* Greatly reduce the complexity of the LWKT messaging and port abstraction.
[dragonfly/vkernel-mp.git] / sys / kern / uipc_syscalls.c
bloba600a3f99b6e7b3091eb957199fcecab70ddee23
1 /*
2 * Copyright (c) 1982, 1986, 1989, 1990, 1993
3 * The Regents of the University of California. All rights reserved.
5 * sendfile(2) and related extensions:
6 * Copyright (c) 1998, David Greenman. All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
36 * @(#)uipc_syscalls.c 8.4 (Berkeley) 2/21/94
37 * $FreeBSD: src/sys/kern/uipc_syscalls.c,v 1.65.2.17 2003/04/04 17:11:16 tegge Exp $
38 * $DragonFly: src/sys/kern/uipc_syscalls.c,v 1.81 2007/05/23 08:57:05 dillon Exp $
41 #include "opt_ktrace.h"
42 #include "opt_sctp.h"
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/kernel.h>
47 #include <sys/sysproto.h>
48 #include <sys/malloc.h>
49 #include <sys/filedesc.h>
50 #include <sys/event.h>
51 #include <sys/proc.h>
52 #include <sys/fcntl.h>
53 #include <sys/file.h>
54 #include <sys/filio.h>
55 #include <sys/kern_syscall.h>
56 #include <sys/mbuf.h>
57 #include <sys/protosw.h>
58 #include <sys/sfbuf.h>
59 #include <sys/socket.h>
60 #include <sys/socketvar.h>
61 #include <sys/socketops.h>
62 #include <sys/uio.h>
63 #include <sys/vnode.h>
64 #include <sys/lock.h>
65 #include <sys/mount.h>
66 #ifdef KTRACE
67 #include <sys/ktrace.h>
68 #endif
69 #include <vm/vm.h>
70 #include <vm/vm_object.h>
71 #include <vm/vm_page.h>
72 #include <vm/vm_pageout.h>
73 #include <vm/vm_kern.h>
74 #include <vm/vm_extern.h>
75 #include <sys/file2.h>
76 #include <sys/signalvar.h>
77 #include <sys/serialize.h>
79 #include <sys/thread2.h>
80 #include <sys/msgport2.h>
81 #include <net/netmsg2.h>
83 #ifdef SCTP
84 #include <netinet/sctp_peeloff.h>
85 #endif /* SCTP */
87 struct sfbuf_mref {
88 struct sf_buf *sf;
89 int mref_count;
90 struct lwkt_serialize serializer;
93 static MALLOC_DEFINE(M_SENDFILE, "sendfile", "sendfile sfbuf ref structures");
96 * System call interface to the socket abstraction.
99 extern struct fileops socketops;
102 * socket_args(int domain, int type, int protocol)
105 kern_socket(int domain, int type, int protocol, int *res)
107 struct thread *td = curthread;
108 struct proc *p = td->td_proc;
109 struct socket *so;
110 struct file *fp;
111 int fd, error;
113 KKASSERT(p);
115 error = falloc(p, &fp, &fd);
116 if (error)
117 return (error);
118 error = socreate(domain, &so, type, protocol, td);
119 if (error) {
120 fsetfd(p, NULL, fd);
121 } else {
122 fp->f_type = DTYPE_SOCKET;
123 fp->f_flag = FREAD | FWRITE;
124 fp->f_ops = &socketops;
125 fp->f_data = so;
126 *res = fd;
127 fsetfd(p, fp, fd);
129 fdrop(fp);
130 return (error);
134 sys_socket(struct socket_args *uap)
136 int error;
138 error = kern_socket(uap->domain, uap->type, uap->protocol,
139 &uap->sysmsg_result);
141 return (error);
145 kern_bind(int s, struct sockaddr *sa)
147 struct thread *td = curthread;
148 struct proc *p = td->td_proc;
149 struct file *fp;
150 int error;
152 KKASSERT(p);
153 error = holdsock(p->p_fd, s, &fp);
154 if (error)
155 return (error);
156 error = sobind((struct socket *)fp->f_data, sa, td);
157 fdrop(fp);
158 return (error);
162 * bind_args(int s, caddr_t name, int namelen)
165 sys_bind(struct bind_args *uap)
167 struct sockaddr *sa;
168 int error;
170 error = getsockaddr(&sa, uap->name, uap->namelen);
171 if (error)
172 return (error);
173 error = kern_bind(uap->s, sa);
174 FREE(sa, M_SONAME);
176 return (error);
180 kern_listen(int s, int backlog)
182 struct thread *td = curthread;
183 struct proc *p = td->td_proc;
184 struct file *fp;
185 int error;
187 KKASSERT(p);
188 error = holdsock(p->p_fd, s, &fp);
189 if (error)
190 return (error);
191 error = solisten((struct socket *)fp->f_data, backlog, td);
192 fdrop(fp);
193 return(error);
197 * listen_args(int s, int backlog)
200 sys_listen(struct listen_args *uap)
202 int error;
204 error = kern_listen(uap->s, uap->backlog);
205 return (error);
209 * Returns the accepted socket as well.
211 static boolean_t
212 soaccept_predicate(struct netmsg *msg0)
214 struct netmsg_so_notify *msg = (struct netmsg_so_notify *)msg0;
215 struct socket *head = msg->nm_so;
217 if (head->so_error != 0) {
218 msg->nm_netmsg.nm_lmsg.ms_error = head->so_error;
219 return (TRUE);
221 if (!TAILQ_EMPTY(&head->so_comp)) {
222 /* Abuse nm_so field as copy in/copy out parameter. XXX JH */
223 msg->nm_so = TAILQ_FIRST(&head->so_comp);
224 TAILQ_REMOVE(&head->so_comp, msg->nm_so, so_list);
225 head->so_qlen--;
227 msg->nm_netmsg.nm_lmsg.ms_error = 0;
228 return (TRUE);
230 if (head->so_state & SS_CANTRCVMORE) {
231 msg->nm_netmsg.nm_lmsg.ms_error = ECONNABORTED;
232 return (TRUE);
234 if (msg->nm_fflags & FNONBLOCK) {
235 msg->nm_netmsg.nm_lmsg.ms_error = EWOULDBLOCK;
236 return (TRUE);
239 return (FALSE);
243 * The second argument to kern_accept() is a handle to a struct sockaddr.
244 * This allows kern_accept() to return a pointer to an allocated struct
245 * sockaddr which must be freed later with FREE(). The caller must
246 * initialize *name to NULL.
