(switch-to-completions): Move point to the first
[emacs.git] / src / fns.c
blobc453d05662b8f1650962868f3fc8c3ba773f216f
1 /* Random utility Lisp functions.
2 Copyright (C) 1985, 1986, 1987, 1993, 1994, 1995, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004,
4 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
23 #ifdef HAVE_UNISTD_H
24 #include <unistd.h>
25 #endif
26 #include <time.h>
27 #include <setjmp.h>
29 /* Note on some machines this defines `vector' as a typedef,
30 so make sure we don't use that name in this file. */
31 #undef vector
32 #define vector *****
34 #include "lisp.h"
35 #include "commands.h"
36 #include "character.h"
37 #include "coding.h"
38 #include "buffer.h"
39 #include "keyboard.h"
40 #include "keymap.h"
41 #include "intervals.h"
42 #include "frame.h"
43 #include "window.h"
44 #include "blockinput.h"
45 #ifdef HAVE_MENUS
46 #if defined (HAVE_X_WINDOWS)
47 #include "xterm.h"
48 #endif
49 #endif /* HAVE_MENUS */
51 #ifndef NULL
52 #define NULL ((POINTER_TYPE *)0)
53 #endif
55 /* Nonzero enables use of dialog boxes for questions
56 asked by mouse commands. */
57 int use_dialog_box;
59 /* Nonzero enables use of a file dialog for file name
60 questions asked by mouse commands. */
61 int use_file_dialog;
63 extern int minibuffer_auto_raise;
64 extern Lisp_Object minibuf_window;
65 extern Lisp_Object Vlocale_coding_system;
66 extern int load_in_progress;
68 Lisp_Object Qstring_lessp, Qprovide, Qrequire;
69 Lisp_Object Qyes_or_no_p_history;
70 Lisp_Object Qcursor_in_echo_area;
71 Lisp_Object Qwidget_type;
72 Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
74 extern Lisp_Object Qinput_method_function;
76 static int internal_equal P_ ((Lisp_Object , Lisp_Object, int, int));
78 extern long get_random ();
79 extern void seed_random P_ ((long));
81 #ifndef HAVE_UNISTD_H
82 extern long time ();
83 #endif
85 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
86 doc: /* Return the argument unchanged. */)
87 (arg)
88 Lisp_Object arg;
90 return arg;
93 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
94 doc: /* Return a pseudo-random number.
95 All integers representable in Lisp are equally likely.
96 On most systems, this is 29 bits' worth.
97 With positive integer LIMIT, return random number in interval [0,LIMIT).
98 With argument t, set the random number seed from the current time and pid.
99 Other values of LIMIT are ignored. */)
100 (limit)
101 Lisp_Object limit;
103 EMACS_INT val;
104 Lisp_Object lispy_val;
105 unsigned long denominator;
107 if (EQ (limit, Qt))
108 seed_random (getpid () + time (NULL));
109 if (NATNUMP (limit) && XFASTINT (limit) != 0)
111 /* Try to take our random number from the higher bits of VAL,
112 not the lower, since (says Gentzel) the low bits of `random'
113 are less random than the higher ones. We do this by using the
114 quotient rather than the remainder. At the high end of the RNG
115 it's possible to get a quotient larger than n; discarding
116 these values eliminates the bias that would otherwise appear
117 when using a large n. */
118 denominator = ((unsigned long)1 << VALBITS) / XFASTINT (limit);
120 val = get_random () / denominator;
121 while (val >= XFASTINT (limit));
123 else
124 val = get_random ();
125 XSETINT (lispy_val, val);
126 return lispy_val;
129 /* Random data-structure functions */
131 DEFUN ("length", Flength, Slength, 1, 1, 0,
132 doc: /* Return the length of vector, list or string SEQUENCE.
133 A byte-code function object is also allowed.
134 If the string contains multibyte characters, this is not necessarily
135 the number of bytes in the string; it is the number of characters.
136 To get the number of bytes, use `string-bytes'. */)
137 (sequence)
138 register Lisp_Object sequence;
140 register Lisp_Object val;
141 register int i;
143 if (STRINGP (sequence))
144 XSETFASTINT (val, SCHARS (sequence));
145 else if (VECTORP (sequence))
146 XSETFASTINT (val, ASIZE (sequence));
147 else if (CHAR_TABLE_P (sequence))
148 XSETFASTINT (val, MAX_CHAR);
149 else if (BOOL_VECTOR_P (sequence))
150 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
151 else if (COMPILEDP (sequence))
152 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
153 else if (CONSP (sequence))
155 i = 0;
156 while (CONSP (sequence))
158 sequence = XCDR (sequence);
159 ++i;
161 if (!CONSP (sequence))
162 break;
164 sequence = XCDR (sequence);
165 ++i;
166 QUIT;
169 CHECK_LIST_END (sequence, sequence);
171 val = make_number (i);
173 else if (NILP (sequence))
174 XSETFASTINT (val, 0);
175 else
176 wrong_type_argument (Qsequencep, sequence);
178 return val;
181 /* This does not check for quits. That is safe since it must terminate. */
183 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
184 doc: /* Return the length of a list, but avoid error or infinite loop.
185 This function never gets an error. If LIST is not really a list,
186 it returns 0. If LIST is circular, it returns a finite value
187 which is at least the number of distinct elements. */)
188 (list)
189 Lisp_Object list;
191 Lisp_Object tail, halftail, length;
192 int len = 0;
194 /* halftail is used to detect circular lists. */
195 halftail = list;
196 for (tail = list; CONSP (tail); tail = XCDR (tail))
198 if (EQ (tail, halftail) && len != 0)
199 break;
200 len++;
201 if ((len & 1) == 0)
202 halftail = XCDR (halftail);
205 XSETINT (length, len);
206 return length;
209 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
210 doc: /* Return the number of bytes in STRING.
211 If STRING is multibyte, this may be greater than the length of STRING. */)
212 (string)
213 Lisp_Object string;
215 CHECK_STRING (string);
216 return make_number (SBYTES (string));
219 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
220 doc: /* Return t if two strings have identical contents.
221 Case is significant, but text properties are ignored.
222 Symbols are also allowed; their print names are used instead. */)
223 (s1, s2)
224 register Lisp_Object s1, s2;
226 if (SYMBOLP (s1))
227 s1 = SYMBOL_NAME (s1);
228 if (SYMBOLP (s2))
229 s2 = SYMBOL_NAME (s2);
230 CHECK_STRING (s1);
231 CHECK_STRING (s2);
233 if (SCHARS (s1) != SCHARS (s2)
234 || SBYTES (s1) != SBYTES (s2)
235 || bcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
236 return Qnil;
237 return Qt;
240 DEFUN ("compare-strings", Fcompare_strings,
241 Scompare_strings, 6, 7, 0,
242 doc: /* Compare the contents of two strings, converting to multibyte if needed.
243 In string STR1, skip the first START1 characters and stop at END1.
244 In string STR2, skip the first START2 characters and stop at END2.
245 END1 and END2 default to the full lengths of the respective strings.
247 Case is significant in this comparison if IGNORE-CASE is nil.
248 Unibyte strings are converted to multibyte for comparison.
250 The value is t if the strings (or specified portions) match.
251 If string STR1 is less, the value is a negative number N;
252 - 1 - N is the number of characters that match at the beginning.
253 If string STR1 is greater, the value is a positive number N;
254 N - 1 is the number of characters that match at the beginning. */)
255 (str1, start1, end1, str2, start2, end2, ignore_case)
256 Lisp_Object str1, start1, end1, start2, str2, end2, ignore_case;
258 register int end1_char, end2_char;
259 register int i1, i1_byte, i2, i2_byte;
261 CHECK_STRING (str1);
262 CHECK_STRING (str2);
263 if (NILP (start1))
264 start1 = make_number (0);
265 if (NILP (start2))
266 start2 = make_number (0);
267 CHECK_NATNUM (start1);
268 CHECK_NATNUM (start2);
269 if (! NILP (end1))
270 CHECK_NATNUM (end1);
271 if (! NILP (end2))
272 CHECK_NATNUM (end2);
274 i1 = XINT (start1);
275 i2 = XINT (start2);
277 i1_byte = string_char_to_byte (str1, i1);
278 i2_byte = string_char_to_byte (str2, i2);
280 end1_char = SCHARS (str1);
281 if (! NILP (end1) && end1_char > XINT (end1))
282 end1_char = XINT (end1);
284 end2_char = SCHARS (str2);
285 if (! NILP (end2) && end2_char > XINT (end2))
286 end2_char = XINT (end2);
288 while (i1 < end1_char && i2 < end2_char)
290 /* When we find a mismatch, we must compare the
291 characters, not just the bytes. */
292 int c1, c2;
294 if (STRING_MULTIBYTE (str1))
295 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
296 else
298 c1 = SREF (str1, i1++);
299 MAKE_CHAR_MULTIBYTE (c1);
302 if (STRING_MULTIBYTE (str2))
303 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
304 else
306 c2 = SREF (str2, i2++);
307 MAKE_CHAR_MULTIBYTE (c2);
310 if (c1 == c2)
311 continue;
313 if (! NILP (ignore_case))
315 Lisp_Object tem;
317 tem = Fupcase (make_number (c1));
318 c1 = XINT (tem);
319 tem = Fupcase (make_number (c2));
320 c2 = XINT (tem);
323 if (c1 == c2)
324 continue;
326 /* Note that I1 has already been incremented
327 past the character that we are comparing;
328 hence we don't add or subtract 1 here. */
329 if (c1 < c2)
330 return make_number (- i1 + XINT (start1));
331 else
332 return make_number (i1 - XINT (start1));
335 if (i1 < end1_char)
336 return make_number (i1 - XINT (start1) + 1);
337 if (i2 < end2_char)
338 return make_number (- i1 + XINT (start1) - 1);
340 return Qt;
343 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
344 doc: /* Return t if first arg string is less than second in lexicographic order.
345 Case is significant.
346 Symbols are also allowed; their print names are used instead. */)
347 (s1, s2)
348 register Lisp_Object s1, s2;
350 register int end;
351 register int i1, i1_byte, i2, i2_byte;
353 if (SYMBOLP (s1))
354 s1 = SYMBOL_NAME (s1);
355 if (SYMBOLP (s2))
356 s2 = SYMBOL_NAME (s2);
357 CHECK_STRING (s1);
358 CHECK_STRING (s2);
360 i1 = i1_byte = i2 = i2_byte = 0;
362 end = SCHARS (s1);
363 if (end > SCHARS (s2))
364 end = SCHARS (s2);
366 while (i1 < end)
368 /* When we find a mismatch, we must compare the
369 characters, not just the bytes. */
370 int c1, c2;
372 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
373 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
375 if (c1 != c2)
376 return c1 < c2 ? Qt : Qnil;
378 return i1 < SCHARS (s2) ? Qt : Qnil;
381 #if __GNUC__
382 /* "gcc -O3" enables automatic function inlining, which optimizes out
383 the arguments for the invocations of this function, whereas it
384 expects these values on the stack. */
385 static Lisp_Object concat P_ ((int nargs, Lisp_Object *args, enum Lisp_Type target_type, int last_special)) __attribute__((noinline));
386 #else /* !__GNUC__ */
387 static Lisp_Object concat P_ ((int nargs, Lisp_Object *args, enum Lisp_Type target_type, int last_special));
388 #endif
390 /* ARGSUSED */
391 Lisp_Object
392 concat2 (s1, s2)
393 Lisp_Object s1, s2;
395 #ifdef NO_ARG_ARRAY
396 Lisp_Object args[2];
397 args[0] = s1;
398 args[1] = s2;
399 return concat (2, args, Lisp_String, 0);
400 #else
401 return concat (2, &s1, Lisp_String, 0);
402 #endif /* NO_ARG_ARRAY */
405 /* ARGSUSED */
406 Lisp_Object
407 concat3 (s1, s2, s3)
408 Lisp_Object s1, s2, s3;
410 #ifdef NO_ARG_ARRAY
411 Lisp_Object args[3];
412 args[0] = s1;
413 args[1] = s2;
414 args[2] = s3;
415 return concat (3, args, Lisp_String, 0);
416 #else
417 return concat (3, &s1, Lisp_String, 0);
418 #endif /* NO_ARG_ARRAY */
421 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
422 doc: /* Concatenate all the arguments and make the result a list.
423 The result is a list whose elements are the elements of all the arguments.
424 Each argument may be a list, vector or string.
425 The last argument is not copied, just used as the tail of the new list.
426 usage: (append &rest SEQUENCES) */)
427 (nargs, args)
428 int nargs;
429 Lisp_Object *args;
431 return concat (nargs, args, Lisp_Cons, 1);
434 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
435 doc: /* Concatenate all the arguments and make the result a string.
436 The result is a string whose elements are the elements of all the arguments.
437 Each argument may be a string or a list or vector of characters (integers).
438 usage: (concat &rest SEQUENCES) */)
439 (nargs, args)
440 int nargs;
441 Lisp_Object *args;
443 return concat (nargs, args, Lisp_String, 0);
446 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
447 doc: /* Concatenate all the arguments and make the result a vector.
448 The result is a vector whose elements are the elements of all the arguments.
449 Each argument may be a list, vector or string.
450 usage: (vconcat &rest SEQUENCES) */)
451 (nargs, args)
452 int nargs;
453 Lisp_Object *args;
455 return concat (nargs, args, Lisp_Vectorlike, 0);
459 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
460 doc: /* Return a copy of a list, vector, string or char-table.
461 The elements of a list or vector are not copied; they are shared
462 with the original. */)
463 (arg)
464 Lisp_Object arg;
466 if (NILP (arg)) return arg;
468 if (CHAR_TABLE_P (arg))
470 return copy_char_table (arg);
473 if (BOOL_VECTOR_P (arg))
475 Lisp_Object val;
476 int size_in_chars
477 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
478 / BOOL_VECTOR_BITS_PER_CHAR);
480 val = Fmake_bool_vector (Flength (arg), Qnil);
481 bcopy (XBOOL_VECTOR (arg)->data, XBOOL_VECTOR (val)->data,
482 size_in_chars);
483 return val;
486 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
487 wrong_type_argument (Qsequencep, arg);
489 return concat (1, &arg, CONSP (arg) ? Lisp_Cons : XTYPE (arg), 0);
492 /* This structure holds information of an argument of `concat' that is
493 a string and has text properties to be copied. */
494 struct textprop_rec
496 int argnum; /* refer to ARGS (arguments of `concat') */
497 int from; /* refer to ARGS[argnum] (argument string) */
498 int to; /* refer to VAL (the target string) */
501 static Lisp_Object
502 concat (nargs, args, target_type, last_special)
503 int nargs;
504 Lisp_Object *args;
505 enum Lisp_Type target_type;
506 int last_special;
508 Lisp_Object val;
509 register Lisp_Object tail;
510 register Lisp_Object this;
511 int toindex;
512 int toindex_byte = 0;
513 register int result_len;
514 register int result_len_byte;
515 register int argnum;
516 Lisp_Object last_tail;
517 Lisp_Object prev;
518 int some_multibyte;
519 /* When we make a multibyte string, we can't copy text properties
520 while concatinating each string because the length of resulting
521 string can't be decided until we finish the whole concatination.
522 So, we record strings that have text properties to be copied
523 here, and copy the text properties after the concatination. */
524 struct textprop_rec *textprops = NULL;
525 /* Number of elments in textprops. */
526 int num_textprops = 0;
527 USE_SAFE_ALLOCA;
529 tail = Qnil;
531 /* In append, the last arg isn't treated like the others */
532 if (last_special && nargs > 0)
534 nargs--;
535 last_tail = args[nargs];
537 else
538 last_tail = Qnil;
540 /* Check each argument. */
541 for (argnum = 0; argnum < nargs; argnum++)
543 this = args[argnum];
544 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
545 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
546 wrong_type_argument (Qsequencep, this);
549 /* Compute total length in chars of arguments in RESULT_LEN.
