2 * BLIST.C - Bitmap allocator/deallocator, using a radix tree with hinting
4 * Copyright (c) 1998,2004 The DragonFly Project. All rights reserved.
6 * This code is derived from software contributed to The DragonFly Project
7 * by Matthew Dillon <dillon@backplane.com>
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in
17 * the documentation and/or other materials provided with the
19 * 3. Neither the name of The DragonFly Project nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific, prior written permission.
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
26 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
27 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
28 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
29 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
30 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
31 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
32 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
33 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37 * This module implements a general bitmap allocator/deallocator. The
38 * allocator eats around 2 bits per 'block'. The module does not
39 * try to interpret the meaning of a 'block' other then to return
40 * SWAPBLK_NONE on an allocation failure.
42 * A radix tree is used to maintain the bitmap. Two radix constants are
43 * involved: One for the bitmaps contained in the leaf nodes (typically
44 * 32), and one for the meta nodes (typically 16). Both meta and leaf
45 * nodes have a hint field. This field gives us a hint as to the largest
46 * free contiguous range of blocks under the node. It may contain a
47 * value that is too high, but will never contain a value that is too
48 * low. When the radix tree is searched, allocation failures in subtrees
51 * The radix tree also implements two collapsed states for meta nodes:
52 * the ALL-ALLOCATED state and the ALL-FREE state. If a meta node is
53 * in either of these two states, all information contained underneath
54 * the node is considered stale. These states are used to optimize
55 * allocation and freeing operations.
57 * The hinting greatly increases code efficiency for allocations while
58 * the general radix structure optimizes both allocations and frees. The
59 * radix tree should be able to operate well no matter how much
60 * fragmentation there is and no matter how large a bitmap is used.
62 * Unlike the rlist code, the blist code wires all necessary memory at
63 * creation time. Neither allocations nor frees require interaction with
64 * the memory subsystem. In contrast, the rlist code may allocate memory
65 * on an rlist_free() call. The non-blocking features of the blist code
66 * are used to great advantage in the swap code (vm/nswap_pager.c). The
67 * rlist code uses a little less overall memory then the blist code (but
68 * due to swap interleaving not all that much less), but the blist code
69 * scales much, much better.
71 * LAYOUT: The radix tree is layed out recursively using a
72 * linear array. Each meta node is immediately followed (layed out
73 * sequentially in memory) by BLIST_META_RADIX lower level nodes. This
74 * is a recursive structure but one that can be easily scanned through
75 * a very simple 'skip' calculation. In order to support large radixes,
76 * portions of the tree may reside outside our memory allocation. We
77 * handle this with an early-termination optimization (when bighint is
78 * set to -1) on the scan. The memory allocation is only large enough
79 * to cover the number of blocks requested at creation time even if it
80 * must be encompassed in larger root-node radix.
82 * NOTE: the allocator cannot currently allocate more then
83 * BLIST_BMAP_RADIX blocks per call. It will panic with 'allocation too
84 * large' if you try. This is an area that could use improvement. The
85 * radix is large enough that this restriction does not effect the swap
86 * system, though. Currently only the allocation code is effected by
87 * this algorithmic unfeature. The freeing code can handle arbitrary
90 * This code can be compiled stand-alone for debugging.
