* lisp/simple.el (kill-new): Fix logic of kill-do-not-save-duplicates.
[emacs.git] / src / alloc.c
blobc1f1094d15f36fcff268d317d4c54a1c2b59bb06
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
24 #include <setjmp.h>
26 #ifdef STDC_HEADERS
27 #include <stddef.h> /* For offsetof, used by PSEUDOVECSIZE. */
28 #endif
30 #ifdef ALLOC_DEBUG
31 #undef INLINE
32 #endif
34 #include <signal.h>
36 #ifdef HAVE_GTK_AND_PTHREAD
37 #include <pthread.h>
38 #endif
40 /* This file is part of the core Lisp implementation, and thus must
41 deal with the real data structures. If the Lisp implementation is
42 replaced, this file likely will not be used. */
44 #undef HIDE_LISP_IMPLEMENTATION
45 #include "lisp.h"
46 #include "process.h"
47 #include "intervals.h"
48 #include "puresize.h"
49 #include "buffer.h"
50 #include "window.h"
51 #include "keyboard.h"
52 #include "frame.h"
53 #include "blockinput.h"
54 #include "character.h"
55 #include "syssignal.h"
56 #include "termhooks.h" /* For struct terminal. */
57 #include <setjmp.h>
59 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
60 memory. Can do this only if using gmalloc.c. */
62 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
63 #undef GC_MALLOC_CHECK
64 #endif
66 #ifdef HAVE_UNISTD_H
67 #include <unistd.h>
68 #else
69 extern POINTER_TYPE *sbrk ();
70 #endif
72 #ifdef HAVE_FCNTL_H
73 #define INCLUDED_FCNTL
74 #include <fcntl.h>
75 #endif
76 #ifndef O_WRONLY
77 #define O_WRONLY 1
78 #endif
80 #ifdef WINDOWSNT
81 #include <fcntl.h>
82 #include "w32.h"
83 #endif
85 #ifdef DOUG_LEA_MALLOC
87 #include <malloc.h>
88 /* malloc.h #defines this as size_t, at least in glibc2. */
89 #ifndef __malloc_size_t
90 #define __malloc_size_t int
91 #endif
93 /* Specify maximum number of areas to mmap. It would be nice to use a
94 value that explicitly means "no limit". */
96 #define MMAP_MAX_AREAS 100000000
98 #else /* not DOUG_LEA_MALLOC */
100 /* The following come from gmalloc.c. */
102 #define __malloc_size_t size_t
103 extern __malloc_size_t _bytes_used;
104 extern __malloc_size_t __malloc_extra_blocks;
106 #endif /* not DOUG_LEA_MALLOC */
108 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
110 /* When GTK uses the file chooser dialog, different backends can be loaded
111 dynamically. One such a backend is the Gnome VFS backend that gets loaded
112 if you run Gnome. That backend creates several threads and also allocates
113 memory with malloc.
115 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
116 functions below are called from malloc, there is a chance that one
117 of these threads preempts the Emacs main thread and the hook variables
118 end up in an inconsistent state. So we have a mutex to prevent that (note
119 that the backend handles concurrent access to malloc within its own threads
120 but Emacs code running in the main thread is not included in that control).
122 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
123 happens in one of the backend threads we will have two threads that tries
124 to run Emacs code at once, and the code is not prepared for that.
125 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
127 static pthread_mutex_t alloc_mutex;
129 #define BLOCK_INPUT_ALLOC \
130 do \
132 if (pthread_equal (pthread_self (), main_thread)) \
133 BLOCK_INPUT; \
134 pthread_mutex_lock (&alloc_mutex); \
136 while (0)
137 #define UNBLOCK_INPUT_ALLOC \
138 do \
140 pthread_mutex_unlock (&alloc_mutex); \
141 if (pthread_equal (pthread_self (), main_thread)) \
142 UNBLOCK_INPUT; \
144 while (0)
146 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
148 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
149 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
151 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
153 /* Value of _bytes_used, when spare_memory was freed. */
155 static __malloc_size_t bytes_used_when_full;
157 static __malloc_size_t bytes_used_when_reconsidered;
159 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
160 to a struct Lisp_String. */
162 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
163 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
164 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
166 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
167 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
168 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
170 /* Value is the number of bytes/chars of S, a pointer to a struct
171 Lisp_String. This must be used instead of STRING_BYTES (S) or
172 S->size during GC, because S->size contains the mark bit for
173 strings. */
175 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
176 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
178 /* Number of bytes of consing done since the last gc. */
180 int consing_since_gc;
182 /* Count the amount of consing of various sorts of space. */
184 EMACS_INT cons_cells_consed;
185 EMACS_INT floats_consed;
186 EMACS_INT vector_cells_consed;
187 EMACS_INT symbols_consed;
188 EMACS_INT string_chars_consed;
189 EMACS_INT misc_objects_consed;
190 EMACS_INT intervals_consed;
191 EMACS_INT strings_consed;
193 /* Minimum number of bytes of consing since GC before next GC. */
195 EMACS_INT gc_cons_threshold;
197 /* Similar minimum, computed from Vgc_cons_percentage. */
199 EMACS_INT gc_relative_threshold;
201 static Lisp_Object Vgc_cons_percentage;
203 /* Minimum number of bytes of consing since GC before next GC,
204 when memory is full. */
206 EMACS_INT memory_full_cons_threshold;
208 /* Nonzero during GC. */
210 int gc_in_progress;
212 /* Nonzero means abort if try to GC.
213 This is for code which is written on the assumption that
214 no GC will happen, so as to verify that assumption. */
216 int abort_on_gc;
218 /* Nonzero means display messages at beginning and end of GC. */
220 int garbage_collection_messages;
222 #ifndef VIRT_ADDR_VARIES
223 extern
224 #endif /* VIRT_ADDR_VARIES */
225 int malloc_sbrk_used;
227 #ifndef VIRT_ADDR_VARIES
228 extern
229 #endif /* VIRT_ADDR_VARIES */
230 int malloc_sbrk_unused;
232 /* Number of live and free conses etc. */
234 static int total_conses, total_markers, total_symbols, total_vector_size;
235 static int total_free_conses, total_free_markers, total_free_symbols;
236 static int total_free_floats, total_floats;
238 /* Points to memory space allocated as "spare", to be freed if we run
239 out of memory. We keep one large block, four cons-blocks, and
240 two string blocks. */
242 static char *spare_memory[7];
244 /* Amount of spare memory to keep in large reserve block. */
246 #define SPARE_MEMORY (1 << 14)
248 /* Number of extra blocks malloc should get when it needs more core. */
250 static int malloc_hysteresis;
252 /* Non-nil means defun should do purecopy on the function definition. */
254 Lisp_Object Vpurify_flag;
256 /* Non-nil means we are handling a memory-full error. */
258 Lisp_Object Vmemory_full;
260 /* Initialize it to a nonzero value to force it into data space
261 (rather than bss space). That way unexec will remap it into text
262 space (pure), on some systems. We have not implemented the
263 remapping on more recent systems because this is less important
264 nowadays than in the days of small memories and timesharing. */
266 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
267 #define PUREBEG (char *) pure
269 /* Pointer to the pure area, and its size. */
271 static char *purebeg;
272 static size_t pure_size;
274 /* Number of bytes of pure storage used before pure storage overflowed.
275 If this is non-zero, this implies that an overflow occurred. */
277 static size_t pure_bytes_used_before_overflow;
279 /* Value is non-zero if P points into pure space. */
281 #define PURE_POINTER_P(P) \
282 (((PNTR_COMPARISON_TYPE) (P) \
283 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
284 && ((PNTR_COMPARISON_TYPE) (P) \
285 >= (PNTR_COMPARISON_TYPE) purebeg))
287 /* Total number of bytes allocated in pure storage. */
289 EMACS_INT pure_bytes_used;
291 /* Index in pure at which next pure Lisp object will be allocated.. */
293 static EMACS_INT pure_bytes_used_lisp;
295 /* Number of bytes allocated for non-Lisp objects in pure storage. */
297 static EMACS_INT pure_bytes_used_non_lisp;
299 /* If nonzero, this is a warning delivered by malloc and not yet
300 displayed. */
302 char *pending_malloc_warning;
304 /* Pre-computed signal argument for use when memory is exhausted. */
306 Lisp_Object Vmemory_signal_data;
308 /* Maximum amount of C stack to save when a GC happens. */
310 #ifndef MAX_SAVE_STACK
311 #define MAX_SAVE_STACK 16000
312 #endif
314 /* Buffer in which we save a copy of the C stack at each GC. */
316 static char *stack_copy;
317 static int stack_copy_size;
319 /* Non-zero means ignore malloc warnings. Set during initialization.
320 Currently not used. */
322 static int ignore_warnings;
324 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
326 /* Hook run after GC has finished. */
328 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
330 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
331 EMACS_INT gcs_done; /* accumulated GCs */
333 static void mark_buffer P_ ((Lisp_Object));
334 static void mark_terminals P_ ((void));
335 extern void mark_kboards P_ ((void));
336 extern void mark_ttys P_ ((void));
337 extern void mark_backtrace P_ ((void));
338 static void gc_sweep P_ ((void));
339 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
340 static void mark_face_cache P_ ((struct face_cache *));
342 #ifdef HAVE_WINDOW_SYSTEM
343 extern void mark_fringe_data P_ ((void));
344 #endif /* HAVE_WINDOW_SYSTEM */
346 static struct Lisp_String *allocate_string P_ ((void));
347 static void compact_small_strings P_ ((void));
348 static void free_large_strings P_ ((void));
349 static void sweep_strings P_ ((void));
351 extern int message_enable_multibyte;
353 /* When scanning the C stack for live Lisp objects, Emacs keeps track
354 of what memory allocated via lisp_malloc is intended for what
355 purpose. This enumeration specifies the type of memory. */
357 enum mem_type
359 MEM_TYPE_NON_LISP,
360 MEM_TYPE_BUFFER,
361 MEM_TYPE_CONS,
362 MEM_TYPE_STRING,
363 MEM_TYPE_MISC,
364 MEM_TYPE_SYMBOL,
365 MEM_TYPE_FLOAT,
366 /* We used to keep separate mem_types for subtypes of vectors such as
367 process, hash_table, frame, terminal, and window, but we never made
368 use of the distinction, so it only caused source-code complexity
369 and runtime slowdown. Minor but pointless. */
370 MEM_TYPE_VECTORLIKE
373 static POINTER_TYPE *lisp_align_malloc P_ ((size_t, enum mem_type));
374 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
375 void refill_memory_reserve ();
378 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
380 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
381 #include <stdio.h> /* For fprintf. */
382 #endif
384 /* A unique object in pure space used to make some Lisp objects
385 on free lists recognizable in O(1). */
387 static Lisp_Object Vdead;
389 #ifdef GC_MALLOC_CHECK
391 enum mem_type allocated_mem_type;
392 static int dont_register_blocks;
394 #endif /* GC_MALLOC_CHECK */
396 /* A node in the red-black tree describing allocated memory containing
397 Lisp data. Each such block is recorded with its start and end
398 address when it is allocated, and removed from the tree when it
399 is freed.
401 A red-black tree is a balanced binary tree with the following
402 properties:
404 1. Every node is either red or black.
405 2. Every leaf is black.
406 3. If a node is red, then both of its children are black.
407 4. Every simple path from a node to a descendant leaf contains
408 the same number of black nodes.
409 5. The root is always black.
411 When nodes are inserted into the tree, or deleted from the tree,
412 the tree is "fixed" so that these properties are always true.
414 A red-black tree with N internal nodes has height at most 2
415 log(N+1). Searches, insertions and deletions are done in O(log N).
416 Please see a text book about data structures for a detailed
417 description of red-black trees. Any book worth its salt should
418 describe them. */
420 struct mem_node
422 /* Children of this node. These pointers are never NULL. When there
423 is no child, the value is MEM_NIL, which points to a dummy node. */
424 struct mem_node *left, *right;
426 /* The parent of this node. In the root node, this is NULL. */
427 struct mem_node *parent;
429 /* Start and end of allocated region. */
430 void *start, *end;
432 /* Node color. */
433 enum {MEM_BLACK, MEM_RED} color;
435 /* Memory type. */
436 enum mem_type type;
439 /* Base address of stack. Set in main. */
441 Lisp_Object *stack_base;
443 /* Root of the tree describing allocated Lisp memory. */
445 static struct mem_node *mem_root;
447 /* Lowest and highest known address in the heap. */
449 static void *min_heap_address, *max_heap_address;
451 /* Sentinel node of the tree. */
453 static struct mem_node mem_z;
454 #define MEM_NIL &mem_z
456 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
457 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT));
458 static void lisp_free P_ ((POINTER_TYPE *));
459 static void mark_stack P_ ((void));
460 static int live_vector_p P_ ((struct mem_node *, void *));
461 static int live_buffer_p P_ ((struct mem_node *, void *));
462 static int live_string_p P_ ((struct mem_node *, void *));
463 static int live_cons_p P_ ((struct mem_node *, void *));
464 static int live_symbol_p P_ ((struct mem_node *, void *));
465 static int live_float_p P_ ((struct mem_node *, void *));
466 static int live_misc_p P_ ((struct mem_node *, void *));
467 static void mark_maybe_object P_ ((Lisp_Object));
468 static void mark_memory P_ ((void *, void *, int));
469 static void mem_init P_ ((void));
470 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
471 static void mem_insert_fixup P_ ((struct mem_node *));
472 static void mem_rotate_left P_ ((struct mem_node *));
473 static void mem_rotate_right P_ ((struct mem_node *));
474 static void mem_delete P_ ((struct mem_node *));
475 static void mem_delete_fixup P_ ((struct mem_node *));
476 static INLINE struct mem_node *mem_find P_ ((void *));
479 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
480 static void check_gcpros P_ ((void));
481 #endif
483 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
485 /* Recording what needs to be marked for gc. */
487 struct gcpro *gcprolist;
489 /* Addresses of staticpro'd variables. Initialize it to a nonzero
490 value; otherwise some compilers put it into BSS. */
492 #define NSTATICS 0x640
493 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
495 /* Index of next unused slot in staticvec. */
497 static int staticidx = 0;
499 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
502 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
503 ALIGNMENT must be a power of 2. */
505 #define ALIGN(ptr, ALIGNMENT) \
506 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
507 & ~((ALIGNMENT) - 1)))
511 /************************************************************************
512 Malloc
513 ************************************************************************/
515 /* Function malloc calls this if it finds we are near exhausting storage. */
517 void
518 malloc_warning (str)
519 char *str;
521 pending_malloc_warning = str;
525 /* Display an already-pending malloc warning. */
527 void
528 display_malloc_warning ()
530 call3 (intern ("display-warning"),
531 intern ("alloc"),
532 build_string (pending_malloc_warning),
533 intern ("emergency"));
534 pending_malloc_warning = 0;
538 #ifdef DOUG_LEA_MALLOC
539 # define BYTES_USED (mallinfo ().uordblks)
540 #else
541 # define BYTES_USED _bytes_used
542 #endif
544 /* Called if we can't allocate relocatable space for a buffer. */
546 void
547 buffer_memory_full ()
549 /* If buffers use the relocating allocator, no need to free
550 spare_memory, because we may have plenty of malloc space left
551 that we could get, and if we don't, the malloc that fails will
552 itself cause spare_memory to be freed. If buffers don't use the
553 relocating allocator, treat this like any other failing
554 malloc. */
556 #ifndef REL_ALLOC
557 memory_full ();
558 #endif
560 /* This used to call error, but if we've run out of memory, we could
561 get infinite recursion trying to build the string. */
562 xsignal (Qnil, Vmemory_signal_data);
566 #ifdef XMALLOC_OVERRUN_CHECK
568 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
569 and a 16 byte trailer around each block.
571 The header consists of 12 fixed bytes + a 4 byte integer contaning the
572 original block size, while the trailer consists of 16 fixed bytes.
574 The header is used to detect whether this block has been allocated
575 through these functions -- as it seems that some low-level libc
576 functions may bypass the malloc hooks.
580 #define XMALLOC_OVERRUN_CHECK_SIZE 16
582 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
583 { 0x9a, 0x9b, 0xae, 0xaf,
584 0xbf, 0xbe, 0xce, 0xcf,
585 0xea, 0xeb, 0xec, 0xed };
587 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
588 { 0xaa, 0xab, 0xac, 0xad,
589 0xba, 0xbb, 0xbc, 0xbd,
590 0xca, 0xcb, 0xcc, 0xcd,
591 0xda, 0xdb, 0xdc, 0xdd };
593 /* Macros to insert and extract the block size in the header. */
595 #define XMALLOC_PUT_SIZE(ptr, size) \
596 (ptr[-1] = (size & 0xff), \
597 ptr[-2] = ((size >> 8) & 0xff), \
598 ptr[-3] = ((size >> 16) & 0xff), \
599 ptr[-4] = ((size >> 24) & 0xff))
601 #define XMALLOC_GET_SIZE(ptr) \
602 (size_t)((unsigned)(ptr[-1]) | \
603 ((unsigned)(ptr[-2]) << 8) | \
604 ((unsigned)(ptr[-3]) << 16) | \
605 ((unsigned)(ptr[-4]) << 24))
608 /* The call depth in overrun_check functions. For example, this might happen:
609 xmalloc()
610 overrun_check_malloc()
611 -> malloc -> (via hook)_-> emacs_blocked_malloc
612 -> overrun_check_malloc
613 call malloc (hooks are NULL, so real malloc is called).
614 malloc returns 10000.
615 add overhead, return 10016.
616 <- (back in overrun_check_malloc)
617 add overhead again, return 10032
618 xmalloc returns 10032.
620 (time passes).