550 If desired output is a string, also compute length in bytes
551 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
552 whether the result should be a multibyte string. */
553 result_len_byte = 0;
554 result_len = 0;
555 some_multibyte = 0;
556 for (argnum = 0; argnum < nargs; argnum++)
558 int len;
559 this = args[argnum];
560 len = XFASTINT (Flength (this));
561 if (target_type == Lisp_String)
563 /* We must count the number of bytes needed in the string
564 as well as the number of characters. */
565 int i;
566 Lisp_Object ch;
567 int this_len_byte;
569 if (VECTORP (this))
570 for (i = 0; i < len; i++)
572 ch = AREF (this, i);
573 CHECK_CHARACTER (ch);
574 this_len_byte = CHAR_BYTES (XINT (ch));
575 result_len_byte += this_len_byte;
576 if (! ASCII_CHAR_P (XINT (ch)) && ! CHAR_BYTE8_P (XINT (ch)))
577 some_multibyte = 1;
579 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
580 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
581 else if (CONSP (this))
582 for (; CONSP (this); this = XCDR (this))
584 ch = XCAR (this);
585 CHECK_CHARACTER (ch);
586 this_len_byte = CHAR_BYTES (XINT (ch));
587 result_len_byte += this_len_byte;
588 if (! ASCII_CHAR_P (XINT (ch)) && ! CHAR_BYTE8_P (XINT (ch)))
589 some_multibyte = 1;
591 else if (STRINGP (this))
593 if (STRING_MULTIBYTE (this))
595 some_multibyte = 1;
596 result_len_byte += SBYTES (this);
598 else
599 result_len_byte += count_size_as_multibyte (SDATA (this),
600 SCHARS (this));
604 result_len += len;
605 if (result_len < 0)
606 error ("String overflow");
609 if (! some_multibyte)
610 result_len_byte = result_len;
612 /* Create the output object. */
613 if (target_type == Lisp_Cons)
614 val = Fmake_list (make_number (result_len), Qnil);
615 else if (target_type == Lisp_Vectorlike)
616 val = Fmake_vector (make_number (result_len), Qnil);
617 else if (some_multibyte)
618 val = make_uninit_multibyte_string (result_len, result_len_byte);
619 else
620 val = make_uninit_string (result_len);
622 /* In `append', if all but last arg are nil, return last arg. */
623 if (target_type == Lisp_Cons && EQ (val, Qnil))
624 return last_tail;
626 /* Copy the contents of the args into the result. */
627 if (CONSP (val))
628 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
629 else
630 toindex = 0, toindex_byte = 0;
632 prev = Qnil;
633 if (STRINGP (val))
634 SAFE_ALLOCA (textprops, struct textprop_rec *, sizeof (struct textprop_rec) * nargs);
636 for (argnum = 0; argnum < nargs; argnum++)
638 Lisp_Object thislen;
639 int thisleni = 0;
640 register unsigned int thisindex = 0;
641 register unsigned int thisindex_byte = 0;
643 this = args[argnum];
644 if (!CONSP (this))
645 thislen = Flength (this), thisleni = XINT (thislen);
647 /* Between strings of the same kind, copy fast. */
648 if (STRINGP (this) && STRINGP (val)
649 && STRING_MULTIBYTE (this) == some_multibyte)
651 int thislen_byte = SBYTES (this);
653 bcopy (SDATA (this), SDATA (val) + toindex_byte,
654 SBYTES (this));
655 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
657 textprops[num_textprops].argnum = argnum;
658 textprops[num_textprops].from = 0;
659 textprops[num_textprops++].to = toindex;
661 toindex_byte += thislen_byte;
662 toindex += thisleni;
664 /* Copy a single-byte string to a multibyte string. */
665 else if (STRINGP (this) && STRINGP (val))
667 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
669 textprops[num_textprops].argnum = argnum;
670 textprops[num_textprops].from = 0;
671 textprops[num_textprops++].to = toindex;
673 toindex_byte += copy_text (SDATA (this),
674 SDATA (val) + toindex_byte,
675 SCHARS (this), 0, 1);
676 toindex += thisleni;
678 else
679 /* Copy element by element. */
680 while (1)
682 register Lisp_Object elt;
684 /* Fetch next element of `this' arg into `elt', or break if
685 `this' is exhausted. */
686 if (NILP (this)) break;
687 if (CONSP (this))
688 elt = XCAR (this), this = XCDR (this);
689 else if (thisindex >= thisleni)
690 break;
691 else if (STRINGP (this))
693 int c;
694 if (STRING_MULTIBYTE (this))
696 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
697 thisindex,
698 thisindex_byte);
699 XSETFASTINT (elt, c);
701 else
703 XSETFASTINT (elt, SREF (this, thisindex)); thisindex++;
704 if (some_multibyte
705 && !ASCII_CHAR_P (XINT (elt))
706 && XINT (elt) < 0400)
708 c = BYTE8_TO_CHAR (XINT (elt));
709 XSETINT (elt, c);
713 else if (BOOL_VECTOR_P (this))
715 int byte;
716 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
717 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
718 elt = Qt;
719 else
720 elt = Qnil;
721 thisindex++;
723 else
725 elt = AREF (this, thisindex);
726 thisindex++;
729 /* Store this element into the result. */
730 if (toindex < 0)
732 XSETCAR (tail, elt);
733 prev = tail;
734 tail = XCDR (tail);
736 else if (VECTORP (val))
738 ASET (val, toindex, elt);
739 toindex++;
741 else
743 CHECK_NUMBER (elt);
744 if (some_multibyte)
745 toindex_byte += CHAR_STRING (XINT (elt),
746 SDATA (val) + toindex_byte);
747 else
748 SSET (val, toindex_byte++, XINT (elt));
749 toindex++;
753 if (!NILP (prev))
754 XSETCDR (prev, last_tail);
756 if (num_textprops > 0)
758 Lisp_Object props;
759 int last_to_end = -1;
761 for (argnum = 0; argnum < num_textprops; argnum++)
763 this = args[textprops[argnum].argnum];
764 props = text_property_list (this,
765 make_number (0),
766 make_number (SCHARS (this)),
767 Qnil);
768 /* If successive arguments have properites, be sure that the
769 value of `composition' property be the copy. */
770 if (last_to_end == textprops[argnum].to)
771 make_composition_value_copy (props);
772 add_text_properties_from_list (val, props,
773 make_number (textprops[argnum].to));
774 last_to_end = textprops[argnum].to + SCHARS (this);
778 SAFE_FREE ();
779 return val;
782 static Lisp_Object string_char_byte_cache_string;
783 static EMACS_INT string_char_byte_cache_charpos;
784 static EMACS_INT string_char_byte_cache_bytepos;
786 void
787 clear_string_char_byte_cache ()
789 string_char_byte_cache_string = Qnil;
792 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
794 EMACS_INT
795 string_char_to_byte (string, char_index)
796 Lisp_Object string;
797 EMACS_INT char_index;
799 EMACS_INT i_byte;
800 EMACS_INT best_below, best_below_byte;
801 EMACS_INT best_above, best_above_byte;
803 best_below = best_below_byte = 0;
804 best_above = SCHARS (string);
805 best_above_byte = SBYTES (string);
806 if (best_above == best_above_byte)
807 return char_index;
809 if (EQ (string, string_char_byte_cache_string))
811 if (string_char_byte_cache_charpos < char_index)
813 best_below = string_char_byte_cache_charpos;
814 best_below_byte = string_char_byte_cache_bytepos;
816 else
818 best_above = string_char_byte_cache_charpos;
819 best_above_byte = string_char_byte_cache_bytepos;
823 if (char_index - best_below < best_above - char_index)
825 unsigned char *p = SDATA (string) + best_below_byte;
827 while (best_below < char_index)
829 p += BYTES_BY_CHAR_HEAD (*p);
830 best_below++;
832 i_byte = p - SDATA (string);
834 else
836 unsigned char *p = SDATA (string) + best_above_byte;
838 while (best_above > char_index)
840 p--;
841 while (!CHAR_HEAD_P (*p)) p--;
842 best_above--;
844 i_byte = p - SDATA (string);
847 string_char_byte_cache_bytepos = i_byte;
848 string_char_byte_cache_charpos = char_index;
849 string_char_byte_cache_string = string;
851 return i_byte;
854 /* Return the character index corresponding to BYTE_INDEX in STRING. */
856 EMACS_INT
857 string_byte_to_char (string, byte_index)
858 Lisp_Object string;
859 EMACS_INT byte_index;
861 EMACS_INT i, i_byte;
862 EMACS_INT best_below, best_below_byte;
863 EMACS_INT best_above, best_above_byte;
865 best_below = best_below_byte = 0;
866 best_above = SCHARS (string);
867 best_above_byte = SBYTES (string);
868 if (best_above == best_above_byte)
869 return byte_index;
871 if (EQ (string, string_char_byte_cache_string))
873 if (string_char_byte_cache_bytepos < byte_index)
875 best_below = string_char_byte_cache_charpos;
876 best_below_byte = string_char_byte_cache_bytepos;
878 else
880 best_above = string_char_byte_cache_charpos;
881 best_above_byte = string_char_byte_cache_bytepos;
885 if (byte_index - best_below_byte < best_above_byte - byte_index)
887 unsigned char *p = SDATA (string) + best_below_byte;
888 unsigned char *pend = SDATA (string) + byte_index;
890 while (p < pend)
892 p += BYTES_BY_CHAR_HEAD (*p);
893 best_below++;
895 i = best_below;
896 i_byte = p - SDATA (string);
898 else
900 unsigned char *p = SDATA (string) + best_above_byte;
901 unsigned char *pbeg = SDATA (string) + byte_index;
903 while (p > pbeg)
905 p--;
906 while (!CHAR_HEAD_P (*p)) p--;
907 best_above--;
909 i = best_above;
910 i_byte = p - SDATA (string);
913 string_char_byte_cache_bytepos = i_byte;
914 string_char_byte_cache_charpos = i;
915 string_char_byte_cache_string = string;
917 return i;
920 /* Convert STRING to a multibyte string. */
922 Lisp_Object
923 string_make_multibyte (string)
924 Lisp_Object string;
926 unsigned char *buf;
927 EMACS_INT nbytes;
928 Lisp_Object ret;
929 USE_SAFE_ALLOCA;
931 if (STRING_MULTIBYTE (string))
932 return string;
934 nbytes = count_size_as_multibyte (SDATA (string),
935 SCHARS (string));
936 /* If all the chars are ASCII, they won't need any more bytes
937 once converted. In that case, we can return STRING itself. */
938 if (nbytes == SBYTES (string))
939 return string;
941 SAFE_ALLOCA (buf, unsigned char *, nbytes);
942 copy_text (SDATA (string), buf, SBYTES (string),
943 0, 1);
945 ret = make_multibyte_string (buf, SCHARS (string), nbytes);
946 SAFE_FREE ();
948 return ret;
952 /* Convert STRING (if unibyte) to a multibyte string without changing
953 the number of characters. Characters 0200 trough 0237 are
954 converted to eight-bit characters. */
956 Lisp_Object
957 string_to_multibyte (string)
958 Lisp_Object string;
960 unsigned char *buf;
961 EMACS_INT nbytes;
962 Lisp_Object ret;
963 USE_SAFE_ALLOCA;
965 if (STRING_MULTIBYTE (string))
966 return string;
968 nbytes = parse_str_to_multibyte (SDATA (string), SBYTES (string));
969 /* If all the chars are ASCII, they won't need any more bytes once
970 converted. */
971 if (nbytes == SBYTES (string))
972 return make_multibyte_string (SDATA (string), nbytes, nbytes);
974 SAFE_ALLOCA (buf, unsigned char *, nbytes);
975 bcopy (SDATA (string), buf, SBYTES (string));
976 str_to_multibyte (buf, nbytes, SBYTES (string));
978 ret = make_multibyte_string (buf, SCHARS (string), nbytes);
979 SAFE_FREE ();
981 return ret;
985 /* Convert STRING to a single-byte string. */
987 Lisp_Object
988 string_make_unibyte (string)
989 Lisp_Object string;
991 int nchars;
992 unsigned char *buf;
993 Lisp_Object ret;
994 USE_SAFE_ALLOCA;
996 if (! STRING_MULTIBYTE (string))
997 return string;
999 nchars = SCHARS (string);
1001 SAFE_ALLOCA (buf, unsigned char *, nchars);
1002 copy_text (SDATA (string), buf, SBYTES (string),
1003 1, 0);
1005 ret = make_unibyte_string (buf, nchars);
1006 SAFE_FREE ();
1008 return ret;
1011 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
1012 1, 1, 0,
1013 doc: /* Return the multibyte equivalent of STRING.
1014 If STRING is unibyte and contains non-ASCII characters, the function
1015 `unibyte-char-to-multibyte' is used to convert each unibyte character
1016 to a multibyte character. In this case, the returned string is a
1017 newly created string with no text properties. If STRING is multibyte
1018 or entirely ASCII, it is returned unchanged. In particular, when
1019 STRING is unibyte and entirely ASCII, the returned string is unibyte.
1020 \(When the characters are all ASCII, Emacs primitives will treat the
1021 string the same way whether it is unibyte or multibyte.) */)
1022 (string)
1023 Lisp_Object string;
1025 CHECK_STRING (string);
1027 return string_make_multibyte (string);
1030 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
1031 1, 1, 0,
1032 doc: /* Return the unibyte equivalent of STRING.
1033 Multibyte character codes are converted to unibyte according to
1034 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
1035 If the lookup in the translation table fails, this function takes just
1036 the low 8 bits of each character. */)
1037 (string)
1038 Lisp_Object string;
1040 CHECK_STRING (string);
1042 return string_make_unibyte (string);
1045 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
1046 1, 1, 0,
1047 doc: /* Return a unibyte string with the same individual bytes as STRING.
1048 If STRING is unibyte, the result is STRING itself.
1049 Otherwise it is a newly created string, with no text properties.
1050 If STRING is multibyte and contains a character of charset
1051 `eight-bit', it is converted to the corresponding single byte. */)
1052 (string)
1053 Lisp_Object string;
1055 CHECK_STRING (string);
1057 if (STRING_MULTIBYTE (string))
1059 int bytes = SBYTES (string);
1060 unsigned char *str = (unsigned char *) xmalloc (bytes);
1062 bcopy (SDATA (string), str, bytes);
1063 bytes = str_as_unibyte (str, bytes);
1064 string = make_unibyte_string (str, bytes);
1065 xfree (str);
1067 return string;
1070 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1071 1, 1, 0,
1072 doc: /* Return a multibyte string with the same individual bytes as STRING.
1073 If STRING is multibyte, the result is STRING itself.
1074 Otherwise it is a newly created string, with no text properties.
1076 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1077 part of a correct utf-8 sequence), it is converted to the corresponding
1078 multibyte character of charset `eight-bit'.
1079 See also `string-to-multibyte'.
1081 Beware, this often doesn't really do what you think it does.
1082 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1083 If you're not sure, whether to use `string-as-multibyte' or
1084 `string-to-multibyte', use `string-to-multibyte'. */)
1085 (string)
1086 Lisp_Object string;
1088 CHECK_STRING (string);
1090 if (! STRING_MULTIBYTE (string))
1092 Lisp_Object new_string;
1093 int nchars, nbytes;
1095 parse_str_as_multibyte (SDATA (string),
1096 SBYTES (string),
1097 &nchars, &nbytes);
1098 new_string = make_uninit_multibyte_string (nchars, nbytes);
1099 bcopy (SDATA (string), SDATA (new_string),
1100 SBYTES (string));
1101 if (nbytes != SBYTES (string))
1102 str_as_multibyte (SDATA (new_string), nbytes,
1103 SBYTES (string), NULL);
1104 string = new_string;
1105 STRING_SET_INTERVALS (string, NULL_INTERVAL);
1107 return string;
1110 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1111 1, 1, 0,
1112 doc: /* Return a multibyte string with the same individual chars as STRING.
1113 If STRING is multibyte, the result is STRING itself.
1114 Otherwise it is a newly created string, with no text properties.
1116 If STRING is unibyte and contains an 8-bit byte, it is converted to
1117 the corresponding multibyte character of charset `eight-bit'.
1119 This differs from `string-as-multibyte' by converting each byte of a correct
1120 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1121 correct sequence. */)
1122 (string)
1123 Lisp_Object string;
1125 CHECK_STRING (string);
1127 return string_to_multibyte (string);
1130 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1131 1, 1, 0,
1132 doc: /* Return a unibyte string with the same individual chars as STRING.
1133 If STRING is unibyte, the result is STRING itself.
1134 Otherwise it is a newly created string, with no text properties,
1135 where each `eight-bit' character is converted to the corresponding byte.
1136 If STRING contains a non-ASCII, non-`eight-bit' character,
1137 an error is signaled. */)
1138 (string)
1139 Lisp_Object string;
1141 CHECK_STRING (string);
1143 if (STRING_MULTIBYTE (string))
1145 EMACS_INT chars = SCHARS (string);
1146 unsigned char *str = (unsigned char *) xmalloc (chars);
1147 EMACS_INT converted = str_to_unibyte (SDATA (string), str, chars, 0);
1149 if (converted < chars)
1150 error ("Can't convert the %dth character to unibyte", converted);
1151 string = make_unibyte_string (str, chars);
1152 xfree (str);
1154 return string;
1158 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1159 doc: /* Return a copy of ALIST.
1160 This is an alist which represents the same mapping from objects to objects,
1161 but does not share the alist structure with ALIST.
1162 The objects mapped (cars and cdrs of elements of the alist)
1163 are shared, however.
1164 Elements of ALIST that are not conses are also shared. */)
1165 (alist)
1166 Lisp_Object alist;
1168 register Lisp_Object tem;
1170 CHECK_LIST (alist);
1171 if (NILP (alist))
1172 return alist;
1173 alist = concat (1, &alist, Lisp_Cons, 0);
1174 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1176 register Lisp_Object car;
1177 car = XCAR (tem);
1179 if (CONSP (car))
1180 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1182 return alist;
1185 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1186 doc: /* Return a new string whose contents are a substring of STRING.
1187 The returned string consists of the characters between index FROM
1188 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1189 zero-indexed: 0 means the first character of STRING. Negative values
1190 are counted from the end of STRING. If TO is nil, the substring runs
1191 to the end of STRING.
1193 The STRING argument may also be a vector. In that case, the return
1194 value is a new vector that contains the elements between index FROM
1195 \(inclusive) and index TO (exclusive) of that vector argument. */)
1196 (string, from, to)
1197 Lisp_Object string;
1198 register Lisp_Object from, to;
1200 Lisp_Object res;
1201 int size;
1202 int size_byte = 0;
1203 int from_char, to_char;
1204 int from_byte = 0, to_byte = 0;
1206 CHECK_VECTOR_OR_STRING (string);
1207 CHECK_NUMBER (from);
1209 if (STRINGP (string))
1211 size = SCHARS (string);
1212 size_byte = SBYTES (string);
1214 else
1215 size = ASIZE (string);
1217 if (NILP (to))
1219 to_char = size;
1220 to_byte = size_byte;
1222 else
1224 CHECK_NUMBER (to);
1226 to_char = XINT (to);
1227 if (to_char < 0)
1228 to_char += size;
1230 if (STRINGP (string))
1231 to_byte = string_char_to_byte (string, to_char);
1234 from_char = XINT (from);
1235 if (from_char < 0)
1236 from_char += size;
1237 if (STRINGP (string))
1238 from_byte = string_char_to_byte (string, from_char);
1240 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1241 args_out_of_range_3 (string, make_number (from_char),
1242 make_number (to_char));
1244 if (STRINGP (string))
1246 res = make_specified_string (SDATA (string) + from_byte,
1247 to_char - from_char, to_byte - from_byte,
1248 STRING_MULTIBYTE (string));
1249 copy_text_properties (make_number (from_char), make_number (to_char),
1250 string, make_number (0), res, Qnil);
1252 else
1253 res = Fvector (to_char - from_char, &AREF (string, from_char));
1255 return res;
1259 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1260 doc: /* Return a substring of STRING, without text properties.
1261 It starts at index FROM and ending before TO.
1262 TO may be nil or omitted; then the substring runs to the end of STRING.
1263 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1264 If FROM or TO is negative, it counts from the end.
1266 With one argument, just copy STRING without its properties. */)
1267 (string, from, to)
1268 Lisp_Object string;
1269 register Lisp_Object from, to;
1271 int size, size_byte;
1272 int from_char, to_char;
1273 int from_byte, to_byte;
1275 CHECK_STRING (string);
1277 size = SCHARS (string);
1278 size_byte = SBYTES (string);
1280 if (NILP (from))
1281 from_char = from_byte = 0;
1282 else
1284 CHECK_NUMBER (from);
1285 from_char = XINT (from);
1286 if (from_char < 0)
1287 from_char += size;
1289 from_byte = string_char_to_byte (string, from_char);
1292 if (NILP (to))
1294 to_char = size;
1295 to_byte = size_byte;
1297 else
1299 CHECK_NUMBER (to);
1301 to_char = XINT (to);
1302 if (to_char < 0)
1303 to_char += size;
1305 to_byte = string_char_to_byte (string, to_char);
1308 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1309 args_out_of_range_3 (string, make_number (from_char),
1310 make_number (to_char));
1312 return make_specified_string (SDATA (string) + from_byte,
1313 to_char - from_char, to_byte - from_byte,
1314 STRING_MULTIBYTE (string));
1317 /* Extract a substring of STRING, giving start and end positions
1318 both in characters and in bytes. */
1320 Lisp_Object
1321 substring_both (string, from, from_byte, to, to_byte)
1322 Lisp_Object string;
1323 int from, from_byte, to, to_byte;
1325 Lisp_Object res;
1326 int size;
1327 int size_byte;
1329 CHECK_VECTOR_OR_STRING (string);
1331 if (STRINGP (string))
1333 size = SCHARS (string);
1334 size_byte = SBYTES (string);
1336 else
1337 size = ASIZE (string);
1339 if (!(0 <= from && from <= to && to <= size))
1340 args_out_of_range_3 (string, make_number (from), make_number (to));
1342 if (STRINGP (string))
1344 res = make_specified_string (SDATA (string) + from_byte,
1345 to - from, to_byte - from_byte,
1346 STRING_MULTIBYTE (string));
1347 copy_text_properties (make_number (from), make_number (to),
1348 string, make_number (0), res, Qnil);
1350 else
1351 res = Fvector (to - from, &AREF (string, from));
1353 return res;
1356 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1357 doc: /* Take cdr N times on LIST, returns the result. */)
1358 (n, list)
1359 Lisp_Object n;
1360 register Lisp_Object list;
1362 register int i, num;
1363 CHECK_NUMBER (n);
1364 num = XINT (n);
1365 for (i = 0; i < num && !NILP (list); i++)
1367 QUIT;
1368 CHECK_LIST_CONS (list, list);
1369 list = XCDR (list);
1371 return list;
1374 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1375 doc: /* Return the Nth element of LIST.