92 * $FreeBSD: src/sys/kern/subr_blist.c,v 1.5.2.2 2003/01/12 09:23:12 dillon Exp $
93 * $DragonFly: src/sys/kern/subr_blist.c,v 1.7 2006/12/23 01:35:04 swildner Exp $
98 #include <sys/param.h>
99 #include <sys/systm.h>
100 #include <sys/lock.h>
101 #include <sys/kernel.h>
102 #include <sys/blist.h>
103 #include <sys/malloc.h>
105 #include <vm/vm_object.h>
106 #include <vm/vm_kern.h>
107 #include <vm/vm_extern.h>
108 #include <vm/vm_page.h>
112 #ifndef BLIST_NO_DEBUG
116 #define SWAPBLK_NONE ((daddr_t)-1)
118 #include <sys/types.h>
124 #define kmalloc(a,b,c) malloc(a)
125 #define kfree(a,b) free(a)
127 typedef unsigned int u_daddr_t
;
129 #include <sys/blist.h>
131 void panic(const char *ctl
, ...);
136 * static support functions
139 static daddr_t
blst_leaf_alloc(blmeta_t
*scan
, daddr_t blk
, int count
);
140 static daddr_t
blst_meta_alloc(blmeta_t
*scan
, daddr_t blk
,
141 daddr_t count
, daddr_t radix
, int skip
);
142 static void blst_leaf_free(blmeta_t
*scan
, daddr_t relblk
, int count
);
143 static void blst_meta_free(blmeta_t
*scan
, daddr_t freeBlk
, daddr_t count
,
144 daddr_t radix
, int skip
, daddr_t blk
);
145 static void blst_copy(blmeta_t
*scan
, daddr_t blk
, daddr_t radix
,
146 daddr_t skip
, blist_t dest
, daddr_t count
);
147 static daddr_t
blst_radix_init(blmeta_t
*scan
, daddr_t radix
,
148 int skip
, daddr_t count
);
150 static void blst_radix_print(blmeta_t
*scan
, daddr_t blk
,
151 daddr_t radix
, int skip
, int tab
);
155 static MALLOC_DEFINE(M_SWAP
, "SWAP", "Swap space");
159 * blist_create() - create a blist capable of handling up to the specified
162 * blocks must be greater then 0
164 * The smallest blist consists of a single leaf node capable of
165 * managing BLIST_BMAP_RADIX blocks.
169 blist_create(daddr_t blocks
)
176 * Calculate radix and skip field used for scanning.
178 radix
= BLIST_BMAP_RADIX
;
180 while (radix
< blocks
) {
181 radix
*= BLIST_META_RADIX
;
182 skip
= (skip
+ 1) * BLIST_META_RADIX
;
185 bl
= kmalloc(sizeof(struct blist
), M_SWAP
, M_WAITOK
);
187 bzero(bl
, sizeof(*bl
));
189 bl
->bl_blocks
= blocks
;
190 bl
->bl_radix
= radix
;
192 bl
->bl_rootblks
= 1 +
193 blst_radix_init(NULL
, bl
->bl_radix
, bl
->bl_skip
, blocks
);
194 bl
->bl_root
= kmalloc(sizeof(blmeta_t
) * bl
->bl_rootblks
, M_SWAP
, M_WAITOK
);
196 #if defined(BLIST_DEBUG)
198 "BLIST representing %d blocks (%d MB of swap)"
199 ", requiring %dK of ram\n",
201 bl
->bl_blocks
* 4 / 1024,
202 (bl
->bl_rootblks
* sizeof(blmeta_t
) + 1023) / 1024
204 kprintf("BLIST raw radix tree contains %d records\n", bl
->bl_rootblks
);
206 blst_radix_init(bl
->bl_root
, bl
->bl_radix
, bl
->bl_skip
, blocks
);
212 blist_destroy(blist_t bl
)
214 kfree(bl
->bl_root
, M_SWAP
);
219 * blist_alloc() - reserve space in the block bitmap. Return the base
220 * of a contiguous region or SWAPBLK_NONE if space could
225 blist_alloc(blist_t bl
, daddr_t count
)
227 daddr_t blk
= SWAPBLK_NONE
;
230 if (bl
->bl_radix
== BLIST_BMAP_RADIX
)
231 blk
= blst_leaf_alloc(bl
->bl_root
, 0, count
);
233 blk
= blst_meta_alloc(bl
->bl_root
, 0, count
, bl
->bl_radix
, bl
->bl_skip
);
234 if (blk
!= SWAPBLK_NONE
)
235 bl
->bl_free
-= count
;
241 * blist_free() - free up space in the block bitmap. Return the base
242 * of a contiguous region. Panic if an inconsistancy is
247 blist_free(blist_t bl
, daddr_t blkno
, daddr_t count
)
250 if (bl
->bl_radix
== BLIST_BMAP_RADIX
)
251 blst_leaf_free(bl
->bl_root
, blkno
, count
);
253 blst_meta_free(bl
->bl_root
, blkno
, count
, bl
->bl_radix
, bl
->bl_skip
, 0);
254 bl
->bl_free
+= count
;
259 * blist_resize() - resize an existing radix tree to handle the
260 * specified number of blocks. This will reallocate
261 * the tree and transfer the previous bitmap to the new
262 * one. When extending the tree you can specify whether
263 * the new blocks are to left allocated or freed.
267 blist_resize(blist_t
*pbl
, daddr_t count
, int freenew
)
269 blist_t newbl
= blist_create(count
);
273 if (count
> save
->bl_blocks
)
274 count
= save
->bl_blocks
;
275 blst_copy(save
->bl_root
, 0, save
->bl_radix
, save
->bl_skip
, newbl
, count
);
278 * If resizing upwards, should we free the new space or not?
