Do any crash dump operation before the shutdown_post_sync event handler
[dragonfly/vkernel-mp.git] / sys / dev / raid / aac / aac.c
blob15f81da6704eea5fb0113547ce70e99b34a6d336
1 /*-
2 * Copyright (c) 2000 Michael Smith
3 * Copyright (c) 2001 Scott Long
4 * Copyright (c) 2000 BSDi
5 * Copyright (c) 2001 Adaptec, Inc.
6 * All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
29 * $FreeBSD: src/sys/dev/aac/aac.c,v 1.9.2.14 2003/04/08 13:22:08 scottl Exp $
30 * $DragonFly: src/sys/dev/raid/aac/aac.c,v 1.31 2007/06/04 17:21:57 dillon Exp $
34 * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
37 #include "opt_aac.h"
39 /* #include <stddef.h> */
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/kthread.h>
45 #include <sys/sysctl.h>
46 #include <sys/poll.h>
47 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
48 #include <sys/selinfo.h>
49 #else
50 #include <sys/select.h>
51 #endif
53 #include "aac_compat.h"
55 #include <sys/bus.h>
56 #include <sys/conf.h>
57 #include <sys/devicestat.h>
58 #include <sys/disk.h>
59 #include <sys/signalvar.h>
60 #include <sys/time.h>
61 #include <sys/eventhandler.h>
63 #include "aacreg.h"
64 #include "aac_ioctl.h"
65 #include "aacvar.h"
66 #include "aac_tables.h"
67 #include "aac_cam.h"
69 static void aac_startup(void *arg);
70 static void aac_add_container(struct aac_softc *sc,
71 struct aac_mntinforesp *mir, int f);
72 static void aac_get_bus_info(struct aac_softc *sc);
74 /* Command Processing */
75 static void aac_timeout(void *ssc);
76 static int aac_start(struct aac_command *cm);
77 static void aac_complete(void *context, int pending);
78 static int aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
79 static void aac_bio_complete(struct aac_command *cm);
80 static int aac_wait_command(struct aac_command *cm, int timeout);
81 static void aac_host_command(struct aac_softc *sc);
82 static void aac_host_response(struct aac_softc *sc);
84 /* Command Buffer Management */
85 static void aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
86 int nseg, int error);
87 static int aac_alloc_commands(struct aac_softc *sc);
88 static void aac_free_commands(struct aac_softc *sc);
89 static void aac_map_command(struct aac_command *cm);
90 static void aac_unmap_command(struct aac_command *cm);
92 /* Hardware Interface */
93 static void aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
94 int error);
95 static int aac_check_firmware(struct aac_softc *sc);
96 static int aac_init(struct aac_softc *sc);
97 static int aac_sync_command(struct aac_softc *sc, u_int32_t command,
98 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
99 u_int32_t arg3, u_int32_t *sp);
100 static int aac_enqueue_fib(struct aac_softc *sc, int queue,
101 struct aac_command *cm);
102 static int aac_dequeue_fib(struct aac_softc *sc, int queue,
103 u_int32_t *fib_size, struct aac_fib **fib_addr);
104 static int aac_enqueue_response(struct aac_softc *sc, int queue,
105 struct aac_fib *fib);
107 /* Falcon/PPC interface */
108 static int aac_fa_get_fwstatus(struct aac_softc *sc);
109 static void aac_fa_qnotify(struct aac_softc *sc, int qbit);
110 static int aac_fa_get_istatus(struct aac_softc *sc);
111 static void aac_fa_clear_istatus(struct aac_softc *sc, int mask);
112 static void aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
113 u_int32_t arg0, u_int32_t arg1,
114 u_int32_t arg2, u_int32_t arg3);
115 static int aac_fa_get_mailbox(struct aac_softc *sc, int mb);
116 static void aac_fa_set_interrupts(struct aac_softc *sc, int enable);
118 struct aac_interface aac_fa_interface = {
119 aac_fa_get_fwstatus,
120 aac_fa_qnotify,
121 aac_fa_get_istatus,
122 aac_fa_clear_istatus,
123 aac_fa_set_mailbox,
124 aac_fa_get_mailbox,
125 aac_fa_set_interrupts
128 /* StrongARM interface */
129 static int aac_sa_get_fwstatus(struct aac_softc *sc);
130 static void aac_sa_qnotify(struct aac_softc *sc, int qbit);
131 static int aac_sa_get_istatus(struct aac_softc *sc);
132 static void aac_sa_clear_istatus(struct aac_softc *sc, int mask);
133 static void aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
134 u_int32_t arg0, u_int32_t arg1,
135 u_int32_t arg2, u_int32_t arg3);
136 static int aac_sa_get_mailbox(struct aac_softc *sc, int mb);
137 static void aac_sa_set_interrupts(struct aac_softc *sc, int enable);
139 struct aac_interface aac_sa_interface = {
140 aac_sa_get_fwstatus,
141 aac_sa_qnotify,
142 aac_sa_get_istatus,
143 aac_sa_clear_istatus,
144 aac_sa_set_mailbox,
145 aac_sa_get_mailbox,
146 aac_sa_set_interrupts
149 /* i960Rx interface */
150 static int aac_rx_get_fwstatus(struct aac_softc *sc);
151 static void aac_rx_qnotify(struct aac_softc *sc, int qbit);
152 static int aac_rx_get_istatus(struct aac_softc *sc);
153 static void aac_rx_clear_istatus(struct aac_softc *sc, int mask);
154 static void aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
155 u_int32_t arg0, u_int32_t arg1,
156 u_int32_t arg2, u_int32_t arg3);
157 static int aac_rx_get_mailbox(struct aac_softc *sc, int mb);
158 static void aac_rx_set_interrupts(struct aac_softc *sc, int enable);
160 struct aac_interface aac_rx_interface = {
161 aac_rx_get_fwstatus,
162 aac_rx_qnotify,
163 aac_rx_get_istatus,
164 aac_rx_clear_istatus,
165 aac_rx_set_mailbox,
166 aac_rx_get_mailbox,
167 aac_rx_set_interrupts
170 /* Debugging and Diagnostics */
171 static void aac_describe_controller(struct aac_softc *sc);
172 static char *aac_describe_code(struct aac_code_lookup *table,
173 u_int32_t code);
175 /* Management Interface */
176 static d_open_t aac_open;
177 static d_close_t aac_close;
178 static d_ioctl_t aac_ioctl;
179 static d_poll_t aac_poll;
180 static int aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
181 static void aac_handle_aif(struct aac_softc *sc,
182 struct aac_fib *fib);
183 static int aac_rev_check(struct aac_softc *sc, caddr_t udata);
184 static int aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
185 static int aac_return_aif(struct aac_softc *sc, caddr_t uptr);
186 static int aac_query_disk(struct aac_softc *sc, caddr_t uptr);
188 #define AAC_CDEV_MAJOR 150
190 static struct dev_ops aac_ops = {
191 { "aac", AAC_CDEV_MAJOR, 0 },
192 .d_open = aac_open,
193 .d_close = aac_close,
194 .d_ioctl = aac_ioctl,
195 .d_poll = aac_poll,
198 DECLARE_DUMMY_MODULE(aac);
200 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
202 /* sysctl node */
203 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
206 * Device Interface
210 * Initialise the controller and softc
213 aac_attach(struct aac_softc *sc)
215 int error, unit;
217 debug_called(1);
218 callout_init(&sc->aac_watchdog);
221 * Initialise per-controller queues.
223 aac_initq_free(sc);
224 aac_initq_ready(sc);
225 aac_initq_busy(sc);
226 aac_initq_complete(sc);
227 aac_initq_bio(sc);
229 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
231 * Initialise command-completion task.
233 TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
234 #endif
236 /* disable interrupts before we enable anything */
237 AAC_MASK_INTERRUPTS(sc);
239 /* mark controller as suspended until we get ourselves organised */
240 sc->aac_state |= AAC_STATE_SUSPEND;
243 * Check that the firmware on the card is supported.
245 if ((error = aac_check_firmware(sc)) != 0)
246 return(error);
248 /* Init the sync fib lock */
249 AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
252 * Initialise the adapter.
254 if ((error = aac_init(sc)) != 0)
255 return(error);
258 * Print a little information about the controller.
260 aac_describe_controller(sc);
263 * Register to probe our containers later.
265 TAILQ_INIT(&sc->aac_container_tqh);
266 AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
269 * Lock for the AIF queue
271 AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
273 sc->aac_ich.ich_func = aac_startup;
274 sc->aac_ich.ich_arg = sc;
275 sc->aac_ich.ich_desc = "aac";
276 if (config_intrhook_establish(&sc->aac_ich) != 0) {
277 device_printf(sc->aac_dev,
278 "can't establish configuration hook\n");
279 return(ENXIO);
283 * Make the control device.
285 unit = device_get_unit(sc->aac_dev);
286 dev_ops_add(&aac_ops, -1, unit);
287 sc->aac_dev_t = make_dev(&aac_ops, unit, UID_ROOT, GID_WHEEL, 0644,
288 "aac%d", unit);
289 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
290 (void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
291 (void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
292 #endif
293 sc->aac_dev_t->si_drv1 = sc;
294 reference_dev(sc->aac_dev_t);
296 /* Create the AIF thread */
297 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
298 if (kthread_create((void(*)(void *))aac_host_command, sc,
299 &sc->aifthread, 0, "aac%daif", unit))
300 #else
301 if (kthread_create((void(*)(void *))aac_host_command, sc,
302 &sc->aifthread, "aac%daif", unit))
303 #endif
304 panic("Could not create AIF thread\n");
306 /* Register the shutdown method to only be called post-dump */
307 if ((EVENTHANDLER_REGISTER(shutdown_post_sync, aac_shutdown, sc->aac_dev,
308 SHUTDOWN_PRI_DEFAULT)) == NULL)
309 device_printf(sc->aac_dev, "shutdown event registration failed\n");
311 /* Register with CAM for the non-DASD devices */
312 if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0)
313 aac_get_bus_info(sc);
315 return(0);
319 * Probe for containers, create disks.
