1 /* $OpenBSD: moduli.c,v 1.20 2007/02/24 03:30:11 ray Exp $ */
3 * Copyright 1994 Phil Karn <karn@qualcomm.com>
4 * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
5 * Copyright 2000 Niels Provos <provos@citi.umich.edu>
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 * Two-step process to generate safe primes for DHGEX
32 * Sieve candidates for "safe" primes,
33 * suitable for use as Diffie-Hellman moduli;
34 * that is, where q = (p-1)/2 is also prime.
36 * First step: generate candidate primes (memory intensive)
37 * Second step: test primes' safety (processor intensive)
42 #include <sys/types.h>
44 #include <openssl/bn.h>
59 /* need line long enough for largest moduli plus headers */
60 #define QLINESIZE (100+8192)
63 * Specifies the internal structure of the prime modulus.
65 #define QTYPE_UNKNOWN (0)
66 #define QTYPE_UNSTRUCTURED (1)
67 #define QTYPE_SAFE (2)
68 #define QTYPE_SCHNORR (3)
69 #define QTYPE_SOPHIE_GERMAIN (4)
70 #define QTYPE_STRONG (5)
72 /* Tests: decimal (bit field).
73 * Specifies the methods used in checking for primality.
74 * Usually, more than one test is used.
76 #define QTEST_UNTESTED (0x00)
77 #define QTEST_COMPOSITE (0x01)
78 #define QTEST_SIEVE (0x02)
79 #define QTEST_MILLER_RABIN (0x04)
80 #define QTEST_JACOBI (0x08)
81 #define QTEST_ELLIPTIC (0x10)
85 * Specifies the number of the most significant bit (0 to M).
86 * WARNING: internally, usually 1 to N.
88 #define QSIZE_MINIMUM (511)
91 * Prime sieving defines
94 /* Constant: assuming 8 bit bytes and 32 bit words */
96 #define SHIFT_BYTE (2)
97 #define SHIFT_WORD (SHIFT_BIT+SHIFT_BYTE)
98 #define SHIFT_MEGABYTE (20)
99 #define SHIFT_MEGAWORD (SHIFT_MEGABYTE-SHIFT_BYTE)
102 * Using virtual memory can cause thrashing. This should be the largest
103 * number that is supported without a large amount of disk activity --
104 * that would increase the run time from hours to days or weeks!
106 #define LARGE_MINIMUM (8UL) /* megabytes */
109 * Do not increase this number beyond the unsigned integer bit size.
110 * Due to a multiple of 4, it must be LESS than 128 (yielding 2**30 bits).
112 #define LARGE_MAXIMUM (127UL) /* megabytes */
115 * Constant: when used with 32-bit integers, the largest sieve prime
116 * has to be less than 2**32.
118 #define SMALL_MAXIMUM (0xffffffffUL)
120 /* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
121 #define TINY_NUMBER (1UL<<16)
123 /* Ensure enough bit space for testing 2*q. */
124 #define TEST_MAXIMUM (1UL<<16)
125 #define TEST_MINIMUM (QSIZE_MINIMUM + 1)
126 /* real TEST_MINIMUM (1UL << (SHIFT_WORD - TEST_POWER)) */
127 #define TEST_POWER (3) /* 2**n, n < SHIFT_WORD */
129 /* bit operations on 32-bit words */
130 #define BIT_CLEAR(a,n) ((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
131 #define BIT_SET(a,n) ((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
132 #define BIT_TEST(a,n) ((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))
135 * Prime testing defines
138 /* Minimum number of primality tests to perform */
139 #define TRIAL_MINIMUM (4)
142 * Sieving data (XXX - move to struct)
146 static u_int32_t
*TinySieve
, tinybits
;
148 /* sieve 2**30 in 2**16 parts */
149 static u_int32_t
*SmallSieve
, smallbits
, smallbase
;
151 /* sieve relative to the initial value */
152 static u_int32_t
*LargeSieve
, largewords
, largetries
, largenumbers
;
153 static u_int32_t largebits
, largememory
; /* megabytes */
154 static BIGNUM
*largebase
;
156 int gen_candidates(FILE *, u_int32_t
, u_int32_t
, BIGNUM
*);
157 int prime_test(FILE *, FILE *, u_int32_t
, u_int32_t
);
160 * print moduli out in consistent form,
163 qfileout(FILE * ofile
, u_int32_t otype
, u_int32_t otests
, u_int32_t otries
,
164 u_int32_t osize
, u_int32_t ogenerator
, BIGNUM
* omodulus
)
171 gtm
= gmtime(&time_now
);
173 res
= fprintf(ofile
, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
