motion
4397 (cons (or goal-column
4398 (if (consp temporary-goal-column)
4399 (car temporary-goal-column)
4400 temporary-goal-column))
4401 arg))
4402 arg)
4403 (or (>= arg 0)
4404 (/= (point) opoint)
4405 ;; If the goal column lies on a display string,
4406 ;; `vertical-motion' advances the cursor to the end
4407 ;; of the string. For arg < 0, this can cause the
4408 ;; cursor to get stuck. (Bug#3020).
4409 (= (vertical-motion arg) arg)))
4410 (unless noerror
4411 (signal (if (< arg 0) 'beginning-of-buffer 'end-of-buffer)
4412 nil)))))
4414 ;; This is the guts of next-line and previous-line.
4415 ;; Arg says how many lines to move.
4416 ;; The value is t if we can move the specified number of lines.
4417 (defun line-move-1 (arg &optional noerror _to-end)
4418 ;; Don't run any point-motion hooks, and disregard intangibility,
4419 ;; for intermediate positions.
4420 (let ((inhibit-point-motion-hooks t)
4421 (opoint (point))
4422 (orig-arg arg))
4423 (if (consp temporary-goal-column)
4424 (setq temporary-goal-column (+ (car temporary-goal-column)
4425 (cdr temporary-goal-column))))
4426 (unwind-protect
4427 (progn
4428 (if (not (memq last-command '(next-line previous-line)))
4429 (setq temporary-goal-column
4430 (if (and track-eol (eolp)
4431 ;; Don't count beg of empty line as end of line
4432 ;; unless we just did explicit end-of-line.
4433 (or (not (bolp)) (eq last-command 'move-end-of-line)))
4434 most-positive-fixnum
4435 (current-column))))
4437 (if (not (or (integerp selective-display)
4438 line-move-ignore-invisible))
4439 ;; Use just newline characters.
4440 ;; Set ARG to 0 if we move as many lines as requested.
4441 (or (if (> arg 0)
4442 (progn (if (> arg 1) (forward-line (1- arg)))
4443 ;; This way of moving forward ARG lines
4444 ;; verifies that we have a newline after the last one.
4445 ;; It doesn't get confused by intangible text.
4446 (end-of-line)
4447 (if (zerop (forward-line 1))
4448 (setq arg 0)))
4449 (and (zerop (forward-line arg))
4450 (bolp)
4451 (setq arg 0)))
4452 (unless noerror
4453 (signal (if (< arg 0)
4454 'beginning-of-buffer
4455 'end-of-buffer)
4456 nil)))
4457 ;; Move by arg lines, but ignore invisible ones.
4458 (let (done)
4459 (while (and (> arg 0) (not done))
4460 ;; If the following character is currently invisible,
4461 ;; skip all characters with that same `invisible' property value.
4462 (while (and (not (eobp)) (invisible-p (point)))
4463 (goto-char (next-char-property-change (point))))
4464 ;; Move a line.
4465 ;; We don't use `end-of-line', since we want to escape
4466 ;; from field boundaries occurring exactly at point.
4467 (goto-char (constrain-to-field
4468 (let ((inhibit-field-text-motion t))
4469 (line-end-position))
4470 (point) t t
4471 'inhibit-line-move-field-capture))
4472 ;; If there's no invisibility here, move over the newline.
4473 (cond
4474 ((eobp)
4475 (if (not noerror)
4476 (signal 'end-of-buffer nil)
4477 (setq done t)))
4478 ((and (> arg 1) ;; Use vertical-motion for last move
4479 (not (integerp selective-display))
4480 (not (invisible-p (point))))
4481 ;; We avoid vertical-motion when possible
4482 ;; because that has to fontify.
4483 (forward-line 1))
4484 ;; Otherwise move a more sophisticated way.
4485 ((zerop (vertical-motion 1))
4486 (if (not noerror)
4487 (signal 'end-of-buffer nil)
4488 (setq done t))))
4489 (unless done
4490 (setq arg (1- arg))))
4491 ;; The logic of this is the same as the loop above,
4492 ;; it just goes in the other direction.
4493 (while (and (< arg 0) (not done))
4494 ;; For completely consistency with the forward-motion
4495 ;; case, we should call beginning-of-line here.
4496 ;; However, if point is inside a field and on a
4497 ;; continued line, the call to (vertical-motion -1)
4498 ;; below won't move us back far enough; then we return
4499 ;; to the same column in line-move-finish, and point
4500 ;; gets stuck -- cyd
4501 (forward-line 0)
4502 (cond
4503 ((bobp)
4504 (if (not noerror)
4505 (signal 'beginning-of-buffer nil)
4506 (setq done t)))
4507 ((and (< arg -1) ;; Use vertical-motion for last move
4508 (not (integerp selective-display))
4509 (not (invisible-p (1- (point)))))
4510 (forward-line -1))
4511 ((zerop (vertical-motion -1))
4512 (if (not noerror)
4513 (signal 'beginning-of-buffer nil)
4514 (setq done t))))
4515 (unless done
4516 (setq arg (1+ arg))
4517 (while (and ;; Don't move over previous invis lines
4518 ;; if our target is the middle of this line.
4519 (or (zerop (or goal-column temporary-goal-column))
4520 (< arg 0))
4521 (not (bobp)) (invisible-p (1- (point))))
4522 (goto-char (previous-char-property-change (point))))))))
4523 ;; This is the value the function returns.
4524 (= arg 0))
4526 (cond ((> arg 0)
4527 ;; If we did not move down as far as desired, at least go
4528 ;; to end of line. Be sure to call point-entered and
4529 ;; point-left-hooks.
4530 (let* ((npoint (prog1 (line-end-position)
4531 (goto-char opoint)))
4532 (inhibit-point-motion-hooks nil))
4533 (goto-char npoint)))
4534 ((< arg 0)
4535 ;; If we did not move up as far as desired,
4536 ;; at least go to beginning of line.
4537 (let* ((npoint (prog1 (line-beginning-position)
4538 (goto-char opoint)))
4539 (inhibit-point-motion-hooks nil))
4540 (goto-char npoint)))
4542 (line-move-finish (or goal-column temporary-goal-column)
4543 opoint (> orig-arg 0)))))))
4545 (defun line-move-finish (column opoint forward)
4546 (let ((repeat t))
4547 (while repeat
4548 ;; Set REPEAT to t to repeat the whole thing.
4549 (setq repeat nil)
4551 (let (new
4552 (old (point))
4553 (line-beg (line-beginning-position))
4554 (line-end
4555 ;; Compute the end of the line
4556 ;; ignoring effectively invisible newlines.
4557 (save-excursion
4558 ;; Like end-of-line but ignores fields.
4559 (skip-chars-forward "^\n")
4560 (while (and (not (eobp)) (invisible-p (point)))
4561 (goto-char (next-char-property-change (point)))
4562 (skip-chars-forward "^\n"))
4563 (point))))
4565 ;; Move to the desired column.
4566 (line-move-to-column (truncate column))
4568 ;; Corner case: suppose we start out in a field boundary in
4569 ;; the middle of a continued line. When we get to
4570 ;; line-move-finish, point is at the start of a new *screen*
4571 ;; line but the same text line; then line-move-to-column would
4572 ;; move us backwards. Test using C-n with point on the "x" in
4573 ;; (insert "a" (propertize "x" 'field t) (make-string 89 ?y))
4574 (and forward
4575 (< (point) old)
4576 (goto-char old))
4578 (setq new (point))
4580 ;; Process intangibility within a line.
4581 ;; With inhibit-point-motion-hooks bound to nil, a call to
4582 ;; goto-char moves point past intangible text.
4584 ;; However, inhibit-point-motion-hooks controls both the
4585 ;; intangibility and the point-entered/point-left hooks. The
4586 ;; following hack avoids calling the point-* hooks
4587 ;; unnecessarily. Note that we move *forward* past intangible
4588 ;; text when the initial and final points are the same.
4589 (goto-char new)
4590 (let ((inhibit-point-motion-hooks nil))
4591 (goto-char new)
4593 ;; If intangibility moves us to a different (later) place
4594 ;; in the same line, use that as the destination.
4595 (if (<= (point) line-end)
4596 (setq new (point))
4597 ;; If that position is "too late",
4598 ;; try the previous allowable position.
4599 ;; See if it is ok.
4600 (backward-char)
4601 (if (if forward
4602 ;; If going forward, don't accept the previous
4603 ;; allowable position if it is before the target line.
4604 (< line-beg (point))
4605 ;; If going backward, don't accept the previous
4606 ;; allowable position if it is still after the target line.
4607 (<= (point) line-end))
4608 (setq new (point))
4609 ;; As a last resort, use the end of the line.
4610 (setq new line-end))))
4612 ;; Now move to the updated destination, processing fields
4613 ;; as well as intangibility.
4614 (goto-char opoint)
4615 (let ((inhibit-point-motion-hooks nil))
4616 (goto-char
4617 ;; Ignore field boundaries if the initial and final
4618 ;; positions have the same `field' property, even if the
4619 ;; fields are non-contiguous. This seems to be "nicer"
4620 ;; behavior in many situations.
4621 (if (eq (get-char-property new 'field)
4622 (get-char-property opoint 'field))
4624 (constrain-to-field new opoint t t
4625 'inhibit-line-move-field-capture))))
4627 ;; If all this moved us to a different line,
4628 ;; retry everything within that new line.
4629 (when (or (< (point) line-beg) (> (point) line-end))
4630 ;; Repeat the intangibility and field processing.
4631 (setq repeat t))))))
4633 (defun line-move-to-column (col)
4634 "Try to find column COL, considering invisibility.
4635 This function works only in certain cases,
4636 because what we really need is for `move-to-column'
4637 and `current-column' to be able to ignore invisible text."
4638 (if (zerop col)
4639 (beginning-of-line)
4640 (move-to-column col))
4642 (when (and line-move-ignore-invisible
4643 (not (bolp)) (invisible-p (1- (point))))
4644 (let ((normal-location (point))
4645 (normal-column (current-column)))
4646 ;; If the following character is currently invisible,
4647 ;; skip all characters with that same `invisible' property value.
4648 (while (and (not (eobp))
4649 (invisible-p (point)))
4650 (goto-char (next-char-property-change (point))))
4651 ;; Have we advanced to a larger column position?
4652 (if (> (current-column) normal-column)
4653 ;; We have made some progress towards the desired column.
4654 ;; See if we can make any further progress.
4655 (line-move-to-column (+ (current-column) (- col normal-column)))
4656 ;; Otherwise, go to the place we originally found
4657 ;; and move back over invisible text.
4658 ;; that will get us to the same place on the screen
4659 ;; but with a more reasonable buffer position.
4660 (goto-char normal-location)
4661 (let ((line-beg (line-beginning-position)))
4662 (while (and (not (bolp)) (invisible-p (1- (point))))
4663 (goto-char (previous-char-property-change (point) line-beg))))))))
4665 (defun move-end-of-line (arg)
4666 "Move point to end of current line as displayed.
4667 With argument ARG not nil or 1, move forward ARG - 1 lines first.
4668 If point reaches the beginning or end of buffer, it stops there.
4670 To ignore the effects of the `intangible' text or overlay
4671 property, bind `inhibit-point-motion-hooks' to t.
4672 If there is an image in the current line, this function
4673 disregards newlines that are part of the text on which the image
4674 rests."
4675 (interactive "^p")
4676 (or arg (setq arg 1))
4677 (let (done)
4678 (while (not done)
4679 (let ((newpos
4680 (save-excursion
4681 (let ((goal-column 0)
4682 (line-move-visual nil))
4683 (and (line-move arg t)
4684 ;; With bidi reordering, we may not be at bol,
4685 ;; so make sure we are.
4686 (skip-chars-backward "^\n")
4687 (not (bobp))
4688 (progn
4689 (while (and (not (bobp)) (invisible-p (1- (point))))
4690 (goto-char (previous-single-char-property-change
4691 (point) 'invisible)))
4692 (backward-char 1)))
4693 (point)))))
4694 (goto-char newpos)
4695 (if (and (> (point) newpos)
4696 (eq (preceding-char) ?\n))
4697 (backward-char 1)
4698 (if (and (> (point) newpos) (not (eobp))
4699 (not (eq (following-char) ?\n)))
4700 ;; If we skipped something intangible and now we're not
4701 ;; really at eol, keep going.
4702 (setq arg 1)
4703 (setq done t)))))))
4705 (defun move-beginning-of-line (arg)
4706 "Move point to beginning of current line as displayed.
4707 \(If there's an image in the line, this disregards newlines
4708 which are part of the text that the image rests on.)
4710 With argument ARG not nil or 1, move forward ARG - 1 lines first.
4711 If point reaches the beginning or end of buffer, it stops there.
4712 To ignore intangibility, bind `inhibit-point-motion-hooks' to t."
4713 (interactive "^p")
4714 (or arg (setq arg 1))
4716 (let ((orig (point))
4717 first-vis first-vis-field-value)
4719 ;; Move by lines, if ARG is not 1 (the default).
4720 (if (/= arg 1)
4721 (let ((line-move-visual nil))
4722 (line-move (1- arg) t)))
4724 ;; Move to beginning-of-line, ignoring fields and invisibles.