280 if (freenew
&& count
< newbl
->bl_blocks
) {
281 blist_free(newbl
, count
, newbl
->bl_blocks
- count
);
289 * blist_print() - dump radix tree
293 blist_print(blist_t bl
)
295 kprintf("BLIST {\n");
296 blst_radix_print(bl
->bl_root
, 0, bl
->bl_radix
, bl
->bl_skip
, 4);
302 /************************************************************************
303 * ALLOCATION SUPPORT FUNCTIONS *
304 ************************************************************************
306 * These support functions do all the actual work. They may seem
307 * rather longish, but that's because I've commented them up. The
308 * actual code is straight forward.
313 * blist_leaf_alloc() - allocate at a leaf in the radix tree (a bitmap).
315 * This is the core of the allocator and is optimized for the 1 block
316 * and the BLIST_BMAP_RADIX block allocation cases. Other cases are
317 * somewhat slower. The 1 block allocation case is log2 and extremely
327 u_daddr_t orig
= scan
->u
.bmu_bitmap
;
331 * Optimize bitmap all-allocated case. Also, count = 1
332 * case assumes at least 1 bit is free in the bitmap, so
333 * we have to take care of this case here.
335 scan
->bm_bighint
= 0;
336 return(SWAPBLK_NONE
);
340 * Optimized code to allocate one bit out of the bitmap
343 int j
= BLIST_BMAP_RADIX
/2;
346 mask
= (u_daddr_t
)-1 >> (BLIST_BMAP_RADIX
/2);
349 if ((orig
& mask
) == 0) {
356 scan
->u
.bmu_bitmap
&= ~(1 << r
);
359 if (count
<= BLIST_BMAP_RADIX
) {
361 * non-optimized code to allocate N bits out of the bitmap.
362 * The more bits, the faster the code runs. It will run
363 * the slowest allocating 2 bits, but since there aren't any
364 * memory ops in the core loop (or shouldn't be, anyway),
365 * you probably won't notice the difference.
368 int n
= BLIST_BMAP_RADIX
- count
;
371 mask
= (u_daddr_t
)-1 >> n
;
373 for (j
= 0; j
<= n
; ++j
) {
374 if ((orig
& mask
) == mask
) {
375 scan
->u
.bmu_bitmap
&= ~mask
;
382 * We couldn't allocate count in this subtree, update bighint.
384 scan
->bm_bighint
= count
- 1;
385 return(SWAPBLK_NONE
);
389 * blist_meta_alloc() - allocate at a meta in the radix tree.
391 * Attempt to allocate at a meta node. If we can't, we update
392 * bighint and return a failure. Updating bighint optimize future
393 * calls that hit this node. We have to check for our collapse cases
394 * and we have a few optimizations strewn in as well.
406 int next_skip
= ((u_int
)skip
/ BLIST_META_RADIX
);
408 if (scan
->u
.bmu_avail
== 0) {
410 * ALL-ALLOCATED special case
412 scan
->bm_bighint
= count
;
413 return(SWAPBLK_NONE
);
416 if (scan
->u
.bmu_avail
== radix
) {
417 radix
/= BLIST_META_RADIX
;
420 * ALL-FREE special case, initialize uninitialize
423 for (i
= 1; i
<= skip
; i
+= next_skip
) {
424 if (scan
[i
].bm_bighint
== (daddr_t
)-1)
426 if (next_skip
== 1) {
427 scan
[i
].u
.bmu_bitmap
= (u_daddr_t
)-1;
428 scan
[i
].bm_bighint
= BLIST_BMAP_RADIX
;
430 scan
[i
].bm_bighint
= radix
;
431 scan
[i
].u
.bmu_avail
= radix
;
435 radix
/= BLIST_META_RADIX
;
438 for (i
= 1; i
<= skip
; i
+= next_skip
) {
439 if (count
<= scan
[i
].bm_bighint
) {
441 * count fits in object
444 if (next_skip
== 1) {
445 r
= blst_leaf_alloc(&scan
[i
], blk
, count
);
447 r
= blst_meta_alloc(&scan
[i
], blk
, count
, radix
, next_skip
- 1);
449 if (r
!= SWAPBLK_NONE
) {
450 scan
->u
.bmu_avail
-= count
;
451 if (scan
->bm_bighint
> scan
->u
.bmu_avail
)
452 scan
->bm_bighint
= scan
->u
.bmu_avail
;
455 } else if (scan
[i
].bm_bighint
== (daddr_t
)-1) {
460 } else if (count
> radix
) {
462 * count does not fit in object even if it were
465 panic("blist_meta_alloc: allocation too large");
471 * We couldn't allocate count in this subtree, update bighint.