1376 N counts from zero. If LIST is not that long, nil is returned. */)
1377 (n, list)
1378 Lisp_Object n, list;
1380 return Fcar (Fnthcdr (n, list));
1383 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1384 doc: /* Return element of SEQUENCE at index N. */)
1385 (sequence, n)
1386 register Lisp_Object sequence, n;
1388 CHECK_NUMBER (n);
1389 if (CONSP (sequence) || NILP (sequence))
1390 return Fcar (Fnthcdr (n, sequence));
1392 /* Faref signals a "not array" error, so check here. */
1393 CHECK_ARRAY (sequence, Qsequencep);
1394 return Faref (sequence, n);
1397 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1398 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1399 The value is actually the tail of LIST whose car is ELT. */)
1400 (elt, list)
1401 register Lisp_Object elt;
1402 Lisp_Object list;
1404 register Lisp_Object tail;
1405 for (tail = list; CONSP (tail); tail = XCDR (tail))
1407 register Lisp_Object tem;
1408 CHECK_LIST_CONS (tail, list);
1409 tem = XCAR (tail);
1410 if (! NILP (Fequal (elt, tem)))
1411 return tail;
1412 QUIT;
1414 return Qnil;
1417 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1418 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1419 The value is actually the tail of LIST whose car is ELT. */)
1420 (elt, list)
1421 register Lisp_Object elt, list;
1423 while (1)
1425 if (!CONSP (list) || EQ (XCAR (list), elt))
1426 break;
1428 list = XCDR (list);
1429 if (!CONSP (list) || EQ (XCAR (list), elt))
1430 break;
1432 list = XCDR (list);
1433 if (!CONSP (list) || EQ (XCAR (list), elt))
1434 break;
1436 list = XCDR (list);
1437 QUIT;
1440 CHECK_LIST (list);
1441 return list;
1444 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1445 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1446 The value is actually the tail of LIST whose car is ELT. */)
1447 (elt, list)
1448 register Lisp_Object elt;
1449 Lisp_Object list;
1451 register Lisp_Object tail;
1453 if (!FLOATP (elt))
1454 return Fmemq (elt, list);
1456 for (tail = list; CONSP (tail); tail = XCDR (tail))
1458 register Lisp_Object tem;
1459 CHECK_LIST_CONS (tail, list);
1460 tem = XCAR (tail);
1461 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1462 return tail;
1463 QUIT;
1465 return Qnil;
1468 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1469 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1470 The value is actually the first element of LIST whose car is KEY.
1471 Elements of LIST that are not conses are ignored. */)
1472 (key, list)
1473 Lisp_Object key, list;
1475 while (1)
1477 if (!CONSP (list)
1478 || (CONSP (XCAR (list))
1479 && EQ (XCAR (XCAR (list)), key)))
1480 break;
1482 list = XCDR (list);
1483 if (!CONSP (list)
1484 || (CONSP (XCAR (list))
1485 && EQ (XCAR (XCAR (list)), key)))
1486 break;
1488 list = XCDR (list);
1489 if (!CONSP (list)
1490 || (CONSP (XCAR (list))
1491 && EQ (XCAR (XCAR (list)), key)))
1492 break;
1494 list = XCDR (list);
1495 QUIT;
1498 return CAR (list);
1501 /* Like Fassq but never report an error and do not allow quits.
1502 Use only on lists known never to be circular. */
1504 Lisp_Object
1505 assq_no_quit (key, list)
1506 Lisp_Object key, list;
1508 while (CONSP (list)
1509 && (!CONSP (XCAR (list))
1510 || !EQ (XCAR (XCAR (list)), key)))
1511 list = XCDR (list);
1513 return CAR_SAFE (list);
1516 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1517 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1518 The value is actually the first element of LIST whose car equals KEY. */)
1519 (key, list)
1520 Lisp_Object key, list;
1522 Lisp_Object car;
1524 while (1)
1526 if (!CONSP (list)
1527 || (CONSP (XCAR (list))
1528 && (car = XCAR (XCAR (list)),
1529 EQ (car, key) || !NILP (Fequal (car, key)))))
1530 break;
1532 list = XCDR (list);
1533 if (!CONSP (list)
1534 || (CONSP (XCAR (list))
1535 && (car = XCAR (XCAR (list)),
1536 EQ (car, key) || !NILP (Fequal (car, key)))))
1537 break;
1539 list = XCDR (list);
1540 if (!CONSP (list)
1541 || (CONSP (XCAR (list))
1542 && (car = XCAR (XCAR (list)),
1543 EQ (car, key) || !NILP (Fequal (car, key)))))
1544 break;
1546 list = XCDR (list);
1547 QUIT;
1550 return CAR (list);
1553 /* Like Fassoc but never report an error and do not allow quits.
1554 Use only on lists known never to be circular. */
1556 Lisp_Object
1557 assoc_no_quit (key, list)
1558 Lisp_Object key, list;
1560 while (CONSP (list)
1561 && (!CONSP (XCAR (list))
1562 || (!EQ (XCAR (XCAR (list)), key)
1563 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1564 list = XCDR (list);
1566 return CONSP (list) ? XCAR (list) : Qnil;
1569 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1570 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1571 The value is actually the first element of LIST whose cdr is KEY. */)
1572 (key, list)
1573 register Lisp_Object key;
1574 Lisp_Object list;
1576 while (1)
1578 if (!CONSP (list)
1579 || (CONSP (XCAR (list))
1580 && EQ (XCDR (XCAR (list)), key)))
1581 break;
1583 list = XCDR (list);
1584 if (!CONSP (list)
1585 || (CONSP (XCAR (list))
1586 && EQ (XCDR (XCAR (list)), key)))
1587 break;
1589 list = XCDR (list);
1590 if (!CONSP (list)
1591 || (CONSP (XCAR (list))
1592 && EQ (XCDR (XCAR (list)), key)))
1593 break;
1595 list = XCDR (list);
1596 QUIT;
1599 return CAR (list);
1602 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1603 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1604 The value is actually the first element of LIST whose cdr equals KEY. */)
1605 (key, list)
1606 Lisp_Object key, list;
1608 Lisp_Object cdr;
1610 while (1)
1612 if (!CONSP (list)
1613 || (CONSP (XCAR (list))
1614 && (cdr = XCDR (XCAR (list)),
1615 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1616 break;
1618 list = XCDR (list);
1619 if (!CONSP (list)
1620 || (CONSP (XCAR (list))
1621 && (cdr = XCDR (XCAR (list)),
1622 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1623 break;
1625 list = XCDR (list);
1626 if (!CONSP (list)
1627 || (CONSP (XCAR (list))
1628 && (cdr = XCDR (XCAR (list)),
1629 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1630 break;
1632 list = XCDR (list);
1633 QUIT;
1636 return CAR (list);
1639 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1640 doc: /* Delete by side effect any occurrences of ELT as a member of LIST.
1641 The modified LIST is returned. Comparison is done with `eq'.
1642 If the first member of LIST is ELT, there is no way to remove it by side effect;
1643 therefore, write `(setq foo (delq element foo))'
1644 to be sure of changing the value of `foo'. */)
1645 (elt, list)
1646 register Lisp_Object elt;
1647 Lisp_Object list;
1649 register Lisp_Object tail, prev;
1650 register Lisp_Object tem;
1652 tail = list;
1653 prev = Qnil;
1654 while (!NILP (tail))
1656 CHECK_LIST_CONS (tail, list);
1657 tem = XCAR (tail);
1658 if (EQ (elt, tem))
1660 if (NILP (prev))
1661 list = XCDR (tail);
1662 else
1663 Fsetcdr (prev, XCDR (tail));
1665 else
1666 prev = tail;
1667 tail = XCDR (tail);
1668 QUIT;
1670 return list;
1673 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1674 doc: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1675 SEQ must be a list, a vector, or a string.
1676 The modified SEQ is returned. Comparison is done with `equal'.
1677 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1678 is not a side effect; it is simply using a different sequence.
1679 Therefore, write `(setq foo (delete element foo))'
1680 to be sure of changing the value of `foo'. */)
1681 (elt, seq)
1682 Lisp_Object elt, seq;
1684 if (VECTORP (seq))
1686 EMACS_INT i, n;
1688 for (i = n = 0; i < ASIZE (seq); ++i)
1689 if (NILP (Fequal (AREF (seq, i), elt)))
1690 ++n;
1692 if (n != ASIZE (seq))
1694 struct Lisp_Vector *p = allocate_vector (n);
1696 for (i = n = 0; i < ASIZE (seq); ++i)
1697 if (NILP (Fequal (AREF (seq, i), elt)))
1698 p->contents[n++] = AREF (seq, i);
1700 XSETVECTOR (seq, p);
1703 else if (STRINGP (seq))
1705 EMACS_INT i, ibyte, nchars, nbytes, cbytes;
1706 int c;
1708 for (i = nchars = nbytes = ibyte = 0;
1709 i < SCHARS (seq);
1710 ++i, ibyte += cbytes)
1712 if (STRING_MULTIBYTE (seq))
1714 c = STRING_CHAR (SDATA (seq) + ibyte,
1715 SBYTES (seq) - ibyte);
1716 cbytes = CHAR_BYTES (c);
1718 else
1720 c = SREF (seq, i);
1721 cbytes = 1;
1724 if (!INTEGERP (elt) || c != XINT (elt))
1726 ++nchars;
1727 nbytes += cbytes;
1731 if (nchars != SCHARS (seq))
1733 Lisp_Object tem;
1735 tem = make_uninit_multibyte_string (nchars, nbytes);
1736 if (!STRING_MULTIBYTE (seq))
1737 STRING_SET_UNIBYTE (tem);
1739 for (i = nchars = nbytes = ibyte = 0;
1740 i < SCHARS (seq);
1741 ++i, ibyte += cbytes)
1743 if (STRING_MULTIBYTE (seq))
1745 c = STRING_CHAR (SDATA (seq) + ibyte,
1746 SBYTES (seq) - ibyte);
1747 cbytes = CHAR_BYTES (c);
1749 else
1751 c = SREF (seq, i);
1752 cbytes = 1;
1755 if (!INTEGERP (elt) || c != XINT (elt))
1757 unsigned char *from = SDATA (seq) + ibyte;
1758 unsigned char *to = SDATA (tem) + nbytes;
1759 EMACS_INT n;
1761 ++nchars;
1762 nbytes += cbytes;
1764 for (n = cbytes; n--; )
1765 *to++ = *from++;
1769 seq = tem;
1772 else
1774 Lisp_Object tail, prev;
1776 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1778 CHECK_LIST_CONS (tail, seq);
1780 if (!NILP (Fequal (elt, XCAR (tail))))
1782 if (NILP (prev))
1783 seq = XCDR (tail);
1784 else
1785 Fsetcdr (prev, XCDR (tail));
1787 else
1788 prev = tail;
1789 QUIT;
1793 return seq;
1796 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1797 doc: /* Reverse LIST by modifying cdr pointers.
1798 Return the reversed list. */)
1799 (list)
1800 Lisp_Object list;
1802 register Lisp_Object prev, tail, next;
1804 if (NILP (list)) return list;
1805 prev = Qnil;
1806 tail = list;
1807 while (!NILP (tail))
1809 QUIT;
1810 CHECK_LIST_CONS (tail, list);
1811 next = XCDR (tail);
1812 Fsetcdr (tail, prev);
1813 prev = tail;
1814 tail = next;
1816 return prev;
1819 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1820 doc: /* Reverse LIST, copying. Return the reversed list.
1821 See also the function `nreverse', which is used more often. */)
1822 (list)
1823 Lisp_Object list;
1825 Lisp_Object new;
1827 for (new = Qnil; CONSP (list); list = XCDR (list))
1829 QUIT;
1830 new = Fcons (XCAR (list), new);
1832 CHECK_LIST_END (list, list);
1833 return new;
1836 Lisp_Object merge ();
1838 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1839 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1840 Returns the sorted list. LIST is modified by side effects.
1841 PREDICATE is called with two elements of LIST, and should return non-nil
1842 if the first element should sort before the second. */)
1843 (list, predicate)
1844 Lisp_Object list, predicate;
1846 Lisp_Object front, back;
1847 register Lisp_Object len, tem;
1848 struct gcpro gcpro1, gcpro2;
1849 register int length;
1851 front = list;
1852 len = Flength (list);
1853 length = XINT (len);
1854 if (length < 2)
1855 return list;
1857 XSETINT (len, (length / 2) - 1);
1858 tem = Fnthcdr (len, list);
1859 back = Fcdr (tem);
1860 Fsetcdr (tem, Qnil);
1862 GCPRO2 (front, back);
1863 front = Fsort (front, predicate);
1864 back = Fsort (back, predicate);
1865 UNGCPRO;
1866 return merge (front, back, predicate);
1869 Lisp_Object
1870 merge (org_l1, org_l2, pred)
1871 Lisp_Object org_l1, org_l2;
1872 Lisp_Object pred;
1874 Lisp_Object value;
1875 register Lisp_Object tail;
1876 Lisp_Object tem;
1877 register Lisp_Object l1, l2;
1878 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1880 l1 = org_l1;
1881 l2 = org_l2;
1882 tail = Qnil;
1883 value = Qnil;
1885 /* It is sufficient to protect org_l1 and org_l2.
1886 When l1 and l2 are updated, we copy the new values
1887 back into the org_ vars. */
1888 GCPRO4 (org_l1, org_l2, pred, value);
1890 while (1)
1892 if (NILP (l1))
1894 UNGCPRO;
1895 if (NILP (tail))
1896 return l2;
1897 Fsetcdr (tail, l2);
1898 return value;
1900 if (NILP (l2))
1902 UNGCPRO;
1903 if (NILP (tail))
1904 return l1;
1905 Fsetcdr (tail, l1);
1906 return value;
1908 tem = call2 (pred, Fcar (l2), Fcar (l1));
1909 if (NILP (tem))
1911 tem = l1;
1912 l1 = Fcdr (l1);
1913 org_l1 = l1;
1915 else
1917 tem = l2;
1918 l2 = Fcdr (l2);
1919 org_l2 = l2;
1921 if (NILP (tail))
1922 value = tem;
1923 else
1924 Fsetcdr (tail, tem);
1925 tail = tem;
1930 /* This does not check for quits. That is safe since it must terminate. */
1932 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1933 doc: /* Extract a value from a property list.
1934 PLIST is a property list, which is a list of the form
1935 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1936 corresponding to the given PROP, or nil if PROP is not one of the
1937 properties on the list. This function never signals an error. */)
1938 (plist, prop)
1939 Lisp_Object plist;
1940 Lisp_Object prop;
1942 Lisp_Object tail, halftail;
1944 /* halftail is used to detect circular lists. */
1945 tail = halftail = plist;
1946 while (CONSP (tail) && CONSP (XCDR (tail)))
1948 if (EQ (prop, XCAR (tail)))
1949 return XCAR (XCDR (tail));
1951 tail = XCDR (XCDR (tail));
1952 halftail = XCDR (halftail);
1953 if (EQ (tail, halftail))
1954 break;
1956 #if 0 /* Unsafe version. */
1957 /* This function can be called asynchronously
1958 (setup_coding_system). Don't QUIT in that case. */
1959 if (!interrupt_input_blocked)
1960 QUIT;
1961 #endif
1964 return Qnil;
1967 DEFUN ("get", Fget, Sget, 2, 2, 0,
1968 doc: /* Return the value of SYMBOL's PROPNAME property.
1969 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1970 (symbol, propname)
1971 Lisp_Object symbol, propname;
1973 CHECK_SYMBOL (symbol);
1974 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1977 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1978 doc: /* Change value in PLIST of PROP to VAL.
1979 PLIST is a property list, which is a list of the form
1980 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1981 If PROP is already a property on the list, its value is set to VAL,
1982 otherwise the new PROP VAL pair is added. The new plist is returned;
1983 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1984 The PLIST is modified by side effects. */)
1985 (plist, prop, val)
1986 Lisp_Object plist;
1987 register Lisp_Object prop;
1988 Lisp_Object val;
1990 register Lisp_Object tail, prev;
1991 Lisp_Object newcell;
1992 prev = Qnil;
1993 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1994 tail = XCDR (XCDR (tail)))
1996 if (EQ (prop, XCAR (tail)))
1998 Fsetcar (XCDR (tail), val);
1999 return plist;
2002 prev = tail;
2003 QUIT;
2005 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
2006 if (NILP (prev))
2007 return newcell;
2008 else
2009 Fsetcdr (XCDR (prev), newcell);
2010 return plist;
2013 DEFUN ("put", Fput, Sput, 3, 3, 0,
2014 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
2015 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
2016 (symbol, propname, value)
2017 Lisp_Object symbol, propname, value;
2019 CHECK_SYMBOL (symbol);
2020 XSYMBOL (symbol)->plist
2021 = Fplist_put (XSYMBOL (symbol)->plist, propname, value);
2022 return value;
2025 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
2026 doc: /* Extract a value from a property list, comparing with `equal'.
2027 PLIST is a property list, which is a list of the form
2028 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
2029 corresponding to the given PROP, or nil if PROP is not
2030 one of the properties on the list. */)
2031 (plist, prop)
2032 Lisp_Object plist;
2033 Lisp_Object prop;
2035 Lisp_Object tail;
2037 for (tail = plist;
2038 CONSP (tail) && CONSP (XCDR (tail));
2039 tail = XCDR (XCDR (tail)))
2041 if (! NILP (Fequal (prop, XCAR (tail))))
2042 return XCAR (XCDR (tail));
2044 QUIT;
2047 CHECK_LIST_END (tail, prop);
2049 return Qnil;
2052 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
2053 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
2054 PLIST is a property list, which is a list of the form
2055 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
2056 If PROP is already a property on the list, its value is set to VAL,
2057 otherwise the new PROP VAL pair is added. The new plist is returned;
2058 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
2059 The PLIST is modified by side effects. */)
2060 (plist, prop, val)
2061 Lisp_Object plist;
2062 register Lisp_Object prop;
2063 Lisp_Object val;
2065 register Lisp_Object tail, prev;
2066 Lisp_Object newcell;
2067 prev = Qnil;
2068 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
2069 tail = XCDR (XCDR (tail)))
2071 if (! NILP (Fequal (prop, XCAR (tail))))
2073 Fsetcar (XCDR (tail), val);
2074 return plist;
2077 prev = tail;
2078 QUIT;
2080 newcell = Fcons (prop, Fcons (val, Qnil));
2081 if (NILP (prev))
2082 return newcell;
2083 else
2084 Fsetcdr (XCDR (prev), newcell);
2085 return plist;
2088 DEFUN ("eql", Feql, Seql, 2, 2, 0,
2089 doc: /* Return t if the two args are the same Lisp object.
