1 /** Support for keyboard interface
4 * \todo TODO: move stuff from here to itrm.{c,h} and mouse.{c,h}
21 #define HPUX_PIPE (len > PIPE_BUF || errno != EAGAIN)
28 #include "config/options.h"
29 #include "intl/gettext/libintl.h"
30 #include "main/select.h"
31 #include "main/timer.h"
32 #include "osdep/ascii.h"
33 #include "osdep/osdep.h"
34 #include "terminal/hardio.h"
35 #include "terminal/itrm.h"
36 #include "terminal/kbd.h"
37 #include "terminal/mouse.h"
38 #include "terminal/terminal.h"
39 #include "util/error.h"
40 #include "util/memory.h"
41 #include "util/string.h"
42 #include "util/time.h"
44 struct itrm
*ditrm
= NULL
;
46 static void free_itrm(struct itrm
*);
47 static void in_kbd(struct itrm
*);
48 static void in_sock(struct itrm
*);
49 static int process_queue(struct itrm
*);
50 static void handle_itrm_stdin(struct itrm
*);
51 static void unhandle_itrm_stdin(struct itrm
*);
54 /** This hack makes GCC put enum term_event_special_key in the debug
55 * information even though it is not otherwise used. The const
56 * prevents an unused-variable warning. */
57 static const enum term_event_special_key dummy_term_event_special_key
;
64 return ditrm
&& ditrm
->blocked
;
71 if (ditrm
) free_itrm(ditrm
);
75 /** A select_handler_T write_func for itrm_out.sock. This is called
76 * when there is data in \c itrm->out.queue and it is possible to write
77 * it to \c itrm->out.sock. When \c itrm->out.queue becomes empty, this
78 * handler is temporarily removed. */
80 itrm_queue_write(struct itrm
*itrm
)
83 int qlen
= int_min(itrm
->out
.queue
.len
, 128);
85 assertm(qlen
, "event queue empty");
86 if_assert_failed
return;
88 written
= safe_write(itrm
->out
.sock
, itrm
->out
.queue
.data
, qlen
);
90 if (written
< 0) free_itrm(itrm
); /* write error */
94 itrm
->out
.queue
.len
-= written
;
96 if (itrm
->out
.queue
.len
== 0) {
97 set_handlers(itrm
->out
.sock
,
98 get_handler(itrm
->out
.sock
, SELECT_HANDLER_READ
),
100 get_handler(itrm
->out
.sock
, SELECT_HANDLER_ERROR
),
101 get_handler(itrm
->out
.sock
, SELECT_HANDLER_DATA
));
103 assert(itrm
->out
.queue
.len
> 0);
104 memmove(itrm
->out
.queue
.data
, itrm
->out
.queue
.data
+ written
, itrm
->out
.queue
.len
);
110 itrm_queue_event(struct itrm
*itrm
, unsigned char *data
, int len
)
116 if (!itrm
->out
.queue
.len
&& can_write(itrm
->out
.sock
)) {
117 w
= safe_write(itrm
->out
.sock
, data
, len
);
118 if (w
<= 0 && HPUX_PIPE
) {
119 register_bottom_half(free_itrm
, itrm
);
126 unsigned char *c
= mem_realloc(itrm
->out
.queue
.data
,
127 itrm
->out
.queue
.len
+ left
);
134 itrm
->out
.queue
.data
= c
;
135 memcpy(itrm
->out
.queue
.data
+ itrm
->out
.queue
.len
, data
+ w
, left
);
136 itrm
->out
.queue
.len
+= left
;
137 set_handlers(itrm
->out
.sock
,
138 get_handler(itrm
->out
.sock
, SELECT_HANDLER_READ
),
139 (select_handler_T
) itrm_queue_write
,
140 (select_handler_T
) free_itrm
, itrm
);
148 struct interlink_event ev
;
151 set_kbd_interlink_event(&ev
, KBD_CTRL_C
, KBD_MOD_NONE
);
152 itrm_queue_event(ditrm
, (unsigned char *) &ev
, sizeof(ev
));
155 #define write_sequence(fd, seq) \
156 hard_write(fd, seq, sizeof(seq) - 1)
159 #define INIT_TERMINAL_SEQ "\033)0\0337" /**< Special Character and Line Drawing Set, Save Cursor */
160 #define INIT_ALT_SCREEN_SEQ "\033[?47h" /**< Use Alternate Screen Buffer */
163 send_init_sequence(int h
, int altscreen
)
165 write_sequence(h
, INIT_TERMINAL_SEQ
);
167 /* If alternate screen is supported switch to it. */
169 write_sequence(h
, INIT_ALT_SCREEN_SEQ
);
172 send_mouse_init_sequence(h
);
176 #define DONE_CLS_SEQ "\033[2J" /**< Erase in Display, Clear All */
177 #define DONE_TERMINAL_SEQ "\0338\r \b" /**< Restore Cursor (DECRC) + ??? */
178 #define DONE_ALT_SCREEN_SEQ "\033[?47l" /**< Use Normal Screen Buffer */
181 send_done_sequence(int h
, int altscreen
)
183 write_sequence(h
, DONE_CLS_SEQ
);
186 send_mouse_done_sequence(h
);
189 /* Switch from alternate screen. */
191 write_sequence(h
, DONE_ALT_SCREEN_SEQ
);
194 write_sequence(h
, DONE_TERMINAL_SEQ
);
198 #undef write_sequence
201 resize_terminal(void)
203 struct interlink_event ev
;
206 get_terminal_size(ditrm
->out
.std
, &width
, &height
);
207 set_resize_interlink_event(&ev
, width
, height
);
208 itrm_queue_event(ditrm
, (char *) &ev
, sizeof(ev
));
212 get_terminal_name(unsigned char name
[MAX_TERM_LEN
])
214 unsigned char *term
= getenv("TERM");
217 memset(name
, 0, MAX_TERM_LEN
);
221 for (i
= 0; term
[i
] != 0 && i
< MAX_TERM_LEN
- 1; i
++)
222 name
[i
] = isident(term
[i
]) ? term
[i
] : '-';
227 setraw(int fd
, struct termios
*p
)
231 memset(&t
, 0, sizeof(t
));
232 if (tcgetattr(fd
, &t
)) return -1;
234 if (p
) copy_struct(p
, &t
);
236 elinks_cfmakeraw(&t
);
242 if (tcsetattr(fd
, TCSANOW
, &t
)) return -1;
247 /** Construct the struct itrm of this process, make ditrm point to it,
248 * set up select() handlers, and send the initial interlink packet.
