1 /* Primitive operations on floating point for GNU Emacs Lisp interpreter.
3 Copyright (C) 1988, 1993-1994, 1999, 2001-2011
4 Free Software Foundation, Inc.
6 Author: Wolfgang Rupprecht
7 (according to ack.texi)
9 This file is part of GNU Emacs.
11 GNU Emacs is free software: you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation, either version 3 of the License, or
14 (at your option) any later version.
16 GNU Emacs is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
25 /* ANSI C requires only these float functions:
26 acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,
27 frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh.
29 Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh.
30 Define HAVE_CBRT if you have cbrt.
31 Define HAVE_RINT if you have a working rint.
32 If you don't define these, then the appropriate routines will be simulated.
34 Define HAVE_MATHERR if on a system supporting the SysV matherr callback.
35 (This should happen automatically.)
37 Define FLOAT_CHECK_ERRNO if the float library routines set errno.
38 This has no effect if HAVE_MATHERR is defined.
40 Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL.
41 (What systems actually do this? Please let us know.)
43 Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by
44 either setting errno, or signaling SIGFPE/SIGILL. Otherwise, domain and
45 range checking will happen before calling the float routines. This has
46 no effect if HAVE_MATHERR is defined (since matherr will be called when
47 a domain error occurs.)
54 #include "syssignal.h"
60 /* If IEEE_FLOATING_POINT isn't defined, default it from FLT_*. */
61 #ifndef IEEE_FLOATING_POINT
62 #if (FLT_RADIX == 2 && FLT_MANT_DIG == 24 \
63 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
64 #define IEEE_FLOATING_POINT 1
66 #define IEEE_FLOATING_POINT 0
72 /* This declaration is omitted on some systems, like Ultrix. */
73 #if !defined (HPUX) && defined (HAVE_LOGB) && !defined (logb)
74 extern double logb (double);
75 #endif /* not HPUX and HAVE_LOGB and no logb macro */
77 #if defined(DOMAIN) && defined(SING) && defined(OVERFLOW)
78 /* If those are defined, then this is probably a `matherr' machine. */
89 # ifdef FLOAT_CHECK_ERRNO
90 # undef FLOAT_CHECK_ERRNO
92 # ifdef FLOAT_CHECK_DOMAIN
93 # undef FLOAT_CHECK_DOMAIN
97 #ifndef NO_FLOAT_CHECK_ERRNO
98 #define FLOAT_CHECK_ERRNO
101 #ifdef FLOAT_CHECK_ERRNO
105 #ifdef FLOAT_CATCH_SIGILL
106 static void float_error ();
109 /* Nonzero while executing in floating point.
110 This tells float_error what to do. */
114 /* If an argument is out of range for a mathematical function,
115 here is the actual argument value to use in the error message.
116 These variables are used only across the floating point library call
117 so there is no need to staticpro them. */
119 static Lisp_Object float_error_arg
, float_error_arg2
;
121 static const char *float_error_fn_name
;
123 /* Evaluate the floating point expression D, recording NUM
124 as the original argument for error messages.