321 static void
322 aac_startup(void *arg)
324 struct aac_softc *sc;
325 struct aac_fib *fib;
326 struct aac_mntinfo *mi;
327 struct aac_mntinforesp *mir = NULL;
328 int count = 0, i = 0;
330 debug_called(1);
332 sc = (struct aac_softc *)arg;
334 /* disconnect ourselves from the intrhook chain */
335 config_intrhook_disestablish(&sc->aac_ich);
337 aac_alloc_sync_fib(sc, &fib, 0);
338 mi = (struct aac_mntinfo *)&fib->data[0];
340 /* loop over possible containers */
341 do {
342 /* request information on this container */
343 bzero(mi, sizeof(struct aac_mntinfo));
344 mi->Command = VM_NameServe;
345 mi->MntType = FT_FILESYS;
346 mi->MntCount = i;
347 if (aac_sync_fib(sc, ContainerCommand, 0, fib,
348 sizeof(struct aac_mntinfo))) {
349 device_printf(sc->aac_dev,
350 "error probing container %d", i);
352 continue;
355 mir = (struct aac_mntinforesp *)&fib->data[0];
356 /* XXX Need to check if count changed */
357 count = mir->MntRespCount;
358 aac_add_container(sc, mir, 0);
359 i++;
360 } while ((i < count) && (i < AAC_MAX_CONTAINERS));
362 aac_release_sync_fib(sc);
364 /* poke the bus to actually attach the child devices */
365 if (bus_generic_attach(sc->aac_dev))
366 device_printf(sc->aac_dev, "bus_generic_attach failed\n");
368 /* mark the controller up */
369 sc->aac_state &= ~AAC_STATE_SUSPEND;
371 /* enable interrupts now */
372 AAC_UNMASK_INTERRUPTS(sc);
374 /* enable the timeout watchdog */
375 callout_reset(&sc->aac_watchdog, AAC_PERIODIC_INTERVAL * hz,
376 aac_timeout, sc);
380 * Create a device to respresent a new container
382 static void
383 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
385 struct aac_container *co;
386 device_t child;
389 * Check container volume type for validity. Note that many of
390 * the possible types may never show up.
392 if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
393 MALLOC(co, struct aac_container *, sizeof *co, M_AACBUF,
394 M_INTWAIT);
395 debug(1, "id %x name '%.16s' size %u type %d",
396 mir->MntTable[0].ObjectId,
397 mir->MntTable[0].FileSystemName,
398 mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
400 if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
401 device_printf(sc->aac_dev, "device_add_child failed\n");
402 else
403 device_set_ivars(child, co);
404 device_set_desc(child, aac_describe_code(aac_container_types,
405 mir->MntTable[0].VolType));
406 co->co_disk = child;
407 co->co_found = f;
408 bcopy(&mir->MntTable[0], &co->co_mntobj,
409 sizeof(struct aac_mntobj));
410 AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
411 TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
412 AAC_LOCK_RELEASE(&sc->aac_container_lock);
417 * Free all of the resources associated with (sc)
419 * Should not be called if the controller is active.
421 void
422 aac_free(struct aac_softc *sc)
424 debug_called(1);
426 /* remove the control device */
427 if (sc->aac_dev_t != NULL)
428 destroy_dev(sc->aac_dev_t);
430 /* throw away any FIB buffers, discard the FIB DMA tag */
431 if (sc->aac_fibs != NULL)
432 aac_free_commands(sc);
433 if (sc->aac_fib_dmat)
434 bus_dma_tag_destroy(sc->aac_fib_dmat);
436 /* destroy the common area */
437 if (sc->aac_common) {
438 bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
439 bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
440 sc->aac_common_dmamap);
442 if (sc->aac_common_dmat)
443 bus_dma_tag_destroy(sc->aac_common_dmat);
445 /* disconnect the interrupt handler */
446 if (sc->aac_intr)
447 bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
448 if (sc->aac_irq != NULL)
449 bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
450 sc->aac_irq);
452 /* destroy data-transfer DMA tag */
453 if (sc->aac_buffer_dmat)
454 bus_dma_tag_destroy(sc->aac_buffer_dmat);
456 /* destroy the parent DMA tag */
457 if (sc->aac_parent_dmat)
458 bus_dma_tag_destroy(sc->aac_parent_dmat);
460 /* release the register window mapping */
461 if (sc->aac_regs_resource != NULL) {
462 bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
463 sc->aac_regs_rid, sc->aac_regs_resource);
465 dev_ops_remove(&aac_ops, -1, device_get_unit(sc->aac_dev));
469 * Disconnect from the controller completely, in preparation for unload.
472 aac_detach(device_t dev)
474 struct aac_softc *sc;
475 #if AAC_BROKEN
476 int error;
477 #endif
479 debug_called(1);
481 sc = device_get_softc(dev);
483 callout_stop(&sc->aac_watchdog);
485 if (sc->aac_state & AAC_STATE_OPEN)
486 return(EBUSY);
488 #if AAC_BROKEN
489 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
490 sc->aifflags |= AAC_AIFFLAGS_EXIT;
491 wakeup(sc->aifthread);
492 tsleep(sc->aac_dev, PCATCH, "aacdch", 30 * hz);
495 if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
496 panic("Cannot shutdown AIF thread\n");
498 if ((error = aac_shutdown(dev)))
499 return(error);
501 aac_free(sc);
503 return(0);
504 #else
505 return (EBUSY);
506 #endif
510 * Bring the controller down to a dormant state and detach all child devices.
512 * This function is called before detach or system shutdown.
514 * Note that we can assume that the bioq on the controller is empty, as we won't
515 * allow shutdown if any device is open.
518 aac_shutdown(device_t dev)
520 struct aac_softc *sc;
521 struct aac_fib *fib;
522 struct aac_close_command *cc;
524 debug_called(1);
526 sc = device_get_softc(dev);
528 crit_enter();
530 sc->aac_state |= AAC_STATE_SUSPEND;
533 * Send a Container shutdown followed by a HostShutdown FIB to the
534 * controller to convince it that we don't want to talk to it anymore.
535 * We've been closed and all I/O completed already
537 device_printf(sc->aac_dev, "shutting down controller...");
539 aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
540 cc = (struct aac_close_command *)&fib->data[0];
542 bzero(cc, sizeof(struct aac_close_command));
543 cc->Command = VM_CloseAll;
544 cc->ContainerId = 0xffffffff;
545 if (aac_sync_fib(sc, ContainerCommand, 0, fib,
546 sizeof(struct aac_close_command)))
547 kprintf("FAILED.\n");
548 else {
549 fib->data[0] = 0;
551 * XXX Issuing this command to the controller makes it shut down
552 * but also keeps it from coming back up without a reset of the
553 * PCI bus. This is not desirable if you are just unloading the
554 * driver module with the intent to reload it later.
556 if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
557 fib, 1)) {
558 kprintf("FAILED.\n");
559 } else {
560 kprintf("done.\n");
564 AAC_MASK_INTERRUPTS(sc);
566 crit_exit();
567 return(0);
571 * Bring the controller to a quiescent state, ready for system suspend.
574 aac_suspend(device_t dev)
576 struct aac_softc *sc;
578 debug_called(1);
580 sc = device_get_softc(dev);
582 crit_enter();
584 sc->aac_state |= AAC_STATE_SUSPEND;
586 AAC_MASK_INTERRUPTS(sc);
587 crit_exit();
588 return(0);
592 * Bring the controller back to a state ready for operation.
595 aac_resume(device_t dev)
597 struct aac_softc *sc;
599 debug_called(1);
601 sc = device_get_softc(dev);
603 sc->aac_state &= ~AAC_STATE_SUSPEND;
604 AAC_UNMASK_INTERRUPTS(sc);
605 return(0);
609 * Take an interrupt.
611 void
612 aac_intr(void *arg)
614 struct aac_softc *sc;
615 u_int16_t reason;
616 u_int32_t *resp_queue;
618 debug_called(2);
620 sc = (struct aac_softc *)arg;
623 * Optimize the common case of adapter response interrupts.
624 * We must read from the card prior to processing the responses
625 * to ensure the clear is flushed prior to accessing the queues.
626 * Reading the queues from local memory might save us a PCI read.
628 resp_queue = sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE];
629 if (resp_queue[AAC_PRODUCER_INDEX] != resp_queue[AAC_CONSUMER_INDEX])
630 reason = AAC_DB_RESPONSE_READY;
631 else
632 reason = AAC_GET_ISTATUS(sc);
633 AAC_CLEAR_ISTATUS(sc, reason);
634 (void)AAC_GET_ISTATUS(sc);
636 /* It's not ok to return here because of races with the previous step */
637 if (reason & AAC_DB_RESPONSE_READY)
638 aac_host_response(sc);
640 /* controller wants to talk to the log */
641 if (reason & AAC_DB_PRINTF)
642 aac_print_printf(sc);
644 /* controller has a message for us? */
645 if (reason & AAC_DB_COMMAND_READY) {
646 /* XXX What happens if the thread is already awake? */
647 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
648 sc->aifflags |= AAC_AIFFLAGS_PENDING;
649 wakeup(sc->aifthread);
655 * Command Processing
659 * Start as much queued I/O as possible on the controller
661 void
662 aac_startio(struct aac_softc *sc)
664 struct aac_command *cm;
666 debug_called(2);
668 for (;;) {
670 * Try to get a command that's been put off for lack of
671 * resources
673 cm = aac_dequeue_ready(sc);
676 * Try to build a command off the bio queue (ignore error
677 * return)
679 if (cm == NULL)
680 aac_bio_command(sc, &cm);
682 /* nothing to do? */
683 if (cm == NULL)
684 break;
686 /* try to give the command to the controller */
687 if (aac_start(cm) == EBUSY) {
688 /* put it on the ready queue for later */
689 aac_requeue_ready(cm);
690 break;
696 * Deliver a command to the controller; allocate controller resources at the
697 * last moment when possible.
