1 /* $FreeBSD: src/sys/dev/usb/if_ural.c,v 1.10.2.8 2006/07/08 07:48:43 maxim Exp $ */
2 /* $DragonFly: src/sys/dev/netif/ural/if_ural.c,v 1.13 2007/05/27 10:53:29 sephe Exp $ */
5 * Copyright (c) 2005, 2006
6 * Damien Bergamini <damien.bergamini@free.fr>
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
22 * Ralink Technology RT2500USB chipset driver
23 * http://www.ralinktech.com/
26 #include <sys/param.h>
28 #include <sys/endian.h>
29 #include <sys/kernel.h>
30 #include <sys/malloc.h>
33 #include <sys/socket.h>
34 #include <sys/sockio.h>
35 #include <sys/sysctl.h>
38 #include <net/ethernet.h>
40 #include <net/if_arp.h>
41 #include <net/if_dl.h>
42 #include <net/if_media.h>
43 #include <net/ifq_var.h>
45 #include <netproto/802_11/ieee80211_var.h>
46 #include <netproto/802_11/ieee80211_radiotap.h>
47 #include <netproto/802_11/wlan_ratectl/onoe/ieee80211_onoe_param.h>
49 #include <bus/usb/usb.h>
50 #include <bus/usb/usbdi.h>
51 #include <bus/usb/usbdi_util.h>
52 #include <bus/usb/usbdevs.h>
54 #include <dev/netif/ural/if_uralreg.h>
55 #include <dev/netif/ural/if_uralvar.h>
58 #define DPRINTF(x) do { if (uraldebug > 0) logprintf x; } while (0)
59 #define DPRINTFN(n, x) do { if (uraldebug >= (n)) logprintf x; } while (0)
61 SYSCTL_NODE(_hw_usb
, OID_AUTO
, ural
, CTLFLAG_RW
, 0, "USB ural");
62 SYSCTL_INT(_hw_usb_ural
, OID_AUTO
, debug
, CTLFLAG_RW
, &uraldebug
, 0,
66 #define DPRINTFN(n, x)
69 #define URAL_RSSI(rssi) \
70 ((rssi) > (RAL_NOISE_FLOOR + RAL_RSSI_CORR) ? \
71 ((rssi) - RAL_NOISE_FLOOR + RAL_RSSI_CORR) : 0)
73 /* various supported device vendors/products */
74 static const struct usb_devno ural_devs
[] = {
75 { USB_VENDOR_ASUS
, USB_PRODUCT_ASUS_WL167G
},
76 { USB_VENDOR_ASUS
, USB_PRODUCT_RALINK_RT2570
},
77 { USB_VENDOR_BELKIN
, USB_PRODUCT_BELKIN_F5D7050
},
78 { USB_VENDOR_CONCEPTRONIC
, USB_PRODUCT_CONCEPTRONIC_C54U
},
79 { USB_VENDOR_DLINK
, USB_PRODUCT_DLINK_DWLG122
},
80 { USB_VENDOR_GIGABYTE
, USB_PRODUCT_GIGABYTE_GNWBKG
},
81 { USB_VENDOR_GUILLEMOT
, USB_PRODUCT_GUILLEMOT_HWGUSB254
},
82 { USB_VENDOR_LINKSYS4
, USB_PRODUCT_LINKSYS4_WUSB54G
},
83 { USB_VENDOR_LINKSYS4
, USB_PRODUCT_LINKSYS4_WUSB54GP
},
84 { USB_VENDOR_LINKSYS4
, USB_PRODUCT_LINKSYS4_HU200TS
},
85 { USB_VENDOR_MELCO
, USB_PRODUCT_MELCO_KG54
},
86 { USB_VENDOR_MELCO
, USB_PRODUCT_MELCO_KG54AI
},
87 { USB_VENDOR_MELCO
, USB_PRODUCT_MELCO_KG54YB
},
88 { USB_VENDOR_MELCO
, USB_PRODUCT_MELCO_NINWIFI
},
89 { USB_VENDOR_MSI
, USB_PRODUCT_MSI_RT2570
},
90 { USB_VENDOR_MSI
, USB_PRODUCT_MSI_RT2570_2
},
91 { USB_VENDOR_MSI
, USB_PRODUCT_MSI_RT2570_3
},
92 { USB_VENDOR_NOVATECH
, USB_PRODUCT_NOVATECH_NV902W
},
93 { USB_VENDOR_RALINK
, USB_PRODUCT_RALINK_RT2570
},
94 { USB_VENDOR_RALINK
, USB_PRODUCT_RALINK_RT2570_2
},
95 { USB_VENDOR_RALINK
, USB_PRODUCT_RALINK_RT2570_3
},
96 { USB_VENDOR_SPHAIRON
, USB_PRODUCT_SPHAIRON_UB801R
},
97 { USB_VENDOR_SURECOM
, USB_PRODUCT_SURECOM_RT2570
},
98 { USB_VENDOR_VTECH
, USB_PRODUCT_VTECH_RT2570
},
99 { USB_VENDOR_ZINWELL
, USB_PRODUCT_ZINWELL_RT2570
}
102 MODULE_DEPEND(ural
, wlan
, 1, 1, 1);
104 Static
int ural_alloc_tx_list(struct ural_softc
*);
105 Static
void ural_free_tx_list(struct ural_softc
*);
106 Static
int ural_alloc_rx_list(struct ural_softc
*);
107 Static
void ural_free_rx_list(struct ural_softc
*);
108 Static
int ural_media_change(struct ifnet
*);
109 Static
void ural_next_scan(void *);
110 Static
void ural_task(void *);
111 Static
int ural_newstate(struct ieee80211com
*,
112 enum ieee80211_state
, int);
113 Static
int ural_rxrate(struct ural_rx_desc
*);
114 Static
void ural_txeof(usbd_xfer_handle
, usbd_private_handle
,
116 Static
void ural_rxeof(usbd_xfer_handle
, usbd_private_handle
,
118 Static
uint8_t ural_plcp_signal(int);
119 Static
void ural_setup_tx_desc(struct ural_softc
*,
120 struct ural_tx_desc
*, uint32_t, int, int);
121 Static
int ural_tx_bcn(struct ural_softc
*, struct mbuf
*,
122 struct ieee80211_node
*);
123 Static
int ural_tx_mgt(struct ural_softc
*, struct mbuf
*,
124 struct ieee80211_node
*);
125 Static
int ural_tx_data(struct ural_softc
*, struct mbuf
*,
126 struct ieee80211_node
*);
127 Static
void ural_start(struct ifnet
*);
128 Static
void ural_watchdog(struct ifnet
*);
129 Static
int ural_reset(struct ifnet
*);
130 Static
int ural_ioctl(struct ifnet
*, u_long
, caddr_t
,
132 Static
void ural_set_testmode(struct ural_softc
*);
133 Static
void ural_eeprom_read(struct ural_softc
*, uint16_t, void *,
135 Static
uint16_t ural_read(struct ural_softc
*, uint16_t);
136 Static
void ural_read_multi(struct ural_softc
*, uint16_t, void *,
138 Static
void ural_write(struct ural_softc
*, uint16_t, uint16_t);
139 Static
void ural_write_multi(struct ural_softc
*, uint16_t, void *,
141 Static
void ural_bbp_write(struct ural_softc
*, uint8_t, uint8_t);
142 Static
uint8_t ural_bbp_read(struct ural_softc
*, uint8_t);
143 Static
void ural_rf_write(struct ural_softc
*, uint8_t, uint32_t);
144 Static
void ural_set_chan(struct ural_softc
*,
145 struct ieee80211_channel
*);
146 Static
void ural_disable_rf_tune(struct ural_softc
*);
147 Static
void ural_enable_tsf_sync(struct ural_softc
*);
148 Static
void ural_update_slot(struct ifnet
*);
149 Static
void ural_set_txpreamble(struct ural_softc
*);
150 Static
void ural_set_basicrates(struct ural_softc
*);
151 Static
void ural_set_bssid(struct ural_softc
*, uint8_t *);
152 Static
void ural_set_macaddr(struct ural_softc
*, uint8_t *);
153 Static
void ural_update_promisc(struct ural_softc
*);
154 Static
const char *ural_get_rf(int);
155 Static
void ural_read_eeprom(struct ural_softc
*);
156 Static
int ural_bbp_init(struct ural_softc
*);
157 Static
void ural_set_txantenna(struct ural_softc
*, int);
158 Static
void ural_set_rxantenna(struct ural_softc
*, int);
159 Static
void ural_init(void *);
160 Static
void ural_stop(struct ural_softc
*);
161 Static
void ural_stats(struct ieee80211com
*,
162 struct ieee80211_node
*,
163 struct ieee80211_ratectl_stats
*);
164 Static
void ural_stats_update(usbd_xfer_handle
,
165 usbd_private_handle
, usbd_status
);
166 Static
void ural_stats_timeout(void *);
167 Static
void ural_ratectl_change(struct ieee80211com
*ic
, u_int
,
171 * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
173 static const struct ieee80211_rateset ural_rateset_11a
=
174 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
176 static const struct ieee80211_rateset ural_rateset_11b
=
177 { 4, { 2, 4, 11, 22 } };
179 static const struct ieee80211_rateset ural_rateset_11g
=
180 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
183 * Default values for MAC registers; values taken from the reference driver.
185 static const struct {
189 { RAL_TXRX_CSR5
, 0x8c8d },
190 { RAL_TXRX_CSR6
, 0x8b8a },
191 { RAL_TXRX_CSR7
, 0x8687 },
192 { RAL_TXRX_CSR8
, 0x0085 },
193 { RAL_MAC_CSR13
, 0x1111 },
194 { RAL_MAC_CSR14
, 0x1e11 },
195 { RAL_TXRX_CSR21
, 0xe78f },
196 { RAL_MAC_CSR9
, 0xff1d },
197 { RAL_MAC_CSR11
, 0x0002 },
198 { RAL_MAC_CSR22
, 0x0053 },
199 { RAL_MAC_CSR15
, 0x0000 },
200 { RAL_MAC_CSR8
, 0x0780 },
201 { RAL_TXRX_CSR19
, 0x0000 },
202 { RAL_TXRX_CSR18
, 0x005a },
203 { RAL_PHY_CSR2
, 0x0000 },
204 { RAL_TXRX_CSR0
, 0x1ec0 },
205 { RAL_PHY_CSR4
, 0x000f }
209 * Default values for BBP registers; values taken from the reference driver.
211 static const struct {
250 * Default values for RF register R2 indexed by channel numbers.
