Rename printf -> kprintf in sys/ and add some defines where necessary
[dragonfly/vkernel-mp.git] / sys / dev / netif / le / if_le.c
blob24de31dc7c40f48bbaa065486a494a449a2d5201
1 /*-
2 * Copyright (c) 1994 Matt Thomas (thomas@lkg.dec.com)
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. The name of the author may not be used to endorse or promote products
11 * derived from this software withough specific prior written permission
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
14 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
19 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
20 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24 * $FreeBSD: src/sys/i386/isa/if_le.c,v 1.56.2.4 2002/06/05 23:24:10 paul Exp $
25 * $DragonFly: src/sys/dev/netif/le/if_le.c,v 1.37 2006/12/23 00:26:20 swildner Exp $
29 * DEC EtherWORKS 2 Ethernet Controllers
30 * DEC EtherWORKS 3 Ethernet Controllers
32 * Written by Matt Thomas
33 * BPF support code stolen directly from if_ec.c
35 * This driver supports the DEPCA, DE100, DE101, DE200, DE201,
36 * DE2002, DE203, DE204, DE205, and DE422 cards.
39 #include "use_le.h"
40 #include "opt_inet.h"
41 #include "opt_ipx.h"
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/conf.h>
46 #include <sys/mbuf.h>
47 #include <sys/socket.h>
48 #include <sys/sockio.h>
49 #include <sys/malloc.h>
50 #include <sys/linker_set.h>
51 #include <sys/module.h>
52 #include <sys/serialize.h>
54 #include <sys/thread2.h>
56 #include <net/ethernet.h>
57 #include <net/if.h>
58 #include <net/ifq_var.h>
59 #include <net/if_types.h>
60 #include <net/if_dl.h>
62 #include <netinet/in.h>
63 #include <netinet/if_ether.h>
65 #include <bus/isa/i386/isa_device.h>
66 #include <machine_base/icu/icu.h>
68 #include <vm/vm.h>
69 #include <vm/pmap.h>
71 #include <net/bpf.h>
73 typedef u_short le_mcbits_t;
74 #define LE_MC_NBPW_LOG2 4
75 #define LE_MC_NBPW (1 << LE_MC_NBPW_LOG2)
77 struct le_softc;
79 struct le_board {
80 int (*bd_probe)(struct le_softc *sc, const struct le_board *bd, int *msize);
84 * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
86 * Start of DEC EtherWORKS III (LEMAC) dependent structures
89 #include <machine_base/isa/ic/lemac.h> /* Include LEMAC definitions */
91 DECLARE_DUMMY_MODULE(if_le);
93 static int lemac_probe(struct le_softc *sc, const struct le_board *bd, int *msize);
95 struct le_lemac_info {
96 u_int lemac__lastpage; /* last 2K page */
97 u_int lemac__memmode; /* Are we in 2K, 32K, or 64K mode */
98 u_int lemac__membase; /* Physical address of start of RAM */
99 u_int lemac__txctl; /* Transmit Control Byte */
100 u_int lemac__txmax; /* Maximum # of outstanding transmits */
101 le_mcbits_t lemac__mctbl[LEMAC_MCTBL_SIZE/sizeof(le_mcbits_t)];
102 /* local copy of multicast table */
103 u_char lemac__eeprom[LEMAC_EEP_SIZE]; /* local copy eeprom */
104 char lemac__prodname[LEMAC_EEP_PRDNMSZ+1]; /* prodname name */
105 #define lemac_lastpage le_un.un_lemac.lemac__lastpage
106 #define lemac_memmode le_un.un_lemac.lemac__memmode
107 #define lemac_membase le_un.un_lemac.lemac__membase
108 #define lemac_txctl le_un.un_lemac.lemac__txctl
109 #define lemac_txmax le_un.un_lemac.lemac__txmax
110 #define lemac_mctbl le_un.un_lemac.lemac__mctbl
111 #define lemac_eeprom le_un.un_lemac.lemac__eeprom
112 #define lemac_prodname le_un.un_lemac.lemac__prodname
116 * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
118 * Start of DEC EtherWORKS II (LANCE) dependent structures
122 #include <machine_base/isa/ic/am7990.h>
124 #ifndef LN_DOSTATS
125 #define LN_DOSTATS 1
126 #endif
128 static int depca_probe(struct le_softc *sc, const struct le_board *bd, int *msize);
130 typedef struct lance_descinfo lance_descinfo_t;
131 typedef struct lance_ring lance_ring_t;
133 typedef unsigned lance_addr_t;
135 struct lance_descinfo {
136 caddr_t di_addr; /* address of descriptor */
137 lance_addr_t di_bufaddr; /* LANCE address of buffer owned by descriptor */
138 unsigned di_buflen; /* size of buffer owned by descriptor */
139 struct mbuf *di_mbuf; /* mbuf being transmitted/received */
142 struct lance_ring {
143 lance_descinfo_t *ri_first; /* Pointer to first descriptor in ring */
144 lance_descinfo_t *ri_last; /* Pointer to last + 1 descriptor in ring */
145 lance_descinfo_t *ri_nextin; /* Pointer to next one to be given to HOST */
146 lance_descinfo_t *ri_nextout; /* Pointer to next one to be given to LANCE */
147 unsigned ri_max; /* Size of Ring - 1 */
148 unsigned ri_free; /* Number of free rings entires (owned by HOST) */
149 lance_addr_t ri_heap; /* Start of RAM for this ring */
150 lance_addr_t ri_heapend; /* End + 1 of RAM for this ring */
151 lance_addr_t ri_outptr; /* Pointer to first output byte */
152 unsigned ri_outsize; /* Space remaining for output */
155 struct le_lance_info {
156 unsigned lance__csr1; /* LANCE Address of init block (low 16) */
157 unsigned lance__csr2; /* LANCE Address of init block (high 8) */
158 unsigned lance__csr3; /* Copy of CSR3 */
159 unsigned lance__rap; /* IO Port Offset of RAP */
160 unsigned lance__rdp; /* IO Port Offset of RDP */
161 unsigned lance__ramoffset; /* Offset to valid LANCE RAM */
162 unsigned lance__ramsize; /* Amount of RAM shared by LANCE */
163 unsigned lance__rxbufsize; /* Size of a receive buffer */
164 ln_initb_t lance__initb; /* local copy of LANCE initblock */
165 ln_initb_t *lance__raminitb; /* copy to board's LANCE initblock (debugging) */
166 ln_desc_t *lance__ramdesc; /* copy to board's LANCE descriptors (debugging) */
167 lance_ring_t lance__rxinfo; /* Receive ring information */
168 lance_ring_t lance__txinfo; /* Transmit ring information */
169 #define lance_csr1 le_un.un_lance.lance__csr1
170 #define lance_csr2 le_un.un_lance.lance__csr2
171 #define lance_csr3 le_un.un_lance.lance__csr3
172 #define lance_rap le_un.un_lance.lance__rap
173 #define lance_rdp le_un.un_lance.lance__rdp
174 #define lance_ramoffset le_un.un_lance.lance__ramoffset
175 #define lance_ramsize le_un.un_lance.lance__ramsize
176 #define lance_rxbufsize le_un.un_lance.lance__rxbufsize
177 #define lance_initb le_un.un_lance.lance__initb
178 #define lance_raminitb le_un.un_lance.lance__raminitb
179 #define lance_ramdesc le_un.un_lance.lance__ramdesc
180 #define lance_rxinfo le_un.un_lance.lance__rxinfo
181 #define lance_txinfo le_un.un_lance.lance__txinfo
185 * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
187 * Start of Common Code
191 static void (*le_intrvec[NLE])(struct le_softc *sc);
194 * Ethernet status, per interface.
196 struct le_softc {
197 struct arpcom le_ac; /* Common Ethernet/ARP Structure */
198 void (*if_init) (void *);/* Interface init routine */
199 void (*if_reset) (struct le_softc*);/* Interface reset routine */
200 caddr_t le_membase; /* Starting memory address (virtual) */
201 unsigned le_iobase; /* Starting I/O base address */
202 unsigned le_irq; /* Interrupt Request Value */
203 unsigned le_flags; /* local copy of if_flags */
204 #define LE_BRDCSTONLY 0x01000000 /* If only broadcast is enabled */
205 u_int le_mcmask; /* bit mask for CRC-32 for multicast hash */
206 le_mcbits_t *le_mctbl; /* pointer to multicast table */
207 const char *le_prodname; /* product name DE20x-xx */
208 u_char le_hwaddr[6]; /* local copy of hwaddr */
209 union {
210 struct le_lemac_info un_lemac; /* LEMAC specific information */
211 struct le_lance_info un_lance; /* Am7990 specific information */
212 } le_un;
214 #define le_if le_ac.ac_if
217 static int le_probe(struct isa_device *dvp);
218 static int le_attach(struct isa_device *dvp);
219 static void le_intr(void *);
220 static int le_ioctl(struct ifnet *ifp, u_long command, caddr_t data,
221 struct ucred *cr);
222 static void le_input(struct le_softc *sc, caddr_t seg1, size_t total_len,
223 size_t len2, caddr_t seg2);
224 static void le_multi_filter(struct le_softc *sc);
225 static void le_multi_op(struct le_softc *sc, const u_char *mca, int oper_flg);
226 static int le_read_macaddr(struct le_softc *sc, int ioreg, int skippat);
228 static struct le_softc le_softc[NLE];
230 static const struct le_board le_boards[] = {
231 { lemac_probe }, /* DE20[345] */
232 { depca_probe }, /* DE{20[012],422} */
233 { NULL } /* Must Be Last! */
236 static struct lwkt_serialize le_serialize;
239 * This tells the autoconf code how to set us up.