622 xfree(10032)
623 overrun_check_free(10032)
624 decrease overhed
625 free(10016) <- crash, because 10000 is the original pointer. */
627 static int check_depth;
629 /* Like malloc, but wraps allocated block with header and trailer. */
631 POINTER_TYPE *
632 overrun_check_malloc (size)
633 size_t size;
635 register unsigned char *val;
636 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
638 val = (unsigned char *) malloc (size + overhead);
639 if (val && check_depth == 1)
641 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
642 val += XMALLOC_OVERRUN_CHECK_SIZE;
643 XMALLOC_PUT_SIZE(val, size);
644 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
646 --check_depth;
647 return (POINTER_TYPE *)val;
651 /* Like realloc, but checks old block for overrun, and wraps new block
652 with header and trailer. */
654 POINTER_TYPE *
655 overrun_check_realloc (block, size)
656 POINTER_TYPE *block;
657 size_t size;
659 register unsigned char *val = (unsigned char *)block;
660 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
662 if (val
663 && check_depth == 1
664 && bcmp (xmalloc_overrun_check_header,
665 val - XMALLOC_OVERRUN_CHECK_SIZE,
666 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
668 size_t osize = XMALLOC_GET_SIZE (val);
669 if (bcmp (xmalloc_overrun_check_trailer,
670 val + osize,
671 XMALLOC_OVERRUN_CHECK_SIZE))
672 abort ();
673 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
674 val -= XMALLOC_OVERRUN_CHECK_SIZE;
675 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
678 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
680 if (val && check_depth == 1)
682 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
683 val += XMALLOC_OVERRUN_CHECK_SIZE;
684 XMALLOC_PUT_SIZE(val, size);
685 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
687 --check_depth;
688 return (POINTER_TYPE *)val;
691 /* Like free, but checks block for overrun. */
693 void
694 overrun_check_free (block)
695 POINTER_TYPE *block;
697 unsigned char *val = (unsigned char *)block;
699 ++check_depth;
700 if (val
701 && check_depth == 1
702 && bcmp (xmalloc_overrun_check_header,
703 val - XMALLOC_OVERRUN_CHECK_SIZE,
704 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
706 size_t osize = XMALLOC_GET_SIZE (val);
707 if (bcmp (xmalloc_overrun_check_trailer,
708 val + osize,
709 XMALLOC_OVERRUN_CHECK_SIZE))
710 abort ();
711 #ifdef XMALLOC_CLEAR_FREE_MEMORY
712 val -= XMALLOC_OVERRUN_CHECK_SIZE;
713 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
714 #else
715 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
716 val -= XMALLOC_OVERRUN_CHECK_SIZE;
717 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
718 #endif
721 free (val);
722 --check_depth;
725 #undef malloc
726 #undef realloc
727 #undef free
728 #define malloc overrun_check_malloc
729 #define realloc overrun_check_realloc
730 #define free overrun_check_free
731 #endif
733 #ifdef SYNC_INPUT
734 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
735 there's no need to block input around malloc. */
736 #define MALLOC_BLOCK_INPUT ((void)0)
737 #define MALLOC_UNBLOCK_INPUT ((void)0)
738 #else
739 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
740 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
741 #endif
743 /* Like malloc but check for no memory and block interrupt input.. */
745 POINTER_TYPE *
746 xmalloc (size)
747 size_t size;
749 register POINTER_TYPE *val;
751 MALLOC_BLOCK_INPUT;
752 val = (POINTER_TYPE *) malloc (size);
753 MALLOC_UNBLOCK_INPUT;
755 if (!val && size)
756 memory_full ();
757 return val;
761 /* Like realloc but check for no memory and block interrupt input.. */
763 POINTER_TYPE *
764 xrealloc (block, size)
765 POINTER_TYPE *block;
766 size_t size;
768 register POINTER_TYPE *val;
770 MALLOC_BLOCK_INPUT;
771 /* We must call malloc explicitly when BLOCK is 0, since some
772 reallocs don't do this. */
773 if (! block)
774 val = (POINTER_TYPE *) malloc (size);
775 else
776 val = (POINTER_TYPE *) realloc (block, size);
777 MALLOC_UNBLOCK_INPUT;
779 if (!val && size) memory_full ();
780 return val;
784 /* Like free but block interrupt input. */
786 void
787 xfree (block)
788 POINTER_TYPE *block;
790 if (!block)
791 return;
792 MALLOC_BLOCK_INPUT;
793 free (block);
794 MALLOC_UNBLOCK_INPUT;
795 /* We don't call refill_memory_reserve here
796 because that duplicates doing so in emacs_blocked_free
797 and the criterion should go there. */
801 /* Like strdup, but uses xmalloc. */
803 char *
804 xstrdup (s)
805 const char *s;
807 size_t len = strlen (s) + 1;
808 char *p = (char *) xmalloc (len);
809 bcopy (s, p, len);
810 return p;
814 /* Unwind for SAFE_ALLOCA */
816 Lisp_Object
817 safe_alloca_unwind (arg)
818 Lisp_Object arg;
820 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
822 p->dogc = 0;
823 xfree (p->pointer);
824 p->pointer = 0;
825 free_misc (arg);
826 return Qnil;
830 /* Like malloc but used for allocating Lisp data. NBYTES is the
831 number of bytes to allocate, TYPE describes the intended use of the
832 allcated memory block (for strings, for conses, ...). */
834 #ifndef USE_LSB_TAG
835 static void *lisp_malloc_loser;
836 #endif
838 static POINTER_TYPE *
839 lisp_malloc (nbytes, type)
840 size_t nbytes;
841 enum mem_type type;
843 register void *val;
845 MALLOC_BLOCK_INPUT;
847 #ifdef GC_MALLOC_CHECK
848 allocated_mem_type = type;
849 #endif
851 val = (void *) malloc (nbytes);
853 #ifndef USE_LSB_TAG
854 /* If the memory just allocated cannot be addressed thru a Lisp
855 object's pointer, and it needs to be,
856 that's equivalent to running out of memory. */
857 if (val && type != MEM_TYPE_NON_LISP)
859 Lisp_Object tem;
860 XSETCONS (tem, (char *) val + nbytes - 1);
861 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
863 lisp_malloc_loser = val;
864 free (val);
865 val = 0;
868 #endif
870 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
871 if (val && type != MEM_TYPE_NON_LISP)
872 mem_insert (val, (char *) val + nbytes, type);
873 #endif
875 MALLOC_UNBLOCK_INPUT;
876 if (!val && nbytes)
877 memory_full ();
878 return val;
881 /* Free BLOCK. This must be called to free memory allocated with a
882 call to lisp_malloc. */
884 static void
885 lisp_free (block)
886 POINTER_TYPE *block;
888 MALLOC_BLOCK_INPUT;
889 free (block);
890 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
891 mem_delete (mem_find (block));
892 #endif
893 MALLOC_UNBLOCK_INPUT;
896 /* Allocation of aligned blocks of memory to store Lisp data. */
897 /* The entry point is lisp_align_malloc which returns blocks of at most */
898 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
900 /* Use posix_memalloc if the system has it and we're using the system's
901 malloc (because our gmalloc.c routines don't have posix_memalign although
902 its memalloc could be used). */
903 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
904 #define USE_POSIX_MEMALIGN 1
905 #endif
907 /* BLOCK_ALIGN has to be a power of 2. */
908 #define BLOCK_ALIGN (1 << 10)
910 /* Padding to leave at the end of a malloc'd block. This is to give
911 malloc a chance to minimize the amount of memory wasted to alignment.
912 It should be tuned to the particular malloc library used.
913 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
914 posix_memalign on the other hand would ideally prefer a value of 4
915 because otherwise, there's 1020 bytes wasted between each ablocks.
916 In Emacs, testing shows that those 1020 can most of the time be
917 efficiently used by malloc to place other objects, so a value of 0 can
918 still preferable unless you have a lot of aligned blocks and virtually
919 nothing else. */
920 #define BLOCK_PADDING 0
921 #define BLOCK_BYTES \
922 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
924 /* Internal data structures and constants. */
926 #define ABLOCKS_SIZE 16
928 /* An aligned block of memory. */
929 struct ablock
931 union
933 char payload[BLOCK_BYTES];
934 struct ablock *next_free;
935 } x;
936 /* `abase' is the aligned base of the ablocks. */
937 /* It is overloaded to hold the virtual `busy' field that counts
938 the number of used ablock in the parent ablocks.
939 The first ablock has the `busy' field, the others have the `abase'
940 field. To tell the difference, we assume that pointers will have
941 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
942 is used to tell whether the real base of the parent ablocks is `abase'
943 (if not, the word before the first ablock holds a pointer to the
944 real base). */
945 struct ablocks *abase;
946 /* The padding of all but the last ablock is unused. The padding of
947 the last ablock in an ablocks is not allocated. */
948 #if BLOCK_PADDING
949 char padding[BLOCK_PADDING];
950 #endif
953 /* A bunch of consecutive aligned blocks. */
954 struct ablocks
956 struct ablock blocks[ABLOCKS_SIZE];
959 /* Size of the block requested from malloc or memalign. */
960 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
962 #define ABLOCK_ABASE(block) \
963 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
964 ? (struct ablocks *)(block) \
965 : (block)->abase)
967 /* Virtual `busy' field. */
968 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
970 /* Pointer to the (not necessarily aligned) malloc block. */
971 #ifdef USE_POSIX_MEMALIGN
972 #define ABLOCKS_BASE(abase) (abase)
973 #else
974 #define ABLOCKS_BASE(abase) \
975 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
976 #endif
978 /* The list of free ablock. */
979 static struct ablock *free_ablock;
981 /* Allocate an aligned block of nbytes.
982 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
983 smaller or equal to BLOCK_BYTES. */
984 static POINTER_TYPE *
985 lisp_align_malloc (nbytes, type)
986 size_t nbytes;
987 enum mem_type type;
989 void *base, *val;
990 struct ablocks *abase;
992 eassert (nbytes <= BLOCK_BYTES);
994 MALLOC_BLOCK_INPUT;
996 #ifdef GC_MALLOC_CHECK
997 allocated_mem_type = type;
998 #endif
1000 if (!free_ablock)
1002 int i;
1003 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
1005 #ifdef DOUG_LEA_MALLOC
1006 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1007 because mapped region contents are not preserved in
1008 a dumped Emacs. */
1009 mallopt (M_MMAP_MAX, 0);
1010 #endif
1012 #ifdef USE_POSIX_MEMALIGN
1014 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1015 if (err)
1016 base = NULL;
1017 abase = base;
1019 #else
1020 base = malloc (ABLOCKS_BYTES);
1021 abase = ALIGN (base, BLOCK_ALIGN);
1022 #endif
1024 if (base == 0)
1026 MALLOC_UNBLOCK_INPUT;
1027 memory_full ();
1030 aligned = (base == abase);
1031 if (!aligned)
1032 ((void**)abase)[-1] = base;
1034 #ifdef DOUG_LEA_MALLOC
1035 /* Back to a reasonable maximum of mmap'ed areas. */
1036 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1037 #endif
1039 #ifndef USE_LSB_TAG
1040 /* If the memory just allocated cannot be addressed thru a Lisp
1041 object's pointer, and it needs to be, that's equivalent to
1042 running out of memory. */
1043 if (type != MEM_TYPE_NON_LISP)
1045 Lisp_Object tem;
1046 char *end = (char *) base + ABLOCKS_BYTES - 1;
1047 XSETCONS (tem, end);
1048 if ((char *) XCONS (tem) != end)
1050 lisp_malloc_loser = base;
1051 free (base);
1052 MALLOC_UNBLOCK_INPUT;
1053 memory_full ();
1056 #endif
1058 /* Initialize the blocks and put them on the free list.
1059 Is `base' was not properly aligned, we can't use the last block. */
1060 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1062 abase->blocks[i].abase = abase;
1063 abase->blocks[i].x.next_free = free_ablock;
1064 free_ablock = &abase->blocks[i];
1066 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1068 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1069 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1070 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1071 eassert (ABLOCKS_BASE (abase) == base);
1072 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1075 abase = ABLOCK_ABASE (free_ablock);
1076 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1077 val = free_ablock;
1078 free_ablock = free_ablock->x.next_free;
1080 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1081 if (val && type != MEM_TYPE_NON_LISP)
1082 mem_insert (val, (char *) val + nbytes, type);
1083 #endif
1085 MALLOC_UNBLOCK_INPUT;
1086 if (!val && nbytes)
1087 memory_full ();
1089 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1090 return val;
1093 static void
1094 lisp_align_free (block)
1095 POINTER_TYPE *block;
1097 struct ablock *ablock = block;
1098 struct ablocks *abase = ABLOCK_ABASE (ablock);
1100 MALLOC_BLOCK_INPUT;
1101 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1102 mem_delete (mem_find (block));
1103 #endif
1104 /* Put on free list. */
1105 ablock->x.next_free = free_ablock;
1106 free_ablock = ablock;
1107 /* Update busy count. */
1108 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1110 if (2 > (long) ABLOCKS_BUSY (abase))
1111 { /* All the blocks are free. */
1112 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1113 struct ablock **tem = &free_ablock;
1114 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1116 while (*tem)
1118 if (*tem >= (struct ablock *) abase && *tem < atop)
1120 i++;
1121 *tem = (*tem)->x.next_free;
1123 else
1124 tem = &(*tem)->x.next_free;
1126 eassert ((aligned & 1) == aligned);
1127 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1128 #ifdef USE_POSIX_MEMALIGN
1129 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1130 #endif
1131 free (ABLOCKS_BASE (abase));
1133 MALLOC_UNBLOCK_INPUT;
1136 /* Return a new buffer structure allocated from the heap with
1137 a call to lisp_malloc. */
1139 struct buffer *
1140 allocate_buffer ()
1142 struct buffer *b
1143 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1144 MEM_TYPE_BUFFER);
1145 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1146 XSETPVECTYPE (b, PVEC_BUFFER);
1147 return b;
1151 #ifndef SYSTEM_MALLOC
1153 /* Arranging to disable input signals while we're in malloc.
1155 This only works with GNU malloc. To help out systems which can't
1156 use GNU malloc, all the calls to malloc, realloc, and free
1157 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1158 pair; unfortunately, we have no idea what C library functions
1159 might call malloc, so we can't really protect them unless you're
1160 using GNU malloc. Fortunately, most of the major operating systems
1161 can use GNU malloc. */
1163 #ifndef SYNC_INPUT
1164 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1165 there's no need to block input around malloc. */
1167 #ifndef DOUG_LEA_MALLOC
1168 extern void * (*__malloc_hook) P_ ((size_t, const void *));
1169 extern void * (*__realloc_hook) P_ ((void *, size_t, const void *));
1170 extern void (*__free_hook) P_ ((void *, const void *));
1171 /* Else declared in malloc.h, perhaps with an extra arg. */
1172 #endif /* DOUG_LEA_MALLOC */
1173 static void * (*old_malloc_hook) P_ ((size_t, const void *));
1174 static void * (*old_realloc_hook) P_ ((void *, size_t, const void*));
1175 static void (*old_free_hook) P_ ((void*, const void*));
1177 /* This function is used as the hook for free to call. */
1179 static void
1180 emacs_blocked_free (ptr, ptr2)
1181 void *ptr;
1182 const void *ptr2;
1184 BLOCK_INPUT_ALLOC;
1186 #ifdef GC_MALLOC_CHECK
1187 if (ptr)
1189 struct mem_node *m;
1191 m = mem_find (ptr);
1192 if (m == MEM_NIL || m->start != ptr)
1194 fprintf (stderr,
1195 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1196 abort ();
1198 else
1200 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1201 mem_delete (m);
1204 #endif /* GC_MALLOC_CHECK */
1206 __free_hook = old_free_hook;
1207 free (ptr);
1209 /* If we released our reserve (due to running out of memory),
1210 and we have a fair amount free once again,
1211 try to set aside another reserve in case we run out once more. */
1212 if (! NILP (Vmemory_full)
1213 /* Verify there is enough space that even with the malloc
1214 hysteresis this call won't run out again.
1215 The code here is correct as long as SPARE_MEMORY
1216 is substantially larger than the block size malloc uses. */
1217 && (bytes_used_when_full
1218 > ((bytes_used_when_reconsidered = BYTES_USED)
1219 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1220 refill_memory_reserve ();
1222 __free_hook = emacs_blocked_free;
1223 UNBLOCK_INPUT_ALLOC;
1227 /* This function is the malloc hook that Emacs uses. */
1229 static void *
1230 emacs_blocked_malloc (size, ptr)
1231 size_t size;
1232 const void *ptr;
1234 void *value;
1236 BLOCK_INPUT_ALLOC;
1237 __malloc_hook = old_malloc_hook;
1238 #ifdef DOUG_LEA_MALLOC
1239 /* Segfaults on my system. --lorentey */
1240 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1241 #else
1242 __malloc_extra_blocks = malloc_hysteresis;
1243 #endif
1245 value = (void *) malloc (size);
1247 #ifdef GC_MALLOC_CHECK
1249 struct mem_node *m = mem_find (value);
1250 if (m != MEM_NIL)
1252 fprintf (stderr, "Malloc returned %p which is already in use\n",
1253 value);
1254 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1255 m->start, m->end, (char *) m->end - (char *) m->start,
1256 m->type);
1257 abort ();
1260 if (!dont_register_blocks)
1262 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1263 allocated_mem_type = MEM_TYPE_NON_LISP;
1266 #endif /* GC_MALLOC_CHECK */
1268 __malloc_hook = emacs_blocked_malloc;
1269 UNBLOCK_INPUT_ALLOC;
1271 /* fprintf (stderr, "%p malloc\n", value); */
1272 return value;
1276 /* This function is the realloc hook that Emacs uses. */
1278 static void *
1279 emacs_blocked_realloc (ptr, size, ptr2)
1280 void *ptr;
1281 size_t size;
1282 const void *ptr2;
1284 void *value;
1286 BLOCK_INPUT_ALLOC;
1287 __realloc_hook = old_realloc_hook;
1289 #ifdef GC_MALLOC_CHECK
1290 if (ptr)
1292 struct mem_node *m = mem_find (ptr);
1293 if (m == MEM_NIL || m->start != ptr)
1295 fprintf (stderr,
1296 "Realloc of %p which wasn't allocated with malloc\n",
1297 ptr);
1298 abort ();
1301 mem_delete (m);
1304 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1306 /* Prevent malloc from registering blocks. */
1307 dont_register_blocks = 1;
1308 #endif /* GC_MALLOC_CHECK */
1310 value = (void *) realloc (ptr, size);
1312 #ifdef GC_MALLOC_CHECK
1313 dont_register_blocks = 0;
1316 struct mem_node *m = mem_find (value);
1317 if (m != MEM_NIL)
1319 fprintf (stderr, "Realloc returns memory that is already in use\n");
1320 abort ();
1323 /* Can't handle zero size regions in the red-black tree. */
1324 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1327 /* fprintf (stderr, "%p <- realloc\n", value); */
1328 #endif /* GC_MALLOC_CHECK */
1330 __realloc_hook = emacs_blocked_realloc;
1331 UNBLOCK_INPUT_ALLOC;
1333 return value;
1337 #ifdef HAVE_GTK_AND_PTHREAD
1338 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1339 normal malloc. Some thread implementations need this as they call
1340 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1341 calls malloc because it is the first call, and we have an endless loop. */
1343 void
1344 reset_malloc_hooks ()
1346 __free_hook = old_free_hook;
1347 __malloc_hook = old_malloc_hook;
1348 __realloc_hook = old_realloc_hook;
1350 #endif /* HAVE_GTK_AND_PTHREAD */
1353 /* Called from main to set up malloc to use our hooks. */
1355 void
1356 uninterrupt_malloc ()
1358 #ifdef HAVE_GTK_AND_PTHREAD
1359 #ifdef DOUG_LEA_MALLOC
1360 pthread_mutexattr_t attr;
1362 /* GLIBC has a faster way to do this, but lets keep it portable.
1363 This is according to the Single UNIX Specification. */
1364 pthread_mutexattr_init (&attr);
1365 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1366 pthread_mutex_init (&alloc_mutex, &attr);
1367 #else /* !DOUG_LEA_MALLOC */
1368 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1369 and the bundled gmalloc.c doesn't require it. */
1370 pthread_mutex_init (&alloc_mutex, NULL);
1371 #endif /* !DOUG_LEA_MALLOC */
1372 #endif /* HAVE_GTK_AND_PTHREAD */
1374 if (__free_hook != emacs_blocked_free)
1375 old_free_hook = __free_hook;
1376 __free_hook = emacs_blocked_free;
1378 if (__malloc_hook != emacs_blocked_malloc)
1379 old_malloc_hook = __malloc_hook;
1380 __malloc_hook = emacs_blocked_malloc;
1382 if (__realloc_hook != emacs_blocked_realloc)
1383 old_realloc_hook = __realloc_hook;
1384 __realloc_hook = emacs_blocked_realloc;
1387 #endif /* not SYNC_INPUT */
1388 #endif /* not SYSTEM_MALLOC */
1392 /***********************************************************************
1393 Interval Allocation
1394 ***********************************************************************/
1396 /* Number of intervals allocated in an interval_block structure.
1397 The 1020 is 1024 minus malloc overhead. */
1399 #define INTERVAL_BLOCK_SIZE \
1400 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1402 /* Intervals are allocated in chunks in form of an interval_block
1403 structure. */
1405 struct interval_block
1407 /* Place `intervals' first, to preserve alignment. */
1408 struct interval intervals[INTERVAL_BLOCK_SIZE];
1409 struct interval_block *next;
1412 /* Current interval block. Its `next' pointer points to older
1413 blocks. */
1415 static struct interval_block *interval_block;
1417 /* Index in interval_block above of the next unused interval
1418 structure. */
1420 static int interval_block_index;
1422 /* Number of free and live intervals. */
1424 static int total_free_intervals, total_intervals;
1426 /* List of free intervals. */
1428 INTERVAL interval_free_list;
1430 /* Total number of interval blocks now in use. */
1432 static int n_interval_blocks;
1435 /* Initialize interval allocation. */
1437 static void
1438 init_intervals ()
1440 interval_block = NULL;
1441 interval_block_index = INTERVAL_BLOCK_SIZE;
1442 interval_free_list = 0;
1443 n_interval_blocks = 0;
1447 /* Return a new interval. */
1449 INTERVAL
1450 make_interval ()
1452 INTERVAL val;
1454 /* eassert (!handling_signal); */
1456 MALLOC_BLOCK_INPUT;
1458 if (interval_free_list)
1460 val = interval_free_list;
1461 interval_free_list = INTERVAL_PARENT (interval_free_list);
1463 else
1465 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1467 register struct interval_block *newi;
1469 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1470 MEM_TYPE_NON_LISP);
1472 newi->next = interval_block;
1473 interval_block = newi;
1474 interval_block_index = 0;
1475 n_interval_blocks++;
1477 val = &interval_block->intervals[interval_block_index++];
1480 MALLOC_UNBLOCK_INPUT;
1482 consing_since_gc += sizeof (struct interval);
1483 intervals_consed++;
1484 RESET_INTERVAL (val);
1485 val->gcmarkbit = 0;
1486 return val;
1490 /* Mark Lisp objects in interval I. */
1492 static void
1493 mark_interval (i, dummy)
1494 register INTERVAL i;
1495 Lisp_Object dummy;
1497 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1498 i->gcmarkbit = 1;
1499 mark_object (i->plist);
1503 /* Mark the interval tree rooted in TREE. Don't call this directly;
1504 use the macro MARK_INTERVAL_TREE instead. */
1506 static void
1507 mark_interval_tree (tree)
1508 register INTERVAL tree;
1510 /* No need to test if this tree has been marked already; this
1511 function is always called through the MARK_INTERVAL_TREE macro,
1512 which takes care of that. */
1514 traverse_intervals_noorder (tree, mark_interval, Qnil);
1518 /* Mark the interval tree rooted in I. */
1520 #define MARK_INTERVAL_TREE(i) \
1521 do { \
1522 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1523 mark_interval_tree (i); \
1524 } while (0)
1527 #define UNMARK_BALANCE_INTERVALS(i) \
1528 do { \
1529 if (! NULL_INTERVAL_P (i)) \
1530 (i) = balance_intervals (i); \
1531 } while (0)
1534 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1535 can't create number objects in macros. */
1536 #ifndef make_number
1537 Lisp_Object
1538 make_number (n)
1539 EMACS_INT n;
1541 Lisp_Object obj;
1542 obj.s.val = n;
1543 obj.s.type = Lisp_Int;
1544 return obj;
1546 #endif
1548 /***********************************************************************
1549 String Allocation
1550 ***********************************************************************/
1552 /* Lisp_Strings are allocated in string_block structures. When a new
1553 string_block is allocated, all the Lisp_Strings it contains are
1554 added to a free-list string_free_list. When a new Lisp_String is
1555 needed, it is taken from that list. During the sweep phase of GC,
1556 string_blocks that are entirely free are freed, except two which
1557 we keep.
