Improve wording in side windows documentation
[emacs.git] / src / ccl.c
blobb9dc52e2568a90e9f065ac97b0cfa0e88aae926a
1 /* CCL (Code Conversion Language) interpreter.
2 Copyright (C) 2001-2016 Free Software Foundation, Inc.
3 Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
4 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 National Institute of Advanced Industrial Science and Technology (AIST)
6 Registration Number H14PRO021
7 Copyright (C) 2003
8 National Institute of Advanced Industrial Science and Technology (AIST)
9 Registration Number H13PRO009
11 This file is part of GNU Emacs.
13 GNU Emacs is free software: you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation, either version 3 of the License, or (at
16 your option) any later version.
18 GNU Emacs is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
26 #include <config.h>
28 #include <stdio.h>
29 #include <limits.h>
31 #include "lisp.h"
32 #include "character.h"
33 #include "charset.h"
34 #include "ccl.h"
35 #include "coding.h"
37 /* Table of registered CCL programs. Each element is a vector of
38 NAME, CCL_PROG, RESOLVEDP, and UPDATEDP, where NAME (symbol) is the
39 name of the program, CCL_PROG (vector) is the compiled code of the
40 program, RESOLVEDP (t or nil) is the flag to tell if symbols in
41 CCL_PROG is already resolved to index numbers or not, UPDATEDP (t
42 or nil) is the flat to tell if the CCL program is updated after it
43 was once used. */
44 static Lisp_Object Vccl_program_table;
46 /* Return a hash table of id number ID. */
47 #define GET_HASH_TABLE(id) \
48 (XHASH_TABLE (XCDR (AREF (Vtranslation_hash_table_vector, (id)))))
50 /* CCL (Code Conversion Language) is a simple language which has
51 operations on one input buffer, one output buffer, and 7 registers.
52 The syntax of CCL is described in `ccl.el'. Emacs Lisp function
53 `ccl-compile' compiles a CCL program and produces a CCL code which
54 is a vector of integers. The structure of this vector is as
55 follows: The 1st element: buffer-magnification, a factor for the
56 size of output buffer compared with the size of input buffer. The
57 2nd element: address of CCL code to be executed when encountered
58 with end of input stream. The 3rd and the remaining elements: CCL
59 codes. */
61 /* Header of CCL compiled code */
62 #define CCL_HEADER_BUF_MAG 0
63 #define CCL_HEADER_EOF 1
64 #define CCL_HEADER_MAIN 2
66 /* CCL code is a sequence of 28-bit integers. Each contains a CCL
67 command and/or arguments in the following format:
69 |----------------- integer (28-bit) ------------------|
70 |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
71 |--constant argument--|-register-|-register-|-command-|
72 ccccccccccccccccc RRR rrr XXXXX
74 |------- relative address -------|-register-|-command-|
75 cccccccccccccccccccc rrr XXXXX
77 |------------- constant or other args ----------------|
78 cccccccccccccccccccccccccccc
80 where `cc...c' is a 17-bit, 20-bit, or 28-bit integer indicating a
81 constant value or a relative/absolute jump address, `RRR'
82 and `rrr' are CCL register number, `XXXXX' is one of the following
83 CCL commands. */
85 #define CCL_CODE_MAX ((1 << (28 - 1)) - 1)
86 #define CCL_CODE_MIN (-1 - CCL_CODE_MAX)
88 /* CCL commands
90 Each comment fields shows one or more lines for command syntax and
91 the following lines for semantics of the command. In semantics, IC
92 stands for Instruction Counter. */
94 #define CCL_SetRegister 0x00 /* Set register a register value:
95 1:00000000000000000RRRrrrXXXXX
96 ------------------------------
97 reg[rrr] = reg[RRR];
100 #define CCL_SetShortConst 0x01 /* Set register a short constant value:
101 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
102 ------------------------------
103 reg[rrr] = CCCCCCCCCCCCCCCCCCC;
106 #define CCL_SetConst 0x02 /* Set register a constant value:
107 1:00000000000000000000rrrXXXXX
108 2:CONSTANT
109 ------------------------------
110 reg[rrr] = CONSTANT;
111 IC++;
114 #define CCL_SetArray 0x03 /* Set register an element of array:
115 1:CCCCCCCCCCCCCCCCCRRRrrrXXXXX
116 2:ELEMENT[0]
117 3:ELEMENT[1]
119 ------------------------------
120 if (0 <= reg[RRR] < CC..C)
121 reg[rrr] = ELEMENT[reg[RRR]];
122 IC += CC..C;
125 #define CCL_Jump 0x04 /* Jump:
126 1:A--D--D--R--E--S--S-000XXXXX
127 ------------------------------
128 IC += ADDRESS;
131 /* Note: If CC..C is greater than 0, the second code is omitted. */
133 #define CCL_JumpCond 0x05 /* Jump conditional:
134 1:A--D--D--R--E--S--S-rrrXXXXX
135 ------------------------------
136 if (!reg[rrr])
137 IC += ADDRESS;
141 #define CCL_WriteRegisterJump 0x06 /* Write register and jump:
142 1:A--D--D--R--E--S--S-rrrXXXXX
143 ------------------------------
144 write (reg[rrr]);
145 IC += ADDRESS;
148 #define CCL_WriteRegisterReadJump 0x07 /* Write register, read, and jump:
149 1:A--D--D--R--E--S--S-rrrXXXXX
150 2:A--D--D--R--E--S--S-rrrYYYYY
151 -----------------------------
152 write (reg[rrr]);
153 IC++;
154 read (reg[rrr]);
155 IC += ADDRESS;
157 /* Note: If read is suspended, the resumed execution starts from the
158 second code (YYYYY == CCL_ReadJump). */
160 #define CCL_WriteConstJump 0x08 /* Write constant and jump:
161 1:A--D--D--R--E--S--S-000XXXXX
162 2:CONST
163 ------------------------------
164 write (CONST);
165 IC += ADDRESS;
168 #define CCL_WriteConstReadJump 0x09 /* Write constant, read, and jump:
169 1:A--D--D--R--E--S--S-rrrXXXXX
170 2:CONST
171 3:A--D--D--R--E--S--S-rrrYYYYY
172 -----------------------------
173 write (CONST);
174 IC += 2;
175 read (reg[rrr]);
176 IC += ADDRESS;
178 /* Note: If read is suspended, the resumed execution starts from the
179 second code (YYYYY == CCL_ReadJump). */
181 #define CCL_WriteStringJump 0x0A /* Write string and jump:
182 1:A--D--D--R--E--S--S-000XXXXX
183 2:LENGTH
184 3:000MSTRIN[0]STRIN[1]STRIN[2]
186 ------------------------------
187 if (M)
188 write_multibyte_string (STRING, LENGTH);
189 else
190 write_string (STRING, LENGTH);
191 IC += ADDRESS;
194 #define CCL_WriteArrayReadJump 0x0B /* Write an array element, read, and jump:
195 1:A--D--D--R--E--S--S-rrrXXXXX
196 2:LENGTH
197 3:ELEMENT[0]
198 4:ELEMENT[1]
200 N:A--D--D--R--E--S--S-rrrYYYYY
201 ------------------------------
202 if (0 <= reg[rrr] < LENGTH)
203 write (ELEMENT[reg[rrr]]);
204 IC += LENGTH + 2; (... pointing at N+1)
205 read (reg[rrr]);
206 IC += ADDRESS;
208 /* Note: If read is suspended, the resumed execution starts from the
209 Nth code (YYYYY == CCL_ReadJump). */
211 #define CCL_ReadJump 0x0C /* Read and jump:
212 1:A--D--D--R--E--S--S-rrrYYYYY
213 -----------------------------
214 read (reg[rrr]);
215 IC += ADDRESS;
218 #define CCL_Branch 0x0D /* Jump by branch table:
219 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
220 2:A--D--D--R--E-S-S[0]000XXXXX
221 3:A--D--D--R--E-S-S[1]000XXXXX
223 ------------------------------
224 if (0 <= reg[rrr] < CC..C)
225 IC += ADDRESS[reg[rrr]];
226 else
227 IC += ADDRESS[CC..C];
230 #define CCL_ReadRegister 0x0E /* Read bytes into registers:
231 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
232 2:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
234 ------------------------------
235 while (CCC--)
236 read (reg[rrr]);
239 #define CCL_WriteExprConst 0x0F /* write result of expression:
240 1:00000OPERATION000RRR000XXXXX
241 2:CONSTANT
242 ------------------------------
243 write (reg[RRR] OPERATION CONSTANT);
244 IC++;
247 /* Note: If the Nth read is suspended, the resumed execution starts
248 from the Nth code. */
250 #define CCL_ReadBranch 0x10 /* Read one byte into a register,
251 and jump by branch table:
252 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
253 2:A--D--D--R--E-S-S[0]000XXXXX
254 3:A--D--D--R--E-S-S[1]000XXXXX
256 ------------------------------
257 read (read[rrr]);
258 if (0 <= reg[rrr] < CC..C)
259 IC += ADDRESS[reg[rrr]];
260 else
261 IC += ADDRESS[CC..C];
264 #define CCL_WriteRegister 0x11 /* Write registers:
265 1:CCCCCCCCCCCCCCCCCCCrrrXXXXX
266 2:CCCCCCCCCCCCCCCCCCCrrrXXXXX
268 ------------------------------
269 while (CCC--)
270 write (reg[rrr]);
274 /* Note: If the Nth write is suspended, the resumed execution
275 starts from the Nth code. */
277 #define CCL_WriteExprRegister 0x12 /* Write result of expression
278 1:00000OPERATIONRrrRRR000XXXXX
279 ------------------------------
280 write (reg[RRR] OPERATION reg[Rrr]);
283 #define CCL_Call 0x13 /* Call the CCL program whose ID is
284 CC..C or cc..c.
285 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX
286 [2:00000000cccccccccccccccccccc]
287 ------------------------------
288 if (FFF)
289 call (cc..c)
290 IC++;
291 else
292 call (CC..C)
295 #define CCL_WriteConstString 0x14 /* Write a constant or a string:
296 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
297 [2:000MSTRIN[0]STRIN[1]STRIN[2]]
298 [...]