241 struct isa_driver ledriver = {
242 le_probe, le_attach, "le",
245 static unsigned le_intrs[NLE];
247 #define LE_INL(sc, reg) inl((sc)->le_iobase + (reg))
248 #define LE_OUTL(sc, reg, data) outl((sc)->le_iobase + (reg), data)
249 #define LE_INW(sc, reg) inw((sc)->le_iobase + (reg))
250 #define LE_OUTW(sc, reg, data) outw((sc)->le_iobase + (reg), data)
251 #define LE_INB(sc, reg) inb((sc)->le_iobase + (reg))
252 #define LE_OUTB(sc, reg, data) outb((sc)->le_iobase + (reg), data)
254 static int
255 le_probe(struct isa_device *dvp)
257 struct le_softc *sc = &le_softc[dvp->id_unit];
258 const struct le_board *bd;
259 int iospace;
261 lwkt_serialize_init(&le_serialize);
263 if (dvp->id_unit >= NLE) {
264 kprintf("%s%d not configured -- too many devices\n",
265 ledriver.name, dvp->id_unit);
266 return 0;
269 sc->le_iobase = dvp->id_iobase;
270 sc->le_membase = (u_char *) dvp->id_maddr;
271 sc->le_irq = dvp->id_irq;
272 if_initname(&(sc->le_if), ledriver.name, dvp->id_unit);
275 * Find and Initialize board..
278 sc->le_flags &= ~(IFF_UP|IFF_ALLMULTI);
280 for (bd = le_boards; bd->bd_probe != NULL; bd++) {
281 if ((iospace = (*bd->bd_probe)(sc, bd, &dvp->id_msize)) != 0) {
282 return iospace;
286 return 0;
289 static int
290 le_attach(struct isa_device *dvp)
292 struct le_softc *sc = &le_softc[dvp->id_unit];
293 struct ifnet *ifp = &sc->le_if;
295 dvp->id_intr = (inthand2_t *)le_intr;
296 ifp->if_softc = sc;
297 ifp->if_mtu = ETHERMTU;
299 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
300 ifp->if_ioctl = le_ioctl;
301 ifp->if_type = IFT_ETHER;
302 ifp->if_addrlen = 6;
303 ifp->if_hdrlen = 14;
304 ifp->if_init = sc->if_init;
305 ifp->if_baudrate = 10000000;
306 ifq_set_maxlen(&ifp->if_snd, IFQ_MAXLEN);
307 ifq_set_ready(&ifp->if_snd);
309 ether_ifattach(ifp, sc->le_ac.ac_enaddr, &le_serialize);
311 return 1;
314 static void
315 le_intr(void *arg)
317 int unit = (int)arg;
319 lwkt_serialize_enter(&le_serialize);
320 le_intrs[unit]++;
321 (*le_intrvec[unit])(&le_softc[unit]);
322 lwkt_serialize_exit(&le_serialize);
325 #define LE_XTRA 0
327 static void
328 le_input(struct le_softc *sc, caddr_t seg1, size_t total_len,
329 size_t len1, caddr_t seg2)
331 struct mbuf *m;
333 m = m_getl(total_len + LE_XTRA, MB_DONTWAIT, MT_DATA, M_PKTHDR, NULL);
334 if (m == NULL) {
335 sc->le_if.if_ierrors++;
336 return;
338 m->m_data += LE_XTRA;
339 m->m_len = m->m_pkthdr.len = total_len;
341 bcopy(seg1, mtod(m, caddr_t), len1);
342 if (seg2 != NULL)
343 bcopy(seg2, mtod(m, caddr_t) + len1, total_len - len1);
344 sc->le_if.if_input(&sc->le_if, m);
347 static int
348 le_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data, struct ucred *cr)
350 struct le_softc *sc = ifp->if_softc;
351 int error = 0;
353 if ((sc->le_flags & IFF_UP) == 0)
354 return EIO;
356 switch (cmd) {
357 case SIOCSIFFLAGS: {
358 sc->if_init(sc);
359 break;
362 case SIOCADDMULTI:
363 case SIOCDELMULTI:
365 * Update multicast listeners
367 sc->if_init(sc);
368 error = 0;
369 break;
371 default:
372 error = ether_ioctl(ifp, cmd, data);
373 break;
375 return error;
379 * This is the standard method of reading the DEC Address ROMS.
380 * I don't understand it but it does work.
382 static int
383 le_read_macaddr(struct le_softc *sc, int ioreg, int skippat)
385 int cksum, rom_cksum;
387 if (!skippat) {
388 int idx, idx2, found, octet;
389 static u_char testpat[] = { 0xFF, 0, 0x55, 0xAA, 0xFF, 0, 0x55, 0xAA };
390 idx2 = found = 0;
392 for (idx = 0; idx < 32; idx++) {
393 octet = LE_INB(sc, ioreg);
395 if (octet == testpat[idx2]) {
396 if (++idx2 == sizeof testpat) {
397 ++found;
398 break;
400 } else {
401 idx2 = 0;
405 if (!found)
406 return -1;
409 cksum = 0;
410 sc->le_hwaddr[0] = LE_INB(sc, ioreg);
411 sc->le_hwaddr[1] = LE_INB(sc, ioreg);
413 cksum = *(u_short *) &sc->le_hwaddr[0];
415 sc->le_hwaddr[2] = LE_INB(sc, ioreg);
416 sc->le_hwaddr[3] = LE_INB(sc, ioreg);
417 cksum *= 2;
418 if (cksum > 65535) cksum -= 65535;
419 cksum += *(u_short *) &sc->le_hwaddr[2];
420 if (cksum > 65535) cksum -= 65535;
422 sc->le_hwaddr[4] = LE_INB(sc, ioreg);
423 sc->le_hwaddr[5] = LE_INB(sc, ioreg);
424 cksum *= 2;
425 if (cksum > 65535) cksum -= 65535;
426 cksum += *(u_short *) &sc->le_hwaddr[4];
427 if (cksum >= 65535) cksum -= 65535;
429 rom_cksum = LE_INB(sc, ioreg);
430 rom_cksum |= LE_INB(sc, ioreg) << 8;
432 if (cksum != rom_cksum)
433 return -1;
434 return 0;
437 static void
438 le_multi_filter(struct le_softc *sc)
440 struct ifnet *ifp = &sc->le_ac.ac_if;
441 struct ifmultiaddr *ifma;
443 bzero(sc->le_mctbl, (sc->le_mcmask + 1) / 8);
445 if (sc->le_if.if_flags & IFF_ALLMULTI) {
446 sc->le_flags |= IFF_MULTICAST|IFF_ALLMULTI;
447 return;
449 sc->le_flags &= ~IFF_MULTICAST;
450 /* if (interface has had an address assigned) { */
451 le_multi_op(sc, ifp->if_broadcastaddr, TRUE);
452 sc->le_flags |= LE_BRDCSTONLY|IFF_MULTICAST;
453 /* } */
455 sc->le_flags |= IFF_MULTICAST;
457 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
458 if (ifma->ifma_addr->sa_family != AF_LINK)
459 continue;
461 le_multi_op(sc, LLADDR((struct sockaddr_dl *)ifma->ifma_addr), 1);
462 sc->le_flags &= ~LE_BRDCSTONLY;
466 static void
467 le_multi_op(struct le_softc *sc, const u_char *mca, int enable)
469 uint32_t bit, idx, crc;
471 crc = ether_crc32_le(mca, ETHER_ADDR_LEN);
474 * The following two line convert the N bit index into a longword index
475 * and a longword mask.
477 crc &= sc->le_mcmask;
478 bit = 1 << (crc & (LE_MC_NBPW -1));
479 idx = crc >> (LE_MC_NBPW_LOG2);
482 * Set or clear hash filter bit in our table.
