Give the sockbuf structure its own header file and supporting source file.
[dragonfly/vkernel-mp.git] / sys / netinet / tcp_syncache.c
blobfa199ef527d2284c406282fda939b694e18c9eea
1 /*
2 * Copyright (c) 2003, 2004 Jeffrey M. Hsu. All rights reserved.
3 * Copyright (c) 2003, 2004 The DragonFly Project. All rights reserved.
5 * This code is derived from software contributed to The DragonFly Project
6 * by Jeffrey M. Hsu.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of The DragonFly Project nor the names of its
17 * contributors may be used to endorse or promote products derived
18 * from this software without specific, prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
28 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
29 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
30 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
35 * All advertising materials mentioning features or use of this software
36 * must display the following acknowledgement:
37 * This product includes software developed by Jeffrey M. Hsu.
39 * Copyright (c) 2001 Networks Associates Technologies, Inc.
40 * All rights reserved.
42 * This software was developed for the FreeBSD Project by Jonathan Lemon
43 * and NAI Labs, the Security Research Division of Network Associates, Inc.
44 * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
45 * DARPA CHATS research program.
47 * Redistribution and use in source and binary forms, with or without
48 * modification, are permitted provided that the following conditions
49 * are met:
50 * 1. Redistributions of source code must retain the above copyright
51 * notice, this list of conditions and the following disclaimer.
52 * 2. Redistributions in binary form must reproduce the above copyright
53 * notice, this list of conditions and the following disclaimer in the
54 * documentation and/or other materials provided with the distribution.
55 * 3. The name of the author may not be used to endorse or promote
56 * products derived from this software without specific prior written
57 * permission.
59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
71 * $FreeBSD: src/sys/netinet/tcp_syncache.c,v 1.5.2.14 2003/02/24 04:02:27 silby Exp $
72 * $DragonFly: src/sys/netinet/tcp_syncache.c,v 1.29 2007/04/22 01:13:14 dillon Exp $
75 #include "opt_inet6.h"
76 #include "opt_ipsec.h"
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/kernel.h>
81 #include <sys/sysctl.h>
82 #include <sys/malloc.h>
83 #include <sys/mbuf.h>
84 #include <sys/md5.h>
85 #include <sys/proc.h> /* for proc0 declaration */
86 #include <sys/random.h>
87 #include <sys/socket.h>
88 #include <sys/socketvar.h>
89 #include <sys/in_cksum.h>
91 #include <sys/msgport2.h>
93 #include <net/if.h>
94 #include <net/route.h>
96 #include <netinet/in.h>
97 #include <netinet/in_systm.h>
98 #include <netinet/ip.h>
99 #include <netinet/in_var.h>
100 #include <netinet/in_pcb.h>
101 #include <netinet/ip_var.h>
102 #include <netinet/ip6.h>
103 #ifdef INET6
104 #include <netinet/icmp6.h>
105 #include <netinet6/nd6.h>
106 #endif
107 #include <netinet6/ip6_var.h>
108 #include <netinet6/in6_pcb.h>
109 #include <netinet/tcp.h>
110 #include <netinet/tcp_fsm.h>
111 #include <netinet/tcp_seq.h>
112 #include <netinet/tcp_timer.h>
113 #include <netinet/tcp_var.h>
114 #include <netinet6/tcp6_var.h>
116 #ifdef IPSEC
117 #include <netinet6/ipsec.h>
118 #ifdef INET6
119 #include <netinet6/ipsec6.h>
120 #endif
121 #include <netproto/key/key.h>
122 #endif /*IPSEC*/
124 #ifdef FAST_IPSEC
125 #include <netproto/ipsec/ipsec.h>
126 #ifdef INET6
127 #include <netproto/ipsec/ipsec6.h>
128 #endif
129 #include <netproto/ipsec/key.h>
130 #define IPSEC
131 #endif /*FAST_IPSEC*/
133 #include <vm/vm_zone.h>
135 static int tcp_syncookies = 1;
136 SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
137 &tcp_syncookies, 0,
138 "Use TCP SYN cookies if the syncache overflows");
140 static void syncache_drop(struct syncache *, struct syncache_head *);
141 static void syncache_free(struct syncache *);
142 static void syncache_insert(struct syncache *, struct syncache_head *);
143 struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
144 static int syncache_respond(struct syncache *, struct mbuf *);
145 static struct socket *syncache_socket(struct syncache *, struct socket *);
146 static void syncache_timer(void *);
147 static u_int32_t syncookie_generate(struct syncache *);
148 static struct syncache *syncookie_lookup(struct in_conninfo *,
149 struct tcphdr *, struct socket *);
152 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
153 * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
154 * the odds are that the user has given up attempting to connect by then.
