2 * Copyright 1998 Massachusetts Institute of Technology
4 * Permission to use, copy, modify, and distribute this software and
5 * its documentation for any purpose and without fee is hereby
6 * granted, provided that both the above copyright notice and this
7 * permission notice appear in all copies, that both the above
8 * copyright notice and this permission notice appear in all
9 * supporting documentation, and that the name of M.I.T. not be used
10 * in advertising or publicity pertaining to distribution of the
11 * software without specific, written prior permission. M.I.T. makes
12 * no representations about the suitability of this software for any
13 * purpose. It is provided "as is" without express or implied
16 * THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
17 * ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
18 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
19 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
20 * SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
23 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
24 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
25 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
26 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * $FreeBSD: src/sys/kern/subr_rman.c,v 1.10.2.1 2001/06/05 08:06:08 imp Exp $
30 * $DragonFly: src/sys/kern/subr_rman.c,v 1.12 2007/05/20 07:43:24 y0netan1 Exp $
34 * The kernel resource manager. This code is responsible for keeping track
35 * of hardware resources which are apportioned out to various drivers.
36 * It does not actually assign those resources, and it is not expected
37 * that end-device drivers will call into this code directly. Rather,
38 * the code which implements the buses that those devices are attached to,
39 * and the code which manages CPU resources, will call this code, and the
40 * end-device drivers will make upcalls to that code to actually perform
43 * There are two sorts of resources managed by this code. The first is
44 * the more familiar array (RMAN_ARRAY) type; resources in this class
45 * consist of a sequence of individually-allocatable objects which have
46 * been numbered in some well-defined order. Most of the resources
47 * are of this type, as it is the most familiar. The second type is
48 * called a gauge (RMAN_GAUGE), and models fungible resources (i.e.,
49 * resources in which each instance is indistinguishable from every
50 * other instance). The principal anticipated application of gauges
51 * is in the context of power consumption, where a bus may have a specific
52 * power budget which all attached devices share. RMAN_GAUGE is not
55 * For array resources, we make one simplifying assumption: two clients
56 * sharing the same resource must use the same range of indices. That
57 * is to say, sharing of overlapping-but-not-identical regions is not
61 #include <sys/param.h>
62 #include <sys/systm.h>
63 #include <sys/kernel.h>
65 #include <sys/malloc.h>
66 #include <sys/bus.h> /* XXX debugging */
70 #define DPRINTF(params) kprintf params
72 #define DPRINTF(params)
75 static MALLOC_DEFINE(M_RMAN
, "rman", "Resource manager");
77 struct rman_head rman_head
;
78 static struct lwkt_token rman_tok
; /* mutex to protect rman_head */
79 static int int_rman_activate_resource(struct rman
*rm
, struct resource
*r
,
80 struct resource
**whohas
);
81 static int int_rman_deactivate_resource(struct resource
*r
);
82 static int int_rman_release_resource(struct rman
*rm
, struct resource
*r
);
84 #define CIRCLEQ_TERMCOND(var, head) (var == (void *)&(head))
87 rman_init(struct rman
*rm
)
94 TAILQ_INIT(&rman_head
);
95 lwkt_token_init(&rman_tok
);
98 if (rm
->rm_type
== RMAN_UNINIT
)
100 if (rm
->rm_type
== RMAN_GAUGE
)
101 panic("implement RMAN_GAUGE");
103 CIRCLEQ_INIT(&rm
->rm_list
);
104 rm
->rm_slock
= kmalloc(sizeof *rm
->rm_slock
, M_RMAN
, M_NOWAIT
);
105 if (rm
->rm_slock
== NULL
)
107 lwkt_token_init(rm
->rm_slock
);
109 lwkt_gettoken(&ilock
, &rman_tok
);
110 TAILQ_INSERT_TAIL(&rman_head
, rm
, rm_link
);
111 lwkt_reltoken(&ilock
);
116 * NB: this interface is not robust against programming errors which
117 * add multiple copies of the same region.