1559 String data is allocated from sblock structures. Strings larger
1560 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1561 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1563 Sblocks consist internally of sdata structures, one for each
1564 Lisp_String. The sdata structure points to the Lisp_String it
1565 belongs to. The Lisp_String points back to the `u.data' member of
1566 its sdata structure.
1568 When a Lisp_String is freed during GC, it is put back on
1569 string_free_list, and its `data' member and its sdata's `string'
1570 pointer is set to null. The size of the string is recorded in the
1571 `u.nbytes' member of the sdata. So, sdata structures that are no
1572 longer used, can be easily recognized, and it's easy to compact the
1573 sblocks of small strings which we do in compact_small_strings. */
1575 /* Size in bytes of an sblock structure used for small strings. This
1576 is 8192 minus malloc overhead. */
1578 #define SBLOCK_SIZE 8188
1580 /* Strings larger than this are considered large strings. String data
1581 for large strings is allocated from individual sblocks. */
1583 #define LARGE_STRING_BYTES 1024
1585 /* Structure describing string memory sub-allocated from an sblock.
1586 This is where the contents of Lisp strings are stored. */
1588 struct sdata
1590 /* Back-pointer to the string this sdata belongs to. If null, this
1591 structure is free, and the NBYTES member of the union below
1592 contains the string's byte size (the same value that STRING_BYTES
1593 would return if STRING were non-null). If non-null, STRING_BYTES
1594 (STRING) is the size of the data, and DATA contains the string's
1595 contents. */
1596 struct Lisp_String *string;
1598 #ifdef GC_CHECK_STRING_BYTES
1600 EMACS_INT nbytes;
1601 unsigned char data[1];
1603 #define SDATA_NBYTES(S) (S)->nbytes
1604 #define SDATA_DATA(S) (S)->data
1606 #else /* not GC_CHECK_STRING_BYTES */
1608 union
1610 /* When STRING in non-null. */
1611 unsigned char data[1];
1613 /* When STRING is null. */
1614 EMACS_INT nbytes;
1615 } u;
1618 #define SDATA_NBYTES(S) (S)->u.nbytes
1619 #define SDATA_DATA(S) (S)->u.data
1621 #endif /* not GC_CHECK_STRING_BYTES */
1625 /* Structure describing a block of memory which is sub-allocated to
1626 obtain string data memory for strings. Blocks for small strings
1627 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1628 as large as needed. */
1630 struct sblock
1632 /* Next in list. */
1633 struct sblock *next;
1635 /* Pointer to the next free sdata block. This points past the end
1636 of the sblock if there isn't any space left in this block. */
1637 struct sdata *next_free;
1639 /* Start of data. */
1640 struct sdata first_data;
1643 /* Number of Lisp strings in a string_block structure. The 1020 is
1644 1024 minus malloc overhead. */
1646 #define STRING_BLOCK_SIZE \
1647 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1649 /* Structure describing a block from which Lisp_String structures
1650 are allocated. */
1652 struct string_block
1654 /* Place `strings' first, to preserve alignment. */
1655 struct Lisp_String strings[STRING_BLOCK_SIZE];
1656 struct string_block *next;
1659 /* Head and tail of the list of sblock structures holding Lisp string
1660 data. We always allocate from current_sblock. The NEXT pointers
1661 in the sblock structures go from oldest_sblock to current_sblock. */
1663 static struct sblock *oldest_sblock, *current_sblock;
1665 /* List of sblocks for large strings. */
1667 static struct sblock *large_sblocks;
1669 /* List of string_block structures, and how many there are. */
1671 static struct string_block *string_blocks;
1672 static int n_string_blocks;
1674 /* Free-list of Lisp_Strings. */
1676 static struct Lisp_String *string_free_list;
1678 /* Number of live and free Lisp_Strings. */
1680 static int total_strings, total_free_strings;
1682 /* Number of bytes used by live strings. */
1684 static int total_string_size;
1686 /* Given a pointer to a Lisp_String S which is on the free-list
1687 string_free_list, return a pointer to its successor in the
1688 free-list. */
1690 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1692 /* Return a pointer to the sdata structure belonging to Lisp string S.
1693 S must be live, i.e. S->data must not be null. S->data is actually
1694 a pointer to the `u.data' member of its sdata structure; the
1695 structure starts at a constant offset in front of that. */
1697 #ifdef GC_CHECK_STRING_BYTES
1699 #define SDATA_OF_STRING(S) \
1700 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1701 - sizeof (EMACS_INT)))
1703 #else /* not GC_CHECK_STRING_BYTES */
1705 #define SDATA_OF_STRING(S) \
1706 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1708 #endif /* not GC_CHECK_STRING_BYTES */
1711 #ifdef GC_CHECK_STRING_OVERRUN
1713 /* We check for overrun in string data blocks by appending a small
1714 "cookie" after each allocated string data block, and check for the
1715 presence of this cookie during GC. */
1717 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1718 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1719 { 0xde, 0xad, 0xbe, 0xef };
1721 #else
1722 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1723 #endif
1725 /* Value is the size of an sdata structure large enough to hold NBYTES
1726 bytes of string data. The value returned includes a terminating
1727 NUL byte, the size of the sdata structure, and padding. */
1729 #ifdef GC_CHECK_STRING_BYTES
1731 #define SDATA_SIZE(NBYTES) \
1732 ((sizeof (struct Lisp_String *) \
1733 + (NBYTES) + 1 \
1734 + sizeof (EMACS_INT) \
1735 + sizeof (EMACS_INT) - 1) \
1736 & ~(sizeof (EMACS_INT) - 1))
1738 #else /* not GC_CHECK_STRING_BYTES */
1740 #define SDATA_SIZE(NBYTES) \
1741 ((sizeof (struct Lisp_String *) \
1742 + (NBYTES) + 1 \
1743 + sizeof (EMACS_INT) - 1) \
1744 & ~(sizeof (EMACS_INT) - 1))
1746 #endif /* not GC_CHECK_STRING_BYTES */
1748 /* Extra bytes to allocate for each string. */
1750 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1752 /* Initialize string allocation. Called from init_alloc_once. */
1754 static void
1755 init_strings ()
1757 total_strings = total_free_strings = total_string_size = 0;
1758 oldest_sblock = current_sblock = large_sblocks = NULL;
1759 string_blocks = NULL;
1760 n_string_blocks = 0;
1761 string_free_list = NULL;
1762 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1763 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1767 #ifdef GC_CHECK_STRING_BYTES
1769 static int check_string_bytes_count;
1771 static void check_string_bytes P_ ((int));
1772 static void check_sblock P_ ((struct sblock *));
1774 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1777 /* Like GC_STRING_BYTES, but with debugging check. */
1780 string_bytes (s)
1781 struct Lisp_String *s;
1783 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1784 if (!PURE_POINTER_P (s)
1785 && s->data
1786 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1787 abort ();
1788 return nbytes;
1791 /* Check validity of Lisp strings' string_bytes member in B. */
1793 static void
1794 check_sblock (b)
1795 struct sblock *b;
1797 struct sdata *from, *end, *from_end;
1799 end = b->next_free;
1801 for (from = &b->first_data; from < end; from = from_end)
1803 /* Compute the next FROM here because copying below may
1804 overwrite data we need to compute it. */
1805 int nbytes;
1807 /* Check that the string size recorded in the string is the
1808 same as the one recorded in the sdata structure. */
1809 if (from->string)
1810 CHECK_STRING_BYTES (from->string);
1812 if (from->string)
1813 nbytes = GC_STRING_BYTES (from->string);
1814 else
1815 nbytes = SDATA_NBYTES (from);
1817 nbytes = SDATA_SIZE (nbytes);
1818 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1823 /* Check validity of Lisp strings' string_bytes member. ALL_P
1824 non-zero means check all strings, otherwise check only most
1825 recently allocated strings. Used for hunting a bug. */
1827 static void
1828 check_string_bytes (all_p)
1829 int all_p;
1831 if (all_p)
1833 struct sblock *b;
1835 for (b = large_sblocks; b; b = b->next)
1837 struct Lisp_String *s = b->first_data.string;
1838 if (s)
1839 CHECK_STRING_BYTES (s);
1842 for (b = oldest_sblock; b; b = b->next)
1843 check_sblock (b);
1845 else
1846 check_sblock (current_sblock);
1849 #endif /* GC_CHECK_STRING_BYTES */
1851 #ifdef GC_CHECK_STRING_FREE_LIST
1853 /* Walk through the string free list looking for bogus next pointers.
1854 This may catch buffer overrun from a previous string. */
1856 static void
1857 check_string_free_list ()
1859 struct Lisp_String *s;
1861 /* Pop a Lisp_String off the free-list. */
1862 s = string_free_list;
1863 while (s != NULL)
1865 if ((unsigned)s < 1024)
1866 abort();
1867 s = NEXT_FREE_LISP_STRING (s);
1870 #else
1871 #define check_string_free_list()
1872 #endif
1874 /* Return a new Lisp_String. */
1876 static struct Lisp_String *
1877 allocate_string ()
1879 struct Lisp_String *s;
1881 /* eassert (!handling_signal); */
1883 MALLOC_BLOCK_INPUT;
1885 /* If the free-list is empty, allocate a new string_block, and
1886 add all the Lisp_Strings in it to the free-list. */
1887 if (string_free_list == NULL)
1889 struct string_block *b;
1890 int i;
1892 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1893 bzero (b, sizeof *b);
1894 b->next = string_blocks;
1895 string_blocks = b;
1896 ++n_string_blocks;
1898 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1900 s = b->strings + i;
1901 NEXT_FREE_LISP_STRING (s) = string_free_list;
1902 string_free_list = s;
1905 total_free_strings += STRING_BLOCK_SIZE;
1908 check_string_free_list ();
1910 /* Pop a Lisp_String off the free-list. */
1911 s = string_free_list;
1912 string_free_list = NEXT_FREE_LISP_STRING (s);
1914 MALLOC_UNBLOCK_INPUT;
1916 /* Probably not strictly necessary, but play it safe. */
1917 bzero (s, sizeof *s);
1919 --total_free_strings;
1920 ++total_strings;
1921 ++strings_consed;
1922 consing_since_gc += sizeof *s;
1924 #ifdef GC_CHECK_STRING_BYTES
1925 if (!noninteractive)
1927 if (++check_string_bytes_count == 200)
1929 check_string_bytes_count = 0;
1930 check_string_bytes (1);
1932 else
1933 check_string_bytes (0);
1935 #endif /* GC_CHECK_STRING_BYTES */
1937 return s;
1941 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1942 plus a NUL byte at the end. Allocate an sdata structure for S, and
1943 set S->data to its `u.data' member. Store a NUL byte at the end of
1944 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1945 S->data if it was initially non-null. */
1947 void
1948 allocate_string_data (s, nchars, nbytes)
1949 struct Lisp_String *s;
1950 int nchars, nbytes;
1952 struct sdata *data, *old_data;
1953 struct sblock *b;
1954 int needed, old_nbytes;
1956 /* Determine the number of bytes needed to store NBYTES bytes
1957 of string data. */
1958 needed = SDATA_SIZE (nbytes);
1959 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1960 old_nbytes = GC_STRING_BYTES (s);
1962 MALLOC_BLOCK_INPUT;
1964 if (nbytes > LARGE_STRING_BYTES)
1966 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1968 #ifdef DOUG_LEA_MALLOC
1969 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1970 because mapped region contents are not preserved in
1971 a dumped Emacs.
1973 In case you think of allowing it in a dumped Emacs at the
1974 cost of not being able to re-dump, there's another reason:
1975 mmap'ed data typically have an address towards the top of the
1976 address space, which won't fit into an EMACS_INT (at least on
1977 32-bit systems with the current tagging scheme). --fx */
1978 mallopt (M_MMAP_MAX, 0);
1979 #endif
1981 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1983 #ifdef DOUG_LEA_MALLOC
1984 /* Back to a reasonable maximum of mmap'ed areas. */
1985 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1986 #endif
1988 b->next_free = &b->first_data;
1989 b->first_data.string = NULL;
1990 b->next = large_sblocks;
1991 large_sblocks = b;
1993 else if (current_sblock == NULL
1994 || (((char *) current_sblock + SBLOCK_SIZE
1995 - (char *) current_sblock->next_free)
1996 < (needed + GC_STRING_EXTRA)))
1998 /* Not enough room in the current sblock. */
1999 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2000 b->next_free = &b->first_data;
2001 b->first_data.string = NULL;
2002 b->next = NULL;
2004 if (current_sblock)
2005 current_sblock->next = b;
2006 else
2007 oldest_sblock = b;
2008 current_sblock = b;
2010 else
2011 b = current_sblock;
2013 data = b->next_free;
2014 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2016 MALLOC_UNBLOCK_INPUT;
2018 data->string = s;
2019 s->data = SDATA_DATA (data);
2020 #ifdef GC_CHECK_STRING_BYTES
2021 SDATA_NBYTES (data) = nbytes;
2022 #endif
2023 s->size = nchars;
2024 s->size_byte = nbytes;
2025 s->data[nbytes] = '\0';
2026 #ifdef GC_CHECK_STRING_OVERRUN
2027 bcopy (string_overrun_cookie, (char *) data + needed,
2028 GC_STRING_OVERRUN_COOKIE_SIZE);
2029 #endif
2031 /* If S had already data assigned, mark that as free by setting its
2032 string back-pointer to null, and recording the size of the data
2033 in it. */
2034 if (old_data)
2036 SDATA_NBYTES (old_data) = old_nbytes;
2037 old_data->string = NULL;
2040 consing_since_gc += needed;
2044 /* Sweep and compact strings. */
2046 static void
2047 sweep_strings ()
2049 struct string_block *b, *next;
2050 struct string_block *live_blocks = NULL;
2052 string_free_list = NULL;
2053 total_strings = total_free_strings = 0;
2054 total_string_size = 0;
2056 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2057 for (b = string_blocks; b; b = next)
2059 int i, nfree = 0;
2060 struct Lisp_String *free_list_before = string_free_list;
2062 next = b->next;
2064 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2066 struct Lisp_String *s = b->strings + i;
2068 if (s->data)
2070 /* String was not on free-list before. */
2071 if (STRING_MARKED_P (s))
2073 /* String is live; unmark it and its intervals. */
2074 UNMARK_STRING (s);
2076 if (!NULL_INTERVAL_P (s->intervals))
2077 UNMARK_BALANCE_INTERVALS (s->intervals);
2079 ++total_strings;
2080 total_string_size += STRING_BYTES (s);
2082 else
2084 /* String is dead. Put it on the free-list. */
2085 struct sdata *data = SDATA_OF_STRING (s);
2087 /* Save the size of S in its sdata so that we know
2088 how large that is. Reset the sdata's string
2089 back-pointer so that we know it's free. */
2090 #ifdef GC_CHECK_STRING_BYTES
2091 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2092 abort ();
2093 #else
2094 data->u.nbytes = GC_STRING_BYTES (s);
2095 #endif
2096 data->string = NULL;
2098 /* Reset the strings's `data' member so that we
2099 know it's free. */
2100 s->data = NULL;
2102 /* Put the string on the free-list. */
2103 NEXT_FREE_LISP_STRING (s) = string_free_list;
2104 string_free_list = s;
2105 ++nfree;
2108 else
2110 /* S was on the free-list before. Put it there again. */
2111 NEXT_FREE_LISP_STRING (s) = string_free_list;
2112 string_free_list = s;
2113 ++nfree;
2117 /* Free blocks that contain free Lisp_Strings only, except
2118 the first two of them. */
2119 if (nfree == STRING_BLOCK_SIZE
2120 && total_free_strings > STRING_BLOCK_SIZE)
2122 lisp_free (b);
2123 --n_string_blocks;
2124 string_free_list = free_list_before;
2126 else
2128 total_free_strings += nfree;
2129 b->next = live_blocks;
2130 live_blocks = b;
2134 check_string_free_list ();
2136 string_blocks = live_blocks;
2137 free_large_strings ();
2138 compact_small_strings ();
2140 check_string_free_list ();
2144 /* Free dead large strings. */
2146 static void
2147 free_large_strings ()
2149 struct sblock *b, *next;
2150 struct sblock *live_blocks = NULL;
2152 for (b = large_sblocks; b; b = next)
2154 next = b->next;
2156 if (b->first_data.string == NULL)
2157 lisp_free (b);
2158 else
2160 b->next = live_blocks;
2161 live_blocks = b;
2165 large_sblocks = live_blocks;
2169 /* Compact data of small strings. Free sblocks that don't contain
2170 data of live strings after compaction. */
2172 static void
2173 compact_small_strings ()
2175 struct sblock *b, *tb, *next;
2176 struct sdata *from, *to, *end, *tb_end;
2177 struct sdata *to_end, *from_end;
2179 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2180 to, and TB_END is the end of TB. */
2181 tb = oldest_sblock;
2182 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2183 to = &tb->first_data;
2185 /* Step through the blocks from the oldest to the youngest. We
2186 expect that old blocks will stabilize over time, so that less
2187 copying will happen this way. */
2188 for (b = oldest_sblock; b; b = b->next)
2190 end = b->next_free;
2191 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2193 for (from = &b->first_data; from < end; from = from_end)
2195 /* Compute the next FROM here because copying below may
2196 overwrite data we need to compute it. */
2197 int nbytes;
2199 #ifdef GC_CHECK_STRING_BYTES
2200 /* Check that the string size recorded in the string is the
2201 same as the one recorded in the sdata structure. */
2202 if (from->string
2203 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2204 abort ();
2205 #endif /* GC_CHECK_STRING_BYTES */
2207 if (from->string)
2208 nbytes = GC_STRING_BYTES (from->string);
2209 else
2210 nbytes = SDATA_NBYTES (from);
2212 if (nbytes > LARGE_STRING_BYTES)
2213 abort ();
2215 nbytes = SDATA_SIZE (nbytes);
2216 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2218 #ifdef GC_CHECK_STRING_OVERRUN
2219 if (bcmp (string_overrun_cookie,
2220 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2221 GC_STRING_OVERRUN_COOKIE_SIZE))
2222 abort ();
2223 #endif
2225 /* FROM->string non-null means it's alive. Copy its data. */
2226 if (from->string)
2228 /* If TB is full, proceed with the next sblock. */
2229 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2230 if (to_end > tb_end)
2232 tb->next_free = to;
2233 tb = tb->next;
2234 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2235 to = &tb->first_data;
2236 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2239 /* Copy, and update the string's `data' pointer. */
2240 if (from != to)
2242 xassert (tb != b || to <= from);
2243 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2244 to->string->data = SDATA_DATA (to);
2247 /* Advance past the sdata we copied to. */
2248 to = to_end;
2253 /* The rest of the sblocks following TB don't contain live data, so
2254 we can free them. */
2255 for (b = tb->next; b; b = next)
2257 next = b->next;
2258 lisp_free (b);
2261 tb->next_free = to;
2262 tb->next = NULL;
2263 current_sblock = tb;
2267 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2268 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2269 LENGTH must be an integer.
