1 /* String search routines for GNU Emacs.
2 Copyright (C) 1985, 1986, 1987, 1993, 1994 Free Software Foundation, Inc.
4 This file is part of GNU Emacs.
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
25 #include "region-cache.h"
27 #include "blockinput.h"
29 #include <sys/types.h>
32 #define REGEXP_CACHE_SIZE 5
34 /* If the regexp is non-nil, then the buffer contains the compiled form
35 of that regexp, suitable for searching. */
37 struct regexp_cache
*next
;
39 struct re_pattern_buffer buf
;
41 /* Nonzero means regexp was compiled to do full POSIX backtracking. */
45 /* The instances of that struct. */
46 struct regexp_cache searchbufs
[REGEXP_CACHE_SIZE
];
48 /* The head of the linked list; points to the most recently used buffer. */
49 struct regexp_cache
*searchbuf_head
;
52 /* Every call to re_match, etc., must pass &search_regs as the regs
53 argument unless you can show it is unnecessary (i.e., if re_match
54 is certainly going to be called again before region-around-match
57 Since the registers are now dynamically allocated, we need to make
58 sure not to refer to the Nth register before checking that it has
59 been allocated by checking search_regs.num_regs.
61 The regex code keeps track of whether it has allocated the search
62 buffer using bits in the re_pattern_buffer. This means that whenever
63 you compile a new pattern, it completely forgets whether it has
64 allocated any registers, and will allocate new registers the next
65 time you call a searching or matching function. Therefore, we need
66 to call re_set_registers after compiling a new pattern or after
67 setting the match registers, so that the regex functions will be
68 able to free or re-allocate it properly. */
69 static struct re_registers search_regs
;
71 /* The buffer in which the last search was performed, or
72 Qt if the last search was done in a string;
73 Qnil if no searching has been done yet. */
74 static Lisp_Object last_thing_searched
;
76 /* error condition signalled when regexp compile_pattern fails */
78 Lisp_Object Qinvalid_regexp
;
80 static void set_search_regs ();
81 static void save_search_regs ();
83 static int search_buffer ();
88 error ("Stack overflow in regexp matcher");
97 /* Compile a regexp and signal a Lisp error if anything goes wrong.
98 PATTERN is the pattern to compile.
99 CP is the place to put the result.
100 TRANSLATE is a translation table for ignoring case, or NULL for none.
101 REGP is the structure that says where to store the "register"
102 values that will result from matching this pattern.
103 If it is 0, we should compile the pattern not to record any
104 subexpression bounds.
105 POSIX is nonzero if we want full backtracking (POSIX style)
106 for this pattern. 0 means backtrack only enough to get a valid match. */
109 compile_pattern_1 (cp
, pattern
, translate
, regp
, posix
)
110 struct regexp_cache
*cp
;
112 Lisp_Object
*translate
;
113 struct re_registers
*regp
;
120 cp
->buf
.translate
= translate
;
123 old
= re_set_syntax (RE_SYNTAX_EMACS
124 | (posix
? 0 : RE_NO_POSIX_BACKTRACKING
));
125 val
= (CONST
char *) re_compile_pattern ((char *) XSTRING (pattern
)->data
,
126 XSTRING (pattern
)->size
, &cp
->buf
);
130 Fsignal (Qinvalid_regexp
, Fcons (build_string (val
), Qnil
));
132 cp
->regexp
= Fcopy_sequence (pattern
);
135 /* Compile a regexp if necessary, but first check to see if there's one in
137 PATTERN is the pattern to compile.
138 TRANSLATE is a translation table for ignoring case, or NULL for none.
139 REGP is the structure that says where to store the "register"
140 values that will result from matching this pattern.
141 If it is 0, we should compile the pattern not to record any
142 subexpression bounds.
143 POSIX is nonzero if we want full backtracking (POSIX style)
144 for this pattern. 0 means backtrack only enough to get a valid match. */
146 struct re_pattern_buffer
*
147 compile_pattern (pattern
, regp
, translate
, posix
)
149 struct re_registers
*regp
;
150 Lisp_Object
*translate
;
153 struct regexp_cache
*cp
, **cpp
;
155 for (cpp
= &searchbuf_head
; ; cpp
= &cp
->next
)
158 if (!NILP (Fstring_equal (cp
->regexp
, pattern
))
159 && cp
->buf
.translate
== translate
160 && cp
->posix
== posix
)
163 /* If we're at the end of the cache, compile into the last cell. */
166 compile_pattern_1 (cp
, pattern
, translate
, regp
, posix
);
171 /* When we get here, cp (aka *cpp) contains the compiled pattern,
172 either because we found it in the cache or because we just compiled it.
173 Move it to the front of the queue to mark it as most recently used. */
175 cp
->next
= searchbuf_head
;
178 /* Advise the searching functions about the space we have allocated
179 for register data. */
181 re_set_registers (&cp
->buf
, regp
, regp
->num_regs
, regp
->start
, regp
->end
);
186 /* Error condition used for failing searches */
187 Lisp_Object Qsearch_failed
;
193 Fsignal (Qsearch_failed
, Fcons (arg
, Qnil
));
198 looking_at_1 (string
, posix
)
203 unsigned char *p1
, *p2
;
206 struct re_pattern_buffer
*bufp
;
208 if (running_asynch_code
)
211 CHECK_STRING (string
, 0);
212 bufp
= compile_pattern (string
, &search_regs
,
213 (!NILP (current_buffer
->case_fold_search
)
214 ? DOWNCASE_TABLE
: 0),
218 QUIT
; /* Do a pending quit right away, to avoid paradoxical behavior */
220 /* Get pointers and sizes of the two strings
221 that make up the visible portion of the buffer. */
239 i
= re_match_2 (bufp
, (char *) p1
, s1
, (char *) p2
, s2
,
240 point
- BEGV
, &search_regs
,
245 val
= (0 <= i
? Qt
: Qnil
);
246 for (i
= 0; i
< search_regs
.num_regs
; i
++)
247 if (search_regs
.start
[i
] >= 0)
249 search_regs
.start
[i
] += BEGV
;
250 search_regs
.end
[i
] += BEGV
;
252 XSETBUFFER (last_thing_searched
, current_buffer
);
257 DEFUN ("looking-at", Flooking_at
, Slooking_at
, 1, 1, 0,
258 "Return t if text after point matches regular expression REGEXP.\n\
259 This function modifies the match data that `match-beginning',\n\
260 `match-end' and `match-data' access; save and restore the match\n\
261 data if you want to preserve them.")
265 return looking_at_1 (regexp
, 0);
268 DEFUN ("posix-looking-at", Fposix_looking_at
, Sposix_looking_at
, 1, 1, 0,
269 "Return t if text after point matches regular expression REGEXP.\n\
270 Find the longest match, in accord with Posix regular expression rules.\n\
271 This function modifies the match data that `match-beginning',\n\
272 `match-end' and `match-data' access; save and restore the match\n\
273 data if you want to preserve them.")
277 return looking_at_1 (regexp
, 1);
281 string_match_1 (regexp
, string
, start
, posix
)
282 Lisp_Object regexp
, string
, start
;
287 struct re_pattern_buffer
*bufp
;
289 if (running_asynch_code
)
292 CHECK_STRING (regexp
, 0);
293 CHECK_STRING (string
, 1);
299 int len
= XSTRING (string
)->size
;
301 CHECK_NUMBER (start
, 2);
303 if (s
< 0 && -s
<= len
)
305 else if (0 > s
|| s
> len
)
306 args_out_of_range (string
, start
);
309 bufp
= compile_pattern (regexp
, &search_regs
,
310 (!NILP (current_buffer
->case_fold_search
)
311 ? DOWNCASE_TABLE
: 0),
314 val
= re_search (bufp
, (char *) XSTRING (string
)->data
,
315 XSTRING (string
)->size
, s
, XSTRING (string
)->size
- s
,
318 last_thing_searched
= Qt
;
321 if (val
< 0) return Qnil
;
322 return make_number (val
);
325 DEFUN ("string-match", Fstring_match
, Sstring_match
, 2, 3, 0,
326 "Return index of start of first match for REGEXP in STRING, or nil.\n\
327 If third arg START is non-nil, start search at that index in STRING.\n\
328 For index of first char beyond the match, do (match-end 0).\n\
329 `match-end' and `match-beginning' also give indices of substrings\n\
330 matched by parenthesis constructs in the pattern.")
