1 /* Code for doing intervals.
2 Copyright (C) 1993, 1994, 1995, 1997, 1998, 2002, 2003, 2004,
3 2005, 2006 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
25 Have to ensure that we can't put symbol nil on a plist, or some
26 functions may work incorrectly.
28 An idea: Have the owner of the tree keep count of splits and/or
29 insertion lengths (in intervals), and balance after every N.
31 Need to call *_left_hook when buffer is killed.
33 Scan for zero-length, or 0-length to see notes about handling
34 zero length interval-markers.
36 There are comments around about freeing intervals. It might be
37 faster to explicitly free them (put them on the free list) than
45 #include "intervals.h"
51 /* Test for membership, allowing for t (actually any non-cons) to mean the
54 #define TMEM(sym, set) (CONSP (set) ? ! NILP (Fmemq (sym, set)) : ! NILP (set))
56 Lisp_Object
merge_properties_sticky ();
57 static INTERVAL reproduce_tree
P_ ((INTERVAL
, INTERVAL
));
58 static INTERVAL reproduce_tree_obj
P_ ((INTERVAL
, Lisp_Object
));
60 /* Utility functions for intervals. */
63 /* Create the root interval of some object, a buffer or string. */
66 create_root_interval (parent
)
71 CHECK_IMPURE (parent
);
73 new = make_interval ();
77 new->total_length
= (BUF_Z (XBUFFER (parent
))
78 - BUF_BEG (XBUFFER (parent
)));
79 CHECK_TOTAL_LENGTH (new);
80 BUF_INTERVALS (XBUFFER (parent
)) = new;
83 else if (STRINGP (parent
))
85 new->total_length
= SCHARS (parent
);
86 CHECK_TOTAL_LENGTH (new);
87 STRING_SET_INTERVALS (parent
, new);
91 SET_INTERVAL_OBJECT (new, parent
);
96 /* Make the interval TARGET have exactly the properties of SOURCE */
99 copy_properties (source
, target
)
100 register INTERVAL source
, target
;
102 if (DEFAULT_INTERVAL_P (source
) && DEFAULT_INTERVAL_P (target
))
105 COPY_INTERVAL_CACHE (source
, target
);
106 target
->plist
= Fcopy_sequence (source
->plist
);
109 /* Merge the properties of interval SOURCE into the properties
110 of interval TARGET. That is to say, each property in SOURCE
111 is added to TARGET if TARGET has no such property as yet. */
114 merge_properties (source
, target
)
115 register INTERVAL source
, target
;
117 register Lisp_Object o
, sym
, val
;
119 if (DEFAULT_INTERVAL_P (source
) && DEFAULT_INTERVAL_P (target
))
122 MERGE_INTERVAL_CACHE (source
, target
);
128 val
= Fmemq (sym
, target
->plist
);
135 target
->plist
= Fcons (sym
, Fcons (val
, target
->plist
));
143 /* Return 1 if the two intervals have the same properties,
147 intervals_equal (i0
, i1
)
150 register Lisp_Object i0_cdr
, i0_sym
, i1_val
;
153 if (DEFAULT_INTERVAL_P (i0
) && DEFAULT_INTERVAL_P (i1
))
156 if (DEFAULT_INTERVAL_P (i0
) || DEFAULT_INTERVAL_P (i1
))
159 i1_len
= XFASTINT (Flength (i1
->plist
));
160 if (i1_len
& 0x1) /* Paranoia -- plists are always even */
164 while (CONSP (i0_cdr
))
166 /* Lengths of the two plists were unequal. */
170 i0_sym
= XCAR (i0_cdr
);
171 i1_val
= Fmemq (i0_sym
, i1
->plist
);
173 /* i0 has something i1 doesn't. */
174 if (EQ (i1_val
, Qnil
))
177 /* i0 and i1 both have sym, but it has different values in each. */
178 i0_cdr
= XCDR (i0_cdr
);
180 if (!EQ (Fcar (Fcdr (i1_val
)), XCAR (i0_cdr
)))
183 i0_cdr
= XCDR (i0_cdr
);
187 /* Lengths of the two plists were unequal. */
195 /* Traverse an interval tree TREE, performing FUNCTION on each node.
196 No guarantee is made about the order of traversal.
197 Pass FUNCTION two args: an interval, and ARG. */
200 traverse_intervals_noorder (tree
, function
, arg
)
202 void (* function
) P_ ((INTERVAL
, Lisp_Object
));
205 /* Minimize stack usage. */
206 while (!NULL_INTERVAL_P (tree
))
208 (*function
) (tree
, arg
);
209 if (NULL_INTERVAL_P (tree
->right
))
213 traverse_intervals_noorder (tree
->left
, function
, arg
);
219 /* Traverse an interval tree TREE, performing FUNCTION on each node.
220 Pass FUNCTION two args: an interval, and ARG. */
223 traverse_intervals (tree
, position
, function
, arg
)
226 void (* function
) P_ ((INTERVAL
, Lisp_Object
));
229 while (!NULL_INTERVAL_P (tree
))
231 traverse_intervals (tree
->left
, position
, function
, arg
);
232 position
+= LEFT_TOTAL_LENGTH (tree
);
233 tree
->position
= position
;
234 (*function
) (tree
, arg
);
235 position
+= LENGTH (tree
); tree
= tree
->right
;
243 static int zero_length
;
245 /* These functions are temporary, for debugging purposes only. */
247 INTERVAL search_interval
, found_interval
;
250 check_for_interval (i
)
253 if (i
== search_interval
)
261 search_for_interval (i
, tree
)
262 register INTERVAL i
, tree
;
266 found_interval
= NULL_INTERVAL
;
267 traverse_intervals_noorder (tree
, &check_for_interval
, Qnil
);
268 return found_interval
;
272 inc_interval_count (i
)
289 traverse_intervals_noorder (i
, &inc_interval_count
, Qnil
);
295 root_interval (interval
)
298 register INTERVAL i
= interval
;
300 while (! ROOT_INTERVAL_P (i
))
301 i
= INTERVAL_PARENT (i
);
307 /* Assuming that a left child exists, perform the following operation:
316 static INLINE INTERVAL
317 rotate_right (interval
)
321 INTERVAL B
= interval
->left
;
322 int old_total
= interval
->total_length
;
324 /* Deal with any Parent of A; make it point to B. */
325 if (! ROOT_INTERVAL_P (interval
))
327 if (AM_LEFT_CHILD (interval
))
328 INTERVAL_PARENT (interval
)->left
= B
;
330 INTERVAL_PARENT (interval
)->right
= B
;
332 COPY_INTERVAL_PARENT (B
, interval
);
334 /* Make B the parent of A */
337 SET_INTERVAL_PARENT (interval
, B
);
339 /* Make A point to c */
341 if (! NULL_INTERVAL_P (i
))
342 SET_INTERVAL_PARENT (i
, interval
);
344 /* A's total length is decreased by the length of B and its left child. */
345 interval
->total_length
-= B
->total_length
- LEFT_TOTAL_LENGTH (interval
);
346 CHECK_TOTAL_LENGTH (interval
);
348 /* B must have the same total length of A. */
349 B
->total_length
= old_total
;
350 CHECK_TOTAL_LENGTH (B
);
355 /* Assuming that a right child exists, perform the following operation:
364 static INLINE INTERVAL
365 rotate_left (interval
)
369 INTERVAL B
= interval
->right
;
370 int old_total
= interval
->total_length
;
372 /* Deal with any parent of A; make it point to B. */
373 if (! ROOT_INTERVAL_P (interval
))
375 if (AM_LEFT_CHILD (interval
))
376 INTERVAL_PARENT (interval
)->left
= B
;
378 INTERVAL_PARENT (interval
)->right
= B
;
380 COPY_INTERVAL_PARENT (B
, interval
);
382 /* Make B the parent of A */
385 SET_INTERVAL_PARENT (interval
, B
);
387 /* Make A point to c */
389 if (! NULL_INTERVAL_P (i
))
390 SET_INTERVAL_PARENT (i
, interval
);
392 /* A's total length is decreased by the length of B and its right child. */
393 interval
->total_length
-= B
->total_length
- RIGHT_TOTAL_LENGTH (interval
);
394 CHECK_TOTAL_LENGTH (interval
);
396 /* B must have the same total length of A. */
397 B
->total_length
= old_total
;
398 CHECK_TOTAL_LENGTH (B
);
403 /* Balance an interval tree with the assumption that the subtrees
404 themselves are already balanced. */
407 balance_an_interval (i
)
410 register int old_diff
, new_diff
;
414 old_diff
= LEFT_TOTAL_LENGTH (i
) - RIGHT_TOTAL_LENGTH (i
);
417 /* Since the left child is longer, there must be one. */
418 new_diff
= i
->total_length
- i
->left
->total_length
419 + RIGHT_TOTAL_LENGTH (i
->left
) - LEFT_TOTAL_LENGTH (i
->left
);
420 if (abs (new_diff
) >= old_diff
)
422 i
= rotate_right (i
);
423 balance_an_interval (i
->right
);
425 else if (old_diff
< 0)
427 /* Since the right child is longer, there must be one. */
428 new_diff
= i
->total_length
- i
->right
->total_length
429 + LEFT_TOTAL_LENGTH (i
->right
) - RIGHT_TOTAL_LENGTH (i
->right
);
430 if (abs (new_diff
) >= -old_diff
)
433 balance_an_interval (i
->left
);
441 /* Balance INTERVAL, potentially stuffing it back into its parent
444 static INLINE INTERVAL
445 balance_possible_root_interval (interval
)
446 register INTERVAL interval
;
451 if (!INTERVAL_HAS_OBJECT (interval
) && !INTERVAL_HAS_PARENT (interval
))
454 if (INTERVAL_HAS_OBJECT (interval
))
457 GET_INTERVAL_OBJECT (parent
, interval
);
459 interval
= balance_an_interval (interval
);
463 if (BUFFERP (parent
))
464 BUF_INTERVALS (XBUFFER (parent
)) = interval
;
465 else if (STRINGP (parent
))
466 STRING_SET_INTERVALS (parent
, interval
);
472 /* Balance the interval tree TREE. Balancing is by weight
473 (the amount of text). */
476 balance_intervals_internal (tree
)
477 register INTERVAL tree
;
479 /* Balance within each side. */
481 balance_intervals_internal (tree
->left
);
483 balance_intervals_internal (tree
->right
);
484 return balance_an_interval (tree
);
487 /* Advertised interface to balance intervals. */
490 balance_intervals (tree
)
493 if (tree
== NULL_INTERVAL
)
494 return NULL_INTERVAL
;
496 return balance_intervals_internal (tree
);
499 /* Split INTERVAL into two pieces, starting the second piece at
500 character position OFFSET (counting from 0), relative to INTERVAL.