4725 (skip-chars-backward "^\n")
4726 (while (and (not (bobp)) (invisible-p (1- (point))))
4727 (goto-char (previous-char-property-change (point)))
4728 (skip-chars-backward "^\n"))
4730 ;; Now find first visible char in the line
4731 (while (and (not (eobp)) (invisible-p (point)))
4732 (goto-char (next-char-property-change (point))))
4733 (setq first-vis (point))
4735 ;; See if fields would stop us from reaching FIRST-VIS.
4736 (setq first-vis-field-value
4737 (constrain-to-field first-vis orig (/= arg 1) t nil))
4739 (goto-char (if (/= first-vis-field-value first-vis)
4740 ;; If yes, obey them.
4741 first-vis-field-value
4742 ;; Otherwise, move to START with attention to fields.
4743 ;; (It is possible that fields never matter in this case.)
4744 (constrain-to-field (point) orig
4745 (/= arg 1) t nil)))))
4748 ;; Many people have said they rarely use this feature, and often type
4749 ;; it by accident. Maybe it shouldn't even be on a key.
4750 (put 'set-goal-column 'disabled t)
4752 (defun set-goal-column (arg)
4753 "Set the current horizontal position as a goal for \\[next-line] and \\[previous-line].
4754 Those commands will move to this position in the line moved to
4755 rather than trying to keep the same horizontal position.
4756 With a non-nil argument ARG, clears out the goal column
4757 so that \\[next-line] and \\[previous-line] resume vertical motion.
4758 The goal column is stored in the variable `goal-column'."
4759 (interactive "P")
4760 (if arg
4761 (progn
4762 (setq goal-column nil)
4763 (message "No goal column"))
4764 (setq goal-column (current-column))
4765 ;; The older method below can be erroneous if `set-goal-column' is bound
4766 ;; to a sequence containing %
4767 ;;(message (substitute-command-keys
4768 ;;"Goal column %d (use \\[set-goal-column] with an arg to unset it)")
4769 ;;goal-column)
4770 (message "%s"
4771 (concat
4772 (format "Goal column %d " goal-column)
4773 (substitute-command-keys
4774 "(use \\[set-goal-column] with an arg to unset it)")))
4777 nil)
4779 ;;; Editing based on visual lines, as opposed to logical lines.
4781 (defun end-of-visual-line (&optional n)
4782 "Move point to end of current visual line.
4783 With argument N not nil or 1, move forward N - 1 visual lines first.
4784 If point reaches the beginning or end of buffer, it stops there.
4785 To ignore intangibility, bind `inhibit-point-motion-hooks' to t."
4786 (interactive "^p")
4787 (or n (setq n 1))
4788 (if (/= n 1)
4789 (let ((line-move-visual t))
4790 (line-move (1- n) t)))
4791 ;; Unlike `move-beginning-of-line', `move-end-of-line' doesn't
4792 ;; constrain to field boundaries, so we don't either.
4793 (vertical-motion (cons (window-width) 0)))
4795 (defun beginning-of-visual-line (&optional n)
4796 "Move point to beginning of current visual line.
4797 With argument N not nil or 1, move forward N - 1 visual lines first.
4798 If point reaches the beginning or end of buffer, it stops there.
4799 To ignore intangibility, bind `inhibit-point-motion-hooks' to t."
4800 (interactive "^p")
4801 (or n (setq n 1))
4802 (let ((opoint (point)))
4803 (if (/= n 1)
4804 (let ((line-move-visual t))
4805 (line-move (1- n) t)))
4806 (vertical-motion 0)
4807 ;; Constrain to field boundaries, like `move-beginning-of-line'.
4808 (goto-char (constrain-to-field (point) opoint (/= n 1)))))
4810 (defun kill-visual-line (&optional arg)
4811 "Kill the rest of the visual line.
4812 With prefix argument ARG, kill that many visual lines from point.
4813 If ARG is negative, kill visual lines backward.
4814 If ARG is zero, kill the text before point on the current visual
4815 line.
4817 If you want to append the killed line to the last killed text,
4818 use \\[append-next-kill] before \\[kill-line].
4820 If the buffer is read-only, Emacs will beep and refrain from deleting
4821 the line, but put the line in the kill ring anyway. This means that
4822 you can use this command to copy text from a read-only buffer.
4823 \(If the variable `kill-read-only-ok' is non-nil, then this won't
4824 even beep.)"
4825 (interactive "P")
4826 ;; Like in `kill-line', it's better to move point to the other end
4827 ;; of the kill before killing.
4828 (let ((opoint (point))
4829 (kill-whole-line (and kill-whole-line (bolp))))
4830 (if arg
4831 (vertical-motion (prefix-numeric-value arg))
4832 (end-of-visual-line 1)
4833 (if (= (point) opoint)
4834 (vertical-motion 1)
4835 ;; Skip any trailing whitespace at the end of the visual line.
4836 ;; We used to do this only if `show-trailing-whitespace' is
4837 ;; nil, but that's wrong; the correct thing would be to check
4838 ;; whether the trailing whitespace is highlighted. But, it's
4839 ;; OK to just do this unconditionally.
4840 (skip-chars-forward " \t")))
4841 (kill-region opoint (if (and kill-whole-line (looking-at "\n"))
4842 (1+ (point))
4843 (point)))))
4845 (defun next-logical-line (&optional arg try-vscroll)
4846 "Move cursor vertically down ARG lines.
4847 This is identical to `next-line', except that it always moves
4848 by logical lines instead of visual lines, ignoring the value of
4849 the variable `line-move-visual'."
4850 (interactive "^p\np")
4851 (let ((line-move-visual nil))
4852 (with-no-warnings
4853 (next-line arg try-vscroll))))
4855 (defun previous-logical-line (&optional arg try-vscroll)
4856 "Move cursor vertically up ARG lines.
4857 This is identical to `previous-line', except that it always moves
4858 by logical lines instead of visual lines, ignoring the value of
4859 the variable `line-move-visual'."
4860 (interactive "^p\np")
4861 (let ((line-move-visual nil))
4862 (with-no-warnings
4863 (previous-line arg try-vscroll))))
4865 (defgroup visual-line nil
4866 "Editing based on visual lines."
4867 :group 'convenience
4868 :version "23.1")
4870 (defvar visual-line-mode-map
4871 (let ((map (make-sparse-keymap)))
4872 (define-key map [remap kill-line] 'kill-visual-line)
4873 (define-key map [remap move-beginning-of-line] 'beginning-of-visual-line)
4874 (define-key map [remap move-end-of-line] 'end-of-visual-line)
4875 ;; These keybindings interfere with xterm function keys. Are
4876 ;; there any other suitable bindings?
4877 ;; (define-key map "\M-[" 'previous-logical-line)
4878 ;; (define-key map "\M-]" 'next-logical-line)
4879 map))
4881 (defcustom visual-line-fringe-indicators '(nil nil)
4882 "How fringe indicators are shown for wrapped lines in `visual-line-mode'.
4883 The value should be a list of the form (LEFT RIGHT), where LEFT
4884 and RIGHT are symbols representing the bitmaps to display, to
4885 indicate wrapped lines, in the left and right fringes respectively.
4886 See also `fringe-indicator-alist'.
4887 The default is not to display fringe indicators for wrapped lines.
4888 This variable does not affect fringe indicators displayed for
4889 other purposes."
4890 :type '(list (choice (const :tag "Hide left indicator" nil)
4891 (const :tag "Left curly arrow" left-curly-arrow)
4892 (symbol :tag "Other bitmap"))
4893 (choice (const :tag "Hide right indicator" nil)
4894 (const :tag "Right curly arrow" right-curly-arrow)
4895 (symbol :tag "Other bitmap")))
4896 :set (lambda (symbol value)
4897 (dolist (buf (buffer-list))
4898 (with-current-buffer buf
4899 (when (and (boundp 'visual-line-mode)
4900 (symbol-value 'visual-line-mode))
4901 (setq fringe-indicator-alist
4902 (cons (cons 'continuation value)
4903 (assq-delete-all
4904 'continuation
4905 (copy-tree fringe-indicator-alist)))))))
4906 (set-default symbol value)))
4908 (defvar visual-line--saved-state nil)
4910 (define-minor-mode visual-line-mode
4911 "Toggle visual line based editing (Visual Line mode).
4912 With a prefix argument ARG, enable Visual Line mode if ARG is
4913 positive, and disable it otherwise. If called from Lisp, enable
4914 the mode if ARG is omitted or nil.
4916 When Visual Line mode is enabled, `word-wrap' is turned on in
4917 this buffer, and simple editing commands are redefined to act on
4918 visual lines, not logical lines. See Info node `Visual Line
4919 Mode' for details."
4920 :keymap visual-line-mode-map
4921 :group 'visual-line
4922 :lighter " Wrap"
4923 (if visual-line-mode
4924 (progn
4925 (set (make-local-variable 'visual-line--saved-state) nil)
4926 ;; Save the local values of some variables, to be restored if
4927 ;; visual-line-mode is turned off.
4928 (dolist (var '(line-move-visual truncate-lines
4929 truncate-partial-width-windows
4930 word-wrap fringe-indicator-alist))
4931 (if (local-variable-p var)
4932 (push (cons var (symbol-value var))
4933 visual-line--saved-state)))
4934 (set (make-local-variable 'line-move-visual) t)
4935 (set (make-local-variable 'truncate-partial-width-windows) nil)
4936 (setq truncate-lines nil
4937 word-wrap t
4938 fringe-indicator-alist
4939 (cons (cons 'continuation visual-line-fringe-indicators)
4940 fringe-indicator-alist)))
4941 (kill-local-variable 'line-move-visual)
4942 (kill-local-variable 'word-wrap)
4943 (kill-local-variable 'truncate-lines)
4944 (kill-local-variable 'truncate-partial-width-windows)
4945 (kill-local-variable 'fringe-indicator-alist)
4946 (dolist (saved visual-line--saved-state)
4947 (set (make-local-variable (car saved)) (cdr saved)))
4948 (kill-local-variable 'visual-line--saved-state)))
4950 (defun turn-on-visual-line-mode ()
4951 (visual-line-mode 1))
4953 (define-globalized-minor-mode global-visual-line-mode
4954 visual-line-mode turn-on-visual-line-mode
4955 :lighter " vl")
4958 (defun transpose-chars (arg)
4959 "Interchange characters around point, moving forward one character.
4960 With prefix arg ARG, effect is to take character before point
4961 and drag it forward past ARG other characters (backward if ARG negative).
4962 If no argument and at end of line, the previous two chars are exchanged."
4963 (interactive "*P")
4964 (and (null arg) (eolp) (forward-char -1))
4965 (transpose-subr 'forward-char (prefix-numeric-value arg)))
4967 (defun transpose-words (arg)
4968 "Interchange words around point, leaving point at end of them.
4969 With prefix arg ARG, effect is to take word before or around point
4970 and drag it forward past ARG other words (backward if ARG negative).
4971 If ARG is zero, the words around or after point and around or after mark
4972 are interchanged."
4973 ;; FIXME: `foo a!nd bar' should transpose into `bar and foo'.
4974 (interactive "*p")
4975 (transpose-subr 'forward-word arg))
4977 (defun transpose-sexps (arg)
4978 "Like \\[transpose-words] but applies to sexps.
4979 Does not work on a sexp that point is in the middle of
4980 if it is a list or string."
4981 (interactive "*p")
4982 (transpose-subr
4983 (lambda (arg)
4984 ;; Here we should try to simulate the behavior of
4985 ;; (cons (progn (forward-sexp x) (point))
4986 ;; (progn (forward-sexp (- x)) (point)))
4987 ;; Except that we don't want to rely on the second forward-sexp
4988 ;; putting us back to where we want to be, since forward-sexp-function
4989 ;; might do funny things like infix-precedence.
4990 (if (if (> arg 0)
4991 (looking-at "\\sw\\|\\s_")
4992 (and (not (bobp))
4993 (save-excursion (forward-char -1) (looking-at "\\sw\\|\\s_"))))
4994 ;; Jumping over a symbol. We might be inside it, mind you.
4995 (progn (funcall (if (> arg 0)
4996 'skip-syntax-backward 'skip-syntax-forward)
4997 "w_")
4998 (cons (save-excursion (forward-sexp arg) (point)) (point)))
4999 ;; Otherwise, we're between sexps. Take a step back before jumping
5000 ;; to make sure we'll obey the same precedence no matter which direction
5001 ;; we're going.
5002 (funcall (if (> arg 0) 'skip-syntax-backward 'skip-syntax-forward) " .")
5003 (cons (save-excursion (forward-sexp arg) (point))
5004 (progn (while (or (forward-comment (if (> arg 0) 1 -1))
5005 (not (zerop (funcall (if (> arg 0)
5006 'skip-syntax-forward
5007 'skip-syntax-backward)
5008 ".")))))
5009 (point)))))
5010 arg 'special))
5012 (defun transpose-lines (arg)
5013 "Exchange current line and previous line, leaving point after both.
5014 With argument ARG, takes previous line and moves it past ARG lines.
5015 With argument 0, interchanges line point is in with line mark is in."
5016 (interactive "*p")
5017 (transpose-subr (function
5018 (lambda (arg)
5019 (if (> arg 0)
5020 (progn
5021 ;; Move forward over ARG lines,
5022 ;; but create newlines if necessary.