331 (regexp
, string
, start
)
332 Lisp_Object regexp
, string
, start
;
334 return string_match_1 (regexp
, string
, start
, 0);
337 DEFUN ("posix-string-match", Fposix_string_match
, Sposix_string_match
, 2, 3, 0,
338 "Return index of start of first match for REGEXP in STRING, or nil.\n\
339 Find the longest match, in accord with Posix regular expression rules.\n\
340 If third arg START is non-nil, start search at that index in STRING.\n\
341 For index of first char beyond the match, do (match-end 0).\n\
342 `match-end' and `match-beginning' also give indices of substrings\n\
343 matched by parenthesis constructs in the pattern.")
344 (regexp
, string
, start
)
345 Lisp_Object regexp
, string
, start
;
347 return string_match_1 (regexp
, string
, start
, 1);
350 /* Match REGEXP against STRING, searching all of STRING,
351 and return the index of the match, or negative on failure.
352 This does not clobber the match data. */
355 fast_string_match (regexp
, string
)
356 Lisp_Object regexp
, string
;
359 struct re_pattern_buffer
*bufp
;
361 bufp
= compile_pattern (regexp
, 0, 0, 0);
363 val
= re_search (bufp
, (char *) XSTRING (string
)->data
,
364 XSTRING (string
)->size
, 0, XSTRING (string
)->size
,
376 return ((a
> b
) ? a
: b
);
383 return ((a
< b
) ? a
: b
);
387 /* The newline cache: remembering which sections of text have no newlines. */
389 /* If the user has requested newline caching, make sure it's on.
390 Otherwise, make sure it's off.
391 This is our cheezy way of associating an action with the change of
392 state of a buffer-local variable. */
394 newline_cache_on_off (buf
)
397 if (NILP (buf
->cache_long_line_scans
))
399 /* It should be off. */
400 if (buf
->newline_cache
)
402 free_region_cache (buf
->newline_cache
);
403 buf
->newline_cache
= 0;
408 /* It should be on. */
409 if (buf
->newline_cache
== 0)
410 buf
->newline_cache
= new_region_cache ();
415 /* Search for COUNT instances of the character TARGET between START and END.
417 If COUNT is positive, search forwards; END must be >= START.
418 If COUNT is negative, search backwards for the -COUNTth instance;
419 END must be <= START.
420 If COUNT is zero, do anything you please; run rogue, for all I care.
422 If END is zero, use BEGV or ZV instead, as appropriate for the
423 direction indicated by COUNT.
425 If we find COUNT instances, set *SHORTAGE to zero, and return the
426 position after the COUNTth match. Note that for reverse motion
427 this is not the same as the usual convention for Emacs motion commands.
429 If we don't find COUNT instances before reaching END, set *SHORTAGE
430 to the number of TARGETs left unfound, and return END.
432 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
433 except when inside redisplay. */
435 scan_buffer (target
, start
, end
, count
, shortage
, allow_quit
)
442 struct region_cache
*newline_cache
;
453 if (! end
) end
= BEGV
;
456 newline_cache_on_off (current_buffer
);
457 newline_cache
= current_buffer
->newline_cache
;
462 immediate_quit
= allow_quit
;
467 /* Our innermost scanning loop is very simple; it doesn't know
468 about gaps, buffer ends, or the newline cache. ceiling is
469 the position of the last character before the next such
470 obstacle --- the last character the dumb search loop should
472 register int ceiling
= end
- 1;
474 /* If we're looking for a newline, consult the newline cache
475 to see where we can avoid some scanning. */
476 if (target
== '\n' && newline_cache
)
480 while (region_cache_forward
481 (current_buffer
, newline_cache
, start
, &next_change
))
483 immediate_quit
= allow_quit
;
485 /* start should never be after end. */
489 /* Now the text after start is an unknown region, and
490 next_change is the position of the next known region. */
491 ceiling
= min (next_change
- 1, ceiling
);
494 /* The dumb loop can only scan text stored in contiguous
495 bytes. BUFFER_CEILING_OF returns the last character
496 position that is contiguous, so the ceiling is the
497 position after that. */
498 ceiling
= min (BUFFER_CEILING_OF (start
), ceiling
);
501 /* The termination address of the dumb loop. */
502 register unsigned char *ceiling_addr
= &FETCH_CHAR (ceiling
) + 1;
503 register unsigned char *cursor
= &FETCH_CHAR (start
);
504 unsigned char *base
= cursor
;
506 while (cursor
< ceiling_addr
)
508 unsigned char *scan_start
= cursor
;
511 while (*cursor
!= target
&& ++cursor
< ceiling_addr
)
514 /* If we're looking for newlines, cache the fact that
515 the region from start to cursor is free of them. */
516 if (target
== '\n' && newline_cache
)
517 know_region_cache (current_buffer
, newline_cache
,
518 start
+ scan_start
- base
,
519 start
+ cursor
- base
);
521 /* Did we find the target character? */
522 if (cursor
< ceiling_addr
)
527 return (start
+ cursor
- base
+ 1);
533 start
+= cursor
- base
;
539 /* The last character to check before the next obstacle. */
540 register int ceiling
= end
;
542 /* Consult the newline cache, if appropriate. */
543 if (target
== '\n' && newline_cache
)
547 while (region_cache_backward
548 (current_buffer
, newline_cache
, start
, &next_change
))
550 immediate_quit
= allow_quit
;
552 /* Start should never be at or before end. */
556 /* Now the text before start is an unknown region, and
557 next_change is the position of the next known region. */
558 ceiling
= max (next_change
, ceiling
);
561 /* Stop scanning before the gap. */
562 ceiling
= max (BUFFER_FLOOR_OF (start
- 1), ceiling
);
565 /* The termination address of the dumb loop. */
566 register unsigned char *ceiling_addr
= &FETCH_CHAR (ceiling
);
567 register unsigned char *cursor
= &FETCH_CHAR (start
- 1);
568 unsigned char *base
= cursor
;
570 while (cursor
>= ceiling_addr
)
572 unsigned char *scan_start
= cursor
;
574 while (*cursor
!= target
&& --cursor
>= ceiling_addr
)
577 /* If we're looking for newlines, cache the fact that
578 the region from after the cursor to start is free of them. */
579 if (target
== '\n' && newline_cache
)
580 know_region_cache (current_buffer
, newline_cache
,
581 start
+ cursor
- base
,
582 start
+ scan_start
- base
);
584 /* Did we find the target character? */
585 if (cursor
>= ceiling_addr
)
590 return (start
+ cursor
- base
);
596 start
+= cursor
- base
;
602 *shortage
= count
* direction
;
607 find_next_newline_no_quit (from
, cnt
)
608 register int from
, cnt
;
610 return scan_buffer ('\n', from
, 0, cnt
, (int *) 0, 0);
614 find_next_newline (from
, cnt
)
615 register int from
, cnt
;
617 return scan_buffer ('\n', from
, 0, cnt
, (int *) 0, 1);
621 /* Like find_next_newline, but returns position before the newline,
622 not after, and only search up to TO. This isn't just
623 find_next_newline (...)-1, because you might hit TO. */
625 find_before_next_newline (from
, to
, cnt
)
629 int pos
= scan_buffer ('\n', from
, to
, cnt
, &shortage
, 1);
637 Lisp_Object
skip_chars ();