299 -----------------------------
300 if (!rrr)
301 write (CC..C)
302 else
303 if (M)
304 write_multibyte_string (STRING, CC..C);
305 else
306 write_string (STRING, CC..C);
307 IC += (CC..C + 2) / 3;
310 #define CCL_WriteArray 0x15 /* Write an element of array:
311 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
312 2:ELEMENT[0]
313 3:ELEMENT[1]
315 ------------------------------
316 if (0 <= reg[rrr] < CC..C)
317 write (ELEMENT[reg[rrr]]);
318 IC += CC..C;
321 #define CCL_End 0x16 /* Terminate:
322 1:00000000000000000000000XXXXX
323 ------------------------------
324 terminate ();
327 /* The following two codes execute an assignment arithmetic/logical
328 operation. The form of the operation is like REG OP= OPERAND. */
330 #define CCL_ExprSelfConst 0x17 /* REG OP= constant:
331 1:00000OPERATION000000rrrXXXXX
332 2:CONSTANT
333 ------------------------------
334 reg[rrr] OPERATION= CONSTANT;
337 #define CCL_ExprSelfReg 0x18 /* REG1 OP= REG2:
338 1:00000OPERATION000RRRrrrXXXXX
339 ------------------------------
340 reg[rrr] OPERATION= reg[RRR];
343 /* The following codes execute an arithmetic/logical operation. The
344 form of the operation is like REG_X = REG_Y OP OPERAND2. */
346 #define CCL_SetExprConst 0x19 /* REG_X = REG_Y OP constant:
347 1:00000OPERATION000RRRrrrXXXXX
348 2:CONSTANT
349 ------------------------------
350 reg[rrr] = reg[RRR] OPERATION CONSTANT;
351 IC++;
354 #define CCL_SetExprReg 0x1A /* REG1 = REG2 OP REG3:
355 1:00000OPERATIONRrrRRRrrrXXXXX
356 ------------------------------
357 reg[rrr] = reg[RRR] OPERATION reg[Rrr];
360 #define CCL_JumpCondExprConst 0x1B /* Jump conditional according to
361 an operation on constant:
362 1:A--D--D--R--E--S--S-rrrXXXXX
363 2:OPERATION
364 3:CONSTANT
365 -----------------------------
366 reg[7] = reg[rrr] OPERATION CONSTANT;
367 if (!(reg[7]))
368 IC += ADDRESS;
369 else
370 IC += 2
373 #define CCL_JumpCondExprReg 0x1C /* Jump conditional according to
374 an operation on register:
375 1:A--D--D--R--E--S--S-rrrXXXXX
376 2:OPERATION
377 3:RRR
378 -----------------------------
379 reg[7] = reg[rrr] OPERATION reg[RRR];
380 if (!reg[7])
381 IC += ADDRESS;
382 else
383 IC += 2;
386 #define CCL_ReadJumpCondExprConst 0x1D /* Read and jump conditional according
387 to an operation on constant:
388 1:A--D--D--R--E--S--S-rrrXXXXX
389 2:OPERATION
390 3:CONSTANT
391 -----------------------------
392 read (reg[rrr]);
393 reg[7] = reg[rrr] OPERATION CONSTANT;
394 if (!reg[7])
395 IC += ADDRESS;
396 else
397 IC += 2;
400 #define CCL_ReadJumpCondExprReg 0x1E /* Read and jump conditional according
401 to an operation on register:
402 1:A--D--D--R--E--S--S-rrrXXXXX
403 2:OPERATION
404 3:RRR
405 -----------------------------
406 read (reg[rrr]);
407 reg[7] = reg[rrr] OPERATION reg[RRR];
408 if (!reg[7])
409 IC += ADDRESS;
410 else
411 IC += 2;
414 #define CCL_Extension 0x1F /* Extended CCL code
415 1:ExtendedCOMMNDRrrRRRrrrXXXXX
416 2:ARGUMENT
417 3:...
418 ------------------------------
419 extended_command (rrr,RRR,Rrr,ARGS)
423 Here after, Extended CCL Instructions.
424 Bit length of extended command is 14.
425 Therefore, the instruction code range is 0..16384(0x3fff).
428 /* Read a multibyte character.
429 A code point is stored into reg[rrr]. A charset ID is stored into
430 reg[RRR]. */
432 #define CCL_ReadMultibyteChar2 0x00 /* Read Multibyte Character
433 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
435 /* Write a multibyte character.
436 Write a character whose code point is reg[rrr] and the charset ID
437 is reg[RRR]. */
439 #define CCL_WriteMultibyteChar2 0x01 /* Write Multibyte Character
440 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
442 /* Translate a character whose code point is reg[rrr] and the charset
443 ID is reg[RRR] by a translation table whose ID is reg[Rrr].
445 A translated character is set in reg[rrr] (code point) and reg[RRR]
446 (charset ID). */
448 #define CCL_TranslateCharacter 0x02 /* Translate a multibyte character
449 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
451 /* Translate a character whose code point is reg[rrr] and the charset
452 ID is reg[RRR] by a translation table whose ID is ARGUMENT.
454 A translated character is set in reg[rrr] (code point) and reg[RRR]
455 (charset ID). */
457 #define CCL_TranslateCharacterConstTbl 0x03 /* Translate a multibyte character
458 1:ExtendedCOMMNDRrrRRRrrrXXXXX
459 2:ARGUMENT(Translation Table ID)
462 /* Iterate looking up MAPs for reg[rrr] starting from the Nth (N =
463 reg[RRR]) MAP until some value is found.
465 Each MAP is a Lisp vector whose element is number, nil, t, or
466 lambda.
467 If the element is nil, ignore the map and proceed to the next map.
468 If the element is t or lambda, finish without changing reg[rrr].
469 If the element is a number, set reg[rrr] to the number and finish.
471 Detail of the map structure is described in the comment for
472 CCL_MapMultiple below. */
474 #define CCL_IterateMultipleMap 0x10 /* Iterate multiple maps
475 1:ExtendedCOMMNDXXXRRRrrrXXXXX
476 2:NUMBER of MAPs
477 3:MAP-ID1
478 4:MAP-ID2
482 /* Map the code in reg[rrr] by MAPs starting from the Nth (N =
483 reg[RRR]) map.
485 MAPs are supplied in the succeeding CCL codes as follows:
487 When CCL program gives this nested structure of map to this command:
488 ((MAP-ID11
489 MAP-ID12
490 (MAP-ID121 MAP-ID122 MAP-ID123)
491 MAP-ID13)
492 (MAP-ID21
493 (MAP-ID211 (MAP-ID2111) MAP-ID212)
494 MAP-ID22)),
495 the compiled CCL codes has this sequence:
496 CCL_MapMultiple (CCL code of this command)
497 16 (total number of MAPs and SEPARATORs)
498 -7 (1st SEPARATOR)
499 MAP-ID11
500 MAP-ID12
501 -3 (2nd SEPARATOR)
502 MAP-ID121
503 MAP-ID122
504 MAP-ID123
505 MAP-ID13
506 -7 (3rd SEPARATOR)
507 MAP-ID21
508 -4 (4th SEPARATOR)
509 MAP-ID211
510 -1 (5th SEPARATOR)
511 MAP_ID2111
512 MAP-ID212
513 MAP-ID22
515 A value of each SEPARATOR follows this rule:
516 MAP-SET := SEPARATOR [(MAP-ID | MAP-SET)]+
517 SEPARATOR := -(number of MAP-IDs and SEPARATORs in the MAP-SET)
519 (*)....Nest level of MAP-SET must not be over than MAX_MAP_SET_LEVEL.
521 When some map fails to map (i.e. it doesn't have a value for
522 reg[rrr]), the mapping is treated as identity.
524 The mapping is iterated for all maps in each map set (set of maps
525 separated by SEPARATOR) except in the case that lambda is
526 encountered. More precisely, the mapping proceeds as below:
528 At first, VAL0 is set to reg[rrr], and it is translated by the
529 first map to VAL1. Then, VAL1 is translated by the next map to
530 VAL2. This mapping is iterated until the last map is used. The
531 result of the mapping is the last value of VAL?. When the mapping
532 process reached to the end of the map set, it moves to the next
533 map set. If the next does not exit, the mapping process terminates,
534 and regard the last value as a result.
536 But, when VALm is mapped to VALn and VALn is not a number, the
537 mapping proceed as below:
539 If VALn is nil, the last map is ignored and the mapping of VALm
540 proceed to the next map.
542 In VALn is t, VALm is reverted to reg[rrr] and the mapping of VALm
543 proceed to the next map.
545 If VALn is lambda, move to the next map set like reaching to the
546 end of the current map set.
548 If VALn is a symbol, call the CCL program referred by it.
549 Then, use reg[rrr] as a mapped value except for -1, -2 and -3.
550 Such special values are regarded as nil, t, and lambda respectively.
552 Each map is a Lisp vector of the following format (a) or (b):
553 (a)......[STARTPOINT VAL1 VAL2 ...]
