Nuke "is is" stammering.
[dragonfly/vkernel-mp.git] / sys / dev / netif / re / if_re.c
blobc11c9ff89635044eb9b2ade3b01bb656e25d3dac
1 /*
2 * Copyright (c) 2004
3 * Joerg Sonnenberger <joerg@bec.de>. All rights reserved.
5 * Copyright (c) 1997, 1998-2003
6 * Bill Paul <wpaul@windriver.com>. All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Bill Paul.
19 * 4. Neither the name of the author nor the names of any co-contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
33 * THE POSSIBILITY OF SUCH DAMAGE.
35 * $FreeBSD: src/sys/dev/re/if_re.c,v 1.25 2004/06/09 14:34:01 naddy Exp $
36 * $DragonFly: src/sys/dev/netif/re/if_re.c,v 1.33 2007/06/26 07:47:28 hasso Exp $
40 * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
42 * Written by Bill Paul <wpaul@windriver.com>
43 * Senior Networking Software Engineer
44 * Wind River Systems
48 * This driver is designed to support RealTek's next generation of
49 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
50 * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
51 * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
53 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
54 * with the older 8139 family, however it also supports a special
55 * C+ mode of operation that provides several new performance enhancing
56 * features. These include:
58 * o Descriptor based DMA mechanism. Each descriptor represents
59 * a single packet fragment. Data buffers may be aligned on
60 * any byte boundary.
62 * o 64-bit DMA
64 * o TCP/IP checksum offload for both RX and TX
66 * o High and normal priority transmit DMA rings
68 * o VLAN tag insertion and extraction
70 * o TCP large send (segmentation offload)
72 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
73 * programming API is fairly straightforward. The RX filtering, EEPROM
74 * access and PHY access is the same as it is on the older 8139 series
75 * chips.
77 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
78 * same programming API and feature set as the 8139C+ with the following
79 * differences and additions:
81 * o 1000Mbps mode
83 * o Jumbo frames
85 * o GMII and TBI ports/registers for interfacing with copper
86 * or fiber PHYs
88 * o RX and TX DMA rings can have up to 1024 descriptors
89 * (the 8139C+ allows a maximum of 64)
91 * o Slight differences in register layout from the 8139C+
93 * The TX start and timer interrupt registers are at different locations
94 * on the 8169 than they are on the 8139C+. Also, the status word in the
95 * RX descriptor has a slightly different bit layout. The 8169 does not
96 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
97 * copper gigE PHY.
99 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
100 * (the 'S' stands for 'single-chip'). These devices have the same
101 * programming API as the older 8169, but also have some vendor-specific
102 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
103 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
105 * This driver takes advantage of the RX and TX checksum offload and
106 * VLAN tag insertion/extraction features. It also implements TX
107 * interrupt moderation using the timer interrupt registers, which
108 * significantly reduces TX interrupt load. There is also support
109 * for jumbo frames, however the 8169/8169S/8110S can not transmit
110 * jumbo frames larger than 7440, so the max MTU possible with this
111 * driver is 7422 bytes.
114 #include "opt_polling.h"
116 #include <sys/param.h>
117 #include <sys/bus.h>
118 #include <sys/endian.h>
119 #include <sys/kernel.h>
120 #include <sys/malloc.h>
121 #include <sys/mbuf.h>
122 /* #include <sys/module.h> */
123 #include <sys/rman.h>
124 #include <sys/serialize.h>
125 #include <sys/socket.h>
126 #include <sys/sockio.h>
127 #include <sys/sysctl.h>
129 #include <net/bpf.h>
130 #include <net/ethernet.h>
131 #include <net/if.h>
132 #include <net/ifq_var.h>
133 #include <net/if_arp.h>
134 #include <net/if_dl.h>
135 #include <net/if_media.h>
136 #include <net/if_types.h>
137 #include <net/vlan/if_vlan_var.h>
139 #include <dev/netif/mii_layer/mii.h>
140 #include <dev/netif/mii_layer/miivar.h>
142 #include <bus/pci/pcidevs.h>
143 #include <bus/pci/pcireg.h>
144 #include <bus/pci/pcivar.h>
146 /* "device miibus" required. See GENERIC if you get errors here. */
147 #include "miibus_if.h"
149 #include <dev/netif/re/if_rereg.h>
150 #include <dev/netif/re/if_revar.h>
152 #define RE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
153 #if 0
154 #define RE_DISABLE_HWCSUM
155 #endif
158 * Various supported device vendors/types and their names.
160 static const struct re_type re_devs[] = {
161 { PCI_VENDOR_DLINK, PCI_PRODUCT_DLINK_DGE528T, RE_HWREV_8169S,
162 "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
163 { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8139, RE_HWREV_8139CPLUS,
164 "RealTek 8139C+ 10/100BaseTX" },
165 { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8101E, RE_HWREV_8101E,
166 "RealTek 8101E PCIe 10/100baseTX" },
167 { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8168, RE_HWREV_8168_SPIN1,
168 "RealTek 8168/8111B PCIe Gigabit Ethernet" },
169 { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8168, RE_HWREV_8168_SPIN2,
170 "RealTek 8168/8111B PCIe Gigabit Ethernet" },
171 { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169, RE_HWREV_8169,
172 "RealTek 8169 Gigabit Ethernet" },
173 { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169, RE_HWREV_8169S,
174 "RealTek 8169S Single-chip Gigabit Ethernet" },
175 { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169, RE_HWREV_8169_8110SB,
176 "RealTek 8169SB/8110SB Single-chip Gigabit Ethernet" },
177 { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169, RE_HWREV_8169_8110SC,
178 "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
179 { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169SC, RE_HWREV_8169_8110SC,
180 "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
181 { PCI_VENDOR_REALTEK, PCI_PRODUCT_REALTEK_RT8169, RE_HWREV_8110S,
182 "RealTek 8110S Single-chip Gigabit Ethernet" },
183 { PCI_VENDOR_COREGA, PCI_PRODUCT_COREGA_CG_LAPCIGT, RE_HWREV_8169S,
184 "Corega CG-LAPCIGT Gigabit Ethernet" },
185 { PCI_VENDOR_LINKSYS, PCI_PRODUCT_LINKSYS_EG1032, RE_HWREV_8169S,
186 "Linksys EG1032 Gigabit Ethernet" },
187 { PCI_VENDOR_USR2, PCI_PRODUCT_USR2_997902, RE_HWREV_8169S,
188 "US Robotics 997902 Gigabit Ethernet" },
189 { 0, 0, 0, NULL }
192 static const struct re_hwrev re_hwrevs[] = {
193 { RE_HWREV_8139CPLUS, RE_8139CPLUS, RE_F_HASMPC, "C+" },
194 { RE_HWREV_8168_SPIN1, RE_8169, RE_F_PCIE, "8168" },
195 { RE_HWREV_8168_SPIN2, RE_8169, RE_F_PCIE, "8168" },
196 { RE_HWREV_8169, RE_8169, RE_F_HASMPC, "8169" },
197 { RE_HWREV_8169S, RE_8169, RE_F_HASMPC, "8169S" },
198 { RE_HWREV_8110S, RE_8169, RE_F_HASMPC, "8110S" },
199 { RE_HWREV_8169_8110SB, RE_8169, RE_F_HASMPC, "8169SB" },
200 { RE_HWREV_8169_8110SC, RE_8169, 0, "8169SC" },
201 { RE_HWREV_8100E, RE_8169, RE_F_HASMPC, "8100E" },
202 { RE_HWREV_8101E, RE_8169, RE_F_PCIE, "8101E" },
203 { 0, 0, 0, NULL }
206 static int re_probe(device_t);
207 static int re_attach(device_t);
208 static int re_detach(device_t);
210 static int re_encap(struct re_softc *, struct mbuf **, int *, int *);
212 static void re_dma_map_addr(void *, bus_dma_segment_t *, int, int);
213 static void re_dma_map_desc(void *, bus_dma_segment_t *, int,
214 bus_size_t, int);
215 static int re_allocmem(device_t, struct re_softc *);
216 static int re_newbuf(struct re_softc *, int, struct mbuf *);
217 static int re_rx_list_init(struct re_softc *);
218 static int re_tx_list_init(struct re_softc *);
219 static void re_rxeof(struct re_softc *);
220 static void re_txeof(struct re_softc *);
221 static void re_intr(void *);
222 static void re_tick(void *);
223 static void re_tick_serialized(void *);
224 static void re_start(struct ifnet *);
225 static int re_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
226 static void re_init(void *);
227 static void re_stop(struct re_softc *);
228 static void re_watchdog(struct ifnet *);
229 static int re_suspend(device_t);
230 static int re_resume(device_t);
231 static void re_shutdown(device_t);
232 static int re_ifmedia_upd(struct ifnet *);
233 static void re_ifmedia_sts(struct ifnet *, struct ifmediareq *);
235 static void re_eeprom_putbyte(struct re_softc *, int);
236 static void re_eeprom_getword(struct re_softc *, int, u_int16_t *);
237 static void re_read_eeprom(struct re_softc *, caddr_t, int, int);
238 static int re_gmii_readreg(device_t, int, int);
239 static int re_gmii_writereg(device_t, int, int, int);
241 static int re_miibus_readreg(device_t, int, int);
242 static int re_miibus_writereg(device_t, int, int, int);
243 static void re_miibus_statchg(device_t);
245 static void re_setmulti(struct re_softc *);
246 static void re_reset(struct re_softc *);
248 #ifdef RE_DIAG
249 static int re_diag(struct re_softc *);
250 #endif
252 #ifdef DEVICE_POLLING
253 static void re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
254 #endif
256 static int re_sysctl_tx_moderation(SYSCTL_HANDLER_ARGS);
258 static device_method_t re_methods[] = {
259 /* Device interface */
260 DEVMETHOD(device_probe, re_probe),
261 DEVMETHOD(device_attach, re_attach),
262 DEVMETHOD(device_detach, re_detach),
263 DEVMETHOD(device_suspend, re_suspend),
264 DEVMETHOD(device_resume, re_resume),
265 DEVMETHOD(device_shutdown, re_shutdown),
267 /* bus interface */
268 DEVMETHOD(bus_print_child, bus_generic_print_child),
269 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
271 /* MII interface */
272 DEVMETHOD(miibus_readreg, re_miibus_readreg),
273 DEVMETHOD(miibus_writereg, re_miibus_writereg),
274 DEVMETHOD(miibus_statchg, re_miibus_statchg),
276 { 0, 0 }
279 static driver_t re_driver = {
280 "re",
281 re_methods,
282 sizeof(struct re_softc)
285 static devclass_t re_devclass;
287 DECLARE_DUMMY_MODULE(if_re);
288 DRIVER_MODULE(if_re, pci, re_driver, re_devclass, 0, 0);
289 DRIVER_MODULE(if_re, cardbus, re_driver, re_devclass, 0, 0);
290 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
292 #define EE_SET(x) \
293 CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) | (x))
295 #define EE_CLR(x) \
296 CSR_WRITE_1(sc, RE_EECMD, CSR_READ_1(sc, RE_EECMD) & ~(x))
299 * Send a read command and address to the EEPROM, check for ACK.