156 #define SYNCACHE_MAXREXMTS 3
158 /* Arbitrary values */
159 #define TCP_SYNCACHE_HASHSIZE 512
160 #define TCP_SYNCACHE_BUCKETLIMIT 30
162 struct netmsg_sc_timer {
163 struct lwkt_msg nm_lmsg;
164 struct msgrec *nm_mrec; /* back pointer to containing msgrec */
167 struct msgrec {
168 struct netmsg_sc_timer msg;
169 lwkt_port_t port; /* constant after init */
170 int slot; /* constant after init */
173 static int syncache_timer_handler(lwkt_msg_t);
175 struct tcp_syncache {
176 struct vm_zone *zone;
177 u_int hashsize;
178 u_int hashmask;
179 u_int bucket_limit;
180 u_int cache_limit;
181 u_int rexmt_limit;
182 u_int hash_secret;
184 static struct tcp_syncache tcp_syncache;
186 struct tcp_syncache_percpu {
187 struct syncache_head *hashbase;
188 u_int cache_count;
189 TAILQ_HEAD(, syncache) timerq[SYNCACHE_MAXREXMTS + 1];
190 struct callout tt_timerq[SYNCACHE_MAXREXMTS + 1];
191 struct msgrec mrec[SYNCACHE_MAXREXMTS + 1];
193 static struct tcp_syncache_percpu tcp_syncache_percpu[MAXCPU];
195 static struct lwkt_port syncache_null_rport;
197 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
199 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RD,
200 &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
202 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RD,
203 &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
205 /* XXX JH */
206 #if 0
207 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
208 &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
209 #endif
211 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RD,
212 &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
214 SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
215 &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
217 static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
219 #define SYNCACHE_HASH(inc, mask) \
220 ((tcp_syncache.hash_secret ^ \
221 (inc)->inc_faddr.s_addr ^ \
222 ((inc)->inc_faddr.s_addr >> 16) ^ \
223 (inc)->inc_fport ^ (inc)->inc_lport) & mask)
225 #define SYNCACHE_HASH6(inc, mask) \
226 ((tcp_syncache.hash_secret ^ \
227 (inc)->inc6_faddr.s6_addr32[0] ^ \
228 (inc)->inc6_faddr.s6_addr32[3] ^ \
229 (inc)->inc_fport ^ (inc)->inc_lport) & mask)
231 #define ENDPTS_EQ(a, b) ( \
232 (a)->ie_fport == (b)->ie_fport && \
233 (a)->ie_lport == (b)->ie_lport && \
234 (a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr && \
235 (a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr \
238 #define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
240 static __inline void
241 syncache_timeout(struct tcp_syncache_percpu *syncache_percpu,
242 struct syncache *sc, int slot)
244 sc->sc_rxtslot = slot;
245 sc->sc_rxttime = ticks + TCPTV_RTOBASE * tcp_backoff[slot];
246 TAILQ_INSERT_TAIL(&syncache_percpu->timerq[slot], sc, sc_timerq);
247 if (!callout_active(&syncache_percpu->tt_timerq[slot])) {
248 callout_reset(&syncache_percpu->tt_timerq[slot],
249 TCPTV_RTOBASE * tcp_backoff[slot],
250 syncache_timer,
251 &syncache_percpu->mrec[slot]);
255 static void
256 syncache_free(struct syncache *sc)
258 struct rtentry *rt;
259 #ifdef INET6
260 const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
261 #else
262 const boolean_t isipv6 = FALSE;
263 #endif
265 if (sc->sc_ipopts)
266 m_free(sc->sc_ipopts);
268 rt = isipv6 ? sc->sc_route6.ro_rt : sc->sc_route.ro_rt;
269 if (rt != NULL) {
271 * If this is the only reference to a protocol-cloned
272 * route, remove it immediately.
274 if ((rt->rt_flags & RTF_WASCLONED) && rt->rt_refcnt == 1)
275 rtrequest(RTM_DELETE, rt_key(rt), rt->rt_gateway,
276 rt_mask(rt), rt->rt_flags, NULL);
277 RTFREE(rt);
280 zfree(tcp_syncache.zone, sc);
283 void
284 syncache_init(void)
286 int i, cpu;
288 tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
289 tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
290 tcp_syncache.cache_limit =
291 tcp_syncache.hashsize * tcp_syncache.bucket_limit;
292 tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
293 tcp_syncache.hash_secret = karc4random();
295 TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
296 &tcp_syncache.hashsize);
297 TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
298 &tcp_syncache.cache_limit);
299 TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
300 &tcp_syncache.bucket_limit);
301 if (!powerof2(tcp_syncache.hashsize)) {
302 kprintf("WARNING: syncache hash size is not a power of 2.\n");
303 tcp_syncache.hashsize = 512; /* safe default */
305 tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
307 lwkt_initport_null_rport(&syncache_null_rport, NULL);
309 for (cpu = 0; cpu < ncpus2; cpu++) {
310 struct tcp_syncache_percpu *syncache_percpu;
312 syncache_percpu = &tcp_syncache_percpu[cpu];
313 /* Allocate the hash table. */
314 MALLOC(syncache_percpu->hashbase, struct syncache_head *,
315 tcp_syncache.hashsize * sizeof(struct syncache_head),
316 M_SYNCACHE, M_WAITOK);
318 /* Initialize the hash buckets. */
319 for (i = 0; i < tcp_syncache.hashsize; i++) {
320 struct syncache_head *bucket;
322 bucket = &syncache_percpu->hashbase[i];
323 TAILQ_INIT(&bucket->sch_bucket);
324 bucket->sch_length = 0;
327 for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
328 /* Initialize the timer queues. */
329 TAILQ_INIT(&syncache_percpu->timerq[i]);
330 callout_init(&syncache_percpu->tt_timerq[i]);
332 syncache_percpu->mrec[i].slot = i;
333 syncache_percpu->mrec[i].port = tcp_cport(cpu);
334 syncache_percpu->mrec[i].msg.nm_mrec =
335 &syncache_percpu->mrec[i];
336 lwkt_initmsg(&syncache_percpu->mrec[i].msg.nm_lmsg,
337 &syncache_null_rport, 0,
338 lwkt_cmd_func(syncache_timer_handler),
339 lwkt_cmd_op_none);
344 * Allocate the syncache entries. Allow the zone to allocate one
345 * more entry than cache limit, so a new entry can bump out an
346 * older one.
348 tcp_syncache.zone = zinit("syncache", sizeof(struct syncache),
349 tcp_syncache.cache_limit * ncpus2, ZONE_INTERRUPT, 0);
350 tcp_syncache.cache_limit -= 1;
353 static void
354 syncache_insert(struct syncache *sc, struct syncache_head *sch)
356 struct tcp_syncache_percpu *syncache_percpu;
357 struct syncache *sc2;
358 int i;
360 syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
363 * Make sure that we don't overflow the per-bucket
364 * limit or the total cache size limit.
366 if (sch->sch_length >= tcp_syncache.bucket_limit) {
368 * The bucket is full, toss the oldest element.
370 sc2 = TAILQ_FIRST(&sch->sch_bucket);
371 sc2->sc_tp->ts_recent = ticks;
372 syncache_drop(sc2, sch);
373 tcpstat.tcps_sc_bucketoverflow++;
374 } else if (syncache_percpu->cache_count >= tcp_syncache.cache_limit) {
376 * The cache is full. Toss the oldest entry in the
377 * entire cache. This is the front entry in the
378 * first non-empty timer queue with the largest
379 * timeout value.
