1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2015 Free Software
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
24 #include <limits.h> /* For CHAR_BIT. */
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
36 #include "intervals.h"
38 #include "character.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45 #ifdef HAVE_WINDOW_SYSTEM
47 #endif /* HAVE_WINDOW_SYSTEM */
50 #include <execinfo.h> /* For backtrace. */
52 #ifdef HAVE_LINUX_SYSINFO
53 #include <sys/sysinfo.h>
57 #include "dosfns.h" /* For dos_memory_info. */
60 #if (defined ENABLE_CHECKING \
61 && defined HAVE_VALGRIND_VALGRIND_H \
62 && !defined USE_VALGRIND)
63 # define USE_VALGRIND 1
67 #include <valgrind/valgrind.h>
68 #include <valgrind/memcheck.h>
69 static bool valgrind_p
;
72 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
73 Doable only if GC_MARK_STACK. */
75 # undef GC_CHECK_MARKED_OBJECTS
78 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
79 memory. Can do this only if using gmalloc.c and if not checking
82 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
83 || defined HYBRID_MALLOC || defined GC_CHECK_MARKED_OBJECTS)
84 #undef GC_MALLOC_CHECK
95 #include "w32heap.h" /* for sbrk */
98 #ifdef DOUG_LEA_MALLOC
102 /* Specify maximum number of areas to mmap. It would be nice to use a
103 value that explicitly means "no limit". */
105 #define MMAP_MAX_AREAS 100000000
107 #endif /* not DOUG_LEA_MALLOC */
109 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
110 to a struct Lisp_String. */
112 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
113 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
114 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
116 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
117 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
118 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
120 /* Default value of gc_cons_threshold (see below). */
122 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
124 /* Global variables. */
125 struct emacs_globals globals
;
127 /* Number of bytes of consing done since the last gc. */
129 EMACS_INT consing_since_gc
;
131 /* Similar minimum, computed from Vgc_cons_percentage. */
133 EMACS_INT gc_relative_threshold
;
135 /* Minimum number of bytes of consing since GC before next GC,
136 when memory is full. */
138 EMACS_INT memory_full_cons_threshold
;
140 /* True during GC. */
144 /* True means abort if try to GC.
145 This is for code which is written on the assumption that
146 no GC will happen, so as to verify that assumption. */
150 /* Number of live and free conses etc. */
152 static EMACS_INT total_conses
, total_markers
, total_symbols
, total_buffers
;
153 static EMACS_INT total_free_conses
, total_free_markers
, total_free_symbols
;
154 static EMACS_INT total_free_floats
, total_floats
;
156 /* Points to memory space allocated as "spare", to be freed if we run
157 out of memory. We keep one large block, four cons-blocks, and
158 two string blocks. */
160 static char *spare_memory
[7];
162 /* Amount of spare memory to keep in large reserve block, or to see
163 whether this much is available when malloc fails on a larger request. */
165 #define SPARE_MEMORY (1 << 14)
167 /* Initialize it to a nonzero value to force it into data space
168 (rather than bss space). That way unexec will remap it into text
169 space (pure), on some systems. We have not implemented the
170 remapping on more recent systems because this is less important
171 nowadays than in the days of small memories and timesharing. */
173 EMACS_INT pure
[(PURESIZE
+ sizeof (EMACS_INT
) - 1) / sizeof (EMACS_INT
)] = {1,};
174 #define PUREBEG (char *) pure
176 /* Pointer to the pure area, and its size. */
178 static char *purebeg
;
179 static ptrdiff_t pure_size
;
181 /* Number of bytes of pure storage used before pure storage overflowed.
182 If this is non-zero, this implies that an overflow occurred. */
184 static ptrdiff_t pure_bytes_used_before_overflow
;
186 /* True if P points into pure space. */
188 #define PURE_POINTER_P(P) \
189 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
191 /* Index in pure at which next pure Lisp object will be allocated.. */
193 static ptrdiff_t pure_bytes_used_lisp
;
195 /* Number of bytes allocated for non-Lisp objects in pure storage. */
197 static ptrdiff_t pure_bytes_used_non_lisp
;
199 /* If nonzero, this is a warning delivered by malloc and not yet
202 const char *pending_malloc_warning
;
204 #if 0 /* Normally, pointer sanity only on request... */
205 #ifdef ENABLE_CHECKING
206 #define SUSPICIOUS_OBJECT_CHECKING 1
210 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
211 bug is unresolved. */
212 #define SUSPICIOUS_OBJECT_CHECKING 1
214 #ifdef SUSPICIOUS_OBJECT_CHECKING
215 struct suspicious_free_record
217 void *suspicious_object
;
218 void *backtrace
[128];
220 static void *suspicious_objects
[32];
221 static int suspicious_object_index
;
222 struct suspicious_free_record suspicious_free_history
[64] EXTERNALLY_VISIBLE
;
223 static int suspicious_free_history_index
;
224 /* Find the first currently-monitored suspicious pointer in range
225 [begin,end) or NULL if no such pointer exists. */
226 static void *find_suspicious_object_in_range (void *begin
, void *end
);
227 static void detect_suspicious_free (void *ptr
);
229 # define find_suspicious_object_in_range(begin, end) NULL
230 # define detect_suspicious_free(ptr) (void)
233 /* Maximum amount of C stack to save when a GC happens. */
235 #ifndef MAX_SAVE_STACK
236 #define MAX_SAVE_STACK 16000
239 /* Buffer in which we save a copy of the C stack at each GC. */
241 #if MAX_SAVE_STACK > 0
242 static char *stack_copy
;
243 static ptrdiff_t stack_copy_size
;
245 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
246 avoiding any address sanitization. */
248 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
249 no_sanitize_memcpy (void *dest
, void const *src
, size_t size
)
251 if (! ADDRESS_SANITIZER
)
252 return memcpy (dest
, src
, size
);
258 for (i
= 0; i
< size
; i
++)
264 #endif /* MAX_SAVE_STACK > 0 */
266 static void mark_terminals (void);
267 static void gc_sweep (void);
268 static Lisp_Object
make_pure_vector (ptrdiff_t);
269 static void mark_buffer (struct buffer
*);
271 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
272 static void refill_memory_reserve (void);
274 static void compact_small_strings (void);
275 static void free_large_strings (void);
276 extern Lisp_Object
which_symbols (Lisp_Object
, EMACS_INT
) EXTERNALLY_VISIBLE
;
278 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
279 what memory allocated via lisp_malloc and lisp_align_malloc is intended
280 for what purpose. This enumeration specifies the type of memory. */
291 /* Since all non-bool pseudovectors are small enough to be
292 allocated from vector blocks, this memory type denotes
293 large regular vectors and large bool pseudovectors. */
295 /* Special type to denote vector blocks. */
296 MEM_TYPE_VECTOR_BLOCK
,
297 /* Special type to denote reserved memory. */
301 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
303 /* A unique object in pure space used to make some Lisp objects
304 on free lists recognizable in O(1). */
306 static Lisp_Object Vdead
;
307 #define DEADP(x) EQ (x, Vdead)
309 #ifdef GC_MALLOC_CHECK
311 enum mem_type allocated_mem_type
;
313 #endif /* GC_MALLOC_CHECK */
315 /* A node in the red-black tree describing allocated memory containing
316 Lisp data. Each such block is recorded with its start and end
317 address when it is allocated, and removed from the tree when it
320 A red-black tree is a balanced binary tree with the following
323 1. Every node is either red or black.
324 2. Every leaf is black.
325 3. If a node is red, then both of its children are black.
326 4. Every simple path from a node to a descendant leaf contains
327 the same number of black nodes.
328 5. The root is always black.
330 When nodes are inserted into the tree, or deleted from the tree,
331 the tree is "fixed" so that these properties are always true.
333 A red-black tree with N internal nodes has height at most 2
334 log(N+1). Searches, insertions and deletions are done in O(log N).
335 Please see a text book about data structures for a detailed
336 description of red-black trees. Any book worth its salt should
341 /* Children of this node. These pointers are never NULL. When there
342 is no child, the value is MEM_NIL, which points to a dummy node. */
343 struct mem_node
*left
, *right
;
345 /* The parent of this node. In the root node, this is NULL. */
346 struct mem_node
*parent
;
348 /* Start and end of allocated region. */
352 enum {MEM_BLACK
, MEM_RED
} color
;
358 /* Base address of stack. Set in main. */
360 Lisp_Object
*stack_base
;
362 /* Root of the tree describing allocated Lisp memory. */
364 static struct mem_node
*mem_root
;
366 /* Lowest and highest known address in the heap. */
368 static void *min_heap_address
, *max_heap_address
;
370 /* Sentinel node of the tree. */
372 static struct mem_node mem_z
;
373 #define MEM_NIL &mem_z
375 static struct mem_node
*mem_insert (void *, void *, enum mem_type
);
376 static void mem_insert_fixup (struct mem_node
*);
377 static void mem_rotate_left (struct mem_node
*);
378 static void mem_rotate_right (struct mem_node
*);
379 static void mem_delete (struct mem_node
*);
380 static void mem_delete_fixup (struct mem_node
*);
381 static struct mem_node
*mem_find (void *);
383 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
389 /* Recording what needs to be marked for gc. */
391 struct gcpro
*gcprolist
;
393 /* Addresses of staticpro'd variables. Initialize it to a nonzero
394 value; otherwise some compilers put it into BSS. */
396 enum { NSTATICS
= 2048 };
397 static Lisp_Object
*staticvec
[NSTATICS
] = {&Vpurify_flag
};
399 /* Index of next unused slot in staticvec. */
401 static int staticidx
;
403 static void *pure_alloc (size_t, int);
405 /* Return X rounded to the next multiple of Y. Arguments should not
406 have side effects, as they are evaluated more than once. Assume X
407 + Y - 1 does not overflow. Tune for Y being a power of 2. */
409 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
410 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
411 : ((x) + (y) - 1) & ~ ((y) - 1))
413 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
416 ALIGN (void *ptr
, int alignment
)
418 return (void *) ROUNDUP ((uintptr_t) ptr
, alignment
);
422 XFLOAT_INIT (Lisp_Object f
, double n
)
424 XFLOAT (f
)->u
.data
= n
;
428 pointers_fit_in_lispobj_p (void)
430 return (UINTPTR_MAX
<= VAL_MAX
) || USE_LSB_TAG
;
434 mmap_lisp_allowed_p (void)
436 /* If we can't store all memory addresses in our lisp objects, it's
437 risky to let the heap use mmap and give us addresses from all
438 over our address space. We also can't use mmap for lisp objects
439 if we might dump: unexec doesn't preserve the contents of mmapped
441 return pointers_fit_in_lispobj_p () && !might_dump
;
444 /* Head of a circularly-linked list of extant finalizers. */
445 static struct Lisp_Finalizer finalizers
;
447 /* Head of a circularly-linked list of finalizers that must be invoked
448 because we deemed them unreachable. This list must be global, and
449 not a local inside garbage_collect_1, in case we GC again while
450 running finalizers. */
451 static struct Lisp_Finalizer doomed_finalizers
;
454 /************************************************************************
456 ************************************************************************/
458 /* Function malloc calls this if it finds we are near exhausting storage. */
461 malloc_warning (const char *str
)
463 pending_malloc_warning
= str
;
467 /* Display an already-pending malloc warning. */
470 display_malloc_warning (void)
472 call3 (intern ("display-warning"),
474 build_string (pending_malloc_warning
),
475 intern ("emergency"));
476 pending_malloc_warning
= 0;
479 /* Called if we can't allocate relocatable space for a buffer. */
482 buffer_memory_full (ptrdiff_t nbytes
)
484 /* If buffers use the relocating allocator, no need to free
485 spare_memory, because we may have plenty of malloc space left
486 that we could get, and if we don't, the malloc that fails will
487 itself cause spare_memory to be freed. If buffers don't use the
488 relocating allocator, treat this like any other failing
492 memory_full (nbytes
);
494 /* This used to call error, but if we've run out of memory, we could
495 get infinite recursion trying to build the string. */
496 xsignal (Qnil
, Vmemory_signal_data
);
500 /* A common multiple of the positive integers A and B. Ideally this
501 would be the least common multiple, but there's no way to do that
502 as a constant expression in C, so do the best that we can easily do. */
503 #define COMMON_MULTIPLE(a, b) \
504 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
506 #ifndef XMALLOC_OVERRUN_CHECK
507 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
510 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
513 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
514 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
515 block size in little-endian order. The trailer consists of
516 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
518 The header is used to detect whether this block has been allocated
519 through these functions, as some low-level libc functions may
520 bypass the malloc hooks. */
522 #define XMALLOC_OVERRUN_CHECK_SIZE 16
523 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
524 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
526 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
527 hold a size_t value and (2) the header size is a multiple of the
528 alignment that Emacs needs for C types and for USE_LSB_TAG. */
529 #define XMALLOC_BASE_ALIGNMENT alignof (max_align_t)
531 #define XMALLOC_HEADER_ALIGNMENT \
532 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
533 #define XMALLOC_OVERRUN_SIZE_SIZE \
534 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
535 + XMALLOC_HEADER_ALIGNMENT - 1) \
536 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
537 - XMALLOC_OVERRUN_CHECK_SIZE)
539 static char const xmalloc_overrun_check_header
[XMALLOC_OVERRUN_CHECK_SIZE
] =
540 { '\x9a', '\x9b', '\xae', '\xaf',
541 '\xbf', '\xbe', '\xce', '\xcf',
542 '\xea', '\xeb', '\xec', '\xed',
543 '\xdf', '\xde', '\x9c', '\x9d' };
545 static char const xmalloc_overrun_check_trailer
[XMALLOC_OVERRUN_CHECK_SIZE
] =
546 { '\xaa', '\xab', '\xac', '\xad',
547 '\xba', '\xbb', '\xbc', '\xbd',
548 '\xca', '\xcb', '\xcc', '\xcd',
549 '\xda', '\xdb', '\xdc', '\xdd' };
551 /* Insert and extract the block size in the header. */
554 xmalloc_put_size (unsigned char *ptr
, size_t size
)
557 for (i
= 0; i
< XMALLOC_OVERRUN_SIZE_SIZE
; i
++)
559 *--ptr
= size
& ((1 << CHAR_BIT
) - 1);
565 xmalloc_get_size (unsigned char *ptr
)
569 ptr
-= XMALLOC_OVERRUN_SIZE_SIZE
;
570 for (i
= 0; i
< XMALLOC_OVERRUN_SIZE_SIZE
; i
++)
579 /* Like malloc, but wraps allocated block with header and trailer. */
582 overrun_check_malloc (size_t size
)
584 register unsigned char *val
;
585 if (SIZE_MAX
- XMALLOC_OVERRUN_CHECK_OVERHEAD
< size
)
588 val
= malloc (size
+ XMALLOC_OVERRUN_CHECK_OVERHEAD
);
591 memcpy (val
, xmalloc_overrun_check_header
, XMALLOC_OVERRUN_CHECK_SIZE
);
592 val
+= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
593 xmalloc_put_size (val
, size
);
594 memcpy (val
+ size
, xmalloc_overrun_check_trailer
,
595 XMALLOC_OVERRUN_CHECK_SIZE
);
601 /* Like realloc, but checks old block for overrun, and wraps new block
602 with header and trailer. */
605 overrun_check_realloc (void *block
, size_t size
)
607 register unsigned char *val
= (unsigned char *) block
;
608 if (SIZE_MAX
- XMALLOC_OVERRUN_CHECK_OVERHEAD
< size
)
612 && memcmp (xmalloc_overrun_check_header
,
613 val
- XMALLOC_OVERRUN_CHECK_SIZE
- XMALLOC_OVERRUN_SIZE_SIZE
,
614 XMALLOC_OVERRUN_CHECK_SIZE
) == 0)
616 size_t osize
= xmalloc_get_size (val
);
617 if (memcmp (xmalloc_overrun_check_trailer
, val
+ osize
,
618 XMALLOC_OVERRUN_CHECK_SIZE
))
620 memset (val
+ osize
, 0, XMALLOC_OVERRUN_CHECK_SIZE
);
621 val
-= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
622 memset (val
, 0, XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
);
625 val
= realloc (val
, size
+ XMALLOC_OVERRUN_CHECK_OVERHEAD
);
629 memcpy (val
, xmalloc_overrun_check_header
, XMALLOC_OVERRUN_CHECK_SIZE
);
630 val
+= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
631 xmalloc_put_size (val
, size
);
632 memcpy (val
+ size
, xmalloc_overrun_check_trailer
,
633 XMALLOC_OVERRUN_CHECK_SIZE
);
638 /* Like free, but checks block for overrun. */
641 overrun_check_free (void *block
)
643 unsigned char *val
= (unsigned char *) block
;
646 && memcmp (xmalloc_overrun_check_header
,
647 val
- XMALLOC_OVERRUN_CHECK_SIZE
- XMALLOC_OVERRUN_SIZE_SIZE
,
648 XMALLOC_OVERRUN_CHECK_SIZE
) == 0)
650 size_t osize
= xmalloc_get_size (val
);
651 if (memcmp (xmalloc_overrun_check_trailer
, val
+ osize
,
652 XMALLOC_OVERRUN_CHECK_SIZE
))
654 #ifdef XMALLOC_CLEAR_FREE_MEMORY
655 val
-= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
656 memset (val
, 0xff, osize
+ XMALLOC_OVERRUN_CHECK_OVERHEAD
);
658 memset (val
+ osize
, 0, XMALLOC_OVERRUN_CHECK_SIZE
);
659 val
-= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
660 memset (val
, 0, XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
);
670 #define malloc overrun_check_malloc
671 #define realloc overrun_check_realloc
672 #define free overrun_check_free
675 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
676 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
677 If that variable is set, block input while in one of Emacs's memory
678 allocation functions. There should be no need for this debugging
679 option, since signal handlers do not allocate memory, but Emacs
680 formerly allocated memory in signal handlers and this compile-time
681 option remains as a way to help debug the issue should it rear its
683 #ifdef XMALLOC_BLOCK_INPUT_CHECK
684 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE
;
686 malloc_block_input (void)
688 if (block_input_in_memory_allocators
)
692 malloc_unblock_input (void)
694 if (block_input_in_memory_allocators
)
697 # define MALLOC_BLOCK_INPUT malloc_block_input ()
698 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
700 # define MALLOC_BLOCK_INPUT ((void) 0)
701 # define MALLOC_UNBLOCK_INPUT ((void) 0)
704 #define MALLOC_PROBE(size) \
706 if (profiler_memory_running) \
707 malloc_probe (size); \
711 /* Like malloc but check for no memory and block interrupt input.. */
714 xmalloc (size_t size
)
720 MALLOC_UNBLOCK_INPUT
;
728 /* Like the above, but zeroes out the memory just allocated. */
731 xzalloc (size_t size
)
737 MALLOC_UNBLOCK_INPUT
;
741 memset (val
, 0, size
);
746 /* Like realloc but check for no memory and block interrupt input.. */
749 xrealloc (void *block
, size_t size
)
754 /* We must call malloc explicitly when BLOCK is 0, since some
755 reallocs don't do this. */
759 val
= realloc (block
, size
);
760 MALLOC_UNBLOCK_INPUT
;
769 /* Like free but block interrupt input. */
778 MALLOC_UNBLOCK_INPUT
;
779 /* We don't call refill_memory_reserve here
780 because in practice the call in r_alloc_free seems to suffice. */
784 /* Other parts of Emacs pass large int values to allocator functions
785 expecting ptrdiff_t. This is portable in practice, but check it to
787 verify (INT_MAX
<= PTRDIFF_MAX
);
790 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
791 Signal an error on memory exhaustion, and block interrupt input. */
794 xnmalloc (ptrdiff_t nitems
, ptrdiff_t item_size
)
796 eassert (0 <= nitems
&& 0 < item_size
);
797 if (min (PTRDIFF_MAX
, SIZE_MAX
) / item_size
< nitems
)
798 memory_full (SIZE_MAX
);
799 return xmalloc (nitems
* item_size
);
803 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
804 Signal an error on memory exhaustion, and block interrupt input. */
807 xnrealloc (void *pa
, ptrdiff_t nitems
, ptrdiff_t item_size
)
809 eassert (0 <= nitems
&& 0 < item_size
);
810 if (min (PTRDIFF_MAX
, SIZE_MAX
) / item_size
< nitems
)
811 memory_full (SIZE_MAX
);
812 return xrealloc (pa
, nitems
* item_size
);
816 /* Grow PA, which points to an array of *NITEMS items, and return the
817 location of the reallocated array, updating *NITEMS to reflect its
818 new size. The new array will contain at least NITEMS_INCR_MIN more
819 items, but will not contain more than NITEMS_MAX items total.
820 ITEM_SIZE is the size of each item, in bytes.
822 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
823 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
826 If PA is null, then allocate a new array instead of reallocating
829 Block interrupt input as needed. If memory exhaustion occurs, set
830 *NITEMS to zero if PA is null, and signal an error (i.e., do not
833 Thus, to grow an array A without saving its old contents, do
834 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
835 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
836 and signals an error, and later this code is reexecuted and
837 attempts to free A. */
840 xpalloc (void *pa
, ptrdiff_t *nitems
, ptrdiff_t nitems_incr_min
,
841 ptrdiff_t nitems_max
, ptrdiff_t item_size
)
843 /* The approximate size to use for initial small allocation
844 requests. This is the largest "small" request for the GNU C
846 enum { DEFAULT_MXFAST
= 64 * sizeof (size_t) / 4 };
848 /* If the array is tiny, grow it to about (but no greater than)
849 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
850 ptrdiff_t n
= *nitems
;
851 ptrdiff_t tiny_max
= DEFAULT_MXFAST
/ item_size
- n
;
852 ptrdiff_t half_again
= n
>> 1;
853 ptrdiff_t incr_estimate
= max (tiny_max
, half_again
);
855 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
856 NITEMS_MAX, and what the C language can represent safely. */
857 ptrdiff_t C_language_max
= min (PTRDIFF_MAX
, SIZE_MAX
) / item_size
;
858 ptrdiff_t n_max
= (0 <= nitems_max
&& nitems_max
< C_language_max
859 ? nitems_max
: C_language_max
);
860 ptrdiff_t nitems_incr_max
= n_max
- n
;
861 ptrdiff_t incr
= max (nitems_incr_min
, min (incr_estimate
, nitems_incr_max
));
863 eassert (0 < item_size
&& 0 < nitems_incr_min
&& 0 <= n
&& -1 <= nitems_max
);
866 if (nitems_incr_max
< incr
)
867 memory_full (SIZE_MAX
);
869 pa
= xrealloc (pa
, n
* item_size
);
875 /* Like strdup, but uses xmalloc. */
878 xstrdup (const char *s
)
882 size
= strlen (s
) + 1;
883 return memcpy (xmalloc (size
), s
, size
);
886 /* Like above, but duplicates Lisp string to C string. */
889 xlispstrdup (Lisp_Object string
)
891 ptrdiff_t size
= SBYTES (string
) + 1;
892 return memcpy (xmalloc (size
), SSDATA (string
), size
);
895 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
896 pointed to. If STRING is null, assign it without copying anything.
897 Allocate before freeing, to avoid a dangling pointer if allocation
901 dupstring (char **ptr
, char const *string
)
904 *ptr
= string
? xstrdup (string
) : 0;
909 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
910 argument is a const pointer. */
913 xputenv (char const *string
)
915 if (putenv ((char *) string
) != 0)
919 /* Return a newly allocated memory block of SIZE bytes, remembering
920 to free it when unwinding. */
922 record_xmalloc (size_t size
)
924 void *p
= xmalloc (size
);
925 record_unwind_protect_ptr (xfree
, p
);
930 /* Like malloc but used for allocating Lisp data. NBYTES is the
931 number of bytes to allocate, TYPE describes the intended use of the
932 allocated memory block (for strings, for conses, ...). */
935 void *lisp_malloc_loser EXTERNALLY_VISIBLE
;
939 lisp_malloc (size_t nbytes
, enum mem_type type
)
945 #ifdef GC_MALLOC_CHECK
946 allocated_mem_type
= type
;
949 val
= malloc (nbytes
);
952 /* If the memory just allocated cannot be addressed thru a Lisp
953 object's pointer, and it needs to be,
954 that's equivalent to running out of memory. */
955 if (val
&& type
!= MEM_TYPE_NON_LISP
)
958 XSETCONS (tem
, (char *) val
+ nbytes
- 1);
959 if ((char *) XCONS (tem
) != (char *) val
+ nbytes
- 1)
961 lisp_malloc_loser
= val
;
968 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
969 if (val
&& type
!= MEM_TYPE_NON_LISP
)
970 mem_insert (val
, (char *) val
+ nbytes
, type
);
973 MALLOC_UNBLOCK_INPUT
;
975 memory_full (nbytes
);
976 MALLOC_PROBE (nbytes
);
980 /* Free BLOCK. This must be called to free memory allocated with a
981 call to lisp_malloc. */
984 lisp_free (void *block
)
988 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
989 mem_delete (mem_find (block
));
991 MALLOC_UNBLOCK_INPUT
;
994 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
996 /* The entry point is lisp_align_malloc which returns blocks of at most
997 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
999 /* Use aligned_alloc if it or a simple substitute is available.
1000 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1001 clang 3.3 anyway. */
1003 #if ! ADDRESS_SANITIZER
1004 # if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC && !defined HYBRID_MALLOC
1005 # define USE_ALIGNED_ALLOC 1
1006 /* Defined in gmalloc.c. */
1007 void *aligned_alloc (size_t, size_t);
1008 # elif defined HYBRID_MALLOC
1009 # if defined ALIGNED_ALLOC || defined HAVE_POSIX_MEMALIGN
1010 # define USE_ALIGNED_ALLOC 1
1011 # define aligned_alloc hybrid_aligned_alloc
1012 /* Defined in gmalloc.c. */
1013 void *aligned_alloc (size_t, size_t);
1015 # elif defined HAVE_ALIGNED_ALLOC
1016 # define USE_ALIGNED_ALLOC 1
1017 # elif defined HAVE_POSIX_MEMALIGN
1018 # define USE_ALIGNED_ALLOC 1
1020 aligned_alloc (size_t alignment
, size_t size
)
1023 return posix_memalign (&p
, alignment
, size
) == 0 ? p
: 0;
1028 /* BLOCK_ALIGN has to be a power of 2. */
1029 #define BLOCK_ALIGN (1 << 10)
1031 /* Padding to leave at the end of a malloc'd block. This is to give
1032 malloc a chance to minimize the amount of memory wasted to alignment.