501 INTERVAL becomes the left-hand piece, and the right-hand piece
502 (second, lexicographically) is returned.
504 The size and position fields of the two intervals are set based upon
505 those of the original interval. The property list of the new interval
506 is reset, thus it is up to the caller to do the right thing with the
509 Note that this does not change the position of INTERVAL; if it is a root,
510 it is still a root after this operation. */
513 split_interval_right (interval
, offset
)
517 INTERVAL
new = make_interval ();
518 int position
= interval
->position
;
519 int new_length
= LENGTH (interval
) - offset
;
521 new->position
= position
+ offset
;
522 SET_INTERVAL_PARENT (new, interval
);
524 if (NULL_RIGHT_CHILD (interval
))
526 interval
->right
= new;
527 new->total_length
= new_length
;
528 CHECK_TOTAL_LENGTH (new);
532 /* Insert the new node between INTERVAL and its right child. */
533 new->right
= interval
->right
;
534 SET_INTERVAL_PARENT (interval
->right
, new);
535 interval
->right
= new;
536 new->total_length
= new_length
+ new->right
->total_length
;
537 CHECK_TOTAL_LENGTH (new);
538 balance_an_interval (new);
541 balance_possible_root_interval (interval
);
546 /* Split INTERVAL into two pieces, starting the second piece at
547 character position OFFSET (counting from 0), relative to INTERVAL.
548 INTERVAL becomes the right-hand piece, and the left-hand piece
549 (first, lexicographically) is returned.
551 The size and position fields of the two intervals are set based upon
552 those of the original interval. The property list of the new interval
553 is reset, thus it is up to the caller to do the right thing with the
556 Note that this does not change the position of INTERVAL; if it is a root,
557 it is still a root after this operation. */
560 split_interval_left (interval
, offset
)
564 INTERVAL
new = make_interval ();
565 int new_length
= offset
;
567 new->position
= interval
->position
;
568 interval
->position
= interval
->position
+ offset
;
569 SET_INTERVAL_PARENT (new, interval
);
571 if (NULL_LEFT_CHILD (interval
))
573 interval
->left
= new;
574 new->total_length
= new_length
;
575 CHECK_TOTAL_LENGTH (new);
579 /* Insert the new node between INTERVAL and its left child. */
580 new->left
= interval
->left
;
581 SET_INTERVAL_PARENT (new->left
, new);
582 interval
->left
= new;
583 new->total_length
= new_length
+ new->left
->total_length
;
584 CHECK_TOTAL_LENGTH (new);
585 balance_an_interval (new);
588 balance_possible_root_interval (interval
);
593 /* Return the proper position for the first character
594 described by the interval tree SOURCE.
595 This is 1 if the parent is a buffer,
596 0 if the parent is a string or if there is no parent.
598 Don't use this function on an interval which is the child
599 of another interval! */
602 interval_start_pos (source
)
607 if (NULL_INTERVAL_P (source
))
610 if (! INTERVAL_HAS_OBJECT (source
))
612 GET_INTERVAL_OBJECT (parent
, source
);
613 if (BUFFERP (parent
))
614 return BUF_BEG (XBUFFER (parent
));
618 /* Find the interval containing text position POSITION in the text
619 represented by the interval tree TREE. POSITION is a buffer
620 position (starting from 1) or a string index (starting from 0).
621 If POSITION is at the end of the buffer or string,
622 return the interval containing the last character.
624 The `position' field, which is a cache of an interval's position,
625 is updated in the interval found. Other functions (e.g., next_interval)
626 will update this cache based on the result of find_interval. */
629 find_interval (tree
, position
)
630 register INTERVAL tree
;
631 register int position
;
633 /* The distance from the left edge of the subtree at TREE
635 register int relative_position
;
637 if (NULL_INTERVAL_P (tree
))
638 return NULL_INTERVAL
;
640 relative_position
= position
;
641 if (INTERVAL_HAS_OBJECT (tree
))
644 GET_INTERVAL_OBJECT (parent
, tree
);
645 if (BUFFERP (parent
))
646 relative_position
-= BUF_BEG (XBUFFER (parent
));
649 if (relative_position
> TOTAL_LENGTH (tree
))
650 abort (); /* Paranoia */
652 if (!handling_signal
)
653 tree
= balance_possible_root_interval (tree
);
657 if (relative_position
< LEFT_TOTAL_LENGTH (tree
))
661 else if (! NULL_RIGHT_CHILD (tree
)
662 && relative_position
>= (TOTAL_LENGTH (tree
)
663 - RIGHT_TOTAL_LENGTH (tree
)))
665 relative_position
-= (TOTAL_LENGTH (tree
)
666 - RIGHT_TOTAL_LENGTH (tree
));
672 = (position
- relative_position
/* left edge of *tree. */
673 + LEFT_TOTAL_LENGTH (tree
)); /* left edge of this interval. */
680 /* Find the succeeding interval (lexicographically) to INTERVAL.
681 Sets the `position' field based on that of INTERVAL (see
685 next_interval (interval
)
686 register INTERVAL interval
;
688 register INTERVAL i
= interval
;
689 register int next_position
;
691 if (NULL_INTERVAL_P (i
))
692 return NULL_INTERVAL
;
693 next_position
= interval
->position
+ LENGTH (interval
);
695 if (! NULL_RIGHT_CHILD (i
))
698 while (! NULL_LEFT_CHILD (i
))
701 i
->position
= next_position
;
705 while (! NULL_PARENT (i
))
707 if (AM_LEFT_CHILD (i
))
709 i
= INTERVAL_PARENT (i
);
710 i
->position
= next_position
;
714 i
= INTERVAL_PARENT (i
);
717 return NULL_INTERVAL
;
720 /* Find the preceding interval (lexicographically) to INTERVAL.
721 Sets the `position' field based on that of INTERVAL (see
725 previous_interval (interval
)
726 register INTERVAL interval
;
730 if (NULL_INTERVAL_P (interval
))
731 return NULL_INTERVAL
;
733 if (! NULL_LEFT_CHILD (interval
))
736 while (! NULL_RIGHT_CHILD (i
))
739 i
->position
= interval
->position
- LENGTH (i
);
744 while (! NULL_PARENT (i
))
746 if (AM_RIGHT_CHILD (i
))
748 i
= INTERVAL_PARENT (i
);
750 i
->position
= interval
->position
- LENGTH (i
);
753 i
= INTERVAL_PARENT (i
);
756 return NULL_INTERVAL
;
759 /* Find the interval containing POS given some non-NULL INTERVAL
760 in the same tree. Note that we need to update interval->position
761 if we go down the tree.
762 To speed up the process, we assume that the ->position of
763 I and all its parents is already uptodate. */
765 update_interval (i
, pos
)
769 if (NULL_INTERVAL_P (i
))
770 return NULL_INTERVAL
;
774 if (pos
< i
->position
)
777 if (pos
>= i
->position
- TOTAL_LENGTH (i
->left
))
779 i
->left
->position
= i
->position
- TOTAL_LENGTH (i
->left
)
780 + LEFT_TOTAL_LENGTH (i
->left
);
781 i
= i
->left
; /* Move to the left child */
783 else if (NULL_PARENT (i
))
784 error ("Point before start of properties");
786 i
= INTERVAL_PARENT (i
);
789 else if (pos
>= INTERVAL_LAST_POS (i
))
792 if (pos
< INTERVAL_LAST_POS (i
) + TOTAL_LENGTH (i
->right
))
794 i
->right
->position
= INTERVAL_LAST_POS (i
)
795 + LEFT_TOTAL_LENGTH (i
->right
);
796 i
= i
->right
; /* Move to the right child */
798 else if (NULL_PARENT (i
))
799 error ("Point %d after end of properties", pos
);
801 i
= INTERVAL_PARENT (i
);
811 /* Traverse a path down the interval tree TREE to the interval
812 containing POSITION, adjusting all nodes on the path for
813 an addition of LENGTH characters. Insertion between two intervals
814 (i.e., point == i->position, where i is second interval) means
815 text goes into second interval.