381 for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
382 sc2 = TAILQ_FIRST(&syncache_percpu->timerq[i]);
383 if (sc2 != NULL)
384 break;
386 sc2->sc_tp->ts_recent = ticks;
387 syncache_drop(sc2, NULL);
388 tcpstat.tcps_sc_cacheoverflow++;
391 /* Initialize the entry's timer. */
392 syncache_timeout(syncache_percpu, sc, 0);
394 /* Put it into the bucket. */
395 TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
396 sch->sch_length++;
397 syncache_percpu->cache_count++;
398 tcpstat.tcps_sc_added++;
401 static void
402 syncache_drop(struct syncache *sc, struct syncache_head *sch)
404 struct tcp_syncache_percpu *syncache_percpu;
405 #ifdef INET6
406 const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
407 #else
408 const boolean_t isipv6 = FALSE;
409 #endif
411 syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
413 if (sch == NULL) {
414 if (isipv6) {
415 sch = &syncache_percpu->hashbase[
416 SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
417 } else {
418 sch = &syncache_percpu->hashbase[
419 SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
423 TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
424 sch->sch_length--;
425 syncache_percpu->cache_count--;
428 * Remove the entry from the syncache timer/timeout queue. Note
429 * that we do not try to stop any running timer since we do not know
430 * whether the timer's message is in-transit or not. Since timeouts
431 * are fairly long, taking an unneeded callout does not detrimentally
432 * effect performance.
434 TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot], sc, sc_timerq);
436 syncache_free(sc);
440 * Place a timeout message on the TCP thread's message queue.
441 * This routine runs in soft interrupt context.
443 * An invariant is for this routine to be called, the callout must
444 * have been active. Note that the callout is not deactivated until
445 * after the message has been processed in syncache_timer_handler() below.
447 static void
448 syncache_timer(void *p)
450 struct netmsg_sc_timer *msg = p;
452 lwkt_sendmsg(msg->nm_mrec->port, &msg->nm_lmsg);
456 * Service a timer message queued by timer expiration.
457 * This routine runs in the TCP protocol thread.
459 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
460 * If we have retransmitted an entry the maximum number of times, expire it.
462 * When we finish processing timed-out entries, we restart the timer if there
463 * are any entries still on the queue and deactivate it otherwise. Only after
464 * a timer has been deactivated here can it be restarted by syncache_timeout().
466 static int
467 syncache_timer_handler(lwkt_msg_t msg)
469 struct tcp_syncache_percpu *syncache_percpu;
470 struct syncache *sc, *nsc;
471 struct inpcb *inp;
472 int slot;
474 slot = ((struct netmsg_sc_timer *)msg)->nm_mrec->slot;
475 syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
477 nsc = TAILQ_FIRST(&syncache_percpu->timerq[slot]);
478 while (nsc != NULL) {
479 if (ticks < nsc->sc_rxttime)
480 break; /* finished because timerq sorted by time */
481 sc = nsc;
482 inp = sc->sc_tp->t_inpcb;
483 if (slot == SYNCACHE_MAXREXMTS ||
484 slot >= tcp_syncache.rexmt_limit ||
485 inp->inp_gencnt != sc->sc_inp_gencnt) {
486 nsc = TAILQ_NEXT(sc, sc_timerq);
487 syncache_drop(sc, NULL);
488 tcpstat.tcps_sc_stale++;
489 continue;
492 * syncache_respond() may call back into the syncache to
493 * to modify another entry, so do not obtain the next
494 * entry on the timer chain until it has completed.
496 syncache_respond(sc, NULL);
497 nsc = TAILQ_NEXT(sc, sc_timerq);
498 tcpstat.tcps_sc_retransmitted++;
499 TAILQ_REMOVE(&syncache_percpu->timerq[slot], sc, sc_timerq);
500 syncache_timeout(syncache_percpu, sc, slot + 1);
502 if (nsc != NULL)
503 callout_reset(&syncache_percpu->tt_timerq[slot],
504 nsc->sc_rxttime - ticks, syncache_timer,
505 &syncache_percpu->mrec[slot]);
506 else
507 callout_deactivate(&syncache_percpu->tt_timerq[slot]);
509 lwkt_replymsg(msg, 0);
510 return (EASYNC);
514 * Find an entry in the syncache.
516 struct syncache *
517 syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
519 struct tcp_syncache_percpu *syncache_percpu;
520 struct syncache *sc;
521 struct syncache_head *sch;
523 syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
524 #ifdef INET6
525 if (inc->inc_isipv6) {
526 sch = &syncache_percpu->hashbase[
527 SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
528 *schp = sch;
529 TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
530 if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
531 return (sc);
532 } else
533 #endif
535 sch = &syncache_percpu->hashbase[
536 SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
537 *schp = sch;
538 TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
539 #ifdef INET6
540 if (sc->sc_inc.inc_isipv6)
541 continue;
542 #endif
543 if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
544 return (sc);
547 return (NULL);
551 * This function is called when we get a RST for a
552 * non-existent connection, so that we can see if the
553 * connection is in the syn cache. If it is, zap it.
555 void
556 syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
558 struct syncache *sc;
559 struct syncache_head *sch;
561 sc = syncache_lookup(inc, &sch);
562 if (sc == NULL)
563 return;
565 * If the RST bit is set, check the sequence number to see
566 * if this is a valid reset segment.
567 * RFC 793 page 37:
568 * In all states except SYN-SENT, all reset (RST) segments
569 * are validated by checking their SEQ-fields. A reset is
570 * valid if its sequence number is in the window.
572 * The sequence number in the reset segment is normally an
573 * echo of our outgoing acknowlegement numbers, but some hosts
574 * send a reset with the sequence number at the rightmost edge
575 * of our receive window, and we have to handle this case.