249 kern_accept(int s, int fflags, struct sockaddr **name, int *namelen, int *res)
251 struct thread *td = curthread;
252 struct proc *p = td->td_proc;
253 struct file *lfp = NULL;
254 struct file *nfp = NULL;
255 struct sockaddr *sa;
256 struct socket *head, *so;
257 struct netmsg_so_notify msg;
258 lwkt_port_t port;
259 int fd;
260 u_int fflag; /* type must match fp->f_flag */
261 int error, tmp;
263 *res = -1;
264 if (name && namelen && *namelen < 0)
265 return (EINVAL);
267 error = holdsock(p->p_fd, s, &lfp);
268 if (error)
269 return (error);
271 error = falloc(p, &nfp, &fd);
272 if (error) { /* Probably ran out of file descriptors. */
273 fdrop(lfp);
274 return (error);
276 head = (struct socket *)lfp->f_data;
277 if ((head->so_options & SO_ACCEPTCONN) == 0) {
278 error = EINVAL;
279 goto done;
282 if (fflags & O_FBLOCKING)
283 fflags |= lfp->f_flag & ~FNONBLOCK;
284 else if (fflags & O_FNONBLOCKING)
285 fflags |= lfp->f_flag | FNONBLOCK;
286 else
287 fflags = lfp->f_flag;
289 /* optimize for uniprocessor case later XXX JH */
290 port = head->so_proto->pr_mport(head, NULL, PRU_PRED);
291 netmsg_init_abortable(&msg.nm_netmsg, &curthread->td_msgport,
292 MSGF_PCATCH,
293 netmsg_so_notify,
294 netmsg_so_notify_doabort);
295 msg.nm_predicate = soaccept_predicate;
296 msg.nm_fflags = fflags;
297 msg.nm_so = head;
298 msg.nm_etype = NM_REVENT;
299 error = lwkt_domsg(port, &msg.nm_netmsg.nm_lmsg);
300 if (error)
301 goto done;
304 * At this point we have the connection that's ready to be accepted.
306 so = msg.nm_so;
308 fflag = lfp->f_flag;
310 /* connection has been removed from the listen queue */
311 KNOTE(&head->so_rcv.ssb_sel.si_note, 0);
313 so->so_state &= ~SS_COMP;
314 so->so_head = NULL;
315 if (head->so_sigio != NULL)
316 fsetown(fgetown(head->so_sigio), &so->so_sigio);
318 nfp->f_type = DTYPE_SOCKET;
319 nfp->f_flag = fflag;
320 nfp->f_ops = &socketops;
321 nfp->f_data = so;
322 /* Sync socket nonblocking/async state with file flags */
323 tmp = fflag & FNONBLOCK;
324 (void) fo_ioctl(nfp, FIONBIO, (caddr_t)&tmp, p->p_ucred);
325 tmp = fflag & FASYNC;
326 (void) fo_ioctl(nfp, FIOASYNC, (caddr_t)&tmp, p->p_ucred);
328 sa = NULL;
329 error = soaccept(so, &sa);
332 * Set the returned name and namelen as applicable. Set the returned
333 * namelen to 0 for older code which might ignore the return value
334 * from accept.
336 if (error == 0) {
337 if (sa && name && namelen) {
338 if (*namelen > sa->sa_len)
339 *namelen = sa->sa_len;
340 *name = sa;
341 } else {
342 if (sa)
343 FREE(sa, M_SONAME);
347 done:
349 * If an error occured clear the reserved descriptor, else associate
350 * nfp with it.
352 * Note that *res is normally ignored if an error is returned but
353 * a syscall message will still have access to the result code.
355 if (error) {
356 fsetfd(p, NULL, fd);
357 } else {
358 *res = fd;
359 fsetfd(p, nfp, fd);
361 fdrop(nfp);
362 fdrop(lfp);
363 return (error);
367 * accept(int s, caddr_t name, int *anamelen)
370 sys_accept(struct accept_args *uap)
372 struct sockaddr *sa = NULL;
373 int sa_len;
374 int error;
376 if (uap->name) {
377 error = copyin(uap->anamelen, &sa_len, sizeof(sa_len));
378 if (error)
379 return (error);
381 error = kern_accept(uap->s, 0, &sa, &sa_len, &uap->sysmsg_result);
383 if (error == 0)
384 error = copyout(sa, uap->name, sa_len);
385 if (error == 0) {
386 error = copyout(&sa_len, uap->anamelen,
387 sizeof(*uap->anamelen));
389 if (sa)
390 FREE(sa, M_SONAME);
391 } else {
392 error = kern_accept(uap->s, 0, NULL, 0, &uap->sysmsg_result);
394 return (error);
398 * extaccept(int s, int fflags, caddr_t name, int *anamelen)
401 sys_extaccept(struct extaccept_args *uap)
403 struct sockaddr *sa = NULL;
404 int sa_len;
405 int error;
406 int fflags = uap->flags & O_FMASK;
408 if (uap->name) {
409 error = copyin(uap->anamelen, &sa_len, sizeof(sa_len));
410 if (error)
411 return (error);
413 error = kern_accept(uap->s, fflags, &sa, &sa_len, &uap->sysmsg_result);
415 if (error == 0)
416 error = copyout(sa, uap->name, sa_len);
417 if (error == 0) {
418 error = copyout(&sa_len, uap->anamelen,
419 sizeof(*uap->anamelen));
421 if (sa)
422 FREE(sa, M_SONAME);
423 } else {
424 error = kern_accept(uap->s, fflags, NULL, 0, &uap->sysmsg_result);
426 return (error);
431 * Returns TRUE if predicate satisfied.