301 static void
302 re_eeprom_putbyte(struct re_softc *sc, int addr)
304 int d, i;
306 d = addr | (RE_9346_READ << sc->re_eewidth);
309 * Feed in each bit and strobe the clock.
311 for (i = 1 << (sc->re_eewidth + 3); i; i >>= 1) {
312 if (d & i)
313 EE_SET(RE_EE_DATAIN);
314 else
315 EE_CLR(RE_EE_DATAIN);
316 DELAY(100);
317 EE_SET(RE_EE_CLK);
318 DELAY(150);
319 EE_CLR(RE_EE_CLK);
320 DELAY(100);
325 * Read a word of data stored in the EEPROM at address 'addr.'
327 static void
328 re_eeprom_getword(struct re_softc *sc, int addr, uint16_t *dest)
330 int i;
331 uint16_t word = 0;
334 * Send address of word we want to read.
336 re_eeprom_putbyte(sc, addr);
339 * Start reading bits from EEPROM.
341 for (i = 0x8000; i != 0; i >>= 1) {
342 EE_SET(RE_EE_CLK);
343 DELAY(100);
344 if (CSR_READ_1(sc, RE_EECMD) & RE_EE_DATAOUT)
345 word |= i;
346 EE_CLR(RE_EE_CLK);
347 DELAY(100);
350 *dest = word;
354 * Read a sequence of words from the EEPROM.
356 static void
357 re_read_eeprom(struct re_softc *sc, caddr_t dest, int off, int cnt)
359 int i;
360 uint16_t word = 0, *ptr;
362 CSR_SETBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
363 DELAY(100);
365 for (i = 0; i < cnt; i++) {
366 CSR_SETBIT_1(sc, RE_EECMD, RE_EE_SEL);
367 re_eeprom_getword(sc, off + i, &word);
368 CSR_CLRBIT_1(sc, RE_EECMD, RE_EE_SEL);
369 ptr = (uint16_t *)(dest + (i * 2));
370 *ptr = word;
373 CSR_CLRBIT_1(sc, RE_EECMD, RE_EEMODE_PROGRAM);
376 static int
377 re_gmii_readreg(device_t dev, int phy, int reg)
379 struct re_softc *sc = device_get_softc(dev);
380 u_int32_t rval;
381 int i;
383 if (phy != 1)
384 return(0);
386 /* Let the rgephy driver read the GMEDIASTAT register */
388 if (reg == RE_GMEDIASTAT)
389 return(CSR_READ_1(sc, RE_GMEDIASTAT));
391 CSR_WRITE_4(sc, RE_PHYAR, reg << 16);
392 DELAY(1000);
394 for (i = 0; i < RE_TIMEOUT; i++) {
395 rval = CSR_READ_4(sc, RE_PHYAR);
396 if (rval & RE_PHYAR_BUSY)
397 break;
398 DELAY(100);
401 if (i == RE_TIMEOUT) {
402 device_printf(dev, "PHY read failed\n");
403 return(0);
406 return(rval & RE_PHYAR_PHYDATA);
409 static int
410 re_gmii_writereg(device_t dev, int phy, int reg, int data)
412 struct re_softc *sc = device_get_softc(dev);
413 uint32_t rval;
414 int i;
416 CSR_WRITE_4(sc, RE_PHYAR,
417 (reg << 16) | (data & RE_PHYAR_PHYDATA) | RE_PHYAR_BUSY);
418 DELAY(1000);
420 for (i = 0; i < RE_TIMEOUT; i++) {
421 rval = CSR_READ_4(sc, RE_PHYAR);
422 if ((rval & RE_PHYAR_BUSY) == 0)
423 break;
424 DELAY(100);
427 if (i == RE_TIMEOUT)
428 device_printf(dev, "PHY write failed\n");
430 return(0);
433 static int
434 re_miibus_readreg(device_t dev, int phy, int reg)
436 struct re_softc *sc = device_get_softc(dev);
437 uint16_t rval = 0;
438 uint16_t re8139_reg = 0;
440 if (sc->re_type == RE_8169) {
441 rval = re_gmii_readreg(dev, phy, reg);
442 return(rval);
445 /* Pretend the internal PHY is only at address 0 */
446 if (phy)
447 return(0);
449 switch(reg) {
450 case MII_BMCR:
451 re8139_reg = RE_BMCR;
452 break;
453 case MII_BMSR:
454 re8139_reg = RE_BMSR;
455 break;
456 case MII_ANAR:
457 re8139_reg = RE_ANAR;
458 break;
459 case MII_ANER:
460 re8139_reg = RE_ANER;
461 break;
462 case MII_ANLPAR:
463 re8139_reg = RE_LPAR;
464 break;
465 case MII_PHYIDR1:
466 case MII_PHYIDR2:
467 return(0);
469 * Allow the rlphy driver to read the media status
470 * register. If we have a link partner which does not
471 * support NWAY, this is the register which will tell
472 * us the results of parallel detection.
474 case RE_MEDIASTAT:
475 return(CSR_READ_1(sc, RE_MEDIASTAT));
476 default:
477 device_printf(dev, "bad phy register\n");
478 return(0);
480 rval = CSR_READ_2(sc, re8139_reg);
481 if (sc->re_type == RE_8139CPLUS && re8139_reg == RE_BMCR) {
482 /* 8139C+ has different bit layout. */
483 rval &= ~(BMCR_LOOP | BMCR_ISO);
485 return(rval);
488 static int
489 re_miibus_writereg(device_t dev, int phy, int reg, int data)
491 struct re_softc *sc= device_get_softc(dev);
492 u_int16_t re8139_reg = 0;
494 if (sc->re_type == RE_8169)
495 return(re_gmii_writereg(dev, phy, reg, data));
497 /* Pretend the internal PHY is only at address 0 */
498 if (phy)
499 return(0);
501 switch(reg) {
502 case MII_BMCR:
503 re8139_reg = RE_BMCR;
504 if (sc->re_type == RE_8139CPLUS) {
505 /* 8139C+ has different bit layout. */
506 data &= ~(BMCR_LOOP | BMCR_ISO);
508 break;
509 case MII_BMSR:
510 re8139_reg = RE_BMSR;
511 break;
512 case MII_ANAR:
513 re8139_reg = RE_ANAR;
514 break;
515 case MII_ANER:
516 re8139_reg = RE_ANER;
517 break;
518 case MII_ANLPAR:
519 re8139_reg = RE_LPAR;
520 break;
521 case MII_PHYIDR1:
522 case MII_PHYIDR2:
523 return(0);
524 default:
525 device_printf(dev, "bad phy register\n");
526 return(0);
528 CSR_WRITE_2(sc, re8139_reg, data);
529 return(0);
532 static void
533 re_miibus_statchg(device_t dev)
538 * Program the 64-bit multicast hash filter.
540 static void
541 re_setmulti(struct re_softc *sc)
543 struct ifnet *ifp = &sc->arpcom.ac_if;
544 int h = 0;
545 uint32_t hashes[2] = { 0, 0 };
546 struct ifmultiaddr *ifma;
547 uint32_t rxfilt;
548 int mcnt = 0;
550 rxfilt = CSR_READ_4(sc, RE_RXCFG);
552 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
553 rxfilt |= RE_RXCFG_RX_MULTI;
554 CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
555 CSR_WRITE_4(sc, RE_MAR0, 0xFFFFFFFF);
556 CSR_WRITE_4(sc, RE_MAR4, 0xFFFFFFFF);
557 return;
560 /* first, zot all the existing hash bits */
561 CSR_WRITE_4(sc, RE_MAR0, 0);
562 CSR_WRITE_4(sc, RE_MAR4, 0);
564 /* now program new ones */
565 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
566 if (ifma->ifma_addr->sa_family != AF_LINK)
567 continue;
568 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
569 ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
570 if (h < 32)
571 hashes[0] |= (1 << h);
572 else
573 hashes[1] |= (1 << (h - 32));
574 mcnt++;
577 if (mcnt)
578 rxfilt |= RE_RXCFG_RX_MULTI;
579 else
580 rxfilt &= ~RE_RXCFG_RX_MULTI;
582 CSR_WRITE_4(sc, RE_RXCFG, rxfilt);
583 CSR_WRITE_4(sc, RE_MAR0, hashes[0]);
584 CSR_WRITE_4(sc, RE_MAR4, hashes[1]);
587 static void
588 re_reset(struct re_softc *sc)
590 int i;
592 CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_RESET);
594 for (i = 0; i < RE_TIMEOUT; i++) {
595 DELAY(10);
596 if ((CSR_READ_1(sc, RE_COMMAND) & RE_CMD_RESET) == 0)
597 break;
599 if (i == RE_TIMEOUT)
600 if_printf(&sc->arpcom.ac_if, "reset never completed!\n");
602 CSR_WRITE_1(sc, 0x82, 1);
605 #ifdef RE_DIAG
607 * The following routine is designed to test for a defect on some
608 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
609 * lines connected to the bus, however for a 32-bit only card, they
610 * should be pulled high. The result of this defect is that the
611 * NIC will not work right if you plug it into a 64-bit slot: DMA
612 * operations will be done with 64-bit transfers, which will fail
613 * because the 64-bit data lines aren't connected.
615 * There's no way to work around this (short of talking a soldering
616 * iron to the board), however we can detect it. The method we use
617 * here is to put the NIC into digital loopback mode, set the receiver
618 * to promiscuous mode, and then try to send a frame. We then compare
619 * the frame data we sent to what was received. If the data matches,
620 * then the NIC is working correctly, otherwise we know the user has
621 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
622 * slot. In the latter case, there's no way the NIC can work correctly,
623 * so we print out a message on the console and abort the device attach.