577 if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
578 SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
579 syncache_drop(sc, sch);
580 tcpstat.tcps_sc_reset++;
584 void
585 syncache_badack(struct in_conninfo *inc)
587 struct syncache *sc;
588 struct syncache_head *sch;
590 sc = syncache_lookup(inc, &sch);
591 if (sc != NULL) {
592 syncache_drop(sc, sch);
593 tcpstat.tcps_sc_badack++;
597 void
598 syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
600 struct syncache *sc;
601 struct syncache_head *sch;
603 /* we are called at splnet() here */
604 sc = syncache_lookup(inc, &sch);
605 if (sc == NULL)
606 return;
608 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
609 if (ntohl(th->th_seq) != sc->sc_iss)
610 return;
613 * If we've rertransmitted 3 times and this is our second error,
614 * we remove the entry. Otherwise, we allow it to continue on.
615 * This prevents us from incorrectly nuking an entry during a
616 * spurious network outage.
618 * See tcp_notify().
620 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
621 sc->sc_flags |= SCF_UNREACH;
622 return;
624 syncache_drop(sc, sch);
625 tcpstat.tcps_sc_unreach++;
629 * Build a new TCP socket structure from a syncache entry.
631 static struct socket *
632 syncache_socket(struct syncache *sc, struct socket *lso)
634 struct inpcb *inp = NULL, *linp;
635 struct socket *so;
636 struct tcpcb *tp;
637 #ifdef INET6
638 const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
639 #else
640 const boolean_t isipv6 = FALSE;
641 #endif
644 * Ok, create the full blown connection, and set things up
645 * as they would have been set up if we had created the
646 * connection when the SYN arrived. If we can't create
647 * the connection, abort it.
649 so = sonewconn(lso, SS_ISCONNECTED);
650 if (so == NULL) {
652 * Drop the connection; we will send a RST if the peer
653 * retransmits the ACK,
655 tcpstat.tcps_listendrop++;
656 goto abort;
659 inp = so->so_pcb;
662 * Insert new socket into hash list.
664 inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
665 if (isipv6) {
666 inp->in6p_laddr = sc->sc_inc.inc6_laddr;
667 } else {
668 #ifdef INET6
669 inp->inp_vflag &= ~INP_IPV6;
670 inp->inp_vflag |= INP_IPV4;
671 #endif
672 inp->inp_laddr = sc->sc_inc.inc_laddr;
674 inp->inp_lport = sc->sc_inc.inc_lport;
675 if (in_pcbinsporthash(inp) != 0) {
677 * Undo the assignments above if we failed to
678 * put the PCB on the hash lists.
680 if (isipv6)
681 inp->in6p_laddr = kin6addr_any;
682 else
683 inp->inp_laddr.s_addr = INADDR_ANY;
684 inp->inp_lport = 0;
685 goto abort;
687 linp = so->so_pcb;
688 #ifdef IPSEC
689 /* copy old policy into new socket's */
690 if (ipsec_copy_policy(linp->inp_sp, inp->inp_sp))
691 kprintf("syncache_expand: could not copy policy\n");
692 #endif
693 if (isipv6) {
694 struct in6_addr laddr6;
695 struct sockaddr_in6 sin6;
697 * Inherit socket options from the listening socket.
698 * Note that in6p_inputopts are not (and should not be)
699 * copied, since it stores previously received options and is
700 * used to detect if each new option is different than the
701 * previous one and hence should be passed to a user.
702 * If we copied in6p_inputopts, a user would not be able to
703 * receive options just after calling the accept system call.
705 inp->inp_flags |= linp->inp_flags & INP_CONTROLOPTS;
706 if (linp->in6p_outputopts)
707 inp->in6p_outputopts =
708 ip6_copypktopts(linp->in6p_outputopts, M_INTWAIT);
709 inp->in6p_route = sc->sc_route6;
710 sc->sc_route6.ro_rt = NULL;
712 sin6.sin6_family = AF_INET6;
713 sin6.sin6_len = sizeof sin6;
714 sin6.sin6_addr = sc->sc_inc.inc6_faddr;
715 sin6.sin6_port = sc->sc_inc.inc_fport;
716 sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
717 laddr6 = inp->in6p_laddr;
718 if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
719 inp->in6p_laddr = sc->sc_inc.inc6_laddr;
720 if (in6_pcbconnect(inp, (struct sockaddr *)&sin6, &thread0)) {
721 inp->in6p_laddr = laddr6;
722 goto abort;
724 } else {
725 struct in_addr laddr;
726 struct sockaddr_in sin;
728 inp->inp_options = ip_srcroute();
729 if (inp->inp_options == NULL) {
730 inp->inp_options = sc->sc_ipopts;
731 sc->sc_ipopts = NULL;
733 inp->inp_route = sc->sc_route;
734 sc->sc_route.ro_rt = NULL;
736 sin.sin_family = AF_INET;
737 sin.sin_len = sizeof sin;
738 sin.sin_addr = sc->sc_inc.inc_faddr;
739 sin.sin_port = sc->sc_inc.inc_fport;
740 bzero(sin.sin_zero, sizeof sin.sin_zero);
741 laddr = inp->inp_laddr;
742 if (inp->inp_laddr.s_addr == INADDR_ANY)
743 inp->inp_laddr = sc->sc_inc.inc_laddr;
744 if (in_pcbconnect(inp, (struct sockaddr *)&sin, &thread0)) {
745 inp->inp_laddr = laddr;
746 goto abort;
750 tp = intotcpcb(inp);
751 tp->t_state = TCPS_SYN_RECEIVED;
752 tp->iss = sc->sc_iss;
753 tp->irs = sc->sc_irs;
754 tcp_rcvseqinit(tp);
755 tcp_sendseqinit(tp);
756 tp->snd_wl1 = sc->sc_irs;
757 tp->rcv_up = sc->sc_irs + 1;
758 tp->rcv_wnd = sc->sc_wnd;
759 tp->rcv_adv += tp->rcv_wnd;
761 tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH | TF_NODELAY);
762 if (sc->sc_flags & SCF_NOOPT)
763 tp->t_flags |= TF_NOOPT;
764 if (sc->sc_flags & SCF_WINSCALE) {
765 tp->t_flags |= TF_REQ_SCALE | TF_RCVD_SCALE;
766 tp->requested_s_scale = sc->sc_requested_s_scale;
767 tp->request_r_scale = sc->sc_request_r_scale;
769 if (sc->sc_flags & SCF_TIMESTAMP) {
770 tp->t_flags |= TF_REQ_TSTMP | TF_RCVD_TSTMP;
771 tp->ts_recent = sc->sc_tsrecent;
772 tp->ts_recent_age = ticks;
774 if (sc->sc_flags & SCF_CC) {
776 * Initialization of the tcpcb for transaction;
777 * set SND.WND = SEG.WND,
778 * initialize CCsend and CCrecv.