125 D is normally an assignment expression.
126 Handle errors which may result in signals or may set errno.
128 Note that float_error may be declared to return void, so you can't
129 just cast the zero after the colon to (void) to make the types
132 #ifdef FLOAT_CHECK_ERRNO
133 #define IN_FLOAT(d, name, num) \
135 float_error_arg = num; \
136 float_error_fn_name = name; \
137 in_float = 1; errno = 0; (d); in_float = 0; \
140 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
141 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
142 default: arith_error (float_error_fn_name, float_error_arg); \
145 #define IN_FLOAT2(d, name, num, num2) \
147 float_error_arg = num; \
148 float_error_arg2 = num2; \
149 float_error_fn_name = name; \
150 in_float = 1; errno = 0; (d); in_float = 0; \
153 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
154 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
155 default: arith_error (float_error_fn_name, float_error_arg); \
159 #define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0)
160 #define IN_FLOAT2(d, name, num, num2) (in_float = 1, (d), in_float = 0)
163 /* Convert float to Lisp_Int if it fits, else signal a range error
164 using the given arguments. */
165 #define FLOAT_TO_INT(x, i, name, num) \
168 if (FIXNUM_OVERFLOW_P (x)) \
169 range_error (name, num); \
170 XSETINT (i, (EMACS_INT)(x)); \
173 #define FLOAT_TO_INT2(x, i, name, num1, num2) \
176 if (FIXNUM_OVERFLOW_P (x)) \
177 range_error2 (name, num1, num2); \
178 XSETINT (i, (EMACS_INT)(x)); \
182 #define arith_error(op,arg) \
183 xsignal2 (Qarith_error, build_string ((op)), (arg))
184 #define range_error(op,arg) \
185 xsignal2 (Qrange_error, build_string ((op)), (arg))
186 #define range_error2(op,a1,a2) \
187 xsignal3 (Qrange_error, build_string ((op)), (a1), (a2))
188 #define domain_error(op,arg) \
189 xsignal2 (Qdomain_error, build_string ((op)), (arg))
190 #ifdef FLOAT_CHECK_DOMAIN
191 #define domain_error2(op,a1,a2) \
192 xsignal3 (Qdomain_error, build_string ((op)), (a1), (a2))
195 /* Extract a Lisp number as a `double', or signal an error. */
198 extract_float (Lisp_Object num
)
200 CHECK_NUMBER_OR_FLOAT (num
);
203 return XFLOAT_DATA (num
);
204 return (double) XINT (num
);
207 /* Trig functions. */
209 DEFUN ("acos", Facos
, Sacos
, 1, 1, 0,
210 doc
: /* Return the inverse cosine of ARG. */)
211 (register Lisp_Object arg
)
213 double d
= extract_float (arg
);
214 #ifdef FLOAT_CHECK_DOMAIN
215 if (d
> 1.0 || d
< -1.0)
216 domain_error ("acos", arg
);
218 IN_FLOAT (d
= acos (d
), "acos", arg
);
219 return make_float (d
);
222 DEFUN ("asin", Fasin
, Sasin
, 1, 1, 0,
223 doc
: /* Return the inverse sine of ARG. */)
224 (register Lisp_Object arg
)
226 double d
= extract_float (arg
);
227 #ifdef FLOAT_CHECK_DOMAIN
228 if (d
> 1.0 || d
< -1.0)
229 domain_error ("asin", arg
);
231 IN_FLOAT (d
= asin (d
), "asin", arg
);
232 return make_float (d
);
235 DEFUN ("atan", Fatan
, Satan
, 1, 2, 0,
236 doc
: /* Return the inverse tangent of the arguments.
237 If only one argument Y is given, return the inverse tangent of Y.
238 If two arguments Y and X are given, return the inverse tangent of Y
239 divided by X, i.e. the angle in radians between the vector (X, Y)
241 (register Lisp_Object y
, Lisp_Object x
)
243 double d
= extract_float (y
);
246 IN_FLOAT (d
= atan (d
), "atan", y
);
249 double d2
= extract_float (x
);
251 IN_FLOAT2 (d
= atan2 (d
, d2
), "atan", y
, x
);
253 return make_float (d
);
256 DEFUN ("cos", Fcos
, Scos
, 1, 1, 0,
257 doc
: /* Return the cosine of ARG. */)
258 (register Lisp_Object arg
)
260 double d
= extract_float (arg
);
261 IN_FLOAT (d
= cos (d
), "cos", arg
);
262 return make_float (d
);
265 DEFUN ("sin", Fsin
, Ssin
, 1, 1, 0,
266 doc
: /* Return the sine of ARG. */)
267 (register Lisp_Object arg
)
269 double d
= extract_float (arg
);
270 IN_FLOAT (d
= sin (d
), "sin", arg
);
271 return make_float (d
);
274 DEFUN ("tan", Ftan
, Stan
, 1, 1, 0,
275 doc
: /* Return the tangent of ARG. */)
276 (register Lisp_Object arg
)
278 double d
= extract_float (arg
);
280 #ifdef FLOAT_CHECK_DOMAIN
282 domain_error ("tan", arg
);
284 IN_FLOAT (d
= sin (d
) / c
, "tan", arg
);
285 return make_float (d
);
288 #if defined HAVE_ISNAN && defined HAVE_COPYSIGN
289 DEFUN ("isnan", Fisnan
, Sisnan
, 1, 1, 0,
290 doc
: /* Return non nil iff argument X is a NaN. */)
294 return isnan (XFLOAT_DATA (x
)) ? Qt
: Qnil
;
297 DEFUN ("copysign", Fcopysign
, Scopysign
, 1, 2, 0,
298 doc
: /* Copy sign of X2 to value of X1, and return the result.
