Link up the interrupt frame to the systimer API. Use PGEX_U to indicate
[dragonfly/vkernel-mp.git] / sys / platform / pc32 / i386 / machdep.c
blobed81af011ce36ecf12ea5265254b3fe512a5a7b4
1 /*-
2 * Copyright (c) 1992 Terrence R. Lambert.
3 * Copyright (c) 1982, 1987, 1990 The Regents of the University of California.
4 * All rights reserved.
6 * This code is derived from software contributed to Berkeley by
7 * William Jolitz.
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. All advertising materials mentioning features or use of this software
18 * must display the following acknowledgement:
19 * This product includes software developed by the University of
20 * California, Berkeley and its contributors.
21 * 4. Neither the name of the University nor the names of its contributors
22 * may be used to endorse or promote products derived from this software
23 * without specific prior written permission.
25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35 * SUCH DAMAGE.
37 * from: @(#)machdep.c 7.4 (Berkeley) 6/3/91
38 * $FreeBSD: src/sys/i386/i386/machdep.c,v 1.385.2.30 2003/05/31 08:48:05 alc Exp $
39 * $DragonFly: src/sys/platform/pc32/i386/machdep.c,v 1.116 2007/01/14 21:07:12 dillon Exp $
42 #include "use_apm.h"
43 #include "use_ether.h"
44 #include "use_npx.h"
45 #include "use_isa.h"
46 #include "opt_atalk.h"
47 #include "opt_compat.h"
48 #include "opt_cpu.h"
49 #include "opt_ddb.h"
50 #include "opt_directio.h"
51 #include "opt_inet.h"
52 #include "opt_ipx.h"
53 #include "opt_maxmem.h"
54 #include "opt_msgbuf.h"
55 #include "opt_perfmon.h"
56 #include "opt_swap.h"
57 #include "opt_userconfig.h"
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/sysproto.h>
62 #include <sys/signalvar.h>
63 #include <sys/kernel.h>
64 #include <sys/linker.h>
65 #include <sys/malloc.h>
66 #include <sys/proc.h>
67 #include <sys/buf.h>
68 #include <sys/reboot.h>
69 #include <sys/mbuf.h>
70 #include <sys/msgbuf.h>
71 #include <sys/sysent.h>
72 #include <sys/sysctl.h>
73 #include <sys/vmmeter.h>
74 #include <sys/bus.h>
75 #include <sys/upcall.h>
76 #include <sys/usched.h>
77 #include <sys/reg.h>
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <sys/lock.h>
82 #include <vm/vm_kern.h>
83 #include <vm/vm_object.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_pager.h>
87 #include <vm/vm_extern.h>
89 #include <sys/thread2.h>
91 #include <sys/user.h>
92 #include <sys/exec.h>
93 #include <sys/cons.h>
95 #include <ddb/ddb.h>
97 #include <machine/cpu.h>
98 #include <machine/clock.h>
99 #include <machine/specialreg.h>
100 #include <machine/bootinfo.h>
101 #include <machine/md_var.h>
102 #include <machine/pcb_ext.h> /* pcb.h included via sys/user.h */
103 #include <machine/globaldata.h> /* CPU_prvspace */
104 #include <machine/smp.h>
105 #ifdef PERFMON
106 #include <machine/perfmon.h>
107 #endif
108 #include <machine/cputypes.h>
110 #ifdef OLD_BUS_ARCH
111 #include <bus/isa/i386/isa_device.h>
112 #endif
113 #include <machine_base/isa/intr_machdep.h>
114 #include <bus/isa/rtc.h>
115 #include <machine/vm86.h>
116 #include <sys/random.h>
117 #include <sys/ptrace.h>
118 #include <machine/sigframe.h>
120 #define PHYSMAP_ENTRIES 10
122 extern void init386 (int first);
123 extern void dblfault_handler (void);
125 extern void printcpuinfo(void); /* XXX header file */
126 extern void finishidentcpu(void);
127 extern void panicifcpuunsupported(void);
128 extern void initializecpu(void);
130 static void cpu_startup (void *);
131 #ifndef CPU_DISABLE_SSE
132 static void set_fpregs_xmm (struct save87 *, struct savexmm *);
133 static void fill_fpregs_xmm (struct savexmm *, struct save87 *);
134 #endif /* CPU_DISABLE_SSE */
135 #ifdef DIRECTIO
136 extern void ffs_rawread_setup(void);
137 #endif /* DIRECTIO */
138 static void init_locks(void);
140 SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL)
142 int _udatasel, _ucodesel;
143 u_int atdevbase;
144 #ifdef SMP
145 int64_t tsc_offsets[MAXCPU];
146 #else
147 int64_t tsc_offsets[1];
148 #endif
150 #if defined(SWTCH_OPTIM_STATS)
151 extern int swtch_optim_stats;
152 SYSCTL_INT(_debug, OID_AUTO, swtch_optim_stats,
153 CTLFLAG_RD, &swtch_optim_stats, 0, "");
154 SYSCTL_INT(_debug, OID_AUTO, tlb_flush_count,
155 CTLFLAG_RD, &tlb_flush_count, 0, "");
156 #endif
158 int physmem = 0;
160 static int
161 sysctl_hw_physmem(SYSCTL_HANDLER_ARGS)
163 int error = sysctl_handle_int(oidp, 0, ctob(physmem), req);
164 return (error);
167 SYSCTL_PROC(_hw, HW_PHYSMEM, physmem, CTLTYPE_INT|CTLFLAG_RD,
168 0, 0, sysctl_hw_physmem, "IU", "");
170 static int
171 sysctl_hw_usermem(SYSCTL_HANDLER_ARGS)
173 int error = sysctl_handle_int(oidp, 0,
174 ctob(physmem - vmstats.v_wire_count), req);
175 return (error);
178 SYSCTL_PROC(_hw, HW_USERMEM, usermem, CTLTYPE_INT|CTLFLAG_RD,
179 0, 0, sysctl_hw_usermem, "IU", "");
181 static int
182 sysctl_hw_availpages(SYSCTL_HANDLER_ARGS)
184 int error = sysctl_handle_int(oidp, 0,
185 i386_btop(avail_end - avail_start), req);
186 return (error);
189 SYSCTL_PROC(_hw, OID_AUTO, availpages, CTLTYPE_INT|CTLFLAG_RD,
190 0, 0, sysctl_hw_availpages, "I", "");
192 static int
193 sysctl_machdep_msgbuf(SYSCTL_HANDLER_ARGS)
195 int error;
197 /* Unwind the buffer, so that it's linear (possibly starting with
198 * some initial nulls).
200 error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr+msgbufp->msg_bufr,
201 msgbufp->msg_size-msgbufp->msg_bufr,req);
202 if(error) return(error);
203 if(msgbufp->msg_bufr>0) {
204 error=sysctl_handle_opaque(oidp,msgbufp->msg_ptr,
205 msgbufp->msg_bufr,req);
207 return(error);
210 SYSCTL_PROC(_machdep, OID_AUTO, msgbuf, CTLTYPE_STRING|CTLFLAG_RD,
211 0, 0, sysctl_machdep_msgbuf, "A","Contents of kernel message buffer");
213 static int msgbuf_clear;
215 static int
216 sysctl_machdep_msgbuf_clear(SYSCTL_HANDLER_ARGS)
218 int error;
219 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
220 req);
221 if (!error && req->newptr) {
222 /* Clear the buffer and reset write pointer */
223 bzero(msgbufp->msg_ptr,msgbufp->msg_size);
224 msgbufp->msg_bufr=msgbufp->msg_bufx=0;
225 msgbuf_clear=0;
227 return (error);
230 SYSCTL_PROC(_machdep, OID_AUTO, msgbuf_clear, CTLTYPE_INT|CTLFLAG_RW,
231 &msgbuf_clear, 0, sysctl_machdep_msgbuf_clear, "I",
232 "Clear kernel message buffer");
234 vm_paddr_t Maxmem = 0;
236 vm_paddr_t phys_avail[PHYSMAP_ENTRIES*2+2];
238 static vm_offset_t buffer_sva, buffer_eva;
239 vm_offset_t clean_sva, clean_eva;
240 static vm_offset_t pager_sva, pager_eva;
241 static struct trapframe proc0_tf;
243 static void
244 cpu_startup(void *dummy)
246 caddr_t v;
247 vm_offset_t minaddr;
248 vm_offset_t maxaddr;
249 vm_size_t size = 0;
250 vm_offset_t firstaddr;
252 if (boothowto & RB_VERBOSE)
253 bootverbose++;
256 * Good {morning,afternoon,evening,night}.
258 kprintf("%s", version);
259 startrtclock();
260 printcpuinfo();
261 panicifcpuunsupported();
262 #ifdef PERFMON
263 perfmon_init();
264 #endif
265 kprintf("real memory = %llu (%lluK bytes)\n", ptoa(Maxmem), ptoa(Maxmem) / 1024);
267 * Display any holes after the first chunk of extended memory.
269 if (bootverbose) {
270 int indx;
272 kprintf("Physical memory chunk(s):\n");
273 for (indx = 0; phys_avail[indx + 1] != 0; indx += 2) {
274 vm_paddr_t size1 = phys_avail[indx + 1] - phys_avail[indx];
276 kprintf("0x%08llx - 0x%08llx, %llu bytes (%llu pages)\n",
277 phys_avail[indx], phys_avail[indx + 1] - 1, size1,
278 size1 / PAGE_SIZE);
283 * Allocate space for system data structures.
284 * The first available kernel virtual address is in "v".
285 * As pages of kernel virtual memory are allocated, "v" is incremented.
286 * As pages of memory are allocated and cleared,
287 * "firstaddr" is incremented.
288 * An index into the kernel page table corresponding to the
289 * virtual memory address maintained in "v" is kept in "mapaddr".
293 * Make two passes. The first pass calculates how much memory is
294 * needed and allocates it. The second pass assigns virtual
295 * addresses to the various data structures.
297 firstaddr = 0;
298 again:
299 v = (caddr_t)firstaddr;
301 #define valloc(name, type, num) \
302 (name) = (type *)v; v = (caddr_t)((name)+(num))
303 #define valloclim(name, type, num, lim) \
304 (name) = (type *)v; v = (caddr_t)((lim) = ((name)+(num)))
307 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
308 * For the first 64MB of ram nominally allocate sufficient buffers to
309 * cover 1/4 of our ram. Beyond the first 64MB allocate additional
310 * buffers to cover 1/20 of our ram over 64MB. When auto-sizing
311 * the buffer cache we limit the eventual kva reservation to
312 * maxbcache bytes.
314 * factor represents the 1/4 x ram conversion.
316 if (nbuf == 0) {
317 int factor = 4 * BKVASIZE / 1024;
318 int kbytes = physmem * (PAGE_SIZE / 1024);
320 nbuf = 50;
321 if (kbytes > 4096)
322 nbuf += min((kbytes - 4096) / factor, 65536 / factor);
323 if (kbytes > 65536)
324 nbuf += (kbytes - 65536) * 2 / (factor * 5);
325 if (maxbcache && nbuf > maxbcache / BKVASIZE)
326 nbuf = maxbcache / BKVASIZE;
330 * Do not allow the buffer_map to be more then 1/2 the size of the
331 * kernel_map.
333 if (nbuf > (virtual_end - virtual_start) / (BKVASIZE * 2)) {
334 nbuf = (virtual_end - virtual_start) / (BKVASIZE * 2);
335 kprintf("Warning: nbufs capped at %d\n", nbuf);
338 nswbuf = max(min(nbuf/4, 256), 16);
339 #ifdef NSWBUF_MIN
340 if (nswbuf < NSWBUF_MIN)
341 nswbuf = NSWBUF_MIN;
342 #endif
343 #ifdef DIRECTIO
344 ffs_rawread_setup();
345 #endif
347 valloc(swbuf, struct buf, nswbuf);
348 valloc(buf, struct buf, nbuf);
351 * End of first pass, size has been calculated so allocate memory
353 if (firstaddr == 0) {
354 size = (vm_size_t)(v - firstaddr);
355 firstaddr = kmem_alloc(&kernel_map, round_page(size));
356 if (firstaddr == 0)
357 panic("startup: no room for tables");
358 goto again;
362 * End of second pass, addresses have been assigned
364 if ((vm_size_t)(v - firstaddr) != size)
365 panic("startup: table size inconsistency");
367 kmem_suballoc(&kernel_map, &clean_map, &clean_sva, &clean_eva,
368 (nbuf*BKVASIZE) + (nswbuf*MAXPHYS) + pager_map_size);
369 kmem_suballoc(&clean_map, &buffer_map, &buffer_sva, &buffer_eva,
370 (nbuf*BKVASIZE));
371 buffer_map.system_map = 1;
372 kmem_suballoc(&clean_map, &pager_map, &pager_sva, &pager_eva,
373 (nswbuf*MAXPHYS) + pager_map_size);
374 pager_map.system_map = 1;
375 kmem_suballoc(&kernel_map, &exec_map, &minaddr, &maxaddr,
376 (16*(ARG_MAX+(PAGE_SIZE*3))));
378 #if defined(USERCONFIG)
379 userconfig();
380 cninit(); /* the preferred console may have changed */
381 #endif
383 kprintf("avail memory = %u (%uK bytes)\n", ptoa(vmstats.v_free_count),
384 ptoa(vmstats.v_free_count) / 1024);
387 * Set up buffers, so they can be used to read disk labels.