250 * The first five parameters are file descriptors that this function
251 * saves in submembers of struct itrm, and for which this function may
252 * set select() handlers. Please see the definitions of struct
253 * itrm_in and struct itrm_out for further explanations.
255 * @param std_in itrm_in.std: read tty device (or pipe)
256 * @param std_out itrm_out.std: write tty device (or pipe)
257 * @param sock_in itrm_in.sock
258 * - If master: == @a std_out (masterhood flag)
259 * - If slave: read socket from master
260 * @param sock_out itrm_out.sock
261 * - If master: write pipe to same process
262 * - If slave: write socket to master
263 * @param ctl_in itrm_in.ctl: control tty device
265 * The remaining three parameters control the initial interlink packet.
267 * @param init_string A string to be passed to the master process. Need
268 * not be null-terminated. If @a remote == 0, this is
269 * a URI. Otherwise, this is a remote command.
270 * @param init_len The length of init_string, in bytes.
271 * @param remote = 0 if asking the master to start a new session
272 * and display it via this process. Otherwise,
273 * enum remote_session_flags. */
275 handle_trm(int std_in
, int std_out
, int sock_in
, int sock_out
, int ctl_in
,
276 void *init_string
, int init_len
, int remote
)
279 struct terminal_info info
;
280 struct interlink_event_size
*size
= &info
.event
.info
.size
;
283 memset(&info
, 0, sizeof(info
));
285 get_terminal_size(ctl_in
, &size
->width
, &size
->height
);
286 info
.event
.ev
= EVENT_INIT
;
287 info
.system_env
= get_system_env();
288 info
.length
= init_len
;
291 info
.session_info
= remote
;
292 info
.magic
= INTERLINK_REMOTE_MAGIC
;
294 info
.session_info
= get_cmd_opt_int("base-session");
295 info
.magic
= INTERLINK_NORMAL_MAGIC
;
298 itrm
= mem_calloc(1, sizeof(*itrm
));
301 itrm
->in
.queue
.data
= mem_calloc(1, ITRM_IN_QUEUE_SIZE
);
302 if (!itrm
->in
.queue
.data
) {
308 itrm
->in
.std
= std_in
;
309 itrm
->out
.std
= std_out
;
310 itrm
->in
.sock
= sock_in
;
311 itrm
->out
.sock
= sock_out
;
312 itrm
->in
.ctl
= ctl_in
;
313 itrm
->timer
= TIMER_ID_UNDEF
;
314 itrm
->remote
= !!remote
;
316 /* FIXME: Combination altscreen + xwin does not work as it should,
317 * mouse clicks are reportedly partially ignored. */
318 if (info
.system_env
& (ENV_SCREEN
| ENV_XWIN
))
322 if (ctl_in
>= 0) setraw(ctl_in
, &itrm
->t
);
323 send_init_sequence(std_out
, itrm
->altscreen
);
324 handle_terminal_resize(ctl_in
, resize_terminal
);
330 handle_itrm_stdin(itrm
);
332 if (sock_in
!= std_out
)
333 set_handlers(sock_in
, (select_handler_T
) in_sock
,
334 NULL
, (select_handler_T
) free_itrm
, itrm
);
336 get_terminal_name(info
.name
);
340 memcpy(info
.cwd
, ts
, int_min(strlen(ts
), MAX_CWD_LEN
));
344 itrm_queue_event(itrm
, (char *) &info
, TERMINAL_INFO_SIZE
);
345 itrm_queue_event(itrm
, (char *) init_string
, init_len
);
349 /** A select_handler_T read_func and error_func for the pipe (long) @a h.