780 tp->t_flags |= TF_REQ_CC | TF_RCVD_CC;
781 tp->cc_send = sc->sc_cc_send;
782 tp->cc_recv = sc->sc_cc_recv;
784 if (sc->sc_flags & SCF_SACK_PERMITTED)
785 tp->t_flags |= TF_SACK_PERMITTED;
787 tcp_mss(tp, sc->sc_peer_mss);
790 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
792 if (sc->sc_rxtslot != 0)
793 tp->snd_cwnd = tp->t_maxseg;
794 callout_reset(tp->tt_keep, tcp_keepinit, tcp_timer_keep, tp);
796 tcpstat.tcps_accepts++;
797 return (so);
799 abort:
800 if (so != NULL)
801 soabort(so);
802 return (NULL);
806 * This function gets called when we receive an ACK for a
807 * socket in the LISTEN state. We look up the connection
808 * in the syncache, and if its there, we pull it out of
809 * the cache and turn it into a full-blown connection in
810 * the SYN-RECEIVED state.
813 syncache_expand(struct in_conninfo *inc, struct tcphdr *th, struct socket **sop,
814 struct mbuf *m)
816 struct syncache *sc;
817 struct syncache_head *sch;
818 struct socket *so;
820 sc = syncache_lookup(inc, &sch);
821 if (sc == NULL) {
823 * There is no syncache entry, so see if this ACK is
824 * a returning syncookie. To do this, first:
825 * A. See if this socket has had a syncache entry dropped in
826 * the past. We don't want to accept a bogus syncookie
827 * if we've never received a SYN.
828 * B. check that the syncookie is valid. If it is, then
829 * cobble up a fake syncache entry, and return.
831 if (!tcp_syncookies)
832 return (0);
833 sc = syncookie_lookup(inc, th, *sop);
834 if (sc == NULL)
835 return (0);
836 sch = NULL;
837 tcpstat.tcps_sc_recvcookie++;
841 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
843 if (th->th_ack != sc->sc_iss + 1)
844 return (0);
846 so = syncache_socket(sc, *sop);
847 if (so == NULL) {
848 #if 0
849 resetandabort:
850 /* XXXjlemon check this - is this correct? */
851 tcp_respond(NULL, m, m, th,
852 th->th_seq + tlen, (tcp_seq)0, TH_RST | TH_ACK);
853 #endif
854 m_freem(m); /* XXX only needed for above */
855 tcpstat.tcps_sc_aborted++;
856 } else {
857 tcpstat.tcps_sc_completed++;
859 if (sch == NULL)
860 syncache_free(sc);
861 else
862 syncache_drop(sc, sch);
863 *sop = so;
864 return (1);
868 * Given a LISTEN socket and an inbound SYN request, add
869 * this to the syn cache, and send back a segment:
870 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
871 * to the source.
873 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
874 * Doing so would require that we hold onto the data and deliver it
875 * to the application. However, if we are the target of a SYN-flood
876 * DoS attack, an attacker could send data which would eventually
877 * consume all available buffer space if it were ACKed. By not ACKing
878 * the data, we avoid this DoS scenario.
881 syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
882 struct socket **sop, struct mbuf *m)
884 struct tcp_syncache_percpu *syncache_percpu;
885 struct tcpcb *tp;
886 struct socket *so;
887 struct syncache *sc = NULL;
888 struct syncache_head *sch;
889 struct mbuf *ipopts = NULL;
890 struct rmxp_tao *taop;
891 int win;
893 syncache_percpu = &tcp_syncache_percpu[mycpu->gd_cpuid];
894 so = *sop;
895 tp = sototcpcb(so);
898 * Remember the IP options, if any.
900 #ifdef INET6
901 if (!inc->inc_isipv6)
902 #endif
903 ipopts = ip_srcroute();
906 * See if we already have an entry for this connection.
907 * If we do, resend the SYN,ACK, and reset the retransmit timer.
909 * XXX
910 * The syncache should be re-initialized with the contents
911 * of the new SYN which may have different options.
913 sc = syncache_lookup(inc, &sch);
914 if (sc != NULL) {
915 tcpstat.tcps_sc_dupsyn++;
916 if (ipopts) {
918 * If we were remembering a previous source route,
919 * forget it and use the new one we've been given.
921 if (sc->sc_ipopts)
922 m_free(sc->sc_ipopts);
923 sc->sc_ipopts = ipopts;
926 * Update timestamp if present.
928 if (sc->sc_flags & SCF_TIMESTAMP)
929 sc->sc_tsrecent = to->to_tsval;
931 /* Just update the TOF_SACK_PERMITTED for now. */
932 if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
933 sc->sc_flags |= SCF_SACK_PERMITTED;
934 else
935 sc->sc_flags &= ~SCF_SACK_PERMITTED;
938 * PCB may have changed, pick up new values.
940 sc->sc_tp = tp;
941 sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
942 if (syncache_respond(sc, m) == 0) {
943 TAILQ_REMOVE(&syncache_percpu->timerq[sc->sc_rxtslot],
944 sc, sc_timerq);
945 syncache_timeout(syncache_percpu, sc, sc->sc_rxtslot);
946 tcpstat.tcps_sndacks++;
947 tcpstat.tcps_sndtotal++;
949 *sop = NULL;
950 return (1);
954 * This allocation is guaranteed to succeed because we
955 * preallocate one more syncache entry than cache_limit.
957 sc = zalloc(tcp_syncache.zone);
960 * Fill in the syncache values.