120 rman_manage_region(struct rman
*rm
, u_long start
, u_long end
)
122 struct resource
*r
, *s
;
125 DPRINTF(("rman_manage_region: <%s> request: start %#lx, end %#lx\n",
126 rm
->rm_descr
, start
, end
));
127 r
= kmalloc(sizeof *r
, M_RMAN
, M_NOWAIT
);
138 lwkt_gettoken(&ilock
, rm
->rm_slock
);
139 for (s
= CIRCLEQ_FIRST(&rm
->rm_list
);
140 !CIRCLEQ_TERMCOND(s
, rm
->rm_list
) && s
->r_end
< r
->r_start
;
141 s
= CIRCLEQ_NEXT(s
, r_link
))
144 if (CIRCLEQ_TERMCOND(s
, rm
->rm_list
)) {
145 CIRCLEQ_INSERT_TAIL(&rm
->rm_list
, r
, r_link
);
147 CIRCLEQ_INSERT_BEFORE(&rm
->rm_list
, s
, r
, r_link
);
150 lwkt_reltoken(&ilock
);
155 rman_fini(struct rman
*rm
)
160 lwkt_gettoken(&ilock
, rm
->rm_slock
);
161 CIRCLEQ_FOREACH(r
, &rm
->rm_list
, r_link
) {
162 if (r
->r_flags
& RF_ALLOCATED
) {
163 lwkt_reltoken(&ilock
);
169 * There really should only be one of these if we are in this
170 * state and the code is working properly, but it can't hurt.
172 while (!CIRCLEQ_EMPTY(&rm
->rm_list
)) {
173 r
= CIRCLEQ_FIRST(&rm
->rm_list
);
174 CIRCLEQ_REMOVE(&rm
->rm_list
, r
, r_link
);
177 lwkt_reltoken(&ilock
);
178 /* XXX what's the point of this if we are going to free the struct? */
179 lwkt_gettoken(&ilock
, &rman_tok
);
180 TAILQ_REMOVE(&rman_head
, rm
, rm_link
);
181 lwkt_reltoken(&ilock
);
182 kfree(rm
->rm_slock
, M_RMAN
);
188 rman_reserve_resource(struct rman
*rm
, u_long start
, u_long end
, u_long count
,
189 u_int flags
, struct device
*dev
)
192 struct resource
*r
, *s
, *rv
;
198 DPRINTF(("rman_reserve_resource: <%s> request: [%#lx, %#lx], length "
199 "%#lx, flags %u, device %s\n", rm
->rm_descr
, start
, end
,
201 dev
== NULL
? "<null>" : device_get_nameunit(dev
)));
202 want_activate
= (flags
& RF_ACTIVE
);
205 lwkt_gettoken(&ilock
, rm
->rm_slock
);
207 for (r
= CIRCLEQ_FIRST(&rm
->rm_list
);
208 !CIRCLEQ_TERMCOND(r
, rm
->rm_list
) && r
->r_end
< start
;
209 r
= CIRCLEQ_NEXT(r
, r_link
))
212 if (CIRCLEQ_TERMCOND(r
, rm
->rm_list
)) {
213 DPRINTF(("could not find a region\n"));
218 * First try to find an acceptable totally-unshared region.