473 if (scan
->bm_bighint
>= count
)
474 scan
->bm_bighint
= count
- 1;
475 return(SWAPBLK_NONE
);
479 * BLST_LEAF_FREE() - free allocated block from leaf bitmap
490 * free some data in this bitmap
493 * 0000111111111110000
497 int n
= blk
& (BLIST_BMAP_RADIX
- 1);
500 mask
= ((u_daddr_t
)-1 << n
) &
501 ((u_daddr_t
)-1 >> (BLIST_BMAP_RADIX
- count
- n
));
503 if (scan
->u
.bmu_bitmap
& mask
)
504 panic("blst_radix_free: freeing free block");
505 scan
->u
.bmu_bitmap
|= mask
;
508 * We could probably do a better job here. We are required to make
509 * bighint at least as large as the biggest contiguous block of
510 * data. If we just shoehorn it, a little extra overhead will
511 * be incured on the next allocation (but only that one typically).
513 scan
->bm_bighint
= BLIST_BMAP_RADIX
;
517 * BLST_META_FREE() - free allocated blocks from radix tree meta info
519 * This support routine frees a range of blocks from the bitmap.
520 * The range must be entirely enclosed by this radix node. If a
521 * meta node, we break the range down recursively to free blocks
522 * in subnodes (which means that this code can free an arbitrary
523 * range whereas the allocation code cannot allocate an arbitrary
537 int next_skip
= ((u_int
)skip
/ BLIST_META_RADIX
);
540 kprintf("FREE (%x,%d) FROM (%x,%d)\n",
546 if (scan
->u
.bmu_avail
== 0) {
548 * ALL-ALLOCATED special case, with possible
549 * shortcut to ALL-FREE special case.
551 scan
->u
.bmu_avail
= count
;
552 scan
->bm_bighint
= count
;
554 if (count
!= radix
) {
555 for (i
= 1; i
<= skip
; i
+= next_skip
) {
556 if (scan
[i
].bm_bighint
== (daddr_t
)-1)
558 scan
[i
].bm_bighint
= 0;
559 if (next_skip
== 1) {
560 scan
[i
].u
.bmu_bitmap
= 0;
562 scan
[i
].u
.bmu_avail
= 0;
568 scan
->u
.bmu_avail
+= count
;
569 /* scan->bm_bighint = radix; */
573 * ALL-FREE special case.
576 if (scan
->u
.bmu_avail
== radix
)
578 if (scan
->u
.bmu_avail
> radix
)
579 panic("blst_meta_free: freeing already free blocks (%d) %d/%d", count
, scan
->u
.bmu_avail
, radix
);
582 * Break the free down into its components
585 radix
/= BLIST_META_RADIX
;
587 i
= (freeBlk
- blk
) / radix
;
589 i
= i
* next_skip
+ 1;
591 while (i
<= skip
&& blk
< freeBlk
+ count
) {
594 v
= blk
+ radix
- freeBlk
;
598 if (scan
->bm_bighint
== (daddr_t
)-1)
599 panic("blst_meta_free: freeing unexpected range");
601 if (next_skip
== 1) {
602 blst_leaf_free(&scan
[i
], freeBlk
, v
);
604 blst_meta_free(&scan
[i
], freeBlk
, v
, radix
, next_skip
- 1, blk
);
606 if (scan
->bm_bighint
< scan
[i
].bm_bighint
)
607 scan
->bm_bighint
= scan
[i
].bm_bighint
;
616 * BLIST_RADIX_COPY() - copy one radix tree to another
618 * Locates free space in the source tree and frees it in the destination
619 * tree. The space may not already be free in the destination.