699 static int
700 aac_start(struct aac_command *cm)
702 struct aac_softc *sc;
703 int error;
705 debug_called(2);
707 sc = cm->cm_sc;
709 /* get the command mapped */
710 aac_map_command(cm);
712 /* fix up the address values in the FIB */
713 cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
714 cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
716 /* save a pointer to the command for speedy reverse-lookup */
717 cm->cm_fib->Header.SenderData = (u_int32_t)cm; /* XXX 64-bit physical
718 * address issue */
719 /* put the FIB on the outbound queue */
720 error = aac_enqueue_fib(sc, cm->cm_queue, cm);
721 return(error);
725 * Handle notification of one or more FIBs coming from the controller.
727 static void
728 aac_host_command(struct aac_softc *sc)
730 struct aac_fib *fib;
731 u_int32_t fib_size;
732 int size;
734 debug_called(2);
736 sc->aifflags |= AAC_AIFFLAGS_RUNNING;
738 while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
739 if (!(sc->aifflags & AAC_AIFFLAGS_PENDING))
740 tsleep(sc->aifthread, 0, "aifthd", 15 * hz);
742 sc->aifflags &= ~AAC_AIFFLAGS_PENDING;
743 for (;;) {
744 if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
745 &fib_size, &fib))
746 break; /* nothing to do */
748 AAC_PRINT_FIB(sc, fib);
750 switch (fib->Header.Command) {
751 case AifRequest:
752 aac_handle_aif(sc, fib);
753 break;
754 default:
755 device_printf(sc->aac_dev, "unknown command "
756 "from controller\n");
757 break;
760 /* Return the AIF to the controller. */
761 if ((fib->Header.XferState == 0) ||
762 (fib->Header.StructType != AAC_FIBTYPE_TFIB))
763 break;
765 if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
766 fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
767 *(AAC_FSAStatus*)fib->data = ST_OK;
769 /* XXX Compute the Size field? */
770 size = fib->Header.Size;
771 if (size > sizeof(struct aac_fib)) {
772 size = sizeof(struct aac_fib);
773 fib->Header.Size = size;
776 * Since we did not generate this command, it
777 * cannot go through the normal
778 * enqueue->startio chain.
780 aac_enqueue_response(sc,
781 AAC_ADAP_NORM_RESP_QUEUE,
782 fib);
786 sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
787 wakeup(sc->aac_dev);
789 #if defined(__FreeBSD__) && __FreeBSD_version > 500005
790 mtx_lock(&Giant);
791 #endif
792 kthread_exit();
796 * Handle notification of one or more FIBs completed by the controller
798 static void
799 aac_host_response(struct aac_softc *sc)
801 struct aac_command *cm;
802 struct aac_fib *fib;
803 u_int32_t fib_size;
805 debug_called(2);
807 for (;;) {
808 /* look for completed FIBs on our queue */
809 if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
810 &fib))
811 break; /* nothing to do */
813 /* get the command, unmap and queue for later processing */
814 cm = (struct aac_command *)fib->Header.SenderData;
815 if (cm == NULL) {
816 AAC_PRINT_FIB(sc, fib);
817 } else {
818 aac_remove_busy(cm);
819 aac_unmap_command(cm); /* XXX defer? */
820 aac_enqueue_complete(cm);
824 /* handle completion processing */
825 #if defined(__FreeBSD__) && __FreeBSD_version >= 500005
826 taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
827 #else
828 aac_complete(sc, 0);
829 #endif
833 * Process completed commands.
835 static void
836 aac_complete(void *context, int pending)
838 struct aac_softc *sc;
839 struct aac_command *cm;
841 debug_called(2);
843 sc = (struct aac_softc *)context;
845 /* pull completed commands off the queue */
846 for (;;) {
847 cm = aac_dequeue_complete(sc);
848 if (cm == NULL)
849 break;
850 cm->cm_flags |= AAC_CMD_COMPLETED;
852 /* is there a completion handler? */
853 if (cm->cm_complete != NULL) {
854 cm->cm_complete(cm);
855 } else {
856 /* assume that someone is sleeping on this command */
857 wakeup(cm);
861 /* see if we can start some more I/O */
862 aac_startio(sc);
866 * Handle a bio submitted from a disk device.
868 void
869 aac_submit_bio(struct aac_disk *ad, struct bio *bio)
871 struct aac_softc *sc;
873 debug_called(2);
875 bio->bio_driver_info = ad;
876 sc = ad->ad_controller;
878 /* queue the BIO and try to get some work done */
879 aac_enqueue_bio(sc, bio);
880 aac_startio(sc);
884 * Get a bio and build a command to go with it.
886 static int
887 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
889 struct aac_command *cm;
890 struct aac_fib *fib;
891 struct aac_blockread *br;
892 struct aac_blockwrite *bw;
893 struct aac_disk *ad;
894 struct bio *bio;
895 struct buf *bp;
897 debug_called(2);
899 /* get the resources we will need */
900 cm = NULL;
901 if ((bio = aac_dequeue_bio(sc)) == NULL)
902 goto fail;
903 if (aac_alloc_command(sc, &cm)) /* get a command */
904 goto fail;
906 /* fill out the command */
907 bp = bio->bio_buf;
908 cm->cm_data = (void *)bp->b_data;
909 cm->cm_datalen = bp->b_bcount;
910 cm->cm_complete = aac_bio_complete;
911 cm->cm_private = bio;
912 cm->cm_timestamp = time_second;
913 cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
915 /* build the FIB */
916 fib = cm->cm_fib;
917 fib->Header.XferState =
918 AAC_FIBSTATE_HOSTOWNED |
919 AAC_FIBSTATE_INITIALISED |
920 AAC_FIBSTATE_EMPTY |
921 AAC_FIBSTATE_FROMHOST |
922 AAC_FIBSTATE_REXPECTED |
923 AAC_FIBSTATE_NORM |
924 AAC_FIBSTATE_ASYNC |
925 AAC_FIBSTATE_FAST_RESPONSE;
926 fib->Header.Command = ContainerCommand;
927 fib->Header.Size = sizeof(struct aac_fib_header);
929 /* build the read/write request */
930 ad = (struct aac_disk *)bio->bio_driver_info;
931 if (bp->b_cmd == BUF_CMD_READ) {
932 br = (struct aac_blockread *)&fib->data[0];
933 br->Command = VM_CtBlockRead;
934 br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
935 br->BlockNumber = bio->bio_offset / AAC_BLOCK_SIZE;
936 br->ByteCount = bp->b_bcount;
937 fib->Header.Size += sizeof(struct aac_blockread);
938 cm->cm_sgtable = &br->SgMap;
939 cm->cm_flags |= AAC_CMD_DATAIN;
940 } else {
941 bw = (struct aac_blockwrite *)&fib->data[0];
942 bw->Command = VM_CtBlockWrite;
943 bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
944 bw->BlockNumber = bio->bio_offset / AAC_BLOCK_SIZE;
945 bw->ByteCount = bp->b_bcount;
946 bw->Stable = CUNSTABLE; /* XXX what's appropriate here? */
947 fib->Header.Size += sizeof(struct aac_blockwrite);
948 cm->cm_flags |= AAC_CMD_DATAOUT;
949 cm->cm_sgtable = &bw->SgMap;
952 *cmp = cm;
953 return(0);
955 fail:
956 if (bio != NULL)
957 aac_enqueue_bio(sc, bio);
958 if (cm != NULL)
959 aac_release_command(cm);
960 return(ENOMEM);
964 * Handle a bio-instigated command that has been completed.
966 static void
967 aac_bio_complete(struct aac_command *cm)
969 struct aac_blockread_response *brr;
970 struct aac_blockwrite_response *bwr;
971 struct bio *bio;
972 struct buf *bp;
973 const char *code;
974 AAC_FSAStatus status;
976 /* fetch relevant status and then release the command */
977 bio = (struct bio *)cm->cm_private;
978 bp = bio->bio_buf;
979 if (bp->b_cmd == BUF_CMD_READ) {
980 brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
981 status = brr->Status;
982 } else {
983 bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
984 status = bwr->Status;
986 aac_release_command(cm);
988 /* fix up the bio based on status */
989 if (status == ST_OK) {
990 bp->b_resid = 0;
991 code = 0;
992 } else {
993 bp->b_error = EIO;
994 bp->b_flags |= B_ERROR;
995 /* pass an error string out to the disk layer */
996 code = aac_describe_code(aac_command_status_table, status);
998 aac_biodone(bio, code);
1002 * Dump a block of data to the controller. If the queue is full, tell the
1003 * caller to hold off and wait for the queue to drain.