554 (b)......[t VAL STARTPOINT ENDPOINT],
555 where
556 STARTPOINT is an offset to be used for indexing a map,
557 ENDPOINT is a maximum index number of a map,
558 VAL and VALn is a number, nil, t, or lambda.
560 Valid index range of a map of type (a) is:
561 STARTPOINT <= index < STARTPOINT + map_size - 1
562 Valid index range of a map of type (b) is:
563 STARTPOINT <= index < ENDPOINT */
565 #define CCL_MapMultiple 0x11 /* Mapping by multiple code conversion maps
566 1:ExtendedCOMMNDXXXRRRrrrXXXXX
567 2:N-2
568 3:SEPARATOR_1 (< 0)
569 4:MAP-ID_1
570 5:MAP-ID_2
572 M:SEPARATOR_x (< 0)
573 M+1:MAP-ID_y
575 N:SEPARATOR_z (< 0)
578 #define MAX_MAP_SET_LEVEL 30
580 typedef struct
582 int rest_length;
583 int orig_val;
584 } tr_stack;
586 static tr_stack mapping_stack[MAX_MAP_SET_LEVEL];
587 static tr_stack *mapping_stack_pointer;
589 /* If this variable is non-zero, it indicates the stack_idx
590 of immediately called by CCL_MapMultiple. */
591 static int stack_idx_of_map_multiple;
593 #define PUSH_MAPPING_STACK(restlen, orig) \
594 do \
596 mapping_stack_pointer->rest_length = (restlen); \
597 mapping_stack_pointer->orig_val = (orig); \
598 mapping_stack_pointer++; \
600 while (0)
602 #define POP_MAPPING_STACK(restlen, orig) \
603 do \
605 mapping_stack_pointer--; \
606 (restlen) = mapping_stack_pointer->rest_length; \
607 (orig) = mapping_stack_pointer->orig_val; \
609 while (0)
611 #define CCL_CALL_FOR_MAP_INSTRUCTION(symbol, ret_ic) \
612 do \
614 struct ccl_program called_ccl; \
615 if (stack_idx >= 256 \
616 || ! setup_ccl_program (&called_ccl, (symbol))) \
618 if (stack_idx > 0) \
620 ccl_prog = ccl_prog_stack_struct[0].ccl_prog; \
621 ic = ccl_prog_stack_struct[0].ic; \
622 eof_ic = ccl_prog_stack_struct[0].eof_ic; \
624 CCL_INVALID_CMD; \
626 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog; \
627 ccl_prog_stack_struct[stack_idx].ic = (ret_ic); \
628 ccl_prog_stack_struct[stack_idx].eof_ic = eof_ic; \
629 stack_idx++; \
630 ccl_prog = called_ccl.prog; \
631 ic = CCL_HEADER_MAIN; \
632 eof_ic = XFASTINT (ccl_prog[CCL_HEADER_EOF]); \
633 goto ccl_repeat; \
635 while (0)
637 #define CCL_MapSingle 0x12 /* Map by single code conversion map
638 1:ExtendedCOMMNDXXXRRRrrrXXXXX
639 2:MAP-ID
640 ------------------------------
641 Map reg[rrr] by MAP-ID.
642 If some valid mapping is found,
643 set reg[rrr] to the result,
644 else
645 set reg[RRR] to -1.
648 #define CCL_LookupIntConstTbl 0x13 /* Lookup multibyte character by
649 integer key. Afterwards R7 set
650 to 1 if lookup succeeded.
651 1:ExtendedCOMMNDRrrRRRXXXXXXXX
652 2:ARGUMENT(Hash table ID) */
654 #define CCL_LookupCharConstTbl 0x14 /* Lookup integer by multibyte
655 character key. Afterwards R7 set
656 to 1 if lookup succeeded.
657 1:ExtendedCOMMNDRrrRRRrrrXXXXX
658 2:ARGUMENT(Hash table ID) */
660 /* CCL arithmetic/logical operators. */
661 #define CCL_PLUS 0x00 /* X = Y + Z */
662 #define CCL_MINUS 0x01 /* X = Y - Z */
663 #define CCL_MUL 0x02 /* X = Y * Z */
664 #define CCL_DIV 0x03 /* X = Y / Z */
665 #define CCL_MOD 0x04 /* X = Y % Z */
666 #define CCL_AND 0x05 /* X = Y & Z */
667 #define CCL_OR 0x06 /* X = Y | Z */
668 #define CCL_XOR 0x07 /* X = Y ^ Z */
669 #define CCL_LSH 0x08 /* X = Y << Z */
670 #define CCL_RSH 0x09 /* X = Y >> Z */
671 #define CCL_LSH8 0x0A /* X = (Y << 8) | Z */
672 #define CCL_RSH8 0x0B /* X = Y >> 8, r[7] = Y & 0xFF */
673 #define CCL_DIVMOD 0x0C /* X = Y / Z, r[7] = Y % Z */
674 #define CCL_LS 0x10 /* X = (X < Y) */
675 #define CCL_GT 0x11 /* X = (X > Y) */
676 #define CCL_EQ 0x12 /* X = (X == Y) */
677 #define CCL_LE 0x13 /* X = (X <= Y) */
678 #define CCL_GE 0x14 /* X = (X >= Y) */
679 #define CCL_NE 0x15 /* X = (X != Y) */
681 #define CCL_DECODE_SJIS 0x16 /* X = HIGHER_BYTE (DE-SJIS (Y, Z))
682 r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */
683 #define CCL_ENCODE_SJIS 0x17 /* X = HIGHER_BYTE (SJIS (Y, Z))
684 r[7] = LOWER_BYTE (SJIS (Y, Z) */
686 /* Terminate CCL program successfully. */
687 #define CCL_SUCCESS \
688 do \
690 ccl->status = CCL_STAT_SUCCESS; \
691 goto ccl_finish; \
693 while (0)
695 /* Suspend CCL program because of reading from empty input buffer or
696 writing to full output buffer. When this program is resumed, the
697 same I/O command is executed. */
698 #define CCL_SUSPEND(stat) \
699 do \
701 ic--; \
702 ccl->status = stat; \
703 goto ccl_finish; \
705 while (0)
707 /* Terminate CCL program because of invalid command. Should not occur
708 in the normal case. */
709 #ifndef CCL_DEBUG
711 #define CCL_INVALID_CMD \
712 do \
714 ccl->status = CCL_STAT_INVALID_CMD; \
715 goto ccl_error_handler; \
717 while (0)
719 #else
721 #define CCL_INVALID_CMD \
722 do \
724 ccl_debug_hook (this_ic); \
725 ccl->status = CCL_STAT_INVALID_CMD; \
726 goto ccl_error_handler; \
728 while (0)
730 #endif
732 /* Use "&" rather than "&&" to suppress a bogus GCC warning; see
733 <http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43772>. */
734 #define ASCENDING_ORDER(lo, med, hi) (((lo) <= (med)) & ((med) <= (hi)))
736 #define GET_CCL_RANGE(var, ccl_prog, ic, lo, hi) \
737 do \
739 EMACS_INT prog_word = XINT ((ccl_prog)[ic]); \
740 if (! ASCENDING_ORDER (lo, prog_word, hi)) \
741 CCL_INVALID_CMD; \
742 (var) = prog_word; \
744 while (0)
746 #define GET_CCL_CODE(code, ccl_prog, ic) \
747 GET_CCL_RANGE (code, ccl_prog, ic, CCL_CODE_MIN, CCL_CODE_MAX)
749 #define IN_INT_RANGE(val) ASCENDING_ORDER (INT_MIN, val, INT_MAX)
751 /* Encode one character CH to multibyte form and write to the current
752 output buffer. If CH is less than 256, CH is written as is. */
753 #define CCL_WRITE_CHAR(ch) \
754 do { \
755 if (! dst) \
756 CCL_INVALID_CMD; \
757 else if (dst < dst_end) \
758 *dst++ = (ch); \
759 else \
760 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
761 } while (0)
763 /* Write a string at ccl_prog[IC] of length LEN to the current output
764 buffer. */
765 #define CCL_WRITE_STRING(len) \
766 do { \
767 int ccli; \
768 if (!dst) \
769 CCL_INVALID_CMD; \
770 else if (dst + len <= dst_end) \
772 if (XFASTINT (ccl_prog[ic]) & 0x1000000) \
773 for (ccli = 0; ccli < len; ccli++) \
774 *dst++ = XFASTINT (ccl_prog[ic + ccli]) & 0xFFFFFF; \
775 else \
776 for (ccli = 0; ccli < len; ccli++) \
777 *dst++ = ((XFASTINT (ccl_prog[ic + (ccli / 3)])) \
778 >> ((2 - (ccli % 3)) * 8)) & 0xFF; \
780 else \
781 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
782 } while (0)
784 /* Read one byte from the current input buffer into Rth register. */
785 #define CCL_READ_CHAR(r) \
786 do { \
787 if (! src) \
788 CCL_INVALID_CMD; \
789 else if (src < src_end) \
790 r = *src++; \
791 else if (ccl->last_block) \
793 r = -1; \
794 ic = ccl->eof_ic; \
795 goto ccl_repeat; \
797 else \
798 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC); \
799 } while (0)
801 /* Decode CODE by a charset whose id is ID. If ID is 0, return CODE
802 as is for backward compatibility. Assume that we can use the
803 variable `charset'. */
805 #define CCL_DECODE_CHAR(id, code) \
806 ((id) == 0 ? (code) \
807 : (charset = CHARSET_FROM_ID ((id)), DECODE_CHAR (charset, (code))))
809 /* Encode character C by some of charsets in CHARSET_LIST. Set ID to
810 the id of the used charset, ENCODED to the result of encoding.
811 Assume that we can use the variable `charset'. */
813 #define CCL_ENCODE_CHAR(c, charset_list, id, encoded) \
814 do { \
815 unsigned ncode; \
817 charset = char_charset ((c), (charset_list), &ncode); \
818 if (! charset && ! NILP (charset_list)) \
819 charset = char_charset ((c), Qnil, &ncode); \
820 if (charset) \
822 (id) = CHARSET_ID (charset); \
823 (encoded) = ncode; \
825 } while (0)
827 /* Execute CCL code on characters at SOURCE (length SRC_SIZE). The
828 resulting text goes to a place pointed by DESTINATION, the length
829 of which should not exceed DST_SIZE. As a side effect, how many
830 characters are consumed and produced are recorded in CCL->consumed
831 and CCL->produced, and the contents of CCL registers are updated.