2270 INIT must be an integer that represents a character. */)
2271 (length, init)
2272 Lisp_Object length, init;
2274 register Lisp_Object val;
2275 register unsigned char *p, *end;
2276 int c, nbytes;
2278 CHECK_NATNUM (length);
2279 CHECK_NUMBER (init);
2281 c = XINT (init);
2282 if (ASCII_CHAR_P (c))
2284 nbytes = XINT (length);
2285 val = make_uninit_string (nbytes);
2286 p = SDATA (val);
2287 end = p + SCHARS (val);
2288 while (p != end)
2289 *p++ = c;
2291 else
2293 unsigned char str[MAX_MULTIBYTE_LENGTH];
2294 int len = CHAR_STRING (c, str);
2296 nbytes = len * XINT (length);
2297 val = make_uninit_multibyte_string (XINT (length), nbytes);
2298 p = SDATA (val);
2299 end = p + nbytes;
2300 while (p != end)
2302 bcopy (str, p, len);
2303 p += len;
2307 *p = 0;
2308 return val;
2312 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2313 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2314 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2315 (length, init)
2316 Lisp_Object length, init;
2318 register Lisp_Object val;
2319 struct Lisp_Bool_Vector *p;
2320 int real_init, i;
2321 int length_in_chars, length_in_elts, bits_per_value;
2323 CHECK_NATNUM (length);
2325 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2327 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2328 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2329 / BOOL_VECTOR_BITS_PER_CHAR);
2331 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2332 slot `size' of the struct Lisp_Bool_Vector. */
2333 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2335 /* Get rid of any bits that would cause confusion. */
2336 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2337 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2338 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2340 p = XBOOL_VECTOR (val);
2341 p->size = XFASTINT (length);
2343 real_init = (NILP (init) ? 0 : -1);
2344 for (i = 0; i < length_in_chars ; i++)
2345 p->data[i] = real_init;
2347 /* Clear the extraneous bits in the last byte. */
2348 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2349 p->data[length_in_chars - 1]
2350 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2352 return val;
2356 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2357 of characters from the contents. This string may be unibyte or
2358 multibyte, depending on the contents. */
2360 Lisp_Object
2361 make_string (contents, nbytes)
2362 const char *contents;
2363 int nbytes;
2365 register Lisp_Object val;
2366 int nchars, multibyte_nbytes;
2368 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2369 if (nbytes == nchars || nbytes != multibyte_nbytes)
2370 /* CONTENTS contains no multibyte sequences or contains an invalid
2371 multibyte sequence. We must make unibyte string. */
2372 val = make_unibyte_string (contents, nbytes);
2373 else
2374 val = make_multibyte_string (contents, nchars, nbytes);
2375 return val;
2379 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2381 Lisp_Object
2382 make_unibyte_string (contents, length)
2383 const char *contents;
2384 int length;
2386 register Lisp_Object val;
2387 val = make_uninit_string (length);
2388 bcopy (contents, SDATA (val), length);
2389 STRING_SET_UNIBYTE (val);
2390 return val;
2394 /* Make a multibyte string from NCHARS characters occupying NBYTES
2395 bytes at CONTENTS. */
2397 Lisp_Object
2398 make_multibyte_string (contents, nchars, nbytes)
2399 const char *contents;
2400 int nchars, nbytes;
2402 register Lisp_Object val;
2403 val = make_uninit_multibyte_string (nchars, nbytes);
2404 bcopy (contents, SDATA (val), nbytes);
2405 return val;
2409 /* Make a string from NCHARS characters occupying NBYTES bytes at
2410 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2412 Lisp_Object
2413 make_string_from_bytes (contents, nchars, nbytes)
2414 const char *contents;
2415 int nchars, nbytes;
2417 register Lisp_Object val;
2418 val = make_uninit_multibyte_string (nchars, nbytes);
2419 bcopy (contents, SDATA (val), nbytes);
2420 if (SBYTES (val) == SCHARS (val))
2421 STRING_SET_UNIBYTE (val);
2422 return val;
2426 /* Make a string from NCHARS characters occupying NBYTES bytes at
2427 CONTENTS. The argument MULTIBYTE controls whether to label the
2428 string as multibyte. If NCHARS is negative, it counts the number of
2429 characters by itself. */
2431 Lisp_Object
2432 make_specified_string (contents, nchars, nbytes, multibyte)
2433 const char *contents;
2434 int nchars, nbytes;
2435 int multibyte;
2437 register Lisp_Object val;
2439 if (nchars < 0)
2441 if (multibyte)
2442 nchars = multibyte_chars_in_text (contents, nbytes);
2443 else
2444 nchars = nbytes;
2446 val = make_uninit_multibyte_string (nchars, nbytes);
2447 bcopy (contents, SDATA (val), nbytes);
2448 if (!multibyte)
2449 STRING_SET_UNIBYTE (val);
2450 return val;
2454 /* Make a string from the data at STR, treating it as multibyte if the
2455 data warrants. */
2457 Lisp_Object
2458 build_string (str)
2459 const char *str;
2461 return make_string (str, strlen (str));
2465 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2466 occupying LENGTH bytes. */
2468 Lisp_Object
2469 make_uninit_string (length)
2470 int length;
2472 Lisp_Object val;
2474 if (!length)
2475 return empty_unibyte_string;
2476 val = make_uninit_multibyte_string (length, length);
2477 STRING_SET_UNIBYTE (val);
2478 return val;
2482 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2483 which occupy NBYTES bytes. */
2485 Lisp_Object
2486 make_uninit_multibyte_string (nchars, nbytes)
2487 int nchars, nbytes;
2489 Lisp_Object string;
2490 struct Lisp_String *s;
2492 if (nchars < 0)
2493 abort ();
2494 if (!nbytes)
2495 return empty_multibyte_string;
2497 s = allocate_string ();
2498 allocate_string_data (s, nchars, nbytes);
2499 XSETSTRING (string, s);
2500 string_chars_consed += nbytes;
2501 return string;
2506 /***********************************************************************
2507 Float Allocation
2508 ***********************************************************************/
2510 /* We store float cells inside of float_blocks, allocating a new
2511 float_block with malloc whenever necessary. Float cells reclaimed
2512 by GC are put on a free list to be reallocated before allocating
2513 any new float cells from the latest float_block. */
2515 #define FLOAT_BLOCK_SIZE \
2516 (((BLOCK_BYTES - sizeof (struct float_block *) \
2517 /* The compiler might add padding at the end. */ \
2518 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2519 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2521 #define GETMARKBIT(block,n) \
2522 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2523 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2524 & 1)
2526 #define SETMARKBIT(block,n) \
2527 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2528 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2530 #define UNSETMARKBIT(block,n) \
2531 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2532 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2534 #define FLOAT_BLOCK(fptr) \
2535 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2537 #define FLOAT_INDEX(fptr) \
2538 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2540 struct float_block
2542 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2543 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2544 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2545 struct float_block *next;
2548 #define FLOAT_MARKED_P(fptr) \
2549 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2551 #define FLOAT_MARK(fptr) \
2552 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2554 #define FLOAT_UNMARK(fptr) \
2555 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2557 /* Current float_block. */
2559 struct float_block *float_block;
2561 /* Index of first unused Lisp_Float in the current float_block. */
2563 int float_block_index;
2565 /* Total number of float blocks now in use. */
2567 int n_float_blocks;
2569 /* Free-list of Lisp_Floats. */
2571 struct Lisp_Float *float_free_list;
2574 /* Initialize float allocation. */
2576 static void
2577 init_float ()
2579 float_block = NULL;
2580 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2581 float_free_list = 0;
2582 n_float_blocks = 0;
2586 /* Explicitly free a float cell by putting it on the free-list. */
2588 static void
2589 free_float (ptr)
2590 struct Lisp_Float *ptr;
2592 ptr->u.chain = float_free_list;
2593 float_free_list = ptr;
2597 /* Return a new float object with value FLOAT_VALUE. */
2599 Lisp_Object
2600 make_float (float_value)
2601 double float_value;
2603 register Lisp_Object val;
2605 /* eassert (!handling_signal); */
2607 MALLOC_BLOCK_INPUT;
2609 if (float_free_list)
2611 /* We use the data field for chaining the free list
2612 so that we won't use the same field that has the mark bit. */
2613 XSETFLOAT (val, float_free_list);
2614 float_free_list = float_free_list->u.chain;
2616 else
2618 if (float_block_index == FLOAT_BLOCK_SIZE)
2620 register struct float_block *new;
2622 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2623 MEM_TYPE_FLOAT);
2624 new->next = float_block;
2625 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2626 float_block = new;
2627 float_block_index = 0;
2628 n_float_blocks++;
2630 XSETFLOAT (val, &float_block->floats[float_block_index]);
2631 float_block_index++;
2634 MALLOC_UNBLOCK_INPUT;
2636 XFLOAT_INIT (val, float_value);
2637 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2638 consing_since_gc += sizeof (struct Lisp_Float);
2639 floats_consed++;
2640 return val;
2645 /***********************************************************************
2646 Cons Allocation
2647 ***********************************************************************/
2649 /* We store cons cells inside of cons_blocks, allocating a new
2650 cons_block with malloc whenever necessary. Cons cells reclaimed by
2651 GC are put on a free list to be reallocated before allocating
2652 any new cons cells from the latest cons_block. */
2654 #define CONS_BLOCK_SIZE \
2655 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2656 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2658 #define CONS_BLOCK(fptr) \
2659 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2661 #define CONS_INDEX(fptr) \
2662 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2664 struct cons_block
2666 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2667 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2668 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2669 struct cons_block *next;
2672 #define CONS_MARKED_P(fptr) \
2673 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2675 #define CONS_MARK(fptr) \
2676 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2678 #define CONS_UNMARK(fptr) \
2679 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2681 /* Current cons_block. */
2683 struct cons_block *cons_block;
2685 /* Index of first unused Lisp_Cons in the current block. */
2687 int cons_block_index;
2689 /* Free-list of Lisp_Cons structures. */
2691 struct Lisp_Cons *cons_free_list;
2693 /* Total number of cons blocks now in use. */
2695 static int n_cons_blocks;
2698 /* Initialize cons allocation. */
2700 static void
2701 init_cons ()
2703 cons_block = NULL;
2704 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2705 cons_free_list = 0;
2706 n_cons_blocks = 0;
2710 /* Explicitly free a cons cell by putting it on the free-list. */
2712 void
2713 free_cons (ptr)
2714 struct Lisp_Cons *ptr;
2716 ptr->u.chain = cons_free_list;
2717 #if GC_MARK_STACK
2718 ptr->car = Vdead;
2719 #endif
2720 cons_free_list = ptr;
2723 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2724 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2725 (car, cdr)
2726 Lisp_Object car, cdr;
2728 register Lisp_Object val;
2730 /* eassert (!handling_signal); */
2732 MALLOC_BLOCK_INPUT;
2734 if (cons_free_list)
2736 /* We use the cdr for chaining the free list
2737 so that we won't use the same field that has the mark bit. */
2738 XSETCONS (val, cons_free_list);
2739 cons_free_list = cons_free_list->u.chain;
2741 else
2743 if (cons_block_index == CONS_BLOCK_SIZE)
2745 register struct cons_block *new;
2746 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2747 MEM_TYPE_CONS);
2748 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2749 new->next = cons_block;
2750 cons_block = new;
2751 cons_block_index = 0;
2752 n_cons_blocks++;
2754 XSETCONS (val, &cons_block->conses[cons_block_index]);
2755 cons_block_index++;
2758 MALLOC_UNBLOCK_INPUT;
2760 XSETCAR (val, car);
2761 XSETCDR (val, cdr);
2762 eassert (!CONS_MARKED_P (XCONS (val)));
2763 consing_since_gc += sizeof (struct Lisp_Cons);
2764 cons_cells_consed++;
2765 return val;
2768 /* Get an error now if there's any junk in the cons free list. */
2769 void
2770 check_cons_list ()
2772 #ifdef GC_CHECK_CONS_LIST
2773 struct Lisp_Cons *tail = cons_free_list;
2775 while (tail)
2776 tail = tail->u.chain;
2777 #endif
2780 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2782 Lisp_Object
2783 list1 (arg1)
2784 Lisp_Object arg1;
2786 return Fcons (arg1, Qnil);
2789 Lisp_Object
2790 list2 (arg1, arg2)
2791 Lisp_Object arg1, arg2;
2793 return Fcons (arg1, Fcons (arg2, Qnil));
2797 Lisp_Object
2798 list3 (arg1, arg2, arg3)
2799 Lisp_Object arg1, arg2, arg3;
2801 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2805 Lisp_Object
2806 list4 (arg1, arg2, arg3, arg4)
2807 Lisp_Object arg1, arg2, arg3, arg4;
2809 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2813 Lisp_Object
2814 list5 (arg1, arg2, arg3, arg4, arg5)
2815 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2817 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2818 Fcons (arg5, Qnil)))));
2822 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2823 doc: /* Return a newly created list with specified arguments as elements.
2824 Any number of arguments, even zero arguments, are allowed.
2825 usage: (list &rest OBJECTS) */)
2826 (nargs, args)
2827 int nargs;
2828 register Lisp_Object *args;
2830 register Lisp_Object val;
2831 val = Qnil;
2833 while (nargs > 0)
2835 nargs--;
2836 val = Fcons (args[nargs], val);
2838 return val;
2842 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2843 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2844 (length, init)
2845 register Lisp_Object length, init;
2847 register Lisp_Object val;
2848 register int size;
2850 CHECK_NATNUM (length);
2851 size = XFASTINT (length);
2853 val = Qnil;
2854 while (size > 0)
2856 val = Fcons (init, val);
2857 --size;
2859 if (size > 0)
2861 val = Fcons (init, val);
2862 --size;
2864 if (size > 0)
2866 val = Fcons (init, val);
2867 --size;
2869 if (size > 0)
2871 val = Fcons (init, val);
2872 --size;
2874 if (size > 0)
2876 val = Fcons (init, val);
2877 --size;
2883 QUIT;
2886 return val;
2891 /***********************************************************************
2892 Vector Allocation
2893 ***********************************************************************/
2895 /* Singly-linked list of all vectors. */
2897 static struct Lisp_Vector *all_vectors;
2899 /* Total number of vector-like objects now in use. */
2901 static int n_vectors;
2904 /* Value is a pointer to a newly allocated Lisp_Vector structure
2905 with room for LEN Lisp_Objects. */
2907 static struct Lisp_Vector *
2908 allocate_vectorlike (len)
2909 EMACS_INT len;
2911 struct Lisp_Vector *p;
2912 size_t nbytes;
2914 MALLOC_BLOCK_INPUT;
2916 #ifdef DOUG_LEA_MALLOC
2917 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2918 because mapped region contents are not preserved in
2919 a dumped Emacs. */
2920 mallopt (M_MMAP_MAX, 0);
2921 #endif
2923 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2924 /* eassert (!handling_signal); */
2926 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2927 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2929 #ifdef DOUG_LEA_MALLOC
2930 /* Back to a reasonable maximum of mmap'ed areas. */
2931 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2932 #endif
2934 consing_since_gc += nbytes;
2935 vector_cells_consed += len;
2937 p->next = all_vectors;
2938 all_vectors = p;
2940 MALLOC_UNBLOCK_INPUT;
2942 ++n_vectors;
2943 return p;
2947 /* Allocate a vector with NSLOTS slots. */
2949 struct Lisp_Vector *
2950 allocate_vector (nslots)
2951 EMACS_INT nslots;
2953 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2954 v->size = nslots;
2955 return v;
2959 /* Allocate other vector-like structures. */
2961 struct Lisp_Vector *
2962 allocate_pseudovector (memlen, lisplen, tag)
2963 int memlen, lisplen;
2964 EMACS_INT tag;
2966 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2967 EMACS_INT i;
2969 /* Only the first lisplen slots will be traced normally by the GC. */
2970 v->size = lisplen;
2971 for (i = 0; i < lisplen; ++i)
2972 v->contents[i] = Qnil;
2974 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2975 return v;
2978 struct Lisp_Hash_Table *
2979 allocate_hash_table (void)
2981 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2985 struct window *
2986 allocate_window ()
2988 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2992 struct terminal *
2993 allocate_terminal ()
2995 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2996 next_terminal, PVEC_TERMINAL);
2997 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2998 bzero (&(t->next_terminal),
2999 ((char*)(t+1)) - ((char*)&(t->next_terminal)));
3001 return t;
3004 struct frame *
3005 allocate_frame ()
3007 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
3008 face_cache, PVEC_FRAME);
3009 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3010 bzero (&(f->face_cache),
3011 ((char*)(f+1)) - ((char*)&(f->face_cache)));
3012 return f;
3016 struct Lisp_Process *
3017 allocate_process ()
3019 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3023 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3024 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3025 See also the function `vector'. */)
3026 (length, init)
3027 register Lisp_Object length, init;
3029 Lisp_Object vector;
3030 register EMACS_INT sizei;
3031 register int index;
3032 register struct Lisp_Vector *p;
3034 CHECK_NATNUM (length);
3035 sizei = XFASTINT (length);
3037 p = allocate_vector (sizei);
3038 for (index = 0; index < sizei; index++)
3039 p->contents[index] = init;
3041 XSETVECTOR (vector, p);
3042 return vector;
3046 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3047 doc: /* Return a newly created vector with specified arguments as elements.
3048 Any number of arguments, even zero arguments, are allowed.
3049 usage: (vector &rest OBJECTS) */)
3050 (nargs, args)
3051 register int nargs;
3052 Lisp_Object *args;
3054 register Lisp_Object len, val;
3055 register int index;
3056 register struct Lisp_Vector *p;
3058 XSETFASTINT (len, nargs);
3059 val = Fmake_vector (len, Qnil);
3060 p = XVECTOR (val);
3061 for (index = 0; index < nargs; index++)
3062 p->contents[index] = args[index];
3063 return val;
3067 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3068 doc: /* Create a byte-code object with specified arguments as elements.
3069 The arguments should be the arglist, bytecode-string, constant vector,
3070 stack size, (optional) doc string, and (optional) interactive spec.
3071 The first four arguments are required; at most six have any
3072 significance.
3073 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3074 (nargs, args)
3075 register int nargs;
3076 Lisp_Object *args;
3078 register Lisp_Object len, val;
3079 register int index;
3080 register struct Lisp_Vector *p;
3082 XSETFASTINT (len, nargs);
3083 if (!NILP (Vpurify_flag))
3084 val = make_pure_vector ((EMACS_INT) nargs);
3085 else
3086 val = Fmake_vector (len, Qnil);
3088 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3089 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3090 earlier because they produced a raw 8-bit string for byte-code
3091 and now such a byte-code string is loaded as multibyte while
3092 raw 8-bit characters converted to multibyte form. Thus, now we
3093 must convert them back to the original unibyte form. */
3094 args[1] = Fstring_as_unibyte (args[1]);
3096 p = XVECTOR (val);
3097 for (index = 0; index < nargs; index++)
3099 if (!NILP (Vpurify_flag))
3100 args[index] = Fpurecopy (args[index]);
3101 p->contents[index] = args[index];
3103 XSETPVECTYPE (p, PVEC_COMPILED);
3104 XSETCOMPILED (val, p);
3105 return val;
3110 /***********************************************************************
3111 Symbol Allocation
3112 ***********************************************************************/
3114 /* Each symbol_block is just under 1020 bytes long, since malloc
3115 really allocates in units of powers of two and uses 4 bytes for its
3116 own overhead. */
3118 #define SYMBOL_BLOCK_SIZE \
3119 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3121 struct symbol_block
3123 /* Place `symbols' first, to preserve alignment. */
3124 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3125 struct symbol_block *next;
3128 /* Current symbol block and index of first unused Lisp_Symbol
3129 structure in it. */
3131 static struct symbol_block *symbol_block;
3132 static int symbol_block_index;
3134 /* List of free symbols. */
3136 static struct Lisp_Symbol *symbol_free_list;
3138 /* Total number of symbol blocks now in use. */
3140 static int n_symbol_blocks;
3143 /* Initialize symbol allocation. */
3145 static void
3146 init_symbol ()
3148 symbol_block = NULL;
3149 symbol_block_index = SYMBOL_BLOCK_SIZE;
3150 symbol_free_list = 0;
3151 n_symbol_blocks = 0;
3155 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3156 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3157 Its value and function definition are void, and its property list is nil. */)
3158 (name)
3159 Lisp_Object name;
3161 register Lisp_Object val;
3162 register struct Lisp_Symbol *p;
3164 CHECK_STRING (name);
3166 /* eassert (!handling_signal); */
3168 MALLOC_BLOCK_INPUT;
3170 if (symbol_free_list)
3172 XSETSYMBOL (val, symbol_free_list);
3173 symbol_free_list = symbol_free_list->next;
3175 else
3177 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3179 struct symbol_block *new;
3180 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3181 MEM_TYPE_SYMBOL);
3182 new->next = symbol_block;
3183 symbol_block = new;
3184 symbol_block_index = 0;
3185 n_symbol_blocks++;
3187 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3188 symbol_block_index++;
3191 MALLOC_UNBLOCK_INPUT;
3193 p = XSYMBOL (val);
3194 p->xname = name;
3195 p->plist = Qnil;
3196 p->redirect = SYMBOL_PLAINVAL;
3197 SET_SYMBOL_VAL (p, Qunbound);
3198 p->function = Qunbound;
3199 p->next = NULL;
3200 p->gcmarkbit = 0;
3201 p->interned = SYMBOL_UNINTERNED;
3202 p->constant = 0;
3203 consing_since_gc += sizeof (struct Lisp_Symbol);
3204 symbols_consed++;
3205 return val;
3210 /***********************************************************************
3211 Marker (Misc) Allocation
3212 ***********************************************************************/
3214 /* Allocation of markers and other objects that share that structure.