817 Modifications are needed to handle the hungry bits -- after simply
818 finding the interval at position (don't add length going down),
819 if it's the beginning of the interval, get the previous interval
820 and check the hungry bits of both. Then add the length going back up
824 adjust_intervals_for_insertion (tree
, position
, length
)
826 int position
, length
;
828 register int relative_position
;
829 register INTERVAL
this;
831 if (TOTAL_LENGTH (tree
) == 0) /* Paranoia */
834 /* If inserting at point-max of a buffer, that position
835 will be out of range */
836 if (position
> TOTAL_LENGTH (tree
))
837 position
= TOTAL_LENGTH (tree
);
838 relative_position
= position
;
843 if (relative_position
<= LEFT_TOTAL_LENGTH (this))
845 this->total_length
+= length
;
846 CHECK_TOTAL_LENGTH (this);
849 else if (relative_position
> (TOTAL_LENGTH (this)
850 - RIGHT_TOTAL_LENGTH (this)))
852 relative_position
-= (TOTAL_LENGTH (this)
853 - RIGHT_TOTAL_LENGTH (this));
854 this->total_length
+= length
;
855 CHECK_TOTAL_LENGTH (this);
860 /* If we are to use zero-length intervals as buffer pointers,
861 then this code will have to change. */
862 this->total_length
+= length
;
863 CHECK_TOTAL_LENGTH (this);
864 this->position
= LEFT_TOTAL_LENGTH (this)
865 + position
- relative_position
+ 1;
872 /* Effect an adjustment corresponding to the addition of LENGTH characters
873 of text. Do this by finding the interval containing POSITION in the
874 interval tree TREE, and then adjusting all of its ancestors by adding
877 If POSITION is the first character of an interval, meaning that point
878 is actually between the two intervals, make the new text belong to
879 the interval which is "sticky".
881 If both intervals are "sticky", then make them belong to the left-most
882 interval. Another possibility would be to create a new interval for
883 this text, and make it have the merged properties of both ends. */
886 adjust_intervals_for_insertion (tree
, position
, length
)
888 int position
, length
;
891 register INTERVAL temp
;
896 if (TOTAL_LENGTH (tree
) == 0) /* Paranoia */
899 GET_INTERVAL_OBJECT (parent
, tree
);
900 offset
= (BUFFERP (parent
) ? BUF_BEG (XBUFFER (parent
)) : 0);
902 /* If inserting at point-max of a buffer, that position will be out
903 of range. Remember that buffer positions are 1-based. */
904 if (position
>= TOTAL_LENGTH (tree
) + offset
)
906 position
= TOTAL_LENGTH (tree
) + offset
;
910 i
= find_interval (tree
, position
);
912 /* If in middle of an interval which is not sticky either way,
913 we must not just give its properties to the insertion.
914 So split this interval at the insertion point.
916 Originally, the if condition here was this:
917 (! (position == i->position || eobp)
918 && END_NONSTICKY_P (i)
919 && FRONT_NONSTICKY_P (i))
920 But, these macros are now unreliable because of introduction of
921 Vtext_property_default_nonsticky. So, we always check properties
922 one by one if POSITION is in middle of an interval. */
923 if (! (position
== i
->position
|| eobp
))
926 Lisp_Object front
, rear
;
930 /* Properties font-sticky and rear-nonsticky override
931 Vtext_property_default_nonsticky. So, if they are t, we can
932 skip one by one checking of properties. */
933 rear
= textget (i
->plist
, Qrear_nonsticky
);
934 if (! CONSP (rear
) && ! NILP (rear
))
936 /* All properties are nonsticky. We split the interval. */
939 front
= textget (i
->plist
, Qfront_sticky
);
940 if (! CONSP (front
) && ! NILP (front
))
942 /* All properties are sticky. We don't split the interval. */
947 /* Does any actual property pose an actual problem? We break
948 the loop if we find a nonsticky property. */
949 for (; CONSP (tail
); tail
= Fcdr (XCDR (tail
)))
951 Lisp_Object prop
, tmp
;
954 /* Is this particular property front-sticky? */
955 if (CONSP (front
) && ! NILP (Fmemq (prop
, front
)))
958 /* Is this particular property rear-nonsticky? */
959 if (CONSP (rear
) && ! NILP (Fmemq (prop
, rear
)))
962 /* Is this particular property recorded as sticky or
963 nonsticky in Vtext_property_default_nonsticky? */
964 tmp
= Fassq (prop
, Vtext_property_default_nonsticky
);
972 /* By default, a text property is rear-sticky, thus we
973 continue the loop. */
977 /* If any property is a real problem, split the interval. */
980 temp
= split_interval_right (i
, position
- i
->position
);
981 copy_properties (i
, temp
);
986 /* If we are positioned between intervals, check the stickiness of
987 both of them. We have to do this too, if we are at BEG or Z. */
988 if (position
== i
->position
|| eobp
)
990 register INTERVAL prev
;
1000 prev
= previous_interval (i
);
1002 /* Even if we are positioned between intervals, we default
1003 to the left one if it exists. We extend it now and split
1004 off a part later, if stickiness demands it. */
1005 for (temp
= prev
? prev
: i
; temp
; temp
= INTERVAL_PARENT_OR_NULL (temp
))
1007 temp
->total_length
+= length
;
1008 CHECK_TOTAL_LENGTH (temp
);
1009 temp
= balance_possible_root_interval (temp
);
1012 /* If at least one interval has sticky properties,
1013 we check the stickiness property by property.
1015 Originally, the if condition here was this:
1016 (END_NONSTICKY_P (prev) || FRONT_STICKY_P (i))
1017 But, these macros are now unreliable because of introduction
1018 of Vtext_property_default_nonsticky. So, we always have to
1019 check stickiness of properties one by one. If cache of
1020 stickiness is implemented in the future, we may be able to
1021 use those macros again. */
1024 Lisp_Object pleft
, pright
;
1025 struct interval newi
;
1027 pleft
= NULL_INTERVAL_P (prev
) ? Qnil
: prev
->plist
;
1028 pright
= NULL_INTERVAL_P (i
) ? Qnil
: i
->plist
;
1029 newi
.plist
= merge_properties_sticky (pleft
, pright
);
1031 if (! prev
) /* i.e. position == BEG */
1033 if (! intervals_equal (i
, &newi
))
1035 i
= split_interval_left (i
, length
);
1036 i
->plist
= newi
.plist
;
1039 else if (! intervals_equal (prev
, &newi
))
1041 prev
= split_interval_right (prev
,
1042 position
- prev
->position
);
1043 prev
->plist
= newi
.plist
;
1044 if (! NULL_INTERVAL_P (i
)
1045 && intervals_equal (prev
, i
))
1046 merge_interval_right (prev
);
1049 /* We will need to update the cache here later. */
1051 else if (! prev
&& ! NILP (i
->plist
))
1053 /* Just split off a new interval at the left.
1054 Since I wasn't front-sticky, the empty plist is ok. */
1055 i
= split_interval_left (i
, length
);
1059 /* Otherwise just extend the interval. */
1062 for (temp
= i
; temp
; temp
= INTERVAL_PARENT_OR_NULL (temp
))
1064 temp
->total_length
+= length
;
1065 CHECK_TOTAL_LENGTH (temp
);
1066 temp
= balance_possible_root_interval (temp
);
1073 /* Any property might be front-sticky on the left, rear-sticky on the left,
1074 front-sticky on the right, or rear-sticky on the right; the 16 combinations
1075 can be arranged in a matrix with rows denoting the left conditions and
1076 columns denoting the right conditions:
1084 left-props = '(front-sticky (p8 p9 pa pb pc pd pe pf)
1085 rear-nonsticky (p4 p5 p6 p7 p8 p9 pa pb)
1086 p0 L p1 L p2 L p3 L p4 L p5 L p6 L p7 L
1087 p8 L p9 L pa L pb L pc L pd L pe L pf L)
1088 right-props = '(front-sticky (p2 p3 p6 p7 pa pb pe pf)
1089 rear-nonsticky (p1 p2 p5 p6 p9 pa pd pe)
1090 p0 R p1 R p2 R p3 R p4 R p5 R p6 R p7 R
1091 p8 R p9 R pa R pb R pc R pd R pe R pf R)
1093 We inherit from whoever has a sticky side facing us. If both sides
1094 do (cases 2, 3, E, and F), then we inherit from whichever side has a
1095 non-nil value for the current property. If both sides do, then we take
1098 When we inherit a property, we get its stickiness as well as its value.
1099 So, when we merge the above two lists, we expect to get this:
1101 result = '(front-sticky (p6 p7 pa pb pc pd pe pf)
1102 rear-nonsticky (p6 pa)
1103 p0 L p1 L p2 L p3 L p6 R p7 R
1104 pa R pb R pc L pd L pe L pf L)
1106 The optimizable special cases are:
1107 left rear-nonsticky = nil, right front-sticky = nil (inherit left)
1108 left rear-nonsticky = t, right front-sticky = t (inherit right)
1109 left rear-nonsticky = t, right front-sticky = nil (inherit none)
1113 merge_properties_sticky (pleft
, pright
)
1114 Lisp_Object pleft
, pright
;
1116 register Lisp_Object props
, front
, rear
;
1117 Lisp_Object lfront
, lrear
, rfront
, rrear
;
1118 register Lisp_Object tail1
, tail2
, sym
, lval
, rval
, cat
;
1119 int use_left
, use_right
;
1125 lfront
= textget (pleft
, Qfront_sticky
);
1126 lrear
= textget (pleft
, Qrear_nonsticky
);
1127 rfront
= textget (pright
, Qfront_sticky
);
1128 rrear
= textget (pright
, Qrear_nonsticky
);
1130 /* Go through each element of PRIGHT. */
1131 for (tail1
= pright
; CONSP (tail1
); tail1
= Fcdr (XCDR (tail1
)))
1137 /* Sticky properties get special treatment. */
1138 if (EQ (sym
, Qrear_nonsticky
) || EQ (sym
, Qfront_sticky
))
1141 rval
= Fcar (XCDR (tail1
));
1142 for (tail2
= pleft
; CONSP (tail2
); tail2
= Fcdr (XCDR (tail2
)))
1143 if (EQ (sym
, XCAR (tail2
)))
1146 /* Indicate whether the property is explicitly defined on the left.