832 If SOURCE or DESTINATION is NULL, only operations on registers are
833 permitted. */
835 #ifdef CCL_DEBUG
836 #define CCL_DEBUG_BACKTRACE_LEN 256
837 int ccl_backtrace_table[CCL_DEBUG_BACKTRACE_LEN];
838 int ccl_backtrace_idx;
841 ccl_debug_hook (int ic)
843 return ic;
846 #endif
848 struct ccl_prog_stack
850 Lisp_Object *ccl_prog; /* Pointer to an array of CCL code. */
851 int ic; /* Instruction Counter. */
852 int eof_ic; /* Instruction Counter to jump on EOF. */
855 /* For the moment, we only support depth 256 of stack. */
856 static struct ccl_prog_stack ccl_prog_stack_struct[256];
858 void
859 ccl_driver (struct ccl_program *ccl, int *source, int *destination, int src_size, int dst_size, Lisp_Object charset_list)
861 register int *reg = ccl->reg;
862 register int ic = ccl->ic;
863 register int code = 0, field1, field2;
864 register Lisp_Object *ccl_prog = ccl->prog;
865 int *src = source, *src_end = src + src_size;
866 int *dst = destination, *dst_end = dst + dst_size;
867 int jump_address;
868 int i = 0, j, op;
869 int stack_idx = ccl->stack_idx;
870 /* Instruction counter of the current CCL code. */
871 int this_ic = 0;
872 struct charset *charset;
873 int eof_ic = ccl->eof_ic;
874 int eof_hit = 0;
876 if (ccl->buf_magnification == 0) /* We can't read/produce any bytes. */
877 dst = NULL;
879 /* Set mapping stack pointer. */
880 mapping_stack_pointer = mapping_stack;
882 #ifdef CCL_DEBUG
883 ccl_backtrace_idx = 0;
884 #endif
886 for (;;)
888 ccl_repeat:
889 #ifdef CCL_DEBUG
890 ccl_backtrace_table[ccl_backtrace_idx++] = ic;
891 if (ccl_backtrace_idx >= CCL_DEBUG_BACKTRACE_LEN)
892 ccl_backtrace_idx = 0;
893 ccl_backtrace_table[ccl_backtrace_idx] = 0;
894 #endif
896 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
898 /* We can't just signal Qquit, instead break the loop as if
899 the whole data is processed. Don't reset Vquit_flag, it
900 must be handled later at a safer place. */
901 if (src)
902 src = source + src_size;
903 ccl->status = CCL_STAT_QUIT;
904 break;
907 this_ic = ic;
908 GET_CCL_CODE (code, ccl_prog, ic++);
909 field1 = code >> 8;
910 field2 = (code & 0xFF) >> 5;
912 #define rrr field2
913 #define RRR (field1 & 7)
914 #define Rrr ((field1 >> 3) & 7)
915 #define ADDR field1
916 #define EXCMD (field1 >> 6)
918 switch (code & 0x1F)
920 case CCL_SetRegister: /* 00000000000000000RRRrrrXXXXX */
921 reg[rrr] = reg[RRR];
922 break;
924 case CCL_SetShortConst: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
925 reg[rrr] = field1;
926 break;
928 case CCL_SetConst: /* 00000000000000000000rrrXXXXX */
929 reg[rrr] = XINT (ccl_prog[ic++]);
930 break;
932 case CCL_SetArray: /* CCCCCCCCCCCCCCCCCCCCRRRrrrXXXXX */
933 i = reg[RRR];
934 j = field1 >> 3;
935 if (0 <= i && i < j)
936 reg[rrr] = XINT (ccl_prog[ic + i]);
937 ic += j;
938 break;
940 case CCL_Jump: /* A--D--D--R--E--S--S-000XXXXX */
941 ic += ADDR;
942 break;
944 case CCL_JumpCond: /* A--D--D--R--E--S--S-rrrXXXXX */
945 if (!reg[rrr])
946 ic += ADDR;
947 break;
949 case CCL_WriteRegisterJump: /* A--D--D--R--E--S--S-rrrXXXXX */
950 i = reg[rrr];
951 CCL_WRITE_CHAR (i);
952 ic += ADDR;
953 break;
955 case CCL_WriteRegisterReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
956 i = reg[rrr];
957 CCL_WRITE_CHAR (i);
958 ic++;
959 CCL_READ_CHAR (reg[rrr]);
960 ic += ADDR - 1;
961 break;
963 case CCL_WriteConstJump: /* A--D--D--R--E--S--S-000XXXXX */
964 i = XINT (ccl_prog[ic]);
965 CCL_WRITE_CHAR (i);
966 ic += ADDR;
967 break;
969 case CCL_WriteConstReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
970 i = XINT (ccl_prog[ic]);
971 CCL_WRITE_CHAR (i);
972 ic++;
973 CCL_READ_CHAR (reg[rrr]);
974 ic += ADDR - 1;
975 break;
977 case CCL_WriteStringJump: /* A--D--D--R--E--S--S-000XXXXX */
978 j = XINT (ccl_prog[ic++]);
979 CCL_WRITE_STRING (j);
980 ic += ADDR - 1;
981 break;
983 case CCL_WriteArrayReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
984 i = reg[rrr];
985 j = XINT (ccl_prog[ic]);
986 if (0 <= i && i < j)
988 i = XINT (ccl_prog[ic + 1 + i]);
989 CCL_WRITE_CHAR (i);
991 ic += j + 2;
992 CCL_READ_CHAR (reg[rrr]);
993 ic += ADDR - (j + 2);
994 break;
996 case CCL_ReadJump: /* A--D--D--R--E--S--S-rrrYYYYY */
997 CCL_READ_CHAR (reg[rrr]);
998 ic += ADDR;
999 break;
1001 case CCL_ReadBranch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1002 CCL_READ_CHAR (reg[rrr]);
1003 /* fall through ... */
1004 case CCL_Branch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1006 int ioff = 0 <= reg[rrr] && reg[rrr] < field1 ? reg[rrr] : field1;
1007 int incr = XINT (ccl_prog[ic + ioff]);
1008 ic += incr;
1010 break;
1012 case CCL_ReadRegister: /* CCCCCCCCCCCCCCCCCCCCrrXXXXX */
1013 while (1)
1015 CCL_READ_CHAR (reg[rrr]);
1016 if (!field1) break;
1017 GET_CCL_CODE (code, ccl_prog, ic++);
1018 field1 = code >> 8;
1019 field2 = (code & 0xFF) >> 5;
1021 break;
1023 case CCL_WriteExprConst: /* 1:00000OPERATION000RRR000XXXXX */
1024 rrr = 7;
1025 i = reg[RRR];
1026 j = XINT (ccl_prog[ic]);
1027 op = field1 >> 6;
1028 jump_address = ic + 1;
1029 goto ccl_set_expr;
1031 case CCL_WriteRegister: /* CCCCCCCCCCCCCCCCCCCrrrXXXXX */
1032 while (1)
1034 i = reg[rrr];
1035 CCL_WRITE_CHAR (i);
1036 if (!field1) break;
1037 GET_CCL_CODE (code, ccl_prog, ic++);
1038 field1 = code >> 8;
1039 field2 = (code & 0xFF) >> 5;
1041 break;
1043 case CCL_WriteExprRegister: /* 1:00000OPERATIONRrrRRR000XXXXX */
1044 rrr = 7;
1045 i = reg[RRR];
1046 j = reg[Rrr];
1047 op = field1 >> 6;
1048 jump_address = ic;
1049 goto ccl_set_expr;
1051 case CCL_Call: /* 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX */
1053 Lisp_Object slot;
1054 int prog_id;
1056 /* If FFF is nonzero, the CCL program ID is in the
1057 following code. */
1058 if (rrr)
1059 prog_id = XINT (ccl_prog[ic++]);
1060 else
1061 prog_id = field1;
1063 if (stack_idx >= 256
1064 || prog_id < 0
1065 || prog_id >= ASIZE (Vccl_program_table)
1066 || (slot = AREF (Vccl_program_table, prog_id), !VECTORP (slot))
1067 || !VECTORP (AREF (slot, 1)))
1069 if (stack_idx > 0)
1071 ccl_prog = ccl_prog_stack_struct[0].ccl_prog;
1072 ic = ccl_prog_stack_struct[0].ic;
1073 eof_ic = ccl_prog_stack_struct[0].eof_ic;
1075 CCL_INVALID_CMD;
1078 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog;
1079 ccl_prog_stack_struct[stack_idx].ic = ic;
1080 ccl_prog_stack_struct[stack_idx].eof_ic = eof_ic;
1081 stack_idx++;
1082 ccl_prog = XVECTOR (AREF (slot, 1))->contents;
1083 ic = CCL_HEADER_MAIN;
1084 eof_ic = XFASTINT (ccl_prog[CCL_HEADER_EOF]);
1086 break;
1088 case CCL_WriteConstString: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1089 if (!rrr)
1090 CCL_WRITE_CHAR (field1);
1091 else
1093 CCL_WRITE_STRING (field1);
1094 ic += (field1 + 2) / 3;
1096 break;
1098 case CCL_WriteArray: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1099 i = reg[rrr];
1100 if (0 <= i && i < field1)
1102 j = XINT (ccl_prog[ic + i]);
1103 CCL_WRITE_CHAR (j);
1105 ic += field1;
1106 break;
1108 case CCL_End: /* 0000000000000000000000XXXXX */
1109 if (stack_idx > 0)
1111 stack_idx--;
1112 ccl_prog = ccl_prog_stack_struct[stack_idx].ccl_prog;
1113 ic = ccl_prog_stack_struct[stack_idx].ic;
1114 eof_ic = ccl_prog_stack_struct[stack_idx].eof_ic;
1115 if (eof_hit)
1116 ic = eof_ic;
1117 break;
1119 if (src)
1120 src = src_end;
1121 /* ccl->ic should points to this command code again to
1122 suppress further processing. */
1123 ic--;
1124 CCL_SUCCESS;
1126 case CCL_ExprSelfConst: /* 00000OPERATION000000rrrXXXXX */
1127 i = XINT (ccl_prog[ic++]);
1128 op = field1 >> 6;
1129 goto ccl_expr_self;
1131 case CCL_ExprSelfReg: /* 00000OPERATION000RRRrrrXXXXX */
1132 i = reg[RRR];
1133 op = field1 >> 6;
1135 ccl_expr_self:
1136 switch (op)
1138 case CCL_PLUS: reg[rrr] += i; break;
1139 case CCL_MINUS: reg[rrr] -= i; break;
1140 case CCL_MUL: reg[rrr] *= i; break;
1141 case CCL_DIV: reg[rrr] /= i; break;
1142 case CCL_MOD: reg[rrr] %= i; break;
1143 case CCL_AND: reg[rrr] &= i; break;