962 sc->sc_tp = tp;
963 sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
964 sc->sc_ipopts = ipopts;
965 sc->sc_inc.inc_fport = inc->inc_fport;
966 sc->sc_inc.inc_lport = inc->inc_lport;
967 #ifdef INET6
968 sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
969 if (inc->inc_isipv6) {
970 sc->sc_inc.inc6_faddr = inc->inc6_faddr;
971 sc->sc_inc.inc6_laddr = inc->inc6_laddr;
972 sc->sc_route6.ro_rt = NULL;
973 } else
974 #endif
976 sc->sc_inc.inc_faddr = inc->inc_faddr;
977 sc->sc_inc.inc_laddr = inc->inc_laddr;
978 sc->sc_route.ro_rt = NULL;
980 sc->sc_irs = th->th_seq;
981 sc->sc_flags = 0;
982 sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
983 if (tcp_syncookies)
984 sc->sc_iss = syncookie_generate(sc);
985 else
986 sc->sc_iss = karc4random();
988 /* Initial receive window: clip ssb_space to [0 .. TCP_MAXWIN] */
989 win = ssb_space(&so->so_rcv);
990 win = imax(win, 0);
991 win = imin(win, TCP_MAXWIN);
992 sc->sc_wnd = win;
994 if (tcp_do_rfc1323) {
996 * A timestamp received in a SYN makes
997 * it ok to send timestamp requests and replies.
999 if (to->to_flags & TOF_TS) {
1000 sc->sc_tsrecent = to->to_tsval;
1001 sc->sc_flags |= SCF_TIMESTAMP;
1003 if (to->to_flags & TOF_SCALE) {
1004 int wscale = 0;
1006 /* Compute proper scaling value from buffer space */
1007 while (wscale < TCP_MAX_WINSHIFT &&
1008 (TCP_MAXWIN << wscale) < so->so_rcv.ssb_hiwat)
1009 wscale++;
1010 sc->sc_request_r_scale = wscale;
1011 sc->sc_requested_s_scale = to->to_requested_s_scale;
1012 sc->sc_flags |= SCF_WINSCALE;
1015 if (tcp_do_rfc1644) {
1017 * A CC or CC.new option received in a SYN makes
1018 * it ok to send CC in subsequent segments.
1020 if (to->to_flags & (TOF_CC | TOF_CCNEW)) {
1021 sc->sc_cc_recv = to->to_cc;
1022 sc->sc_cc_send = CC_INC(tcp_ccgen);
1023 sc->sc_flags |= SCF_CC;
1026 if (tcp_do_sack && (to->to_flags & TOF_SACK_PERMITTED))
1027 sc->sc_flags |= SCF_SACK_PERMITTED;
1028 if (tp->t_flags & TF_NOOPT)
1029 sc->sc_flags = SCF_NOOPT;
1032 * XXX
1033 * We have the option here of not doing TAO (even if the segment
1034 * qualifies) and instead fall back to a normal 3WHS via the syncache.
1035 * This allows us to apply synflood protection to TAO-qualifying SYNs
1036 * also. However, there should be a hueristic to determine when to
1037 * do this, and is not present at the moment.
1041 * Perform TAO test on incoming CC (SEG.CC) option, if any.
1042 * - compare SEG.CC against cached CC from the same host, if any.
1043 * - if SEG.CC > chached value, SYN must be new and is accepted
1044 * immediately: save new CC in the cache, mark the socket
1045 * connected, enter ESTABLISHED state, turn on flag to
1046 * send a SYN in the next segment.
1047 * A virtual advertised window is set in rcv_adv to
1048 * initialize SWS prevention. Then enter normal segment
1049 * processing: drop SYN, process data and FIN.
1050 * - otherwise do a normal 3-way handshake.
1052 taop = tcp_gettaocache(&sc->sc_inc);
1053 if (to->to_flags & TOF_CC) {
1054 if ((tp->t_flags & TF_NOPUSH) &&
1055 sc->sc_flags & SCF_CC &&
1056 taop != NULL && taop->tao_cc != 0 &&
1057 CC_GT(to->to_cc, taop->tao_cc)) {
1058 sc->sc_rxtslot = 0;
1059 so = syncache_socket(sc, *sop);
1060 if (so != NULL) {
1061 taop->tao_cc = to->to_cc;
1062 *sop = so;
1064 syncache_free(sc);
1065 return (so != NULL);
1067 } else {
1069 * No CC option, but maybe CC.NEW: invalidate cached value.
1071 if (taop != NULL)
1072 taop->tao_cc = 0;
1075 * TAO test failed or there was no CC option,
1076 * do a standard 3-way handshake.
1078 if (syncache_respond(sc, m) == 0) {
1079 syncache_insert(sc, sch);
1080 tcpstat.tcps_sndacks++;
1081 tcpstat.tcps_sndtotal++;
1082 } else {
1083 syncache_free(sc);
1084 tcpstat.tcps_sc_dropped++;
1086 *sop = NULL;
1087 return (1);
1090 static int
1091 syncache_respond(struct syncache *sc, struct mbuf *m)
1093 u_int8_t *optp;
1094 int optlen, error;
1095 u_int16_t tlen, hlen, mssopt;
1096 struct ip *ip = NULL;
1097 struct rtentry *rt;
1098 struct tcphdr *th;
1099 struct ip6_hdr *ip6 = NULL;
1100 #ifdef INET6
1101 const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1102 #else
1103 const boolean_t isipv6 = FALSE;
1104 #endif
1106 if (isipv6) {
1107 rt = tcp_rtlookup6(&sc->sc_inc);
1108 if (rt != NULL)
1109 mssopt = rt->rt_ifp->if_mtu -
1110 (sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
1111 else
1112 mssopt = tcp_v6mssdflt;
1113 hlen = sizeof(struct ip6_hdr);
1114 } else {
1115 rt = tcp_rtlookup(&sc->sc_inc);
1116 if (rt != NULL)
1117 mssopt = rt->rt_ifp->if_mtu -
1118 (sizeof(struct ip) + sizeof(struct tcphdr));
1119 else
1120 mssopt = tcp_mssdflt;
1121 hlen = sizeof(struct ip);
1124 /* Compute the size of the TCP options. */
1125 if (sc->sc_flags & SCF_NOOPT) {
1126 optlen = 0;
1127 } else {
1128 optlen = TCPOLEN_MAXSEG +
1129 ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
1130 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0) +
1131 ((sc->sc_flags & SCF_CC) ? TCPOLEN_CC_APPA * 2 : 0) +
1132 ((sc->sc_flags & SCF_SACK_PERMITTED) ?