5023 (setq arg (forward-line arg))
5024 (if (/= (preceding-char) ?\n)
5025 (setq arg (1+ arg)))
5026 (if (> arg 0)
5027 (newline arg)))
5028 (forward-line arg))))
5029 arg))
5031 ;; FIXME seems to leave point BEFORE the current object when ARG = 0,
5032 ;; which seems inconsistent with the ARG /= 0 case.
5033 ;; FIXME document SPECIAL.
5034 (defun transpose-subr (mover arg &optional special)
5035 "Subroutine to do the work of transposing objects.
5036 Works for lines, sentences, paragraphs, etc. MOVER is a function that
5037 moves forward by units of the given object (e.g. forward-sentence,
5038 forward-paragraph). If ARG is zero, exchanges the current object
5039 with the one containing mark. If ARG is an integer, moves the
5040 current object past ARG following (if ARG is positive) or
5041 preceding (if ARG is negative) objects, leaving point after the
5042 current object."
5043 (let ((aux (if special mover
5044 (lambda (x)
5045 (cons (progn (funcall mover x) (point))
5046 (progn (funcall mover (- x)) (point))))))
5047 pos1 pos2)
5048 (cond
5049 ((= arg 0)
5050 (save-excursion
5051 (setq pos1 (funcall aux 1))
5052 (goto-char (or (mark) (error "No mark set in this buffer")))
5053 (setq pos2 (funcall aux 1))
5054 (transpose-subr-1 pos1 pos2))
5055 (exchange-point-and-mark))
5056 ((> arg 0)
5057 (setq pos1 (funcall aux -1))
5058 (setq pos2 (funcall aux arg))
5059 (transpose-subr-1 pos1 pos2)
5060 (goto-char (car pos2)))
5062 (setq pos1 (funcall aux -1))
5063 (goto-char (car pos1))
5064 (setq pos2 (funcall aux arg))
5065 (transpose-subr-1 pos1 pos2)))))
5067 (defun transpose-subr-1 (pos1 pos2)
5068 (when (> (car pos1) (cdr pos1)) (setq pos1 (cons (cdr pos1) (car pos1))))
5069 (when (> (car pos2) (cdr pos2)) (setq pos2 (cons (cdr pos2) (car pos2))))
5070 (when (> (car pos1) (car pos2))
5071 (let ((swap pos1))
5072 (setq pos1 pos2 pos2 swap)))
5073 (if (> (cdr pos1) (car pos2)) (error "Don't have two things to transpose"))
5074 (atomic-change-group
5075 (let (word2)
5076 ;; FIXME: We first delete the two pieces of text, so markers that
5077 ;; used to point to after the text end up pointing to before it :-(
5078 (setq word2 (delete-and-extract-region (car pos2) (cdr pos2)))
5079 (goto-char (car pos2))
5080 (insert (delete-and-extract-region (car pos1) (cdr pos1)))
5081 (goto-char (car pos1))
5082 (insert word2))))
5084 (defun backward-word (&optional arg)
5085 "Move backward until encountering the beginning of a word.
5086 With argument ARG, do this that many times."
5087 (interactive "^p")
5088 (forward-word (- (or arg 1))))
5090 (defun mark-word (&optional arg allow-extend)
5091 "Set mark ARG words away from point.
5092 The place mark goes is the same place \\[forward-word] would
5093 move to with the same argument.
5094 Interactively, if this command is repeated
5095 or (in Transient Mark mode) if the mark is active,
5096 it marks the next ARG words after the ones already marked."
5097 (interactive "P\np")
5098 (cond ((and allow-extend
5099 (or (and (eq last-command this-command) (mark t))
5100 (region-active-p)))
5101 (setq arg (if arg (prefix-numeric-value arg)
5102 (if (< (mark) (point)) -1 1)))
5103 (set-mark
5104 (save-excursion
5105 (goto-char (mark))
5106 (forward-word arg)
5107 (point))))
5109 (push-mark
5110 (save-excursion
5111 (forward-word (prefix-numeric-value arg))
5112 (point))
5113 nil t))))
5115 (defun kill-word (arg)
5116 "Kill characters forward until encountering the end of a word.
5117 With argument ARG, do this that many times."
5118 (interactive "p")
5119 (kill-region (point) (progn (forward-word arg) (point))))
5121 (defun backward-kill-word (arg)
5122 "Kill characters backward until encountering the beginning of a word.
5123 With argument ARG, do this that many times."
5124 (interactive "p")
5125 (kill-word (- arg)))
5127 (defun current-word (&optional strict really-word)
5128 "Return the symbol or word that point is on (or a nearby one) as a string.
5129 The return value includes no text properties.
5130 If optional arg STRICT is non-nil, return nil unless point is within
5131 or adjacent to a symbol or word. In all cases the value can be nil
5132 if there is no word nearby.
5133 The function, belying its name, normally finds a symbol.
5134 If optional arg REALLY-WORD is non-nil, it finds just a word."
5135 (save-excursion
5136 (let* ((oldpoint (point)) (start (point)) (end (point))
5137 (syntaxes (if really-word "w" "w_"))
5138 (not-syntaxes (concat "^" syntaxes)))
5139 (skip-syntax-backward syntaxes) (setq start (point))
5140 (goto-char oldpoint)
5141 (skip-syntax-forward syntaxes) (setq end (point))
5142 (when (and (eq start oldpoint) (eq end oldpoint)
5143 ;; Point is neither within nor adjacent to a word.
5144 (not strict))
5145 ;; Look for preceding word in same line.
5146 (skip-syntax-backward not-syntaxes (line-beginning-position))
5147 (if (bolp)
5148 ;; No preceding word in same line.
5149 ;; Look for following word in same line.
5150 (progn
5151 (skip-syntax-forward not-syntaxes (line-end-position))
5152 (setq start (point))
5153 (skip-syntax-forward syntaxes)
5154 (setq end (point)))
5155 (setq end (point))
5156 (skip-syntax-backward syntaxes)
5157 (setq start (point))))
5158 ;; If we found something nonempty, return it as a string.
5159 (unless (= start end)
5160 (buffer-substring-no-properties start end)))))
5162 (defcustom fill-prefix nil
5163 "String for filling to insert at front of new line, or nil for none."
5164 :type '(choice (const :tag "None" nil)
5165 string)
5166 :group 'fill)
5167 (make-variable-buffer-local 'fill-prefix)
5168 (put 'fill-prefix 'safe-local-variable 'string-or-null-p)
5170 (defcustom auto-fill-inhibit-regexp nil
5171 "Regexp to match lines which should not be auto-filled."
5172 :type '(choice (const :tag "None" nil)
5173 regexp)
5174 :group 'fill)
5176 (defun do-auto-fill ()
5177 "The default value for `normal-auto-fill-function'.
5178 This is the default auto-fill function, some major modes use a different one.
5179 Returns t if it really did any work."
5180 (let (fc justify give-up
5181 (fill-prefix fill-prefix))
5182 (if (or (not (setq justify (current-justification)))
5183 (null (setq fc (current-fill-column)))
5184 (and (eq justify 'left)
5185 (<= (current-column) fc))
5186 (and auto-fill-inhibit-regexp
5187 (save-excursion (beginning-of-line)
5188 (looking-at auto-fill-inhibit-regexp))))
5189 nil ;; Auto-filling not required
5190 (if (memq justify '(full center right))
5191 (save-excursion (unjustify-current-line)))
5193 ;; Choose a fill-prefix automatically.
5194 (when (and adaptive-fill-mode
5195 (or (null fill-prefix) (string= fill-prefix "")))
5196 (let ((prefix
5197 (fill-context-prefix
5198 (save-excursion (fill-forward-paragraph -1) (point))
5199 (save-excursion (fill-forward-paragraph 1) (point)))))
5200 (and prefix (not (equal prefix ""))
5201 ;; Use auto-indentation rather than a guessed empty prefix.
5202 (not (and fill-indent-according-to-mode
5203 (string-match "\\`[ \t]*\\'" prefix)))
5204 (setq fill-prefix prefix))))
5206 (while (and (not give-up) (> (current-column) fc))
5207 ;; Determine where to split the line.
5208 (let* (after-prefix
5209 (fill-point
5210 (save-excursion
5211 (beginning-of-line)
5212 (setq after-prefix (point))
5213 (and fill-prefix
5214 (looking-at (regexp-quote fill-prefix))
5215 (setq after-prefix (match-end 0)))
5216 (move-to-column (1+ fc))
5217 (fill-move-to-break-point after-prefix)
5218 (point))))
5220 ;; See whether the place we found is any good.
5221 (if (save-excursion
5222 (goto-char fill-point)
5223 (or (bolp)
5224 ;; There is no use breaking at end of line.
5225 (save-excursion (skip-chars-forward " ") (eolp))
5226 ;; It is futile to split at the end of the prefix
5227 ;; since we would just insert the prefix again.
5228 (and after-prefix (<= (point) after-prefix))
5229 ;; Don't split right after a comment starter
5230 ;; since we would just make another comment starter.
5231 (and comment-start-skip
5232 (let ((limit (point)))
5233 (beginning-of-line)
5234 (and (re-search-forward comment-start-skip
5235 limit t)
5236 (eq (point) limit))))))
5237 ;; No good place to break => stop trying.
5238 (setq give-up t)
5239 ;; Ok, we have a useful place to break the line. Do it.
5240 (let ((prev-column (current-column)))
5241 ;; If point is at the fill-point, do not `save-excursion'.
5242 ;; Otherwise, if a comment prefix or fill-prefix is inserted,
5243 ;; point will end up before it rather than after it.
5244 (if (save-excursion
5245 (skip-chars-backward " \t")
5246 (= (point) fill-point))
5247 (default-indent-new-line t)
5248 (save-excursion
5249 (goto-char fill-point)
5250 (default-indent-new-line t)))
5251 ;; Now do justification, if required
5252 (if (not (eq justify 'left))
5253 (save-excursion
5254 (end-of-line 0)
5255 (justify-current-line justify nil t)))
5256 ;; If making the new line didn't reduce the hpos of
5257 ;; the end of the line, then give up now;
5258 ;; trying again will not help.
5259 (if (>= (current-column) prev-column)
5260 (setq give-up t))))))
5261 ;; Justify last line.
5262 (justify-current-line justify t t)
5263 t)))
5265 (defvar comment-line-break-function 'comment-indent-new-line
5266 "*Mode-specific function which line breaks and continues a comment.
5267 This function is called during auto-filling when a comment syntax
5268 is defined.
5269 The function should take a single optional argument, which is a flag
5270 indicating whether it should use soft newlines.")
5272 (defun default-indent-new-line (&optional soft)
5273 "Break line at point and indent.
5274 If a comment syntax is defined, call `comment-indent-new-line'.
5276 The inserted newline is marked hard if variable `use-hard-newlines' is true,
5277 unless optional argument SOFT is non-nil."
5278 (interactive)
5279 (if comment-start
5280 (funcall comment-line-break-function soft)
5281 ;; Insert the newline before removing empty space so that markers
5282 ;; get preserved better.
5283 (if soft (insert-and-inherit ?\n) (newline 1))
5284 (save-excursion (forward-char -1) (delete-horizontal-space))
5285 (delete-horizontal-space)
5287 (if (and fill-prefix (not adaptive-fill-mode))
5288 ;; Blindly trust a non-adaptive fill-prefix.
5289 (progn
5290 (indent-to-left-margin)
5291 (insert-before-markers-and-inherit fill-prefix))
5293 (cond
5294 ;; If there's an adaptive prefix, use it unless we're inside
5295 ;; a comment and the prefix is not a comment starter.
5296 (fill-prefix
5297 (indent-to-left-margin)
5298 (insert-and-inherit fill-prefix))
5299 ;; If we're not inside a comment, just try to indent.
5300 (t (indent-according-to-mode))))))
5302 (defvar normal-auto-fill-function 'do-auto-fill
5303 "The function to use for `auto-fill-function' if Auto Fill mode is turned on.
5304 Some major modes set this.")
5306 (put 'auto-fill-function :minor-mode-function 'auto-fill-mode)
5307 ;; `functions' and `hooks' are usually unsafe to set, but setting
5308 ;; auto-fill-function to nil in a file-local setting is safe and
5309 ;; can be useful to prevent auto-filling.
5310 (put 'auto-fill-function 'safe-local-variable 'null)
5312 (define-minor-mode auto-fill-mode
5313 "Toggle automatic line breaking (Auto Fill mode).
5314 With a prefix argument ARG, enable Auto Fill mode if ARG is
5315 positive, and disable it otherwise. If called from Lisp, enable
5316 the mode if ARG is omitted or nil.
5318 When Auto Fill mode is enabled, inserting a space at a column
5319 beyond `current-fill-column' automatically breaks the line at a
5320 previous space.
5322 When `auto-fill-mode' is on, the `auto-fill-function' variable is
5323 non-`nil'.
5325 The value of `normal-auto-fill-function' specifies the function to use
5326 for `auto-fill-function' when turning Auto Fill mode on."
5327 :variable (eq auto-fill-function normal-auto-fill-function))
5329 ;; This holds a document string used to document auto-fill-mode.
5330 (defun auto-fill-function ()
5331 "Automatically break line at a previous space, in insertion of text."