3215 Works like allocation of conses. */
3217 #define MARKER_BLOCK_SIZE \
3218 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3220 struct marker_block
3222 /* Place `markers' first, to preserve alignment. */
3223 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3224 struct marker_block *next;
3227 static struct marker_block *marker_block;
3228 static int marker_block_index;
3230 static union Lisp_Misc *marker_free_list;
3232 /* Total number of marker blocks now in use. */
3234 static int n_marker_blocks;
3236 static void
3237 init_marker ()
3239 marker_block = NULL;
3240 marker_block_index = MARKER_BLOCK_SIZE;
3241 marker_free_list = 0;
3242 n_marker_blocks = 0;
3245 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3247 Lisp_Object
3248 allocate_misc ()
3250 Lisp_Object val;
3252 /* eassert (!handling_signal); */
3254 MALLOC_BLOCK_INPUT;
3256 if (marker_free_list)
3258 XSETMISC (val, marker_free_list);
3259 marker_free_list = marker_free_list->u_free.chain;
3261 else
3263 if (marker_block_index == MARKER_BLOCK_SIZE)
3265 struct marker_block *new;
3266 new = (struct marker_block *) lisp_malloc (sizeof *new,
3267 MEM_TYPE_MISC);
3268 new->next = marker_block;
3269 marker_block = new;
3270 marker_block_index = 0;
3271 n_marker_blocks++;
3272 total_free_markers += MARKER_BLOCK_SIZE;
3274 XSETMISC (val, &marker_block->markers[marker_block_index]);
3275 marker_block_index++;
3278 MALLOC_UNBLOCK_INPUT;
3280 --total_free_markers;
3281 consing_since_gc += sizeof (union Lisp_Misc);
3282 misc_objects_consed++;
3283 XMISCANY (val)->gcmarkbit = 0;
3284 return val;
3287 /* Free a Lisp_Misc object */
3289 void
3290 free_misc (misc)
3291 Lisp_Object misc;
3293 XMISCTYPE (misc) = Lisp_Misc_Free;
3294 XMISC (misc)->u_free.chain = marker_free_list;
3295 marker_free_list = XMISC (misc);
3297 total_free_markers++;
3300 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3301 INTEGER. This is used to package C values to call record_unwind_protect.
3302 The unwind function can get the C values back using XSAVE_VALUE. */
3304 Lisp_Object
3305 make_save_value (pointer, integer)
3306 void *pointer;
3307 int integer;
3309 register Lisp_Object val;
3310 register struct Lisp_Save_Value *p;
3312 val = allocate_misc ();
3313 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3314 p = XSAVE_VALUE (val);
3315 p->pointer = pointer;
3316 p->integer = integer;
3317 p->dogc = 0;
3318 return val;
3321 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3322 doc: /* Return a newly allocated marker which does not point at any place. */)
3325 register Lisp_Object val;
3326 register struct Lisp_Marker *p;
3328 val = allocate_misc ();
3329 XMISCTYPE (val) = Lisp_Misc_Marker;
3330 p = XMARKER (val);
3331 p->buffer = 0;
3332 p->bytepos = 0;
3333 p->charpos = 0;
3334 p->next = NULL;
3335 p->insertion_type = 0;
3336 return val;
3339 /* Put MARKER back on the free list after using it temporarily. */
3341 void
3342 free_marker (marker)
3343 Lisp_Object marker;
3345 unchain_marker (XMARKER (marker));
3346 free_misc (marker);
3350 /* Return a newly created vector or string with specified arguments as
3351 elements. If all the arguments are characters that can fit
3352 in a string of events, make a string; otherwise, make a vector.
3354 Any number of arguments, even zero arguments, are allowed. */
3356 Lisp_Object
3357 make_event_array (nargs, args)
3358 register int nargs;
3359 Lisp_Object *args;
3361 int i;
3363 for (i = 0; i < nargs; i++)
3364 /* The things that fit in a string
3365 are characters that are in 0...127,
3366 after discarding the meta bit and all the bits above it. */
3367 if (!INTEGERP (args[i])
3368 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3369 return Fvector (nargs, args);
3371 /* Since the loop exited, we know that all the things in it are
3372 characters, so we can make a string. */
3374 Lisp_Object result;
3376 result = Fmake_string (make_number (nargs), make_number (0));
3377 for (i = 0; i < nargs; i++)
3379 SSET (result, i, XINT (args[i]));
3380 /* Move the meta bit to the right place for a string char. */
3381 if (XINT (args[i]) & CHAR_META)
3382 SSET (result, i, SREF (result, i) | 0x80);
3385 return result;
3391 /************************************************************************
3392 Memory Full Handling
3393 ************************************************************************/
3396 /* Called if malloc returns zero. */
3398 void
3399 memory_full ()
3401 int i;
3403 Vmemory_full = Qt;
3405 memory_full_cons_threshold = sizeof (struct cons_block);
3407 /* The first time we get here, free the spare memory. */
3408 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3409 if (spare_memory[i])
3411 if (i == 0)
3412 free (spare_memory[i]);
3413 else if (i >= 1 && i <= 4)
3414 lisp_align_free (spare_memory[i]);
3415 else
3416 lisp_free (spare_memory[i]);
3417 spare_memory[i] = 0;
3420 /* Record the space now used. When it decreases substantially,
3421 we can refill the memory reserve. */
3422 #ifndef SYSTEM_MALLOC
3423 bytes_used_when_full = BYTES_USED;
3424 #endif
3426 /* This used to call error, but if we've run out of memory, we could
3427 get infinite recursion trying to build the string. */
3428 xsignal (Qnil, Vmemory_signal_data);
3431 /* If we released our reserve (due to running out of memory),
3432 and we have a fair amount free once again,
3433 try to set aside another reserve in case we run out once more.
3435 This is called when a relocatable block is freed in ralloc.c,
3436 and also directly from this file, in case we're not using ralloc.c. */
3438 void
3439 refill_memory_reserve ()
3441 #ifndef SYSTEM_MALLOC
3442 if (spare_memory[0] == 0)
3443 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3444 if (spare_memory[1] == 0)
3445 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3446 MEM_TYPE_CONS);
3447 if (spare_memory[2] == 0)
3448 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3449 MEM_TYPE_CONS);
3450 if (spare_memory[3] == 0)
3451 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3452 MEM_TYPE_CONS);
3453 if (spare_memory[4] == 0)
3454 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3455 MEM_TYPE_CONS);
3456 if (spare_memory[5] == 0)
3457 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3458 MEM_TYPE_STRING);
3459 if (spare_memory[6] == 0)
3460 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3461 MEM_TYPE_STRING);
3462 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3463 Vmemory_full = Qnil;
3464 #endif
3467 /************************************************************************
3468 C Stack Marking
3469 ************************************************************************/
3471 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3473 /* Conservative C stack marking requires a method to identify possibly
3474 live Lisp objects given a pointer value. We do this by keeping
3475 track of blocks of Lisp data that are allocated in a red-black tree
3476 (see also the comment of mem_node which is the type of nodes in
3477 that tree). Function lisp_malloc adds information for an allocated
3478 block to the red-black tree with calls to mem_insert, and function
3479 lisp_free removes it with mem_delete. Functions live_string_p etc
3480 call mem_find to lookup information about a given pointer in the
3481 tree, and use that to determine if the pointer points to a Lisp
3482 object or not. */
3484 /* Initialize this part of alloc.c. */
3486 static void
3487 mem_init ()
3489 mem_z.left = mem_z.right = MEM_NIL;
3490 mem_z.parent = NULL;
3491 mem_z.color = MEM_BLACK;
3492 mem_z.start = mem_z.end = NULL;
3493 mem_root = MEM_NIL;
3497 /* Value is a pointer to the mem_node containing START. Value is
3498 MEM_NIL if there is no node in the tree containing START. */
3500 static INLINE struct mem_node *
3501 mem_find (start)
3502 void *start;
3504 struct mem_node *p;
3506 if (start < min_heap_address || start > max_heap_address)
3507 return MEM_NIL;
3509 /* Make the search always successful to speed up the loop below. */
3510 mem_z.start = start;
3511 mem_z.end = (char *) start + 1;
3513 p = mem_root;
3514 while (start < p->start || start >= p->end)
3515 p = start < p->start ? p->left : p->right;
3516 return p;
3520 /* Insert a new node into the tree for a block of memory with start
3521 address START, end address END, and type TYPE. Value is a
3522 pointer to the node that was inserted. */
3524 static struct mem_node *
3525 mem_insert (start, end, type)
3526 void *start, *end;
3527 enum mem_type type;
3529 struct mem_node *c, *parent, *x;
3531 if (min_heap_address == NULL || start < min_heap_address)
3532 min_heap_address = start;
3533 if (max_heap_address == NULL || end > max_heap_address)
3534 max_heap_address = end;
3536 /* See where in the tree a node for START belongs. In this
3537 particular application, it shouldn't happen that a node is already
3538 present. For debugging purposes, let's check that. */
3539 c = mem_root;
3540 parent = NULL;
3542 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3544 while (c != MEM_NIL)
3546 if (start >= c->start && start < c->end)
3547 abort ();
3548 parent = c;
3549 c = start < c->start ? c->left : c->right;
3552 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3554 while (c != MEM_NIL)
3556 parent = c;
3557 c = start < c->start ? c->left : c->right;
3560 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3562 /* Create a new node. */
3563 #ifdef GC_MALLOC_CHECK
3564 x = (struct mem_node *) _malloc_internal (sizeof *x);
3565 if (x == NULL)
3566 abort ();
3567 #else
3568 x = (struct mem_node *) xmalloc (sizeof *x);
3569 #endif
3570 x->start = start;
3571 x->end = end;
3572 x->type = type;
3573 x->parent = parent;
3574 x->left = x->right = MEM_NIL;
3575 x->color = MEM_RED;
3577 /* Insert it as child of PARENT or install it as root. */
3578 if (parent)
3580 if (start < parent->start)
3581 parent->left = x;
3582 else
3583 parent->right = x;
3585 else
3586 mem_root = x;
3588 /* Re-establish red-black tree properties. */
3589 mem_insert_fixup (x);
3591 return x;
3595 /* Re-establish the red-black properties of the tree, and thereby
3596 balance the tree, after node X has been inserted; X is always red. */
3598 static void
3599 mem_insert_fixup (x)
3600 struct mem_node *x;
3602 while (x != mem_root && x->parent->color == MEM_RED)
3604 /* X is red and its parent is red. This is a violation of
3605 red-black tree property #3. */
3607 if (x->parent == x->parent->parent->left)
3609 /* We're on the left side of our grandparent, and Y is our
3610 "uncle". */
3611 struct mem_node *y = x->parent->parent->right;
3613 if (y->color == MEM_RED)
3615 /* Uncle and parent are red but should be black because
3616 X is red. Change the colors accordingly and proceed
3617 with the grandparent. */
3618 x->parent->color = MEM_BLACK;
3619 y->color = MEM_BLACK;
3620 x->parent->parent->color = MEM_RED;
3621 x = x->parent->parent;
3623 else
3625 /* Parent and uncle have different colors; parent is
3626 red, uncle is black. */
3627 if (x == x->parent->right)
3629 x = x->parent;
3630 mem_rotate_left (x);
3633 x->parent->color = MEM_BLACK;
3634 x->parent->parent->color = MEM_RED;
3635 mem_rotate_right (x->parent->parent);
3638 else
3640 /* This is the symmetrical case of above. */
3641 struct mem_node *y = x->parent->parent->left;
3643 if (y->color == MEM_RED)
3645 x->parent->color = MEM_BLACK;
3646 y->color = MEM_BLACK;
3647 x->parent->parent->color = MEM_RED;
3648 x = x->parent->parent;
3650 else
3652 if (x == x->parent->left)
3654 x = x->parent;
3655 mem_rotate_right (x);
3658 x->parent->color = MEM_BLACK;
3659 x->parent->parent->color = MEM_RED;
3660 mem_rotate_left (x->parent->parent);
3665 /* The root may have been changed to red due to the algorithm. Set
3666 it to black so that property #5 is satisfied. */
3667 mem_root->color = MEM_BLACK;
3671 /* (x) (y)
3672 / \ / \
3673 a (y) ===> (x) c
3674 / \ / \
3675 b c a b */
3677 static void
3678 mem_rotate_left (x)
3679 struct mem_node *x;
3681 struct mem_node *y;
3683 /* Turn y's left sub-tree into x's right sub-tree. */
3684 y = x->right;
3685 x->right = y->left;
3686 if (y->left != MEM_NIL)
3687 y->left->parent = x;
3689 /* Y's parent was x's parent. */
3690 if (y != MEM_NIL)
3691 y->parent = x->parent;
3693 /* Get the parent to point to y instead of x. */
3694 if (x->parent)
3696 if (x == x->parent->left)
3697 x->parent->left = y;
3698 else
3699 x->parent->right = y;
3701 else
3702 mem_root = y;
3704 /* Put x on y's left. */
3705 y->left = x;
3706 if (x != MEM_NIL)
3707 x->parent = y;
3711 /* (x) (Y)
3712 / \ / \
3713 (y) c ===> a (x)
3714 / \ / \
3715 a b b c */
3717 static void
3718 mem_rotate_right (x)
3719 struct mem_node *x;
3721 struct mem_node *y = x->left;
3723 x->left = y->right;
3724 if (y->right != MEM_NIL)
3725 y->right->parent = x;
3727 if (y != MEM_NIL)
3728 y->parent = x->parent;
3729 if (x->parent)
3731 if (x == x->parent->right)
3732 x->parent->right = y;
3733 else
3734 x->parent->left = y;
3736 else
3737 mem_root = y;
3739 y->right = x;
3740 if (x != MEM_NIL)
3741 x->parent = y;
3745 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3747 static void
3748 mem_delete (z)
3749 struct mem_node *z;
3751 struct mem_node *x, *y;
3753 if (!z || z == MEM_NIL)
3754 return;
3756 if (z->left == MEM_NIL || z->right == MEM_NIL)
3757 y = z;
3758 else
3760 y = z->right;
3761 while (y->left != MEM_NIL)
3762 y = y->left;
3765 if (y->left != MEM_NIL)
3766 x = y->left;
3767 else
3768 x = y->right;
3770 x->parent = y->parent;
3771 if (y->parent)
3773 if (y == y->parent->left)
3774 y->parent->left = x;
3775 else
3776 y->parent->right = x;
3778 else
3779 mem_root = x;
3781 if (y != z)
3783 z->start = y->start;
3784 z->end = y->end;
3785 z->type = y->type;
3788 if (y->color == MEM_BLACK)
3789 mem_delete_fixup (x);
3791 #ifdef GC_MALLOC_CHECK
3792 _free_internal (y);
3793 #else
3794 xfree (y);
3795 #endif
3799 /* Re-establish the red-black properties of the tree, after a
3800 deletion. */
3802 static void
3803 mem_delete_fixup (x)
3804 struct mem_node *x;
3806 while (x != mem_root && x->color == MEM_BLACK)
3808 if (x == x->parent->left)
3810 struct mem_node *w = x->parent->right;
3812 if (w->color == MEM_RED)
3814 w->color = MEM_BLACK;
3815 x->parent->color = MEM_RED;
3816 mem_rotate_left (x->parent);
3817 w = x->parent->right;
3820 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3822 w->color = MEM_RED;
3823 x = x->parent;
3825 else
3827 if (w->right->color == MEM_BLACK)
3829 w->left->color = MEM_BLACK;
3830 w->color = MEM_RED;
3831 mem_rotate_right (w);
3832 w = x->parent->right;
3834 w->color = x->parent->color;
3835 x->parent->color = MEM_BLACK;
3836 w->right->color = MEM_BLACK;
3837 mem_rotate_left (x->parent);
3838 x = mem_root;
3841 else
3843 struct mem_node *w = x->parent->left;
3845 if (w->color == MEM_RED)
3847 w->color = MEM_BLACK;
3848 x->parent->color = MEM_RED;
3849 mem_rotate_right (x->parent);
3850 w = x->parent->left;
3853 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3855 w->color = MEM_RED;
3856 x = x->parent;
3858 else
3860 if (w->left->color == MEM_BLACK)
3862 w->right->color = MEM_BLACK;
3863 w->color = MEM_RED;
3864 mem_rotate_left (w);
3865 w = x->parent->left;
3868 w->color = x->parent->color;
3869 x->parent->color = MEM_BLACK;
3870 w->left->color = MEM_BLACK;
3871 mem_rotate_right (x->parent);
3872 x = mem_root;
3877 x->color = MEM_BLACK;
3881 /* Value is non-zero if P is a pointer to a live Lisp string on
3882 the heap. M is a pointer to the mem_block for P. */
3884 static INLINE int
3885 live_string_p (m, p)
3886 struct mem_node *m;
3887 void *p;
3889 if (m->type == MEM_TYPE_STRING)
3891 struct string_block *b = (struct string_block *) m->start;
3892 int offset = (char *) p - (char *) &b->strings[0];
3894 /* P must point to the start of a Lisp_String structure, and it
3895 must not be on the free-list. */
3896 return (offset >= 0
3897 && offset % sizeof b->strings[0] == 0
3898 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3899 && ((struct Lisp_String *) p)->data != NULL);
3901 else
3902 return 0;
3906 /* Value is non-zero if P is a pointer to a live Lisp cons on
3907 the heap. M is a pointer to the mem_block for P. */
3909 static INLINE int
3910 live_cons_p (m, p)
3911 struct mem_node *m;
3912 void *p;
3914 if (m->type == MEM_TYPE_CONS)
3916 struct cons_block *b = (struct cons_block *) m->start;
3917 int offset = (char *) p - (char *) &b->conses[0];
3919 /* P must point to the start of a Lisp_Cons, not be
3920 one of the unused cells in the current cons block,
3921 and not be on the free-list. */
3922 return (offset >= 0
3923 && offset % sizeof b->conses[0] == 0
3924 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3925 && (b != cons_block
3926 || offset / sizeof b->conses[0] < cons_block_index)
3927 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3929 else
3930 return 0;
3934 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3935 the heap. M is a pointer to the mem_block for P. */
3937 static INLINE int
3938 live_symbol_p (m, p)
3939 struct mem_node *m;
3940 void *p;
3942 if (m->type == MEM_TYPE_SYMBOL)
3944 struct symbol_block *b = (struct symbol_block *) m->start;
3945 int offset = (char *) p - (char *) &b->symbols[0];
3947 /* P must point to the start of a Lisp_Symbol, not be
3948 one of the unused cells in the current symbol block,
3949 and not be on the free-list. */
3950 return (offset >= 0
3951 && offset % sizeof b->symbols[0] == 0
3952 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3953 && (b != symbol_block
3954 || offset / sizeof b->symbols[0] < symbol_block_index)
3955 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3957 else
3958 return 0;
3962 /* Value is non-zero if P is a pointer to a live Lisp float on
3963 the heap. M is a pointer to the mem_block for P. */
3965 static INLINE int
3966 live_float_p (m, p)
3967 struct mem_node *m;
3968 void *p;
3970 if (m->type == MEM_TYPE_FLOAT)
3972 struct float_block *b = (struct float_block *) m->start;
3973 int offset = (char *) p - (char *) &b->floats[0];
3975 /* P must point to the start of a Lisp_Float and not be
3976 one of the unused cells in the current float block. */
3977 return (offset >= 0
3978 && offset % sizeof b->floats[0] == 0
3979 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3980 && (b != float_block
3981 || offset / sizeof b->floats[0] < float_block_index));
3983 else
3984 return 0;
3988 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3989 the heap. M is a pointer to the mem_block for P. */
3991 static INLINE int
3992 live_misc_p (m, p)
3993 struct mem_node *m;
3994 void *p;
3996 if (m->type == MEM_TYPE_MISC)
3998 struct marker_block *b = (struct marker_block *) m->start;
3999 int offset = (char *) p - (char *) &b->markers[0];
4001 /* P must point to the start of a Lisp_Misc, not be
4002 one of the unused cells in the current misc block,
4003 and not be on the free-list. */
4004 return (offset >= 0
4005 && offset % sizeof b->markers[0] == 0
4006 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4007 && (b != marker_block
4008 || offset / sizeof b->markers[0] < marker_block_index)
4009 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4011 else
4012 return 0;
4016 /* Value is non-zero if P is a pointer to a live vector-like object.