484 if (enable) {
485 sc->le_mctbl[idx] |= bit; /* Set Bit */
486 } else {
487 sc->le_mctbl[idx] &= ~bit; /* Clear Bit */
492 * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
494 * Start of DEC EtherWORKS III (LEMAC) dependent code
498 #define LEMAC_INTR_ENABLE(sc) \
499 LE_OUTB(sc, LEMAC_REG_IC, LE_INB(sc, LEMAC_REG_IC) | LEMAC_IC_ALL)
501 #define LEMAC_INTR_DISABLE(sc) \
502 LE_OUTB(sc, LEMAC_REG_IC, LE_INB(sc, LEMAC_REG_IC) & ~LEMAC_IC_ALL)
504 #define LEMAC_64K_MODE(mbase) (((mbase) >= 0x0A) && ((mbase) <= 0x0F))
505 #define LEMAC_32K_MODE(mbase) (((mbase) >= 0x14) && ((mbase) <= 0x1F))
506 #define LEMAC_2K_MODE(mbase) ( (mbase) >= 0x40)
508 static void lemac_init(void *xsc);
509 static void lemac_start(struct ifnet *ifp);
510 static void lemac_reset(struct le_softc *sc);
511 static void lemac_intr(struct le_softc *sc);
512 static void lemac_rne_intr(struct le_softc *sc);
513 static void lemac_tne_intr(struct le_softc *sc);
514 static void lemac_txd_intr(struct le_softc *sc, unsigned cs_value);
515 static void lemac_rxd_intr(struct le_softc *sc, unsigned cs_value);
516 static int lemac_read_eeprom(struct le_softc *sc);
517 static void lemac_init_adapmem(struct le_softc *sc);
519 #define LE_MCBITS_ALL_1S ((le_mcbits_t)~(le_mcbits_t)0)
521 static const le_mcbits_t lemac_allmulti_mctbl[16] = {
522 LE_MCBITS_ALL_1S, LE_MCBITS_ALL_1S, LE_MCBITS_ALL_1S, LE_MCBITS_ALL_1S,
523 LE_MCBITS_ALL_1S, LE_MCBITS_ALL_1S, LE_MCBITS_ALL_1S, LE_MCBITS_ALL_1S,
524 LE_MCBITS_ALL_1S, LE_MCBITS_ALL_1S, LE_MCBITS_ALL_1S, LE_MCBITS_ALL_1S,
525 LE_MCBITS_ALL_1S, LE_MCBITS_ALL_1S, LE_MCBITS_ALL_1S, LE_MCBITS_ALL_1S,
528 * An IRQ mapping table. Less space than switch statement.
530 static const int lemac_irqs[] = { ICU_IRQ5, ICU_IRQ10, ICU_IRQ11, ICU_IRQ15 };
533 * Some tuning/monitoring variables.
535 static unsigned lemac_deftxmax = 16; /* see lemac_max above */
536 static unsigned lemac_txnospc = 0; /* total # of tranmit starvations */
538 static unsigned lemac_tne_intrs = 0; /* total # of tranmit done intrs */
539 static unsigned lemac_rne_intrs = 0; /* total # of receive done intrs */
540 static unsigned lemac_txd_intrs = 0; /* total # of tranmit error intrs */
541 static unsigned lemac_rxd_intrs = 0; /* total # of receive error intrs */
543 static int
544 lemac_probe(struct le_softc *sc, const struct le_board *bd, int *msize)
546 int irq, portval;
548 LE_OUTB(sc, LEMAC_REG_IOP, LEMAC_IOP_EEINIT);
549 DELAY(LEMAC_EEP_DELAY);
552 * Read Ethernet address if card is present.
554 if (le_read_macaddr(sc, LEMAC_REG_APD, 0) < 0)
555 return 0;
557 bcopy(sc->le_hwaddr, sc->le_ac.ac_enaddr, ETHER_ADDR_LEN);
559 * Clear interrupts and set IRQ.
562 portval = LE_INB(sc, LEMAC_REG_IC) & LEMAC_IC_IRQMSK;
563 irq = lemac_irqs[portval >> 5];
564 LE_OUTB(sc, LEMAC_REG_IC, portval);
567 * Make sure settings match.
570 if (irq != sc->le_irq) {
571 if_printf(&sc->le_if, "lemac configuration error: expected IRQ 0x%x actual 0x%x\n",
572 sc->le_irq, irq);
573 return 0;
577 * Try to reset the unit
579 sc->if_init = lemac_init;
580 sc->le_if.if_start = lemac_start;
581 sc->if_reset = lemac_reset;
582 sc->lemac_memmode = 2;
583 sc->if_reset(sc);
584 if ((sc->le_flags & IFF_UP) == 0)
585 return 0;
588 * Check for correct memory base configuration.
590 if (vtophys(sc->le_membase) != sc->lemac_membase) {
591 if_printf(&sc->le_if, "lemac configuration error: expected iomem 0x%llx actual 0x%x\n",
592 vtophys(sc->le_membase), sc->lemac_membase);
593 return 0;
596 sc->le_prodname = sc->lemac_prodname;
597 sc->le_mctbl = sc->lemac_mctbl;
598 sc->le_mcmask = (1 << LEMAC_MCTBL_BITS) - 1;
599 sc->lemac_txmax = lemac_deftxmax;
600 *msize = 2048;
601 le_intrvec[sc->le_if.if_dunit] = lemac_intr;
603 return LEMAC_IOSPACE;
607 * Do a hard reset of the board;
609 static void
610 lemac_reset(struct le_softc *sc)
612 struct ifnet *ifp = &sc->le_if;
613 int portval, cksum;
616 * Initialize board..
619 sc->le_flags &= IFF_UP;
620 ifp->if_flags &= ~IFF_OACTIVE;
621 LEMAC_INTR_DISABLE(sc);
623 LE_OUTB(sc, LEMAC_REG_IOP, LEMAC_IOP_EEINIT);
624 DELAY(LEMAC_EEP_DELAY);
626 /* Disable Interrupts */
627 /* LE_OUTB(sc, LEMAC_REG_IC, LE_INB(sc, LEMAC_REG_IC) & ICR_IRQ_SEL); */
630 * Read EEPROM information. NOTE - the placement of this function
631 * is important because functions hereafter may rely on information
632 * read from the EEPROM.
634 if ((cksum = lemac_read_eeprom(sc)) != LEMAC_EEP_CKSUM) {
635 if_printf(ifp, "reset: EEPROM checksum failed (0x%x)\n", cksum);
636 return;
640 * Force to 2K mode if not already configured.
643 portval = LE_INB(sc, LEMAC_REG_MBR);
644 if (!LEMAC_2K_MODE(portval)) {
645 if (LEMAC_64K_MODE(portval)) {
646 portval = (((portval * 2) & 0xF) << 4);
647 sc->lemac_memmode = 64;
648 } else if (LEMAC_32K_MODE(portval)) {
649 portval = ((portval & 0xF) << 4);
650 sc->lemac_memmode = 32;
652 LE_OUTB(sc, LEMAC_REG_MBR, portval);
654 sc->lemac_membase = portval * (2 * 1024) + (512 * 1024);
657 * Initialize Free Memory Queue, Init mcast table with broadcast.
660 lemac_init_adapmem(sc);
661 sc->le_flags |= IFF_UP;
664 static void
665 lemac_init(void *xsc)
667 struct le_softc *sc = (struct le_softc *)xsc;
669 if ((sc->le_flags & IFF_UP) == 0)
670 return;
673 * If the interface has the up flag
675 if (sc->le_if.if_flags & IFF_UP) {
676 int saved_cs = LE_INB(sc, LEMAC_REG_CS);
677 LE_OUTB(sc, LEMAC_REG_CS, saved_cs | (LEMAC_CS_TXD | LEMAC_CS_RXD));
678 LE_OUTB(sc, LEMAC_REG_PA0, sc->le_ac.ac_enaddr[0]);
679 LE_OUTB(sc, LEMAC_REG_PA1, sc->le_ac.ac_enaddr[1]);
680 LE_OUTB(sc, LEMAC_REG_PA2, sc->le_ac.ac_enaddr[2]);
681 LE_OUTB(sc, LEMAC_REG_PA3, sc->le_ac.ac_enaddr[3]);
682 LE_OUTB(sc, LEMAC_REG_PA4, sc->le_ac.ac_enaddr[4]);
683 LE_OUTB(sc, LEMAC_REG_PA5, sc->le_ac.ac_enaddr[5]);
685 LE_OUTB(sc, LEMAC_REG_IC, LE_INB(sc, LEMAC_REG_IC) | LEMAC_IC_IE);
687 if (sc->le_if.if_flags & IFF_PROMISC) {
688 LE_OUTB(sc, LEMAC_REG_CS, LEMAC_CS_MCE | LEMAC_CS_PME);
689 } else {
690 LEMAC_INTR_DISABLE(sc);
691 le_multi_filter(sc);
692 LE_OUTB(sc, LEMAC_REG_MPN, 0);
693 if ((sc->le_flags | sc->le_if.if_flags) & IFF_ALLMULTI) {
694 bcopy(lemac_allmulti_mctbl, &sc->le_membase[LEMAC_MCTBL_OFF], sizeof(lemac_allmulti_mctbl));
695 } else {
696 bcopy(sc->lemac_mctbl, &sc->le_membase[LEMAC_MCTBL_OFF], sizeof(sc->lemac_mctbl));
698 LE_OUTB(sc, LEMAC_REG_CS, LEMAC_CS_MCE);
701 LE_OUTB(sc, LEMAC_REG_CTL, LE_INB(sc, LEMAC_REG_CTL) ^ LEMAC_CTL_LED);
703 LEMAC_INTR_ENABLE(sc);
704 sc->le_if.if_flags |= IFF_RUNNING;
705 } else {
706 LE_OUTB(sc, LEMAC_REG_CS, LEMAC_CS_RXD|LEMAC_CS_TXD);
708 LEMAC_INTR_DISABLE(sc);
709 sc->le_if.if_flags &= ~IFF_RUNNING;
714 * What to do upon receipt of an interrupt.