2090 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
2091 (obj1, obj2)
2092 Lisp_Object obj1, obj2;
2094 if (FLOATP (obj1))
2095 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
2096 else
2097 return EQ (obj1, obj2) ? Qt : Qnil;
2100 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
2101 doc: /* Return t if two Lisp objects have similar structure and contents.
2102 They must have the same data type.
2103 Conses are compared by comparing the cars and the cdrs.
2104 Vectors and strings are compared element by element.
2105 Numbers are compared by value, but integers cannot equal floats.
2106 (Use `=' if you want integers and floats to be able to be equal.)
2107 Symbols must match exactly. */)
2108 (o1, o2)
2109 register Lisp_Object o1, o2;
2111 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
2114 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
2115 doc: /* Return t if two Lisp objects have similar structure and contents.
2116 This is like `equal' except that it compares the text properties
2117 of strings. (`equal' ignores text properties.) */)
2118 (o1, o2)
2119 register Lisp_Object o1, o2;
2121 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
2124 /* DEPTH is current depth of recursion. Signal an error if it
2125 gets too deep.
2126 PROPS, if non-nil, means compare string text properties too. */
2128 static int
2129 internal_equal (o1, o2, depth, props)
2130 register Lisp_Object o1, o2;
2131 int depth, props;
2133 if (depth > 200)
2134 error ("Stack overflow in equal");
2136 tail_recurse:
2137 QUIT;
2138 if (EQ (o1, o2))
2139 return 1;
2140 if (XTYPE (o1) != XTYPE (o2))
2141 return 0;
2143 switch (XTYPE (o1))
2145 case Lisp_Float:
2147 double d1, d2;
2149 d1 = extract_float (o1);
2150 d2 = extract_float (o2);
2151 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2152 though they are not =. */
2153 return d1 == d2 || (d1 != d1 && d2 != d2);
2156 case Lisp_Cons:
2157 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2158 return 0;
2159 o1 = XCDR (o1);
2160 o2 = XCDR (o2);
2161 goto tail_recurse;
2163 case Lisp_Misc:
2164 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2165 return 0;
2166 if (OVERLAYP (o1))
2168 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2169 depth + 1, props)
2170 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2171 depth + 1, props))
2172 return 0;
2173 o1 = XOVERLAY (o1)->plist;
2174 o2 = XOVERLAY (o2)->plist;
2175 goto tail_recurse;
2177 if (MARKERP (o1))
2179 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2180 && (XMARKER (o1)->buffer == 0
2181 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2183 break;
2185 case Lisp_Vectorlike:
2187 register int i;
2188 EMACS_INT size = ASIZE (o1);
2189 /* Pseudovectors have the type encoded in the size field, so this test
2190 actually checks that the objects have the same type as well as the
2191 same size. */
2192 if (ASIZE (o2) != size)
2193 return 0;
2194 /* Boolvectors are compared much like strings. */
2195 if (BOOL_VECTOR_P (o1))
2197 int size_in_chars
2198 = ((XBOOL_VECTOR (o1)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2199 / BOOL_VECTOR_BITS_PER_CHAR);
2201 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2202 return 0;
2203 if (bcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2204 size_in_chars))
2205 return 0;
2206 return 1;
2208 if (WINDOW_CONFIGURATIONP (o1))
2209 return compare_window_configurations (o1, o2, 0);
2211 /* Aside from them, only true vectors, char-tables, compiled
2212 functions, and fonts (font-spec, font-entity, font-ojbect)
2213 are sensible to compare, so eliminate the others now. */
2214 if (size & PSEUDOVECTOR_FLAG)
2216 if (!(size & (PVEC_COMPILED
2217 | PVEC_CHAR_TABLE | PVEC_SUB_CHAR_TABLE | PVEC_FONT)))
2218 return 0;
2219 size &= PSEUDOVECTOR_SIZE_MASK;
2221 for (i = 0; i < size; i++)
2223 Lisp_Object v1, v2;
2224 v1 = AREF (o1, i);
2225 v2 = AREF (o2, i);
2226 if (!internal_equal (v1, v2, depth + 1, props))
2227 return 0;
2229 return 1;
2231 break;
2233 case Lisp_String:
2234 if (SCHARS (o1) != SCHARS (o2))
2235 return 0;
2236 if (SBYTES (o1) != SBYTES (o2))
2237 return 0;
2238 if (bcmp (SDATA (o1), SDATA (o2),
2239 SBYTES (o1)))
2240 return 0;
2241 if (props && !compare_string_intervals (o1, o2))
2242 return 0;
2243 return 1;
2245 default:
2246 break;
2249 return 0;
2252 extern Lisp_Object Fmake_char_internal ();
2254 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2255 doc: /* Store each element of ARRAY with ITEM.
2256 ARRAY is a vector, string, char-table, or bool-vector. */)
2257 (array, item)
2258 Lisp_Object array, item;
2260 register int size, index, charval;
2261 if (VECTORP (array))
2263 register Lisp_Object *p = XVECTOR (array)->contents;
2264 size = ASIZE (array);
2265 for (index = 0; index < size; index++)
2266 p[index] = item;
2268 else if (CHAR_TABLE_P (array))
2270 int i;
2272 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2273 XCHAR_TABLE (array)->contents[i] = item;
2274 XCHAR_TABLE (array)->defalt = item;
2276 else if (STRINGP (array))
2278 register unsigned char *p = SDATA (array);
2279 CHECK_NUMBER (item);
2280 charval = XINT (item);
2281 size = SCHARS (array);
2282 if (STRING_MULTIBYTE (array))
2284 unsigned char str[MAX_MULTIBYTE_LENGTH];
2285 int len = CHAR_STRING (charval, str);
2286 int size_byte = SBYTES (array);
2287 unsigned char *p1 = p, *endp = p + size_byte;
2288 int i;
2290 if (size != size_byte)
2291 while (p1 < endp)
2293 int this_len = MULTIBYTE_FORM_LENGTH (p1, endp - p1);
2294 if (len != this_len)
2295 error ("Attempt to change byte length of a string");
2296 p1 += this_len;
2298 for (i = 0; i < size_byte; i++)
2299 *p++ = str[i % len];
2301 else
2302 for (index = 0; index < size; index++)
2303 p[index] = charval;
2305 else if (BOOL_VECTOR_P (array))
2307 register unsigned char *p = XBOOL_VECTOR (array)->data;
2308 int size_in_chars
2309 = ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2310 / BOOL_VECTOR_BITS_PER_CHAR);
2312 charval = (! NILP (item) ? -1 : 0);
2313 for (index = 0; index < size_in_chars - 1; index++)
2314 p[index] = charval;
2315 if (index < size_in_chars)
2317 /* Mask out bits beyond the vector size. */
2318 if (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)
2319 charval &= (1 << (XBOOL_VECTOR (array)->size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2320 p[index] = charval;
2323 else
2324 wrong_type_argument (Qarrayp, array);
2325 return array;
2328 DEFUN ("clear-string", Fclear_string, Sclear_string,
2329 1, 1, 0,
2330 doc: /* Clear the contents of STRING.
2331 This makes STRING unibyte and may change its length. */)
2332 (string)
2333 Lisp_Object string;
2335 int len;
2336 CHECK_STRING (string);
2337 len = SBYTES (string);
2338 bzero (SDATA (string), len);
2339 STRING_SET_CHARS (string, len);
2340 STRING_SET_UNIBYTE (string);
2341 return Qnil;
2344 /* ARGSUSED */
2345 Lisp_Object
2346 nconc2 (s1, s2)
2347 Lisp_Object s1, s2;
2349 #ifdef NO_ARG_ARRAY
2350 Lisp_Object args[2];
2351 args[0] = s1;
2352 args[1] = s2;
2353 return Fnconc (2, args);
2354 #else
2355 return Fnconc (2, &s1);
2356 #endif /* NO_ARG_ARRAY */
2359 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2360 doc: /* Concatenate any number of lists by altering them.
2361 Only the last argument is not altered, and need not be a list.
2362 usage: (nconc &rest LISTS) */)
2363 (nargs, args)
2364 int nargs;
2365 Lisp_Object *args;
2367 register int argnum;
2368 register Lisp_Object tail, tem, val;
2370 val = tail = Qnil;
2372 for (argnum = 0; argnum < nargs; argnum++)
2374 tem = args[argnum];
2375 if (NILP (tem)) continue;
2377 if (NILP (val))
2378 val = tem;
2380 if (argnum + 1 == nargs) break;
2382 CHECK_LIST_CONS (tem, tem);
2384 while (CONSP (tem))
2386 tail = tem;
2387 tem = XCDR (tail);
2388 QUIT;
2391 tem = args[argnum + 1];
2392 Fsetcdr (tail, tem);
2393 if (NILP (tem))
2394 args[argnum + 1] = tail;
2397 return val;
2400 /* This is the guts of all mapping functions.
2401 Apply FN to each element of SEQ, one by one,
2402 storing the results into elements of VALS, a C vector of Lisp_Objects.
2403 LENI is the length of VALS, which should also be the length of SEQ. */
2405 static void
2406 mapcar1 (leni, vals, fn, seq)
2407 int leni;
2408 Lisp_Object *vals;
2409 Lisp_Object fn, seq;
2411 register Lisp_Object tail;
2412 Lisp_Object dummy;
2413 register int i;
2414 struct gcpro gcpro1, gcpro2, gcpro3;
2416 if (vals)
2418 /* Don't let vals contain any garbage when GC happens. */
2419 for (i = 0; i < leni; i++)
2420 vals[i] = Qnil;
2422 GCPRO3 (dummy, fn, seq);
2423 gcpro1.var = vals;
2424 gcpro1.nvars = leni;
2426 else
2427 GCPRO2 (fn, seq);
2428 /* We need not explicitly protect `tail' because it is used only on lists, and
2429 1) lists are not relocated and 2) the list is marked via `seq' so will not
2430 be freed */
2432 if (VECTORP (seq))
2434 for (i = 0; i < leni; i++)
2436 dummy = call1 (fn, AREF (seq, i));
2437 if (vals)
2438 vals[i] = dummy;
2441 else if (BOOL_VECTOR_P (seq))
2443 for (i = 0; i < leni; i++)
2445 int byte;
2446 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2447 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2448 dummy = call1 (fn, dummy);
2449 if (vals)
2450 vals[i] = dummy;
2453 else if (STRINGP (seq))
2455 int i_byte;
2457 for (i = 0, i_byte = 0; i < leni;)
2459 int c;
2460 int i_before = i;
2462 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2463 XSETFASTINT (dummy, c);
2464 dummy = call1 (fn, dummy);
2465 if (vals)
2466 vals[i_before] = dummy;
2469 else /* Must be a list, since Flength did not get an error */
2471 tail = seq;
2472 for (i = 0; i < leni && CONSP (tail); i++)
2474 dummy = call1 (fn, XCAR (tail));
2475 if (vals)
2476 vals[i] = dummy;
2477 tail = XCDR (tail);
2481 UNGCPRO;
2484 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2485 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2486 In between each pair of results, stick in SEPARATOR. Thus, " " as
2487 SEPARATOR results in spaces between the values returned by FUNCTION.
2488 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2489 (function, sequence, separator)
2490 Lisp_Object function, sequence, separator;
2492 Lisp_Object len;
2493 register int leni;
2494 int nargs;
2495 register Lisp_Object *args;
2496 register int i;
2497 struct gcpro gcpro1;
2498 Lisp_Object ret;
2499 USE_SAFE_ALLOCA;
2501 len = Flength (sequence);
2502 if (CHAR_TABLE_P (sequence))
2503 wrong_type_argument (Qlistp, sequence);
2504 leni = XINT (len);
2505 nargs = leni + leni - 1;
2506 if (nargs < 0) return empty_unibyte_string;
2508 SAFE_ALLOCA_LISP (args, nargs);
2510 GCPRO1 (separator);
2511 mapcar1 (leni, args, function, sequence);
2512 UNGCPRO;
2514 for (i = leni - 1; i > 0; i--)
2515 args[i + i] = args[i];
2517 for (i = 1; i < nargs; i += 2)
2518 args[i] = separator;
2520 ret = Fconcat (nargs, args);
2521 SAFE_FREE ();
2523 return ret;
2526 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2527 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2528 The result is a list just as long as SEQUENCE.
2529 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2530 (function, sequence)
2531 Lisp_Object function, sequence;
2533 register Lisp_Object len;
2534 register int leni;
2535 register Lisp_Object *args;
2536 Lisp_Object ret;
2537 USE_SAFE_ALLOCA;
2539 len = Flength (sequence);
2540 if (CHAR_TABLE_P (sequence))
2541 wrong_type_argument (Qlistp, sequence);
2542 leni = XFASTINT (len);
2544 SAFE_ALLOCA_LISP (args, leni);
2546 mapcar1 (leni, args, function, sequence);
2548 ret = Flist (leni, args);
2549 SAFE_FREE ();
2551 return ret;
2554 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2555 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2556 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2557 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2558 (function, sequence)
2559 Lisp_Object function, sequence;
2561 register int leni;
2563 leni = XFASTINT (Flength (sequence));
2564 if (CHAR_TABLE_P (sequence))
2565 wrong_type_argument (Qlistp, sequence);
2566 mapcar1 (leni, 0, function, sequence);
2568 return sequence;
2571 /* Anything that calls this function must protect from GC! */
2573 DEFUN ("y-or-n-p", Fy_or_n_p, Sy_or_n_p, 1, 1, 0,
2574 doc: /* Ask user a "y or n" question. Return t if answer is "y".
2575 Takes one argument, which is the string to display to ask the question.
2576 It should end in a space; `y-or-n-p' adds `(y or n) ' to it.
2577 No confirmation of the answer is requested; a single character is enough.
2578 Also accepts Space to mean yes, or Delete to mean no. \(Actually, it uses
2579 the bindings in `query-replace-map'; see the documentation of that variable
2580 for more information. In this case, the useful bindings are `act', `skip',
2581 `recenter', and `quit'.\)
2583 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2584 is nil and `use-dialog-box' is non-nil. */)
2585 (prompt)
2586 Lisp_Object prompt;
2588 register Lisp_Object obj, key, def, map;
2589 register int answer;
2590 Lisp_Object xprompt;
2591 Lisp_Object args[2];
2592 struct gcpro gcpro1, gcpro2;
2593 int count = SPECPDL_INDEX ();
2595 specbind (Qcursor_in_echo_area, Qt);
2597 map = Fsymbol_value (intern ("query-replace-map"));
2599 CHECK_STRING (prompt);
2600 xprompt = prompt;
2601 GCPRO2 (prompt, xprompt);
2603 #ifdef HAVE_WINDOW_SYSTEM
2604 if (display_hourglass_p)
2605 cancel_hourglass ();
2606 #endif
2608 while (1)
2611 #ifdef HAVE_MENUS
2612 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2613 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2614 && use_dialog_box
2615 && have_menus_p ())
2617 Lisp_Object pane, menu;
2618 redisplay_preserve_echo_area (3);
2619 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2620 Fcons (Fcons (build_string ("No"), Qnil),
2621 Qnil));
2622 menu = Fcons (prompt, pane);
2623 obj = Fx_popup_dialog (Qt, menu, Qnil);
2624 answer = !NILP (obj);
2625 break;
2627 #endif /* HAVE_MENUS */
2628 cursor_in_echo_area = 1;
2629 choose_minibuf_frame ();
2632 Lisp_Object pargs[3];
2634 /* Colorize prompt according to `minibuffer-prompt' face. */
2635 pargs[0] = build_string ("%s(y or n) ");
2636 pargs[1] = intern ("face");
2637 pargs[2] = intern ("minibuffer-prompt");
2638 args[0] = Fpropertize (3, pargs);
2639 args[1] = xprompt;
2640 Fmessage (2, args);
2643 if (minibuffer_auto_raise)
2645 Lisp_Object mini_frame;
2647 mini_frame = WINDOW_FRAME (XWINDOW (minibuf_window));
2649 Fraise_frame (mini_frame);
2652 temporarily_switch_to_single_kboard (SELECTED_FRAME ());
2653 obj = read_filtered_event (1, 0, 0, 0, Qnil);
2654 cursor_in_echo_area = 0;
2655 /* If we need to quit, quit with cursor_in_echo_area = 0. */
2656 QUIT;
2658 key = Fmake_vector (make_number (1), obj);
2659 def = Flookup_key (map, key, Qt);
2661 if (EQ (def, intern ("skip")))
2663 answer = 0;
2664 break;
2666 else if (EQ (def, intern ("act")))
2668 answer = 1;
2669 break;
2671 else if (EQ (def, intern ("recenter")))
2673 Frecenter (Qnil);
2674 xprompt = prompt;
2675 continue;
2677 else if (EQ (def, intern ("quit")))
2678 Vquit_flag = Qt;
2679 /* We want to exit this command for exit-prefix,
2680 and this is the only way to do it. */
2681 else if (EQ (def, intern ("exit-prefix")))
2682 Vquit_flag = Qt;
2684 QUIT;
2686 /* If we don't clear this, then the next call to read_char will
2687 return quit_char again, and we'll enter an infinite loop. */
2688 Vquit_flag = Qnil;
2690 Fding (Qnil);
2691 Fdiscard_input ();
2692 if (EQ (xprompt, prompt))
2694 args[0] = build_string ("Please answer y or n. ");
2695 args[1] = prompt;
2696 xprompt = Fconcat (2, args);
2699 UNGCPRO;
2701 if (! noninteractive)
2703 cursor_in_echo_area = -1;
2704 message_with_string (answer ? "%s(y or n) y" : "%s(y or n) n",
2705 xprompt, 0);
2708 unbind_to (count, Qnil);
2709 return answer ? Qt : Qnil;
2712 /* This is how C code calls `yes-or-no-p' and allows the user
2713 to redefined it.
2715 Anything that calls this function must protect from GC! */
2717 Lisp_Object
2718 do_yes_or_no_p (prompt)
2719 Lisp_Object prompt;
2721 return call1 (intern ("yes-or-no-p"), prompt);
2724 /* Anything that calls this function must protect from GC! */
2726 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2727 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2728 Takes one argument, which is the string to display to ask the question.
2729 It should end in a space; `yes-or-no-p' adds `(yes or no) ' to it.
2730 The user must confirm the answer with RET,
2731 and can edit it until it has been confirmed.