626 static int
627 re_diag(struct re_softc *sc)
629 struct ifnet *ifp = &sc->arpcom.ac_if;
630 struct mbuf *m0;
631 struct ether_header *eh;
632 struct re_desc *cur_rx;
633 uint16_t status;
634 uint32_t rxstat;
635 int total_len, i, error = 0, phyaddr;
636 uint8_t dst[ETHER_ADDR_LEN] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
637 uint8_t src[ETHER_ADDR_LEN] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
639 /* Allocate a single mbuf */
641 MGETHDR(m0, MB_DONTWAIT, MT_DATA);
642 if (m0 == NULL)
643 return(ENOBUFS);
646 * Initialize the NIC in test mode. This sets the chip up
647 * so that it can send and receive frames, but performs the
648 * following special functions:
649 * - Puts receiver in promiscuous mode
650 * - Enables digital loopback mode
651 * - Leaves interrupts turned off
654 ifp->if_flags |= IFF_PROMISC;
655 sc->re_testmode = 1;
656 re_reset(sc);
657 re_init(sc);
658 sc->re_link = 1;
659 if (sc->re_type == RE_8169)
660 phyaddr = 1;
661 else
662 phyaddr = 0;
664 re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_RESET);
665 for (i = 0; i < RE_TIMEOUT; i++) {
666 status = re_miibus_readreg(sc->re_dev, phyaddr, MII_BMCR);
667 if (!(status & BMCR_RESET))
668 break;
671 re_miibus_writereg(sc->re_dev, phyaddr, MII_BMCR, BMCR_LOOP);
672 CSR_WRITE_2(sc, RE_ISR, RE_INTRS_DIAG);
674 DELAY(100000);
676 /* Put some data in the mbuf */
678 eh = mtod(m0, struct ether_header *);
679 bcopy (dst, eh->ether_dhost, ETHER_ADDR_LEN);
680 bcopy (src, eh->ether_shost, ETHER_ADDR_LEN);
681 eh->ether_type = htons(ETHERTYPE_IP);
682 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
685 * Queue the packet, start transmission.
686 * Note: ifq_handoff() ultimately calls re_start() for us.
689 CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
690 error = ifq_handoff(ifp, m0, NULL);
691 if (error) {
692 m0 = NULL;
693 goto done;
695 m0 = NULL;
697 /* Wait for it to propagate through the chip */
699 DELAY(100000);
700 for (i = 0; i < RE_TIMEOUT; i++) {
701 status = CSR_READ_2(sc, RE_ISR);
702 CSR_WRITE_2(sc, RE_ISR, status);
703 if ((status & (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK)) ==
704 (RE_ISR_TIMEOUT_EXPIRED|RE_ISR_RX_OK))
705 break;
706 DELAY(10);
709 if (i == RE_TIMEOUT) {
710 if_printf(ifp, "diagnostic failed to receive packet "
711 "in loopback mode\n");
712 error = EIO;
713 goto done;
717 * The packet should have been dumped into the first
718 * entry in the RX DMA ring. Grab it from there.
721 bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
722 sc->re_ldata.re_rx_list_map, BUS_DMASYNC_POSTREAD);
723 bus_dmamap_sync(sc->re_ldata.re_mtag, sc->re_ldata.re_rx_dmamap[0],
724 BUS_DMASYNC_POSTWRITE);
725 bus_dmamap_unload(sc->re_ldata.re_mtag, sc->re_ldata.re_rx_dmamap[0]);
727 m0 = sc->re_ldata.re_rx_mbuf[0];
728 sc->re_ldata.re_rx_mbuf[0] = NULL;
729 eh = mtod(m0, struct ether_header *);
731 cur_rx = &sc->re_ldata.re_rx_list[0];
732 total_len = RE_RXBYTES(cur_rx);
733 rxstat = le32toh(cur_rx->re_cmdstat);
735 if (total_len != ETHER_MIN_LEN) {
736 if_printf(ifp, "diagnostic failed, received short packet\n");
737 error = EIO;
738 goto done;
741 /* Test that the received packet data matches what we sent. */
743 if (bcmp(eh->ether_dhost, dst, ETHER_ADDR_LEN) ||
744 bcmp(eh->ether_shost, &src, ETHER_ADDR_LEN) ||
745 be16toh(eh->ether_type) != ETHERTYPE_IP) {
746 if_printf(ifp, "WARNING, DMA FAILURE!\n");
747 if_printf(ifp, "expected TX data: %6D/%6D/0x%x\n",
748 dst, ":", src, ":", ETHERTYPE_IP);
749 if_printf(ifp, "received RX data: %6D/%6D/0x%x\n",
750 eh->ether_dhost, ":", eh->ether_shost, ":",
751 ntohs(eh->ether_type));
752 if_printf(ifp, "You may have a defective 32-bit NIC plugged "
753 "into a 64-bit PCI slot.\n");
754 if_printf(ifp, "Please re-install the NIC in a 32-bit slot "
755 "for proper operation.\n");
756 if_printf(ifp, "Read the re(4) man page for more details.\n");
757 error = EIO;
760 done:
761 /* Turn interface off, release resources */
763 sc->re_testmode = 0;
764 sc->re_link = 0;
765 ifp->if_flags &= ~IFF_PROMISC;
766 re_stop(sc);
767 if (m0 != NULL)
768 m_freem(m0);
770 return (error);
772 #endif /* RE_DIAG */
775 * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
776 * IDs against our list and return a device name if we find a match.
778 static int
779 re_probe(device_t dev)
781 const struct re_type *t;
782 struct re_softc *sc;
783 int rid;
784 uint32_t hwrev;
785 uint16_t vendor, product;
787 t = re_devs;
789 vendor = pci_get_vendor(dev);
790 product = pci_get_device(dev);
793 * Only attach to rev.3 of the Linksys EG1032 adapter.
794 * Rev.2 is supported by sk(4).
796 if (vendor == PCI_VENDOR_LINKSYS &&
797 product == PCI_PRODUCT_LINKSYS_EG1032 &&
798 pci_get_subdevice(dev) != PCI_SUBDEVICE_LINKSYS_EG1032_REV3)
799 return ENXIO;
801 for (t = re_devs; t->re_name != NULL; t++) {
802 if (product == t->re_did && vendor == t->re_vid)
803 break;
807 * Check if we found a RealTek device.
809 if (t->re_name == NULL)
810 return(ENXIO);
813 * Temporarily map the I/O space so we can read the chip ID register.
815 sc = kmalloc(sizeof(*sc), M_TEMP, M_WAITOK | M_ZERO);
816 rid = RE_PCI_LOIO;
817 sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
818 RF_ACTIVE);
819 if (sc->re_res == NULL) {
820 device_printf(dev, "couldn't map ports/memory\n");
821 kfree(sc, M_TEMP);
822 return(ENXIO);
825 sc->re_btag = rman_get_bustag(sc->re_res);
826 sc->re_bhandle = rman_get_bushandle(sc->re_res);
828 hwrev = CSR_READ_4(sc, RE_TXCFG) & RE_TXCFG_HWREV;
829 bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO, sc->re_res);
830 kfree(sc, M_TEMP);
833 * and continue matching for the specific chip...
835 for (; t->re_name != NULL; t++) {
836 if (product == t->re_did && vendor == t->re_vid &&
837 t->re_basetype == hwrev) {
838 device_set_desc(dev, t->re_name);
839 return(0);
842 return(ENXIO);
846 * This routine takes the segment list provided as the result of
847 * a bus_dma_map_load() operation and assigns the addresses/lengths
848 * to RealTek DMA descriptors. This can be called either by the RX
849 * code or the TX code. In the RX case, we'll probably wind up mapping
850 * at most one segment. For the TX case, there could be any number of
851 * segments since TX packets may span multiple mbufs. In either case,
852 * if the number of segments is larger than the re_maxsegs limit
853 * specified by the caller, we abort the mapping operation. Sadly,
854 * whoever designed the buffer mapping API did not provide a way to
855 * return an error from here, so we have to fake it a bit.
858 static void
859 re_dma_map_desc(void *arg, bus_dma_segment_t *segs, int nseg,
860 bus_size_t mapsize, int error)
862 struct re_dmaload_arg *ctx;
863 struct re_desc *d = NULL;
864 int i = 0, idx;
865 uint32_t cmdstat;
867 if (error)
868 return;
870 ctx = arg;
872 /* Signal error to caller if there's too many segments */
873 if (nseg > ctx->re_maxsegs) {
874 ctx->re_maxsegs = 0;
875 return;
879 * Map the segment array into descriptors. Note that we set the
880 * start-of-frame and end-of-frame markers for either TX or RX, but
881 * they really only have meaning in the TX case. (In the RX case,
882 * it's the chip that tells us where packets begin and end.)
883 * We also keep track of the end of the ring and set the
884 * end-of-ring bits as needed, and we set the ownership bits
885 * in all except the very first descriptor. (The caller will
886 * set this descriptor later when it start transmission or
887 * reception.)
889 idx = ctx->re_idx;
890 for (;;) {
891 d = &ctx->re_ring[idx];
892 if (le32toh(d->re_cmdstat) & RE_RDESC_STAT_OWN) {
893 ctx->re_maxsegs = 0;
894 return;
896 cmdstat = segs[i].ds_len;
897 d->re_bufaddr_lo = htole32(RE_ADDR_LO(segs[i].ds_addr));
898 d->re_bufaddr_hi = htole32(RE_ADDR_HI(segs[i].ds_addr));
899 if (i == 0)
900 cmdstat |= RE_TDESC_CMD_SOF;
901 else
902 cmdstat |= RE_TDESC_CMD_OWN;
903 if (idx == (RE_RX_DESC_CNT - 1))
904 cmdstat |= RE_TDESC_CMD_EOR;
905 d->re_cmdstat = htole32(cmdstat | ctx->re_flags);
906 i++;
907 if (i == nseg)
908 break;
909 RE_DESC_INC(idx);
912 d->re_cmdstat |= htole32(RE_TDESC_CMD_EOF);
913 ctx->re_maxsegs = nseg;
914 ctx->re_idx = idx;
918 * Map a single buffer address.
921 static void
922 re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
924 uint32_t *addr;
926 if (error)
927 return;
929 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
930 addr = arg;
931 *addr = segs->ds_addr;
934 static int
935 re_allocmem(device_t dev, struct re_softc *sc)
937 int error, i, nseg;
940 * Allocate map for RX mbufs.
942 nseg = 32;
943 error = bus_dma_tag_create(sc->re_parent_tag, ETHER_ALIGN, 0,
944 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
945 NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
946 &sc->re_ldata.re_mtag);
947 if (error) {
948 device_printf(dev, "could not allocate dma tag\n");
949 return(error);
953 * Allocate map for TX descriptor list.