716 static void
717 lemac_intr(struct le_softc *sc)
719 int cs_value;
721 LEMAC_INTR_DISABLE(sc); /* Mask interrupts */
724 * Determine cause of interrupt. Receive events take
725 * priority over Transmit.
728 cs_value = LE_INB(sc, LEMAC_REG_CS);
731 * Check for Receive Queue not being empty.
732 * Check for Transmit Done Queue not being empty.
735 if (cs_value & LEMAC_CS_RNE)
736 lemac_rne_intr(sc);
737 if (cs_value & LEMAC_CS_TNE)
738 lemac_tne_intr(sc);
741 * Check for Transmitter Disabled.
742 * Check for Receiver Disabled.
745 if (cs_value & LEMAC_CS_TXD)
746 lemac_txd_intr(sc, cs_value);
747 if (cs_value & LEMAC_CS_RXD)
748 lemac_rxd_intr(sc, cs_value);
751 * Toggle LED and unmask interrupts.
754 LE_OUTB(sc, LEMAC_REG_CTL, LE_INB(sc, LEMAC_REG_CTL) ^ LEMAC_CTL_LED);
755 LEMAC_INTR_ENABLE(sc); /* Unmask interrupts */
758 static void
759 lemac_rne_intr(struct le_softc *sc)
761 int rxcount, rxlen, rxpg;
762 u_char *rxptr;
764 lemac_rne_intrs++;
765 rxcount = LE_INB(sc, LEMAC_REG_RQC);
766 while (rxcount--) {
767 rxpg = LE_INB(sc, LEMAC_REG_RQ);
768 LE_OUTB(sc, LEMAC_REG_MPN, rxpg);
770 rxptr = sc->le_membase;
771 sc->le_if.if_ipackets++;
772 if (*rxptr & LEMAC_RX_OK) {
775 * Get receive length - subtract out checksum.
778 rxlen = ((*(u_int *)rxptr >> 8) & 0x7FF) - 4;
779 le_input(sc, rxptr + sizeof(u_int), rxlen, rxlen, NULL);
780 } else { /* end if (*rxptr & LEMAC_RX_OK) */
781 sc->le_if.if_ierrors++;
783 LE_OUTB(sc, LEMAC_REG_FMQ, rxpg); /* Return this page to Free Memory Queue */
784 } /* end while (recv_count--) */
787 static void
788 lemac_rxd_intr(struct le_softc *sc, unsigned cs_value)
791 * Handle CS_RXD (Receiver disabled) here.
793 * Check Free Memory Queue Count. If not equal to zero
794 * then just turn Receiver back on. If it is equal to
795 * zero then check to see if transmitter is disabled.
796 * Process transmit TXD loop once more. If all else
797 * fails then do software init (0xC0 to EEPROM Init)
798 * and rebuild Free Memory Queue.
801 lemac_rxd_intrs++;
804 * Re-enable Receiver.
807 cs_value &= ~LEMAC_CS_RXD;
808 LE_OUTB(sc, LEMAC_REG_CS, cs_value);
810 if (LE_INB(sc, LEMAC_REG_FMC) > 0)
811 return;
813 if (cs_value & LEMAC_CS_TXD)
814 lemac_txd_intr(sc, cs_value);
816 if ((LE_INB(sc, LEMAC_REG_CS) & LEMAC_CS_RXD) == 0)
817 return;
819 if_printf(&sc->le_if, "fatal RXD error, attempting recovery\n");
821 sc->if_reset(sc);
822 if (sc->le_flags & IFF_UP) {
823 lemac_init(sc);
824 return;
828 * Error during initializion. Mark card as disabled.
830 if_printf(&sc->le_if, "recovery failed -- board disabled\n");
833 static void
834 lemac_start(struct ifnet *ifp)
836 struct le_softc *sc = (struct le_softc *) ifp;
838 if ((ifp->if_flags & IFF_RUNNING) == 0)
839 return;
841 LEMAC_INTR_DISABLE(sc);
843 while (!ifq_is_empty(&ifp->if_snd)) {
844 struct mbuf *m;
845 int tx_pg;
846 u_int txhdr, txoff;
848 if (LE_INB(sc, LEMAC_REG_TQC) >= sc->lemac_txmax) {
849 ifp->if_flags |= IFF_OACTIVE;
850 break;
853 tx_pg = LE_INB(sc, LEMAC_REG_FMQ); /* get free memory page */
855 * Check for good transmit page.
857 if (tx_pg == 0 || tx_pg > sc->lemac_lastpage) {
858 lemac_txnospc++;
859 ifp->if_flags |= IFF_OACTIVE;
860 break;
863 m = ifq_dequeue(&ifp->if_snd, NULL);
864 LE_OUTB(sc, LEMAC_REG_MPN, tx_pg); /* Shift 2K window. */
867 * The first four bytes of each transmit buffer are for
868 * control information. The first byte is the control
869 * byte, then the length (why not word aligned?), then
870 * the off to the buffer.
873 txoff = (mtod(m, u_int) & (sizeof(u_long) - 1)) + LEMAC_TX_HDRSZ;
874 txhdr = sc->lemac_txctl | (m->m_pkthdr.len << 8) | (txoff << 24);
875 *(u_int *) sc->le_membase = txhdr;
878 * Copy the packet to the board
881 m_copydata(m, 0, m->m_pkthdr.len, sc->le_membase + txoff);
883 LE_OUTB(sc, LEMAC_REG_TQ, tx_pg); /* tell chip to transmit this packet */
885 BPF_MTAP(ifp, m);
887 m_freem(m); /* free the mbuf */
889 LEMAC_INTR_ENABLE(sc);
892 static void
893 lemac_tne_intr(struct le_softc *sc)
895 int txsts, txcount = LE_INB(sc, LEMAC_REG_TDC);
897 lemac_tne_intrs++;
898 while (txcount--) {
899 txsts = LE_INB(sc, LEMAC_REG_TDQ);
900 sc->le_if.if_opackets++; /* another one done */
901 if ((txsts & LEMAC_TDQ_COL) != LEMAC_TDQ_NOCOL)
902 sc->le_if.if_collisions++;
904 sc->le_if.if_flags &= ~IFF_OACTIVE;
905 lemac_start(&sc->le_if);
908 static void
909 lemac_txd_intr(struct le_softc *sc, unsigned cs_value)
912 * Read transmit status, remove transmit buffer from
913 * transmit queue and place on free memory queue,
914 * then reset transmitter.
915 * Increment appropriate counters.
918 lemac_txd_intrs++;
919 sc->le_if.if_oerrors++;
920 if (LE_INB(sc, LEMAC_REG_TS) & LEMAC_TS_ECL)
921 sc->le_if.if_collisions++;
922 sc->le_if.if_flags &= ~IFF_OACTIVE;
924 LE_OUTB(sc, LEMAC_REG_FMQ, LE_INB(sc, LEMAC_REG_TQ));
925 /* Get Page number and write it back out */
927 LE_OUTB(sc, LEMAC_REG_CS, cs_value & ~LEMAC_CS_TXD);
928 /* Turn back on transmitter */
931 static int
932 lemac_read_eeprom(struct le_softc *sc)
934 int word_off, cksum;
936 u_char *ep;
938 cksum = 0;
939 ep = sc->lemac_eeprom;
940 for (word_off = 0; word_off < LEMAC_EEP_SIZE / 2; word_off++) {
941 LE_OUTB(sc, LEMAC_REG_PI1, word_off);
942 LE_OUTB(sc, LEMAC_REG_IOP, LEMAC_IOP_EEREAD);
944 DELAY(LEMAC_EEP_DELAY);
946 *ep = LE_INB(sc, LEMAC_REG_EE1); cksum += *ep++;
947 *ep = LE_INB(sc, LEMAC_REG_EE2); cksum += *ep++;
951 * Set up Transmit Control Byte for use later during transmit.
954 sc->lemac_txctl |= LEMAC_TX_FLAGS;
956 if ((sc->lemac_eeprom[LEMAC_EEP_SWFLAGS] & LEMAC_EEP_SW_SQE) == 0)
957 sc->lemac_txctl &= ~LEMAC_TX_SQE;
959 if (sc->lemac_eeprom[LEMAC_EEP_SWFLAGS] & LEMAC_EEP_SW_LAB)
960 sc->lemac_txctl |= LEMAC_TX_LAB;
962 bcopy(&sc->lemac_eeprom[LEMAC_EEP_PRDNM], sc->lemac_prodname, LEMAC_EEP_PRDNMSZ);
963 sc->lemac_prodname[LEMAC_EEP_PRDNMSZ] = '\0';
965 return cksum % 256;
968 static void
969 lemac_init_adapmem(struct le_softc *sc)
971 int pg, conf;
973 conf = LE_INB(sc, LEMAC_REG_CNF);
975 if ((sc->lemac_eeprom[LEMAC_EEP_SETUP] & LEMAC_EEP_ST_DRAM) == 0) {
976 sc->lemac_lastpage = 63;
977 conf &= ~LEMAC_CNF_DRAM;
978 } else {
979 sc->lemac_lastpage = 127;
980 conf |= LEMAC_CNF_DRAM;
983 LE_OUTB(sc, LEMAC_REG_CNF, conf);
985 for (pg = 1; pg <= sc->lemac_lastpage; pg++)
986 LE_OUTB(sc, LEMAC_REG_FMQ, pg);
988 return;
992 * - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
994 * Start of DEPCA (DE200/DE201/DE202/DE422 etal) support.