1006 aac_dump_enqueue(struct aac_disk *ad, u_int64_t lba, void *data, int dumppages)
1008 struct aac_softc *sc;
1009 struct aac_command *cm;
1010 struct aac_fib *fib;
1011 struct aac_blockwrite *bw;
1013 sc = ad->ad_controller;
1014 cm = NULL;
1016 KKASSERT(lba <= 0x100000000ULL);
1018 if (aac_alloc_command(sc, &cm))
1019 return (EBUSY);
1021 /* fill out the command */
1022 cm->cm_data = data;
1023 cm->cm_datalen = dumppages * PAGE_SIZE;
1024 cm->cm_complete = NULL;
1025 cm->cm_private = NULL;
1026 cm->cm_timestamp = time_second;
1027 cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1029 /* build the FIB */
1030 fib = cm->cm_fib;
1031 fib->Header.XferState =
1032 AAC_FIBSTATE_HOSTOWNED |
1033 AAC_FIBSTATE_INITIALISED |
1034 AAC_FIBSTATE_FROMHOST |
1035 AAC_FIBSTATE_REXPECTED |
1036 AAC_FIBSTATE_NORM;
1037 fib->Header.Command = ContainerCommand;
1038 fib->Header.Size = sizeof(struct aac_fib_header);
1040 bw = (struct aac_blockwrite *)&fib->data[0];
1041 bw->Command = VM_CtBlockWrite;
1042 bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1043 bw->BlockNumber = lba;
1044 bw->ByteCount = dumppages * PAGE_SIZE;
1045 bw->Stable = CUNSTABLE; /* XXX what's appropriate here? */
1046 fib->Header.Size += sizeof(struct aac_blockwrite);
1047 cm->cm_flags |= AAC_CMD_DATAOUT;
1048 cm->cm_sgtable = &bw->SgMap;
1050 return (aac_start(cm));
1054 * Wait for the card's queue to drain when dumping. Also check for monitor
1055 * kprintf's
1057 void
1058 aac_dump_complete(struct aac_softc *sc)
1060 struct aac_fib *fib;
1061 struct aac_command *cm;
1062 u_int16_t reason;
1063 u_int32_t pi, ci, fib_size;
1065 do {
1066 reason = AAC_GET_ISTATUS(sc);
1067 if (reason & AAC_DB_RESPONSE_READY) {
1068 AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
1069 for (;;) {
1070 if (aac_dequeue_fib(sc,
1071 AAC_HOST_NORM_RESP_QUEUE,
1072 &fib_size, &fib))
1073 break;
1074 cm = (struct aac_command *)
1075 fib->Header.SenderData;
1076 if (cm == NULL)
1077 AAC_PRINT_FIB(sc, fib);
1078 else {
1079 aac_remove_busy(cm);
1080 aac_unmap_command(cm);
1081 aac_enqueue_complete(cm);
1082 aac_release_command(cm);
1086 if (reason & AAC_DB_PRINTF) {
1087 AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF);
1088 aac_print_printf(sc);
1090 pi = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1091 AAC_PRODUCER_INDEX];
1092 ci = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1093 AAC_CONSUMER_INDEX];
1094 } while (ci != pi);
1096 return;
1100 * Submit a command to the controller, return when it completes.
1101 * XXX This is very dangerous! If the card has gone out to lunch, we could
1102 * be stuck here forever. At the same time, signals are not caught
1103 * because there is a risk that a signal could wakeup the tsleep before
1104 * the card has a chance to complete the command. The passed in timeout
1105 * is ignored for the same reason. Since there is no way to cancel a
1106 * command in progress, we should probably create a 'dead' queue where
1107 * commands go that have been interrupted/timed-out/etc, that keeps them
1108 * out of the free pool. That way, if the card is just slow, it won't
1109 * spam the memory of a command that has been recycled.
1111 static int
1112 aac_wait_command(struct aac_command *cm, int timeout)
1114 int error = 0;
1116 debug_called(2);
1118 /* Put the command on the ready queue and get things going */
1119 cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1120 aac_enqueue_ready(cm);
1121 aac_startio(cm->cm_sc);
1122 crit_enter();
1123 while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1124 error = tsleep(cm, 0, "aacwait", 0);
1126 crit_exit();
1127 return(error);
1131 *Command Buffer Management
1135 * Allocate a command.
1138 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1140 struct aac_command *cm;
1142 debug_called(3);
1144 if ((cm = aac_dequeue_free(sc)) == NULL)
1145 return(ENOMEM);
1147 *cmp = cm;
1148 return(0);
1152 * Release a command back to the freelist.
1154 void
1155 aac_release_command(struct aac_command *cm)
1157 debug_called(3);
1159 /* (re)initialise the command/FIB */
1160 cm->cm_sgtable = NULL;
1161 cm->cm_flags = 0;
1162 cm->cm_complete = NULL;
1163 cm->cm_private = NULL;
1164 cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1165 cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1166 cm->cm_fib->Header.Flags = 0;
1167 cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1170 * These are duplicated in aac_start to cover the case where an
1171 * intermediate stage may have destroyed them. They're left
1172 * initialised here for debugging purposes only.
1174 cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1175 cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1176 cm->cm_fib->Header.SenderData = 0;
1178 aac_enqueue_free(cm);
1182 * Map helper for command/FIB allocation.
1184 static void
1185 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1187 struct aac_softc *sc;
1189 sc = (struct aac_softc *)arg;
1191 debug_called(3);
1193 sc->aac_fibphys = segs[0].ds_addr;
1197 * Allocate and initialise commands/FIBs for this adapter.
1199 static int
1200 aac_alloc_commands(struct aac_softc *sc)
1202 struct aac_command *cm;
1203 int i;
1205 debug_called(1);
1207 /* allocate the FIBs in DMAable memory and load them */
1208 if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs,
1209 BUS_DMA_NOWAIT, &sc->aac_fibmap)) {
1210 return(ENOMEM);
1213 bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs,
1214 AAC_FIB_COUNT * sizeof(struct aac_fib),
1215 aac_map_command_helper, sc, 0);
1217 /* initialise constant fields in the command structure */
1218 bzero(sc->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1219 for (i = 0; i < AAC_FIB_COUNT; i++) {
1220 cm = &sc->aac_command[i];
1221 cm->cm_sc = sc;
1222 cm->cm_fib = sc->aac_fibs + i;
1223 cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib));
1225 if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap))
1226 aac_release_command(cm);
1228 return(0);
1232 * Free FIBs owned by this adapter.
1234 static void
1235 aac_free_commands(struct aac_softc *sc)
1237 int i;
1239 debug_called(1);
1241 for (i = 0; i < AAC_FIB_COUNT; i++)
1242 bus_dmamap_destroy(sc->aac_buffer_dmat,
1243 sc->aac_command[i].cm_datamap);
1245 bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap);
1246 bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap);
1250 * Command-mapping helper function - populate this command's s/g table.
1252 static void
1253 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1255 struct aac_command *cm;
1256 struct aac_fib *fib;
1257 struct aac_sg_table *sg;
1258 int i;
1260 debug_called(3);
1262 cm = (struct aac_command *)arg;
1263 fib = cm->cm_fib;
1265 /* find the s/g table */
1266 sg = cm->cm_sgtable;
1268 /* copy into the FIB */
1269 if (sg != NULL) {
1270 sg->SgCount = nseg;
1271 for (i = 0; i < nseg; i++) {
1272 sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1273 sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1275 /* update the FIB size for the s/g count */
1276 fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1282 * Map a command into controller-visible space.
1284 static void
1285 aac_map_command(struct aac_command *cm)
1287 struct aac_softc *sc;
1289 debug_called(2);
1291 sc = cm->cm_sc;
1293 /* don't map more than once */
1294 if (cm->cm_flags & AAC_CMD_MAPPED)
1295 return;
1297 if (cm->cm_datalen != 0) {
1298 bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1299 cm->cm_data, cm->cm_datalen,
1300 aac_map_command_sg, cm, 0);
1302 if (cm->cm_flags & AAC_CMD_DATAIN)
1303 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1304 BUS_DMASYNC_PREREAD);
1305 if (cm->cm_flags & AAC_CMD_DATAOUT)
1306 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1307 BUS_DMASYNC_PREWRITE);
1309 cm->cm_flags |= AAC_CMD_MAPPED;
1313 * Unmap a command from controller-visible space.
1315 static void
1316 aac_unmap_command(struct aac_command *cm)
1318 struct aac_softc *sc;
1320 debug_called(2);
1322 sc = cm->cm_sc;
1324 if (!(cm->cm_flags & AAC_CMD_MAPPED))
1325 return;
1327 if (cm->cm_datalen != 0) {
1328 if (cm->cm_flags & AAC_CMD_DATAIN)
1329 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1330 BUS_DMASYNC_POSTREAD);
1331 if (cm->cm_flags & AAC_CMD_DATAOUT)
1332 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1333 BUS_DMASYNC_POSTWRITE);
1335 bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1337 cm->cm_flags &= ~AAC_CMD_MAPPED;
1341 * Hardware Interface
1345 * Initialise the adapter.
1347 static void
1348 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1350 struct aac_softc *sc;
1352 debug_called(1);
1354 sc = (struct aac_softc *)arg;
1356 sc->aac_common_busaddr = segs[0].ds_addr;
1359 static int
1360 aac_check_firmware(struct aac_softc *sc)
1362 u_int32_t major, minor, options;
1364 debug_called(1);
1367 * Retrieve the firmware version numbers. Dell PERC2/QC cards with
1368 * firmware version 1.x are not compatible with this driver.
1370 if (sc->flags & AAC_FLAGS_PERC2QC) {
1371 if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1372 NULL)) {
1373 device_printf(sc->aac_dev,
1374 "Error reading firmware version\n");
1375 return (EIO);
1378 /* These numbers are stored as ASCII! */
1379 major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1380 minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1381 if (major == 1) {
1382 device_printf(sc->aac_dev,
1383 "Firmware version %d.%d is not supported.\n",
1384 major, minor);
1385 return (EINVAL);
1390 * Retrieve the capabilities/supported options word so we know what
1391 * work-arounds to enable.
1393 if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1394 device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1395 return (EIO);
1397 options = AAC_GET_MAILBOX(sc, 1);
1398 sc->supported_options = options;
1400 if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1401 (sc->flags & AAC_FLAGS_NO4GB) == 0)
1402 sc->flags |= AAC_FLAGS_4GB_WINDOW;
1403 if (options & AAC_SUPPORTED_NONDASD)
1404 sc->flags |= AAC_FLAGS_ENABLE_CAM;
1406 return (0);
1409 static int
1410 aac_init(struct aac_softc *sc)
1412 struct aac_adapter_init *ip;
1413 time_t then;
1414 u_int32_t code;
1415 u_int8_t *qaddr;
1416 int error;
1418 debug_called(1);
1421 * First wait for the adapter to come ready.