2733 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2734 is nil, and `use-dialog-box' is non-nil. */)
2735 (prompt)
2736 Lisp_Object prompt;
2738 register Lisp_Object ans;
2739 Lisp_Object args[2];
2740 struct gcpro gcpro1;
2742 CHECK_STRING (prompt);
2744 #ifdef HAVE_MENUS
2745 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2746 && (NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2747 && use_dialog_box
2748 && have_menus_p ())
2750 Lisp_Object pane, menu, obj;
2751 redisplay_preserve_echo_area (4);
2752 pane = Fcons (Fcons (build_string ("Yes"), Qt),
2753 Fcons (Fcons (build_string ("No"), Qnil),
2754 Qnil));
2755 GCPRO1 (pane);
2756 menu = Fcons (prompt, pane);
2757 obj = Fx_popup_dialog (Qt, menu, Qnil);
2758 UNGCPRO;
2759 return obj;
2761 #endif /* HAVE_MENUS */
2763 args[0] = prompt;
2764 args[1] = build_string ("(yes or no) ");
2765 prompt = Fconcat (2, args);
2767 GCPRO1 (prompt);
2769 while (1)
2771 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2772 Qyes_or_no_p_history, Qnil,
2773 Qnil));
2774 if (SCHARS (ans) == 3 && !strcmp (SDATA (ans), "yes"))
2776 UNGCPRO;
2777 return Qt;
2779 if (SCHARS (ans) == 2 && !strcmp (SDATA (ans), "no"))
2781 UNGCPRO;
2782 return Qnil;
2785 Fding (Qnil);
2786 Fdiscard_input ();
2787 message ("Please answer yes or no.");
2788 Fsleep_for (make_number (2), Qnil);
2792 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2793 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2795 Each of the three load averages is multiplied by 100, then converted
2796 to integer.
2798 When USE-FLOATS is non-nil, floats will be used instead of integers.
2799 These floats are not multiplied by 100.
2801 If the 5-minute or 15-minute load averages are not available, return a
2802 shortened list, containing only those averages which are available.
2804 An error is thrown if the load average can't be obtained. In some
2805 cases making it work would require Emacs being installed setuid or
2806 setgid so that it can read kernel information, and that usually isn't
2807 advisable. */)
2808 (use_floats)
2809 Lisp_Object use_floats;
2811 double load_ave[3];
2812 int loads = getloadavg (load_ave, 3);
2813 Lisp_Object ret = Qnil;
2815 if (loads < 0)
2816 error ("load-average not implemented for this operating system");
2818 while (loads-- > 0)
2820 Lisp_Object load = (NILP (use_floats) ?
2821 make_number ((int) (100.0 * load_ave[loads]))
2822 : make_float (load_ave[loads]));
2823 ret = Fcons (load, ret);
2826 return ret;
2829 Lisp_Object Vfeatures, Qsubfeatures;
2830 extern Lisp_Object Vafter_load_alist;
2832 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2833 doc: /* Returns t if FEATURE is present in this Emacs.
2835 Use this to conditionalize execution of lisp code based on the
2836 presence or absence of Emacs or environment extensions.
2837 Use `provide' to declare that a feature is available. This function
2838 looks at the value of the variable `features'. The optional argument
2839 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2840 (feature, subfeature)
2841 Lisp_Object feature, subfeature;
2843 register Lisp_Object tem;
2844 CHECK_SYMBOL (feature);
2845 tem = Fmemq (feature, Vfeatures);
2846 if (!NILP (tem) && !NILP (subfeature))
2847 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2848 return (NILP (tem)) ? Qnil : Qt;
2851 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2852 doc: /* Announce that FEATURE is a feature of the current Emacs.
2853 The optional argument SUBFEATURES should be a list of symbols listing
2854 particular subfeatures supported in this version of FEATURE. */)
2855 (feature, subfeatures)
2856 Lisp_Object feature, subfeatures;
2858 register Lisp_Object tem;
2859 CHECK_SYMBOL (feature);
2860 CHECK_LIST (subfeatures);
2861 if (!NILP (Vautoload_queue))
2862 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2863 Vautoload_queue);
2864 tem = Fmemq (feature, Vfeatures);
2865 if (NILP (tem))
2866 Vfeatures = Fcons (feature, Vfeatures);
2867 if (!NILP (subfeatures))
2868 Fput (feature, Qsubfeatures, subfeatures);
2869 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2871 /* Run any load-hooks for this file. */
2872 tem = Fassq (feature, Vafter_load_alist);
2873 if (CONSP (tem))
2874 Fprogn (XCDR (tem));
2876 return feature;
2879 /* `require' and its subroutines. */
2881 /* List of features currently being require'd, innermost first. */
2883 Lisp_Object require_nesting_list;
2885 Lisp_Object
2886 require_unwind (old_value)
2887 Lisp_Object old_value;
2889 return require_nesting_list = old_value;
2892 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2893 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2894 If FEATURE is not a member of the list `features', then the feature
2895 is not loaded; so load the file FILENAME.
2896 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2897 and `load' will try to load this name appended with the suffix `.elc' or
2898 `.el', in that order. The name without appended suffix will not be used.
2899 If the optional third argument NOERROR is non-nil,
2900 then return nil if the file is not found instead of signaling an error.
2901 Normally the return value is FEATURE.
2902 The normal messages at start and end of loading FILENAME are suppressed. */)
2903 (feature, filename, noerror)
2904 Lisp_Object feature, filename, noerror;
2906 register Lisp_Object tem;
2907 struct gcpro gcpro1, gcpro2;
2908 int from_file = load_in_progress;
2910 CHECK_SYMBOL (feature);
2912 /* Record the presence of `require' in this file
2913 even if the feature specified is already loaded.
2914 But not more than once in any file,
2915 and not when we aren't loading or reading from a file. */
2916 if (!from_file)
2917 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2918 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2919 from_file = 1;
2921 if (from_file)
2923 tem = Fcons (Qrequire, feature);
2924 if (NILP (Fmember (tem, Vcurrent_load_list)))
2925 LOADHIST_ATTACH (tem);
2927 tem = Fmemq (feature, Vfeatures);
2929 if (NILP (tem))
2931 int count = SPECPDL_INDEX ();
2932 int nesting = 0;
2934 /* This is to make sure that loadup.el gives a clear picture
2935 of what files are preloaded and when. */
2936 if (! NILP (Vpurify_flag))
2937 error ("(require %s) while preparing to dump",
2938 SDATA (SYMBOL_NAME (feature)));
2940 /* A certain amount of recursive `require' is legitimate,
2941 but if we require the same feature recursively 3 times,
2942 signal an error. */
2943 tem = require_nesting_list;
2944 while (! NILP (tem))
2946 if (! NILP (Fequal (feature, XCAR (tem))))
2947 nesting++;
2948 tem = XCDR (tem);
2950 if (nesting > 3)
2951 error ("Recursive `require' for feature `%s'",
2952 SDATA (SYMBOL_NAME (feature)));
2954 /* Update the list for any nested `require's that occur. */
2955 record_unwind_protect (require_unwind, require_nesting_list);
2956 require_nesting_list = Fcons (feature, require_nesting_list);
2958 /* Value saved here is to be restored into Vautoload_queue */
2959 record_unwind_protect (un_autoload, Vautoload_queue);
2960 Vautoload_queue = Qt;
2962 /* Load the file. */
2963 GCPRO2 (feature, filename);
2964 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2965 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2966 UNGCPRO;
2968 /* If load failed entirely, return nil. */
2969 if (NILP (tem))
2970 return unbind_to (count, Qnil);
2972 tem = Fmemq (feature, Vfeatures);
2973 if (NILP (tem))
2974 error ("Required feature `%s' was not provided",
2975 SDATA (SYMBOL_NAME (feature)));
2977 /* Once loading finishes, don't undo it. */
2978 Vautoload_queue = Qt;
2979 feature = unbind_to (count, feature);
2982 return feature;
2985 /* Primitives for work of the "widget" library.
2986 In an ideal world, this section would not have been necessary.
2987 However, lisp function calls being as slow as they are, it turns
2988 out that some functions in the widget library (wid-edit.el) are the
2989 bottleneck of Widget operation. Here is their translation to C,
2990 for the sole reason of efficiency. */
2992 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2993 doc: /* Return non-nil if PLIST has the property PROP.
2994 PLIST is a property list, which is a list of the form
2995 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2996 Unlike `plist-get', this allows you to distinguish between a missing
2997 property and a property with the value nil.
2998 The value is actually the tail of PLIST whose car is PROP. */)
2999 (plist, prop)
3000 Lisp_Object plist, prop;
3002 while (CONSP (plist) && !EQ (XCAR (plist), prop))
3004 QUIT;
3005 plist = XCDR (plist);
3006 plist = CDR (plist);
3008 return plist;
3011 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
3012 doc: /* In WIDGET, set PROPERTY to VALUE.
3013 The value can later be retrieved with `widget-get'. */)
3014 (widget, property, value)
3015 Lisp_Object widget, property, value;
3017 CHECK_CONS (widget);
3018 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
3019 return value;
3022 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
3023 doc: /* In WIDGET, get the value of PROPERTY.
3024 The value could either be specified when the widget was created, or
3025 later with `widget-put'. */)
3026 (widget, property)
3027 Lisp_Object widget, property;
3029 Lisp_Object tmp;
3031 while (1)
3033 if (NILP (widget))
3034 return Qnil;
3035 CHECK_CONS (widget);
3036 tmp = Fplist_member (XCDR (widget), property);
3037 if (CONSP (tmp))
3039 tmp = XCDR (tmp);
3040 return CAR (tmp);
3042 tmp = XCAR (widget);
3043 if (NILP (tmp))
3044 return Qnil;
3045 widget = Fget (tmp, Qwidget_type);
3049 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
3050 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
3051 ARGS are passed as extra arguments to the function.
3052 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
3053 (nargs, args)
3054 int nargs;
3055 Lisp_Object *args;
3057 /* This function can GC. */
3058 Lisp_Object newargs[3];
3059 struct gcpro gcpro1, gcpro2;
3060 Lisp_Object result;
3062 newargs[0] = Fwidget_get (args[0], args[1]);
3063 newargs[1] = args[0];
3064 newargs[2] = Flist (nargs - 2, args + 2);
3065 GCPRO2 (newargs[0], newargs[2]);
3066 result = Fapply (3, newargs);
3067 UNGCPRO;
3068 return result;
3071 #ifdef HAVE_LANGINFO_CODESET
3072 #include <langinfo.h>
3073 #endif
3075 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
3076 doc: /* Access locale data ITEM for the current C locale, if available.
3077 ITEM should be one of the following:
3079 `codeset', returning the character set as a string (locale item CODESET);
3081 `days', returning a 7-element vector of day names (locale items DAY_n);
3083 `months', returning a 12-element vector of month names (locale items MON_n);
3085 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
3086 both measured in milimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
3088 If the system can't provide such information through a call to
3089 `nl_langinfo', or if ITEM isn't from the list above, return nil.
3091 See also Info node `(libc)Locales'.
3093 The data read from the system are decoded using `locale-coding-system'. */)
3094 (item)
3095 Lisp_Object item;
3097 char *str = NULL;
3098 #ifdef HAVE_LANGINFO_CODESET
3099 Lisp_Object val;
3100 if (EQ (item, Qcodeset))
3102 str = nl_langinfo (CODESET);
3103 return build_string (str);
3105 #ifdef DAY_1
3106 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
3108 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
3109 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
3110 int i;
3111 struct gcpro gcpro1;
3112 GCPRO1 (v);
3113 synchronize_system_time_locale ();
3114 for (i = 0; i < 7; i++)
3116 str = nl_langinfo (days[i]);
3117 val = make_unibyte_string (str, strlen (str));
3118 /* Fixme: Is this coding system necessarily right, even if
3119 it is consistent with CODESET? If not, what to do? */
3120 Faset (v, make_number (i),
3121 code_convert_string_norecord (val, Vlocale_coding_system,
3122 0));
3124 UNGCPRO;
3125 return v;
3127 #endif /* DAY_1 */
3128 #ifdef MON_1
3129 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
3131 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
3132 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
3133 MON_8, MON_9, MON_10, MON_11, MON_12};
3134 int i;
3135 struct gcpro gcpro1;
3136 GCPRO1 (v);
3137 synchronize_system_time_locale ();
3138 for (i = 0; i < 12; i++)
3140 str = nl_langinfo (months[i]);
3141 val = make_unibyte_string (str, strlen (str));
3142 Faset (v, make_number (i),
3143 code_convert_string_norecord (val, Vlocale_coding_system, 0));
3145 UNGCPRO;
3146 return v;
3148 #endif /* MON_1 */
3149 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
3150 but is in the locale files. This could be used by ps-print. */
3151 #ifdef PAPER_WIDTH
3152 else if (EQ (item, Qpaper))
3154 return list2 (make_number (nl_langinfo (PAPER_WIDTH)),
3155 make_number (nl_langinfo (PAPER_HEIGHT)));
3157 #endif /* PAPER_WIDTH */
3158 #endif /* HAVE_LANGINFO_CODESET*/
3159 return Qnil;
3162 /* base64 encode/decode functions (RFC 2045).
3163 Based on code from GNU recode. */
3165 #define MIME_LINE_LENGTH 76
3167 #define IS_ASCII(Character) \
3168 ((Character) < 128)
3169 #define IS_BASE64(Character) \
3170 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
3171 #define IS_BASE64_IGNORABLE(Character) \
3172 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
3173 || (Character) == '\f' || (Character) == '\r')
3175 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
3176 character or return retval if there are no characters left to
3177 process. */
3178 #define READ_QUADRUPLET_BYTE(retval) \
3179 do \
3181 if (i == length) \
3183 if (nchars_return) \
3184 *nchars_return = nchars; \
3185 return (retval); \
3187 c = from[i++]; \
3189 while (IS_BASE64_IGNORABLE (c))
3191 /* Table of characters coding the 64 values. */
3192 static const char base64_value_to_char[64] =
3194 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
3195 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
3196 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
3197 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
3198 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
3199 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
3200 '8', '9', '+', '/' /* 60-63 */
3203 /* Table of base64 values for first 128 characters. */
3204 static const short base64_char_to_value[128] =
3206 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
3207 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
3208 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
3209 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
3210 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
3211 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
3212 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
3213 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
3214 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
3215 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
3216 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
3217 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
3218 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
3221 /* The following diagram shows the logical steps by which three octets
3222 get transformed into four base64 characters.
3224 .--------. .--------. .--------.
3225 |aaaaaabb| |bbbbcccc| |ccdddddd|
3226 `--------' `--------' `--------'
3227 6 2 4 4 2 6
3228 .--------+--------+--------+--------.
3229 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
3230 `--------+--------+--------+--------'
3232 .--------+--------+--------+--------.
3233 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
3234 `--------+--------+--------+--------'
3236 The octets are divided into 6 bit chunks, which are then encoded into
3237 base64 characters. */
3240 static int base64_encode_1 P_ ((const char *, char *, int, int, int));
3241 static int base64_decode_1 P_ ((const char *, char *, int, int, int *));
3243 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
3244 2, 3, "r",
3245 doc: /* Base64-encode the region between BEG and END.
3246 Return the length of the encoded text.
3247 Optional third argument NO-LINE-BREAK means do not break long lines
3248 into shorter lines. */)
3249 (beg, end, no_line_break)
3250 Lisp_Object beg, end, no_line_break;
3252 char *encoded;
3253 int allength, length;
3254 int ibeg, iend, encoded_length;
3255 int old_pos = PT;
3256 USE_SAFE_ALLOCA;
3258 validate_region (&beg, &end);
3260 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3261 iend = CHAR_TO_BYTE (XFASTINT (end));
3262 move_gap_both (XFASTINT (beg), ibeg);
3264 /* We need to allocate enough room for encoding the text.
3265 We need 33 1/3% more space, plus a newline every 76
3266 characters, and then we round up. */
3267 length = iend - ibeg;
3268 allength = length + length/3 + 1;
3269 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3271 SAFE_ALLOCA (encoded, char *, allength);
3272 encoded_length = base64_encode_1 (BYTE_POS_ADDR (ibeg), encoded, length,
3273 NILP (no_line_break),
3274 !NILP (current_buffer->enable_multibyte_characters));
3275 if (encoded_length > allength)
3276 abort ();
3278 if (encoded_length < 0)
3280 /* The encoding wasn't possible. */
3281 SAFE_FREE ();
3282 error ("Multibyte character in data for base64 encoding");
3285 /* Now we have encoded the region, so we insert the new contents
3286 and delete the old. (Insert first in order to preserve markers.) */
3287 SET_PT_BOTH (XFASTINT (beg), ibeg);
3288 insert (encoded, encoded_length);
3289 SAFE_FREE ();
3290 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
3292 /* If point was outside of the region, restore it exactly; else just
3293 move to the beginning of the region. */
3294 if (old_pos >= XFASTINT (end))
3295 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
3296 else if (old_pos > XFASTINT (beg))
3297 old_pos = XFASTINT (beg);
3298 SET_PT (old_pos);
3300 /* We return the length of the encoded text. */
3301 return make_number (encoded_length);
3304 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
3305 1, 2, 0,
3306 doc: /* Base64-encode STRING and return the result.
3307 Optional second argument NO-LINE-BREAK means do not break long lines
3308 into shorter lines. */)
3309 (string, no_line_break)
3310 Lisp_Object string, no_line_break;
3312 int allength, length, encoded_length;
3313 char *encoded;
3314 Lisp_Object encoded_string;
3315 USE_SAFE_ALLOCA;
3317 CHECK_STRING (string);
3319 /* We need to allocate enough room for encoding the text.