5332 nil)
5334 (defun turn-on-auto-fill ()
5335 "Unconditionally turn on Auto Fill mode."
5336 (auto-fill-mode 1))
5338 (defun turn-off-auto-fill ()
5339 "Unconditionally turn off Auto Fill mode."
5340 (auto-fill-mode -1))
5342 (custom-add-option 'text-mode-hook 'turn-on-auto-fill)
5344 (defun set-fill-column (arg)
5345 "Set `fill-column' to specified argument.
5346 Use \\[universal-argument] followed by a number to specify a column.
5347 Just \\[universal-argument] as argument means to use the current column."
5348 (interactive
5349 (list (or current-prefix-arg
5350 ;; We used to use current-column silently, but C-x f is too easily
5351 ;; typed as a typo for C-x C-f, so we turned it into an error and
5352 ;; now an interactive prompt.
5353 (read-number "Set fill-column to: " (current-column)))))
5354 (if (consp arg)
5355 (setq arg (current-column)))
5356 (if (not (integerp arg))
5357 ;; Disallow missing argument; it's probably a typo for C-x C-f.
5358 (error "set-fill-column requires an explicit argument")
5359 (message "Fill column set to %d (was %d)" arg fill-column)
5360 (setq fill-column arg)))
5362 (defun set-selective-display (arg)
5363 "Set `selective-display' to ARG; clear it if no arg.
5364 When the value of `selective-display' is a number > 0,
5365 lines whose indentation is >= that value are not displayed.
5366 The variable `selective-display' has a separate value for each buffer."
5367 (interactive "P")
5368 (if (eq selective-display t)
5369 (error "selective-display already in use for marked lines"))
5370 (let ((current-vpos
5371 (save-restriction
5372 (narrow-to-region (point-min) (point))
5373 (goto-char (window-start))
5374 (vertical-motion (window-height)))))
5375 (setq selective-display
5376 (and arg (prefix-numeric-value arg)))
5377 (recenter current-vpos))
5378 (set-window-start (selected-window) (window-start (selected-window)))
5379 (princ "selective-display set to " t)
5380 (prin1 selective-display t)
5381 (princ "." t))
5383 (defvaralias 'indicate-unused-lines 'indicate-empty-lines)
5385 (defun toggle-truncate-lines (&optional arg)
5386 "Toggle truncating of long lines for the current buffer.
5387 When truncating is off, long lines are folded.
5388 With prefix argument ARG, truncate long lines if ARG is positive,
5389 otherwise fold them. Note that in side-by-side windows, this
5390 command has no effect if `truncate-partial-width-windows' is
5391 non-nil."
5392 (interactive "P")
5393 (setq truncate-lines
5394 (if (null arg)
5395 (not truncate-lines)
5396 (> (prefix-numeric-value arg) 0)))
5397 (force-mode-line-update)
5398 (unless truncate-lines
5399 (let ((buffer (current-buffer)))
5400 (walk-windows (lambda (window)
5401 (if (eq buffer (window-buffer window))
5402 (set-window-hscroll window 0)))
5403 nil t)))
5404 (message "Truncate long lines %s"
5405 (if truncate-lines "enabled" "disabled")))
5407 (defun toggle-word-wrap (&optional arg)
5408 "Toggle whether to use word-wrapping for continuation lines.
5409 With prefix argument ARG, wrap continuation lines at word boundaries
5410 if ARG is positive, otherwise wrap them at the right screen edge.
5411 This command toggles the value of `word-wrap'. It has no effect
5412 if long lines are truncated."
5413 (interactive "P")
5414 (setq word-wrap
5415 (if (null arg)
5416 (not word-wrap)
5417 (> (prefix-numeric-value arg) 0)))
5418 (force-mode-line-update)
5419 (message "Word wrapping %s"
5420 (if word-wrap "enabled" "disabled")))
5422 (defvar overwrite-mode-textual (purecopy " Ovwrt")
5423 "The string displayed in the mode line when in overwrite mode.")
5424 (defvar overwrite-mode-binary (purecopy " Bin Ovwrt")
5425 "The string displayed in the mode line when in binary overwrite mode.")
5427 (define-minor-mode overwrite-mode
5428 "Toggle Overwrite mode.
5429 With a prefix argument ARG, enable Overwrite mode if ARG is
5430 positive, and disable it otherwise. If called from Lisp, enable
5431 the mode if ARG is omitted or nil.
5433 When Overwrite mode is enabled, printing characters typed in
5434 replace existing text on a one-for-one basis, rather than pushing
5435 it to the right. At the end of a line, such characters extend
5436 the line. Before a tab, such characters insert until the tab is
5437 filled in. \\[quoted-insert] still inserts characters in
5438 overwrite mode; this is supposed to make it easier to insert
5439 characters when necessary."
5440 :variable (eq overwrite-mode 'overwrite-mode-textual))
5442 (define-minor-mode binary-overwrite-mode
5443 "Toggle Binary Overwrite mode.
5444 With a prefix argument ARG, enable Binary Overwrite mode if ARG
5445 is positive, and disable it otherwise. If called from Lisp,
5446 enable the mode if ARG is omitted or nil.
5448 When Binary Overwrite mode is enabled, printing characters typed
5449 in replace existing text. Newlines are not treated specially, so
5450 typing at the end of a line joins the line to the next, with the
5451 typed character between them. Typing before a tab character
5452 simply replaces the tab with the character typed.
5453 \\[quoted-insert] replaces the text at the cursor, just as
5454 ordinary typing characters do.
5456 Note that Binary Overwrite mode is not its own minor mode; it is
5457 a specialization of overwrite mode, entered by setting the
5458 `overwrite-mode' variable to `overwrite-mode-binary'."
5459 :variable (eq overwrite-mode 'overwrite-mode-binary))
5461 (define-minor-mode line-number-mode
5462 "Toggle line number display in the mode line (Line Number mode).
5463 With a prefix argument ARG, enable Line Number mode if ARG is
5464 positive, and disable it otherwise. If called from Lisp, enable
5465 the mode if ARG is omitted or nil.
5467 Line numbers do not appear for very large buffers and buffers
5468 with very long lines; see variables `line-number-display-limit'
5469 and `line-number-display-limit-width'."
5470 :init-value t :global t :group 'mode-line)
5472 (define-minor-mode column-number-mode
5473 "Toggle column number display in the mode line (Column Number mode).
5474 With a prefix argument ARG, enable Column Number mode if ARG is
5475 positive, and disable it otherwise.
5477 If called from Lisp, enable the mode if ARG is omitted or nil."
5478 :global t :group 'mode-line)
5480 (define-minor-mode size-indication-mode
5481 "Toggle buffer size display in the mode line (Size Indication mode).
5482 With a prefix argument ARG, enable Size Indication mode if ARG is
5483 positive, and disable it otherwise.
5485 If called from Lisp, enable the mode if ARG is omitted or nil."
5486 :global t :group 'mode-line)
5488 (define-minor-mode auto-save-mode
5489 "Toggle auto-saving in the current buffer (Auto Save mode).
5490 With a prefix argument ARG, enable Auto Save mode if ARG is
5491 positive, and disable it otherwise.
5493 If called from Lisp, enable the mode if ARG is omitted or nil."
5494 :variable ((and buffer-auto-save-file-name
5495 ;; If auto-save is off because buffer has shrunk,
5496 ;; then toggling should turn it on.
5497 (>= buffer-saved-size 0))
5498 . (lambda (val)
5499 (setq buffer-auto-save-file-name
5500 (cond
5501 ((null val) nil)
5502 ((and buffer-file-name auto-save-visited-file-name
5503 (not buffer-read-only))
5504 buffer-file-name)
5505 (t (make-auto-save-file-name))))))
5506 ;; If -1 was stored here, to temporarily turn off saving,
5507 ;; turn it back on.
5508 (and (< buffer-saved-size 0)
5509 (setq buffer-saved-size 0)))
5511 (defgroup paren-blinking nil
5512 "Blinking matching of parens and expressions."
5513 :prefix "blink-matching-"
5514 :group 'paren-matching)
5516 (defcustom blink-matching-paren t
5517 "Non-nil means show matching open-paren when close-paren is inserted."
5518 :type 'boolean
5519 :group 'paren-blinking)
5521 (defcustom blink-matching-paren-on-screen t
5522 "Non-nil means show matching open-paren when it is on screen.
5523 If nil, don't show it (but the open-paren can still be shown
5524 when it is off screen).
5526 This variable has no effect if `blink-matching-paren' is nil.
5527 \(In that case, the open-paren is never shown.)
5528 It is also ignored if `show-paren-mode' is enabled."
5529 :type 'boolean
5530 :group 'paren-blinking)
5532 (defcustom blink-matching-paren-distance (* 100 1024)
5533 "If non-nil, maximum distance to search backwards for matching open-paren.
5534 If nil, search stops at the beginning of the accessible portion of the buffer."
5535 :version "23.2" ; 25->100k
5536 :type '(choice (const nil) integer)
5537 :group 'paren-blinking)
5539 (defcustom blink-matching-delay 1
5540 "Time in seconds to delay after showing a matching paren."
5541 :type 'number
5542 :group 'paren-blinking)
5544 (defcustom blink-matching-paren-dont-ignore-comments nil
5545 "If nil, `blink-matching-paren' ignores comments.
5546 More precisely, when looking for the matching parenthesis,
5547 it skips the contents of comments that end before point."
5548 :type 'boolean
5549 :group 'paren-blinking)
5551 (defun blink-matching-check-mismatch (start end)
5552 "Return whether or not START...END are matching parens.
5553 END is the current point and START is the blink position.
5554 START might be nil if no matching starter was found.
5555 Returns non-nil if we find there is a mismatch."
5556 (let* ((end-syntax (syntax-after (1- end)))
5557 (matching-paren (and (consp end-syntax)
5558 (eq (syntax-class end-syntax) 5)
5559 (cdr end-syntax))))
5560 ;; For self-matched chars like " and $, we can't know when they're
5561 ;; mismatched or unmatched, so we can only do it for parens.
5562 (when matching-paren
5563 (not (and start
5565 (eq (char-after start) matching-paren)
5566 ;; The cdr might hold a new paren-class info rather than
5567 ;; a matching-char info, in which case the two CDRs
5568 ;; should match.
5569 (eq matching-paren (cdr-safe (syntax-after start)))))))))
5571 (defvar blink-matching-check-function #'blink-matching-check-mismatch
5572 "Function to check parentheses mismatches.
5573 The function takes two arguments (START and END) where START is the
5574 position just before the opening token and END is the position right after.
5575 START can be nil, if it was not found.
5576 The function should return non-nil if the two tokens do not match.")
5578 (defun blink-matching-open ()
5579 "Move cursor momentarily to the beginning of the sexp before point."
5580 (interactive)
5581 (when (and (not (bobp))
5582 blink-matching-paren)
5583 (let* ((oldpos (point))
5584 (message-log-max nil) ; Don't log messages about paren matching.
5585 (blinkpos
5586 (save-excursion
5587 (save-restriction
5588 (if blink-matching-paren-distance
5589 (narrow-to-region
5590 (max (minibuffer-prompt-end) ;(point-min) unless minibuf.
5591 (- (point) blink-matching-paren-distance))
5592 oldpos))
5593 (let ((parse-sexp-ignore-comments
5594 (and parse-sexp-ignore-comments
5595 (not blink-matching-paren-dont-ignore-comments))))
5596 (condition-case ()
5597 (progn
5598 (forward-sexp -1)
5599 ;; backward-sexp skips backward over prefix chars,
5600 ;; so move back to the matching paren.
5601 (while (and (< (point) (1- oldpos))
5602 (let ((code (syntax-after (point))))
5603 (or (eq (syntax-class code) 6)
5604 (eq (logand 1048576 (car code))
5605 1048576))))
5606 (forward-char 1))
5607 (point))
5608 (error nil))))))
5609 (mismatch (funcall blink-matching-check-function blinkpos oldpos)))
5610 (cond
5611 (mismatch
5612 (if blinkpos
5613 (if (minibufferp)
5614 (minibuffer-message "Mismatched parentheses")
5615 (message "Mismatched parentheses"))
5616 (if (minibufferp)
5617 (minibuffer-message "No matching parenthesis found")
5618 (message "No matching parenthesis found"))))
5619 ((not blinkpos) nil)
5620 ((pos-visible-in-window-p blinkpos)
5621 ;; Matching open within window, temporarily move to blinkpos but only
5622 ;; if `blink-matching-paren-on-screen' is non-nil.
5623 (and blink-matching-paren-on-screen
5624 (not show-paren-mode)
5625 (save-excursion
5626 (goto-char blinkpos)
5627 (sit-for blink-matching-delay))))
5629 (save-excursion
5630 (goto-char blinkpos)
5631 (let ((open-paren-line-string
5632 ;; Show what precedes the open in its line, if anything.
5633 (cond
5634 ((save-excursion (skip-chars-backward " \t") (not (bolp)))
5635 (buffer-substring (line-beginning-position)
5636 (1+ blinkpos)))
5637 ;; Show what follows the open in its line, if anything.
5638 ((save-excursion
5639 (forward-char 1)
5640 (skip-chars-forward " \t")
5641 (not (eolp)))
5642 (buffer-substring blinkpos
5643 (line-end-position)))
5644 ;; Otherwise show the previous nonblank line,
5645 ;; if there is one.