4017 M is a pointer to the mem_block for P. */
4019 static INLINE int
4020 live_vector_p (m, p)
4021 struct mem_node *m;
4022 void *p;
4024 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
4028 /* Value is non-zero if P is a pointer to a live buffer. M is a
4029 pointer to the mem_block for P. */
4031 static INLINE int
4032 live_buffer_p (m, p)
4033 struct mem_node *m;
4034 void *p;
4036 /* P must point to the start of the block, and the buffer
4037 must not have been killed. */
4038 return (m->type == MEM_TYPE_BUFFER
4039 && p == m->start
4040 && !NILP (((struct buffer *) p)->name));
4043 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4045 #if GC_MARK_STACK
4047 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4049 /* Array of objects that are kept alive because the C stack contains
4050 a pattern that looks like a reference to them . */
4052 #define MAX_ZOMBIES 10
4053 static Lisp_Object zombies[MAX_ZOMBIES];
4055 /* Number of zombie objects. */
4057 static int nzombies;
4059 /* Number of garbage collections. */
4061 static int ngcs;
4063 /* Average percentage of zombies per collection. */
4065 static double avg_zombies;
4067 /* Max. number of live and zombie objects. */
4069 static int max_live, max_zombies;
4071 /* Average number of live objects per GC. */
4073 static double avg_live;
4075 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4076 doc: /* Show information about live and zombie objects. */)
4079 Lisp_Object args[8], zombie_list = Qnil;
4080 int i;
4081 for (i = 0; i < nzombies; i++)
4082 zombie_list = Fcons (zombies[i], zombie_list);
4083 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4084 args[1] = make_number (ngcs);
4085 args[2] = make_float (avg_live);
4086 args[3] = make_float (avg_zombies);
4087 args[4] = make_float (avg_zombies / avg_live / 100);
4088 args[5] = make_number (max_live);
4089 args[6] = make_number (max_zombies);
4090 args[7] = zombie_list;
4091 return Fmessage (8, args);
4094 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4097 /* Mark OBJ if we can prove it's a Lisp_Object. */
4099 static INLINE void
4100 mark_maybe_object (obj)
4101 Lisp_Object obj;
4103 void *po = (void *) XPNTR (obj);
4104 struct mem_node *m = mem_find (po);
4106 if (m != MEM_NIL)
4108 int mark_p = 0;
4110 switch (XTYPE (obj))
4112 case Lisp_String:
4113 mark_p = (live_string_p (m, po)
4114 && !STRING_MARKED_P ((struct Lisp_String *) po));
4115 break;
4117 case Lisp_Cons:
4118 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4119 break;
4121 case Lisp_Symbol:
4122 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4123 break;
4125 case Lisp_Float:
4126 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4127 break;
4129 case Lisp_Vectorlike:
4130 /* Note: can't check BUFFERP before we know it's a
4131 buffer because checking that dereferences the pointer
4132 PO which might point anywhere. */
4133 if (live_vector_p (m, po))
4134 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4135 else if (live_buffer_p (m, po))
4136 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4137 break;
4139 case Lisp_Misc:
4140 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4141 break;
4143 default:
4144 break;
4147 if (mark_p)
4149 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4150 if (nzombies < MAX_ZOMBIES)
4151 zombies[nzombies] = obj;
4152 ++nzombies;
4153 #endif
4154 mark_object (obj);
4160 /* If P points to Lisp data, mark that as live if it isn't already
4161 marked. */
4163 static INLINE void
4164 mark_maybe_pointer (p)
4165 void *p;
4167 struct mem_node *m;
4169 /* Quickly rule out some values which can't point to Lisp data. */
4170 if ((EMACS_INT) p %
4171 #ifdef USE_LSB_TAG
4172 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4173 #else
4174 2 /* We assume that Lisp data is aligned on even addresses. */
4175 #endif
4177 return;
4179 m = mem_find (p);
4180 if (m != MEM_NIL)
4182 Lisp_Object obj = Qnil;
4184 switch (m->type)
4186 case MEM_TYPE_NON_LISP:
4187 /* Nothing to do; not a pointer to Lisp memory. */
4188 break;
4190 case MEM_TYPE_BUFFER:
4191 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4192 XSETVECTOR (obj, p);
4193 break;
4195 case MEM_TYPE_CONS:
4196 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4197 XSETCONS (obj, p);
4198 break;
4200 case MEM_TYPE_STRING:
4201 if (live_string_p (m, p)
4202 && !STRING_MARKED_P ((struct Lisp_String *) p))
4203 XSETSTRING (obj, p);
4204 break;
4206 case MEM_TYPE_MISC:
4207 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4208 XSETMISC (obj, p);
4209 break;
4211 case MEM_TYPE_SYMBOL:
4212 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4213 XSETSYMBOL (obj, p);
4214 break;
4216 case MEM_TYPE_FLOAT:
4217 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4218 XSETFLOAT (obj, p);
4219 break;
4221 case MEM_TYPE_VECTORLIKE:
4222 if (live_vector_p (m, p))
4224 Lisp_Object tem;
4225 XSETVECTOR (tem, p);
4226 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4227 obj = tem;
4229 break;
4231 default:
4232 abort ();
4235 if (!NILP (obj))
4236 mark_object (obj);
4241 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4242 or END+OFFSET..START. */
4244 static void
4245 mark_memory (start, end, offset)
4246 void *start, *end;
4247 int offset;
4249 Lisp_Object *p;
4250 void **pp;
4252 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4253 nzombies = 0;
4254 #endif
4256 /* Make START the pointer to the start of the memory region,
4257 if it isn't already. */
4258 if (end < start)
4260 void *tem = start;
4261 start = end;
4262 end = tem;
4265 /* Mark Lisp_Objects. */
4266 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4267 mark_maybe_object (*p);
4269 /* Mark Lisp data pointed to. This is necessary because, in some
4270 situations, the C compiler optimizes Lisp objects away, so that
4271 only a pointer to them remains. Example:
4273 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4276 Lisp_Object obj = build_string ("test");
4277 struct Lisp_String *s = XSTRING (obj);
4278 Fgarbage_collect ();
4279 fprintf (stderr, "test `%s'\n", s->data);
4280 return Qnil;
4283 Here, `obj' isn't really used, and the compiler optimizes it
4284 away. The only reference to the life string is through the
4285 pointer `s'. */
4287 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4288 mark_maybe_pointer (*pp);
4291 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4292 the GCC system configuration. In gcc 3.2, the only systems for
4293 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4294 by others?) and ns32k-pc532-min. */
4296 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4298 static int setjmp_tested_p, longjmps_done;
4300 #define SETJMP_WILL_LIKELY_WORK "\
4302 Emacs garbage collector has been changed to use conservative stack\n\
4303 marking. Emacs has determined that the method it uses to do the\n\
4304 marking will likely work on your system, but this isn't sure.\n\
4306 If you are a system-programmer, or can get the help of a local wizard\n\
4307 who is, please take a look at the function mark_stack in alloc.c, and\n\
4308 verify that the methods used are appropriate for your system.\n\
4310 Please mail the result to <emacs-devel@gnu.org>.\n\
4313 #define SETJMP_WILL_NOT_WORK "\
4315 Emacs garbage collector has been changed to use conservative stack\n\
4316 marking. Emacs has determined that the default method it uses to do the\n\
4317 marking will not work on your system. We will need a system-dependent\n\
4318 solution for your system.\n\
4320 Please take a look at the function mark_stack in alloc.c, and\n\
4321 try to find a way to make it work on your system.\n\
4323 Note that you may get false negatives, depending on the compiler.\n\
4324 In particular, you need to use -O with GCC for this test.\n\
4326 Please mail the result to <emacs-devel@gnu.org>.\n\
4330 /* Perform a quick check if it looks like setjmp saves registers in a
4331 jmp_buf. Print a message to stderr saying so. When this test
4332 succeeds, this is _not_ a proof that setjmp is sufficient for
4333 conservative stack marking. Only the sources or a disassembly
4334 can prove that. */
4336 static void
4337 test_setjmp ()
4339 char buf[10];
4340 register int x;
4341 jmp_buf jbuf;
4342 int result = 0;
4344 /* Arrange for X to be put in a register. */
4345 sprintf (buf, "1");
4346 x = strlen (buf);
4347 x = 2 * x - 1;
4349 setjmp (jbuf);
4350 if (longjmps_done == 1)
4352 /* Came here after the longjmp at the end of the function.
4354 If x == 1, the longjmp has restored the register to its
4355 value before the setjmp, and we can hope that setjmp
4356 saves all such registers in the jmp_buf, although that
4357 isn't sure.
4359 For other values of X, either something really strange is
4360 taking place, or the setjmp just didn't save the register. */
4362 if (x == 1)
4363 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4364 else
4366 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4367 exit (1);
4371 ++longjmps_done;
4372 x = 2;
4373 if (longjmps_done == 1)
4374 longjmp (jbuf, 1);
4377 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4380 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4382 /* Abort if anything GCPRO'd doesn't survive the GC. */
4384 static void
4385 check_gcpros ()
4387 struct gcpro *p;
4388 int i;
4390 for (p = gcprolist; p; p = p->next)
4391 for (i = 0; i < p->nvars; ++i)
4392 if (!survives_gc_p (p->var[i]))
4393 /* FIXME: It's not necessarily a bug. It might just be that the
4394 GCPRO is unnecessary or should release the object sooner. */
4395 abort ();
4398 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4400 static void
4401 dump_zombies ()
4403 int i;
4405 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4406 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4408 fprintf (stderr, " %d = ", i);
4409 debug_print (zombies[i]);
4413 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4416 /* Mark live Lisp objects on the C stack.
4418 There are several system-dependent problems to consider when
4419 porting this to new architectures:
4421 Processor Registers
4423 We have to mark Lisp objects in CPU registers that can hold local
4424 variables or are used to pass parameters.
4426 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4427 something that either saves relevant registers on the stack, or
4428 calls mark_maybe_object passing it each register's contents.
4430 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4431 implementation assumes that calling setjmp saves registers we need
4432 to see in a jmp_buf which itself lies on the stack. This doesn't
4433 have to be true! It must be verified for each system, possibly
4434 by taking a look at the source code of setjmp.
4436 Stack Layout
4438 Architectures differ in the way their processor stack is organized.
4439 For example, the stack might look like this
4441 +----------------+
4442 | Lisp_Object | size = 4
4443 +----------------+
4444 | something else | size = 2
4445 +----------------+
4446 | Lisp_Object | size = 4
4447 +----------------+
4448 | ... |
4450 In such a case, not every Lisp_Object will be aligned equally. To
4451 find all Lisp_Object on the stack it won't be sufficient to walk
4452 the stack in steps of 4 bytes. Instead, two passes will be
4453 necessary, one starting at the start of the stack, and a second
4454 pass starting at the start of the stack + 2. Likewise, if the
4455 minimal alignment of Lisp_Objects on the stack is 1, four passes
4456 would be necessary, each one starting with one byte more offset
4457 from the stack start.
4459 The current code assumes by default that Lisp_Objects are aligned
4460 equally on the stack. */
4462 static void
4463 mark_stack ()
4465 int i;
4466 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4467 union aligned_jmpbuf {
4468 Lisp_Object o;
4469 jmp_buf j;
4470 } j;
4471 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4472 void *end;
4474 /* This trick flushes the register windows so that all the state of
4475 the process is contained in the stack. */
4476 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4477 needed on ia64 too. See mach_dep.c, where it also says inline
4478 assembler doesn't work with relevant proprietary compilers. */
4479 #ifdef __sparc__
4480 #if defined (__sparc64__) && defined (__FreeBSD__)
4481 /* FreeBSD does not have a ta 3 handler. */
4482 asm ("flushw");
4483 #else
4484 asm ("ta 3");
4485 #endif
4486 #endif
4488 /* Save registers that we need to see on the stack. We need to see
4489 registers used to hold register variables and registers used to
4490 pass parameters. */
4491 #ifdef GC_SAVE_REGISTERS_ON_STACK
4492 GC_SAVE_REGISTERS_ON_STACK (end);
4493 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4495 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4496 setjmp will definitely work, test it
4497 and print a message with the result
4498 of the test. */
4499 if (!setjmp_tested_p)
4501 setjmp_tested_p = 1;
4502 test_setjmp ();
4504 #endif /* GC_SETJMP_WORKS */
4506 setjmp (j.j);
4507 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4508 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4510 /* This assumes that the stack is a contiguous region in memory. If
4511 that's not the case, something has to be done here to iterate
4512 over the stack segments. */
4513 #ifndef GC_LISP_OBJECT_ALIGNMENT
4514 #ifdef __GNUC__
4515 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4516 #else
4517 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4518 #endif
4519 #endif
4520 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4521 mark_memory (stack_base, end, i);
4522 /* Allow for marking a secondary stack, like the register stack on the
4523 ia64. */
4524 #ifdef GC_MARK_SECONDARY_STACK
4525 GC_MARK_SECONDARY_STACK ();
4526 #endif
4528 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4529 check_gcpros ();
4530 #endif
4533 #endif /* GC_MARK_STACK != 0 */
4536 /* Determine whether it is safe to access memory at address P. */
4537 static int
4538 valid_pointer_p (p)
4539 void *p;
4541 #ifdef WINDOWSNT
4542 return w32_valid_pointer_p (p, 16);
4543 #else
4544 int fd;
4546 /* Obviously, we cannot just access it (we would SEGV trying), so we
4547 trick the o/s to tell us whether p is a valid pointer.
4548 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4549 not validate p in that case. */
4551 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4553 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4554 emacs_close (fd);
4555 unlink ("__Valid__Lisp__Object__");
4556 return valid;
4559 return -1;
4560 #endif
4563 /* Return 1 if OBJ is a valid lisp object.
4564 Return 0 if OBJ is NOT a valid lisp object.
4565 Return -1 if we cannot validate OBJ.
4566 This function can be quite slow,
4567 so it should only be used in code for manual debugging. */
4570 valid_lisp_object_p (obj)
4571 Lisp_Object obj;
4573 void *p;
4574 #if GC_MARK_STACK
4575 struct mem_node *m;
4576 #endif
4578 if (INTEGERP (obj))
4579 return 1;
4581 p = (void *) XPNTR (obj);
4582 if (PURE_POINTER_P (p))
4583 return 1;
4585 #if !GC_MARK_STACK
4586 return valid_pointer_p (p);
4587 #else
4589 m = mem_find (p);
4591 if (m == MEM_NIL)
4593 int valid = valid_pointer_p (p);
4594 if (valid <= 0)
4595 return valid;
4597 if (SUBRP (obj))
4598 return 1;
4600 return 0;
4603 switch (m->type)
4605 case MEM_TYPE_NON_LISP:
4606 return 0;
4608 case MEM_TYPE_BUFFER:
4609 return live_buffer_p (m, p);
4611 case MEM_TYPE_CONS:
4612 return live_cons_p (m, p);
4614 case MEM_TYPE_STRING:
4615 return live_string_p (m, p);
4617 case MEM_TYPE_MISC:
4618 return live_misc_p (m, p);
4620 case MEM_TYPE_SYMBOL:
4621 return live_symbol_p (m, p);
4623 case MEM_TYPE_FLOAT:
4624 return live_float_p (m, p);
4626 case MEM_TYPE_VECTORLIKE:
4627 return live_vector_p (m, p);
4629 default:
4630 break;
4633 return 0;
4634 #endif
4640 /***********************************************************************
4641 Pure Storage Management
4642 ***********************************************************************/
4644 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4645 pointer to it. TYPE is the Lisp type for which the memory is
4646 allocated. TYPE < 0 means it's not used for a Lisp object. */
4648 static POINTER_TYPE *
4649 pure_alloc (size, type)
4650 size_t size;
4651 int type;
4653 POINTER_TYPE *result;
4654 #ifdef USE_LSB_TAG
4655 size_t alignment = (1 << GCTYPEBITS);
4656 #else
4657 size_t alignment = sizeof (EMACS_INT);
4659 /* Give Lisp_Floats an extra alignment. */
4660 if (type == Lisp_Float)
4662 #if defined __GNUC__ && __GNUC__ >= 2
4663 alignment = __alignof (struct Lisp_Float);
4664 #else
4665 alignment = sizeof (struct Lisp_Float);
4666 #endif
4668 #endif
4670 again:
4671 if (type >= 0)
4673 /* Allocate space for a Lisp object from the beginning of the free
4674 space with taking account of alignment. */
4675 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4676 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4678 else
4680 /* Allocate space for a non-Lisp object from the end of the free
4681 space. */
4682 pure_bytes_used_non_lisp += size;
4683 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4685 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4687 if (pure_bytes_used <= pure_size)
4688 return result;
4690 /* Don't allocate a large amount here,
4691 because it might get mmap'd and then its address
4692 might not be usable. */
4693 purebeg = (char *) xmalloc (10000);
4694 pure_size = 10000;
4695 pure_bytes_used_before_overflow += pure_bytes_used - size;
4696 pure_bytes_used = 0;
4697 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4698 goto again;
4702 /* Print a warning if PURESIZE is too small. */
4704 void
4705 check_pure_size ()
4707 if (pure_bytes_used_before_overflow)
4708 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4709 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4713 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4714 the non-Lisp data pool of the pure storage, and return its start
4715 address. Return NULL if not found. */
4717 static char *
4718 find_string_data_in_pure (data, nbytes)
4719 const char *data;
4720 int nbytes;
4722 int i, skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4723 const unsigned char *p;
4724 char *non_lisp_beg;
4726 if (pure_bytes_used_non_lisp < nbytes + 1)
4727 return NULL;
4729 /* Set up the Boyer-Moore table. */
4730 skip = nbytes + 1;
4731 for (i = 0; i < 256; i++)
4732 bm_skip[i] = skip;
4734 p = (const unsigned char *) data;
4735 while (--skip > 0)
4736 bm_skip[*p++] = skip;
4738 last_char_skip = bm_skip['\0'];
4740 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4741 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4743 /* See the comments in the function `boyer_moore' (search.c) for the
4744 use of `infinity'. */
4745 infinity = pure_bytes_used_non_lisp + 1;
4746 bm_skip['\0'] = infinity;
4748 p = (const unsigned char *) non_lisp_beg + nbytes;
4749 start = 0;
4752 /* Check the last character (== '\0'). */
4755 start += bm_skip[*(p + start)];
4757 while (start <= start_max);
4759 if (start < infinity)
4760 /* Couldn't find the last character. */
4761 return NULL;
4763 /* No less than `infinity' means we could find the last
4764 character at `p[start - infinity]'. */
4765 start -= infinity;
4767 /* Check the remaining characters. */
4768 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4769 /* Found. */
4770 return non_lisp_beg + start;
4772 start += last_char_skip;
4774 while (start <= start_max);
4776 return NULL;
4780 /* Return a string allocated in pure space. DATA is a buffer holding
4781 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4782 non-zero means make the result string multibyte.
4784 Must get an error if pure storage is full, since if it cannot hold
4785 a large string it may be able to hold conses that point to that
4786 string; then the string is not protected from gc. */
4788 Lisp_Object
4789 make_pure_string (data, nchars, nbytes, multibyte)
4790 const char *data;
4791 int nchars, nbytes;
4792 int multibyte;
4794 Lisp_Object string;
4795 struct Lisp_String *s;
4797 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4798 s->data = find_string_data_in_pure (data, nbytes);
4799 if (s->data == NULL)
4801 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4802 bcopy (data, s->data, nbytes);
4803 s->data[nbytes] = '\0';
4805 s->size = nchars;
4806 s->size_byte = multibyte ? nbytes : -1;
4807 s->intervals = NULL_INTERVAL;
4808 XSETSTRING (string, s);
4809 return string;
4812 /* Return a string a string allocated in pure space. Do not allocate
4813 the string data, just point to DATA. */
4815 Lisp_Object
4816 make_pure_c_string (const char *data)
4818 Lisp_Object string;
4819 struct Lisp_String *s;
4820 int nchars = strlen (data);
4822 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4823 s->size = nchars;
4824 s->size_byte = -1;
4825 s->data = (unsigned char *) data;
4826 s->intervals = NULL_INTERVAL;
4827 XSETSTRING (string, s);
4828 return string;
4831 /* Return a cons allocated from pure space. Give it pure copies
4832 of CAR as car and CDR as cdr. */
4834 Lisp_Object
4835 pure_cons (car, cdr)
4836 Lisp_Object car, cdr;
4838 register Lisp_Object new;
4839 struct Lisp_Cons *p;
4841 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4842 XSETCONS (new, p);
4843 XSETCAR (new, Fpurecopy (car));
4844 XSETCDR (new, Fpurecopy (cdr));
4845 return new;
4849 /* Value is a float object with value NUM allocated from pure space. */
4851 static Lisp_Object
4852 make_pure_float (num)
4853 double num;
4855 register Lisp_Object new;
4856 struct Lisp_Float *p;
4858 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4859 XSETFLOAT (new, p);
4860 XFLOAT_INIT (new, num);
4861 return new;
4865 /* Return a vector with room for LEN Lisp_Objects allocated from
4866 pure space. */
4868 Lisp_Object
4869 make_pure_vector (len)
4870 EMACS_INT len;
4872 Lisp_Object new;
4873 struct Lisp_Vector *p;
4874 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4876 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4877 XSETVECTOR (new, p);
4878 XVECTOR (new)->size = len;
4879 return new;
4883 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4884 doc: /* Make a copy of object OBJ in pure storage.