350 * This is called when the subprocess started on the terminal of this
351 * ELinks process exits. ELinks then resumes using the terminal. */
353 unblock_itrm_x(void *h
)
365 if (!ditrm
) return -1;
367 if (ditrm
->in
.ctl
>= 0 && setraw(ditrm
->in
.ctl
, NULL
)) return -1;
369 send_init_sequence(ditrm
->out
.std
, ditrm
->altscreen
);
371 handle_itrm_stdin(ditrm
);
372 resume_mouse(ditrm
->mouse_h
);
374 handle_terminal_resize(ditrm
->in
.ctl
, resize_terminal
);
388 kill_timer(&ditrm
->timer
);
389 ditrm
->in
.queue
.len
= 0;
390 unhandle_terminal_resize(ditrm
->in
.ctl
);
391 send_done_sequence(ditrm
->out
.std
, ditrm
->altscreen
);
392 tcsetattr(ditrm
->in
.ctl
, TCSANOW
, &ditrm
->t
);
393 unhandle_itrm_stdin(ditrm
);
394 suspend_mouse(ditrm
->mouse_h
);
399 free_itrm(struct itrm
*itrm
)
404 if (itrm
->orig_title
&& *itrm
->orig_title
) {
405 set_window_title(itrm
->orig_title
);
407 } else if (itrm
->touched_title
) {
408 /* Set the window title to the value of $TERM if X11
409 * wasn't compiled in. Should hopefully make at least
410 * half the users happy. (debian bug #312955) */
411 unsigned char title
[MAX_TERM_LEN
];
413 get_terminal_name(title
);
415 set_window_title(title
);
419 unhandle_terminal_resize(itrm
->in
.ctl
);
423 send_done_sequence(itrm
->out
.std
, itrm
->altscreen
);
424 tcsetattr(itrm
->in
.ctl
, TCSANOW
, &itrm
->t
);
427 mem_free_set(&itrm
->orig_title
, NULL
);
429 clear_handlers(itrm
->in
.std
);
430 clear_handlers(itrm
->in
.sock
);
431 clear_handlers(itrm
->out
.std
);
432 clear_handlers(itrm
->out
.sock
);
434 kill_timer(&itrm
->timer
);
436 if (itrm
== ditrm
) ditrm
= NULL
;
437 mem_free_if(itrm
->out
.queue
.data
);
438 mem_free_if(itrm
->in
.queue
.data
);
442 /** Resize terminal to dimensions specified by @a text string.
443 * @a text should look like "width,height,old-width,old-height"
444 * where width and height are integers. */
446 resize_terminal_from_str(unsigned char *text
)
448 enum { NEW_WIDTH
= 0, NEW_HEIGHT
, OLD_WIDTH
, OLD_HEIGHT
, NUMBERS
} i
;
449 int numbers
[NUMBERS
];
451 assert(text
&& *text
);
452 if_assert_failed
return;
454 for (i
= 0; i
< NUMBERS
; i
++) {
455 unsigned char *p
= strchr(text
, ',');
460 } else if (i
< OLD_HEIGHT
) {
464 numbers
[i
] = atoi(text
);
469 resize_window(numbers
[NEW_WIDTH
], numbers
[NEW_HEIGHT
],
470 numbers
[OLD_WIDTH
], numbers
[OLD_HEIGHT
]);
475 dispatch_special(unsigned char *text
)
483 if (!ditrm
->orig_title
)
484 ditrm
->orig_title
= get_window_title();
485 ditrm
->touched_title
= 1;
487 set_window_title(text
+ 1);
490 if (ditrm
&& ditrm
->remote
)
493 resize_terminal_from_str(text
+ 1);
499 safe_hard_write(int fd
, unsigned char *buf
, int len
)
501 if (is_blocked()) return;
504 hard_write(fd
, buf
, len
);
508 /** A select_handler_T read_func for itrm_in.sock. A slave process
509 * calls this when the master sends it data to be displayed. The
510 * master process never calls this. */
512 in_sock(struct itrm
*itrm
)
515 struct string
delete;
517 int fg
; /* enum term_exec */
518 ssize_t bytes_read
, i
, p
;
519 unsigned char buf
[ITRM_OUT_QUEUE_SIZE
];
521 bytes_read
= safe_read(itrm
->in
.sock
, buf
, ITRM_OUT_QUEUE_SIZE
);
522 if (bytes_read
<= 0) goto free_and_return
;
525 for (i
= 0; i
< bytes_read
; i
++)
529 safe_hard_write(itrm
->out
.std
, buf
, bytes_read
);
533 if (i
) safe_hard_write(itrm
->out
.std
, buf
, i
);
536 assert(ITRM_OUT_QUEUE_SIZE
- i
> 0);
537 memmove(buf
, buf
+ i
, ITRM_OUT_QUEUE_SIZE
- i
);
544 if (p < bytes_read) \
546 else if ((hard_read(itrm->in.sock, &cc, 1)) <= 0) \
547 goto free_and_return; \
553 if (!init_string(&path
)) goto free_and_return
;
558 add_char_to_string(&path
, ch
);
561 if (!init_string(&delete)) {
563 goto free_and_return
;
569 add_char_to_string(&delete, ch
);
575 dispatch_special(delete.source
);
579 unsigned char *param
;
580 int path_len
, del_len
, param_len
;
582 /* TODO: Should this be changed to allow TERM_EXEC_NEWWIN
583 * in a blocked terminal? There is similar code in
584 * exec_on_terminal(). --KON, 2007 */
585 if (is_blocked() && fg
!= TERM_EXEC_BG
) {
586 if (*delete.source
) unlink(delete.source
);
590 path_len
= path
.length
;
591 del_len
= delete.length
;
592 param_len
= path_len
+ del_len
+ 3;
594 param
= mem_alloc(param_len
);
595 if (!param
) goto nasty_thing
;
598 memcpy(param
+ 1, path
.source
, path_len
+ 1);
599 memcpy(param
+ 1 + path_len
+ 1, delete.source
, del_len
+ 1);
601 if (fg
== TERM_EXEC_FG
) block_itrm();
603 blockh
= start_thread((void (*)(void *, int)) exec_thread
,
608 if (fg
== TERM_EXEC_FG
)
614 if (fg
== TERM_EXEC_FG
) {
615 set_handlers(blockh
, (select_handler_T
) unblock_itrm_x
,
616 NULL
, (select_handler_T
) unblock_itrm_x
,
617 (void *) (long) blockh
);
620 set_handlers(blockh
, close_handle
, NULL
, close_handle
,
621 (void *) (long) blockh
);
627 done_string(&delete);
628 assert(ITRM_OUT_QUEUE_SIZE
- p
> 0);
629 memmove(buf
, buf
+ p
, ITRM_OUT_QUEUE_SIZE
- p
);
639 /** Parse an ECMA-48 control sequence that was received from a
640 * terminal. Extract the Final Byte (if there are no Intermediate
641 * Bytes) and the value of the first parameter (if it is an integer).