1033 It should be tuned to the particular malloc library used.
1034 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1035 aligned_alloc on the other hand would ideally prefer a value of 4
1036 because otherwise, there's 1020 bytes wasted between each ablocks.
1037 In Emacs, testing shows that those 1020 can most of the time be
1038 efficiently used by malloc to place other objects, so a value of 0 can
1039 still preferable unless you have a lot of aligned blocks and virtually
1041 #define BLOCK_PADDING 0
1042 #define BLOCK_BYTES \
1043 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1045 /* Internal data structures and constants. */
1047 #define ABLOCKS_SIZE 16
1049 /* An aligned block of memory. */
1054 char payload
[BLOCK_BYTES
];
1055 struct ablock
*next_free
;
1057 /* `abase' is the aligned base of the ablocks. */
1058 /* It is overloaded to hold the virtual `busy' field that counts
1059 the number of used ablock in the parent ablocks.
1060 The first ablock has the `busy' field, the others have the `abase'
1061 field. To tell the difference, we assume that pointers will have
1062 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1063 is used to tell whether the real base of the parent ablocks is `abase'
1064 (if not, the word before the first ablock holds a pointer to the
1066 struct ablocks
*abase
;
1067 /* The padding of all but the last ablock is unused. The padding of
1068 the last ablock in an ablocks is not allocated. */
1070 char padding
[BLOCK_PADDING
];
1074 /* A bunch of consecutive aligned blocks. */
1077 struct ablock blocks
[ABLOCKS_SIZE
];
1080 /* Size of the block requested from malloc or aligned_alloc. */
1081 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1083 #define ABLOCK_ABASE(block) \
1084 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1085 ? (struct ablocks *)(block) \
1088 /* Virtual `busy' field. */
1089 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1091 /* Pointer to the (not necessarily aligned) malloc block. */
1092 #ifdef USE_ALIGNED_ALLOC
1093 #define ABLOCKS_BASE(abase) (abase)
1095 #define ABLOCKS_BASE(abase) \
1096 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1099 /* The list of free ablock. */
1100 static struct ablock
*free_ablock
;
1102 /* Allocate an aligned block of nbytes.
1103 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1104 smaller or equal to BLOCK_BYTES. */
1106 lisp_align_malloc (size_t nbytes
, enum mem_type type
)
1109 struct ablocks
*abase
;
1111 eassert (nbytes
<= BLOCK_BYTES
);
1115 #ifdef GC_MALLOC_CHECK
1116 allocated_mem_type
= type
;
1122 intptr_t aligned
; /* int gets warning casting to 64-bit pointer. */
1124 #ifdef DOUG_LEA_MALLOC
1125 if (!mmap_lisp_allowed_p ())
1126 mallopt (M_MMAP_MAX
, 0);
1129 #ifdef USE_ALIGNED_ALLOC
1130 abase
= base
= aligned_alloc (BLOCK_ALIGN
, ABLOCKS_BYTES
);
1132 base
= malloc (ABLOCKS_BYTES
);
1133 abase
= ALIGN (base
, BLOCK_ALIGN
);
1138 MALLOC_UNBLOCK_INPUT
;
1139 memory_full (ABLOCKS_BYTES
);
1142 aligned
= (base
== abase
);
1144 ((void **) abase
)[-1] = base
;
1146 #ifdef DOUG_LEA_MALLOC
1147 if (!mmap_lisp_allowed_p ())
1148 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
1152 /* If the memory just allocated cannot be addressed thru a Lisp
1153 object's pointer, and it needs to be, that's equivalent to
1154 running out of memory. */
1155 if (type
!= MEM_TYPE_NON_LISP
)
1158 char *end
= (char *) base
+ ABLOCKS_BYTES
- 1;
1159 XSETCONS (tem
, end
);
1160 if ((char *) XCONS (tem
) != end
)
1162 lisp_malloc_loser
= base
;
1164 MALLOC_UNBLOCK_INPUT
;
1165 memory_full (SIZE_MAX
);
1170 /* Initialize the blocks and put them on the free list.
1171 If `base' was not properly aligned, we can't use the last block. */
1172 for (i
= 0; i
< (aligned
? ABLOCKS_SIZE
: ABLOCKS_SIZE
- 1); i
++)
1174 abase
->blocks
[i
].abase
= abase
;
1175 abase
->blocks
[i
].x
.next_free
= free_ablock
;
1176 free_ablock
= &abase
->blocks
[i
];
1178 ABLOCKS_BUSY (abase
) = (struct ablocks
*) aligned
;
1180 eassert (0 == ((uintptr_t) abase
) % BLOCK_ALIGN
);
1181 eassert (ABLOCK_ABASE (&abase
->blocks
[3]) == abase
); /* 3 is arbitrary */
1182 eassert (ABLOCK_ABASE (&abase
->blocks
[0]) == abase
);
1183 eassert (ABLOCKS_BASE (abase
) == base
);
1184 eassert (aligned
== (intptr_t) ABLOCKS_BUSY (abase
));
1187 abase
= ABLOCK_ABASE (free_ablock
);
1188 ABLOCKS_BUSY (abase
)
1189 = (struct ablocks
*) (2 + (intptr_t) ABLOCKS_BUSY (abase
));
1191 free_ablock
= free_ablock
->x
.next_free
;
1193 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1194 if (type
!= MEM_TYPE_NON_LISP
)
1195 mem_insert (val
, (char *) val
+ nbytes
, type
);
1198 MALLOC_UNBLOCK_INPUT
;
1200 MALLOC_PROBE (nbytes
);
1202 eassert (0 == ((uintptr_t) val
) % BLOCK_ALIGN
);
1207 lisp_align_free (void *block
)
1209 struct ablock
*ablock
= block
;
1210 struct ablocks
*abase
= ABLOCK_ABASE (ablock
);
1213 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1214 mem_delete (mem_find (block
));
1216 /* Put on free list. */
1217 ablock
->x
.next_free
= free_ablock
;
1218 free_ablock
= ablock
;
1219 /* Update busy count. */
1220 ABLOCKS_BUSY (abase
)
1221 = (struct ablocks
*) (-2 + (intptr_t) ABLOCKS_BUSY (abase
));
1223 if (2 > (intptr_t) ABLOCKS_BUSY (abase
))
1224 { /* All the blocks are free. */
1225 int i
= 0, aligned
= (intptr_t) ABLOCKS_BUSY (abase
);
1226 struct ablock
**tem
= &free_ablock
;
1227 struct ablock
*atop
= &abase
->blocks
[aligned
? ABLOCKS_SIZE
: ABLOCKS_SIZE
- 1];
1231 if (*tem
>= (struct ablock
*) abase
&& *tem
< atop
)
1234 *tem
= (*tem
)->x
.next_free
;
1237 tem
= &(*tem
)->x
.next_free
;
1239 eassert ((aligned
& 1) == aligned
);
1240 eassert (i
== (aligned
? ABLOCKS_SIZE
: ABLOCKS_SIZE
- 1));
1241 #ifdef USE_POSIX_MEMALIGN
1242 eassert ((uintptr_t) ABLOCKS_BASE (abase
) % BLOCK_ALIGN
== 0);
1244 free (ABLOCKS_BASE (abase
));
1246 MALLOC_UNBLOCK_INPUT
;
1250 /***********************************************************************
1252 ***********************************************************************/
1254 /* Number of intervals allocated in an interval_block structure.
1255 The 1020 is 1024 minus malloc overhead. */
1257 #define INTERVAL_BLOCK_SIZE \
1258 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1260 /* Intervals are allocated in chunks in the form of an interval_block
1263 struct interval_block
1265 /* Place `intervals' first, to preserve alignment. */
1266 struct interval intervals
[INTERVAL_BLOCK_SIZE
];
1267 struct interval_block
*next
;
1270 /* Current interval block. Its `next' pointer points to older
1273 static struct interval_block
*interval_block
;
1275 /* Index in interval_block above of the next unused interval
1278 static int interval_block_index
= INTERVAL_BLOCK_SIZE
;
1280 /* Number of free and live intervals. */
1282 static EMACS_INT total_free_intervals
, total_intervals
;
1284 /* List of free intervals. */
1286 static INTERVAL interval_free_list
;
1288 /* Return a new interval. */
1291 make_interval (void)
1297 if (interval_free_list
)
1299 val
= interval_free_list
;
1300 interval_free_list
= INTERVAL_PARENT (interval_free_list
);
1304 if (interval_block_index
== INTERVAL_BLOCK_SIZE
)
1306 struct interval_block
*newi
1307 = lisp_malloc (sizeof *newi
, MEM_TYPE_NON_LISP
);
1309 newi
->next
= interval_block
;
1310 interval_block
= newi
;
1311 interval_block_index
= 0;
1312 total_free_intervals
+= INTERVAL_BLOCK_SIZE
;
1314 val
= &interval_block
->intervals
[interval_block_index
++];
1317 MALLOC_UNBLOCK_INPUT
;
1319 consing_since_gc
+= sizeof (struct interval
);
1321 total_free_intervals
--;
1322 RESET_INTERVAL (val
);
1328 /* Mark Lisp objects in interval I. */
1331 mark_interval (register INTERVAL i
, Lisp_Object dummy
)
1333 /* Intervals should never be shared. So, if extra internal checking is
1334 enabled, GC aborts if it seems to have visited an interval twice. */
1335 eassert (!i
->gcmarkbit
);
1337 mark_object (i
->plist
);
1340 /* Mark the interval tree rooted in I. */
1342 #define MARK_INTERVAL_TREE(i) \
1344 if (i && !i->gcmarkbit) \
1345 traverse_intervals_noorder (i, mark_interval, Qnil); \
1348 /***********************************************************************
1350 ***********************************************************************/
1352 /* Lisp_Strings are allocated in string_block structures. When a new
1353 string_block is allocated, all the Lisp_Strings it contains are
1354 added to a free-list string_free_list. When a new Lisp_String is
1355 needed, it is taken from that list. During the sweep phase of GC,
1356 string_blocks that are entirely free are freed, except two which
1359 String data is allocated from sblock structures. Strings larger
1360 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1361 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1363 Sblocks consist internally of sdata structures, one for each
1364 Lisp_String. The sdata structure points to the Lisp_String it
1365 belongs to. The Lisp_String points back to the `u.data' member of
1366 its sdata structure.
1368 When a Lisp_String is freed during GC, it is put back on
1369 string_free_list, and its `data' member and its sdata's `string'
1370 pointer is set to null. The size of the string is recorded in the
1371 `n.nbytes' member of the sdata. So, sdata structures that are no
1372 longer used, can be easily recognized, and it's easy to compact the
1373 sblocks of small strings which we do in compact_small_strings. */
1375 /* Size in bytes of an sblock structure used for small strings. This
1376 is 8192 minus malloc overhead. */
1378 #define SBLOCK_SIZE 8188
1380 /* Strings larger than this are considered large strings. String data
1381 for large strings is allocated from individual sblocks. */
1383 #define LARGE_STRING_BYTES 1024
1385 /* The SDATA typedef is a struct or union describing string memory
1386 sub-allocated from an sblock. This is where the contents of Lisp
1387 strings are stored. */
1391 /* Back-pointer to the string this sdata belongs to. If null, this
1392 structure is free, and NBYTES (in this structure or in the union below)
1393 contains the string's byte size (the same value that STRING_BYTES
1394 would return if STRING were non-null). If non-null, STRING_BYTES
1395 (STRING) is the size of the data, and DATA contains the string's
1397 struct Lisp_String
*string
;
1399 #ifdef GC_CHECK_STRING_BYTES
1403 unsigned char data
[FLEXIBLE_ARRAY_MEMBER
];
1406 #ifdef GC_CHECK_STRING_BYTES
1408 typedef struct sdata sdata
;
1409 #define SDATA_NBYTES(S) (S)->nbytes
1410 #define SDATA_DATA(S) (S)->data
1416 struct Lisp_String
*string
;
1418 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1419 which has a flexible array member. However, if implemented by
1420 giving this union a member of type 'struct sdata', the union
1421 could not be the last (flexible) member of 'struct sblock',
1422 because C99 prohibits a flexible array member from having a type
1423 that is itself a flexible array. So, comment this member out here,
1424 but remember that the option's there when using this union. */
1429 /* When STRING is null. */
1432 struct Lisp_String
*string
;
1437 #define SDATA_NBYTES(S) (S)->n.nbytes
1438 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1440 #endif /* not GC_CHECK_STRING_BYTES */
1442 enum { SDATA_DATA_OFFSET
= offsetof (struct sdata
, data
) };
1444 /* Structure describing a block of memory which is sub-allocated to
1445 obtain string data memory for strings. Blocks for small strings
1446 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1447 as large as needed. */
1452 struct sblock
*next
;
1454 /* Pointer to the next free sdata block. This points past the end
1455 of the sblock if there isn't any space left in this block. */
1459 sdata data
[FLEXIBLE_ARRAY_MEMBER
];
1462 /* Number of Lisp strings in a string_block structure. The 1020 is
1463 1024 minus malloc overhead. */
1465 #define STRING_BLOCK_SIZE \
1466 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1468 /* Structure describing a block from which Lisp_String structures
1473 /* Place `strings' first, to preserve alignment. */
1474 struct Lisp_String strings
[STRING_BLOCK_SIZE
];
1475 struct string_block
*next
;
1478 /* Head and tail of the list of sblock structures holding Lisp string
1479 data. We always allocate from current_sblock. The NEXT pointers
1480 in the sblock structures go from oldest_sblock to current_sblock. */
1482 static struct sblock
*oldest_sblock
, *current_sblock
;
1484 /* List of sblocks for large strings. */
1486 static struct sblock
*large_sblocks
;
1488 /* List of string_block structures. */
1490 static struct string_block
*string_blocks
;
1492 /* Free-list of Lisp_Strings. */
1494 static struct Lisp_String
*string_free_list
;
1496 /* Number of live and free Lisp_Strings. */
1498 static EMACS_INT total_strings
, total_free_strings
;
1500 /* Number of bytes used by live strings. */
1502 static EMACS_INT total_string_bytes
;
1504 /* Given a pointer to a Lisp_String S which is on the free-list
1505 string_free_list, return a pointer to its successor in the
1508 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1510 /* Return a pointer to the sdata structure belonging to Lisp string S.
1511 S must be live, i.e. S->data must not be null. S->data is actually
1512 a pointer to the `u.data' member of its sdata structure; the
1513 structure starts at a constant offset in front of that. */
1515 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1518 #ifdef GC_CHECK_STRING_OVERRUN
1520 /* We check for overrun in string data blocks by appending a small
1521 "cookie" after each allocated string data block, and check for the
1522 presence of this cookie during GC. */
1524 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1525 static char const string_overrun_cookie
[GC_STRING_OVERRUN_COOKIE_SIZE
] =
1526 { '\xde', '\xad', '\xbe', '\xef' };
1529 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1532 /* Value is the size of an sdata structure large enough to hold NBYTES
1533 bytes of string data. The value returned includes a terminating
1534 NUL byte, the size of the sdata structure, and padding. */
1536 #ifdef GC_CHECK_STRING_BYTES
1538 #define SDATA_SIZE(NBYTES) \
1539 ((SDATA_DATA_OFFSET \
1541 + sizeof (ptrdiff_t) - 1) \
1542 & ~(sizeof (ptrdiff_t) - 1))
1544 #else /* not GC_CHECK_STRING_BYTES */
1546 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1547 less than the size of that member. The 'max' is not needed when
1548 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1549 alignment code reserves enough space. */
1551 #define SDATA_SIZE(NBYTES) \
1552 ((SDATA_DATA_OFFSET \
1553 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1555 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1557 + sizeof (ptrdiff_t) - 1) \
1558 & ~(sizeof (ptrdiff_t) - 1))
1560 #endif /* not GC_CHECK_STRING_BYTES */
1562 /* Extra bytes to allocate for each string. */
1564 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1566 /* Exact bound on the number of bytes in a string, not counting the
1567 terminating null. A string cannot contain more bytes than
1568 STRING_BYTES_BOUND, nor can it be so long that the size_t
1569 arithmetic in allocate_string_data would overflow while it is
1570 calculating a value to be passed to malloc. */
1571 static ptrdiff_t const STRING_BYTES_MAX
=
1572 min (STRING_BYTES_BOUND
,
1573 ((SIZE_MAX
- XMALLOC_OVERRUN_CHECK_OVERHEAD
1575 - offsetof (struct sblock
, data
)
1576 - SDATA_DATA_OFFSET
)
1577 & ~(sizeof (EMACS_INT
) - 1)));
1579 /* Initialize string allocation. Called from init_alloc_once. */
1584 empty_unibyte_string
= make_pure_string ("", 0, 0, 0);
1585 empty_multibyte_string
= make_pure_string ("", 0, 0, 1);
1589 #ifdef GC_CHECK_STRING_BYTES
1591 static int check_string_bytes_count
;
1593 /* Like STRING_BYTES, but with debugging check. Can be
1594 called during GC, so pay attention to the mark bit. */
1597 string_bytes (struct Lisp_String
*s
)
1600 (s
->size_byte
< 0 ? s
->size
& ~ARRAY_MARK_FLAG
: s
->size_byte
);
1602 if (!PURE_POINTER_P (s
)
1604 && nbytes
!= SDATA_NBYTES (SDATA_OF_STRING (s
)))
1609 /* Check validity of Lisp strings' string_bytes member in B. */
1612 check_sblock (struct sblock
*b
)
1614 sdata
*from
, *end
, *from_end
;
1618 for (from
= b
->data
; from
< end
; from
= from_end
)
1620 /* Compute the next FROM here because copying below may
1621 overwrite data we need to compute it. */
1624 /* Check that the string size recorded in the string is the
1625 same as the one recorded in the sdata structure. */
1626 nbytes
= SDATA_SIZE (from
->string
? string_bytes (from
->string
)
1627 : SDATA_NBYTES (from
));
1628 from_end
= (sdata
*) ((char *) from
+ nbytes
+ GC_STRING_EXTRA
);
1633 /* Check validity of Lisp strings' string_bytes member. ALL_P
1634 means check all strings, otherwise check only most
1635 recently allocated strings. Used for hunting a bug. */
1638 check_string_bytes (bool all_p
)
1644 for (b
= large_sblocks
; b
; b
= b
->next
)
1646 struct Lisp_String
*s
= b
->data
[0].string
;
1651 for (b
= oldest_sblock
; b
; b
= b
->next
)
1654 else if (current_sblock
)
1655 check_sblock (current_sblock
);
1658 #else /* not GC_CHECK_STRING_BYTES */
1660 #define check_string_bytes(all) ((void) 0)
1662 #endif /* GC_CHECK_STRING_BYTES */
1664 #ifdef GC_CHECK_STRING_FREE_LIST
1666 /* Walk through the string free list looking for bogus next pointers.
1667 This may catch buffer overrun from a previous string. */
1670 check_string_free_list (void)
1672 struct Lisp_String
*s
;
1674 /* Pop a Lisp_String off the free-list. */
1675 s
= string_free_list
;
1678 if ((uintptr_t) s
< 1024)
1680 s
= NEXT_FREE_LISP_STRING (s
);
1684 #define check_string_free_list()
1687 /* Return a new Lisp_String. */
1689 static struct Lisp_String
*
1690 allocate_string (void)
1692 struct Lisp_String
*s
;
1696 /* If the free-list is empty, allocate a new string_block, and
1697 add all the Lisp_Strings in it to the free-list. */
1698 if (string_free_list
== NULL
)
1700 struct string_block
*b
= lisp_malloc (sizeof *b
, MEM_TYPE_STRING
);
1703 b
->next
= string_blocks
;
1706 for (i
= STRING_BLOCK_SIZE
- 1; i
>= 0; --i
)
1709 /* Every string on a free list should have NULL data pointer. */
1711 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
1712 string_free_list
= s
;
1715 total_free_strings
+= STRING_BLOCK_SIZE
;
1718 check_string_free_list ();
1720 /* Pop a Lisp_String off the free-list. */
1721 s
= string_free_list
;
1722 string_free_list
= NEXT_FREE_LISP_STRING (s
);
1724 MALLOC_UNBLOCK_INPUT
;
1726 --total_free_strings
;
1729 consing_since_gc
+= sizeof *s
;
1731 #ifdef GC_CHECK_STRING_BYTES
1732 if (!noninteractive
)
1734 if (++check_string_bytes_count
== 200)
1736 check_string_bytes_count
= 0;
1737 check_string_bytes (1);
1740 check_string_bytes (0);
1742 #endif /* GC_CHECK_STRING_BYTES */
1748 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1749 plus a NUL byte at the end. Allocate an sdata structure for S, and
1750 set S->data to its `u.data' member. Store a NUL byte at the end of
1751 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1752 S->data if it was initially non-null. */
1755 allocate_string_data (struct Lisp_String
*s
,
1756 EMACS_INT nchars
, EMACS_INT nbytes
)
1758 sdata
*data
, *old_data
;
1760 ptrdiff_t needed
, old_nbytes
;
1762 if (STRING_BYTES_MAX
< nbytes
)
1765 /* Determine the number of bytes needed to store NBYTES bytes
1767 needed
= SDATA_SIZE (nbytes
);
1770 old_data
= SDATA_OF_STRING (s
);
1771 old_nbytes
= STRING_BYTES (s
);
1778 if (nbytes
> LARGE_STRING_BYTES
)
1780 size_t size
= offsetof (struct sblock
, data
) + needed
;
1782 #ifdef DOUG_LEA_MALLOC
1783 if (!mmap_lisp_allowed_p ())
1784 mallopt (M_MMAP_MAX
, 0);
1787 b
= lisp_malloc (size
+ GC_STRING_EXTRA
, MEM_TYPE_NON_LISP
);
1789 #ifdef DOUG_LEA_MALLOC
1790 if (!mmap_lisp_allowed_p ())
1791 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
1794 b
->next_free
= b
->data
;
1795 b
->data
[0].string
= NULL
;
1796 b
->next
= large_sblocks
;
1799 else if (current_sblock
== NULL
1800 || (((char *) current_sblock
+ SBLOCK_SIZE
1801 - (char *) current_sblock
->next_free
)
1802 < (needed
+ GC_STRING_EXTRA
)))
1804 /* Not enough room in the current sblock. */
1805 b
= lisp_malloc (SBLOCK_SIZE
, MEM_TYPE_NON_LISP
);
1806 b
->next_free
= b
->data
;
1807 b
->data
[0].string
= NULL
;
1811 current_sblock
->next
= b
;
1819 data
= b
->next_free
;
1820 b
->next_free
= (sdata
*) ((char *) data
+ needed
+ GC_STRING_EXTRA
);
1822 MALLOC_UNBLOCK_INPUT
;
1825 s
->data
= SDATA_DATA (data
);
1826 #ifdef GC_CHECK_STRING_BYTES
1827 SDATA_NBYTES (data
) = nbytes
;
1830 s
->size_byte
= nbytes
;
1831 s
->data
[nbytes
] = '\0';
1832 #ifdef GC_CHECK_STRING_OVERRUN
1833 memcpy ((char *) data
+ needed
, string_overrun_cookie
,
1834 GC_STRING_OVERRUN_COOKIE_SIZE
);
1837 /* Note that Faset may call to this function when S has already data
1838 assigned. In this case, mark data as free by setting it's string
1839 back-pointer to null, and record the size of the data in it. */
1842 SDATA_NBYTES (old_data
) = old_nbytes
;
1843 old_data
->string
= NULL
;
1846 consing_since_gc
+= needed
;
1850 /* Sweep and compact strings. */
1852 NO_INLINE
/* For better stack traces */
1854 sweep_strings (void)
1856 struct string_block
*b
, *next
;
1857 struct string_block
*live_blocks
= NULL
;
1859 string_free_list
= NULL
;
1860 total_strings
= total_free_strings
= 0;
1861 total_string_bytes
= 0;
1863 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1864 for (b
= string_blocks
; b
; b
= next
)
1867 struct Lisp_String
*free_list_before
= string_free_list
;
1871 for (i
= 0; i
< STRING_BLOCK_SIZE
; ++i
)
1873 struct Lisp_String
*s
= b
->strings
+ i
;
1877 /* String was not on free-list before. */
1878 if (STRING_MARKED_P (s
))
1880 /* String is live; unmark it and its intervals. */
1883 /* Do not use string_(set|get)_intervals here. */
1884 s
->intervals
= balance_intervals (s
->intervals
);
1887 total_string_bytes
+= STRING_BYTES (s
);
1891 /* String is dead. Put it on the free-list. */
1892 sdata
*data
= SDATA_OF_STRING (s
);
1894 /* Save the size of S in its sdata so that we know
1895 how large that is. Reset the sdata's string
1896 back-pointer so that we know it's free. */
1897 #ifdef GC_CHECK_STRING_BYTES
1898 if (string_bytes (s
) != SDATA_NBYTES (data
))
1901 data
->n
.nbytes
= STRING_BYTES (s
);
1903 data
->string
= NULL
;
1905 /* Reset the strings's `data' member so that we
1909 /* Put the string on the free-list. */
1910 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
1911 string_free_list
= s
;
1917 /* S was on the free-list before. Put it there again. */
1918 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
1919 string_free_list
= s
;
1924 /* Free blocks that contain free Lisp_Strings only, except
1925 the first two of them. */
1926 if (nfree
== STRING_BLOCK_SIZE
1927 && total_free_strings
> STRING_BLOCK_SIZE
)
1930 string_free_list
= free_list_before
;
1934 total_free_strings
+= nfree
;
1935 b
->next
= live_blocks
;
1940 check_string_free_list ();
1942 string_blocks
= live_blocks
;
1943 free_large_strings ();
1944 compact_small_strings ();
1946 check_string_free_list ();
1950 /* Free dead large strings. */
1953 free_large_strings (void)
1955 struct sblock
*b
, *next
;
1956 struct sblock
*live_blocks
= NULL
;
1958 for (b
= large_sblocks
; b
; b
= next
)
1962 if (b
->data
[0].string
== NULL
)
1966 b
->next
= live_blocks
;
1971 large_sblocks
= live_blocks
;
1975 /* Compact data of small strings. Free sblocks that don't contain
1976 data of live strings after compaction. */
1979 compact_small_strings (void)
1981 struct sblock
*b
, *tb
, *next
;
1982 sdata
*from
, *to
, *end
, *tb_end
;
1983 sdata
*to_end
, *from_end
;
1985 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1986 to, and TB_END is the end of TB. */
1988 tb_end
= (sdata
*) ((char *) tb
+ SBLOCK_SIZE
);
1991 /* Step through the blocks from the oldest to the youngest. We
1992 expect that old blocks will stabilize over time, so that less
1993 copying will happen this way. */
1994 for (b
= oldest_sblock
; b
; b
= b
->next
)
1997 eassert ((char *) end
<= (char *) b
+ SBLOCK_SIZE
);
1999 for (from
= b
->data
; from
< end
; from
= from_end
)
2001 /* Compute the next FROM here because copying below may
2002 overwrite data we need to compute it. */
2004 struct Lisp_String
*s
= from
->string
;
2006 #ifdef GC_CHECK_STRING_BYTES
2007 /* Check that the string size recorded in the string is the
2008 same as the one recorded in the sdata structure. */
2009 if (s
&& string_bytes (s
) != SDATA_NBYTES (from
))
2011 #endif /* GC_CHECK_STRING_BYTES */
2013 nbytes
= s
? STRING_BYTES (s
) : SDATA_NBYTES (from
);
2014 eassert (nbytes
<= LARGE_STRING_BYTES
);
2016 nbytes
= SDATA_SIZE (nbytes
);
2017 from_end
= (sdata
*) ((char *) from
+ nbytes
+ GC_STRING_EXTRA
);
2019 #ifdef GC_CHECK_STRING_OVERRUN
2020 if (memcmp (string_overrun_cookie
,
2021 (char *) from_end
- GC_STRING_OVERRUN_COOKIE_SIZE
,
2022 GC_STRING_OVERRUN_COOKIE_SIZE
))
2026 /* Non-NULL S means it's alive. Copy its data. */
2029 /* If TB is full, proceed with the next sblock. */
2030 to_end
= (sdata
*) ((char *) to
+ nbytes
+ GC_STRING_EXTRA
);
2031 if (to_end
> tb_end
)
2035 tb_end
= (sdata
*) ((char *) tb
+ SBLOCK_SIZE
);
2037 to_end
= (sdata
*) ((char *) to
+ nbytes
+ GC_STRING_EXTRA
);
2040 /* Copy, and update the string's `data' pointer. */
2043 eassert (tb
!= b
|| to
< from
);
2044 memmove (to
, from
, nbytes
+ GC_STRING_EXTRA
);
2045 to
->string
->data
= SDATA_DATA (to
);
2048 /* Advance past the sdata we copied to. */
2054 /* The rest of the sblocks following TB don't contain live data, so
2055 we can free them. */
2056 for (b
= tb
->next
; b
; b
= next
)
2064 current_sblock
= tb
;
2068 string_overflow (void)
2070 error ("Maximum string size exceeded");
2073 DEFUN ("make-string", Fmake_string
, Smake_string
, 2, 2, 0,
2074 doc
: /* Return a newly created string of length LENGTH, with INIT in each element.