1147 (We know it is defined explicitly on the right
1148 because otherwise we don't get here.) */
1149 lpresent
= ! NILP (tail2
);
1150 lval
= (NILP (tail2
) ? Qnil
: Fcar (Fcdr (tail2
)));
1152 /* Even if lrear or rfront say nothing about the stickiness of
1153 SYM, Vtext_property_default_nonsticky may give default
1154 stickiness to SYM. */
1155 tmp
= Fassq (sym
, Vtext_property_default_nonsticky
);
1156 use_left
= (lpresent
1157 && ! (TMEM (sym
, lrear
)
1158 || (CONSP (tmp
) && ! NILP (XCDR (tmp
)))));
1159 use_right
= (TMEM (sym
, rfront
)
1160 || (CONSP (tmp
) && NILP (XCDR (tmp
))));
1161 if (use_left
&& use_right
)
1165 else if (NILP (rval
))
1170 /* We build props as (value sym ...) rather than (sym value ...)
1171 because we plan to nreverse it when we're done. */
1172 props
= Fcons (lval
, Fcons (sym
, props
));
1173 if (TMEM (sym
, lfront
))
1174 front
= Fcons (sym
, front
);
1175 if (TMEM (sym
, lrear
))
1176 rear
= Fcons (sym
, rear
);
1180 props
= Fcons (rval
, Fcons (sym
, props
));
1181 if (TMEM (sym
, rfront
))
1182 front
= Fcons (sym
, front
);
1183 if (TMEM (sym
, rrear
))
1184 rear
= Fcons (sym
, rear
);
1188 /* Now go through each element of PLEFT. */
1189 for (tail2
= pleft
; CONSP (tail2
); tail2
= Fcdr (XCDR (tail2
)))
1195 /* Sticky properties get special treatment. */
1196 if (EQ (sym
, Qrear_nonsticky
) || EQ (sym
, Qfront_sticky
))
1199 /* If sym is in PRIGHT, we've already considered it. */
1200 for (tail1
= pright
; CONSP (tail1
); tail1
= Fcdr (XCDR (tail1
)))
1201 if (EQ (sym
, XCAR (tail1
)))
1206 lval
= Fcar (XCDR (tail2
));
1208 /* Even if lrear or rfront say nothing about the stickiness of
1209 SYM, Vtext_property_default_nonsticky may give default
1210 stickiness to SYM. */
1211 tmp
= Fassq (sym
, Vtext_property_default_nonsticky
);
1213 /* Since rval is known to be nil in this loop, the test simplifies. */
1214 if (! (TMEM (sym
, lrear
) || (CONSP (tmp
) && ! NILP (XCDR (tmp
)))))
1216 props
= Fcons (lval
, Fcons (sym
, props
));
1217 if (TMEM (sym
, lfront
))
1218 front
= Fcons (sym
, front
);
1220 else if (TMEM (sym
, rfront
) || (CONSP (tmp
) && NILP (XCDR (tmp
))))
1222 /* The value is nil, but we still inherit the stickiness
1224 front
= Fcons (sym
, front
);
1225 if (TMEM (sym
, rrear
))
1226 rear
= Fcons (sym
, rear
);
1229 props
= Fnreverse (props
);
1231 props
= Fcons (Qrear_nonsticky
, Fcons (Fnreverse (rear
), props
));
1233 cat
= textget (props
, Qcategory
);
1236 /* If we have inherited a front-stick category property that is t,
1237 we don't need to set up a detailed one. */
1238 ! (! NILP (cat
) && SYMBOLP (cat
)
1239 && EQ (Fget (cat
, Qfront_sticky
), Qt
)))
1240 props
= Fcons (Qfront_sticky
, Fcons (Fnreverse (front
), props
));
1245 /* Delete a node I from its interval tree by merging its subtrees
1246 into one subtree which is then returned. Caller is responsible for
1247 storing the resulting subtree into its parent. */
1251 register INTERVAL i
;
1253 register INTERVAL migrate
, this;
1254 register int migrate_amt
;
1256 if (NULL_INTERVAL_P (i
->left
))
1258 if (NULL_INTERVAL_P (i
->right
))
1262 migrate_amt
= i
->left
->total_length
;
1264 this->total_length
+= migrate_amt
;
1265 while (! NULL_INTERVAL_P (this->left
))
1268 this->total_length
+= migrate_amt
;
1270 CHECK_TOTAL_LENGTH (this);
1271 this->left
= migrate
;
1272 SET_INTERVAL_PARENT (migrate
, this);
1277 /* Delete interval I from its tree by calling `delete_node'
1278 and properly connecting the resultant subtree.
1280 I is presumed to be empty; that is, no adjustments are made
1281 for the length of I. */
1285 register INTERVAL i
;
1287 register INTERVAL parent
;
1288 int amt
= LENGTH (i
);
1290 if (amt
> 0) /* Only used on zero-length intervals now. */
1293 if (ROOT_INTERVAL_P (i
))
1296 GET_INTERVAL_OBJECT (owner
, i
);
1297 parent
= delete_node (i
);
1298 if (! NULL_INTERVAL_P (parent
))
1299 SET_INTERVAL_OBJECT (parent
, owner
);
1301 if (BUFFERP (owner
))
1302 BUF_INTERVALS (XBUFFER (owner
)) = parent
;
1303 else if (STRINGP (owner
))
1304 STRING_SET_INTERVALS (owner
, parent
);
1311 parent
= INTERVAL_PARENT (i
);
1312 if (AM_LEFT_CHILD (i
))
1314 parent
->left
= delete_node (i
);
1315 if (! NULL_INTERVAL_P (parent
->left
))
1316 SET_INTERVAL_PARENT (parent
->left
, parent
);
1320 parent
->right
= delete_node (i
);
1321 if (! NULL_INTERVAL_P (parent
->right
))
1322 SET_INTERVAL_PARENT (parent
->right
, parent
);
1326 /* Find the interval in TREE corresponding to the relative position
1327 FROM and delete as much as possible of AMOUNT from that interval.
1328 Return the amount actually deleted, and if the interval was
1329 zeroed-out, delete that interval node from the tree.
1331 Note that FROM is actually origin zero, aka relative to the
1332 leftmost edge of tree. This is appropriate since we call ourselves
1333 recursively on subtrees.
1335 Do this by recursing down TREE to the interval in question, and
1336 deleting the appropriate amount of text. */
1339 interval_deletion_adjustment (tree
, from
, amount
)
1340 register INTERVAL tree
;
1341 register int from
, amount
;
1343 register int relative_position
= from
;
1345 if (NULL_INTERVAL_P (tree
))
1349 if (relative_position
< LEFT_TOTAL_LENGTH (tree
))
1351 int subtract
= interval_deletion_adjustment (tree
->left
,
1354 tree
->total_length
-= subtract
;
1355 CHECK_TOTAL_LENGTH (tree
);
1359 else if (relative_position
>= (TOTAL_LENGTH (tree
)
1360 - RIGHT_TOTAL_LENGTH (tree
)))
1364 relative_position
-= (tree
->total_length
1365 - RIGHT_TOTAL_LENGTH (tree
));
1366 subtract
= interval_deletion_adjustment (tree
->right
,
1369 tree
->total_length
-= subtract
;
1370 CHECK_TOTAL_LENGTH (tree
);
1373 /* Here -- this node. */
1376 /* How much can we delete from this interval? */
1377 int my_amount
= ((tree
->total_length
1378 - RIGHT_TOTAL_LENGTH (tree
))
1379 - relative_position
);
1381 if (amount
> my_amount
)
1384 tree
->total_length
-= amount
;
1385 CHECK_TOTAL_LENGTH (tree
);
1386 if (LENGTH (tree
) == 0)
1387 delete_interval (tree
);
1392 /* Never reach here. */
1395 /* Effect the adjustments necessary to the interval tree of BUFFER to
1396 correspond to the deletion of LENGTH characters from that buffer
1397 text. The deletion is effected at position START (which is a
1398 buffer position, i.e. origin 1). */
1401 adjust_intervals_for_deletion (buffer
, start
, length
)
1402 struct buffer
*buffer
;
1405 register int left_to_delete
= length
;
1406 register INTERVAL tree
= BUF_INTERVALS (buffer
);
1410 GET_INTERVAL_OBJECT (parent
, tree
);
1411 offset
= (BUFFERP (parent
) ? BUF_BEG (XBUFFER (parent
)) : 0);
1413 if (NULL_INTERVAL_P (tree
))
1416 if (start
> offset
+ TOTAL_LENGTH (tree
)
1417 || start
+ length
> offset
+ TOTAL_LENGTH (tree
))
1420 if (length
== TOTAL_LENGTH (tree
))
1422 BUF_INTERVALS (buffer
) = NULL_INTERVAL
;
1426 if (ONLY_INTERVAL_P (tree
))
1428 tree
->total_length
-= length
;
1429 CHECK_TOTAL_LENGTH (tree
);
1433 if (start
> offset
+ TOTAL_LENGTH (tree
))
1434 start
= offset
+ TOTAL_LENGTH (tree
);
1435 while (left_to_delete
> 0)
1437 left_to_delete
-= interval_deletion_adjustment (tree
, start
- offset
,
1439 tree
= BUF_INTERVALS (buffer
);
1440 if (left_to_delete
== tree
->total_length
)
1442 BUF_INTERVALS (buffer
) = NULL_INTERVAL
;
1448 /* Make the adjustments necessary to the interval tree of BUFFER to
1449 represent an addition or deletion of LENGTH characters starting
1450 at position START. Addition or deletion is indicated by the sign
1454 offset_intervals (buffer
, start
, length
)
1455 struct buffer
*buffer
;
1458 if (NULL_INTERVAL_P (BUF_INTERVALS (buffer
)) || length
== 0)
1462 adjust_intervals_for_insertion (BUF_INTERVALS (buffer
), start
, length
);
1464 adjust_intervals_for_deletion (buffer
, start
, -length
);
1467 /* Merge interval I with its lexicographic successor. The resulting
1468 interval is returned, and has the properties of the original
1469 successor. The properties of I are lost. I is removed from the
1473 The caller must verify that this is not the last (rightmost)
1477 merge_interval_right (i
)
1478 register INTERVAL i
;
1480 register int absorb
= LENGTH (i
);
1481 register INTERVAL successor
;
1483 /* Zero out this interval. */
1484 i
->total_length
-= absorb
;
1485 CHECK_TOTAL_LENGTH (i
);
1487 /* Find the succeeding interval. */
1488 if (! NULL_RIGHT_CHILD (i
)) /* It's below us. Add absorb
1491 successor
= i
->right
;
1492 while (! NULL_LEFT_CHILD (successor
))
1494 successor
->total_length
+= absorb
;
1495 CHECK_TOTAL_LENGTH (successor
);
1496 successor
= successor
->left
;
1499 successor
->total_length
+= absorb
;
1500 CHECK_TOTAL_LENGTH (successor
);
1501 delete_interval (i
);
1506 while (! NULL_PARENT (successor
)) /* It's above us. Subtract as
1509 if (AM_LEFT_CHILD (successor
))
1511 successor
= INTERVAL_PARENT (successor
);
1512 delete_interval (i
);
1516 successor
= INTERVAL_PARENT (successor
);
1517 successor
->total_length
-= absorb
;
1518 CHECK_TOTAL_LENGTH (successor
);
1521 /* This must be the rightmost or last interval and cannot
1522 be merged right. The caller should have known. */
1526 /* Merge interval I with its lexicographic predecessor. The resulting
1527 interval is returned, and has the properties of the original predecessor.