643 * This function assumes the control sequence begins with a CSI -
644 * CONTROL SEQUENCE INTRODUCER encoded as ESC [. (ECMA-48 also allows
645 * 0x9B as a single-byte CSI, but we don't support that here.)
648 * - -1 if the control sequence is not yet complete; the caller sets a timer.
649 * - 0 if the control sequence does not comply with ECMA-48.
650 * - The length of the control sequence otherwise. */
652 get_esc_code(unsigned char *str
, int len
, unsigned char *final_byte
,
653 int *first_param_value
)
655 const int parameter_pos
= 2;
656 int intermediate_pos
;
661 *first_param_value
= 0;
663 /* Parameter Bytes */
665 while (pos
< len
&& str
[pos
] >= 0x30 && str
[pos
] <= 0x3F)
668 /* Intermediate Bytes */
669 intermediate_pos
= pos
;
670 while (pos
< len
&& str
[pos
] >= 0x20 && str
[pos
] <= 0x2F)
677 if (!(str
[pos
] >= 0x40 && str
[pos
] <= 0x7E))
680 /* The control sequence seems OK. If the first Parameter
681 * Byte indicates that the parameter string is formatted
682 * as specified in clause 5.4.2 of ECMA-48, and the first
683 * parameter is an integer, then compute its value.
684 * (We need not check @len here because the loop cannot get
685 * past the Final Byte.) */
686 for (pos
= parameter_pos
; str
[pos
] >= 0x30 && str
[pos
] <= 0x39; ++pos
)
687 *first_param_value
= *first_param_value
* 10 + str
[pos
] - 0x30;
688 /* If the first parameter contains an embedded separator, then
689 * the value is not an integer, so discard what we computed. */
690 if (str
[pos
] == 0x3A)
691 *first_param_value
= 0;
693 /* The meaning of the Final Byte depends on the Intermediate
694 * Bytes. Because we don't currently need to recognize any
695 * control sequences that use Intermediate Bytes, we just
696 * discard the Final Byte if there are any Intermediate
698 if (intermediate_pos
== final_pos
)
699 *final_byte
= str
[final_pos
];
701 return final_pos
+ 1;
704 /* Define it to dump queue content in a readable form,
705 * it may help to determine terminal sequences, and see what goes on. --Zas */
706 /* #define DEBUG_ITRM_QUEUE */
708 #ifdef DEBUG_ITRM_QUEUE
710 #include <ctype.h> /* isprint() isspace() */
713 /** Decode a control sequence that begins with CSI (CONTROL SEQUENCE
714 * INTRODUCER) encoded as ESC [, and set @a *ev accordingly.
715 * (ECMA-48 also allows 0x9B as a single-byte CSI, but we don't
716 * support that here.)
719 * - -1 if the control sequence is not yet complete; the caller sets a timer.
720 * - 0 if the control sequence should be parsed by some other function.
721 * - The length of the control sequence otherwise.
722 * Returning >0 does not imply this function has altered @a *ev. */
724 decode_terminal_escape_sequence(struct itrm
*itrm
, struct interlink_event
*ev
)
726 struct term_event_keyboard kbd
= { KBD_UNDEF
, KBD_MOD_NONE
};
731 if (itrm
->in
.queue
.len
< 3) return -1;
733 if (itrm
->in
.queue
.data
[2] == '[') {
734 /* The terminfo entry for linux has "kf1=\E[[A", etc.