997 static void depca_intr(struct le_softc *sc);
998 static int lance_init_adapmem(struct le_softc *sc);
999 static int lance_init_ring(struct le_softc *sc, ln_ring_t *rp, lance_ring_t *ri,
1000 unsigned ndescs, unsigned bufoffset,
1001 unsigned descoffset);
1002 static void lance_init(void *xsc);
1003 static void lance_reset(struct le_softc *sc);
1004 static void lance_intr(struct le_softc *sc);
1005 static int lance_rx_intr(struct le_softc *sc);
1006 static void lance_start(struct ifnet *ifp);
1007 static int lance_tx_intr(struct le_softc *sc);
1009 #define LN_BUFSIZE /* 380 */ 304 /* 1520 / 4 */
1010 #define LN_TXDESC_RATIO 2048
1011 #define LN_DESC_MAX 128
1013 #if LN_DOSTATS
1014 static struct {
1015 unsigned lance_rx_misses;
1016 unsigned lance_rx_badcrc;
1017 unsigned lance_rx_badalign;
1018 unsigned lance_rx_badframe;
1019 unsigned lance_rx_buferror;
1020 unsigned lance_tx_deferred;
1021 unsigned lance_tx_single_collisions;
1022 unsigned lance_tx_multiple_collisions;
1023 unsigned lance_tx_excessive_collisions;
1024 unsigned lance_tx_late_collisions;
1026 unsigned lance_memory_errors;
1027 unsigned lance_inits;
1028 unsigned lance_tx_intrs;
1029 unsigned lance_tx_nospc[2];
1030 unsigned lance_tx_drains[2];
1031 unsigned lance_tx_orphaned;
1032 unsigned lance_tx_adoptions;
1033 unsigned lance_tx_emptied;
1034 unsigned lance_tx_deftxint;
1035 unsigned lance_tx_buferror;
1036 unsigned lance_high_txoutptr;
1037 unsigned lance_low_txheapsize;
1038 unsigned lance_low_txfree;
1039 unsigned lance_tx_intr_hidescs;
1040 /* unsigned lance_tx_intr_descs[LN_DESC_MAX]; */
1042 unsigned lance_rx_intrs;
1043 unsigned lance_rx_badsop;
1044 unsigned lance_rx_contig;
1045 unsigned lance_rx_noncontig;
1046 unsigned lance_rx_intr_hidescs;
1047 unsigned lance_rx_ndescs[4096 / LN_BUFSIZE];
1048 /* unsigned lance_rx_intr_descs[LN_DESC_MAX]; */
1049 } lance_stats;
1051 #define LN_STAT(stat) (lance_stats.lance_ ## stat)
1052 #define LN_MINSTAT(stat, val) (LN_STAT(stat > (val)) ? LN_STAT(stat = (val)) : 0)
1053 #define LN_MAXSTAT(stat, val) (LN_STAT(stat < (val)) ? LN_STAT(stat = (val)) : 0)
1055 #else
1056 #define LN_STAT(stat) 0
1057 #define LN_MINSTAT(stat, val) 0
1058 #define LN_MAXSTAT(stat, val) 0
1059 #endif
1061 #define LN_SELCSR(sc, csrno) (LE_OUTW(sc, sc->lance_rap, csrno))
1062 #define LN_INQCSR(sc) (LE_INW(sc, sc->lance_rap))
1064 #define LN_WRCSR(sc, val) (LE_OUTW(sc, sc->lance_rdp, val))
1065 #define LN_RDCSR(sc) (LE_INW(sc, sc->lance_rdp))
1068 #define LN_ZERO(sc, vaddr, len) bzero(vaddr, len)
1069 #define LN_COPYTO(sc, from, to, len) bcopy(from, to, len)
1071 #define LN_SETFLAG(sc, vaddr, val) \
1072 (((volatile u_char *) vaddr)[3] = (val))
1074 #define LN_PUTDESC(sc, desc, vaddr) \
1075 (((volatile u_short *) vaddr)[0] = ((u_short *) desc)[0], \
1076 ((volatile u_short *) vaddr)[2] = ((u_short *) desc)[2], \
1077 ((volatile u_short *) vaddr)[1] = ((u_short *) desc)[1])
1080 * Only get the descriptor flags and length/status. All else
1081 * read-only.
1083 #define LN_GETDESC(sc, desc, vaddr) \
1084 (((u_short *) desc)[1] = ((volatile u_short *) vaddr)[1], \
1085 ((u_short *) desc)[3] = ((volatile u_short *) vaddr)[3])
1088 * These definitions are specific to the DEC "DEPCA-style" NICs.
1089 * (DEPCA, DE10x, DE20[012], DE422)
1092 #define DEPCA_REG_NICSR 0 /* (RW;16) NI Control / Status */
1093 #define DEPCA_REG_RDP 4 /* (RW:16) LANCE RDP (data) register */
1094 #define DEPCA_REG_RAP 6 /* (RW:16) LANCE RAP (address) register */
1095 #define DEPCA_REG_ADDRROM 12 /* (R : 8) DEPCA Ethernet Address ROM */
1096 #define DEPCA_IOSPACE 16 /* DEPCAs use 16 bytes of IO space */
1098 #define DEPCA_NICSR_LED 0x0001 /* Light the LED on the back of the DEPCA */
1099 #define DEPCA_NICSR_ENABINTR 0x0002 /* Enable Interrupts */
1100 #define DEPCA_NICSR_MASKINTR 0x0004 /* Mask Interrupts */
1101 #define DEPCA_NICSR_AAC 0x0008 /* Address Counter Clear */
1102 #define DEPCA_NICSR_REMOTEBOOT 0x0010 /* Remote Boot Enabled (ignored) */
1103 #define DEPCA_NICSR_32KRAM 0x0020 /* DEPCA LANCE RAM size 64K (C) / 32K (S) */
1104 #define DEPCA_NICSR_LOW32K 0x0040 /* Bank Select (A15 = !This Bit) */
1105 #define DEPCA_NICSR_SHE 0x0080 /* Shared RAM Enabled (ie hide ROM) */
1106 #define DEPCA_NICSR_BOOTTMO 0x0100 /* Remote Boot Timeout (ignored) */
1108 #define DEPCA_RDNICSR(sc) (LE_INW(sc, DEPCA_REG_NICSR))
1109 #define DEPCA_WRNICSR(sc, val) (LE_OUTW(sc, DEPCA_REG_NICSR, val))
1111 #define DEPCA_IDSTR_OFFSET 0xC006 /* ID String Offset */
1113 #define DEPCA_REG_EISAID 0x80
1114 #define DEPCA_EISAID_MASK 0xf0ffffff
1115 #define DEPCA_EISAID_DE422 0x2042A310
1117 typedef enum {
1118 DEPCA_CLASSIC,
1119 DEPCA_DE100, DEPCA_DE101,
1120 DEPCA_EE100,
1121 DEPCA_DE200, DEPCA_DE201, DEPCA_DE202,
1122 DEPCA_DE422,
1123 DEPCA_UNKNOWN
1124 } depca_t;
1126 static const char *depca_signatures[] = {
1127 "DEPCA",
1128 "DE100", "DE101",
1129 "EE100",
1130 "DE200", "DE201", "DE202",
1131 "DE422",
1132 NULL
1135 static int
1136 depca_probe(struct le_softc *sc, const struct le_board *bd, int *msize)
1138 unsigned nicsr, idx, idstr_offset = DEPCA_IDSTR_OFFSET;
1141 * Find out how memory we are dealing with. Adjust
1142 * the ID string offset approriately if we are at
1143 * 32K. Make sure the ROM is enabled.
1145 nicsr = DEPCA_RDNICSR(sc);
1146 nicsr &= ~(DEPCA_NICSR_SHE|DEPCA_NICSR_LED|DEPCA_NICSR_ENABINTR);
1148 if (nicsr & DEPCA_NICSR_32KRAM) {
1150 * Make we are going to read the upper
1151 * 32K so we do read the ROM.
1153 sc->lance_ramsize = 32 * 1024;
1154 nicsr &= ~DEPCA_NICSR_LOW32K;
1155 sc->lance_ramoffset = 32 * 1024;
1156 idstr_offset -= sc->lance_ramsize;
1157 } else {
1158 sc->lance_ramsize = 64 * 1024;
1159 sc->lance_ramoffset = 0;
1161 DEPCA_WRNICSR(sc, nicsr);
1163 sc->le_prodname = NULL;
1164 for (idx = 0; depca_signatures[idx] != NULL; idx++) {
1165 if (bcmp(depca_signatures[idx], sc->le_membase + idstr_offset, 5) == 0) {
1166 sc->le_prodname = depca_signatures[idx];
1167 break;
1171 if (sc->le_prodname == NULL) {
1173 * Try to get the EISA device if it's a DE422.