5646 ((save-excursion (skip-chars-backward "\n \t") (not (bobp)))
5647 (concat
5648 (buffer-substring (progn
5649 (skip-chars-backward "\n \t")
5650 (line-beginning-position))
5651 (progn (end-of-line)
5652 (skip-chars-backward " \t")
5653 (point)))
5654 ;; Replace the newline and other whitespace with `...'.
5655 "..."
5656 (buffer-substring blinkpos (1+ blinkpos))))
5657 ;; There is nothing to show except the char itself.
5658 (t (buffer-substring blinkpos (1+ blinkpos))))))
5659 (message "Matches %s"
5660 (substring-no-properties open-paren-line-string)))))))))
5662 (defvar blink-paren-function 'blink-matching-open
5663 "Function called, if non-nil, whenever a close parenthesis is inserted.
5664 More precisely, a char with closeparen syntax is self-inserted.")
5666 (defun blink-paren-post-self-insert-function ()
5667 (when (and (eq (char-before) last-command-event) ; Sanity check.
5668 (memq (char-syntax last-command-event) '(?\) ?\$))
5669 blink-paren-function
5670 (not executing-kbd-macro)
5671 (not noninteractive)
5672 ;; Verify an even number of quoting characters precede the close.
5673 (= 1 (logand 1 (- (point)
5674 (save-excursion
5675 (forward-char -1)
5676 (skip-syntax-backward "/\\")
5677 (point))))))
5678 (funcall blink-paren-function)))
5680 (add-hook 'post-self-insert-hook #'blink-paren-post-self-insert-function
5681 ;; Most likely, this hook is nil, so this arg doesn't matter,
5682 ;; but I use it as a reminder that this function usually
5683 ;; likes to be run after others since it does `sit-for'.
5684 'append)
5686 ;; This executes C-g typed while Emacs is waiting for a command.
5687 ;; Quitting out of a program does not go through here;
5688 ;; that happens in the QUIT macro at the C code level.
5689 (defun keyboard-quit ()
5690 "Signal a `quit' condition.
5691 During execution of Lisp code, this character causes a quit directly.
5692 At top-level, as an editor command, this simply beeps."
5693 (interactive)
5694 ;; Avoid adding the region to the window selection.
5695 (setq saved-region-selection nil)
5696 (let (select-active-regions)
5697 (deactivate-mark))
5698 (if (fboundp 'kmacro-keyboard-quit)
5699 (kmacro-keyboard-quit))
5700 (setq defining-kbd-macro nil)
5701 (let ((debug-on-quit nil))
5702 (signal 'quit nil)))
5704 (defvar buffer-quit-function nil
5705 "Function to call to \"quit\" the current buffer, or nil if none.
5706 \\[keyboard-escape-quit] calls this function when its more local actions
5707 \(such as cancelling a prefix argument, minibuffer or region) do not apply.")
5709 (defun keyboard-escape-quit ()
5710 "Exit the current \"mode\" (in a generalized sense of the word).
5711 This command can exit an interactive command such as `query-replace',
5712 can clear out a prefix argument or a region,
5713 can get out of the minibuffer or other recursive edit,
5714 cancel the use of the current buffer (for special-purpose buffers),
5715 or go back to just one window (by deleting all but the selected window)."
5716 (interactive)
5717 (cond ((eq last-command 'mode-exited) nil)
5718 ((region-active-p)
5719 (deactivate-mark))
5720 ((> (minibuffer-depth) 0)
5721 (abort-recursive-edit))
5722 (current-prefix-arg
5723 nil)
5724 ((> (recursion-depth) 0)
5725 (exit-recursive-edit))
5726 (buffer-quit-function
5727 (funcall buffer-quit-function))
5728 ((not (one-window-p t))
5729 (delete-other-windows))
5730 ((string-match "^ \\*" (buffer-name (current-buffer)))
5731 (bury-buffer))))
5733 (defun play-sound-file (file &optional volume device)
5734 "Play sound stored in FILE.
5735 VOLUME and DEVICE correspond to the keywords of the sound
5736 specification for `play-sound'."
5737 (interactive "fPlay sound file: ")
5738 (let ((sound (list :file file)))
5739 (if volume
5740 (plist-put sound :volume volume))
5741 (if device
5742 (plist-put sound :device device))
5743 (push 'sound sound)
5744 (play-sound sound)))
5747 (defcustom read-mail-command 'rmail
5748 "Your preference for a mail reading package.
5749 This is used by some keybindings which support reading mail.
5750 See also `mail-user-agent' concerning sending mail."
5751 :type '(radio (function-item :tag "Rmail" :format "%t\n" rmail)
5752 (function-item :tag "Gnus" :format "%t\n" gnus)
5753 (function-item :tag "Emacs interface to MH"
5754 :format "%t\n" mh-rmail)
5755 (function :tag "Other"))
5756 :version "21.1"
5757 :group 'mail)
5759 (defcustom mail-user-agent 'message-user-agent
5760 "Your preference for a mail composition package.
5761 Various Emacs Lisp packages (e.g. Reporter) require you to compose an
5762 outgoing email message. This variable lets you specify which
5763 mail-sending package you prefer.
5765 Valid values include:
5767 `message-user-agent' -- use the Message package.
5768 See Info node `(message)'.
5769 `sendmail-user-agent' -- use the Mail package.
5770 See Info node `(emacs)Sending Mail'.
5771 `mh-e-user-agent' -- use the Emacs interface to the MH mail system.
5772 See Info node `(mh-e)'.
5773 `gnus-user-agent' -- like `message-user-agent', but with Gnus
5774 paraphernalia, particularly the Gcc: header for
5775 archiving.
5777 Additional valid symbols may be available; check with the author of
5778 your package for details. The function should return non-nil if it
5779 succeeds.
5781 See also `read-mail-command' concerning reading mail."
5782 :type '(radio (function-item :tag "Message package"
5783 :format "%t\n"
5784 message-user-agent)
5785 (function-item :tag "Mail package"
5786 :format "%t\n"
5787 sendmail-user-agent)
5788 (function-item :tag "Emacs interface to MH"
5789 :format "%t\n"
5790 mh-e-user-agent)
5791 (function-item :tag "Message with full Gnus features"
5792 :format "%t\n"
5793 gnus-user-agent)
5794 (function :tag "Other"))
5795 :version "23.2" ; sendmail->message
5796 :group 'mail)
5798 (defcustom compose-mail-user-agent-warnings t
5799 "If non-nil, `compose-mail' warns about changes in `mail-user-agent'.
5800 If the value of `mail-user-agent' is the default, and the user
5801 appears to have customizations applying to the old default,
5802 `compose-mail' issues a warning."
5803 :type 'boolean
5804 :version "23.2"
5805 :group 'mail)
5807 (defun rfc822-goto-eoh ()
5808 "If the buffer starts with a mail header, move point to the header's end.
5809 Otherwise, moves to `point-min'.
5810 The end of the header is the start of the next line, if there is one,
5811 else the end of the last line. This function obeys RFC822."
5812 (goto-char (point-min))
5813 (when (re-search-forward
5814 "^\\([:\n]\\|[^: \t\n]+[ \t\n]\\)" nil 'move)
5815 (goto-char (match-beginning 0))))
5817 ;; Used by Rmail (e.g., rmail-forward).
5818 (defvar mail-encode-mml nil
5819 "If non-nil, mail-user-agent's `sendfunc' command should mml-encode
5820 the outgoing message before sending it.")
5822 (defun compose-mail (&optional to subject other-headers continue
5823 switch-function yank-action send-actions
5824 return-action)
5825 "Start composing a mail message to send.
5826 This uses the user's chosen mail composition package
5827 as selected with the variable `mail-user-agent'.
5828 The optional arguments TO and SUBJECT specify recipients
5829 and the initial Subject field, respectively.
5831 OTHER-HEADERS is an alist specifying additional
5832 header fields. Elements look like (HEADER . VALUE) where both
5833 HEADER and VALUE are strings.
5835 CONTINUE, if non-nil, says to continue editing a message already
5836 being composed. Interactively, CONTINUE is the prefix argument.
5838 SWITCH-FUNCTION, if non-nil, is a function to use to
5839 switch to and display the buffer used for mail composition.
5841 YANK-ACTION, if non-nil, is an action to perform, if and when necessary,
5842 to insert the raw text of the message being replied to.
5843 It has the form (FUNCTION . ARGS). The user agent will apply
5844 FUNCTION to ARGS, to insert the raw text of the original message.
5845 \(The user agent will also run `mail-citation-hook', *after* the
5846 original text has been inserted in this way.)
5848 SEND-ACTIONS is a list of actions to call when the message is sent.
5849 Each action has the form (FUNCTION . ARGS).
5851 RETURN-ACTION, if non-nil, is an action for returning to the
5852 caller. It has the form (FUNCTION . ARGS). The function is
5853 called after the mail has been sent or put aside, and the mail
5854 buffer buried."
5855 (interactive
5856 (list nil nil nil current-prefix-arg))
5858 ;; In Emacs 23.2, the default value of `mail-user-agent' changed
5859 ;; from sendmail-user-agent to message-user-agent. Some users may
5860 ;; encounter incompatibilities. This hack tries to detect problems
5861 ;; and warn about them.
5862 (and compose-mail-user-agent-warnings
5863 (eq mail-user-agent 'message-user-agent)
5864 (let (warn-vars)
5865 (dolist (var '(mail-mode-hook mail-send-hook mail-setup-hook
5866 mail-yank-hooks mail-archive-file-name
5867 mail-default-reply-to mail-mailing-lists
5868 mail-self-blind))
5869 (and (boundp var)
5870 (symbol-value var)
5871 (push var warn-vars)))
5872 (when warn-vars
5873 (display-warning 'mail
5874 (format "\
5875 The default mail mode is now Message mode.
5876 You have the following Mail mode variable%s customized:
5877 \n %s\n\nTo use Mail mode, set `mail-user-agent' to sendmail-user-agent.
5878 To disable this warning, set `compose-mail-user-agent-warnings' to nil."
5879 (if (> (length warn-vars) 1) "s" "")
5880 (mapconcat 'symbol-name
5881 warn-vars " "))))))
5883 (let ((function (get mail-user-agent 'composefunc)))
5884 (funcall function to subject other-headers continue switch-function
5885 yank-action send-actions return-action)))
5887 (defun compose-mail-other-window (&optional to subject other-headers continue
5888 yank-action send-actions
5889 return-action)
5890 "Like \\[compose-mail], but edit the outgoing message in another window."
5891 (interactive (list nil nil nil current-prefix-arg))
5892 (compose-mail to subject other-headers continue
5893 'switch-to-buffer-other-window yank-action send-actions
5894 return-action))
5896 (defun compose-mail-other-frame (&optional to subject other-headers continue
5897 yank-action send-actions
5898 return-action)
5899 "Like \\[compose-mail], but edit the outgoing message in another frame."
5900 (interactive (list nil nil nil current-prefix-arg))
5901 (compose-mail to subject other-headers continue
5902 'switch-to-buffer-other-frame yank-action send-actions
5903 return-action))
5906 (defvar set-variable-value-history nil
5907 "History of values entered with `set-variable'.
5909 Maximum length of the history list is determined by the value
5910 of `history-length', which see.")
5912 (defun set-variable (variable value &optional make-local)
5913 "Set VARIABLE to VALUE. VALUE is a Lisp object.
5914 VARIABLE should be a user option variable name, a Lisp variable
5915 meant to be customized by users. You should enter VALUE in Lisp syntax,
5916 so if you want VALUE to be a string, you must surround it with doublequotes.
5917 VALUE is used literally, not evaluated.
5919 If VARIABLE has a `variable-interactive' property, that is used as if
5920 it were the arg to `interactive' (which see) to interactively read VALUE.
5922 If VARIABLE has been defined with `defcustom', then the type information
5923 in the definition is used to check that VALUE is valid.
5925 With a prefix argument, set VARIABLE to VALUE buffer-locally."
5926 (interactive
5927 (let* ((default-var (variable-at-point))
5928 (var (if (user-variable-p default-var)
5929 (read-variable (format "Set variable (default %s): " default-var)
5930 default-var)
5931 (read-variable "Set variable: ")))
5932 (minibuffer-help-form '(describe-variable var))
5933 (prop (get var 'variable-interactive))
5934 (obsolete (car (get var 'byte-obsolete-variable)))
5935 (prompt (format "Set %s %s to value: " var
5936 (cond ((local-variable-p var)
5937 "(buffer-local)")
5938 ((or current-prefix-arg
5939 (local-variable-if-set-p var))
5940 "buffer-locally")
5941 (t "globally"))))
5942 (val (progn
5943 (when obsolete
5944 (message (concat "`%S' is obsolete; "
5945 (if (symbolp obsolete) "use `%S' instead" "%s"))
5946 var obsolete)
5947 (sit-for 3))
5948 (if prop
5949 ;; Use VAR's `variable-interactive' property
5950 ;; as an interactive spec for prompting.