735 * These are not control sequences compliant with
736 * clause 5.4 of ECMA-48. (According to ECMA-48,
737 * "\E[[" is SRS - START REVERSED STRING.) */
738 if (itrm
->in
.queue
.len
>= 4
739 && itrm
->in
.queue
.data
[3] >= 'A'
740 && itrm
->in
.queue
.data
[3] <= 'L') {
741 kbd
.key
= number_to_kbd_fkey(itrm
->in
.queue
.data
[3] - 'A' + 1);
742 set_kbd_interlink_event(ev
, kbd
.key
, kbd
.modifier
);
749 el
= get_esc_code(itrm
->in
.queue
.data
, itrm
->in
.queue
.len
, &c
, &v
);
751 /* If the control sequence is incomplete but itrm->in.queue
752 * is already full, then we must not wait for more input:
753 * kbd_timeout might call in_kbd and thus process_input
754 * and come right back here. Better just reject the whole
755 * thing and let the initial CSI be handled as Alt-[. */
756 if (itrm
->in
.queue
.len
== ITRM_IN_QUEUE_SIZE
)
761 #ifdef DEBUG_ITRM_QUEUE
762 fprintf(stderr
, "esc code: %c v=%d c=%c el=%d\n", itrm
->in
.queue
.data
[1], v
, c
, el
);
766 /* The following information should be listed for each escape
767 * sequence recognized here:
769 * 1. Which control function ECMA-48 assigns to the sequence.
770 * Put parentheses around this if the control function
771 * seems unrelated to how ELinks actually treats the
772 * sequence. Write "private" if it is a control sequence
773 * reserved for private or experimental use in ECMA-48.
774 * (Those have a Final Byte in the range 0x70 to 0x7F,
775 * optionally preceded by a single Intermediate Byte 0x20.)
777 * 2. The capname used by Terminfo, if any. These should help
778 * when ELinks is eventually changed to read escape
779 * sequences from Terminfo (bug 96).
781 * 3. The $TERM identifier of some terminal that generates
782 * this escape sequence with the meaning expected by
783 * ELinks. Escape sequences with no known terminal may end
784 * up being removed from ELinks when bug 96 is fixed.
785 */ /* ECMA-48 Terminfo $TERM */
786 switch (c
) { /* ------- -------- ----- */
787 case 'A': kbd
.key
= KBD_UP
; break; /* CUU kcuu1 vt200 */
788 case 'B': kbd
.key
= KBD_DOWN
; break; /* CUD kcud1 vt200 */
789 case 'C': kbd
.key
= KBD_RIGHT
; break; /* CUF kcuf1 vt200 */
790 case 'D': kbd
.key
= KBD_LEFT
; break; /* CUB kcub1 vt200 */
791 case 'F': /* (CPL) kend cons25 */
792 case 'e': kbd
.key
= KBD_END
; break; /* (VPR) kend */
793 case 'H': kbd
.key
= KBD_HOME
; break; /* CUP khome cons25 */
794 case 'I': kbd
.key
= KBD_PAGE_UP
; break; /* (CHT) kpp cons25 */
795 case 'G': kbd
.key
= KBD_PAGE_DOWN
; break; /* (CHA) knp cons25 */
796 /* Free BSD (TERM=cons25 etc.) */
797 /* case 'M': kbd.key = KBD_F1; break;*/ /* (DL) kf1 cons25 */
798 case 'N': kbd
.key
= KBD_F2
; break; /* (EF) kf2 cons25 */
799 case 'O': kbd
.key
= KBD_F3
; break; /* (EA) kf3 cons25 */
800 case 'P': kbd
.key
= KBD_F4
; break; /* (DCH) kf4 cons25 */
801 case 'Q': kbd
.key
= KBD_F5
; break; /* (SEE) kf5 cons25 */
802 /* case 'R': kbd.key = KBD_F6; break;*/ /* (CPR) kf6 cons25 */
803 case 'S': kbd
.key
= KBD_F7
; break; /* (SU) kf7 cons25 */
804 case 'T': kbd
.key
= KBD_F8
; break; /* (SD) kf8 cons25 */
805 case 'U': kbd
.key
= KBD_F9
; break; /* (NP) kf9 cons25 */
806 case 'V': kbd
.key
= KBD_F10
; break; /* (PP) kf10 cons25 */
807 case 'W': kbd
.key
= KBD_F11
; break; /* (CTC) kf11 cons25 */
808 case 'X': kbd
.key
= KBD_F12
; break; /* (ECH) kf12 cons25 */
810 case 'Z': /* CBT kcbt cons25 */
811 kbd
.key
= KBD_TAB
; kbd
.modifier
= KBD_MOD_SHIFT
; break;
813 case 'z': switch (v
) { /* private */
814 case 247: kbd
.key
= KBD_INS
; break; /* kich1 */
815 case 214: kbd
.key
= KBD_HOME
; break; /* khome sun */
816 case 220: kbd
.key
= KBD_END
; break; /* kend sun */
817 case 216: kbd
.key
= KBD_PAGE_UP
; break; /* kpp sun */
818 case 222: kbd
.key
= KBD_PAGE_DOWN
; break; /* knp sun */
819 case 249: kbd
.key
= KBD_DEL
; break; /* kdch1 */
822 case '~': switch (v
) { /* private */
823 case 1: kbd
.key
= KBD_HOME
; break; /* khome linux */
824 case 2: kbd
.key
= KBD_INS
; break; /* kich1 linux */
825 case 3: kbd
.key
= KBD_DEL
; break; /* kdch1 linux */
826 case 4: kbd
.key
= KBD_END
; break; /* kend linux */
827 case 5: kbd
.key
= KBD_PAGE_UP
; break; /* kpp linux */
828 case 6: kbd
.key
= KBD_PAGE_DOWN
; break; /* knp linux */
829 case 7: kbd
.key
= KBD_HOME
; break; /* khome rxvt */
830 case 8: kbd
.key
= KBD_END