622 static void blst_copy(
637 if (radix
== BLIST_BMAP_RADIX
) {
638 u_daddr_t v
= scan
->u
.bmu_bitmap
;
640 if (v
== (u_daddr_t
)-1) {
641 blist_free(dest
, blk
, count
);
645 for (i
= 0; i
< BLIST_BMAP_RADIX
&& i
< count
; ++i
) {
647 blist_free(dest
, blk
+ i
, 1);
657 if (scan
->u
.bmu_avail
== 0) {
659 * Source all allocated, leave dest allocated
663 if (scan
->u
.bmu_avail
== radix
) {
665 * Source all free, free entire dest
668 blist_free(dest
, blk
, count
);
670 blist_free(dest
, blk
, radix
);
675 radix
/= BLIST_META_RADIX
;
676 next_skip
= ((u_int
)skip
/ BLIST_META_RADIX
);
678 for (i
= 1; count
&& i
<= skip
; i
+= next_skip
) {
679 if (scan
[i
].bm_bighint
== (daddr_t
)-1)
682 if (count
>= radix
) {
710 * BLST_RADIX_INIT() - initialize radix tree
712 * Initialize our meta structures and bitmaps and calculate the exact
713 * amount of space required to manage 'count' blocks - this space may
714 * be considerably less then the calculated radix due to the large
715 * RADIX values we use.
719 blst_radix_init(blmeta_t
*scan
, daddr_t radix
, int skip
, daddr_t count
)
723 daddr_t memindex
= 0;
729 if (radix
== BLIST_BMAP_RADIX
) {
731 scan
->bm_bighint
= 0;
732 scan
->u
.bmu_bitmap
= 0;
738 * Meta node. If allocating the entire object we can special
739 * case it. However, we need to figure out how much memory
740 * is required to manage 'count' blocks, so we continue on anyway.
744 scan
->bm_bighint
= 0;
745 scan
->u
.bmu_avail
= 0;
748 radix
/= BLIST_META_RADIX
;
749 next_skip
= ((u_int
)skip
/ BLIST_META_RADIX
);
751 for (i
= 1; i
<= skip
; i
+= next_skip
) {
752 if (count
>= radix
) {
754 * Allocate the entire object
756 memindex
= i
+ blst_radix_init(
757 ((scan
) ? &scan
[i
] : NULL
),
763 } else if (count
> 0) {
765 * Allocate a partial object
767 memindex
= i
+ blst_radix_init(
768 ((scan
) ? &scan
[i
] : NULL
),
776 * Add terminator and break out
779 scan
[i
].bm_bighint
= (daddr_t
)-1;
791 blst_radix_print(blmeta_t
*scan
, daddr_t blk
, daddr_t radix
, int skip
, int tab
)
797 if (radix
== BLIST_BMAP_RADIX
) {
799 "%*.*s(%04x,%d): bitmap %08x big=%d\n",
808 if (scan
->u
.bmu_avail
== 0) {
810 "%*.*s(%04x,%d) ALL ALLOCATED\n",
817 if (scan
->u
.bmu_avail
== radix
) {
819 "%*.*s(%04x,%d) ALL FREE\n",
828 "%*.*s(%04x,%d): subtree (%d/%d) big=%d {\n",
836 radix
/= BLIST_META_RADIX
;
837 next_skip
= ((u_int
)skip
/ BLIST_META_RADIX
);
840 for (i
= 1; i
<= skip
; i
+= next_skip
) {
841 if (scan
[i
].bm_bighint
== (daddr_t
)-1) {
843 "%*.*s(%04x,%d): Terminator\n",
872 main(int ac
, char **av
)
878 for (i
= 1; i
< ac
; ++i
) {
879 const char *ptr
= av
[i
];
881 size
= strtol(ptr
, NULL
, 0);
885 fprintf(stderr
, "Bad option: %s\n", ptr
- 2);
888 bl
= blist_create(size
);
889 blist_free(bl
, 0, size
);
897 kprintf("%d/%d/%d> ", bl
->bl_free
, size
, bl
->bl_radix
);
899 if (fgets(buf
, sizeof(buf
), stdin
) == NULL
)
903 if (sscanf(buf
+ 1, "%d", &count
) == 1) {
904 blist_resize(&bl
, count
, 1);
912 if (sscanf(buf
+ 1, "%d", &count
) == 1) {
913 daddr_t blk
= blist_alloc(bl
, count
);
914 kprintf(" R=%04x\n", blk
);
920 if (sscanf(buf
+ 1, "%x %d", &da
, &count
) == 2) {
921 blist_free(bl
, da
, count
);
945 panic(const char *ctl
, ...)
950 vfprintf(stderr
, ctl
, va
);
951 fprintf(stderr
, "\n");