955 error = bus_dma_tag_create(sc->re_parent_tag, RE_RING_ALIGN,
956 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
957 NULL, RE_TX_LIST_SZ, 1, RE_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
958 &sc->re_ldata.re_tx_list_tag);
959 if (error) {
960 device_printf(dev, "could not allocate dma tag\n");
961 return(error);
964 /* Allocate DMA'able memory for the TX ring */
966 error = bus_dmamem_alloc(sc->re_ldata.re_tx_list_tag,
967 (void **)&sc->re_ldata.re_tx_list, BUS_DMA_WAITOK | BUS_DMA_ZERO,
968 &sc->re_ldata.re_tx_list_map);
969 if (error) {
970 device_printf(dev, "could not allocate TX ring\n");
971 return(error);
974 /* Load the map for the TX ring. */
976 error = bus_dmamap_load(sc->re_ldata.re_tx_list_tag,
977 sc->re_ldata.re_tx_list_map, sc->re_ldata.re_tx_list,
978 RE_TX_LIST_SZ, re_dma_map_addr,
979 &sc->re_ldata.re_tx_list_addr, BUS_DMA_NOWAIT);
980 if (error) {
981 device_printf(dev, "could not get addres of TX ring\n");
982 return(error);
985 /* Create DMA maps for TX buffers */
987 for (i = 0; i < RE_TX_DESC_CNT; i++) {
988 error = bus_dmamap_create(sc->re_ldata.re_mtag, 0,
989 &sc->re_ldata.re_tx_dmamap[i]);
990 if (error) {
991 device_printf(dev, "can't create DMA map for TX\n");
992 return(error);
997 * Allocate map for RX descriptor list.
999 error = bus_dma_tag_create(sc->re_parent_tag, RE_RING_ALIGN,
1000 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1001 NULL, RE_RX_LIST_SZ, 1, RE_RX_LIST_SZ, BUS_DMA_ALLOCNOW,
1002 &sc->re_ldata.re_rx_list_tag);
1003 if (error) {
1004 device_printf(dev, "could not allocate dma tag\n");
1005 return(error);
1008 /* Allocate DMA'able memory for the RX ring */
1010 error = bus_dmamem_alloc(sc->re_ldata.re_rx_list_tag,
1011 (void **)&sc->re_ldata.re_rx_list, BUS_DMA_WAITOK | BUS_DMA_ZERO,
1012 &sc->re_ldata.re_rx_list_map);
1013 if (error) {
1014 device_printf(dev, "could not allocate RX ring\n");
1015 return(error);
1018 /* Load the map for the RX ring. */
1020 error = bus_dmamap_load(sc->re_ldata.re_rx_list_tag,
1021 sc->re_ldata.re_rx_list_map, sc->re_ldata.re_rx_list,
1022 RE_RX_LIST_SZ, re_dma_map_addr,
1023 &sc->re_ldata.re_rx_list_addr, BUS_DMA_NOWAIT);
1024 if (error) {
1025 device_printf(dev, "could not get address of RX ring\n");
1026 return(error);
1029 /* Create DMA maps for RX buffers */
1031 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1032 error = bus_dmamap_create(sc->re_ldata.re_mtag, 0,
1033 &sc->re_ldata.re_rx_dmamap[i]);
1034 if (error) {
1035 device_printf(dev, "can't create DMA map for RX\n");
1036 return(ENOMEM);
1040 return(0);
1044 * Attach the interface. Allocate softc structures, do ifmedia
1045 * setup and ethernet/BPF attach.
1047 static int
1048 re_attach(device_t dev)
1050 struct re_softc *sc = device_get_softc(dev);
1051 struct ifnet *ifp;
1052 const struct re_hwrev *hw_rev;
1053 uint8_t eaddr[ETHER_ADDR_LEN];
1054 uint16_t as[ETHER_ADDR_LEN / 2];
1055 uint16_t re_did = 0;
1056 uint32_t hwrev;
1057 int error = 0, rid, i;
1059 callout_init(&sc->re_timer);
1060 #ifdef RE_DIAG
1061 sc->re_dev = dev;
1062 #endif
1064 RE_ENABLE_TX_MODERATION(sc);
1066 sysctl_ctx_init(&sc->re_sysctl_ctx);
1067 sc->re_sysctl_tree = SYSCTL_ADD_NODE(&sc->re_sysctl_ctx,
1068 SYSCTL_STATIC_CHILDREN(_hw),
1069 OID_AUTO,
1070 device_get_nameunit(dev),
1071 CTLFLAG_RD, 0, "");
1072 if (sc->re_sysctl_tree == NULL) {
1073 device_printf(dev, "can't add sysctl node\n");
1074 error = ENXIO;
1075 goto fail;
1077 SYSCTL_ADD_PROC(&sc->re_sysctl_ctx,
1078 SYSCTL_CHILDREN(sc->re_sysctl_tree),
1079 OID_AUTO, "tx_moderation",
1080 CTLTYPE_INT | CTLFLAG_RW,
1081 sc, 0, re_sysctl_tx_moderation, "I",
1082 "Enable/Disable TX moderation");
1084 #ifndef BURN_BRIDGES
1086 * Handle power management nonsense.
1089 if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1090 uint32_t membase, irq;
1092 /* Save important PCI config data. */
1093 membase = pci_read_config(dev, RE_PCI_LOMEM, 4);
1094 irq = pci_read_config(dev, PCIR_INTLINE, 4);
1096 /* Reset the power state. */
1097 device_printf(dev, "chip is in D%d power mode "
1098 "-- setting to D0\n", pci_get_powerstate(dev));
1100 pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1102 /* Restore PCI config data. */
1103 pci_write_config(dev, RE_PCI_LOMEM, membase, 4);
1104 pci_write_config(dev, PCIR_INTLINE, irq, 4);
1106 #endif
1108 * Map control/status registers.
1110 pci_enable_busmaster(dev);
1112 rid = RE_PCI_LOIO;
1113 sc->re_res = bus_alloc_resource_any(dev, SYS_RES_IOPORT, &rid,
1114 RF_ACTIVE);
1116 if (sc->re_res == NULL) {
1117 device_printf(dev, "couldn't map ports\n");
1118 error = ENXIO;
1119 goto fail;
1122 sc->re_btag = rman_get_bustag(sc->re_res);
1123 sc->re_bhandle = rman_get_bushandle(sc->re_res);
1125 /* Allocate interrupt */
1126 rid = 0;
1127 sc->re_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1128 RF_SHAREABLE | RF_ACTIVE);
1130 if (sc->re_irq == NULL) {
1131 device_printf(dev, "couldn't map interrupt\n");
1132 error = ENXIO;
1133 goto fail;
1136 /* Reset the adapter. */
1137 re_reset(sc);
1139 hwrev = CSR_READ_4(sc, RE_TXCFG) & RE_TXCFG_HWREV;
1140 for (hw_rev = re_hwrevs; hw_rev->re_desc != NULL; hw_rev++) {
1141 if (hw_rev->re_rev == hwrev) {
1142 sc->re_type = hw_rev->re_type;
1143 sc->re_flags = hw_rev->re_flags;
1144 break;
1148 sc->re_eewidth = 6;
1149 re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
1150 if (re_did != 0x8129)
1151 sc->re_eewidth = 8;
1154 * Get station address from the EEPROM.
1156 re_read_eeprom(sc, (caddr_t)as, RE_EE_EADDR, 3);
1157 for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
1158 as[i] = le16toh(as[i]);
1159 bcopy(as, eaddr, sizeof(eaddr));
1161 if (sc->re_type == RE_8169) {
1162 /* Set RX length mask */
1163 sc->re_rxlenmask = RE_RDESC_STAT_GFRAGLEN;
1164 sc->re_txstart = RE_GTXSTART;
1165 } else {
1166 /* Set RX length mask */
1167 sc->re_rxlenmask = RE_RDESC_STAT_FRAGLEN;
1168 sc->re_txstart = RE_TXSTART;
1172 * Allocate the parent bus DMA tag appropriate for PCI.
1174 #define RE_NSEG_NEW 32
1175 error = bus_dma_tag_create(NULL, /* parent */
1176 1, 0, /* alignment, boundary */
1177 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1178 BUS_SPACE_MAXADDR, /* highaddr */
1179 NULL, NULL, /* filter, filterarg */
1180 MAXBSIZE, RE_NSEG_NEW, /* maxsize, nsegments */
1181 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1182 BUS_DMA_ALLOCNOW, /* flags */
1183 &sc->re_parent_tag);
1184 if (error)
1185 goto fail;
1187 error = re_allocmem(dev, sc);
1189 if (error)
1190 goto fail;
1192 /* Do MII setup */
1193 if (mii_phy_probe(dev, &sc->re_miibus,
1194 re_ifmedia_upd, re_ifmedia_sts)) {
1195 device_printf(dev, "MII without any phy!\n");
1196 error = ENXIO;
1197 goto fail;
1200 ifp = &sc->arpcom.ac_if;
1201 ifp->if_softc = sc;
1202 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1203 ifp->if_mtu = ETHERMTU;
1204 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1205 ifp->if_ioctl = re_ioctl;
1206 ifp->if_capabilities = IFCAP_VLAN_MTU;
1207 ifp->if_start = re_start;
1208 ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1209 #ifdef DEVICE_POLLING
1210 ifp->if_poll = re_poll;
1211 #endif
1212 ifp->if_watchdog = re_watchdog;
1213 ifp->if_init = re_init;
1214 if (sc->re_type == RE_8169)
1215 ifp->if_baudrate = 1000000000;
1216 else
1217 ifp->if_baudrate = 100000000;
1218 ifq_set_maxlen(&ifp->if_snd, RE_IFQ_MAXLEN);
1219 ifq_set_ready(&ifp->if_snd);
1221 #ifdef RE_DISABLE_HWCSUM
1222 ifp->if_capenable = ifp->if_capabilities & ~IFCAP_HWCSUM;
1223 ifp->if_hwassist = 0;
1224 #else
1225 ifp->if_capenable = ifp->if_capabilities;
1226 ifp->if_hwassist = RE_CSUM_FEATURES;
1227 #endif /* RE_DISABLE_HWCSUM */
1230 * Call MI attach routine.
1232 ether_ifattach(ifp, eaddr, NULL);
1234 #ifdef RE_DIAG
1236 * Perform hardware diagnostic on the original RTL8169.
1237 * Some 32-bit cards were incorrectly wired and would
1238 * malfunction if plugged into a 64-bit slot.
1240 if (hwrev == RE_HWREV_8169) {
1241 lwkt_serialize_enter(ifp->if_serializer);
1242 error = re_diag(sc);
1243 lwkt_serialize_exit(ifp->if_serializer);
1245 if (error) {
1246 device_printf(dev, "hardware diagnostic failure\n");
1247 ether_ifdetach(ifp);
1248 goto fail;
1251 #endif /* RE_DIAG */
1253 /* Hook interrupt last to avoid having to lock softc */
1254 error = bus_setup_intr(dev, sc->re_irq, INTR_NETSAFE, re_intr, sc,
1255 &sc->re_intrhand, ifp->if_serializer);
1257 if (error) {
1258 device_printf(dev, "couldn't set up irq\n");
1259 ether_ifdetach(ifp);
1260 goto fail;
1263 fail:
1264 if (error)
1265 re_detach(dev);
1267 return (error);
1271 * Shutdown hardware and free up resources. This can be called any
1272 * time after the mutex has been initialized. It is called in both
1273 * the error case in attach and the normal detach case so it needs
1274 * to be careful about only freeing resources that have actually been
1275 * allocated.