; break; /* kend rxvt */
832 case 11: kbd
.key
= KBD_F1
; break; /* kf1 rxvt */
833 case 12: kbd
.key
= KBD_F2
; break; /* kf2 rxvt */
834 case 13: kbd
.key
= KBD_F3
; break; /* kf3 rxvt */
835 case 14: kbd
.key
= KBD_F4
; break; /* kf4 rxvt */
836 case 15: kbd
.key
= KBD_F5
; break; /* kf5 rxvt */
838 case 17: kbd
.key
= KBD_F6
; break; /* kf6 vt200 */
839 case 18: kbd
.key
= KBD_F7
; break; /* kf7 vt200 */
840 case 19: kbd
.key
= KBD_F8
; break; /* kf8 vt200 */
841 case 20: kbd
.key
= KBD_F9
; break; /* kf9 vt200 */
842 case 21: kbd
.key
= KBD_F10
; break; /* kf10 vt200 */
844 case 23: kbd
.key
= KBD_F11
; break; /* kf11 vt200 */
845 case 24: kbd
.key
= KBD_F12
; break; /* kf12 vt200 */
847 /* Give preference to F11 and F12 over shifted F1 and F2. */
849 case 23: kbd.key = KBD_F1; kbd.modifier = KBD_MOD_SHIFT; break;
850 case 24: kbd.key = KBD_F2; kbd.modifier = KBD_MOD_SHIFT; break;
853 case 25: kbd
.key
= KBD_F3
; kbd
.modifier
= KBD_MOD_SHIFT
; break;
854 case 26: kbd
.key
= KBD_F4
; kbd
.modifier
= KBD_MOD_SHIFT
; break;
856 case 28: kbd
.key
= KBD_F5
; kbd
.modifier
= KBD_MOD_SHIFT
; break;
857 case 29: kbd
.key
= KBD_F6
; kbd
.modifier
= KBD_MOD_SHIFT
; break;
859 case 31: kbd
.key
= KBD_F7
; kbd
.modifier
= KBD_MOD_SHIFT
; break;
860 case 32: kbd
.key
= KBD_F8
; kbd
.modifier
= KBD_MOD_SHIFT
; break;
861 case 33: kbd
.key
= KBD_F9
; kbd
.modifier
= KBD_MOD_SHIFT
; break;
862 case 34: kbd
.key
= KBD_F10
; kbd
.modifier
= KBD_MOD_SHIFT
; break;
866 case 'R': resize_terminal(); break; /* CPR u6 */
867 case 'M': /* (DL) kmous xterm */
869 el
= decode_terminal_mouse_escape_sequence(itrm
, ev
, el
, v
);
870 #endif /* CONFIG_MOUSE */
874 /* KBD_UNDEF here means it was unrecognized or a mouse event. */
875 if (kbd
.key
!= KBD_UNDEF
)
876 set_kbd_interlink_event(ev
, kbd
.key
, kbd
.modifier
);
881 /** Decode an escape sequence that begins with SS3 (SINGLE SHIFT 3).
882 * These are used for application cursor keys and the application keypad.
884 * - -1 if the escape sequence is not yet complete; the caller sets a timer.
885 * - 0 if the escape sequence should be parsed by some other function.
886 * - The length of the escape sequence otherwise.
887 * Returning >0 does not imply this function has altered @a *ev. */
889 decode_terminal_application_key(struct itrm
*itrm
, struct interlink_event
*ev
)
892 struct interlink_event_keyboard kbd
= { KBD_UNDEF
, KBD_MOD_NONE
};
894 assert(itrm
->in
.queue
.len
>= 2);
895 assert(itrm
->in
.queue
.data
[0] == ASCII_ESC
);
896 assert(itrm
->in
.queue
.data
[1] == 0x4F); /* == 'O', incidentally */
897 if_assert_failed
return 0;
899 if (itrm
->in
.queue
.len
< 3) return -1;
900 /* According to ECMA-35 section 8.4, a single (possibly multibyte)
901 * character follows the SS3. We now assume the code identifies
902 * GL as the single-shift area and the designated set has 94
904 c
= itrm
->in
.queue
.data
[2];
905 if (c
< 0x21 || c
> 0x7E) return 0;
907 switch (c
) { /* Terminfo $TERM */
908 case ' ': kbd
.key
= ' '; break; /* xterm */
909 case 'A': kbd
.key
= KBD_UP
; break; /* kcuu1 vt100 */
910 case 'B': kbd
.key
= KBD_DOWN
; break; /* kcud1 vt100 */
911 case 'C': kbd
.key
= KBD_RIGHT
; break; /* kcuf1 vt100 */
912 case 'D': kbd
.key
= KBD_LEFT
; break; /* kcub1 vt100 */
913 case 'F': kbd
.key
= KBD_END
; break; /* kend xterm */
914 case 'H': kbd
.key
= KBD_HOME
; break; /* khome xterm */
915 case 'I': kbd
.key
= KBD_TAB
; break; /* xterm */
916 case 'M': kbd
.key
= KBD_ENTER
; break; /* kent vt100 */
917 /* FIXME: xterm generates ESC O 2 P for Shift-PF1 */
918 case 'P': kbd
.key
= KBD_F1
; break; /* kf1 vt100 */
919 case 'Q': kbd
.key
= KBD_F2
; break; /* kf2 vt100 */
920 case 'R': kbd
.key
= KBD_F3
; break; /* kf3 vt100 */
921 case 'S': kbd
.key
= KBD_F4
; break; /* kf4 vt100 */
922 case 'X': kbd
.key
= '='; break; /* xterm */
924 case 'j': case 'k': case 'l': case 'm': /* *+,- xterm */
925 case 'n': case 'o': case 'p': case 'q': /* ./01 xterm */
926 case 'r': case 's': case 't': case 'u': /* 2345 xterm */
927 case 'v': case 'w': case 'x': case 'y': /* 6789 xterm */
928 kbd
.key
= c
- 'p' + '0'; break;
930 if (kbd
.key
!= KBD_UNDEF
)
931 copy_struct(&ev
->info
.keyboard
, &kbd
);
933 return 3; /* even if we didn't recognize it */
937 /** Initialize @a *ev to match the byte @a key received from the terminal.