3320 We need 33 1/3% more space, plus a newline every 76
3321 characters, and then we round up. */
3322 length = SBYTES (string);
3323 allength = length + length/3 + 1;
3324 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3326 /* We need to allocate enough room for decoding the text. */
3327 SAFE_ALLOCA (encoded, char *, allength);
3329 encoded_length = base64_encode_1 (SDATA (string),
3330 encoded, length, NILP (no_line_break),
3331 STRING_MULTIBYTE (string));
3332 if (encoded_length > allength)
3333 abort ();
3335 if (encoded_length < 0)
3337 /* The encoding wasn't possible. */
3338 SAFE_FREE ();
3339 error ("Multibyte character in data for base64 encoding");
3342 encoded_string = make_unibyte_string (encoded, encoded_length);
3343 SAFE_FREE ();
3345 return encoded_string;
3348 static int
3349 base64_encode_1 (from, to, length, line_break, multibyte)
3350 const char *from;
3351 char *to;
3352 int length;
3353 int line_break;
3354 int multibyte;
3356 int counter = 0, i = 0;
3357 char *e = to;
3358 int c;
3359 unsigned int value;
3360 int bytes;
3362 while (i < length)
3364 if (multibyte)
3366 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3367 if (CHAR_BYTE8_P (c))
3368 c = CHAR_TO_BYTE8 (c);
3369 else if (c >= 256)
3370 return -1;
3371 i += bytes;
3373 else
3374 c = from[i++];
3376 /* Wrap line every 76 characters. */
3378 if (line_break)
3380 if (counter < MIME_LINE_LENGTH / 4)
3381 counter++;
3382 else
3384 *e++ = '\n';
3385 counter = 1;
3389 /* Process first byte of a triplet. */
3391 *e++ = base64_value_to_char[0x3f & c >> 2];
3392 value = (0x03 & c) << 4;
3394 /* Process second byte of a triplet. */
3396 if (i == length)
3398 *e++ = base64_value_to_char[value];
3399 *e++ = '=';
3400 *e++ = '=';
3401 break;
3404 if (multibyte)
3406 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3407 if (CHAR_BYTE8_P (c))
3408 c = CHAR_TO_BYTE8 (c);
3409 else if (c >= 256)
3410 return -1;
3411 i += bytes;
3413 else
3414 c = from[i++];
3416 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3417 value = (0x0f & c) << 2;
3419 /* Process third byte of a triplet. */
3421 if (i == length)
3423 *e++ = base64_value_to_char[value];
3424 *e++ = '=';
3425 break;
3428 if (multibyte)
3430 c = STRING_CHAR_AND_LENGTH (from + i, length - i, bytes);
3431 if (CHAR_BYTE8_P (c))
3432 c = CHAR_TO_BYTE8 (c);
3433 else if (c >= 256)
3434 return -1;
3435 i += bytes;
3437 else
3438 c = from[i++];
3440 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3441 *e++ = base64_value_to_char[0x3f & c];
3444 return e - to;
3448 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3449 2, 2, "r",
3450 doc: /* Base64-decode the region between BEG and END.
3451 Return the length of the decoded text.
3452 If the region can't be decoded, signal an error and don't modify the buffer. */)
3453 (beg, end)
3454 Lisp_Object beg, end;
3456 int ibeg, iend, length, allength;
3457 char *decoded;
3458 int old_pos = PT;
3459 int decoded_length;
3460 int inserted_chars;
3461 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
3462 USE_SAFE_ALLOCA;
3464 validate_region (&beg, &end);
3466 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3467 iend = CHAR_TO_BYTE (XFASTINT (end));
3469 length = iend - ibeg;
3471 /* We need to allocate enough room for decoding the text. If we are
3472 working on a multibyte buffer, each decoded code may occupy at
3473 most two bytes. */
3474 allength = multibyte ? length * 2 : length;
3475 SAFE_ALLOCA (decoded, char *, allength);
3477 move_gap_both (XFASTINT (beg), ibeg);
3478 decoded_length = base64_decode_1 (BYTE_POS_ADDR (ibeg), decoded, length,
3479 multibyte, &inserted_chars);
3480 if (decoded_length > allength)
3481 abort ();
3483 if (decoded_length < 0)
3485 /* The decoding wasn't possible. */
3486 SAFE_FREE ();
3487 error ("Invalid base64 data");
3490 /* Now we have decoded the region, so we insert the new contents
3491 and delete the old. (Insert first in order to preserve markers.) */
3492 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3493 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3494 SAFE_FREE ();
3496 /* Delete the original text. */
3497 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3498 iend + decoded_length, 1);
3500 /* If point was outside of the region, restore it exactly; else just
3501 move to the beginning of the region. */
3502 if (old_pos >= XFASTINT (end))
3503 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3504 else if (old_pos > XFASTINT (beg))
3505 old_pos = XFASTINT (beg);
3506 SET_PT (old_pos > ZV ? ZV : old_pos);
3508 return make_number (inserted_chars);
3511 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3512 1, 1, 0,
3513 doc: /* Base64-decode STRING and return the result. */)
3514 (string)
3515 Lisp_Object string;
3517 char *decoded;
3518 int length, decoded_length;
3519 Lisp_Object decoded_string;
3520 USE_SAFE_ALLOCA;
3522 CHECK_STRING (string);
3524 length = SBYTES (string);
3525 /* We need to allocate enough room for decoding the text. */
3526 SAFE_ALLOCA (decoded, char *, length);
3528 /* The decoded result should be unibyte. */
3529 decoded_length = base64_decode_1 (SDATA (string), decoded, length,
3530 0, NULL);
3531 if (decoded_length > length)
3532 abort ();
3533 else if (decoded_length >= 0)
3534 decoded_string = make_unibyte_string (decoded, decoded_length);
3535 else
3536 decoded_string = Qnil;
3538 SAFE_FREE ();
3539 if (!STRINGP (decoded_string))
3540 error ("Invalid base64 data");
3542 return decoded_string;
3545 /* Base64-decode the data at FROM of LENGHT bytes into TO. If
3546 MULTIBYTE is nonzero, the decoded result should be in multibyte
3547 form. If NCHARS_RETRUN is not NULL, store the number of produced
3548 characters in *NCHARS_RETURN. */
3550 static int
3551 base64_decode_1 (from, to, length, multibyte, nchars_return)
3552 const char *from;
3553 char *to;
3554 int length;
3555 int multibyte;
3556 int *nchars_return;
3558 int i = 0;
3559 char *e = to;
3560 unsigned char c;
3561 unsigned long value;
3562 int nchars = 0;
3564 while (1)
3566 /* Process first byte of a quadruplet. */
3568 READ_QUADRUPLET_BYTE (e-to);
3570 if (!IS_BASE64 (c))
3571 return -1;
3572 value = base64_char_to_value[c] << 18;
3574 /* Process second byte of a quadruplet. */
3576 READ_QUADRUPLET_BYTE (-1);
3578 if (!IS_BASE64 (c))
3579 return -1;
3580 value |= base64_char_to_value[c] << 12;
3582 c = (unsigned char) (value >> 16);
3583 if (multibyte && c >= 128)
3584 e += BYTE8_STRING (c, e);
3585 else
3586 *e++ = c;
3587 nchars++;
3589 /* Process third byte of a quadruplet. */
3591 READ_QUADRUPLET_BYTE (-1);
3593 if (c == '=')
3595 READ_QUADRUPLET_BYTE (-1);
3597 if (c != '=')
3598 return -1;
3599 continue;
3602 if (!IS_BASE64 (c))
3603 return -1;
3604 value |= base64_char_to_value[c] << 6;
3606 c = (unsigned char) (0xff & value >> 8);
3607 if (multibyte && c >= 128)
3608 e += BYTE8_STRING (c, e);
3609 else
3610 *e++ = c;
3611 nchars++;
3613 /* Process fourth byte of a quadruplet. */
3615 READ_QUADRUPLET_BYTE (-1);
3617 if (c == '=')
3618 continue;
3620 if (!IS_BASE64 (c))
3621 return -1;
3622 value |= base64_char_to_value[c];
3624 c = (unsigned char) (0xff & value);
3625 if (multibyte && c >= 128)
3626 e += BYTE8_STRING (c, e);
3627 else
3628 *e++ = c;
3629 nchars++;
3635 /***********************************************************************
3636 ***** *****
3637 ***** Hash Tables *****
3638 ***** *****
3639 ***********************************************************************/
3641 /* Implemented by gerd@gnu.org. This hash table implementation was
3642 inspired by CMUCL hash tables. */
3644 /* Ideas:
3646 1. For small tables, association lists are probably faster than
3647 hash tables because they have lower overhead.
3649 For uses of hash tables where the O(1) behavior of table
3650 operations is not a requirement, it might therefore be a good idea
3651 not to hash. Instead, we could just do a linear search in the
3652 key_and_value vector of the hash table. This could be done
3653 if a `:linear-search t' argument is given to make-hash-table. */
3656 /* The list of all weak hash tables. Don't staticpro this one. */
3658 struct Lisp_Hash_Table *weak_hash_tables;
3660 /* Various symbols. */
3662 Lisp_Object Qhash_table_p, Qeq, Qeql, Qequal, Qkey, Qvalue;
3663 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3664 Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3666 /* Function prototypes. */
3668 static struct Lisp_Hash_Table *check_hash_table P_ ((Lisp_Object));
3669 static int get_key_arg P_ ((Lisp_Object, int, Lisp_Object *, char *));
3670 static void maybe_resize_hash_table P_ ((struct Lisp_Hash_Table *));
3671 static int cmpfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
3672 Lisp_Object, unsigned));
3673 static int cmpfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object, unsigned,
3674 Lisp_Object, unsigned));
3675 static int cmpfn_user_defined P_ ((struct Lisp_Hash_Table *, Lisp_Object,
3676 unsigned, Lisp_Object, unsigned));
3677 static unsigned hashfn_eq P_ ((struct Lisp_Hash_Table *, Lisp_Object));
3678 static unsigned hashfn_eql P_ ((struct Lisp_Hash_Table *, Lisp_Object));
3679 static unsigned hashfn_equal P_ ((struct Lisp_Hash_Table *, Lisp_Object));
3680 static unsigned hashfn_user_defined P_ ((struct Lisp_Hash_Table *,
3681 Lisp_Object));
3682 static unsigned sxhash_string P_ ((unsigned char *, int));
3683 static unsigned sxhash_list P_ ((Lisp_Object, int));
3684 static unsigned sxhash_vector P_ ((Lisp_Object, int));
3685 static unsigned sxhash_bool_vector P_ ((Lisp_Object));
3686 static int sweep_weak_table P_ ((struct Lisp_Hash_Table *, int));
3690 /***********************************************************************
3691 Utilities
3692 ***********************************************************************/
3694 /* If OBJ is a Lisp hash table, return a pointer to its struct
3695 Lisp_Hash_Table. Otherwise, signal an error. */
3697 static struct Lisp_Hash_Table *
3698 check_hash_table (obj)
3699 Lisp_Object obj;
3701 CHECK_HASH_TABLE (obj);
3702 return XHASH_TABLE (obj);
3706 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3707 number. */
3710 next_almost_prime (n)
3711 int n;
3713 if (n % 2 == 0)
3714 n += 1;
3715 if (n % 3 == 0)
3716 n += 2;
3717 if (n % 7 == 0)
3718 n += 4;
3719 return n;
3723 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3724 which USED[I] is non-zero. If found at index I in ARGS, set
3725 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3726 -1. This function is used to extract a keyword/argument pair from
3727 a DEFUN parameter list. */
3729 static int
3730 get_key_arg (key, nargs, args, used)
3731 Lisp_Object key;
3732 int nargs;
3733 Lisp_Object *args;
3734 char *used;
3736 int i;
3738 for (i = 0; i < nargs - 1; ++i)
3739 if (!used[i] && EQ (args[i], key))
3740 break;
3742 if (i >= nargs - 1)
3743 i = -1;
3744 else
3746 used[i++] = 1;
3747 used[i] = 1;
3750 return i;
3754 /* Return a Lisp vector which has the same contents as VEC but has
3755 size NEW_SIZE, NEW_SIZE >= VEC->size. Entries in the resulting
3756 vector that are not copied from VEC are set to INIT. */
3758 Lisp_Object
3759 larger_vector (vec, new_size, init)
3760 Lisp_Object vec;
3761 int new_size;
3762 Lisp_Object init;
3764 struct Lisp_Vector *v;
3765 int i, old_size;
3767 xassert (VECTORP (vec));
3768 old_size = ASIZE (vec);
3769 xassert (new_size >= old_size);
3771 v = allocate_vector (new_size);
3772 bcopy (XVECTOR (vec)->contents, v->contents,
3773 old_size * sizeof *v->contents);
3774 for (i = old_size; i < new_size; ++i)
3775 v->contents[i] = init;
3776 XSETVECTOR (vec, v);
3777 return vec;
3781 /***********************************************************************
3782 Low-level Functions
3783 ***********************************************************************/
3785 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3786 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
3787 KEY2 are the same. */
3789 static int
3790 cmpfn_eql (h, key1, hash1, key2, hash2)
3791 struct Lisp_Hash_Table *h;
3792 Lisp_Object key1, key2;
3793 unsigned hash1, hash2;
3795 return (FLOATP (key1)
3796 && FLOATP (key2)
3797 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3801 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3802 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
3803 KEY2 are the same. */
3805 static int
3806 cmpfn_equal (h, key1, hash1, key2, hash2)
3807 struct Lisp_Hash_Table *h;
3808 Lisp_Object key1, key2;
3809 unsigned hash1, hash2;
3811 return hash1 == hash2 && !NILP (Fequal (key1, key2));
3815 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3816 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
3817 if KEY1 and KEY2 are the same. */
3819 static int
3820 cmpfn_user_defined (h, key1, hash1, key2, hash2)
3821 struct Lisp_Hash_Table *h;
3822 Lisp_Object key1, key2;
3823 unsigned hash1, hash2;
3825 if (hash1 == hash2)
3827 Lisp_Object args[3];
3829 args[0] = h->user_cmp_function;
3830 args[1] = key1;
3831 args[2] = key2;
3832 return !NILP (Ffuncall (3, args));
3834 else
3835 return 0;
3839 /* Value is a hash code for KEY for use in hash table H which uses
3840 `eq' to compare keys. The hash code returned is guaranteed to fit
3841 in a Lisp integer. */
3843 static unsigned
3844 hashfn_eq (h, key)
3845 struct Lisp_Hash_Table *h;
3846 Lisp_Object key;
3848 unsigned hash = XUINT (key) ^ XTYPE (key);
3849 xassert ((hash & ~INTMASK) == 0);
3850 return hash;
3854 /* Value is a hash code for KEY for use in hash table H which uses
3855 `eql' to compare keys. The hash code returned is guaranteed to fit
3856 in a Lisp integer. */
3858 static unsigned
3859 hashfn_eql (h, key)
3860 struct Lisp_Hash_Table *h;
3861 Lisp_Object key;
3863 unsigned hash;
3864 if (FLOATP (key))
3865 hash = sxhash (key, 0);
3866 else
3867 hash = XUINT (key) ^ XTYPE (key);
3868 xassert ((hash & ~INTMASK) == 0);
3869 return hash;
3873 /* Value is a hash code for KEY for use in hash table H which uses
3874 `equal' to compare keys. The hash code returned is guaranteed to fit
3875 in a Lisp integer. */
3877 static unsigned
3878 hashfn_equal (h, key)
3879 struct Lisp_Hash_Table *h;
3880 Lisp_Object key;
3882 unsigned hash = sxhash (key, 0);
3883 xassert ((hash & ~INTMASK) == 0);
3884 return hash;
3888 /* Value is a hash code for KEY for use in hash table H which uses as
3889 user-defined function to compare keys. The hash code returned is
3890 guaranteed to fit in a Lisp integer. */
3892 static unsigned
3893 hashfn_user_defined (h, key)
3894 struct Lisp_Hash_Table *h;
3895 Lisp_Object key;
3897 Lisp_Object args[2], hash;
3899 args[0] = h->user_hash_function;
3900 args[1] = key;
3901 hash = Ffuncall (2, args);
3902 if (!INTEGERP (hash))
3903 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3904 return XUINT (hash);
3908 /* Create and initialize a new hash table.
3910 TEST specifies the test the hash table will use to compare keys.
3911 It must be either one of the predefined tests `eq', `eql' or
3912 `equal' or a symbol denoting a user-defined test named TEST with
3913 test and hash functions USER_TEST and USER_HASH.
3915 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3917 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3918 new size when it becomes full is computed by adding REHASH_SIZE to
3919 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3920 table's new size is computed by multiplying its old size with
3921 REHASH_SIZE.
3923 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3924 be resized when the ratio of (number of entries in the table) /
3925 (table size) is >= REHASH_THRESHOLD.