1277 static int
1278 re_detach(device_t dev)
1280 struct re_softc *sc = device_get_softc(dev);
1281 struct ifnet *ifp = &sc->arpcom.ac_if;
1282 int i;
1284 /* These should only be active if attach succeeded */
1285 if (device_is_attached(dev)) {
1286 lwkt_serialize_enter(ifp->if_serializer);
1287 re_stop(sc);
1288 bus_teardown_intr(dev, sc->re_irq, sc->re_intrhand);
1289 lwkt_serialize_exit(ifp->if_serializer);
1291 ether_ifdetach(ifp);
1293 if (sc->re_miibus)
1294 device_delete_child(dev, sc->re_miibus);
1295 bus_generic_detach(dev);
1297 if (sc->re_irq)
1298 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->re_irq);
1299 if (sc->re_res) {
1300 bus_release_resource(dev, SYS_RES_IOPORT, RE_PCI_LOIO,
1301 sc->re_res);
1304 /* Unload and free the RX DMA ring memory and map */
1306 if (sc->re_ldata.re_rx_list_tag) {
1307 bus_dmamap_unload(sc->re_ldata.re_rx_list_tag,
1308 sc->re_ldata.re_rx_list_map);
1309 bus_dmamem_free(sc->re_ldata.re_rx_list_tag,
1310 sc->re_ldata.re_rx_list,
1311 sc->re_ldata.re_rx_list_map);
1312 bus_dma_tag_destroy(sc->re_ldata.re_rx_list_tag);
1315 /* Unload and free the TX DMA ring memory and map */
1317 if (sc->re_ldata.re_tx_list_tag) {
1318 bus_dmamap_unload(sc->re_ldata.re_tx_list_tag,
1319 sc->re_ldata.re_tx_list_map);
1320 bus_dmamem_free(sc->re_ldata.re_tx_list_tag,
1321 sc->re_ldata.re_tx_list,
1322 sc->re_ldata.re_tx_list_map);
1323 bus_dma_tag_destroy(sc->re_ldata.re_tx_list_tag);
1326 /* Destroy all the RX and TX buffer maps */
1328 if (sc->re_ldata.re_mtag) {
1329 for (i = 0; i < RE_TX_DESC_CNT; i++)
1330 bus_dmamap_destroy(sc->re_ldata.re_mtag,
1331 sc->re_ldata.re_tx_dmamap[i]);
1332 for (i = 0; i < RE_RX_DESC_CNT; i++)
1333 bus_dmamap_destroy(sc->re_ldata.re_mtag,
1334 sc->re_ldata.re_rx_dmamap[i]);
1335 bus_dma_tag_destroy(sc->re_ldata.re_mtag);
1338 /* Unload and free the stats buffer and map */
1340 if (sc->re_ldata.re_stag) {
1341 bus_dmamap_unload(sc->re_ldata.re_stag,
1342 sc->re_ldata.re_rx_list_map);
1343 bus_dmamem_free(sc->re_ldata.re_stag,
1344 sc->re_ldata.re_stats,
1345 sc->re_ldata.re_smap);
1346 bus_dma_tag_destroy(sc->re_ldata.re_stag);
1349 if (sc->re_parent_tag)
1350 bus_dma_tag_destroy(sc->re_parent_tag);
1352 return(0);
1355 static int
1356 re_newbuf(struct re_softc *sc, int idx, struct mbuf *m)
1358 struct re_dmaload_arg arg;
1359 struct mbuf *n = NULL;
1360 int error;
1362 if (m == NULL) {
1363 n = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1364 if (n == NULL)
1365 return(ENOBUFS);
1366 m = n;
1367 } else
1368 m->m_data = m->m_ext.ext_buf;
1370 m->m_len = m->m_pkthdr.len = MCLBYTES;
1373 * NOTE:
1374 * Some re(4) chips(e.g. RTL8101E) need address of the receive buffer
1375 * to be 8-byte aligned, so don't call m_adj(m, ETHER_ALIGN) here.
1378 arg.sc = sc;
1379 arg.re_idx = idx;
1380 arg.re_maxsegs = 1;
1381 arg.re_flags = 0;
1382 arg.re_ring = sc->re_ldata.re_rx_list;
1384 error = bus_dmamap_load_mbuf(sc->re_ldata.re_mtag,
1385 sc->re_ldata.re_rx_dmamap[idx], m, re_dma_map_desc,
1386 &arg, BUS_DMA_NOWAIT);
1387 if (error || arg.re_maxsegs != 1) {
1388 if (n != NULL)
1389 m_freem(n);
1390 return (ENOMEM);
1393 sc->re_ldata.re_rx_list[idx].re_cmdstat |= htole32(RE_RDESC_CMD_OWN);
1394 sc->re_ldata.re_rx_mbuf[idx] = m;
1396 bus_dmamap_sync(sc->re_ldata.re_mtag, sc->re_ldata.re_rx_dmamap[idx],
1397 BUS_DMASYNC_PREREAD);
1399 return(0);
1402 static int
1403 re_tx_list_init(struct re_softc *sc)
1405 bzero(sc->re_ldata.re_tx_list, RE_TX_LIST_SZ);
1406 bzero(&sc->re_ldata.re_tx_mbuf, RE_TX_DESC_CNT * sizeof(struct mbuf *));
1408 bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
1409 sc->re_ldata.re_tx_list_map, BUS_DMASYNC_PREWRITE);
1410 sc->re_ldata.re_tx_prodidx = 0;
1411 sc->re_ldata.re_tx_considx = 0;
1412 sc->re_ldata.re_tx_free = RE_TX_DESC_CNT;
1414 return(0);
1417 static int
1418 re_rx_list_init(struct re_softc *sc)
1420 int i, error;
1422 bzero(sc->re_ldata.re_rx_list, RE_RX_LIST_SZ);
1423 bzero(&sc->re_ldata.re_rx_mbuf, RE_RX_DESC_CNT * sizeof(struct mbuf *));
1425 for (i = 0; i < RE_RX_DESC_CNT; i++) {
1426 error = re_newbuf(sc, i, NULL);
1427 if (error)
1428 return(error);
1431 /* Flush the RX descriptors */
1433 bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
1434 sc->re_ldata.re_rx_list_map, BUS_DMASYNC_PREWRITE);
1436 sc->re_ldata.re_rx_prodidx = 0;
1437 sc->re_head = sc->re_tail = NULL;
1439 return(0);
1443 * RX handler for C+ and 8169. For the gigE chips, we support
1444 * the reception of jumbo frames that have been fragmented
1445 * across multiple 2K mbuf cluster buffers.
1447 static void
1448 re_rxeof(struct re_softc *sc)
1450 struct ifnet *ifp = &sc->arpcom.ac_if;
1451 struct mbuf *m;
1452 struct re_desc *cur_rx;
1453 uint32_t rxstat, rxvlan;
1454 int i, total_len;
1456 /* Invalidate the descriptor memory */
1458 bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
1459 sc->re_ldata.re_rx_list_map, BUS_DMASYNC_POSTREAD);
1461 for (i = sc->re_ldata.re_rx_prodidx;
1462 RE_OWN(&sc->re_ldata.re_rx_list[i]) == 0 ; RE_DESC_INC(i)) {
1463 cur_rx = &sc->re_ldata.re_rx_list[i];
1464 m = sc->re_ldata.re_rx_mbuf[i];
1465 total_len = RE_RXBYTES(cur_rx);
1466 rxstat = le32toh(cur_rx->re_cmdstat);
1467 rxvlan = le32toh(cur_rx->re_vlanctl);
1469 /* Invalidate the RX mbuf and unload its map */
1471 bus_dmamap_sync(sc->re_ldata.re_mtag,
1472 sc->re_ldata.re_rx_dmamap[i],
1473 BUS_DMASYNC_POSTWRITE);
1474 bus_dmamap_unload(sc->re_ldata.re_mtag,
1475 sc->re_ldata.re_rx_dmamap[i]);
1477 if ((rxstat & RE_RDESC_STAT_EOF) == 0) {
1478 m->m_len = MCLBYTES - ETHER_ALIGN;
1479 if (sc->re_head == NULL) {
1480 sc->re_head = sc->re_tail = m;
1481 } else {
1482 sc->re_tail->m_next = m;
1483 sc->re_tail = m;
1485 re_newbuf(sc, i, NULL);
1486 continue;
1490 * NOTE: for the 8139C+, the frame length field
1491 * is always 12 bits in size, but for the gigE chips,
1492 * it is 13 bits (since the max RX frame length is 16K).
1493 * Unfortunately, all 32 bits in the status word
1494 * were already used, so to make room for the extra
1495 * length bit, RealTek took out the 'frame alignment
1496 * error' bit and shifted the other status bits
1497 * over one slot. The OWN, EOR, FS and LS bits are
1498 * still in the same places. We have already extracted
1499 * the frame length and checked the OWN bit, so rather
1500 * than using an alternate bit mapping, we shift the
1501 * status bits one space to the right so we can evaluate
1502 * them using the 8169 status as though it was in the
1503 * same format as that of the 8139C+.
1505 if (sc->re_type == RE_8169)
1506 rxstat >>= 1;
1508 if (rxstat & RE_RDESC_STAT_RXERRSUM) {
1509 ifp->if_ierrors++;
1511 * If this is part of a multi-fragment packet,
1512 * discard all the pieces.
1514 if (sc->re_head != NULL) {
1515 m_freem(sc->re_head);
1516 sc->re_head = sc->re_tail = NULL;
1518 re_newbuf(sc, i, m);
1519 continue;
1523 * If allocating a replacement mbuf fails,
1524 * reload the current one.
1527 if (re_newbuf(sc, i, NULL)) {
1528 ifp->if_ierrors++;
1529 if (sc->re_head != NULL) {
1530 m_freem(sc->re_head);
1531 sc->re_head = sc->re_tail = NULL;
1533 re_newbuf(sc, i, m);
1534 continue;
1537 if (sc->re_head != NULL) {
1538 m->m_len = total_len % (MCLBYTES - ETHER_ALIGN);
1540 * Special case: if there's 4 bytes or less
1541 * in this buffer, the mbuf can be discarded:
1542 * the last 4 bytes is the CRC, which we don't
1543 * care about anyway.