433 static boolean_t
434 soconnected_predicate(struct netmsg *msg0)
436 struct netmsg_so_notify *msg = (struct netmsg_so_notify *)msg0;
437 struct socket *so = msg->nm_so;
439 /* check predicate */
440 if (!(so->so_state & SS_ISCONNECTING) || so->so_error != 0) {
441 msg->nm_netmsg.nm_lmsg.ms_error = so->so_error;
442 return (TRUE);
445 return (FALSE);
449 kern_connect(int s, int fflags, struct sockaddr *sa)
451 struct thread *td = curthread;
452 struct proc *p = td->td_proc;
453 struct file *fp;
454 struct socket *so;
455 int error;
457 error = holdsock(p->p_fd, s, &fp);
458 if (error)
459 return (error);
460 so = (struct socket *)fp->f_data;
462 if (fflags & O_FBLOCKING)
463 /* fflags &= ~FNONBLOCK; */;
464 else if (fflags & O_FNONBLOCKING)
465 fflags |= FNONBLOCK;
466 else
467 fflags = fp->f_flag;
469 if ((fflags & FNONBLOCK) && (so->so_state & SS_ISCONNECTING)) {
470 error = EALREADY;
471 goto done;
473 error = soconnect(so, sa, td);
474 if (error)
475 goto bad;
476 if ((fflags & FNONBLOCK) && (so->so_state & SS_ISCONNECTING)) {
477 error = EINPROGRESS;
478 goto done;
480 if ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
481 struct netmsg_so_notify msg;
482 lwkt_port_t port;
484 port = so->so_proto->pr_mport(so, sa, PRU_PRED);
485 netmsg_init_abortable(&msg.nm_netmsg,
486 &curthread->td_msgport,
487 MSGF_PCATCH,
488 netmsg_so_notify,
489 netmsg_so_notify_doabort);
490 msg.nm_predicate = soconnected_predicate;
491 msg.nm_so = so;
492 msg.nm_etype = NM_REVENT;
493 error = lwkt_domsg(port, &msg.nm_netmsg.nm_lmsg);
495 if (error == 0) {
496 error = so->so_error;
497 so->so_error = 0;
499 bad:
500 so->so_state &= ~SS_ISCONNECTING;
501 if (error == ERESTART)
502 error = EINTR;
503 done:
504 fdrop(fp);
505 return (error);
509 * connect_args(int s, caddr_t name, int namelen)
512 sys_connect(struct connect_args *uap)
514 struct sockaddr *sa;
515 int error;
517 error = getsockaddr(&sa, uap->name, uap->namelen);
518 if (error)
519 return (error);
520 error = kern_connect(uap->s, 0, sa);
521 FREE(sa, M_SONAME);
523 return (error);
527 * connect_args(int s, int fflags, caddr_t name, int namelen)
530 sys_extconnect(struct extconnect_args *uap)
532 struct sockaddr *sa;
533 int error;
534 int fflags = uap->flags & O_FMASK;
536 error = getsockaddr(&sa, uap->name, uap->namelen);
537 if (error)
538 return (error);
539 error = kern_connect(uap->s, fflags, sa);
540 FREE(sa, M_SONAME);
542 return (error);
546 kern_socketpair(int domain, int type, int protocol, int *sv)
548 struct thread *td = curthread;
549 struct proc *p = td->td_proc;
550 struct file *fp1, *fp2;
551 struct socket *so1, *so2;
552 int fd1, fd2, error;
554 KKASSERT(p);
555 error = socreate(domain, &so1, type, protocol, td);
556 if (error)
557 return (error);
558 error = socreate(domain, &so2, type, protocol, td);
559 if (error)
560 goto free1;
561 error = falloc(p, &fp1, &fd1);
562 if (error)
563 goto free2;
564 sv[0] = fd1;
565 fp1->f_data = so1;
566 error = falloc(p, &fp2, &fd2);
567 if (error)
568 goto free3;
569 fp2->f_data = so2;
570 sv[1] = fd2;
571 error = soconnect2(so1, so2);
572 if (error)
573 goto free4;
574 if (type == SOCK_DGRAM) {
576 * Datagram socket connection is asymmetric.
578 error = soconnect2(so2, so1);
579 if (error)
580 goto free4;
582 fp1->f_type = fp2->f_type = DTYPE_SOCKET;
583 fp1->f_flag = fp2->f_flag = FREAD|FWRITE;
584 fp1->f_ops = fp2->f_ops = &socketops;
585 fsetfd(p, fp1, fd1);
586 fsetfd(p, fp2, fd2);
587 fdrop(fp1);
588 fdrop(fp2);
589 return (error);
590 free4:
591 fsetfd(p, NULL, fd2);
592 fdrop(fp2);
593 free3:
594 fsetfd(p, NULL, fd1);
595 fdrop(fp1);
596 free2:
597 (void)soclose(so2, 0);
598 free1:
599 (void)soclose(so1, 0);
600 return (error);
604 * socketpair(int domain, int type, int protocol, int *rsv)
607 sys_socketpair(struct socketpair_args *uap)
609 int error, sockv[2];
611 error = kern_socketpair(uap->domain, uap->type, uap->protocol, sockv);
613 if (error == 0)
614 error = copyout(sockv, uap->rsv, sizeof(sockv));
615 return (error);
619 kern_sendmsg(int s, struct sockaddr *sa, struct uio *auio,
620 struct mbuf *control, int flags, int *res)
622 struct thread *td = curthread;
623 struct lwp *lp = td->td_lwp;
624 struct proc *p = td->td_proc;
625 struct file *fp;
626 int len, error;
627 struct socket *so;
628 #ifdef KTRACE
629 struct iovec *ktriov = NULL;
630 struct uio ktruio;
631 #endif
633 error = holdsock(p->p_fd, s, &fp);
634 if (error)
635 return (error);
636 if (auio->uio_resid < 0) {
637 error = EINVAL;
638 goto done;
640 #ifdef KTRACE
641 if (KTRPOINT(td, KTR_GENIO)) {
642 int iovlen = auio->uio_iovcnt * sizeof (struct iovec);
644 MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
645 bcopy((caddr_t)auio->uio_iov, (caddr_t)ktriov, iovlen);
646 ktruio = *auio;
648 #endif
649 len = auio->uio_resid;
650 so = (struct socket *)fp->f_data;
651 if ((flags & (MSG_FNONBLOCKING|MSG_FBLOCKING)) == 0) {
652 if (fp->f_flag & FNONBLOCK)
653 flags |= MSG_FNONBLOCKING;
655 error = so_pru_sosend(so, sa, auio, NULL, control, flags, td);
656 if (error) {
657 if (auio->uio_resid != len && (error == ERESTART ||
658 error == EINTR || error == EWOULDBLOCK))
659 error = 0;
660 if (error == EPIPE)
661 lwpsignal(p, lp, SIGPIPE);
663 #ifdef KTRACE
664 if (ktriov != NULL) {
665 if (error == 0) {
666 ktruio.uio_iov = ktriov;
667 ktruio.uio_resid = len - auio->uio_resid;
668 ktrgenio(p, s, UIO_WRITE, &ktruio, error);
670 FREE(ktriov, M_TEMP);
672 #endif
673 if (error == 0)
674 *res = len - auio->uio_resid;
675 done:
676 fdrop(fp);
677 return (error);
681 * sendto_args(int s, caddr_t buf, size_t len, int flags, caddr_t to, int tolen)
684 sys_sendto(struct sendto_args *uap)
686 struct thread *td = curthread;
687 struct uio auio;
688 struct iovec aiov;
689 struct sockaddr *sa = NULL;
690 int error;
692 if (uap->to) {
693 error = getsockaddr(&sa, uap->to, uap->tolen);
694 if (error)
695 return (error);
697 aiov.iov_base = uap->buf;
698 aiov.iov_len = uap->len;
699 auio.uio_iov = &aiov;
700 auio.uio_iovcnt = 1;
701 auio.uio_offset = 0;
702 auio.uio_resid = uap->len;
703 auio.uio_segflg = UIO_USERSPACE;
704 auio.uio_rw = UIO_WRITE;
705 auio.uio_td = td;
707 error = kern_sendmsg(uap->s, sa, &auio, NULL, uap->flags,
708 &uap->sysmsg_result);
710 if (sa)
711 FREE(sa, M_SONAME);
712 return (error);
716 * sendmsg_args(int s, caddr_t msg, int flags)
719 sys_sendmsg(struct sendmsg_args *uap)
721 struct thread *td = curthread;
722 struct msghdr msg;
723 struct uio auio;
724 struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
725 struct sockaddr *sa = NULL;
726 struct mbuf *control = NULL;
727 int error;
729 error = copyin(uap->msg, (caddr_t)&msg, sizeof(msg));
730 if (error)
731 return (error);
734 * Conditionally copyin msg.msg_name.
736 if (msg.msg_name) {
737 error = getsockaddr(&sa, msg.msg_name, msg.msg_namelen);
738 if (error)
739 return (error);
743 * Populate auio.