252 static const uint32_t ural_rf2522_r2
[] = {
253 0x307f6, 0x307fb, 0x30800, 0x30805, 0x3080a, 0x3080f, 0x30814,
254 0x30819, 0x3081e, 0x30823, 0x30828, 0x3082d, 0x30832, 0x3083e
257 static const uint32_t ural_rf2523_r2
[] = {
258 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
259 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
262 static const uint32_t ural_rf2524_r2
[] = {
263 0x00327, 0x00328, 0x00329, 0x0032a, 0x0032b, 0x0032c, 0x0032d,
264 0x0032e, 0x0032f, 0x00340, 0x00341, 0x00342, 0x00343, 0x00346
267 static const uint32_t ural_rf2525_r2
[] = {
268 0x20327, 0x20328, 0x20329, 0x2032a, 0x2032b, 0x2032c, 0x2032d,
269 0x2032e, 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20346
272 static const uint32_t ural_rf2525_hi_r2
[] = {
273 0x2032f, 0x20340, 0x20341, 0x20342, 0x20343, 0x20344, 0x20345,
274 0x20346, 0x20347, 0x20348, 0x20349, 0x2034a, 0x2034b, 0x2034e
277 static const uint32_t ural_rf2525e_r2
[] = {
278 0x2044d, 0x2044e, 0x2044f, 0x20460, 0x20461, 0x20462, 0x20463,
279 0x20464, 0x20465, 0x20466, 0x20467, 0x20468, 0x20469, 0x2046b
282 static const uint32_t ural_rf2526_hi_r2
[] = {
283 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d, 0x0022d,
284 0x0022e, 0x0022e, 0x0022f, 0x0022d, 0x00240, 0x00240, 0x00241
287 static const uint32_t ural_rf2526_r2
[] = {
288 0x00226, 0x00227, 0x00227, 0x00228, 0x00228, 0x00229, 0x00229,
289 0x0022a, 0x0022a, 0x0022b, 0x0022b, 0x0022c, 0x0022c, 0x0022d
293 * For dual-band RF, RF registers R1 and R4 also depend on channel number;
294 * values taken from the reference driver.
296 static const struct {
302 { 1, 0x08808, 0x0044d, 0x00282 },
303 { 2, 0x08808, 0x0044e, 0x00282 },
304 { 3, 0x08808, 0x0044f, 0x00282 },
305 { 4, 0x08808, 0x00460, 0x00282 },
306 { 5, 0x08808, 0x00461, 0x00282 },
307 { 6, 0x08808, 0x00462, 0x00282 },
308 { 7, 0x08808, 0x00463, 0x00282 },
309 { 8, 0x08808, 0x00464, 0x00282 },
310 { 9, 0x08808, 0x00465, 0x00282 },
311 { 10, 0x08808, 0x00466, 0x00282 },
312 { 11, 0x08808, 0x00467, 0x00282 },
313 { 12, 0x08808, 0x00468, 0x00282 },
314 { 13, 0x08808, 0x00469, 0x00282 },
315 { 14, 0x08808, 0x0046b, 0x00286 },
317 { 36, 0x08804, 0x06225, 0x00287 },
318 { 40, 0x08804, 0x06226, 0x00287 },
319 { 44, 0x08804, 0x06227, 0x00287 },
320 { 48, 0x08804, 0x06228, 0x00287 },
321 { 52, 0x08804, 0x06229, 0x00287 },
322 { 56, 0x08804, 0x0622a, 0x00287 },
323 { 60, 0x08804, 0x0622b, 0x00287 },
324 { 64, 0x08804, 0x0622c, 0x00287 },
326 { 100, 0x08804, 0x02200, 0x00283 },
327 { 104, 0x08804, 0x02201, 0x00283 },
328 { 108, 0x08804, 0x02202, 0x00283 },
329 { 112, 0x08804, 0x02203, 0x00283 },
330 { 116, 0x08804, 0x02204, 0x00283 },
331 { 120, 0x08804, 0x02205, 0x00283 },
332 { 124, 0x08804, 0x02206, 0x00283 },
333 { 128, 0x08804, 0x02207, 0x00283 },
334 { 132, 0x08804, 0x02208, 0x00283 },
335 { 136, 0x08804, 0x02209, 0x00283 },
336 { 140, 0x08804, 0x0220a, 0x00283 },
338 { 149, 0x08808, 0x02429, 0x00281 },
339 { 153, 0x08808, 0x0242b, 0x00281 },
340 { 157, 0x08808, 0x0242d, 0x00281 },
341 { 161, 0x08808, 0x0242f, 0x00281 }
344 USB_DECLARE_DRIVER(ural
);
348 USB_MATCH_START(ural
, uaa
);
350 if (uaa
->iface
!= NULL
)
353 return (usb_lookup(ural_devs
, uaa
->vendor
, uaa
->product
) != NULL
) ?
354 UMATCH_VENDOR_PRODUCT
: UMATCH_NONE
;
359 USB_ATTACH_START(ural
, sc
, uaa
);
361 struct ieee80211com
*ic
= &sc
->sc_ic
;
362 usb_interface_descriptor_t
*id
;
363 usb_endpoint_descriptor_t
*ed
;
368 sc
->sc_udev
= uaa
->device
;
369 sc
->sc_tx_retries
= 7; /* TODO tunable/sysctl */
371 usbd_devinfo(sc
->sc_udev
, 0, devinfo
);
374 if (usbd_set_config_no(sc
->sc_udev
, RAL_CONFIG_NO
, 0) != 0) {
375 kprintf("%s: could not set configuration no\n",
376 USBDEVNAME(sc
->sc_dev
));
377 USB_ATTACH_ERROR_RETURN
;
380 /* get the first interface handle */
381 error
= usbd_device2interface_handle(sc
->sc_udev
, RAL_IFACE_INDEX
,
384 kprintf("%s: could not get interface handle\n",
385 USBDEVNAME(sc
->sc_dev
));
386 USB_ATTACH_ERROR_RETURN
;
392 id
= usbd_get_interface_descriptor(sc
->sc_iface
);
394 sc
->sc_rx_no
= sc
->sc_tx_no
= -1;
395 for (i
= 0; i
< id
->bNumEndpoints
; i
++) {
396 ed
= usbd_interface2endpoint_descriptor(sc
->sc_iface
, i
);
398 kprintf("%s: no endpoint descriptor for %d\n",
399 USBDEVNAME(sc
->sc_dev
), i
);
400 USB_ATTACH_ERROR_RETURN
;
403 if (UE_GET_DIR(ed
->bEndpointAddress
) == UE_DIR_IN
&&
404 UE_GET_XFERTYPE(ed
->bmAttributes
) == UE_BULK
)
405 sc
->sc_rx_no
= ed
->bEndpointAddress
;
406 else if (UE_GET_DIR(ed
->bEndpointAddress
) == UE_DIR_OUT
&&
407 UE_GET_XFERTYPE(ed
->bmAttributes
) == UE_BULK
)
408 sc
->sc_tx_no
= ed
->bEndpointAddress
;
410 if (sc
->sc_rx_no
== -1 || sc
->sc_tx_no
== -1) {
411 kprintf("%s: missing endpoint\n", USBDEVNAME(sc
->sc_dev
));
412 USB_ATTACH_ERROR_RETURN
;
415 usb_init_task(&sc
->sc_task
, ural_task
, sc
);
416 callout_init(&sc
->scan_ch
);
417 callout_init(&sc
->stats_ch
);
419 /* retrieve RT2570 rev. no */
420 sc
->asic_rev
= ural_read(sc
, RAL_MAC_CSR0
);
422 /* retrieve MAC address and various other things from EEPROM */
423 ural_read_eeprom(sc
);
425 kprintf("%s: MAC/BBP RT2570 (rev 0x%02x), RF %s\n",
426 USBDEVNAME(sc
->sc_dev
), sc
->asic_rev
, ural_get_rf(sc
->rf_rev
));
430 if_initname(ifp
, "ural", USBDEVUNIT(sc
->sc_dev
));
431 ifp
->if_flags
= IFF_BROADCAST
| IFF_SIMPLEX
| IFF_MULTICAST
;
432 ifp
->if_init
= ural_init
;
433 ifp
->if_ioctl
= ural_ioctl
;
434 ifp
->if_start
= ural_start
;
435 ifp
->if_watchdog
= ural_watchdog
;
436 ifq_set_maxlen(&ifp
->if_snd
, IFQ_MAXLEN
);
437 ifq_set_ready(&ifp
->if_snd
);
439 ic
->ic_ratectl
.rc_st_ratectl_cap
= IEEE80211_RATECTL_CAP_ONOE
;
440 ic
->ic_ratectl
.rc_st_ratectl
= IEEE80211_RATECTL_ONOE
;
441 ic
->ic_ratectl
.rc_st_valid_stats
=
442 IEEE80211_RATECTL_STATS_PKT_NORETRY
|
443 IEEE80211_RATECTL_STATS_PKT_OK
|
444 IEEE80211_RATECTL_STATS_PKT_ERR
|
445 IEEE80211_RATECTL_STATS_RETRIES
;
446 ic
->ic_ratectl
.rc_st_stats
= ural_stats
;
447 ic
->ic_ratectl
.rc_st_change
= ural_ratectl_change
;
449 ic
->ic_phytype
= IEEE80211_T_OFDM
; /* not only, but not used */
450 ic
->ic_opmode
= IEEE80211_M_STA
; /* default to BSS mode */
451 ic
->ic_state
= IEEE80211_S_INIT
;
453 /* set device capabilities */
455 IEEE80211_C_IBSS
| /* IBSS mode supported */
456 IEEE80211_C_MONITOR
| /* monitor mode supported */
457 IEEE80211_C_HOSTAP
| /* HostAp mode supported */
458 IEEE80211_C_TXPMGT
| /* tx power management */
459 IEEE80211_C_SHPREAMBLE
| /* short preamble supported */
460 IEEE80211_C_SHSLOT
| /* short slot time supported */
461 IEEE80211_C_WPA
; /* 802.11i */
463 if (sc
->rf_rev
== RAL_RF_5222
) {
464 /* set supported .11a rates */
465 ic
->ic_sup_rates
[IEEE80211_MODE_11A
] = ural_rateset_11a
;
467 /* set supported .11a channels */
468 for (i
= 36; i
<= 64; i
+= 4) {
469 ic
->ic_channels
[i
].ic_freq
=
470 ieee80211_ieee2mhz(i
, IEEE80211_CHAN_5GHZ
);
471 ic
->ic_channels
[i
].ic_flags
= IEEE80211_CHAN_A
;
473 for (i
= 100; i
<= 140; i
+= 4) {
474 ic
->ic_channels
[i
].ic_freq
=
475 ieee80211_ieee2mhz(i
, IEEE80211_CHAN_5GHZ
);
476 ic
->ic_channels
[i
].ic_flags
= IEEE80211_CHAN_A
;
478 for (i
= 149; i
<= 161; i
+= 4) {
479 ic
->ic_channels
[i
].ic_freq
=
480 ieee80211_ieee2mhz(i
, IEEE80211_CHAN_5GHZ
);
481 ic
->ic_channels
[i
].ic_flags
= IEEE80211_CHAN_A
;
485 /* set supported .11b and .11g rates */
486 ic
->ic_sup_rates
[IEEE80211_MODE_11B
] = ural_rateset_11b
;
487 ic
->ic_sup_rates