174 gtm
->tm_year
+ 1900, gtm
->tm_mon
+ 1, gtm
->tm_mday
,
175 gtm
->tm_hour
, gtm
->tm_min
, gtm
->tm_sec
,
176 otype
, otests
, otries
, osize
, ogenerator
);
181 if (BN_print_fp(ofile
, omodulus
) < 1)
184 res
= fprintf(ofile
, "\n");
187 return (res
> 0 ? 0 : -1);
192 ** Sieve p's and q's with small factors
195 sieve_large(u_int32_t s
)
199 debug3("sieve_large %u", s
);
201 /* r = largebase mod s */
202 r
= BN_mod_word(largebase
, s
);
204 u
= 0; /* s divides into largebase exactly */
206 u
= s
- r
; /* largebase+u is first entry divisible by s */
208 if (u
< largebits
* 2) {
210 * The sieve omits p's and q's divisible by 2, so ensure that
211 * largebase+u is odd. Then, step through the sieve in
215 u
+= s
; /* Make largebase+u odd, and u even */
217 /* Mark all multiples of 2*s */
218 for (u
/= 2; u
< largebits
; u
+= s
)
219 BIT_SET(LargeSieve
, u
);
225 u
= 0; /* s divides p exactly */
227 u
= s
- r
; /* p+u is first entry divisible by s */
229 if (u
< largebits
* 4) {
231 * The sieve omits p's divisible by 4, so ensure that
232 * largebase+u is not. Then, step through the sieve in
236 if (SMALL_MAXIMUM
- u
< s
)
241 /* Mark all multiples of 4*s */
242 for (u
/= 4; u
< largebits
; u
+= s
)
243 BIT_SET(LargeSieve
, u
);
248 * list candidates for Sophie-Germain primes (where q = (p-1)/2)
249 * to standard output.
250 * The list is checked against small known primes (less than 2**30).
253 gen_candidates(FILE *out
, u_int32_t memory
, u_int32_t power
, BIGNUM
*start
)
256 u_int32_t j
, r
, s
, t
;
257 u_int32_t smallwords
= TINY_NUMBER
>> 6;
258 u_int32_t tinywords
= TINY_NUMBER
>> 6;
259 time_t time_start
, time_stop
;
263 largememory
= memory
;
266 (memory
< LARGE_MINIMUM
|| memory
> LARGE_MAXIMUM
)) {
267 error("Invalid memory amount (min %ld, max %ld)",
268 LARGE_MINIMUM
, LARGE_MAXIMUM
);
273 * Set power to the length in bits of the prime to be generated.
274 * This is changed to 1 less than the desired safe prime moduli p.
276 if (power
> TEST_MAXIMUM
) {
277 error("Too many bits: %u > %lu", power
, TEST_MAXIMUM
);
279 } else if (power
< TEST_MINIMUM
) {
280 error("Too few bits: %u < %u", power
, TEST_MINIMUM
);
283 power
--; /* decrement before squaring */
286 * The density of ordinary primes is on the order of 1/bits, so the
287 * density of safe primes should be about (1/bits)**2. Set test range
288 * to something well above bits**2 to be reasonably sure (but not
289 * guaranteed) of catching at least one safe prime.
291 largewords
= ((power
* power
) >> (SHIFT_WORD
- TEST_POWER
));
294 * Need idea of how much memory is available. We don't have to use all
297 if (largememory
> LARGE_MAXIMUM
) {
298 logit("Limited memory: %u MB; limit %lu MB",
299 largememory
, LARGE_MAXIMUM
);
300 largememory
= LARGE_MAXIMUM
;
303 if (largewords
<= (largememory
<< SHIFT_MEGAWORD
)) {
304 logit("Increased memory: %u MB; need %u bytes",
305 largememory
, (largewords
<< SHIFT_BYTE
));
306 largewords
= (largememory
<< SHIFT_MEGAWORD
);
307 } else if (largememory
> 0) {
308 logit("Decreased memory: %u MB; want %u bytes",
309 largememory
, (largewords
<< SHIFT_BYTE
));
310 largewords
= (largememory
<< SHIFT_MEGAWORD
);
313 TinySieve
= xcalloc(tinywords
, sizeof(u_int32_t
));
314 tinybits
= tinywords
<< SHIFT_WORD
;
316 SmallSieve
= xcalloc(smallwords
, sizeof(u_int32_t
));
317 smallbits
= smallwords
<< SHIFT_WORD
;
320 * dynamically determine available memory
322 while ((LargeSieve
= calloc(largewords
, sizeof(u_int32_t
))) == NULL
)
323 largewords
-= (1L << (SHIFT_MEGAWORD
- 2)); /* 1/4 MB chunks */
325 largebits
= largewords
<< SHIFT_WORD
;
326 largenumbers
= largebits
* 2; /* even numbers excluded */
328 /* validation check: count the number of primes tried */
330 if ((q
= BN_new()) == NULL
)
331 fatal("BN_new failed");
334 * Generate random starting point for subprime search, or use
335 * specified parameter.