745 error = iovec_copyin(msg.msg_iov, &iov, aiov, msg.msg_iovlen,
746 &auio.uio_resid);
747 if (error)
748 goto cleanup2;
749 auio.uio_iov = iov;
750 auio.uio_iovcnt = msg.msg_iovlen;
751 auio.uio_offset = 0;
752 auio.uio_segflg = UIO_USERSPACE;
753 auio.uio_rw = UIO_WRITE;
754 auio.uio_td = td;
757 * Conditionally copyin msg.msg_control.
759 if (msg.msg_control) {
760 if (msg.msg_controllen < sizeof(struct cmsghdr) ||
761 msg.msg_controllen > MLEN) {
762 error = EINVAL;
763 goto cleanup;
765 control = m_get(MB_WAIT, MT_CONTROL);
766 if (control == NULL) {
767 error = ENOBUFS;
768 goto cleanup;
770 control->m_len = msg.msg_controllen;
771 error = copyin(msg.msg_control, mtod(control, caddr_t),
772 msg.msg_controllen);
773 if (error) {
774 m_free(control);
775 goto cleanup;
779 error = kern_sendmsg(uap->s, sa, &auio, control, uap->flags,
780 &uap->sysmsg_result);
782 cleanup:
783 iovec_free(&iov, aiov);
784 cleanup2:
785 if (sa)
786 FREE(sa, M_SONAME);
787 return (error);
791 * kern_recvmsg() takes a handle to sa and control. If the handle is non-
792 * null, it returns a dynamically allocated struct sockaddr and an mbuf.
793 * Don't forget to FREE() and m_free() these if they are returned.
796 kern_recvmsg(int s, struct sockaddr **sa, struct uio *auio,
797 struct mbuf **control, int *flags, int *res)
799 struct thread *td = curthread;
800 struct proc *p = td->td_proc;
801 struct file *fp;
802 int len, error;
803 int lflags;
804 struct socket *so;
805 #ifdef KTRACE
806 struct iovec *ktriov = NULL;
807 struct uio ktruio;
808 #endif
810 error = holdsock(p->p_fd, s, &fp);
811 if (error)
812 return (error);
813 if (auio->uio_resid < 0) {
814 error = EINVAL;
815 goto done;
817 #ifdef KTRACE
818 if (KTRPOINT(td, KTR_GENIO)) {
819 int iovlen = auio->uio_iovcnt * sizeof (struct iovec);
821 MALLOC(ktriov, struct iovec *, iovlen, M_TEMP, M_WAITOK);
822 bcopy(auio->uio_iov, ktriov, iovlen);
823 ktruio = *auio;
825 #endif
826 len = auio->uio_resid;
827 so = (struct socket *)fp->f_data;
829 if (flags == NULL || (*flags & (MSG_FNONBLOCKING|MSG_FBLOCKING)) == 0) {
830 if (fp->f_flag & FNONBLOCK) {
831 if (flags) {
832 *flags |= MSG_FNONBLOCKING;
833 } else {
834 lflags = MSG_FNONBLOCKING;
835 flags = &lflags;
840 error = so_pru_soreceive(so, sa, auio, NULL, control, flags);
841 if (error) {
842 if (auio->uio_resid != len && (error == ERESTART ||
843 error == EINTR || error == EWOULDBLOCK))
844 error = 0;
846 #ifdef KTRACE
847 if (ktriov != NULL) {
848 if (error == 0) {
849 ktruio.uio_iov = ktriov;
850 ktruio.uio_resid = len - auio->uio_resid;
851 ktrgenio(p, s, UIO_READ, &ktruio, error);
853 FREE(ktriov, M_TEMP);
855 #endif
856 if (error == 0)
857 *res = len - auio->uio_resid;
858 done:
859 fdrop(fp);
860 return (error);
864 * recvfrom_args(int s, caddr_t buf, size_t len, int flags,
865 * caddr_t from, int *fromlenaddr)
868 sys_recvfrom(struct recvfrom_args *uap)
870 struct thread *td = curthread;
871 struct uio auio;
872 struct iovec aiov;
873 struct sockaddr *sa = NULL;
874 int error, fromlen;
876 if (uap->from && uap->fromlenaddr) {
877 error = copyin(uap->fromlenaddr, &fromlen, sizeof(fromlen));
878 if (error)
879 return (error);
880 if (fromlen < 0)
881 return (EINVAL);
882 } else {
883 fromlen = 0;
885 aiov.iov_base = uap->buf;
886 aiov.iov_len = uap->len;
887 auio.uio_iov = &aiov;
888 auio.uio_iovcnt = 1;
889 auio.uio_offset = 0;
890 auio.uio_resid = uap->len;
891 auio.uio_segflg = UIO_USERSPACE;
892 auio.uio_rw = UIO_READ;
893 auio.uio_td = td;
895 error = kern_recvmsg(uap->s, uap->from ? &sa : NULL, &auio, NULL,
896 &uap->flags, &uap->sysmsg_result);
898 if (error == 0 && uap->from) {
899 /* note: sa may still be NULL */
900 if (sa) {
901 fromlen = MIN(fromlen, sa->sa_len);
902 error = copyout(sa, uap->from, fromlen);
903 } else {
904 fromlen = 0;
906 if (error == 0) {
907 error = copyout(&fromlen, uap->fromlenaddr,
908 sizeof(fromlen));
911 if (sa)
912 FREE(sa, M_SONAME);
914 return (error);
918 * recvmsg_args(int s, struct msghdr *msg, int flags)
921 sys_recvmsg(struct recvmsg_args *uap)
923 struct thread *td = curthread;
924 struct msghdr msg;
925 struct uio auio;
926 struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
927 struct mbuf *m, *control = NULL;
928 struct sockaddr *sa = NULL;
929 caddr_t ctlbuf;
930 socklen_t *ufromlenp, *ucontrollenp;
931 int error, fromlen, controllen, len, flags, *uflagsp;
934 * This copyin handles everything except the iovec.
936 error = copyin(uap->msg, &msg, sizeof(msg));
937 if (error)
938 return (error);
940 if (msg.msg_name && msg.msg_namelen < 0)
941 return (EINVAL);
942 if (msg.msg_control && msg.msg_controllen < 0)
943 return (EINVAL);
945 ufromlenp = (socklen_t *)((caddr_t)uap->msg + offsetof(struct msghdr,
946 msg_namelen));
947 ucontrollenp = (socklen_t *)((caddr_t)uap->msg + offsetof(struct msghdr,
948 msg_controllen));
949 uflagsp = (int *)((caddr_t)uap->msg + offsetof(struct msghdr,
950 msg_flags));
953 * Populate auio.
955 error = iovec_copyin(msg.msg_iov, &iov, aiov, msg.msg_iovlen,
956 &auio.uio_resid);
957 if (error)
958 return (error);
959 auio.uio_iov = iov;
960 auio.uio_iovcnt = msg.msg_iovlen;
961 auio.uio_offset = 0;
962 auio.uio_segflg = UIO_USERSPACE;
963 auio.uio_rw = UIO_READ;
964 auio.uio_td = td;
966 flags = uap->flags;
968 error = kern_recvmsg(uap->s, msg.msg_name ? &sa : NULL, &auio,
969 msg.msg_control ? &control : NULL, &flags, &uap->sysmsg_result);
972 * Conditionally copyout the name and populate the namelen field.