[IEEE80211_MODE_11G
] = ural_rateset_11g
;
489 /* set supported .11b and .11g channels (1 through 14) */
490 for (i
= 1; i
<= 14; i
++) {
491 ic
->ic_channels
[i
].ic_freq
=
492 ieee80211_ieee2mhz(i
, IEEE80211_CHAN_2GHZ
);
493 ic
->ic_channels
[i
].ic_flags
=
494 IEEE80211_CHAN_CCK
| IEEE80211_CHAN_OFDM
|
495 IEEE80211_CHAN_DYN
| IEEE80211_CHAN_2GHZ
;
498 sc
->sc_sifs
= IEEE80211_DUR_SIFS
; /* Default SIFS */
500 ieee80211_ifattach(ic
);
501 ic
->ic_reset
= ural_reset
;
502 /* enable s/w bmiss handling in sta mode */
503 ic
->ic_flags_ext
|= IEEE80211_FEXT_SWBMISS
;
505 /* override state transition machine */
506 sc
->sc_newstate
= ic
->ic_newstate
;
507 ic
->ic_newstate
= ural_newstate
;
508 ieee80211_media_init(ic
, ural_media_change
, ieee80211_media_status
);
510 bpfattach_dlt(ifp
, DLT_IEEE802_11_RADIO
,
511 sizeof(struct ieee80211_frame
) + 64, &sc
->sc_drvbpf
);
513 sc
->sc_rxtap_len
= sizeof sc
->sc_rxtapu
;
514 sc
->sc_rxtap
.wr_ihdr
.it_len
= htole16(sc
->sc_rxtap_len
);
515 sc
->sc_rxtap
.wr_ihdr
.it_present
= htole32(RAL_RX_RADIOTAP_PRESENT
);
517 sc
->sc_txtap_len
= sizeof sc
->sc_txtapu
;
518 sc
->sc_txtap
.wt_ihdr
.it_len
= htole16(sc
->sc_txtap_len
);
519 sc
->sc_txtap
.wt_ihdr
.it_present
= htole32(RAL_TX_RADIOTAP_PRESENT
);
522 ieee80211_announce(ic
);
524 USB_ATTACH_SUCCESS_RETURN
;
529 USB_DETACH_START(ural
, sc
);
530 struct ieee80211com
*ic
= &sc
->sc_ic
;
531 struct ifnet
*ifp
= &ic
->ic_if
;
538 callout_stop(&sc
->scan_ch
);
539 callout_stop(&sc
->stats_ch
);
541 lwkt_serialize_enter(ifp
->if_serializer
);
543 lwkt_serialize_exit(ifp
->if_serializer
);
545 usb_rem_task(sc
->sc_udev
, &sc
->sc_task
);
548 ieee80211_ifdetach(ic
);
552 KKASSERT(sc
->stats_xfer
== NULL
);
553 KKASSERT(sc
->sc_rx_pipeh
== NULL
);
554 KKASSERT(sc
->sc_tx_pipeh
== NULL
);
558 * Make sure TX/RX list is empty
560 for (i
= 0; i
< RAL_TX_LIST_COUNT
; i
++) {
561 struct ural_tx_data
*data
= &sc
->tx_data
[i
];
563 KKASSERT(data
->xfer
== NULL
);
564 KKASSERT(data
->ni
== NULL
);
565 KKASSERT(data
->m
== NULL
);
567 for (i
= 0; i
< RAL_RX_LIST_COUNT
; i
++) {
568 struct ural_rx_data
*data
= &sc
->rx_data
[i
];
570 KKASSERT(data
->xfer
== NULL
);
571 KKASSERT(data
->m
== NULL
);
579 ural_alloc_tx_list(struct ural_softc
*sc
)
585 for (i
= 0; i
< RAL_TX_LIST_COUNT
; i
++) {
586 struct ural_tx_data
*data
= &sc
->tx_data
[i
];
590 data
->xfer
= usbd_alloc_xfer(sc
->sc_udev
);
591 if (data
->xfer
== NULL
) {
592 kprintf("%s: could not allocate tx xfer\n",
593 USBDEVNAME(sc
->sc_dev
));
597 data
->buf
= usbd_alloc_buffer(data
->xfer
,
598 RAL_TX_DESC_SIZE
+ MCLBYTES
);
599 if (data
->buf
== NULL
) {
600 kprintf("%s: could not allocate tx buffer\n",
601 USBDEVNAME(sc
->sc_dev
));
609 ural_free_tx_list(struct ural_softc
*sc
)
613 for (i
= 0; i
< RAL_TX_LIST_COUNT
; i
++) {
614 struct ural_tx_data
*data
= &sc
->tx_data
[i
];
616 if (data
->xfer
!= NULL
) {
617 usbd_free_xfer(data
->xfer
);
621 if (data
->ni
!= NULL
) {
622 ieee80211_free_node(data
->ni
);
625 if (data
->m
!= NULL
) {
634 ural_alloc_rx_list(struct ural_softc
*sc
)
638 for (i
= 0; i
< RAL_RX_LIST_COUNT
; i
++) {
639 struct ural_rx_data
*data
= &sc
->rx_data
[i
];
643 data
->xfer
= usbd_alloc_xfer(sc
->sc_udev
);
644 if (data
->xfer
== NULL
) {
645 kprintf("%s: could not allocate rx xfer\n",
646 USBDEVNAME(sc
->sc_dev
));
650 if (usbd_alloc_buffer(data
->xfer
, MCLBYTES
) == NULL
) {
651 kprintf("%s: could not allocate rx buffer\n",
652 USBDEVNAME(sc
->sc_dev
));
656 data
->m
= m_getcl(MB_DONTWAIT
, MT_DATA
, M_PKTHDR
);
657 if (data
->m
== NULL
) {
658 kprintf("%s: could not allocate rx mbuf\n",
659 USBDEVNAME(sc
->sc_dev
));
663 data
->buf
= mtod(data
->m
, uint8_t *);
669 ural_free_rx_list(struct ural_softc
*sc
)
673 for (i
= 0; i
< RAL_RX_LIST_COUNT
; i
++) {
674 struct ural_rx_data
*data
= &sc
->rx_data
[i
];
676 if (data
->xfer
!= NULL
) {
677 usbd_free_xfer(data
->xfer
);
681 if (data
->m
!= NULL
) {
689 ural_media_change(struct ifnet
*ifp
)
691 struct ural_softc
*sc
= ifp
->if_softc
;
694 error
= ieee80211_media_change(ifp
);
695 if (error
!= ENETRESET
)
698 if ((ifp
->if_flags
& (IFF_UP
| IFF_RUNNING
)) == (IFF_UP
| IFF_RUNNING
))
705 * This function is called periodically (every 200ms) during scanning to
706 * switch from one channel to another.
709 ural_next_scan(void *arg
)
711 struct ural_softc
*sc
= arg
;
712 struct ieee80211com
*ic
= &sc
->sc_ic
;
713 struct ifnet
*ifp
= &ic
->ic_if
;
720 if (ic
->ic_state
== IEEE80211_S_SCAN
) {
721 lwkt_serialize_enter(ifp
->if_serializer
);
722 ieee80211_next_scan(ic
);
723 lwkt_serialize_exit(ifp
->if_serializer
);
730 ural_task(void *xarg
)
732 struct ural_softc
*sc
= xarg
;
733 struct ieee80211com
*ic
= &sc
->sc_ic
;
734 struct ifnet
*ifp
= &ic
->ic_if
;
735 enum ieee80211_state nstate
;
736 struct ieee80211_node
*ni
;
745 nstate
= sc
->sc_state
;
748 KASSERT(nstate
!= IEEE80211_S_INIT
,
749 ("->INIT state transition should not be defered\n"));
750 ural_set_chan(sc
, ic
->ic_curchan
);
752 switch (sc
->sc_state
) {
753 case IEEE80211_S_RUN
:
756 if (ic
->ic_opmode
!= IEEE80211_M_MONITOR
) {
757 ural_update_slot(&ic
->ic_if
);
758 ural_set_txpreamble(sc
);
759 ural_set_basicrates(sc
);
760 ural_set_bssid(sc
, ni
->ni_bssid
);
763 if (ic
->ic_opmode
== IEEE80211_M_HOSTAP
||
764 ic
->ic_opmode
== IEEE80211_M_IBSS
) {
765 lwkt_serialize_enter(ifp
->if_serializer
);
766 m
= ieee80211_beacon_alloc(ic
, ni
, &sc
->sc_bo
);
767 lwkt_serialize_exit(ifp
->if_serializer
);
770 kprintf("%s: could not allocate beacon\n",
771 USBDEVNAME(sc
->sc_dev
));
776 if (ural_tx_bcn(sc
, m
, ni
) != 0) {
777 kprintf("%s: could not send beacon\n",
778 USBDEVNAME(sc
->sc_dev
));
784 /* make tx led blink on tx (controlled by ASIC) */
785 ural_write(sc
, RAL_MAC_CSR20
, 1);
787 if (ic
->ic_opmode
!= IEEE80211_M_MONITOR
)
788 ural_enable_tsf_sync(sc
);
790 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
791 ural_read_multi(sc
, RAL_STA_CSR0
, sc
->sta
, sizeof(sc
->sta
));
793 callout_reset(&sc
->stats_ch
, 4 * hz
/ 5,
794 ural_stats_timeout
, sc
);
797 case IEEE80211_S_SCAN
:
798 callout_reset(&sc
->scan_ch
, hz
/ 5, ural_next_scan
, sc
);
805 lwkt_serialize_enter(ifp
->if_serializer
);
806 ieee80211_ratectl_newstate(ic
, sc
->sc_state
);
807 sc
->sc_newstate(ic
, sc
->sc_state
, arg
);
808 lwkt_serialize_exit(ifp
->if_serializer
);
814 ural_newstate(struct ieee80211com
*ic
, enum ieee80211_state nstate
, int arg
)
816 struct ifnet
*ifp
= &ic
->ic_if
;
817 struct ural_softc
*sc
= ifp
->if_softc
;
819 ASSERT_SERIALIZED(ifp
->if_serializer
);
823 callout_stop(&sc
->scan_ch
);
824 callout_stop(&sc
->stats_ch
);
826 /* do it in a process context */
827 sc
->sc_state
= nstate
;
830 lwkt_serialize_exit(ifp
->if_serializer
);
831 usb_rem_task(sc
->sc_udev
, &sc
->sc_task
);
833 if (nstate
== IEEE80211_S_INIT
) {
834 lwkt_serialize_enter(ifp
->if_serializer
);
835 ieee80211_ratectl_newstate(ic
, nstate
);
836 sc
->sc_newstate(ic
, nstate
, arg
);
838 usb_add_task(sc
->sc_udev
, &sc
->sc_task
, USB_TASKQ_DRIVER
);
839 lwkt_serialize_enter(ifp
->if_serializer
);
846 /* quickly determine if a given rate is CCK or OFDM */
847 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
849 #define RAL_ACK_SIZE (sizeof(struct ieee80211_frame_ack) + IEEE80211_FCS_LEN)
851 #define RAL_RXTX_TURNAROUND 5 /* us */
854 * This function is only used by the Rx radiotap code.