938 * @a key must not be a value from enum term_event_special_key. */
940 set_kbd_event(struct interlink_event
*ev
,
941 int key
, term_event_modifier_T modifier
)
947 #if defined(HAVE_SYS_CONSIO_H) || defined(HAVE_MACHINE_CONSOLE_H) /* BSD */
972 modifier
|= KBD_MOD_CTRL
;
976 set_kbd_interlink_event(ev
, key
, modifier
);
979 /** Timer callback for itrm.timer. As explained in install_timer(),
980 * this function must erase the expired timer ID from all variables. */
982 kbd_timeout(struct itrm
*itrm
)
984 struct interlink_event ev
;
987 itrm
->timer
= TIMER_ID_UNDEF
;
988 /* The expired timer ID has now been erased. */
990 assertm(itrm
->in
.queue
.len
, "timeout on empty queue");
991 assert(!itrm
->blocked
); /* block_itrm should have killed itrm->timer */
992 if_assert_failed
return;
994 if (can_read(itrm
->in
.std
)) {
999 if (itrm
->in
.queue
.len
>= 2 && itrm
->in
.queue
.data
[0] == ASCII_ESC
) {
1000 /* This is used for ESC [ and ESC O. */
1001 set_kbd_event(&ev
, itrm
->in
.queue
.data
[1], KBD_MOD_ALT
);
1004 set_kbd_event(&ev
, itrm
->in
.queue
.data
[0], KBD_MOD_NONE
);
1007 itrm_queue_event(itrm
, (char *) &ev
, sizeof(ev
));
1009 itrm
->in
.queue
.len
-= el
;
1010 if (itrm
->in
.queue
.len
)
1011 memmove(itrm
->in
.queue
.data
, itrm
->in
.queue
.data
+ el
, itrm
->in
.queue
.len
);
1013 while (process_queue(itrm
));
1016 /** Parse one event from itrm_in.queue and append to itrm_out.queue.
1017 * @pre On entry, @a *itrm must not be blocked.
1018 * @returns the number of bytes removed from itrm->in.queue; at least 0.
1019 * @post If this function leaves the queue not full, it also reenables
1020 * reading from itrm->in.std. (Because it does not add to the queue,
1021 * it never need disable reading.) */
1023 process_queue(struct itrm
*itrm
)
1025 struct interlink_event ev
;
1028 if (!itrm
->in
.queue
.len
) goto return_without_event
;
1029 assert(!itrm
->blocked
);
1030 if_assert_failed
return 0; /* unlike goto, don't enable reading */
1032 set_kbd_interlink_event(&ev
, KBD_UNDEF
, KBD_MOD_NONE
);
1034 #ifdef DEBUG_ITRM_QUEUE
1038 /* Dump current queue in a readable form to stderr. */
1039 for (i
= 0; i
< itrm
->in
.queue
.len
; i
++)
1040 if (itrm
->in
.queue
.data
[i
] == ASCII_ESC
)
1041 fprintf(stderr
, "ESC ");
1042 else if (isprint(itrm
->in
.queue
.data
[i
]) && !isspace(itrm
->in
.queue
.data
[i
]))
1043 fprintf(stderr
, "%c ", itrm
->in
.queue
.data
[i
]);
1045 fprintf(stderr
, "0x%02x ", itrm
->in
.queue
.data
[i
]);
1047 fprintf(stderr
, "\n");
1050 #endif /* DEBUG_ITRM_QUEUE */
1052 /* el == -1 means itrm->in.queue appears to be the beginning of an
1053 * escape sequence but it is not yet complete. Set a timer;
1054 * if it times out, then assume it wasn't an escape sequence
1056 * el == 0 means this function has not yet figured out what the data
1057 * in itrm->in.queue is, but some possibilities remain.
1058 * One of them will be chosen before returning.
1059 * el > 0 means some bytes were successfully parsed from the beginning
1060 * of itrm->in.queue and should now be removed from there.
1061 * However, this does not always imply an event will be queued.