2075 LENGTH must be an integer.
2076 INIT must be an integer that represents a character. */)
2077 (Lisp_Object length
, Lisp_Object init
)
2079 register Lisp_Object val
;
2083 CHECK_NATNUM (length
);
2084 CHECK_CHARACTER (init
);
2086 c
= XFASTINT (init
);
2087 if (ASCII_CHAR_P (c
))
2089 nbytes
= XINT (length
);
2090 val
= make_uninit_string (nbytes
);
2091 memset (SDATA (val
), c
, nbytes
);
2092 SDATA (val
)[nbytes
] = 0;
2096 unsigned char str
[MAX_MULTIBYTE_LENGTH
];
2097 ptrdiff_t len
= CHAR_STRING (c
, str
);
2098 EMACS_INT string_len
= XINT (length
);
2099 unsigned char *p
, *beg
, *end
;
2101 if (string_len
> STRING_BYTES_MAX
/ len
)
2103 nbytes
= len
* string_len
;
2104 val
= make_uninit_multibyte_string (string_len
, nbytes
);
2105 for (beg
= SDATA (val
), p
= beg
, end
= beg
+ nbytes
; p
< end
; p
+= len
)
2107 /* First time we just copy `str' to the data of `val'. */
2109 memcpy (p
, str
, len
);
2112 /* Next time we copy largest possible chunk from
2113 initialized to uninitialized part of `val'. */
2114 len
= min (p
- beg
, end
- p
);
2115 memcpy (p
, beg
, len
);
2124 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2128 bool_vector_fill (Lisp_Object a
, Lisp_Object init
)
2130 EMACS_INT nbits
= bool_vector_size (a
);
2133 unsigned char *data
= bool_vector_uchar_data (a
);
2134 int pattern
= NILP (init
) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR
) - 1;
2135 ptrdiff_t nbytes
= bool_vector_bytes (nbits
);
2136 int last_mask
= ~ (~0u << ((nbits
- 1) % BOOL_VECTOR_BITS_PER_CHAR
+ 1));
2137 memset (data
, pattern
, nbytes
- 1);
2138 data
[nbytes
- 1] = pattern
& last_mask
;
2143 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2146 make_uninit_bool_vector (EMACS_INT nbits
)
2149 EMACS_INT words
= bool_vector_words (nbits
);
2150 EMACS_INT word_bytes
= words
* sizeof (bits_word
);
2151 EMACS_INT needed_elements
= ((bool_header_size
- header_size
+ word_bytes
2154 struct Lisp_Bool_Vector
*p
2155 = (struct Lisp_Bool_Vector
*) allocate_vector (needed_elements
);
2156 XSETVECTOR (val
, p
);
2157 XSETPVECTYPESIZE (XVECTOR (val
), PVEC_BOOL_VECTOR
, 0, 0);
2160 /* Clear padding at the end. */
2162 p
->data
[words
- 1] = 0;
2167 DEFUN ("make-bool-vector", Fmake_bool_vector
, Smake_bool_vector
, 2, 2, 0,
2168 doc
: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2169 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2170 (Lisp_Object length
, Lisp_Object init
)
2174 CHECK_NATNUM (length
);
2175 val
= make_uninit_bool_vector (XFASTINT (length
));
2176 return bool_vector_fill (val
, init
);
2179 DEFUN ("bool-vector", Fbool_vector
, Sbool_vector
, 0, MANY
, 0,
2180 doc
: /* Return a new bool-vector with specified arguments as elements.
2181 Any number of arguments, even zero arguments, are allowed.
2182 usage: (bool-vector &rest OBJECTS) */)
2183 (ptrdiff_t nargs
, Lisp_Object
*args
)
2188 vector
= make_uninit_bool_vector (nargs
);
2189 for (i
= 0; i
< nargs
; i
++)
2190 bool_vector_set (vector
, i
, !NILP (args
[i
]));
2195 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2196 of characters from the contents. This string may be unibyte or
2197 multibyte, depending on the contents. */
2200 make_string (const char *contents
, ptrdiff_t nbytes
)
2202 register Lisp_Object val
;
2203 ptrdiff_t nchars
, multibyte_nbytes
;
2205 parse_str_as_multibyte ((const unsigned char *) contents
, nbytes
,
2206 &nchars
, &multibyte_nbytes
);
2207 if (nbytes
== nchars
|| nbytes
!= multibyte_nbytes
)
2208 /* CONTENTS contains no multibyte sequences or contains an invalid
2209 multibyte sequence. We must make unibyte string. */
2210 val
= make_unibyte_string (contents
, nbytes
);
2212 val
= make_multibyte_string (contents
, nchars
, nbytes
);
2216 /* Make a unibyte string from LENGTH bytes at CONTENTS. */
2219 make_unibyte_string (const char *contents
, ptrdiff_t length
)
2221 register Lisp_Object val
;
2222 val
= make_uninit_string (length
);
2223 memcpy (SDATA (val
), contents
, length
);
2228 /* Make a multibyte string from NCHARS characters occupying NBYTES
2229 bytes at CONTENTS. */
2232 make_multibyte_string (const char *contents
,
2233 ptrdiff_t nchars
, ptrdiff_t nbytes
)
2235 register Lisp_Object val
;
2236 val
= make_uninit_multibyte_string (nchars
, nbytes
);
2237 memcpy (SDATA (val
), contents
, nbytes
);
2242 /* Make a string from NCHARS characters occupying NBYTES bytes at
2243 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2246 make_string_from_bytes (const char *contents
,
2247 ptrdiff_t nchars
, ptrdiff_t nbytes
)
2249 register Lisp_Object val
;
2250 val
= make_uninit_multibyte_string (nchars
, nbytes
);
2251 memcpy (SDATA (val
), contents
, nbytes
);
2252 if (SBYTES (val
) == SCHARS (val
))
2253 STRING_SET_UNIBYTE (val
);
2258 /* Make a string from NCHARS characters occupying NBYTES bytes at
2259 CONTENTS. The argument MULTIBYTE controls whether to label the
2260 string as multibyte. If NCHARS is negative, it counts the number of
2261 characters by itself. */
2264 make_specified_string (const char *contents
,
2265 ptrdiff_t nchars
, ptrdiff_t nbytes
, bool multibyte
)
2272 nchars
= multibyte_chars_in_text ((const unsigned char *) contents
,
2277 val
= make_uninit_multibyte_string (nchars
, nbytes
);
2278 memcpy (SDATA (val
), contents
, nbytes
);
2280 STRING_SET_UNIBYTE (val
);
2285 /* Return a unibyte Lisp_String set up to hold LENGTH characters
2286 occupying LENGTH bytes. */
2289 make_uninit_string (EMACS_INT length
)
2294 return empty_unibyte_string
;
2295 val
= make_uninit_multibyte_string (length
, length
);
2296 STRING_SET_UNIBYTE (val
);
2301 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2302 which occupy NBYTES bytes. */
2305 make_uninit_multibyte_string (EMACS_INT nchars
, EMACS_INT nbytes
)
2308 struct Lisp_String
*s
;
2313 return empty_multibyte_string
;
2315 s
= allocate_string ();
2316 s
->intervals
= NULL
;
2317 allocate_string_data (s
, nchars
, nbytes
);
2318 XSETSTRING (string
, s
);
2319 string_chars_consed
+= nbytes
;
2323 /* Print arguments to BUF according to a FORMAT, then return
2324 a Lisp_String initialized with the data from BUF. */
2327 make_formatted_string (char *buf
, const char *format
, ...)
2332 va_start (ap
, format
);
2333 length
= vsprintf (buf
, format
, ap
);
2335 return make_string (buf
, length
);
2339 /***********************************************************************
2341 ***********************************************************************/
2343 /* We store float cells inside of float_blocks, allocating a new
2344 float_block with malloc whenever necessary. Float cells reclaimed
2345 by GC are put on a free list to be reallocated before allocating
2346 any new float cells from the latest float_block. */
2348 #define FLOAT_BLOCK_SIZE \
2349 (((BLOCK_BYTES - sizeof (struct float_block *) \
2350 /* The compiler might add padding at the end. */ \
2351 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2352 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2354 #define GETMARKBIT(block,n) \
2355 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2356 >> ((n) % BITS_PER_BITS_WORD)) \
2359 #define SETMARKBIT(block,n) \
2360 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2361 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2363 #define UNSETMARKBIT(block,n) \
2364 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2365 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2367 #define FLOAT_BLOCK(fptr) \
2368 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2370 #define FLOAT_INDEX(fptr) \
2371 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2375 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2376 struct Lisp_Float floats
[FLOAT_BLOCK_SIZE
];
2377 bits_word gcmarkbits
[1 + FLOAT_BLOCK_SIZE
/ BITS_PER_BITS_WORD
];
2378 struct float_block
*next
;
2381 #define FLOAT_MARKED_P(fptr) \
2382 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2384 #define FLOAT_MARK(fptr) \
2385 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2387 #define FLOAT_UNMARK(fptr) \
2388 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2390 /* Current float_block. */
2392 static struct float_block
*float_block
;
2394 /* Index of first unused Lisp_Float in the current float_block. */
2396 static int float_block_index
= FLOAT_BLOCK_SIZE
;
2398 /* Free-list of Lisp_Floats. */
2400 static struct Lisp_Float
*float_free_list
;
2402 /* Return a new float object with value FLOAT_VALUE. */
2405 make_float (double float_value
)
2407 register Lisp_Object val
;
2411 if (float_free_list
)
2413 /* We use the data field for chaining the free list
2414 so that we won't use the same field that has the mark bit. */
2415 XSETFLOAT (val
, float_free_list
);
2416 float_free_list
= float_free_list
->u
.chain
;
2420 if (float_block_index
== FLOAT_BLOCK_SIZE
)
2422 struct float_block
*new
2423 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT
);
2424 new->next
= float_block
;
2425 memset (new->gcmarkbits
, 0, sizeof new->gcmarkbits
);
2427 float_block_index
= 0;
2428 total_free_floats
+= FLOAT_BLOCK_SIZE
;
2430 XSETFLOAT (val
, &float_block
->floats
[float_block_index
]);
2431 float_block_index
++;
2434 MALLOC_UNBLOCK_INPUT
;
2436 XFLOAT_INIT (val
, float_value
);
2437 eassert (!FLOAT_MARKED_P (XFLOAT (val
)));
2438 consing_since_gc
+= sizeof (struct Lisp_Float
);
2440 total_free_floats
--;
2446 /***********************************************************************
2448 ***********************************************************************/
2450 /* We store cons cells inside of cons_blocks, allocating a new
2451 cons_block with malloc whenever necessary. Cons cells reclaimed by
2452 GC are put on a free list to be reallocated before allocating
2453 any new cons cells from the latest cons_block. */
2455 #define CONS_BLOCK_SIZE \
2456 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2457 /* The compiler might add padding at the end. */ \
2458 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2459 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2461 #define CONS_BLOCK(fptr) \
2462 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2464 #define CONS_INDEX(fptr) \
2465 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2469 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2470 struct Lisp_Cons conses
[CONS_BLOCK_SIZE
];
2471 bits_word gcmarkbits
[1 + CONS_BLOCK_SIZE
/ BITS_PER_BITS_WORD
];
2472 struct cons_block
*next
;
2475 #define CONS_MARKED_P(fptr) \
2476 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2478 #define CONS_MARK(fptr) \
2479 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2481 #define CONS_UNMARK(fptr) \
2482 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2484 /* Current cons_block. */
2486 static struct cons_block
*cons_block
;
2488 /* Index of first unused Lisp_Cons in the current block. */
2490 static int cons_block_index
= CONS_BLOCK_SIZE
;
2492 /* Free-list of Lisp_Cons structures. */
2494 static struct Lisp_Cons
*cons_free_list
;
2496 /* Explicitly free a cons cell by putting it on the free-list. */
2499 free_cons (struct Lisp_Cons
*ptr
)
2501 ptr
->u
.chain
= cons_free_list
;
2505 cons_free_list
= ptr
;
2506 consing_since_gc
-= sizeof *ptr
;
2507 total_free_conses
++;
2510 DEFUN ("cons", Fcons
, Scons
, 2, 2, 0,
2511 doc
: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2512 (Lisp_Object car
, Lisp_Object cdr
)
2514 register Lisp_Object val
;
2520 /* We use the cdr for chaining the free list
2521 so that we won't use the same field that has the mark bit. */
2522 XSETCONS (val
, cons_free_list
);
2523 cons_free_list
= cons_free_list
->u
.chain
;
2527 if (cons_block_index
== CONS_BLOCK_SIZE
)
2529 struct cons_block
*new
2530 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS
);
2531 memset (new->gcmarkbits
, 0, sizeof new->gcmarkbits
);
2532 new->next
= cons_block
;
2534 cons_block_index
= 0;
2535 total_free_conses
+= CONS_BLOCK_SIZE
;
2537 XSETCONS (val
, &cons_block
->conses
[cons_block_index
]);
2541 MALLOC_UNBLOCK_INPUT
;
2545 eassert (!CONS_MARKED_P (XCONS (val
)));
2546 consing_since_gc
+= sizeof (struct Lisp_Cons
);
2547 total_free_conses
--;
2548 cons_cells_consed
++;
2552 #ifdef GC_CHECK_CONS_LIST
2553 /* Get an error now if there's any junk in the cons free list. */
2555 check_cons_list (void)
2557 struct Lisp_Cons
*tail
= cons_free_list
;
2560 tail
= tail
->u
.chain
;
2564 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2567 list1 (Lisp_Object arg1
)
2569 return Fcons (arg1
, Qnil
);
2573 list2 (Lisp_Object arg1
, Lisp_Object arg2
)
2575 return Fcons (arg1
, Fcons (arg2
, Qnil
));
2580 list3 (Lisp_Object arg1
, Lisp_Object arg2
, Lisp_Object arg3
)
2582 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Qnil
)));
2587 list4 (Lisp_Object arg1
, Lisp_Object arg2
, Lisp_Object arg3
, Lisp_Object arg4
)
2589 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Fcons (arg4
, Qnil
))));
2594 list5 (Lisp_Object arg1
, Lisp_Object arg2
, Lisp_Object arg3
, Lisp_Object arg4
, Lisp_Object arg5
)
2596 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Fcons (arg4
,
2597 Fcons (arg5
, Qnil
)))));
2600 /* Make a list of COUNT Lisp_Objects, where ARG is the
2601 first one. Allocate conses from pure space if TYPE
2602 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2605 listn (enum constype type
, ptrdiff_t count
, Lisp_Object arg
, ...)
2607 Lisp_Object (*cons
) (Lisp_Object
, Lisp_Object
);
2610 case CONSTYPE_PURE
: cons
= pure_cons
; break;
2611 case CONSTYPE_HEAP
: cons
= Fcons
; break;
2612 default: emacs_abort ();
2615 eassume (0 < count
);
2616 Lisp_Object val
= cons (arg
, Qnil
);
2617 Lisp_Object tail
= val
;
2621 for (ptrdiff_t i
= 1; i
< count
; i
++)
2623 Lisp_Object elem
= cons (va_arg (ap
, Lisp_Object
), Qnil
);
2624 XSETCDR (tail
, elem
);
2632 DEFUN ("list", Flist
, Slist
, 0, MANY
, 0,
2633 doc
: /* Return a newly created list with specified arguments as elements.
2634 Any number of arguments, even zero arguments, are allowed.
2635 usage: (list &rest OBJECTS) */)
2636 (ptrdiff_t nargs
, Lisp_Object
*args
)
2638 register Lisp_Object val
;
2644 val
= Fcons (args
[nargs
], val
);
2650 DEFUN ("make-list", Fmake_list
, Smake_list
, 2, 2, 0,
2651 doc
: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2652 (register Lisp_Object length
, Lisp_Object init
)
2654 register Lisp_Object val
;
2655 register EMACS_INT size
;
2657 CHECK_NATNUM (length
);
2658 size
= XFASTINT (length
);
2663 val
= Fcons (init
, val
);
2668 val
= Fcons (init
, val
);
2673 val
= Fcons (init
, val
);
2678 val
= Fcons (init
, val
);
2683 val
= Fcons (init
, val
);
2698 /***********************************************************************
2700 ***********************************************************************/
2702 /* Sometimes a vector's contents are merely a pointer internally used
2703 in vector allocation code. On the rare platforms where a null
2704 pointer cannot be tagged, represent it with a Lisp 0.
2705 Usually you don't want to touch this. */
2707 static struct Lisp_Vector
*
2708 next_vector (struct Lisp_Vector
*v
)
2710 return XUNTAG (v
->contents
[0], Lisp_Int0
);
2714 set_next_vector (struct Lisp_Vector
*v
, struct Lisp_Vector
*p
)
2716 v
->contents
[0] = make_lisp_ptr (p
, Lisp_Int0
);
2719 /* This value is balanced well enough to avoid too much internal overhead
2720 for the most common cases; it's not required to be a power of two, but
2721 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2723 #define VECTOR_BLOCK_SIZE 4096
2727 /* Alignment of struct Lisp_Vector objects. */
2728 vector_alignment
= COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR
,
2731 /* Vector size requests are a multiple of this. */
2732 roundup_size
= COMMON_MULTIPLE (vector_alignment
, word_size
)
2735 /* Verify assumptions described above. */
2736 verify ((VECTOR_BLOCK_SIZE
% roundup_size
) == 0);
2737 verify (VECTOR_BLOCK_SIZE
<= (1 << PSEUDOVECTOR_SIZE_BITS
));
2739 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2740 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2741 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2742 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2744 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2746 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2748 /* Size of the minimal vector allocated from block. */
2750 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2752 /* Size of the largest vector allocated from block. */
2754 #define VBLOCK_BYTES_MAX \
2755 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2757 /* We maintain one free list for each possible block-allocated
2758 vector size, and this is the number of free lists we have. */
2760 #define VECTOR_MAX_FREE_LIST_INDEX \
2761 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2763 /* Common shortcut to advance vector pointer over a block data. */
2765 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2767 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2769 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2771 /* Common shortcut to setup vector on a free list. */
2773 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2775 (tmp) = ((nbytes - header_size) / word_size); \
2776 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2777 eassert ((nbytes) % roundup_size == 0); \
2778 (tmp) = VINDEX (nbytes); \
2779 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2780 set_next_vector (v, vector_free_lists[tmp]); \
2781 vector_free_lists[tmp] = (v); \
2782 total_free_vector_slots += (nbytes) / word_size; \
2785 /* This internal type is used to maintain the list of large vectors
2786 which are allocated at their own, e.g. outside of vector blocks.