857 ural_rxrate(struct ural_rx_desc
*desc
)
859 if (le32toh(desc
->flags
) & RAL_RX_OFDM
) {
860 /* reverse function of ural_plcp_signal */
861 switch (desc
->rate
) {
869 case 0xc: return 108;
872 if (desc
->rate
== 10)
874 if (desc
->rate
== 20)
876 if (desc
->rate
== 55)
878 if (desc
->rate
== 110)
881 return 2; /* should not get there */
885 ural_txeof(usbd_xfer_handle xfer
, usbd_private_handle priv
, usbd_status status
)
887 struct ural_tx_data
*data
= priv
;
888 struct ural_softc
*sc
= data
->sc
;
889 struct ieee80211_node
*ni
;
890 struct ifnet
*ifp
= &sc
->sc_ic
.ic_if
;
897 if (status
!= USBD_NORMAL_COMPLETION
) {
898 if (status
== USBD_NOT_STARTED
|| status
== USBD_CANCELLED
) {
903 kprintf("%s: could not transmit buffer: %s\n",
904 USBDEVNAME(sc
->sc_dev
), usbd_errstr(status
));
906 if (status
== USBD_STALLED
)
907 usbd_clear_endpoint_stall_async(sc
->sc_rx_pipeh
);
922 DPRINTFN(10, ("tx done\n"));
925 ifp
->if_flags
&= ~IFF_OACTIVE
;
927 lwkt_serialize_enter(ifp
->if_serializer
);
928 ieee80211_free_node(ni
);
930 lwkt_serialize_exit(ifp
->if_serializer
);
936 ural_rxeof(usbd_xfer_handle xfer
, usbd_private_handle priv
, usbd_status status
)
938 struct ural_rx_data
*data
= priv
;
939 struct ural_softc
*sc
= data
->sc
;
940 struct ieee80211com
*ic
= &sc
->sc_ic
;
941 struct ifnet
*ifp
= &ic
->ic_if
;
942 struct ural_rx_desc
*desc
;
943 struct ieee80211_frame
*wh
;
944 struct ieee80211_node
*ni
;
945 struct mbuf
*mnew
, *m
;
953 if (status
!= USBD_NORMAL_COMPLETION
) {
954 if (status
== USBD_NOT_STARTED
|| status
== USBD_CANCELLED
) {
959 if (status
== USBD_STALLED
)
960 usbd_clear_endpoint_stall_async(sc
->sc_rx_pipeh
);
964 usbd_get_xfer_status(xfer
, NULL
, NULL
, &len
, NULL
);
966 if (len
< RAL_RX_DESC_SIZE
+ IEEE80211_MIN_LEN
) {
967 DPRINTF(("%s: xfer too short %d\n", USBDEVNAME(sc
->sc_dev
),
973 /* rx descriptor is located at the end */
974 desc
= (struct ural_rx_desc
*)(data
->buf
+ len
- RAL_RX_DESC_SIZE
);
976 if ((le32toh(desc
->flags
) & RAL_RX_PHY_ERROR
) ||
977 (le32toh(desc
->flags
) & RAL_RX_CRC_ERROR
)) {
979 * This should not happen since we did not request to receive
980 * those frames when we filled RAL_TXRX_CSR2.
982 DPRINTFN(5, ("PHY or CRC error\n"));
987 mnew
= m_getcl(MB_DONTWAIT
, MT_DATA
, M_PKTHDR
);
997 lwkt_serialize_enter(ifp
->if_serializer
);
1000 m
->m_pkthdr
.rcvif
= ifp
;
1001 m
->m_pkthdr
.len
= m
->m_len
= (le32toh(desc
->flags
) >> 16) & 0xfff;
1003 if (sc
->sc_drvbpf
!= NULL
) {
1004 struct ural_rx_radiotap_header
*tap
= &sc
->sc_rxtap
;
1006 tap
->wr_flags
= IEEE80211_RADIOTAP_F_FCS
; /* h/w leaves FCS */
1007 tap
->wr_rate
= ural_rxrate(desc
);
1008 tap
->wr_chan_freq
= htole16(ic
->ic_curchan
->ic_freq
);
1009 tap
->wr_chan_flags
= htole16(ic
->ic_curchan
->ic_flags
);
1010 tap
->wr_antenna
= sc
->rx_ant
;
1011 tap
->wr_antsignal
= URAL_RSSI(desc
->rssi
);
1013 bpf_ptap(sc
->sc_drvbpf
, m
, tap
, sc
->sc_rxtap_len
);
1016 /* trim CRC here so WEP can find its own CRC at the end of packet. */
1017 m_adj(m
, -IEEE80211_CRC_LEN
);
1019 wh
= mtod(m
, struct ieee80211_frame
*);
1020 ni
= ieee80211_find_rxnode(ic
, (struct ieee80211_frame_min
*)wh
);
1022 /* send the frame to the 802.11 layer */
1023 ieee80211_input(ic
, m
, ni
, URAL_RSSI(desc
->rssi
), 0);
1025 /* node is no longer needed */
1026 ieee80211_free_node(ni
);
1028 lwkt_serialize_exit(ifp
->if_serializer
);
1031 data
->buf
= mtod(data
->m
, uint8_t *);
1033 DPRINTFN(15, ("rx done\n"));
1035 skip
: /* setup a new transfer */
1036 usbd_setup_xfer(xfer
, sc
->sc_rx_pipeh
, data
, data
->buf
, MCLBYTES
,
1037 USBD_SHORT_XFER_OK
, USBD_NO_TIMEOUT
, ural_rxeof
);
1038 usbd_transfer(xfer
);
1044 ural_plcp_signal(int rate
)
1047 /* CCK rates (returned values are device-dependent) */
1050 case 11: return 0x2;
1051 case 22: return 0x3;
1053 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1054 case 12: return 0xb;
1055 case 18: return 0xf;
1056 case 24: return 0xa;
1057 case 36: return 0xe;
1058 case 48: return 0x9;
1059 case 72: return 0xd;
1060 case 96: return 0x8;
1061 case 108: return 0xc;
1063 /* unsupported rates (should not get there) */
1064 default: return 0xff;
1069 ural_setup_tx_desc(struct ural_softc
*sc
, struct ural_tx_desc
*desc
,
1070 uint32_t flags
, int len
, int rate
)
1072 struct ieee80211com
*ic
= &sc
->sc_ic
;
1073 uint16_t plcp_length
;
1076 desc
->flags
= htole32(flags
);
1077 desc
->flags
|= htole32(RAL_TX_NEWSEQ
);
1078 desc
->flags
|= htole32(len
<< 16);
1080 desc
->wme
= htole16(RAL_AIFSN(2) | RAL_LOGCWMIN(3) | RAL_LOGCWMAX(5));
1081 desc
->wme
|= htole16(RAL_IVOFFSET(sizeof (struct ieee80211_frame
)));
1083 /* setup PLCP fields */
1084 desc
->plcp_signal
= ural_plcp_signal(rate
);
1085 desc
->plcp_service
= 4;
1087 len
+= IEEE80211_CRC_LEN
;
1088 if (RAL_RATE_IS_OFDM(rate
)) {
1089 desc
->flags
|= htole32(RAL_TX_OFDM
);
1091 plcp_length
= len
& 0xfff;
1092 desc
->plcp_length_hi
= plcp_length
>> 6;
1093 desc
->plcp_length_lo
= plcp_length
& 0x3f;
1095 plcp_length
= (16 * len
+ rate
- 1) / rate
;
1097 remainder
= (16 * len
) % 22;
1098 if (remainder
!= 0 && remainder
< 7)
1099 desc
->plcp_service
|= RAL_PLCP_LENGEXT
;
1101 desc
->plcp_length_hi
= plcp_length
>> 8;
1102 desc
->plcp_length_lo
= plcp_length
& 0xff;
1104 if (rate
!= 2 && (ic
->ic_flags
& IEEE80211_F_SHPREAMBLE
))
1105 desc
->plcp_signal
|= 0x08;
1112 #define RAL_TX_TIMEOUT 5000
1115 ural_tx_bcn(struct ural_softc
*sc
, struct mbuf
*m0
, struct ieee80211_node
*ni
)
1117 struct ural_tx_desc
*desc
;
1118 usbd_xfer_handle xfer
;
1124 rate
= IEEE80211_IS_CHAN_5GHZ(ni
->ni_chan
) ? 12 : 2;
1126 xfer
= usbd_alloc_xfer(sc
->sc_udev
);
1130 /* xfer length needs to be a multiple of two! */
1131 xferlen
= (RAL_TX_DESC_SIZE
+ m0
->m_pkthdr
.len
+ 1) & ~1;
1133 buf
= usbd_alloc_buffer(xfer
, xferlen
);
1135 usbd_free_xfer(xfer
);
1139 usbd_setup_xfer(xfer
, sc
->sc_tx_pipeh
, NULL
, &cmd
, sizeof cmd
,
1140 USBD_FORCE_SHORT_XFER
, RAL_TX_TIMEOUT
, NULL
);
1142 error
= usbd_sync_transfer(xfer
);
1144 usbd_free_xfer(xfer
);
1148 desc
= (struct ural_tx_desc
*)buf
;
1150 m_copydata(m0
, 0, m0
->m_pkthdr
.len
, buf
+ RAL_TX_DESC_SIZE
);
1151 ural_setup_tx_desc(sc
, desc
, RAL_TX_IFS_NEWBACKOFF
| RAL_TX_TIMESTAMP
,
1152 m0
->m_pkthdr
.len
, rate
);
1154 DPRINTFN(10, ("sending beacon frame len=%u rate=%u xfer len=%u\n",
1155 m0
->m_pkthdr
.len
, rate
, xferlen
));
1157 usbd_setup_xfer(xfer
, sc
->sc_tx_pipeh
, NULL
, buf
, xferlen
,
1158 USBD_FORCE_SHORT_XFER
| USBD_NO_COPY
, RAL_TX_TIMEOUT
, NULL
);
1160 error
= usbd_sync_transfer(xfer
);
1161 usbd_free_xfer(xfer
);
1167 ural_tx_mgt(struct ural_softc
*sc
, struct mbuf
*m0
, struct ieee80211_node
*ni
)
1169 struct ieee80211com
*ic
= &sc
->sc_ic
;
1170 struct ifnet
*ifp
= &ic
->ic_if
;
1171 struct ural_tx_desc
*desc
;
1172 struct ural_tx_data
*data
;
1173 struct ieee80211_frame
*wh
;
1179 data
= &sc
->tx_data
[0];
1180 desc
= (struct ural_tx_desc
*)data
->buf
;
1182 rate
= IEEE80211_IS_CHAN_5GHZ(ic
->ic_curchan
) ? 12 : 2;
1187 wh
= mtod(m0
, struct ieee80211_frame
*);
1189 if (!IEEE80211_IS_MULTICAST(wh
->i_addr1
)) {
1190 flags
|= RAL_TX_ACK
;
1192 dur
= ieee80211_txtime(ni
, RAL_ACK_SIZE
, rate
, ic
->ic_flags
) +
1194 *(uint16_t *)wh
->i_dur
= htole16(dur
);
1196 /* tell hardware to add timestamp for probe responses */
1197 if ((wh
->i_fc
[0] & IEEE80211_FC0_TYPE_MASK
) ==
1198 IEEE80211_FC0_TYPE_MGT
&&
1199 (wh
->i_fc
[0] & IEEE80211_FC0_SUBTYPE_MASK
) ==
1200 IEEE80211_FC0_SUBTYPE_PROBE_RESP
)
1201 flags
|= RAL_TX_TIMESTAMP
;
1204 if (sc
->sc_drvbpf
!= NULL
) {
1205 struct ural_tx_radiotap_header
*tap
= &sc
->sc_txtap
;
1208 tap
->wt_rate
= rate
;
1209 tap
->wt_chan_freq
= htole16(ic
->ic_curchan
->ic_freq
);
1210 tap
->wt_chan_flags
= htole16(ic
->ic_curchan
->ic_flags
);
1211 tap
->wt_antenna
= sc
->tx_ant
;
1213 bpf_ptap(sc
->sc_drvbpf
, m0
, tap
, sc
->sc_txtap_len
);
1216 m_copydata(m0
, 0, m0
->m_pkthdr
.len
, data
->buf
+ RAL_TX_DESC_SIZE
);
1217 ural_setup_tx_desc(sc
, desc
, flags
, m0
->m_pkthdr
.len
, rate
);
1219 /* align end on a 2-bytes boundary */
1220 xferlen
= (RAL_TX_DESC_SIZE
+ m0
->m_pkthdr
.len
+ 1) & ~1;
1223 * No space left in the last URB to store the extra 2 bytes, force
1224 * sending of another URB.