389 bufinit();
390 vm_pager_bufferinit();
392 #ifdef SMP
394 * OK, enough kmem_alloc/malloc state should be up, lets get on with it!
396 mp_start(); /* fire up the APs and APICs */
397 mp_announce();
398 #endif /* SMP */
399 cpu_setregs();
403 * Send an interrupt to process.
405 * Stack is set up to allow sigcode stored
406 * at top to call routine, followed by kcall
407 * to sigreturn routine below. After sigreturn
408 * resets the signal mask, the stack, and the
409 * frame pointer, it returns to the user
410 * specified pc, psl.
412 void
413 sendsig(sig_t catcher, int sig, sigset_t *mask, u_long code)
415 struct lwp *lp = curthread->td_lwp;
416 struct proc *p = lp->lwp_proc;
417 struct trapframe *regs;
418 struct sigacts *psp = p->p_sigacts;
419 struct sigframe sf, *sfp;
420 int oonstack;
422 regs = lp->lwp_md.md_regs;
423 oonstack = (lp->lwp_sigstk.ss_flags & SS_ONSTACK) ? 1 : 0;
425 /* save user context */
426 bzero(&sf, sizeof(struct sigframe));
427 sf.sf_uc.uc_sigmask = *mask;
428 sf.sf_uc.uc_stack = lp->lwp_sigstk;
429 sf.sf_uc.uc_mcontext.mc_onstack = oonstack;
430 bcopy(regs, &sf.sf_uc.uc_mcontext.mc_gs, sizeof(struct trapframe));
432 /* make the size of the saved context visible to userland */
433 sf.sf_uc.uc_mcontext.mc_len = sizeof(sf.sf_uc.uc_mcontext);
435 /* save mailbox pending state for syscall interlock semantics */
436 if (p->p_flag & P_MAILBOX)
437 sf.sf_uc.uc_mcontext.mc_xflags |= PGEX_MAILBOX;
439 /* Allocate and validate space for the signal handler context. */
440 /* XXX lwp flags */
441 if ((p->p_flag & P_ALTSTACK) != 0 && !oonstack &&
442 SIGISMEMBER(psp->ps_sigonstack, sig)) {
443 sfp = (struct sigframe *)(lp->lwp_sigstk.ss_sp +
444 lp->lwp_sigstk.ss_size - sizeof(struct sigframe));
445 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
446 } else {
447 sfp = (struct sigframe *)regs->tf_esp - 1;
450 /* Translate the signal is appropriate */
451 if (p->p_sysent->sv_sigtbl) {
452 if (sig <= p->p_sysent->sv_sigsize)
453 sig = p->p_sysent->sv_sigtbl[_SIG_IDX(sig)];
456 /* Build the argument list for the signal handler. */
457 sf.sf_signum = sig;
458 sf.sf_ucontext = (register_t)&sfp->sf_uc;
459 if (SIGISMEMBER(psp->ps_siginfo, sig)) {
460 /* Signal handler installed with SA_SIGINFO. */
461 sf.sf_siginfo = (register_t)&sfp->sf_si;
462 sf.sf_ahu.sf_action = (__siginfohandler_t *)catcher;
464 /* fill siginfo structure */
465 sf.sf_si.si_signo = sig;
466 sf.sf_si.si_code = code;
467 sf.sf_si.si_addr = (void*)regs->tf_err;
469 else {
470 /* Old FreeBSD-style arguments. */
471 sf.sf_siginfo = code;
472 sf.sf_addr = regs->tf_err;
473 sf.sf_ahu.sf_handler = catcher;
477 * If we're a vm86 process, we want to save the segment registers.
478 * We also change eflags to be our emulated eflags, not the actual
479 * eflags.
481 if (regs->tf_eflags & PSL_VM) {
482 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
483 struct vm86_kernel *vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
485 sf.sf_uc.uc_mcontext.mc_gs = tf->tf_vm86_gs;
486 sf.sf_uc.uc_mcontext.mc_fs = tf->tf_vm86_fs;
487 sf.sf_uc.uc_mcontext.mc_es = tf->tf_vm86_es;
488 sf.sf_uc.uc_mcontext.mc_ds = tf->tf_vm86_ds;
490 if (vm86->vm86_has_vme == 0)
491 sf.sf_uc.uc_mcontext.mc_eflags =
492 (tf->tf_eflags & ~(PSL_VIF | PSL_VIP)) |
493 (vm86->vm86_eflags & (PSL_VIF | PSL_VIP));
496 * Clear PSL_NT to inhibit T_TSSFLT faults on return from
497 * syscalls made by the signal handler. This just avoids
498 * wasting time for our lazy fixup of such faults. PSL_NT
499 * does nothing in vm86 mode, but vm86 programs can set it
500 * almost legitimately in probes for old cpu types.
502 tf->tf_eflags &= ~(PSL_VM | PSL_NT | PSL_VIF | PSL_VIP);
506 * Copy the sigframe out to the user's stack.
508 if (copyout(&sf, sfp, sizeof(struct sigframe)) != 0) {
510 * Something is wrong with the stack pointer.
511 * ...Kill the process.
513 sigexit(p, SIGILL);
516 regs->tf_esp = (int)sfp;
517 regs->tf_eip = PS_STRINGS - *(p->p_sysent->sv_szsigcode);
518 regs->tf_eflags &= ~PSL_T;
519 regs->tf_cs = _ucodesel;
520 regs->tf_ds = _udatasel;
521 regs->tf_es = _udatasel;
524 * Allow the signal handler to inherit %fs in addition to %gs as
525 * the userland program might be using both.
527 * However, if a T_PROTFLT occured the segment registers could be
528 * totally broken. They must be reset in order to be able to
529 * return to userland.
531 if (regs->tf_trapno == T_PROTFLT) {
532 regs->tf_fs = _udatasel;
533 regs->tf_gs = _udatasel;
535 regs->tf_ss = _udatasel;
539 * Sanitize the trapframe for a virtual kernel passing control to a custom
540 * VM context. Remove any items that would otherwise create a privilage
541 * issue.
543 * XXX at the moment we allow userland to set the resume flag. Is this a
544 * bad idea?
547 cpu_sanitize_frame(struct trapframe *frame)
549 frame->tf_cs = _ucodesel;
550 frame->tf_ds = _udatasel;
551 frame->tf_es = _udatasel; /* XXX allow userland this one too? */
552 #if 0
553 frame->tf_fs = _udatasel;
554 frame->tf_gs = _udatasel;
555 #endif
556 frame->tf_ss = _udatasel;
557 frame->tf_eflags &= (PSL_RF | PSL_USERCHANGE);
558 frame->tf_eflags |= PSL_RESERVED_DEFAULT | PSL_I;
559 return(0);
563 cpu_sanitize_tls(struct savetls *tls)
565 struct segment_descriptor *desc;
566 int i;
568 for (i = 0; i < NGTLS; ++i) {
569 desc = &tls->tls[i];
570 if (desc->sd_dpl == 0 && desc->sd_type == 0)
571 continue;
572 if (desc->sd_def32 == 0)
573 return(ENXIO);
574 if (desc->sd_type != SDT_MEMRWA)
575 return(ENXIO);
576 if (desc->sd_dpl != SEL_UPL)
577 return(ENXIO);
578 if (desc->sd_xx != 0 || desc->sd_p != 1)
579 return(ENXIO);
581 return(0);
585 * sigreturn(ucontext_t *sigcntxp)
587 * System call to cleanup state after a signal
588 * has been taken. Reset signal mask and
589 * stack state from context left by sendsig (above).
590 * Return to previous pc and psl as specified by
591 * context left by sendsig. Check carefully to
592 * make sure that the user has not modified the
593 * state to gain improper privileges.
595 #define EFL_SECURE(ef, oef) ((((ef) ^ (oef)) & ~PSL_USERCHANGE) == 0)
596 #define CS_SECURE(cs) (ISPL(cs) == SEL_UPL)
599 sys_sigreturn(struct sigreturn_args *uap)
601 struct lwp *lp = curthread->td_lwp;
602 struct proc *p = lp->lwp_proc;
603 struct trapframe *regs;
604 ucontext_t *ucp;
605 int cs, eflags;
607 ucp = uap->sigcntxp;
609 if (!useracc((caddr_t)ucp, sizeof(ucontext_t), VM_PROT_READ))
610 return (EFAULT);
612 regs = lp->lwp_md.md_regs;
613 eflags = ucp->uc_mcontext.mc_eflags;
615 if (eflags & PSL_VM) {
616 struct trapframe_vm86 *tf = (struct trapframe_vm86 *)regs;
617 struct vm86_kernel *vm86;
620 * if pcb_ext == 0 or vm86_inited == 0, the user hasn't
621 * set up the vm86 area, and we can't enter vm86 mode.
623 if (lp->lwp_thread->td_pcb->pcb_ext == 0)
624 return (EINVAL);
625 vm86 = &lp->lwp_thread->td_pcb->pcb_ext->ext_vm86;
626 if (vm86->vm86_inited == 0)
627 return (EINVAL);
629 /* go back to user mode if both flags are set */
630 if ((eflags & PSL_VIP) && (eflags & PSL_VIF))
631 trapsignal(lp->lwp_proc, SIGBUS, 0);
633 if (vm86->vm86_has_vme) {
634 eflags = (tf->tf_eflags & ~VME_USERCHANGE) |
635 (eflags & VME_USERCHANGE) | PSL_VM;
636 } else {
637 vm86->vm86_eflags = eflags; /* save VIF, VIP */
638 eflags = (tf->tf_eflags & ~VM_USERCHANGE) | (eflags & VM_USERCHANGE) | PSL_VM;
640 bcopy(&ucp->uc_mcontext.mc_gs, tf, sizeof(struct trapframe));
641 tf->tf_eflags = eflags;
642 tf->tf_vm86_ds = tf->tf_ds;
643 tf->tf_vm86_es = tf->tf_es;
644 tf->tf_vm86_fs = tf->tf_fs;
645 tf->tf_vm86_gs = tf->tf_gs;
646 tf->tf_ds = _udatasel;
647 tf->tf_es = _udatasel;
648 #if 0
649 tf->tf_fs = _udatasel;
650 tf->tf_gs = _udatasel;
651 #endif
652 } else {
654 * Don't allow users to change privileged or reserved flags.
657 * XXX do allow users to change the privileged flag PSL_RF.
658 * The cpu sets PSL_RF in tf_eflags for faults. Debuggers
659 * should sometimes set it there too. tf_eflags is kept in
660 * the signal context during signal handling and there is no
661 * other place to remember it, so the PSL_RF bit may be
662 * corrupted by the signal handler without us knowing.
663 * Corruption of the PSL_RF bit at worst causes one more or
664 * one less debugger trap, so allowing it is fairly harmless.
666 if (!EFL_SECURE(eflags & ~PSL_RF, regs->tf_eflags & ~PSL_RF)) {
667 kprintf("sigreturn: eflags = 0x%x\n", eflags);
668 return(EINVAL);
672 * Don't allow users to load a valid privileged %cs. Let the
673 * hardware check for invalid selectors, excess privilege in
674 * other selectors, invalid %eip's and invalid %esp's.