1423 then = time_second;
1424 do {
1425 code = AAC_GET_FWSTATUS(sc);
1426 if (code & AAC_SELF_TEST_FAILED) {
1427 device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1428 return(ENXIO);
1430 if (code & AAC_KERNEL_PANIC) {
1431 device_printf(sc->aac_dev,
1432 "FATAL: controller kernel panic\n");
1433 return(ENXIO);
1435 if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1436 device_printf(sc->aac_dev,
1437 "FATAL: controller not coming ready, "
1438 "status %x\n", code);
1439 return(ENXIO);
1441 } while (!(code & AAC_UP_AND_RUNNING));
1443 error = ENOMEM;
1445 * Create DMA tag for mapping buffers into controller-addressable space.
1447 if (bus_dma_tag_create(sc->aac_parent_dmat, /* parent */
1448 1, 0, /* algnmnt, boundary */
1449 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
1450 BUS_SPACE_MAXADDR, /* highaddr */
1451 NULL, NULL, /* filter, filterarg */
1452 MAXBSIZE, /* maxsize */
1453 AAC_MAXSGENTRIES, /* nsegments */
1454 MAXBSIZE, /* maxsegsize */
1455 BUS_DMA_ALLOCNOW, /* flags */
1456 &sc->aac_buffer_dmat)) {
1457 device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1458 goto out;
1462 * Create DMA tag for mapping FIBs into controller-addressable space..
1464 if (bus_dma_tag_create(sc->aac_parent_dmat, /* parent */
1465 1, 0, /* algnmnt, boundary */
1466 (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1467 BUS_SPACE_MAXADDR_32BIT :
1468 0x7fffffff, /* lowaddr */
1469 BUS_SPACE_MAXADDR, /* highaddr */
1470 NULL, NULL, /* filter, filterarg */
1471 AAC_FIB_COUNT *
1472 sizeof(struct aac_fib), /* maxsize */
1473 1, /* nsegments */
1474 AAC_FIB_COUNT *
1475 sizeof(struct aac_fib), /* maxsegsize */
1476 BUS_DMA_ALLOCNOW, /* flags */
1477 &sc->aac_fib_dmat)) {
1478 device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");
1479 goto out;
1483 * Create DMA tag for the common structure and allocate it.
1485 if (bus_dma_tag_create(sc->aac_parent_dmat, /* parent */
1486 1, 0, /* algnmnt, boundary */
1487 (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1488 BUS_SPACE_MAXADDR_32BIT :
1489 0x7fffffff, /* lowaddr */
1490 BUS_SPACE_MAXADDR, /* highaddr */
1491 NULL, NULL, /* filter, filterarg */
1492 8192 + sizeof(struct aac_common), /* maxsize */
1493 1, /* nsegments */
1494 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
1495 BUS_DMA_ALLOCNOW, /* flags */
1496 &sc->aac_common_dmat)) {
1497 device_printf(sc->aac_dev,
1498 "can't allocate common structure DMA tag\n");
1499 goto out;
1501 if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1502 BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1503 device_printf(sc->aac_dev, "can't allocate common structure\n");
1504 goto out;
1507 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1508 * below address 8192 in physical memory.
1509 * XXX If the padding is not needed, can it be put to use instead
1510 * of ignored?
1512 bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1513 sc->aac_common, 8192 + sizeof(*sc->aac_common),
1514 aac_common_map, sc, 0);
1516 if (sc->aac_common_busaddr < 8192) {
1517 sc->aac_common =
1518 (struct aac_common *)((uint8_t *)sc->aac_common + 8192);
1519 sc->aac_common_busaddr += 8192;
1521 bzero(sc->aac_common, sizeof(*sc->aac_common));
1523 /* Allocate some FIBs and associated command structs */
1524 if (aac_alloc_commands(sc) != 0)
1525 goto out;
1528 * Fill in the init structure. This tells the adapter about the
1529 * physical location of various important shared data structures.
1531 ip = &sc->aac_common->ac_init;
1532 ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1533 ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1535 ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1536 offsetof(struct aac_common, ac_fibs);
1537 ip->AdapterFibsVirtualAddress = (aac_phys_addr_t)&sc->aac_common->ac_fibs[0];
1538 ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1539 ip->AdapterFibAlign = sizeof(struct aac_fib);
1541 ip->PrintfBufferAddress = sc->aac_common_busaddr +
1542 offsetof(struct aac_common, ac_printf);
1543 ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1545 /* The adapter assumes that pages are 4K in size */
1546 /* XXX why should the adapter care? */
1547 ip->HostPhysMemPages = ctob((int)Maxmem) / AAC_PAGE_SIZE;
1548 ip->HostElapsedSeconds = time_second; /* reset later if invalid */
1551 * Initialise FIB queues. Note that it appears that the layout of the
1552 * indexes and the segmentation of the entries may be mandated by the
1553 * adapter, which is only told about the base of the queue index fields.
1555 * The initial values of the indices are assumed to inform the adapter
1556 * of the sizes of the respective queues, and theoretically it could
1557 * work out the entire layout of the queue structures from this. We
1558 * take the easy route and just lay this area out like everyone else
1559 * does.
1561 * The Linux driver uses a much more complex scheme whereby several
1562 * header records are kept for each queue. We use a couple of generic
1563 * list manipulation functions which 'know' the size of each list by
1564 * virtue of a table.
1566 qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1567 qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1568 sc->aac_queues = (struct aac_queue_table *)qaddr;
1569 ip->CommHeaderAddress = sc->aac_common_busaddr +
1570 ((u_int32_t)sc->aac_queues -
1571 (u_int32_t)sc->aac_common);
1572 bzero(sc->aac_queues, sizeof(struct aac_queue_table));
1574 sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1575 AAC_HOST_NORM_CMD_ENTRIES;
1576 sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1577 AAC_HOST_NORM_CMD_ENTRIES;
1578 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1579 AAC_HOST_HIGH_CMD_ENTRIES;
1580 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1581 AAC_HOST_HIGH_CMD_ENTRIES;
1582 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1583 AAC_ADAP_NORM_CMD_ENTRIES;
1584 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1585 AAC_ADAP_NORM_CMD_ENTRIES;
1586 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1587 AAC_ADAP_HIGH_CMD_ENTRIES;
1588 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1589 AAC_ADAP_HIGH_CMD_ENTRIES;
1590 sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1591 AAC_HOST_NORM_RESP_ENTRIES;
1592 sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1593 AAC_HOST_NORM_RESP_ENTRIES;
1594 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1595 AAC_HOST_HIGH_RESP_ENTRIES;
1596 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1597 AAC_HOST_HIGH_RESP_ENTRIES;
1598 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1599 AAC_ADAP_NORM_RESP_ENTRIES;
1600 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1601 AAC_ADAP_NORM_RESP_ENTRIES;
1602 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1603 AAC_ADAP_HIGH_RESP_ENTRIES;
1604 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1605 AAC_ADAP_HIGH_RESP_ENTRIES;
1606 sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1607 &sc->aac_queues->qt_HostNormCmdQueue[0];
1608 sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1609 &sc->aac_queues->qt_HostHighCmdQueue[0];
1610 sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1611 &sc->aac_queues->qt_AdapNormCmdQueue[0];
1612 sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1613 &sc->aac_queues->qt_AdapHighCmdQueue[0];
1614 sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1615 &sc->aac_queues->qt_HostNormRespQueue[0];
1616 sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1617 &sc->aac_queues->qt_HostHighRespQueue[0];
1618 sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1619 &sc->aac_queues->qt_AdapNormRespQueue[0];
1620 sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1621 &sc->aac_queues->qt_AdapHighRespQueue[0];
1624 * Do controller-type-specific initialisation
1626 switch (sc->aac_hwif) {
1627 case AAC_HWIF_I960RX:
1628 AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1629 break;
1633 * Give the init structure to the controller.
1635 if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1636 sc->aac_common_busaddr +
1637 offsetof(struct aac_common, ac_init), 0, 0, 0,
1638 NULL)) {
1639 device_printf(sc->aac_dev,
1640 "error establishing init structure\n");
1641 error = EIO;
1642 goto out;
1645 error = 0;
1646 out:
1647 return(error);
1651 * Send a synchronous command to the controller and wait for a result.
1653 static int
1654 aac_sync_command(struct aac_softc *sc, u_int32_t command,
1655 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1656 u_int32_t *sp)
1658 time_t then;
1659 u_int32_t status;
1661 debug_called(3);
1663 /* populate the mailbox */
1664 AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1666 /* ensure the sync command doorbell flag is cleared */
1667 AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1669 /* then set it to signal the adapter */
1670 AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1672 /* spin waiting for the command to complete */
1673 then = time_second;
1674 do {
1675 if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1676 debug(1, "timed out");
1677 return(EIO);
1679 } while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1681 /* clear the completion flag */
1682 AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1684 /* get the command status */
1685 status = AAC_GET_MAILBOX(sc, 0);
1686 if (sp != NULL)
1687 *sp = status;
1688 return(0);
1692 * Grab the sync fib area.
1695 aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1699 * If the force flag is set, the system is shutting down, or in
1700 * trouble. Ignore the mutex.
1702 if (!(flags & AAC_SYNC_LOCK_FORCE))
1703 AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1705 *fib = &sc->aac_common->ac_sync_fib;
1707 return (1);
1711 * Release the sync fib area.
1713 void
1714 aac_release_sync_fib(struct aac_softc *sc)
1717 AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1721 * Send a synchronous FIB to the controller and wait for a result.
1724 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1725 struct aac_fib *fib, u_int16_t datasize)
1727 debug_called(3);
1729 if (datasize > AAC_FIB_DATASIZE)
1730 return(EINVAL);
1733 * Set up the sync FIB
1735 fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1736 AAC_FIBSTATE_INITIALISED |
1737 AAC_FIBSTATE_EMPTY;
1738 fib->Header.XferState |= xferstate;
1739 fib->Header.Command = command;
1740 fib->Header.StructType = AAC_FIBTYPE_TFIB;
1741 fib->Header.Size = sizeof(struct aac_fib) + datasize;
1742 fib->Header.SenderSize = sizeof(struct aac_fib);
1743 fib->Header.SenderFibAddress = (u_int32_t)fib;
1744 fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1745 offsetof(struct aac_common,
1746 ac_sync_fib);
1749 * Give the FIB to the controller, wait for a response.