1226 if ((xferlen
% 64) == 0)
1229 DPRINTFN(10, ("sending mgt frame len=%u rate=%u xfer len=%u\n",
1230 m0
->m_pkthdr
.len
, rate
, xferlen
));
1232 lwkt_serialize_exit(ifp
->if_serializer
);
1234 usbd_setup_xfer(data
->xfer
, sc
->sc_tx_pipeh
, data
, data
->buf
,
1235 xferlen
, USBD_FORCE_SHORT_XFER
| USBD_NO_COPY
, RAL_TX_TIMEOUT
,
1238 error
= usbd_transfer(data
->xfer
);
1239 if (error
!= USBD_NORMAL_COMPLETION
&& error
!= USBD_IN_PROGRESS
) {
1248 lwkt_serialize_enter(ifp
->if_serializer
);
1253 ural_tx_data(struct ural_softc
*sc
, struct mbuf
*m0
, struct ieee80211_node
*ni
)
1255 struct ieee80211com
*ic
= &sc
->sc_ic
;
1256 struct ifnet
*ifp
= &ic
->ic_if
;
1257 struct ural_tx_desc
*desc
;
1258 struct ural_tx_data
*data
;
1259 struct ieee80211_frame
*wh
;
1260 struct ieee80211_key
*k
;
1264 int xferlen
, rate
, rate_idx
;
1266 wh
= mtod(m0
, struct ieee80211_frame
*);
1268 ieee80211_ratectl_findrate(ni
, m0
->m_pkthdr
.len
, &rate_idx
, 1);
1269 rate
= IEEE80211_RS_RATE(&ni
->ni_rates
, rate_idx
);
1271 if (wh
->i_fc
[1] & IEEE80211_FC1_WEP
) {
1272 k
= ieee80211_crypto_encap(ic
, ni
, m0
);
1278 /* packet header may have moved, reset our local pointer */
1279 wh
= mtod(m0
, struct ieee80211_frame
*);
1282 data
= &sc
->tx_data
[0];
1283 desc
= (struct ural_tx_desc
*)data
->buf
;
1288 if (!IEEE80211_IS_MULTICAST(wh
->i_addr1
)) {
1289 flags
|= RAL_TX_ACK
;
1290 flags
|= RAL_TX_RETRY(sc
->sc_tx_retries
);
1292 dur
= ieee80211_txtime(ni
, RAL_ACK_SIZE
,
1293 ieee80211_ack_rate(ni
, rate
), ic
->ic_flags
) +
1295 *(uint16_t *)wh
->i_dur
= htole16(dur
);
1298 if (sc
->sc_drvbpf
!= NULL
) {
1299 struct ural_tx_radiotap_header
*tap
= &sc
->sc_txtap
;
1302 tap
->wt_rate
= rate
;
1303 tap
->wt_chan_freq
= htole16(ic
->ic_curchan
->ic_freq
);
1304 tap
->wt_chan_flags
= htole16(ic
->ic_curchan
->ic_flags
);
1305 tap
->wt_antenna
= sc
->tx_ant
;
1307 bpf_ptap(sc
->sc_drvbpf
, m0
, tap
, sc
->sc_txtap_len
);
1310 m_copydata(m0
, 0, m0
->m_pkthdr
.len
, data
->buf
+ RAL_TX_DESC_SIZE
);
1311 ural_setup_tx_desc(sc
, desc
, flags
, m0
->m_pkthdr
.len
, rate
);
1313 /* align end on a 2-bytes boundary */
1314 xferlen
= (RAL_TX_DESC_SIZE
+ m0
->m_pkthdr
.len
+ 1) & ~1;
1317 * No space left in the last URB to store the extra 2 bytes, force
1318 * sending of another URB.
1320 if ((xferlen
% 64) == 0)
1323 DPRINTFN(10, ("sending data frame len=%u rate=%u xfer len=%u\n",
1324 m0
->m_pkthdr
.len
, rate
, xferlen
));
1326 lwkt_serialize_exit(ifp
->if_serializer
);
1328 usbd_setup_xfer(data
->xfer
, sc
->sc_tx_pipeh
, data
, data
->buf
,
1329 xferlen
, USBD_FORCE_SHORT_XFER
| USBD_NO_COPY
, RAL_TX_TIMEOUT
,
1332 error
= usbd_transfer(data
->xfer
);
1333 if (error
!= USBD_NORMAL_COMPLETION
&& error
!= USBD_IN_PROGRESS
) {
1342 lwkt_serialize_enter(ifp
->if_serializer
);
1347 ural_start(struct ifnet
*ifp
)
1349 struct ural_softc
*sc
= ifp
->if_softc
;
1350 struct ieee80211com
*ic
= &sc
->sc_ic
;
1352 ASSERT_SERIALIZED(ifp
->if_serializer
);
1359 if ((ifp
->if_flags
& (IFF_OACTIVE
| IFF_RUNNING
)) != IFF_RUNNING
) {
1365 struct ieee80211_node
*ni
;
1368 if (!IF_QEMPTY(&ic
->ic_mgtq
)) {
1369 if (sc
->tx_queued
>= RAL_TX_LIST_COUNT
) {
1370 ifp
->if_flags
|= IFF_OACTIVE
;
1373 IF_DEQUEUE(&ic
->ic_mgtq
, m0
);
1375 ni
= (struct ieee80211_node
*)m0
->m_pkthdr
.rcvif
;
1376 m0
->m_pkthdr
.rcvif
= NULL
;
1378 if (ic
->ic_rawbpf
!= NULL
)
1379 bpf_mtap(ic
->ic_rawbpf
, m0
);
1381 if (ural_tx_mgt(sc
, m0
, ni
) != 0) {
1382 ieee80211_free_node(ni
);
1386 struct ether_header
*eh
;
1388 if (ic
->ic_state
!= IEEE80211_S_RUN
)
1390 m0
= ifq_poll(&ifp
->if_snd
);
1393 if (sc
->tx_queued
>= RAL_TX_LIST_COUNT
) {
1394 ifp
->if_flags
|= IFF_OACTIVE
;
1398 ifq_dequeue(&ifp
->if_snd
, m0
);
1400 if (m0
->m_len
< sizeof (struct ether_header
)) {
1401 m0
= m_pullup(m0
, sizeof (struct ether_header
));
1408 eh
= mtod(m0
, struct ether_header
*);
1409 ni
= ieee80211_find_txnode(ic
, eh
->ether_dhost
);
1416 m0
= ieee80211_encap(ic
, m0
, ni
);
1418 ieee80211_free_node(ni
);
1422 if (ic
->ic_rawbpf
!= NULL
)
1423 bpf_mtap(ic
->ic_rawbpf
, m0
);
1425 if (ural_tx_data(sc
, m0
, ni
) != 0) {
1426 ieee80211_free_node(ni
);
1432 sc
->sc_tx_timer
= 5;
1440 ural_watchdog(struct ifnet
*ifp
)
1442 struct ural_softc
*sc
= ifp
->if_softc
;
1443 struct ieee80211com
*ic
= &sc
->sc_ic
;
1445 ASSERT_SERIALIZED(ifp
->if_serializer
);
1451 if (sc
->sc_tx_timer
> 0) {
1452 if (--sc
->sc_tx_timer
== 0) {
1453 device_printf(sc
->sc_dev
, "device timeout\n");
1454 /*ural_init(sc); XXX needs a process context! */
1462 ieee80211_watchdog(ic
);
1468 * This function allows for fast channel switching in monitor mode (used by
1469 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1470 * generate a new beacon frame.