2788 struct large_vector itself cannot contain a struct Lisp_Vector, as
2789 the latter contains a flexible array member and C99 does not allow
2790 such structs to be nested. Instead, each struct large_vector
2791 object LV is followed by a struct Lisp_Vector, which is at offset
2792 large_vector_offset from LV, and whose address is therefore
2793 large_vector_vec (&LV). */
2797 struct large_vector
*next
;
2802 large_vector_offset
= ROUNDUP (sizeof (struct large_vector
), vector_alignment
)
2805 static struct Lisp_Vector
*
2806 large_vector_vec (struct large_vector
*p
)
2808 return (struct Lisp_Vector
*) ((char *) p
+ large_vector_offset
);
2811 /* This internal type is used to maintain an underlying storage
2812 for small vectors. */
2816 char data
[VECTOR_BLOCK_BYTES
];
2817 struct vector_block
*next
;
2820 /* Chain of vector blocks. */
2822 static struct vector_block
*vector_blocks
;
2824 /* Vector free lists, where NTH item points to a chain of free
2825 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2827 static struct Lisp_Vector
*vector_free_lists
[VECTOR_MAX_FREE_LIST_INDEX
];
2829 /* Singly-linked list of large vectors. */
2831 static struct large_vector
*large_vectors
;
2833 /* The only vector with 0 slots, allocated from pure space. */
2835 Lisp_Object zero_vector
;
2837 /* Number of live vectors. */
2839 static EMACS_INT total_vectors
;
2841 /* Total size of live and free vectors, in Lisp_Object units. */
2843 static EMACS_INT total_vector_slots
, total_free_vector_slots
;
2845 /* Get a new vector block. */
2847 static struct vector_block
*
2848 allocate_vector_block (void)
2850 struct vector_block
*block
= xmalloc (sizeof *block
);
2852 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2853 mem_insert (block
->data
, block
->data
+ VECTOR_BLOCK_BYTES
,
2854 MEM_TYPE_VECTOR_BLOCK
);
2857 block
->next
= vector_blocks
;
2858 vector_blocks
= block
;
2862 /* Called once to initialize vector allocation. */
2867 zero_vector
= make_pure_vector (0);
2870 /* Allocate vector from a vector block. */
2872 static struct Lisp_Vector
*
2873 allocate_vector_from_block (size_t nbytes
)
2875 struct Lisp_Vector
*vector
;
2876 struct vector_block
*block
;
2877 size_t index
, restbytes
;
2879 eassert (VBLOCK_BYTES_MIN
<= nbytes
&& nbytes
<= VBLOCK_BYTES_MAX
);
2880 eassert (nbytes
% roundup_size
== 0);
2882 /* First, try to allocate from a free list
2883 containing vectors of the requested size. */
2884 index
= VINDEX (nbytes
);
2885 if (vector_free_lists
[index
])
2887 vector
= vector_free_lists
[index
];
2888 vector_free_lists
[index
] = next_vector (vector
);
2889 total_free_vector_slots
-= nbytes
/ word_size
;
2893 /* Next, check free lists containing larger vectors. Since
2894 we will split the result, we should have remaining space
2895 large enough to use for one-slot vector at least. */
2896 for (index
= VINDEX (nbytes
+ VBLOCK_BYTES_MIN
);
2897 index
< VECTOR_MAX_FREE_LIST_INDEX
; index
++)
2898 if (vector_free_lists
[index
])
2900 /* This vector is larger than requested. */
2901 vector
= vector_free_lists
[index
];
2902 vector_free_lists
[index
] = next_vector (vector
);
2903 total_free_vector_slots
-= nbytes
/ word_size
;
2905 /* Excess bytes are used for the smaller vector,
2906 which should be set on an appropriate free list. */
2907 restbytes
= index
* roundup_size
+ VBLOCK_BYTES_MIN
- nbytes
;
2908 eassert (restbytes
% roundup_size
== 0);
2909 SETUP_ON_FREE_LIST (ADVANCE (vector
, nbytes
), restbytes
, index
);
2913 /* Finally, need a new vector block. */
2914 block
= allocate_vector_block ();
2916 /* New vector will be at the beginning of this block. */
2917 vector
= (struct Lisp_Vector
*) block
->data
;
2919 /* If the rest of space from this block is large enough
2920 for one-slot vector at least, set up it on a free list. */
2921 restbytes
= VECTOR_BLOCK_BYTES
- nbytes
;
2922 if (restbytes
>= VBLOCK_BYTES_MIN
)
2924 eassert (restbytes
% roundup_size
== 0);
2925 SETUP_ON_FREE_LIST (ADVANCE (vector
, nbytes
), restbytes
, index
);
2930 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2932 #define VECTOR_IN_BLOCK(vector, block) \
2933 ((char *) (vector) <= (block)->data \
2934 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2936 /* Return the memory footprint of V in bytes. */
2939 vector_nbytes (struct Lisp_Vector
*v
)
2941 ptrdiff_t size
= v
->header
.size
& ~ARRAY_MARK_FLAG
;
2944 if (size
& PSEUDOVECTOR_FLAG
)
2946 if (PSEUDOVECTOR_TYPEP (&v
->header
, PVEC_BOOL_VECTOR
))
2948 struct Lisp_Bool_Vector
*bv
= (struct Lisp_Bool_Vector
*) v
;
2949 ptrdiff_t word_bytes
= (bool_vector_words (bv
->size
)
2950 * sizeof (bits_word
));
2951 ptrdiff_t boolvec_bytes
= bool_header_size
+ word_bytes
;
2952 verify (header_size
<= bool_header_size
);
2953 nwords
= (boolvec_bytes
- header_size
+ word_size
- 1) / word_size
;
2956 nwords
= ((size
& PSEUDOVECTOR_SIZE_MASK
)
2957 + ((size
& PSEUDOVECTOR_REST_MASK
)
2958 >> PSEUDOVECTOR_SIZE_BITS
));
2962 return vroundup (header_size
+ word_size
* nwords
);
2965 /* Release extra resources still in use by VECTOR, which may be any
2966 vector-like object. For now, this is used just to free data in
2970 cleanup_vector (struct Lisp_Vector
*vector
)
2972 detect_suspicious_free (vector
);
2973 if (PSEUDOVECTOR_TYPEP (&vector
->header
, PVEC_FONT
)
2974 && ((vector
->header
.size
& PSEUDOVECTOR_SIZE_MASK
)
2975 == FONT_OBJECT_MAX
))
2977 struct font_driver
*drv
= ((struct font
*) vector
)->driver
;
2979 /* The font driver might sometimes be NULL, e.g. if Emacs was
2980 interrupted before it had time to set it up. */
2983 /* Attempt to catch subtle bugs like Bug#16140. */
2984 eassert (valid_font_driver (drv
));
2985 drv
->close ((struct font
*) vector
);
2990 /* Reclaim space used by unmarked vectors. */
2992 NO_INLINE
/* For better stack traces */
2994 sweep_vectors (void)
2996 struct vector_block
*block
, **bprev
= &vector_blocks
;
2997 struct large_vector
*lv
, **lvprev
= &large_vectors
;
2998 struct Lisp_Vector
*vector
, *next
;
3000 total_vectors
= total_vector_slots
= total_free_vector_slots
= 0;
3001 memset (vector_free_lists
, 0, sizeof (vector_free_lists
));
3003 /* Looking through vector blocks. */
3005 for (block
= vector_blocks
; block
; block
= *bprev
)
3007 bool free_this_block
= 0;
3010 for (vector
= (struct Lisp_Vector
*) block
->data
;
3011 VECTOR_IN_BLOCK (vector
, block
); vector
= next
)
3013 if (VECTOR_MARKED_P (vector
))
3015 VECTOR_UNMARK (vector
);
3017 nbytes
= vector_nbytes (vector
);
3018 total_vector_slots
+= nbytes
/ word_size
;
3019 next
= ADVANCE (vector
, nbytes
);
3023 ptrdiff_t total_bytes
;
3025 cleanup_vector (vector
);
3026 nbytes
= vector_nbytes (vector
);
3027 total_bytes
= nbytes
;
3028 next
= ADVANCE (vector
, nbytes
);
3030 /* While NEXT is not marked, try to coalesce with VECTOR,
3031 thus making VECTOR of the largest possible size. */
3033 while (VECTOR_IN_BLOCK (next
, block
))
3035 if (VECTOR_MARKED_P (next
))
3037 cleanup_vector (next
);
3038 nbytes
= vector_nbytes (next
);
3039 total_bytes
+= nbytes
;
3040 next
= ADVANCE (next
, nbytes
);
3043 eassert (total_bytes
% roundup_size
== 0);
3045 if (vector
== (struct Lisp_Vector
*) block
->data
3046 && !VECTOR_IN_BLOCK (next
, block
))
3047 /* This block should be freed because all of its
3048 space was coalesced into the only free vector. */
3049 free_this_block
= 1;
3053 SETUP_ON_FREE_LIST (vector
, total_bytes
, tmp
);
3058 if (free_this_block
)
3060 *bprev
= block
->next
;
3061 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3062 mem_delete (mem_find (block
->data
));
3067 bprev
= &block
->next
;
3070 /* Sweep large vectors. */
3072 for (lv
= large_vectors
; lv
; lv
= *lvprev
)
3074 vector
= large_vector_vec (lv
);
3075 if (VECTOR_MARKED_P (vector
))
3077 VECTOR_UNMARK (vector
);
3079 if (vector
->header
.size
& PSEUDOVECTOR_FLAG
)
3081 /* All non-bool pseudovectors are small enough to be allocated
3082 from vector blocks. This code should be redesigned if some
3083 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3084 eassert (PSEUDOVECTOR_TYPEP (&vector
->header
, PVEC_BOOL_VECTOR
));
3085 total_vector_slots
+= vector_nbytes (vector
) / word_size
;
3089 += header_size
/ word_size
+ vector
->header
.size
;
3100 /* Value is a pointer to a newly allocated Lisp_Vector structure
3101 with room for LEN Lisp_Objects. */
3103 static struct Lisp_Vector
*
3104 allocate_vectorlike (ptrdiff_t len
)
3106 struct Lisp_Vector
*p
;
3111 p
= XVECTOR (zero_vector
);
3114 size_t nbytes
= header_size
+ len
* word_size
;
3116 #ifdef DOUG_LEA_MALLOC
3117 if (!mmap_lisp_allowed_p ())
3118 mallopt (M_MMAP_MAX
, 0);
3121 if (nbytes
<= VBLOCK_BYTES_MAX
)
3122 p
= allocate_vector_from_block (vroundup (nbytes
));
3125 struct large_vector
*lv
3126 = lisp_malloc ((large_vector_offset
+ header_size
3128 MEM_TYPE_VECTORLIKE
);
3129 lv
->next
= large_vectors
;
3131 p
= large_vector_vec (lv
);
3134 #ifdef DOUG_LEA_MALLOC
3135 if (!mmap_lisp_allowed_p ())
3136 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
3139 if (find_suspicious_object_in_range (p
, (char *) p
+ nbytes
))
3142 consing_since_gc
+= nbytes
;
3143 vector_cells_consed
+= len
;
3146 MALLOC_UNBLOCK_INPUT
;
3152 /* Allocate a vector with LEN slots. */
3154 struct Lisp_Vector
*
3155 allocate_vector (EMACS_INT len
)
3157 struct Lisp_Vector
*v
;
3158 ptrdiff_t nbytes_max
= min (PTRDIFF_MAX
, SIZE_MAX
);
3160 if (min ((nbytes_max
- header_size
) / word_size
, MOST_POSITIVE_FIXNUM
) < len
)
3161 memory_full (SIZE_MAX
);
3162 v
= allocate_vectorlike (len
);
3163 v
->header
.size
= len
;
3168 /* Allocate other vector-like structures. */
3170 struct Lisp_Vector
*
3171 allocate_pseudovector (int memlen
, int lisplen
,
3172 int zerolen
, enum pvec_type tag
)
3174 struct Lisp_Vector
*v
= allocate_vectorlike (memlen
);
3176 /* Catch bogus values. */
3177 eassert (0 <= tag
&& tag
<= PVEC_FONT
);
3178 eassert (0 <= lisplen
&& lisplen
<= zerolen
&& zerolen
<= memlen
);
3179 eassert (memlen
- lisplen
<= (1 << PSEUDOVECTOR_REST_BITS
) - 1);
3180 eassert (lisplen
<= (1 << PSEUDOVECTOR_SIZE_BITS
) - 1);
3182 /* Only the first LISPLEN slots will be traced normally by the GC. */
3183 memclear (v
->contents
, zerolen
* word_size
);
3184 XSETPVECTYPESIZE (v
, tag
, lisplen
, memlen
- lisplen
);
3189 allocate_buffer (void)
3191 struct buffer
*b
= lisp_malloc (sizeof *b
, MEM_TYPE_BUFFER
);
3193 BUFFER_PVEC_INIT (b
);
3194 /* Put B on the chain of all buffers including killed ones. */
3195 b
->next
= all_buffers
;
3197 /* Note that the rest fields of B are not initialized. */
3201 DEFUN ("make-vector", Fmake_vector
, Smake_vector
, 2, 2, 0,
3202 doc
: /* Return a newly created vector of length LENGTH, with each element being INIT.
3203 See also the function `vector'. */)
3204 (register Lisp_Object length
, Lisp_Object init
)
3207 register ptrdiff_t sizei
;
3208 register ptrdiff_t i
;
3209 register struct Lisp_Vector
*p
;
3211 CHECK_NATNUM (length
);
3213 p
= allocate_vector (XFASTINT (length
));
3214 sizei
= XFASTINT (length
);
3215 for (i
= 0; i
< sizei
; i
++)
3216 p
->contents
[i
] = init
;
3218 XSETVECTOR (vector
, p
);
3222 DEFUN ("vector", Fvector
, Svector
, 0, MANY
, 0,
3223 doc
: /* Return a newly created vector with specified arguments as elements.
3224 Any number of arguments, even zero arguments, are allowed.
3225 usage: (vector &rest OBJECTS) */)
3226 (ptrdiff_t nargs
, Lisp_Object
*args
)
3229 register Lisp_Object val
= make_uninit_vector (nargs
);
3230 register struct Lisp_Vector
*p
= XVECTOR (val
);
3232 for (i
= 0; i
< nargs
; i
++)
3233 p
->contents
[i
] = args
[i
];
3238 make_byte_code (struct Lisp_Vector
*v
)
3240 /* Don't allow the global zero_vector to become a byte code object. */
3241 eassert (0 < v
->header
.size
);
3243 if (v
->header
.size
> 1 && STRINGP (v
->contents
[1])
3244 && STRING_MULTIBYTE (v
->contents
[1]))
3245 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3246 earlier because they produced a raw 8-bit string for byte-code
3247 and now such a byte-code string is loaded as multibyte while
3248 raw 8-bit characters converted to multibyte form. Thus, now we
3249 must convert them back to the original unibyte form. */
3250 v
->contents
[1] = Fstring_as_unibyte (v
->contents
[1]);
3251 XSETPVECTYPE (v
, PVEC_COMPILED
);
3254 DEFUN ("make-byte-code", Fmake_byte_code
, Smake_byte_code
, 4, MANY
, 0,
3255 doc
: /* Create a byte-code object with specified arguments as elements.
3256 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3257 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3258 and (optional) INTERACTIVE-SPEC.
3259 The first four arguments are required; at most six have any
3261 The ARGLIST can be either like the one of `lambda', in which case the arguments
3262 will be dynamically bound before executing the byte code, or it can be an
3263 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3264 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3265 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3266 argument to catch the left-over arguments. If such an integer is used, the
3267 arguments will not be dynamically bound but will be instead pushed on the
3268 stack before executing the byte-code.
3269 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3270 (ptrdiff_t nargs
, Lisp_Object
*args
)
3273 register Lisp_Object val
= make_uninit_vector (nargs
);
3274 register struct Lisp_Vector
*p
= XVECTOR (val
);
3276 /* We used to purecopy everything here, if purify-flag was set. This worked
3277 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3278 dangerous, since make-byte-code is used during execution to build
3279 closures, so any closure built during the preload phase would end up
3280 copied into pure space, including its free variables, which is sometimes
3281 just wasteful and other times plainly wrong (e.g. those free vars may want
3284 for (i
= 0; i
< nargs
; i
++)
3285 p
->contents
[i
] = args
[i
];
3287 XSETCOMPILED (val
, p
);
3293 /***********************************************************************
3295 ***********************************************************************/
3297 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3298 of the required alignment. */
3300 union aligned_Lisp_Symbol
3302 struct Lisp_Symbol s
;
3303 unsigned char c
[(sizeof (struct Lisp_Symbol
) + GCALIGNMENT
- 1)
3307 /* Each symbol_block is just under 1020 bytes long, since malloc
3308 really allocates in units of powers of two and uses 4 bytes for its
3311 #define SYMBOL_BLOCK_SIZE \
3312 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3316 /* Place `symbols' first, to preserve alignment. */
3317 union aligned_Lisp_Symbol symbols
[SYMBOL_BLOCK_SIZE
];
3318 struct symbol_block
*next
;
3321 /* Current symbol block and index of first unused Lisp_Symbol
3324 static struct symbol_block
*symbol_block
;
3325 static int symbol_block_index
= SYMBOL_BLOCK_SIZE
;
3326 /* Pointer to the first symbol_block that contains pinned symbols.
3327 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3328 10K of which are pinned (and all but 250 of them are interned in obarray),
3329 whereas a "typical session" has in the order of 30K symbols.
3330 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3331 than 30K to find the 10K symbols we need to mark. */
3332 static struct symbol_block
*symbol_block_pinned
;
3334 /* List of free symbols. */
3336 static struct Lisp_Symbol
*symbol_free_list
;
3339 set_symbol_name (Lisp_Object sym
, Lisp_Object name
)
3341 XSYMBOL (sym
)->name
= name
;
3345 init_symbol (Lisp_Object val
, Lisp_Object name
)
3347 struct Lisp_Symbol
*p
= XSYMBOL (val
);
3348 set_symbol_name (val
, name
);
3349 set_symbol_plist (val
, Qnil
);
3350 p
->redirect
= SYMBOL_PLAINVAL
;
3351 SET_SYMBOL_VAL (p
, Qunbound
);
3352 set_symbol_function (val
, Qnil
);
3353 set_symbol_next (val
, NULL
);
3354 p
->gcmarkbit
= false;
3355 p
->interned
= SYMBOL_UNINTERNED
;
3357 p
->declared_special
= false;
3361 DEFUN ("make-symbol", Fmake_symbol
, Smake_symbol
, 1, 1, 0,
3362 doc
: /* Return a newly allocated uninterned symbol whose name is NAME.
3363 Its value is void, and its function definition and property list are nil. */)
3368 CHECK_STRING (name
);
3372 if (symbol_free_list
)
3374 XSETSYMBOL (val
, symbol_free_list
);
3375 symbol_free_list
= symbol_free_list
->next
;
3379 if (symbol_block_index
== SYMBOL_BLOCK_SIZE
)
3381 struct symbol_block
*new
3382 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL
);
3383 new->next
= symbol_block
;
3385 symbol_block_index
= 0;
3386 total_free_symbols
+= SYMBOL_BLOCK_SIZE
;
3388 XSETSYMBOL (val
, &symbol_block
->symbols
[symbol_block_index
].s
);
3389 symbol_block_index
++;
3392 MALLOC_UNBLOCK_INPUT
;
3394 init_symbol (val
, name
);
3395 consing_since_gc
+= sizeof (struct Lisp_Symbol
);
3397 total_free_symbols
--;
3403 /***********************************************************************
3404 Marker (Misc) Allocation
3405 ***********************************************************************/
3407 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3408 the required alignment. */
3410 union aligned_Lisp_Misc
3413 unsigned char c
[(sizeof (union Lisp_Misc
) + GCALIGNMENT
- 1)
3417 /* Allocation of markers and other objects that share that structure.
3418 Works like allocation of conses. */
3420 #define MARKER_BLOCK_SIZE \
3421 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3425 /* Place `markers' first, to preserve alignment. */
3426 union aligned_Lisp_Misc markers
[MARKER_BLOCK_SIZE
];
3427 struct marker_block
*next
;
3430 static struct marker_block
*marker_block
;
3431 static int marker_block_index
= MARKER_BLOCK_SIZE
;
3433 static union Lisp_Misc
*marker_free_list
;
3435 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3438 allocate_misc (enum Lisp_Misc_Type type
)
3444 if (marker_free_list
)
3446 XSETMISC (val
, marker_free_list
);
3447 marker_free_list
= marker_free_list
->u_free
.chain
;
3451 if (marker_block_index
== MARKER_BLOCK_SIZE
)
3453 struct marker_block
*new = lisp_malloc (sizeof *new, MEM_TYPE_MISC
);
3454 new->next
= marker_block
;
3456 marker_block_index
= 0;
3457 total_free_markers
+= MARKER_BLOCK_SIZE
;
3459 XSETMISC (val
, &marker_block
->markers
[marker_block_index
].m
);
3460 marker_block_index
++;
3463 MALLOC_UNBLOCK_INPUT
;
3465 --total_free_markers
;
3466 consing_since_gc
+= sizeof (union Lisp_Misc
);
3467 misc_objects_consed
++;
3468 XMISCANY (val
)->type
= type
;
3469 XMISCANY (val
)->gcmarkbit
= 0;
3473 /* Free a Lisp_Misc object. */
3476 free_misc (Lisp_Object misc
)
3478 XMISCANY (misc
)->type
= Lisp_Misc_Free
;
3479 XMISC (misc
)->u_free
.chain
= marker_free_list
;
3480 marker_free_list
= XMISC (misc
);
3481 consing_since_gc
-= sizeof (union Lisp_Misc
);
3482 total_free_markers
++;
3485 /* Verify properties of Lisp_Save_Value's representation
3486 that are assumed here and elsewhere. */
3488 verify (SAVE_UNUSED
== 0);
3489 verify (((SAVE_INTEGER
| SAVE_POINTER
| SAVE_FUNCPOINTER
| SAVE_OBJECT
)
3493 /* Return Lisp_Save_Value objects for the various combinations
3494 that callers need. */
3497 make_save_int_int_int (ptrdiff_t a
, ptrdiff_t b
, ptrdiff_t c
)
3499 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3500 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3501 p
->save_type
= SAVE_TYPE_INT_INT_INT
;
3502 p
->data
[0].integer
= a
;
3503 p
->data
[1].integer
= b
;
3504 p
->data
[2].integer
= c
;
3509 make_save_obj_obj_obj_obj (Lisp_Object a
, Lisp_Object b
, Lisp_Object c
,
3512 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3513 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3514 p
->save_type
= SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
;
3515 p
->data
[0].object
= a
;
3516 p
->data
[1].object
= b
;
3517 p
->data
[2].object
= c
;
3518 p
->data
[3].object
= d
;
3523 make_save_ptr (void *a
)
3525 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3526 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3527 p
->save_type
= SAVE_POINTER
;
3528 p
->data
[0].pointer
= a
;
3533 make_save_ptr_int (void *a
, ptrdiff_t b
)
3535 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3536 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3537 p
->save_type
= SAVE_TYPE_PTR_INT
;
3538 p
->data
[0].pointer
= a
;
3539 p
->data
[1].integer
= b
;
3543 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3545 make_save_ptr_ptr (void *a
, void *b
)
3547 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3548 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3549 p
->save_type
= SAVE_TYPE_PTR_PTR
;
3550 p
->data
[0].pointer
= a
;
3551 p
->data
[1].pointer
= b
;
3557 make_save_funcptr_ptr_obj (void (*a
) (void), void *b
, Lisp_Object c
)
3559 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3560 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3561 p
->save_type
= SAVE_TYPE_FUNCPTR_PTR_OBJ
;
3562 p
->data
[0].funcpointer
= a
;
3563 p
->data
[1].pointer
= b
;
3564 p
->data
[2].object
= c
;
3568 /* Return a Lisp_Save_Value object that represents an array A
3569 of N Lisp objects. */
3572 make_save_memory (Lisp_Object
*a
, ptrdiff_t n
)
3574 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3575 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3576 p
->save_type
= SAVE_TYPE_MEMORY
;
3577 p
->data
[0].pointer
= a
;
3578 p
->data
[1].integer
= n
;
3582 /* Free a Lisp_Save_Value object. Do not use this function
3583 if SAVE contains pointer other than returned by xmalloc. */
3586 free_save_value (Lisp_Object save
)
3588 xfree (XSAVE_POINTER (save
, 0));
3592 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3595 build_overlay (Lisp_Object start
, Lisp_Object end
, Lisp_Object plist
)
3597 register Lisp_Object overlay
;
3599 overlay
= allocate_misc (Lisp_Misc_Overlay
);
3600 OVERLAY_START (overlay
) = start
;
3601 OVERLAY_END (overlay
) = end
;
3602 set_overlay_plist (overlay
, plist
);
3603 XOVERLAY (overlay
)->next
= NULL
;
3607 DEFUN ("make-marker", Fmake_marker
, Smake_marker
, 0, 0, 0,
3608 doc
: /* Return a newly allocated marker which does not point at any place. */)
3611 register Lisp_Object val
;
3612 register struct Lisp_Marker
*p
;
3614 val
= allocate_misc (Lisp_Misc_Marker
);
3620 p
->insertion_type
= 0;
3621 p
->need_adjustment
= 0;
3625 /* Return a newly allocated marker which points into BUF
3626 at character position CHARPOS and byte position BYTEPOS. */
3629 build_marker (struct buffer
*buf
, ptrdiff_t charpos
, ptrdiff_t bytepos
)
3632 struct Lisp_Marker
*m
;
3634 /* No dead buffers here. */
3635 eassert (BUFFER_LIVE_P (buf
));
3637 /* Every character is at least one byte. */
3638 eassert (charpos
<= bytepos
);
3640 obj
= allocate_misc (Lisp_Misc_Marker
);
3643 m
->charpos
= charpos
;
3644 m
->bytepos
= bytepos
;
3645 m
->insertion_type
= 0;
3646 m
->need_adjustment
= 0;
3647 m
->next
= BUF_MARKERS (buf
);
3648 BUF_MARKERS (buf
) = m
;
3652 /* Put MARKER back on the free list after using it temporarily. */
3655 free_marker (Lisp_Object marker
)
3657 unchain_marker (XMARKER (marker
));
3662 /* Return a newly created vector or string with specified arguments as
3663 elements. If all the arguments are characters that can fit
3664 in a string of events, make a string; otherwise, make a vector.
3666 Any number of arguments, even zero arguments, are allowed. */
3669 make_event_array (ptrdiff_t nargs
, Lisp_Object
*args
)
3673 for (i
= 0; i
< nargs
; i
++)
3674 /* The things that fit in a string
3675 are characters that are in 0...127,
3676 after discarding the meta bit and all the bits above it. */
3677 if (!INTEGERP (args
[i
])
3678 || (XINT (args
[i
]) & ~(-CHAR_META
)) >= 0200)
3679 return Fvector (nargs
, args
);
3681 /* Since the loop exited, we know that all the things in it are
3682 characters, so we can make a string. */
3686 result
= Fmake_string (make_number (nargs
), make_number (0));
3687 for (i
= 0; i
< nargs
; i
++)
3689 SSET (result
, i
, XINT (args
[i
]));
3690 /* Move the meta bit to the right place for a string char. */
3691 if (XINT (args
[i
]) & CHAR_META
)
3692 SSET (result
, i
, SREF (result
, i
) | 0x80);
3700 init_finalizer_list (struct Lisp_Finalizer
*head
)
3702 head
->prev
= head
->next
= head
;
3705 /* Insert FINALIZER before ELEMENT. */
3708 finalizer_insert (struct Lisp_Finalizer
*element
,
3709 struct Lisp_Finalizer
*finalizer
)
3711 eassert (finalizer
->prev
== NULL
);
3712 eassert (finalizer
->next
== NULL
);
3713 finalizer
->next
= element
;
3714 finalizer
->prev
= element
->prev
;
3715 finalizer
->prev
->next
= finalizer
;
3716 element
->prev
= finalizer
;
3720 unchain_finalizer (struct Lisp_Finalizer
*finalizer
)
3722 if (finalizer
->prev
!= NULL
)
3724 eassert (finalizer
->next
!= NULL
);
3725 finalizer
->prev
->next
= finalizer
->next
;
3726 finalizer
->next
->prev
= finalizer
->prev
;
3727 finalizer
->prev
= finalizer
->next
= NULL
;
3732 mark_finalizer_list (struct Lisp_Finalizer
*head
)
3734 for (struct Lisp_Finalizer
*finalizer
= head
->next
;
3736 finalizer
= finalizer
->next
)
3738 finalizer
->base
.gcmarkbit
= true;
3739 mark_object (finalizer
->function
);
3743 /* Move doomed finalizers to list DEST from list SRC. A doomed
3744 finalizer is one that is not GC-reachable and whose
3745 finalizer->function is non-nil. */
3748 queue_doomed_finalizers (struct Lisp_Finalizer
*dest
,
3749 struct Lisp_Finalizer
*src
)
3751 struct Lisp_Finalizer
*finalizer
= src
->next
;
3752 while (finalizer
!= src
)
3754 struct Lisp_Finalizer
*next
= finalizer
->next
;
3755 if (!finalizer
->base
.gcmarkbit
&& !NILP (finalizer
->function
))
3757 unchain_finalizer (finalizer
);
3758 finalizer_insert (dest
, finalizer
);
3766 run_finalizer_handler (Lisp_Object args
)
3768 add_to_log ("finalizer failed: %S", args
, Qnil
);
3773 run_finalizer_function (Lisp_Object function
)
3775 struct gcpro gcpro1
;
3776 ptrdiff_t count
= SPECPDL_INDEX ();
3779 specbind (Qinhibit_quit
, Qt
);
3780 internal_condition_case_1 (call0
, function
, Qt
, run_finalizer_handler
);
3781 unbind_to (count
, Qnil
);
3786 run_finalizers (struct Lisp_Finalizer
*finalizers
)
3788 struct Lisp_Finalizer
*finalizer
;
3789 Lisp_Object function
;
3791 while (finalizers
->next
!= finalizers
)
3793 finalizer
= finalizers
->next
;
3794 eassert (finalizer
->base
.type
== Lisp_Misc_Finalizer
);
3795 unchain_finalizer (finalizer
);
3796 function
= finalizer
->function
;
3797 if (!NILP (function
))
3799 finalizer
->function
= Qnil
;
3800 run_finalizer_function (function
);
3805 DEFUN ("make-finalizer", Fmake_finalizer
, Smake_finalizer
, 1, 1, 0,
3806 doc
: /* Make a finalizer that will run FUNCTION.