5951 (call-interactively `(lambda (arg)
5952 (interactive ,prop)
5953 arg))
5954 (read
5955 (read-string prompt nil
5956 'set-variable-value-history
5957 (format "%S" (symbol-value var))))))))
5958 (list var val current-prefix-arg)))
5960 (and (custom-variable-p variable)
5961 (not (get variable 'custom-type))
5962 (custom-load-symbol variable))
5963 (let ((type (get variable 'custom-type)))
5964 (when type
5965 ;; Match with custom type.
5966 (require 'cus-edit)
5967 (setq type (widget-convert type))
5968 (unless (widget-apply type :match value)
5969 (error "Value `%S' does not match type %S of %S"
5970 value (car type) variable))))
5972 (if make-local
5973 (make-local-variable variable))
5975 (set variable value)
5977 ;; Force a thorough redisplay for the case that the variable
5978 ;; has an effect on the display, like `tab-width' has.
5979 (force-mode-line-update))
5981 ;; Define the major mode for lists of completions.
5983 (defvar completion-list-mode-map
5984 (let ((map (make-sparse-keymap)))
5985 (define-key map [mouse-2] 'mouse-choose-completion)
5986 (define-key map [follow-link] 'mouse-face)
5987 (define-key map [down-mouse-2] nil)
5988 (define-key map "\C-m" 'choose-completion)
5989 (define-key map "\e\e\e" 'delete-completion-window)
5990 (define-key map [left] 'previous-completion)
5991 (define-key map [right] 'next-completion)
5992 (define-key map "q" 'quit-window)
5993 (define-key map "z" 'kill-this-buffer)
5994 map)
5995 "Local map for completion list buffers.")
5997 ;; Completion mode is suitable only for specially formatted data.
5998 (put 'completion-list-mode 'mode-class 'special)
6000 (defvar completion-reference-buffer nil
6001 "Record the buffer that was current when the completion list was requested.
6002 This is a local variable in the completion list buffer.
6003 Initial value is nil to avoid some compiler warnings.")
6005 (defvar completion-no-auto-exit nil
6006 "Non-nil means `choose-completion-string' should never exit the minibuffer.
6007 This also applies to other functions such as `choose-completion'.")
6009 (defvar completion-base-position nil
6010 "Position of the base of the text corresponding to the shown completions.
6011 This variable is used in the *Completions* buffers.
6012 Its value is a list of the form (START END) where START is the place
6013 where the completion should be inserted and END (if non-nil) is the end
6014 of the text to replace. If END is nil, point is used instead.")
6016 (defvar completion-list-insert-choice-function #'completion--replace
6017 "Function to use to insert the text chosen in *Completions*.
6018 Called with 3 arguments (BEG END TEXT), it should replace the text
6019 between BEG and END with TEXT. Expected to be set buffer-locally
6020 in the *Completions* buffer.")
6022 (defvar completion-base-size nil
6023 "Number of chars before point not involved in completion.
6024 This is a local variable in the completion list buffer.
6025 It refers to the chars in the minibuffer if completing in the
6026 minibuffer, or in `completion-reference-buffer' otherwise.
6027 Only characters in the field at point are included.
6029 If nil, Emacs determines which part of the tail end of the
6030 buffer's text is involved in completion by comparing the text
6031 directly.")
6032 (make-obsolete-variable 'completion-base-size 'completion-base-position "23.2")
6034 (defun delete-completion-window ()
6035 "Delete the completion list window.
6036 Go to the window from which completion was requested."
6037 (interactive)
6038 (let ((buf completion-reference-buffer))
6039 (if (one-window-p t)
6040 (if (window-dedicated-p (selected-window))
6041 (delete-frame (selected-frame)))
6042 (delete-window (selected-window))
6043 (if (get-buffer-window buf)
6044 (select-window (get-buffer-window buf))))))
6046 (defun previous-completion (n)
6047 "Move to the previous item in the completion list."
6048 (interactive "p")
6049 (next-completion (- n)))
6051 (defun next-completion (n)
6052 "Move to the next item in the completion list.
6053 With prefix argument N, move N items (negative N means move backward)."
6054 (interactive "p")
6055 (let ((beg (point-min)) (end (point-max)))
6056 (while (and (> n 0) (not (eobp)))
6057 ;; If in a completion, move to the end of it.
6058 (when (get-text-property (point) 'mouse-face)
6059 (goto-char (next-single-property-change (point) 'mouse-face nil end)))
6060 ;; Move to start of next one.
6061 (unless (get-text-property (point) 'mouse-face)
6062 (goto-char (next-single-property-change (point) 'mouse-face nil end)))
6063 (setq n (1- n)))
6064 (while (and (< n 0) (not (bobp)))
6065 (let ((prop (get-text-property (1- (point)) 'mouse-face)))
6066 ;; If in a completion, move to the start of it.
6067 (when (and prop (eq prop (get-text-property (point) 'mouse-face)))
6068 (goto-char (previous-single-property-change
6069 (point) 'mouse-face nil beg)))
6070 ;; Move to end of the previous completion.
6071 (unless (or (bobp) (get-text-property (1- (point)) 'mouse-face))
6072 (goto-char (previous-single-property-change
6073 (point) 'mouse-face nil beg)))
6074 ;; Move to the start of that one.
6075 (goto-char (previous-single-property-change
6076 (point) 'mouse-face nil beg))
6077 (setq n (1+ n))))))
6079 (defun choose-completion (&optional event)
6080 "Choose the completion at point."
6081 (interactive (list last-nonmenu-event))
6082 ;; In case this is run via the mouse, give temporary modes such as
6083 ;; isearch a chance to turn off.
6084 (run-hooks 'mouse-leave-buffer-hook)
6085 (with-current-buffer (window-buffer (posn-window (event-start event)))
6086 (let ((buffer completion-reference-buffer)
6087 (base-size completion-base-size)
6088 (base-position completion-base-position)
6089 (insert-function completion-list-insert-choice-function)
6090 (choice
6091 (save-excursion
6092 (goto-char (posn-point (event-start event)))
6093 (let (beg end)
6094 (cond
6095 ((and (not (eobp)) (get-text-property (point) 'mouse-face))
6096 (setq end (point) beg (1+ (point))))
6097 ((and (not (bobp))
6098 (get-text-property (1- (point)) 'mouse-face))
6099 (setq end (1- (point)) beg (point)))
6100 (t (error "No completion here")))
6101 (setq beg (previous-single-property-change beg 'mouse-face))
6102 (setq end (or (next-single-property-change end 'mouse-face)
6103 (point-max)))
6104 (buffer-substring-no-properties beg end))))
6105 (owindow (selected-window)))
6107 (unless (buffer-live-p buffer)
6108 (error "Destination buffer is dead"))
6109 (select-window (posn-window (event-start event)))
6110 (if (and (one-window-p t 'selected-frame)
6111 (window-dedicated-p (selected-window)))
6112 ;; This is a special buffer's frame
6113 (iconify-frame (selected-frame))
6114 (or (window-dedicated-p (selected-window))
6115 (bury-buffer)))
6116 (select-window
6117 (or (get-buffer-window buffer 0)
6118 owindow))
6120 (with-current-buffer buffer
6121 (choose-completion-string
6122 choice buffer
6123 (or base-position
6124 (when base-size
6125 ;; Someone's using old completion code that doesn't know
6126 ;; about base-position yet.
6127 (list (+ base-size (field-beginning))))
6128 ;; If all else fails, just guess.
6129 (list (choose-completion-guess-base-position choice)))
6130 insert-function)))))
6132 ;; Delete the longest partial match for STRING
6133 ;; that can be found before POINT.
6134 (defun choose-completion-guess-base-position (string)
6135 (save-excursion
6136 (let ((opoint (point))
6137 len)
6138 ;; Try moving back by the length of the string.
6139 (goto-char (max (- (point) (length string))
6140 (minibuffer-prompt-end)))
6141 ;; See how far back we were actually able to move. That is the
6142 ;; upper bound on how much we can match and delete.
6143 (setq len (- opoint (point)))
6144 (if completion-ignore-case
6145 (setq string (downcase string)))
6146 (while (and (> len 0)
6147 (let ((tail (buffer-substring (point) opoint)))
6148 (if completion-ignore-case
6149 (setq tail (downcase tail)))
6150 (not (string= tail (substring string 0 len)))))
6151 (setq len (1- len))
6152 (forward-char 1))
6153 (point))))
6155 (defun choose-completion-delete-max-match (string)
6156 (delete-region (choose-completion-guess-base-position string) (point)))
6157 (make-obsolete 'choose-completion-delete-max-match
6158 'choose-completion-guess-base-position "23.2")
6160 (defvar choose-completion-string-functions nil
6161 "Functions that may override the normal insertion of a completion choice.
6162 These functions are called in order with four arguments:
6163 CHOICE - the string to insert in the buffer,
6164 BUFFER - the buffer in which the choice should be inserted,
6165 MINI-P - non-nil if BUFFER is a minibuffer, and
6166 BASE-SIZE - the number of characters in BUFFER before
6167 the string being completed.
6169 If a function in the list returns non-nil, that function is supposed
6170 to have inserted the CHOICE in the BUFFER, and possibly exited
6171 the minibuffer; no further functions will be called.
6173 If all functions in the list return nil, that means to use
6174 the default method of inserting the completion in BUFFER.")
6176 (defun choose-completion-string (choice &optional
6177 buffer base-position insert-function)
6178 "Switch to BUFFER and insert the completion choice CHOICE.
6179 BASE-POSITION, says where to insert the completion."
6181 ;; If BUFFER is the minibuffer, exit the minibuffer
6182 ;; unless it is reading a file name and CHOICE is a directory,
6183 ;; or completion-no-auto-exit is non-nil.
6185 ;; Some older code may call us passing `base-size' instead of
6186 ;; `base-position'. It's difficult to make any use of `base-size',
6187 ;; so we just ignore it.
6188 (unless (consp base-position)
6189 (message "Obsolete `base-size' passed to choose-completion-string")
6190 (setq base-position nil))
6192 (let* ((buffer (or buffer completion-reference-buffer))
6193 (mini-p (minibufferp buffer)))
6194 ;; If BUFFER is a minibuffer, barf unless it's the currently
6195 ;; active minibuffer.
6196 (if (and mini-p
6197 (not (and (active-minibuffer-window)
6198 (equal buffer
6199 (window-buffer (active-minibuffer-window))))))
6200 (error "Minibuffer is not active for completion")
6201 ;; Set buffer so buffer-local choose-completion-string-functions works.
6202 (set-buffer buffer)
6203 (unless (run-hook-with-args-until-success
6204 'choose-completion-string-functions
6205 ;; The fourth arg used to be `mini-p' but was useless
6206 ;; (since minibufferp can be used on the `buffer' arg)
6207 ;; and indeed unused. The last used to be `base-size', so we
6208 ;; keep it to try and avoid breaking old code.
6209 choice buffer base-position nil)
6210 ;; This remove-text-properties should be unnecessary since `choice'
6211 ;; comes from buffer-substring-no-properties.
6212 ;;(remove-text-properties 0 (lenth choice) '(mouse-face nil) choice)
6213 ;; Insert the completion into the buffer where it was requested.
6214 (funcall (or insert-function completion-list-insert-choice-function)
6215 (or (car base-position) (point))
6216 (or (cadr base-position) (point))
6217 choice)
6218 ;; Update point in the window that BUFFER is showing in.
6219 (let ((window (get-buffer-window buffer t)))
6220 (set-window-point window (point)))
6221 ;; If completing for the minibuffer, exit it with this choice.
6222 (and (not completion-no-auto-exit)
6223 (minibufferp buffer)
6224 minibuffer-completion-table
6225 ;; If this is reading a file name, and the file name chosen
6226 ;; is a directory, don't exit the minibuffer.
6227 (let* ((result (buffer-substring (field-beginning) (point)))
6228 (bounds
6229 (completion-boundaries result minibuffer-completion-table
6230 minibuffer-completion-predicate
6231 "")))
6232 (if (eq (car bounds) (length result))
6233 ;; The completion chosen leads to a new set of completions
6234 ;; (e.g. it's a directory): don't exit the minibuffer yet.
6235 (let ((mini (active-minibuffer-window)))
6236 (select-window mini)
6237 (when minibuffer-auto-raise
6238 (raise-frame (window-frame mini))))
6239 (exit-minibuffer))))))))
6241 (define-derived-mode completion-list-mode nil "Completion List"
6242 "Major mode for buffers showing lists of possible completions.
6243 Type \\<completion-list-mode-map>\\[choose-completion] in the completion list\
6244 to select the completion near point.
6245 Use \\<completion-list-mode-map>\\[mouse-choose-completion] to select one\
6246 with the mouse.
6248 \\{completion-list-mode-map}"
6249 (set (make-local-variable 'completion-base-size) nil))
6251 (defun completion-list-mode-finish ()
6252 "Finish setup of the completions buffer.
6253 Called from `temp-buffer-show-hook'."
6254 (when (eq major-mode 'completion-list-mode)
6255 (toggle-read-only 1)))
6257 (add-hook 'temp-buffer-show-hook 'completion-list-mode-finish)
6260 ;; Variables and faces used in `completion-setup-function'.
6262 (defcustom completion-show-help t
6263 "Non-nil means show help message in *Completions* buffer."