676 cs = ucp->uc_mcontext.mc_cs;
677 if (!CS_SECURE(cs)) {
678 kprintf("sigreturn: cs = 0x%x\n", cs);
679 trapsignal(lp->lwp_proc, SIGBUS, T_PROTFLT);
680 return(EINVAL);
682 bcopy(&ucp->uc_mcontext.mc_gs, regs, sizeof(struct trapframe));
686 * Merge saved signal mailbox pending flag to maintain interlock
687 * semantics against system calls.
689 if (ucp->uc_mcontext.mc_xflags & PGEX_MAILBOX)
690 p->p_flag |= P_MAILBOX;
692 if (ucp->uc_mcontext.mc_onstack & 1)
693 lp->lwp_sigstk.ss_flags |= SS_ONSTACK;
694 else
695 lp->lwp_sigstk.ss_flags &= ~SS_ONSTACK;
697 lp->lwp_sigmask = ucp->uc_sigmask;
698 SIG_CANTMASK(lp->lwp_sigmask);
699 return(EJUSTRETURN);
703 * Stack frame on entry to function. %eax will contain the function vector,
704 * %ecx will contain the function data. flags, ecx, and eax will have
705 * already been pushed on the stack.
707 struct upc_frame {
708 register_t eax;
709 register_t ecx;
710 register_t edx;
711 register_t flags;
712 register_t oldip;
715 void
716 sendupcall(struct vmupcall *vu, int morepending)
718 struct lwp *lp = curthread->td_lwp;
719 struct proc *p = lp->lwp_proc;
720 struct trapframe *regs;
721 struct upcall upcall;
722 struct upc_frame upc_frame;
723 int crit_count = 0;
726 * If we are a virtual kernel running an emulated user process
727 * context, switch back to the virtual kernel context before
728 * trying to post the signal.
730 if (p->p_vkernel && p->p_vkernel->vk_current) {
731 lp->lwp_md.md_regs->tf_trapno = 0;
732 vkernel_trap(p, lp->lwp_md.md_regs);
736 * Get the upcall data structure
738 if (copyin(lp->lwp_upcall, &upcall, sizeof(upcall)) ||
739 copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int))
741 vu->vu_pending = 0;
742 kprintf("bad upcall address\n");
743 return;
747 * If the data structure is already marked pending or has a critical
748 * section count, mark the data structure as pending and return
749 * without doing an upcall. vu_pending is left set.
751 if (upcall.upc_pending || crit_count >= vu->vu_pending) {
752 if (upcall.upc_pending < vu->vu_pending) {
753 upcall.upc_pending = vu->vu_pending;
754 copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
755 sizeof(upcall.upc_pending));
757 return;
761 * We can run this upcall now, clear vu_pending.
763 * Bump our critical section count and set or clear the
764 * user pending flag depending on whether more upcalls are
765 * pending. The user will be responsible for calling
766 * upc_dispatch(-1) to process remaining upcalls.
768 vu->vu_pending = 0;
769 upcall.upc_pending = morepending;
770 crit_count += TDPRI_CRIT;
771 copyout(&upcall.upc_pending, &lp->lwp_upcall->upc_pending,
772 sizeof(upcall.upc_pending));
773 copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff,
774 sizeof(int));
777 * Construct a stack frame and issue the upcall
779 regs = lp->lwp_md.md_regs;
780 upc_frame.eax = regs->tf_eax;
781 upc_frame.ecx = regs->tf_ecx;
782 upc_frame.edx = regs->tf_edx;
783 upc_frame.flags = regs->tf_eflags;
784 upc_frame.oldip = regs->tf_eip;
785 if (copyout(&upc_frame, (void *)(regs->tf_esp - sizeof(upc_frame)),
786 sizeof(upc_frame)) != 0) {
787 kprintf("bad stack on upcall\n");
788 } else {
789 regs->tf_eax = (register_t)vu->vu_func;
790 regs->tf_ecx = (register_t)vu->vu_data;
791 regs->tf_edx = (register_t)lp->lwp_upcall;
792 regs->tf_eip = (register_t)vu->vu_ctx;
793 regs->tf_esp -= sizeof(upc_frame);
798 * fetchupcall occurs in the context of a system call, which means that
799 * we have to return EJUSTRETURN in order to prevent eax and edx from
800 * being overwritten by the syscall return value.
802 * if vu is not NULL we return the new context in %edx, the new data in %ecx,
803 * and the function pointer in %eax.
806 fetchupcall (struct vmupcall *vu, int morepending, void *rsp)
808 struct upc_frame upc_frame;
809 struct lwp *lp = curthread->td_lwp;
810 struct trapframe *regs;
811 int error;
812 struct upcall upcall;
813 int crit_count;
815 regs = lp->lwp_md.md_regs;
817 error = copyout(&morepending, &lp->lwp_upcall->upc_pending, sizeof(int));
818 if (error == 0) {
819 if (vu) {
821 * This jumps us to the next ready context.
823 vu->vu_pending = 0;
824 error = copyin(lp->lwp_upcall, &upcall, sizeof(upcall));
825 crit_count = 0;
826 if (error == 0)
827 error = copyin((char *)upcall.upc_uthread + upcall.upc_critoff, &crit_count, sizeof(int));
828 crit_count += TDPRI_CRIT;
829 if (error == 0)
830 error = copyout(&crit_count, (char *)upcall.upc_uthread + upcall.upc_critoff, sizeof(int));
831 regs->tf_eax = (register_t)vu->vu_func;
832 regs->tf_ecx = (register_t)vu->vu_data;
833 regs->tf_edx = (register_t)lp->lwp_upcall;
834 regs->tf_eip = (register_t)vu->vu_ctx;
835 regs->tf_esp = (register_t)rsp;
836 } else {
838 * This returns us to the originally interrupted code.
840 error = copyin(rsp, &upc_frame, sizeof(upc_frame));
841 regs->tf_eax = upc_frame.eax;
842 regs->tf_ecx = upc_frame.ecx;
843 regs->tf_edx = upc_frame.edx;
844 regs->tf_eflags = (regs->tf_eflags & ~PSL_USERCHANGE) |
845 (upc_frame.flags & PSL_USERCHANGE);
846 regs->tf_eip = upc_frame.oldip;
847 regs->tf_esp = (register_t)((char *)rsp + sizeof(upc_frame));
850 if (error == 0)
851 error = EJUSTRETURN;
852 return(error);
856 * Machine dependent boot() routine
858 * I haven't seen anything to put here yet
859 * Possibly some stuff might be grafted back here from boot()
861 void
862 cpu_boot(int howto)
867 * Shutdown the CPU as much as possible
869 void
870 cpu_halt(void)
872 for (;;)
873 __asm__ __volatile("hlt");
877 * cpu_idle() represents the idle LWKT. You cannot return from this function
878 * (unless you want to blow things up!). Instead we look for runnable threads
879 * and loop or halt as appropriate. Giant is not held on entry to the thread.
881 * The main loop is entered with a critical section held, we must release
882 * the critical section before doing anything else. lwkt_switch() will
883 * check for pending interrupts due to entering and exiting its own
884 * critical section.
886 * Note on cpu_idle_hlt: On an SMP system we rely on a scheduler IPI
887 * to wake a HLTed cpu up. However, there are cases where the idlethread
888 * will be entered with the possibility that no IPI will occur and in such
889 * cases lwkt_switch() sets TDF_IDLE_NOHLT.
891 static int cpu_idle_hlt = 1;
892 static int cpu_idle_hltcnt;
893 static int cpu_idle_spincnt;
894 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hlt, CTLFLAG_RW,
895 &cpu_idle_hlt, 0, "Idle loop HLT enable");
896 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_hltcnt, CTLFLAG_RW,
897 &cpu_idle_hltcnt, 0, "Idle loop entry halts");
898 SYSCTL_INT(_machdep, OID_AUTO, cpu_idle_spincnt, CTLFLAG_RW,
899 &cpu_idle_spincnt, 0, "Idle loop entry spins");
901 static void
902 cpu_idle_default_hook(void)
905 * We must guarentee that hlt is exactly the instruction
906 * following the sti.
908 __asm __volatile("sti; hlt");
911 /* Other subsystems (e.g., ACPI) can hook this later. */
912 void (*cpu_idle_hook)(void) = cpu_idle_default_hook;
914 void
915 cpu_idle(void)
917 struct thread *td = curthread;
919 crit_exit();
920 KKASSERT(td->td_pri < TDPRI_CRIT);
921 for (;;) {
923 * See if there are any LWKTs ready to go.
925 lwkt_switch();
928 * If we are going to halt call splz unconditionally after
929 * CLIing to catch any interrupt races. Note that we are
930 * at SPL0 and interrupts are enabled.
932 if (cpu_idle_hlt && !lwkt_runnable() &&
933 (td->td_flags & TDF_IDLE_NOHLT) == 0) {
934 __asm __volatile("cli");
935 splz();
936 if (!lwkt_runnable())
937 cpu_idle_hook();
938 #ifdef SMP
939 else
940 __asm __volatile("pause");
941 #endif
942 ++cpu_idle_hltcnt;
943 } else {
944 td->td_flags &= ~TDF_IDLE_NOHLT;
945 splz();
946 #ifdef SMP
947 __asm __volatile("sti; pause");
948 #else
949 __asm __volatile("sti");
950 #endif
951 ++cpu_idle_spincnt;
957 * Clear registers on exec
959 void
960 setregs(struct lwp *lp, u_long entry, u_long stack, u_long ps_strings)
962 struct trapframe *regs = lp->lwp_md.md_regs;
963 struct pcb *pcb = lp->lwp_thread->td_pcb;
965 /* was i386_user_cleanup() in NetBSD */
966 user_ldt_free(pcb);
968 bzero((char *)regs, sizeof(struct trapframe));
969 regs->tf_eip = entry;
970 regs->tf_esp = stack;
971 regs->tf_eflags = PSL_USER | (regs->tf_eflags & PSL_T);
972 regs->tf_ss = _udatasel;
973 regs->tf_ds = _udatasel;
974 regs->tf_es = _udatasel;
975 regs->tf_fs = _udatasel;
976 regs->tf_gs = _udatasel;
977 regs->tf_cs = _ucodesel;
979 /* PS_STRINGS value for BSD/OS binaries. It is 0 for non-BSD/OS. */
980 regs->tf_ebx = ps_strings;
983 * Reset the hardware debug registers if they were in use.
984 * They won't have any meaning for the newly exec'd process.
986 if (pcb->pcb_flags & PCB_DBREGS) {
987 pcb->pcb_dr0 = 0;
988 pcb->pcb_dr1 = 0;
989 pcb->pcb_dr2 = 0;
990 pcb->pcb_dr3 = 0;
991 pcb->pcb_dr6 = 0;
992 pcb->pcb_dr7 = 0;
993 if (pcb == curthread->td_pcb) {
995 * Clear the debug registers on the running
996 * CPU, otherwise they will end up affecting
997 * the next process we switch to.
999 reset_dbregs();
1001 pcb->pcb_flags &= ~PCB_DBREGS;
1005 * Initialize the math emulator (if any) for the current process.
1006 * Actually, just clear the bit that says that the emulator has
1007 * been initialized. Initialization is delayed until the process
1008 * traps to the emulator (if it is done at all) mainly because
1009 * emulators don't provide an entry point for initialization.
1011 lp->lwp_thread->td_pcb->pcb_flags &= ~FP_SOFTFP;
1014 * note: do not set CR0_TS here. npxinit() must do it after clearing
1015 * gd_npxthread. Otherwise a preemptive interrupt thread may panic
1016 * in npxdna().
1018 crit_enter();
1019 load_cr0(rcr0() | CR0_MP);
1021 #if NNPX > 0
1022 /* Initialize the npx (if any) for the current process. */
1023 npxinit(__INITIAL_NPXCW__);
1024 #endif
1025 crit_exit();
1028 * note: linux emulator needs edx to be 0x0 on entry, which is
1029 * handled in execve simply by setting the 64 bit syscall
1030 * return value to 0.