1175 if (sc->le_iobase > 0x1000 && (sc->le_iobase & 0x0F00) == 0x0C00
1176 && (LE_INL(sc, DEPCA_REG_EISAID) & DEPCA_EISAID_MASK)
1177 == DEPCA_EISAID_DE422) {
1178 sc->le_prodname = "DE422";
1179 } else {
1180 return 0;
1183 if (idx == DEPCA_CLASSIC)
1184 sc->lance_ramsize -= 16384; /* Can't use the ROM area on a DEPCA */
1187 * Try to read the address ROM.
1188 * Stop the LANCE, reset the Address ROM Counter (AAC),
1189 * read the NICSR to "clock" in the reset, and then
1190 * re-enable the Address ROM Counter. Now read the
1191 * address ROM.
1193 sc->lance_rdp = DEPCA_REG_RDP;
1194 sc->lance_rap = DEPCA_REG_RAP;
1195 sc->lance_csr3 = LN_CSR3_ALE;
1196 sc->le_mctbl = sc->lance_initb.ln_multi_mask;
1197 sc->le_mcmask = LN_MC_MASK;
1198 LN_SELCSR(sc, LN_CSR0);
1199 LN_WRCSR(sc, LN_CSR0_STOP);
1201 if (idx < DEPCA_DE200) {
1202 DEPCA_WRNICSR(sc, DEPCA_RDNICSR(sc) & ~DEPCA_NICSR_AAC);
1203 DEPCA_WRNICSR(sc, DEPCA_RDNICSR(sc) | DEPCA_NICSR_AAC);
1206 if (le_read_macaddr(sc, DEPCA_REG_ADDRROM, idx == DEPCA_CLASSIC) < 0)
1207 return 0;
1209 bcopy(sc->le_hwaddr, sc->le_ac.ac_enaddr, ETHER_ADDR_LEN);
1211 * Renable shared RAM.
1213 DEPCA_WRNICSR(sc, DEPCA_RDNICSR(sc) | DEPCA_NICSR_SHE);
1215 le_intrvec[sc->le_if.if_dunit] = depca_intr;
1216 if (!lance_init_adapmem(sc))
1217 return 0;
1219 sc->if_reset = lance_reset;
1220 sc->if_init = lance_init;
1221 sc->le_if.if_start = lance_start;
1222 DEPCA_WRNICSR(sc, DEPCA_NICSR_SHE | DEPCA_NICSR_ENABINTR);
1223 sc->if_reset(sc);
1225 LN_STAT(low_txfree = sc->lance_txinfo.ri_max);
1226 LN_STAT(low_txheapsize = 0xFFFFFFFF);
1227 *msize = sc->lance_ramsize;
1228 return DEPCA_IOSPACE;
1231 static void
1232 depca_intr(struct le_softc *sc)
1234 DEPCA_WRNICSR(sc, DEPCA_RDNICSR(sc) ^ DEPCA_NICSR_LED);
1235 lance_intr(sc);
1239 * Here's as good a place to describe our paritioning of the
1240 * LANCE shared RAM space. (NOTE: this driver does not yet support
1241 * the concept of a LANCE being able to DMA).
1243 * First is the 24 (00:23) bytes for LANCE Initialization Block
1244 * Next are the recieve descriptors. The number is calculated from
1245 * how many LN_BUFSIZE buffers we can allocate (this number must
1246 * be a power of 2). Next are the transmit descriptors. The amount
1247 * of transmit descriptors is derived from the size of the RAM
1248 * divided by 1K. Now come the receive buffers (one for each receive
1249 * descriptor). Finally is the transmit heap. (no fixed buffers are
1250 * allocated so as to make the most use of the limited space).
1252 static int
1253 lance_init_adapmem(struct le_softc *sc)
1255 lance_addr_t rxbufoffset;
1256 lance_addr_t rxdescoffset, txdescoffset;
1257 unsigned rxdescs, txdescs;
1260 * First calculate how many descriptors we heap.
1261 * Note this assumes the ramsize is a power of two.
1263 sc->lance_rxbufsize = LN_BUFSIZE;
1264 rxdescs = 1;
1265 while (rxdescs * sc->lance_rxbufsize < sc->lance_ramsize)
1266 rxdescs *= 2;
1267 rxdescs /= 2;
1268 if (rxdescs > LN_DESC_MAX) {
1269 sc->lance_rxbufsize *= rxdescs / LN_DESC_MAX;
1270 rxdescs = LN_DESC_MAX;
1272 txdescs = sc->lance_ramsize / LN_TXDESC_RATIO;
1273 if (txdescs > LN_DESC_MAX)
1274 txdescs = LN_DESC_MAX;
1277 * Now calculate where everything goes in memory
1279 rxdescoffset = sizeof(ln_initb_t);
1280 txdescoffset = rxdescoffset + sizeof(ln_desc_t) * rxdescs;
1281 rxbufoffset = txdescoffset + sizeof(ln_desc_t) * txdescs;
1283 sc->le_mctbl = (le_mcbits_t *) sc->lance_initb.ln_multi_mask;
1285 * Remember these for debugging.
1287 sc->lance_raminitb = (ln_initb_t *) sc->le_membase;
1288 sc->lance_ramdesc = (ln_desc_t *) (sc->le_membase + rxdescoffset);
1291 * Initialize the rings.
1293 if (!lance_init_ring(sc, &sc->lance_initb.ln_rxring, &sc->lance_rxinfo,
1294 rxdescs, rxbufoffset, rxdescoffset))
1295 return 0;
1296 sc->lance_rxinfo.ri_heap = rxbufoffset;
1297 sc->lance_rxinfo.ri_heapend = rxbufoffset + sc->lance_rxbufsize * rxdescs;
1299 if (!lance_init_ring(sc, &sc->lance_initb.ln_txring, &sc->lance_txinfo,
1300 txdescs, 0, txdescoffset))
1301 return 0;
1302 sc->lance_txinfo.ri_heap = sc->lance_rxinfo.ri_heapend;
1303 sc->lance_txinfo.ri_heapend = sc->lance_ramsize;
1306 * Set CSR1 and CSR2 to the address of the init block (which
1307 * for us is always 0.
1309 sc->lance_csr1 = LN_ADDR_LO(0 + sc->lance_ramoffset);
1310 sc->lance_csr2 = LN_ADDR_HI(0 + sc->lance_ramoffset);
1311 return 1;
1314 static int
1315 lance_init_ring(struct le_softc *sc, ln_ring_t *rp, lance_ring_t *ri,
1316 unsigned ndescs, lance_addr_t bufoffset, lance_addr_t descoffset)
1318 lance_descinfo_t *di;
1321 * Initialize the ring pointer in the LANCE InitBlock
1323 rp->r_addr_lo = LN_ADDR_LO(descoffset + sc->lance_ramoffset);
1324 rp->r_addr_hi = LN_ADDR_HI(descoffset + sc->lance_ramoffset);
1325 rp->r_log2_size = ffs(ndescs) - 1;
1328 * Allocate the ring entry descriptors and initialize
1329 * our ring information data structure. All these are
1330 * our copies and do not live in the LANCE RAM.
1332 ri->ri_first = kmalloc(ndescs * sizeof(*di), M_DEVBUF, M_WAITOK);
1333 ri->ri_free = ri->ri_max = ndescs;
1334 ri->ri_last = ri->ri_first + ri->ri_max;
1335 for (di = ri->ri_first; di < ri->ri_last; di++) {
1336 di->di_addr = sc->le_membase + descoffset;
1337 di->di_mbuf = NULL;
1338 if (bufoffset) {
1339 di->di_bufaddr = bufoffset;
1340 di->di_buflen = sc->lance_rxbufsize;
1341 bufoffset += sc->lance_rxbufsize;
1343 descoffset += sizeof(ln_desc_t);
1345 return 1;
1348 static void
1349 lance_dumpcsrs(struct le_softc *sc, const char *id)
1351 if_printf(&sc->le_if, "%s: nicsr=%04x", id, DEPCA_RDNICSR(sc));
1352 LN_SELCSR(sc, LN_CSR0);
1353 kprintf(" csr0=%04x", LN_RDCSR(sc));
1354 LN_SELCSR(sc, LN_CSR1);
1355 kprintf(" csr1=%04x", LN_RDCSR(sc));
1356 LN_SELCSR(sc, LN_CSR2);
1357 kprintf(" csr2=%04x", LN_RDCSR(sc));
1358 LN_SELCSR(sc, LN_CSR3);
1359 kprintf(" csr3=%04x\n", LN_RDCSR(sc));
1360 LN_SELCSR(sc, LN_CSR0);
1363 static void
1364 lance_reset(struct le_softc *sc)
1366 int cnt, csr;
1368 /* lance_dumpcsrs(sc, "lance_reset: start"); */
1370 LN_WRCSR(sc, LN_RDCSR(sc) & ~LN_CSR0_ENABINTR);
1371 LN_WRCSR(sc, LN_CSR0_STOP);
1372 DELAY(100);
1374 sc->le_flags &= ~IFF_UP;
1375 sc->le_if.if_flags &= ~(IFF_UP|IFF_RUNNING);
1377 le_multi_filter(sc); /* initialize the multicast table */
1378 if ((sc->le_flags | sc->le_if.if_flags) & IFF_ALLMULTI) {
1379 sc->lance_initb.ln_multi_mask[0] = 0xFFFFU;
1380 sc->lance_initb.ln_multi_mask[1] = 0xFFFFU;
1381 sc->lance_initb.ln_multi_mask[2] = 0xFFFFU;
1382 sc->lance_initb.ln_multi_mask[3] = 0xFFFFU;
1384 sc->lance_initb.ln_physaddr[0] = ((u_short *) sc->le_ac.ac_enaddr)[0];
1385 sc->lance_initb.ln_physaddr[1] = ((u_short *) sc->le_ac.ac_enaddr)[1];
1386 sc->lance_initb.ln_physaddr[2] = ((u_short *) sc->le_ac.ac_enaddr)[2];
1387 if (sc->le_if.if_flags & IFF_PROMISC) {
1388 sc->lance_initb.ln_mode |= LN_MODE_PROMISC;
1389 } else {
1390 sc->lance_initb.ln_mode &= ~LN_MODE_PROMISC;
1393 * We force the init block to be at the start
1394 * of the LANCE's RAM buffer.