974 if (error == 0 && msg.msg_name) {
975 /* note: sa may still be NULL */
976 if (sa != NULL) {
977 fromlen = MIN(msg.msg_namelen, sa->sa_len);
978 error = copyout(sa, msg.msg_name, fromlen);
979 } else
980 fromlen = 0;
981 if (error == 0)
982 error = copyout(&fromlen, ufromlenp,
983 sizeof(*ufromlenp));
987 * Copyout msg.msg_control and msg.msg_controllen.
989 if (error == 0 && msg.msg_control) {
990 len = msg.msg_controllen;
991 m = control;
992 ctlbuf = (caddr_t)msg.msg_control;
994 while(m && len > 0) {
995 unsigned int tocopy;
997 if (len >= m->m_len) {
998 tocopy = m->m_len;
999 } else {
1000 msg.msg_flags |= MSG_CTRUNC;
1001 tocopy = len;
1004 error = copyout(mtod(m, caddr_t), ctlbuf, tocopy);
1005 if (error)
1006 goto cleanup;
1008 ctlbuf += tocopy;
1009 len -= tocopy;
1010 m = m->m_next;
1012 controllen = ctlbuf - (caddr_t)msg.msg_control;
1013 error = copyout(&controllen, ucontrollenp,
1014 sizeof(*ucontrollenp));
1017 if (error == 0)
1018 error = copyout(&flags, uflagsp, sizeof(*uflagsp));
1020 cleanup:
1021 if (sa)
1022 FREE(sa, M_SONAME);
1023 iovec_free(&iov, aiov);
1024 if (control)
1025 m_freem(control);
1026 return (error);
1030 * If sopt->sopt_td == NULL, then sopt->sopt_val is treated as an
1031 * in kernel pointer instead of a userland pointer. This allows us
1032 * to manipulate socket options in the emulation code.
1035 kern_setsockopt(int s, struct sockopt *sopt)
1037 struct thread *td = curthread;
1038 struct proc *p = td->td_proc;
1039 struct file *fp;
1040 int error;
1042 if (sopt->sopt_val == 0 && sopt->sopt_valsize != 0)
1043 return (EFAULT);
1044 if (sopt->sopt_valsize < 0)
1045 return (EINVAL);
1047 error = holdsock(p->p_fd, s, &fp);
1048 if (error)
1049 return (error);
1051 error = sosetopt((struct socket *)fp->f_data, sopt);
1052 fdrop(fp);
1053 return (error);
1057 * setsockopt_args(int s, int level, int name, caddr_t val, int valsize)
1060 sys_setsockopt(struct setsockopt_args *uap)
1062 struct thread *td = curthread;
1063 struct sockopt sopt;
1064 int error;
1066 sopt.sopt_level = uap->level;
1067 sopt.sopt_name = uap->name;
1068 sopt.sopt_val = uap->val;
1069 sopt.sopt_valsize = uap->valsize;
1070 sopt.sopt_td = td;
1072 error = kern_setsockopt(uap->s, &sopt);
1073 return(error);
1077 * If sopt->sopt_td == NULL, then sopt->sopt_val is treated as an
1078 * in kernel pointer instead of a userland pointer. This allows us
1079 * to manipulate socket options in the emulation code.
1082 kern_getsockopt(int s, struct sockopt *sopt)
1084 struct thread *td = curthread;
1085 struct proc *p = td->td_proc;
1086 struct file *fp;
1087 int error;
1089 if (sopt->sopt_val == 0 && sopt->sopt_valsize != 0)
1090 return (EFAULT);
1091 if (sopt->sopt_valsize < 0)
1092 return (EINVAL);
1094 error = holdsock(p->p_fd, s, &fp);
1095 if (error)
1096 return (error);
1098 error = sogetopt((struct socket *)fp->f_data, sopt);
1099 fdrop(fp);
1100 return (error);
1104 * getsockopt_Args(int s, int level, int name, caddr_t val, int *avalsize)
1107 sys_getsockopt(struct getsockopt_args *uap)
1109 struct thread *td = curthread;
1110 struct sockopt sopt;
1111 int error, valsize;
1113 if (uap->val) {
1114 error = copyin(uap->avalsize, &valsize, sizeof(valsize));
1115 if (error)
1116 return (error);
1117 if (valsize < 0)
1118 return (EINVAL);
1119 } else {
1120 valsize = 0;
1123 sopt.sopt_level = uap->level;
1124 sopt.sopt_name = uap->name;
1125 sopt.sopt_val = uap->val;
1126 sopt.sopt_valsize = valsize;
1127 sopt.sopt_td = td;
1129 error = kern_getsockopt(uap->s, &sopt);
1130 if (error == 0) {
1131 valsize = sopt.sopt_valsize;
1132 error = copyout(&valsize, uap->avalsize, sizeof(valsize));
1134 return (error);
1138 * The second argument to kern_getsockname() is a handle to a struct sockaddr.
1139 * This allows kern_getsockname() to return a pointer to an allocated struct
1140 * sockaddr which must be freed later with FREE(). The caller must
1141 * initialize *name to NULL.
1144 kern_getsockname(int s, struct sockaddr **name, int *namelen)
1146 struct thread *td = curthread;
1147 struct proc *p = td->td_proc;
1148 struct file *fp;
1149 struct socket *so;
1150 struct sockaddr *sa = NULL;
1151 int error;
1153 error = holdsock(p->p_fd, s, &fp);
1154 if (error)
1155 return (error);
1156 if (*namelen < 0) {
1157 fdrop(fp);
1158 return (EINVAL);
1160 so = (struct socket *)fp->f_data;
1161 error = so_pru_sockaddr(so, &sa);
1162 if (error == 0) {
1163 if (sa == 0) {
1164 *namelen = 0;
1165 } else {
1166 *namelen = MIN(*namelen, sa->sa_len);
1167 *name = sa;
1171 fdrop(fp);
1172 return (error);
1176 * getsockname_args(int fdes, caddr_t asa, int *alen)
1178 * Get socket name.
1181 sys_getsockname(struct getsockname_args *uap)
1183 struct sockaddr *sa = NULL;
1184 int error, sa_len;
1186 error = copyin(uap->alen, &sa_len, sizeof(sa_len));
1187 if (error)
1188 return (error);
1190 error = kern_getsockname(uap->fdes, &sa, &sa_len);
1192 if (error == 0)
1193 error = copyout(sa, uap->asa, sa_len);
1194 if (error == 0)
1195 error = copyout(&sa_len, uap->alen, sizeof(*uap->alen));
1196 if (sa)
1197 FREE(sa, M_SONAME);
1198 return (error);
1202 * The second argument to kern_getpeername() is a handle to a struct sockaddr.
1203 * This allows kern_getpeername() to return a pointer to an allocated struct
1204 * sockaddr which must be freed later with FREE(). The caller must
1205 * initialize *name to NULL.