299 Cause an error if X1 or X2 is not a float. */)
300 (Lisp_Object x1
, Lisp_Object x2
)
307 f1
= XFLOAT_DATA (x1
);
308 f2
= XFLOAT_DATA (x2
);
310 return make_float (copysign (f1
, f2
));
313 DEFUN ("frexp", Ffrexp
, Sfrexp
, 1, 1, 0,
314 doc
: /* Get significand and exponent of a floating point number.
315 Breaks the floating point number X into its binary significand SGNFCAND
316 \(a floating point value between 0.5 (included) and 1.0 (excluded))
317 and an integral exponent EXP for 2, such that:
321 The function returns the cons cell (SGNFCAND . EXP).
322 If X is zero, both parts (SGNFCAND and EXP) are zero. */)
325 double f
= XFLOATINT (x
);
328 return Fcons (make_float (0.0), make_number (0));
332 double sgnfcand
= frexp (f
, &exponent
);
333 return Fcons (make_float (sgnfcand
), make_number (exponent
));
337 DEFUN ("ldexp", Fldexp
, Sldexp
, 1, 2, 0,
338 doc
: /* Construct number X from significand SGNFCAND and exponent EXP.
339 Returns the floating point value resulting from multiplying SGNFCAND
340 (the significand) by 2 raised to the power of EXP (the exponent). */)
341 (Lisp_Object sgnfcand
, Lisp_Object exponent
)
343 CHECK_NUMBER (exponent
);
344 return make_float (ldexp (XFLOATINT (sgnfcand
), XINT (exponent
)));
348 #if 0 /* Leave these out unless we find there's a reason for them. */
350 DEFUN ("bessel-j0", Fbessel_j0
, Sbessel_j0
, 1, 1, 0,
351 doc
: /* Return the bessel function j0 of ARG. */)
352 (register Lisp_Object arg
)
354 double d
= extract_float (arg
);
355 IN_FLOAT (d
= j0 (d
), "bessel-j0", arg
);
356 return make_float (d
);
359 DEFUN ("bessel-j1", Fbessel_j1
, Sbessel_j1
, 1, 1, 0,
360 doc
: /* Return the bessel function j1 of ARG. */)
361 (register Lisp_Object arg
)
363 double d
= extract_float (arg
);
364 IN_FLOAT (d
= j1 (d
), "bessel-j1", arg
);
365 return make_float (d
);
368 DEFUN ("bessel-jn", Fbessel_jn
, Sbessel_jn
, 2, 2, 0,
369 doc
: /* Return the order N bessel function output jn of ARG.
370 The first arg (the order) is truncated to an integer. */)
371 (register Lisp_Object n
, Lisp_Object arg
)
373 int i1
= extract_float (n
);
374 double f2
= extract_float (arg
);
376 IN_FLOAT (f2
= jn (i1
, f2
), "bessel-jn", n
);
377 return make_float (f2
);
380 DEFUN ("bessel-y0", Fbessel_y0
, Sbessel_y0
, 1, 1, 0,
381 doc
: /* Return the bessel function y0 of ARG. */)
382 (register Lisp_Object arg
)
384 double d
= extract_float (arg
);
385 IN_FLOAT (d
= y0 (d
), "bessel-y0", arg
);
386 return make_float (d
);
389 DEFUN ("bessel-y1", Fbessel_y1
, Sbessel_y1
, 1, 1, 0,
390 doc
: /* Return the bessel function y1 of ARG. */)
391 (register Lisp_Object arg
)
393 double d
= extract_float (arg
);
394 IN_FLOAT (d
= y1 (d
), "bessel-y0", arg
);
395 return make_float (d
);
398 DEFUN ("bessel-yn", Fbessel_yn
, Sbessel_yn
, 2, 2, 0,
399 doc
: /* Return the order N bessel function output yn of ARG.