1545 if (m->m_len <= ETHER_CRC_LEN) {
1546 sc->re_tail->m_len -=
1547 (ETHER_CRC_LEN - m->m_len);
1548 m_freem(m);
1549 } else {
1550 m->m_len -= ETHER_CRC_LEN;
1551 sc->re_tail->m_next = m;
1553 m = sc->re_head;
1554 sc->re_head = sc->re_tail = NULL;
1555 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1556 } else
1557 m->m_pkthdr.len = m->m_len =
1558 (total_len - ETHER_CRC_LEN);
1560 ifp->if_ipackets++;
1561 m->m_pkthdr.rcvif = ifp;
1563 /* Do RX checksumming if enabled */
1565 if (ifp->if_capenable & IFCAP_RXCSUM) {
1567 /* Check IP header checksum */
1568 if (rxstat & RE_RDESC_STAT_PROTOID)
1569 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1570 if ((rxstat & RE_RDESC_STAT_IPSUMBAD) == 0)
1571 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1573 /* Check TCP/UDP checksum */
1574 if ((RE_TCPPKT(rxstat) &&
1575 (rxstat & RE_RDESC_STAT_TCPSUMBAD) == 0) ||
1576 (RE_UDPPKT(rxstat) &&
1577 (rxstat & RE_RDESC_STAT_UDPSUMBAD)) == 0) {
1578 m->m_pkthdr.csum_flags |=
1579 CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1580 m->m_pkthdr.csum_data = 0xffff;
1584 if (rxvlan & RE_RDESC_VLANCTL_TAG) {
1585 VLAN_INPUT_TAG(m,
1586 be16toh((rxvlan & RE_RDESC_VLANCTL_DATA)));
1587 } else {
1588 ifp->if_input(ifp, m);
1592 /* Flush the RX DMA ring */
1594 bus_dmamap_sync(sc->re_ldata.re_rx_list_tag,
1595 sc->re_ldata.re_rx_list_map, BUS_DMASYNC_PREWRITE);
1597 sc->re_ldata.re_rx_prodidx = i;
1600 static void
1601 re_txeof(struct re_softc *sc)
1603 struct ifnet *ifp = &sc->arpcom.ac_if;
1604 uint32_t txstat;
1605 int idx;
1607 /* Invalidate the TX descriptor list */
1609 bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
1610 sc->re_ldata.re_tx_list_map, BUS_DMASYNC_POSTREAD);
1612 for (idx = sc->re_ldata.re_tx_considx;
1613 sc->re_ldata.re_tx_free < RE_TX_DESC_CNT; RE_DESC_INC(idx)) {
1614 txstat = le32toh(sc->re_ldata.re_tx_list[idx].re_cmdstat);
1615 if (txstat & RE_TDESC_CMD_OWN)
1616 break;
1618 sc->re_ldata.re_tx_list[idx].re_bufaddr_lo = 0;
1621 * We only stash mbufs in the last descriptor
1622 * in a fragment chain, which also happens to
1623 * be the only place where the TX status bits
1624 * are valid.
1626 if (txstat & RE_TDESC_CMD_EOF) {
1627 m_freem(sc->re_ldata.re_tx_mbuf[idx]);
1628 sc->re_ldata.re_tx_mbuf[idx] = NULL;
1629 bus_dmamap_unload(sc->re_ldata.re_mtag,
1630 sc->re_ldata.re_tx_dmamap[idx]);
1631 if (txstat & (RE_TDESC_STAT_EXCESSCOL|
1632 RE_TDESC_STAT_COLCNT))
1633 ifp->if_collisions++;
1634 if (txstat & RE_TDESC_STAT_TXERRSUM)
1635 ifp->if_oerrors++;
1636 else
1637 ifp->if_opackets++;
1639 sc->re_ldata.re_tx_free++;
1642 /* No changes made to the TX ring, so no flush needed */
1643 if (sc->re_ldata.re_tx_free) {
1644 sc->re_ldata.re_tx_considx = idx;
1645 ifp->if_flags &= ~IFF_OACTIVE;
1646 ifp->if_timer = 0;
1650 * Some chips will ignore a second TX request issued while an
1651 * existing transmission is in progress. If the transmitter goes
1652 * idle but there are still packets waiting to be sent, we need
1653 * to restart the channel here to flush them out. This only seems
1654 * to be required with the PCIe devices.
1656 if (sc->re_ldata.re_tx_free < RE_TX_DESC_CNT)
1657 CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
1660 * If not all descriptors have been released reaped yet,
1661 * reload the timer so that we will eventually get another
1662 * interrupt that will cause us to re-enter this routine.
1663 * This is done in case the transmitter has gone idle.
1665 if (RE_TX_MODERATION_IS_ENABLED(sc) &&
1666 sc->re_ldata.re_tx_free < RE_TX_DESC_CNT)
1667 CSR_WRITE_4(sc, RE_TIMERCNT, 1);
1670 static void
1671 re_tick(void *xsc)
1673 struct re_softc *sc = xsc;
1675 lwkt_serialize_enter(sc->arpcom.ac_if.if_serializer);
1676 re_tick_serialized(xsc);
1677 lwkt_serialize_exit(sc->arpcom.ac_if.if_serializer);
1680 static void
1681 re_tick_serialized(void *xsc)
1683 struct re_softc *sc = xsc;
1684 struct ifnet *ifp = &sc->arpcom.ac_if;
1685 struct mii_data *mii;
1687 mii = device_get_softc(sc->re_miibus);
1688 mii_tick(mii);
1689 if (sc->re_link) {
1690 if (!(mii->mii_media_status & IFM_ACTIVE))
1691 sc->re_link = 0;
1692 } else {
1693 if (mii->mii_media_status & IFM_ACTIVE &&
1694 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1695 sc->re_link = 1;
1696 if (!ifq_is_empty(&ifp->if_snd))
1697 ifp->if_start(ifp);
1701 callout_reset(&sc->re_timer, hz, re_tick, sc);
1704 #ifdef DEVICE_POLLING
1706 static void
1707 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1709 struct re_softc *sc = ifp->if_softc;
1711 switch(cmd) {
1712 case POLL_REGISTER:
1713 /* disable interrupts */
1714 CSR_WRITE_2(sc, RE_IMR, 0x0000);
1715 break;
1716 case POLL_DEREGISTER:
1717 /* enable interrupts */
1718 CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
1719 break;
1720 default:
1721 sc->rxcycles = count;
1722 re_rxeof(sc);
1723 re_txeof(sc);
1725 if (!ifq_is_empty(&ifp->if_snd))
1726 (*ifp->if_start)(ifp);
1728 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1729 uint16_t status;
1731 status = CSR_READ_2(sc, RE_ISR);
1732 if (status == 0xffff)
1733 return;
1734 if (status)
1735 CSR_WRITE_2(sc, RE_ISR, status);
1738 * XXX check behaviour on receiver stalls.
1741 if (status & RE_ISR_SYSTEM_ERR) {
1742 re_reset(sc);
1743 re_init(sc);
1746 break;
1749 #endif /* DEVICE_POLLING */
1751 static void
1752 re_intr(void *arg)
1754 struct re_softc *sc = arg;
1755 struct ifnet *ifp = &sc->arpcom.ac_if;
1756 uint16_t status;
1758 if (sc->suspended || (ifp->if_flags & IFF_UP) == 0)
1759 return;
1761 for (;;) {
1762 status = CSR_READ_2(sc, RE_ISR);
1763 /* If the card has gone away the read returns 0xffff. */
1764 if (status == 0xffff)
1765 break;
1766 if (status)
1767 CSR_WRITE_2(sc, RE_ISR, status);
1769 if ((status & sc->re_intrs) == 0)
1770 break;
1772 if (status & (RE_ISR_RX_OK | RE_ISR_RX_ERR | RE_ISR_FIFO_OFLOW))
1773 re_rxeof(sc);
1775 if ((status & sc->re_tx_ack) ||
1776 (status & RE_ISR_TX_ERR) ||
1777 (status & RE_ISR_TX_DESC_UNAVAIL))
1778 re_txeof(sc);
1780 if (status & RE_ISR_SYSTEM_ERR) {
1781 re_reset(sc);
1782 re_init(sc);
1785 if (status & RE_ISR_LINKCHG) {
1786 callout_stop(&sc->re_timer);
1787 re_tick_serialized(sc);
1791 if (!ifq_is_empty(&ifp->if_snd))
1792 (*ifp->if_start)(ifp);
1795 static int
1796 re_encap(struct re_softc *sc, struct mbuf **m_head, int *idx, int *called_defrag)
1798 struct ifnet *ifp = &sc->arpcom.ac_if;
1799 struct mbuf *m, *m_new = NULL;
1800 struct re_dmaload_arg arg;
1801 bus_dmamap_t map;
1802 int error;
1804 *called_defrag = 0;
1805 if (sc->re_ldata.re_tx_free <= 4)
1806 return(EFBIG);
1808 m = *m_head;
1811 * Set up checksum offload. Note: checksum offload bits must
1812 * appear in all descriptors of a multi-descriptor transmit
1813 * attempt. (This is according to testing done with an 8169
1814 * chip. I'm not sure if this is a requirement or a bug.)
1817 arg.re_flags = 0;
1819 if (m->m_pkthdr.csum_flags & CSUM_IP)
1820 arg.re_flags |= RE_TDESC_CMD_IPCSUM;
1821 if (m->m_pkthdr.csum_flags & CSUM_TCP)
1822 arg.re_flags |= RE_TDESC_CMD_TCPCSUM;
1823 if (m->m_pkthdr.csum_flags & CSUM_UDP)
1824 arg.re_flags |= RE_TDESC_CMD_UDPCSUM;
1826 arg.sc = sc;
1827 arg.re_idx = *idx;
1828 arg.re_maxsegs = sc->re_ldata.re_tx_free;
1829 if (arg.re_maxsegs > 4)
1830 arg.re_maxsegs -= 4;
1831 arg.re_ring = sc->re_ldata.re_tx_list;
1833 map = sc->re_ldata.re_tx_dmamap[*idx];
1836 * With some of the RealTek chips, using the checksum offload
1837 * support in conjunction with the autopadding feature results
1838 * in the transmission of corrupt frames. For example, if we
1839 * need to send a really small IP fragment that's less than 60
1840 * bytes in size, and IP header checksumming is enabled, the
1841 * resulting ethernet frame that appears on the wire will
1842 * have garbled payload. To work around this, if TX checksum
1843 * offload is enabled, we always manually pad short frames out
1844 * to the minimum ethernet frame size. We do this by pretending
1845 * the mbuf chain has too many fragments so the coalescing code
1846 * below can assemble the packet into a single buffer that's
1847 * padded out to the mininum frame size.
