* Greatly reduce the complexity of the LWKT messaging and port abstraction.
[dragonfly/vkernel-mp.git] / sys / netinet / ip_input.c
blobc44a9c7aebee7b209be825919430755783269f74
1 /*
2 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
5 * This code is derived from software contributed to The DragonFly Project
6 * by Jeffrey M. Hsu.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
35 * Copyright (c) 1982, 1986, 1988, 1993
36 * The Regents of the University of California. All rights reserved.
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
66 * @(#)ip_input.c 8.2 (Berkeley) 1/4/94
67 * $FreeBSD: src/sys/netinet/ip_input.c,v 1.130.2.52 2003/03/07 07:01:28 silby Exp $
68 * $DragonFly: src/sys/netinet/ip_input.c,v 1.67 2007/05/23 08:57:09 dillon Exp $
71 #define _IP_VHL
73 #include "opt_bootp.h"
74 #include "opt_ipfw.h"
75 #include "opt_ipdn.h"
76 #include "opt_ipdivert.h"
77 #include "opt_ipfilter.h"
78 #include "opt_ipstealth.h"
79 #include "opt_ipsec.h"
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/mbuf.h>
84 #include <sys/malloc.h>
85 #include <sys/mpipe.h>
86 #include <sys/domain.h>
87 #include <sys/protosw.h>
88 #include <sys/socket.h>
89 #include <sys/time.h>
90 #include <sys/globaldata.h>
91 #include <sys/thread.h>
92 #include <sys/kernel.h>
93 #include <sys/syslog.h>
94 #include <sys/sysctl.h>
95 #include <sys/in_cksum.h>
97 #include <machine/stdarg.h>
99 #include <net/if.h>
100 #include <net/if_types.h>
101 #include <net/if_var.h>
102 #include <net/if_dl.h>
103 #include <net/pfil.h>
104 #include <net/route.h>
105 #include <net/netisr.h>
106 #include <net/intrq.h>
108 #include <netinet/in.h>
109 #include <netinet/in_systm.h>
110 #include <netinet/in_var.h>
111 #include <netinet/ip.h>
112 #include <netinet/in_pcb.h>
113 #include <netinet/ip_var.h>
114 #include <netinet/ip_icmp.h>
116 #include <sys/thread2.h>
117 #include <sys/msgport2.h>
118 #include <net/netmsg2.h>
120 #include <sys/socketvar.h>
122 #include <net/ipfw/ip_fw.h>
123 #include <net/dummynet/ip_dummynet.h>
125 #ifdef IPSEC
126 #include <netinet6/ipsec.h>
127 #include <netproto/key/key.h>
128 #endif
130 #ifdef FAST_IPSEC
131 #include <netproto/ipsec/ipsec.h>
132 #include <netproto/ipsec/key.h>
133 #endif
135 int rsvp_on = 0;
136 static int ip_rsvp_on;
137 struct socket *ip_rsvpd;
139 int ipforwarding = 0;
140 SYSCTL_INT(_net_inet_ip, IPCTL_FORWARDING, forwarding, CTLFLAG_RW,
141 &ipforwarding, 0, "Enable IP forwarding between interfaces");
143 static int ipsendredirects = 1; /* XXX */
144 SYSCTL_INT(_net_inet_ip, IPCTL_SENDREDIRECTS, redirect, CTLFLAG_RW,
145 &ipsendredirects, 0, "Enable sending IP redirects");
147 int ip_defttl = IPDEFTTL;
148 SYSCTL_INT(_net_inet_ip, IPCTL_DEFTTL, ttl, CTLFLAG_RW,
149 &ip_defttl, 0, "Maximum TTL on IP packets");
151 static int ip_dosourceroute = 0;
152 SYSCTL_INT(_net_inet_ip, IPCTL_SOURCEROUTE, sourceroute, CTLFLAG_RW,
153 &ip_dosourceroute, 0, "Enable forwarding source routed IP packets");
155 static int ip_acceptsourceroute = 0;
156 SYSCTL_INT(_net_inet_ip, IPCTL_ACCEPTSOURCEROUTE, accept_sourceroute,
157 CTLFLAG_RW, &ip_acceptsourceroute, 0,
158 "Enable accepting source routed IP packets");
160 static int ip_keepfaith = 0;
161 SYSCTL_INT(_net_inet_ip, IPCTL_KEEPFAITH, keepfaith, CTLFLAG_RW,
162 &ip_keepfaith, 0,
163 "Enable packet capture for FAITH IPv4->IPv6 translater daemon");
165 static int nipq = 0; /* total # of reass queues */
166 static int maxnipq;
167 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragpackets, CTLFLAG_RW,
168 &maxnipq, 0,
169 "Maximum number of IPv4 fragment reassembly queue entries");
171 static int maxfragsperpacket;
172 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxfragsperpacket, CTLFLAG_RW,
173 &maxfragsperpacket, 0,
174 "Maximum number of IPv4 fragments allowed per packet");
176 static int ip_sendsourcequench = 0;
177 SYSCTL_INT(_net_inet_ip, OID_AUTO, sendsourcequench, CTLFLAG_RW,
178 &ip_sendsourcequench, 0,
179 "Enable the transmission of source quench packets");
181 int ip_do_randomid = 0;
182 SYSCTL_INT(_net_inet_ip, OID_AUTO, random_id, CTLFLAG_RW,
183 &ip_do_randomid, 0,
184 "Assign random ip_id values");
186 * XXX - Setting ip_checkinterface mostly implements the receive side of
187 * the Strong ES model described in RFC 1122, but since the routing table
188 * and transmit implementation do not implement the Strong ES model,
189 * setting this to 1 results in an odd hybrid.
191 * XXX - ip_checkinterface currently must be disabled if you use ipnat
192 * to translate the destination address to another local interface.
194 * XXX - ip_checkinterface must be disabled if you add IP aliases
195 * to the loopback interface instead of the interface where the
196 * packets for those addresses are received.
198 static int ip_checkinterface = 0;
199 SYSCTL_INT(_net_inet_ip, OID_AUTO, check_interface, CTLFLAG_RW,
200 &ip_checkinterface, 0, "Verify packet arrives on correct interface");
202 #ifdef DIAGNOSTIC
203 static int ipprintfs = 0;
204 #endif
206 static struct ifqueue ipintrq;
207 static int ipqmaxlen = IFQ_MAXLEN;
209 extern struct domain inetdomain;
210 extern struct protosw inetsw[];
211 u_char ip_protox[IPPROTO_MAX];
212 struct in_ifaddrhead in_ifaddrhead; /* first inet address */
213 struct in_ifaddrhashhead *in_ifaddrhashtbl; /* inet addr hash table */
214 u_long in_ifaddrhmask; /* mask for hash table */
216 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQMAXLEN, intr_queue_maxlen, CTLFLAG_RW,
217 &ipintrq.ifq_maxlen, 0, "Maximum size of the IP input queue");
218 SYSCTL_INT(_net_inet_ip, IPCTL_INTRQDROPS, intr_queue_drops, CTLFLAG_RD,
219 &ipintrq.ifq_drops, 0, "Number of packets dropped from the IP input queue");
221 struct ip_stats ipstats_percpu[MAXCPU];
222 #ifdef SMP
223 static int
224 sysctl_ipstats(SYSCTL_HANDLER_ARGS)
226 int cpu, error = 0;
228 for (cpu = 0; cpu < ncpus; ++cpu) {
229 if ((error = SYSCTL_OUT(req, &ipstats_percpu[cpu],
230 sizeof(struct ip_stats))))
231 break;
232 if ((error = SYSCTL_IN(req, &ipstats_percpu[cpu],
233 sizeof(struct ip_stats))))
234 break;
237 return (error);
239 SYSCTL_PROC(_net_inet_ip, IPCTL_STATS, stats, (CTLTYPE_OPAQUE | CTLFLAG_RW),
240 0, 0, sysctl_ipstats, "S,ip_stats", "IP statistics");
241 #else
242 SYSCTL_STRUCT(_net_inet_ip, IPCTL_STATS, stats, CTLFLAG_RW,
243 &ipstat, ip_stats, "IP statistics");
244 #endif
246 /* Packet reassembly stuff */
247 #define IPREASS_NHASH_LOG2 6
248 #define IPREASS_NHASH (1 << IPREASS_NHASH_LOG2)
249 #define IPREASS_HMASK (IPREASS_NHASH - 1)
250 #define IPREASS_HASH(x,y) \
251 (((((x) & 0xF) | ((((x) >> 8) & 0xF) << 4)) ^ (y)) & IPREASS_HMASK)
253 static struct ipq ipq[IPREASS_NHASH];
254 const int ipintrq_present = 1;
256 #ifdef IPCTL_DEFMTU
257 SYSCTL_INT(_net_inet_ip, IPCTL_DEFMTU, mtu, CTLFLAG_RW,
258 &ip_mtu, 0, "Default MTU");
259 #endif
261 #ifdef IPSTEALTH
262 static int ipstealth = 0;
263 SYSCTL_INT(_net_inet_ip, OID_AUTO, stealth, CTLFLAG_RW, &ipstealth, 0, "");
264 #else
265 static const int ipstealth = 0;
266 #endif
269 /* Firewall hooks */
270 ip_fw_chk_t *ip_fw_chk_ptr;
271 int fw_enable = 1;
272 int fw_one_pass = 1;
274 /* Dummynet hooks */
275 ip_dn_io_t *ip_dn_io_ptr;
277 struct pfil_head inet_pfil_hook;
280 * XXX this is ugly -- the following two global variables are
281 * used to store packet state while it travels through the stack.