337 if ((largebase
= BN_new()) == NULL
)
338 fatal("BN_new failed");
340 if (BN_rand(largebase
, power
, 1, 1) == 0)
341 fatal("BN_rand failed");
343 if (BN_copy(largebase
, start
) == NULL
)
344 fatal("BN_copy: failed");
348 if (BN_set_bit(largebase
, 0) == 0)
349 fatal("BN_set_bit: failed");
353 logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start
),
354 largenumbers
, power
);
355 debug2("start point: 0x%s", BN_bn2hex(largebase
));
360 for (i
= 0; i
< tinybits
; i
++) {
361 if (BIT_TEST(TinySieve
, i
))
362 continue; /* 2*i+3 is composite */
364 /* The next tiny prime */
367 /* Mark all multiples of t */
368 for (j
= i
+ t
; j
< tinybits
; j
+= t
)
369 BIT_SET(TinySieve
, j
);
375 * Start the small block search at the next possible prime. To avoid
376 * fencepost errors, the last pass is skipped.
378 for (smallbase
= TINY_NUMBER
+ 3;
379 smallbase
< (SMALL_MAXIMUM
- TINY_NUMBER
);
380 smallbase
+= TINY_NUMBER
) {
381 for (i
= 0; i
< tinybits
; i
++) {
382 if (BIT_TEST(TinySieve
, i
))
383 continue; /* 2*i+3 is composite */
385 /* The next tiny prime */
390 s
= 0; /* t divides into smallbase exactly */
392 /* smallbase+s is first entry divisible by t */
397 * The sieve omits even numbers, so ensure that
398 * smallbase+s is odd. Then, step through the sieve
399 * in increments of 2*t
402 s
+= t
; /* Make smallbase+s odd, and s even */
404 /* Mark all multiples of 2*t */
405 for (s
/= 2; s
< smallbits
; s
+= t
)
406 BIT_SET(SmallSieve
, s
);
412 for (i
= 0; i
< smallbits
; i
++) {
413 if (BIT_TEST(SmallSieve
, i
))
414 continue; /* 2*i+smallbase is composite */
416 /* The next small prime */
417 sieve_large((2 * i
) + smallbase
);
420 memset(SmallSieve
, 0, smallwords
<< SHIFT_BYTE
);
425 logit("%.24s Sieved with %u small primes in %ld seconds",
426 ctime(&time_stop
), largetries
, (long) (time_stop
- time_start
));
428 for (j
= r
= 0; j
< largebits
; j
++) {
429 if (BIT_TEST(LargeSieve
, j
))
430 continue; /* Definitely composite, skip */
432 debug2("test q = largebase+%u", 2 * j
);
433 if (BN_set_word(q
, 2 * j
) == 0)
434 fatal("BN_set_word failed");
435 if (BN_add(q
, q
, largebase
) == 0)
436 fatal("BN_add failed");
437 if (qfileout(out
, QTYPE_SOPHIE_GERMAIN
, QTEST_SIEVE
,
438 largetries
, (power
- 1) /* MSB */, (0), q
) == -1) {
452 logit("%.24s Found %u candidates", ctime(&time_stop
), r
);
458 * perform a Miller-Rabin primality test
459 * on the list of candidates
460 * (checking both q and p)
461 * The result is a list of so-call "safe" primes
464 prime_test(FILE *in
, FILE *out
, u_int32_t trials
, u_int32_t generator_wanted
)
469 u_int32_t count_in
= 0, count_out
= 0, count_possible
= 0;
470 u_int32_t generator_known
, in_tests
, in_tries
, in_type
, in_size
;
471 time_t time_start
, time_stop
;
474 if (trials
< TRIAL_MINIMUM
) {
475 error("Minimum primality trials is %d", TRIAL_MINIMUM
);
481 if ((p
= BN_new()) == NULL
)
482 fatal("BN_new failed");
483 if ((q
= BN_new()) == NULL
)
484 fatal("BN_new failed");
485 if ((ctx
= BN_CTX_new()) == NULL
)
486 fatal("BN_CTX_new failed");
488 debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
489 ctime(&time_start
), trials
, generator_wanted
);
492 lp
= xmalloc(QLINESIZE
+ 1);
493 while (fgets(lp
, QLINESIZE
+ 1, in
) != NULL
) {
495 if (strlen(lp
) < 14 || *lp