639 DEFUN ("skip-chars-forward", Fskip_chars_forward
, Sskip_chars_forward
, 1, 2, 0,
640 "Move point forward, stopping before a char not in STRING, or at pos LIM.\n\
641 STRING is like the inside of a `[...]' in a regular expression\n\
642 except that `]' is never special and `\\' quotes `^', `-' or `\\'.\n\
643 Thus, with arg \"a-zA-Z\", this skips letters stopping before first nonletter.\n\
644 With arg \"^a-zA-Z\", skips nonletters stopping before first letter.\n\
645 Returns the distance traveled, either zero or positive.")
647 Lisp_Object string
, lim
;
649 return skip_chars (1, 0, string
, lim
);
652 DEFUN ("skip-chars-backward", Fskip_chars_backward
, Sskip_chars_backward
, 1, 2, 0,
653 "Move point backward, stopping after a char not in STRING, or at pos LIM.\n\
654 See `skip-chars-forward' for details.\n\
655 Returns the distance traveled, either zero or negative.")
657 Lisp_Object string
, lim
;
659 return skip_chars (0, 0, string
, lim
);
662 DEFUN ("skip-syntax-forward", Fskip_syntax_forward
, Sskip_syntax_forward
, 1, 2, 0,
663 "Move point forward across chars in specified syntax classes.\n\
664 SYNTAX is a string of syntax code characters.\n\
665 Stop before a char whose syntax is not in SYNTAX, or at position LIM.\n\
666 If SYNTAX starts with ^, skip characters whose syntax is NOT in SYNTAX.\n\
667 This function returns the distance traveled, either zero or positive.")
669 Lisp_Object syntax
, lim
;
671 return skip_chars (1, 1, syntax
, lim
);
674 DEFUN ("skip-syntax-backward", Fskip_syntax_backward
, Sskip_syntax_backward
, 1, 2, 0,
675 "Move point backward across chars in specified syntax classes.\n\
676 SYNTAX is a string of syntax code characters.\n\
677 Stop on reaching a char whose syntax is not in SYNTAX, or at position LIM.\n\
678 If SYNTAX starts with ^, skip characters whose syntax is NOT in SYNTAX.\n\
679 This function returns the distance traveled, either zero or negative.")
681 Lisp_Object syntax
, lim
;
683 return skip_chars (0, 1, syntax
, lim
);
687 skip_chars (forwardp
, syntaxp
, string
, lim
)
688 int forwardp
, syntaxp
;
689 Lisp_Object string
, lim
;
691 register unsigned char *p
, *pend
;
692 register unsigned char c
;
693 unsigned char fastmap
[0400];
697 CHECK_STRING (string
, 0);
700 XSETINT (lim
, forwardp
? ZV
: BEGV
);
702 CHECK_NUMBER_COERCE_MARKER (lim
, 1);
704 /* In any case, don't allow scan outside bounds of buffer. */
705 /* jla turned this off, for no known reason.
706 bfox turned the ZV part on, and rms turned the
707 BEGV part back on. */
709 XSETFASTINT (lim
, ZV
);
710 if (XINT (lim
) < BEGV
)
711 XSETFASTINT (lim
, BEGV
);
713 p
= XSTRING (string
)->data
;
714 pend
= p
+ XSTRING (string
)->size
;
715 bzero (fastmap
, sizeof fastmap
);
717 if (p
!= pend
&& *p
== '^')
722 /* Find the characters specified and set their elements of fastmap.
723 If syntaxp, each character counts as itself.
724 Otherwise, handle backslashes and ranges specially */
735 if (p
== pend
) break;
738 if (p
!= pend
&& *p
== '-')
741 if (p
== pend
) break;
754 if (syntaxp
&& fastmap
['-'] != 0)
757 /* If ^ was the first character, complement the fastmap. */
760 for (i
= 0; i
< sizeof fastmap
; i
++)
764 int start_point
= point
;
772 while (point
< XINT (lim
)
773 && fastmap
[(unsigned char) syntax_code_spec
[(int) SYNTAX (FETCH_CHAR (point
))]])
778 while (point
> XINT (lim
)
779 && fastmap
[(unsigned char) syntax_code_spec
[(int) SYNTAX (FETCH_CHAR (point
- 1))]])
787 while (point
< XINT (lim
) && fastmap
[FETCH_CHAR (point
)])
792 while (point
> XINT (lim
) && fastmap
[FETCH_CHAR (point
- 1)])
798 return make_number (point
- start_point
);
802 /* Subroutines of Lisp buffer search functions. */
805 search_command (string
, bound
, noerror
, count
, direction
, RE
, posix
)
806 Lisp_Object string
, bound
, noerror
, count
;
817 CHECK_NUMBER (count
, 3);
821 CHECK_STRING (string
, 0);
823 lim
= n
> 0 ? ZV
: BEGV
;
826 CHECK_NUMBER_COERCE_MARKER (bound
, 1);
828 if (n
> 0 ? lim
< point
: lim
> point
)
829 error ("Invalid search bound (wrong side of point)");
836 np
= search_buffer (string
, point
, lim
, n
, RE
,
837 (!NILP (current_buffer
->case_fold_search
)
838 ? XCHAR_TABLE (current_buffer
->case_canon_table
)->contents
840 (!NILP (current_buffer
->case_fold_search
)
841 ? XCHAR_TABLE (current_buffer
->case_eqv_table
)->contents
847 return signal_failure (string
);
848 if (!EQ (noerror
, Qt
))
850 if (lim
< BEGV
|| lim
> ZV
)
854 #if 0 /* This would be clean, but maybe programs depend on
855 a value of nil here. */
863 if (np
< BEGV
|| np
> ZV
)
868 return make_number (np
);
872 trivial_regexp_p (regexp
)
875 int len
= XSTRING (regexp
)->size
;
876 unsigned char *s
= XSTRING (regexp
)->data
;
882 case '.': case '*': case '+': case '?': case '[': case '^': case '$':
889 case '|': case '(': case ')': case '`': case '\'': case 'b':
890 case 'B': case '<': case '>': case 'w': case 'W': case 's':
892 case '1': case '2': case '3': case '4': case '5':
893 case '6': case '7': case '8': case '9':
901 /* Search for the n'th occurrence of STRING in the current buffer,
902 starting at position POS and stopping at position LIM,
903 treating STRING as a literal string if RE is false or as
904 a regular expression if RE is true.
906 If N is positive, searching is forward and LIM must be greater than POS.
907 If N is negative, searching is backward and LIM must be less than POS.
909 Returns -x if only N-x occurrences found (x > 0),
910 or else the position at the beginning of the Nth occurrence
911 (if searching backward) or the end (if searching forward).