1144 case CCL_OR: reg[rrr] |= i; break;
1145 case CCL_XOR: reg[rrr] ^= i; break;
1146 case CCL_LSH: reg[rrr] <<= i; break;
1147 case CCL_RSH: reg[rrr] >>= i; break;
1148 case CCL_LSH8: reg[rrr] <<= 8; reg[rrr] |= i; break;
1149 case CCL_RSH8: reg[7] = reg[rrr] & 0xFF; reg[rrr] >>= 8; break;
1150 case CCL_DIVMOD: reg[7] = reg[rrr] % i; reg[rrr] /= i; break;
1151 case CCL_LS: reg[rrr] = reg[rrr] < i; break;
1152 case CCL_GT: reg[rrr] = reg[rrr] > i; break;
1153 case CCL_EQ: reg[rrr] = reg[rrr] == i; break;
1154 case CCL_LE: reg[rrr] = reg[rrr] <= i; break;
1155 case CCL_GE: reg[rrr] = reg[rrr] >= i; break;
1156 case CCL_NE: reg[rrr] = reg[rrr] != i; break;
1157 default: CCL_INVALID_CMD;
1159 break;
1161 case CCL_SetExprConst: /* 00000OPERATION000RRRrrrXXXXX */
1162 i = reg[RRR];
1163 j = XINT (ccl_prog[ic++]);
1164 op = field1 >> 6;
1165 jump_address = ic;
1166 goto ccl_set_expr;
1168 case CCL_SetExprReg: /* 00000OPERATIONRrrRRRrrrXXXXX */
1169 i = reg[RRR];
1170 j = reg[Rrr];
1171 op = field1 >> 6;
1172 jump_address = ic;
1173 goto ccl_set_expr;
1175 case CCL_ReadJumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
1176 CCL_READ_CHAR (reg[rrr]);
1177 case CCL_JumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
1178 i = reg[rrr];
1179 jump_address = ic + ADDR;
1180 op = XINT (ccl_prog[ic++]);
1181 j = XINT (ccl_prog[ic++]);
1182 rrr = 7;
1183 goto ccl_set_expr;
1185 case CCL_ReadJumpCondExprReg: /* A--D--D--R--E--S--S-rrrXXXXX */
1186 CCL_READ_CHAR (reg[rrr]);
1187 case CCL_JumpCondExprReg:
1188 i = reg[rrr];
1189 jump_address = ic + ADDR;
1190 op = XINT (ccl_prog[ic++]);
1191 GET_CCL_RANGE (j, ccl_prog, ic++, 0, 7);
1192 j = reg[j];
1193 rrr = 7;
1195 ccl_set_expr:
1196 switch (op)
1198 case CCL_PLUS: reg[rrr] = i + j; break;
1199 case CCL_MINUS: reg[rrr] = i - j; break;
1200 case CCL_MUL: reg[rrr] = i * j; break;
1201 case CCL_DIV: reg[rrr] = i / j; break;
1202 case CCL_MOD: reg[rrr] = i % j; break;
1203 case CCL_AND: reg[rrr] = i & j; break;
1204 case CCL_OR: reg[rrr] = i | j; break;
1205 case CCL_XOR: reg[rrr] = i ^ j; break;
1206 case CCL_LSH: reg[rrr] = i << j; break;
1207 case CCL_RSH: reg[rrr] = i >> j; break;
1208 case CCL_LSH8: reg[rrr] = (i << 8) | j; break;
1209 case CCL_RSH8: reg[rrr] = i >> 8; reg[7] = i & 0xFF; break;
1210 case CCL_DIVMOD: reg[rrr] = i / j; reg[7] = i % j; break;
1211 case CCL_LS: reg[rrr] = i < j; break;
1212 case CCL_GT: reg[rrr] = i > j; break;
1213 case CCL_EQ: reg[rrr] = i == j; break;
1214 case CCL_LE: reg[rrr] = i <= j; break;
1215 case CCL_GE: reg[rrr] = i >= j; break;
1216 case CCL_NE: reg[rrr] = i != j; break;
1217 case CCL_DECODE_SJIS:
1219 i = (i << 8) | j;
1220 SJIS_TO_JIS (i);
1221 reg[rrr] = i >> 8;
1222 reg[7] = i & 0xFF;
1223 break;
1225 case CCL_ENCODE_SJIS:
1227 i = (i << 8) | j;
1228 JIS_TO_SJIS (i);
1229 reg[rrr] = i >> 8;
1230 reg[7] = i & 0xFF;
1231 break;
1233 default: CCL_INVALID_CMD;
1235 code &= 0x1F;
1236 if (code == CCL_WriteExprConst || code == CCL_WriteExprRegister)
1238 i = reg[rrr];
1239 CCL_WRITE_CHAR (i);
1240 ic = jump_address;
1242 else if (!reg[rrr])
1243 ic = jump_address;
1244 break;
1246 case CCL_Extension:
1247 switch (EXCMD)
1249 case CCL_ReadMultibyteChar2:
1250 if (!src)
1251 CCL_INVALID_CMD;
1252 CCL_READ_CHAR (i);
1253 CCL_ENCODE_CHAR (i, charset_list, reg[RRR], reg[rrr]);
1254 break;
1256 case CCL_WriteMultibyteChar2:
1257 if (! dst)
1258 CCL_INVALID_CMD;
1259 i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
1260 CCL_WRITE_CHAR (i);
1261 break;
1263 case CCL_TranslateCharacter:
1264 i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
1265 op = translate_char (GET_TRANSLATION_TABLE (reg[Rrr]), i);
1266 CCL_ENCODE_CHAR (op, charset_list, reg[RRR], reg[rrr]);
1267 break;
1269 case CCL_TranslateCharacterConstTbl:
1271 ptrdiff_t eop;
1272 GET_CCL_RANGE (eop, ccl_prog, ic++, 0,
1273 (VECTORP (Vtranslation_table_vector)
1274 ? ASIZE (Vtranslation_table_vector)
1275 : -1));
1276 i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
1277 op = translate_char (GET_TRANSLATION_TABLE (eop), i);
1278 CCL_ENCODE_CHAR (op, charset_list, reg[RRR], reg[rrr]);
1280 break;
1282 case CCL_LookupIntConstTbl:
1284 ptrdiff_t eop;
1285 struct Lisp_Hash_Table *h;
1286 GET_CCL_RANGE (eop, ccl_prog, ic++, 0,
1287 (VECTORP (Vtranslation_hash_table_vector)
1288 ? ASIZE (Vtranslation_hash_table_vector)
1289 : -1));
1290 h = GET_HASH_TABLE (eop);
1292 eop = hash_lookup (h, make_number (reg[RRR]), NULL);
1293 if (eop >= 0)
1295 Lisp_Object opl;
1296 opl = HASH_VALUE (h, eop);
1297 if (! (IN_INT_RANGE (eop) && CHARACTERP (opl)))
1298 CCL_INVALID_CMD;
1299 reg[RRR] = charset_unicode;
1300 reg[rrr] = eop;
1301 reg[7] = 1; /* r7 true for success */
1303 else
1304 reg[7] = 0;
1306 break;
1308 case CCL_LookupCharConstTbl:
1310 ptrdiff_t eop;
1311 struct Lisp_Hash_Table *h;
1312 GET_CCL_RANGE (eop, ccl_prog, ic++, 0,
1313 (VECTORP (Vtranslation_hash_table_vector)
1314 ? ASIZE (Vtranslation_hash_table_vector)
1315 : -1));
1316 i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
1317 h = GET_HASH_TABLE (eop);
1319 eop = hash_lookup (h, make_number (i), NULL);
1320 if (eop >= 0)
1322 Lisp_Object opl;
1323 opl = HASH_VALUE (h, eop);
1324 if (! (INTEGERP (opl) && IN_INT_RANGE (XINT (opl))))
1325 CCL_INVALID_CMD;
1326 reg[RRR] = XINT (opl);
1327 reg[7] = 1; /* r7 true for success */
1329 else
1330 reg[7] = 0;
1332 break;
1334 case CCL_IterateMultipleMap:
1336 Lisp_Object map, content, attrib, value;
1337 EMACS_INT point;
1338 ptrdiff_t size;
1339 int fin_ic;
1341 j = XINT (ccl_prog[ic++]); /* number of maps. */
1342 fin_ic = ic + j;
1343 op = reg[rrr];
1344 if ((j > reg[RRR]) && (j >= 0))
1346 ic += reg[RRR];
1347 i = reg[RRR];
1349 else
1351 reg[RRR] = -1;
1352 ic = fin_ic;
1353 break;
1356 for (;i < j;i++)
1358 if (!VECTORP (Vcode_conversion_map_vector)) continue;
1359 size = ASIZE (Vcode_conversion_map_vector);
1360 point = XINT (ccl_prog[ic++]);
1361 if (! (0 <= point && point < size)) continue;
1362 map = AREF (Vcode_conversion_map_vector, point);
1364 /* Check map validity. */
1365 if (!CONSP (map)) continue;
1366 map = XCDR (map);
1367 if (!VECTORP (map)) continue;
1368 size = ASIZE (map);
1369 if (size <= 1) continue;
1371 content = AREF (map, 0);
1373 /* check map type,
1374 [STARTPOINT VAL1 VAL2 ...] or
1375 [t ELEMENT STARTPOINT ENDPOINT] */
1376 if (INTEGERP (content))
1378 point = XINT (content);
1379 if (!(point <= op && op - point + 1 < size)) continue;
1380 content = AREF (map, op - point + 1);
1382 else if (EQ (content, Qt))
1384 if (size != 4) continue;
1385 if (INTEGERP (AREF (map, 2))
1386 && XINT (AREF (map, 2)) <= op
1387 && INTEGERP (AREF (map, 3))
1388 && op < XINT (AREF (map, 3)))
1389 content = AREF (map, 1);
1390 else
1391 continue;
1393 else
1394 continue;
1396 if (NILP (content))
1397 continue;
1398 else if (INTEGERP (content) && IN_INT_RANGE (XINT (content)))
1400 reg[RRR] = i;
1401 reg[rrr] = XINT (content);
1402 break;
1404 else if (EQ (content, Qt) || EQ (content, Qlambda))
1406 reg[RRR] = i;
1407 break;
1409 else if (CONSP (content))
1411 attrib = XCAR (content);
1412 value = XCDR (content);
1413 if (! (INTEGERP (attrib) && INTEGERP (value)
1414 && IN_INT_RANGE (XINT (value))))
1415 continue;
1416 reg[RRR] = i;
1417 reg[rrr] = XINT (value);
1418 break;
1420 else if (SYMBOLP (content))
1421 CCL_CALL_FOR_MAP_INSTRUCTION (content, fin_ic);
1422 else
1423 CCL_INVALID_CMD;
1425 if (i == j)
1426 reg[RRR] = -1;
1427 ic = fin_ic;
1429 break;
1431 case CCL_MapMultiple:
1433 Lisp_Object map, content, attrib, value;
1434 EMACS_INT point;
1435 ptrdiff_t size, map_vector_size;
1436 int map_set_rest_length, fin_ic;
1437 int current_ic = this_ic;
1439 /* inhibit recursive call on MapMultiple. */
1440 if (stack_idx_of_map_multiple > 0)
1442 if (stack_idx_of_map_multiple <= stack_idx)
1444 stack_idx_of_map_multiple = 0;
1445 mapping_stack_pointer = mapping_stack;
1446 CCL_INVALID_CMD;