3807 FUNCTION will be called after garbage collection when the returned
3808 finalizer object becomes unreachable. If the finalizer object is
3809 reachable only through references from finalizer objects, it does not
3810 count as reachable for the purpose of deciding whether to run
3811 FUNCTION. FUNCTION will be run once per finalizer object. */)
3812 (Lisp_Object function
)
3814 Lisp_Object val
= allocate_misc (Lisp_Misc_Finalizer
);
3815 struct Lisp_Finalizer
*finalizer
= XFINALIZER (val
);
3816 finalizer
->function
= function
;
3817 finalizer
->prev
= finalizer
->next
= NULL
;
3818 finalizer_insert (&finalizers
, finalizer
);
3823 /************************************************************************
3824 Memory Full Handling
3825 ************************************************************************/
3828 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3829 there may have been size_t overflow so that malloc was never
3830 called, or perhaps malloc was invoked successfully but the
3831 resulting pointer had problems fitting into a tagged EMACS_INT. In
3832 either case this counts as memory being full even though malloc did
3836 memory_full (size_t nbytes
)
3838 /* Do not go into hysterics merely because a large request failed. */
3839 bool enough_free_memory
= 0;
3840 if (SPARE_MEMORY
< nbytes
)
3845 p
= malloc (SPARE_MEMORY
);
3849 enough_free_memory
= 1;
3851 MALLOC_UNBLOCK_INPUT
;
3854 if (! enough_free_memory
)
3860 memory_full_cons_threshold
= sizeof (struct cons_block
);
3862 /* The first time we get here, free the spare memory. */
3863 for (i
= 0; i
< ARRAYELTS (spare_memory
); i
++)
3864 if (spare_memory
[i
])
3867 free (spare_memory
[i
]);
3868 else if (i
>= 1 && i
<= 4)
3869 lisp_align_free (spare_memory
[i
]);
3871 lisp_free (spare_memory
[i
]);
3872 spare_memory
[i
] = 0;
3876 /* This used to call error, but if we've run out of memory, we could
3877 get infinite recursion trying to build the string. */
3878 xsignal (Qnil
, Vmemory_signal_data
);
3881 /* If we released our reserve (due to running out of memory),
3882 and we have a fair amount free once again,
3883 try to set aside another reserve in case we run out once more.
3885 This is called when a relocatable block is freed in ralloc.c,
3886 and also directly from this file, in case we're not using ralloc.c. */
3889 refill_memory_reserve (void)
3891 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3892 if (spare_memory
[0] == 0)
3893 spare_memory
[0] = malloc (SPARE_MEMORY
);
3894 if (spare_memory
[1] == 0)
3895 spare_memory
[1] = lisp_align_malloc (sizeof (struct cons_block
),
3897 if (spare_memory
[2] == 0)
3898 spare_memory
[2] = lisp_align_malloc (sizeof (struct cons_block
),
3900 if (spare_memory
[3] == 0)
3901 spare_memory
[3] = lisp_align_malloc (sizeof (struct cons_block
),
3903 if (spare_memory
[4] == 0)
3904 spare_memory
[4] = lisp_align_malloc (sizeof (struct cons_block
),
3906 if (spare_memory
[5] == 0)
3907 spare_memory
[5] = lisp_malloc (sizeof (struct string_block
),
3909 if (spare_memory
[6] == 0)
3910 spare_memory
[6] = lisp_malloc (sizeof (struct string_block
),
3912 if (spare_memory
[0] && spare_memory
[1] && spare_memory
[5])
3913 Vmemory_full
= Qnil
;
3917 /************************************************************************
3919 ************************************************************************/
3921 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3923 /* Conservative C stack marking requires a method to identify possibly
3924 live Lisp objects given a pointer value. We do this by keeping
3925 track of blocks of Lisp data that are allocated in a red-black tree
3926 (see also the comment of mem_node which is the type of nodes in
3927 that tree). Function lisp_malloc adds information for an allocated
3928 block to the red-black tree with calls to mem_insert, and function
3929 lisp_free removes it with mem_delete. Functions live_string_p etc
3930 call mem_find to lookup information about a given pointer in the
3931 tree, and use that to determine if the pointer points to a Lisp
3934 /* Initialize this part of alloc.c. */
3939 mem_z
.left
= mem_z
.right
= MEM_NIL
;
3940 mem_z
.parent
= NULL
;
3941 mem_z
.color
= MEM_BLACK
;
3942 mem_z
.start
= mem_z
.end
= NULL
;
3947 /* Value is a pointer to the mem_node containing START. Value is
3948 MEM_NIL if there is no node in the tree containing START. */
3950 static struct mem_node
*
3951 mem_find (void *start
)
3955 if (start
< min_heap_address
|| start
> max_heap_address
)
3958 /* Make the search always successful to speed up the loop below. */
3959 mem_z
.start
= start
;
3960 mem_z
.end
= (char *) start
+ 1;
3963 while (start
< p
->start
|| start
>= p
->end
)
3964 p
= start
< p
->start
? p
->left
: p
->right
;
3969 /* Insert a new node into the tree for a block of memory with start
3970 address START, end address END, and type TYPE. Value is a
3971 pointer to the node that was inserted. */
3973 static struct mem_node
*
3974 mem_insert (void *start
, void *end
, enum mem_type type
)
3976 struct mem_node
*c
, *parent
, *x
;
3978 if (min_heap_address
== NULL
|| start
< min_heap_address
)
3979 min_heap_address
= start
;
3980 if (max_heap_address
== NULL
|| end
> max_heap_address
)
3981 max_heap_address
= end
;
3983 /* See where in the tree a node for START belongs. In this
3984 particular application, it shouldn't happen that a node is already
3985 present. For debugging purposes, let's check that. */
3989 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3991 while (c
!= MEM_NIL
)
3993 if (start
>= c
->start
&& start
< c
->end
)
3996 c
= start
< c
->start
? c
->left
: c
->right
;
3999 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
4001 while (c
!= MEM_NIL
)
4004 c
= start
< c
->start
? c
->left
: c
->right
;
4007 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
4009 /* Create a new node. */
4010 #ifdef GC_MALLOC_CHECK
4011 x
= malloc (sizeof *x
);
4015 x
= xmalloc (sizeof *x
);
4021 x
->left
= x
->right
= MEM_NIL
;
4024 /* Insert it as child of PARENT or install it as root. */
4027 if (start
< parent
->start
)
4035 /* Re-establish red-black tree properties. */
4036 mem_insert_fixup (x
);
4042 /* Re-establish the red-black properties of the tree, and thereby
4043 balance the tree, after node X has been inserted; X is always red. */
4046 mem_insert_fixup (struct mem_node
*x
)
4048 while (x
!= mem_root
&& x
->parent
->color
== MEM_RED
)
4050 /* X is red and its parent is red. This is a violation of
4051 red-black tree property #3. */
4053 if (x
->parent
== x
->parent
->parent
->left
)
4055 /* We're on the left side of our grandparent, and Y is our
4057 struct mem_node
*y
= x
->parent
->parent
->right
;
4059 if (y
->color
== MEM_RED
)
4061 /* Uncle and parent are red but should be black because
4062 X is red. Change the colors accordingly and proceed
4063 with the grandparent. */
4064 x
->parent
->color
= MEM_BLACK
;
4065 y
->color
= MEM_BLACK
;
4066 x
->parent
->parent
->color
= MEM_RED
;
4067 x
= x
->parent
->parent
;
4071 /* Parent and uncle have different colors; parent is
4072 red, uncle is black. */
4073 if (x
== x
->parent
->right
)
4076 mem_rotate_left (x
);
4079 x
->parent
->color
= MEM_BLACK
;
4080 x
->parent
->parent
->color
= MEM_RED
;
4081 mem_rotate_right (x
->parent
->parent
);
4086 /* This is the symmetrical case of above. */
4087 struct mem_node
*y
= x
->parent
->parent
->left
;
4089 if (y
->color
== MEM_RED
)
4091 x
->parent
->color
= MEM_BLACK
;
4092 y
->color
= MEM_BLACK
;
4093 x
->parent
->parent
->color
= MEM_RED
;
4094 x
= x
->parent
->parent
;
4098 if (x
== x
->parent
->left
)
4101 mem_rotate_right (x
);
4104 x
->parent
->color
= MEM_BLACK
;
4105 x
->parent
->parent
->color
= MEM_RED
;
4106 mem_rotate_left (x
->parent
->parent
);
4111 /* The root may have been changed to red due to the algorithm. Set
4112 it to black so that property #5 is satisfied. */
4113 mem_root
->color
= MEM_BLACK
;
4124 mem_rotate_left (struct mem_node
*x
)
4128 /* Turn y's left sub-tree into x's right sub-tree. */
4131 if (y
->left
!= MEM_NIL
)
4132 y
->left
->parent
= x
;
4134 /* Y's parent was x's parent. */
4136 y
->parent
= x
->parent
;
4138 /* Get the parent to point to y instead of x. */
4141 if (x
== x
->parent
->left
)
4142 x
->parent
->left
= y
;
4144 x
->parent
->right
= y
;
4149 /* Put x on y's left. */
4163 mem_rotate_right (struct mem_node
*x
)
4165 struct mem_node
*y
= x
->left
;
4168 if (y
->right
!= MEM_NIL
)
4169 y
->right
->parent
= x
;
4172 y
->parent
= x
->parent
;
4175 if (x
== x
->parent
->right
)
4176 x
->parent
->right
= y
;
4178 x
->parent
->left
= y
;
4189 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4192 mem_delete (struct mem_node
*z
)
4194 struct mem_node
*x
, *y
;
4196 if (!z
|| z
== MEM_NIL
)
4199 if (z
->left
== MEM_NIL
|| z
->right
== MEM_NIL
)
4204 while (y
->left
!= MEM_NIL
)
4208 if (y
->left
!= MEM_NIL
)
4213 x
->parent
= y
->parent
;
4216 if (y
== y
->parent
->left
)
4217 y
->parent
->left
= x
;
4219 y
->parent
->right
= x
;
4226 z
->start
= y
->start
;
4231 if (y
->color
== MEM_BLACK
)
4232 mem_delete_fixup (x
);
4234 #ifdef GC_MALLOC_CHECK
4242 /* Re-establish the red-black properties of the tree, after a
4246 mem_delete_fixup (struct mem_node
*x
)
4248 while (x
!= mem_root
&& x
->color
== MEM_BLACK
)
4250 if (x
== x
->parent
->left
)
4252 struct mem_node
*w
= x
->parent
->right
;
4254 if (w
->color
== MEM_RED
)
4256 w
->color
= MEM_BLACK
;
4257 x
->parent
->color
= MEM_RED
;
4258 mem_rotate_left (x
->parent
);
4259 w
= x
->parent
->right
;
4262 if (w
->left
->color
== MEM_BLACK
&& w
->right
->color
== MEM_BLACK
)
4269 if (w
->right
->color
== MEM_BLACK
)
4271 w
->left
->color
= MEM_BLACK
;
4273 mem_rotate_right (w
);
4274 w
= x
->parent
->right
;
4276 w
->color
= x
->parent
->color
;
4277 x
->parent
->color
= MEM_BLACK
;
4278 w
->right
->color
= MEM_BLACK
;
4279 mem_rotate_left (x
->parent
);
4285 struct mem_node
*w
= x
->parent
->left
;
4287 if (w
->color
== MEM_RED
)
4289 w
->color
= MEM_BLACK
;
4290 x
->parent
->color
= MEM_RED
;
4291 mem_rotate_right (x
->parent
);
4292 w
= x
->parent
->left
;
4295 if (w
->right
->color
== MEM_BLACK
&& w
->left
->color
== MEM_BLACK
)
4302 if (w
->left
->color
== MEM_BLACK
)
4304 w
->right
->color
= MEM_BLACK
;
4306 mem_rotate_left (w
);
4307 w
= x
->parent
->left
;
4310 w
->color
= x
->parent
->color
;
4311 x
->parent
->color
= MEM_BLACK
;
4312 w
->left
->color
= MEM_BLACK
;
4313 mem_rotate_right (x
->parent
);
4319 x
->color
= MEM_BLACK
;
4323 /* Value is non-zero if P is a pointer to a live Lisp string on
4324 the heap. M is a pointer to the mem_block for P. */
4327 live_string_p (struct mem_node
*m
, void *p
)
4329 if (m
->type
== MEM_TYPE_STRING
)
4331 struct string_block
*b
= m
->start
;
4332 ptrdiff_t offset
= (char *) p
- (char *) &b
->strings
[0];
4334 /* P must point to the start of a Lisp_String structure, and it
4335 must not be on the free-list. */
4337 && offset
% sizeof b
->strings
[0] == 0
4338 && offset
< (STRING_BLOCK_SIZE
* sizeof b
->strings
[0])
4339 && ((struct Lisp_String
*) p
)->data
!= NULL
);
4346 /* Value is non-zero if P is a pointer to a live Lisp cons on
4347 the heap. M is a pointer to the mem_block for P. */
4350 live_cons_p (struct mem_node
*m
, void *p
)
4352 if (m
->type
== MEM_TYPE_CONS
)
4354 struct cons_block
*b
= m
->start
;
4355 ptrdiff_t offset
= (char *) p
- (char *) &b
->conses
[0];
4357 /* P must point to the start of a Lisp_Cons, not be
4358 one of the unused cells in the current cons block,
4359 and not be on the free-list. */
4361 && offset
% sizeof b
->conses
[0] == 0
4362 && offset
< (CONS_BLOCK_SIZE
* sizeof b
->conses
[0])
4364 || offset
/ sizeof b
->conses
[0] < cons_block_index
)
4365 && !EQ (((struct Lisp_Cons
*) p
)->car
, Vdead
));
4372 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4373 the heap. M is a pointer to the mem_block for P. */
4376 live_symbol_p (struct mem_node
*m
, void *p
)
4378 if (m
->type
== MEM_TYPE_SYMBOL
)
4380 struct symbol_block
*b
= m
->start
;
4381 ptrdiff_t offset
= (char *) p
- (char *) &b
->symbols
[0];
4383 /* P must point to the start of a Lisp_Symbol, not be
4384 one of the unused cells in the current symbol block,
4385 and not be on the free-list. */
4387 && offset
% sizeof b
->symbols
[0] == 0
4388 && offset
< (SYMBOL_BLOCK_SIZE
* sizeof b
->symbols
[0])
4389 && (b
!= symbol_block
4390 || offset
/ sizeof b
->symbols
[0] < symbol_block_index
)
4391 && !EQ (((struct Lisp_Symbol
*)p
)->function
, Vdead
));
4398 /* Value is non-zero if P is a pointer to a live Lisp float on
4399 the heap. M is a pointer to the mem_block for P. */
4402 live_float_p (struct mem_node
*m
, void *p
)
4404 if (m
->type
== MEM_TYPE_FLOAT
)
4406 struct float_block
*b
= m
->start
;
4407 ptrdiff_t offset
= (char *) p
- (char *) &b
->floats
[0];
4409 /* P must point to the start of a Lisp_Float and not be
4410 one of the unused cells in the current float block. */
4412 && offset
% sizeof b
->floats
[0] == 0
4413 && offset
< (FLOAT_BLOCK_SIZE
* sizeof b
->floats
[0])
4414 && (b
!= float_block
4415 || offset
/ sizeof b
->floats
[0] < float_block_index
));
4422 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4423 the heap. M is a pointer to the mem_block for P. */
4426 live_misc_p (struct mem_node
*m
, void *p
)
4428 if (m
->type
== MEM_TYPE_MISC
)
4430 struct marker_block
*b
= m
->start
;
4431 ptrdiff_t offset
= (char *) p
- (char *) &b
->markers
[0];
4433 /* P must point to the start of a Lisp_Misc, not be
4434 one of the unused cells in the current misc block,
4435 and not be on the free-list. */
4437 && offset
% sizeof b
->markers
[0] == 0
4438 && offset
< (MARKER_BLOCK_SIZE
* sizeof b
->markers
[0])
4439 && (b
!= marker_block
4440 || offset
/ sizeof b
->markers
[0] < marker_block_index
)
4441 && ((union Lisp_Misc
*) p
)->u_any
.type
!= Lisp_Misc_Free
);
4448 /* Value is non-zero if P is a pointer to a live vector-like object.
4449 M is a pointer to the mem_block for P. */
4452 live_vector_p (struct mem_node
*m
, void *p
)
4454 if (m
->type
== MEM_TYPE_VECTOR_BLOCK
)
4456 /* This memory node corresponds to a vector block. */
4457 struct vector_block
*block
= m
->start
;
4458 struct Lisp_Vector
*vector
= (struct Lisp_Vector
*) block
->data
;
4460 /* P is in the block's allocation range. Scan the block
4461 up to P and see whether P points to the start of some
4462 vector which is not on a free list. FIXME: check whether
4463 some allocation patterns (probably a lot of short vectors)
4464 may cause a substantial overhead of this loop. */
4465 while (VECTOR_IN_BLOCK (vector
, block
)
4466 && vector
<= (struct Lisp_Vector
*) p
)
4468 if (!PSEUDOVECTOR_TYPEP (&vector
->header
, PVEC_FREE
) && vector
== p
)
4471 vector
= ADVANCE (vector
, vector_nbytes (vector
));
4474 else if (m
->type
== MEM_TYPE_VECTORLIKE
&& p
== large_vector_vec (m
->start
))
4475 /* This memory node corresponds to a large vector. */
4481 /* Value is non-zero if P is a pointer to a live buffer. M is a
4482 pointer to the mem_block for P. */
4485 live_buffer_p (struct mem_node
*m
, void *p
)
4487 /* P must point to the start of the block, and the buffer
4488 must not have been killed. */
4489 return (m
->type
== MEM_TYPE_BUFFER
4491 && !NILP (((struct buffer
*) p
)->name_
));
4494 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4498 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4500 /* Currently not used, but may be called from gdb. */
4502 void dump_zombies (void) EXTERNALLY_VISIBLE
;
4504 /* Array of objects that are kept alive because the C stack contains
4505 a pattern that looks like a reference to them. */
4507 #define MAX_ZOMBIES 10
4508 static Lisp_Object zombies
[MAX_ZOMBIES
];
4510 /* Number of zombie objects. */
4512 static EMACS_INT nzombies
;
4514 /* Number of garbage collections. */
4516 static EMACS_INT ngcs
;
4518 /* Average percentage of zombies per collection. */
4520 static double avg_zombies
;
4522 /* Max. number of live and zombie objects. */
4524 static EMACS_INT max_live
, max_zombies
;
4526 /* Average number of live objects per GC. */
4528 static double avg_live
;
4530 DEFUN ("gc-status", Fgc_status
, Sgc_status
, 0, 0, "",
4531 doc
: /* Show information about live and zombie objects. */)
4534 Lisp_Object zombie_list
= Qnil
;
4535 for (int i
= 0; i
< min (MAX_ZOMBIES
, nzombies
); i
++)
4536 zombie_list
= Fcons (zombies
[i
], zombie_list
);
4537 AUTO_STRING (format
, ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%),"
4538 " max %d/%d\nzombies: %S"));
4539 return CALLN (Fmessage
, format
,
4540 make_number (ngcs
), make_float (avg_live
),
4541 make_float (avg_zombies
),
4542 make_float (avg_zombies
/ avg_live
/ 100),
4543 make_number (max_live
), make_number (max_zombies
),
4547 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4550 /* Mark OBJ if we can prove it's a Lisp_Object. */
4553 mark_maybe_object (Lisp_Object obj
)
4560 VALGRIND_MAKE_MEM_DEFINED (&obj
, sizeof (obj
));
4566 po
= (void *) XPNTR (obj
);
4573 switch (XTYPE (obj
))
4576 mark_p
= (live_string_p (m
, po
)
4577 && !STRING_MARKED_P ((struct Lisp_String
*) po
));
4581 mark_p
= (live_cons_p (m
, po
) && !CONS_MARKED_P (XCONS (obj
)));
4585 mark_p
= (live_symbol_p (m
, po
) && !XSYMBOL (obj
)->gcmarkbit
);
4589 mark_p
= (live_float_p (m
, po
) && !FLOAT_MARKED_P (XFLOAT (obj
)));
4592 case Lisp_Vectorlike
:
4593 /* Note: can't check BUFFERP before we know it's a
4594 buffer because checking that dereferences the pointer
4595 PO which might point anywhere. */
4596 if (live_vector_p (m
, po
))
4597 mark_p
= !SUBRP (obj
) && !VECTOR_MARKED_P (XVECTOR (obj
));
4598 else if (live_buffer_p (m
, po
))
4599 mark_p
= BUFFERP (obj
) && !VECTOR_MARKED_P (XBUFFER (obj
));
4603 mark_p
= (live_misc_p (m
, po
) && !XMISCANY (obj
)->gcmarkbit
);
4612 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4613 if (nzombies
< MAX_ZOMBIES
)
4614 zombies
[nzombies
] = obj
;
4622 /* Return true if P can point to Lisp data, and false otherwise.
4623 Symbols are implemented via offsets not pointers, but the offsets
4624 are also multiples of GCALIGNMENT. */
4627 maybe_lisp_pointer (void *p
)
4629 return (uintptr_t) p
% GCALIGNMENT
== 0;
4632 /* If P points to Lisp data, mark that as live if it isn't already
4636 mark_maybe_pointer (void *p
)
4642 VALGRIND_MAKE_MEM_DEFINED (&p
, sizeof (p
));
4645 if (!maybe_lisp_pointer (p
))
4651 Lisp_Object obj
= Qnil
;
4655 case MEM_TYPE_NON_LISP
:
4656 case MEM_TYPE_SPARE
:
4657 /* Nothing to do; not a pointer to Lisp memory. */
4660 case MEM_TYPE_BUFFER
:
4661 if (live_buffer_p (m
, p
) && !VECTOR_MARKED_P ((struct buffer
*)p
))
4662 XSETVECTOR (obj
, p
);
4666 if (live_cons_p (m
, p
) && !CONS_MARKED_P ((struct Lisp_Cons
*) p
))
4670 case MEM_TYPE_STRING
:
4671 if (live_string_p (m
, p
)
4672 && !STRING_MARKED_P ((struct Lisp_String
*) p
))
4673 XSETSTRING (obj
, p
);
4677 if (live_misc_p (m
, p
) && !((struct Lisp_Free
*) p
)->gcmarkbit
)
4681 case MEM_TYPE_SYMBOL
:
4682 if (live_symbol_p (m
, p
) && !((struct Lisp_Symbol
*) p
)->gcmarkbit
)
4683 XSETSYMBOL (obj
, p
);
4686 case MEM_TYPE_FLOAT
:
4687 if (live_float_p (m
, p
) && !FLOAT_MARKED_P (p
))
4691 case MEM_TYPE_VECTORLIKE
:
4692 case MEM_TYPE_VECTOR_BLOCK
:
4693 if (live_vector_p (m
, p
))
4696 XSETVECTOR (tem
, p
);
4697 if (!SUBRP (tem
) && !VECTOR_MARKED_P (XVECTOR (tem
)))
4712 /* Alignment of pointer values. Use alignof, as it sometimes returns
4713 a smaller alignment than GCC's __alignof__ and mark_memory might
4714 miss objects if __alignof__ were used. */
4715 #define GC_POINTER_ALIGNMENT alignof (void *)
4717 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4718 or END+OFFSET..START. */
4720 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4721 mark_memory (void *start
, void *end
)
4726 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4730 /* Make START the pointer to the start of the memory region,
4731 if it isn't already. */
4739 /* Mark Lisp data pointed to. This is necessary because, in some
4740 situations, the C compiler optimizes Lisp objects away, so that
4741 only a pointer to them remains. Example:
4743 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4746 Lisp_Object obj = build_string ("test");
4747 struct Lisp_String *s = XSTRING (obj);
4748 Fgarbage_collect ();
4749 fprintf (stderr, "test '%s'\n", s->data);
4753 Here, `obj' isn't really used, and the compiler optimizes it
4754 away. The only reference to the life string is through the
4757 for (pp
= start
; (void *) pp
< end
; pp
++)
4758 for (i
= 0; i
< sizeof *pp
; i
+= GC_POINTER_ALIGNMENT
)
4760 void *p
= *(void **) ((char *) pp
+ i
);
4761 mark_maybe_pointer (p
);
4762 mark_maybe_object (XIL ((intptr_t) p
));
4766 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4768 static bool setjmp_tested_p
;
4769 static int longjmps_done
;
4771 #define SETJMP_WILL_LIKELY_WORK "\
4773 Emacs garbage collector has been changed to use conservative stack\n\
4774 marking. Emacs has determined that the method it uses to do the\n\
4775 marking will likely work on your system, but this isn't sure.\n\
4777 If you are a system-programmer, or can get the help of a local wizard\n\
4778 who is, please take a look at the function mark_stack in alloc.c, and\n\
4779 verify that the methods used are appropriate for your system.\n\
4781 Please mail the result to <emacs-devel@gnu.org>.\n\
4784 #define SETJMP_WILL_NOT_WORK "\
4786 Emacs garbage collector has been changed to use conservative stack\n\
4787 marking. Emacs has determined that the default method it uses to do the\n\
4788 marking will not work on your system. We will need a system-dependent\n\
4789 solution for your system.\n\
4791 Please take a look at the function mark_stack in alloc.c, and\n\
4792 try to find a way to make it work on your system.\n\
4794 Note that you may get false negatives, depending on the compiler.\n\
4795 In particular, you need to use -O with GCC for this test.\n\
4797 Please mail the result to <emacs-devel@gnu.org>.\n\
4801 /* Perform a quick check if it looks like setjmp saves registers in a
4802 jmp_buf. Print a message to stderr saying so. When this test
4803 succeeds, this is _not_ a proof that setjmp is sufficient for
4804 conservative stack marking. Only the sources or a disassembly
4814 /* Arrange for X to be put in a register. */
4820 if (longjmps_done
== 1)
4822 /* Came here after the longjmp at the end of the function.