913 POSIX is nonzero if we want full backtracking (POSIX style)
914 for this pattern. 0 means backtrack only enough to get a valid match. */
917 search_buffer (string
, pos
, lim
, n
, RE
, trt
, inverse_trt
, posix
)
924 Lisp_Object
*inverse_trt
;
927 int len
= XSTRING (string
)->size
;
928 unsigned char *base_pat
= XSTRING (string
)->data
;
929 register int *BM_tab
;
931 register int direction
= ((n
> 0) ? 1 : -1);
933 int infinity
, limit
, k
, stride_for_teases
;
934 register unsigned char *pat
, *cursor
, *p_limit
;
936 unsigned char *p1
, *p2
;
939 if (running_asynch_code
)
942 /* Null string is found at starting position. */
945 set_search_regs (pos
, 0);
949 /* Searching 0 times means don't move. */
953 if (RE
&& !trivial_regexp_p (string
))
955 struct re_pattern_buffer
*bufp
;
957 bufp
= compile_pattern (string
, &search_regs
, trt
, posix
);
959 immediate_quit
= 1; /* Quit immediately if user types ^G,
960 because letting this function finish
961 can take too long. */
962 QUIT
; /* Do a pending quit right away,
963 to avoid paradoxical behavior */
964 /* Get pointers and sizes of the two strings
965 that make up the visible portion of the buffer. */
985 val
= re_search_2 (bufp
, (char *) p1
, s1
, (char *) p2
, s2
,
986 pos
- BEGV
, lim
- pos
, &search_regs
,
987 /* Don't allow match past current point */
996 for (i
= 0; i
< search_regs
.num_regs
; i
++)
997 if (search_regs
.start
[i
] >= 0)
999 search_regs
.start
[i
] += j
;
1000 search_regs
.end
[i
] += j
;
1002 XSETBUFFER (last_thing_searched
, current_buffer
);
1003 /* Set pos to the new position. */
1004 pos
= search_regs
.start
[0];
1016 val
= re_search_2 (bufp
, (char *) p1
, s1
, (char *) p2
, s2
,
1017 pos
- BEGV
, lim
- pos
, &search_regs
,
1021 matcher_overflow ();
1026 for (i
= 0; i
< search_regs
.num_regs
; i
++)
1027 if (search_regs
.start
[i
] >= 0)
1029 search_regs
.start
[i
] += j
;
1030 search_regs
.end
[i
] += j
;
1032 XSETBUFFER (last_thing_searched
, current_buffer
);
1033 pos
= search_regs
.end
[0];
1045 else /* non-RE case */
1048 int BM_tab_space
[0400];
1049 BM_tab
= &BM_tab_space
[0];
1051 BM_tab
= (int *) alloca (0400 * sizeof (int));
1054 unsigned char *patbuf
= (unsigned char *) alloca (len
);
1058 /* If we got here and the RE flag is set, it's because we're
1059 dealing with a regexp known to be trivial, so the backslash
1060 just quotes the next character. */
1061 if (RE
&& *base_pat
== '\\')
1066 *pat
++ = (trt
? trt
[*base_pat
++] : *base_pat
++);
1069 pat
= base_pat
= patbuf
;
1071 /* The general approach is that we are going to maintain that we know */
1072 /* the first (closest to the present position, in whatever direction */
1073 /* we're searching) character that could possibly be the last */
1074 /* (furthest from present position) character of a valid match. We */
1075 /* advance the state of our knowledge by looking at that character */
1076 /* and seeing whether it indeed matches the last character of the */
1077 /* pattern. If it does, we take a closer look. If it does not, we */
1078 /* move our pointer (to putative last characters) as far as is */
1079 /* logically possible. This amount of movement, which I call a */
1080 /* stride, will be the length of the pattern if the actual character */
1081 /* appears nowhere in the pattern, otherwise it will be the distance */
1082 /* from the last occurrence of that character to the end of the */
1084 /* As a coding trick, an enormous stride is coded into the table for */
1085 /* characters that match the last character. This allows use of only */
1086 /* a single test, a test for having gone past the end of the */
1087 /* permissible match region, to test for both possible matches (when */
1088 /* the stride goes past the end immediately) and failure to */
1089 /* match (where you get nudged past the end one stride at a time). */
1091 /* Here we make a "mickey mouse" BM table. The stride of the search */
1092 /* is determined only by the last character of the putative match. */
1093 /* If that character does not match, we will stride the proper */
1094 /* distance to propose a match that superimposes it on the last */
1095 /* instance of a character that matches it (per trt), or misses */
1096 /* it entirely if there is none. */
1098 dirlen
= len
* direction
;
1099 infinity
= dirlen
- (lim
+ pos
+ len
+ len
) * direction
;
1101 pat
= (base_pat
+= len
- 1);
1102 BM_tab_base
= BM_tab
;
1104 j
= dirlen
; /* to get it in a register */
1105 /* A character that does not appear in the pattern induces a */
1106 /* stride equal to the pattern length. */
1107 while (BM_tab_base
!= BM_tab
)
1115 while (i
!= infinity
)
1117 j
= pat
[i
]; i
+= direction
;
1118 if (i
== dirlen
) i
= infinity
;
1123 stride_for_teases
= BM_tab
[j
];
1124 BM_tab
[j
] = dirlen
- i
;
1125 /* A translation table is accompanied by its inverse -- see */
1126 /* comment following downcase_table for details */
1127 while ((j
= (unsigned char) inverse_trt
[j
]) != k
)
1128 BM_tab
[j
] = dirlen
- i
;
1133 stride_for_teases
= BM_tab
[j
];
1134 BM_tab
[j
] = dirlen
- i
;
1136 /* stride_for_teases tells how much to stride if we get a */
1137 /* match on the far character but are subsequently */
1138 /* disappointed, by recording what the stride would have been */
1139 /* for that character if the last character had been */
1142 infinity
= dirlen
- infinity
;
1143 pos
+= dirlen
- ((direction
> 0) ? direction
: 0);
1144 /* loop invariant - pos points at where last char (first char if reverse)
1145 of pattern would align in a possible match. */
1148 /* It's been reported that some (broken) compiler thinks that
1149 Boolean expressions in an arithmetic context are unsigned.
1150 Using an explicit ?1:0 prevents this. */
1151 if ((lim
- pos
- ((direction
> 0) ? 1 : 0)) * direction
< 0)
1152 return (n
* (0 - direction
));
1153 /* First we do the part we can by pointers (maybe nothing) */
1156 limit
= pos
- dirlen
+ direction
;
1157 limit
= ((direction
> 0)
1158 ? BUFFER_CEILING_OF (limit
)
1159 : BUFFER_FLOOR_OF (limit
));
1160 /* LIMIT is now the last (not beyond-last!) value
1161 POS can take on without hitting edge of buffer or the gap. */
1162 limit
= ((direction
> 0)
1163 ? min (lim
- 1, min (limit
, pos
+ 20000))
1164 : max (lim
, max (limit
, pos
- 20000)));
1165 if ((limit
- pos
) * direction
> 20)
1167 p_limit
= &FETCH_CHAR (limit
);
1168 p2
= (cursor
= &FETCH_CHAR (pos
));
1169 /* In this loop, pos + cursor - p2 is the surrogate for pos */
1170 while (1) /* use one cursor setting as long as i can */
1172 if (direction
> 0) /* worth duplicating */
1174 /* Use signed comparison if appropriate
1175 to make cursor+infinity sure to be > p_limit.