1034 void
1035 cpu_setregs(void)
1037 unsigned int cr0;
1039 cr0 = rcr0();
1040 cr0 |= CR0_NE; /* Done by npxinit() */
1041 cr0 |= CR0_MP | CR0_TS; /* Done at every execve() too. */
1042 #ifdef I386_CPU
1043 if (cpu_class != CPUCLASS_386)
1044 #endif
1045 cr0 |= CR0_WP | CR0_AM;
1046 load_cr0(cr0);
1047 load_gs(_udatasel);
1050 static int
1051 sysctl_machdep_adjkerntz(SYSCTL_HANDLER_ARGS)
1053 int error;
1054 error = sysctl_handle_int(oidp, oidp->oid_arg1, oidp->oid_arg2,
1055 req);
1056 if (!error && req->newptr)
1057 resettodr();
1058 return (error);
1061 SYSCTL_PROC(_machdep, CPU_ADJKERNTZ, adjkerntz, CTLTYPE_INT|CTLFLAG_RW,
1062 &adjkerntz, 0, sysctl_machdep_adjkerntz, "I", "");
1064 SYSCTL_INT(_machdep, CPU_DISRTCSET, disable_rtc_set,
1065 CTLFLAG_RW, &disable_rtc_set, 0, "");
1067 SYSCTL_STRUCT(_machdep, CPU_BOOTINFO, bootinfo,
1068 CTLFLAG_RD, &bootinfo, bootinfo, "");
1070 SYSCTL_INT(_machdep, CPU_WALLCLOCK, wall_cmos_clock,
1071 CTLFLAG_RW, &wall_cmos_clock, 0, "");
1073 extern u_long bootdev; /* not a cdev_t - encoding is different */
1074 SYSCTL_ULONG(_machdep, OID_AUTO, guessed_bootdev,
1075 CTLFLAG_RD, &bootdev, 0, "Boot device (not in cdev_t format)");
1078 * Initialize 386 and configure to run kernel
1082 * Initialize segments & interrupt table
1085 int _default_ldt;
1086 union descriptor gdt[NGDT * MAXCPU]; /* global descriptor table */
1087 static struct gate_descriptor idt0[NIDT];
1088 struct gate_descriptor *idt = &idt0[0]; /* interrupt descriptor table */
1089 union descriptor ldt[NLDT]; /* local descriptor table */
1091 /* table descriptors - used to load tables by cpu */
1092 struct region_descriptor r_gdt, r_idt;
1094 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
1095 extern int has_f00f_bug;
1096 #endif
1098 static struct i386tss dblfault_tss;
1099 static char dblfault_stack[PAGE_SIZE];
1101 extern struct user *proc0paddr;
1104 /* software prototypes -- in more palatable form */
1105 struct soft_segment_descriptor gdt_segs[] = {
1106 /* GNULL_SEL 0 Null Descriptor */
1107 { 0x0, /* segment base address */
1108 0x0, /* length */
1109 0, /* segment type */
1110 0, /* segment descriptor priority level */
1111 0, /* segment descriptor present */
1112 0, 0,
1113 0, /* default 32 vs 16 bit size */
1114 0 /* limit granularity (byte/page units)*/ },
1115 /* GCODE_SEL 1 Code Descriptor for kernel */
1116 { 0x0, /* segment base address */
1117 0xfffff, /* length - all address space */
1118 SDT_MEMERA, /* segment type */
1119 0, /* segment descriptor priority level */
1120 1, /* segment descriptor present */
1121 0, 0,
1122 1, /* default 32 vs 16 bit size */
1123 1 /* limit granularity (byte/page units)*/ },
1124 /* GDATA_SEL 2 Data Descriptor for kernel */
1125 { 0x0, /* segment base address */
1126 0xfffff, /* length - all address space */
1127 SDT_MEMRWA, /* segment type */
1128 0, /* segment descriptor priority level */
1129 1, /* segment descriptor present */
1130 0, 0,
1131 1, /* default 32 vs 16 bit size */
1132 1 /* limit granularity (byte/page units)*/ },
1133 /* GPRIV_SEL 3 SMP Per-Processor Private Data Descriptor */
1134 { 0x0, /* segment base address */
1135 0xfffff, /* length - all address space */
1136 SDT_MEMRWA, /* segment type */
1137 0, /* segment descriptor priority level */
1138 1, /* segment descriptor present */
1139 0, 0,
1140 1, /* default 32 vs 16 bit size */
1141 1 /* limit granularity (byte/page units)*/ },
1142 /* GPROC0_SEL 4 Proc 0 Tss Descriptor */
1144 0x0, /* segment base address */
1145 sizeof(struct i386tss)-1,/* length - all address space */
1146 SDT_SYS386TSS, /* segment type */
1147 0, /* segment descriptor priority level */
1148 1, /* segment descriptor present */
1149 0, 0,
1150 0, /* unused - default 32 vs 16 bit size */
1151 0 /* limit granularity (byte/page units)*/ },
1152 /* GLDT_SEL 5 LDT Descriptor */
1153 { (int) ldt, /* segment base address */
1154 sizeof(ldt)-1, /* length - all address space */
1155 SDT_SYSLDT, /* segment type */
1156 SEL_UPL, /* segment descriptor priority level */
1157 1, /* segment descriptor present */
1158 0, 0,
1159 0, /* unused - default 32 vs 16 bit size */
1160 0 /* limit granularity (byte/page units)*/ },
1161 /* GUSERLDT_SEL 6 User LDT Descriptor per process */
1162 { (int) ldt, /* segment base address */
1163 (512 * sizeof(union descriptor)-1), /* length */
1164 SDT_SYSLDT, /* segment type */
1165 0, /* segment descriptor priority level */
1166 1, /* segment descriptor present */
1167 0, 0,
1168 0, /* unused - default 32 vs 16 bit size */
1169 0 /* limit granularity (byte/page units)*/ },
1170 /* GTGATE_SEL 7 Null Descriptor - Placeholder */
1171 { 0x0, /* segment base address */
1172 0x0, /* length - all address space */
1173 0, /* segment type */
1174 0, /* segment descriptor priority level */
1175 0, /* segment descriptor present */
1176 0, 0,
1177 0, /* default 32 vs 16 bit size */
1178 0 /* limit granularity (byte/page units)*/ },
1179 /* GBIOSLOWMEM_SEL 8 BIOS access to realmode segment 0x40, must be #8 in GDT */
1180 { 0x400, /* segment base address */
1181 0xfffff, /* length */
1182 SDT_MEMRWA, /* segment type */
1183 0, /* segment descriptor priority level */
1184 1, /* segment descriptor present */
1185 0, 0,
1186 1, /* default 32 vs 16 bit size */
1187 1 /* limit granularity (byte/page units)*/ },
1188 /* GPANIC_SEL 9 Panic Tss Descriptor */
1189 { (int) &dblfault_tss, /* segment base address */
1190 sizeof(struct i386tss)-1,/* length - all address space */
1191 SDT_SYS386TSS, /* segment type */
1192 0, /* segment descriptor priority level */
1193 1, /* segment descriptor present */
1194 0, 0,
1195 0, /* unused - default 32 vs 16 bit size */
1196 0 /* limit granularity (byte/page units)*/ },
1197 /* GBIOSCODE32_SEL 10 BIOS 32-bit interface (32bit Code) */
1198 { 0, /* segment base address (overwritten) */
1199 0xfffff, /* length */
1200 SDT_MEMERA, /* segment type */
1201 0, /* segment descriptor priority level */
1202 1, /* segment descriptor present */
1203 0, 0,
1204 0, /* default 32 vs 16 bit size */
1205 1 /* limit granularity (byte/page units)*/ },
1206 /* GBIOSCODE16_SEL 11 BIOS 32-bit interface (16bit Code) */
1207 { 0, /* segment base address (overwritten) */
1208 0xfffff, /* length */
1209 SDT_MEMERA, /* segment type */
1210 0, /* segment descriptor priority level */
1211 1, /* segment descriptor present */
1212 0, 0,
1213 0, /* default 32 vs 16 bit size */
1214 1 /* limit granularity (byte/page units)*/ },
1215 /* GBIOSDATA_SEL 12 BIOS 32-bit interface (Data) */
1216 { 0, /* segment base address (overwritten) */
1217 0xfffff, /* length */
1218 SDT_MEMRWA, /* segment type */
1219 0, /* segment descriptor priority level */
1220 1, /* segment descriptor present */
1221 0, 0,
1222 1, /* default 32 vs 16 bit size */
1223 1 /* limit granularity (byte/page units)*/ },
1224 /* GBIOSUTIL_SEL 13 BIOS 16-bit interface (Utility) */
1225 { 0, /* segment base address (overwritten) */
1226 0xfffff, /* length */
1227 SDT_MEMRWA, /* segment type */
1228 0, /* segment descriptor priority level */
1229 1, /* segment descriptor present */
1230 0, 0,
1231 0, /* default 32 vs 16 bit size */
1232 1 /* limit granularity (byte/page units)*/ },
1233 /* GBIOSARGS_SEL 14 BIOS 16-bit interface (Arguments) */
1234 { 0, /* segment base address (overwritten) */
1235 0xfffff, /* length */
1236 SDT_MEMRWA, /* segment type */
1237 0, /* segment descriptor priority level */
1238 1, /* segment descriptor present */
1239 0, 0,
1240 0, /* default 32 vs 16 bit size */
1241 1 /* limit granularity (byte/page units)*/ },
1242 /* GTLS_START 15 TLS */
1243 { 0x0, /* segment base address */
1244 0x0, /* length */
1245 0, /* segment type */
1246 0, /* segment descriptor priority level */
1247 0, /* segment descriptor present */
1248 0, 0,
1249 0, /* default 32 vs 16 bit size */
1250 0 /* limit granularity (byte/page units)*/ },
1251 /* GTLS_START+1 16 TLS */
1252 { 0x0, /* segment base address */
1253 0x0, /* length */
1254 0, /* segment type */
1255 0, /* segment descriptor priority level */
1256 0, /* segment descriptor present */
1257 0, 0,
1258 0, /* default 32 vs 16 bit size */
1259 0 /* limit granularity (byte/page units)*/ },
1260 /* GTLS_END 17 TLS */
1261 { 0x0, /* segment base address */
1262 0x0, /* length */
1263 0, /* segment type */
1264 0, /* segment descriptor priority level */
1265 0, /* segment descriptor present */
1266 0, 0,
1267 0, /* default 32 vs 16 bit size */
1268 0 /* limit granularity (byte/page units)*/ },
1271 static struct soft_segment_descriptor ldt_segs[] = {
1272 /* Null Descriptor - overwritten by call gate */
1273 { 0x0, /* segment base address */
1274 0x0, /* length - all address space */
1275 0, /* segment type */
1276 0, /* segment descriptor priority level */
1277 0, /* segment descriptor present */
1278 0, 0,
1279 0, /* default 32 vs 16 bit size */
1280 0 /* limit granularity (byte/page units)*/ },
1281 /* Null Descriptor - overwritten by call gate */
1282 { 0x0, /* segment base address */
1283 0x0, /* length - all address space */
1284 0, /* segment type */
1285 0, /* segment descriptor priority level */
1286 0, /* segment descriptor present */
1287 0, 0,
1288 0, /* default 32 vs 16 bit size */
1289 0 /* limit granularity (byte/page units)*/ },
1290 /* Null Descriptor - overwritten by call gate */
1291 { 0x0, /* segment base address */
1292 0x0, /* length - all address space */
1293 0, /* segment type */
1294 0, /* segment descriptor priority level */
1295 0, /* segment descriptor present */
1296 0, 0,
1297 0, /* default 32 vs 16 bit size */
1298 0 /* limit granularity (byte/page units)*/ },
1299 /* Code Descriptor for user */
1300 { 0x0, /* segment base address */
1301 0xfffff, /* length - all address space */
1302 SDT_MEMERA, /* segment type */
1303 SEL_UPL, /* segment descriptor priority level */
1304 1, /* segment descriptor present */
1305 0, 0,
1306 1, /* default 32 vs 16 bit size */
1307 1 /* limit granularity (byte/page units)*/ },
1308 /* Null Descriptor - overwritten by call gate */
1309 { 0x0, /* segment base address */
1310 0x0, /* length - all address space */
1311 0, /* segment type */
1312 0, /* segment descriptor priority level */
1313 0, /* segment descriptor present */
1314 0, 0,
1315 0, /* default 32 vs 16 bit size */
1316 0 /* limit granularity (byte/page units)*/ },
1317 /* Data Descriptor for user */
1318 { 0x0, /* segment base address */
1319 0xfffff, /* length - all address space */
1320 SDT_MEMRWA, /* segment type */
1321 SEL_UPL, /* segment descriptor priority level */
1322 1, /* segment descriptor present */
1323 0, 0,
1324 1, /* default 32 vs 16 bit size */
1325 1 /* limit granularity (byte/page units)*/ },
1328 void
1329 setidt(int idx, inthand_t *func, int typ, int dpl, int selec)
1331 struct gate_descriptor *ip;
1333 ip = idt + idx;
1334 ip->gd_looffset = (int)func;
1335 ip->gd_selector = selec;
1336 ip->gd_stkcpy = 0;
1337 ip->gd_xx = 0;
1338 ip->gd_type = typ;
1339 ip->gd_dpl = dpl;
1340 ip->gd_p = 1;
1341 ip->gd_hioffset = ((int)func)>>16 ;
1344 #define IDTVEC(name) __CONCAT(X,name)
1346 extern inthand_t
1347 IDTVEC(div), IDTVEC(dbg), IDTVEC(nmi), IDTVEC(bpt), IDTVEC(ofl),
1348 IDTVEC(bnd), IDTVEC(ill), IDTVEC(dna), IDTVEC(fpusegm),
1349 IDTVEC(tss), IDTVEC(missing), IDTVEC(stk), IDTVEC(prot),
1350 IDTVEC(page), IDTVEC(mchk), IDTVEC(fpu), IDTVEC(align),
1351 IDTVEC(xmm), IDTVEC(syscall),
1352 IDTVEC(rsvd0);
1353 extern inthand_t
1354 IDTVEC(int0x80_syscall);
1356 #ifdef DEBUG_INTERRUPTS
1357 extern inthand_t *Xrsvdary[256];
1358 #endif
1360 void
1361 sdtossd(struct segment_descriptor *sd, struct soft_segment_descriptor *ssd)
1363 ssd->ssd_base = (sd->sd_hibase << 24) | sd->sd_lobase;
1364 ssd->ssd_limit = (sd->sd_hilimit << 16) | sd->sd_lolimit;
1365 ssd->ssd_type = sd->sd_type;
1366 ssd->ssd_dpl = sd->sd_dpl;
1367 ssd->ssd_p = sd->sd_p;
1368 ssd->ssd_def32 = sd->sd_def32;
1369 ssd->ssd_gran = sd->sd_gran;
1373 * Populate the (physmap) array with base/bound pairs describing the
1374 * available physical memory in the system, then test this memory and
1375 * build the phys_avail array describing the actually-available memory.