1751 if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1752 fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1753 debug(2, "IO error");
1754 return(EIO);
1757 return (0);
1761 * Adapter-space FIB queue manipulation
1763 * Note that the queue implementation here is a little funky; neither the PI or
1764 * CI will ever be zero. This behaviour is a controller feature.
1766 static struct {
1767 int size;
1768 int notify;
1769 } aac_qinfo[] = {
1770 {AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1771 {AAC_HOST_HIGH_CMD_ENTRIES, 0},
1772 {AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1773 {AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1774 {AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1775 {AAC_HOST_HIGH_RESP_ENTRIES, 0},
1776 {AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1777 {AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1781 * Atomically insert an entry into the nominated queue, returns 0 on success or
1782 * EBUSY if the queue is full.
1784 * Note: it would be more efficient to defer notifying the controller in
1785 * the case where we may be inserting several entries in rapid succession,
1786 * but implementing this usefully may be difficult (it would involve a
1787 * separate queue/notify interface).
1789 static int
1790 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1792 u_int32_t pi, ci;
1793 int error;
1794 u_int32_t fib_size;
1795 u_int32_t fib_addr;
1797 debug_called(3);
1799 fib_size = cm->cm_fib->Header.Size;
1800 fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1802 crit_enter();
1804 /* get the producer/consumer indices */
1805 pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1806 ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1808 /* wrap the queue? */
1809 if (pi >= aac_qinfo[queue].size)
1810 pi = 0;
1812 /* check for queue full */
1813 if ((pi + 1) == ci) {
1814 error = EBUSY;
1815 goto out;
1818 * To avoid a race with its completion interrupt, place this command on
1819 * the busy queue prior to advertising it to the controller.
1821 aac_enqueue_busy(cm);
1825 /* populate queue entry */
1826 (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1827 (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1829 /* update producer index */
1830 sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1832 /* notify the adapter if we know how */
1833 if (aac_qinfo[queue].notify != 0)
1834 AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1836 error = 0;
1838 out:
1839 crit_exit();
1840 return(error);
1844 * Atomically remove one entry from the nominated queue, returns 0 on
1845 * success or ENOENT if the queue is empty.
1847 static int
1848 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1849 struct aac_fib **fib_addr)
1851 u_int32_t pi, ci;
1852 int error;
1853 int notify;
1855 debug_called(3);
1857 crit_enter();
1859 /* get the producer/consumer indices */
1860 pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1861 ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1863 /* check for queue empty */
1864 if (ci == pi) {
1865 error = ENOENT;
1866 goto out;
1869 /* wrap the pi so the following test works */
1870 if (pi >= aac_qinfo[queue].size)
1871 pi = 0;
1873 notify = 0;
1874 if (ci == pi + 1)
1875 notify++;
1877 /* wrap the queue? */
1878 if (ci >= aac_qinfo[queue].size)
1879 ci = 0;
1881 /* fetch the entry */
1882 *fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1883 *fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] +
1884 ci)->aq_fib_addr;
1887 * Is this a fast response? If it is, update the fib fields in
1888 * local memory so the whole fib doesn't have to be DMA'd back up.
1890 if (*(uintptr_t *)fib_addr & 0x01) {
1891 *(uintptr_t *)fib_addr &= ~0x01;
1892 (*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1893 *((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1895 /* update consumer index */
1896 sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1898 /* if we have made the queue un-full, notify the adapter */
1899 if (notify && (aac_qinfo[queue].notify != 0))
1900 AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1901 error = 0;
1903 out:
1904 crit_exit();
1905 return(error);
1909 * Put our response to an Adapter Initialed Fib on the response queue
1911 static int
1912 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1914 u_int32_t pi, ci;
1915 int error;
1916 u_int32_t fib_size;
1917 u_int32_t fib_addr;
1919 debug_called(1);
1921 /* Tell the adapter where the FIB is */
1922 fib_size = fib->Header.Size;
1923 fib_addr = fib->Header.SenderFibAddress;
1924 fib->Header.ReceiverFibAddress = fib_addr;
1926 crit_enter();
1928 /* get the producer/consumer indices */
1929 pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1930 ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1932 /* wrap the queue? */
1933 if (pi >= aac_qinfo[queue].size)
1934 pi = 0;
1936 /* check for queue full */
1937 if ((pi + 1) == ci) {
1938 error = EBUSY;
1939 goto out;
1942 /* populate queue entry */
1943 (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1944 (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1946 /* update producer index */
1947 sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1949 /* notify the adapter if we know how */
1950 if (aac_qinfo[queue].notify != 0)
1951 AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1953 error = 0;
1955 out:
1956 crit_exit();
1957 return(error);
1961 * Check for commands that have been outstanding for a suspiciously long time,
1962 * and complain about them.
1964 static void
1965 aac_timeout(void *xsc)
1967 struct aac_softc *sc = xsc;
1968 struct aac_command *cm;
1969 time_t deadline;
1970 int timedout, code;
1971 #if 0
1972 /* simulate an interrupt to handle possibly-missed interrupts */
1974 * XXX This was done to work around another bug which has since been
1975 * fixed. It is dangerous anyways because you don't want multiple
1976 * threads in the interrupt handler at the same time! If calling
1977 * is deamed neccesary in the future, proper mutexes must be used.
1979 crit_enter();
1980 aac_intr(sc);
1981 crit_exit();
1983 /* kick the I/O queue to restart it in the case of deadlock */
1984 aac_startio(sc);
1985 #endif
1988 * traverse the busy command list, bitch about late commands once
1989 * only.
1991 timedout = 0;
1992 deadline = time_second - AAC_CMD_TIMEOUT;
1993 crit_enter();
1994 TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1995 if ((cm->cm_timestamp < deadline)
1996 /* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1997 cm->cm_flags |= AAC_CMD_TIMEDOUT;
1998 device_printf(sc->aac_dev,
1999 "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
2000 cm, (int)(time_second-cm->cm_timestamp));
2001 AAC_PRINT_FIB(sc, cm->cm_fib);
2002 timedout++;
2005 if (timedout) {
2006 code = AAC_GET_FWSTATUS(sc);
2007 if (code != AAC_UP_AND_RUNNING) {
2008 device_printf(sc->aac_dev, "WARNING! Controller is no "
2009 "longer running! code= 0x%x\n", code);
2013 crit_exit();
2015 /* reset the timer for next time */
2016 callout_reset(&sc->aac_watchdog, AAC_PERIODIC_INTERVAL * hz,
2017 aac_timeout, sc);
2021 * Interface Function Vectors
2025 * Read the current firmware status word.
2027 static int
2028 aac_sa_get_fwstatus(struct aac_softc *sc)
2030 debug_called(3);
2032 return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
2035 static int
2036 aac_rx_get_fwstatus(struct aac_softc *sc)
2038 debug_called(3);
2040 return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
2043 static int
2044 aac_fa_get_fwstatus(struct aac_softc *sc)
2046 int val;
2048 debug_called(3);
2050 val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2051 return (val);
2055 * Notify the controller of a change in a given queue
2058 static void
2059 aac_sa_qnotify(struct aac_softc *sc, int qbit)
2061 debug_called(3);
2063 AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2066 static void
2067 aac_rx_qnotify(struct aac_softc *sc, int qbit)
2069 debug_called(3);
2071 AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2074 static void
2075 aac_fa_qnotify(struct aac_softc *sc, int qbit)
2077 debug_called(3);
2079 AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2080 AAC_FA_HACK(sc);
2084 * Get the interrupt reason bits
2086 static int
2087 aac_sa_get_istatus(struct aac_softc *sc)
2089 debug_called(3);
2091 return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2094 static int
2095 aac_rx_get_istatus(struct aac_softc *sc)
2097 debug_called(3);
2099 return(AAC_GETREG4(sc, AAC_RX_ODBR));
2102 static int
2103 aac_fa_get_istatus(struct aac_softc *sc)
2105 int val;
2107 debug_called(3);
2109 val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2110 return (val);
2114 * Clear some interrupt reason bits
2116 static void
2117 aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2119 debug_called(3);
2121 AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2124 static void
2125 aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2127 debug_called(3);
2129 AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2132 static void
2133 aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2135 debug_called(3);
2137 AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2138 AAC_FA_HACK(sc);
2142 * Populate the mailbox and set the command word
2144 static void
2145 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2146 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2148 debug_called(4);
2150 AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2151 AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2152 AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2153 AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2154 AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2157 static void
2158 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2159 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2161 debug_called(4);
2163 AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2164 AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2165 AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2166 AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2167 AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2170 static void
2171 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2172 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2174 debug_called(4);
2176 AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2177 AAC_FA_HACK(sc);
2178 AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2179 AAC_FA_HACK(sc);
2180 AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2181 AAC_FA_HACK(sc);
2182 AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2183 AAC_FA_HACK(sc);
2184 AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2185 AAC_FA_HACK(sc);
2189 * Fetch the immediate command status word
2191 static int
2192 aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2194 debug_called(4);
2196 return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2199 static int
2200 aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2202 debug_called(4);
2204 return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2207 static int
2208 aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2210 int val;
2212 debug_called(4);
2214 val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2215 return (val);
2219 * Set/clear interrupt masks
2221 static void
2222 aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2224 debug(2, "%sable interrupts", enable ? "en" : "dis");
2226 if (enable) {
2227 AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2228 } else {
2229 AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2233 static void
2234 aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2236 debug(2, "%sable interrupts", enable ? "en" : "dis");
2238 if (enable) {
2239 AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2240 } else {
2241 AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2245 static void
2246 aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2248 debug(2, "%sable interrupts", enable ? "en" : "dis");
2250 if (enable) {
2251 AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2252 AAC_FA_HACK(sc);
2253 } else {
2254 AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2255 AAC_FA_HACK(sc);
2260 * Debugging and Diagnostics
2264 * Print some information about the controller.