1176 Assuming that the buffer lies in a range of addresses
1177 that are all "positive" (as ints) or all "negative",
1178 either kind of comparison will work as long
1179 as we don't step by infinity. So pick the kind
1180 that works when we do step by infinity. */
1181 if ((EMACS_INT
) (p_limit
+ infinity
) > (EMACS_INT
) p_limit
)
1182 while ((EMACS_INT
) cursor
<= (EMACS_INT
) p_limit
)
1183 cursor
+= BM_tab
[*cursor
];
1185 while ((unsigned EMACS_INT
) cursor
<= (unsigned EMACS_INT
) p_limit
)
1186 cursor
+= BM_tab
[*cursor
];
1190 if ((EMACS_INT
) (p_limit
+ infinity
) < (EMACS_INT
) p_limit
)
1191 while ((EMACS_INT
) cursor
>= (EMACS_INT
) p_limit
)
1192 cursor
+= BM_tab
[*cursor
];
1194 while ((unsigned EMACS_INT
) cursor
>= (unsigned EMACS_INT
) p_limit
)
1195 cursor
+= BM_tab
[*cursor
];
1197 /* If you are here, cursor is beyond the end of the searched region. */
1198 /* This can happen if you match on the far character of the pattern, */
1199 /* because the "stride" of that character is infinity, a number able */
1200 /* to throw you well beyond the end of the search. It can also */
1201 /* happen if you fail to match within the permitted region and would */
1202 /* otherwise try a character beyond that region */
1203 if ((cursor
- p_limit
) * direction
<= len
)
1204 break; /* a small overrun is genuine */
1205 cursor
-= infinity
; /* large overrun = hit */
1206 i
= dirlen
- direction
;
1209 while ((i
-= direction
) + direction
!= 0)
1210 if (pat
[i
] != trt
[*(cursor
-= direction
)])
1215 while ((i
-= direction
) + direction
!= 0)
1216 if (pat
[i
] != *(cursor
-= direction
))
1219 cursor
+= dirlen
- i
- direction
; /* fix cursor */
1220 if (i
+ direction
== 0)
1222 cursor
-= direction
;
1224 set_search_regs (pos
+ cursor
- p2
+ ((direction
> 0)
1228 if ((n
-= direction
) != 0)
1229 cursor
+= dirlen
; /* to resume search */
1231 return ((direction
> 0)
1232 ? search_regs
.end
[0] : search_regs
.start
[0]);
1235 cursor
+= stride_for_teases
; /* <sigh> we lose - */
1240 /* Now we'll pick up a clump that has to be done the hard */
1241 /* way because it covers a discontinuity */
1243 limit
= ((direction
> 0)
1244 ? BUFFER_CEILING_OF (pos
- dirlen
+ 1)
1245 : BUFFER_FLOOR_OF (pos
- dirlen
- 1));
1246 limit
= ((direction
> 0)
1247 ? min (limit
+ len
, lim
- 1)
1248 : max (limit
- len
, lim
));
1249 /* LIMIT is now the last value POS can have
1250 and still be valid for a possible match. */
1253 /* This loop can be coded for space rather than */
1254 /* speed because it will usually run only once. */
1255 /* (the reach is at most len + 21, and typically */
1256 /* does not exceed len) */
1257 while ((limit
- pos
) * direction
>= 0)
1258 pos
+= BM_tab
[FETCH_CHAR(pos
)];
1259 /* now run the same tests to distinguish going off the */
1260 /* end, a match or a phony match. */
1261 if ((pos
- limit
) * direction
<= len
)
1262 break; /* ran off the end */
1263 /* Found what might be a match.
1264 Set POS back to last (first if reverse) char pos. */
1266 i
= dirlen
- direction
;
1267 while ((i
-= direction
) + direction
!= 0)
1270 if (pat
[i
] != (trt
!= 0
1271 ? trt
[FETCH_CHAR(pos
)]
1272 : FETCH_CHAR (pos
)))
1275 /* Above loop has moved POS part or all the way
1276 back to the first char pos (last char pos if reverse).
1277 Set it once again at the last (first if reverse) char. */
1278 pos
+= dirlen
- i
- direction
;
1279 if (i
+ direction
== 0)
1283 set_search_regs (pos
+ ((direction
> 0) ? 1 - len
: 0),
1286 if ((n
-= direction
) != 0)
1287 pos
+= dirlen
; /* to resume search */
1289 return ((direction
> 0)
1290 ? search_regs
.end
[0] : search_regs
.start
[0]);
1293 pos
+= stride_for_teases
;
1296 /* We have done one clump. Can we continue? */
1297 if ((lim
- pos
) * direction
< 0)
1298 return ((0 - n
) * direction
);
1304 /* Record beginning BEG and end BEG + LEN
1305 for a match just found in the current buffer. */
1308 set_search_regs (beg
, len
)
1311 /* Make sure we have registers in which to store
1312 the match position. */
1313 if (search_regs
.num_regs
== 0)
1315 search_regs
.start
= (regoff_t
*) xmalloc (2 * sizeof (regoff_t
));
1316 search_regs
.end
= (regoff_t
*) xmalloc (2 * sizeof (regoff_t
));
1317 search_regs
.num_regs
= 2;
1320 search_regs
.start
[0] = beg
;
1321 search_regs
.end
[0] = beg
+ len
;
1322 XSETBUFFER (last_thing_searched
, current_buffer
);
1325 /* Given a string of words separated by word delimiters,
1326 compute a regexp that matches those exact words
1327 separated by arbitrary punctuation. */
1333 register unsigned char *p
, *o
;
1334 register int i
, len
, punct_count
= 0, word_count
= 0;
1337 CHECK_STRING (string
, 0);
1338 p
= XSTRING (string
)->data
;
1339 len
= XSTRING (string
)->size
;
1341 for (i
= 0; i
< len
; i
++)
1342 if (SYNTAX (p
[i
]) != Sword
)
1345 if (i
> 0 && SYNTAX (p
[i
-1]) == Sword
) word_count
++;
1347 if (SYNTAX (p
[len
-1]) == Sword
) word_count
++;
1348 if (!word_count
) return build_string ("");
1350 val
= make_string (p
, len
- punct_count
+ 5 * (word_count
- 1) + 4);
1352 o
= XSTRING (val
)->data
;
1356 for (i
= 0; i
< len
; i
++)
1357 if (SYNTAX (p
[i
]) == Sword
)
1359 else if (i
> 0 && SYNTAX (p
[i
-1]) == Sword
&& --word_count
)
1374 DEFUN ("search-backward", Fsearch_backward
, Ssearch_backward
, 1, 4,
1375 "sSearch backward: ",
1376 "Search backward from point for STRING.\n\
1377 Set point to the beginning of the occurrence found, and return point.\n\
1378 An optional second argument bounds the search; it is a buffer position.\n\
1379 The match found must not extend before that position.\n\
1380 Optional third argument, if t, means if fail just return nil (no error).\n\
1381 If not nil and not t, position at limit of search and return nil.\n\
1382 Optional fourth argument is repeat count--search for successive occurrences.\n\
1383 See also the functions `match-beginning', `match-end' and `replace-match'.")
1384 (string
, bound
, noerror
, count
)
1385 Lisp_Object string
, bound
, noerror
, count
;
1387 return search_command (string
, bound
, noerror
, count
, -1, 0, 0);
1390 DEFUN ("search-forward", Fsearch_forward
, Ssearch_forward
, 1, 4, "sSearch: ",
1391 "Search forward from point for STRING.\n\
1392 Set point to the end of the occurrence found, and return point.\n\
1393 An optional second argument bounds the search; it is a buffer position.\n\
1394 The match found must not extend after that position. nil is equivalent\n\
1396 Optional third argument, if t, means if fail just return nil (no error).\n\
1397 If not nil and not t, move to limit of search and return nil.\n\
1398 Optional fourth argument is repeat count--search for successive occurrences.\n\
1399 See also the functions `match-beginning', `match-end' and `replace-match'.")
1400 (string
, bound
, noerror
, count
)
1401 Lisp_Object string
, bound
, noerror
, count
;
1403 return search_command (string
, bound
, noerror
, count
, 1, 0, 0);
1406 DEFUN ("word-search-backward", Fword_search_backward
, Sword_search_backward
, 1, 4,
1407 "sWord search backward: ",
1408 "Search backward from point for STRING, ignoring differences in punctuation.\n\