1208 kern_getpeername(int s, struct sockaddr **name, int *namelen)
1210 struct thread *td = curthread;
1211 struct proc *p = td->td_proc;
1212 struct file *fp;
1213 struct socket *so;
1214 struct sockaddr *sa = NULL;
1215 int error;
1217 error = holdsock(p->p_fd, s, &fp);
1218 if (error)
1219 return (error);
1220 if (*namelen < 0) {
1221 fdrop(fp);
1222 return (EINVAL);
1224 so = (struct socket *)fp->f_data;
1225 if ((so->so_state & (SS_ISCONNECTED|SS_ISCONFIRMING)) == 0) {
1226 fdrop(fp);
1227 return (ENOTCONN);
1229 error = so_pru_peeraddr(so, &sa);
1230 if (error == 0) {
1231 if (sa == 0) {
1232 *namelen = 0;
1233 } else {
1234 *namelen = MIN(*namelen, sa->sa_len);
1235 *name = sa;
1239 fdrop(fp);
1240 return (error);
1244 * getpeername_args(int fdes, caddr_t asa, int *alen)
1246 * Get name of peer for connected socket.
1249 sys_getpeername(struct getpeername_args *uap)
1251 struct sockaddr *sa = NULL;
1252 int error, sa_len;
1254 error = copyin(uap->alen, &sa_len, sizeof(sa_len));
1255 if (error)
1256 return (error);
1258 error = kern_getpeername(uap->fdes, &sa, &sa_len);
1260 if (error == 0)
1261 error = copyout(sa, uap->asa, sa_len);
1262 if (error == 0)
1263 error = copyout(&sa_len, uap->alen, sizeof(*uap->alen));
1264 if (sa)
1265 FREE(sa, M_SONAME);
1266 return (error);
1270 getsockaddr(struct sockaddr **namp, caddr_t uaddr, size_t len)
1272 struct sockaddr *sa;
1273 int error;
1275 *namp = NULL;
1276 if (len > SOCK_MAXADDRLEN)
1277 return ENAMETOOLONG;
1278 if (len < offsetof(struct sockaddr, sa_data[0]))
1279 return EDOM;
1280 MALLOC(sa, struct sockaddr *, len, M_SONAME, M_WAITOK);
1281 error = copyin(uaddr, sa, len);
1282 if (error) {
1283 FREE(sa, M_SONAME);
1284 } else {
1285 #if BYTE_ORDER != BIG_ENDIAN
1287 * The bind(), connect(), and sendto() syscalls were not
1288 * versioned for COMPAT_43. Thus, this check must stay.
1290 if (sa->sa_family == 0 && sa->sa_len < AF_MAX)
1291 sa->sa_family = sa->sa_len;
1292 #endif
1293 sa->sa_len = len;
1294 *namp = sa;
1296 return error;
1300 * Detach a mapped page and release resources back to the system.
1301 * We must release our wiring and if the object is ripped out
1302 * from under the vm_page we become responsible for freeing the
1303 * page. These routines must be MPSAFE.
1305 * XXX HACK XXX TEMPORARY UNTIL WE IMPLEMENT EXT MBUF REFERENCE COUNTING
1307 * XXX vm_page_*() routines are not MPSAFE yet, the MP lock is required.
1309 static void
1310 sf_buf_mref(void *arg)
1312 struct sfbuf_mref *sfm = arg;
1315 * We must already hold a ref so there is no race to 0, just
1316 * atomically increment the count.
1318 atomic_add_int(&sfm->mref_count, 1);
1321 static void
1322 sf_buf_mfree(void *arg)
1324 struct sfbuf_mref *sfm = arg;
1325 vm_page_t m;
1327 KKASSERT(sfm->mref_count > 0);
1328 if (sfm->mref_count == 1) {
1330 * We are the only holder so no further locking is required,
1331 * the sfbuf can simply be freed.
1333 sfm->mref_count = 0;
1334 goto freeit;
1335 } else {
1337 * There may be other holders, we must obtain the serializer
1338 * to protect against a sf_buf_mfree() race to 0. An atomic
1339 * operation is still required for races against
1340 * sf_buf_mref().
1342 * XXX vm_page_*() and SFBUF routines not MPSAFE yet.
1344 lwkt_serialize_enter(&sfm->serializer);
1345 atomic_subtract_int(&sfm->mref_count, 1);
1346 if (sfm->mref_count == 0) {
1347 lwkt_serialize_exit(&sfm->serializer);
1348 freeit:
1349 get_mplock();
1350 crit_enter();
1351 m = sf_buf_page(sfm->sf);
1352 sf_buf_free(sfm->sf);
1353 vm_page_unwire(m, 0);
1354 if (m->wire_count == 0 && m->object == NULL)
1355 vm_page_try_to_free(m);
1356 crit_exit();
1357 rel_mplock();
1358 kfree(sfm, M_SENDFILE);
1359 } else {
1360 lwkt_serialize_exit(&sfm->serializer);
1366 * sendfile(2).
1367 * int sendfile(int fd, int s, off_t offset, size_t nbytes,
1368 * struct sf_hdtr *hdtr, off_t *sbytes, int flags)
1370 * Send a file specified by 'fd' and starting at 'offset' to a socket
1371 * specified by 's'. Send only 'nbytes' of the file or until EOF if
1372 * nbytes == 0. Optionally add a header and/or trailer to the socket
1373 * output. If specified, write the total number of bytes sent into *sbytes.
1375 * In FreeBSD kern/uipc_syscalls.c,v 1.103, a bug was fixed that caused
1376 * the headers to count against the remaining bytes to be sent from
1377 * the file descriptor. We may wish to implement a compatibility syscall
1378 * in the future.
1381 sys_sendfile(struct sendfile_args *uap)
1383 struct thread *td = curthread;
1384 struct proc *p = td->td_proc;
1385 struct file *fp;
1386 struct vnode *vp = NULL;
1387 struct sf_hdtr hdtr;
1388 struct iovec aiov[UIO_SMALLIOV], *iov = NULL;
1389 struct uio auio;
1390 struct mbuf *mheader = NULL;
1391 off_t hdtr_size = 0, sbytes;
1392 int error, hbytes = 0, tbytes;
1394 KKASSERT(p);
1397 * Do argument checking. Must be a regular file in, stream
1398 * type and connected socket out, positive offset.
1400 fp = holdfp(p->p_fd, uap->fd, FREAD);
1401 if (fp == NULL) {
1402 return (EBADF);
1404 if (fp->f_type != DTYPE_VNODE) {
1405 fdrop(fp);
1406 return (EINVAL);
1408 vp = (struct vnode *)fp->f_data;
1409 vref(vp);
1410 fdrop(fp);
1413 * If specified, get the pointer to the sf_hdtr struct for
1414 * any headers/trailers.
1416 if (uap->hdtr) {
1417 error = copyin(uap->hdtr, &hdtr, sizeof(hdtr));
1418 if (error)
1419 goto done;
1421 * Send any headers.