1849 * Note: this appears unnecessary for TCP, and doing it for TCP
1850 * with PCIe adapters seems to result in bad checksums.
1852 if (arg.re_flags && !(arg.re_flags & RE_TDESC_CMD_TCPCSUM) &&
1853 m->m_pkthdr.len < RE_MIN_FRAMELEN) {
1854 error = EFBIG;
1855 } else {
1856 error = bus_dmamap_load_mbuf(sc->re_ldata.re_mtag, map,
1857 m, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1860 if (error && error != EFBIG) {
1861 if_printf(ifp, "can't map mbuf (error %d)\n", error);
1862 return(ENOBUFS);
1865 /* Too many segments to map, coalesce into a single mbuf */
1867 if (error || arg.re_maxsegs == 0) {
1868 m_new = m_defrag_nofree(m, MB_DONTWAIT);
1869 if (m_new == NULL) {
1870 return(1);
1871 } else {
1872 m = m_new;
1873 *m_head = m;
1877 * Manually pad short frames, and zero the pad space
1878 * to avoid leaking data.
1880 if (m_new->m_pkthdr.len < RE_MIN_FRAMELEN) {
1881 bzero(mtod(m_new, char *) + m_new->m_pkthdr.len,
1882 RE_MIN_FRAMELEN - m_new->m_pkthdr.len);
1883 m_new->m_pkthdr.len += RE_MIN_FRAMELEN -
1884 m_new->m_pkthdr.len;
1885 m_new->m_len = m_new->m_pkthdr.len;
1888 *called_defrag = 1;
1889 arg.sc = sc;
1890 arg.re_idx = *idx;
1891 arg.re_maxsegs = sc->re_ldata.re_tx_free;
1892 arg.re_ring = sc->re_ldata.re_tx_list;
1894 error = bus_dmamap_load_mbuf(sc->re_ldata.re_mtag, map,
1895 m, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1896 if (error) {
1897 m_freem(m);
1898 if_printf(ifp, "can't map mbuf (error %d)\n", error);
1899 return(EFBIG);
1904 * Insure that the map for this transmission
1905 * is placed at the array index of the last descriptor
1906 * in this chain.
1908 sc->re_ldata.re_tx_dmamap[*idx] =
1909 sc->re_ldata.re_tx_dmamap[arg.re_idx];
1910 sc->re_ldata.re_tx_dmamap[arg.re_idx] = map;
1912 sc->re_ldata.re_tx_mbuf[arg.re_idx] = m;
1913 sc->re_ldata.re_tx_free -= arg.re_maxsegs;
1916 * Set up hardware VLAN tagging. Note: vlan tag info must
1917 * appear in the first descriptor of a multi-descriptor
1918 * transmission attempt.
1921 if ((m->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1922 m->m_pkthdr.rcvif != NULL &&
1923 m->m_pkthdr.rcvif->if_type == IFT_L2VLAN) {
1924 struct ifvlan *ifv;
1925 ifv = m->m_pkthdr.rcvif->if_softc;
1926 if (ifv != NULL)
1927 sc->re_ldata.re_tx_list[*idx].re_vlanctl =
1928 htole32(htobe16(ifv->ifv_tag) | RE_TDESC_VLANCTL_TAG);
1931 /* Transfer ownership of packet to the chip. */
1933 sc->re_ldata.re_tx_list[arg.re_idx].re_cmdstat |=
1934 htole32(RE_TDESC_CMD_OWN);
1935 if (*idx != arg.re_idx)
1936 sc->re_ldata.re_tx_list[*idx].re_cmdstat |=
1937 htole32(RE_TDESC_CMD_OWN);
1939 RE_DESC_INC(arg.re_idx);
1940 *idx = arg.re_idx;
1942 return(0);
1946 * Main transmit routine for C+ and gigE NICs.
1949 static void
1950 re_start(struct ifnet *ifp)
1952 struct re_softc *sc = ifp->if_softc;
1953 struct mbuf *m_head;
1954 struct mbuf *m_head2;
1955 int called_defrag, idx, need_trans;
1957 if (!sc->re_link || (ifp->if_flags & IFF_OACTIVE))
1958 return;
1960 idx = sc->re_ldata.re_tx_prodidx;
1962 need_trans = 0;
1963 while (sc->re_ldata.re_tx_mbuf[idx] == NULL) {
1964 m_head = ifq_poll(&ifp->if_snd);
1965 if (m_head == NULL)
1966 break;
1967 m_head2 = m_head;
1968 if (re_encap(sc, &m_head2, &idx, &called_defrag)) {
1970 * If we could not encapsulate the defragged packet,
1971 * the returned m_head2 is garbage and we must dequeue
1972 * and throw away the original packet.
1974 if (called_defrag) {
1975 ifq_dequeue(&ifp->if_snd, m_head);
1976 m_freem(m_head);
1978 ifp->if_flags |= IFF_OACTIVE;
1979 break;
1983 * Clean out the packet we encapsulated. If we defragged
1984 * the packet the m_head2 is the one that got encapsulated
1985 * and the original must be thrown away. Otherwise m_head2
1986 * *IS* the original.
1988 ifq_dequeue(&ifp->if_snd, m_head);
1989 if (called_defrag)
1990 m_freem(m_head);
1991 need_trans = 1;
1994 * If there's a BPF listener, bounce a copy of this frame
1995 * to him.
1997 BPF_MTAP(ifp, m_head2);
2000 if (!need_trans) {
2001 if (RE_TX_MODERATION_IS_ENABLED(sc) &&
2002 sc->re_ldata.re_tx_free != RE_TX_DESC_CNT)
2003 CSR_WRITE_4(sc, RE_TIMERCNT, 1);
2004 return;
2007 /* Flush the TX descriptors */
2008 bus_dmamap_sync(sc->re_ldata.re_tx_list_tag,
2009 sc->re_ldata.re_tx_list_map, BUS_DMASYNC_PREWRITE);
2011 sc->re_ldata.re_tx_prodidx = idx;
2014 * RealTek put the TX poll request register in a different
2015 * location on the 8169 gigE chip. I don't know why.
2017 CSR_WRITE_1(sc, sc->re_txstart, RE_TXSTART_START);
2019 if (RE_TX_MODERATION_IS_ENABLED(sc)) {
2021 * Use the countdown timer for interrupt moderation.
2022 * 'TX done' interrupts are disabled. Instead, we reset the
2023 * countdown timer, which will begin counting until it hits
2024 * the value in the TIMERINT register, and then trigger an
2025 * interrupt. Each time we write to the TIMERCNT register,
2026 * the timer count is reset to 0.
2028 CSR_WRITE_4(sc, RE_TIMERCNT, 1);
2032 * Set a timeout in case the chip goes out to lunch.
2034 ifp->if_timer = 5;
2037 static void
2038 re_init(void *xsc)
2040 struct re_softc *sc = xsc;
2041 struct ifnet *ifp = &sc->arpcom.ac_if;
2042 struct mii_data *mii;
2043 uint32_t rxcfg = 0;
2045 mii = device_get_softc(sc->re_miibus);
2048 * Cancel pending I/O and free all RX/TX buffers.
2050 re_stop(sc);
2053 * Enable C+ RX and TX mode, as well as VLAN stripping and
2054 * RX checksum offload. We must configure the C+ register
2055 * before all others.
2057 CSR_WRITE_2(sc, RE_CPLUS_CMD, RE_CPLUSCMD_RXENB | RE_CPLUSCMD_TXENB |
2058 RE_CPLUSCMD_PCI_MRW | RE_CPLUSCMD_VLANSTRIP |
2059 (ifp->if_capenable & IFCAP_RXCSUM ?
2060 RE_CPLUSCMD_RXCSUM_ENB : 0));
2063 * Init our MAC address. Even though the chipset
2064 * documentation doesn't mention it, we need to enter "Config
2065 * register write enable" mode to modify the ID registers.
2067 CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_WRITECFG);
2068 CSR_WRITE_4(sc, RE_IDR0,
2069 htole32(*(uint32_t *)(&sc->arpcom.ac_enaddr[0])));
2070 CSR_WRITE_2(sc, RE_IDR4,
2071 htole16(*(uint16_t *)(&sc->arpcom.ac_enaddr[4])));
2072 CSR_WRITE_1(sc, RE_EECMD, RE_EEMODE_OFF);
2075 * For C+ mode, initialize the RX descriptors and mbufs.
2077 re_rx_list_init(sc);
2078 re_tx_list_init(sc);
2081 * Load the addresses of the RX and TX lists into the chip.
2083 CSR_WRITE_4(sc, RE_RXLIST_ADDR_HI,
2084 RE_ADDR_HI(sc->re_ldata.re_rx_list_addr));
2085 CSR_WRITE_4(sc, RE_RXLIST_ADDR_LO,
2086 RE_ADDR_LO(sc->re_ldata.re_rx_list_addr));
2088 CSR_WRITE_4(sc, RE_TXLIST_ADDR_HI,
2089 RE_ADDR_HI(sc->re_ldata.re_tx_list_addr));
2090 CSR_WRITE_4(sc, RE_TXLIST_ADDR_LO,
2091 RE_ADDR_LO(sc->re_ldata.re_tx_list_addr));
2094 * Enable transmit and receive.
2096 CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2099 * Set the initial TX and RX configuration.
2101 if (sc->re_testmode) {
2102 if (sc->re_type == RE_8169)
2103 CSR_WRITE_4(sc, RE_TXCFG,
2104 RE_TXCFG_CONFIG | RE_LOOPTEST_ON);
2105 else
2106 CSR_WRITE_4(sc, RE_TXCFG,
2107 RE_TXCFG_CONFIG | RE_LOOPTEST_ON_CPLUS);
2108 } else
2109 CSR_WRITE_4(sc, RE_TXCFG, RE_TXCFG_CONFIG);
2111 CSR_WRITE_1(sc, RE_EARLY_TX_THRESH, 16);
2113 CSR_WRITE_4(sc, RE_RXCFG, RE_RXCFG_CONFIG);
2115 /* Set the individual bit to receive frames for this host only. */
2116 rxcfg = CSR_READ_4(sc, RE_RXCFG);
2117 rxcfg |= RE_RXCFG_RX_INDIV;
2119 /* If we want promiscuous mode, set the allframes bit. */
2120 if (ifp->if_flags & IFF_PROMISC) {
2121 rxcfg |= RE_RXCFG_RX_ALLPHYS;
2122 CSR_WRITE_4(sc, RE_RXCFG, rxcfg);
2123 } else {
2124 rxcfg &= ~RE_RXCFG_RX_ALLPHYS;
2125 CSR_WRITE_4(sc, RE_RXCFG, rxcfg);
2129 * Set capture broadcast bit to capture broadcast frames.