1409 Set point to the beginning of the occurrence found, and return point.\n\
1410 An optional second argument bounds the search; it is a buffer position.\n\
1411 The match found must not extend before that position.\n\
1412 Optional third argument, if t, means if fail just return nil (no error).\n\
1413 If not nil and not t, move to limit of search and return nil.\n\
1414 Optional fourth argument is repeat count--search for successive occurrences.")
1415 (string
, bound
, noerror
, count
)
1416 Lisp_Object string
, bound
, noerror
, count
;
1418 return search_command (wordify (string
), bound
, noerror
, count
, -1, 1, 0);
1421 DEFUN ("word-search-forward", Fword_search_forward
, Sword_search_forward
, 1, 4,
1423 "Search forward from point for STRING, ignoring differences in punctuation.\n\
1424 Set point to the end of the occurrence found, and return point.\n\
1425 An optional second argument bounds the search; it is a buffer position.\n\
1426 The match found must not extend after that position.\n\
1427 Optional third argument, if t, means if fail just return nil (no error).\n\
1428 If not nil and not t, move to limit of search and return nil.\n\
1429 Optional fourth argument is repeat count--search for successive occurrences.")
1430 (string
, bound
, noerror
, count
)
1431 Lisp_Object string
, bound
, noerror
, count
;
1433 return search_command (wordify (string
), bound
, noerror
, count
, 1, 1, 0);
1436 DEFUN ("re-search-backward", Fre_search_backward
, Sre_search_backward
, 1, 4,
1437 "sRE search backward: ",
1438 "Search backward from point for match for regular expression REGEXP.\n\
1439 Set point to the beginning of the match, and return point.\n\
1440 The match found is the one starting last in the buffer\n\
1441 and yet ending before the origin of the search.\n\
1442 An optional second argument bounds the search; it is a buffer position.\n\
1443 The match found must start at or after that position.\n\
1444 Optional third argument, if t, means if fail just return nil (no error).\n\
1445 If not nil and not t, move to limit of search and return nil.\n\
1446 Optional fourth argument is repeat count--search for successive occurrences.\n\
1447 See also the functions `match-beginning', `match-end' and `replace-match'.")
1448 (regexp
, bound
, noerror
, count
)
1449 Lisp_Object regexp
, bound
, noerror
, count
;
1451 return search_command (regexp
, bound
, noerror
, count
, -1, 1, 0);
1454 DEFUN ("re-search-forward", Fre_search_forward
, Sre_search_forward
, 1, 4,
1456 "Search forward from point for regular expression REGEXP.\n\
1457 Set point to the end of the occurrence found, and return point.\n\
1458 An optional second argument bounds the search; it is a buffer position.\n\
1459 The match found must not extend after that position.\n\
1460 Optional third argument, if t, means if fail just return nil (no error).\n\
1461 If not nil and not t, move to limit of search and return nil.\n\
1462 Optional fourth argument is repeat count--search for successive occurrences.\n\
1463 See also the functions `match-beginning', `match-end' and `replace-match'.")
1464 (regexp
, bound
, noerror
, count
)
1465 Lisp_Object regexp
, bound
, noerror
, count
;
1467 return search_command (regexp
, bound
, noerror
, count
, 1, 1, 0);
1470 DEFUN ("posix-search-backward", Fposix_search_backward
, Sposix_search_backward
, 1, 4,
1471 "sPosix search backward: ",
1472 "Search backward from point for match for regular expression REGEXP.\n\
1473 Find the longest match in accord with Posix regular expression rules.\n\
1474 Set point to the beginning of the match, and return point.\n\
1475 The match found is the one starting last in the buffer\n\
1476 and yet ending before the origin of the search.\n\
1477 An optional second argument bounds the search; it is a buffer position.\n\
1478 The match found must start at or after that position.\n\
1479 Optional third argument, if t, means if fail just return nil (no error).\n\
1480 If not nil and not t, move to limit of search and return nil.\n\
1481 Optional fourth argument is repeat count--search for successive occurrences.\n\
1482 See also the functions `match-beginning', `match-end' and `replace-match'.")
1483 (regexp
, bound
, noerror
, count
)
1484 Lisp_Object regexp
, bound
, noerror
, count
;
1486 return search_command (regexp
, bound
, noerror
, count
, -1, 1, 1);
1489 DEFUN ("posix-search-forward", Fposix_search_forward
, Sposix_search_forward
, 1, 4,
1491 "Search forward from point for regular expression REGEXP.\n\
1492 Find the longest match in accord with Posix regular expression rules.\n\
1493 Set point to the end of the occurrence found, and return point.\n\
1494 An optional second argument bounds the search; it is a buffer position.\n\
1495 The match found must not extend after that position.\n\
1496 Optional third argument, if t, means if fail just return nil (no error).\n\
1497 If not nil and not t, move to limit of search and return nil.\n\
1498 Optional fourth argument is repeat count--search for successive occurrences.\n\
1499 See also the functions `match-beginning', `match-end' and `replace-match'.")
1500 (regexp
, bound
, noerror
, count
)
1501 Lisp_Object regexp
, bound
, noerror
, count
;
1503 return search_command (regexp
, bound
, noerror
, count
, 1, 1, 1);
1506 DEFUN ("replace-match", Freplace_match
, Sreplace_match
, 1, 5, 0,
1507 "Replace text matched by last search with NEWTEXT.\n\
1508 If second arg FIXEDCASE is non-nil, do not alter case of replacement text.\n\
1509 Otherwise maybe capitalize the whole text, or maybe just word initials,\n\
1510 based on the replaced text.\n\
1511 If the replaced text has only capital letters\n\
1512 and has at least one multiletter word, convert NEWTEXT to all caps.\n\
1513 If the replaced text has at least one word starting with a capital letter,\n\
1514 then capitalize each word in NEWTEXT.\n\n\
1515 If third arg LITERAL is non-nil, insert NEWTEXT literally.\n\
1516 Otherwise treat `\\' as special:\n\
1517 `\\&' in NEWTEXT means substitute original matched text.\n\
1518 `\\N' means substitute what matched the Nth `\\(...\\)'.\n\
1519 If Nth parens didn't match, substitute nothing.\n\
1520 `\\\\' means insert one `\\'.\n\
1521 FIXEDCASE and LITERAL are optional arguments.\n\
1522 Leaves point at end of replacement text.\n\
1524 The optional fourth argument STRING can be a string to modify.\n\
1525 In that case, this function creates and returns a new string\n\
1526 which is made by replacing the part of STRING that was matched.\n\
1528 The optional fifth argument SUBEXP specifies a subexpression of the match.\n\
1529 It says to replace just that subexpression instead of the whole match.\n\
1530 This is useful only after a regular expression search or match\n\
1531 since only regular expressions have distinguished subexpressions.")