1449 else
1450 mapping_stack_pointer = mapping_stack;
1451 stack_idx_of_map_multiple = 0;
1453 /* Get number of maps and separators. */
1454 map_set_rest_length = XINT (ccl_prog[ic++]);
1456 fin_ic = ic + map_set_rest_length;
1457 op = reg[rrr];
1459 if ((map_set_rest_length > reg[RRR]) && (reg[RRR] >= 0))
1461 ic += reg[RRR];
1462 i = reg[RRR];
1463 map_set_rest_length -= i;
1465 else
1467 ic = fin_ic;
1468 reg[RRR] = -1;
1469 mapping_stack_pointer = mapping_stack;
1470 break;
1473 if (mapping_stack_pointer <= (mapping_stack + 1))
1475 /* Set up initial state. */
1476 mapping_stack_pointer = mapping_stack;
1477 PUSH_MAPPING_STACK (0, op);
1478 reg[RRR] = -1;
1480 else
1482 /* Recover after calling other ccl program. */
1483 int orig_op;
1485 POP_MAPPING_STACK (map_set_rest_length, orig_op);
1486 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1487 switch (op)
1489 case -1:
1490 /* Regard it as Qnil. */
1491 op = orig_op;
1492 i++;
1493 ic++;
1494 map_set_rest_length--;
1495 break;
1496 case -2:
1497 /* Regard it as Qt. */
1498 op = reg[rrr];
1499 i++;
1500 ic++;
1501 map_set_rest_length--;
1502 break;
1503 case -3:
1504 /* Regard it as Qlambda. */
1505 op = orig_op;
1506 i += map_set_rest_length;
1507 ic += map_set_rest_length;
1508 map_set_rest_length = 0;
1509 break;
1510 default:
1511 /* Regard it as normal mapping. */
1512 i += map_set_rest_length;
1513 ic += map_set_rest_length;
1514 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1515 break;
1518 if (!VECTORP (Vcode_conversion_map_vector))
1519 CCL_INVALID_CMD;
1520 map_vector_size = ASIZE (Vcode_conversion_map_vector);
1522 do {
1523 for (;map_set_rest_length > 0;i++, ic++, map_set_rest_length--)
1525 point = XINT (ccl_prog[ic]);
1526 if (point < 0)
1528 /* +1 is for including separator. */
1529 point = -point + 1;
1530 if (mapping_stack_pointer
1531 >= &mapping_stack[MAX_MAP_SET_LEVEL])
1532 CCL_INVALID_CMD;
1533 PUSH_MAPPING_STACK (map_set_rest_length - point,
1534 reg[rrr]);
1535 map_set_rest_length = point;
1536 reg[rrr] = op;
1537 continue;
1540 if (point >= map_vector_size) continue;
1541 map = AREF (Vcode_conversion_map_vector, point);
1543 /* Check map validity. */
1544 if (!CONSP (map)) continue;
1545 map = XCDR (map);
1546 if (!VECTORP (map)) continue;
1547 size = ASIZE (map);
1548 if (size <= 1) continue;
1550 content = AREF (map, 0);
1552 /* check map type,
1553 [STARTPOINT VAL1 VAL2 ...] or
1554 [t ELEMENT STARTPOINT ENDPOINT] */
1555 if (INTEGERP (content))
1557 point = XINT (content);
1558 if (!(point <= op && op - point + 1 < size)) continue;
1559 content = AREF (map, op - point + 1);
1561 else if (EQ (content, Qt))
1563 if (size != 4) continue;
1564 if (INTEGERP (AREF (map, 2))
1565 && XINT (AREF (map, 2)) <= op
1566 && INTEGERP (AREF (map, 3))
1567 && op < XINT (AREF (map, 3)))
1568 content = AREF (map, 1);
1569 else
1570 continue;
1572 else
1573 continue;
1575 if (NILP (content))
1576 continue;
1578 reg[RRR] = i;
1579 if (INTEGERP (content) && IN_INT_RANGE (XINT (content)))
1581 op = XINT (content);
1582 i += map_set_rest_length - 1;
1583 ic += map_set_rest_length - 1;
1584 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1585 map_set_rest_length++;
1587 else if (CONSP (content))
1589 attrib = XCAR (content);
1590 value = XCDR (content);
1591 if (! (INTEGERP (attrib) && INTEGERP (value)
1592 && IN_INT_RANGE (XINT (value))))
1593 continue;
1594 op = XINT (value);
1595 i += map_set_rest_length - 1;
1596 ic += map_set_rest_length - 1;
1597 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1598 map_set_rest_length++;
1600 else if (EQ (content, Qt))
1602 op = reg[rrr];
1604 else if (EQ (content, Qlambda))
1606 i += map_set_rest_length;
1607 ic += map_set_rest_length;
1608 break;
1610 else if (SYMBOLP (content))
1612 if (mapping_stack_pointer
1613 >= &mapping_stack[MAX_MAP_SET_LEVEL])
1614 CCL_INVALID_CMD;
1615 PUSH_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1616 PUSH_MAPPING_STACK (map_set_rest_length, op);
1617 stack_idx_of_map_multiple = stack_idx + 1;
1618 CCL_CALL_FOR_MAP_INSTRUCTION (content, current_ic);
1620 else
1621 CCL_INVALID_CMD;
1623 if (mapping_stack_pointer <= (mapping_stack + 1))
1624 break;
1625 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1626 i += map_set_rest_length;
1627 ic += map_set_rest_length;
1628 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1629 } while (1);
1631 ic = fin_ic;
1633 reg[rrr] = op;
1634 break;
1636 case CCL_MapSingle:
1638 Lisp_Object map, attrib, value, content;
1639 int point;
1640 j = XINT (ccl_prog[ic++]); /* map_id */
1641 op = reg[rrr];
1642 if (! (VECTORP (Vcode_conversion_map_vector)
1643 && j < ASIZE (Vcode_conversion_map_vector)))
1645 reg[RRR] = -1;
1646 break;
1648 map = AREF (Vcode_conversion_map_vector, j);
1649 if (!CONSP (map))
1651 reg[RRR] = -1;
1652 break;
1654 map = XCDR (map);
1655 if (! (VECTORP (map)
1656 && 0 < ASIZE (map)
1657 && INTEGERP (AREF (map, 0))
1658 && XINT (AREF (map, 0)) <= op
1659 && op - XINT (AREF (map, 0)) + 1 < ASIZE (map)))
1661 reg[RRR] = -1;
1662 break;
1664 point = op - XINT (AREF (map, 0)) + 1;
1665 reg[RRR] = 0;
1666 content = AREF (map, point);
1667 if (NILP (content))
1668 reg[RRR] = -1;
1669 else if (TYPE_RANGED_INTEGERP (int, content))
1670 reg[rrr] = XINT (content);
1671 else if (EQ (content, Qt));
1672 else if (CONSP (content))
1674 attrib = XCAR (content);
1675 value = XCDR (content);
1676 if (!INTEGERP (attrib)
1677 || !TYPE_RANGED_INTEGERP (int, value))
1678 continue;
1679 reg[rrr] = XINT (value);
1680 break;
1682 else if (SYMBOLP (content))
1683 CCL_CALL_FOR_MAP_INSTRUCTION (content, ic);
1684 else
1685 reg[RRR] = -1;
1687 break;
1689 default:
1690 CCL_INVALID_CMD;
1692 break;
1694 default:
1695 CCL_INVALID_CMD;
1699 ccl_error_handler:
1700 if (destination)
1702 /* We can insert an error message only if DESTINATION is
1703 specified and we still have a room to store the message
1704 there. */
1705 char msg[256];
1706 int msglen;
1708 if (!dst)
1709 dst = destination;
1711 switch (ccl->status)
1713 case CCL_STAT_INVALID_CMD:
1714 msglen = sprintf (msg,
1715 "\nCCL: Invalid command %x (ccl_code = %x) at %d.",
1716 code & 0x1Fu, code + 0u, this_ic);
1717 #ifdef CCL_DEBUG
1719 int i = ccl_backtrace_idx - 1;
1720 int j;
1722 if (dst + msglen <= (dst_bytes ? dst_end : src))
1724 memcpy (dst, msg, msglen);
1725 dst += msglen;
1728 for (j = 0; j < CCL_DEBUG_BACKTRACE_LEN; j++, i--)
1730 if (i < 0) i = CCL_DEBUG_BACKTRACE_LEN - 1;
1731 if (ccl_backtrace_table[i] == 0)
1732 break;
1733 msglen = sprintf (msg, " %d", ccl_backtrace_table[i]);
1734 if (dst + msglen > (dst_bytes ? dst_end : src))
1735 break;
1736 memcpy (dst, msg, msglen);
1737 dst += msglen;
1739 goto ccl_finish;
1741 #endif
1742 break;
1744 case CCL_STAT_QUIT:
1745 msglen = ccl->quit_silently ? 0 : sprintf (msg, "\nCCL: Quitted.");
1746 break;
1748 default:
1749 msglen = sprintf (msg, "\nCCL: Unknown error type (%d)", ccl->status);
1752 if (msglen <= dst_end - dst)
1754 for (i = 0; i < msglen; i++)
1755 *dst++ = msg[i];
1758 if (ccl->status == CCL_STAT_INVALID_CMD)
1760 #if 0 /* If the remaining bytes contain 0x80..0x9F, copying them
1761 results in an invalid multibyte sequence. */
1763 /* Copy the remaining source data. */
1764 int i = src_end - src;
1765 if (dst_bytes && (dst_end - dst) < i)
1766 i = dst_end - dst;
1767 memcpy (dst, src, i);
1768 src += i;
1769 dst += i;
1770 #else
1771 /* Signal that we've consumed everything. */
1772 src = src_end;
1773 #endif
1777 ccl_finish:
1778 ccl->ic = ic;
1779 ccl->stack_idx = stack_idx;
1780 ccl->prog = ccl_prog;
1781 ccl->consumed = src - source;
1782 if (dst != NULL)
1783 ccl->produced = dst - destination;
1784 else
1785 ccl->produced = 0;
1788 /* Resolve symbols in the specified CCL code (Lisp vector). This
1789 function converts symbols of code conversion maps and character
1790 translation tables embedded in the CCL code into their ID numbers.