1377 * If we cannot accurately determine the physical memory map, then use
1378 * value from the 0xE801 call, and failing that, the RTC.
1380 * Total memory size may be set by the kernel environment variable
1381 * hw.physmem or the compile-time define MAXMEM.
1383 static void
1384 getmemsize(int first)
1386 int i, physmap_idx, pa_indx;
1387 int hasbrokenint12;
1388 u_int basemem, extmem;
1389 struct vm86frame vmf;
1390 struct vm86context vmc;
1391 vm_offset_t pa;
1392 vm_offset_t physmap[PHYSMAP_ENTRIES*2];
1393 pt_entry_t *pte;
1394 const char *cp;
1395 struct {
1396 u_int64_t base;
1397 u_int64_t length;
1398 u_int32_t type;
1399 } *smap;
1400 quad_t dcons_addr, dcons_size;
1402 hasbrokenint12 = 0;
1403 TUNABLE_INT_FETCH("hw.hasbrokenint12", &hasbrokenint12);
1404 bzero(&vmf, sizeof(struct vm86frame));
1405 bzero(physmap, sizeof(physmap));
1406 basemem = 0;
1409 * Some newer BIOSes has broken INT 12H implementation which cause
1410 * kernel panic immediately. In this case, we need to scan SMAP
1411 * with INT 15:E820 first, then determine base memory size.
1413 if (hasbrokenint12) {
1414 goto int15e820;
1418 * Perform "base memory" related probes & setup. If we get a crazy
1419 * value give the bios some scribble space just in case.
1421 vm86_intcall(0x12, &vmf);
1422 basemem = vmf.vmf_ax;
1423 if (basemem > 640) {
1424 kprintf("Preposterous BIOS basemem of %uK, "
1425 "truncating to < 640K\n", basemem);
1426 basemem = 636;
1430 * XXX if biosbasemem is now < 640, there is a `hole'
1431 * between the end of base memory and the start of
1432 * ISA memory. The hole may be empty or it may
1433 * contain BIOS code or data. Map it read/write so
1434 * that the BIOS can write to it. (Memory from 0 to
1435 * the physical end of the kernel is mapped read-only
1436 * to begin with and then parts of it are remapped.
1437 * The parts that aren't remapped form holes that
1438 * remain read-only and are unused by the kernel.
1439 * The base memory area is below the physical end of
1440 * the kernel and right now forms a read-only hole.
1441 * The part of it from PAGE_SIZE to
1442 * (trunc_page(biosbasemem * 1024) - 1) will be
1443 * remapped and used by the kernel later.)
1445 * This code is similar to the code used in
1446 * pmap_mapdev, but since no memory needs to be
1447 * allocated we simply change the mapping.
1449 for (pa = trunc_page(basemem * 1024);
1450 pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1451 pte = vtopte(pa + KERNBASE);
1452 *pte = pa | PG_RW | PG_V;
1456 * if basemem != 640, map pages r/w into vm86 page table so
1457 * that the bios can scribble on it.
1459 pte = vm86paddr;
1460 for (i = basemem / 4; i < 160; i++)
1461 pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1463 int15e820:
1465 * map page 1 R/W into the kernel page table so we can use it
1466 * as a buffer. The kernel will unmap this page later.
1468 pte = vtopte(KERNBASE + (1 << PAGE_SHIFT));
1469 *pte = (1 << PAGE_SHIFT) | PG_RW | PG_V;
1472 * get memory map with INT 15:E820
1474 #define SMAPSIZ sizeof(*smap)
1475 #define SMAP_SIG 0x534D4150 /* 'SMAP' */
1477 vmc.npages = 0;
1478 smap = (void *)vm86_addpage(&vmc, 1, KERNBASE + (1 << PAGE_SHIFT));
1479 vm86_getptr(&vmc, (vm_offset_t)smap, &vmf.vmf_es, &vmf.vmf_di);
1481 physmap_idx = 0;
1482 vmf.vmf_ebx = 0;
1483 do {
1484 vmf.vmf_eax = 0xE820;
1485 vmf.vmf_edx = SMAP_SIG;
1486 vmf.vmf_ecx = SMAPSIZ;
1487 i = vm86_datacall(0x15, &vmf, &vmc);
1488 if (i || vmf.vmf_eax != SMAP_SIG)
1489 break;
1490 if (boothowto & RB_VERBOSE)
1491 kprintf("SMAP type=%02x base=%08x %08x len=%08x %08x\n",
1492 smap->type,
1493 *(u_int32_t *)((char *)&smap->base + 4),
1494 (u_int32_t)smap->base,
1495 *(u_int32_t *)((char *)&smap->length + 4),
1496 (u_int32_t)smap->length);
1498 if (smap->type != 0x01)
1499 goto next_run;
1501 if (smap->length == 0)
1502 goto next_run;
1504 if (smap->base >= 0xffffffff) {
1505 kprintf("%uK of memory above 4GB ignored\n",
1506 (u_int)(smap->length / 1024));
1507 goto next_run;
1510 for (i = 0; i <= physmap_idx; i += 2) {
1511 if (smap->base < physmap[i + 1]) {
1512 if (boothowto & RB_VERBOSE)
1513 kprintf(
1514 "Overlapping or non-montonic memory region, ignoring second region\n");
1515 goto next_run;
1519 if (smap->base == physmap[physmap_idx + 1]) {
1520 physmap[physmap_idx + 1] += smap->length;
1521 goto next_run;
1524 physmap_idx += 2;
1525 if (physmap_idx == PHYSMAP_ENTRIES*2) {
1526 kprintf(
1527 "Too many segments in the physical address map, giving up\n");
1528 break;
1530 physmap[physmap_idx] = smap->base;
1531 physmap[physmap_idx + 1] = smap->base + smap->length;
1532 next_run:
1533 ; /* fix GCC3.x warning */
1534 } while (vmf.vmf_ebx != 0);
1537 * Perform "base memory" related probes & setup based on SMAP
1539 if (basemem == 0) {
1540 for (i = 0; i <= physmap_idx; i += 2) {
1541 if (physmap[i] == 0x00000000) {
1542 basemem = physmap[i + 1] / 1024;
1543 break;
1547 if (basemem == 0) {
1548 basemem = 640;
1551 if (basemem > 640) {
1552 kprintf("Preposterous BIOS basemem of %uK, truncating to 640K\n",
1553 basemem);
1554 basemem = 640;
1557 for (pa = trunc_page(basemem * 1024);
1558 pa < ISA_HOLE_START; pa += PAGE_SIZE) {
1559 pte = vtopte(pa + KERNBASE);
1560 *pte = pa | PG_RW | PG_V;
1563 pte = vm86paddr;
1564 for (i = basemem / 4; i < 160; i++)
1565 pte[i] = (i << PAGE_SHIFT) | PG_V | PG_RW | PG_U;
1568 if (physmap[1] != 0)
1569 goto physmap_done;
1572 * If we failed above, try memory map with INT 15:E801
1574 vmf.vmf_ax = 0xE801;
1575 if (vm86_intcall(0x15, &vmf) == 0) {
1576 extmem = vmf.vmf_cx + vmf.vmf_dx * 64;
1577 } else {
1578 #if 0
1579 vmf.vmf_ah = 0x88;
1580 vm86_intcall(0x15, &vmf);
1581 extmem = vmf.vmf_ax;
1582 #else
1584 * Prefer the RTC value for extended memory.
1586 extmem = rtcin(RTC_EXTLO) + (rtcin(RTC_EXTHI) << 8);
1587 #endif
1591 * Special hack for chipsets that still remap the 384k hole when
1592 * there's 16MB of memory - this really confuses people that
1593 * are trying to use bus mastering ISA controllers with the
1594 * "16MB limit"; they only have 16MB, but the remapping puts
1595 * them beyond the limit.
1597 * If extended memory is between 15-16MB (16-17MB phys address range),
1598 * chop it to 15MB.
1600 if ((extmem > 15 * 1024) && (extmem < 16 * 1024))
1601 extmem = 15 * 1024;
1603 physmap[0] = 0;
1604 physmap[1] = basemem * 1024;
1605 physmap_idx = 2;
1606 physmap[physmap_idx] = 0x100000;
1607 physmap[physmap_idx + 1] = physmap[physmap_idx] + extmem * 1024;
1609 physmap_done:
1611 * Now, physmap contains a map of physical memory.
1614 #ifdef SMP
1615 /* make hole for AP bootstrap code YYY */
1616 physmap[1] = mp_bootaddress(physmap[1] / 1024);
1618 /* look for the MP hardware - needed for apic addresses */
1619 mp_probe();
1620 #endif
1623 * Maxmem isn't the "maximum memory", it's one larger than the
1624 * highest page of the physical address space. It should be
1625 * called something like "Maxphyspage". We may adjust this
1626 * based on ``hw.physmem'' and the results of the memory test.
1628 Maxmem = atop(physmap[physmap_idx + 1]);
1630 #ifdef MAXMEM
1631 Maxmem = MAXMEM / 4;
1632 #endif
1635 * hw.physmem is a size in bytes; we also allow k, m, and g suffixes
1636 * for the appropriate modifiers. This overrides MAXMEM.
1638 if ((cp = kgetenv("hw.physmem")) != NULL) {
1639 u_int64_t AllowMem, sanity;
1640 char *ep;
1642 sanity = AllowMem = strtouq(cp, &ep, 0);
1643 if ((ep != cp) && (*ep != 0)) {
1644 switch(*ep) {
1645 case 'g':
1646 case 'G':
1647 AllowMem <<= 10;
1648 case 'm':
1649 case 'M':
1650 AllowMem <<= 10;
1651 case 'k':
1652 case 'K':
1653 AllowMem <<= 10;
1654 break;
1655 default:
1656 AllowMem = sanity = 0;
1658 if (AllowMem < sanity)
1659 AllowMem = 0;
1661 if (AllowMem == 0)
1662 kprintf("Ignoring invalid memory size of '%s'\n", cp);
1663 else
1664 Maxmem = atop(AllowMem);
1667 if (atop(physmap[physmap_idx + 1]) != Maxmem &&
1668 (boothowto & RB_VERBOSE))
1669 kprintf("Physical memory use set to %lluK\n", Maxmem * 4);
1672 * If Maxmem has been increased beyond what the system has detected,
1673 * extend the last memory segment to the new limit.