282 * Note that the code even makes assumptions on the size and
283 * alignment of fields inside struct ip_srcrt so e.g. adding some
284 * fields will break the code. This needs to be fixed.
286 * We need to save the IP options in case a protocol wants to respond
287 * to an incoming packet over the same route if the packet got here
288 * using IP source routing. This allows connection establishment and
289 * maintenance when the remote end is on a network that is not known
290 * to us.
292 static int ip_nhops = 0;
294 static struct ip_srcrt {
295 struct in_addr dst; /* final destination */
296 char nop; /* one NOP to align */
297 char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
298 struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
299 } ip_srcrt;
301 static MALLOC_DEFINE(M_IPQ, "ipq", "IP Fragment Management");
302 static struct malloc_pipe ipq_mpipe;
304 static void save_rte (u_char *, struct in_addr);
305 static int ip_dooptions (struct mbuf *m, int,
306 struct sockaddr_in *next_hop);
307 static void ip_forward (struct mbuf *m, boolean_t using_srcrt,
308 struct sockaddr_in *next_hop);
309 static void ip_freef (struct ipq *);
310 static void ip_input_handler (struct netmsg *);
311 static struct mbuf *ip_reass (struct mbuf *, struct ipq *,
312 struct ipq *, u_int32_t *);
315 * IP initialization: fill in IP protocol switch table.
316 * All protocols not implemented in kernel go to raw IP protocol handler.
318 void
319 ip_init(void)
321 struct protosw *pr;
322 int i;
323 #ifdef SMP
324 int cpu;
325 #endif
328 * Make sure we can handle a reasonable number of fragments but
329 * cap it at 4000 (XXX).
331 mpipe_init(&ipq_mpipe, M_IPQ, sizeof(struct ipq),
332 IFQ_MAXLEN, 4000, 0, NULL);
333 TAILQ_INIT(&in_ifaddrhead);
334 in_ifaddrhashtbl = hashinit(INADDR_NHASH, M_IFADDR, &in_ifaddrhmask);
335 pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
336 if (pr == NULL)
337 panic("ip_init");
338 for (i = 0; i < IPPROTO_MAX; i++)
339 ip_protox[i] = pr - inetsw;
340 for (pr = inetdomain.dom_protosw;
341 pr < inetdomain.dom_protoswNPROTOSW; pr++)
342 if (pr->pr_domain->dom_family == PF_INET &&
343 pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
344 ip_protox[pr->pr_protocol] = pr - inetsw;
346 inet_pfil_hook.ph_type = PFIL_TYPE_AF;
347 inet_pfil_hook.ph_af = AF_INET;
348 if ((i = pfil_head_register(&inet_pfil_hook)) != 0) {
349 kprintf("%s: WARNING: unable to register pfil hook, "
350 "error %d\n", __func__, i);
353 for (i = 0; i < IPREASS_NHASH; i++)
354 ipq[i].next = ipq[i].prev = &ipq[i];
356 maxnipq = nmbclusters / 32;
357 maxfragsperpacket = 16;
359 ip_id = time_second & 0xffff;
360 ipintrq.ifq_maxlen = ipqmaxlen;
363 * Initialize IP statistics counters for each CPU.
366 #ifdef SMP
367 for (cpu = 0; cpu < ncpus; ++cpu) {
368 bzero(&ipstats_percpu[cpu], sizeof(struct ip_stats));
370 #else
371 bzero(&ipstat, sizeof(struct ip_stats));
372 #endif
374 netisr_register(NETISR_IP, ip_mport, ip_input_handler);
378 * XXX watch out this one. It is perhaps used as a cache for
379 * the most recently used route ? it is cleared in in_addroute()
380 * when a new route is successfully created.
382 struct route ipforward_rt[MAXCPU];
384 /* Do transport protocol processing. */
385 static void
386 transport_processing_oncpu(struct mbuf *m, int hlen, struct ip *ip,
387 struct sockaddr_in *nexthop)
390 * Switch out to protocol's input routine.
392 if (nexthop && ip->ip_p == IPPROTO_TCP) {
393 /* TCP needs IPFORWARD info if available */
394 struct m_hdr tag;
396 tag.mh_type = MT_TAG;
397 tag.mh_flags = PACKET_TAG_IPFORWARD;
398 tag.mh_data = (caddr_t)nexthop;
399 tag.mh_next = m;
401 (*inetsw[ip_protox[ip->ip_p]].pr_input)
402 ((struct mbuf *)&tag, hlen, ip->ip_p);
403 } else {
404 (*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen, ip->ip_p);
408 struct netmsg_transport_packet {
409 struct netmsg nm_netmsg;
410 struct mbuf *nm_mbuf;
411 int nm_hlen;
412 boolean_t nm_hasnexthop;
413 struct sockaddr_in nm_nexthop;
416 static void
417 transport_processing_handler(netmsg_t netmsg)
419 struct netmsg_transport_packet *msg = (void *)netmsg;
420 struct sockaddr_in *nexthop;
421 struct ip *ip;
423 ip = mtod(msg->nm_mbuf, struct ip *);
424 nexthop = msg->nm_hasnexthop ? &msg->nm_nexthop : NULL;
425 transport_processing_oncpu(msg->nm_mbuf, msg->nm_hlen, ip, nexthop);
426 lwkt_replymsg(&msg->nm_netmsg.nm_lmsg, 0);
429 static void
430 ip_input_handler(struct netmsg *msg0)
432 struct mbuf *m = ((struct netmsg_packet *)msg0)->nm_packet;
434 ip_input(m);
435 /* msg0 was embedded in the mbuf, do not reply! */
439 * IP input routine. Checksum and byte swap header. If fragmented
440 * try to reassemble. Process options. Pass to next level.
442 void
443 ip_input(struct mbuf *m)
445 struct ip *ip;
446 struct ipq *fp;
447 struct in_ifaddr *ia = NULL;
448 struct ifaddr *ifa;
449 int i, hlen, checkif;
450 u_short sum;
451 struct in_addr pkt_dst;
452 u_int32_t divert_info = 0; /* packet divert/tee info */
453 struct ip_fw_args args;
454 boolean_t using_srcrt = FALSE; /* forward (by PFIL_HOOKS) */
455 boolean_t needredispatch = FALSE;
456 struct in_addr odst; /* original dst address(NAT) */
457 #if defined(FAST_IPSEC) || defined(IPDIVERT)
458 struct m_tag *mtag;
459 #endif
460 #ifdef FAST_IPSEC
461 struct tdb_ident *tdbi;
462 struct secpolicy *sp;
463 int error;
464 #endif
466 args.eh = NULL;
467 args.oif = NULL;
468 args.rule = NULL;
469 args.next_hop = NULL;
471 /* Grab info from MT_TAG mbufs prepended to the chain. */
472 while (m != NULL && m->m_type == MT_TAG) {
473 switch(m->_m_tag_id) {
474 case PACKET_TAG_DUMMYNET:
475 args.rule = ((struct dn_pkt *)m)->rule;
476 break;
477 case PACKET_TAG_IPFORWARD:
478 args.next_hop = (struct sockaddr_in *)m->m_hdr.mh_data;
479 break;
480 default:
481 kprintf("ip_input: unrecognised MT_TAG tag %d\n",
482 m->_m_tag_id);
483 break;
485 m = m->m_next;
487 KASSERT(m != NULL && (m->m_flags & M_PKTHDR), ("ip_input: no HDR"));
489 if (args.rule != NULL) { /* dummynet already filtered us */
490 ip = mtod(m, struct ip *);
491 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
492 goto iphack;
495 ipstat.ips_total++;
497 /* length checks already done in ip_demux() */
498 KASSERT(m->m_len >= sizeof(ip), ("IP header not in one mbuf"));
500 ip = mtod(m, struct ip *);
502 if (IP_VHL_V(ip->ip_vhl) != IPVERSION) {
503 ipstat.ips_badvers++;
504 goto bad;
507 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
508 /* length checks already done in ip_demux() */
509 KASSERT(hlen >= sizeof(struct ip), ("IP header len too small"));
510 KASSERT(m->m_len >= hlen, ("packet shorter than IP header length"));
512 /* 127/8 must not appear on wire - RFC1122 */
513 if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
514 (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
515 if (!(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK)) {
516 ipstat.ips_badaddr++;
517 goto bad;
521 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) {
522 sum = !(m->m_pkthdr.csum_flags & CSUM_IP_VALID);
523 } else {
524 if (hlen == sizeof(struct ip)) {
525 sum = in_cksum_hdr(ip);
526 } else {
527 sum = in_cksum(m, hlen);
530 if (sum != 0) {
531 ipstat.ips_badsum++;
532 goto bad;
535 #ifdef ALTQ
536 if (altq_input != NULL && (*altq_input)(m, AF_INET) == 0) {
537 /* packet is dropped by traffic conditioner */
538 return;
540 #endif
542 * Convert fields to host representation.
544 ip->ip_len = ntohs(ip->ip_len);
545 if (ip->ip_len < hlen) {
546 ipstat.ips_badlen++;
547 goto bad;
549 ip->ip_off = ntohs(ip->ip_off);
552 * Check that the amount of data in the buffers
553 * is as at least much as the IP header would have us expect.
554 * Trim mbufs if longer than we expect.
555 * Drop packet if shorter than we expect.