1133 TCPOLEN_SACK_PERMITTED_ALIGNED : 0);
1135 tlen = hlen + sizeof(struct tcphdr) + optlen;
1138 * XXX
1139 * assume that the entire packet will fit in a header mbuf
1141 KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
1144 * XXX shouldn't this reuse the mbuf if possible ?
1145 * Create the IP+TCP header from scratch.
1147 if (m)
1148 m_freem(m);
1150 m = m_gethdr(MB_DONTWAIT, MT_HEADER);
1151 if (m == NULL)
1152 return (ENOBUFS);
1153 m->m_data += max_linkhdr;
1154 m->m_len = tlen;
1155 m->m_pkthdr.len = tlen;
1156 m->m_pkthdr.rcvif = NULL;
1158 if (isipv6) {
1159 ip6 = mtod(m, struct ip6_hdr *);
1160 ip6->ip6_vfc = IPV6_VERSION;
1161 ip6->ip6_nxt = IPPROTO_TCP;
1162 ip6->ip6_src = sc->sc_inc.inc6_laddr;
1163 ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1164 ip6->ip6_plen = htons(tlen - hlen);
1165 /* ip6_hlim is set after checksum */
1166 /* ip6_flow = ??? */
1168 th = (struct tcphdr *)(ip6 + 1);
1169 } else {
1170 ip = mtod(m, struct ip *);
1171 ip->ip_v = IPVERSION;
1172 ip->ip_hl = sizeof(struct ip) >> 2;
1173 ip->ip_len = tlen;
1174 ip->ip_id = 0;
1175 ip->ip_off = 0;
1176 ip->ip_sum = 0;
1177 ip->ip_p = IPPROTO_TCP;
1178 ip->ip_src = sc->sc_inc.inc_laddr;
1179 ip->ip_dst = sc->sc_inc.inc_faddr;
1180 ip->ip_ttl = sc->sc_tp->t_inpcb->inp_ip_ttl; /* XXX */
1181 ip->ip_tos = sc->sc_tp->t_inpcb->inp_ip_tos; /* XXX */
1184 * See if we should do MTU discovery. Route lookups are
1185 * expensive, so we will only unset the DF bit if:
1187 * 1) path_mtu_discovery is disabled
1188 * 2) the SCF_UNREACH flag has been set
1190 if (path_mtu_discovery
1191 && ((sc->sc_flags & SCF_UNREACH) == 0)) {
1192 ip->ip_off |= IP_DF;
1195 th = (struct tcphdr *)(ip + 1);
1197 th->th_sport = sc->sc_inc.inc_lport;
1198 th->th_dport = sc->sc_inc.inc_fport;
1200 th->th_seq = htonl(sc->sc_iss);
1201 th->th_ack = htonl(sc->sc_irs + 1);
1202 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1203 th->th_x2 = 0;
1204 th->th_flags = TH_SYN | TH_ACK;
1205 th->th_win = htons(sc->sc_wnd);
1206 th->th_urp = 0;
1208 /* Tack on the TCP options. */
1209 if (optlen == 0)
1210 goto no_options;
1211 optp = (u_int8_t *)(th + 1);
1212 *optp++ = TCPOPT_MAXSEG;
1213 *optp++ = TCPOLEN_MAXSEG;
1214 *optp++ = (mssopt >> 8) & 0xff;
1215 *optp++ = mssopt & 0xff;
1217 if (sc->sc_flags & SCF_WINSCALE) {
1218 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
1219 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
1220 sc->sc_request_r_scale);
1221 optp += 4;
1224 if (sc->sc_flags & SCF_TIMESTAMP) {
1225 u_int32_t *lp = (u_int32_t *)(optp);
1227 /* Form timestamp option as shown in appendix A of RFC 1323. */
1228 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
1229 *lp++ = htonl(ticks);
1230 *lp = htonl(sc->sc_tsrecent);
1231 optp += TCPOLEN_TSTAMP_APPA;
1235 * Send CC and CC.echo if we received CC from our peer.
1237 if (sc->sc_flags & SCF_CC) {
1238 u_int32_t *lp = (u_int32_t *)(optp);
1240 *lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CC));
1241 *lp++ = htonl(sc->sc_cc_send);
1242 *lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CCECHO));
1243 *lp = htonl(sc->sc_cc_recv);
1244 optp += TCPOLEN_CC_APPA * 2;
1247 if (sc->sc_flags & SCF_SACK_PERMITTED) {
1248 *((u_int32_t *)optp) = htonl(TCPOPT_SACK_PERMITTED_ALIGNED);
1249 optp += TCPOLEN_SACK_PERMITTED_ALIGNED;
1252 no_options:
1253 if (isipv6) {
1254 struct route_in6 *ro6 = &sc->sc_route6;
1256 th->th_sum = 0;
1257 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
1258 ip6->ip6_hlim = in6_selecthlim(NULL,
1259 ro6->ro_rt ? ro6->ro_rt->rt_ifp : NULL);
1260 error = ip6_output(m, NULL, ro6, 0, NULL, NULL,
1261 sc->sc_tp->t_inpcb);
1262 } else {
1263 th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1264 htons(tlen - hlen + IPPROTO_TCP));
1265 m->m_pkthdr.csum_flags = CSUM_TCP;
1266 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1267 error = ip_output(m, sc->sc_ipopts, &sc->sc_route, 0, NULL,
1268 sc->sc_tp->t_inpcb);
1270 return (error);
1274 * cookie layers:
1276 * |. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1277 * | peer iss |
1278 * | MD5(laddr,faddr,secret,lport,fport) |. . . . . . .|
1279 * | 0 |(A)| |
1280 * (A): peer mss index
1284 * The values below are chosen to minimize the size of the tcp_secret
1285 * table, as well as providing roughly a 16 second lifetime for the cookie.