220 for (s
= r
; !CIRCLEQ_TERMCOND(s
, rm
->rm_list
);
221 s
= CIRCLEQ_NEXT(s
, r_link
)) {
222 DPRINTF(("considering [%#lx, %#lx]\n", s
->r_start
, s
->r_end
));
223 if (s
->r_start
> end
) {
224 DPRINTF(("s->r_start (%#lx) > end (%#lx)\n",
228 if (s
->r_flags
& RF_ALLOCATED
) {
229 DPRINTF(("region is allocated\n"));
232 rstart
= max(s
->r_start
, start
);
233 rstart
= (rstart
+ ((1ul << RF_ALIGNMENT(flags
))) - 1) &
234 ~((1ul << RF_ALIGNMENT(flags
)) - 1);
235 rend
= min(s
->r_end
, max(start
+ count
, end
));
236 DPRINTF(("truncated region: [%#lx, %#lx]; size %#lx (requested %#lx)\n",
237 rstart
, rend
, (rend
- rstart
+ 1), count
));
239 if ((rend
- rstart
+ 1) >= count
) {
240 DPRINTF(("candidate region: [%#lx, %#lx], size %#lx\n",
241 rstart
, rend
, (rend
- rstart
+ 1)));
242 if ((s
->r_end
- s
->r_start
+ 1) == count
) {
243 DPRINTF(("candidate region is entire chunk\n"));
245 rv
->r_flags
|= RF_ALLOCATED
| flags
;
251 * If s->r_start < rstart and
252 * s->r_end > rstart + count - 1, then
253 * we need to split the region into three pieces
254 * (the middle one will get returned to the user).
255 * Otherwise, we are allocating at either the
256 * beginning or the end of s, so we only need to
257 * split it in two. The first case requires
258 * two new allocations; the second requires but one.
260 rv
= kmalloc(sizeof *rv
, M_RMAN
, M_NOWAIT
);
263 bzero(rv
, sizeof *rv
);
264 rv
->r_start
= rstart
;
265 rv
->r_end
= rstart
+ count
- 1;
266 rv
->r_flags
= flags
| RF_ALLOCATED
;
271 if (s
->r_start
< rv
->r_start
&& s
->r_end
> rv
->r_end
) {
272 DPRINTF(("splitting region in three parts: "
273 "[%#lx, %#lx]; [%#lx, %#lx]; [%#lx, %#lx]\n",
274 s
->r_start
, rv
->r_start
- 1,
275 rv
->r_start
, rv
->r_end
,
276 rv
->r_end
+ 1, s
->r_end
));
278 * We are allocating in the middle.
280 r
= kmalloc(sizeof *r
, M_RMAN
, M_NOWAIT
);
287 r
->r_start
= rv
->r_end
+ 1;
289 r
->r_flags
= s
->r_flags
;
293 s
->r_end
= rv
->r_start
- 1;
294 CIRCLEQ_INSERT_AFTER(&rm
->rm_list
, s
, rv
,
296 CIRCLEQ_INSERT_AFTER(&rm
->rm_list
, rv
, r
,
298 } else if (s
->r_start
== rv
->r_start
) {
299 DPRINTF(("allocating from the beginning\n"));
301 * We are allocating at the beginning.
303 s
->r_start
= rv
->r_end
+ 1;
304 CIRCLEQ_INSERT_BEFORE(&rm
->rm_list
, s
, rv
,
307 DPRINTF(("allocating at the end\n"));
309 * We are allocating at the end.
311 s
->r_end
= rv
->r_start
- 1;
312 CIRCLEQ_INSERT_AFTER(&rm
->rm_list
, s
, rv
,
320 * Now find an acceptable shared region, if the client's requirements
321 * allow sharing. By our implementation restriction, a candidate
322 * region must match exactly by both size and sharing type in order
323 * to be considered compatible with the client's request. (The
324 * former restriction could probably be lifted without too much
325 * additional work, but this does not seem warranted.)