557 if (m->m_pkthdr.len < ip->ip_len) {
558 ipstat.ips_tooshort++;
559 goto bad;
561 if (m->m_pkthdr.len > ip->ip_len) {
562 if (m->m_len == m->m_pkthdr.len) {
563 m->m_len = ip->ip_len;
564 m->m_pkthdr.len = ip->ip_len;
565 } else
566 m_adj(m, ip->ip_len - m->m_pkthdr.len);
568 #if defined(IPSEC) && !defined(IPSEC_FILTERGIF)
570 * Bypass packet filtering for packets from a tunnel (gif).
572 if (ipsec_gethist(m, NULL))
573 goto pass;
574 #endif
577 * IpHack's section.
578 * Right now when no processing on packet has done
579 * and it is still fresh out of network we do our black
580 * deals with it.
581 * - Firewall: deny/allow/divert
582 * - Xlate: translate packet's addr/port (NAT).
583 * - Pipe: pass pkt through dummynet.
584 * - Wrap: fake packet's addr/port <unimpl.>
585 * - Encapsulate: put it in another IP and send out. <unimp.>
588 iphack:
591 * Run through list of hooks for input packets.
593 * NB: Beware of the destination address changing (e.g.
594 * by NAT rewriting). When this happens, tell
595 * ip_forward to do the right thing.
597 if (pfil_has_hooks(&inet_pfil_hook)) {
598 odst = ip->ip_dst;
599 if (pfil_run_hooks(&inet_pfil_hook, &m,
600 m->m_pkthdr.rcvif, PFIL_IN)) {
601 return;
603 if (m == NULL) /* consumed by filter */
604 return;
605 ip = mtod(m, struct ip *);
606 using_srcrt = (odst.s_addr != ip->ip_dst.s_addr);
609 if (fw_enable && IPFW_LOADED) {
611 * If we've been forwarded from the output side, then
612 * skip the firewall a second time
614 if (args.next_hop != NULL)
615 goto ours;
617 args.m = m;
618 i = ip_fw_chk_ptr(&args);
619 m = args.m;
621 if ((i & IP_FW_PORT_DENY_FLAG) || m == NULL) { /* drop */
622 if (m != NULL)
623 m_freem(m);
624 return;
626 ip = mtod(m, struct ip *); /* just in case m changed */
627 if (i == 0 && args.next_hop == NULL) /* common case */
628 goto pass;
629 if (DUMMYNET_LOADED && (i & IP_FW_PORT_DYNT_FLAG)) {
630 /* Send packet to the appropriate pipe */
631 ip_dn_io_ptr(m, i&0xffff, DN_TO_IP_IN, &args);
632 return;
634 #ifdef IPDIVERT
635 if (i != 0 && !(i & IP_FW_PORT_DYNT_FLAG)) {
636 /* Divert or tee packet */
637 divert_info = i;
638 goto ours;
640 #endif
641 if (i == 0 && args.next_hop != NULL)
642 goto pass;
644 * if we get here, the packet must be dropped
646 m_freem(m);
647 return;
649 pass:
652 * Process options and, if not destined for us,
653 * ship it on. ip_dooptions returns 1 when an
654 * error was detected (causing an icmp message
655 * to be sent and the original packet to be freed).
657 ip_nhops = 0; /* for source routed packets */
658 if (hlen > sizeof(struct ip) && ip_dooptions(m, 0, args.next_hop))
659 return;
661 /* greedy RSVP, snatches any PATH packet of the RSVP protocol and no
662 * matter if it is destined to another node, or whether it is
663 * a multicast one, RSVP wants it! and prevents it from being forwarded
664 * anywhere else. Also checks if the rsvp daemon is running before
665 * grabbing the packet.
667 if (rsvp_on && ip->ip_p == IPPROTO_RSVP)
668 goto ours;
671 * Check our list of addresses, to see if the packet is for us.
672 * If we don't have any addresses, assume any unicast packet
673 * we receive might be for us (and let the upper layers deal
674 * with it).
676 if (TAILQ_EMPTY(&in_ifaddrhead) && !(m->m_flags & (M_MCAST | M_BCAST)))
677 goto ours;
680 * Cache the destination address of the packet; this may be
681 * changed by use of 'ipfw fwd'.
683 pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
686 * Enable a consistency check between the destination address
687 * and the arrival interface for a unicast packet (the RFC 1122
688 * strong ES model) if IP forwarding is disabled and the packet
689 * is not locally generated and the packet is not subject to
690 * 'ipfw fwd'.
692 * XXX - Checking also should be disabled if the destination
693 * address is ipnat'ed to a different interface.
695 * XXX - Checking is incompatible with IP aliases added
696 * to the loopback interface instead of the interface where
697 * the packets are received.
699 checkif = ip_checkinterface &&
700 !ipforwarding &&
701 m->m_pkthdr.rcvif != NULL &&
702 !(m->m_pkthdr.rcvif->if_flags & IFF_LOOPBACK) &&
703 (args.next_hop == NULL);
706 * Check for exact addresses in the hash bucket.
708 LIST_FOREACH(ia, INADDR_HASH(pkt_dst.s_addr), ia_hash) {
710 * If the address matches, verify that the packet
711 * arrived via the correct interface if checking is
712 * enabled.
714 if (IA_SIN(ia)->sin_addr.s_addr == pkt_dst.s_addr &&
715 (!checkif || ia->ia_ifp == m->m_pkthdr.rcvif))
716 goto ours;
719 * Check for broadcast addresses.
721 * Only accept broadcast packets that arrive via the matching
722 * interface. Reception of forwarded directed broadcasts would
723 * be handled via ip_forward() and ether_output() with the loopback
724 * into the stack for SIMPLEX interfaces handled by ether_output().
726 if (m->m_pkthdr.rcvif->if_flags & IFF_BROADCAST) {
727 TAILQ_FOREACH(ifa, &m->m_pkthdr.rcvif->if_addrhead, ifa_link) {
728 if (ifa->ifa_addr == NULL) /* shutdown/startup race */
729 continue;
730 if (ifa->ifa_addr->sa_family != AF_INET)
731 continue;
732 ia = ifatoia(ifa);
733 if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
734 pkt_dst.s_addr)
735 goto ours;
736 if (ia->ia_netbroadcast.s_addr == pkt_dst.s_addr)
737 goto ours;
738 #ifdef BOOTP_COMPAT
739 if (IA_SIN(ia)->sin_addr.s_addr == INADDR_ANY)
740 goto ours;
741 #endif
744 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
745 struct in_multi *inm;
747 if (ip_mrouter != NULL) {
749 * If we are acting as a multicast router, all
750 * incoming multicast packets are passed to the
751 * kernel-level multicast forwarding function.
752 * The packet is returned (relatively) intact; if
753 * ip_mforward() returns a non-zero value, the packet
754 * must be discarded, else it may be accepted below.
756 if (ip_mforward != NULL &&
757 ip_mforward(ip, m->m_pkthdr.rcvif, m, NULL) != 0) {
758 ipstat.ips_cantforward++;
759 m_freem(m);
760 return;
764 * The process-level routing daemon needs to receive
765 * all multicast IGMP packets, whether or not this
766 * host belongs to their destination groups.
768 if (ip->ip_p == IPPROTO_IGMP)
769 goto ours;
770 ipstat.ips_forward++;
773 * See if we belong to the destination multicast group on the
774 * arrival interface.
776 IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
777 if (inm == NULL) {
778 ipstat.ips_notmember++;
779 m_freem(m);
780 return;
782 goto ours;
784 if (ip->ip_dst.s_addr == INADDR_BROADCAST)
785 goto ours;
786 if (ip->ip_dst.s_addr == INADDR_ANY)
787 goto ours;
790 * FAITH(Firewall Aided Internet Translator)
792 if (m->m_pkthdr.rcvif && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
793 if (ip_keepfaith) {
794 if (ip->ip_p == IPPROTO_TCP || ip->ip_p == IPPROTO_ICMP)
795 goto ours;
797 m_freem(m);
798 return;
802 * Not for us; forward if possible and desirable.
804 if (!ipforwarding) {
805 ipstat.ips_cantforward++;
806 m_freem(m);
807 } else {
808 #ifdef IPSEC
810 * Enforce inbound IPsec SPD.
812 if (ipsec4_in_reject(m, NULL)) {
813 ipsecstat.in_polvio++;
814 goto bad;
816 #endif
817 #ifdef FAST_IPSEC
818 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
819 crit_enter();
820 if (mtag != NULL) {
821 tdbi = (struct tdb_ident *)m_tag_data(mtag);
822 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
823 } else {
824 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
825 IP_FORWARDING, &error);
827 if (sp == NULL) { /* NB: can happen if error */
828 crit_exit();
829 /*XXX error stat???*/
830 DPRINTF(("ip_input: no SP for forwarding\n")); /*XXX*/
831 goto bad;
835 * Check security policy against packet attributes.
837 error = ipsec_in_reject(sp, m);
838 KEY_FREESP(&sp);
839 crit_exit();
840 if (error) {
841 ipstat.ips_cantforward++;
842 goto bad;
844 #endif
845 ip_forward(m, using_srcrt, args.next_hop);
847 return;
849 ours:
852 * IPSTEALTH: Process non-routing options only
853 * if the packet is destined for us.
855 if (ipstealth &&
856 hlen > sizeof(struct ip) &&
857 ip_dooptions(m, 1, args.next_hop))
858 return;
860 /* Count the packet in the ip address stats */
861 if (ia != NULL) {
862 ia->ia_ifa.if_ipackets++;
863 ia->ia_ifa.if_ibytes += m->m_pkthdr.len;
867 * If offset or IP_MF are set, must reassemble.
868 * Otherwise, nothing need be done.