3927 WEAK specifies the weakness of the table. If non-nil, it must be
3928 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3930 Lisp_Object
3931 make_hash_table (test, size, rehash_size, rehash_threshold, weak,
3932 user_test, user_hash)
3933 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
3934 Lisp_Object user_test, user_hash;
3936 struct Lisp_Hash_Table *h;
3937 Lisp_Object table;
3938 int index_size, i, sz;
3940 /* Preconditions. */
3941 xassert (SYMBOLP (test));
3942 xassert (INTEGERP (size) && XINT (size) >= 0);
3943 xassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3944 || (FLOATP (rehash_size) && XFLOATINT (rehash_size) > 1.0));
3945 xassert (FLOATP (rehash_threshold)
3946 && XFLOATINT (rehash_threshold) > 0
3947 && XFLOATINT (rehash_threshold) <= 1.0);
3949 if (XFASTINT (size) == 0)
3950 size = make_number (1);
3952 /* Allocate a table and initialize it. */
3953 h = allocate_hash_table ();
3955 /* Initialize hash table slots. */
3956 sz = XFASTINT (size);
3958 h->test = test;
3959 if (EQ (test, Qeql))
3961 h->cmpfn = cmpfn_eql;
3962 h->hashfn = hashfn_eql;
3964 else if (EQ (test, Qeq))
3966 h->cmpfn = NULL;
3967 h->hashfn = hashfn_eq;
3969 else if (EQ (test, Qequal))
3971 h->cmpfn = cmpfn_equal;
3972 h->hashfn = hashfn_equal;
3974 else
3976 h->user_cmp_function = user_test;
3977 h->user_hash_function = user_hash;
3978 h->cmpfn = cmpfn_user_defined;
3979 h->hashfn = hashfn_user_defined;
3982 h->weak = weak;
3983 h->rehash_threshold = rehash_threshold;
3984 h->rehash_size = rehash_size;
3985 h->count = 0;
3986 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3987 h->hash = Fmake_vector (size, Qnil);
3988 h->next = Fmake_vector (size, Qnil);
3989 /* Cast to int here avoids losing with gcc 2.95 on Tru64/Alpha... */
3990 index_size = next_almost_prime ((int) (sz / XFLOATINT (rehash_threshold)));
3991 h->index = Fmake_vector (make_number (index_size), Qnil);
3993 /* Set up the free list. */
3994 for (i = 0; i < sz - 1; ++i)
3995 HASH_NEXT (h, i) = make_number (i + 1);
3996 h->next_free = make_number (0);
3998 XSET_HASH_TABLE (table, h);
3999 xassert (HASH_TABLE_P (table));
4000 xassert (XHASH_TABLE (table) == h);
4002 /* Maybe add this hash table to the list of all weak hash tables. */
4003 if (NILP (h->weak))
4004 h->next_weak = NULL;
4005 else
4007 h->next_weak = weak_hash_tables;
4008 weak_hash_tables = h;
4011 return table;
4015 /* Return a copy of hash table H1. Keys and values are not copied,
4016 only the table itself is. */
4018 Lisp_Object
4019 copy_hash_table (h1)
4020 struct Lisp_Hash_Table *h1;
4022 Lisp_Object table;
4023 struct Lisp_Hash_Table *h2;
4024 struct Lisp_Vector *next;
4026 h2 = allocate_hash_table ();
4027 next = h2->vec_next;
4028 bcopy (h1, h2, sizeof *h2);
4029 h2->vec_next = next;
4030 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
4031 h2->hash = Fcopy_sequence (h1->hash);
4032 h2->next = Fcopy_sequence (h1->next);
4033 h2->index = Fcopy_sequence (h1->index);
4034 XSET_HASH_TABLE (table, h2);
4036 /* Maybe add this hash table to the list of all weak hash tables. */
4037 if (!NILP (h2->weak))
4039 h2->next_weak = weak_hash_tables;
4040 weak_hash_tables = h2;
4043 return table;
4047 /* Resize hash table H if it's too full. If H cannot be resized
4048 because it's already too large, throw an error. */
4050 static INLINE void
4051 maybe_resize_hash_table (h)
4052 struct Lisp_Hash_Table *h;
4054 if (NILP (h->next_free))
4056 int old_size = HASH_TABLE_SIZE (h);
4057 int i, new_size, index_size;
4058 EMACS_INT nsize;
4060 if (INTEGERP (h->rehash_size))
4061 new_size = old_size + XFASTINT (h->rehash_size);
4062 else
4063 new_size = old_size * XFLOATINT (h->rehash_size);
4064 new_size = max (old_size + 1, new_size);
4065 index_size = next_almost_prime ((int)
4066 (new_size
4067 / XFLOATINT (h->rehash_threshold)));
4068 /* Assignment to EMACS_INT stops GCC whining about limited range
4069 of data type. */
4070 nsize = max (index_size, 2 * new_size);
4071 if (nsize > MOST_POSITIVE_FIXNUM)
4072 error ("Hash table too large to resize");
4074 h->key_and_value = larger_vector (h->key_and_value, 2 * new_size, Qnil);
4075 h->next = larger_vector (h->next, new_size, Qnil);
4076 h->hash = larger_vector (h->hash, new_size, Qnil);
4077 h->index = Fmake_vector (make_number (index_size), Qnil);
4079 /* Update the free list. Do it so that new entries are added at
4080 the end of the free list. This makes some operations like
4081 maphash faster. */
4082 for (i = old_size; i < new_size - 1; ++i)
4083 HASH_NEXT (h, i) = make_number (i + 1);
4085 if (!NILP (h->next_free))
4087 Lisp_Object last, next;
4089 last = h->next_free;
4090 while (next = HASH_NEXT (h, XFASTINT (last)),
4091 !NILP (next))
4092 last = next;
4094 HASH_NEXT (h, XFASTINT (last)) = make_number (old_size);
4096 else
4097 XSETFASTINT (h->next_free, old_size);
4099 /* Rehash. */
4100 for (i = 0; i < old_size; ++i)
4101 if (!NILP (HASH_HASH (h, i)))
4103 unsigned hash_code = XUINT (HASH_HASH (h, i));
4104 int start_of_bucket = hash_code % ASIZE (h->index);
4105 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4106 HASH_INDEX (h, start_of_bucket) = make_number (i);
4112 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
4113 the hash code of KEY. Value is the index of the entry in H
4114 matching KEY, or -1 if not found. */
4117 hash_lookup (h, key, hash)
4118 struct Lisp_Hash_Table *h;
4119 Lisp_Object key;
4120 unsigned *hash;
4122 unsigned hash_code;
4123 int start_of_bucket;
4124 Lisp_Object idx;
4126 hash_code = h->hashfn (h, key);
4127 if (hash)
4128 *hash = hash_code;
4130 start_of_bucket = hash_code % ASIZE (h->index);
4131 idx = HASH_INDEX (h, start_of_bucket);
4133 /* We need not gcpro idx since it's either an integer or nil. */
4134 while (!NILP (idx))
4136 int i = XFASTINT (idx);
4137 if (EQ (key, HASH_KEY (h, i))
4138 || (h->cmpfn
4139 && h->cmpfn (h, key, hash_code,
4140 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4141 break;
4142 idx = HASH_NEXT (h, i);
4145 return NILP (idx) ? -1 : XFASTINT (idx);
4149 /* Put an entry into hash table H that associates KEY with VALUE.
4150 HASH is a previously computed hash code of KEY.
4151 Value is the index of the entry in H matching KEY. */
4154 hash_put (h, key, value, hash)
4155 struct Lisp_Hash_Table *h;
4156 Lisp_Object key, value;
4157 unsigned hash;
4159 int start_of_bucket, i;
4161 xassert ((hash & ~INTMASK) == 0);
4163 /* Increment count after resizing because resizing may fail. */
4164 maybe_resize_hash_table (h);
4165 h->count++;
4167 /* Store key/value in the key_and_value vector. */
4168 i = XFASTINT (h->next_free);
4169 h->next_free = HASH_NEXT (h, i);
4170 HASH_KEY (h, i) = key;
4171 HASH_VALUE (h, i) = value;
4173 /* Remember its hash code. */
4174 HASH_HASH (h, i) = make_number (hash);
4176 /* Add new entry to its collision chain. */
4177 start_of_bucket = hash % ASIZE (h->index);
4178 HASH_NEXT (h, i) = HASH_INDEX (h, start_of_bucket);
4179 HASH_INDEX (h, start_of_bucket) = make_number (i);
4180 return i;
4184 /* Remove the entry matching KEY from hash table H, if there is one. */
4186 static void
4187 hash_remove_from_table (h, key)
4188 struct Lisp_Hash_Table *h;
4189 Lisp_Object key;
4191 unsigned hash_code;
4192 int start_of_bucket;
4193 Lisp_Object idx, prev;
4195 hash_code = h->hashfn (h, key);
4196 start_of_bucket = hash_code % ASIZE (h->index);
4197 idx = HASH_INDEX (h, start_of_bucket);
4198 prev = Qnil;
4200 /* We need not gcpro idx, prev since they're either integers or nil. */
4201 while (!NILP (idx))
4203 int i = XFASTINT (idx);
4205 if (EQ (key, HASH_KEY (h, i))
4206 || (h->cmpfn
4207 && h->cmpfn (h, key, hash_code,
4208 HASH_KEY (h, i), XUINT (HASH_HASH (h, i)))))
4210 /* Take entry out of collision chain. */
4211 if (NILP (prev))
4212 HASH_INDEX (h, start_of_bucket) = HASH_NEXT (h, i);
4213 else
4214 HASH_NEXT (h, XFASTINT (prev)) = HASH_NEXT (h, i);
4216 /* Clear slots in key_and_value and add the slots to
4217 the free list. */
4218 HASH_KEY (h, i) = HASH_VALUE (h, i) = HASH_HASH (h, i) = Qnil;
4219 HASH_NEXT (h, i) = h->next_free;
4220 h->next_free = make_number (i);
4221 h->count--;
4222 xassert (h->count >= 0);
4223 break;
4225 else
4227 prev = idx;
4228 idx = HASH_NEXT (h, i);
4234 /* Clear hash table H. */
4236 void
4237 hash_clear (h)
4238 struct Lisp_Hash_Table *h;
4240 if (h->count > 0)
4242 int i, size = HASH_TABLE_SIZE (h);
4244 for (i = 0; i < size; ++i)
4246 HASH_NEXT (h, i) = i < size - 1 ? make_number (i + 1) : Qnil;
4247 HASH_KEY (h, i) = Qnil;
4248 HASH_VALUE (h, i) = Qnil;
4249 HASH_HASH (h, i) = Qnil;
4252 for (i = 0; i < ASIZE (h->index); ++i)
4253 ASET (h->index, i, Qnil);
4255 h->next_free = make_number (0);
4256 h->count = 0;
4262 /************************************************************************
4263 Weak Hash Tables
4264 ************************************************************************/
4266 void
4267 init_weak_hash_tables ()
4269 weak_hash_tables = NULL;
4272 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
4273 entries from the table that don't survive the current GC.
4274 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
4275 non-zero if anything was marked. */
4277 static int
4278 sweep_weak_table (h, remove_entries_p)
4279 struct Lisp_Hash_Table *h;
4280 int remove_entries_p;
4282 int bucket, n, marked;
4284 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
4285 marked = 0;
4287 for (bucket = 0; bucket < n; ++bucket)
4289 Lisp_Object idx, next, prev;
4291 /* Follow collision chain, removing entries that
4292 don't survive this garbage collection. */
4293 prev = Qnil;
4294 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
4296 int i = XFASTINT (idx);
4297 int key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
4298 int value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
4299 int remove_p;
4301 if (EQ (h->weak, Qkey))
4302 remove_p = !key_known_to_survive_p;
4303 else if (EQ (h->weak, Qvalue))
4304 remove_p = !value_known_to_survive_p;
4305 else if (EQ (h->weak, Qkey_or_value))
4306 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
4307 else if (EQ (h->weak, Qkey_and_value))
4308 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
4309 else
4310 abort ();
4312 next = HASH_NEXT (h, i);
4314 if (remove_entries_p)
4316 if (remove_p)
4318 /* Take out of collision chain. */
4319 if (NILP (prev))
4320 HASH_INDEX (h, bucket) = next;
4321 else
4322 HASH_NEXT (h, XFASTINT (prev)) = next;
4324 /* Add to free list. */
4325 HASH_NEXT (h, i) = h->next_free;
4326 h->next_free = idx;
4328 /* Clear key, value, and hash. */
4329 HASH_KEY (h, i) = HASH_VALUE (h, i) = Qnil;
4330 HASH_HASH (h, i) = Qnil;
4332 h->count--;
4334 else
4336 prev = idx;
4339 else
4341 if (!remove_p)
4343 /* Make sure key and value survive. */
4344 if (!key_known_to_survive_p)
4346 mark_object (HASH_KEY (h, i));
4347 marked = 1;
4350 if (!value_known_to_survive_p)
4352 mark_object (HASH_VALUE (h, i));
4353 marked = 1;
4360 return marked;
4363 /* Remove elements from weak hash tables that don't survive the
4364 current garbage collection. Remove weak tables that don't survive
4365 from Vweak_hash_tables. Called from gc_sweep. */
4367 void
4368 sweep_weak_hash_tables ()
4370 struct Lisp_Hash_Table *h, *used, *next;
4371 int marked;
4373 /* Mark all keys and values that are in use. Keep on marking until
4374 there is no more change. This is necessary for cases like
4375 value-weak table A containing an entry X -> Y, where Y is used in a
4376 key-weak table B, Z -> Y. If B comes after A in the list of weak
4377 tables, X -> Y might be removed from A, although when looking at B
4378 one finds that it shouldn't. */
4381 marked = 0;
4382 for (h = weak_hash_tables; h; h = h->next_weak)
4384 if (h->size & ARRAY_MARK_FLAG)
4385 marked |= sweep_weak_table (h, 0);
4388 while (marked);
4390 /* Remove tables and entries that aren't used. */
4391 for (h = weak_hash_tables, used = NULL; h; h = next)
4393 next = h->next_weak;
4395 if (h->size & ARRAY_MARK_FLAG)
4397 /* TABLE is marked as used. Sweep its contents. */
4398 if (h->count > 0)
4399 sweep_weak_table (h, 1);
4401 /* Add table to the list of used weak hash tables. */
4402 h->next_weak = used;
4403 used = h;
4407 weak_hash_tables = used;
4412 /***********************************************************************
4413 Hash Code Computation
4414 ***********************************************************************/
4416 /* Maximum depth up to which to dive into Lisp structures. */
4418 #define SXHASH_MAX_DEPTH 3
4420 /* Maximum length up to which to take list and vector elements into
4421 account. */
4423 #define SXHASH_MAX_LEN 7
4425 /* Combine two integers X and Y for hashing. */
4427 #define SXHASH_COMBINE(X, Y) \
4428 ((((unsigned)(X) << 4) + (((unsigned)(X) >> 24) & 0x0fffffff)) \
4429 + (unsigned)(Y))
4432 /* Return a hash for string PTR which has length LEN. The hash
4433 code returned is guaranteed to fit in a Lisp integer. */
4435 static unsigned
4436 sxhash_string (ptr, len)
4437 unsigned char *ptr;
4438 int len;
4440 unsigned char *p = ptr;
4441 unsigned char *end = p + len;
4442 unsigned char c;
4443 unsigned hash = 0;
4445 while (p != end)
4447 c = *p++;
4448 if (c >= 0140)
4449 c -= 40;
4450 hash = ((hash << 4) + (hash >> 28) + c);
4453 return hash & INTMASK;
4457 /* Return a hash for list LIST. DEPTH is the current depth in the
4458 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4460 static unsigned
4461 sxhash_list (list, depth)
4462 Lisp_Object list;
4463 int depth;
4465 unsigned hash = 0;
4466 int i;
4468 if (depth < SXHASH_MAX_DEPTH)
4469 for (i = 0;
4470 CONSP (list) && i < SXHASH_MAX_LEN;
4471 list = XCDR (list), ++i)
4473 unsigned hash2 = sxhash (XCAR (list), depth + 1);
4474 hash = SXHASH_COMBINE (hash, hash2);
4477 if (!NILP (list))
4479 unsigned hash2 = sxhash (list, depth + 1);
4480 hash = SXHASH_COMBINE (hash, hash2);
4483 return hash;
4487 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4488 the Lisp structure. */
4490 static unsigned
4491 sxhash_vector (vec, depth)
4492 Lisp_Object vec;
4493 int depth;
4495 unsigned hash = ASIZE (vec);
4496 int i, n;
4498 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4499 for (i = 0; i < n; ++i)
4501 unsigned hash2 = sxhash (AREF (vec, i), depth + 1);
4502 hash = SXHASH_COMBINE (hash, hash2);
4505 return hash;
4509 /* Return a hash for bool-vector VECTOR. */
4511 static unsigned
4512 sxhash_bool_vector (vec)
4513 Lisp_Object vec;
4515 unsigned hash = XBOOL_VECTOR (vec)->size;
4516 int i, n;
4518 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->vector_size);
4519 for (i = 0; i < n; ++i)
4520 hash = SXHASH_COMBINE (hash, XBOOL_VECTOR (vec)->data[i]);
4522 return hash;
4526 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4527 structure. Value is an unsigned integer clipped to INTMASK. */
4529 unsigned
4530 sxhash (obj, depth)
4531 Lisp_Object obj;
4532 int depth;
4534 unsigned hash;
4536 if (depth > SXHASH_MAX_DEPTH)
4537 return 0;
4539 switch (XTYPE (obj))
4541 case_Lisp_Int:
4542 hash = XUINT (obj);
4543 break;
4545 case Lisp_Misc:
4546 hash = XUINT (obj);
4547 break;
4549 case Lisp_Symbol:
4550 obj = SYMBOL_NAME (obj);
4551 /* Fall through. */
4553 case Lisp_String:
4554 hash = sxhash_string (SDATA (obj), SCHARS (obj));
4555 break;
4557 /* This can be everything from a vector to an overlay. */
4558 case Lisp_Vectorlike:
4559 if (VECTORP (obj))
4560 /* According to the CL HyperSpec, two arrays are equal only if
4561 they are `eq', except for strings and bit-vectors. In
4562 Emacs, this works differently. We have to compare element
4563 by element. */
4564 hash = sxhash_vector (obj, depth);
4565 else if (BOOL_VECTOR_P (obj))
4566 hash = sxhash_bool_vector (obj);
4567 else
4568 /* Others are `equal' if they are `eq', so let's take their
4569 address as hash. */
4570 hash = XUINT (obj);
4571 break;
4573 case Lisp_Cons:
4574 hash = sxhash_list (obj, depth);
4575 break;
4577 case Lisp_Float:
4579 double val = XFLOAT_DATA (obj);
4580 unsigned char *p = (unsigned char *) &val;
4581 unsigned char *e = p + sizeof val;
4582 for (hash = 0; p < e; ++p)
4583 hash = SXHASH_COMBINE (hash, *p);
4584 break;
4587 default:
4588 abort ();
4591 return hash & INTMASK;
4596 /***********************************************************************
4597 Lisp Interface
4598 ***********************************************************************/
4601 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4602 doc: /* Compute a hash code for OBJ and return it as integer. */)
4603 (obj)
4604 Lisp_Object obj;
4606 unsigned hash = sxhash (obj, 0);
4607 return make_number (hash);
4611 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4612 doc: /* Create and return a new hash table.
4614 Arguments are specified as keyword/argument pairs. The following
4615 arguments are defined:
4617 :test TEST -- TEST must be a symbol that specifies how to compare
4618 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4619 `equal'. User-supplied test and hash functions can be specified via
4620 `define-hash-table-test'.
4622 :size SIZE -- A hint as to how many elements will be put in the table.
4623 Default is 65.
4625 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4626 fills up. If REHASH-SIZE is an integer, add that many space. If it
4627 is a float, it must be > 1.0, and the new size is computed by
4628 multiplying the old size with that factor. Default is 1.5.
4630 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4631 Resize the hash table when ratio of the number of entries in the
4632 table. Default is 0.8.
4634 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4635 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4636 returned is a weak table. Key/value pairs are removed from a weak
4637 hash table when there are no non-weak references pointing to their
4638 key, value, one of key or value, or both key and value, depending on
4639 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4640 is nil.
4642 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4643 (nargs, args)
4644 int nargs;
4645 Lisp_Object *args;
4647 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4648 Lisp_Object user_test, user_hash;
4649 char *used;
4650 int i;
4652 /* The vector `used' is used to keep track of arguments that
4653 have been consumed. */
4654 used = (char *) alloca (nargs * sizeof *used);
4655 bzero (used, nargs * sizeof *used);
4657 /* See if there's a `:test TEST' among the arguments. */
4658 i = get_key_arg (QCtest, nargs, args, used);
4659 test = i < 0 ? Qeql : args[i];
4660 if (!EQ (test, Qeq) && !EQ (test, Qeql) && !EQ (test, Qequal))
4662 /* See if it is a user-defined test. */
4663 Lisp_Object prop;
4665 prop = Fget (test, Qhash_table_test);
4666 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4667 signal_error ("Invalid hash table test", test);
4668 user_test = XCAR (prop);
4669 user_hash = XCAR (XCDR (prop));
4671 else
4672 user_test = user_hash = Qnil;
4674 /* See if there's a `:size SIZE' argument. */
4675 i = get_key_arg (QCsize, nargs, args, used);
4676 size = i < 0 ? Qnil : args[i];
4677 if (NILP (size))
4678 size = make_number (DEFAULT_HASH_SIZE);
4679 else if (!INTEGERP (size) || XINT (size) < 0)
4680 signal_error ("Invalid hash table size", size);
4682 /* Look for `:rehash-size SIZE'. */
4683 i = get_key_arg (QCrehash_size, nargs, args, used);
4684 rehash_size = i < 0 ? make_float (DEFAULT_REHASH_SIZE) : args[i];
4685 if (!NUMBERP (rehash_size)
4686 || (INTEGERP (rehash_size) && XINT (rehash_size) <= 0)
4687 || XFLOATINT (rehash_size) <= 1.0)
4688 signal_error ("Invalid hash table rehash size", rehash_size);
4690 /* Look for `:rehash-threshold THRESHOLD'. */
4691 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4692 rehash_threshold = i < 0 ? make_float (DEFAULT_REHASH_THRESHOLD) : args[i];
4693 if (!FLOATP (rehash_threshold)
4694 || XFLOATINT (rehash_threshold) <= 0.0
4695 || XFLOATINT (rehash_threshold) > 1.0)
4696 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4698 /* Look for `:weakness WEAK'. */
4699 i = get_key_arg (QCweakness, nargs, args, used);
4700 weak = i < 0 ? Qnil : args[i];
4701 if (EQ (weak, Qt))
4702 weak = Qkey_and_value;
4703 if (!NILP (weak)
4704 && !EQ (weak, Qkey)
4705 && !EQ (weak, Qvalue)
4706 && !EQ (weak, Qkey_or_value)
4707 && !EQ (weak, Qkey_and_value))
4708 signal_error ("Invalid hash table weakness", weak);
4710 /* Now, all args should have been used up, or there's a problem. */
4711 for (i = 0; i < nargs; ++i)
4712 if (!used[i])
4713 signal_error ("Invalid argument list", args[i]);
4715 return make_hash_table (test, size, rehash_size, rehash_threshold, weak,
4716 user_test, user_hash);
4720 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4721 doc: /* Return a copy of hash table TABLE. */)
4722 (table)
4723 Lisp_Object table;
4725 return copy_hash_table (check_hash_table (table));
4729 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4730 doc: /* Return the number of elements in TABLE. */)
4731 (table)
4732 Lisp_Object table;
4734 return make_number (check_hash_table (table)->count);
4738 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4739 Shash_table_rehash_size, 1, 1, 0,
4740 doc: /* Return the current rehash size of TABLE. */)
4741 (table)
4742 Lisp_Object table;
4744 return check_hash_table (table)->rehash_size;
4748 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4749 Shash_table_rehash_threshold, 1, 1, 0,
4750 doc: /* Return the current rehash threshold of TABLE. */)
4751 (table)
4752 Lisp_Object table;
4754 return check_hash_table (table)->rehash_threshold;
4758 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4759 doc: /* Return the size of TABLE.