1675 if (atop(physmap[physmap_idx + 1]) < Maxmem)
1676 physmap[physmap_idx + 1] = ptoa(Maxmem);
1678 /* call pmap initialization to make new kernel address space */
1679 pmap_bootstrap(first, 0);
1682 * Size up each available chunk of physical memory.
1684 physmap[0] = PAGE_SIZE; /* mask off page 0 */
1685 pa_indx = 0;
1686 phys_avail[pa_indx++] = physmap[0];
1687 phys_avail[pa_indx] = physmap[0];
1688 pte = CMAP1;
1691 * Get dcons buffer address
1693 if (kgetenv_quad("dcons.addr", &dcons_addr) == 0 ||
1694 kgetenv_quad("dcons.size", &dcons_size) == 0)
1695 dcons_addr = 0;
1698 * physmap is in bytes, so when converting to page boundaries,
1699 * round up the start address and round down the end address.
1701 for (i = 0; i <= physmap_idx; i += 2) {
1702 vm_offset_t end;
1704 end = ptoa(Maxmem);
1705 if (physmap[i + 1] < end)
1706 end = trunc_page(physmap[i + 1]);
1707 for (pa = round_page(physmap[i]); pa < end; pa += PAGE_SIZE) {
1708 int tmp, page_bad;
1709 #if 0
1710 int *ptr = 0;
1711 #else
1712 int *ptr = (int *)CADDR1;
1713 #endif
1716 * block out kernel memory as not available.
1718 if (pa >= 0x100000 && pa < first)
1719 continue;
1722 * block out dcons buffer
1724 if (dcons_addr > 0
1725 && pa >= trunc_page(dcons_addr)
1726 && pa < dcons_addr + dcons_size)
1727 continue;
1729 page_bad = FALSE;
1732 * map page into kernel: valid, read/write,non-cacheable
1734 *pte = pa | PG_V | PG_RW | PG_N;
1735 cpu_invltlb();
1737 tmp = *(int *)ptr;
1739 * Test for alternating 1's and 0's
1741 *(volatile int *)ptr = 0xaaaaaaaa;
1742 if (*(volatile int *)ptr != 0xaaaaaaaa) {
1743 page_bad = TRUE;
1746 * Test for alternating 0's and 1's
1748 *(volatile int *)ptr = 0x55555555;
1749 if (*(volatile int *)ptr != 0x55555555) {
1750 page_bad = TRUE;
1753 * Test for all 1's
1755 *(volatile int *)ptr = 0xffffffff;
1756 if (*(volatile int *)ptr != 0xffffffff) {
1757 page_bad = TRUE;
1760 * Test for all 0's
1762 *(volatile int *)ptr = 0x0;
1763 if (*(volatile int *)ptr != 0x0) {
1764 page_bad = TRUE;
1767 * Restore original value.
1769 *(int *)ptr = tmp;
1772 * Adjust array of valid/good pages.
1774 if (page_bad == TRUE) {
1775 continue;
1778 * If this good page is a continuation of the
1779 * previous set of good pages, then just increase
1780 * the end pointer. Otherwise start a new chunk.
1781 * Note that "end" points one higher than end,
1782 * making the range >= start and < end.
1783 * If we're also doing a speculative memory
1784 * test and we at or past the end, bump up Maxmem
1785 * so that we keep going. The first bad page
1786 * will terminate the loop.
1788 if (phys_avail[pa_indx] == pa) {
1789 phys_avail[pa_indx] += PAGE_SIZE;
1790 } else {
1791 pa_indx++;
1792 if (pa_indx >= PHYSMAP_ENTRIES*2) {
1793 kprintf("Too many holes in the physical address space, giving up\n");
1794 pa_indx--;
1795 break;
1797 phys_avail[pa_indx++] = pa; /* start */
1798 phys_avail[pa_indx] = pa + PAGE_SIZE; /* end */
1800 physmem++;
1803 *pte = 0;
1804 cpu_invltlb();
1807 * XXX
1808 * The last chunk must contain at least one page plus the message
1809 * buffer to avoid complicating other code (message buffer address
1810 * calculation, etc.).
1812 while (phys_avail[pa_indx - 1] + PAGE_SIZE +
1813 round_page(MSGBUF_SIZE) >= phys_avail[pa_indx]) {
1814 physmem -= atop(phys_avail[pa_indx] - phys_avail[pa_indx - 1]);
1815 phys_avail[pa_indx--] = 0;
1816 phys_avail[pa_indx--] = 0;
1819 Maxmem = atop(phys_avail[pa_indx]);
1821 /* Trim off space for the message buffer. */
1822 phys_avail[pa_indx] -= round_page(MSGBUF_SIZE);
1824 avail_end = phys_avail[pa_indx];
1828 * IDT VECTORS:
1829 * 0 Divide by zero
1830 * 1 Debug
1831 * 2 NMI
1832 * 3 BreakPoint
1833 * 4 OverFlow
1834 * 5 Bound-Range
1835 * 6 Invalid OpCode
1836 * 7 Device Not Available (x87)
1837 * 8 Double-Fault
1838 * 9 Coprocessor Segment overrun (unsupported, reserved)
1839 * 10 Invalid-TSS
1840 * 11 Segment not present
1841 * 12 Stack
1842 * 13 General Protection
1843 * 14 Page Fault
1844 * 15 Reserved
1845 * 16 x87 FP Exception pending
1846 * 17 Alignment Check
1847 * 18 Machine Check
1848 * 19 SIMD floating point
1849 * 20-31 reserved
1850 * 32-255 INTn/external sources
1852 void
1853 init386(int first)
1855 struct gate_descriptor *gdp;
1856 int gsel_tss, metadata_missing, off, x;
1857 struct mdglobaldata *gd;
1860 * Prevent lowering of the ipl if we call tsleep() early.
1862 gd = &CPU_prvspace[0].mdglobaldata;
1863 bzero(gd, sizeof(*gd));
1865 gd->mi.gd_curthread = &thread0;
1866 thread0.td_gd = &gd->mi;
1868 atdevbase = ISA_HOLE_START + KERNBASE;
1870 metadata_missing = 0;
1871 if (bootinfo.bi_modulep) {
1872 preload_metadata = (caddr_t)bootinfo.bi_modulep + KERNBASE;
1873 preload_bootstrap_relocate(KERNBASE);
1874 } else {
1875 metadata_missing = 1;
1877 if (bootinfo.bi_envp)
1878 kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;
1881 * start with one cpu. Note: ncpus2_shift and ncpus2_mask are left
1882 * at 0.
1884 ncpus = 1;
1885 ncpus2 = 1;
1886 /* Init basic tunables, hz etc */
1887 init_param1();
1890 * make gdt memory segments, the code segment goes up to end of the
1891 * page with etext in it, the data segment goes to the end of
1892 * the address space
1895 * XXX text protection is temporarily (?) disabled. The limit was
1896 * i386_btop(round_page(etext)) - 1.
1898 gdt_segs[GCODE_SEL].ssd_limit = atop(0 - 1);
1899 gdt_segs[GDATA_SEL].ssd_limit = atop(0 - 1);
1901 gdt_segs[GPRIV_SEL].ssd_limit =
1902 atop(sizeof(struct privatespace) - 1);
1903 gdt_segs[GPRIV_SEL].ssd_base = (int) &CPU_prvspace[0];
1904 gdt_segs[GPROC0_SEL].ssd_base =
1905 (int) &CPU_prvspace[0].mdglobaldata.gd_common_tss;
1907 gd->mi.gd_prvspace = &CPU_prvspace[0];
1910 * Note: on both UP and SMP curthread must be set non-NULL
1911 * early in the boot sequence because the system assumes
1912 * that 'curthread' is never NULL.
1915 for (x = 0; x < NGDT; x++) {
1916 #ifdef BDE_DEBUGGER
1917 /* avoid overwriting db entries with APM ones */
1918 if (x >= GAPMCODE32_SEL && x <= GAPMDATA_SEL)
1919 continue;
1920 #endif
1921 ssdtosd(&gdt_segs[x], &gdt[x].sd);
1924 r_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
1925 r_gdt.rd_base = (int) gdt;
1926 lgdt(&r_gdt);
1928 mi_gdinit(&gd->mi, 0);
1929 cpu_gdinit(gd, 0);
1930 mi_proc0init(&gd->mi, proc0paddr);
1931 safepri = TDPRI_MAX;
1933 /* make ldt memory segments */
1935 * XXX - VM_MAX_USER_ADDRESS is an end address, not a max. And it
1936 * should be spelled ...MAX_USER...
1938 ldt_segs[LUCODE_SEL].ssd_limit = atop(VM_MAX_USER_ADDRESS - 1);
1939 ldt_segs[LUDATA_SEL].ssd_limit = atop(VM_MAX_USER_ADDRESS - 1);
1940 for (x = 0; x < sizeof ldt_segs / sizeof ldt_segs[0]; x++)
1941 ssdtosd(&ldt_segs[x], &ldt[x].sd);
1943 _default_ldt = GSEL(GLDT_SEL, SEL_KPL);
1944 lldt(_default_ldt);
1945 gd->gd_currentldt = _default_ldt;
1946 /* spinlocks and the BGL */
1947 init_locks();
1950 * Setup the hardware exception table. Most exceptions use
1951 * SDT_SYS386TGT, known as a 'trap gate'. Trap gates leave
1952 * interrupts enabled. VM page faults use SDT_SYS386IGT, known as
1953 * an 'interrupt trap gate', which disables interrupts on entry,
1954 * in order to be able to poll the appropriate CRn register to
1955 * determine the fault address.
1957 for (x = 0; x < NIDT; x++) {
1958 #ifdef DEBUG_INTERRUPTS
1959 setidt(x, Xrsvdary[x], SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1960 #else
1961 setidt(x, &IDTVEC(rsvd0), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1962 #endif
1964 setidt(0, &IDTVEC(div), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1965 setidt(1, &IDTVEC(dbg), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1966 setidt(2, &IDTVEC(nmi), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1967 setidt(3, &IDTVEC(bpt), SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1968 setidt(4, &IDTVEC(ofl), SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1969 setidt(5, &IDTVEC(bnd), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1970 setidt(6, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1971 setidt(7, &IDTVEC(dna), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1972 setidt(8, 0, SDT_SYSTASKGT, SEL_KPL, GSEL(GPANIC_SEL, SEL_KPL));
1973 setidt(9, &IDTVEC(fpusegm), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1974 setidt(10, &IDTVEC(tss), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1975 setidt(11, &IDTVEC(missing), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1976 setidt(12, &IDTVEC(stk), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1977 setidt(13, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1978 setidt(14, &IDTVEC(page), SDT_SYS386IGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1979 setidt(15, &IDTVEC(rsvd0), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1980 setidt(16, &IDTVEC(fpu), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1981 setidt(17, &IDTVEC(align), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1982 setidt(18, &IDTVEC(mchk), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1983 setidt(19, &IDTVEC(xmm), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
1984 setidt(0x80, &IDTVEC(int0x80_syscall),
1985 SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));
1987 r_idt.rd_limit = sizeof(idt0) - 1;
1988 r_idt.rd_base = (int) idt;
1989 lidt(&r_idt);
1992 * Initialize the console before we print anything out.
1994 cninit();
1996 if (metadata_missing)
1997 kprintf("WARNING: loader(8) metadata is missing!\n");
1999 #if NISA >0
2000 isa_defaultirq();
2001 #endif
2002 rand_initialize();
2004 #ifdef DDB
2005 kdb_init();
2006 if (boothowto & RB_KDB)
2007 Debugger("Boot flags requested debugger");
2008 #endif
2010 finishidentcpu(); /* Final stage of CPU initialization */
2011 setidt(6, &IDTVEC(ill), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2012 setidt(13, &IDTVEC(prot), SDT_SYS386TGT, SEL_KPL, GSEL(GCODE_SEL, SEL_KPL));
2013 initializecpu(); /* Initialize CPU registers */
2016 * make an initial tss so cpu can get interrupt stack on syscall!
2017 * The 16 bytes is to save room for a VM86 context.