327 DPRINTF(("no unshared regions found\n"));
328 if ((flags
& (RF_SHAREABLE
| RF_TIMESHARE
)) == 0)
331 for (s
= r
; !CIRCLEQ_TERMCOND(s
, rm
->rm_list
);
332 s
= CIRCLEQ_NEXT(s
, r_link
)) {
333 if (s
->r_start
> end
)
335 if ((s
->r_flags
& flags
) != flags
)
337 rstart
= max(s
->r_start
, start
);
338 rend
= min(s
->r_end
, max(start
+ count
, end
));
339 if (s
->r_start
>= start
&& s
->r_end
<= end
340 && (s
->r_end
- s
->r_start
+ 1) == count
) {
341 rv
= kmalloc(sizeof *rv
, M_RMAN
, M_NOWAIT
);
344 bzero(rv
, sizeof *rv
);
345 rv
->r_start
= s
->r_start
;
346 rv
->r_end
= s
->r_end
;
347 rv
->r_flags
= s
->r_flags
&
348 (RF_ALLOCATED
| RF_SHAREABLE
| RF_TIMESHARE
);
351 if (s
->r_sharehead
== 0) {
352 s
->r_sharehead
= kmalloc(sizeof *s
->r_sharehead
,
354 if (s
->r_sharehead
== 0) {
359 bzero(s
->r_sharehead
, sizeof *s
->r_sharehead
);
360 LIST_INIT(s
->r_sharehead
);
361 LIST_INSERT_HEAD(s
->r_sharehead
, s
,
363 s
->r_flags
|= RF_FIRSTSHARE
;
365 rv
->r_sharehead
= s
->r_sharehead
;
366 LIST_INSERT_HEAD(s
->r_sharehead
, rv
, r_sharelink
);
372 * We couldn't find anything.
376 * If the user specified RF_ACTIVE in the initial flags,
377 * which is reflected in `want_activate', we attempt to atomically
378 * activate the resource. If this fails, we release the resource
379 * and indicate overall failure. (This behavior probably doesn't
380 * make sense for RF_TIMESHARE-type resources.)
382 if (rv
&& want_activate
) {
383 struct resource
*whohas
;
384 if (int_rman_activate_resource(rm
, rv
, &whohas
)) {
385 int_rman_release_resource(rm
, rv
);
389 lwkt_reltoken(&ilock
);
394 int_rman_activate_resource(struct rman
*rm
, struct resource
*r
,
395 struct resource
**whohas
)
401 * If we are not timesharing, then there is nothing much to do.
402 * If we already have the resource, then there is nothing at all to do.
403 * If we are not on a sharing list with anybody else, then there is
406 if ((r
->r_flags
& RF_TIMESHARE
) == 0
407 || (r
->r_flags
& RF_ACTIVE
) != 0
408 || r
->r_sharehead
== 0) {
409 r
->r_flags
|= RF_ACTIVE
;
414 for (s
= LIST_FIRST(r
->r_sharehead
); s
&& ok
;
415 s
= LIST_NEXT(s
, r_sharelink
)) {
416 if ((s
->r_flags
& RF_ACTIVE
) != 0) {
422 r
->r_flags
|= RF_ACTIVE
;
429 rman_activate_resource(struct resource
*r
)
432 struct resource
*whohas
;
437 lwkt_gettoken(&ilock
, rm
->rm_slock
);
438 rv
= int_rman_activate_resource(rm
, r
, &whohas
);
439 lwkt_reltoken(&ilock
);
447 rman_await_resource(struct resource
*r
, lwkt_tokref_t ilock
, int slpflags
, int timo
)
450 struct resource
*whohas
;
455 lwkt_gettoken(ilock
, rm
->rm_slock
);
456 rv
= int_rman_activate_resource(rm
, r
, &whohas
);
458 return (rv
); /* returns with ilock held */
460 if (r
->r_sharehead
== 0)
461 panic("rman_await_resource");
463 * A critical section will hopefully will prevent a race
464 * between lwkt_reltoken and tsleep where a process
465 * could conceivably get in and release the resource
466 * before we have a chance to sleep on it. YYY
469 whohas
->r_flags
|= RF_WANTED
;
470 rv
= tsleep(r
->r_sharehead
, slpflags
, "rmwait", timo
);
472 lwkt_reltoken(ilock
);
483 int_rman_deactivate_resource(struct resource
*r
)
488 r
->r_flags
&= ~RF_ACTIVE
;
489 if (r
->r_flags
& RF_WANTED
) {
490 r
->r_flags
&= ~RF_WANTED
;
491 wakeup(r
->r_sharehead
);
497 rman_deactivate_resource(struct resource
*r
)
503 lwkt_gettoken(&ilock
, rm
->rm_slock
);
504 int_rman_deactivate_resource(r
);
505 lwkt_reltoken(&ilock
);
510 int_rman_release_resource(struct rman
*rm
, struct resource
*r
)
512 struct resource
*s
, *t
;
514 if (r
->r_flags
& RF_ACTIVE
)
515 int_rman_deactivate_resource(r
);
518 * Check for a sharing list first. If there is one, then we don't
519 * have to think as hard.