1396 LN_COPYTO(sc, &sc->lance_initb, sc->le_membase, sizeof(sc->lance_initb));
1397 LN_SELCSR(sc, LN_CSR1); LN_WRCSR(sc, sc->lance_csr1);
1398 LN_SELCSR(sc, LN_CSR2); LN_WRCSR(sc, sc->lance_csr2);
1399 LN_SELCSR(sc, LN_CSR3); LN_WRCSR(sc, sc->lance_csr3);
1401 /* lance_dumpcsrs(sc, "lance_reset: preinit"); */
1404 * clear INITDONE and INIT the chip
1406 LN_SELCSR(sc, LN_CSR0);
1407 LN_WRCSR(sc, LN_CSR0_INIT|LN_CSR0_INITDONE);
1409 csr = 0;
1410 cnt = 100;
1411 while (cnt-- > 0) {
1412 if (((csr = LN_RDCSR(sc)) & LN_CSR0_INITDONE) != 0)
1413 break;
1414 DELAY(10000);
1417 if ((csr & LN_CSR0_INITDONE) == 0) { /* make sure we got out okay */
1418 lance_dumpcsrs(sc, "lance_reset: reset failure");
1419 } else {
1420 /* lance_dumpcsrs(sc, "lance_reset: end"); */
1421 sc->le_if.if_flags |= IFF_UP;
1422 sc->le_flags |= IFF_UP;
1426 static void
1427 lance_init(void *xsc)
1429 struct le_softc *sc = (struct le_softc *)xsc;
1430 lance_ring_t *ri;
1431 lance_descinfo_t *di;
1432 ln_desc_t desc;
1434 LN_STAT(inits++);
1435 if (sc->le_if.if_flags & IFF_RUNNING) {
1436 sc->if_reset(sc);
1437 lance_tx_intr(sc);
1439 * If we were running, abort any pending transmits.
1441 ri = &sc->lance_txinfo;
1442 di = ri->ri_nextout;
1443 while (ri->ri_free < ri->ri_max) {
1444 if (--di == ri->ri_first)
1445 di = ri->ri_nextout - 1;
1446 if (di->di_mbuf == NULL)
1447 break;
1448 m_free(di->di_mbuf);
1449 di->di_mbuf = NULL;
1450 ri->ri_free++;
1452 } else {
1453 sc->if_reset(sc);
1457 * Reset the transmit ring. Make sure we own all the buffers.
1458 * Also reset the transmit heap.
1460 sc->le_if.if_flags &= ~IFF_OACTIVE;
1461 ri = &sc->lance_txinfo;
1462 for (di = ri->ri_first; di < ri->ri_last; di++) {
1463 if (di->di_mbuf != NULL) {
1464 m_freem(di->di_mbuf);
1465 di->di_mbuf = NULL;
1467 desc.d_flag = 0;
1468 desc.d_addr_lo = LN_ADDR_LO(ri->ri_heap + sc->lance_ramoffset);
1469 desc.d_addr_hi = LN_ADDR_HI(ri->ri_heap + sc->lance_ramoffset);
1470 desc.d_buflen = 0;
1471 LN_PUTDESC(sc, &desc, di->di_addr);
1473 ri->ri_nextin = ri->ri_nextout = ri->ri_first;
1474 ri->ri_free = ri->ri_max;
1475 ri->ri_outptr = ri->ri_heap;
1476 ri->ri_outsize = ri->ri_heapend - ri->ri_heap;
1478 ri = &sc->lance_rxinfo;
1479 desc.d_flag = LN_DFLAG_OWNER;
1480 desc.d_buflen = 0 - sc->lance_rxbufsize;
1481 for (di = ri->ri_first; di < ri->ri_last; di++) {
1482 desc.d_addr_lo = LN_ADDR_LO(di->di_bufaddr + sc->lance_ramoffset);
1483 desc.d_addr_hi = LN_ADDR_HI(di->di_bufaddr + sc->lance_ramoffset);
1484 LN_PUTDESC(sc, &desc, di->di_addr);
1486 ri->ri_nextin = ri->ri_nextout = ri->ri_first;
1487 ri->ri_outptr = ri->ri_heap;
1488 ri->ri_outsize = ri->ri_heapend - ri->ri_heap;
1489 ri->ri_free = 0;
1491 if (sc->le_if.if_flags & IFF_UP) {
1492 sc->le_if.if_flags |= IFF_RUNNING;
1493 LN_WRCSR(sc, LN_CSR0_START|LN_CSR0_INITDONE|LN_CSR0_ENABINTR);
1494 /* lance_dumpcsrs(sc, "lance_init: up"); */
1495 lance_start(&sc->le_if);
1496 } else {
1497 /* lance_dumpcsrs(sc, "lance_init: down"); */
1498 sc->le_if.if_flags &= ~IFF_RUNNING;
1502 static void
1503 lance_intr(struct le_softc *sc)
1505 unsigned oldcsr;
1507 oldcsr = LN_RDCSR(sc);
1508 oldcsr &= ~LN_CSR0_ENABINTR;
1509 LN_WRCSR(sc, oldcsr);
1510 LN_WRCSR(sc, LN_CSR0_ENABINTR);
1512 if (oldcsr & LN_CSR0_ERRSUM) {
1513 if (oldcsr & LN_CSR0_MISS) {
1515 * LN_CSR0_MISS is signaled when the LANCE receiver
1516 * loses a packet because it doesn't own a receive
1517 * descriptor. Rev. D LANCE chips, which are no
1518 * longer used, require a chip reset as described
1519 * below.
1521 LN_STAT(rx_misses++);
1523 if (oldcsr & LN_CSR0_MEMERROR) {
1524 LN_STAT(memory_errors++);
1525 if (oldcsr & (LN_CSR0_RXON|LN_CSR0_TXON)) {
1526 lance_init(sc);
1527 return;
1532 if ((oldcsr & LN_CSR0_RXINT) && lance_rx_intr(sc)) {
1533 lance_init(sc);
1534 return;
1537 if (oldcsr & LN_CSR0_TXINT) {
1538 if (lance_tx_intr(sc))
1539 lance_start(&sc->le_if);
1542 if (oldcsr == (LN_CSR0_PENDINTR|LN_CSR0_RXON|LN_CSR0_TXON))
1543 if_printf(&sc->le_if, "lance_intr: stray interrupt\n");
1546 static int
1547 lance_rx_intr(struct le_softc *sc)
1549 lance_ring_t *ri = &sc->lance_rxinfo;
1550 lance_descinfo_t *eop;
1551 ln_desc_t desc;
1552 int ndescs, total_len, rxdescs;
1554 LN_STAT(rx_intrs++);
1556 for (rxdescs = 0;;) {
1558 * Now to try to find the end of this packet chain.
1560 for (ndescs = 1, eop = ri->ri_nextin;; ndescs++) {
1562 * If we don't own this descriptor, the packet ain't
1563 * all here so return because we are done.
1565 LN_GETDESC(sc, &desc, eop->di_addr);
1566 if (desc.d_flag & LN_DFLAG_OWNER)
1567 return 0;
1569 * In case we have missed a packet and gotten the
1570 * LANCE confused, make sure we are pointing at the
1571 * start of a packet. If we aren't, something is really
1572 * strange so reinit the LANCE.
1574 if (desc.d_flag & LN_DFLAG_RxBUFERROR) {
1575 LN_STAT(rx_buferror++);
1576 return 1;
1578 if ((desc.d_flag & LN_DFLAG_SOP) && eop != ri->ri_nextin) {
1579 LN_STAT(rx_badsop++);
1580 return 1;
1582 if (desc.d_flag & LN_DFLAG_EOP)
1583 break;
1584 if (++eop == ri->ri_last)
1585 eop = ri->ri_first;
1588 total_len = (desc.d_status & LN_DSTS_RxLENMASK) - 4;
1589 if ((desc.d_flag & LN_DFLAG_RxERRSUM) == 0) {
1591 * Valid Packet -- If the SOP is less than or equal to the EOP
1592 * or the length is less than the receive buffer size, then the
1593 * packet is contiguous in memory and can be copied in one shot.
1594 * Otherwise we need to copy two segments to get the entire
1595 * packet.