2019 gd->gd_common_tss.tss_esp0 = (int) thread0.td_pcb - 16;
2020 gd->gd_common_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL) ;
2021 gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
2022 gd->gd_tss_gdt = &gdt[GPROC0_SEL].sd;
2023 gd->gd_common_tssd = *gd->gd_tss_gdt;
2024 gd->gd_common_tss.tss_ioopt = (sizeof gd->gd_common_tss) << 16;
2025 ltr(gsel_tss);
2027 dblfault_tss.tss_esp = dblfault_tss.tss_esp0 = dblfault_tss.tss_esp1 =
2028 dblfault_tss.tss_esp2 = (int) &dblfault_stack[sizeof(dblfault_stack)];
2029 dblfault_tss.tss_ss = dblfault_tss.tss_ss0 = dblfault_tss.tss_ss1 =
2030 dblfault_tss.tss_ss2 = GSEL(GDATA_SEL, SEL_KPL);
2031 dblfault_tss.tss_cr3 = (int)IdlePTD;
2032 dblfault_tss.tss_eip = (int) dblfault_handler;
2033 dblfault_tss.tss_eflags = PSL_KERNEL;
2034 dblfault_tss.tss_ds = dblfault_tss.tss_es =
2035 dblfault_tss.tss_gs = GSEL(GDATA_SEL, SEL_KPL);
2036 dblfault_tss.tss_fs = GSEL(GPRIV_SEL, SEL_KPL);
2037 dblfault_tss.tss_cs = GSEL(GCODE_SEL, SEL_KPL);
2038 dblfault_tss.tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
2040 vm86_initialize();
2041 getmemsize(first);
2042 init_param2(physmem);
2044 /* now running on new page tables, configured,and u/iom is accessible */
2046 /* Map the message buffer. */
2047 for (off = 0; off < round_page(MSGBUF_SIZE); off += PAGE_SIZE)
2048 pmap_kenter((vm_offset_t)msgbufp + off, avail_end + off);
2050 msgbufinit(msgbufp, MSGBUF_SIZE);
2052 /* make a call gate to reenter kernel with */
2053 gdp = &ldt[LSYS5CALLS_SEL].gd;
2055 x = (int) &IDTVEC(syscall);
2056 gdp->gd_looffset = x++;
2057 gdp->gd_selector = GSEL(GCODE_SEL,SEL_KPL);
2058 gdp->gd_stkcpy = 1;
2059 gdp->gd_type = SDT_SYS386CGT;
2060 gdp->gd_dpl = SEL_UPL;
2061 gdp->gd_p = 1;
2062 gdp->gd_hioffset = ((int) &IDTVEC(syscall)) >>16;
2064 /* XXX does this work? */
2065 ldt[LBSDICALLS_SEL] = ldt[LSYS5CALLS_SEL];
2066 ldt[LSOL26CALLS_SEL] = ldt[LSYS5CALLS_SEL];
2068 /* transfer to user mode */
2070 _ucodesel = LSEL(LUCODE_SEL, SEL_UPL);
2071 _udatasel = LSEL(LUDATA_SEL, SEL_UPL);
2073 /* setup proc 0's pcb */
2074 thread0.td_pcb->pcb_flags = 0;
2075 thread0.td_pcb->pcb_cr3 = (int)IdlePTD; /* should already be setup */
2076 thread0.td_pcb->pcb_ext = 0;
2077 proc0.p_lwp.lwp_md.md_regs = &proc0_tf;
2081 * Initialize machine-dependant portions of the global data structure.
2082 * Note that the global data area and cpu0's idlestack in the private
2083 * data space were allocated in locore.
2085 * Note: the idlethread's cpl is 0
2087 * WARNING! Called from early boot, 'mycpu' may not work yet.
2089 void
2090 cpu_gdinit(struct mdglobaldata *gd, int cpu)
2092 if (cpu)
2093 gd->mi.gd_curthread = &gd->mi.gd_idlethread;
2095 lwkt_init_thread(&gd->mi.gd_idlethread,
2096 gd->mi.gd_prvspace->idlestack,
2097 sizeof(gd->mi.gd_prvspace->idlestack),
2098 TDF_MPSAFE, &gd->mi);
2099 lwkt_set_comm(&gd->mi.gd_idlethread, "idle_%d", cpu);
2100 gd->mi.gd_idlethread.td_switch = cpu_lwkt_switch;
2101 gd->mi.gd_idlethread.td_sp -= sizeof(void *);
2102 *(void **)gd->mi.gd_idlethread.td_sp = cpu_idle_restore;
2106 is_globaldata_space(vm_offset_t saddr, vm_offset_t eaddr)
2108 if (saddr >= (vm_offset_t)&CPU_prvspace[0] &&
2109 eaddr <= (vm_offset_t)&CPU_prvspace[MAXCPU]) {
2110 return (TRUE);
2112 return (FALSE);
2115 struct globaldata *
2116 globaldata_find(int cpu)
2118 KKASSERT(cpu >= 0 && cpu < ncpus);
2119 return(&CPU_prvspace[cpu].mdglobaldata.mi);
2122 #if defined(I586_CPU) && !defined(NO_F00F_HACK)
2123 static void f00f_hack(void *unused);
2124 SYSINIT(f00f_hack, SI_SUB_INTRINSIC, SI_ORDER_FIRST, f00f_hack, NULL);
2126 static void
2127 f00f_hack(void *unused)
2129 struct gate_descriptor *new_idt;
2130 vm_offset_t tmp;
2132 if (!has_f00f_bug)
2133 return;
2135 kprintf("Intel Pentium detected, installing workaround for F00F bug\n");
2137 r_idt.rd_limit = sizeof(idt0) - 1;
2139 tmp = kmem_alloc(&kernel_map, PAGE_SIZE * 2);
2140 if (tmp == 0)
2141 panic("kmem_alloc returned 0");
2142 if (((unsigned int)tmp & (PAGE_SIZE-1)) != 0)
2143 panic("kmem_alloc returned non-page-aligned memory");
2144 /* Put the first seven entries in the lower page */
2145 new_idt = (struct gate_descriptor*)(tmp + PAGE_SIZE - (7*8));
2146 bcopy(idt, new_idt, sizeof(idt0));
2147 r_idt.rd_base = (int)new_idt;
2148 lidt(&r_idt);
2149 idt = new_idt;
2150 if (vm_map_protect(&kernel_map, tmp, tmp + PAGE_SIZE,
2151 VM_PROT_READ, FALSE) != KERN_SUCCESS)
2152 panic("vm_map_protect failed");
2153 return;
2155 #endif /* defined(I586_CPU) && !NO_F00F_HACK */
2158 ptrace_set_pc(struct proc *p, unsigned long addr)
2160 p->p_md.md_regs->tf_eip = addr;
2161 return (0);
2165 ptrace_single_step(struct lwp *lp)
2167 lp->lwp_md.md_regs->tf_eflags |= PSL_T;
2168 return (0);
2172 fill_regs(struct lwp *lp, struct reg *regs)
2174 struct pcb *pcb;
2175 struct trapframe *tp;
2177 tp = lp->lwp_md.md_regs;
2178 regs->r_gs = tp->tf_gs;
2179 regs->r_fs = tp->tf_fs;
2180 regs->r_es = tp->tf_es;
2181 regs->r_ds = tp->tf_ds;
2182 regs->r_edi = tp->tf_edi;
2183 regs->r_esi = tp->tf_esi;
2184 regs->r_ebp = tp->tf_ebp;
2185 regs->r_ebx = tp->tf_ebx;
2186 regs->r_edx = tp->tf_edx;
2187 regs->r_ecx = tp->tf_ecx;
2188 regs->r_eax = tp->tf_eax;
2189 regs->r_eip = tp->tf_eip;
2190 regs->r_cs = tp->tf_cs;
2191 regs->r_eflags = tp->tf_eflags;
2192 regs->r_esp = tp->tf_esp;
2193 regs->r_ss = tp->tf_ss;
2194 pcb = lp->lwp_thread->td_pcb;
2195 return (0);
2199 set_regs(struct lwp *lp, struct reg *regs)
2201 struct pcb *pcb;
2202 struct trapframe *tp;
2204 tp = lp->lwp_md.md_regs;
2205 if (!EFL_SECURE(regs->r_eflags, tp->tf_eflags) ||
2206 !CS_SECURE(regs->r_cs))
2207 return (EINVAL);
2208 tp->tf_gs = regs->r_gs;
2209 tp->tf_fs = regs->r_fs;
2210 tp->tf_es = regs->r_es;
2211 tp->tf_ds = regs->r_ds;
2212 tp->tf_edi = regs->r_edi;
2213 tp->tf_esi = regs->r_esi;
2214 tp->tf_ebp = regs->r_ebp;
2215 tp->tf_ebx = regs->r_ebx;
2216 tp->tf_edx = regs->r_edx;
2217 tp->tf_ecx = regs->r_ecx;
2218 tp->tf_eax = regs->r_eax;
2219 tp->tf_eip = regs->r_eip;
2220 tp->tf_cs = regs->r_cs;
2221 tp->tf_eflags = regs->r_eflags;
2222 tp->tf_esp = regs->r_esp;
2223 tp->tf_ss = regs->r_ss;
2224 pcb = lp->lwp_thread->td_pcb;
2225 return (0);
2228 #ifndef CPU_DISABLE_SSE
2229 static void
2230 fill_fpregs_xmm(struct savexmm *sv_xmm, struct save87 *sv_87)
2232 struct env87 *penv_87 = &sv_87->sv_env;
2233 struct envxmm *penv_xmm = &sv_xmm->sv_env;
2234 int i;
2236 /* FPU control/status */
2237 penv_87->en_cw = penv_xmm->en_cw;
2238 penv_87->en_sw = penv_xmm->en_sw;
2239 penv_87->en_tw = penv_xmm->en_tw;
2240 penv_87->en_fip = penv_xmm->en_fip;
2241 penv_87->en_fcs = penv_xmm->en_fcs;
2242 penv_87->en_opcode = penv_xmm->en_opcode;
2243 penv_87->en_foo = penv_xmm->en_foo;
2244 penv_87->en_fos = penv_xmm->en_fos;
2246 /* FPU registers */
2247 for (i = 0; i < 8; ++i)
2248 sv_87->sv_ac[i] = sv_xmm->sv_fp[i].fp_acc;
2250 sv_87->sv_ex_sw = sv_xmm->sv_ex_sw;
2253 static void
2254 set_fpregs_xmm(struct save87 *sv_87, struct savexmm *sv_xmm)
2256 struct env87 *penv_87 = &sv_87->sv_env;
2257 struct envxmm *penv_xmm = &sv_xmm->sv_env;
2258 int i;
2260 /* FPU control/status */
2261 penv_xmm->en_cw = penv_87->en_cw;
2262 penv_xmm->en_sw = penv_87->en_sw;
2263 penv_xmm->en_tw = penv_87->en_tw;
2264 penv_xmm->en_fip = penv_87->en_fip;
2265 penv_xmm->en_fcs = penv_87->en_fcs;
2266 penv_xmm->en_opcode = penv_87->en_opcode;
2267 penv_xmm->en_foo = penv_87->en_foo;
2268 penv_xmm->en_fos = penv_87->en_fos;
2270 /* FPU registers */
2271 for (i = 0; i < 8; ++i)
2272 sv_xmm->sv_fp[i].fp_acc = sv_87->sv_ac[i];
2274 sv_xmm->sv_ex_sw = sv_87->sv_ex_sw;
2276 #endif /* CPU_DISABLE_SSE */
2279 fill_fpregs(struct lwp *lp, struct fpreg *fpregs)
2281 #ifndef CPU_DISABLE_SSE
2282 if (cpu_fxsr) {
2283 fill_fpregs_xmm(&lp->lwp_thread->td_pcb->pcb_save.sv_xmm,
2284 (struct save87 *)fpregs);
2285 return (0);
2287 #endif /* CPU_DISABLE_SSE */
2288 bcopy(&lp->lwp_thread->td_pcb->pcb_save.sv_87, fpregs, sizeof *fpregs);
2289 return (0);
2293 set_fpregs(struct lwp *lp, struct fpreg *fpregs)
2295 #ifndef CPU_DISABLE_SSE
2296 if (cpu_fxsr) {
2297 set_fpregs_xmm((struct save87 *)fpregs,
2298 &lp->lwp_thread->td_pcb->pcb_save.sv_xmm);
2299 return (0);
2301 #endif /* CPU_DISABLE_SSE */
2302 bcopy(fpregs, &lp->lwp_thread->td_pcb->pcb_save.sv_87, sizeof *fpregs);
2303 return (0);
2307 fill_dbregs(struct lwp *lp, struct dbreg *dbregs)
2309 if (lp == NULL) {
2310 dbregs->dr0 = rdr0();
2311 dbregs->dr1 = rdr1();
2312 dbregs->dr2 = rdr2();
2313 dbregs->dr3 = rdr3();
2314 dbregs->dr4 = rdr4();
2315 dbregs->dr5 = rdr5();
2316 dbregs->dr6 = rdr6();
2317 dbregs->dr7 = rdr7();
2318 } else {
2319 struct pcb *pcb;
2321 pcb = lp->lwp_thread->td_pcb;
2322 dbregs->dr0 = pcb->pcb_dr0;
2323 dbregs->dr1 = pcb->pcb_dr1;
2324 dbregs->dr2 = pcb->pcb_dr2;
2325 dbregs->dr3 = pcb->pcb_dr3;
2326 dbregs->dr4 = 0;
2327 dbregs->dr5 = 0;
2328 dbregs->dr6 = pcb->pcb_dr6;
2329 dbregs->dr7 = pcb->pcb_dr7;
2331 return (0);
2335 set_dbregs(struct lwp *lp, struct dbreg *dbregs)
2337 if (lp == NULL) {
2338 load_dr0(dbregs->dr0);
2339 load_dr1(dbregs->dr1);
2340 load_dr2(dbregs->dr2);
2341 load_dr3(dbregs->dr3);
2342 load_dr4(dbregs->dr4);
2343 load_dr5(dbregs->dr5);
2344 load_dr6(dbregs->dr6);
2345 load_dr7(dbregs->dr7);
2346 } else {
2347 struct pcb *pcb;
2348 struct ucred *ucred;
2349 int i;
2350 uint32_t mask1, mask2;
2353 * Don't let an illegal value for dr7 get set. Specifically,
2354 * check for undefined settings. Setting these bit patterns
2355 * result in undefined behaviour and can lead to an unexpected
2356 * TRCTRAP.