2131 if (ifp->if_flags & IFF_BROADCAST) {
2132 rxcfg |= RE_RXCFG_RX_BROAD;
2133 CSR_WRITE_4(sc, RE_RXCFG, rxcfg);
2134 } else {
2135 rxcfg &= ~RE_RXCFG_RX_BROAD;
2136 CSR_WRITE_4(sc, RE_RXCFG, rxcfg);
2140 * Program the multicast filter, if necessary.
2142 re_setmulti(sc);
2144 #ifdef DEVICE_POLLING
2146 * Disable interrupts if we are polling.
2148 if (ifp->if_flags & IFF_POLLING)
2149 CSR_WRITE_2(sc, RE_IMR, 0);
2150 else /* otherwise ... */
2151 #endif /* DEVICE_POLLING */
2153 * Enable interrupts.
2155 if (sc->re_testmode)
2156 CSR_WRITE_2(sc, RE_IMR, 0);
2157 else
2158 CSR_WRITE_2(sc, RE_IMR, sc->re_intrs);
2159 CSR_WRITE_2(sc, RE_ISR, sc->re_intrs);
2161 /* Set initial TX threshold */
2162 sc->re_txthresh = RE_TX_THRESH_INIT;
2164 /* Start RX/TX process. */
2165 if (sc->re_flags & RE_F_HASMPC)
2166 CSR_WRITE_4(sc, RE_MISSEDPKT, 0);
2167 #ifdef notdef
2168 /* Enable receiver and transmitter. */
2169 CSR_WRITE_1(sc, RE_COMMAND, RE_CMD_TX_ENB|RE_CMD_RX_ENB);
2170 #endif
2172 if (RE_TX_MODERATION_IS_ENABLED(sc)) {
2174 * Initialize the timer interrupt register so that
2175 * a timer interrupt will be generated once the timer
2176 * reaches a certain number of ticks. The timer is
2177 * reloaded on each transmit. This gives us TX interrupt
2178 * moderation, which dramatically improves TX frame rate.
2180 if (sc->re_type == RE_8169)
2181 CSR_WRITE_4(sc, RE_TIMERINT_8169, 0x800);
2182 else
2183 CSR_WRITE_4(sc, RE_TIMERINT, 0x400);
2187 * For 8169 gigE NICs, set the max allowed RX packet
2188 * size so we can receive jumbo frames.
2190 if (sc->re_type == RE_8169)
2191 CSR_WRITE_2(sc, RE_MAXRXPKTLEN, 16383);
2193 if (sc->re_testmode) {
2194 return;
2197 mii_mediachg(mii);
2199 CSR_WRITE_1(sc, RE_CFG1, RE_CFG1_DRVLOAD|RE_CFG1_FULLDUPLEX);
2201 ifp->if_flags |= IFF_RUNNING;
2202 ifp->if_flags &= ~IFF_OACTIVE;
2204 sc->re_link = 0;
2205 callout_reset(&sc->re_timer, hz, re_tick, sc);
2209 * Set media options.
2211 static int
2212 re_ifmedia_upd(struct ifnet *ifp)
2214 struct re_softc *sc = ifp->if_softc;
2215 struct mii_data *mii;
2217 mii = device_get_softc(sc->re_miibus);
2218 mii_mediachg(mii);
2220 return(0);
2224 * Report current media status.
2226 static void
2227 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2229 struct re_softc *sc = ifp->if_softc;
2230 struct mii_data *mii;
2232 mii = device_get_softc(sc->re_miibus);
2234 mii_pollstat(mii);
2235 ifmr->ifm_active = mii->mii_media_active;
2236 ifmr->ifm_status = mii->mii_media_status;
2239 static int
2240 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2242 struct re_softc *sc = ifp->if_softc;
2243 struct ifreq *ifr = (struct ifreq *) data;
2244 struct mii_data *mii;
2245 int error = 0;
2247 switch(command) {
2248 case SIOCSIFMTU:
2249 if (ifr->ifr_mtu > RE_JUMBO_MTU)
2250 error = EINVAL;
2251 ifp->if_mtu = ifr->ifr_mtu;
2252 break;
2253 case SIOCSIFFLAGS:
2254 if (ifp->if_flags & IFF_UP)
2255 re_init(sc);
2256 else if (ifp->if_flags & IFF_RUNNING)
2257 re_stop(sc);
2258 break;
2259 case SIOCADDMULTI:
2260 case SIOCDELMULTI:
2261 re_setmulti(sc);
2262 error = 0;
2263 break;
2264 case SIOCGIFMEDIA:
2265 case SIOCSIFMEDIA:
2266 mii = device_get_softc(sc->re_miibus);
2267 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2268 break;
2269 case SIOCSIFCAP:
2270 ifp->if_capenable &= ~(IFCAP_HWCSUM);
2271 ifp->if_capenable |=
2272 ifr->ifr_reqcap & (IFCAP_HWCSUM);
2273 if (ifp->if_capenable & IFCAP_TXCSUM)
2274 ifp->if_hwassist = RE_CSUM_FEATURES;
2275 else
2276 ifp->if_hwassist = 0;
2277 if (ifp->if_flags & IFF_RUNNING)
2278 re_init(sc);
2279 break;
2280 default:
2281 error = ether_ioctl(ifp, command, data);
2282 break;
2284 return(error);
2287 static void
2288 re_watchdog(struct ifnet *ifp)
2290 struct re_softc *sc = ifp->if_softc;
2292 if_printf(ifp, "watchdog timeout\n");
2294 ifp->if_oerrors++;
2296 re_txeof(sc);
2297 re_rxeof(sc);
2299 re_init(sc);
2301 if (!ifq_is_empty(&ifp->if_snd))
2302 ifp->if_start(ifp);
2306 * Stop the adapter and free any mbufs allocated to the
2307 * RX and TX lists.
2309 static void
2310 re_stop(struct re_softc *sc)
2312 struct ifnet *ifp = &sc->arpcom.ac_if;
2313 int i;
2315 ifp->if_timer = 0;
2316 callout_stop(&sc->re_timer);
2318 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2320 CSR_WRITE_1(sc, RE_COMMAND, 0x00);
2321 CSR_WRITE_2(sc, RE_IMR, 0x0000);
2322 CSR_WRITE_2(sc, RE_ISR, 0xFFFF);
2324 if (sc->re_head != NULL) {
2325 m_freem(sc->re_head);
2326 sc->re_head = sc->re_tail = NULL;
2329 /* Free the TX list buffers. */
2330 for (i = 0; i < RE_TX_DESC_CNT; i++) {
2331 if (sc->re_ldata.re_tx_mbuf[i] != NULL) {
2332 bus_dmamap_unload(sc->re_ldata.re_mtag,
2333 sc->re_ldata.re_tx_dmamap[i]);
2334 m_freem(sc->re_ldata.re_tx_mbuf[i]);
2335 sc->re_ldata.re_tx_mbuf[i] = NULL;
2339 /* Free the RX list buffers. */
2340 for (i = 0; i < RE_RX_DESC_CNT; i++) {
2341 if (sc->re_ldata.re_rx_mbuf[i] != NULL) {
2342 bus_dmamap_unload(sc->re_ldata.re_mtag,
2343 sc->re_ldata.re_rx_dmamap[i]);
2344 m_freem(sc->re_ldata.re_rx_mbuf[i]);
2345 sc->re_ldata.re_rx_mbuf[i] = NULL;
2351 * Device suspend routine. Stop the interface and save some PCI
2352 * settings in case the BIOS doesn't restore them properly on
2353 * resume.
2355 static int
2356 re_suspend(device_t dev)
2358 #ifndef BURN_BRIDGES
2359 int i;
2360 #endif
2361 struct re_softc *sc = device_get_softc(dev);
2363 re_stop(sc);
2365 #ifndef BURN_BRIDGES
2366 for (i = 0; i < 5; i++)
2367 sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2368 sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2369 sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2370 sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2371 sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2372 #endif
2374 sc->suspended = 1;
2376 return (0);
2380 * Device resume routine. Restore some PCI settings in case the BIOS
2381 * doesn't, re-enable busmastering, and restart the interface if
2382 * appropriate.
2384 static int
2385 re_resume(device_t dev)
2387 struct re_softc *sc = device_get_softc(dev);
2388 struct ifnet *ifp = &sc->arpcom.ac_if;
2389 #ifndef BURN_BRIDGES
2390 int i;
2391 #endif
2393 #ifndef BURN_BRIDGES
2394 /* better way to do this? */
2395 for (i = 0; i < 5; i++)
2396 pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2397 pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2398 pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2399 pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2400 pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2402 /* reenable busmastering */
2403 pci_enable_busmaster(dev);
2404 pci_enable_io(dev, SYS_RES_IOPORT);
2405 #endif
2407 /* reinitialize interface if necessary */
2408 if (ifp->if_flags & IFF_UP)
2409 re_init(sc);
2411 sc->suspended = 0;
2413 return (0);
2417 * Stop all chip I/O so that the kernel's probe routines don't
2418 * get confused by errant DMAs when rebooting.
2420 static void
2421 re_shutdown(device_t dev)
2423 struct re_softc *sc = device_get_softc(dev);
2424 struct ifnet *ifp = &sc->arpcom.ac_if;
2426 lwkt_serialize_enter(ifp->if_serializer);
2427 re_stop(sc);
2428 lwkt_serialize_exit(ifp->if_serializer);
2431 static int
2432 re_sysctl_tx_moderation(SYSCTL_HANDLER_ARGS)
2434 struct re_softc *sc = arg1;
2435 struct ifnet *ifp = &sc->arpcom.ac_if;
2436 int error = 0, mod, mod_old;
2438 lwkt_serialize_enter(ifp->if_serializer);
2440 mod_old = mod = RE_TX_MODERATION_IS_ENABLED(sc);
2442 error = sysctl_handle_int(oidp, &mod, 0, req);
2443 if (error || req->newptr == NULL || mod == mod_old)
2444 goto back;
2445 if (mod != 0 && mod != 1) {
2446 error = EINVAL;
2447 goto back;
2450 if (mod)
2451 RE_ENABLE_TX_MODERATION(sc);
2452 else
2453 RE_DISABLE_TX_MODERATION(sc);
2455 if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) == (IFF_RUNNING | IFF_UP))
2456 re_init(sc);
2457 back:
2458 lwkt_serialize_exit(ifp->if_serializer);
2459 return error;