1597 if (ri->ri_nextin <= eop || total_len <= ri->ri_heapend - ri->ri_nextin->di_bufaddr) {
1598 le_input(sc, sc->le_membase + ri->ri_nextin->di_bufaddr,
1599 total_len, total_len, NULL);
1600 LN_STAT(rx_contig++);
1601 } else {
1602 le_input(sc, sc->le_membase + ri->ri_nextin->di_bufaddr,
1603 total_len,
1604 ri->ri_heapend - ri->ri_nextin->di_bufaddr,
1605 sc->le_membase + ri->ri_first->di_bufaddr);
1606 LN_STAT(rx_noncontig++);
1608 } else {
1610 * If the packet is bad, increment the
1611 * counters.
1613 sc->le_if.if_ierrors++;
1614 if (desc.d_flag & LN_DFLAG_RxBADCRC)
1615 LN_STAT(rx_badcrc++);
1616 if (desc.d_flag & LN_DFLAG_RxOVERFLOW)
1617 LN_STAT(rx_badalign++);
1618 if (desc.d_flag & LN_DFLAG_RxFRAMING)
1619 LN_STAT(rx_badframe++);
1621 sc->le_if.if_ipackets++;
1622 LN_STAT(rx_ndescs[ndescs-1]++);
1623 rxdescs += ndescs;
1624 while (ndescs-- > 0) {
1625 LN_SETFLAG(sc, ri->ri_nextin->di_addr, LN_DFLAG_OWNER);
1626 if (++ri->ri_nextin == ri->ri_last)
1627 ri->ri_nextin = ri->ri_first;
1630 /* LN_STAT(rx_intr_descs[rxdescs]++); */
1631 LN_MAXSTAT(rx_intr_hidescs, rxdescs);
1633 return 0;
1636 static void
1637 lance_start(struct ifnet *ifp)
1639 struct le_softc *sc = (struct le_softc *) ifp;
1640 lance_ring_t *ri = &sc->lance_txinfo;
1641 lance_descinfo_t *di;
1642 ln_desc_t desc;
1643 unsigned len, slop;
1644 struct mbuf *m, *m0;
1645 caddr_t bp;
1647 if ((ifp->if_flags & IFF_RUNNING) == 0)
1648 return;
1650 for (;;) {
1651 m = ifq_poll(&ifp->if_snd);
1652 if (m == NULL)
1653 break;
1656 * Make the packet meets the minimum size for Ethernet.
1657 * The slop is so that we also use an even number of longwards.
1659 len = ETHERMIN + sizeof(struct ether_header);
1660 if (m->m_pkthdr.len > len)
1661 len = m->m_pkthdr.len;
1663 slop = (8 - len) & 3;
1665 * If there are no free ring entries (there must be always
1666 * one owned by the host), or there's not enough space for
1667 * this packet, or this packet would wrap around the end
1668 * of LANCE RAM then wait for the transmits to empty for
1669 * space and ring entries to become available.
1671 if (ri->ri_free == 1 || len + slop > ri->ri_outsize) {
1673 * Try to see if we can free up anything off the transit ring.
1675 if (lance_tx_intr(sc) > 0) {
1676 LN_STAT(tx_drains[0]++);
1677 continue;
1679 LN_STAT(tx_nospc[0]++);
1680 break;
1683 if (len + slop > ri->ri_heapend - ri->ri_outptr) {
1685 * Since the packet won't fit in the end of the transmit
1686 * heap, see if there is space at the beginning of the transmit
1687 * heap. If not, try again when there is space.
1689 LN_STAT(tx_orphaned++);
1690 slop += ri->ri_heapend - ri->ri_outptr;
1691 if (len + slop > ri->ri_outsize) {
1692 LN_STAT(tx_nospc[1]++);
1693 break;
1696 * Point to the beginning of the heap
1698 ri->ri_outptr = ri->ri_heap;
1699 LN_STAT(tx_adoptions++);
1703 * Initialize the descriptor (saving the buffer address,
1704 * buffer length, and mbuf) and write the packet out
1705 * to the board.
1707 di = ri->ri_nextout;
1708 di->di_bufaddr = ri->ri_outptr;
1709 di->di_buflen = len + slop;
1710 di->di_mbuf = m;
1711 bp = sc->le_membase + di->di_bufaddr;
1712 for (m0 = m; m0 != NULL; m0 = m0->m_next) {
1713 LN_COPYTO(sc, mtod(m0, caddr_t), bp, m0->m_len);
1714 bp += m0->m_len;
1717 * Zero out the remainder if needed (< ETHERMIN).
1719 if (m->m_pkthdr.len < len)
1720 LN_ZERO(sc, bp, len - m->m_pkthdr.len);
1722 ifq_dequeue(&ifp->if_snd, m);
1725 * Finally, copy out the descriptor and tell the
1726 * LANCE to transmit!.
1728 desc.d_buflen = 0 - len;
1729 desc.d_addr_lo = LN_ADDR_LO(di->di_bufaddr + sc->lance_ramoffset);
1730 desc.d_addr_hi = LN_ADDR_HI(di->di_bufaddr + sc->lance_ramoffset);
1731 desc.d_flag = LN_DFLAG_SOP|LN_DFLAG_EOP|LN_DFLAG_OWNER;
1732 LN_PUTDESC(sc, &desc, di->di_addr);
1733 LN_WRCSR(sc, LN_CSR0_TXDEMAND|LN_CSR0_ENABINTR);
1736 * Do our bookkeeping with our transmit heap.
1737 * (if we wrap, point back to the beginning).
1739 ri->ri_outptr += di->di_buflen;
1740 ri->ri_outsize -= di->di_buflen;
1741 LN_MAXSTAT(high_txoutptr, ri->ri_outptr);
1742 LN_MINSTAT(low_txheapsize, ri->ri_outsize);
1744 if (ri->ri_outptr == ri->ri_heapend)
1745 ri->ri_outptr = ri->ri_heap;
1747 ri->ri_free--;
1748 if (++ri->ri_nextout == ri->ri_last)
1749 ri->ri_nextout = ri->ri_first;
1750 LN_MINSTAT(low_txfree, ri->ri_free);
1752 if (m != NULL)
1753 ifp->if_flags |= IFF_OACTIVE;
1756 static int
1757 lance_tx_intr(struct le_softc *sc)
1759 lance_ring_t *ri = &sc->lance_txinfo;
1760 unsigned xmits;
1762 LN_STAT(tx_intrs++);
1763 for (xmits = 0; ri->ri_free < ri->ri_max; ) {
1764 ln_desc_t desc;
1766 LN_GETDESC(sc, &desc, ri->ri_nextin->di_addr);
1767 if (desc.d_flag & LN_DFLAG_OWNER)
1768 break;
1770 if (desc.d_flag & (LN_DFLAG_TxONECOLL|LN_DFLAG_TxMULTCOLL))
1771 sc->le_if.if_collisions++;
1772 if (desc.d_flag & LN_DFLAG_TxDEFERRED)
1773 LN_STAT(tx_deferred++);
1774 if (desc.d_flag & LN_DFLAG_TxONECOLL)
1775 LN_STAT(tx_single_collisions++);
1776 if (desc.d_flag & LN_DFLAG_TxMULTCOLL)
1777 LN_STAT(tx_multiple_collisions++);
1779 if (desc.d_flag & LN_DFLAG_TxERRSUM) {
1780 if (desc.d_status & (LN_DSTS_TxUNDERFLOW|LN_DSTS_TxBUFERROR|
1781 LN_DSTS_TxEXCCOLL|LN_DSTS_TxLATECOLL)) {
1782 if (desc.d_status & LN_DSTS_TxEXCCOLL) {
1783 unsigned tdr;
1784 LN_STAT(tx_excessive_collisions++);
1785 if ((tdr = (desc.d_status & LN_DSTS_TxTDRMASK)) > 0) {
1786 tdr *= 100;
1787 if_printf(&sc->le_if, "lance: warning: excessive collisions: TDR %dns (%d-%dm)\n",
1788 tdr, (tdr*99)/1000, (tdr*117)/1000);
1791 if (desc.d_status & LN_DSTS_TxBUFERROR)
1792 LN_STAT(tx_buferror++);
1793 sc->le_if.if_oerrors++;
1794 if ((desc.d_status & LN_DSTS_TxLATECOLL) == 0) {
1795 lance_init(sc);
1796 return 0;
1797 } else {
1798 LN_STAT(tx_late_collisions++);
1802 m_freem(ri->ri_nextin->di_mbuf);
1803 ri->ri_nextin->di_mbuf = NULL;
1804 sc->le_if.if_opackets++;
1805 ri->ri_free++;
1806 ri->ri_outsize += ri->ri_nextin->di_buflen;
1807 if (++ri->ri_nextin == ri->ri_last)
1808 ri->ri_nextin = ri->ri_first;
1809 sc->le_if.if_flags &= ~IFF_OACTIVE;
1810 xmits++;
1812 if (ri->ri_free == ri->ri_max)
1813 LN_STAT(tx_emptied++);
1814 /* LN_STAT(tx_intr_descs[xmits]++); */
1815 LN_MAXSTAT(tx_intr_hidescs, xmits);
1816 return xmits;