1528 The properties of I are lost. Interval node I is removed from the tree.
1531 The caller must verify that this is not the first (leftmost) interval. */
1534 merge_interval_left (i
)
1535 register INTERVAL i
;
1537 register int absorb
= LENGTH (i
);
1538 register INTERVAL predecessor
;
1540 /* Zero out this interval. */
1541 i
->total_length
-= absorb
;
1542 CHECK_TOTAL_LENGTH (i
);
1544 /* Find the preceding interval. */
1545 if (! NULL_LEFT_CHILD (i
)) /* It's below us. Go down,
1546 adding ABSORB as we go. */
1548 predecessor
= i
->left
;
1549 while (! NULL_RIGHT_CHILD (predecessor
))
1551 predecessor
->total_length
+= absorb
;
1552 CHECK_TOTAL_LENGTH (predecessor
);
1553 predecessor
= predecessor
->right
;
1556 predecessor
->total_length
+= absorb
;
1557 CHECK_TOTAL_LENGTH (predecessor
);
1558 delete_interval (i
);
1563 while (! NULL_PARENT (predecessor
)) /* It's above us. Go up,
1564 subtracting ABSORB. */
1566 if (AM_RIGHT_CHILD (predecessor
))
1568 predecessor
= INTERVAL_PARENT (predecessor
);
1569 delete_interval (i
);
1573 predecessor
= INTERVAL_PARENT (predecessor
);
1574 predecessor
->total_length
-= absorb
;
1575 CHECK_TOTAL_LENGTH (predecessor
);
1578 /* This must be the leftmost or first interval and cannot
1579 be merged left. The caller should have known. */
1583 /* Make an exact copy of interval tree SOURCE which descends from
1584 PARENT. This is done by recursing through SOURCE, copying
1585 the current interval and its properties, and then adjusting
1586 the pointers of the copy. */
1589 reproduce_tree (source
, parent
)
1590 INTERVAL source
, parent
;
1592 register INTERVAL t
= make_interval ();
1594 bcopy (source
, t
, INTERVAL_SIZE
);
1595 copy_properties (source
, t
);
1596 SET_INTERVAL_PARENT (t
, parent
);
1597 if (! NULL_LEFT_CHILD (source
))
1598 t
->left
= reproduce_tree (source
->left
, t
);
1599 if (! NULL_RIGHT_CHILD (source
))
1600 t
->right
= reproduce_tree (source
->right
, t
);
1606 reproduce_tree_obj (source
, parent
)
1610 register INTERVAL t
= make_interval ();
1612 bcopy (source
, t
, INTERVAL_SIZE
);
1613 copy_properties (source
, t
);
1614 SET_INTERVAL_OBJECT (t
, parent
);
1615 if (! NULL_LEFT_CHILD (source
))
1616 t
->left
= reproduce_tree (source
->left
, t
);
1617 if (! NULL_RIGHT_CHILD (source
))
1618 t
->right
= reproduce_tree (source
->right
, t
);
1624 /* Nobody calls this. Perhaps it's a vestige of an earlier design. */
1626 /* Make a new interval of length LENGTH starting at START in the
1627 group of intervals INTERVALS, which is actually an interval tree.
1628 Returns the new interval.
1630 Generate an error if the new positions would overlap an existing
1634 make_new_interval (intervals
, start
, length
)
1640 slot
= find_interval (intervals
, start
);
1641 if (start
+ length
> slot
->position
+ LENGTH (slot
))
1642 error ("Interval would overlap");
1644 if (start
== slot
->position
&& length
== LENGTH (slot
))
1647 if (slot
->position
== start
)
1649 /* New right node. */
1650 split_interval_right (slot
, length
);
1654 if (slot
->position
+ LENGTH (slot
) == start
+ length
)
1656 /* New left node. */
1657 split_interval_left (slot
, LENGTH (slot
) - length
);
1661 /* Convert interval SLOT into three intervals. */
1662 split_interval_left (slot
, start
- slot
->position
);
1663 split_interval_right (slot
, length
);
1668 /* Insert the intervals of SOURCE into BUFFER at POSITION.
1669 LENGTH is the length of the text in SOURCE.
1671 The `position' field of the SOURCE intervals is assumed to be
1672 consistent with its parent; therefore, SOURCE must be an
1673 interval tree made with copy_interval or must be the whole
1674 tree of a buffer or a string.
1676 This is used in insdel.c when inserting Lisp_Strings into the
1677 buffer. The text corresponding to SOURCE is already in the buffer
1678 when this is called. The intervals of new tree are a copy of those
1679 belonging to the string being inserted; intervals are never
1682 If the inserted text had no intervals associated, and we don't
1683 want to inherit the surrounding text's properties, this function
1684 simply returns -- offset_intervals should handle placing the
1685 text in the correct interval, depending on the sticky bits.
1687 If the inserted text had properties (intervals), then there are two
1688 cases -- either insertion happened in the middle of some interval,
1689 or between two intervals.
1691 If the text goes into the middle of an interval, then new
1692 intervals are created in the middle with only the properties of
1693 the new text, *unless* the macro MERGE_INSERTIONS is true, in
1694 which case the new text has the union of its properties and those
1695 of the text into which it was inserted.
1697 If the text goes between two intervals, then if neither interval
1698 had its appropriate sticky property set (front_sticky, rear_sticky),
1699 the new text has only its properties. If one of the sticky properties
1700 is set, then the new text "sticks" to that region and its properties
1701 depend on merging as above. If both the preceding and succeeding
1702 intervals to the new text are "sticky", then the new text retains
1703 only its properties, as if neither sticky property were set. Perhaps
1704 we should consider merging all three sets of properties onto the new
1708 graft_intervals_into_buffer (source
, position
, length
, buffer
, inherit
)
1710 int position
, length
;
1711 struct buffer
*buffer
;
1714 register INTERVAL under
, over
, this, prev
;
1715 register INTERVAL tree
;
1718 tree
= BUF_INTERVALS (buffer
);
1720 /* If the new text has no properties, then with inheritance it
1721 becomes part of whatever interval it was inserted into.
1722 To prevent inheritance, we must clear out the properties
1723 of the newly inserted text. */
1724 if (NULL_INTERVAL_P (source
))
1727 if (!inherit
&& !NULL_INTERVAL_P (tree
) && length
> 0)
1729 XSETBUFFER (buf
, buffer
);
1730 set_text_properties_1 (make_number (position
),
1731 make_number (position
+ length
),
1734 if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer
)))
1735 /* Shouldn't be necessary. -stef */
1736 BUF_INTERVALS (buffer
) = balance_an_interval (BUF_INTERVALS (buffer
));
1740 if (NULL_INTERVAL_P (tree
))
1742 /* The inserted text constitutes the whole buffer, so
1743 simply copy over the interval structure. */
1744 if ((BUF_Z (buffer
) - BUF_BEG (buffer
)) == TOTAL_LENGTH (source
))
1747 XSETBUFFER (buf
, buffer
);
1748 BUF_INTERVALS (buffer
) = reproduce_tree_obj (source
, buf
);
1749 BUF_INTERVALS (buffer
)->position
= BEG
;
1750 BUF_INTERVALS (buffer
)->up_obj
= 1;
1752 /* Explicitly free the old tree here? */
1757 /* Create an interval tree in which to place a copy
1758 of the intervals of the inserted string. */
1761 XSETBUFFER (buf
, buffer
);
1762 tree
= create_root_interval (buf
);
1765 else if (TOTAL_LENGTH (tree
) == TOTAL_LENGTH (source
))
1766 /* If the buffer contains only the new string, but
1767 there was already some interval tree there, then it may be
1768 some zero length intervals. Eventually, do something clever
1769 about inserting properly. For now, just waste the old intervals. */
1771 BUF_INTERVALS (buffer
) = reproduce_tree (source
, INTERVAL_PARENT (tree
));
1772 BUF_INTERVALS (buffer
)->position
= BEG
;
1773 BUF_INTERVALS (buffer
)->up_obj
= 1;
1774 /* Explicitly free the old tree here. */
1778 /* Paranoia -- the text has already been added, so this buffer
1779 should be of non-zero length. */
1780 else if (TOTAL_LENGTH (tree
) == 0)
1783 this = under
= find_interval (tree
, position
);
1784 if (NULL_INTERVAL_P (under
)) /* Paranoia */
1786 over
= find_interval (source
, interval_start_pos (source
));
1788 /* Here for insertion in the middle of an interval.