6264 :type 'boolean
6265 :version "22.1"
6266 :group 'completion)
6268 ;; This function goes in completion-setup-hook, so that it is called
6269 ;; after the text of the completion list buffer is written.
6270 (defun completion-setup-function ()
6271 (let* ((mainbuf (current-buffer))
6272 (base-dir
6273 ;; When reading a file name in the minibuffer,
6274 ;; try and find the right default-directory to set in the
6275 ;; completion list buffer.
6276 ;; FIXME: Why do we do that, actually? --Stef
6277 (if minibuffer-completing-file-name
6278 (file-name-as-directory
6279 (expand-file-name
6280 (substring (minibuffer-completion-contents)
6281 0 (or completion-base-size 0)))))))
6282 (with-current-buffer standard-output
6283 (let ((base-size completion-base-size) ;Read before killing localvars.
6284 (base-position completion-base-position)
6285 (insert-fun completion-list-insert-choice-function))
6286 (completion-list-mode)
6287 (set (make-local-variable 'completion-base-size) base-size)
6288 (set (make-local-variable 'completion-base-position) base-position)
6289 (set (make-local-variable 'completion-list-insert-choice-function)
6290 insert-fun))
6291 (set (make-local-variable 'completion-reference-buffer) mainbuf)
6292 (if base-dir (setq default-directory base-dir))
6293 ;; Maybe insert help string.
6294 (when completion-show-help
6295 (goto-char (point-min))
6296 (if (display-mouse-p)
6297 (insert (substitute-command-keys
6298 "Click \\[mouse-choose-completion] on a completion to select it.\n")))
6299 (insert (substitute-command-keys
6300 "In this buffer, type \\[choose-completion] to \
6301 select the completion near point.\n\n"))))))
6303 (add-hook 'completion-setup-hook 'completion-setup-function)
6305 (define-key minibuffer-local-completion-map [prior] 'switch-to-completions)
6306 (define-key minibuffer-local-completion-map "\M-v" 'switch-to-completions)
6308 (defun switch-to-completions ()
6309 "Select the completion list window."
6310 (interactive)
6311 (let ((window (or (get-buffer-window "*Completions*" 0)
6312 ;; Make sure we have a completions window.
6313 (progn (minibuffer-completion-help)
6314 (get-buffer-window "*Completions*" 0)))))
6315 (when window
6316 (select-window window)
6317 ;; In the new buffer, go to the first completion.
6318 ;; FIXME: Perhaps this should be done in `minibuffer-completion-help'.
6319 (when (bobp)
6320 (next-completion 1)))))
6322 ;;; Support keyboard commands to turn on various modifiers.
6324 ;; These functions -- which are not commands -- each add one modifier
6325 ;; to the following event.
6327 (defun event-apply-alt-modifier (_ignore-prompt)
6328 "\\<function-key-map>Add the Alt modifier to the following event.
6329 For example, type \\[event-apply-alt-modifier] & to enter Alt-&."
6330 (vector (event-apply-modifier (read-event) 'alt 22 "A-")))
6331 (defun event-apply-super-modifier (_ignore-prompt)
6332 "\\<function-key-map>Add the Super modifier to the following event.
6333 For example, type \\[event-apply-super-modifier] & to enter Super-&."
6334 (vector (event-apply-modifier (read-event) 'super 23 "s-")))
6335 (defun event-apply-hyper-modifier (_ignore-prompt)
6336 "\\<function-key-map>Add the Hyper modifier to the following event.
6337 For example, type \\[event-apply-hyper-modifier] & to enter Hyper-&."
6338 (vector (event-apply-modifier (read-event) 'hyper 24 "H-")))
6339 (defun event-apply-shift-modifier (_ignore-prompt)
6340 "\\<function-key-map>Add the Shift modifier to the following event.
6341 For example, type \\[event-apply-shift-modifier] & to enter Shift-&."
6342 (vector (event-apply-modifier (read-event) 'shift 25 "S-")))
6343 (defun event-apply-control-modifier (_ignore-prompt)
6344 "\\<function-key-map>Add the Ctrl modifier to the following event.
6345 For example, type \\[event-apply-control-modifier] & to enter Ctrl-&."
6346 (vector (event-apply-modifier (read-event) 'control 26 "C-")))
6347 (defun event-apply-meta-modifier (_ignore-prompt)
6348 "\\<function-key-map>Add the Meta modifier to the following event.
6349 For example, type \\[event-apply-meta-modifier] & to enter Meta-&."
6350 (vector (event-apply-modifier (read-event) 'meta 27 "M-")))
6352 (defun event-apply-modifier (event symbol lshiftby prefix)
6353 "Apply a modifier flag to event EVENT.
6354 SYMBOL is the name of this modifier, as a symbol.
6355 LSHIFTBY is the numeric value of this modifier, in keyboard events.
6356 PREFIX is the string that represents this modifier in an event type symbol."
6357 (if (numberp event)
6358 (cond ((eq symbol 'control)
6359 (if (and (<= (downcase event) ?z)
6360 (>= (downcase event) ?a))
6361 (- (downcase event) ?a -1)
6362 (if (and (<= (downcase event) ?Z)
6363 (>= (downcase event) ?A))
6364 (- (downcase event) ?A -1)
6365 (logior (lsh 1 lshiftby) event))))
6366 ((eq symbol 'shift)
6367 (if (and (<= (downcase event) ?z)
6368 (>= (downcase event) ?a))
6369 (upcase event)
6370 (logior (lsh 1 lshiftby) event)))
6372 (logior (lsh 1 lshiftby) event)))
6373 (if (memq symbol (event-modifiers event))
6374 event
6375 (let ((event-type (if (symbolp event) event (car event))))
6376 (setq event-type (intern (concat prefix (symbol-name event-type))))
6377 (if (symbolp event)
6378 event-type
6379 (cons event-type (cdr event)))))))
6381 (define-key function-key-map [?\C-x ?@ ?h] 'event-apply-hyper-modifier)
6382 (define-key function-key-map [?\C-x ?@ ?s] 'event-apply-super-modifier)
6383 (define-key function-key-map [?\C-x ?@ ?m] 'event-apply-meta-modifier)
6384 (define-key function-key-map [?\C-x ?@ ?a] 'event-apply-alt-modifier)
6385 (define-key function-key-map [?\C-x ?@ ?S] 'event-apply-shift-modifier)
6386 (define-key function-key-map [?\C-x ?@ ?c] 'event-apply-control-modifier)
6388 ;;;; Keypad support.
6390 ;; Make the keypad keys act like ordinary typing keys. If people add
6391 ;; bindings for the function key symbols, then those bindings will
6392 ;; override these, so this shouldn't interfere with any existing
6393 ;; bindings.
6395 ;; Also tell read-char how to handle these keys.
6396 (mapc
6397 (lambda (keypad-normal)
6398 (let ((keypad (nth 0 keypad-normal))
6399 (normal (nth 1 keypad-normal)))
6400 (put keypad 'ascii-character normal)
6401 (define-key function-key-map (vector keypad) (vector normal))))
6402 '((kp-0 ?0) (kp-1 ?1) (kp-2 ?2) (kp-3 ?3) (kp-4 ?4)
6403 (kp-5 ?5) (kp-6 ?6) (kp-7 ?7) (kp-8 ?8) (kp-9 ?9)
6404 (kp-space ?\s)
6405 (kp-tab ?\t)
6406 (kp-enter ?\r)
6407 (kp-multiply ?*)
6408 (kp-add ?+)
6409 (kp-separator ?,)
6410 (kp-subtract ?-)
6411 (kp-decimal ?.)
6412 (kp-divide ?/)
6413 (kp-equal ?=)
6414 ;; Do the same for various keys that are represented as symbols under
6415 ;; GUIs but naturally correspond to characters.
6416 (backspace 127)
6417 (delete 127)
6418 (tab ?\t)
6419 (linefeed ?\n)
6420 (clear ?\C-l)
6421 (return ?\C-m)
6422 (escape ?\e)
6425 ;;;;
6426 ;;;; forking a twin copy of a buffer.
6427 ;;;;
6429 (defvar clone-buffer-hook nil
6430 "Normal hook to run in the new buffer at the end of `clone-buffer'.")
6432 (defvar clone-indirect-buffer-hook nil
6433 "Normal hook to run in the new buffer at the end of `clone-indirect-buffer'.")
6435 (defun clone-process (process &optional newname)
6436 "Create a twin copy of PROCESS.
6437 If NEWNAME is nil, it defaults to PROCESS' name;
6438 NEWNAME is modified by adding or incrementing <N> at the end as necessary.
6439 If PROCESS is associated with a buffer, the new process will be associated
6440 with the current buffer instead.
6441 Returns nil if PROCESS has already terminated."
6442 (setq newname (or newname (process-name process)))
6443 (if (string-match "<[0-9]+>\\'" newname)
6444 (setq newname (substring newname 0 (match-beginning 0))))
6445 (when (memq (process-status process) '(run stop open))
6446 (let* ((process-connection-type (process-tty-name process))
6447 (new-process
6448 (if (memq (process-status process) '(open))
6449 (let ((args (process-contact process t)))
6450 (setq args (plist-put args :name newname))
6451 (setq args (plist-put args :buffer
6452 (if (process-buffer process)
6453 (current-buffer))))
6454 (apply 'make-network-process args))
6455 (apply 'start-process newname
6456 (if (process-buffer process) (current-buffer))
6457 (process-command process)))))
6458 (set-process-query-on-exit-flag
6459 new-process (process-query-on-exit-flag process))
6460 (set-process-inherit-coding-system-flag
6461 new-process (process-inherit-coding-system-flag process))
6462 (set-process-filter new-process (process-filter process))
6463 (set-process-sentinel new-process (process-sentinel process))
6464 (set-process-plist new-process (copy-sequence (process-plist process)))
6465 new-process)))
6467 ;; things to maybe add (currently partly covered by `funcall mode'):
6468 ;; - syntax-table
6469 ;; - overlays
6470 (defun clone-buffer (&optional newname display-flag)
6471 "Create and return a twin copy of the current buffer.
6472 Unlike an indirect buffer, the new buffer can be edited
6473 independently of the old one (if it is not read-only).
6474 NEWNAME is the name of the new buffer. It may be modified by
6475 adding or incrementing <N> at the end as necessary to create a
6476 unique buffer name. If nil, it defaults to the name of the
6477 current buffer, with the proper suffix. If DISPLAY-FLAG is
6478 non-nil, the new buffer is shown with `pop-to-buffer'. Trying to
6479 clone a file-visiting buffer, or a buffer whose major mode symbol
6480 has a non-nil `no-clone' property, results in an error.
6482 Interactively, DISPLAY-FLAG is t and NEWNAME is the name of the
6483 current buffer with appropriate suffix. However, if a prefix
6484 argument is given, then the command prompts for NEWNAME in the
6485 minibuffer.
6487 This runs the normal hook `clone-buffer-hook' in the new buffer
6488 after it has been set up properly in other respects."
6489 (interactive
6490 (progn
6491 (if buffer-file-name
6492 (error "Cannot clone a file-visiting buffer"))
6493 (if (get major-mode 'no-clone)
6494 (error "Cannot clone a buffer in %s mode" mode-name))
6495 (list (if current-prefix-arg
6496 (read-buffer "Name of new cloned buffer: " (current-buffer)))
6497 t)))
6498 (if buffer-file-name
6499 (error "Cannot clone a file-visiting buffer"))
6500 (if (get major-mode 'no-clone)
6501 (error "Cannot clone a buffer in %s mode" mode-name))
6502 (setq newname (or newname (buffer-name)))
6503 (if (string-match "<[0-9]+>\\'" newname)
6504 (setq newname (substring newname 0 (match-beginning 0))))
6505 (let ((buf (current-buffer))
6506 (ptmin (point-min))
6507 (ptmax (point-max))
6508 (pt (point))
6509 (mk (if mark-active (mark t)))
6510 (modified (buffer-modified-p))
6511 (mode major-mode)
6512 (lvars (buffer-local-variables))
6513 (process (get-buffer-process (current-buffer)))
6514 (new (generate-new-buffer (or newname (buffer-name)))))
6515 (save-restriction
6516 (widen)
6517 (with-current-buffer new
6518 (insert-buffer-substring buf)))
6519 (with-current-buffer new
6520 (narrow-to-region ptmin ptmax)
6521 (goto-char pt)
6522 (if mk (set-mark mk))
6523 (set-buffer-modified-p modified)
6525 ;; Clone the old buffer's process, if any.
6526 (when process (clone-process process))
6528 ;; Now set up the major mode.
6529 (funcall mode)
6531 ;; Set up other local variables.
6532 (mapc (lambda (v)
6533 (condition-case () ;in case var is read-only
6534 (if (symbolp v)
6535 (makunbound v)
6536 (set (make-local-variable (car v)) (cdr v)))
6537 (error nil)))
6538 lvars)
6540 ;; Run any hooks (typically set up by the major mode
6541 ;; for cloning to work properly).
6542 (run-hooks 'clone-buffer-hook))
6543 (if display-flag
6544 ;; Presumably the current buffer is shown in the selected frame, so
6545 ;; we want to display the clone elsewhere.
6546 (let ((same-window-regexps nil)
6547 (same-window-buffer-names))
6548 (pop-to-buffer new)))
6549 new))
6552 (defun clone-indirect-buffer (newname display-flag &optional norecord)
6553 "Create an indirect buffer that is a twin copy of the current buffer.