1473 ural_reset(struct ifnet
*ifp
)
1475 struct ural_softc
*sc
= ifp
->if_softc
;
1476 struct ieee80211com
*ic
= &sc
->sc_ic
;
1478 ASSERT_SERIALIZED(ifp
->if_serializer
);
1480 if (ic
->ic_opmode
!= IEEE80211_M_MONITOR
)
1485 lwkt_serialize_exit(ifp
->if_serializer
);
1486 ural_set_chan(sc
, ic
->ic_curchan
);
1487 lwkt_serialize_enter(ifp
->if_serializer
);
1495 ural_ioctl(struct ifnet
*ifp
, u_long cmd
, caddr_t data
, struct ucred
*cr
)
1497 struct ural_softc
*sc
= ifp
->if_softc
;
1498 struct ieee80211com
*ic
= &sc
->sc_ic
;
1501 ASSERT_SERIALIZED(ifp
->if_serializer
);
1507 if (ifp
->if_flags
& IFF_UP
) {
1508 if (ifp
->if_flags
& IFF_RUNNING
) {
1509 lwkt_serialize_exit(ifp
->if_serializer
);
1510 ural_update_promisc(sc
);
1511 lwkt_serialize_enter(ifp
->if_serializer
);
1516 if (ifp
->if_flags
& IFF_RUNNING
)
1522 error
= ieee80211_ioctl(ic
, cmd
, data
, cr
);
1525 if (error
== ENETRESET
) {
1526 if ((ifp
->if_flags
& (IFF_UP
| IFF_RUNNING
)) ==
1527 (IFF_UP
| IFF_RUNNING
) &&
1528 ic
->ic_roaming
!= IEEE80211_ROAMING_MANUAL
)
1538 ural_set_testmode(struct ural_softc
*sc
)
1540 usb_device_request_t req
;
1543 req
.bmRequestType
= UT_WRITE_VENDOR_DEVICE
;
1544 req
.bRequest
= RAL_VENDOR_REQUEST
;
1545 USETW(req
.wValue
, 4);
1546 USETW(req
.wIndex
, 1);
1547 USETW(req
.wLength
, 0);
1549 error
= usbd_do_request(sc
->sc_udev
, &req
, NULL
);
1551 kprintf("%s: could not set test mode: %s\n",
1552 USBDEVNAME(sc
->sc_dev
), usbd_errstr(error
));
1557 ural_eeprom_read(struct ural_softc
*sc
, uint16_t addr
, void *buf
, int len
)
1559 usb_device_request_t req
;
1562 req
.bmRequestType
= UT_READ_VENDOR_DEVICE
;
1563 req
.bRequest
= RAL_READ_EEPROM
;
1564 USETW(req
.wValue
, 0);
1565 USETW(req
.wIndex
, addr
);
1566 USETW(req
.wLength
, len
);
1568 error
= usbd_do_request(sc
->sc_udev
, &req
, buf
);
1570 kprintf("%s: could not read EEPROM: %s\n",
1571 USBDEVNAME(sc
->sc_dev
), usbd_errstr(error
));
1576 ural_read(struct ural_softc
*sc
, uint16_t reg
)
1578 usb_device_request_t req
;
1582 req
.bmRequestType
= UT_READ_VENDOR_DEVICE
;
1583 req
.bRequest
= RAL_READ_MAC
;
1584 USETW(req
.wValue
, 0);
1585 USETW(req
.wIndex
, reg
);
1586 USETW(req
.wLength
, sizeof (uint16_t));
1588 error
= usbd_do_request(sc
->sc_udev
, &req
, &val
);
1590 kprintf("%s: could not read MAC register: %s\n",
1591 USBDEVNAME(sc
->sc_dev
), usbd_errstr(error
));
1595 return le16toh(val
);
1599 ural_read_multi(struct ural_softc
*sc
, uint16_t reg
, void *buf
, int len
)
1601 usb_device_request_t req
;
1604 req
.bmRequestType
= UT_READ_VENDOR_DEVICE
;
1605 req
.bRequest
= RAL_READ_MULTI_MAC
;
1606 USETW(req
.wValue
, 0);
1607 USETW(req
.wIndex
, reg
);
1608 USETW(req
.wLength
, len
);
1610 error
= usbd_do_request(sc
->sc_udev
, &req
, buf
);
1612 kprintf("%s: could not read MAC register: %s\n",
1613 USBDEVNAME(sc
->sc_dev
), usbd_errstr(error
));
1618 ural_write(struct ural_softc
*sc
, uint16_t reg
, uint16_t val
)
1620 usb_device_request_t req
;
1623 req
.bmRequestType
= UT_WRITE_VENDOR_DEVICE
;
1624 req
.bRequest
= RAL_WRITE_MAC
;
1625 USETW(req
.wValue
, val
);
1626 USETW(req
.wIndex
, reg
);
1627 USETW(req
.wLength
, 0);
1629 error
= usbd_do_request(sc
->sc_udev
, &req
, NULL
);
1631 kprintf("%s: could not write MAC register: %s\n",
1632 USBDEVNAME(sc
->sc_dev
), usbd_errstr(error
));
1637 ural_write_multi(struct ural_softc
*sc
, uint16_t reg
, void *buf
, int len
)
1639 usb_device_request_t req
;
1642 req
.bmRequestType
= UT_WRITE_VENDOR_DEVICE
;
1643 req
.bRequest
= RAL_WRITE_MULTI_MAC
;
1644 USETW(req
.wValue
, 0);
1645 USETW(req
.wIndex
, reg
);
1646 USETW(req
.wLength
, len
);
1648 error
= usbd_do_request(sc
->sc_udev
, &req
, buf
);
1650 kprintf("%s: could not write MAC register: %s\n",
1651 USBDEVNAME(sc
->sc_dev
), usbd_errstr(error
));
1656 ural_bbp_write(struct ural_softc
*sc
, uint8_t reg
, uint8_t val
)
1661 for (ntries
= 0; ntries
< 5; ntries
++) {
1662 if (!(ural_read(sc
, RAL_PHY_CSR8
) & RAL_BBP_BUSY
))
1666 kprintf("%s: could not write to BBP\n", USBDEVNAME(sc
->sc_dev
));
1670 tmp
= reg
<< 8 | val
;
1671 ural_write(sc
, RAL_PHY_CSR7
, tmp
);
1675 ural_bbp_read(struct ural_softc
*sc
, uint8_t reg
)
1680 val
= RAL_BBP_WRITE
| reg
<< 8;
1681 ural_write(sc
, RAL_PHY_CSR7
, val
);
1683 for (ntries
= 0; ntries
< 5; ntries
++) {
1684 if (!(ural_read(sc
, RAL_PHY_CSR8
) & RAL_BBP_BUSY
))
1688 kprintf("%s: could not read BBP\n", USBDEVNAME(sc
->sc_dev
));
1692 return ural_read(sc
, RAL_PHY_CSR7
) & 0xff;
1696 ural_rf_write(struct ural_softc
*sc
, uint8_t reg
, uint32_t val
)
1701 for (ntries
= 0; ntries
< 5; ntries
++) {
1702 if (!(ural_read(sc
, RAL_PHY_CSR10
) & RAL_RF_LOBUSY
))
1706 kprintf("%s: could not write to RF\n", USBDEVNAME(sc
->sc_dev
));
1710 tmp
= RAL_RF_BUSY
| RAL_RF_20BIT
| (val
& 0xfffff) << 2 | (reg
& 0x3);
1711 ural_write(sc
, RAL_PHY_CSR9
, tmp
& 0xffff);
1712 ural_write(sc
, RAL_PHY_CSR10
, tmp
>> 16);
1714 /* remember last written value in sc */
1715 sc
->rf_regs
[reg
] = val
;
1717 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg
& 0x3, val
& 0xfffff));
1721 ural_set_chan(struct ural_softc
*sc
, struct ieee80211_channel
*c
)
1723 struct ieee80211com
*ic
= &sc
->sc_ic
;
1727 chan
= ieee80211_chan2ieee(ic
, c
);
1728 if (chan
== 0 || chan
== IEEE80211_CHAN_ANY
)
1731 if (IEEE80211_IS_CHAN_2GHZ(c
))
1732 power
= min(sc
->txpow
[chan
- 1], 31);
1736 /* adjust txpower using ifconfig settings */
1737 power
-= (100 - ic
->ic_txpowlimit
) / 8;
1739 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan
, power
));
1741 switch (sc
->rf_rev
) {
1743 ural_rf_write(sc
, RAL_RF1
, 0x00814);
1744 ural_rf_write(sc
, RAL_RF2
, ural_rf2522_r2
[chan
- 1]);
1745 ural_rf_write(sc
, RAL_RF3
, power
<< 7 | 0x00040);
1749 ural_rf_write(sc
, RAL_RF1
, 0x08804);
1750 ural_rf_write(sc
, RAL_RF2
, ural_rf2523_r2
[chan
- 1]);
1751 ural_rf_write(sc
, RAL_RF3
, power
<< 7 | 0x38044);
1752 ural_rf_write(sc
, RAL_RF4
, (chan
== 14) ? 0x00280 : 0x00286);
1756 ural_rf_write(sc
, RAL_RF1
, 0x0c808);
1757 ural_rf_write(sc
, RAL_RF2
, ural_rf2524_r2
[chan
- 1]);
1758 ural_rf_write(sc
, RAL_RF3
, power
<< 7 | 0x00040);
1759 ural_rf_write(sc
, RAL_RF4
, (chan
== 14) ? 0x00280 : 0x00286);
1763 ural_rf_write(sc
, RAL_RF1
, 0x08808);
1764 ural_rf_write(sc
, RAL_RF2
, ural_rf2525_hi_r2
[chan
- 1]);
1765 ural_rf_write(sc
, RAL_RF3
, power
<< 7 | 0x18044);
1766 ural_rf_write(sc
, RAL_RF4
, (chan
== 14) ? 0x00280 : 0x00286);
1768 ural_rf_write(sc
, RAL_RF1
, 0x08808);
1769 ural_rf_write(sc
, RAL_RF2
, ural_rf2525_r2
[chan
- 1]);
1770 ural_rf_write(sc
, RAL_RF3
, power
<< 7 | 0x18044);
1771 ural_rf_write(sc
, RAL_RF4
, (chan
== 14) ? 0x00280 : 0x00286);
1775 ural_rf_write(sc
, RAL_RF1
, 0x08808);
1776 ural_rf_write(sc
, RAL_RF2
, ural_rf2525e_r2
[chan
- 1]);
1777 ural_rf_write(sc
, RAL_RF3
, power
<< 7 | 0x18044);
1778 ural_rf_write(sc
, RAL_RF4
, (chan
== 14) ? 0x00286 : 0x00282);
1782 ural_rf_write(sc
, RAL_RF2
, ural_rf2526_hi_r2
[chan
- 1]);
1783 ural_rf_write(sc
, RAL_RF4
, (chan
& 1) ? 0x00386 : 0x00381);
1784 ural_rf_write(sc
, RAL_RF1
, 0x08804);
1786 ural_rf_write(sc
, RAL_RF2
, ural_rf2526_r2
[chan
- 1]);
1787 ural_rf_write(sc
, RAL_RF3
, power
<< 7 | 0x18044);
1788 ural_rf_write(sc
, RAL_RF4
, (chan
& 1) ? 0x00386 : 0x00381);
1793 for (i
= 0; ural_rf5222
[i
].chan
!= chan
; i
++)
1796 ural_rf_write(sc
, RAL_RF1
, ural_rf5222
[i
].r1
);
1797 ural_rf_write(sc
, RAL_RF2
, ural_rf5222
[i
].r2
);
1798 ural_rf_write(sc
, RAL_RF3
, power
<< 7 | 0x00040);
1799 ural_rf_write(sc
, RAL_RF4
, ural_rf5222
[i
].r4
);
1803 if (ic
->ic_opmode
!= IEEE80211_M_MONITOR
&&
1804 ic
->ic_state
!= IEEE80211_S_SCAN
) {
1805 /* set Japan filter bit for channel 14 */
1806 tmp
= ural_bbp_read(sc
, 70);
1808 tmp
&= ~RAL_JAPAN_FILTER
;
1810 tmp
|= RAL_JAPAN_FILTER
;
1812 ural_bbp_write(sc
, 70, tmp
);
1814 /* clear CRC errors */
1815 ural_read(sc
, RAL_STA_CSR0
);
1818 ural_disable_rf_tune(sc
);
1821 sc
->sc_sifs
= IEEE80211_IS_CHAN_5GHZ(c
) ? IEEE80211_DUR_OFDM_SIFS
1822 : IEEE80211_DUR_SIFS
;
1826 * Disable RF auto-tuning.