1423 if (hdtr.headers) {
1424 error = iovec_copyin(hdtr.headers, &iov, aiov,
1425 hdtr.hdr_cnt, &hbytes);
1426 if (error)
1427 goto done;
1428 auio.uio_iov = iov;
1429 auio.uio_iovcnt = hdtr.hdr_cnt;
1430 auio.uio_offset = 0;
1431 auio.uio_segflg = UIO_USERSPACE;
1432 auio.uio_rw = UIO_WRITE;
1433 auio.uio_td = td;
1434 auio.uio_resid = hbytes;
1436 mheader = m_uiomove(&auio);
1438 iovec_free(&iov, aiov);
1439 if (mheader == NULL)
1440 goto done;
1444 error = kern_sendfile(vp, uap->s, uap->offset, uap->nbytes, mheader,
1445 &sbytes, uap->flags);
1446 if (error)
1447 goto done;
1450 * Send trailers. Wimp out and use writev(2).
1452 if (uap->hdtr != NULL && hdtr.trailers != NULL) {
1453 error = iovec_copyin(hdtr.trailers, &iov, aiov,
1454 hdtr.trl_cnt, &auio.uio_resid);
1455 if (error)
1456 goto done;
1457 auio.uio_iov = iov;
1458 auio.uio_iovcnt = hdtr.trl_cnt;
1459 auio.uio_offset = 0;
1460 auio.uio_segflg = UIO_USERSPACE;
1461 auio.uio_rw = UIO_WRITE;
1462 auio.uio_td = td;
1464 error = kern_sendmsg(uap->s, NULL, &auio, NULL, 0, &tbytes);
1466 iovec_free(&iov, aiov);
1467 if (error)
1468 goto done;
1469 hdtr_size += tbytes; /* trailer bytes successfully sent */
1472 done:
1473 if (uap->sbytes != NULL) {
1474 sbytes += hdtr_size;
1475 copyout(&sbytes, uap->sbytes, sizeof(off_t));
1477 if (vp)
1478 vrele(vp);
1479 return (error);
1483 kern_sendfile(struct vnode *vp, int sfd, off_t offset, size_t nbytes,
1484 struct mbuf *mheader, off_t *sbytes, int flags)
1486 struct thread *td = curthread;
1487 struct proc *p = td->td_proc;
1488 struct vm_object *obj;
1489 struct socket *so;
1490 struct file *fp;
1491 struct mbuf *m;
1492 struct sf_buf *sf;
1493 struct sfbuf_mref *sfm;
1494 struct vm_page *pg;
1495 off_t off, xfsize;
1496 off_t hbytes = 0;
1497 int error = 0;
1499 if (vp->v_type != VREG) {
1500 error = EINVAL;
1501 goto done0;
1503 if ((obj = vp->v_object) == NULL) {
1504 error = EINVAL;
1505 goto done0;
1507 error = holdsock(p->p_fd, sfd, &fp);
1508 if (error)
1509 goto done0;
1510 so = (struct socket *)fp->f_data;
1511 if (so->so_type != SOCK_STREAM) {
1512 error = EINVAL;
1513 goto done;
1515 if ((so->so_state & SS_ISCONNECTED) == 0) {
1516 error = ENOTCONN;
1517 goto done;
1519 if (offset < 0) {
1520 error = EINVAL;
1521 goto done;
1524 *sbytes = 0;
1526 * Protect against multiple writers to the socket.
1528 ssb_lock(&so->so_snd, M_WAITOK);
1531 * Loop through the pages in the file, starting with the requested
1532 * offset. Get a file page (do I/O if necessary), map the file page
1533 * into an sf_buf, attach an mbuf header to the sf_buf, and queue
1534 * it on the socket.
1536 for (off = offset; ; off += xfsize, *sbytes += xfsize + hbytes) {
1537 vm_pindex_t pindex;
1538 vm_offset_t pgoff;
1540 pindex = OFF_TO_IDX(off);
1541 retry_lookup:
1543 * Calculate the amount to transfer. Not to exceed a page,
1544 * the EOF, or the passed in nbytes.
1546 xfsize = vp->v_filesize - off;
1547 if (xfsize > PAGE_SIZE)
1548 xfsize = PAGE_SIZE;
1549 pgoff = (vm_offset_t)(off & PAGE_MASK);
1550 if (PAGE_SIZE - pgoff < xfsize)
1551 xfsize = PAGE_SIZE - pgoff;
1552 if (nbytes && xfsize > (nbytes - *sbytes))
1553 xfsize = nbytes - *sbytes;
1554 if (xfsize <= 0)
1555 break;
1557 * Optimize the non-blocking case by looking at the socket space
1558 * before going to the extra work of constituting the sf_buf.
1560 if ((fp->f_flag & FNONBLOCK) && ssb_space(&so->so_snd) <= 0) {
1561 if (so->so_state & SS_CANTSENDMORE)
1562 error = EPIPE;
1563 else
1564 error = EAGAIN;
1565 ssb_unlock(&so->so_snd);
1566 goto done;
1569 * Attempt to look up the page.
1571 * Allocate if not found, wait and loop if busy, then
1572 * wire the page. critical section protection is
1573 * required to maintain the object association (an
1574 * interrupt can free the page) through to the
1575 * vm_page_wire() call.
1577 crit_enter();
1578 pg = vm_page_lookup(obj, pindex);
1579 if (pg == NULL) {
1580 pg = vm_page_alloc(obj, pindex, VM_ALLOC_NORMAL);
1581 if (pg == NULL) {
1582 vm_wait();
1583 crit_exit();
1584 goto retry_lookup;
1586 vm_page_wakeup(pg);
1587 } else if (vm_page_sleep_busy(pg, TRUE, "sfpbsy")) {
1588 crit_exit();
1589 goto retry_lookup;
1591 vm_page_wire(pg);
1592 crit_exit();
1595 * If page is not valid for what we need, initiate I/O
1598 if (!pg->valid || !vm_page_is_valid(pg, pgoff, xfsize)) {
1599 struct uio auio;
1600 struct iovec aiov;
1601 int bsize;
1604 * Ensure that our page is still around when the I/O
1605 * completes.
1607 vm_page_io_start(pg);
1610 * Get the page from backing store.
1612 bsize = vp->v_mount->mnt_stat.f_iosize;
1613 auio.uio_iov = &aiov;
1614 auio.uio_iovcnt = 1;
1615 aiov.iov_base = 0;
1616 aiov.iov_len = MAXBSIZE;
1617 auio.uio_resid = MAXBSIZE;
1618 auio.uio_offset = trunc_page(off);
1619 auio.uio_segflg = UIO_NOCOPY;
1620 auio.uio_rw = UIO_READ;
1621 auio.uio_td = td;
1622 vn_lock(vp, LK_SHARED | LK_RETRY);
1623 error = VOP_READ(vp, &auio,
1624 IO_VMIO | ((MAXBSIZE / bsize) << 16),
1625 p->p_ucred);
1626 vn_unlock(vp);
1627 vm_page_flag_clear(pg, PG_ZERO);
1628 vm_page_io_finish(pg);
1629 if (error) {
1630 crit_enter();
1631 vm_page_unwire(pg, 0);
1632 vm_page_try_to_free(pg);
1633 crit_exit();
1634 ssb_unlock(&so->so_snd);
1635 goto done;
1641 * Get a sendfile buf. We usually wait as long as necessary,
1642 * but this wait can be interrupted.