1064 /* ELinks should also recognize U+009B CONTROL SEQUENCE INTRODUCER
1065 * as meaning the same as ESC 0x5B, and U+008F SINGLE SHIFT THREE as
1066 * meaning the same as ESC 0x4F, but those cannot yet be implemented
1067 * because of bug 777: the UTF-8 decoder is run too late. */
1068 if (itrm
->in
.queue
.data
[0] == ASCII_ESC
) {
1069 if (itrm
->in
.queue
.len
< 2) {
1071 } else if (itrm
->in
.queue
.data
[1] == 0x5B /* CSI */) {
1072 el
= decode_terminal_escape_sequence(itrm
, &ev
);
1073 } else if (itrm
->in
.queue
.data
[1] == 0x4F /* SS3 */) {
1074 el
= decode_terminal_application_key(itrm
, &ev
);
1075 } else if (itrm
->in
.queue
.data
[1] == ASCII_ESC
) {
1076 /* ESC ESC can be either Alt-Esc or the
1077 * beginning of e.g. ESC ESC 0x5B 0x41,
1078 * which we should parse as Esc Up. */
1079 if (itrm
->in
.queue
.len
< 3) {
1080 /* Need more data to figure it out. */
1082 } else if (itrm
->in
.queue
.data
[2] == 0x5B
1083 || itrm
->in
.queue
.data
[2] == 0x4F) {
1084 /* The first ESC appears to be followed
1085 * by an escape sequence. Treat it as
1086 * a standalone Esc. */
1088 set_kbd_event(&ev
, itrm
->in
.queue
.data
[0],
1091 /* The second ESC of ESC ESC is not the
1092 * beginning of any known escape sequence.
1093 * This must be Alt-Esc, then. */
1095 set_kbd_event(&ev
, itrm
->in
.queue
.data
[1],
1099 if (el
== 0) { /* Begins with ESC, but none of the above */
1101 set_kbd_event(&ev
, itrm
->in
.queue
.data
[1],
1105 } else if (itrm
->in
.queue
.data
[0] == 0) {
1106 static const struct term_event_keyboard os2xtd
[256] = {
1107 #include "terminal/key.inc"
1110 if (itrm
->in
.queue
.len
< 2)
1114 set_kbd_interlink_event(&ev
,
1115 os2xtd
[itrm
->in
.queue
.data
[1]].key
,
1116 os2xtd
[itrm
->in
.queue
.data
[1]].modifier
);
1122 set_kbd_event(&ev
, itrm
->in
.queue
.data
[0], KBD_MOD_NONE
);
1125 /* The call to decode_terminal_escape_sequence() might have changed the
1126 * keyboard event to a mouse event. */
1127 if (ev
.ev
== EVENT_MOUSE
|| ev
.info
.keyboard
.key
!= KBD_UNDEF
)
1128 itrm_queue_event(itrm
, (char *) &ev
, sizeof(ev
));
1130 return_without_event
:
1132 install_timer(&itrm
->timer
, ESC_TIMEOUT
, (void (*)(void *)) kbd_timeout
,
1136 assertm(itrm
->in
.queue
.len
>= el
, "event queue underflow");
1137 if_assert_failed
{ itrm
->in
.queue
.len
= el
; }
1139 itrm
->in
.queue
.len
-= el
;
1140 if (itrm
->in
.queue
.len
)
1141 memmove(itrm
->in
.queue
.data
, itrm
->in
.queue
.data
+ el
, itrm
->in
.queue
.len
);
1143 if (itrm
->in
.queue
.len
< ITRM_IN_QUEUE_SIZE
)
1144 handle_itrm_stdin(itrm
);
1151 /** A select_handler_T read_func for itrm_in.std. This is called when
1152 * characters typed by the user arrive from the terminal. */
1154 in_kbd(struct itrm
*itrm
)
1158 if (!can_read(itrm
->in
.std
)) return;
1160 kill_timer(&itrm
->timer
);
1162 if (itrm
->in
.queue
.len
>= ITRM_IN_QUEUE_SIZE
) {
1163 unhandle_itrm_stdin(itrm
);
1164 while (process_queue(itrm
));
1168 r
= safe_read(itrm
->in
.std
, itrm
->in
.queue
.data
+ itrm
->in
.queue
.len
,
1169 ITRM_IN_QUEUE_SIZE
- itrm
->in
.queue
.len
);
1175 itrm
->in
.queue
.len
+= r
;
1176 if (itrm
->in
.queue
.len
> ITRM_IN_QUEUE_SIZE
) {
1177 ERROR(gettext("Too many bytes read from the itrm!"));
1178 itrm
->in
.queue
.len
= ITRM_IN_QUEUE_SIZE
;
1181 while (process_queue(itrm
));
1184 /** Enable reading from itrm_in.std. ELinks will read any available
1185 * bytes from the tty into itrm->in.queue and then parse them.
1186 * Reading should be enabled whenever itrm->in.queue is not full and
1187 * itrm->blocked is 0. */
1189 handle_itrm_stdin(struct itrm
*itrm
)
1191 set_handlers(itrm
->in
.std
, (select_handler_T
) in_kbd
, NULL
,
1192 (select_handler_T
) free_itrm
, itrm
);
1195 /** Disable reading from itrm_in.std. Reading should be disabled
1196 * whenever itrm->in.queue is full (there is no room for the data)
1197 * or itrm->blocked is 1 (other processes may read the data). */
1199 unhandle_itrm_stdin(struct itrm
*itrm
)
1201 set_handlers(itrm
->in
.std
, (select_handler_T
) NULL
, NULL
,
1202 (select_handler_T
) free_itrm
, itrm
);