400 The first arg (the order) is truncated to an integer. */)
401 (register Lisp_Object n
, Lisp_Object arg
)
403 int i1
= extract_float (n
);
404 double f2
= extract_float (arg
);
406 IN_FLOAT (f2
= yn (i1
, f2
), "bessel-yn", n
);
407 return make_float (f2
);
412 #if 0 /* Leave these out unless we see they are worth having. */
414 DEFUN ("erf", Ferf
, Serf
, 1, 1, 0,
415 doc
: /* Return the mathematical error function of ARG. */)
416 (register Lisp_Object arg
)
418 double d
= extract_float (arg
);
419 IN_FLOAT (d
= erf (d
), "erf", arg
);
420 return make_float (d
);
423 DEFUN ("erfc", Ferfc
, Serfc
, 1, 1, 0,
424 doc
: /* Return the complementary error function of ARG. */)
425 (register Lisp_Object arg
)
427 double d
= extract_float (arg
);
428 IN_FLOAT (d
= erfc (d
), "erfc", arg
);
429 return make_float (d
);
432 DEFUN ("log-gamma", Flog_gamma
, Slog_gamma
, 1, 1, 0,
433 doc
: /* Return the log gamma of ARG. */)
434 (register Lisp_Object arg
)
436 double d
= extract_float (arg
);
437 IN_FLOAT (d
= lgamma (d
), "log-gamma", arg
);
438 return make_float (d
);
441 DEFUN ("cube-root", Fcube_root
, Scube_root
, 1, 1, 0,
442 doc
: /* Return the cube root of ARG. */)
443 (register Lisp_Object arg
)
445 double d
= extract_float (arg
);
447 IN_FLOAT (d
= cbrt (d
), "cube-root", arg
);
450 IN_FLOAT (d
= pow (d
, 1.0/3.0), "cube-root", arg
);
452 IN_FLOAT (d
= -pow (-d
, 1.0/3.0), "cube-root", arg
);
454 return make_float (d
);
459 DEFUN ("exp", Fexp
, Sexp
, 1, 1, 0,
460 doc
: /* Return the exponential base e of ARG. */)
461 (register Lisp_Object arg
)
463 double d
= extract_float (arg
);
464 #ifdef FLOAT_CHECK_DOMAIN
465 if (d
> 709.7827) /* Assume IEEE doubles here */
466 range_error ("exp", arg
);
468 return make_float (0.0);
471 IN_FLOAT (d
= exp (d
), "exp", arg
);
472 return make_float (d
);
475 DEFUN ("expt", Fexpt
, Sexpt
, 2, 2, 0,
476 doc
: /* Return the exponential ARG1 ** ARG2. */)
477 (register Lisp_Object arg1
, Lisp_Object arg2
)
481 CHECK_NUMBER_OR_FLOAT (arg1
);
482 CHECK_NUMBER_OR_FLOAT (arg2
);
483 if (INTEGERP (arg1
) /* common lisp spec */
484 && INTEGERP (arg2
) /* don't promote, if both are ints, and */
485 && 0 <= XINT (arg2
)) /* we are sure the result is not fractional */
486 { /* this can be improved by pre-calculating */
487 EMACS_INT acc
, x
, y
; /* some binary powers of x then accumulating */
499 acc
= (y
& 1) ? -1 : 1;
510 y
= (unsigned)y
>> 1;
516 f1
= FLOATP (arg1
) ? XFLOAT_DATA (arg1
) : XINT (arg1
);
517 f2
= FLOATP (arg2
) ? XFLOAT_DATA (arg2
) : XINT (arg2
);
518 /* Really should check for overflow, too */
519 if (f1
== 0.0 && f2
== 0.0)
521 #ifdef FLOAT_CHECK_DOMAIN
522 else if ((f1
== 0.0 && f2
< 0.0) || (f1
< 0 && f2
!= floor(f2
)))
523 domain_error2 ("expt", arg1
, arg2
);
525 IN_FLOAT2 (f3
= pow (f1
, f2
), "expt", arg1
, arg2
);
526 /* Check for overflow in the result. */
527 if (f1
!= 0.0 && f3
== 0.0)
528 range_error ("expt", arg1
);
529 return make_float (f3
);
532 DEFUN ("log", Flog
, Slog
, 1, 2, 0,
533 doc
: /* Return the natural logarithm of ARG.