4824 If x == 1, the longjmp has restored the register to its
4825 value before the setjmp, and we can hope that setjmp
4826 saves all such registers in the jmp_buf, although that
4829 For other values of X, either something really strange is
4830 taking place, or the setjmp just didn't save the register. */
4833 fprintf (stderr
, SETJMP_WILL_LIKELY_WORK
);
4836 fprintf (stderr
, SETJMP_WILL_NOT_WORK
);
4843 if (longjmps_done
== 1)
4844 sys_longjmp (jbuf
, 1);
4847 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4850 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4852 /* Abort if anything GCPRO'd doesn't survive the GC. */
4860 for (p
= gcprolist
; p
; p
= p
->next
)
4861 for (i
= 0; i
< p
->nvars
; ++i
)
4862 if (!survives_gc_p (p
->var
[i
]))
4863 /* FIXME: It's not necessarily a bug. It might just be that the
4864 GCPRO is unnecessary or should release the object sooner. */
4868 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4875 fprintf (stderr
, "\nZombies kept alive = %"pI
"d:\n", nzombies
);
4876 for (i
= 0; i
< min (MAX_ZOMBIES
, nzombies
); ++i
)
4878 fprintf (stderr
, " %d = ", i
);
4879 debug_print (zombies
[i
]);
4883 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4886 /* Mark live Lisp objects on the C stack.
4888 There are several system-dependent problems to consider when
4889 porting this to new architectures:
4893 We have to mark Lisp objects in CPU registers that can hold local
4894 variables or are used to pass parameters.
4896 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4897 something that either saves relevant registers on the stack, or
4898 calls mark_maybe_object passing it each register's contents.
4900 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4901 implementation assumes that calling setjmp saves registers we need
4902 to see in a jmp_buf which itself lies on the stack. This doesn't
4903 have to be true! It must be verified for each system, possibly
4904 by taking a look at the source code of setjmp.
4906 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4907 can use it as a machine independent method to store all registers
4908 to the stack. In this case the macros described in the previous
4909 two paragraphs are not used.
4913 Architectures differ in the way their processor stack is organized.
4914 For example, the stack might look like this
4917 | Lisp_Object | size = 4
4919 | something else | size = 2
4921 | Lisp_Object | size = 4
4925 In such a case, not every Lisp_Object will be aligned equally. To
4926 find all Lisp_Object on the stack it won't be sufficient to walk
4927 the stack in steps of 4 bytes. Instead, two passes will be
4928 necessary, one starting at the start of the stack, and a second
4929 pass starting at the start of the stack + 2. Likewise, if the
4930 minimal alignment of Lisp_Objects on the stack is 1, four passes
4931 would be necessary, each one starting with one byte more offset
4932 from the stack start. */
4935 mark_stack (void *end
)
4938 /* This assumes that the stack is a contiguous region in memory. If
4939 that's not the case, something has to be done here to iterate
4940 over the stack segments. */
4941 mark_memory (stack_base
, end
);
4943 /* Allow for marking a secondary stack, like the register stack on the
4945 #ifdef GC_MARK_SECONDARY_STACK
4946 GC_MARK_SECONDARY_STACK ();
4949 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4954 #else /* GC_MARK_STACK == 0 */
4956 #define mark_maybe_object(obj) emacs_abort ()
4958 #endif /* GC_MARK_STACK != 0 */
4961 c_symbol_p (struct Lisp_Symbol
*sym
)
4963 char *lispsym_ptr
= (char *) lispsym
;
4964 char *sym_ptr
= (char *) sym
;
4965 ptrdiff_t lispsym_offset
= sym_ptr
- lispsym_ptr
;
4966 return 0 <= lispsym_offset
&& lispsym_offset
< sizeof lispsym
;
4969 /* Determine whether it is safe to access memory at address P. */
4971 valid_pointer_p (void *p
)
4974 return w32_valid_pointer_p (p
, 16);
4977 if (ADDRESS_SANITIZER
)
4982 /* Obviously, we cannot just access it (we would SEGV trying), so we
4983 trick the o/s to tell us whether p is a valid pointer.
4984 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4985 not validate p in that case. */
4987 if (emacs_pipe (fd
) == 0)
4989 bool valid
= emacs_write (fd
[1], p
, 16) == 16;
4990 emacs_close (fd
[1]);
4991 emacs_close (fd
[0]);
4999 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
5000 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
5001 cannot validate OBJ. This function can be quite slow, so its primary
5002 use is the manual debugging. The only exception is print_object, where
5003 we use it to check whether the memory referenced by the pointer of
5004 Lisp_Save_Value object contains valid objects. */
5007 valid_lisp_object_p (Lisp_Object obj
)
5017 p
= (void *) XPNTR (obj
);
5018 if (PURE_POINTER_P (p
))
5021 if (SYMBOLP (obj
) && c_symbol_p (p
))
5022 return ((char *) p
- (char *) lispsym
) % sizeof lispsym
[0] == 0;
5024 if (p
== &buffer_defaults
|| p
== &buffer_local_symbols
)
5028 return valid_pointer_p (p
);
5035 int valid
= valid_pointer_p (p
);
5047 case MEM_TYPE_NON_LISP
:
5048 case MEM_TYPE_SPARE
:
5051 case MEM_TYPE_BUFFER
:
5052 return live_buffer_p (m
, p
) ? 1 : 2;
5055 return live_cons_p (m
, p
);
5057 case MEM_TYPE_STRING
:
5058 return live_string_p (m
, p
);
5061 return live_misc_p (m
, p
);
5063 case MEM_TYPE_SYMBOL
:
5064 return live_symbol_p (m
, p
);
5066 case MEM_TYPE_FLOAT
:
5067 return live_float_p (m
, p
);
5069 case MEM_TYPE_VECTORLIKE
:
5070 case MEM_TYPE_VECTOR_BLOCK
:
5071 return live_vector_p (m
, p
);
5081 /* If GC_MARK_STACK, return 1 if STR is a relocatable data of Lisp_String
5082 (i.e. there is a non-pure Lisp_Object X so that SDATA (X) == STR) and 0
5083 if not. Otherwise we can't rely on valid_lisp_object_p and return -1.
5084 This function is slow and should be used for debugging purposes. */
5087 relocatable_string_data_p (const char *str
)
5089 if (PURE_POINTER_P (str
))
5095 = (struct sdata
*) (str
- offsetof (struct sdata
, data
));
5097 if (0 < valid_pointer_p (sdata
)
5098 && 0 < valid_pointer_p (sdata
->string
)
5099 && maybe_lisp_pointer (sdata
->string
))
5100 return (valid_lisp_object_p
5101 (make_lisp_ptr (sdata
->string
, Lisp_String
))
5102 && (const char *) sdata
->string
->data
== str
);
5105 #endif /* GC_MARK_STACK */
5109 /***********************************************************************
5110 Pure Storage Management
5111 ***********************************************************************/
5113 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5114 pointer to it. TYPE is the Lisp type for which the memory is
5115 allocated. TYPE < 0 means it's not used for a Lisp object. */
5118 pure_alloc (size_t size
, int type
)
5125 /* Allocate space for a Lisp object from the beginning of the free
5126 space with taking account of alignment. */
5127 result
= ALIGN (purebeg
+ pure_bytes_used_lisp
, GCALIGNMENT
);
5128 pure_bytes_used_lisp
= ((char *)result
- (char *)purebeg
) + size
;
5132 /* Allocate space for a non-Lisp object from the end of the free
5134 pure_bytes_used_non_lisp
+= size
;
5135 result
= purebeg
+ pure_size
- pure_bytes_used_non_lisp
;
5137 pure_bytes_used
= pure_bytes_used_lisp
+ pure_bytes_used_non_lisp
;
5139 if (pure_bytes_used
<= pure_size
)
5142 /* Don't allocate a large amount here,
5143 because it might get mmap'd and then its address
5144 might not be usable. */
5145 purebeg
= xmalloc (10000);
5147 pure_bytes_used_before_overflow
+= pure_bytes_used
- size
;
5148 pure_bytes_used
= 0;
5149 pure_bytes_used_lisp
= pure_bytes_used_non_lisp
= 0;
5154 /* Print a warning if PURESIZE is too small. */
5157 check_pure_size (void)
5159 if (pure_bytes_used_before_overflow
)
5160 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI
"d"
5162 pure_bytes_used
+ pure_bytes_used_before_overflow
);
5166 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5167 the non-Lisp data pool of the pure storage, and return its start
5168 address. Return NULL if not found. */
5171 find_string_data_in_pure (const char *data
, ptrdiff_t nbytes
)
5174 ptrdiff_t skip
, bm_skip
[256], last_char_skip
, infinity
, start
, start_max
;
5175 const unsigned char *p
;
5178 if (pure_bytes_used_non_lisp
<= nbytes
)
5181 /* Set up the Boyer-Moore table. */
5183 for (i
= 0; i
< 256; i
++)
5186 p
= (const unsigned char *) data
;
5188 bm_skip
[*p
++] = skip
;
5190 last_char_skip
= bm_skip
['\0'];
5192 non_lisp_beg
= purebeg
+ pure_size
- pure_bytes_used_non_lisp
;
5193 start_max
= pure_bytes_used_non_lisp
- (nbytes
+ 1);
5195 /* See the comments in the function `boyer_moore' (search.c) for the
5196 use of `infinity'. */
5197 infinity
= pure_bytes_used_non_lisp
+ 1;
5198 bm_skip
['\0'] = infinity
;
5200 p
= (const unsigned char *) non_lisp_beg
+ nbytes
;
5204 /* Check the last character (== '\0'). */
5207 start
+= bm_skip
[*(p
+ start
)];
5209 while (start
<= start_max
);
5211 if (start
< infinity
)
5212 /* Couldn't find the last character. */
5215 /* No less than `infinity' means we could find the last
5216 character at `p[start - infinity]'. */
5219 /* Check the remaining characters. */
5220 if (memcmp (data
, non_lisp_beg
+ start
, nbytes
) == 0)
5222 return non_lisp_beg
+ start
;
5224 start
+= last_char_skip
;
5226 while (start
<= start_max
);
5232 /* Return a string allocated in pure space. DATA is a buffer holding
5233 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5234 means make the result string multibyte.
5236 Must get an error if pure storage is full, since if it cannot hold
5237 a large string it may be able to hold conses that point to that
5238 string; then the string is not protected from gc. */
5241 make_pure_string (const char *data
,
5242 ptrdiff_t nchars
, ptrdiff_t nbytes
, bool multibyte
)
5245 struct Lisp_String
*s
= pure_alloc (sizeof *s
, Lisp_String
);
5246 s
->data
= (unsigned char *) find_string_data_in_pure (data
, nbytes
);
5247 if (s
->data
== NULL
)
5249 s
->data
= pure_alloc (nbytes
+ 1, -1);
5250 memcpy (s
->data
, data
, nbytes
);
5251 s
->data
[nbytes
] = '\0';
5254 s
->size_byte
= multibyte
? nbytes
: -1;
5255 s
->intervals
= NULL
;
5256 XSETSTRING (string
, s
);
5260 /* Return a string allocated in pure space. Do not
5261 allocate the string data, just point to DATA. */
5264 make_pure_c_string (const char *data
, ptrdiff_t nchars
)
5267 struct Lisp_String
*s
= pure_alloc (sizeof *s
, Lisp_String
);
5270 s
->data
= (unsigned char *) data
;
5271 s
->intervals
= NULL
;
5272 XSETSTRING (string
, s
);
5276 static Lisp_Object
purecopy (Lisp_Object obj
);
5278 /* Return a cons allocated from pure space. Give it pure copies
5279 of CAR as car and CDR as cdr. */
5282 pure_cons (Lisp_Object car
, Lisp_Object cdr
)
5285 struct Lisp_Cons
*p
= pure_alloc (sizeof *p
, Lisp_Cons
);
5287 XSETCAR (new, purecopy (car
));
5288 XSETCDR (new, purecopy (cdr
));
5293 /* Value is a float object with value NUM allocated from pure space. */
5296 make_pure_float (double num
)
5299 struct Lisp_Float
*p
= pure_alloc (sizeof *p
, Lisp_Float
);
5301 XFLOAT_INIT (new, num
);
5306 /* Return a vector with room for LEN Lisp_Objects allocated from
5310 make_pure_vector (ptrdiff_t len
)
5313 size_t size
= header_size
+ len
* word_size
;
5314 struct Lisp_Vector
*p
= pure_alloc (size
, Lisp_Vectorlike
);
5315 XSETVECTOR (new, p
);
5316 XVECTOR (new)->header
.size
= len
;
5320 DEFUN ("purecopy", Fpurecopy
, Spurecopy
, 1, 1, 0,
5321 doc
: /* Make a copy of object OBJ in pure storage.
5322 Recursively copies contents of vectors and cons cells.
5323 Does not copy symbols. Copies strings without text properties. */)
5324 (register Lisp_Object obj
)
5326 if (NILP (Vpurify_flag
))
5328 else if (MARKERP (obj
) || OVERLAYP (obj
)
5329 || HASH_TABLE_P (obj
) || SYMBOLP (obj
))
5330 /* Can't purify those. */
5333 return purecopy (obj
);
5337 purecopy (Lisp_Object obj
)
5339 if (PURE_POINTER_P (XPNTR (obj
)) || INTEGERP (obj
) || SUBRP (obj
))
5340 return obj
; /* Already pure. */
5342 if (HASH_TABLE_P (Vpurify_flag
)) /* Hash consing. */
5344 Lisp_Object tmp
= Fgethash (obj
, Vpurify_flag
, Qnil
);
5350 obj
= pure_cons (XCAR (obj
), XCDR (obj
));
5351 else if (FLOATP (obj
))
5352 obj
= make_pure_float (XFLOAT_DATA (obj
));
5353 else if (STRINGP (obj
))
5355 if (XSTRING (obj
)->intervals
)
5356 message ("Dropping text-properties when making string pure");
5357 obj
= make_pure_string (SSDATA (obj
), SCHARS (obj
),
5359 STRING_MULTIBYTE (obj
));
5361 else if (COMPILEDP (obj
) || VECTORP (obj
) || HASH_TABLE_P (obj
))
5363 struct Lisp_Vector
*objp
= XVECTOR (obj
);
5364 ptrdiff_t nbytes
= vector_nbytes (objp
);
5365 struct Lisp_Vector
*vec
= pure_alloc (nbytes
, Lisp_Vectorlike
);
5366 register ptrdiff_t i
;
5367 ptrdiff_t size
= ASIZE (obj
);
5368 if (size
& PSEUDOVECTOR_FLAG
)
5369 size
&= PSEUDOVECTOR_SIZE_MASK
;
5370 memcpy (vec
, objp
, nbytes
);
5371 for (i
= 0; i
< size
; i
++)
5372 vec
->contents
[i
] = purecopy (vec
->contents
[i
]);
5373 XSETVECTOR (obj
, vec
);
5375 else if (SYMBOLP (obj
))
5377 if (!XSYMBOL (obj
)->pinned
&& !c_symbol_p (XSYMBOL (obj
)))
5378 { /* We can't purify them, but they appear in many pure objects.
5379 Mark them as `pinned' so we know to mark them at every GC cycle. */
5380 XSYMBOL (obj
)->pinned
= true;
5381 symbol_block_pinned
= symbol_block
;
5383 /* Don't hash-cons it. */
5388 Lisp_Object fmt
= build_pure_c_string ("Don't know how to purify: %S");
5389 Fsignal (Qerror
, list1 (CALLN (Fformat
, fmt
, obj
)));
5392 if (HASH_TABLE_P (Vpurify_flag
)) /* Hash consing. */
5393 Fputhash (obj
, obj
, Vpurify_flag
);
5400 /***********************************************************************
5402 ***********************************************************************/
5404 /* Put an entry in staticvec, pointing at the variable with address
5408 staticpro (Lisp_Object
*varaddress
)
5410 if (staticidx
>= NSTATICS
)
5411 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5412 staticvec
[staticidx
++] = varaddress
;
5416 /***********************************************************************
5418 ***********************************************************************/
5420 /* Temporarily prevent garbage collection. */
5423 inhibit_garbage_collection (void)
5425 ptrdiff_t count
= SPECPDL_INDEX ();
5427 specbind (Qgc_cons_threshold
, make_number (MOST_POSITIVE_FIXNUM
));
5431 /* Used to avoid possible overflows when
5432 converting from C to Lisp integers. */
5435 bounded_number (EMACS_INT number
)
5437 return make_number (min (MOST_POSITIVE_FIXNUM
, number
));
5440 /* Calculate total bytes of live objects. */
5443 total_bytes_of_live_objects (void)
5446 tot
+= total_conses
* sizeof (struct Lisp_Cons
);
5447 tot
+= total_symbols
* sizeof (struct Lisp_Symbol
);
5448 tot
+= total_markers
* sizeof (union Lisp_Misc
);
5449 tot
+= total_string_bytes
;
5450 tot
+= total_vector_slots
* word_size
;
5451 tot
+= total_floats
* sizeof (struct Lisp_Float
);
5452 tot
+= total_intervals
* sizeof (struct interval
);
5453 tot
+= total_strings
* sizeof (struct Lisp_String
);
5457 #ifdef HAVE_WINDOW_SYSTEM
5459 /* This code has a few issues on MS-Windows, see Bug#15876 and Bug#16140. */
5461 #if !defined (HAVE_NTGUI)
5463 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5464 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5467 compact_font_cache_entry (Lisp_Object entry
)
5469 Lisp_Object tail
, *prev
= &entry
;
5471 for (tail
= entry
; CONSP (tail
); tail
= XCDR (tail
))
5474 Lisp_Object obj
= XCAR (tail
);
5476 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5477 if (CONSP (obj
) && FONT_SPEC_P (XCAR (obj
))
5478 && !VECTOR_MARKED_P (XFONT_SPEC (XCAR (obj
)))
5479 && VECTORP (XCDR (obj
)))
5481 ptrdiff_t i
, size
= ASIZE (XCDR (obj
)) & ~ARRAY_MARK_FLAG
;
5483 /* If font-spec is not marked, most likely all font-entities
5484 are not marked too. But we must be sure that nothing is
5485 marked within OBJ before we really drop it. */
5486 for (i
= 0; i
< size
; i
++)
5487 if (VECTOR_MARKED_P (XFONT_ENTITY (AREF (XCDR (obj
), i
))))
5494 *prev
= XCDR (tail
);
5496 prev
= xcdr_addr (tail
);
5501 #endif /* not HAVE_NTGUI */
5503 /* Compact font caches on all terminals and mark
5504 everything which is still here after compaction. */
5507 compact_font_caches (void)
5511 for (t
= terminal_list
; t
; t
= t
->next_terminal
)
5513 Lisp_Object cache
= TERMINAL_FONT_CACHE (t
);
5514 #if !defined (HAVE_NTGUI)
5519 for (entry
= XCDR (cache
); CONSP (entry
); entry
= XCDR (entry
))
5520 XSETCAR (entry
, compact_font_cache_entry (XCAR (entry
)));
5522 #endif /* not HAVE_NTGUI */
5523 mark_object (cache
);
5527 #else /* not HAVE_WINDOW_SYSTEM */
5529 #define compact_font_caches() (void)(0)
5531 #endif /* HAVE_WINDOW_SYSTEM */
5533 /* Remove (MARKER . DATA) entries with unmarked MARKER
5534 from buffer undo LIST and return changed list. */
5537 compact_undo_list (Lisp_Object list
)
5539 Lisp_Object tail
, *prev
= &list
;
5541 for (tail
= list
; CONSP (tail
); tail
= XCDR (tail
))
5543 if (CONSP (XCAR (tail
))
5544 && MARKERP (XCAR (XCAR (tail
)))
5545 && !XMARKER (XCAR (XCAR (tail
)))->gcmarkbit
)
5546 *prev
= XCDR (tail
);
5548 prev
= xcdr_addr (tail
);
5554 mark_pinned_symbols (void)
5556 struct symbol_block
*sblk
;
5557 int lim
= (symbol_block_pinned
== symbol_block
5558 ? symbol_block_index
: SYMBOL_BLOCK_SIZE
);
5560 for (sblk
= symbol_block_pinned
; sblk
; sblk
= sblk
->next
)
5562 union aligned_Lisp_Symbol
*sym
= sblk
->symbols
, *end
= sym
+ lim
;
5563 for (; sym
< end
; ++sym
)
5565 mark_object (make_lisp_symbol (&sym
->s
));
5567 lim
= SYMBOL_BLOCK_SIZE
;
5571 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5572 separate function so that we could limit mark_stack in searching
5573 the stack frames below this function, thus avoiding the rare cases
5574 where mark_stack finds values that look like live Lisp objects on
5575 portions of stack that couldn't possibly contain such live objects.
5576 For more details of this, see the discussion at
5577 http://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5579 garbage_collect_1 (void *end
)
5581 struct buffer
*nextb
;
5582 char stack_top_variable
;
5585 ptrdiff_t count
= SPECPDL_INDEX ();
5586 struct timespec start
;
5587 Lisp_Object retval
= Qnil
;
5588 size_t tot_before
= 0;
5593 /* Can't GC if pure storage overflowed because we can't determine
5594 if something is a pure object or not. */
5595 if (pure_bytes_used_before_overflow
)
5598 /* Record this function, so it appears on the profiler's backtraces. */
5599 record_in_backtrace (Qautomatic_gc
, 0, 0);
5603 /* Don't keep undo information around forever.