2266 static void
2267 aac_describe_controller(struct aac_softc *sc)
2269 struct aac_fib *fib;
2270 struct aac_adapter_info *info;
2272 debug_called(2);
2274 aac_alloc_sync_fib(sc, &fib, 0);
2276 fib->data[0] = 0;
2277 if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2278 device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2279 aac_release_sync_fib(sc);
2280 return;
2282 info = (struct aac_adapter_info *)&fib->data[0];
2284 device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2285 aac_describe_code(aac_cpu_variant, info->CpuVariant),
2286 info->ClockSpeed, info->BufferMem / (1024 * 1024),
2287 aac_describe_code(aac_battery_platform,
2288 info->batteryPlatform));
2290 /* save the kernel revision structure for later use */
2291 sc->aac_revision = info->KernelRevision;
2292 device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2293 info->KernelRevision.external.comp.major,
2294 info->KernelRevision.external.comp.minor,
2295 info->KernelRevision.external.comp.dash,
2296 info->KernelRevision.buildNumber,
2297 (u_int32_t)(info->SerialNumber & 0xffffff));
2299 aac_release_sync_fib(sc);
2301 if (1 || bootverbose) {
2302 device_printf(sc->aac_dev, "Supported Options=%b\n",
2303 sc->supported_options,
2304 "\20"
2305 "\1SNAPSHOT"
2306 "\2CLUSTERS"
2307 "\3WCACHE"
2308 "\4DATA64"
2309 "\5HOSTTIME"
2310 "\6RAID50"
2311 "\7WINDOW4GB"
2312 "\10SCSIUPGD"
2313 "\11SOFTERR"
2314 "\12NORECOND"
2315 "\13SGMAP64"
2316 "\14ALARM"
2317 "\15NONDASD");
2322 * Look up a text description of a numeric error code and return a pointer to
2323 * same.
2325 static char *
2326 aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2328 int i;
2330 for (i = 0; table[i].string != NULL; i++)
2331 if (table[i].code == code)
2332 return(table[i].string);
2333 return(table[i + 1].string);
2337 * Management Interface
2340 static int
2341 aac_open(struct dev_open_args *ap)
2343 cdev_t dev = ap->a_head.a_dev;
2344 struct aac_softc *sc;
2346 debug_called(2);
2348 sc = dev->si_drv1;
2350 /* Check to make sure the device isn't already open */
2351 if (sc->aac_state & AAC_STATE_OPEN) {
2352 return EBUSY;
2354 sc->aac_state |= AAC_STATE_OPEN;
2356 return 0;
2359 static int
2360 aac_close(struct dev_close_args *ap)
2362 cdev_t dev = ap->a_head.a_dev;
2363 struct aac_softc *sc;
2365 debug_called(2);
2367 sc = dev->si_drv1;
2369 /* Mark this unit as no longer open */
2370 sc->aac_state &= ~AAC_STATE_OPEN;
2372 return 0;
2375 static int
2376 aac_ioctl(struct dev_ioctl_args *ap)
2378 cdev_t dev = ap->a_head.a_dev;
2379 caddr_t arg = ap->a_data;
2380 struct aac_softc *sc = dev->si_drv1;
2381 int error = 0;
2382 int i;
2384 debug_called(2);
2386 if (ap->a_cmd == AACIO_STATS) {
2387 union aac_statrequest *as = (union aac_statrequest *)arg;
2389 switch (as->as_item) {
2390 case AACQ_FREE:
2391 case AACQ_BIO:
2392 case AACQ_READY:
2393 case AACQ_BUSY:
2394 case AACQ_COMPLETE:
2395 bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2396 sizeof(struct aac_qstat));
2397 break;
2398 default:
2399 error = ENOENT;
2400 break;
2402 return(error);
2405 arg = *(caddr_t *)arg;
2407 switch (ap->a_cmd) {
2408 /* AACIO_STATS already handled above */
2409 case FSACTL_SENDFIB:
2410 debug(1, "FSACTL_SENDFIB");
2411 error = aac_ioctl_sendfib(sc, arg);
2412 break;
2413 case FSACTL_AIF_THREAD:
2414 debug(1, "FSACTL_AIF_THREAD");
2415 error = EINVAL;
2416 break;
2417 case FSACTL_OPEN_GET_ADAPTER_FIB:
2418 debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2420 * Pass the caller out an AdapterFibContext.
2422 * Note that because we only support one opener, we
2423 * basically ignore this. Set the caller's context to a magic
2424 * number just in case.
2426 * The Linux code hands the driver a pointer into kernel space,
2427 * and then trusts it when the caller hands it back. Aiee!
2428 * Here, we give it the proc pointer of the per-adapter aif
2429 * thread. It's only used as a sanity check in other calls.
2431 i = (int)sc->aifthread;
2432 error = copyout(&i, arg, sizeof(i));
2433 break;
2434 case FSACTL_GET_NEXT_ADAPTER_FIB:
2435 debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2436 error = aac_getnext_aif(sc, arg);
2437 break;
2438 case FSACTL_CLOSE_GET_ADAPTER_FIB:
2439 debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2440 /* don't do anything here */
2441 break;
2442 case FSACTL_MINIPORT_REV_CHECK:
2443 debug(1, "FSACTL_MINIPORT_REV_CHECK");
2444 error = aac_rev_check(sc, arg);
2445 break;
2446 case FSACTL_QUERY_DISK:
2447 debug(1, "FSACTL_QUERY_DISK");
2448 error = aac_query_disk(sc, arg);
2449 break;
2450 case FSACTL_DELETE_DISK:
2452 * We don't trust the underland to tell us when to delete a
2453 * container, rather we rely on an AIF coming from the
2454 * controller
2456 error = 0;
2457 break;
2458 default:
2459 debug(1, "unsupported cmd 0x%lx\n", ap->a_cmd);
2460 error = EINVAL;
2461 break;
2463 return(error);
2466 static int
2467 aac_poll(struct dev_poll_args *ap)
2469 cdev_t dev = ap->a_head.a_dev;
2470 struct aac_softc *sc;
2471 int revents;
2473 sc = dev->si_drv1;
2474 revents = 0;
2476 AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2477 if ((ap->a_events & (POLLRDNORM | POLLIN)) != 0) {
2478 if (sc->aac_aifq_tail != sc->aac_aifq_head)
2479 revents |= ap->a_events & (POLLIN | POLLRDNORM);
2481 AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2483 if (revents == 0) {
2484 if (ap->a_events & (POLLIN | POLLRDNORM))
2485 selrecord(curthread, &sc->rcv_select);
2487 ap->a_events = revents;
2488 return (0);
2492 * Send a FIB supplied from userspace
2494 static int
2495 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2497 struct aac_command *cm;
2498 int size, error;
2500 debug_called(2);
2502 cm = NULL;
2505 * Get a command
2507 if (aac_alloc_command(sc, &cm)) {
2508 error = EBUSY;
2509 goto out;
2513 * Fetch the FIB header, then re-copy to get data as well.
2515 if ((error = copyin(ufib, cm->cm_fib,
2516 sizeof(struct aac_fib_header))) != 0)
2517 goto out;
2518 size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2519 if (size > sizeof(struct aac_fib)) {
2520 device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2521 size, sizeof(struct aac_fib));
2522 size = sizeof(struct aac_fib);
2524 if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2525 goto out;
2526 cm->cm_fib->Header.Size = size;
2527 cm->cm_timestamp = time_second;
2530 * Pass the FIB to the controller, wait for it to complete.
2532 if ((error = aac_wait_command(cm, 30)) != 0) { /* XXX user timeout? */
2533 kprintf("aac_wait_command return %d\n", error);
2534 goto out;
2538 * Copy the FIB and data back out to the caller.
2540 size = cm->cm_fib->Header.Size;
2541 if (size > sizeof(struct aac_fib)) {
2542 device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2543 size, sizeof(struct aac_fib));
2544 size = sizeof(struct aac_fib);
2546 error = copyout(cm->cm_fib, ufib, size);
2548 out:
2549 if (cm != NULL) {
2550 aac_release_command(cm);
2552 return(error);
2556 * Handle an AIF sent to us by the controller; queue it for later reference.
2557 * If the queue fills up, then drop the older entries.
2559 static void
2560 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2562 struct aac_aif_command *aif;
2563 struct aac_container *co, *co_next;
2564 struct aac_mntinfo *mi;
2565 struct aac_mntinforesp *mir = NULL;
2566 u_int16_t rsize;
2567 int next, found;
2568 int count = 0, added = 0, i = 0;
2570 debug_called(2);
2572 aif = (struct aac_aif_command*)&fib->data[0];
2573 aac_print_aif(sc, aif);
2575 /* Is it an event that we should care about? */
2576 switch (aif->command) {
2577 case AifCmdEventNotify:
2578 switch (aif->data.EN.type) {
2579 case AifEnAddContainer:
2580 case AifEnDeleteContainer:
2582 * A container was added or deleted, but the message
2583 * doesn't tell us anything else! Re-enumerate the
2584 * containers and sort things out.
2586 aac_alloc_sync_fib(sc, &fib, 0);
2587 mi = (struct aac_mntinfo *)&fib->data[0];
2588 do {
2590 * Ask the controller for its containers one at
2591 * a time.
2592 * XXX What if the controller's list changes
2593 * midway through this enumaration?
2594 * XXX This should be done async.
2596 bzero(mi, sizeof(struct aac_mntinfo));
2597 mi->Command = VM_NameServe;
2598 mi->MntType = FT_FILESYS;
2599 mi->MntCount = i;
2600 rsize = sizeof(mir);
2601 if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2602 sizeof(struct aac_mntinfo))) {
2603 device_printf(sc->aac_dev,
2604 "Error probing container %d\n", i);
2606 continue;
2608 mir = (struct aac_mntinforesp *)&fib->data[0];
2609 /* XXX Need to check if count changed */
2610 count = mir->MntRespCount;
2613 * Check the container against our list.