534 If the optional argument BASE is given, return log ARG using that base. */)
535 (register Lisp_Object arg
, Lisp_Object base
)
537 double d
= extract_float (arg
);
539 #ifdef FLOAT_CHECK_DOMAIN
541 domain_error2 ("log", arg
, base
);
544 IN_FLOAT (d
= log (d
), "log", arg
);
547 double b
= extract_float (base
);
549 #ifdef FLOAT_CHECK_DOMAIN
550 if (b
<= 0.0 || b
== 1.0)
551 domain_error2 ("log", arg
, base
);
554 IN_FLOAT2 (d
= log10 (d
), "log", arg
, base
);
556 IN_FLOAT2 (d
= log (d
) / log (b
), "log", arg
, base
);
558 return make_float (d
);
561 DEFUN ("log10", Flog10
, Slog10
, 1, 1, 0,
562 doc
: /* Return the logarithm base 10 of ARG. */)
563 (register Lisp_Object arg
)
565 double d
= extract_float (arg
);
566 #ifdef FLOAT_CHECK_DOMAIN
568 domain_error ("log10", arg
);
570 IN_FLOAT (d
= log10 (d
), "log10", arg
);
571 return make_float (d
);
574 DEFUN ("sqrt", Fsqrt
, Ssqrt
, 1, 1, 0,
575 doc
: /* Return the square root of ARG. */)
576 (register Lisp_Object arg
)
578 double d
= extract_float (arg
);
579 #ifdef FLOAT_CHECK_DOMAIN
581 domain_error ("sqrt", arg
);
583 IN_FLOAT (d
= sqrt (d
), "sqrt", arg
);
584 return make_float (d
);
587 #if 0 /* Not clearly worth adding. */
589 DEFUN ("acosh", Facosh
, Sacosh
, 1, 1, 0,
590 doc
: /* Return the inverse hyperbolic cosine of ARG. */)
591 (register Lisp_Object arg
)
593 double d
= extract_float (arg
);
594 #ifdef FLOAT_CHECK_DOMAIN
596 domain_error ("acosh", arg
);
598 #ifdef HAVE_INVERSE_HYPERBOLIC
599 IN_FLOAT (d
= acosh (d
), "acosh", arg
);
601 IN_FLOAT (d
= log (d
+ sqrt (d
*d
- 1.0)), "acosh", arg
);
603 return make_float (d
);
606 DEFUN ("asinh", Fasinh
, Sasinh
, 1, 1, 0,
607 doc
: /* Return the inverse hyperbolic sine of ARG. */)
608 (register Lisp_Object arg
)
610 double d
= extract_float (arg
);
611 #ifdef HAVE_INVERSE_HYPERBOLIC
612 IN_FLOAT (d
= asinh (d
), "asinh", arg
);
614 IN_FLOAT (d
= log (d
+ sqrt (d
*d
+ 1.0)), "asinh", arg
);
616 return make_float (d
);
619 DEFUN ("atanh", Fatanh
, Satanh
, 1, 1, 0,
620 doc
: /* Return the inverse hyperbolic tangent of ARG. */)
621 (register Lisp_Object arg
)
623 double d
= extract_float (arg
);
624 #ifdef FLOAT_CHECK_DOMAIN
625 if (d
>= 1.0 || d
<= -1.0)
626 domain_error ("atanh", arg
);
628 #ifdef HAVE_INVERSE_HYPERBOLIC
629 IN_FLOAT (d
= atanh (d
), "atanh", arg
);
631 IN_FLOAT (d
= 0.5 * log ((1.0 + d
) / (1.0 - d
)), "atanh", arg
);
633 return make_float (d
);
636 DEFUN ("cosh", Fcosh
, Scosh
, 1, 1, 0,
637 doc
: /* Return the hyperbolic cosine of ARG. */)
638 (register Lisp_Object arg
)
640 double d
= extract_float (arg
);
641 #ifdef FLOAT_CHECK_DOMAIN
642 if (d
> 710.0 || d
< -710.0)
643 range_error ("cosh", arg
);
645 IN_FLOAT (d
= cosh (d
), "cosh", arg
);
646 return make_float (d
);
649 DEFUN ("sinh", Fsinh
, Ssinh
, 1, 1, 0,
650 doc
: /* Return the hyperbolic sine of ARG. */)
651 (register Lisp_Object arg
)
653 double d
= extract_float (arg