1829 ural_disable_rf_tune(struct ural_softc
*sc
)
1833 if (sc
->rf_rev
!= RAL_RF_2523
) {
1834 tmp
= sc
->rf_regs
[RAL_RF1
] & ~RAL_RF1_AUTOTUNE
;
1835 ural_rf_write(sc
, RAL_RF1
, tmp
);
1838 tmp
= sc
->rf_regs
[RAL_RF3
] & ~RAL_RF3_AUTOTUNE
;
1839 ural_rf_write(sc
, RAL_RF3
, tmp
);
1841 DPRINTFN(2, ("disabling RF autotune\n"));
1845 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
1849 ural_enable_tsf_sync(struct ural_softc
*sc
)
1851 struct ieee80211com
*ic
= &sc
->sc_ic
;
1852 uint16_t logcwmin
, preload
, tmp
;
1854 /* first, disable TSF synchronization */
1855 ural_write(sc
, RAL_TXRX_CSR19
, 0);
1857 tmp
= (16 * ic
->ic_bss
->ni_intval
) << 4;
1858 ural_write(sc
, RAL_TXRX_CSR18
, tmp
);
1860 logcwmin
= (ic
->ic_opmode
== IEEE80211_M_IBSS
) ? 2 : 0;
1861 preload
= (ic
->ic_opmode
== IEEE80211_M_IBSS
) ? 320 : 6;
1862 tmp
= logcwmin
<< 12 | preload
;
1863 ural_write(sc
, RAL_TXRX_CSR20
, tmp
);
1865 /* finally, enable TSF synchronization */
1866 tmp
= RAL_ENABLE_TSF
| RAL_ENABLE_TBCN
;
1867 if (ic
->ic_opmode
== IEEE80211_M_STA
)
1868 tmp
|= RAL_ENABLE_TSF_SYNC(1);
1870 tmp
|= RAL_ENABLE_TSF_SYNC(2) | RAL_ENABLE_BEACON_GENERATOR
;
1871 ural_write(sc
, RAL_TXRX_CSR19
, tmp
);
1873 DPRINTF(("enabling TSF synchronization\n"));
1877 ural_update_slot(struct ifnet
*ifp
)
1879 struct ural_softc
*sc
= ifp
->if_softc
;
1880 struct ieee80211com
*ic
= &sc
->sc_ic
;
1881 uint16_t slottime
, sifs
, eifs
;
1883 slottime
= (ic
->ic_flags
& IEEE80211_F_SHSLOT
) ? 9 : 20;
1886 * These settings may sound a bit inconsistent but this is what the
1887 * reference driver does.
1889 if (ic
->ic_curmode
== IEEE80211_MODE_11B
) {
1890 sifs
= 16 - RAL_RXTX_TURNAROUND
;
1893 sifs
= 10 - RAL_RXTX_TURNAROUND
;
1897 ural_write(sc
, RAL_MAC_CSR10
, slottime
);
1898 ural_write(sc
, RAL_MAC_CSR11
, sifs
);
1899 ural_write(sc
, RAL_MAC_CSR12
, eifs
);
1903 ural_set_txpreamble(struct ural_softc
*sc
)
1907 tmp
= ural_read(sc
, RAL_TXRX_CSR10
);
1909 tmp
&= ~RAL_SHORT_PREAMBLE
;
1910 if (sc
->sc_ic
.ic_flags
& IEEE80211_F_SHPREAMBLE
)
1911 tmp
|= RAL_SHORT_PREAMBLE
;
1913 ural_write(sc
, RAL_TXRX_CSR10
, tmp
);
1917 ural_set_basicrates(struct ural_softc
*sc
)
1919 struct ieee80211com
*ic
= &sc
->sc_ic
;
1921 /* update basic rate set */
1922 if (ic
->ic_curmode
== IEEE80211_MODE_11B
) {
1923 /* 11b basic rates: 1, 2Mbps */
1924 ural_write(sc
, RAL_TXRX_CSR11
, 0x3);
1925 } else if (IEEE80211_IS_CHAN_5GHZ(ic
->ic_bss
->ni_chan
)) {
1926 /* 11a basic rates: 6, 12, 24Mbps */
1927 ural_write(sc
, RAL_TXRX_CSR11
, 0x150);
1929 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
1930 ural_write(sc
, RAL_TXRX_CSR11
, 0x15f);
1935 ural_set_bssid(struct ural_softc
*sc
, uint8_t *bssid
)
1939 tmp
= bssid
[0] | bssid
[1] << 8;
1940 ural_write(sc
, RAL_MAC_CSR5
, tmp
);
1942 tmp
= bssid
[2] | bssid
[3] << 8;
1943 ural_write(sc
, RAL_MAC_CSR6
, tmp
);
1945 tmp
= bssid
[4] | bssid
[5] << 8;
1946 ural_write(sc
, RAL_MAC_CSR7
, tmp
);
1948 DPRINTF(("setting BSSID to %6D\n", bssid
, ":"));
1952 ural_set_macaddr(struct ural_softc
*sc
, uint8_t *addr
)
1956 tmp
= addr
[0] | addr
[1] << 8;
1957 ural_write(sc
, RAL_MAC_CSR2
, tmp
);
1959 tmp
= addr
[2] | addr
[3] << 8;
1960 ural_write(sc
, RAL_MAC_CSR3
, tmp
);
1962 tmp
= addr
[4] | addr
[5] << 8;
1963 ural_write(sc
, RAL_MAC_CSR4
, tmp
);
1965 DPRINTF(("setting MAC address to %6D\n", addr
, ":"));
1969 ural_update_promisc(struct ural_softc
*sc
)
1971 struct ifnet
*ifp
= &sc
->sc_ic
.ic_if
;
1974 tmp
= ural_read(sc
, RAL_TXRX_CSR2
);
1976 tmp
&= ~RAL_DROP_NOT_TO_ME
;
1977 if (!(ifp
->if_flags
& IFF_PROMISC
))
1978 tmp
|= RAL_DROP_NOT_TO_ME
;
1980 ural_write(sc
, RAL_TXRX_CSR2
, tmp
);
1982 DPRINTF(("%s promiscuous mode\n", (ifp
->if_flags
& IFF_PROMISC
) ?
1983 "entering" : "leaving"));
1987 ural_get_rf(int rev
)
1990 case RAL_RF_2522
: return "RT2522";
1991 case RAL_RF_2523
: return "RT2523";
1992 case RAL_RF_2524
: return "RT2524";
1993 case RAL_RF_2525
: return "RT2525";
1994 case RAL_RF_2525E
: return "RT2525e";
1995 case RAL_RF_2526
: return "RT2526";
1996 case RAL_RF_5222
: return "RT5222";
1997 default: return "unknown";
2002 ural_read_eeprom(struct ural_softc
*sc
)
2004 struct ieee80211com
*ic
= &sc
->sc_ic
;
2007 ural_eeprom_read(sc
, RAL_EEPROM_CONFIG0
, &val
, 2);
2009 sc
->rf_rev
= (val
>> 11) & 0x7;
2010 sc
->hw_radio
= (val
>> 10) & 0x1;
2011 sc
->led_mode
= (val
>> 6) & 0x7;
2012 sc
->rx_ant
= (val
>> 4) & 0x3;
2013 sc
->tx_ant
= (val
>> 2) & 0x3;
2014 sc
->nb_ant
= val
& 0x3;
2016 /* read MAC address */
2017 ural_eeprom_read(sc
, RAL_EEPROM_ADDRESS
, ic
->ic_myaddr
, 6);
2019 /* read default values for BBP registers */
2020 ural_eeprom_read(sc
, RAL_EEPROM_BBP_BASE
, sc
->bbp_prom
, 2 * 16);
2022 /* read Tx power for all b/g channels */
2023 ural_eeprom_read(sc
, RAL_EEPROM_TXPOWER
, sc
->txpow
, 14);
2027 ural_bbp_init(struct ural_softc
*sc
)
2029 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2032 /* wait for BBP to be ready */
2033 for (ntries
= 0; ntries
< 100; ntries
++) {
2034 if (ural_bbp_read(sc
, RAL_BBP_VERSION
) != 0)
2038 if (ntries
== 100) {
2039 device_printf(sc
->sc_dev
, "timeout waiting for BBP\n");
2043 /* initialize BBP registers to default values */
2044 for (i
= 0; i
< N(ural_def_bbp
); i
++)
2045 ural_bbp_write(sc
, ural_def_bbp
[i
].reg
, ural_def_bbp
[i
].val
);
2048 /* initialize BBP registers to values stored in EEPROM */
2049 for (i
= 0; i
< 16; i
++) {
2050 if (sc
->bbp_prom
[i
].reg
== 0xff)
2052 ural_bbp_write(sc
, sc
->bbp_prom
[i
].reg
, sc
->bbp_prom
[i
].val
);
2061 ural_set_txantenna(struct ural_softc
*sc
, int antenna
)
2066 tx
= ural_bbp_read(sc
, RAL_BBP_TX
) & ~RAL_BBP_ANTMASK
;
2069 else if (antenna
== 2)
2072 tx
|= RAL_BBP_DIVERSITY
;
2074 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2075 if (sc
->rf_rev
== RAL_RF_2525E
|| sc
->rf_rev
== RAL_RF_2526
||
2076 sc
->rf_rev
== RAL_RF_5222
)
2077 tx
|= RAL_BBP_FLIPIQ
;
2079 ural_bbp_write(sc
, RAL_BBP_TX
, tx
);
2081 /* update values in PHY_CSR5 and PHY_CSR6 */
2082 tmp
= ural_read(sc
, RAL_PHY_CSR5
) & ~0x7;
2083 ural_write(sc
, RAL_PHY_CSR5
, tmp
| (tx
& 0x7));
2085 tmp
= ural_read(sc
, RAL_PHY_CSR6
) & ~0x7;
2086 ural_write(sc
, RAL_PHY_CSR6
, tmp
| (tx
& 0x7));
2090 ural_set_rxantenna(struct ural_softc
*sc
, int antenna
)
2094 rx
= ural_bbp_read(sc
, RAL_BBP_RX
) & ~RAL_BBP_ANTMASK
;
2097 else if (antenna
== 2)
2100 rx
|= RAL_BBP_DIVERSITY
;
2102 /* need to force no I/Q flip for RF 2525e and 2526 */
2103 if (sc
->rf_rev
== RAL_RF_2525E
|| sc
->rf_rev
== RAL_RF_2526
)
2104 rx
&= ~RAL_BBP_FLIPIQ
;
2106 ural_bbp_write(sc
, RAL_BBP_RX
, rx
);
2110 ural_init(void *priv
)
2112 #define N(a) (sizeof (a) / sizeof ((a)[0]))
2113 struct ural_softc
*sc
= priv
;
2114 struct ieee80211com
*ic
= &sc
->sc_ic
;
2115 struct ifnet
*ifp
= &ic
->ic_if
;
2116 struct ural_rx_data
*data
;
2118 usbd_status usb_err
;
2119 int i
, ntries
, error
;
2121 ASSERT_SERIALIZED(ifp
->if_serializer
);
2125 lwkt_serialize_exit(ifp
->if_serializer
);
2126 ural_set_testmode(sc
);
2127 ural_write(sc
, 0x308, 0x00f0); /* XXX magic */
2128 lwkt_serialize_enter(ifp
->if_serializer
);
2133 lwkt_serialize_exit(ifp
->if_serializer
);
2135 /* initialize MAC registers to default values */
2136 for (i
= 0; i
< N(ural_def_mac
); i
++)
2137 ural_write(sc
, ural_def_mac
[i
].reg
, ural_def_mac
[i
].val
);
2139 /* wait for BBP and RF to wake up (this can take a long time!) */
2140 for (ntries
= 0; ntries
< 100; ntries
++) {
2141 tmp
= ural_read(sc
, RAL_MAC_CSR17
);
2142 if ((tmp
& (RAL_BBP_AWAKE
| RAL_RF_AWAKE
)) ==
2143 (RAL_BBP_AWAKE
| RAL_RF_AWAKE
))
2147 if (ntries
== 100) {
2148 kprintf("%s: timeout waiting for BBP/RF to wakeup\n",
2149 USBDEVNAME(sc
->sc_dev
));
2155 ural_write(sc
, RAL_MAC_CSR1
, RAL_HOST_READY
);
2157 /* set basic rate set (will be updated later) */
2158 ural_write(sc
, RAL_TXRX_CSR11
, 0x15f);
2160 error
= ural_bbp_init(sc
);
2164 /* set default BSS channel */
2165 ural_set_chan(sc
, ic
->ic_curchan
);
2167 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2168 ural_read_multi(sc
, RAL_STA_CSR0
, sc
->sta
, sizeof sc
->sta
);
2170 ural_set_txantenna(sc
, sc
->tx_ant
);
2171 ural_set_rxantenna(sc
, sc
->rx_ant
);
2173 IEEE80211_ADDR_COPY(ic
->ic_myaddr
, IF_LLADDR(ifp
));
2174 ural_set_macaddr(sc
, ic
->ic_myaddr
);
2177 * Allocate xfer for AMRR statistics requests.