1532 (newtext
, fixedcase
, literal
, string
, subexp
)
1533 Lisp_Object newtext
, fixedcase
, literal
, string
, subexp
;
1535 enum { nochange
, all_caps
, cap_initial
} case_action
;
1536 register int pos
, last
;
1537 int some_multiletter_word
;
1540 int some_nonuppercase_initial
;
1541 register int c
, prevc
;
1545 CHECK_STRING (newtext
, 0);
1547 if (! NILP (string
))
1548 CHECK_STRING (string
, 4);
1550 case_action
= nochange
; /* We tried an initialization */
1551 /* but some C compilers blew it */
1553 if (search_regs
.num_regs
<= 0)
1554 error ("replace-match called before any match found");
1560 CHECK_NUMBER (subexp
, 3);
1561 sub
= XINT (subexp
);
1562 if (sub
< 0 || sub
>= search_regs
.num_regs
)
1563 args_out_of_range (subexp
, make_number (search_regs
.num_regs
));
1568 if (search_regs
.start
[sub
] < BEGV
1569 || search_regs
.start
[sub
] > search_regs
.end
[sub
]
1570 || search_regs
.end
[sub
] > ZV
)
1571 args_out_of_range (make_number (search_regs
.start
[sub
]),
1572 make_number (search_regs
.end
[sub
]));
1576 if (search_regs
.start
[sub
] < 0
1577 || search_regs
.start
[sub
] > search_regs
.end
[sub
]
1578 || search_regs
.end
[sub
] > XSTRING (string
)->size
)
1579 args_out_of_range (make_number (search_regs
.start
[sub
]),
1580 make_number (search_regs
.end
[sub
]));
1583 if (NILP (fixedcase
))
1585 /* Decide how to casify by examining the matched text. */
1587 last
= search_regs
.end
[sub
];
1589 case_action
= all_caps
;
1591 /* some_multiletter_word is set nonzero if any original word
1592 is more than one letter long. */
1593 some_multiletter_word
= 0;
1595 some_nonuppercase_initial
= 0;
1598 for (pos
= search_regs
.start
[sub
]; pos
< last
; pos
++)
1601 c
= FETCH_CHAR (pos
);
1603 c
= XSTRING (string
)->data
[pos
];
1607 /* Cannot be all caps if any original char is lower case */
1610 if (SYNTAX (prevc
) != Sword
)
1611 some_nonuppercase_initial
= 1;
1613 some_multiletter_word
= 1;
1615 else if (!NOCASEP (c
))
1618 if (SYNTAX (prevc
) != Sword
)
1621 some_multiletter_word
= 1;
1625 /* If the initial is a caseless word constituent,
1626 treat that like a lowercase initial. */
1627 if (SYNTAX (prevc
) != Sword
)
1628 some_nonuppercase_initial
= 1;
1634 /* Convert to all caps if the old text is all caps
1635 and has at least one multiletter word. */
1636 if (! some_lowercase
&& some_multiletter_word
)
1637 case_action
= all_caps
;
1638 /* Capitalize each word, if the old text has all capitalized words. */
1639 else if (!some_nonuppercase_initial
&& some_multiletter_word
)
1640 case_action
= cap_initial
;
1641 else if (!some_nonuppercase_initial
&& some_uppercase
)
1642 /* Should x -> yz, operating on X, give Yz or YZ?
1643 We'll assume the latter. */
1644 case_action
= all_caps
;
1646 case_action
= nochange
;
1649 /* Do replacement in a string. */
1652 Lisp_Object before
, after
;
1654 before
= Fsubstring (string
, make_number (0),
1655 make_number (search_regs
.start
[sub
]));
1656 after
= Fsubstring (string
, make_number (search_regs
.end
[sub
]), Qnil
);
1658 /* Do case substitution into NEWTEXT if desired. */
1662 /* We build up the substituted string in ACCUM. */
1668 for (pos
= 0; pos
< XSTRING (newtext
)->size
; pos
++)
1672 int delbackslash
= 0;
1674 c
= XSTRING (newtext
)->data
[pos
];
1677 c
= XSTRING (newtext
)->data
[++pos
];
1680 substart
= search_regs
.start
[sub
];
1681 subend
= search_regs
.end
[sub
];
1683 else if (c
>= '1' && c
<= '9' && c
<= search_regs
.num_regs
+ '0')
1685 if (search_regs
.start
[c
- '0'] >= 0)
1687 substart
= search_regs
.start
[c
- '0'];
1688 subend
= search_regs
.end
[c
- '0'];
1696 if (pos
- 1 != lastpos
+ 1)
1697 middle
= Fsubstring (newtext
,
1698 make_number (lastpos
+ 1),
1699 make_number (pos
- 1));
1702 accum
= concat3 (accum
, middle
,
1703 Fsubstring (string
, make_number (substart
),
1704 make_number (subend
)));
1707 else if (delbackslash
)
1709 middle
= Fsubstring (newtext
, make_number (lastpos
+ 1),
1711 accum
= concat2 (accum
, middle
);
1716 if (pos
!= lastpos
+ 1)
1717 middle
= Fsubstring (newtext
, make_number (lastpos
+ 1),
1722 newtext
= concat2 (accum
, middle
);
1725 if (case_action
== all_caps
)
1726 newtext
= Fupcase (newtext
);
1727 else if (case_action
== cap_initial
)
1728 newtext
= Fupcase_initials (newtext
);
1730 return concat3 (before
, newtext
, after
);
1733 /* We insert the replacement text before the old text, and then
1734 delete the original text. This means that markers at the
1735 beginning or end of the original will float to the corresponding
1736 position in the replacement. */
1737 SET_PT (search_regs
.start
[sub
]);
1738 if (!NILP (literal
))
1739 Finsert_and_inherit (1, &newtext
);
1742 struct gcpro gcpro1
;
1745 for (pos
= 0; pos
< XSTRING (newtext
)->size
; pos
++)
1747 int offset
= point
- search_regs
.start
[sub
];
1749 c
= XSTRING (newtext
)->data
[pos
];
1752 c
= XSTRING (newtext
)->data
[++pos
];
1754 Finsert_buffer_substring
1755 (Fcurrent_buffer (),
1756 make_number (search_regs
.start
[sub
] + offset
),
1757 make_number (search_regs
.end
[sub
] + offset
));
1758 else if (c
>= '1' && c
<= '9' && c
<= search_regs
.num_regs
+ '0')
1760 if (search_regs
.start
[c
- '0'] >= 1)
1761 Finsert_buffer_substring
1762 (Fcurrent_buffer (),
1763 make_number (search_regs
.start
[c
- '0'] + offset
),
1764 make_number (search_regs
.end
[c
- '0'] + offset
));
1775 inslen
= point
- (search_regs
.start
[sub
]);
1776 del_range (search_regs
.start
[sub
] + inslen
, search_regs
.end
[sub
] + inslen
);
1778 if (case_action
== all_caps
)
1779 Fupcase_region (make_number (point
- inslen
), make_number (point
));
1780 else if (case_action
== cap_initial
)
1781 Fupcase_initials_region (make_number (point
- inslen
), make_number (point
));
1786 match_limit (num
, beginningp
)
1792 CHECK_NUMBER (num
, 0);
1794 if (n
< 0 || n
>= search_regs
.num_regs
)
1795 args_out_of_range (num
, make_number (search_regs
.num_regs
));
1796 if (search_regs
.num_regs
<= 0
1797 || search_regs
.start
[n
] < 0)
1799 return (make_number ((beginningp
) ? search_regs
.start
[n
]
1800 : search_regs
.end
[n
]));
1803 DEFUN ("match-beginning", Fmatch_beginning
, Smatch_beginning
, 1, 1, 0,
1804 "Return position of start of text matched by last search.\n\
1805 NUM specifies which parenthesized expression in the last regexp.\n\
1806 Value is nil if NUMth pair didn't match, or there were less than NUM pairs.\n\
1807 Zero means the entire text matched by the whole regexp or whole string.")
1811 return match_limit (num
, 1);
1814 DEFUN ("match-end", Fmatch_end
, Smatch_end
, 1, 1, 0,
1815 "Return position of end of text matched by last search.\n\
1816 ARG, a number, specifies which parenthesized expression in the last regexp.\n\
1817 Value is nil if ARGth pair didn't match, or there were less than ARG pairs.\n\
1818 Zero means the entire text matched by the whole regexp or whole string.")
1822 return match_limit (num
, 0);
1825 DEFUN ("match-data", Fmatch_data
, Smatch_data
, 0, 0, 0,
1826 "Return a list containing all info on what the last search matched.\n\
1827 Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.\n\
1828 All the elements are markers or nil (nil if the Nth pair didn't match)\n\
1829 if the last match was on a buffer; integers or nil if a string was matched.\n\