);
654 #ifdef FLOAT_CHECK_DOMAIN
655 if (d
> 710.0 || d
< -710.0)
656 range_error ("sinh", arg
);
658 IN_FLOAT (d
= sinh (d
), "sinh", arg
);
659 return make_float (d
);
662 DEFUN ("tanh", Ftanh
, Stanh
, 1, 1, 0,
663 doc
: /* Return the hyperbolic tangent of ARG. */)
664 (register Lisp_Object arg
)
666 double d
= extract_float (arg
);
667 IN_FLOAT (d
= tanh (d
), "tanh", arg
);
668 return make_float (d
);
672 DEFUN ("abs", Fabs
, Sabs
, 1, 1, 0,
673 doc
: /* Return the absolute value of ARG. */)
674 (register Lisp_Object arg
)
676 CHECK_NUMBER_OR_FLOAT (arg
);
679 IN_FLOAT (arg
= make_float (fabs (XFLOAT_DATA (arg
))), "abs", arg
);
680 else if (XINT (arg
) < 0)
681 XSETINT (arg
, - XINT (arg
));
686 DEFUN ("float", Ffloat
, Sfloat
, 1, 1, 0,
687 doc
: /* Return the floating point number equal to ARG. */)
688 (register Lisp_Object arg
)
690 CHECK_NUMBER_OR_FLOAT (arg
);
693 return make_float ((double) XINT (arg
));
694 else /* give 'em the same float back */
698 DEFUN ("logb", Flogb
, Slogb
, 1, 1, 0,
699 doc
: /* Returns largest integer <= the base 2 log of the magnitude of ARG.
700 This is the same as the exponent of a float. */)
705 double f
= extract_float (arg
);
708 value
= MOST_NEGATIVE_FIXNUM
;
712 IN_FLOAT (value
= logb (f
), "logb", arg
);
716 IN_FLOAT (frexp (f
, &ivalue
), "logb", arg
);
726 for (i
= 1, d
= 0.5; d
* d
>= f
; i
+= i
)
733 for (i
= 1, d
= 2.0; d
* d
<= f
; i
+= i
)
741 XSETINT (val
, value
);
746 /* the rounding functions */
749 rounding_driver (Lisp_Object arg
, Lisp_Object divisor
,
750 double (*double_round
) (double),
751 EMACS_INT (*int_round2
) (EMACS_INT
, EMACS_INT
),
754 CHECK_NUMBER_OR_FLOAT (arg
);
756 if (! NILP (divisor
))
760 CHECK_NUMBER_OR_FLOAT (divisor
);
762 if (FLOATP (arg
) || FLOATP (divisor
))
766 f1
= FLOATP (arg
) ? XFLOAT_DATA (arg
) : XINT (arg
);
767 f2
= (FLOATP (divisor
) ? XFLOAT_DATA (divisor
) : XINT (divisor
));
768 if (! IEEE_FLOATING_POINT
&& f2
== 0)
769 xsignal0 (Qarith_error
);
771 IN_FLOAT2 (f1
= (*double_round
) (f1
/ f2
), name
, arg
, divisor
);
772 FLOAT_TO_INT2 (f1
, arg
, name
, arg
, divisor
);
780 xsignal0 (Qarith_error
);
782 XSETINT (arg
, (*int_round2
) (i1
, i2
));
790 IN_FLOAT (d
= (*double_round
) (XFLOAT_DATA (arg
)), name
, arg
);
791 FLOAT_TO_INT (d
, arg
, name
, arg
);
797 /* With C's /, the result is implementation-defined if either operand
798 is negative, so take care with negative operands in the following
799 integer functions. */
802 ceiling2 (EMACS_INT i1
, EMACS_INT i2
)
805 ? (i1
< 0 ? ((-1 - i1
) / -i2
) + 1 : - (i1
/ -i2
))
806 : (i1
<= 0 ? - (-i1
/ i2
) : ((i1
- 1) / i2
) + 1));
810 floor2 (EMACS_INT i1
, EMACS_INT i2
)
813 ? (i1
<= 0 ? -i1
/ -i2
: -1 - ((i1
- 1) / -i2
))
814 : (i1
< 0 ? -1 - ((-1 - i1
) / i2
) : i1
/ i2
));
818 truncate2 (EMACS_INT i1
, EMACS_INT i2
)
821 ? (i1
< 0 ? -i1
/ -i2
: - (i1
/ -i2
))
822 : (i1
< 0 ? - (-i1
/ i2
) : i1