4885 Recursively copies contents of vectors and cons cells.
4886 Does not copy symbols. Copies strings without text properties. */)
4887 (obj)
4888 register Lisp_Object obj;
4890 if (NILP (Vpurify_flag))
4891 return obj;
4893 if (PURE_POINTER_P (XPNTR (obj)))
4894 return obj;
4896 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4898 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
4899 if (!NILP (tmp))
4900 return tmp;
4903 if (CONSP (obj))
4904 obj = pure_cons (XCAR (obj), XCDR (obj));
4905 else if (FLOATP (obj))
4906 obj = make_pure_float (XFLOAT_DATA (obj));
4907 else if (STRINGP (obj))
4908 obj = make_pure_string (SDATA (obj), SCHARS (obj),
4909 SBYTES (obj),
4910 STRING_MULTIBYTE (obj));
4911 else if (COMPILEDP (obj) || VECTORP (obj))
4913 register struct Lisp_Vector *vec;
4914 register int i;
4915 EMACS_INT size;
4917 size = XVECTOR (obj)->size;
4918 if (size & PSEUDOVECTOR_FLAG)
4919 size &= PSEUDOVECTOR_SIZE_MASK;
4920 vec = XVECTOR (make_pure_vector (size));
4921 for (i = 0; i < size; i++)
4922 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4923 if (COMPILEDP (obj))
4925 XSETPVECTYPE (vec, PVEC_COMPILED);
4926 XSETCOMPILED (obj, vec);
4928 else
4929 XSETVECTOR (obj, vec);
4931 else if (MARKERP (obj))
4932 error ("Attempt to copy a marker to pure storage");
4933 else
4934 /* Not purified, don't hash-cons. */
4935 return obj;
4937 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
4938 Fputhash (obj, obj, Vpurify_flag);
4940 return obj;
4945 /***********************************************************************
4946 Protection from GC
4947 ***********************************************************************/
4949 /* Put an entry in staticvec, pointing at the variable with address
4950 VARADDRESS. */
4952 void
4953 staticpro (varaddress)
4954 Lisp_Object *varaddress;
4956 staticvec[staticidx++] = varaddress;
4957 if (staticidx >= NSTATICS)
4958 abort ();
4962 /***********************************************************************
4963 Protection from GC
4964 ***********************************************************************/
4966 /* Temporarily prevent garbage collection. */
4969 inhibit_garbage_collection ()
4971 int count = SPECPDL_INDEX ();
4972 int nbits = min (VALBITS, BITS_PER_INT);
4974 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4975 return count;
4979 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4980 doc: /* Reclaim storage for Lisp objects no longer needed.
4981 Garbage collection happens automatically if you cons more than
4982 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4983 `garbage-collect' normally returns a list with info on amount of space in use:
4984 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4985 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4986 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4987 (USED-STRINGS . FREE-STRINGS))
4988 However, if there was overflow in pure space, `garbage-collect'
4989 returns nil, because real GC can't be done. */)
4992 register struct specbinding *bind;
4993 struct catchtag *catch;
4994 struct handler *handler;
4995 char stack_top_variable;
4996 register int i;
4997 int message_p;
4998 Lisp_Object total[8];
4999 int count = SPECPDL_INDEX ();
5000 EMACS_TIME t1, t2, t3;
5002 if (abort_on_gc)
5003 abort ();
5005 /* Can't GC if pure storage overflowed because we can't determine
5006 if something is a pure object or not. */
5007 if (pure_bytes_used_before_overflow)
5008 return Qnil;
5010 CHECK_CONS_LIST ();
5012 /* Don't keep undo information around forever.
5013 Do this early on, so it is no problem if the user quits. */
5015 register struct buffer *nextb = all_buffers;
5017 while (nextb)
5019 /* If a buffer's undo list is Qt, that means that undo is
5020 turned off in that buffer. Calling truncate_undo_list on
5021 Qt tends to return NULL, which effectively turns undo back on.
5022 So don't call truncate_undo_list if undo_list is Qt. */
5023 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
5024 truncate_undo_list (nextb);
5026 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5027 if (nextb->base_buffer == 0 && !NILP (nextb->name)
5028 && ! nextb->text->inhibit_shrinking)
5030 /* If a buffer's gap size is more than 10% of the buffer
5031 size, or larger than 2000 bytes, then shrink it
5032 accordingly. Keep a minimum size of 20 bytes. */
5033 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5035 if (nextb->text->gap_size > size)
5037 struct buffer *save_current = current_buffer;
5038 current_buffer = nextb;
5039 make_gap (-(nextb->text->gap_size - size));
5040 current_buffer = save_current;
5044 nextb = nextb->next;
5048 EMACS_GET_TIME (t1);
5050 /* In case user calls debug_print during GC,
5051 don't let that cause a recursive GC. */
5052 consing_since_gc = 0;
5054 /* Save what's currently displayed in the echo area. */
5055 message_p = push_message ();
5056 record_unwind_protect (pop_message_unwind, Qnil);
5058 /* Save a copy of the contents of the stack, for debugging. */
5059 #if MAX_SAVE_STACK > 0
5060 if (NILP (Vpurify_flag))
5062 i = &stack_top_variable - stack_bottom;
5063 if (i < 0) i = -i;
5064 if (i < MAX_SAVE_STACK)
5066 if (stack_copy == 0)
5067 stack_copy = (char *) xmalloc (stack_copy_size = i);
5068 else if (stack_copy_size < i)
5069 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
5070 if (stack_copy)
5072 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
5073 bcopy (stack_bottom, stack_copy, i);
5074 else
5075 bcopy (&stack_top_variable, stack_copy, i);
5079 #endif /* MAX_SAVE_STACK > 0 */
5081 if (garbage_collection_messages)
5082 message1_nolog ("Garbage collecting...");
5084 BLOCK_INPUT;
5086 shrink_regexp_cache ();
5088 gc_in_progress = 1;
5090 /* clear_marks (); */
5092 /* Mark all the special slots that serve as the roots of accessibility. */
5094 for (i = 0; i < staticidx; i++)
5095 mark_object (*staticvec[i]);
5097 for (bind = specpdl; bind != specpdl_ptr; bind++)
5099 mark_object (bind->symbol);
5100 mark_object (bind->old_value);
5102 mark_terminals ();
5103 mark_kboards ();
5104 mark_ttys ();
5106 #ifdef USE_GTK
5108 extern void xg_mark_data ();
5109 xg_mark_data ();
5111 #endif
5113 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5114 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5115 mark_stack ();
5116 #else
5118 register struct gcpro *tail;
5119 for (tail = gcprolist; tail; tail = tail->next)
5120 for (i = 0; i < tail->nvars; i++)
5121 mark_object (tail->var[i]);
5123 #endif
5125 mark_byte_stack ();
5126 for (catch = catchlist; catch; catch = catch->next)
5128 mark_object (catch->tag);
5129 mark_object (catch->val);
5131 for (handler = handlerlist; handler; handler = handler->next)
5133 mark_object (handler->handler);
5134 mark_object (handler->var);
5136 mark_backtrace ();
5138 #ifdef HAVE_WINDOW_SYSTEM
5139 mark_fringe_data ();
5140 #endif
5142 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5143 mark_stack ();
5144 #endif
5146 /* Everything is now marked, except for the things that require special
5147 finalization, i.e. the undo_list.
5148 Look thru every buffer's undo list
5149 for elements that update markers that were not marked,
5150 and delete them. */
5152 register struct buffer *nextb = all_buffers;
5154 while (nextb)
5156 /* If a buffer's undo list is Qt, that means that undo is
5157 turned off in that buffer. Calling truncate_undo_list on
5158 Qt tends to return NULL, which effectively turns undo back on.
5159 So don't call truncate_undo_list if undo_list is Qt. */
5160 if (! EQ (nextb->undo_list, Qt))
5162 Lisp_Object tail, prev;
5163 tail = nextb->undo_list;
5164 prev = Qnil;
5165 while (CONSP (tail))
5167 if (CONSP (XCAR (tail))
5168 && MARKERP (XCAR (XCAR (tail)))
5169 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5171 if (NILP (prev))
5172 nextb->undo_list = tail = XCDR (tail);
5173 else
5175 tail = XCDR (tail);
5176 XSETCDR (prev, tail);
5179 else
5181 prev = tail;
5182 tail = XCDR (tail);
5186 /* Now that we have stripped the elements that need not be in the
5187 undo_list any more, we can finally mark the list. */
5188 mark_object (nextb->undo_list);
5190 nextb = nextb->next;
5194 gc_sweep ();
5196 /* Clear the mark bits that we set in certain root slots. */
5198 unmark_byte_stack ();
5199 VECTOR_UNMARK (&buffer_defaults);
5200 VECTOR_UNMARK (&buffer_local_symbols);
5202 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5203 dump_zombies ();
5204 #endif
5206 UNBLOCK_INPUT;
5208 CHECK_CONS_LIST ();
5210 /* clear_marks (); */
5211 gc_in_progress = 0;
5213 consing_since_gc = 0;
5214 if (gc_cons_threshold < 10000)
5215 gc_cons_threshold = 10000;
5217 if (FLOATP (Vgc_cons_percentage))
5218 { /* Set gc_cons_combined_threshold. */
5219 EMACS_INT total = 0;
5221 total += total_conses * sizeof (struct Lisp_Cons);
5222 total += total_symbols * sizeof (struct Lisp_Symbol);
5223 total += total_markers * sizeof (union Lisp_Misc);
5224 total += total_string_size;
5225 total += total_vector_size * sizeof (Lisp_Object);
5226 total += total_floats * sizeof (struct Lisp_Float);
5227 total += total_intervals * sizeof (struct interval);
5228 total += total_strings * sizeof (struct Lisp_String);
5230 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5232 else
5233 gc_relative_threshold = 0;
5235 if (garbage_collection_messages)
5237 if (message_p || minibuf_level > 0)
5238 restore_message ();
5239 else
5240 message1_nolog ("Garbage collecting...done");
5243 unbind_to (count, Qnil);
5245 total[0] = Fcons (make_number (total_conses),
5246 make_number (total_free_conses));
5247 total[1] = Fcons (make_number (total_symbols),
5248 make_number (total_free_symbols));
5249 total[2] = Fcons (make_number (total_markers),
5250 make_number (total_free_markers));
5251 total[3] = make_number (total_string_size);
5252 total[4] = make_number (total_vector_size);
5253 total[5] = Fcons (make_number (total_floats),
5254 make_number (total_free_floats));
5255 total[6] = Fcons (make_number (total_intervals),
5256 make_number (total_free_intervals));
5257 total[7] = Fcons (make_number (total_strings),
5258 make_number (total_free_strings));
5260 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5262 /* Compute average percentage of zombies. */
5263 double nlive = 0;
5265 for (i = 0; i < 7; ++i)
5266 if (CONSP (total[i]))
5267 nlive += XFASTINT (XCAR (total[i]));
5269 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5270 max_live = max (nlive, max_live);
5271 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5272 max_zombies = max (nzombies, max_zombies);
5273 ++ngcs;
5275 #endif
5277 if (!NILP (Vpost_gc_hook))
5279 int count = inhibit_garbage_collection ();
5280 safe_run_hooks (Qpost_gc_hook);
5281 unbind_to (count, Qnil);
5284 /* Accumulate statistics. */
5285 EMACS_GET_TIME (t2);
5286 EMACS_SUB_TIME (t3, t2, t1);
5287 if (FLOATP (Vgc_elapsed))
5288 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5289 EMACS_SECS (t3) +
5290 EMACS_USECS (t3) * 1.0e-6);
5291 gcs_done++;
5293 return Flist (sizeof total / sizeof *total, total);
5297 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5298 only interesting objects referenced from glyphs are strings. */
5300 static void
5301 mark_glyph_matrix (matrix)
5302 struct glyph_matrix *matrix;
5304 struct glyph_row *row = matrix->rows;
5305 struct glyph_row *end = row + matrix->nrows;
5307 for (; row < end; ++row)
5308 if (row->enabled_p)
5310 int area;
5311 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5313 struct glyph *glyph = row->glyphs[area];
5314 struct glyph *end_glyph = glyph + row->used[area];
5316 for (; glyph < end_glyph; ++glyph)
5317 if (STRINGP (glyph->object)
5318 && !STRING_MARKED_P (XSTRING (glyph->object)))
5319 mark_object (glyph->object);
5325 /* Mark Lisp faces in the face cache C. */
5327 static void
5328 mark_face_cache (c)
5329 struct face_cache *c;
5331 if (c)
5333 int i, j;
5334 for (i = 0; i < c->used; ++i)
5336 struct face *face = FACE_FROM_ID (c->f, i);
5338 if (face)
5340 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5341 mark_object (face->lface[j]);
5349 /* Mark reference to a Lisp_Object.
5350 If the object referred to has not been seen yet, recursively mark
5351 all the references contained in it. */
5353 #define LAST_MARKED_SIZE 500
5354 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5355 int last_marked_index;
5357 /* For debugging--call abort when we cdr down this many
5358 links of a list, in mark_object. In debugging,
5359 the call to abort will hit a breakpoint.
5360 Normally this is zero and the check never goes off. */
5361 static int mark_object_loop_halt;
5363 static void
5364 mark_vectorlike (ptr)
5365 struct Lisp_Vector *ptr;
5367 register EMACS_INT size = ptr->size;
5368 register int i;
5370 eassert (!VECTOR_MARKED_P (ptr));
5371 VECTOR_MARK (ptr); /* Else mark it */
5372 if (size & PSEUDOVECTOR_FLAG)
5373 size &= PSEUDOVECTOR_SIZE_MASK;
5375 /* Note that this size is not the memory-footprint size, but only
5376 the number of Lisp_Object fields that we should trace.
5377 The distinction is used e.g. by Lisp_Process which places extra
5378 non-Lisp_Object fields at the end of the structure. */
5379 for (i = 0; i < size; i++) /* and then mark its elements */
5380 mark_object (ptr->contents[i]);
5383 /* Like mark_vectorlike but optimized for char-tables (and
5384 sub-char-tables) assuming that the contents are mostly integers or
5385 symbols. */
5387 static void
5388 mark_char_table (ptr)
5389 struct Lisp_Vector *ptr;
5391 register EMACS_INT size = ptr->size & PSEUDOVECTOR_SIZE_MASK;
5392 register int i;
5394 eassert (!VECTOR_MARKED_P (ptr));
5395 VECTOR_MARK (ptr);
5396 for (i = 0; i < size; i++)
5398 Lisp_Object val = ptr->contents[i];
5400 if (INTEGERP (val) || SYMBOLP (val) && XSYMBOL (val)->gcmarkbit)
5401 continue;
5402 if (SUB_CHAR_TABLE_P (val))
5404 if (! VECTOR_MARKED_P (XVECTOR (val)))
5405 mark_char_table (XVECTOR (val));
5407 else
5408 mark_object (val);
5412 void
5413 mark_object (arg)
5414 Lisp_Object arg;
5416 register Lisp_Object obj = arg;
5417 #ifdef GC_CHECK_MARKED_OBJECTS
5418 void *po;
5419 struct mem_node *m;
5420 #endif
5421 int cdr_count = 0;
5423 loop:
5425 if (PURE_POINTER_P (XPNTR (obj)))
5426 return;
5428 last_marked[last_marked_index++] = obj;
5429 if (last_marked_index == LAST_MARKED_SIZE)
5430 last_marked_index = 0;
5432 /* Perform some sanity checks on the objects marked here. Abort if
5433 we encounter an object we know is bogus. This increases GC time
5434 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5435 #ifdef GC_CHECK_MARKED_OBJECTS
5437 po = (void *) XPNTR (obj);
5439 /* Check that the object pointed to by PO is known to be a Lisp
5440 structure allocated from the heap. */
5441 #define CHECK_ALLOCATED() \
5442 do { \
5443 m = mem_find (po); \
5444 if (m == MEM_NIL) \
5445 abort (); \
5446 } while (0)
5448 /* Check that the object pointed to by PO is live, using predicate
5449 function LIVEP. */
5450 #define CHECK_LIVE(LIVEP) \
5451 do { \
5452 if (!LIVEP (m, po)) \
5453 abort (); \
5454 } while (0)
5456 /* Check both of the above conditions. */
5457 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5458 do { \
5459 CHECK_ALLOCATED (); \
5460 CHECK_LIVE (LIVEP); \
5461 } while (0) \
5463 #else /* not GC_CHECK_MARKED_OBJECTS */
5465 #define CHECK_ALLOCATED() (void) 0
5466 #define CHECK_LIVE(LIVEP) (void) 0
5467 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5469 #endif /* not GC_CHECK_MARKED_OBJECTS */
5471 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5473 case Lisp_String:
5475 register struct Lisp_String *ptr = XSTRING (obj);
5476 if (STRING_MARKED_P (ptr))
5477 break;
5478 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5479 MARK_INTERVAL_TREE (ptr->intervals);
5480 MARK_STRING (ptr);
5481 #ifdef GC_CHECK_STRING_BYTES
5482 /* Check that the string size recorded in the string is the
5483 same as the one recorded in the sdata structure. */
5484 CHECK_STRING_BYTES (ptr);
5485 #endif /* GC_CHECK_STRING_BYTES */
5487 break;
5489 case Lisp_Vectorlike:
5490 if (VECTOR_MARKED_P (XVECTOR (obj)))
5491 break;
5492 #ifdef GC_CHECK_MARKED_OBJECTS
5493 m = mem_find (po);
5494 if (m == MEM_NIL && !SUBRP (obj)
5495 && po != &buffer_defaults
5496 && po != &buffer_local_symbols)
5497 abort ();
5498 #endif /* GC_CHECK_MARKED_OBJECTS */
5500 if (BUFFERP (obj))
5502 #ifdef GC_CHECK_MARKED_OBJECTS
5503 if (po != &buffer_defaults && po != &buffer_local_symbols)
5505 struct buffer *b;
5506 for (b = all_buffers; b && b != po; b = b->next)
5508 if (b == NULL)
5509 abort ();
5511 #endif /* GC_CHECK_MARKED_OBJECTS */
5512 mark_buffer (obj);
5514 else if (SUBRP (obj))
5515 break;
5516 else if (COMPILEDP (obj))
5517 /* We could treat this just like a vector, but it is better to
5518 save the COMPILED_CONSTANTS element for last and avoid
5519 recursion there. */
5521 register struct Lisp_Vector *ptr = XVECTOR (obj);
5522 register EMACS_INT size = ptr->size;
5523 register int i;
5525 CHECK_LIVE (live_vector_p);
5526 VECTOR_MARK (ptr); /* Else mark it */
5527 size &= PSEUDOVECTOR_SIZE_MASK;
5528 for (i = 0; i < size; i++) /* and then mark its elements */
5530 if (i != COMPILED_CONSTANTS)
5531 mark_object (ptr->contents[i]);
5533 obj = ptr->contents[COMPILED_CONSTANTS];
5534 goto loop;
5536 else if (FRAMEP (obj))
5538 register struct frame *ptr = XFRAME (obj);
5539 mark_vectorlike (XVECTOR (obj));
5540 mark_face_cache (ptr->face_cache);
5542 else if (WINDOWP (obj))
5544 register struct Lisp_Vector *ptr = XVECTOR (obj);
5545 struct window *w = XWINDOW (obj);
5546 mark_vectorlike (ptr);
5547 /* Mark glyphs for leaf windows. Marking window matrices is
5548 sufficient because frame matrices use the same glyph
5549 memory. */
5550 if (NILP (w->hchild)
5551 && NILP (w->vchild)
5552 && w->current_matrix)
5554 mark_glyph_matrix (w->current_matrix);
5555 mark_glyph_matrix (w->desired_matrix);
5558 else if (HASH_TABLE_P (obj))
5560 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5561 mark_vectorlike ((struct Lisp_Vector *)h);
5562 /* If hash table is not weak, mark all keys and values.
5563 For weak tables, mark only the vector. */
5564 if (NILP (h->weak))
5565 mark_object (h->key_and_value);
5566 else
5567 VECTOR_MARK (XVECTOR (h->key_and_value));
5569 else if (CHAR_TABLE_P (obj))
5570 mark_char_table (XVECTOR (obj));
5571 else
5572 mark_vectorlike (XVECTOR (obj));
5573 break;
5575 case Lisp_Symbol:
5577 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5578 struct Lisp_Symbol *ptrx;
5580 if (ptr->gcmarkbit)
5581 break;
5582 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5583 ptr->gcmarkbit = 1;
5584 mark_object (ptr->function);
5585 mark_object (ptr->plist);
5586 switch (ptr->redirect)
5588 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5589 case SYMBOL_VARALIAS:
5591 Lisp_Object tem;
5592 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5593 mark_object (tem);
5594 break;
5596 case SYMBOL_LOCALIZED:
5598 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5599 /* If the value is forwarded to a buffer or keyboard field,
5600 these are marked when we see the corresponding object.
5601 And if it's forwarded to a C variable, either it's not
5602 a Lisp_Object var, or it's staticpro'd already. */
5603 mark_object (blv->where);
5604 mark_object (blv->valcell);
5605 mark_object (blv->defcell);
5606 break;
5608 case SYMBOL_FORWARDED:
5609 /* If the value is forwarded to a buffer or keyboard field,
5610 these are marked when we see the corresponding object.