1644 if ((sf = sf_buf_alloc(pg, SFB_CATCH)) == NULL) {
1645 crit_enter();
1646 vm_page_unwire(pg, 0);
1647 vm_page_try_to_free(pg);
1648 crit_exit();
1649 ssb_unlock(&so->so_snd);
1650 error = EINTR;
1651 goto done;
1655 * Get an mbuf header and set it up as having external storage.
1657 MGETHDR(m, MB_WAIT, MT_DATA);
1658 if (m == NULL) {
1659 error = ENOBUFS;
1660 sf_buf_free(sf);
1661 ssb_unlock(&so->so_snd);
1662 goto done;
1666 * sfm is a temporary hack, use a per-cpu cache for this.
1668 sfm = kmalloc(sizeof(struct sfbuf_mref), M_SENDFILE, M_WAITOK);
1669 sfm->sf = sf;
1670 sfm->mref_count = 1;
1671 lwkt_serialize_init(&sfm->serializer);
1673 m->m_ext.ext_free = sf_buf_mfree;
1674 m->m_ext.ext_ref = sf_buf_mref;
1675 m->m_ext.ext_arg = sfm;
1676 m->m_ext.ext_buf = (void *)sf->kva;
1677 m->m_ext.ext_size = PAGE_SIZE;
1678 m->m_data = (char *) sf->kva + pgoff;
1679 m->m_flags |= M_EXT;
1680 m->m_pkthdr.len = m->m_len = xfsize;
1681 KKASSERT((m->m_flags & (M_EXT_CLUSTER)) == 0);
1683 if (mheader != NULL) {
1684 hbytes = mheader->m_pkthdr.len;
1685 mheader->m_pkthdr.len += m->m_pkthdr.len;
1686 m_cat(mheader, m);
1687 m = mheader;
1688 mheader = NULL;
1689 } else
1690 hbytes = 0;
1693 * Add the buffer to the socket buffer chain.
1695 crit_enter();
1696 retry_space:
1698 * Make sure that the socket is still able to take more data.
1699 * CANTSENDMORE being true usually means that the connection
1700 * was closed. so_error is true when an error was sensed after
1701 * a previous send.
1702 * The state is checked after the page mapping and buffer
1703 * allocation above since those operations may block and make
1704 * any socket checks stale. From this point forward, nothing
1705 * blocks before the pru_send (or more accurately, any blocking
1706 * results in a loop back to here to re-check).
1708 if ((so->so_state & SS_CANTSENDMORE) || so->so_error) {
1709 if (so->so_state & SS_CANTSENDMORE) {
1710 error = EPIPE;
1711 } else {
1712 error = so->so_error;
1713 so->so_error = 0;
1715 m_freem(m);
1716 ssb_unlock(&so->so_snd);
1717 crit_exit();
1718 goto done;
1721 * Wait for socket space to become available. We do this just
1722 * after checking the connection state above in order to avoid
1723 * a race condition with ssb_wait().
1725 if (ssb_space(&so->so_snd) < so->so_snd.ssb_lowat) {
1726 if (fp->f_flag & FNONBLOCK) {
1727 m_freem(m);
1728 ssb_unlock(&so->so_snd);
1729 crit_exit();
1730 error = EAGAIN;
1731 goto done;
1733 error = ssb_wait(&so->so_snd);
1735 * An error from ssb_wait usually indicates that we've
1736 * been interrupted by a signal. If we've sent anything
1737 * then return bytes sent, otherwise return the error.
1739 if (error) {
1740 m_freem(m);
1741 ssb_unlock(&so->so_snd);
1742 crit_exit();
1743 goto done;
1745 goto retry_space;
1747 error = so_pru_send(so, 0, m, NULL, NULL, td);
1748 crit_exit();
1749 if (error) {
1750 ssb_unlock(&so->so_snd);
1751 goto done;
1754 if (mheader != NULL) {
1755 *sbytes += mheader->m_pkthdr.len;
1756 error = so_pru_send(so, 0, mheader, NULL, NULL, td);
1757 mheader = NULL;
1759 ssb_unlock(&so->so_snd);
1761 done:
1762 fdrop(fp);
1763 done0:
1764 if (mheader != NULL)
1765 m_freem(mheader);
1766 return (error);
1770 sys_sctp_peeloff(struct sctp_peeloff_args *uap)
1772 #ifdef SCTP
1773 struct thread *td = curthread;
1774 struct proc *p = td->td_proc;
1775 struct file *lfp = NULL;
1776 struct file *nfp = NULL;
1777 int error;
1778 struct socket *head, *so;
1779 caddr_t assoc_id;
1780 int fd;
1781 short fflag; /* type must match fp->f_flag */
1783 assoc_id = uap->name;
1784 error = holdsock(p->p_fd, uap->sd, &lfp);
1785 if (error) {
1786 return (error);
1788 crit_enter();
1789 head = (struct socket *)lfp->f_data;
1790 error = sctp_can_peel_off(head, assoc_id);
1791 if (error) {
1792 crit_exit();
1793 goto done;
1796 * At this point we know we do have a assoc to pull
1797 * we proceed to get the fd setup. This may block
1798 * but that is ok.
1801 fflag = lfp->f_flag;
1802 error = falloc(p, &nfp, &fd);
1803 if (error) {
1805 * Probably ran out of file descriptors. Put the
1806 * unaccepted connection back onto the queue and
1807 * do another wakeup so some other process might
1808 * have a chance at it.
1810 crit_exit();
1811 goto done;
1813 uap->sysmsg_result = fd;
1815 so = sctp_get_peeloff(head, assoc_id, &error);
1816 if (so == NULL) {
1818 * Either someone else peeled it off OR
1819 * we can't get a socket.
1821 goto noconnection;
1823 so->so_state &= ~SS_COMP;
1824 so->so_state &= ~SS_NOFDREF;
1825 so->so_head = NULL;
1826 if (head->so_sigio != NULL)
1827 fsetown(fgetown(head->so_sigio), &so->so_sigio);
1829 nfp->f_type = DTYPE_SOCKET;
1830 nfp->f_flag = fflag;
1831 nfp->f_ops = &socketops;
1832 nfp->f_data = so;
1834 noconnection:
1836 * Assign the file pointer to the reserved descriptor, or clear
1837 * the reserved descriptor if an error occured.
1839 if (error)
1840 fsetfd(p, NULL, fd);
1841 else
1842 fsetfd(p, nfp, fd);
1843 crit_exit();
1845 * Release explicitly held references before returning.
1847 done:
1848 if (nfp != NULL)
1849 fdrop(nfp);
1850 fdrop(lfp);
1851 return (error);
1852 #else /* SCTP */
1853 return(EOPNOTSUPP);
1854 #endif /* SCTP */