869 * (We could look in the reassembly queue to see
870 * if the packet was previously fragmented,
871 * but it's not worth the time; just let them time out.)
873 if (ip->ip_off & (IP_MF | IP_OFFMASK)) {
875 /* If maxnipq is 0, never accept fragments. */
876 if (maxnipq == 0) {
877 ipstat.ips_fragments++;
878 ipstat.ips_fragdropped++;
879 goto bad;
882 sum = IPREASS_HASH(ip->ip_src.s_addr, ip->ip_id);
884 * Look for queue of fragments
885 * of this datagram.
887 for (fp = ipq[sum].next; fp != &ipq[sum]; fp = fp->next)
888 if (ip->ip_id == fp->ipq_id &&
889 ip->ip_src.s_addr == fp->ipq_src.s_addr &&
890 ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
891 ip->ip_p == fp->ipq_p)
892 goto found;
894 fp = NULL;
897 * Enforce upper bound on number of fragmented packets
898 * for which we attempt reassembly;
899 * If maxnipq is -1, accept all fragments without limitation.
901 if ((nipq > maxnipq) && (maxnipq > 0)) {
903 * drop something from the tail of the current queue
904 * before proceeding further
906 if (ipq[sum].prev == &ipq[sum]) { /* gak */
907 for (i = 0; i < IPREASS_NHASH; i++) {
908 if (ipq[i].prev != &ipq[i]) {
909 ipstat.ips_fragtimeout +=
910 ipq[i].prev->ipq_nfrags;
911 ip_freef(ipq[i].prev);
912 break;
915 } else {
916 ipstat.ips_fragtimeout +=
917 ipq[sum].prev->ipq_nfrags;
918 ip_freef(ipq[sum].prev);
921 found:
923 * Adjust ip_len to not reflect header,
924 * convert offset of this to bytes.
926 ip->ip_len -= hlen;
927 if (ip->ip_off & IP_MF) {
929 * Make sure that fragments have a data length
930 * that's a non-zero multiple of 8 bytes.
932 if (ip->ip_len == 0 || (ip->ip_len & 0x7) != 0) {
933 ipstat.ips_toosmall++; /* XXX */
934 goto bad;
936 m->m_flags |= M_FRAG;
937 } else
938 m->m_flags &= ~M_FRAG;
939 ip->ip_off <<= 3;
942 * Attempt reassembly; if it succeeds, proceed.
943 * ip_reass() will return a different mbuf, and update
944 * the divert info in divert_info.
946 ipstat.ips_fragments++;
947 m->m_pkthdr.header = ip;
948 m = ip_reass(m, fp, &ipq[sum], &divert_info);
949 if (m == NULL)
950 return;
951 ipstat.ips_reassembled++;
952 needredispatch = TRUE;
953 ip = mtod(m, struct ip *);
954 /* Get the header length of the reassembled packet */
955 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
956 #ifdef IPDIVERT
957 /* Restore original checksum before diverting packet */
958 if (divert_info != 0) {
959 ip->ip_len += hlen;
960 ip->ip_len = htons(ip->ip_len);
961 ip->ip_off = htons(ip->ip_off);
962 ip->ip_sum = 0;
963 if (hlen == sizeof(struct ip))
964 ip->ip_sum = in_cksum_hdr(ip);
965 else
966 ip->ip_sum = in_cksum(m, hlen);
967 ip->ip_off = ntohs(ip->ip_off);
968 ip->ip_len = ntohs(ip->ip_len);
969 ip->ip_len -= hlen;
971 #endif
972 } else {
973 ip->ip_len -= hlen;
976 #ifdef IPDIVERT
978 * Divert or tee packet to the divert protocol if required.
980 if (divert_info != 0) {
981 struct mbuf *clone = NULL;
983 /* Clone packet if we're doing a 'tee' */
984 if ((divert_info & IP_FW_PORT_TEE_FLAG) != 0)
985 clone = m_dup(m, MB_DONTWAIT);
987 /* Restore packet header fields to original values */
988 ip->ip_len += hlen;
989 ip->ip_len = htons(ip->ip_len);
990 ip->ip_off = htons(ip->ip_off);
992 /* Deliver packet to divert input routine */
993 divert_packet(m, 1, divert_info & 0xffff);
994 ipstat.ips_delivered++;
996 /* If 'tee', continue with original packet */
997 if (clone == NULL)
998 return;
999 m = clone;
1000 ip = mtod(m, struct ip *);
1001 ip->ip_len += hlen;
1003 * Jump backwards to complete processing of the
1004 * packet. But first clear divert_info to avoid
1005 * entering this block again.
1006 * We do not need to clear args.divert_rule
1007 * or args.next_hop as they will not be used.
1009 * XXX Better safe than sorry, remove the DIVERT tag.
1011 mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL);
1012 if (mtag != NULL)
1013 m_tag_delete(m, mtag);
1015 divert_info = 0;
1016 goto pass;
1018 #endif
1020 #ifdef IPSEC
1022 * enforce IPsec policy checking if we are seeing last header.
1023 * note that we do not visit this with protocols with pcb layer
1024 * code - like udp/tcp/raw ip.
1026 if ((inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) &&
1027 ipsec4_in_reject(m, NULL)) {
1028 ipsecstat.in_polvio++;
1029 goto bad;
1031 #endif
1032 #if FAST_IPSEC
1034 * enforce IPsec policy checking if we are seeing last header.
1035 * note that we do not visit this with protocols with pcb layer
1036 * code - like udp/tcp/raw ip.
1038 if (inetsw[ip_protox[ip->ip_p]].pr_flags & PR_LASTHDR) {
1040 * Check if the packet has already had IPsec processing
1041 * done. If so, then just pass it along. This tag gets
1042 * set during AH, ESP, etc. input handling, before the
1043 * packet is returned to the ip input queue for delivery.
1045 mtag = m_tag_find(m, PACKET_TAG_IPSEC_IN_DONE, NULL);
1046 crit_enter();
1047 if (mtag != NULL) {
1048 tdbi = (struct tdb_ident *)m_tag_data(mtag);
1049 sp = ipsec_getpolicy(tdbi, IPSEC_DIR_INBOUND);
1050 } else {
1051 sp = ipsec_getpolicybyaddr(m, IPSEC_DIR_INBOUND,
1052 IP_FORWARDING, &error);
1054 if (sp != NULL) {
1056 * Check security policy against packet attributes.
1058 error = ipsec_in_reject(sp, m);
1059 KEY_FREESP(&sp);
1060 } else {
1061 /* XXX error stat??? */
1062 error = EINVAL;
1063 DPRINTF(("ip_input: no SP, packet discarded\n"));/*XXX*/
1064 goto bad;
1066 crit_exit();
1067 if (error)
1068 goto bad;
1070 #endif /* FAST_IPSEC */
1072 ipstat.ips_delivered++;
1073 if (needredispatch) {
1074 struct netmsg_transport_packet *msg;
1075 lwkt_port_t port;
1077 ip->ip_off = htons(ip->ip_off);
1078 ip->ip_len = htons(ip->ip_len);
1079 port = ip_mport(&m);
1080 if (port == NULL)
1081 return;
1083 msg = kmalloc(sizeof(struct netmsg_transport_packet), M_LWKTMSG,
1084 M_INTWAIT | M_NULLOK);
1085 if (msg == NULL)
1086 goto bad;
1088 netmsg_init(&msg->nm_netmsg, &netisr_afree_rport, 0,
1089 transport_processing_handler);
1090 msg->nm_hlen = hlen;
1091 msg->nm_hasnexthop = (args.next_hop != NULL);
1092 if (msg->nm_hasnexthop)
1093 msg->nm_nexthop = *args.next_hop; /* structure copy */
1095 msg->nm_mbuf = m;
1096 ip = mtod(m, struct ip *);
1097 ip->ip_len = ntohs(ip->ip_len);
1098 ip->ip_off = ntohs(ip->ip_off);
1099 lwkt_sendmsg(port, &msg->nm_netmsg.nm_lmsg);
1100 } else {
1101 transport_processing_oncpu(m, hlen, ip, args.next_hop);
1103 return;
1105 bad:
1106 m_freem(m);
1110 * Take incoming datagram fragment and try to reassemble it into
1111 * whole datagram. If a chain for reassembly of this datagram already
1112 * exists, then it is given as fp; otherwise have to make a chain.
1114 * When IPDIVERT enabled, keep additional state with each packet that
1115 * tells us if we need to divert or tee the packet we're building.
1116 * In particular, *divinfo includes the port and TEE flag.
1119 static struct mbuf *
1120 ip_reass(struct mbuf *m, struct ipq *fp, struct ipq *where,
1121 u_int32_t *divinfo)
1123 struct ip *ip = mtod(m, struct ip *);
1124 struct mbuf *p = NULL, *q, *nq;
1125 struct mbuf *n;
1126 int hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1127 int i, next;
1128 #ifdef IPDIVERT
1129 struct m_tag *mtag;
1130 #endif
1133 * Presence of header sizes in mbufs
1134 * would confuse code below.
1136 m->m_data += hlen;
1137 m->m_len -= hlen;
1140 * If first fragment to arrive, create a reassembly queue.