== '!' || *lp
== '#') {
496 debug2("%10u: comment or short line", count_in
);
500 /* XXX - fragile parser */
502 cp
= &lp
[14]; /* (skip) */
505 in_type
= strtoul(cp
, &cp
, 10);
508 in_tests
= strtoul(cp
, &cp
, 10);
510 if (in_tests
& QTEST_COMPOSITE
) {
511 debug2("%10u: known composite", count_in
);
516 in_tries
= strtoul(cp
, &cp
, 10);
518 /* size (most significant bit) */
519 in_size
= strtoul(cp
, &cp
, 10);
521 /* generator (hex) */
522 generator_known
= strtoul(cp
, &cp
, 16);
524 /* Skip white space */
525 cp
+= strspn(cp
, " ");
529 case QTYPE_SOPHIE_GERMAIN
:
530 debug2("%10u: (%u) Sophie-Germain", count_in
, in_type
);
532 if (BN_hex2bn(&a
, cp
) == 0)
533 fatal("BN_hex2bn failed");
535 if (BN_lshift(p
, q
, 1) == 0)
536 fatal("BN_lshift failed");
537 if (BN_add_word(p
, 1) == 0)
538 fatal("BN_add_word failed");
542 case QTYPE_UNSTRUCTURED
:
547 debug2("%10u: (%u)", count_in
, in_type
);
549 if (BN_hex2bn(&a
, cp
) == 0)
550 fatal("BN_hex2bn failed");
552 if (BN_rshift(q
, p
, 1) == 0)
553 fatal("BN_rshift failed");
556 debug2("Unknown prime type");
561 * due to earlier inconsistencies in interpretation, check
562 * the proposed bit size.
564 if ((u_int32_t
)BN_num_bits(p
) != (in_size
+ 1)) {
565 debug2("%10u: bit size %u mismatch", count_in
, in_size
);
568 if (in_size
< QSIZE_MINIMUM
) {
569 debug2("%10u: bit size %u too short", count_in
, in_size
);
573 if (in_tests
& QTEST_MILLER_RABIN
)
579 * guess unknown generator
581 if (generator_known
== 0) {
582 if (BN_mod_word(p
, 24) == 11)
584 else if (BN_mod_word(p
, 12) == 5)
587 u_int32_t r
= BN_mod_word(p
, 10);
589 if (r
== 3 || r
== 7)
594 * skip tests when desired generator doesn't match
596 if (generator_wanted
> 0 &&
597 generator_wanted
!= generator_known
) {
598 debug2("%10u: generator %d != %d",
599 count_in
, generator_known
, generator_wanted
);
604 * Primes with no known generator are useless for DH, so
607 if (generator_known
== 0) {
608 debug2("%10u: no known generator", count_in
);
615 * The (1/4)^N performance bound on Miller-Rabin is
616 * extremely pessimistic, so don't spend a lot of time
617 * really verifying that q is prime until after we know
618 * that p is also prime. A single pass will weed out the
619 * vast majority of composite q's.
621 if (BN_is_prime(q
, 1, NULL
, ctx
, NULL
) <= 0) {
622 debug("%10u: q failed first possible prime test",
628 * q is possibly prime, so go ahead and really make sure
629 * that p is prime. If it is, then we can go back and do
630 * the same for q. If p is composite, chances are that
631 * will show up on the first Rabin-Miller iteration so it
632 * doesn't hurt to specify a high iteration count.
634 if (!BN_is_prime(p
, trials
, NULL
, ctx
, NULL
)) {
635 debug("%10u: p is not prime", count_in
);
638 debug("%10u: p is almost certainly prime", count_in
);
640 /* recheck q more rigorously */
641 if (!BN_is_prime(q
, trials
- 1, NULL
, ctx
, NULL
)) {
642 debug("%10u: q is not prime", count_in
);
645 debug("%10u: q is almost certainly prime", count_in
);
647 if (qfileout(out
, QTYPE_SAFE
, (in_tests
| QTEST_MILLER_RABIN
),
648 in_tries
, in_size
, generator_known
, p
)) {
662 logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
663 ctime(&time_stop
), count_out
, count_possible
,
664 (long) (time_stop
- time_start
));