5604 Do this early on, so it is no problem if the user quits. */
5605 FOR_EACH_BUFFER (nextb
)
5606 compact_buffer (nextb
);
5608 if (profiler_memory_running
)
5609 tot_before
= total_bytes_of_live_objects ();
5611 start
= current_timespec ();
5613 /* In case user calls debug_print during GC,
5614 don't let that cause a recursive GC. */
5615 consing_since_gc
= 0;
5617 /* Save what's currently displayed in the echo area. */
5618 message_p
= push_message ();
5619 record_unwind_protect_void (pop_message_unwind
);
5621 /* Save a copy of the contents of the stack, for debugging. */
5622 #if MAX_SAVE_STACK > 0
5623 if (NILP (Vpurify_flag
))
5626 ptrdiff_t stack_size
;
5627 if (&stack_top_variable
< stack_bottom
)
5629 stack
= &stack_top_variable
;
5630 stack_size
= stack_bottom
- &stack_top_variable
;
5634 stack
= stack_bottom
;
5635 stack_size
= &stack_top_variable
- stack_bottom
;
5637 if (stack_size
<= MAX_SAVE_STACK
)
5639 if (stack_copy_size
< stack_size
)
5641 stack_copy
= xrealloc (stack_copy
, stack_size
);
5642 stack_copy_size
= stack_size
;
5644 no_sanitize_memcpy (stack_copy
, stack
, stack_size
);
5647 #endif /* MAX_SAVE_STACK > 0 */
5649 if (garbage_collection_messages
)
5650 message1_nolog ("Garbage collecting...");
5654 shrink_regexp_cache ();
5658 /* Mark all the special slots that serve as the roots of accessibility. */
5660 mark_buffer (&buffer_defaults
);
5661 mark_buffer (&buffer_local_symbols
);
5663 for (i
= 0; i
< ARRAYELTS (lispsym
); i
++)
5664 mark_object (builtin_lisp_symbol (i
));
5666 for (i
= 0; i
< staticidx
; i
++)
5667 mark_object (*staticvec
[i
]);
5669 mark_pinned_symbols ();
5678 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5679 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5683 register struct gcpro
*tail
;
5684 for (tail
= gcprolist
; tail
; tail
= tail
->next
)
5685 for (i
= 0; i
< tail
->nvars
; i
++)
5686 mark_object (tail
->var
[i
]);
5691 struct handler
*handler
;
5692 for (handler
= handlerlist
; handler
; handler
= handler
->next
)
5694 mark_object (handler
->tag_or_ch
);
5695 mark_object (handler
->val
);
5698 #ifdef HAVE_WINDOW_SYSTEM
5699 mark_fringe_data ();
5702 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5706 /* Everything is now marked, except for the data in font caches,
5707 undo lists, and finalizers. The first two are compacted by
5708 removing an items which aren't reachable otherwise. */
5710 compact_font_caches ();
5712 FOR_EACH_BUFFER (nextb
)
5714 if (!EQ (BVAR (nextb
, undo_list
), Qt
))
5715 bset_undo_list (nextb
, compact_undo_list (BVAR (nextb
, undo_list
)));
5716 /* Now that we have stripped the elements that need not be
5717 in the undo_list any more, we can finally mark the list. */
5718 mark_object (BVAR (nextb
, undo_list
));
5721 /* Now pre-sweep finalizers. Here, we add any unmarked finalizers
5722 to doomed_finalizers so we can run their associated functions
5723 after GC. It's important to scan finalizers at this stage so
5724 that we can be sure that unmarked finalizers are really
5725 unreachable except for references from their associated functions
5726 and from other finalizers. */
5728 queue_doomed_finalizers (&doomed_finalizers
, &finalizers
);
5729 mark_finalizer_list (&doomed_finalizers
);
5733 /* Clear the mark bits that we set in certain root slots. */
5735 unmark_byte_stack ();
5736 VECTOR_UNMARK (&buffer_defaults
);
5737 VECTOR_UNMARK (&buffer_local_symbols
);
5739 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5749 consing_since_gc
= 0;
5750 if (gc_cons_threshold
< GC_DEFAULT_THRESHOLD
/ 10)
5751 gc_cons_threshold
= GC_DEFAULT_THRESHOLD
/ 10;
5753 gc_relative_threshold
= 0;
5754 if (FLOATP (Vgc_cons_percentage
))
5755 { /* Set gc_cons_combined_threshold. */
5756 double tot
= total_bytes_of_live_objects ();
5758 tot
*= XFLOAT_DATA (Vgc_cons_percentage
);
5761 if (tot
< TYPE_MAXIMUM (EMACS_INT
))
5762 gc_relative_threshold
= tot
;
5764 gc_relative_threshold
= TYPE_MAXIMUM (EMACS_INT
);
5768 if (garbage_collection_messages
)
5770 if (message_p
|| minibuf_level
> 0)
5773 message1_nolog ("Garbage collecting...done");
5776 unbind_to (count
, Qnil
);
5778 Lisp_Object total
[] = {
5779 list4 (Qconses
, make_number (sizeof (struct Lisp_Cons
)),
5780 bounded_number (total_conses
),
5781 bounded_number (total_free_conses
)),
5782 list4 (Qsymbols
, make_number (sizeof (struct Lisp_Symbol
)),
5783 bounded_number (total_symbols
),
5784 bounded_number (total_free_symbols
)),
5785 list4 (Qmiscs
, make_number (sizeof (union Lisp_Misc
)),
5786 bounded_number (total_markers
),
5787 bounded_number (total_free_markers
)),
5788 list4 (Qstrings
, make_number (sizeof (struct Lisp_String
)),
5789 bounded_number (total_strings
),
5790 bounded_number (total_free_strings
)),
5791 list3 (Qstring_bytes
, make_number (1),
5792 bounded_number (total_string_bytes
)),
5794 make_number (header_size
+ sizeof (Lisp_Object
)),
5795 bounded_number (total_vectors
)),
5796 list4 (Qvector_slots
, make_number (word_size
),
5797 bounded_number (total_vector_slots
),
5798 bounded_number (total_free_vector_slots
)),
5799 list4 (Qfloats
, make_number (sizeof (struct Lisp_Float
)),
5800 bounded_number (total_floats
),
5801 bounded_number (total_free_floats
)),
5802 list4 (Qintervals
, make_number (sizeof (struct interval
)),
5803 bounded_number (total_intervals
),
5804 bounded_number (total_free_intervals
)),
5805 list3 (Qbuffers
, make_number (sizeof (struct buffer
)),
5806 bounded_number (total_buffers
)),
5808 #ifdef DOUG_LEA_MALLOC
5809 list4 (Qheap
, make_number (1024),
5810 bounded_number ((mallinfo ().uordblks
+ 1023) >> 10),
5811 bounded_number ((mallinfo ().fordblks
+ 1023) >> 10)),
5814 retval
= CALLMANY (Flist
, total
);
5816 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5818 /* Compute average percentage of zombies. */
5820 = (total_conses
+ total_symbols
+ total_markers
+ total_strings
5821 + total_vectors
+ total_floats
+ total_intervals
+ total_buffers
);
5823 avg_live
= (avg_live
* ngcs
+ nlive
) / (ngcs
+ 1);
5824 max_live
= max (nlive
, max_live
);
5825 avg_zombies
= (avg_zombies
* ngcs
+ nzombies
) / (ngcs
+ 1);
5826 max_zombies
= max (nzombies
, max_zombies
);
5831 /* GC is complete: now we can run our finalizer callbacks. */
5832 run_finalizers (&doomed_finalizers
);
5834 if (!NILP (Vpost_gc_hook
))
5836 ptrdiff_t gc_count
= inhibit_garbage_collection ();
5837 safe_run_hooks (Qpost_gc_hook
);
5838 unbind_to (gc_count
, Qnil
);
5841 /* Accumulate statistics. */
5842 if (FLOATP (Vgc_elapsed
))
5844 struct timespec since_start
= timespec_sub (current_timespec (), start
);
5845 Vgc_elapsed
= make_float (XFLOAT_DATA (Vgc_elapsed
)
5846 + timespectod (since_start
));
5851 /* Collect profiling data. */
5852 if (profiler_memory_running
)
5855 size_t tot_after
= total_bytes_of_live_objects ();
5856 if (tot_before
> tot_after
)
5857 swept
= tot_before
- tot_after
;
5858 malloc_probe (swept
);
5864 DEFUN ("garbage-collect", Fgarbage_collect
, Sgarbage_collect
, 0, 0, "",
5865 doc
: /* Reclaim storage for Lisp objects no longer needed.
5866 Garbage collection happens automatically if you cons more than
5867 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5868 `garbage-collect' normally returns a list with info on amount of space in use,
5869 where each entry has the form (NAME SIZE USED FREE), where:
5870 - NAME is a symbol describing the kind of objects this entry represents,
5871 - SIZE is the number of bytes used by each one,
5872 - USED is the number of those objects that were found live in the heap,
5873 - FREE is the number of those objects that are not live but that Emacs
5874 keeps around for future allocations (maybe because it does not know how
5875 to return them to the OS).
5876 However, if there was overflow in pure space, `garbage-collect'
5877 returns nil, because real GC can't be done.
5878 See Info node `(elisp)Garbage Collection'. */)
5881 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5882 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS \
5883 || GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES)
5886 #ifdef HAVE___BUILTIN_UNWIND_INIT
5887 /* Force callee-saved registers and register windows onto the stack.
5888 This is the preferred method if available, obviating the need for
5889 machine dependent methods. */
5890 __builtin_unwind_init ();
5892 #else /* not HAVE___BUILTIN_UNWIND_INIT */
5893 #ifndef GC_SAVE_REGISTERS_ON_STACK
5894 /* jmp_buf may not be aligned enough on darwin-ppc64 */
5895 union aligned_jmpbuf
{
5899 volatile bool stack_grows_down_p
= (char *) &j
> (char *) stack_base
;
5901 /* This trick flushes the register windows so that all the state of
5902 the process is contained in the stack. */
5903 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
5904 needed on ia64 too. See mach_dep.c, where it also says inline
5905 assembler doesn't work with relevant proprietary compilers. */
5907 #if defined (__sparc64__) && defined (__FreeBSD__)
5908 /* FreeBSD does not have a ta 3 handler. */
5915 /* Save registers that we need to see on the stack. We need to see
5916 registers used to hold register variables and registers used to
5918 #ifdef GC_SAVE_REGISTERS_ON_STACK
5919 GC_SAVE_REGISTERS_ON_STACK (end
);
5920 #else /* not GC_SAVE_REGISTERS_ON_STACK */
5922 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
5923 setjmp will definitely work, test it
5924 and print a message with the result
5926 if (!setjmp_tested_p
)
5928 setjmp_tested_p
= 1;
5931 #endif /* GC_SETJMP_WORKS */
5934 end
= stack_grows_down_p
? (char *) &j
+ sizeof j
: (char *) &j
;
5935 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
5936 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
5937 return garbage_collect_1 (end
);
5938 #elif (GC_MARK_STACK == GC_USE_GCPROS_AS_BEFORE)
5939 /* Old GCPROs-based method without stack marking. */
5940 return garbage_collect_1 (NULL
);
5943 #endif /* GC_MARK_STACK */
5946 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5947 only interesting objects referenced from glyphs are strings. */
5950 mark_glyph_matrix (struct glyph_matrix
*matrix
)
5952 struct glyph_row
*row
= matrix
->rows
;
5953 struct glyph_row
*end
= row
+ matrix
->nrows
;
5955 for (; row
< end
; ++row
)
5959 for (area
= LEFT_MARGIN_AREA
; area
< LAST_AREA
; ++area
)
5961 struct glyph
*glyph
= row
->glyphs
[area
];
5962 struct glyph
*end_glyph
= glyph
+ row
->used
[area
];
5964 for (; glyph
< end_glyph
; ++glyph
)
5965 if (STRINGP (glyph
->object
)
5966 && !STRING_MARKED_P (XSTRING (glyph
->object
)))
5967 mark_object (glyph
->object
);
5972 /* Mark reference to a Lisp_Object.
5973 If the object referred to has not been seen yet, recursively mark
5974 all the references contained in it. */
5976 #define LAST_MARKED_SIZE 500
5977 static Lisp_Object last_marked
[LAST_MARKED_SIZE
];
5978 static int last_marked_index
;
5980 /* For debugging--call abort when we cdr down this many
5981 links of a list, in mark_object. In debugging,
5982 the call to abort will hit a breakpoint.
5983 Normally this is zero and the check never goes off. */
5984 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE
;
5987 mark_vectorlike (struct Lisp_Vector
*ptr
)
5989 ptrdiff_t size
= ptr
->header
.size
;
5992 eassert (!VECTOR_MARKED_P (ptr
));
5993 VECTOR_MARK (ptr
); /* Else mark it. */
5994 if (size
& PSEUDOVECTOR_FLAG
)
5995 size
&= PSEUDOVECTOR_SIZE_MASK
;
5997 /* Note that this size is not the memory-footprint size, but only
5998 the number of Lisp_Object fields that we should trace.
5999 The distinction is used e.g. by Lisp_Process which places extra
6000 non-Lisp_Object fields at the end of the structure... */
6001 for (i
= 0; i
< size
; i
++) /* ...and then mark its elements. */
6002 mark_object (ptr
->contents
[i
]);
6005 /* Like mark_vectorlike but optimized for char-tables (and
6006 sub-char-tables) assuming that the contents are mostly integers or
6010 mark_char_table (struct Lisp_Vector
*ptr
, enum pvec_type pvectype
)
6012 int size
= ptr
->header
.size
& PSEUDOVECTOR_SIZE_MASK
;
6013 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
6014 int i
, idx
= (pvectype
== PVEC_SUB_CHAR_TABLE
? SUB_CHAR_TABLE_OFFSET
: 0);
6016 eassert (!VECTOR_MARKED_P (ptr
));
6018 for (i
= idx
; i
< size
; i
++)
6020 Lisp_Object val
= ptr
->contents
[i
];
6022 if (INTEGERP (val
) || (SYMBOLP (val
) && XSYMBOL (val
)->gcmarkbit
))
6024 if (SUB_CHAR_TABLE_P (val
))
6026 if (! VECTOR_MARKED_P (XVECTOR (val
)))
6027 mark_char_table (XVECTOR (val
), PVEC_SUB_CHAR_TABLE
);
6034 NO_INLINE
/* To reduce stack depth in mark_object. */
6036 mark_compiled (struct Lisp_Vector
*ptr
)
6038 int i
, size
= ptr
->header
.size
& PSEUDOVECTOR_SIZE_MASK
;
6041 for (i
= 0; i
< size
; i
++)
6042 if (i
!= COMPILED_CONSTANTS
)
6043 mark_object (ptr
->contents
[i
]);
6044 return size
> COMPILED_CONSTANTS
? ptr
->contents
[COMPILED_CONSTANTS
] : Qnil
;
6047 /* Mark the chain of overlays starting at PTR. */
6050 mark_overlay (struct Lisp_Overlay
*ptr
)
6052 for (; ptr
&& !ptr
->gcmarkbit
; ptr
= ptr
->next
)
6055 /* These two are always markers and can be marked fast. */
6056 XMARKER (ptr
->start
)->gcmarkbit
= 1;
6057 XMARKER (ptr
->end
)->gcmarkbit
= 1;
6058 mark_object (ptr
->plist
);
6062 /* Mark Lisp_Objects and special pointers in BUFFER. */
6065 mark_buffer (struct buffer
*buffer
)
6067 /* This is handled much like other pseudovectors... */
6068 mark_vectorlike ((struct Lisp_Vector
*) buffer
);
6070 /* ...but there are some buffer-specific things. */
6072 MARK_INTERVAL_TREE (buffer_intervals (buffer
));
6074 /* For now, we just don't mark the undo_list. It's done later in
6075 a special way just before the sweep phase, and after stripping
6076 some of its elements that are not needed any more. */
6078 mark_overlay (buffer
->overlays_before
);
6079 mark_overlay (buffer
->overlays_after
);
6081 /* If this is an indirect buffer, mark its base buffer. */
6082 if (buffer
->base_buffer
&& !VECTOR_MARKED_P (buffer
->base_buffer
))
6083 mark_buffer (buffer
->base_buffer
);
6086 /* Mark Lisp faces in the face cache C. */
6088 NO_INLINE
/* To reduce stack depth in mark_object. */
6090 mark_face_cache (struct face_cache
*c
)
6095 for (i
= 0; i
< c
->used
; ++i
)
6097 struct face
*face
= FACE_FROM_ID (c
->f
, i
);
6101 if (face
->font
&& !VECTOR_MARKED_P (face
->font
))
6102 mark_vectorlike ((struct Lisp_Vector
*) face
->font
);
6104 for (j
= 0; j
< LFACE_VECTOR_SIZE
; ++j
)
6105 mark_object (face
->lface
[j
]);
6111 NO_INLINE
/* To reduce stack depth in mark_object. */
6113 mark_localized_symbol (struct Lisp_Symbol
*ptr
)
6115 struct Lisp_Buffer_Local_Value
*blv
= SYMBOL_BLV (ptr
);
6116 Lisp_Object where
= blv
->where
;
6117 /* If the value is set up for a killed buffer or deleted
6118 frame, restore its global binding. If the value is
6119 forwarded to a C variable, either it's not a Lisp_Object
6120 var, or it's staticpro'd already. */
6121 if ((BUFFERP (where
) && !BUFFER_LIVE_P (XBUFFER (where
)))
6122 || (FRAMEP (where
) && !FRAME_LIVE_P (XFRAME (where
))))
6123 swap_in_global_binding (ptr
);
6124 mark_object (blv
->where
);
6125 mark_object (blv
->valcell
);
6126 mark_object (blv
->defcell
);
6129 NO_INLINE
/* To reduce stack depth in mark_object. */
6131 mark_save_value (struct Lisp_Save_Value
*ptr
)
6133 /* If `save_type' is zero, `data[0].pointer' is the address
6134 of a memory area containing `data[1].integer' potential
6136 if (GC_MARK_STACK
&& ptr
->save_type
== SAVE_TYPE_MEMORY
)
6138 Lisp_Object
*p
= ptr
->data
[0].pointer
;
6140 for (nelt
= ptr
->data
[1].integer
; nelt
> 0; nelt
--, p
++)
6141 mark_maybe_object (*p
);
6145 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6147 for (i
= 0; i
< SAVE_VALUE_SLOTS
; i
++)
6148 if (save_type (ptr
, i
) == SAVE_OBJECT
)
6149 mark_object (ptr
->data
[i
].object
);
6153 /* Remove killed buffers or items whose car is a killed buffer from
6154 LIST, and mark other items. Return changed LIST, which is marked. */
6157 mark_discard_killed_buffers (Lisp_Object list
)
6159 Lisp_Object tail
, *prev
= &list
;
6161 for (tail
= list
; CONSP (tail
) && !CONS_MARKED_P (XCONS (tail
));
6164 Lisp_Object tem
= XCAR (tail
);
6167 if (BUFFERP (tem
) && !BUFFER_LIVE_P (XBUFFER (tem
)))
6168 *prev
= XCDR (tail
);
6171 CONS_MARK (XCONS (tail
));
6172 mark_object (XCAR (tail
));
6173 prev
= xcdr_addr (tail
);
6180 /* Determine type of generic Lisp_Object and mark it accordingly.
6182 This function implements a straightforward depth-first marking
6183 algorithm and so the recursion depth may be very high (a few
6184 tens of thousands is not uncommon). To minimize stack usage,
6185 a few cold paths are moved out to NO_INLINE functions above.
6186 In general, inlining them doesn't help you to gain more speed. */
6189 mark_object (Lisp_Object arg
)
6191 register Lisp_Object obj
;
6193 #ifdef GC_CHECK_MARKED_OBJECTS
6196 ptrdiff_t cdr_count
= 0;
6202 if (PURE_POINTER_P (po
))
6205 last_marked
[last_marked_index
++] = obj
;
6206 if (last_marked_index
== LAST_MARKED_SIZE
)
6207 last_marked_index
= 0;
6209 /* Perform some sanity checks on the objects marked here. Abort if
6210 we encounter an object we know is bogus. This increases GC time
6211 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
6212 #ifdef GC_CHECK_MARKED_OBJECTS
6214 /* Check that the object pointed to by PO is known to be a Lisp
6215 structure allocated from the heap. */
6216 #define CHECK_ALLOCATED() \
6218 m = mem_find (po); \
6223 /* Check that the object pointed to by PO is live, using predicate
6225 #define CHECK_LIVE(LIVEP) \
6227 if (!LIVEP (m, po)) \
6231 /* Check both of the above conditions, for non-symbols. */
6232 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6234 CHECK_ALLOCATED (); \
6235 CHECK_LIVE (LIVEP); \
6238 /* Check both of the above conditions, for symbols. */
6239 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() \
6241 if (!c_symbol_p (ptr)) \
6243 CHECK_ALLOCATED (); \
6244 CHECK_LIVE (live_symbol_p); \
6248 #else /* not GC_CHECK_MARKED_OBJECTS */
6250 #define CHECK_LIVE(LIVEP) ((void) 0)
6251 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) ((void) 0)
6252 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() ((void) 0)
6254 #endif /* not GC_CHECK_MARKED_OBJECTS */
6256 switch (XTYPE (obj
))
6260 register struct Lisp_String
*ptr
= XSTRING (obj
);
6261 if (STRING_MARKED_P (ptr
))
6263 CHECK_ALLOCATED_AND_LIVE (live_string_p
);
6265 MARK_INTERVAL_TREE (ptr
->intervals
);
6266 #ifdef GC_CHECK_STRING_BYTES
6267 /* Check that the string size recorded in the string is the
6268 same as the one recorded in the sdata structure. */
6270 #endif /* GC_CHECK_STRING_BYTES */
6274 case Lisp_Vectorlike
:
6276 register struct Lisp_Vector
*ptr
= XVECTOR (obj
);
6277 register ptrdiff_t pvectype
;
6279 if (VECTOR_MARKED_P (ptr
))
6282 #ifdef GC_CHECK_MARKED_OBJECTS
6284 if (m
== MEM_NIL
&& !SUBRP (obj
))
6286 #endif /* GC_CHECK_MARKED_OBJECTS */
6288 if (ptr
->header
.size
& PSEUDOVECTOR_FLAG
)
6289 pvectype
= ((ptr
->header
.size
& PVEC_TYPE_MASK
)
6290 >> PSEUDOVECTOR_AREA_BITS
);
6292 pvectype
= PVEC_NORMAL_VECTOR
;
6294 if (pvectype
!= PVEC_SUBR
&& pvectype
!= PVEC_BUFFER
)
6295 CHECK_LIVE (live_vector_p
);
6300 #ifdef GC_CHECK_MARKED_OBJECTS
6309 #endif /* GC_CHECK_MARKED_OBJECTS */
6310 mark_buffer ((struct buffer
*) ptr
);
6314 /* Although we could treat this just like a vector, mark_compiled
6315 returns the COMPILED_CONSTANTS element, which is marked at the
6316 next iteration of goto-loop here. This is done to avoid a few
6317 recursive calls to mark_object. */
6318 obj
= mark_compiled (ptr
);
6325 struct frame
*f
= (struct frame
*) ptr
;
6327 mark_vectorlike (ptr
);
6328 mark_face_cache (f
->face_cache
);
6329 #ifdef HAVE_WINDOW_SYSTEM
6330 if (FRAME_WINDOW_P (f
) && FRAME_X_OUTPUT (f
))
6332 struct font
*font
= FRAME_FONT (f
);
6334 if (font
&& !VECTOR_MARKED_P (font
))
6335 mark_vectorlike ((struct Lisp_Vector
*) font
);
6343 struct window
*w
= (struct window
*) ptr
;
6345 mark_vectorlike (ptr
);
6347 /* Mark glyph matrices, if any. Marking window
6348 matrices is sufficient because frame matrices
6349 use the same glyph memory. */
6350 if (w
->current_matrix
)
6352 mark_glyph_matrix (w
->current_matrix
);
6353 mark_glyph_matrix (w
->desired_matrix
);
6356 /* Filter out killed buffers from both buffer lists
6357 in attempt to help GC to reclaim killed buffers faster.
6358 We can do it elsewhere for live windows, but this is the
6359 best place to do it for dead windows. */
6361 (w
, mark_discard_killed_buffers (w
->prev_buffers
));
6363 (w
, mark_discard_killed_buffers (w
->next_buffers
));
6367 case PVEC_HASH_TABLE
:
6369 struct Lisp_Hash_Table
*h
= (struct Lisp_Hash_Table
*) ptr
;
6371 mark_vectorlike (ptr
);
6372 mark_object (h
->test
.name
);
6373 mark_object (h
->test
.user_hash_function
);
6374 mark_object (h
->test
.user_cmp_function
);
6375 /* If hash table is not weak, mark all keys and values.
6376 For weak tables, mark only the vector. */
6378 mark_object (h
->key_and_value
);
6380 VECTOR_MARK (XVECTOR (h
->key_and_value
));
6384 case PVEC_CHAR_TABLE
:
6385 case PVEC_SUB_CHAR_TABLE
:
6386 mark_char_table (ptr
, (enum pvec_type
) pvectype
);
6389 case PVEC_BOOL_VECTOR
:
6390 /* No Lisp_Objects to mark in a bool vector. */
6401 mark_vectorlike (ptr
);
6408 register struct Lisp_Symbol
*ptr
= XSYMBOL (obj
);
6412 CHECK_ALLOCATED_AND_LIVE_SYMBOL ();
6414 /* Attempt to catch bogus objects. */
6415 eassert (valid_lisp_object_p (ptr
->function
));
6416 mark_object (ptr
->function
);
6417 mark_object (ptr
->plist
);
6418 switch (ptr
->redirect
)
6420 case SYMBOL_PLAINVAL
: mark_object (SYMBOL_VAL (ptr
)); break;
6421 case SYMBOL_VARALIAS
:
6424 XSETSYMBOL (tem
, SYMBOL_ALIAS (ptr
));
6428 case SYMBOL_LOCALIZED
:
6429 mark_localized_symbol (ptr
);
6431 case SYMBOL_FORWARDED
:
6432 /* If the value is forwarded to a buffer or keyboard field,
6433 these are marked when we see the corresponding object.
6434 And if it's forwarded to a C variable, either it's not
6435 a Lisp_Object var, or it's staticpro'd already. */
6437 default: emacs_abort ();
6439 if (!PURE_POINTER_P (XSTRING (ptr
->name
)))
6440 MARK_STRING (XSTRING (ptr
->name
));
6441 MARK_INTERVAL_TREE (string_intervals (ptr
->name
));
6442 /* Inner loop to mark next symbol in this bucket, if any. */
6450 CHECK_ALLOCATED_AND_LIVE (live_misc_p
);
6452 if (XMISCANY (obj
)->gcmarkbit
)
6455 switch (XMISCTYPE (obj
))
6457 case Lisp_Misc_Marker
:
6458 /* DO NOT mark thru the marker's chain.
6459 The buffer's markers chain does not preserve markers from gc;
6460 instead, markers are removed from the chain when freed by gc. */
6461 XMISCANY (obj
)->gcmarkbit
= 1;
6464 case Lisp_Misc_Save_Value
:
6465 XMISCANY (obj
)->gcmarkbit
= 1;
6466 mark_save_value (XSAVE_VALUE (obj
));
6469 case Lisp_Misc_Overlay
:
6470 mark_overlay (XOVERLAY (obj
));
6473 case Lisp_Misc_Finalizer
:
6474 XMISCANY (obj
)->gcmarkbit
= true;
6475 mark_object (XFINALIZER (obj
)->function
);
6485 register struct Lisp_Cons
*ptr
= XCONS (obj
);
6486 if (CONS_MARKED_P (ptr
))
6488 CHECK_ALLOCATED_AND_LIVE (live_cons_p
);
6490 /* If the cdr is nil, avoid recursion for the car. */
6491 if (EQ (ptr
->u
.cdr
, Qnil
))
6497 mark_object (ptr
->car
);
6500 if (cdr_count
== mark_object_loop_halt
)
6506 CHECK_ALLOCATED_AND_LIVE (live_float_p
);
6507 FLOAT_MARK (XFLOAT (obj
));
6518 #undef CHECK_ALLOCATED
6519 #undef CHECK_ALLOCATED_AND_LIVE
6521 /* Mark the Lisp pointers in the terminal objects.
6522 Called by Fgarbage_collect. */
6525 mark_terminals (void)
6528 for (t
= terminal_list
; t
; t
= t
->next_terminal
)
6530 eassert (t
->name
!= NULL
);
6531 #ifdef HAVE_WINDOW_SYSTEM
6532 /* If a terminal object is reachable from a stacpro'ed object,
6533 it might have been marked already. Make sure the image cache
6535 mark_image_cache (t
->image_cache
);
6536 #endif /* HAVE_WINDOW_SYSTEM */
6537 if (!VECTOR_MARKED_P (t
))
6538 mark_vectorlike ((struct Lisp_Vector
*)t
);
6544 /* Value is non-zero if OBJ will survive the current GC because it's
6545 either marked or does not need to be marked to survive. */
6548 survives_gc_p (Lisp_Object obj
)
6552 switch (XTYPE (obj
))
6559 survives_p
= XSYMBOL (obj
)->gcmarkbit
;
6563 survives_p
= XMISCANY (obj
)->gcmarkbit
;
6567 survives_p
= STRING_MARKED_P (XSTRING (obj
));
6570 case Lisp_Vectorlike
:
6571 survives_p
= SUBRP (obj
) || VECTOR_MARKED_P (XVECTOR (obj
));
6575 survives_p
= CONS_MARKED_P (XCONS (obj
));
6579 survives_p
= FLOAT_MARKED_P (XFLOAT (obj
));
6586 return survives_p
|| PURE_POINTER_P ((void *) XPNTR (obj
));
6592 NO_INLINE
/* For better stack traces */
6596 struct cons_block
*cblk
;
6597 struct cons_block
**cprev
= &cons_block
;
6598 int lim
= cons_block_index
;
6599 EMACS_INT num_free
= 0, num_used
= 0;
6603 for (cblk
= cons_block
; cblk
; cblk
= *cprev
)
6607 int ilim
= (lim
+ BITS_PER_BITS_WORD
- 1) / BITS_PER_BITS_WORD
;
6609 /* Scan the mark bits an int at a time. */
6610 for (i
= 0; i
< ilim
; i
++)
6612 if (cblk
->gcmarkbits
[i
] == BITS_WORD_MAX
)
6614 /* Fast path - all cons cells for this int are marked. */
6615 cblk
->gcmarkbits
[i
] = 0;
6616 num_used
+= BITS_PER_BITS_WORD
;
6620 /* Some cons cells for this int are not marked.