1789 Split off an equivalent interval to the right,
1790 then don't bother with it any more. */
1792 if (position
> under
->position
)
1794 INTERVAL end_unchanged
1795 = split_interval_left (this, position
- under
->position
);
1796 copy_properties (under
, end_unchanged
);
1797 under
->position
= position
;
1801 /* This call may have some effect because previous_interval may
1802 update `position' fields of intervals. Thus, don't ignore it
1803 for the moment. Someone please tell me the truth (K.Handa). */
1804 prev
= previous_interval (under
);
1806 /* But, this code surely has no effect. And, anyway,
1807 END_NONSTICKY_P is unreliable now. */
1808 if (prev
&& !END_NONSTICKY_P (prev
))
1813 /* Insertion is now at beginning of UNDER. */
1815 /* The inserted text "sticks" to the interval `under',
1816 which means it gets those properties.
1817 The properties of under are the result of
1818 adjust_intervals_for_insertion, so stickiness has
1819 already been taken care of. */
1821 /* OVER is the interval we are copying from next.
1822 OVER_USED says how many characters' worth of OVER
1823 have already been copied into target intervals.
1824 UNDER is the next interval in the target. */
1826 while (! NULL_INTERVAL_P (over
))
1828 /* If UNDER is longer than OVER, split it. */
1829 if (LENGTH (over
) - over_used
< LENGTH (under
))
1831 this = split_interval_left (under
, LENGTH (over
) - over_used
);
1832 copy_properties (under
, this);
1837 /* THIS is now the interval to copy or merge into.
1838 OVER covers all of it. */
1840 merge_properties (over
, this);
1842 copy_properties (over
, this);
1844 /* If THIS and OVER end at the same place,
1845 advance OVER to a new source interval. */
1846 if (LENGTH (this) == LENGTH (over
) - over_used
)
1848 over
= next_interval (over
);
1852 /* Otherwise just record that more of OVER has been used. */
1853 over_used
+= LENGTH (this);
1855 /* Always advance to a new target interval. */
1856 under
= next_interval (this);
1859 if (! NULL_INTERVAL_P (BUF_INTERVALS (buffer
)))
1860 BUF_INTERVALS (buffer
) = balance_an_interval (BUF_INTERVALS (buffer
));
1864 /* Get the value of property PROP from PLIST,
1865 which is the plist of an interval.
1866 We check for direct properties, for categories with property PROP,
1867 and for PROP appearing on the default-text-properties list. */
1870 textget (plist
, prop
)
1872 register Lisp_Object prop
;
1874 return lookup_char_property (plist
, prop
, 1);
1878 lookup_char_property (plist
, prop
, textprop
)
1880 register Lisp_Object prop
;
1883 register Lisp_Object tail
, fallback
= Qnil
;
1885 for (tail
= plist
; CONSP (tail
); tail
= Fcdr (XCDR (tail
)))
1887 register Lisp_Object tem
;
1890 return Fcar (XCDR (tail
));
1891 if (EQ (tem
, Qcategory
))
1893 tem
= Fcar (XCDR (tail
));
1895 fallback
= Fget (tem
, prop
);
1899 if (! NILP (fallback
))
1901 /* Check for alternative properties */
1902 tail
= Fassq (prop
, Vchar_property_alias_alist
);
1906 for (; NILP (fallback
) && CONSP (tail
); tail
= XCDR (tail
))
1907 fallback
= Fplist_get (plist
, XCAR (tail
));
1910 if (textprop
&& NILP (fallback
) && CONSP (Vdefault_text_properties
))
1911 fallback
= Fplist_get (Vdefault_text_properties
, prop
);
1916 /* Set point "temporarily", without checking any text properties. */
1919 temp_set_point (buffer
, charpos
)
1920 struct buffer
*buffer
;
1923 temp_set_point_both (buffer
, charpos
,
1924 buf_charpos_to_bytepos (buffer
, charpos
));
1927 /* Set point in BUFFER "temporarily" to CHARPOS, which corresponds to
1928 byte position BYTEPOS. */
1931 temp_set_point_both (buffer
, charpos
, bytepos
)
1932 int charpos
, bytepos
;
1933 struct buffer
*buffer
;
1935 /* In a single-byte buffer, the two positions must be equal. */
1936 if (BUF_ZV (buffer
) == BUF_ZV_BYTE (buffer
)
1937 && charpos
!= bytepos
)
1940 if (charpos
> bytepos
)
1943 if (charpos
> BUF_ZV (buffer
) || charpos
< BUF_BEGV (buffer
))
1946 BUF_PT_BYTE (buffer
) = bytepos
;
1947 BUF_PT (buffer
) = charpos
;
1950 /* Set point in BUFFER to CHARPOS. If the target position is
1951 before an intangible character, move to an ok place. */
1954 set_point (buffer
, charpos
)
1955 register struct buffer
*buffer
;
1956 register int charpos
;
1958 set_point_both (buffer
, charpos
, buf_charpos_to_bytepos (buffer
, charpos
));
1961 /* If there's an invisible character at position POS + TEST_OFFS in the
1962 current buffer, and the invisible property has a `stickiness' such that
1963 inserting a character at position POS would inherit the property it,
1964 return POS + ADJ, otherwise return POS. If TEST_INTANG is non-zero,
1965 then intangibility is required as well as invisibleness.
1967 TEST_OFFS should be either 0 or -1, and ADJ should be either 1 or -1.
1969 Note that `stickiness' is determined by overlay marker insertion types,
1970 if the invisible property comes from an overlay. */
1973 adjust_for_invis_intang (pos
, test_offs
, adj
, test_intang
)
1974 int pos
, test_offs
, adj
, test_intang
;
1976 Lisp_Object invis_propval
, invis_overlay
;
1977 Lisp_Object test_pos
;
1979 if ((adj
< 0 && pos
+ adj
< BEGV
) || (adj
> 0 && pos
+ adj
> ZV
))
1980 /* POS + ADJ would be beyond the buffer bounds, so do no adjustment. */
1983 test_pos
= make_number (pos
+ test_offs
);
1986 = get_char_property_and_overlay (test_pos
, Qinvisible
, Qnil
,
1990 || ! NILP (Fget_char_property (test_pos
, Qintangible
, Qnil
)))
1991 && TEXT_PROP_MEANS_INVISIBLE (invis_propval
)
1992 /* This next test is true if the invisible property has a stickiness
1993 such that an insertion at POS would inherit it. */
1994 && (NILP (invis_overlay
)
1995 /* Invisible property is from a text-property. */
1996 ? (text_property_stickiness (Qinvisible
, make_number (pos
), Qnil
)
1997 == (test_offs
== 0 ? 1 : -1))
1998 /* Invisible property is from an overlay. */
2000 ? XMARKER (OVERLAY_START (invis_overlay
))->insertion_type
== 0
2001 : XMARKER (OVERLAY_END (invis_overlay
))->insertion_type
== 1)))
2007 /* Set point in BUFFER to CHARPOS, which corresponds to byte
2008 position BYTEPOS. If the target position is
2009 before an intangible character, move to an ok place. */
2012 set_point_both (buffer
, charpos
, bytepos
)
2013 register struct buffer
*buffer
;
2014 register int charpos
, bytepos
;
2016 register INTERVAL to
, from
, toprev
, fromprev
;
2018 int old_position
= BUF_PT (buffer
);
2019 /* This ensures that we move forward past intangible text when the
2020 initial position is the same as the destination, in the rare
2021 instances where this is important, e.g. in line-move-finish
2023 int backwards
= (charpos
< old_position
? 1 : 0);
2025 int original_position
;
2027 buffer
->point_before_scroll
= Qnil
;
2029 if (charpos
== BUF_PT (buffer
))
2032 /* In a single-byte buffer, the two positions must be equal. */
2033 if (BUF_ZV (buffer
) == BUF_ZV_BYTE (buffer
)
2034 && charpos
!= bytepos
)
2037 /* Check this now, before checking if the buffer has any intervals.
2038 That way, we can catch conditions which break this sanity check
2039 whether or not there are intervals in the buffer. */
2040 if (charpos
> BUF_ZV (buffer
) || charpos
< BUF_BEGV (buffer
))
2043 have_overlays
= (buffer
->overlays_before
|| buffer
->overlays_after
);
2045 /* If we have no text properties and overlays,
2046 then we can do it quickly. */
2047 if (NULL_INTERVAL_P (BUF_INTERVALS (buffer
)) && ! have_overlays
)
2049 temp_set_point_both (buffer
, charpos
, bytepos
);
2053 /* Set TO to the interval containing the char after CHARPOS,
2054 and TOPREV to the interval containing the char before CHARPOS.