6555 Give the indirect buffer name NEWNAME. Interactively, read NEWNAME
6556 from the minibuffer when invoked with a prefix arg. If NEWNAME is nil
6557 or if not called with a prefix arg, NEWNAME defaults to the current
6558 buffer's name. The name is modified by adding a `<N>' suffix to it
6559 or by incrementing the N in an existing suffix. Trying to clone a
6560 buffer whose major mode symbol has a non-nil `no-clone-indirect'
6561 property results in an error.
6563 DISPLAY-FLAG non-nil means show the new buffer with `pop-to-buffer'.
6564 This is always done when called interactively.
6566 Optional third arg NORECORD non-nil means do not put this buffer at the
6567 front of the list of recently selected ones."
6568 (interactive
6569 (progn
6570 (if (get major-mode 'no-clone-indirect)
6571 (error "Cannot indirectly clone a buffer in %s mode" mode-name))
6572 (list (if current-prefix-arg
6573 (read-buffer "Name of indirect buffer: " (current-buffer)))
6574 t)))
6575 (if (get major-mode 'no-clone-indirect)
6576 (error "Cannot indirectly clone a buffer in %s mode" mode-name))
6577 (setq newname (or newname (buffer-name)))
6578 (if (string-match "<[0-9]+>\\'" newname)
6579 (setq newname (substring newname 0 (match-beginning 0))))
6580 (let* ((name (generate-new-buffer-name newname))
6581 (buffer (make-indirect-buffer (current-buffer) name t)))
6582 (with-current-buffer buffer
6583 (run-hooks 'clone-indirect-buffer-hook))
6584 (when display-flag
6585 (pop-to-buffer buffer norecord))
6586 buffer))
6589 (defun clone-indirect-buffer-other-window (newname display-flag &optional norecord)
6590 "Like `clone-indirect-buffer' but display in another window."
6591 (interactive
6592 (progn
6593 (if (get major-mode 'no-clone-indirect)
6594 (error "Cannot indirectly clone a buffer in %s mode" mode-name))
6595 (list (if current-prefix-arg
6596 (read-buffer "Name of indirect buffer: " (current-buffer)))
6597 t)))
6598 (let ((pop-up-windows t))
6599 (clone-indirect-buffer newname display-flag norecord)))
6602 ;;; Handling of Backspace and Delete keys.
6604 (defcustom normal-erase-is-backspace 'maybe
6605 "Set the default behavior of the Delete and Backspace keys.
6607 If set to t, Delete key deletes forward and Backspace key deletes
6608 backward.
6610 If set to nil, both Delete and Backspace keys delete backward.
6612 If set to 'maybe (which is the default), Emacs automatically
6613 selects a behavior. On window systems, the behavior depends on
6614 the keyboard used. If the keyboard has both a Backspace key and
6615 a Delete key, and both are mapped to their usual meanings, the
6616 option's default value is set to t, so that Backspace can be used
6617 to delete backward, and Delete can be used to delete forward.
6619 If not running under a window system, customizing this option
6620 accomplishes a similar effect by mapping C-h, which is usually
6621 generated by the Backspace key, to DEL, and by mapping DEL to C-d
6622 via `keyboard-translate'. The former functionality of C-h is
6623 available on the F1 key. You should probably not use this
6624 setting if you don't have both Backspace, Delete and F1 keys.
6626 Setting this variable with setq doesn't take effect. Programmatically,
6627 call `normal-erase-is-backspace-mode' (which see) instead."
6628 :type '(choice (const :tag "Off" nil)
6629 (const :tag "Maybe" maybe)
6630 (other :tag "On" t))
6631 :group 'editing-basics
6632 :version "21.1"
6633 :set (lambda (symbol value)
6634 ;; The fboundp is because of a problem with :set when
6635 ;; dumping Emacs. It doesn't really matter.
6636 (if (fboundp 'normal-erase-is-backspace-mode)
6637 (normal-erase-is-backspace-mode (or value 0))
6638 (set-default symbol value))))
6640 (defun normal-erase-is-backspace-setup-frame (&optional frame)
6641 "Set up `normal-erase-is-backspace-mode' on FRAME, if necessary."
6642 (unless frame (setq frame (selected-frame)))
6643 (with-selected-frame frame
6644 (unless (terminal-parameter nil 'normal-erase-is-backspace)
6645 (normal-erase-is-backspace-mode
6646 (if (if (eq normal-erase-is-backspace 'maybe)
6647 (and (not noninteractive)
6648 (or (memq system-type '(ms-dos windows-nt))
6649 (memq window-system '(ns))
6650 (and (memq window-system '(x))
6651 (fboundp 'x-backspace-delete-keys-p)
6652 (x-backspace-delete-keys-p))
6653 ;; If the terminal Emacs is running on has erase char
6654 ;; set to ^H, use the Backspace key for deleting
6655 ;; backward, and the Delete key for deleting forward.
6656 (and (null window-system)
6657 (eq tty-erase-char ?\^H))))
6658 normal-erase-is-backspace)
6659 1 0)))))
6661 (define-minor-mode normal-erase-is-backspace-mode
6662 "Toggle the Erase and Delete mode of the Backspace and Delete keys.
6663 With a prefix argument ARG, enable this feature if ARG is
6664 positive, and disable it otherwise. If called from Lisp, enable
6665 the mode if ARG is omitted or nil.
6667 On window systems, when this mode is on, Delete is mapped to C-d
6668 and Backspace is mapped to DEL; when this mode is off, both
6669 Delete and Backspace are mapped to DEL. (The remapping goes via
6670 `local-function-key-map', so binding Delete or Backspace in the
6671 global or local keymap will override that.)
6673 In addition, on window systems, the bindings of C-Delete, M-Delete,
6674 C-M-Delete, C-Backspace, M-Backspace, and C-M-Backspace are changed in
6675 the global keymap in accordance with the functionality of Delete and
6676 Backspace. For example, if Delete is remapped to C-d, which deletes
6677 forward, C-Delete is bound to `kill-word', but if Delete is remapped
6678 to DEL, which deletes backward, C-Delete is bound to
6679 `backward-kill-word'.
6681 If not running on a window system, a similar effect is accomplished by
6682 remapping C-h (normally produced by the Backspace key) and DEL via
6683 `keyboard-translate': if this mode is on, C-h is mapped to DEL and DEL
6684 to C-d; if it's off, the keys are not remapped.
6686 When not running on a window system, and this mode is turned on, the
6687 former functionality of C-h is available on the F1 key. You should
6688 probably not turn on this mode on a text-only terminal if you don't
6689 have both Backspace, Delete and F1 keys.
6691 See also `normal-erase-is-backspace'."
6692 :variable (eq (terminal-parameter
6693 nil 'normal-erase-is-backspace) 1)
6694 (let ((enabled (eq 1 (terminal-parameter
6695 nil 'normal-erase-is-backspace))))
6697 (cond ((or (memq window-system '(x w32 ns pc))
6698 (memq system-type '(ms-dos windows-nt)))
6699 (let ((bindings
6700 `(([M-delete] [M-backspace])
6701 ([C-M-delete] [C-M-backspace])
6702 ([?\e C-delete] [?\e C-backspace]))))
6704 (if enabled
6705 (progn
6706 (define-key local-function-key-map [delete] [deletechar])
6707 (define-key local-function-key-map [kp-delete] [?\C-d])
6708 (define-key local-function-key-map [backspace] [?\C-?])
6709 (dolist (b bindings)
6710 ;; Not sure if input-decode-map is really right, but
6711 ;; keyboard-translate-table (used below) only works
6712 ;; for integer events, and key-translation-table is
6713 ;; global (like the global-map, used earlier).
6714 (define-key input-decode-map (car b) nil)
6715 (define-key input-decode-map (cadr b) nil)))
6716 (define-key local-function-key-map [delete] [?\C-?])
6717 (define-key local-function-key-map [kp-delete] [?\C-?])
6718 (define-key local-function-key-map [backspace] [?\C-?])
6719 (dolist (b bindings)
6720 (define-key input-decode-map (car b) (cadr b))
6721 (define-key input-decode-map (cadr b) (car b))))))
6723 (if enabled
6724 (progn
6725 (keyboard-translate ?\C-h ?\C-?)
6726 (keyboard-translate ?\C-? ?\C-d))
6727 (keyboard-translate ?\C-h ?\C-h)
6728 (keyboard-translate ?\C-? ?\C-?))))
6730 (if (called-interactively-p 'interactive)
6731 (message "Delete key deletes %s"
6732 (if (eq 1 (terminal-parameter nil 'normal-erase-is-backspace))
6733 "forward" "backward")))))
6735 (defvar vis-mode-saved-buffer-invisibility-spec nil
6736 "Saved value of `buffer-invisibility-spec' when Visible mode is on.")
6738 (define-minor-mode visible-mode
6739 "Toggle making all invisible text temporarily visible (Visible mode).
6740 With a prefix argument ARG, enable Visible mode if ARG is
6741 positive, and disable it otherwise. If called from Lisp, enable
6742 the mode if ARG is omitted or nil.
6744 This mode works by saving the value of `buffer-invisibility-spec'
6745 and setting it to nil."
6746 :lighter " Vis"
6747 :group 'editing-basics
6748 (when (local-variable-p 'vis-mode-saved-buffer-invisibility-spec)
6749 (setq buffer-invisibility-spec vis-mode-saved-buffer-invisibility-spec)
6750 (kill-local-variable 'vis-mode-saved-buffer-invisibility-spec))
6751 (when visible-mode
6752 (set (make-local-variable 'vis-mode-saved-buffer-invisibility-spec)
6753 buffer-invisibility-spec)
6754 (setq buffer-invisibility-spec nil)))
6756 ;; Minibuffer prompt stuff.
6758 ;;(defun minibuffer-prompt-modification (start end)
6759 ;; (error "You cannot modify the prompt"))
6762 ;;(defun minibuffer-prompt-insertion (start end)
6763 ;; (let ((inhibit-modification-hooks t))
6764 ;; (delete-region start end)
6765 ;; ;; Discard undo information for the text insertion itself
6766 ;; ;; and for the text deletion.above.
6767 ;; (when (consp buffer-undo-list)
6768 ;; (setq buffer-undo-list (cddr buffer-undo-list)))
6769 ;; (message "You cannot modify the prompt")))
6772 ;;(setq minibuffer-prompt-properties
6773 ;; (list 'modification-hooks '(minibuffer-prompt-modification)
6774 ;; 'insert-in-front-hooks '(minibuffer-prompt-insertion)))
6777 ;;;; Problematic external packages.
6779 ;; rms says this should be done by specifying symbols that define
6780 ;; versions together with bad values. This is therefore not as
6781 ;; flexible as it could be. See the thread:
6782 ;; http://lists.gnu.org/archive/html/emacs-devel/2007-08/msg00300.html
6783 (defconst bad-packages-alist
6784 ;; Not sure exactly which semantic versions have problems.
6785 ;; Definitely 2.0pre3, probably all 2.0pre's before this.
6786 '((semantic semantic-version "\\`2\\.0pre[1-3]\\'"
6787 "The version of `semantic' loaded does not work in Emacs 22.
6788 It can cause constant high CPU load.
6789 Upgrade to at least Semantic 2.0pre4 (distributed with CEDET 1.0pre4).")
6790 ;; CUA-mode does not work with GNU Emacs version 22.1 and newer.
6791 ;; Except for version 1.2, all of the 1.x and 2.x version of cua-mode
6792 ;; provided the `CUA-mode' feature. Since this is no longer true,
6793 ;; we can warn the user if the `CUA-mode' feature is ever provided.
6794 (CUA-mode t nil
6795 "CUA-mode is now part of the standard GNU Emacs distribution,
6796 so you can now enable CUA via the Options menu or by customizing `cua-mode'.
6798 You have loaded an older version of CUA-mode which does not work
6799 correctly with this version of Emacs. You should remove the old
6800 version and use the one distributed with Emacs."))
6801 "Alist of packages known to cause problems in this version of Emacs.
6802 Each element has the form (PACKAGE SYMBOL REGEXP STRING).
6803 PACKAGE is either a regular expression to match file names, or a
6804 symbol (a feature name); see the documentation of
6805 `after-load-alist', to which this variable adds functions.
6806 SYMBOL is either the name of a string variable, or `t'. Upon
6807 loading PACKAGE, if SYMBOL is t or matches REGEXP, display a
6808 warning using STRING as the message.")
6810 (defun bad-package-check (package)
6811 "Run a check using the element from `bad-packages-alist' matching PACKAGE."
6812 (condition-case nil
6813 (let* ((list (assoc package bad-packages-alist))
6814 (symbol (nth 1 list)))
6815 (and list
6816 (boundp symbol)
6817 (or (eq symbol t)
6818 (and (stringp (setq symbol (eval symbol)))
6819 (string-match-p (nth 2 list) symbol)))
6820 (display-warning package (nth 3 list) :warning)))
6821 (error nil)))
6823 (mapc (lambda (elem)
6824 (eval-after-load (car elem) `(bad-package-check ',(car elem))))
6825 bad-packages-alist)
6828 (provide 'simple)
6830 ;;; simple.el ends here