6621 Find which ones, and free them. */
6622 int start
, pos
, stop
;
6624 start
= i
* BITS_PER_BITS_WORD
;
6626 if (stop
> BITS_PER_BITS_WORD
)
6627 stop
= BITS_PER_BITS_WORD
;
6630 for (pos
= start
; pos
< stop
; pos
++)
6632 if (!CONS_MARKED_P (&cblk
->conses
[pos
]))
6635 cblk
->conses
[pos
].u
.chain
= cons_free_list
;
6636 cons_free_list
= &cblk
->conses
[pos
];
6638 cons_free_list
->car
= Vdead
;
6644 CONS_UNMARK (&cblk
->conses
[pos
]);
6650 lim
= CONS_BLOCK_SIZE
;
6651 /* If this block contains only free conses and we have already
6652 seen more than two blocks worth of free conses then deallocate
6654 if (this_free
== CONS_BLOCK_SIZE
&& num_free
> CONS_BLOCK_SIZE
)
6656 *cprev
= cblk
->next
;
6657 /* Unhook from the free list. */
6658 cons_free_list
= cblk
->conses
[0].u
.chain
;
6659 lisp_align_free (cblk
);
6663 num_free
+= this_free
;
6664 cprev
= &cblk
->next
;
6667 total_conses
= num_used
;
6668 total_free_conses
= num_free
;
6671 NO_INLINE
/* For better stack traces */
6675 register struct float_block
*fblk
;
6676 struct float_block
**fprev
= &float_block
;
6677 register int lim
= float_block_index
;
6678 EMACS_INT num_free
= 0, num_used
= 0;
6680 float_free_list
= 0;
6682 for (fblk
= float_block
; fblk
; fblk
= *fprev
)
6686 for (i
= 0; i
< lim
; i
++)
6687 if (!FLOAT_MARKED_P (&fblk
->floats
[i
]))
6690 fblk
->floats
[i
].u
.chain
= float_free_list
;
6691 float_free_list
= &fblk
->floats
[i
];
6696 FLOAT_UNMARK (&fblk
->floats
[i
]);
6698 lim
= FLOAT_BLOCK_SIZE
;
6699 /* If this block contains only free floats and we have already
6700 seen more than two blocks worth of free floats then deallocate
6702 if (this_free
== FLOAT_BLOCK_SIZE
&& num_free
> FLOAT_BLOCK_SIZE
)
6704 *fprev
= fblk
->next
;
6705 /* Unhook from the free list. */
6706 float_free_list
= fblk
->floats
[0].u
.chain
;
6707 lisp_align_free (fblk
);
6711 num_free
+= this_free
;
6712 fprev
= &fblk
->next
;
6715 total_floats
= num_used
;
6716 total_free_floats
= num_free
;
6719 NO_INLINE
/* For better stack traces */
6721 sweep_intervals (void)
6723 register struct interval_block
*iblk
;
6724 struct interval_block
**iprev
= &interval_block
;
6725 register int lim
= interval_block_index
;
6726 EMACS_INT num_free
= 0, num_used
= 0;
6728 interval_free_list
= 0;
6730 for (iblk
= interval_block
; iblk
; iblk
= *iprev
)
6735 for (i
= 0; i
< lim
; i
++)
6737 if (!iblk
->intervals
[i
].gcmarkbit
)
6739 set_interval_parent (&iblk
->intervals
[i
], interval_free_list
);
6740 interval_free_list
= &iblk
->intervals
[i
];
6746 iblk
->intervals
[i
].gcmarkbit
= 0;
6749 lim
= INTERVAL_BLOCK_SIZE
;
6750 /* If this block contains only free intervals and we have already
6751 seen more than two blocks worth of free intervals then
6752 deallocate this block. */
6753 if (this_free
== INTERVAL_BLOCK_SIZE
&& num_free
> INTERVAL_BLOCK_SIZE
)
6755 *iprev
= iblk
->next
;
6756 /* Unhook from the free list. */
6757 interval_free_list
= INTERVAL_PARENT (&iblk
->intervals
[0]);
6762 num_free
+= this_free
;
6763 iprev
= &iblk
->next
;
6766 total_intervals
= num_used
;
6767 total_free_intervals
= num_free
;
6770 NO_INLINE
/* For better stack traces */
6772 sweep_symbols (void)
6774 struct symbol_block
*sblk
;
6775 struct symbol_block
**sprev
= &symbol_block
;
6776 int lim
= symbol_block_index
;
6777 EMACS_INT num_free
= 0, num_used
= ARRAYELTS (lispsym
);
6779 symbol_free_list
= NULL
;
6781 for (int i
= 0; i
< ARRAYELTS (lispsym
); i
++)
6782 lispsym
[i
].gcmarkbit
= 0;
6784 for (sblk
= symbol_block
; sblk
; sblk
= *sprev
)
6787 union aligned_Lisp_Symbol
*sym
= sblk
->symbols
;
6788 union aligned_Lisp_Symbol
*end
= sym
+ lim
;
6790 for (; sym
< end
; ++sym
)
6792 if (!sym
->s
.gcmarkbit
)
6794 if (sym
->s
.redirect
== SYMBOL_LOCALIZED
)
6795 xfree (SYMBOL_BLV (&sym
->s
));
6796 sym
->s
.next
= symbol_free_list
;
6797 symbol_free_list
= &sym
->s
;
6799 symbol_free_list
->function
= Vdead
;
6806 sym
->s
.gcmarkbit
= 0;
6807 /* Attempt to catch bogus objects. */
6808 eassert (valid_lisp_object_p (sym
->s
.function
));
6812 lim
= SYMBOL_BLOCK_SIZE
;
6813 /* If this block contains only free symbols and we have already
6814 seen more than two blocks worth of free symbols then deallocate
6816 if (this_free
== SYMBOL_BLOCK_SIZE
&& num_free
> SYMBOL_BLOCK_SIZE
)
6818 *sprev
= sblk
->next
;
6819 /* Unhook from the free list. */
6820 symbol_free_list
= sblk
->symbols
[0].s
.next
;
6825 num_free
+= this_free
;
6826 sprev
= &sblk
->next
;
6829 total_symbols
= num_used
;
6830 total_free_symbols
= num_free
;
6833 NO_INLINE
/* For better stack traces. */
6837 register struct marker_block
*mblk
;
6838 struct marker_block
**mprev
= &marker_block
;
6839 register int lim
= marker_block_index
;
6840 EMACS_INT num_free
= 0, num_used
= 0;
6842 /* Put all unmarked misc's on free list. For a marker, first
6843 unchain it from the buffer it points into. */
6845 marker_free_list
= 0;
6847 for (mblk
= marker_block
; mblk
; mblk
= *mprev
)
6852 for (i
= 0; i
< lim
; i
++)
6854 if (!mblk
->markers
[i
].m
.u_any
.gcmarkbit
)
6856 if (mblk
->markers
[i
].m
.u_any
.type
== Lisp_Misc_Marker
)
6857 unchain_marker (&mblk
->markers
[i
].m
.u_marker
);
6858 if (mblk
->markers
[i
].m
.u_any
.type
== Lisp_Misc_Finalizer
)
6859 unchain_finalizer (&mblk
->markers
[i
].m
.u_finalizer
);
6860 /* Set the type of the freed object to Lisp_Misc_Free.
6861 We could leave the type alone, since nobody checks it,
6862 but this might catch bugs faster. */
6863 mblk
->markers
[i
].m
.u_marker
.type
= Lisp_Misc_Free
;
6864 mblk
->markers
[i
].m
.u_free
.chain
= marker_free_list
;
6865 marker_free_list
= &mblk
->markers
[i
].m
;
6871 mblk
->markers
[i
].m
.u_any
.gcmarkbit
= 0;
6874 lim
= MARKER_BLOCK_SIZE
;
6875 /* If this block contains only free markers and we have already
6876 seen more than two blocks worth of free markers then deallocate
6878 if (this_free
== MARKER_BLOCK_SIZE
&& num_free
> MARKER_BLOCK_SIZE
)
6880 *mprev
= mblk
->next
;
6881 /* Unhook from the free list. */
6882 marker_free_list
= mblk
->markers
[0].m
.u_free
.chain
;
6887 num_free
+= this_free
;
6888 mprev
= &mblk
->next
;
6892 total_markers
= num_used
;
6893 total_free_markers
= num_free
;
6896 NO_INLINE
/* For better stack traces */
6898 sweep_buffers (void)
6900 register struct buffer
*buffer
, **bprev
= &all_buffers
;
6903 for (buffer
= all_buffers
; buffer
; buffer
= *bprev
)
6904 if (!VECTOR_MARKED_P (buffer
))
6906 *bprev
= buffer
->next
;
6911 VECTOR_UNMARK (buffer
);
6912 /* Do not use buffer_(set|get)_intervals here. */
6913 buffer
->text
->intervals
= balance_intervals (buffer
->text
->intervals
);
6915 bprev
= &buffer
->next
;
6919 /* Sweep: find all structures not marked, and free them. */
6923 /* Remove or mark entries in weak hash tables.
6924 This must be done before any object is unmarked. */
6925 sweep_weak_hash_tables ();
6928 check_string_bytes (!noninteractive
);
6936 check_string_bytes (!noninteractive
);
6939 DEFUN ("memory-info", Fmemory_info
, Smemory_info
, 0, 0, 0,
6940 doc
: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
6941 All values are in Kbytes. If there is no swap space,
6942 last two values are zero. If the system is not supported
6943 or memory information can't be obtained, return nil. */)
6946 #if defined HAVE_LINUX_SYSINFO
6952 #ifdef LINUX_SYSINFO_UNIT
6953 units
= si
.mem_unit
;
6957 return list4i ((uintmax_t) si
.totalram
* units
/ 1024,
6958 (uintmax_t) si
.freeram
* units
/ 1024,
6959 (uintmax_t) si
.totalswap
* units
/ 1024,
6960 (uintmax_t) si
.freeswap
* units
/ 1024);
6961 #elif defined WINDOWSNT
6962 unsigned long long totalram
, freeram
, totalswap
, freeswap
;
6964 if (w32_memory_info (&totalram
, &freeram
, &totalswap
, &freeswap
) == 0)
6965 return list4i ((uintmax_t) totalram
/ 1024,
6966 (uintmax_t) freeram
/ 1024,
6967 (uintmax_t) totalswap
/ 1024,
6968 (uintmax_t) freeswap
/ 1024);
6972 unsigned long totalram
, freeram
, totalswap
, freeswap
;
6974 if (dos_memory_info (&totalram
, &freeram
, &totalswap
, &freeswap
) == 0)
6975 return list4i ((uintmax_t) totalram
/ 1024,
6976 (uintmax_t) freeram
/ 1024,
6977 (uintmax_t) totalswap
/ 1024,
6978 (uintmax_t) freeswap
/ 1024);
6981 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6982 /* FIXME: add more systems. */
6984 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6987 /* Debugging aids. */
6989 DEFUN ("memory-limit", Fmemory_limit
, Smemory_limit
, 0, 0, 0,
6990 doc
: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6991 This may be helpful in debugging Emacs's memory usage.
6992 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6998 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
7001 XSETINT (end
, (intptr_t) (char *) sbrk (0) / 1024);
7007 DEFUN ("memory-use-counts", Fmemory_use_counts
, Smemory_use_counts
, 0, 0, 0,
7008 doc
: /* Return a list of counters that measure how much consing there has been.
7009 Each of these counters increments for a certain kind of object.
7010 The counters wrap around from the largest positive integer to zero.
7011 Garbage collection does not decrease them.
7012 The elements of the value are as follows:
7013 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
7014 All are in units of 1 = one object consed
7015 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
7017 MISCS include overlays, markers, and some internal types.
7018 Frames, windows, buffers, and subprocesses count as vectors
7019 (but the contents of a buffer's text do not count here). */)
7022 return listn (CONSTYPE_HEAP
, 8,
7023 bounded_number (cons_cells_consed
),
7024 bounded_number (floats_consed
),
7025 bounded_number (vector_cells_consed
),
7026 bounded_number (symbols_consed
),
7027 bounded_number (string_chars_consed
),
7028 bounded_number (misc_objects_consed
),
7029 bounded_number (intervals_consed
),
7030 bounded_number (strings_consed
));
7034 symbol_uses_obj (Lisp_Object symbol
, Lisp_Object obj
)
7036 struct Lisp_Symbol
*sym
= XSYMBOL (symbol
);
7037 Lisp_Object val
= find_symbol_value (symbol
);
7038 return (EQ (val
, obj
)
7039 || EQ (sym
->function
, obj
)
7040 || (!NILP (sym
->function
)
7041 && COMPILEDP (sym
->function
)
7042 && EQ (AREF (sym
->function
, COMPILED_BYTECODE
), obj
))
7045 && EQ (AREF (val
, COMPILED_BYTECODE
), obj
)));
7048 /* Find at most FIND_MAX symbols which have OBJ as their value or
7049 function. This is used in gdbinit's `xwhichsymbols' command. */
7052 which_symbols (Lisp_Object obj
, EMACS_INT find_max
)
7054 struct symbol_block
*sblk
;
7055 ptrdiff_t gc_count
= inhibit_garbage_collection ();
7056 Lisp_Object found
= Qnil
;
7060 for (int i
= 0; i
< ARRAYELTS (lispsym
); i
++)
7062 Lisp_Object sym
= builtin_lisp_symbol (i
);
7063 if (symbol_uses_obj (sym
, obj
))
7065 found
= Fcons (sym
, found
);
7066 if (--find_max
== 0)
7071 for (sblk
= symbol_block
; sblk
; sblk
= sblk
->next
)
7073 union aligned_Lisp_Symbol
*aligned_sym
= sblk
->symbols
;
7076 for (bn
= 0; bn
< SYMBOL_BLOCK_SIZE
; bn
++, aligned_sym
++)
7078 if (sblk
== symbol_block
&& bn
>= symbol_block_index
)
7081 Lisp_Object sym
= make_lisp_symbol (&aligned_sym
->s
);
7082 if (symbol_uses_obj (sym
, obj
))
7084 found
= Fcons (sym
, found
);
7085 if (--find_max
== 0)
7093 unbind_to (gc_count
, Qnil
);
7097 #ifdef SUSPICIOUS_OBJECT_CHECKING
7100 find_suspicious_object_in_range (void *begin
, void *end
)
7102 char *begin_a
= begin
;
7106 for (i
= 0; i
< ARRAYELTS (suspicious_objects
); ++i
)
7108 char *suspicious_object
= suspicious_objects
[i
];
7109 if (begin_a
<= suspicious_object
&& suspicious_object
< end_a
)
7110 return suspicious_object
;
7117 note_suspicious_free (void* ptr
)
7119 struct suspicious_free_record
* rec
;
7121 rec
= &suspicious_free_history
[suspicious_free_history_index
++];
7122 if (suspicious_free_history_index
==
7123 ARRAYELTS (suspicious_free_history
))
7125 suspicious_free_history_index
= 0;
7128 memset (rec
, 0, sizeof (*rec
));
7129 rec
->suspicious_object
= ptr
;
7130 backtrace (&rec
->backtrace
[0], ARRAYELTS (rec
->backtrace
));
7134 detect_suspicious_free (void* ptr
)
7138 eassert (ptr
!= NULL
);
7140 for (i
= 0; i
< ARRAYELTS (suspicious_objects
); ++i
)
7141 if (suspicious_objects
[i
] == ptr
)
7143 note_suspicious_free (ptr
);
7144 suspicious_objects
[i
] = NULL
;
7148 #endif /* SUSPICIOUS_OBJECT_CHECKING */
7150 DEFUN ("suspicious-object", Fsuspicious_object
, Ssuspicious_object
, 1, 1, 0,
7151 doc
: /* Return OBJ, maybe marking it for extra scrutiny.
7152 If Emacs is compiled with suspicious object checking, capture
7153 a stack trace when OBJ is freed in order to help track down
7154 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7157 #ifdef SUSPICIOUS_OBJECT_CHECKING
7158 /* Right now, we care only about vectors. */
7159 if (VECTORLIKEP (obj
))
7161 suspicious_objects
[suspicious_object_index
++] = XVECTOR (obj
);
7162 if (suspicious_object_index
== ARRAYELTS (suspicious_objects
))
7163 suspicious_object_index
= 0;
7169 #ifdef ENABLE_CHECKING
7171 bool suppress_checking
;
7174 die (const char *msg
, const char *file
, int line
)
7176 fprintf (stderr
, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7178 terminate_due_to_signal (SIGABRT
, INT_MAX
);
7181 #endif /* ENABLE_CHECKING */
7183 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
7185 /* Debugging check whether STR is ASCII-only. */
7188 verify_ascii (const char *str
)
7190 const unsigned char *ptr
= (unsigned char *) str
, *end
= ptr
+ strlen (str
);
7193 int c
= STRING_CHAR_ADVANCE (ptr
);
7194 if (!ASCII_CHAR_P (c
))
7200 /* Stress alloca with inconveniently sized requests and check
7201 whether all allocated areas may be used for Lisp_Object. */
7203 NO_INLINE
static void
7204 verify_alloca (void)
7207 enum { ALLOCA_CHECK_MAX
= 256 };
7208 /* Start from size of the smallest Lisp object. */
7209 for (i
= sizeof (struct Lisp_Cons
); i
<= ALLOCA_CHECK_MAX
; i
++)
7211 void *ptr
= alloca (i
);
7212 make_lisp_ptr (ptr
, Lisp_Cons
);
7216 #else /* not ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7218 #define verify_alloca() ((void) 0)
7220 #endif /* ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7222 /* Initialization. */
7225 init_alloc_once (void)
7227 /* Even though Qt's contents are not set up, its address is known. */
7229 gc_precise
= (GC_MARK_STACK
== GC_USE_GCPROS_AS_BEFORE
);
7232 pure_size
= PURESIZE
;
7235 init_finalizer_list (&finalizers
);
7236 init_finalizer_list (&doomed_finalizers
);
7238 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
7240 Vdead
= make_pure_string ("DEAD", 4, 4, 0);
7243 #ifdef DOUG_LEA_MALLOC
7244 mallopt (M_TRIM_THRESHOLD
, 128 * 1024); /* Trim threshold. */
7245 mallopt (M_MMAP_THRESHOLD
, 64 * 1024); /* Mmap threshold. */
7246 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
); /* Max. number of mmap'ed areas. */
7251 refill_memory_reserve ();
7252 gc_cons_threshold
= GC_DEFAULT_THRESHOLD
;
7259 byte_stack_list
= 0;
7261 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
7262 setjmp_tested_p
= longjmps_done
= 0;
7265 Vgc_elapsed
= make_float (0.0);
7269 valgrind_p
= RUNNING_ON_VALGRIND
!= 0;
7274 syms_of_alloc (void)
7276 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold
,
7277 doc
: /* Number of bytes of consing between garbage collections.
7278 Garbage collection can happen automatically once this many bytes have been
7279 allocated since the last garbage collection. All data types count.
7281 Garbage collection happens automatically only when `eval' is called.
7283 By binding this temporarily to a large number, you can effectively
7284 prevent garbage collection during a part of the program.
7285 See also `gc-cons-percentage'. */);
7287 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage
,
7288 doc
: /* Portion of the heap used for allocation.
7289 Garbage collection can happen automatically once this portion of the heap
7290 has been allocated since the last garbage collection.
7291 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7292 Vgc_cons_percentage
= make_float (0.1);
7294 DEFVAR_INT ("pure-bytes-used", pure_bytes_used
,
7295 doc
: /* Number of bytes of shareable Lisp data allocated so far. */);
7297 DEFVAR_INT ("cons-cells-consed", cons_cells_consed
,
7298 doc
: /* Number of cons cells that have been consed so far. */);
7300 DEFVAR_INT ("floats-consed", floats_consed
,
7301 doc
: /* Number of floats that have been consed so far. */);
7303 DEFVAR_INT ("vector-cells-consed", vector_cells_consed
,
7304 doc
: /* Number of vector cells that have been consed so far. */);
7306 DEFVAR_INT ("symbols-consed", symbols_consed
,
7307 doc
: /* Number of symbols that have been consed so far. */);
7308 symbols_consed
+= ARRAYELTS (lispsym
);
7310 DEFVAR_INT ("string-chars-consed", string_chars_consed
,
7311 doc
: /* Number of string characters that have been consed so far. */);
7313 DEFVAR_INT ("misc-objects-consed", misc_objects_consed
,
7314 doc
: /* Number of miscellaneous objects that have been consed so far.
7315 These include markers and overlays, plus certain objects not visible
7318 DEFVAR_INT ("intervals-consed", intervals_consed
,
7319 doc
: /* Number of intervals that have been consed so far. */);
7321 DEFVAR_INT ("strings-consed", strings_consed
,
7322 doc
: /* Number of strings that have been consed so far. */);
7324 DEFVAR_LISP ("purify-flag", Vpurify_flag
,
7325 doc
: /* Non-nil means loading Lisp code in order to dump an executable.
7326 This means that certain objects should be allocated in shared (pure) space.
7327 It can also be set to a hash-table, in which case this table is used to
7328 do hash-consing of the objects allocated to pure space. */);
7330 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages
,
7331 doc
: /* Non-nil means display messages at start and end of garbage collection. */);
7332 garbage_collection_messages
= 0;
7334 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook
,
7335 doc
: /* Hook run after garbage collection has finished. */);
7336 Vpost_gc_hook
= Qnil
;
7337 DEFSYM (Qpost_gc_hook
, "post-gc-hook");
7339 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data
,
7340 doc
: /* Precomputed `signal' argument for memory-full error. */);
7341 /* We build this in advance because if we wait until we need it, we might
7342 not be able to allocate the memory to hold it. */
7344 = listn (CONSTYPE_PURE
, 2, Qerror
,
7345 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7347 DEFVAR_LISP ("memory-full", Vmemory_full
,
7348 doc
: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7349 Vmemory_full
= Qnil
;
7351 DEFSYM (Qconses
, "conses");
7352 DEFSYM (Qsymbols
, "symbols");
7353 DEFSYM (Qmiscs
, "miscs");
7354 DEFSYM (Qstrings
, "strings");
7355 DEFSYM (Qvectors
, "vectors");
7356 DEFSYM (Qfloats
, "floats");
7357 DEFSYM (Qintervals
, "intervals");
7358 DEFSYM (Qbuffers
, "buffers");
7359 DEFSYM (Qstring_bytes
, "string-bytes");
7360 DEFSYM (Qvector_slots
, "vector-slots");
7361 DEFSYM (Qheap
, "heap");
7362 DEFSYM (Qautomatic_gc
, "Automatic GC");
7364 DEFSYM (Qgc_cons_threshold
, "gc-cons-threshold");
7365 DEFSYM (Qchar_table_extra_slots
, "char-table-extra-slots");
7367 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed
,
7368 doc
: /* Accumulated time elapsed in garbage collections.
7369 The time is in seconds as a floating point value. */);
7370 DEFVAR_INT ("gcs-done", gcs_done
,
7371 doc
: /* Accumulated number of garbage collections done. */);
7373 DEFVAR_BOOL ("gc-precise", gc_precise
,
7374 doc
: /* Non-nil means GC stack marking is precise.
7375 Useful mainly for automated GC tests. Build time constant.*/);
7376 XSYMBOL (intern_c_string ("gc-precise"))->constant
= 1;
7381 defsubr (&Sbool_vector
);
7382 defsubr (&Smake_byte_code
);
7383 defsubr (&Smake_list
);
7384 defsubr (&Smake_vector
);
7385 defsubr (&Smake_string
);
7386 defsubr (&Smake_bool_vector
);
7387 defsubr (&Smake_symbol
);
7388 defsubr (&Smake_marker
);
7389 defsubr (&Smake_finalizer
);
7390 defsubr (&Spurecopy
);
7391 defsubr (&Sgarbage_collect
);
7392 defsubr (&Smemory_limit
);
7393 defsubr (&Smemory_info
);
7394 defsubr (&Smemory_use_counts
);
7395 defsubr (&Ssuspicious_object
);
7397 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7398 defsubr (&Sgc_status
);
7402 /* When compiled with GCC, GDB might say "No enum type named
7403 pvec_type" if we don't have at least one symbol with that type, and
7404 then xbacktrace could fail. Similarly for the other enums and
7405 their values. Some non-GCC compilers don't like these constructs. */
7409 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS
;
7410 enum char_table_specials char_table_specials
;
7411 enum char_bits char_bits
;
7412 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE
;
7413 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE
;
7414 enum Lisp_Bits Lisp_Bits
;
7415 enum Lisp_Compiled Lisp_Compiled
;
7416 enum maxargs maxargs
;
7417 enum MAX_ALLOCA MAX_ALLOCA
;
7418 enum More_Lisp_Bits More_Lisp_Bits
;
7419 enum pvec_type pvec_type
;
7420 } const EXTERNALLY_VISIBLE gdb_make_enums_visible
= {0};
7421 #endif /* __GNUC__ */