1830 Use `store-match-data' to reinstate the data in this list.")
1836 if (NILP (last_thing_searched
))
1837 error ("match-data called before any match found");
1839 data
= (Lisp_Object
*) alloca ((2 * search_regs
.num_regs
)
1840 * sizeof (Lisp_Object
));
1843 for (i
= 0; i
< search_regs
.num_regs
; i
++)
1845 int start
= search_regs
.start
[i
];
1848 if (EQ (last_thing_searched
, Qt
))
1850 XSETFASTINT (data
[2 * i
], start
);
1851 XSETFASTINT (data
[2 * i
+ 1], search_regs
.end
[i
]);
1853 else if (BUFFERP (last_thing_searched
))
1855 data
[2 * i
] = Fmake_marker ();
1856 Fset_marker (data
[2 * i
],
1857 make_number (start
),
1858 last_thing_searched
);
1859 data
[2 * i
+ 1] = Fmake_marker ();
1860 Fset_marker (data
[2 * i
+ 1],
1861 make_number (search_regs
.end
[i
]),
1862 last_thing_searched
);
1865 /* last_thing_searched must always be Qt, a buffer, or Qnil. */
1871 data
[2 * i
] = data
[2 * i
+ 1] = Qnil
;
1873 return Flist (2 * len
+ 2, data
);
1877 DEFUN ("store-match-data", Fstore_match_data
, Sstore_match_data
, 1, 1, 0,
1878 "Set internal data on last search match from elements of LIST.\n\
1879 LIST should have been created by calling `match-data' previously.")
1881 register Lisp_Object list
;
1884 register Lisp_Object marker
;
1886 if (running_asynch_code
)
1887 save_search_regs ();
1889 if (!CONSP (list
) && !NILP (list
))
1890 list
= wrong_type_argument (Qconsp
, list
);
1892 /* Unless we find a marker with a buffer in LIST, assume that this
1893 match data came from a string. */
1894 last_thing_searched
= Qt
;
1896 /* Allocate registers if they don't already exist. */
1898 int length
= XFASTINT (Flength (list
)) / 2;
1900 if (length
> search_regs
.num_regs
)
1902 if (search_regs
.num_regs
== 0)
1905 = (regoff_t
*) xmalloc (length
* sizeof (regoff_t
));
1907 = (regoff_t
*) xmalloc (length
* sizeof (regoff_t
));
1912 = (regoff_t
*) xrealloc (search_regs
.start
,
1913 length
* sizeof (regoff_t
));
1915 = (regoff_t
*) xrealloc (search_regs
.end
,
1916 length
* sizeof (regoff_t
));
1919 search_regs
.num_regs
= length
;
1923 for (i
= 0; i
< search_regs
.num_regs
; i
++)
1925 marker
= Fcar (list
);
1928 search_regs
.start
[i
] = -1;
1933 if (MARKERP (marker
))
1935 if (XMARKER (marker
)->buffer
== 0)
1936 XSETFASTINT (marker
, 0);
1938 XSETBUFFER (last_thing_searched
, XMARKER (marker
)->buffer
);
1941 CHECK_NUMBER_COERCE_MARKER (marker
, 0);
1942 search_regs
.start
[i
] = XINT (marker
);
1945 marker
= Fcar (list
);
1946 if (MARKERP (marker
) && XMARKER (marker
)->buffer
== 0)
1947 XSETFASTINT (marker
, 0);
1949 CHECK_NUMBER_COERCE_MARKER (marker
, 0);
1950 search_regs
.end
[i
] = XINT (marker
);
1958 /* If non-zero the match data have been saved in saved_search_regs
1959 during the execution of a sentinel or filter. */
1960 static int search_regs_saved
;
1961 static struct re_registers saved_search_regs
;
1963 /* Called from Flooking_at, Fstring_match, search_buffer, Fstore_match_data
1964 if asynchronous code (filter or sentinel) is running. */
1968 if (!search_regs_saved
)
1970 saved_search_regs
.num_regs
= search_regs
.num_regs
;
1971 saved_search_regs
.start
= search_regs
.start
;
1972 saved_search_regs
.end
= search_regs
.end
;
1973 search_regs
.num_regs
= 0;
1974 search_regs
.start
= 0;
1975 search_regs
.end
= 0;
1977 search_regs_saved
= 1;
1981 /* Called upon exit from filters and sentinels. */
1983 restore_match_data ()
1985 if (search_regs_saved
)
1987 if (search_regs
.num_regs
> 0)
1989 xfree (search_regs
.start
);
1990 xfree (search_regs
.end
);
1992 search_regs
.num_regs
= saved_search_regs
.num_regs
;
1993 search_regs
.start
= saved_search_regs
.start
;
1994 search_regs
.end
= saved_search_regs
.end
;
1996 search_regs_saved
= 0;
2000 /* Quote a string to inactivate reg-expr chars */
2002 DEFUN ("regexp-quote", Fregexp_quote
, Sregexp_quote
, 1, 1, 0,
2003 "Return a regexp string which matches exactly STRING and nothing else.")
2007 register unsigned char *in
, *out
, *end
;
2008 register unsigned char *temp
;
2010 CHECK_STRING (str
, 0);
2012 temp
= (unsigned char *) alloca (XSTRING (str
)->size
* 2);
2014 /* Now copy the data into the new string, inserting escapes. */
2016 in
= XSTRING (str
)->data
;
2017 end
= in
+ XSTRING (str
)->size
;
2020 for (; in
!= end
; in
++)
2022 if (*in
== '[' || *in
== ']'
2023 || *in
== '*' || *in
== '.' || *in
== '\\'
2024 || *in
== '?' || *in
== '+'
2025 || *in
== '^' || *in
== '$')
2030 return make_string (temp
, out
- temp
);
2037 for (i
= 0; i
< REGEXP_CACHE_SIZE
; ++i
)
2039 searchbufs
[i
].buf
.allocated
= 100;
2040 searchbufs
[i
].buf
.buffer
= (unsigned char *) malloc (100);
2041 searchbufs
[i
].buf
.fastmap
= searchbufs
[i
].fastmap
;
2042 searchbufs
[i
].regexp
= Qnil
;
2043 staticpro (&searchbufs
[i
].regexp
);
2044 searchbufs
[i
].next
= (i
== REGEXP_CACHE_SIZE
-1 ? 0 : &searchbufs
[i
+1]);
2046 searchbuf_head
= &searchbufs
[0];
2048 Qsearch_failed
= intern ("search-failed");
2049 staticpro (&Qsearch_failed
);
2050 Qinvalid_regexp
= intern ("invalid-regexp");
2051 staticpro (&Qinvalid_regexp
);
2053 Fput (Qsearch_failed
, Qerror_conditions
,
2054 Fcons (Qsearch_failed
, Fcons (Qerror
, Qnil
)));
2055 Fput (Qsearch_failed
, Qerror_message
,
2056 build_string ("Search failed"));
2058 Fput (Qinvalid_regexp
, Qerror_conditions
,
2059 Fcons (Qinvalid_regexp
, Fcons (Qerror
, Qnil
)));
2060 Fput (Qinvalid_regexp
, Qerror_message
,
2061 build_string ("Invalid regexp"));
2063 last_thing_searched
= Qnil
;
2064 staticpro (&last_thing_searched
);
2066 defsubr (&Slooking_at
);
2067 defsubr (&Sposix_looking_at
);
2068 defsubr (&Sstring_match
);
2069 defsubr (&Sposix_string_match
);
2070 defsubr (&Sskip_chars_forward
);
2071 defsubr (&Sskip_chars_backward
);
2072 defsubr (&Sskip_syntax_forward
);
2073 defsubr (&Sskip_syntax_backward
);
2074 defsubr (&Ssearch_forward
);
2075 defsubr (&Ssearch_backward
);
2076 defsubr (&Sword_search_forward
);
2077 defsubr (&Sword_search_backward
);
2078 defsubr (&Sre_search_forward
);
2079 defsubr (&Sre_search_backward
);
2080 defsubr (&Sposix_search_forward
);
2081 defsubr (&Sposix_search_backward
);
2082 defsubr (&Sreplace_match
);
2083 defsubr (&Smatch_beginning
);
2084 defsubr (&Smatch_end
);
2085 defsubr (&Smatch_data
);
2086 defsubr (&Sstore_match_data
);
2087 defsubr (&Sregexp_quote
);