1142 if (fp == NULL) {
1143 if ((fp = mpipe_alloc_nowait(&ipq_mpipe)) == NULL)
1144 goto dropfrag;
1145 insque(fp, where);
1146 nipq++;
1147 fp->ipq_nfrags = 1;
1148 fp->ipq_ttl = IPFRAGTTL;
1149 fp->ipq_p = ip->ip_p;
1150 fp->ipq_id = ip->ip_id;
1151 fp->ipq_src = ip->ip_src;
1152 fp->ipq_dst = ip->ip_dst;
1153 fp->ipq_frags = m;
1154 m->m_nextpkt = NULL;
1155 #ifdef IPDIVERT
1156 fp->ipq_div_info = 0;
1157 #endif
1158 goto inserted;
1159 } else {
1160 fp->ipq_nfrags++;
1163 #define GETIP(m) ((struct ip*)((m)->m_pkthdr.header))
1166 * Find a segment which begins after this one does.
1168 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt)
1169 if (GETIP(q)->ip_off > ip->ip_off)
1170 break;
1173 * If there is a preceding segment, it may provide some of
1174 * our data already. If so, drop the data from the incoming
1175 * segment. If it provides all of our data, drop us, otherwise
1176 * stick new segment in the proper place.
1178 * If some of the data is dropped from the the preceding
1179 * segment, then it's checksum is invalidated.
1181 if (p) {
1182 i = GETIP(p)->ip_off + GETIP(p)->ip_len - ip->ip_off;
1183 if (i > 0) {
1184 if (i >= ip->ip_len)
1185 goto dropfrag;
1186 m_adj(m, i);
1187 m->m_pkthdr.csum_flags = 0;
1188 ip->ip_off += i;
1189 ip->ip_len -= i;
1191 m->m_nextpkt = p->m_nextpkt;
1192 p->m_nextpkt = m;
1193 } else {
1194 m->m_nextpkt = fp->ipq_frags;
1195 fp->ipq_frags = m;
1199 * While we overlap succeeding segments trim them or,
1200 * if they are completely covered, dequeue them.
1202 for (; q != NULL && ip->ip_off + ip->ip_len > GETIP(q)->ip_off;
1203 q = nq) {
1204 i = (ip->ip_off + ip->ip_len) - GETIP(q)->ip_off;
1205 if (i < GETIP(q)->ip_len) {
1206 GETIP(q)->ip_len -= i;
1207 GETIP(q)->ip_off += i;
1208 m_adj(q, i);
1209 q->m_pkthdr.csum_flags = 0;
1210 break;
1212 nq = q->m_nextpkt;
1213 m->m_nextpkt = nq;
1214 ipstat.ips_fragdropped++;
1215 fp->ipq_nfrags--;
1216 q->m_nextpkt = NULL;
1217 m_freem(q);
1220 inserted:
1222 #ifdef IPDIVERT
1224 * Transfer firewall instructions to the fragment structure.
1225 * Only trust info in the fragment at offset 0.
1227 if (ip->ip_off == 0) {
1228 fp->ipq_div_info = *divinfo;
1229 } else {
1230 mtag = m_tag_find(m, PACKET_TAG_IPFW_DIVERT, NULL);
1231 if (mtag != NULL)
1232 m_tag_delete(m, mtag);
1234 *divinfo = 0;
1235 #endif
1238 * Check for complete reassembly and perform frag per packet
1239 * limiting.
1241 * Frag limiting is performed here so that the nth frag has
1242 * a chance to complete the packet before we drop the packet.
1243 * As a result, n+1 frags are actually allowed per packet, but
1244 * only n will ever be stored. (n = maxfragsperpacket.)
1247 next = 0;
1248 for (p = NULL, q = fp->ipq_frags; q; p = q, q = q->m_nextpkt) {
1249 if (GETIP(q)->ip_off != next) {
1250 if (fp->ipq_nfrags > maxfragsperpacket) {
1251 ipstat.ips_fragdropped += fp->ipq_nfrags;
1252 ip_freef(fp);
1254 return (NULL);
1256 next += GETIP(q)->ip_len;
1258 /* Make sure the last packet didn't have the IP_MF flag */
1259 if (p->m_flags & M_FRAG) {
1260 if (fp->ipq_nfrags > maxfragsperpacket) {
1261 ipstat.ips_fragdropped += fp->ipq_nfrags;
1262 ip_freef(fp);
1264 return (NULL);
1268 * Reassembly is complete. Make sure the packet is a sane size.
1270 q = fp->ipq_frags;
1271 ip = GETIP(q);
1272 if (next + (IP_VHL_HL(ip->ip_vhl) << 2) > IP_MAXPACKET) {
1273 ipstat.ips_toolong++;
1274 ipstat.ips_fragdropped += fp->ipq_nfrags;
1275 ip_freef(fp);
1276 return (NULL);
1280 * Concatenate fragments.
1282 m = q;
1283 n = m->m_next;
1284 m->m_next = NULL;
1285 m_cat(m, n);
1286 nq = q->m_nextpkt;
1287 q->m_nextpkt = NULL;
1288 for (q = nq; q != NULL; q = nq) {
1289 nq = q->m_nextpkt;
1290 q->m_nextpkt = NULL;
1291 m->m_pkthdr.csum_flags &= q->m_pkthdr.csum_flags;
1292 m->m_pkthdr.csum_data += q->m_pkthdr.csum_data;
1293 m_cat(m, q);
1296 #ifdef IPDIVERT
1298 * Extract firewall instructions from the fragment structure.
1300 *divinfo = fp->ipq_div_info;
1301 #endif
1304 * Create header for new ip packet by
1305 * modifying header of first packet;
1306 * dequeue and discard fragment reassembly header.
1307 * Make header visible.
1309 ip->ip_len = next;
1310 ip->ip_src = fp->ipq_src;
1311 ip->ip_dst = fp->ipq_dst;
1312 remque(fp);
1313 nipq--;
1314 mpipe_free(&ipq_mpipe, fp);
1315 m->m_len += (IP_VHL_HL(ip->ip_vhl) << 2);
1316 m->m_data -= (IP_VHL_HL(ip->ip_vhl) << 2);
1317 /* some debugging cruft by sklower, below, will go away soon */
1318 if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
1319 int plen = 0;
1321 for (n = m; n; n = n->m_next)
1322 plen += n->m_len;
1323 m->m_pkthdr.len = plen;
1325 return (m);
1327 dropfrag:
1328 #ifdef IPDIVERT
1329 *divinfo = 0;
1330 #endif
1331 ipstat.ips_fragdropped++;
1332 if (fp != NULL)
1333 fp->ipq_nfrags--;
1334 m_freem(m);
1335 return (NULL);
1337 #undef GETIP
1341 * Free a fragment reassembly header and all
1342 * associated datagrams.
1344 static void
1345 ip_freef(struct ipq *fp)
1347 struct mbuf *q;
1349 while (fp->ipq_frags) {
1350 q = fp->ipq_frags;
1351 fp->ipq_frags = q->m_nextpkt;
1352 q->m_nextpkt = NULL;
1353 m_freem(q);
1355 remque(fp);
1356 mpipe_free(&ipq_mpipe, fp);
1357 nipq--;
1361 * IP timer processing;
1362 * if a timer expires on a reassembly
1363 * queue, discard it.
1365 void
1366 ip_slowtimo(void)
1368 struct ipq *fp;
1369 int i;
1371 crit_enter();
1372 for (i = 0; i < IPREASS_NHASH; i++) {
1373 fp = ipq[i].next;
1374 if (fp == NULL)
1375 continue;
1376 while (fp != &ipq[i]) {
1377 --fp->ipq_ttl;
1378 fp = fp->next;
1379 if (fp->prev->ipq_ttl == 0) {
1380 ipstat.ips_fragtimeout += fp->prev->ipq_nfrags;
1381 ip_freef(fp->prev);
1386 * If we are over the maximum number of fragments
1387 * (due to the limit being lowered), drain off
1388 * enough to get down to the new limit.
1390 if (maxnipq >= 0 && nipq > maxnipq) {
1391 for (i = 0; i < IPREASS_NHASH; i++) {
1392 while (nipq > maxnipq &&
1393 (ipq[i].next != &ipq[i])) {
1394 ipstat.ips_fragdropped +=
1395 ipq[i].next->ipq_nfrags;
1396 ip_freef(ipq[i].next);
1400 ipflow_slowtimo();
1401 crit_exit();
1405 * Drain off all datagram fragments.
1407 void
1408 ip_drain(void)
1410 int i;
1412 for (i = 0; i < IPREASS_NHASH; i++) {
1413 while (ipq[i].next != &ipq[i]) {
1414 ipstat.ips_fragdropped += ipq[i].next->ipq_nfrags;
1415 ip_freef(ipq[i].next);
1418 in_rtqdrain();
1422 * Do option processing on a datagram,
1423 * possibly discarding it if bad options are encountered,
1424 * or forwarding it if source-routed.
1425 * The pass argument is used when operating in the IPSTEALTH
1426 * mode to tell what options to process:
1427 * [LS]SRR (pass 0) or the others (pass 1).
1428 * The reason for as many as two passes is that when doing IPSTEALTH,
1429 * non-routing options should be processed only if the packet is for us.
1430 * Returns 1 if packet has been forwarded/freed,
1431 * 0 if the packet should be processed further.
1433 static int
1434 ip_dooptions(struct mbuf *m, int pass, struct sockaddr_in *next_hop)
1436 struct sockaddr_in ipaddr = { sizeof ipaddr, AF_INET };
1437 struct ip *ip = mtod(m, struct ip *);
1438 u_char *cp;
1439 struct in_ifaddr *ia;
1440 int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB;
1441 boolean_t forward = FALSE;
1442 struct in_addr *sin, dst;
1443 n_time ntime;
1445 dst = ip->ip_dst;
1446 cp = (u_char *)(ip + 1);
1447 cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1448 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1449 opt = cp[IPOPT_OPTVAL];
1450 if (opt == IPOPT_EOL)
1451 break;
1452 if (opt == IPOPT_NOP)
1453 optlen = 1;
1454 else {
1455 if (cnt < IPOPT_OLEN + sizeof(*cp)) {
1456 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1457 goto bad;
1459 optlen = cp[IPOPT_OLEN];
1460 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
1461 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1462 goto bad;
1465 switch (opt) {
1467 default:
1468 break;
1471 * Source routing with record.