1288 #define SYNCOOKIE_WNDBITS 5 /* exposed bits for window indexing */
1289 #define SYNCOOKIE_TIMESHIFT 1 /* scale ticks to window time units */
1291 #define SYNCOOKIE_WNDMASK ((1 << SYNCOOKIE_WNDBITS) - 1)
1292 #define SYNCOOKIE_NSECRETS (1 << SYNCOOKIE_WNDBITS)
1293 #define SYNCOOKIE_TIMEOUT \
1294 (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1295 #define SYNCOOKIE_DATAMASK ((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1297 static struct {
1298 u_int32_t ts_secbits[4];
1299 u_int ts_expire;
1300 } tcp_secret[SYNCOOKIE_NSECRETS];
1302 static int tcp_msstab[] = { 0, 536, 1460, 8960 };
1304 static MD5_CTX syn_ctx;
1306 #define MD5Add(v) MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1308 struct md5_add {
1309 u_int32_t laddr, faddr;
1310 u_int32_t secbits[4];
1311 u_int16_t lport, fport;
1314 #ifdef CTASSERT
1315 CTASSERT(sizeof(struct md5_add) == 28);
1316 #endif
1319 * Consider the problem of a recreated (and retransmitted) cookie. If the
1320 * original SYN was accepted, the connection is established. The second
1321 * SYN is inflight, and if it arrives with an ISN that falls within the
1322 * receive window, the connection is killed.
1324 * However, since cookies have other problems, this may not be worth
1325 * worrying about.
1328 static u_int32_t
1329 syncookie_generate(struct syncache *sc)
1331 u_int32_t md5_buffer[4];
1332 u_int32_t data;
1333 int idx, i;
1334 struct md5_add add;
1335 #ifdef INET6
1336 const boolean_t isipv6 = sc->sc_inc.inc_isipv6;
1337 #else
1338 const boolean_t isipv6 = FALSE;
1339 #endif
1341 idx = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
1342 if (tcp_secret[idx].ts_expire < ticks) {
1343 for (i = 0; i < 4; i++)
1344 tcp_secret[idx].ts_secbits[i] = karc4random();
1345 tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
1347 for (data = sizeof(tcp_msstab) / sizeof(int) - 1; data > 0; data--)
1348 if (tcp_msstab[data] <= sc->sc_peer_mss)
1349 break;
1350 data = (data << SYNCOOKIE_WNDBITS) | idx;
1351 data ^= sc->sc_irs; /* peer's iss */
1352 MD5Init(&syn_ctx);
1353 if (isipv6) {
1354 MD5Add(sc->sc_inc.inc6_laddr);
1355 MD5Add(sc->sc_inc.inc6_faddr);
1356 add.laddr = 0;
1357 add.faddr = 0;
1358 } else {
1359 add.laddr = sc->sc_inc.inc_laddr.s_addr;
1360 add.faddr = sc->sc_inc.inc_faddr.s_addr;
1362 add.lport = sc->sc_inc.inc_lport;
1363 add.fport = sc->sc_inc.inc_fport;
1364 add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1365 add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1366 add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1367 add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1368 MD5Add(add);
1369 MD5Final((u_char *)&md5_buffer, &syn_ctx);
1370 data ^= (md5_buffer[0] & ~SYNCOOKIE_WNDMASK);
1371 return (data);
1374 static struct syncache *
1375 syncookie_lookup(struct in_conninfo *inc, struct tcphdr *th, struct socket *so)
1377 u_int32_t md5_buffer[4];
1378 struct syncache *sc;
1379 u_int32_t data;
1380 int wnd, idx;
1381 struct md5_add add;
1383 data = (th->th_ack - 1) ^ (th->th_seq - 1); /* remove ISS */
1384 idx = data & SYNCOOKIE_WNDMASK;
1385 if (tcp_secret[idx].ts_expire < ticks ||
1386 sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
1387 return (NULL);
1388 MD5Init(&syn_ctx);
1389 #ifdef INET6
1390 if (inc->inc_isipv6) {
1391 MD5Add(inc->inc6_laddr);
1392 MD5Add(inc->inc6_faddr);
1393 add.laddr = 0;
1394 add.faddr = 0;
1395 } else
1396 #endif
1398 add.laddr = inc->inc_laddr.s_addr;
1399 add.faddr = inc->inc_faddr.s_addr;
1401 add.lport = inc->inc_lport;
1402 add.fport = inc->inc_fport;
1403 add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1404 add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1405 add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1406 add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1407 MD5Add(add);
1408 MD5Final((u_char *)&md5_buffer, &syn_ctx);
1409 data ^= md5_buffer[0];
1410 if (data & ~SYNCOOKIE_DATAMASK)
1411 return (NULL);
1412 data = data >> SYNCOOKIE_WNDBITS;
1415 * This allocation is guaranteed to succeed because we
1416 * preallocate one more syncache entry than cache_limit.
1418 sc = zalloc(tcp_syncache.zone);
1421 * Fill in the syncache values.
1422 * XXX duplicate code from syncache_add
1424 sc->sc_ipopts = NULL;
1425 sc->sc_inc.inc_fport = inc->inc_fport;
1426 sc->sc_inc.inc_lport = inc->inc_lport;
1427 #ifdef INET6
1428 sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1429 if (inc->inc_isipv6) {
1430 sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1431 sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1432 sc->sc_route6.ro_rt = NULL;
1433 } else
1434 #endif
1436 sc->sc_inc.inc_faddr = inc->inc_faddr;
1437 sc->sc_inc.inc_laddr = inc->inc_laddr;
1438 sc->sc_route.ro_rt = NULL;
1440 sc->sc_irs = th->th_seq - 1;
1441 sc->sc_iss = th->th_ack - 1;
1442 wnd = ssb_space(&so->so_rcv);
1443 wnd = imax(wnd, 0);
1444 wnd = imin(wnd, TCP_MAXWIN);
1445 sc->sc_wnd = wnd;
1446 sc->sc_flags = 0;
1447 sc->sc_rxtslot = 0;
1448 sc->sc_peer_mss = tcp_msstab[data];
1449 return (sc);