2055 Either one may be null. They may be equal. */
2056 to
= find_interval (BUF_INTERVALS (buffer
), charpos
);
2057 if (charpos
== BUF_BEGV (buffer
))
2059 else if (to
&& to
->position
== charpos
)
2060 toprev
= previous_interval (to
);
2064 buffer_point
= (BUF_PT (buffer
) == BUF_ZV (buffer
)
2065 ? BUF_ZV (buffer
) - 1
2068 /* Set FROM to the interval containing the char after PT,
2069 and FROMPREV to the interval containing the char before PT.
2070 Either one may be null. They may be equal. */
2071 /* We could cache this and save time. */
2072 from
= find_interval (BUF_INTERVALS (buffer
), buffer_point
);
2073 if (buffer_point
== BUF_BEGV (buffer
))
2075 else if (from
&& from
->position
== BUF_PT (buffer
))
2076 fromprev
= previous_interval (from
);
2077 else if (buffer_point
!= BUF_PT (buffer
))
2078 fromprev
= from
, from
= 0;
2082 /* Moving within an interval. */
2083 if (to
== from
&& toprev
== fromprev
&& INTERVAL_VISIBLE_P (to
)
2086 temp_set_point_both (buffer
, charpos
, bytepos
);
2090 original_position
= charpos
;
2092 /* If the new position is between two intangible characters
2093 with the same intangible property value,
2094 move forward or backward until a change in that property. */
2095 if (NILP (Vinhibit_point_motion_hooks
)
2096 && ((! NULL_INTERVAL_P (to
) && ! NULL_INTERVAL_P (toprev
))
2098 /* Intangibility never stops us from positioning at the beginning
2099 or end of the buffer, so don't bother checking in that case. */
2100 && charpos
!= BEGV
&& charpos
!= ZV
)
2103 Lisp_Object intangible_propval
;
2107 /* If the preceding character is both intangible and invisible,
2108 and the invisible property is `rear-sticky', perturb it so
2109 that the search starts one character earlier -- this ensures
2110 that point can never move to the end of an invisible/
2111 intangible/rear-sticky region. */
2112 charpos
= adjust_for_invis_intang (charpos
, -1, -1, 1);
2114 XSETINT (pos
, charpos
);
2116 /* If following char is intangible,
2117 skip back over all chars with matching intangible property. */
2119 intangible_propval
= Fget_char_property (pos
, Qintangible
, Qnil
);
2121 if (! NILP (intangible_propval
))
2123 while (XINT (pos
) > BUF_BEGV (buffer
)
2124 && EQ (Fget_char_property (make_number (XINT (pos
) - 1),
2126 intangible_propval
))
2127 pos
= Fprevious_char_property_change (pos
, Qnil
);
2129 /* Set CHARPOS from POS, and if the final intangible character
2130 that we skipped over is also invisible, and the invisible
2131 property is `front-sticky', perturb it to be one character
2132 earlier -- this ensures that point can never move to the
2133 beginning of an invisible/intangible/front-sticky region. */
2134 charpos
= adjust_for_invis_intang (XINT (pos
), 0, -1, 0);
2139 /* If the following character is both intangible and invisible,
2140 and the invisible property is `front-sticky', perturb it so
2141 that the search starts one character later -- this ensures
2142 that point can never move to the beginning of an
2143 invisible/intangible/front-sticky region. */
2144 charpos
= adjust_for_invis_intang (charpos
, 0, 1, 1);
2146 XSETINT (pos
, charpos
);
2148 /* If preceding char is intangible,
2149 skip forward over all chars with matching intangible property. */
2151 intangible_propval
= Fget_char_property (make_number (charpos
- 1),
2154 if (! NILP (intangible_propval
))
2156 while (XINT (pos
) < BUF_ZV (buffer
)
2157 && EQ (Fget_char_property (pos
, Qintangible
, Qnil
),
2158 intangible_propval
))
2159 pos
= Fnext_char_property_change (pos
, Qnil
);
2161 /* Set CHARPOS from POS, and if the final intangible character
2162 that we skipped over is also invisible, and the invisible
2163 property is `rear-sticky', perturb it to be one character
2164 later -- this ensures that point can never move to the
2165 end of an invisible/intangible/rear-sticky region. */
2166 charpos
= adjust_for_invis_intang (XINT (pos
), -1, 1, 0);
2170 bytepos
= buf_charpos_to_bytepos (buffer
, charpos
);
2173 if (charpos
!= original_position
)
2175 /* Set TO to the interval containing the char after CHARPOS,
2176 and TOPREV to the interval containing the char before CHARPOS.
2177 Either one may be null. They may be equal. */
2178 to
= find_interval (BUF_INTERVALS (buffer
), charpos
);
2179 if (charpos
== BUF_BEGV (buffer
))
2181 else if (to
&& to
->position
== charpos
)
2182 toprev
= previous_interval (to
);
2187 /* Here TO is the interval after the stopping point
2188 and TOPREV is the interval before the stopping point.
2189 One or the other may be null. */
2191 temp_set_point_both (buffer
, charpos
, bytepos
);
2193 /* We run point-left and point-entered hooks here, iff the
2194 two intervals are not equivalent. These hooks take
2195 (old_point, new_point) as arguments. */
2196 if (NILP (Vinhibit_point_motion_hooks
)
2197 && (! intervals_equal (from
, to
)
2198 || ! intervals_equal (fromprev
, toprev
)))
2200 Lisp_Object leave_after
, leave_before
, enter_after
, enter_before
;
2203 leave_before
= textget (fromprev
->plist
, Qpoint_left
);
2205 leave_before
= Qnil
;
2208 leave_after
= textget (from
->plist
, Qpoint_left
);
2213 enter_before
= textget (toprev
->plist
, Qpoint_entered
);
2215 enter_before
= Qnil
;
2218 enter_after
= textget (to
->plist
, Qpoint_entered
);
2222 if (! EQ (leave_before
, enter_before
) && !NILP (leave_before
))
2223 call2 (leave_before
, make_number (old_position
),
2224 make_number (charpos
));
2225 if (! EQ (leave_after
, enter_after
) && !NILP (leave_after
))
2226 call2 (leave_after
, make_number (old_position
),
2227 make_number (charpos
));
2229 if (! EQ (enter_before
, leave_before
) && !NILP (enter_before
))
2230 call2 (enter_before
, make_number (old_position
),
2231 make_number (charpos
));
2232 if (! EQ (enter_after
, leave_after
) && !NILP (enter_after
))
2233 call2 (enter_after
, make_number (old_position
),
2234 make_number (charpos
));
2238 /* Move point to POSITION, unless POSITION is inside an intangible
2239 segment that reaches all the way to point. */
2242 move_if_not_intangible (position
)
2246 Lisp_Object intangible_propval
;
2248 XSETINT (pos
, position
);
2250 if (! NILP (Vinhibit_point_motion_hooks
))
2251 /* If intangible is inhibited, always move point to POSITION. */
2253 else if (PT
< position
&& XINT (pos
) < ZV
)
2255 /* We want to move forward, so check the text before POSITION. */
2257 intangible_propval
= Fget_char_property (pos
,
2260 /* If following char is intangible,
2261 skip back over all chars with matching intangible property. */
2262 if (! NILP (intangible_propval
))
2263 while (XINT (pos
) > BEGV
2264 && EQ (Fget_char_property (make_number (XINT (pos
) - 1),
2266 intangible_propval
))
2267 pos
= Fprevious_char_property_change (pos
, Qnil
);
2269 else if (XINT (pos
) > BEGV
)
2271 /* We want to move backward, so check the text after POSITION. */
2273 intangible_propval
= Fget_char_property (make_number (XINT (pos
) - 1),
2276 /* If following char is intangible,
2277 skip forward over all chars with matching intangible property. */
2278 if (! NILP (intangible_propval
))
2279 while (XINT (pos
) < ZV
2280 && EQ (Fget_char_property (pos
, Qintangible
, Qnil
),
2281 intangible_propval
))
2282 pos
= Fnext_char_property_change (pos
, Qnil
);
2285 else if (position
< BEGV
)
2287 else if (position
> ZV
)
2290 /* If the whole stretch between PT and POSITION isn't intangible,
2291 try moving to POSITION (which means we actually move farther
2292 if POSITION is inside of intangible text). */
2294 if (XINT (pos
) != PT
)
2298 /* If text at position POS has property PROP, set *VAL to the property
2299 value, *START and *END to the beginning and end of a region that
2300 has the same property, and return 1. Otherwise return 0.
2302 OBJECT is the string or buffer to look for the property in;
2303 nil means the current buffer. */
2306 get_property_and_range (pos
, prop
, val
, start
, end
, object
)
2308 Lisp_Object prop
, *val
;
2312 INTERVAL i
, prev
, next
;
2315 i
= find_interval (BUF_INTERVALS (current_buffer
), pos
);
2316 else if (BUFFERP (object
))
2317 i
= find_interval (BUF_INTERVALS (XBUFFER (object
)), pos
);
2318 else if (STRINGP (object
))
2319 i
= find_interval (STRING_INTERVALS (object
), pos
);
2323 if (NULL_INTERVAL_P (i
) || (i
->position
+ LENGTH (i
) <= pos
))
2325 *val
= textget (i
->plist
, prop
);
2329 next
= i
; /* remember it in advance */
2330 prev
= previous_interval (i
);
2331 while (! NULL_INTERVAL_P (prev
)
2332 && EQ (*val
, textget (prev
->plist
, prop
)))
2333 i
= prev
, prev
= previous_interval (prev
);
2334 *start
= i
->position
;
2336 next
= next_interval (i
);
2337 while (! NULL_INTERVAL_P (next
)
2338 && EQ (*val
, textget (next
->plist
, prop
)))
2339 i
= next
, next
= next_interval (next
);
2340 *end
= i
->position
+ LENGTH (i
);
2345 /* Return the proper local keymap TYPE for position POSITION in
2346 BUFFER; TYPE should be one of `keymap' or `local-map'. Use the map
2347 specified by the PROP property, if any. Otherwise, if TYPE is
2348 `local-map' use BUFFER's local map.