1472 * Find interface with current destination address.
1473 * If none on this machine then drop if strictly routed,
1474 * or do nothing if loosely routed.
1475 * Record interface address and bring up next address
1476 * component. If strictly routed make sure next
1477 * address is on directly accessible net.
1479 case IPOPT_LSRR:
1480 case IPOPT_SSRR:
1481 if (ipstealth && pass > 0)
1482 break;
1483 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1484 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1485 goto bad;
1487 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1488 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1489 goto bad;
1491 ipaddr.sin_addr = ip->ip_dst;
1492 ia = (struct in_ifaddr *)
1493 ifa_ifwithaddr((struct sockaddr *)&ipaddr);
1494 if (ia == NULL) {
1495 if (opt == IPOPT_SSRR) {
1496 type = ICMP_UNREACH;
1497 code = ICMP_UNREACH_SRCFAIL;
1498 goto bad;
1500 if (!ip_dosourceroute)
1501 goto nosourcerouting;
1503 * Loose routing, and not at next destination
1504 * yet; nothing to do except forward.
1506 break;
1508 off--; /* 0 origin */
1509 if (off > optlen - (int)sizeof(struct in_addr)) {
1511 * End of source route. Should be for us.
1513 if (!ip_acceptsourceroute)
1514 goto nosourcerouting;
1515 save_rte(cp, ip->ip_src);
1516 break;
1518 if (ipstealth)
1519 goto dropit;
1520 if (!ip_dosourceroute) {
1521 if (ipforwarding) {
1522 char buf[sizeof "aaa.bbb.ccc.ddd"];
1525 * Acting as a router, so generate ICMP
1527 nosourcerouting:
1528 strcpy(buf, inet_ntoa(ip->ip_dst));
1529 log(LOG_WARNING,
1530 "attempted source route from %s to %s\n",
1531 inet_ntoa(ip->ip_src), buf);
1532 type = ICMP_UNREACH;
1533 code = ICMP_UNREACH_SRCFAIL;
1534 goto bad;
1535 } else {
1537 * Not acting as a router,
1538 * so silently drop.
1540 dropit:
1541 ipstat.ips_cantforward++;
1542 m_freem(m);
1543 return (1);
1548 * locate outgoing interface
1550 memcpy(&ipaddr.sin_addr, cp + off,
1551 sizeof ipaddr.sin_addr);
1553 if (opt == IPOPT_SSRR) {
1554 #define INA struct in_ifaddr *
1555 #define SA struct sockaddr *
1556 if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr))
1557 == NULL)
1558 ia = (INA)ifa_ifwithnet((SA)&ipaddr);
1559 } else
1560 ia = ip_rtaddr(ipaddr.sin_addr,
1561 &ipforward_rt[mycpuid]);
1562 if (ia == NULL) {
1563 type = ICMP_UNREACH;
1564 code = ICMP_UNREACH_SRCFAIL;
1565 goto bad;
1567 ip->ip_dst = ipaddr.sin_addr;
1568 memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1569 sizeof(struct in_addr));
1570 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1572 * Let ip_intr's mcast routing check handle mcast pkts
1574 forward = !IN_MULTICAST(ntohl(ip->ip_dst.s_addr));
1575 break;
1577 case IPOPT_RR:
1578 if (ipstealth && pass == 0)
1579 break;
1580 if (optlen < IPOPT_OFFSET + sizeof(*cp)) {
1581 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1582 goto bad;
1584 if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
1585 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1586 goto bad;
1589 * If no space remains, ignore.
1591 off--; /* 0 origin */
1592 if (off > optlen - (int)sizeof(struct in_addr))
1593 break;
1594 memcpy(&ipaddr.sin_addr, &ip->ip_dst,
1595 sizeof ipaddr.sin_addr);
1597 * locate outgoing interface; if we're the destination,
1598 * use the incoming interface (should be same).
1600 if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == NULL &&
1601 (ia = ip_rtaddr(ipaddr.sin_addr,
1602 &ipforward_rt[mycpuid]))
1603 == NULL) {
1604 type = ICMP_UNREACH;
1605 code = ICMP_UNREACH_HOST;
1606 goto bad;
1608 memcpy(cp + off, &IA_SIN(ia)->sin_addr,
1609 sizeof(struct in_addr));
1610 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1611 break;
1613 case IPOPT_TS:
1614 if (ipstealth && pass == 0)
1615 break;
1616 code = cp - (u_char *)ip;
1617 if (optlen < 4 || optlen > 40) {
1618 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1619 goto bad;
1621 if ((off = cp[IPOPT_OFFSET]) < 5) {
1622 code = &cp[IPOPT_OLEN] - (u_char *)ip;
1623 goto bad;
1625 if (off > optlen - (int)sizeof(int32_t)) {
1626 cp[IPOPT_OFFSET + 1] += (1 << 4);
1627 if ((cp[IPOPT_OFFSET + 1] & 0xf0) == 0) {
1628 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1629 goto bad;
1631 break;
1633 off--; /* 0 origin */
1634 sin = (struct in_addr *)(cp + off);
1635 switch (cp[IPOPT_OFFSET + 1] & 0x0f) {
1637 case IPOPT_TS_TSONLY:
1638 break;
1640 case IPOPT_TS_TSANDADDR:
1641 if (off + sizeof(n_time) +
1642 sizeof(struct in_addr) > optlen) {
1643 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1644 goto bad;
1646 ipaddr.sin_addr = dst;
1647 ia = (INA)ifaof_ifpforaddr((SA)&ipaddr,
1648 m->m_pkthdr.rcvif);
1649 if (ia == NULL)
1650 continue;
1651 memcpy(sin, &IA_SIN(ia)->sin_addr,
1652 sizeof(struct in_addr));
1653 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1654 off += sizeof(struct in_addr);
1655 break;
1657 case IPOPT_TS_PRESPEC:
1658 if (off + sizeof(n_time) +
1659 sizeof(struct in_addr) > optlen) {
1660 code = &cp[IPOPT_OFFSET] - (u_char *)ip;
1661 goto bad;
1663 memcpy(&ipaddr.sin_addr, sin,
1664 sizeof(struct in_addr));
1665 if (ifa_ifwithaddr((SA)&ipaddr) == NULL)
1666 continue;
1667 cp[IPOPT_OFFSET] += sizeof(struct in_addr);
1668 off += sizeof(struct in_addr);
1669 break;
1671 default:
1672 code = &cp[IPOPT_OFFSET + 1] - (u_char *)ip;
1673 goto bad;
1675 ntime = iptime();
1676 memcpy(cp + off, &ntime, sizeof(n_time));
1677 cp[IPOPT_OFFSET] += sizeof(n_time);
1680 if (forward && ipforwarding) {
1681 ip_forward(m, TRUE, next_hop);
1682 return (1);
1684 return (0);
1685 bad:
1686 icmp_error(m, type, code, 0, 0);
1687 ipstat.ips_badoptions++;
1688 return (1);
1692 * Given address of next destination (final or next hop),
1693 * return internet address info of interface to be used to get there.
1695 struct in_ifaddr *
1696 ip_rtaddr(struct in_addr dst, struct route *ro)
1698 struct sockaddr_in *sin;
1700 sin = (struct sockaddr_in *)&ro->ro_dst;
1702 if (ro->ro_rt == NULL || dst.s_addr != sin->sin_addr.s_addr) {
1703 if (ro->ro_rt != NULL) {
1704 RTFREE(ro->ro_rt);
1705 ro->ro_rt = NULL;
1707 sin->sin_family = AF_INET;
1708 sin->sin_len = sizeof *sin;
1709 sin->sin_addr = dst;
1710 rtalloc_ign(ro, RTF_PRCLONING);
1713 if (ro->ro_rt == NULL)
1714 return (NULL);
1716 return (ifatoia(ro->ro_rt->rt_ifa));
1720 * Save incoming source route for use in replies,
1721 * to be picked up later by ip_srcroute if the receiver is interested.
1723 void
1724 save_rte(u_char *option, struct in_addr dst)
1726 unsigned olen;
1728 olen = option[IPOPT_OLEN];
1729 #ifdef DIAGNOSTIC
1730 if (ipprintfs)
1731 kprintf("save_rte: olen %d\n", olen);
1732 #endif
1733 if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
1734 return;
1735 bcopy(option, ip_srcrt.srcopt, olen);
1736 ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
1737 ip_srcrt.dst = dst;
1741 * Retrieve incoming source route for use in replies,
1742 * in the same form used by setsockopt.
1743 * The first hop is placed before the options, will be removed later.