4760 The size can be used as an argument to `make-hash-table' to create
4761 a hash table than can hold as many elements of TABLE holds
4762 without need for resizing. */)
4763 (table)
4764 Lisp_Object table;
4766 struct Lisp_Hash_Table *h = check_hash_table (table);
4767 return make_number (HASH_TABLE_SIZE (h));
4771 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4772 doc: /* Return the test TABLE uses. */)
4773 (table)
4774 Lisp_Object table;
4776 return check_hash_table (table)->test;
4780 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4781 1, 1, 0,
4782 doc: /* Return the weakness of TABLE. */)
4783 (table)
4784 Lisp_Object table;
4786 return check_hash_table (table)->weak;
4790 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4791 doc: /* Return t if OBJ is a Lisp hash table object. */)
4792 (obj)
4793 Lisp_Object obj;
4795 return HASH_TABLE_P (obj) ? Qt : Qnil;
4799 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4800 doc: /* Clear hash table TABLE and return it. */)
4801 (table)
4802 Lisp_Object table;
4804 hash_clear (check_hash_table (table));
4805 /* Be compatible with XEmacs. */
4806 return table;
4810 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4811 doc: /* Look up KEY in TABLE and return its associated value.
4812 If KEY is not found, return DFLT which defaults to nil. */)
4813 (key, table, dflt)
4814 Lisp_Object key, table, dflt;
4816 struct Lisp_Hash_Table *h = check_hash_table (table);
4817 int i = hash_lookup (h, key, NULL);
4818 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4822 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4823 doc: /* Associate KEY with VALUE in hash table TABLE.
4824 If KEY is already present in table, replace its current value with
4825 VALUE. */)
4826 (key, value, table)
4827 Lisp_Object key, value, table;
4829 struct Lisp_Hash_Table *h = check_hash_table (table);
4830 int i;
4831 unsigned hash;
4833 i = hash_lookup (h, key, &hash);
4834 if (i >= 0)
4835 HASH_VALUE (h, i) = value;
4836 else
4837 hash_put (h, key, value, hash);
4839 return value;
4843 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4844 doc: /* Remove KEY from TABLE. */)
4845 (key, table)
4846 Lisp_Object key, table;
4848 struct Lisp_Hash_Table *h = check_hash_table (table);
4849 hash_remove_from_table (h, key);
4850 return Qnil;
4854 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4855 doc: /* Call FUNCTION for all entries in hash table TABLE.
4856 FUNCTION is called with two arguments, KEY and VALUE. */)
4857 (function, table)
4858 Lisp_Object function, table;
4860 struct Lisp_Hash_Table *h = check_hash_table (table);
4861 Lisp_Object args[3];
4862 int i;
4864 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4865 if (!NILP (HASH_HASH (h, i)))
4867 args[0] = function;
4868 args[1] = HASH_KEY (h, i);
4869 args[2] = HASH_VALUE (h, i);
4870 Ffuncall (3, args);
4873 return Qnil;
4877 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4878 Sdefine_hash_table_test, 3, 3, 0,
4879 doc: /* Define a new hash table test with name NAME, a symbol.
4881 In hash tables created with NAME specified as test, use TEST to
4882 compare keys, and HASH for computing hash codes of keys.
4884 TEST must be a function taking two arguments and returning non-nil if
4885 both arguments are the same. HASH must be a function taking one
4886 argument and return an integer that is the hash code of the argument.
4887 Hash code computation should use the whole value range of integers,
4888 including negative integers. */)
4889 (name, test, hash)
4890 Lisp_Object name, test, hash;
4892 return Fput (name, Qhash_table_test, list2 (test, hash));
4897 /************************************************************************
4899 ************************************************************************/
4901 #include "md5.h"
4903 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4904 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4906 A message digest is a cryptographic checksum of a document, and the
4907 algorithm to calculate it is defined in RFC 1321.
4909 The two optional arguments START and END are character positions
4910 specifying for which part of OBJECT the message digest should be
4911 computed. If nil or omitted, the digest is computed for the whole
4912 OBJECT.
4914 The MD5 message digest is computed from the result of encoding the
4915 text in a coding system, not directly from the internal Emacs form of
4916 the text. The optional fourth argument CODING-SYSTEM specifies which
4917 coding system to encode the text with. It should be the same coding
4918 system that you used or will use when actually writing the text into a
4919 file.
4921 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4922 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4923 system would be chosen by default for writing this text into a file.
4925 If OBJECT is a string, the most preferred coding system (see the
4926 command `prefer-coding-system') is used.
4928 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4929 guesswork fails. Normally, an error is signaled in such case. */)
4930 (object, start, end, coding_system, noerror)
4931 Lisp_Object object, start, end, coding_system, noerror;
4933 unsigned char digest[16];
4934 unsigned char value[33];
4935 int i;
4936 int size;
4937 int size_byte = 0;
4938 int start_char = 0, end_char = 0;
4939 int start_byte = 0, end_byte = 0;
4940 register int b, e;
4941 register struct buffer *bp;
4942 int temp;
4944 if (STRINGP (object))
4946 if (NILP (coding_system))
4948 /* Decide the coding-system to encode the data with. */
4950 if (STRING_MULTIBYTE (object))
4951 /* use default, we can't guess correct value */
4952 coding_system = preferred_coding_system ();
4953 else
4954 coding_system = Qraw_text;
4957 if (NILP (Fcoding_system_p (coding_system)))
4959 /* Invalid coding system. */
4961 if (!NILP (noerror))
4962 coding_system = Qraw_text;
4963 else
4964 xsignal1 (Qcoding_system_error, coding_system);
4967 if (STRING_MULTIBYTE (object))
4968 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4970 size = SCHARS (object);
4971 size_byte = SBYTES (object);
4973 if (!NILP (start))
4975 CHECK_NUMBER (start);
4977 start_char = XINT (start);
4979 if (start_char < 0)
4980 start_char += size;
4982 start_byte = string_char_to_byte (object, start_char);
4985 if (NILP (end))
4987 end_char = size;
4988 end_byte = size_byte;
4990 else
4992 CHECK_NUMBER (end);
4994 end_char = XINT (end);
4996 if (end_char < 0)
4997 end_char += size;
4999 end_byte = string_char_to_byte (object, end_char);
5002 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
5003 args_out_of_range_3 (object, make_number (start_char),
5004 make_number (end_char));
5006 else
5008 struct buffer *prev = current_buffer;
5010 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
5012 CHECK_BUFFER (object);
5014 bp = XBUFFER (object);
5015 if (bp != current_buffer)
5016 set_buffer_internal (bp);
5018 if (NILP (start))
5019 b = BEGV;
5020 else
5022 CHECK_NUMBER_COERCE_MARKER (start);
5023 b = XINT (start);
5026 if (NILP (end))
5027 e = ZV;
5028 else
5030 CHECK_NUMBER_COERCE_MARKER (end);
5031 e = XINT (end);
5034 if (b > e)
5035 temp = b, b = e, e = temp;
5037 if (!(BEGV <= b && e <= ZV))
5038 args_out_of_range (start, end);
5040 if (NILP (coding_system))
5042 /* Decide the coding-system to encode the data with.
5043 See fileio.c:Fwrite-region */
5045 if (!NILP (Vcoding_system_for_write))
5046 coding_system = Vcoding_system_for_write;
5047 else
5049 int force_raw_text = 0;
5051 coding_system = XBUFFER (object)->buffer_file_coding_system;
5052 if (NILP (coding_system)
5053 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
5055 coding_system = Qnil;
5056 if (NILP (current_buffer->enable_multibyte_characters))
5057 force_raw_text = 1;
5060 if (NILP (coding_system) && !NILP (Fbuffer_file_name(object)))
5062 /* Check file-coding-system-alist. */
5063 Lisp_Object args[4], val;
5065 args[0] = Qwrite_region; args[1] = start; args[2] = end;
5066 args[3] = Fbuffer_file_name(object);
5067 val = Ffind_operation_coding_system (4, args);
5068 if (CONSP (val) && !NILP (XCDR (val)))
5069 coding_system = XCDR (val);
5072 if (NILP (coding_system)
5073 && !NILP (XBUFFER (object)->buffer_file_coding_system))
5075 /* If we still have not decided a coding system, use the
5076 default value of buffer-file-coding-system. */
5077 coding_system = XBUFFER (object)->buffer_file_coding_system;
5080 if (!force_raw_text
5081 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
5082 /* Confirm that VAL can surely encode the current region. */
5083 coding_system = call4 (Vselect_safe_coding_system_function,
5084 make_number (b), make_number (e),
5085 coding_system, Qnil);
5087 if (force_raw_text)
5088 coding_system = Qraw_text;
5091 if (NILP (Fcoding_system_p (coding_system)))
5093 /* Invalid coding system. */
5095 if (!NILP (noerror))
5096 coding_system = Qraw_text;
5097 else
5098 xsignal1 (Qcoding_system_error, coding_system);
5102 object = make_buffer_string (b, e, 0);
5103 if (prev != current_buffer)
5104 set_buffer_internal (prev);
5105 /* Discard the unwind protect for recovering the current
5106 buffer. */
5107 specpdl_ptr--;
5109 if (STRING_MULTIBYTE (object))
5110 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
5113 md5_buffer (SDATA (object) + start_byte,
5114 SBYTES (object) - (size_byte - end_byte),
5115 digest);
5117 for (i = 0; i < 16; i++)
5118 sprintf (&value[2 * i], "%02x", digest[i]);
5119 value[32] = '\0';
5121 return make_string (value, 32);
5125 void
5126 syms_of_fns ()
5128 /* Hash table stuff. */
5129 Qhash_table_p = intern_c_string ("hash-table-p");
5130 staticpro (&Qhash_table_p);
5131 Qeq = intern_c_string ("eq");
5132 staticpro (&Qeq);
5133 Qeql = intern_c_string ("eql");
5134 staticpro (&Qeql);
5135 Qequal = intern_c_string ("equal");
5136 staticpro (&Qequal);
5137 QCtest = intern_c_string (":test");
5138 staticpro (&QCtest);
5139 QCsize = intern_c_string (":size");
5140 staticpro (&QCsize);
5141 QCrehash_size = intern_c_string (":rehash-size");
5142 staticpro (&QCrehash_size);
5143 QCrehash_threshold = intern_c_string (":rehash-threshold");
5144 staticpro (&QCrehash_threshold);
5145 QCweakness = intern_c_string (":weakness");
5146 staticpro (&QCweakness);
5147 Qkey = intern_c_string ("key");
5148 staticpro (&Qkey);
5149 Qvalue = intern_c_string ("value");
5150 staticpro (&Qvalue);
5151 Qhash_table_test = intern_c_string ("hash-table-test");
5152 staticpro (&Qhash_table_test);
5153 Qkey_or_value = intern_c_string ("key-or-value");
5154 staticpro (&Qkey_or_value);
5155 Qkey_and_value = intern_c_string ("key-and-value");
5156 staticpro (&Qkey_and_value);
5158 defsubr (&Ssxhash);
5159 defsubr (&Smake_hash_table);
5160 defsubr (&Scopy_hash_table);
5161 defsubr (&Shash_table_count);
5162 defsubr (&Shash_table_rehash_size);
5163 defsubr (&Shash_table_rehash_threshold);
5164 defsubr (&Shash_table_size);
5165 defsubr (&Shash_table_test);
5166 defsubr (&Shash_table_weakness);
5167 defsubr (&Shash_table_p);
5168 defsubr (&Sclrhash);
5169 defsubr (&Sgethash);
5170 defsubr (&Sputhash);
5171 defsubr (&Sremhash);
5172 defsubr (&Smaphash);
5173 defsubr (&Sdefine_hash_table_test);
5175 Qstring_lessp = intern_c_string ("string-lessp");
5176 staticpro (&Qstring_lessp);
5177 Qprovide = intern_c_string ("provide");
5178 staticpro (&Qprovide);
5179 Qrequire = intern_c_string ("require");
5180 staticpro (&Qrequire);
5181 Qyes_or_no_p_history = intern_c_string ("yes-or-no-p-history");
5182 staticpro (&Qyes_or_no_p_history);
5183 Qcursor_in_echo_area = intern_c_string ("cursor-in-echo-area");
5184 staticpro (&Qcursor_in_echo_area);
5185 Qwidget_type = intern_c_string ("widget-type");
5186 staticpro (&Qwidget_type);
5188 staticpro (&string_char_byte_cache_string);
5189 string_char_byte_cache_string = Qnil;
5191 require_nesting_list = Qnil;
5192 staticpro (&require_nesting_list);
5194 Fset (Qyes_or_no_p_history, Qnil);
5196 DEFVAR_LISP ("features", &Vfeatures,
5197 doc: /* A list of symbols which are the features of the executing Emacs.
5198 Used by `featurep' and `require', and altered by `provide'. */);
5199 Vfeatures = Fcons (intern_c_string ("emacs"), Qnil);
5200 Qsubfeatures = intern_c_string ("subfeatures");
5201 staticpro (&Qsubfeatures);
5203 #ifdef HAVE_LANGINFO_CODESET
5204 Qcodeset = intern_c_string ("codeset");
5205 staticpro (&Qcodeset);
5206 Qdays = intern_c_string ("days");
5207 staticpro (&Qdays);
5208 Qmonths = intern_c_string ("months");
5209 staticpro (&Qmonths);
5210 Qpaper = intern_c_string ("paper");
5211 staticpro (&Qpaper);
5212 #endif /* HAVE_LANGINFO_CODESET */
5214 DEFVAR_BOOL ("use-dialog-box", &use_dialog_box,
5215 doc: /* *Non-nil means mouse commands use dialog boxes to ask questions.
5216 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
5217 invoked by mouse clicks and mouse menu items.
5219 On some platforms, file selection dialogs are also enabled if this is
5220 non-nil. */);
5221 use_dialog_box = 1;
5223 DEFVAR_BOOL ("use-file-dialog", &use_file_dialog,
5224 doc: /* *Non-nil means mouse commands use a file dialog to ask for files.
5225 This applies to commands from menus and tool bar buttons even when
5226 they are initiated from the keyboard. If `use-dialog-box' is nil,
5227 that disables the use of a file dialog, regardless of the value of
5228 this variable. */);
5229 use_file_dialog = 1;
5231 defsubr (&Sidentity);
5232 defsubr (&Srandom);
5233 defsubr (&Slength);
5234 defsubr (&Ssafe_length);
5235 defsubr (&Sstring_bytes);
5236 defsubr (&Sstring_equal);
5237 defsubr (&Scompare_strings);
5238 defsubr (&Sstring_lessp);
5239 defsubr (&Sappend);
5240 defsubr (&Sconcat);
5241 defsubr (&Svconcat);
5242 defsubr (&Scopy_sequence);
5243 defsubr (&Sstring_make_multibyte);
5244 defsubr (&Sstring_make_unibyte);
5245 defsubr (&Sstring_as_multibyte);
5246 defsubr (&Sstring_as_unibyte);
5247 defsubr (&Sstring_to_multibyte);
5248 defsubr (&Sstring_to_unibyte);
5249 defsubr (&Scopy_alist);
5250 defsubr (&Ssubstring);
5251 defsubr (&Ssubstring_no_properties);
5252 defsubr (&Snthcdr);
5253 defsubr (&Snth);
5254 defsubr (&Selt);
5255 defsubr (&Smember);
5256 defsubr (&Smemq);
5257 defsubr (&Smemql);
5258 defsubr (&Sassq);
5259 defsubr (&Sassoc);
5260 defsubr (&Srassq);
5261 defsubr (&Srassoc);
5262 defsubr (&Sdelq);
5263 defsubr (&Sdelete);
5264 defsubr (&Snreverse);
5265 defsubr (&Sreverse);
5266 defsubr (&Ssort);
5267 defsubr (&Splist_get);
5268 defsubr (&Sget);
5269 defsubr (&Splist_put);
5270 defsubr (&Sput);
5271 defsubr (&Slax_plist_get);
5272 defsubr (&Slax_plist_put);
5273 defsubr (&Seql);
5274 defsubr (&Sequal);
5275 defsubr (&Sequal_including_properties);
5276 defsubr (&Sfillarray);
5277 defsubr (&Sclear_string);
5278 defsubr (&Snconc);
5279 defsubr (&Smapcar);
5280 defsubr (&Smapc);
5281 defsubr (&Smapconcat);
5282 defsubr (&Sy_or_n_p);
5283 defsubr (&Syes_or_no_p);
5284 defsubr (&Sload_average);
5285 defsubr (&Sfeaturep);
5286 defsubr (&Srequire);
5287 defsubr (&Sprovide);
5288 defsubr (&Splist_member);
5289 defsubr (&Swidget_put);
5290 defsubr (&Swidget_get);
5291 defsubr (&Swidget_apply);
5292 defsubr (&Sbase64_encode_region);
5293 defsubr (&Sbase64_decode_region);
5294 defsubr (&Sbase64_encode_string);
5295 defsubr (&Sbase64_decode_string);
5296 defsubr (&Smd5);
5297 defsubr (&Slocale_info);
5301 void
5302 init_fns ()
5306 /* arch-tag: 787f8219-5b74-46bd-8469-7e1cc475fa31
5307 (do not change this comment) */