2350 POSITION must be in the accessible part of BUFFER. */
2353 get_local_map (position
, buffer
, type
)
2354 register int position
;
2355 register struct buffer
*buffer
;
2358 Lisp_Object prop
, lispy_position
, lispy_buffer
;
2359 int old_begv
, old_zv
, old_begv_byte
, old_zv_byte
;
2361 /* Perhaps we should just change `position' to the limit. */
2362 if (position
> BUF_ZV (buffer
) || position
< BUF_BEGV (buffer
))
2365 /* Ignore narrowing, so that a local map continues to be valid even if
2366 the visible region contains no characters and hence no properties. */
2367 old_begv
= BUF_BEGV (buffer
);
2368 old_zv
= BUF_ZV (buffer
);
2369 old_begv_byte
= BUF_BEGV_BYTE (buffer
);
2370 old_zv_byte
= BUF_ZV_BYTE (buffer
);
2371 BUF_BEGV (buffer
) = BUF_BEG (buffer
);
2372 BUF_ZV (buffer
) = BUF_Z (buffer
);
2373 BUF_BEGV_BYTE (buffer
) = BUF_BEG_BYTE (buffer
);
2374 BUF_ZV_BYTE (buffer
) = BUF_Z_BYTE (buffer
);
2376 XSETFASTINT (lispy_position
, position
);
2377 XSETBUFFER (lispy_buffer
, buffer
);
2378 /* First check if the CHAR has any property. This is because when
2379 we click with the mouse, the mouse pointer is really pointing
2380 to the CHAR after POS. */
2381 prop
= Fget_char_property (lispy_position
, type
, lispy_buffer
);
2382 /* If not, look at the POS's properties. This is necessary because when
2383 editing a field with a `local-map' property, we want insertion at the end
2384 to obey the `local-map' property. */
2386 prop
= get_pos_property (lispy_position
, type
, lispy_buffer
);
2388 BUF_BEGV (buffer
) = old_begv
;
2389 BUF_ZV (buffer
) = old_zv
;
2390 BUF_BEGV_BYTE (buffer
) = old_begv_byte
;
2391 BUF_ZV_BYTE (buffer
) = old_zv_byte
;
2393 /* Use the local map only if it is valid. */
2394 prop
= get_keymap (prop
, 0, 0);
2398 if (EQ (type
, Qkeymap
))
2401 return buffer
->keymap
;
2404 /* Produce an interval tree reflecting the intervals in
2405 TREE from START to START + LENGTH.
2406 The new interval tree has no parent and has a starting-position of 0. */
2409 copy_intervals (tree
, start
, length
)
2413 register INTERVAL i
, new, t
;
2414 register int got
, prevlen
;
2416 if (NULL_INTERVAL_P (tree
) || length
<= 0)
2417 return NULL_INTERVAL
;
2419 i
= find_interval (tree
, start
);
2420 if (NULL_INTERVAL_P (i
) || LENGTH (i
) == 0)
2423 /* If there is only one interval and it's the default, return nil. */
2424 if ((start
- i
->position
+ 1 + length
) < LENGTH (i
)
2425 && DEFAULT_INTERVAL_P (i
))
2426 return NULL_INTERVAL
;
2428 new = make_interval ();
2430 got
= (LENGTH (i
) - (start
- i
->position
));
2431 new->total_length
= length
;
2432 CHECK_TOTAL_LENGTH (new);
2433 copy_properties (i
, new);
2437 while (got
< length
)
2439 i
= next_interval (i
);
2440 t
= split_interval_right (t
, prevlen
);
2441 copy_properties (i
, t
);
2442 prevlen
= LENGTH (i
);
2446 return balance_an_interval (new);
2449 /* Give STRING the properties of BUFFER from POSITION to LENGTH. */
2452 copy_intervals_to_string (string
, buffer
, position
, length
)
2454 struct buffer
*buffer
;
2455 int position
, length
;
2457 INTERVAL interval_copy
= copy_intervals (BUF_INTERVALS (buffer
),
2459 if (NULL_INTERVAL_P (interval_copy
))
2462 SET_INTERVAL_OBJECT (interval_copy
, string
);
2463 STRING_SET_INTERVALS (string
, interval_copy
);
2466 /* Return 1 if strings S1 and S2 have identical properties; 0 otherwise.
2467 Assume they have identical characters. */
2470 compare_string_intervals (s1
, s2
)
2475 int end
= SCHARS (s1
);
2477 i1
= find_interval (STRING_INTERVALS (s1
), 0);
2478 i2
= find_interval (STRING_INTERVALS (s2
), 0);
2482 /* Determine how far we can go before we reach the end of I1 or I2. */
2483 int len1
= (i1
!= 0 ? INTERVAL_LAST_POS (i1
) : end
) - pos
;
2484 int len2
= (i2
!= 0 ? INTERVAL_LAST_POS (i2
) : end
) - pos
;
2485 int distance
= min (len1
, len2
);
2487 /* If we ever find a mismatch between the strings,
2489 if (! intervals_equal (i1
, i2
))
2492 /* Advance POS till the end of the shorter interval,
2493 and advance one or both interval pointers for the new position. */
2495 if (len1
== distance
)
2496 i1
= next_interval (i1
);
2497 if (len2
== distance
)
2498 i2
= next_interval (i2
);
2503 /* Recursively adjust interval I in the current buffer
2504 for setting enable_multibyte_characters to MULTI_FLAG.
2505 The range of interval I is START ... END in characters,
2506 START_BYTE ... END_BYTE in bytes. */
2509 set_intervals_multibyte_1 (i
, multi_flag
, start
, start_byte
, end
, end_byte
)
2512 int start
, start_byte
, end
, end_byte
;
2514 /* Fix the length of this interval. */
2516 i
->total_length
= end
- start
;
2518 i
->total_length
= end_byte
- start_byte
;
2519 CHECK_TOTAL_LENGTH (i
);
2521 if (TOTAL_LENGTH (i
) == 0)
2523 delete_interval (i
);
2527 /* Recursively fix the length of the subintervals. */
2530 int left_end
, left_end_byte
;
2535 left_end_byte
= start_byte
+ LEFT_TOTAL_LENGTH (i
);
2536 left_end
= BYTE_TO_CHAR (left_end_byte
);
2538 temp
= CHAR_TO_BYTE (left_end
);
2540 /* If LEFT_END_BYTE is in the middle of a character,
2541 adjust it and LEFT_END to a char boundary. */
2542 if (left_end_byte
> temp
)
2544 left_end_byte
= temp
;
2546 if (left_end_byte
< temp
)
2549 left_end_byte
= CHAR_TO_BYTE (left_end
);
2554 left_end
= start
+ LEFT_TOTAL_LENGTH (i
);
2555 left_end_byte
= CHAR_TO_BYTE (left_end
);
2558 set_intervals_multibyte_1 (i
->left
, multi_flag
, start
, start_byte
,
2559 left_end
, left_end_byte
);
2563 int right_start_byte
, right_start
;
2569 right_start_byte
= end_byte
- RIGHT_TOTAL_LENGTH (i
);
2570 right_start
= BYTE_TO_CHAR (right_start_byte
);
2572 /* If RIGHT_START_BYTE is in the middle of a character,
2573 adjust it and RIGHT_START to a char boundary. */
2574 temp
= CHAR_TO_BYTE (right_start
);
2576 if (right_start_byte
< temp
)
2578 right_start_byte
= temp
;
2580 if (right_start_byte
> temp
)
2583 right_start_byte
= CHAR_TO_BYTE (right_start
);
2588 right_start
= end
- RIGHT_TOTAL_LENGTH (i
);
2589 right_start_byte
= CHAR_TO_BYTE (right_start
);
2592 set_intervals_multibyte_1 (i
->right
, multi_flag
,
2593 right_start
, right_start_byte
,
2597 /* Rounding to char boundaries can theoretically ake this interval
2598 spurious. If so, delete one child, and copy its property list
2599 to this interval. */
2600 if (LEFT_TOTAL_LENGTH (i
) + RIGHT_TOTAL_LENGTH (i
) >= TOTAL_LENGTH (i
))
2604 (i
)->plist
= (i
)->left
->plist
;
2605 (i
)->left
->total_length
= 0;
2606 delete_interval ((i
)->left
);
2610 (i
)->plist
= (i
)->right
->plist
;
2611 (i
)->right
->total_length
= 0;
2612 delete_interval ((i
)->right
);
2617 /* Update the intervals of the current buffer
2618 to fit the contents as multibyte (if MULTI_FLAG is 1)
2619 or to fit them as non-multibyte (if MULTI_FLAG is 0). */
2622 set_intervals_multibyte (multi_flag
)
2625 if (BUF_INTERVALS (current_buffer
))
2626 set_intervals_multibyte_1 (BUF_INTERVALS (current_buffer
), multi_flag
,
2627 BEG
, BEG_BYTE
, Z
, Z_BYTE
);
2630 /* arch-tag: 3d402b60-083c-4271-b4a3-ebd9a74bfe27
2631 (do not change this comment) */