2614 * co->co_found was already set to 0 in a
2615 * previous run.
2617 if ((mir->Status == ST_OK) &&
2618 (mir->MntTable[0].VolType != CT_NONE)) {
2619 found = 0;
2620 TAILQ_FOREACH(co,
2621 &sc->aac_container_tqh,
2622 co_link) {
2623 if (co->co_mntobj.ObjectId ==
2624 mir->MntTable[0].ObjectId) {
2625 co->co_found = 1;
2626 found = 1;
2627 break;
2631 * If the container matched, continue
2632 * in the list.
2634 if (found) {
2635 i++;
2636 continue;
2640 * This is a new container. Do all the
2641 * appropriate things to set it up. */
2642 aac_add_container(sc, mir, 1);
2643 added = 1;
2645 i++;
2646 } while ((i < count) && (i < AAC_MAX_CONTAINERS));
2647 aac_release_sync_fib(sc);
2650 * Go through our list of containers and see which ones
2651 * were not marked 'found'. Since the controller didn't
2652 * list them they must have been deleted. Do the
2653 * appropriate steps to destroy the device. Also reset
2654 * the co->co_found field.
2656 co = TAILQ_FIRST(&sc->aac_container_tqh);
2657 while (co != NULL) {
2658 if (co->co_found == 0) {
2659 device_delete_child(sc->aac_dev,
2660 co->co_disk);
2661 co_next = TAILQ_NEXT(co, co_link);
2662 AAC_LOCK_ACQUIRE(&sc->
2663 aac_container_lock);
2664 TAILQ_REMOVE(&sc->aac_container_tqh, co,
2665 co_link);
2666 AAC_LOCK_RELEASE(&sc->
2667 aac_container_lock);
2668 FREE(co, M_AACBUF);
2669 co = co_next;
2670 } else {
2671 co->co_found = 0;
2672 co = TAILQ_NEXT(co, co_link);
2676 /* Attach the newly created containers */
2677 if (added)
2678 bus_generic_attach(sc->aac_dev);
2680 break;
2682 default:
2683 break;
2686 default:
2687 break;
2690 /* Copy the AIF data to the AIF queue for ioctl retrieval */
2691 AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2692 next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2693 if (next != sc->aac_aifq_tail) {
2694 bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2695 sc->aac_aifq_head = next;
2697 /* On the off chance that someone is sleeping for an aif... */
2698 if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2699 wakeup(sc->aac_aifq);
2700 /* token may have been lost */
2701 /* Wakeup any poll()ers */
2702 selwakeup(&sc->rcv_select);
2703 /* token may have been lost */
2705 AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2707 return;
2711 * Return the Revision of the driver to userspace and check to see if the
2712 * userspace app is possibly compatible. This is extremely bogus since
2713 * our driver doesn't follow Adaptec's versioning system. Cheat by just
2714 * returning what the card reported.
2716 static int
2717 aac_rev_check(struct aac_softc *sc, caddr_t udata)
2719 struct aac_rev_check rev_check;
2720 struct aac_rev_check_resp rev_check_resp;
2721 int error = 0;
2723 debug_called(2);
2726 * Copyin the revision struct from userspace
2728 if ((error = copyin(udata, (caddr_t)&rev_check,
2729 sizeof(struct aac_rev_check))) != 0) {
2730 return error;
2733 debug(2, "Userland revision= %d\n",
2734 rev_check.callingRevision.buildNumber);
2737 * Doctor up the response struct.
2739 rev_check_resp.possiblyCompatible = 1;
2740 rev_check_resp.adapterSWRevision.external.ul =
2741 sc->aac_revision.external.ul;
2742 rev_check_resp.adapterSWRevision.buildNumber =
2743 sc->aac_revision.buildNumber;
2745 return(copyout((caddr_t)&rev_check_resp, udata,
2746 sizeof(struct aac_rev_check_resp)));
2750 * Pass the caller the next AIF in their queue
2752 static int
2753 aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2755 struct get_adapter_fib_ioctl agf;
2756 int error;
2758 debug_called(2);
2760 if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2763 * Check the magic number that we gave the caller.
2765 if (agf.AdapterFibContext != (int)sc->aifthread) {
2766 error = EFAULT;
2767 } else {
2769 crit_enter();
2770 error = aac_return_aif(sc, agf.AifFib);
2772 if ((error == EAGAIN) && (agf.Wait)) {
2773 sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2774 while (error == EAGAIN) {
2775 error = tsleep(sc->aac_aifq,
2776 PCATCH, "aacaif", 0);
2777 if (error == 0)
2778 error = aac_return_aif(sc,
2779 agf.AifFib);
2781 sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2783 crit_exit();
2786 return(error);
2790 * Hand the next AIF off the top of the queue out to userspace.
2792 * YYY token could be lost during copyout
2794 static int
2795 aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2797 int error;
2799 debug_called(2);
2801 AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2802 if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2803 error = EAGAIN;
2804 } else {
2805 error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2806 sizeof(struct aac_aif_command));
2807 if (error)
2808 kprintf("aac_return_aif: copyout returned %d\n", error);
2809 if (!error)
2810 sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2811 AAC_AIFQ_LENGTH;
2813 AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2814 return(error);
2818 * Give the userland some information about the container. The AAC arch
2819 * expects the driver to be a SCSI passthrough type driver, so it expects
2820 * the containers to have b:t:l numbers. Fake it.
2822 static int
2823 aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2825 struct aac_query_disk query_disk;
2826 struct aac_container *co;
2827 struct aac_disk *disk;
2828 int error, id;
2830 debug_called(2);
2832 disk = NULL;
2834 error = copyin(uptr, (caddr_t)&query_disk,
2835 sizeof(struct aac_query_disk));
2836 if (error)
2837 return (error);
2839 id = query_disk.ContainerNumber;
2840 if (id == -1)
2841 return (EINVAL);
2843 AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2844 TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2845 if (co->co_mntobj.ObjectId == id)
2846 break;
2849 if (co == NULL) {
2850 query_disk.Valid = 0;
2851 query_disk.Locked = 0;
2852 query_disk.Deleted = 1; /* XXX is this right? */
2853 } else {
2854 disk = device_get_softc(co->co_disk);
2855 query_disk.Valid = 1;
2856 query_disk.Locked =
2857 (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2858 query_disk.Deleted = 0;
2859 query_disk.Bus = device_get_unit(sc->aac_dev);
2860 query_disk.Target = disk->unit;
2861 query_disk.Lun = 0;
2862 query_disk.UnMapped = 0;
2863 bcopy(disk->ad_dev_t->si_name,
2864 &query_disk.diskDeviceName[0], 10);
2866 AAC_LOCK_RELEASE(&sc->aac_container_lock);
2868 error = copyout((caddr_t)&query_disk, uptr,
2869 sizeof(struct aac_query_disk));
2871 return (error);
2874 static void
2875 aac_get_bus_info(struct aac_softc *sc)
2877 struct aac_fib *fib;
2878 struct aac_ctcfg *c_cmd;
2879 struct aac_ctcfg_resp *c_resp;
2880 struct aac_vmioctl *vmi;
2881 struct aac_vmi_businf_resp *vmi_resp;
2882 struct aac_getbusinf businfo;
2883 struct aac_cam_inf *caminf;
2884 device_t child;
2885 int i, found, error;
2887 aac_alloc_sync_fib(sc, &fib, 0);
2888 c_cmd = (struct aac_ctcfg *)&fib->data[0];
2889 bzero(c_cmd, sizeof(struct aac_ctcfg));
2891 c_cmd->Command = VM_ContainerConfig;
2892 c_cmd->cmd = CT_GET_SCSI_METHOD;
2893 c_cmd->param = 0;
2895 error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2896 sizeof(struct aac_ctcfg));
2897 if (error) {
2898 device_printf(sc->aac_dev, "Error %d sending "
2899 "VM_ContainerConfig command\n", error);
2900 aac_release_sync_fib(sc);
2901 return;
2904 c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2905 if (c_resp->Status != ST_OK) {
2906 device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2907 c_resp->Status);
2908 aac_release_sync_fib(sc);
2909 return;
2912 sc->scsi_method_id = c_resp->param;
2914 vmi = (struct aac_vmioctl *)&fib->data[0];
2915 bzero(vmi, sizeof(struct aac_vmioctl));
2917 vmi->Command = VM_Ioctl;
2918 vmi->ObjType = FT_DRIVE;
2919 vmi->MethId = sc->scsi_method_id;
2920 vmi->ObjId = 0;
2921 vmi->IoctlCmd = GetBusInfo;
2923 error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2924 sizeof(struct aac_vmioctl));
2925 if (error) {
2926 device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2927 error);
2928 aac_release_sync_fib(sc);
2929 return;
2932 vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2933 if (vmi_resp->Status != ST_OK) {
2934 debug(1, "VM_Ioctl returned %d\n", vmi_resp->Status);
2935 aac_release_sync_fib(sc);
2936 return;
2939 bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2940 aac_release_sync_fib(sc);
2942 found = 0;
2943 for (i = 0; i < businfo.BusCount; i++) {
2944 if (businfo.BusValid[i] != AAC_BUS_VALID)
2945 continue;
2947 MALLOC(caminf, struct aac_cam_inf *,
2948 sizeof(struct aac_cam_inf), M_AACBUF, M_INTWAIT | M_ZERO);
2950 child = device_add_child(sc->aac_dev, "aacp", -1);
2951 if (child == NULL) {
2952 device_printf(sc->aac_dev, "device_add_child failed\n");
2953 continue;
2956 caminf->TargetsPerBus = businfo.TargetsPerBus;
2957 caminf->BusNumber = i;
2958 caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2959 caminf->aac_sc = sc;
2961 device_set_ivars(child, caminf);
2962 device_set_desc(child, "SCSI Passthrough Bus");
2964 found = 1;
2967 if (found)
2968 bus_generic_attach(sc->aac_dev);
2970 return;