/ i2
));
826 round2 (EMACS_INT i1
, EMACS_INT i2
)
828 /* The C language's division operator gives us one remainder R, but
829 we want the remainder R1 on the other side of 0 if R1 is closer
830 to 0 than R is; because we want to round to even, we also want R1
831 if R and R1 are the same distance from 0 and if C's quotient is
833 EMACS_INT q
= i1
/ i2
;
834 EMACS_INT r
= i1
% i2
;
835 EMACS_INT abs_r
= r
< 0 ? -r
: r
;
836 EMACS_INT abs_r1
= (i2
< 0 ? -i2
: i2
) - abs_r
;
837 return q
+ (abs_r
+ (q
& 1) <= abs_r1
? 0 : (i2
^ r
) < 0 ? -1 : 1);
840 /* The code uses emacs_rint, so that it works to undefine HAVE_RINT
841 if `rint' exists but does not work right. */
843 #define emacs_rint rint
846 emacs_rint (double d
)
848 return floor (d
+ 0.5);
853 double_identity (double d
)
858 DEFUN ("ceiling", Fceiling
, Sceiling
, 1, 2, 0,
859 doc
: /* Return the smallest integer no less than ARG.
860 This rounds the value towards +inf.
861 With optional DIVISOR, return the smallest integer no less than ARG/DIVISOR. */)
862 (Lisp_Object arg
, Lisp_Object divisor
)
864 return rounding_driver (arg
, divisor
, ceil
, ceiling2
, "ceiling");
867 DEFUN ("floor", Ffloor
, Sfloor
, 1, 2, 0,
868 doc
: /* Return the largest integer no greater than ARG.
869 This rounds the value towards -inf.
870 With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR. */)
871 (Lisp_Object arg
, Lisp_Object divisor
)
873 return rounding_driver (arg
, divisor
, floor
, floor2
, "floor");
876 DEFUN ("round", Fround
, Sround
, 1, 2, 0,
877 doc
: /* Return the nearest integer to ARG.
878 With optional DIVISOR, return the nearest integer to ARG/DIVISOR.
880 Rounding a value equidistant between two integers may choose the
881 integer closer to zero, or it may prefer an even integer, depending on
882 your machine. For example, \(round 2.5\) can return 3 on some
883 systems, but 2 on others. */)
884 (Lisp_Object arg
, Lisp_Object divisor
)
886 return rounding_driver (arg
, divisor
, emacs_rint
, round2
, "round");
889 DEFUN ("truncate", Ftruncate
, Struncate
, 1, 2, 0,
890 doc
: /* Truncate a floating point number to an int.
891 Rounds ARG toward zero.
892 With optional DIVISOR, truncate ARG/DIVISOR. */)
893 (Lisp_Object arg
, Lisp_Object divisor
)
895 return rounding_driver (arg
, divisor
, double_identity
, truncate2
,
901 fmod_float (Lisp_Object x
, Lisp_Object y
)
905 f1
= FLOATP (x
) ? XFLOAT_DATA (x
) : XINT (x
);
906 f2
= FLOATP (y
) ? XFLOAT_DATA (y
) : XINT (y
);
908 if (! IEEE_FLOATING_POINT
&& f2
== 0)
909 xsignal0 (Qarith_error
);
911 /* If the "remainder" comes out with the wrong sign, fix it. */
912 IN_FLOAT2 ((f1
= fmod (f1
, f2
),
913 f1
= (f2
< 0 ? f1
> 0 : f1
< 0) ? f1
+ f2
: f1
),
915 return make_float (f1
);
918 /* It's not clear these are worth adding. */
920 DEFUN ("fceiling", Ffceiling
, Sfceiling
, 1, 1, 0,
921 doc
: /* Return the smallest integer no less than ARG, as a float.