521 if (r
->r_sharehead
) {
523 * If a sharing list exists, then we know there are at
526 * If we are in the main circleq, appoint someone else.
528 LIST_REMOVE(r
, r_sharelink
);
529 s
= LIST_FIRST(r
->r_sharehead
);
530 if (r
->r_flags
& RF_FIRSTSHARE
) {
531 s
->r_flags
|= RF_FIRSTSHARE
;
532 CIRCLEQ_INSERT_BEFORE(&rm
->rm_list
, r
, s
, r_link
);
533 CIRCLEQ_REMOVE(&rm
->rm_list
, r
, r_link
);
537 * Make sure that the sharing list goes away completely
538 * if the resource is no longer being shared at all.
540 if (LIST_NEXT(s
, r_sharelink
) == 0) {
541 kfree(s
->r_sharehead
, M_RMAN
);
543 s
->r_flags
&= ~RF_FIRSTSHARE
;
549 * Look at the adjacent resources in the list and see if our
550 * segment can be merged with any of them.
552 s
= CIRCLEQ_PREV(r
, r_link
);
553 t
= CIRCLEQ_NEXT(r
, r_link
);
555 if (s
!= (void *)&rm
->rm_list
&& (s
->r_flags
& RF_ALLOCATED
) == 0
556 && t
!= (void *)&rm
->rm_list
&& (t
->r_flags
& RF_ALLOCATED
) == 0) {
558 * Merge all three segments.
561 CIRCLEQ_REMOVE(&rm
->rm_list
, r
, r_link
);
562 CIRCLEQ_REMOVE(&rm
->rm_list
, t
, r_link
);
564 } else if (s
!= (void *)&rm
->rm_list
565 && (s
->r_flags
& RF_ALLOCATED
) == 0) {
567 * Merge previous segment with ours.
570 CIRCLEQ_REMOVE(&rm
->rm_list
, r
, r_link
);
571 } else if (t
!= (void *)&rm
->rm_list
572 && (t
->r_flags
& RF_ALLOCATED
) == 0) {
574 * Merge next segment with ours.
576 t
->r_start
= r
->r_start
;
577 CIRCLEQ_REMOVE(&rm
->rm_list
, r
, r_link
);
580 * At this point, we know there is nothing we
581 * can potentially merge with, because on each
582 * side, there is either nothing there or what is
583 * there is still allocated. In that case, we don't
584 * want to remove r from the list; we simply want to
585 * change it to an unallocated region and return
586 * without freeing anything.
588 r
->r_flags
&= ~RF_ALLOCATED
;
598 rman_release_resource(struct resource
*r
)
600 struct rman
*rm
= r
->r_rm
;
604 lwkt_gettoken(&ilock
, rm
->rm_slock
);
605 rv
= int_rman_release_resource(rm
, r
);
606 lwkt_reltoken(&ilock
);
611 rman_make_alignment_flags(uint32_t size
)
616 * Find the hightest bit set, and add one if more than one bit
617 * set. We're effectively computing the ceil(log2(size)) here.
619 for (i
= 32; i
> 0; i
--)
622 if (~(1 << i
) & size
)
625 return(RF_ALIGNMENT_LOG2(i
));