1745 struct mbuf *
1746 ip_srcroute(void)
1748 struct in_addr *p, *q;
1749 struct mbuf *m;
1751 if (ip_nhops == 0)
1752 return (NULL);
1753 m = m_get(MB_DONTWAIT, MT_HEADER);
1754 if (m == NULL)
1755 return (NULL);
1757 #define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
1759 /* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
1760 m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
1761 OPTSIZ;
1762 #ifdef DIAGNOSTIC
1763 if (ipprintfs)
1764 kprintf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
1765 #endif
1768 * First save first hop for return route
1770 p = &ip_srcrt.route[ip_nhops - 1];
1771 *(mtod(m, struct in_addr *)) = *p--;
1772 #ifdef DIAGNOSTIC
1773 if (ipprintfs)
1774 kprintf(" hops %x", ntohl(mtod(m, struct in_addr *)->s_addr));
1775 #endif
1778 * Copy option fields and padding (nop) to mbuf.
1780 ip_srcrt.nop = IPOPT_NOP;
1781 ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
1782 memcpy(mtod(m, caddr_t) + sizeof(struct in_addr), &ip_srcrt.nop,
1783 OPTSIZ);
1784 q = (struct in_addr *)(mtod(m, caddr_t) +
1785 sizeof(struct in_addr) + OPTSIZ);
1786 #undef OPTSIZ
1788 * Record return path as an IP source route,
1789 * reversing the path (pointers are now aligned).
1791 while (p >= ip_srcrt.route) {
1792 #ifdef DIAGNOSTIC
1793 if (ipprintfs)
1794 kprintf(" %x", ntohl(q->s_addr));
1795 #endif
1796 *q++ = *p--;
1799 * Last hop goes to final destination.
1801 *q = ip_srcrt.dst;
1802 #ifdef DIAGNOSTIC
1803 if (ipprintfs)
1804 kprintf(" %x\n", ntohl(q->s_addr));
1805 #endif
1806 return (m);
1810 * Strip out IP options.
1812 void
1813 ip_stripoptions(struct mbuf *m)
1815 int datalen;
1816 struct ip *ip = mtod(m, struct ip *);
1817 caddr_t opts;
1818 int optlen;
1820 optlen = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
1821 opts = (caddr_t)(ip + 1);
1822 datalen = m->m_len - (sizeof(struct ip) + optlen);
1823 bcopy(opts + optlen, opts, datalen);
1824 m->m_len -= optlen;
1825 if (m->m_flags & M_PKTHDR)
1826 m->m_pkthdr.len -= optlen;
1827 ip->ip_vhl = IP_MAKE_VHL(IPVERSION, sizeof(struct ip) >> 2);
1830 u_char inetctlerrmap[PRC_NCMDS] = {
1831 0, 0, 0, 0,
1832 0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
1833 EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
1834 EMSGSIZE, EHOSTUNREACH, 0, 0,
1835 0, 0, 0, 0,
1836 ENOPROTOOPT, ECONNREFUSED
1840 * Forward a packet. If some error occurs return the sender
1841 * an icmp packet. Note we can't always generate a meaningful
1842 * icmp message because icmp doesn't have a large enough repertoire
1843 * of codes and types.
1845 * If not forwarding, just drop the packet. This could be confusing
1846 * if ipforwarding was zero but some routing protocol was advancing
1847 * us as a gateway to somewhere. However, we must let the routing
1848 * protocol deal with that.
1850 * The using_srcrt parameter indicates whether the packet is being forwarded
1851 * via a source route.
1853 static void
1854 ip_forward(struct mbuf *m, boolean_t using_srcrt, struct sockaddr_in *next_hop)
1856 struct ip *ip = mtod(m, struct ip *);
1857 struct sockaddr_in *ipforward_rtaddr;
1858 struct rtentry *rt;
1859 int error, type = 0, code = 0, destmtu = 0;
1860 struct mbuf *mcopy;
1861 n_long dest;
1862 struct in_addr pkt_dst;
1863 struct m_hdr tag;
1864 struct route *cache_rt = &ipforward_rt[mycpuid];
1866 dest = INADDR_ANY;
1868 * Cache the destination address of the packet; this may be
1869 * changed by use of 'ipfw fwd'.
1871 pkt_dst = (next_hop != NULL) ? next_hop->sin_addr : ip->ip_dst;
1873 #ifdef DIAGNOSTIC
1874 if (ipprintfs)
1875 kprintf("forward: src %x dst %x ttl %x\n",
1876 ip->ip_src.s_addr, pkt_dst.s_addr, ip->ip_ttl);
1877 #endif
1879 if (m->m_flags & (M_BCAST | M_MCAST) || !in_canforward(pkt_dst)) {
1880 ipstat.ips_cantforward++;
1881 m_freem(m);
1882 return;
1884 if (!ipstealth && ip->ip_ttl <= IPTTLDEC) {
1885 icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest, 0);
1886 return;
1889 ipforward_rtaddr = (struct sockaddr_in *) &cache_rt->ro_dst;
1890 if (cache_rt->ro_rt == NULL ||
1891 ipforward_rtaddr->sin_addr.s_addr != pkt_dst.s_addr) {
1892 if (cache_rt->ro_rt != NULL) {
1893 RTFREE(cache_rt->ro_rt);
1894 cache_rt->ro_rt = NULL;
1896 ipforward_rtaddr->sin_family = AF_INET;
1897 ipforward_rtaddr->sin_len = sizeof(struct sockaddr_in);
1898 ipforward_rtaddr->sin_addr = pkt_dst;
1899 rtalloc_ign(cache_rt, RTF_PRCLONING);
1900 if (cache_rt->ro_rt == NULL) {
1901 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest, 0);
1902 return;
1905 rt = cache_rt->ro_rt;
1908 * Save the IP header and at most 8 bytes of the payload,
1909 * in case we need to generate an ICMP message to the src.
1911 * XXX this can be optimized a lot by saving the data in a local
1912 * buffer on the stack (72 bytes at most), and only allocating the
1913 * mbuf if really necessary. The vast majority of the packets
1914 * are forwarded without having to send an ICMP back (either
1915 * because unnecessary, or because rate limited), so we are
1916 * really we are wasting a lot of work here.
1918 * We don't use m_copy() because it might return a reference
1919 * to a shared cluster. Both this function and ip_output()
1920 * assume exclusive access to the IP header in `m', so any
1921 * data in a cluster may change before we reach icmp_error().
1923 MGETHDR(mcopy, MB_DONTWAIT, m->m_type);
1924 if (mcopy != NULL && !m_dup_pkthdr(mcopy, m, MB_DONTWAIT)) {
1926 * It's probably ok if the pkthdr dup fails (because
1927 * the deep copy of the tag chain failed), but for now
1928 * be conservative and just discard the copy since
1929 * code below may some day want the tags.
1931 m_free(mcopy);
1932 mcopy = NULL;
1934 if (mcopy != NULL) {
1935 mcopy->m_len = imin((IP_VHL_HL(ip->ip_vhl) << 2) + 8,
1936 (int)ip->ip_len);
1937 mcopy->m_pkthdr.len = mcopy->m_len;
1938 m_copydata(m, 0, mcopy->m_len, mtod(mcopy, caddr_t));
1941 if (!ipstealth)
1942 ip->ip_ttl -= IPTTLDEC;
1945 * If forwarding packet using same interface that it came in on,
1946 * perhaps should send a redirect to sender to shortcut a hop.
1947 * Only send redirect if source is sending directly to us,
1948 * and if packet was not source routed (or has any options).
1949 * Also, don't send redirect if forwarding using a default route
1950 * or a route modified by a redirect.
1952 if (rt->rt_ifp == m->m_pkthdr.rcvif &&
1953 !(rt->rt_flags & (RTF_DYNAMIC | RTF_MODIFIED)) &&
1954 satosin(rt_key(rt))->sin_addr.s_addr != INADDR_ANY &&
1955 ipsendredirects && !using_srcrt && next_hop == NULL) {
1956 u_long src = ntohl(ip->ip_src.s_addr);
1957 struct in_ifaddr *rt_ifa = (struct in_ifaddr *)rt->rt_ifa;
1959 if (rt_ifa != NULL &&
1960 (src & rt_ifa->ia_subnetmask) == rt_ifa->ia_subnet) {
1961 if (rt->rt_flags & RTF_GATEWAY)
1962 dest = satosin(rt->rt_gateway)->sin_addr.s_addr;
1963 else
1964 dest = pkt_dst.s_addr;
1966 * Router requirements says to only send
1967 * host redirects.
1969 type = ICMP_REDIRECT;
1970 code = ICMP_REDIRECT_HOST;
1971 #ifdef DIAGNOSTIC
1972 if (ipprintfs)
1973 kprintf("redirect (%d) to %x\n", code, dest);
1974 #endif
1978 if (next_hop != NULL) {
1979 /* Pass IPFORWARD info if available */
1980 tag.mh_type = MT_TAG;
1981 tag.mh_flags = PACKET_TAG_IPFORWARD;
1982 tag.mh_data = (caddr_t)next_hop;
1983 tag.mh_next = m;
1984 m = (struct mbuf *)&tag;
1987 error = ip_output(m, NULL, cache_rt, IP_FORWARDING, NULL,
1988 NULL);
1989 if (error == 0) {
1990 ipstat.ips_forward++;
1991 if (type == 0) {
1992 if (mcopy) {
1993 ipflow_create(cache_rt, mcopy);
1994 m_freem(mcopy);
1996 return; /* most common case */
1997 } else {
1998 ipstat.ips_redirectsent++;
2000 } else {
2001 ipstat.ips_cantforward++;
2004 if (mcopy == NULL)
2005 return;
2008 * Send ICMP message.