1792 The return value is a new vector in which all symbols are resolved,
1793 Qt if resolving of some symbol failed,
1794 or nil if CCL contains invalid data. */
1796 static Lisp_Object
1797 resolve_symbol_ccl_program (Lisp_Object ccl)
1799 int i, veclen, unresolved = 0;
1800 Lisp_Object result, contents, val;
1802 if (! (CCL_HEADER_MAIN < ASIZE (ccl) && ASIZE (ccl) <= INT_MAX))
1803 return Qnil;
1804 result = Fcopy_sequence (ccl);
1805 veclen = ASIZE (result);
1807 for (i = 0; i < veclen; i++)
1809 contents = AREF (result, i);
1810 if (TYPE_RANGED_INTEGERP (int, contents))
1811 continue;
1812 else if (CONSP (contents)
1813 && SYMBOLP (XCAR (contents))
1814 && SYMBOLP (XCDR (contents)))
1816 /* This is the new style for embedding symbols. The form is
1817 (SYMBOL . PROPERTY). (get SYMBOL PROPERTY) should give
1818 an index number. */
1819 val = Fget (XCAR (contents), XCDR (contents));
1820 if (RANGED_INTEGERP (0, val, INT_MAX))
1821 ASET (result, i, val);
1822 else
1823 unresolved = 1;
1824 continue;
1826 else if (SYMBOLP (contents))
1828 /* This is the old style for embedding symbols. This style
1829 may lead to a bug if, for instance, a translation table
1830 and a code conversion map have the same name. */
1831 val = Fget (contents, Qtranslation_table_id);
1832 if (RANGED_INTEGERP (0, val, INT_MAX))
1833 ASET (result, i, val);
1834 else
1836 val = Fget (contents, Qcode_conversion_map_id);
1837 if (RANGED_INTEGERP (0, val, INT_MAX))
1838 ASET (result, i, val);
1839 else
1841 val = Fget (contents, Qccl_program_idx);
1842 if (RANGED_INTEGERP (0, val, INT_MAX))
1843 ASET (result, i, val);
1844 else
1845 unresolved = 1;
1848 continue;
1850 return Qnil;
1853 if (! (0 <= XINT (AREF (result, CCL_HEADER_BUF_MAG))
1854 && ASCENDING_ORDER (0, XINT (AREF (result, CCL_HEADER_EOF)),
1855 ASIZE (ccl))))
1856 return Qnil;
1858 return (unresolved ? Qt : result);
1861 /* Return the compiled code (vector) of CCL program CCL_PROG.
1862 CCL_PROG is a name (symbol) of the program or already compiled
1863 code. If necessary, resolve symbols in the compiled code to index
1864 numbers. If we failed to get the compiled code or to resolve
1865 symbols, return Qnil. */
1867 static Lisp_Object
1868 ccl_get_compiled_code (Lisp_Object ccl_prog, ptrdiff_t *idx)
1870 Lisp_Object val, slot;
1872 if (VECTORP (ccl_prog))
1874 val = resolve_symbol_ccl_program (ccl_prog);
1875 *idx = -1;
1876 return (VECTORP (val) ? val : Qnil);
1878 if (!SYMBOLP (ccl_prog))
1879 return Qnil;
1881 val = Fget (ccl_prog, Qccl_program_idx);
1882 if (! NATNUMP (val)
1883 || XINT (val) >= ASIZE (Vccl_program_table))
1884 return Qnil;
1885 slot = AREF (Vccl_program_table, XINT (val));
1886 if (! VECTORP (slot)
1887 || ASIZE (slot) != 4
1888 || ! VECTORP (AREF (slot, 1)))
1889 return Qnil;
1890 *idx = XINT (val);
1891 if (NILP (AREF (slot, 2)))
1893 val = resolve_symbol_ccl_program (AREF (slot, 1));
1894 if (! VECTORP (val))
1895 return Qnil;
1896 ASET (slot, 1, val);
1897 ASET (slot, 2, Qt);
1899 return AREF (slot, 1);
1902 /* Setup fields of the structure pointed by CCL appropriately for the
1903 execution of CCL program CCL_PROG. CCL_PROG is the name (symbol)
1904 of the CCL program or the already compiled code (vector).
1905 Return true iff successful.
1907 If CCL_PROG is nil, just reset the structure pointed by CCL. */
1908 bool
1909 setup_ccl_program (struct ccl_program *ccl, Lisp_Object ccl_prog)
1911 if (! NILP (ccl_prog))
1913 struct Lisp_Vector *vp;
1915 ccl_prog = ccl_get_compiled_code (ccl_prog, &ccl->idx);
1916 if (! VECTORP (ccl_prog))
1917 return false;
1918 vp = XVECTOR (ccl_prog);
1919 ccl->size = vp->header.size;
1920 ccl->prog = vp->contents;
1921 ccl->eof_ic = XINT (vp->contents[CCL_HEADER_EOF]);
1922 ccl->buf_magnification = XINT (vp->contents[CCL_HEADER_BUF_MAG]);
1923 if (ccl->idx >= 0)
1925 Lisp_Object slot;
1927 slot = AREF (Vccl_program_table, ccl->idx);
1928 ASET (slot, 3, Qnil);
1931 ccl->ic = CCL_HEADER_MAIN;
1932 memset (ccl->reg, 0, sizeof ccl->reg);
1933 ccl->last_block = false;
1934 ccl->status = 0;
1935 ccl->stack_idx = 0;
1936 ccl->quit_silently = false;
1937 return true;
1941 DEFUN ("ccl-program-p", Fccl_program_p, Sccl_program_p, 1, 1, 0,
1942 doc: /* Return t if OBJECT is a CCL program name or a compiled CCL program code.
1943 See the documentation of `define-ccl-program' for the detail of CCL program. */)
1944 (Lisp_Object object)
1946 Lisp_Object val;
1948 if (VECTORP (object))
1950 val = resolve_symbol_ccl_program (object);
1951 return (VECTORP (val) ? Qt : Qnil);
1953 if (!SYMBOLP (object))
1954 return Qnil;
1956 val = Fget (object, Qccl_program_idx);
1957 return ((! NATNUMP (val)
1958 || XINT (val) >= ASIZE (Vccl_program_table))
1959 ? Qnil : Qt);
1962 DEFUN ("ccl-execute", Fccl_execute, Sccl_execute, 2, 2, 0,
1963 doc: /* Execute CCL-PROGRAM with registers initialized by REGISTERS.
1965 CCL-PROGRAM is a CCL program name (symbol)
1966 or compiled code generated by `ccl-compile' (for backward compatibility.
1967 In the latter case, the execution overhead is bigger than in the former).
1968 No I/O commands should appear in CCL-PROGRAM.
1970 REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value
1971 for the Nth register.
1973 As side effect, each element of REGISTERS holds the value of
1974 the corresponding register after the execution.
1976 See the documentation of `define-ccl-program' for a definition of CCL
1977 programs. */)
1978 (Lisp_Object ccl_prog, Lisp_Object reg)
1980 struct ccl_program ccl;
1981 int i;
1983 if (! setup_ccl_program (&ccl, ccl_prog))
1984 error ("Invalid CCL program");
1986 CHECK_VECTOR (reg);
1987 if (ASIZE (reg) != 8)
1988 error ("Length of vector REGISTERS is not 8");
1990 for (i = 0; i < 8; i++)
1991 ccl.reg[i] = (TYPE_RANGED_INTEGERP (int, AREF (reg, i))
1992 ? XINT (AREF (reg, i))
1993 : 0);
1995 ccl_driver (&ccl, NULL, NULL, 0, 0, Qnil);
1996 QUIT;
1997 if (ccl.status != CCL_STAT_SUCCESS)
1998 error ("Error in CCL program at %dth code", ccl.ic);
2000 for (i = 0; i < 8; i++)
2001 ASET (reg, i, make_number (ccl.reg[i]));
2002 return Qnil;
2005 DEFUN ("ccl-execute-on-string", Fccl_execute_on_string, Sccl_execute_on_string,
2006 3, 5, 0,
2007 doc: /* Execute CCL-PROGRAM with initial STATUS on STRING.
2009 CCL-PROGRAM is a symbol registered by `register-ccl-program',
2010 or a compiled code generated by `ccl-compile' (for backward compatibility,
2011 in this case, the execution is slower).
2013 Read buffer is set to STRING, and write buffer is allocated automatically.
2015 STATUS is a vector of [R0 R1 ... R7 IC], where
2016 R0..R7 are initial values of corresponding registers,
2017 IC is the instruction counter specifying from where to start the program.
2018 If R0..R7 are nil, they are initialized to 0.
2019 If IC is nil, it is initialized to head of the CCL program.
2021 If optional 4th arg CONTINUE is non-nil, keep IC on read operation
2022 when read buffer is exhausted, else, IC is always set to the end of
2023 CCL-PROGRAM on exit.
2025 It returns the contents of write buffer as a string,
2026 and as side effect, STATUS is updated.
2027 If the optional 5th arg UNIBYTE-P is non-nil, the returned string
2028 is a unibyte string. By default it is a multibyte string.