2179 sc
->stats_xfer
= usbd_alloc_xfer(sc
->sc_udev
);
2180 if (sc
->stats_xfer
== NULL
) {
2181 kprintf("%s: could not allocate AMRR xfer\n",
2182 USBDEVNAME(sc
->sc_dev
));
2188 * Open Tx and Rx USB bulk pipes.
2190 usb_err
= usbd_open_pipe(sc
->sc_iface
, sc
->sc_tx_no
, USBD_EXCLUSIVE_USE
,
2193 kprintf("%s: could not open Tx pipe: %s\n",
2194 USBDEVNAME(sc
->sc_dev
), usbd_errstr(usb_err
));
2199 usb_err
= usbd_open_pipe(sc
->sc_iface
, sc
->sc_rx_no
, USBD_EXCLUSIVE_USE
,
2202 kprintf("%s: could not open Rx pipe: %s\n",
2203 USBDEVNAME(sc
->sc_dev
), usbd_errstr(usb_err
));
2209 * Allocate Tx and Rx xfer queues.
2211 error
= ural_alloc_tx_list(sc
);
2213 kprintf("%s: could not allocate Tx list\n",
2214 USBDEVNAME(sc
->sc_dev
));
2218 error
= ural_alloc_rx_list(sc
);
2220 kprintf("%s: could not allocate Rx list\n",
2221 USBDEVNAME(sc
->sc_dev
));
2226 * Start up the receive pipe.
2228 for (i
= 0; i
< RAL_RX_LIST_COUNT
; i
++) {
2229 data
= &sc
->rx_data
[i
];
2231 usbd_setup_xfer(data
->xfer
, sc
->sc_rx_pipeh
, data
, data
->buf
,
2232 MCLBYTES
, USBD_SHORT_XFER_OK
, USBD_NO_TIMEOUT
, ural_rxeof
);
2233 usbd_transfer(data
->xfer
);
2237 tmp
= RAL_DROP_PHY
| RAL_DROP_CRC
;
2238 if (ic
->ic_opmode
!= IEEE80211_M_MONITOR
) {
2239 tmp
|= RAL_DROP_CTL
| RAL_DROP_BAD_VERSION
;
2240 if (ic
->ic_opmode
!= IEEE80211_M_HOSTAP
)
2241 tmp
|= RAL_DROP_TODS
;
2242 if (!(ifp
->if_flags
& IFF_PROMISC
))
2243 tmp
|= RAL_DROP_NOT_TO_ME
;
2245 ural_write(sc
, RAL_TXRX_CSR2
, tmp
);
2247 /* clear statistic registers (STA_CSR0 to STA_CSR10) */
2248 ural_read_multi(sc
, RAL_STA_CSR0
, sc
->sta
, sizeof(sc
->sta
));
2250 lwkt_serialize_enter(ifp
->if_serializer
);
2254 ifp
->if_flags
&= ~IFF_OACTIVE
;
2255 ifp
->if_flags
|= IFF_RUNNING
;
2257 if (ic
->ic_opmode
!= IEEE80211_M_MONITOR
) {
2258 if (ic
->ic_roaming
!= IEEE80211_ROAMING_MANUAL
)
2259 ieee80211_new_state(ic
, IEEE80211_S_SCAN
, -1);
2261 ieee80211_new_state(ic
, IEEE80211_S_RUN
, -1);
2270 ural_stop(struct ural_softc
*sc
)
2272 struct ieee80211com
*ic
= &sc
->sc_ic
;
2273 struct ifnet
*ifp
= &ic
->ic_if
;
2275 ASSERT_SERIALIZED(ifp
->if_serializer
);
2279 ifp
->if_flags
&= ~(IFF_RUNNING
| IFF_OACTIVE
);
2282 ieee80211_new_state(ic
, IEEE80211_S_INIT
, -1);
2284 sc
->sc_tx_timer
= 0;
2287 lwkt_serialize_exit(ifp
->if_serializer
);
2290 ural_write(sc
, RAL_TXRX_CSR2
, RAL_DISABLE_RX
);
2292 /* reset ASIC and BBP (but won't reset MAC registers!) */
2293 ural_write(sc
, RAL_MAC_CSR1
, RAL_RESET_ASIC
| RAL_RESET_BBP
);
2294 ural_write(sc
, RAL_MAC_CSR1
, 0);
2296 if (sc
->stats_xfer
!= NULL
) {
2297 usbd_free_xfer(sc
->stats_xfer
);
2298 sc
->stats_xfer
= NULL
;
2301 if (sc
->sc_rx_pipeh
!= NULL
) {
2302 usbd_abort_pipe(sc
->sc_rx_pipeh
);
2303 usbd_close_pipe(sc
->sc_rx_pipeh
);
2304 sc
->sc_rx_pipeh
= NULL
;
2307 if (sc
->sc_tx_pipeh
!= NULL
) {
2308 usbd_abort_pipe(sc
->sc_tx_pipeh
);
2309 usbd_close_pipe(sc
->sc_tx_pipeh
);
2310 sc
->sc_tx_pipeh
= NULL
;
2313 lwkt_serialize_enter(ifp
->if_serializer
);
2315 ural_free_rx_list(sc
);
2316 ural_free_tx_list(sc
);
2322 ural_stats_timeout(void *arg
)
2324 struct ural_softc
*sc
= (struct ural_softc
*)arg
;
2325 usb_device_request_t req
;
2333 * Asynchronously read statistic registers (cleared by read).
2335 req
.bmRequestType
= UT_READ_VENDOR_DEVICE
;
2336 req
.bRequest
= RAL_READ_MULTI_MAC
;
2337 USETW(req
.wValue
, 0);
2338 USETW(req
.wIndex
, RAL_STA_CSR0
);
2339 USETW(req
.wLength
, sizeof(sc
->sta
));
2341 usbd_setup_default_xfer(sc
->stats_xfer
, sc
->sc_udev
, sc
,
2342 USBD_DEFAULT_TIMEOUT
, &req
,
2343 sc
->sta
, sizeof(sc
->sta
), 0,
2345 usbd_transfer(sc
->stats_xfer
);
2351 ural_stats_update(usbd_xfer_handle xfer
, usbd_private_handle priv
,
2354 struct ural_softc
*sc
= (struct ural_softc
*)priv
;
2355 struct ifnet
*ifp
= &sc
->sc_ic
.ic_if
;
2356 struct ieee80211_ratectl_stats
*stats
= &sc
->sc_stats
;
2358 if (status
!= USBD_NORMAL_COMPLETION
) {
2359 device_printf(sc
->sc_dev
, "could not retrieve Tx statistics - "
2360 "cancelling automatic rate control\n");
2366 /* count TX retry-fail as Tx errors */
2367 ifp
->if_oerrors
+= sc
->sta
[RAL_TX_PKT_FAIL
];
2369 stats
->stats_pkt_ok
+= sc
->sta
[RAL_TX_PKT_NO_RETRY
] +
2370 sc
->sta
[RAL_TX_PKT_ONE_RETRY
] +
2371 sc
->sta
[RAL_TX_PKT_MULTI_RETRY
];
2373 stats
->stats_pkt_err
+= sc
->sta
[RAL_TX_PKT_FAIL
];
2375 stats
->stats_pkt_noretry
+= sc
->sta
[RAL_TX_PKT_NO_RETRY
];
2377 stats
->stats_retries
+= sc
->sta
[RAL_TX_PKT_ONE_RETRY
];
2380 * XXX Estimated average:
2381 * Actual number of retries for each packet should belong to
2382 * [2, sc->sc_tx_retries]
2384 stats
->stats_retries
+= sc
->sta
[RAL_TX_PKT_MULTI_RETRY
] *
2385 ((2 + sc
->sc_tx_retries
) / 2);
2387 stats
->stats_retries
+= sc
->sta
[RAL_TX_PKT_MULTI_RETRY
];
2389 stats
->stats_retries
+= sc
->sta
[RAL_TX_PKT_FAIL
] * sc
->sc_tx_retries
;
2391 callout_reset(&sc
->stats_ch
, 4 * hz
/ 5, ural_stats_timeout
, sc
);
2397 ural_stats(struct ieee80211com
*ic
, struct ieee80211_node
*ni __unused
,
2398 struct ieee80211_ratectl_stats
*stats
)
2400 struct ifnet
*ifp
= &ic
->ic_if
;
2401 struct ural_softc
*sc
= ifp
->if_softc
;
2403 ASSERT_SERIALIZED(ifp
->if_serializer
);
2405 bcopy(&sc
->sc_stats
, stats
, sizeof(*stats
));
2406 bzero(&sc
->sc_stats
, sizeof(sc
->sc_stats
));
2410 ural_ratectl_change(struct ieee80211com
*ic
, u_int orc __unused
, u_int nrc
)
2412 struct ieee80211_ratectl_state
*st
= &ic
->ic_ratectl
;
2413 struct ieee80211_onoe_param
*oparam
;
2415 if (st
->rc_st_param
!= NULL
) {
2416 kfree(st
->rc_st_param
, M_DEVBUF
);
2417 st
->rc_st_param
= NULL
;
2421 case IEEE80211_RATECTL_ONOE
:
2422 oparam
= kmalloc(sizeof(*oparam
), M_DEVBUF
, M_INTWAIT
);
2424 IEEE80211_ONOE_PARAM_SETUP(oparam
);
2425 oparam
->onoe_raise
= 20;
2427 st
->rc_st_param
= oparam
;
2429 case IEEE80211_RATECTL_NONE
:
2430 /* This could only happen during detaching */
2433 panic("unknown rate control algo %u\n", nrc
);
2437 DRIVER_MODULE(ural
, uhub
, ural_driver
, ural_devclass
, usbd_driver_load
, 0);