5611 And if it's forwarded to a C variable, either it's not
5612 a Lisp_Object var, or it's staticpro'd already. */
5613 break;
5614 default: abort ();
5616 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5617 MARK_STRING (XSTRING (ptr->xname));
5618 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5620 ptr = ptr->next;
5621 if (ptr)
5623 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5624 XSETSYMBOL (obj, ptrx);
5625 goto loop;
5628 break;
5630 case Lisp_Misc:
5631 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5632 if (XMISCANY (obj)->gcmarkbit)
5633 break;
5634 XMISCANY (obj)->gcmarkbit = 1;
5636 switch (XMISCTYPE (obj))
5639 case Lisp_Misc_Marker:
5640 /* DO NOT mark thru the marker's chain.
5641 The buffer's markers chain does not preserve markers from gc;
5642 instead, markers are removed from the chain when freed by gc. */
5643 break;
5645 case Lisp_Misc_Save_Value:
5646 #if GC_MARK_STACK
5648 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5649 /* If DOGC is set, POINTER is the address of a memory
5650 area containing INTEGER potential Lisp_Objects. */
5651 if (ptr->dogc)
5653 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5654 int nelt;
5655 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5656 mark_maybe_object (*p);
5659 #endif
5660 break;
5662 case Lisp_Misc_Overlay:
5664 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5665 mark_object (ptr->start);
5666 mark_object (ptr->end);
5667 mark_object (ptr->plist);
5668 if (ptr->next)
5670 XSETMISC (obj, ptr->next);
5671 goto loop;
5674 break;
5676 default:
5677 abort ();
5679 break;
5681 case Lisp_Cons:
5683 register struct Lisp_Cons *ptr = XCONS (obj);
5684 if (CONS_MARKED_P (ptr))
5685 break;
5686 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5687 CONS_MARK (ptr);
5688 /* If the cdr is nil, avoid recursion for the car. */
5689 if (EQ (ptr->u.cdr, Qnil))
5691 obj = ptr->car;
5692 cdr_count = 0;
5693 goto loop;
5695 mark_object (ptr->car);
5696 obj = ptr->u.cdr;
5697 cdr_count++;
5698 if (cdr_count == mark_object_loop_halt)
5699 abort ();
5700 goto loop;
5703 case Lisp_Float:
5704 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5705 FLOAT_MARK (XFLOAT (obj));
5706 break;
5708 case_Lisp_Int:
5709 break;
5711 default:
5712 abort ();
5715 #undef CHECK_LIVE
5716 #undef CHECK_ALLOCATED
5717 #undef CHECK_ALLOCATED_AND_LIVE
5720 /* Mark the pointers in a buffer structure. */
5722 static void
5723 mark_buffer (buf)
5724 Lisp_Object buf;
5726 register struct buffer *buffer = XBUFFER (buf);
5727 register Lisp_Object *ptr, tmp;
5728 Lisp_Object base_buffer;
5730 eassert (!VECTOR_MARKED_P (buffer));
5731 VECTOR_MARK (buffer);
5733 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5735 /* For now, we just don't mark the undo_list. It's done later in
5736 a special way just before the sweep phase, and after stripping
5737 some of its elements that are not needed any more. */
5739 if (buffer->overlays_before)
5741 XSETMISC (tmp, buffer->overlays_before);
5742 mark_object (tmp);
5744 if (buffer->overlays_after)
5746 XSETMISC (tmp, buffer->overlays_after);
5747 mark_object (tmp);
5750 /* buffer-local Lisp variables start at `undo_list',
5751 tho only the ones from `name' on are GC'd normally. */
5752 for (ptr = &buffer->name;
5753 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5754 ptr++)
5755 mark_object (*ptr);
5757 /* If this is an indirect buffer, mark its base buffer. */
5758 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5760 XSETBUFFER (base_buffer, buffer->base_buffer);
5761 mark_buffer (base_buffer);
5765 /* Mark the Lisp pointers in the terminal objects.
5766 Called by the Fgarbage_collector. */
5768 static void
5769 mark_terminals (void)
5771 struct terminal *t;
5772 for (t = terminal_list; t; t = t->next_terminal)
5774 eassert (t->name != NULL);
5775 if (!VECTOR_MARKED_P (t))
5777 #ifdef HAVE_WINDOW_SYSTEM
5778 mark_image_cache (t->image_cache);
5779 #endif /* HAVE_WINDOW_SYSTEM */
5780 mark_vectorlike ((struct Lisp_Vector *)t);
5787 /* Value is non-zero if OBJ will survive the current GC because it's
5788 either marked or does not need to be marked to survive. */
5791 survives_gc_p (obj)
5792 Lisp_Object obj;
5794 int survives_p;
5796 switch (XTYPE (obj))
5798 case_Lisp_Int:
5799 survives_p = 1;
5800 break;
5802 case Lisp_Symbol:
5803 survives_p = XSYMBOL (obj)->gcmarkbit;
5804 break;
5806 case Lisp_Misc:
5807 survives_p = XMISCANY (obj)->gcmarkbit;
5808 break;
5810 case Lisp_String:
5811 survives_p = STRING_MARKED_P (XSTRING (obj));
5812 break;
5814 case Lisp_Vectorlike:
5815 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5816 break;
5818 case Lisp_Cons:
5819 survives_p = CONS_MARKED_P (XCONS (obj));
5820 break;
5822 case Lisp_Float:
5823 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5824 break;
5826 default:
5827 abort ();
5830 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5835 /* Sweep: find all structures not marked, and free them. */
5837 static void
5838 gc_sweep ()
5840 /* Remove or mark entries in weak hash tables.
5841 This must be done before any object is unmarked. */
5842 sweep_weak_hash_tables ();
5844 sweep_strings ();
5845 #ifdef GC_CHECK_STRING_BYTES
5846 if (!noninteractive)
5847 check_string_bytes (1);
5848 #endif
5850 /* Put all unmarked conses on free list */
5852 register struct cons_block *cblk;
5853 struct cons_block **cprev = &cons_block;
5854 register int lim = cons_block_index;
5855 register int num_free = 0, num_used = 0;
5857 cons_free_list = 0;
5859 for (cblk = cons_block; cblk; cblk = *cprev)
5861 register int i = 0;
5862 int this_free = 0;
5863 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5865 /* Scan the mark bits an int at a time. */
5866 for (i = 0; i <= ilim; i++)
5868 if (cblk->gcmarkbits[i] == -1)
5870 /* Fast path - all cons cells for this int are marked. */
5871 cblk->gcmarkbits[i] = 0;
5872 num_used += BITS_PER_INT;
5874 else
5876 /* Some cons cells for this int are not marked.
5877 Find which ones, and free them. */
5878 int start, pos, stop;
5880 start = i * BITS_PER_INT;
5881 stop = lim - start;
5882 if (stop > BITS_PER_INT)
5883 stop = BITS_PER_INT;
5884 stop += start;
5886 for (pos = start; pos < stop; pos++)
5888 if (!CONS_MARKED_P (&cblk->conses[pos]))
5890 this_free++;
5891 cblk->conses[pos].u.chain = cons_free_list;
5892 cons_free_list = &cblk->conses[pos];
5893 #if GC_MARK_STACK
5894 cons_free_list->car = Vdead;
5895 #endif
5897 else
5899 num_used++;
5900 CONS_UNMARK (&cblk->conses[pos]);
5906 lim = CONS_BLOCK_SIZE;
5907 /* If this block contains only free conses and we have already
5908 seen more than two blocks worth of free conses then deallocate
5909 this block. */
5910 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5912 *cprev = cblk->next;
5913 /* Unhook from the free list. */
5914 cons_free_list = cblk->conses[0].u.chain;
5915 lisp_align_free (cblk);
5916 n_cons_blocks--;
5918 else
5920 num_free += this_free;
5921 cprev = &cblk->next;
5924 total_conses = num_used;
5925 total_free_conses = num_free;
5928 /* Put all unmarked floats on free list */
5930 register struct float_block *fblk;
5931 struct float_block **fprev = &float_block;
5932 register int lim = float_block_index;
5933 register int num_free = 0, num_used = 0;
5935 float_free_list = 0;
5937 for (fblk = float_block; fblk; fblk = *fprev)
5939 register int i;
5940 int this_free = 0;
5941 for (i = 0; i < lim; i++)
5942 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5944 this_free++;
5945 fblk->floats[i].u.chain = float_free_list;
5946 float_free_list = &fblk->floats[i];
5948 else
5950 num_used++;
5951 FLOAT_UNMARK (&fblk->floats[i]);
5953 lim = FLOAT_BLOCK_SIZE;
5954 /* If this block contains only free floats and we have already
5955 seen more than two blocks worth of free floats then deallocate
5956 this block. */
5957 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5959 *fprev = fblk->next;
5960 /* Unhook from the free list. */
5961 float_free_list = fblk->floats[0].u.chain;
5962 lisp_align_free (fblk);
5963 n_float_blocks--;
5965 else
5967 num_free += this_free;
5968 fprev = &fblk->next;
5971 total_floats = num_used;
5972 total_free_floats = num_free;
5975 /* Put all unmarked intervals on free list */
5977 register struct interval_block *iblk;
5978 struct interval_block **iprev = &interval_block;
5979 register int lim = interval_block_index;
5980 register int num_free = 0, num_used = 0;
5982 interval_free_list = 0;
5984 for (iblk = interval_block; iblk; iblk = *iprev)
5986 register int i;
5987 int this_free = 0;
5989 for (i = 0; i < lim; i++)
5991 if (!iblk->intervals[i].gcmarkbit)
5993 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5994 interval_free_list = &iblk->intervals[i];
5995 this_free++;
5997 else
5999 num_used++;
6000 iblk->intervals[i].gcmarkbit = 0;
6003 lim = INTERVAL_BLOCK_SIZE;
6004 /* If this block contains only free intervals and we have already
6005 seen more than two blocks worth of free intervals then
6006 deallocate this block. */
6007 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6009 *iprev = iblk->next;
6010 /* Unhook from the free list. */
6011 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6012 lisp_free (iblk);
6013 n_interval_blocks--;
6015 else
6017 num_free += this_free;
6018 iprev = &iblk->next;
6021 total_intervals = num_used;
6022 total_free_intervals = num_free;
6025 /* Put all unmarked symbols on free list */
6027 register struct symbol_block *sblk;
6028 struct symbol_block **sprev = &symbol_block;
6029 register int lim = symbol_block_index;
6030 register int num_free = 0, num_used = 0;
6032 symbol_free_list = NULL;
6034 for (sblk = symbol_block; sblk; sblk = *sprev)
6036 int this_free = 0;
6037 struct Lisp_Symbol *sym = sblk->symbols;
6038 struct Lisp_Symbol *end = sym + lim;
6040 for (; sym < end; ++sym)
6042 /* Check if the symbol was created during loadup. In such a case
6043 it might be pointed to by pure bytecode which we don't trace,
6044 so we conservatively assume that it is live. */
6045 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
6047 if (!sym->gcmarkbit && !pure_p)
6049 if (sym->redirect == SYMBOL_LOCALIZED)
6050 xfree (SYMBOL_BLV (sym));
6051 sym->next = symbol_free_list;
6052 symbol_free_list = sym;
6053 #if GC_MARK_STACK
6054 symbol_free_list->function = Vdead;
6055 #endif
6056 ++this_free;
6058 else
6060 ++num_used;
6061 if (!pure_p)
6062 UNMARK_STRING (XSTRING (sym->xname));
6063 sym->gcmarkbit = 0;
6067 lim = SYMBOL_BLOCK_SIZE;
6068 /* If this block contains only free symbols and we have already
6069 seen more than two blocks worth of free symbols then deallocate
6070 this block. */
6071 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6073 *sprev = sblk->next;
6074 /* Unhook from the free list. */
6075 symbol_free_list = sblk->symbols[0].next;
6076 lisp_free (sblk);
6077 n_symbol_blocks--;
6079 else
6081 num_free += this_free;
6082 sprev = &sblk->next;
6085 total_symbols = num_used;
6086 total_free_symbols = num_free;
6089 /* Put all unmarked misc's on free list.
6090 For a marker, first unchain it from the buffer it points into. */
6092 register struct marker_block *mblk;
6093 struct marker_block **mprev = &marker_block;
6094 register int lim = marker_block_index;
6095 register int num_free = 0, num_used = 0;
6097 marker_free_list = 0;
6099 for (mblk = marker_block; mblk; mblk = *mprev)
6101 register int i;
6102 int this_free = 0;
6104 for (i = 0; i < lim; i++)
6106 if (!mblk->markers[i].u_any.gcmarkbit)
6108 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
6109 unchain_marker (&mblk->markers[i].u_marker);
6110 /* Set the type of the freed object to Lisp_Misc_Free.
6111 We could leave the type alone, since nobody checks it,
6112 but this might catch bugs faster. */
6113 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6114 mblk->markers[i].u_free.chain = marker_free_list;
6115 marker_free_list = &mblk->markers[i];
6116 this_free++;
6118 else
6120 num_used++;
6121 mblk->markers[i].u_any.gcmarkbit = 0;
6124 lim = MARKER_BLOCK_SIZE;
6125 /* If this block contains only free markers and we have already
6126 seen more than two blocks worth of free markers then deallocate
6127 this block. */
6128 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6130 *mprev = mblk->next;
6131 /* Unhook from the free list. */
6132 marker_free_list = mblk->markers[0].u_free.chain;
6133 lisp_free (mblk);
6134 n_marker_blocks--;
6136 else
6138 num_free += this_free;
6139 mprev = &mblk->next;
6143 total_markers = num_used;
6144 total_free_markers = num_free;
6147 /* Free all unmarked buffers */
6149 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6151 while (buffer)
6152 if (!VECTOR_MARKED_P (buffer))
6154 if (prev)
6155 prev->next = buffer->next;
6156 else
6157 all_buffers = buffer->next;
6158 next = buffer->next;
6159 lisp_free (buffer);
6160 buffer = next;
6162 else
6164 VECTOR_UNMARK (buffer);
6165 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6166 prev = buffer, buffer = buffer->next;
6170 /* Free all unmarked vectors */
6172 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6173 total_vector_size = 0;
6175 while (vector)
6176 if (!VECTOR_MARKED_P (vector))
6178 if (prev)
6179 prev->next = vector->next;
6180 else
6181 all_vectors = vector->next;
6182 next = vector->next;
6183 lisp_free (vector);
6184 n_vectors--;
6185 vector = next;
6188 else
6190 VECTOR_UNMARK (vector);
6191 if (vector->size & PSEUDOVECTOR_FLAG)
6192 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6193 else
6194 total_vector_size += vector->size;
6195 prev = vector, vector = vector->next;
6199 #ifdef GC_CHECK_STRING_BYTES
6200 if (!noninteractive)
6201 check_string_bytes (1);
6202 #endif
6208 /* Debugging aids. */
6210 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6211 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6212 This may be helpful in debugging Emacs's memory usage.
6213 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6216 Lisp_Object end;
6218 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6220 return end;
6223 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6224 doc: /* Return a list of counters that measure how much consing there has been.
6225 Each of these counters increments for a certain kind of object.
6226 The counters wrap around from the largest positive integer to zero.
6227 Garbage collection does not decrease them.
6228 The elements of the value are as follows:
6229 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6230 All are in units of 1 = one object consed
6231 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6232 objects consed.
6233 MISCS include overlays, markers, and some internal types.
6234 Frames, windows, buffers, and subprocesses count as vectors
6235 (but the contents of a buffer's text do not count here). */)
6238 Lisp_Object consed[8];
6240 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6241 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6242 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6243 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6244 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6245 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6246 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6247 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6249 return Flist (8, consed);
6252 int suppress_checking;
6254 void
6255 die (msg, file, line)
6256 const char *msg;
6257 const char *file;
6258 int line;
6260 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6261 file, line, msg);
6262 abort ();
6265 /* Initialization */
6267 void
6268 init_alloc_once ()
6270 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6271 purebeg = PUREBEG;
6272 pure_size = PURESIZE;
6273 pure_bytes_used = 0;
6274 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6275 pure_bytes_used_before_overflow = 0;
6277 /* Initialize the list of free aligned blocks. */
6278 free_ablock = NULL;
6280 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6281 mem_init ();
6282 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6283 #endif
6285 all_vectors = 0;
6286 ignore_warnings = 1;
6287 #ifdef DOUG_LEA_MALLOC
6288 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6289 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6290 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6291 #endif
6292 init_strings ();
6293 init_cons ();
6294 init_symbol ();
6295 init_marker ();
6296 init_float ();
6297 init_intervals ();
6298 init_weak_hash_tables ();
6300 #ifdef REL_ALLOC
6301 malloc_hysteresis = 32;
6302 #else
6303 malloc_hysteresis = 0;
6304 #endif
6306 refill_memory_reserve ();
6308 ignore_warnings = 0;
6309 gcprolist = 0;
6310 byte_stack_list = 0;
6311 staticidx = 0;
6312 consing_since_gc = 0;
6313 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6314 gc_relative_threshold = 0;
6316 #ifdef VIRT_ADDR_VARIES
6317 malloc_sbrk_unused = 1<<22; /* A large number */
6318 malloc_sbrk_used = 100000; /* as reasonable as any number */
6319 #endif /* VIRT_ADDR_VARIES */
6322 void
6323 init_alloc ()
6325 gcprolist = 0;
6326 byte_stack_list = 0;
6327 #if GC_MARK_STACK
6328 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6329 setjmp_tested_p = longjmps_done = 0;
6330 #endif
6331 #endif
6332 Vgc_elapsed = make_float (0.0);
6333 gcs_done = 0;
6336 void
6337 syms_of_alloc ()
6339 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6340 doc: /* *Number of bytes of consing between garbage collections.
6341 Garbage collection can happen automatically once this many bytes have been
6342 allocated since the last garbage collection. All data types count.
6344 Garbage collection happens automatically only when `eval' is called.
6346 By binding this temporarily to a large number, you can effectively
6347 prevent garbage collection during a part of the program.
6348 See also `gc-cons-percentage'. */);
6350 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6351 doc: /* *Portion of the heap used for allocation.
6352 Garbage collection can happen automatically once this portion of the heap
6353 has been allocated since the last garbage collection.
6354 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6355 Vgc_cons_percentage = make_float (0.1);
6357 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6358 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6360 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6361 doc: /* Number of cons cells that have been consed so far. */);
6363 DEFVAR_INT ("floats-consed", &floats_consed,
6364 doc: /* Number of floats that have been consed so far. */);
6366 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6367 doc: /* Number of vector cells that have been consed so far. */);
6369 DEFVAR_INT ("symbols-consed", &symbols_consed,
6370 doc: /* Number of symbols that have been consed so far. */);
6372 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6373 doc: /* Number of string characters that have been consed so far. */);
6375 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6376 doc: /* Number of miscellaneous objects that have been consed so far. */);
6378 DEFVAR_INT ("intervals-consed", &intervals_consed,
6379 doc: /* Number of intervals that have been consed so far. */);
6381 DEFVAR_INT ("strings-consed", &strings_consed,
6382 doc: /* Number of strings that have been consed so far. */);
6384 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6385 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6386 This means that certain objects should be allocated in shared (pure) space.
6387 It can also be set to a hash-table, in which case this table is used to
6388 do hash-consing of the objects allocated to pure space. */);
6390 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6391 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6392 garbage_collection_messages = 0;
6394 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6395 doc: /* Hook run after garbage collection has finished. */);
6396 Vpost_gc_hook = Qnil;
6397 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6398 staticpro (&Qpost_gc_hook);
6400 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6401 doc: /* Precomputed `signal' argument for memory-full error. */);
6402 /* We build this in advance because if we wait until we need it, we might
6403 not be able to allocate the memory to hold it. */
6404 Vmemory_signal_data
6405 = pure_cons (Qerror,
6406 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6408 DEFVAR_LISP ("memory-full", &Vmemory_full,
6409 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6410 Vmemory_full = Qnil;
6412 staticpro (&Qgc_cons_threshold);
6413 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6415 staticpro (&Qchar_table_extra_slots);
6416 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6418 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6419 doc: /* Accumulated time elapsed in garbage collections.
6420 The time is in seconds as a floating point value. */);
6421 DEFVAR_INT ("gcs-done", &gcs_done,
6422 doc: /* Accumulated number of garbage collections done. */);
6424 defsubr (&Scons);
6425 defsubr (&Slist);
6426 defsubr (&Svector);
6427 defsubr (&Smake_byte_code);
6428 defsubr (&Smake_list);
6429 defsubr (&Smake_vector);
6430 defsubr (&Smake_string);
6431 defsubr (&Smake_bool_vector);
6432 defsubr (&Smake_symbol);
6433 defsubr (&Smake_marker);
6434 defsubr (&Spurecopy);
6435 defsubr (&Sgarbage_collect);
6436 defsubr (&Smemory_limit);
6437 defsubr (&Smemory_use_counts);
6439 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6440 defsubr (&Sgc_status);
6441 #endif
6444 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6445 (do not change this comment) */