2011 switch (error) {
2013 case 0: /* forwarded, but need redirect */
2014 /* type, code set above */
2015 break;
2017 case ENETUNREACH: /* shouldn't happen, checked above */
2018 case EHOSTUNREACH:
2019 case ENETDOWN:
2020 case EHOSTDOWN:
2021 default:
2022 type = ICMP_UNREACH;
2023 code = ICMP_UNREACH_HOST;
2024 break;
2026 case EMSGSIZE:
2027 type = ICMP_UNREACH;
2028 code = ICMP_UNREACH_NEEDFRAG;
2029 #ifdef IPSEC
2031 * If the packet is routed over IPsec tunnel, tell the
2032 * originator the tunnel MTU.
2033 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2034 * XXX quickhack!!!
2036 if (cache_rt->ro_rt != NULL) {
2037 struct secpolicy *sp = NULL;
2038 int ipsecerror;
2039 int ipsechdr;
2040 struct route *ro;
2042 sp = ipsec4_getpolicybyaddr(mcopy,
2043 IPSEC_DIR_OUTBOUND,
2044 IP_FORWARDING,
2045 &ipsecerror);
2047 if (sp == NULL)
2048 destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2049 else {
2050 /* count IPsec header size */
2051 ipsechdr = ipsec4_hdrsiz(mcopy,
2052 IPSEC_DIR_OUTBOUND,
2053 NULL);
2056 * find the correct route for outer IPv4
2057 * header, compute tunnel MTU.
2060 if (sp->req != NULL && sp->req->sav != NULL &&
2061 sp->req->sav->sah != NULL) {
2062 ro = &sp->req->sav->sah->sa_route;
2063 if (ro->ro_rt != NULL &&
2064 ro->ro_rt->rt_ifp != NULL) {
2065 destmtu =
2066 ro->ro_rt->rt_ifp->if_mtu;
2067 destmtu -= ipsechdr;
2071 key_freesp(sp);
2074 #elif FAST_IPSEC
2076 * If the packet is routed over IPsec tunnel, tell the
2077 * originator the tunnel MTU.
2078 * tunnel MTU = if MTU - sizeof(IP) - ESP/AH hdrsiz
2079 * XXX quickhack!!!
2081 if (cache_rt->ro_rt != NULL) {
2082 struct secpolicy *sp = NULL;
2083 int ipsecerror;
2084 int ipsechdr;
2085 struct route *ro;
2087 sp = ipsec_getpolicybyaddr(mcopy,
2088 IPSEC_DIR_OUTBOUND,
2089 IP_FORWARDING,
2090 &ipsecerror);
2092 if (sp == NULL)
2093 destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2094 else {
2095 /* count IPsec header size */
2096 ipsechdr = ipsec4_hdrsiz(mcopy,
2097 IPSEC_DIR_OUTBOUND,
2098 NULL);
2101 * find the correct route for outer IPv4
2102 * header, compute tunnel MTU.
2105 if (sp->req != NULL &&
2106 sp->req->sav != NULL &&
2107 sp->req->sav->sah != NULL) {
2108 ro = &sp->req->sav->sah->sa_route;
2109 if (ro->ro_rt != NULL &&
2110 ro->ro_rt->rt_ifp != NULL) {
2111 destmtu =
2112 ro->ro_rt->rt_ifp->if_mtu;
2113 destmtu -= ipsechdr;
2117 KEY_FREESP(&sp);
2120 #else /* !IPSEC && !FAST_IPSEC */
2121 if (cache_rt->ro_rt != NULL)
2122 destmtu = cache_rt->ro_rt->rt_ifp->if_mtu;
2123 #endif /*IPSEC*/
2124 ipstat.ips_cantfrag++;
2125 break;
2127 case ENOBUFS:
2129 * A router should not generate ICMP_SOURCEQUENCH as
2130 * required in RFC1812 Requirements for IP Version 4 Routers.
2131 * Source quench could be a big problem under DoS attacks,
2132 * or if the underlying interface is rate-limited.
2133 * Those who need source quench packets may re-enable them
2134 * via the net.inet.ip.sendsourcequench sysctl.
2136 if (!ip_sendsourcequench) {
2137 m_freem(mcopy);
2138 return;
2139 } else {
2140 type = ICMP_SOURCEQUENCH;
2141 code = 0;
2143 break;
2145 case EACCES: /* ipfw denied packet */
2146 m_freem(mcopy);
2147 return;
2149 icmp_error(mcopy, type, code, dest, destmtu);
2152 void
2153 ip_savecontrol(struct inpcb *inp, struct mbuf **mp, struct ip *ip,
2154 struct mbuf *m)
2156 if (inp->inp_socket->so_options & SO_TIMESTAMP) {
2157 struct timeval tv;
2159 microtime(&tv);
2160 *mp = sbcreatecontrol((caddr_t) &tv, sizeof(tv),
2161 SCM_TIMESTAMP, SOL_SOCKET);
2162 if (*mp)
2163 mp = &(*mp)->m_next;
2165 if (inp->inp_flags & INP_RECVDSTADDR) {
2166 *mp = sbcreatecontrol((caddr_t) &ip->ip_dst,
2167 sizeof(struct in_addr), IP_RECVDSTADDR, IPPROTO_IP);
2168 if (*mp)
2169 mp = &(*mp)->m_next;
2171 if (inp->inp_flags & INP_RECVTTL) {
2172 *mp = sbcreatecontrol((caddr_t) &ip->ip_ttl,
2173 sizeof(u_char), IP_RECVTTL, IPPROTO_IP);
2174 if (*mp)
2175 mp = &(*mp)->m_next;
2177 #ifdef notyet
2178 /* XXX
2179 * Moving these out of udp_input() made them even more broken
2180 * than they already were.
2182 /* options were tossed already */
2183 if (inp->inp_flags & INP_RECVOPTS) {
2184 *mp = sbcreatecontrol((caddr_t) opts_deleted_above,
2185 sizeof(struct in_addr), IP_RECVOPTS, IPPROTO_IP);
2186 if (*mp)
2187 mp = &(*mp)->m_next;
2189 /* ip_srcroute doesn't do what we want here, need to fix */
2190 if (inp->inp_flags & INP_RECVRETOPTS) {
2191 *mp = sbcreatecontrol((caddr_t) ip_srcroute(),
2192 sizeof(struct in_addr), IP_RECVRETOPTS, IPPROTO_IP);
2193 if (*mp)
2194 mp = &(*mp)->m_next;
2196 #endif
2197 if (inp->inp_flags & INP_RECVIF) {
2198 struct ifnet *ifp;
2199 struct sdlbuf {
2200 struct sockaddr_dl sdl;
2201 u_char pad[32];
2202 } sdlbuf;
2203 struct sockaddr_dl *sdp;
2204 struct sockaddr_dl *sdl2 = &sdlbuf.sdl;
2206 if (((ifp = m->m_pkthdr.rcvif)) &&
2207 ((ifp->if_index != 0) && (ifp->if_index <= if_index))) {
2208 sdp = IF_LLSOCKADDR(ifp);
2210 * Change our mind and don't try copy.
2212 if ((sdp->sdl_family != AF_LINK) ||
2213 (sdp->sdl_len > sizeof(sdlbuf))) {
2214 goto makedummy;
2216 bcopy(sdp, sdl2, sdp->sdl_len);
2217 } else {
2218 makedummy:
2219 sdl2->sdl_len =
2220 offsetof(struct sockaddr_dl, sdl_data[0]);
2221 sdl2->sdl_family = AF_LINK;
2222 sdl2->sdl_index = 0;
2223 sdl2->sdl_nlen = sdl2->sdl_alen = sdl2->sdl_slen = 0;
2225 *mp = sbcreatecontrol((caddr_t) sdl2, sdl2->sdl_len,
2226 IP_RECVIF, IPPROTO_IP);
2227 if (*mp)
2228 mp = &(*mp)->m_next;
2233 * XXX these routines are called from the upper part of the kernel.
2235 * They could also be moved to ip_mroute.c, since all the RSVP
2236 * handling is done there already.
2239 ip_rsvp_init(struct socket *so)
2241 if (so->so_type != SOCK_RAW ||
2242 so->so_proto->pr_protocol != IPPROTO_RSVP)
2243 return EOPNOTSUPP;
2245 if (ip_rsvpd != NULL)
2246 return EADDRINUSE;
2248 ip_rsvpd = so;
2250 * This may seem silly, but we need to be sure we don't over-increment
2251 * the RSVP counter, in case something slips up.
2253 if (!ip_rsvp_on) {
2254 ip_rsvp_on = 1;
2255 rsvp_on++;
2258 return 0;
2262 ip_rsvp_done(void)
2264 ip_rsvpd = NULL;
2266 * This may seem silly, but we need to be sure we don't over-decrement
2267 * the RSVP counter, in case something slips up.
2269 if (ip_rsvp_on) {
2270 ip_rsvp_on = 0;
2271 rsvp_on--;
2273 return 0;
2276 void
2277 rsvp_input(struct mbuf *m, ...) /* XXX must fixup manually */
2279 int off, proto;
2280 __va_list ap;
2282 __va_start(ap, m);
2283 off = __va_arg(ap, int);
2284 proto = __va_arg(ap, int);
2285 __va_end(ap);
2287 if (rsvp_input_p) { /* call the real one if loaded */
2288 rsvp_input_p(m, off, proto);
2289 return;
2292 /* Can still get packets with rsvp_on = 0 if there is a local member
2293 * of the group to which the RSVP packet is addressed. But in this
2294 * case we want to throw the packet away.
2297 if (!rsvp_on) {
2298 m_freem(m);
2299 return;
2302 if (ip_rsvpd != NULL) {
2303 rip_input(m, off, proto);
2304 return;
2306 /* Drop the packet */
2307 m_freem(m);