2358 for (i = 0, mask1 = 0x3<<16, mask2 = 0x2<<16; i < 8;
2359 i++, mask1 <<= 2, mask2 <<= 2)
2360 if ((dbregs->dr7 & mask1) == mask2)
2361 return (EINVAL);
2363 pcb = lp->lwp_thread->td_pcb;
2364 ucred = lp->lwp_proc->p_ucred;
2367 * Don't let a process set a breakpoint that is not within the
2368 * process's address space. If a process could do this, it
2369 * could halt the system by setting a breakpoint in the kernel
2370 * (if ddb was enabled). Thus, we need to check to make sure
2371 * that no breakpoints are being enabled for addresses outside
2372 * process's address space, unless, perhaps, we were called by
2373 * uid 0.
2375 * XXX - what about when the watched area of the user's
2376 * address space is written into from within the kernel
2377 * ... wouldn't that still cause a breakpoint to be generated
2378 * from within kernel mode?
2381 if (suser_cred(ucred, 0) != 0) {
2382 if (dbregs->dr7 & 0x3) {
2383 /* dr0 is enabled */
2384 if (dbregs->dr0 >= VM_MAX_USER_ADDRESS)
2385 return (EINVAL);
2388 if (dbregs->dr7 & (0x3<<2)) {
2389 /* dr1 is enabled */
2390 if (dbregs->dr1 >= VM_MAX_USER_ADDRESS)
2391 return (EINVAL);
2394 if (dbregs->dr7 & (0x3<<4)) {
2395 /* dr2 is enabled */
2396 if (dbregs->dr2 >= VM_MAX_USER_ADDRESS)
2397 return (EINVAL);
2400 if (dbregs->dr7 & (0x3<<6)) {
2401 /* dr3 is enabled */
2402 if (dbregs->dr3 >= VM_MAX_USER_ADDRESS)
2403 return (EINVAL);
2407 pcb->pcb_dr0 = dbregs->dr0;
2408 pcb->pcb_dr1 = dbregs->dr1;
2409 pcb->pcb_dr2 = dbregs->dr2;
2410 pcb->pcb_dr3 = dbregs->dr3;
2411 pcb->pcb_dr6 = dbregs->dr6;
2412 pcb->pcb_dr7 = dbregs->dr7;
2414 pcb->pcb_flags |= PCB_DBREGS;
2417 return (0);
2421 * Return > 0 if a hardware breakpoint has been hit, and the
2422 * breakpoint was in user space. Return 0, otherwise.
2425 user_dbreg_trap(void)
2427 u_int32_t dr7, dr6; /* debug registers dr6 and dr7 */
2428 u_int32_t bp; /* breakpoint bits extracted from dr6 */
2429 int nbp; /* number of breakpoints that triggered */
2430 caddr_t addr[4]; /* breakpoint addresses */
2431 int i;
2433 dr7 = rdr7();
2434 if ((dr7 & 0x000000ff) == 0) {
2436 * all GE and LE bits in the dr7 register are zero,
2437 * thus the trap couldn't have been caused by the
2438 * hardware debug registers
2440 return 0;
2443 nbp = 0;
2444 dr6 = rdr6();
2445 bp = dr6 & 0x0000000f;
2447 if (!bp) {
2449 * None of the breakpoint bits are set meaning this
2450 * trap was not caused by any of the debug registers
2452 return 0;
2456 * at least one of the breakpoints were hit, check to see
2457 * which ones and if any of them are user space addresses
2460 if (bp & 0x01) {
2461 addr[nbp++] = (caddr_t)rdr0();
2463 if (bp & 0x02) {
2464 addr[nbp++] = (caddr_t)rdr1();
2466 if (bp & 0x04) {
2467 addr[nbp++] = (caddr_t)rdr2();
2469 if (bp & 0x08) {
2470 addr[nbp++] = (caddr_t)rdr3();
2473 for (i=0; i<nbp; i++) {
2474 if (addr[i] <
2475 (caddr_t)VM_MAX_USER_ADDRESS) {
2477 * addr[i] is in user space
2479 return nbp;
2484 * None of the breakpoints are in user space.
2486 return 0;
2490 #ifndef DDB
2491 void
2492 Debugger(const char *msg)
2494 kprintf("Debugger(\"%s\") called.\n", msg);
2496 #endif /* no DDB */
2498 #include <sys/disklabel.h>
2501 * Determine the size of the transfer, and make sure it is
2502 * within the boundaries of the partition. Adjust transfer
2503 * if needed, and signal errors or early completion.
2505 * On success a new bio layer is pushed with the translated
2506 * block number, and returned.
2508 struct bio *
2509 bounds_check_with_label(cdev_t dev, struct bio *bio,
2510 struct disklabel *lp, int wlabel)
2512 struct bio *nbio;
2513 struct buf *bp = bio->bio_buf;
2514 struct partition *p = lp->d_partitions + dkpart(dev);
2515 int labelsect = lp->d_partitions[0].p_offset;
2516 int maxsz = p->p_size,
2517 sz = (bp->b_bcount + DEV_BSIZE - 1) >> DEV_BSHIFT;
2518 daddr_t blkno = (daddr_t)(bio->bio_offset >> DEV_BSHIFT);
2520 /* overwriting disk label ? */
2521 /* XXX should also protect bootstrap in first 8K */
2522 if (blkno + p->p_offset <= LABELSECTOR + labelsect &&
2523 #if LABELSECTOR != 0
2524 blkno + p->p_offset + sz > LABELSECTOR + labelsect &&
2525 #endif
2526 bp->b_cmd != BUF_CMD_READ && wlabel == 0) {
2527 bp->b_error = EROFS;
2528 goto error;
2531 #if defined(DOSBBSECTOR) && defined(notyet)
2532 /* overwriting master boot record? */
2533 if (blkno + p->p_offset <= DOSBBSECTOR &&
2534 bp->b_cmd != BUF_CMD_READ && wlabel == 0) {
2535 bp->b_error = EROFS;
2536 goto error;
2538 #endif
2541 * Check for out of bounds, EOF, and EOF clipping.
2543 if (bio->bio_offset < 0)
2544 goto bad;
2545 if (blkno + sz > maxsz) {
2547 * Past EOF or B_BNOCLIP flag was set, the request is bad.
2549 if (blkno > maxsz || (bp->b_flags & B_BNOCLIP))
2550 goto bad;
2553 * If exactly on EOF just complete the I/O with no bytes
2554 * transfered. B_INVAL must be set to throw away the
2555 * contents of the buffer. Otherwise clip b_bcount.
2557 if (blkno == maxsz) {
2558 bp->b_resid = bp->b_bcount;
2559 bp->b_flags |= B_INVAL;
2560 goto done;
2562 bp->b_bcount = (maxsz - blkno) << DEV_BSHIFT;
2564 nbio = push_bio(bio);
2565 nbio->bio_offset = bio->bio_offset + ((off_t)p->p_offset << DEV_BSHIFT);
2566 return (nbio);
2569 * The caller is responsible for calling biodone() on the passed bio
2570 * when we return NULL.
2572 bad:
2573 bp->b_error = EINVAL;
2574 error:
2575 bp->b_resid = bp->b_bcount;
2576 bp->b_flags |= B_ERROR | B_INVAL;
2577 done:
2578 return (NULL);
2581 #ifdef DDB
2584 * Provide inb() and outb() as functions. They are normally only
2585 * available as macros calling inlined functions, thus cannot be
2586 * called inside DDB.
2588 * The actual code is stolen from <machine/cpufunc.h>, and de-inlined.
2591 #undef inb
2592 #undef outb
2594 /* silence compiler warnings */
2595 u_char inb(u_int);
2596 void outb(u_int, u_char);
2598 u_char
2599 inb(u_int port)
2601 u_char data;
2603 * We use %%dx and not %1 here because i/o is done at %dx and not at
2604 * %edx, while gcc generates inferior code (movw instead of movl)
2605 * if we tell it to load (u_short) port.
2607 __asm __volatile("inb %%dx,%0" : "=a" (data) : "d" (port));
2608 return (data);
2611 void
2612 outb(u_int port, u_char data)
2614 u_char al;
2616 * Use an unnecessary assignment to help gcc's register allocator.
2617 * This make a large difference for gcc-1.40 and a tiny difference
2618 * for gcc-2.6.0. For gcc-1.40, al had to be ``asm("ax")'' for
2619 * best results. gcc-2.6.0 can't handle this.
2621 al = data;
2622 __asm __volatile("outb %0,%%dx" : : "a" (al), "d" (port));
2625 #endif /* DDB */
2629 #include "opt_cpu.h"
2633 * initialize all the SMP locks
2636 /* critical region when masking or unmasking interupts */
2637 struct spinlock_deprecated imen_spinlock;
2639 /* Make FAST_INTR() routines sequential */
2640 struct spinlock_deprecated fast_intr_spinlock;
2642 /* critical region for old style disable_intr/enable_intr */
2643 struct spinlock_deprecated mpintr_spinlock;
2645 /* critical region around INTR() routines */
2646 struct spinlock_deprecated intr_spinlock;
2648 /* lock region used by kernel profiling */
2649 struct spinlock_deprecated mcount_spinlock;
2651 /* locks com (tty) data/hardware accesses: a FASTINTR() */
2652 struct spinlock_deprecated com_spinlock;
2654 /* locks kernel kprintfs */
2655 struct spinlock_deprecated cons_spinlock;
2657 /* lock regions around the clock hardware */
2658 struct spinlock_deprecated clock_spinlock;
2660 /* lock around the MP rendezvous */
2661 struct spinlock_deprecated smp_rv_spinlock;
2663 static void
2664 init_locks(void)
2667 * mp_lock = 0; BSP already owns the MP lock
2670 * Get the initial mp_lock with a count of 1 for the BSP.
2671 * This uses a LOGICAL cpu ID, ie BSP == 0.
2673 #ifdef SMP
2674 cpu_get_initial_mplock();
2675 #endif
2676 /* DEPRECATED */
2677 spin_lock_init(&mcount_spinlock);
2678 spin_lock_init(&fast_intr_spinlock);
2679 spin_lock_init(&intr_spinlock);
2680 spin_lock_init(&mpintr_spinlock);
2681 spin_lock_init(&imen_spinlock);
2682 spin_lock_init(&smp_rv_spinlock);
2683 spin_lock_init(&com_spinlock);
2684 spin_lock_init(&clock_spinlock);
2685 spin_lock_init(&cons_spinlock);
2687 /* our token pool needs to work early */
2688 lwkt_token_pool_init();