922 \(Round toward +inf.\) */)
923 (register Lisp_Object arg
)
925 double d
= extract_float (arg
);
926 IN_FLOAT (d
= ceil (d
), "fceiling", arg
);
927 return make_float (d
);
930 DEFUN ("ffloor", Fffloor
, Sffloor
, 1, 1, 0,
931 doc
: /* Return the largest integer no greater than ARG, as a float.
932 \(Round towards -inf.\) */)
933 (register Lisp_Object arg
)
935 double d
= extract_float (arg
);
936 IN_FLOAT (d
= floor (d
), "ffloor", arg
);
937 return make_float (d
);
940 DEFUN ("fround", Ffround
, Sfround
, 1, 1, 0,
941 doc
: /* Return the nearest integer to ARG, as a float. */)
942 (register Lisp_Object arg
)
944 double d
= extract_float (arg
);
945 IN_FLOAT (d
= emacs_rint (d
), "fround", arg
);
946 return make_float (d
);
949 DEFUN ("ftruncate", Fftruncate
, Sftruncate
, 1, 1, 0,
950 doc
: /* Truncate a floating point number to an integral float value.
951 Rounds the value toward zero. */)
952 (register Lisp_Object arg
)
954 double d
= extract_float (arg
);
956 IN_FLOAT (d
= floor (d
), "ftruncate", arg
);
958 IN_FLOAT (d
= ceil (d
), "ftruncate", arg
);
959 return make_float (d
);
962 #ifdef FLOAT_CATCH_SIGILL
968 fatal_error_signal (signo
);
971 sigsetmask (SIGEMPTYMASK
);
973 /* Must reestablish handler each time it is called. */
974 signal (SIGILL
, float_error
);
975 #endif /* BSD_SYSTEM */
977 SIGNAL_THREAD_CHECK (signo
);
980 xsignal1 (Qarith_error
, float_error_arg
);
983 /* Another idea was to replace the library function `infnan'
984 where SIGILL is signaled. */
986 #endif /* FLOAT_CATCH_SIGILL */
990 matherr (struct exception
*x
)
993 const char *name
= x
->name
;
996 /* Not called from emacs-lisp float routines; do the default thing. */
998 if (!strcmp (x
->name
, "pow"))
1002 = Fcons (build_string (name
),
1003 Fcons (make_float (x
->arg1
),
1004 ((!strcmp (name
, "log") || !strcmp (name
, "pow"))
1005 ? Fcons (make_float (x
->arg2
), Qnil
)
1009 case DOMAIN
: xsignal (Qdomain_error
, args
); break;
1010 case SING
: xsignal (Qsingularity_error
, args
); break;
1011 case OVERFLOW
: xsignal (Qoverflow_error
, args
); break;
1012 case UNDERFLOW
: xsignal (Qunderflow_error
, args
); break;
1013 default: xsignal (Qarith_error
, args
); break;
1015 return (1); /* don't set errno or print a message */
1017 #endif /* HAVE_MATHERR */
1020 init_floatfns (void)
1022 #ifdef FLOAT_CATCH_SIGILL
1023 signal (SIGILL
, float_error
);
1029 syms_of_floatfns (void)
1037 #if defined HAVE_ISNAN && defined HAVE_COPYSIGN
1039 defsubr (&Scopysign
);
1050 defsubr (&Sbessel_y0
);
1051 defsubr (&Sbessel_y1
);
1052 defsubr (&Sbessel_yn
);
1053 defsubr (&Sbessel_j0
);
1054 defsubr (&Sbessel_j1
);
1055 defsubr (&Sbessel_jn
);
1058 defsubr (&Slog_gamma
);
1059 defsubr (&Scube_root
);
1061 defsubr (&Sfceiling
);
1064 defsubr (&Sftruncate
);
1074 defsubr (&Sceiling
);
1077 defsubr (&Struncate
);