2030 See the documentation of `define-ccl-program' for the detail of CCL program.
2031 usage: (ccl-execute-on-string CCL-PROGRAM STATUS STRING &optional CONTINUE UNIBYTE-P) */)
2032 (Lisp_Object ccl_prog, Lisp_Object status, Lisp_Object str, Lisp_Object contin, Lisp_Object unibyte_p)
2034 Lisp_Object val;
2035 struct ccl_program ccl;
2036 int i;
2037 ptrdiff_t outbufsize;
2038 unsigned char *outbuf, *outp;
2039 ptrdiff_t str_chars, str_bytes;
2040 #define CCL_EXECUTE_BUF_SIZE 1024
2041 int source[CCL_EXECUTE_BUF_SIZE], destination[CCL_EXECUTE_BUF_SIZE];
2042 ptrdiff_t consumed_chars, consumed_bytes, produced_chars;
2043 int buf_magnification;
2045 if (! setup_ccl_program (&ccl, ccl_prog))
2046 error ("Invalid CCL program");
2048 CHECK_VECTOR (status);
2049 if (ASIZE (status) != 9)
2050 error ("Length of vector STATUS is not 9");
2051 CHECK_STRING (str);
2053 str_chars = SCHARS (str);
2054 str_bytes = SBYTES (str);
2056 for (i = 0; i < 8; i++)
2058 if (NILP (AREF (status, i)))
2059 ASET (status, i, make_number (0));
2060 if (TYPE_RANGED_INTEGERP (int, AREF (status, i)))
2061 ccl.reg[i] = XINT (AREF (status, i));
2063 if (INTEGERP (AREF (status, i)))
2065 i = XFASTINT (AREF (status, 8));
2066 if (ccl.ic < i && i < ccl.size)
2067 ccl.ic = i;
2070 buf_magnification = ccl.buf_magnification ? ccl.buf_magnification : 1;
2071 outbufsize = str_bytes;
2072 if (INT_MULTIPLY_WRAPV (buf_magnification, outbufsize, &outbufsize)
2073 || INT_ADD_WRAPV (256, outbufsize, &outbufsize))
2074 memory_full (SIZE_MAX);
2075 outp = outbuf = xmalloc (outbufsize);
2077 consumed_chars = consumed_bytes = 0;
2078 produced_chars = 0;
2079 while (1)
2081 const unsigned char *p = SDATA (str) + consumed_bytes;
2082 const unsigned char *endp = SDATA (str) + str_bytes;
2083 int j = 0;
2084 int *src, src_size;
2086 if (endp - p == str_chars - consumed_chars)
2087 while (j < CCL_EXECUTE_BUF_SIZE && p < endp)
2088 source[j++] = *p++;
2089 else
2090 while (j < CCL_EXECUTE_BUF_SIZE && p < endp)
2091 source[j++] = STRING_CHAR_ADVANCE (p);
2092 consumed_chars += j;
2093 consumed_bytes = p - SDATA (str);
2095 if (consumed_bytes == str_bytes)
2096 ccl.last_block = NILP (contin);
2097 src = source;
2098 src_size = j;
2099 while (1)
2101 int max_expansion = NILP (unibyte_p) ? MAX_MULTIBYTE_LENGTH : 1;
2102 ptrdiff_t offset, shortfall;
2103 ccl_driver (&ccl, src, destination, src_size, CCL_EXECUTE_BUF_SIZE,
2104 Qnil);
2105 produced_chars += ccl.produced;
2106 offset = outp - outbuf;
2107 shortfall = ccl.produced * max_expansion - (outbufsize - offset);
2108 if (shortfall > 0)
2110 outbuf = xpalloc (outbuf, &outbufsize, shortfall, -1, 1);
2111 outp = outbuf + offset;
2113 if (NILP (unibyte_p))
2115 for (j = 0; j < ccl.produced; j++)
2116 CHAR_STRING_ADVANCE (destination[j], outp);
2118 else
2120 for (j = 0; j < ccl.produced; j++)
2121 *outp++ = destination[j];
2123 src += ccl.consumed;
2124 src_size -= ccl.consumed;
2125 if (ccl.status != CCL_STAT_SUSPEND_BY_DST)
2126 break;
2129 if (ccl.status != CCL_STAT_SUSPEND_BY_SRC
2130 || str_chars == consumed_chars)
2131 break;
2134 if (ccl.status == CCL_STAT_INVALID_CMD)
2135 error ("Error in CCL program at %dth code", ccl.ic);
2136 if (ccl.status == CCL_STAT_QUIT)
2137 error ("CCL program interrupted at %dth code", ccl.ic);
2139 for (i = 0; i < 8; i++)
2140 ASET (status, i, make_number (ccl.reg[i]));
2141 ASET (status, 8, make_number (ccl.ic));
2143 val = make_specified_string ((const char *) outbuf, produced_chars,
2144 outp - outbuf, NILP (unibyte_p));
2145 xfree (outbuf);
2147 return val;
2150 DEFUN ("register-ccl-program", Fregister_ccl_program, Sregister_ccl_program,
2151 2, 2, 0,
2152 doc: /* Register CCL program CCL-PROG as NAME in `ccl-program-table'.
2153 CCL-PROG should be a compiled CCL program (vector), or nil.
2154 If it is nil, just reserve NAME as a CCL program name.
2155 Return index number of the registered CCL program. */)
2156 (Lisp_Object name, Lisp_Object ccl_prog)
2158 ptrdiff_t len = ASIZE (Vccl_program_table);
2159 ptrdiff_t idx;
2160 Lisp_Object resolved;
2162 CHECK_SYMBOL (name);
2163 resolved = Qnil;
2164 if (!NILP (ccl_prog))
2166 CHECK_VECTOR (ccl_prog);
2167 resolved = resolve_symbol_ccl_program (ccl_prog);
2168 if (NILP (resolved))
2169 error ("Error in CCL program");
2170 if (VECTORP (resolved))
2172 ccl_prog = resolved;
2173 resolved = Qt;
2175 else
2176 resolved = Qnil;
2179 for (idx = 0; idx < len; idx++)
2181 Lisp_Object slot;
2183 slot = AREF (Vccl_program_table, idx);
2184 if (!VECTORP (slot))
2185 /* This is the first unused slot. Register NAME here. */
2186 break;
2188 if (EQ (name, AREF (slot, 0)))
2190 /* Update this slot. */
2191 ASET (slot, 1, ccl_prog);
2192 ASET (slot, 2, resolved);
2193 ASET (slot, 3, Qt);
2194 return make_number (idx);
2198 if (idx == len)
2199 /* Extend the table. */
2200 Vccl_program_table = larger_vector (Vccl_program_table, 1, -1);
2203 Lisp_Object elt = make_uninit_vector (4);
2205 ASET (elt, 0, name);
2206 ASET (elt, 1, ccl_prog);
2207 ASET (elt, 2, resolved);
2208 ASET (elt, 3, Qt);
2209 ASET (Vccl_program_table, idx, elt);
2212 Fput (name, Qccl_program_idx, make_number (idx));
2213 return make_number (idx);
2216 /* Register code conversion map.
2217 A code conversion map consists of numbers, Qt, Qnil, and Qlambda.
2218 The first element is the start code point.
2219 The other elements are mapped numbers.
2220 Symbol t means to map to an original number before mapping.
2221 Symbol nil means that the corresponding element is empty.
2222 Symbol lambda means to terminate mapping here.
2225 DEFUN ("register-code-conversion-map", Fregister_code_conversion_map,
2226 Sregister_code_conversion_map,
2227 2, 2, 0,
2228 doc: /* Register SYMBOL as code conversion map MAP.
2229 Return index number of the registered map. */)
2230 (Lisp_Object symbol, Lisp_Object map)
2232 ptrdiff_t len;
2233 ptrdiff_t i;
2234 Lisp_Object idx;
2236 CHECK_SYMBOL (symbol);
2237 CHECK_VECTOR (map);
2238 if (! VECTORP (Vcode_conversion_map_vector))
2239 error ("Invalid code-conversion-map-vector");
2241 len = ASIZE (Vcode_conversion_map_vector);
2243 for (i = 0; i < len; i++)
2245 Lisp_Object slot = AREF (Vcode_conversion_map_vector, i);
2247 if (!CONSP (slot))
2248 break;
2250 if (EQ (symbol, XCAR (slot)))
2252 idx = make_number (i);
2253 XSETCDR (slot, map);
2254 Fput (symbol, Qcode_conversion_map, map);
2255 Fput (symbol, Qcode_conversion_map_id, idx);
2256 return idx;
2260 if (i == len)
2261 Vcode_conversion_map_vector = larger_vector (Vcode_conversion_map_vector,
2262 1, -1);
2264 idx = make_number (i);
2265 Fput (symbol, Qcode_conversion_map, map);
2266 Fput (symbol, Qcode_conversion_map_id, idx);
2267 ASET (Vcode_conversion_map_vector, i, Fcons (symbol, map));
2268 return idx;
2272 void
2273 syms_of_ccl (void)
2275 staticpro (&Vccl_program_table);
2276 Vccl_program_table = Fmake_vector (make_number (32), Qnil);
2278 DEFSYM (Qccl, "ccl");
2279 DEFSYM (Qcclp, "cclp");
2281 /* Symbols of ccl program have this property, a value of the property
2282 is an index for Vccl_program_table. */
2283 DEFSYM (Qccl_program_idx, "ccl-program-idx");
2285 /* These symbols are properties which associate with code conversion
2286 map and their ID respectively. */
2287 DEFSYM (Qcode_conversion_map, "code-conversion-map");
2288 DEFSYM (Qcode_conversion_map_id, "code-conversion-map-id");
2290 DEFVAR_LISP ("code-conversion-map-vector", Vcode_conversion_map_vector,
2291 doc: /* Vector of code conversion maps. */);
2292 Vcode_conversion_map_vector = Fmake_vector (make_number (16), Qnil);
2294 DEFVAR_LISP ("font-ccl-encoder-alist", Vfont_ccl_encoder_alist,
2295 doc: /* Alist of fontname patterns vs corresponding CCL program.
2296 Each element looks like (REGEXP . CCL-CODE),
2297 where CCL-CODE is a compiled CCL program.
2298 When a font whose name matches REGEXP is used for displaying a character,
2299 CCL-CODE is executed to calculate the code point in the font
2300 from the charset number and position code(s) of the character which are set
2301 in CCL registers R0, R1, and R2 before the execution.
2302 The code point in the font is set in CCL registers R1 and R2
2303 when the execution terminated.
2304 If the font is single-byte font, the register R2 is not used. */);
2305 Vfont_ccl_encoder_alist = Qnil;
2307 DEFVAR_LISP ("translation-hash-table-vector", Vtranslation_hash_table_vector,
2308 doc: /* Vector containing all translation hash tables ever defined.
2309 Comprises pairs (SYMBOL . TABLE) where SYMBOL and TABLE were set up by calls
2310 to `define-translation-hash-table'. The vector is indexed by the table id
2311 used by CCL. */);
2312 Vtranslation_hash_table_vector = Qnil;
2314 defsubr (&Sccl_program_p);
2315 defsubr (&Sccl_execute);
2316 defsubr (&Sccl_execute_on_string);
2317 defsubr (&Sregister_ccl_program);
2318 defsubr (&Sregister_code_conversion_map);