Properly detect interruptable LWKT sleeps and display as 'S' instead of 'D'.
[dragonfly/vkernel-mp.git] / usr.bin / lex / dfa.c
blobe6df716943c6a4e80c5c7ea5a7c8c65bd16bbf5f
1 /* dfa - DFA construction routines */
3 /*-
4 * Copyright (c) 1990 The Regents of the University of California.
5 * All rights reserved.
7 * This code is derived from software contributed to Berkeley by
8 * Vern Paxson.
9 *
10 * The United States Government has rights in this work pursuant
11 * to contract no. DE-AC03-76SF00098 between the United States
12 * Department of Energy and the University of California.
14 * Redistribution and use in source and binary forms are permitted provided
15 * that: (1) source distributions retain this entire copyright notice and
16 * comment, and (2) distributions including binaries display the following
17 * acknowledgement: ``This product includes software developed by the
18 * University of California, Berkeley and its contributors'' in the
19 * documentation or other materials provided with the distribution and in
20 * all advertising materials mentioning features or use of this software.
21 * Neither the name of the University nor the names of its contributors may
22 * be used to endorse or promote products derived from this software without
23 * specific prior written permission.
24 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
25 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
26 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
29 /* $Header: /home/daffy/u0/vern/flex/RCS/dfa.c,v 2.26 95/04/20 13:53:14 vern Exp $ */
30 /* $FreeBSD: src/usr.bin/lex/dfa.c,v 1.5 1999/10/27 07:56:43 obrien Exp $ */
31 /* $DragonFly: src/usr.bin/lex/dfa.c,v 1.4 2005/08/04 19:31:22 drhodus Exp $ */
33 #include "flexdef.h"
36 /* declare functions that have forward references */
38 void dump_associated_rules PROTO((FILE*, int));
39 void dump_transitions PROTO((FILE*, int[]));
40 void sympartition PROTO((int[], int, int[], int[]));
41 int symfollowset PROTO((int[], int, int, int[]));
44 /* check_for_backing_up - check a DFA state for backing up
46 * synopsis
47 * void check_for_backing_up( int ds, int state[numecs] );
49 * ds is the number of the state to check and state[] is its out-transitions,
50 * indexed by equivalence class.
53 void check_for_backing_up(int ds, int *state)
55 if ( (reject && ! dfaacc[ds].dfaacc_set) ||
56 (! reject && ! dfaacc[ds].dfaacc_state) )
57 { /* state is non-accepting */
58 ++num_backing_up;
60 if ( backing_up_report )
62 fprintf( backing_up_file,
63 _( "State #%d is non-accepting -\n" ), ds );
65 /* identify the state */
66 dump_associated_rules( backing_up_file, ds );
68 /* Now identify it further using the out- and
69 * jam-transitions.
71 dump_transitions( backing_up_file, state );
73 putc( '\n', backing_up_file );
79 /* check_trailing_context - check to see if NFA state set constitutes
80 * "dangerous" trailing context
82 * synopsis
83 * void check_trailing_context( int nfa_states[num_states+1], int num_states,
84 * int accset[nacc+1], int nacc );
86 * NOTES
87 * Trailing context is "dangerous" if both the head and the trailing
88 * part are of variable size \and/ there's a DFA state which contains
89 * both an accepting state for the head part of the rule and NFA states
90 * which occur after the beginning of the trailing context.
92 * When such a rule is matched, it's impossible to tell if having been
93 * in the DFA state indicates the beginning of the trailing context or
94 * further-along scanning of the pattern. In these cases, a warning
95 * message is issued.
97 * nfa_states[1 .. num_states] is the list of NFA states in the DFA.
98 * accset[1 .. nacc] is the list of accepting numbers for the DFA state.
101 void check_trailing_context(int *nfa_states, int num_states, int *accset,
102 int nacc)
104 int i, j;
106 for ( i = 1; i <= num_states; ++i )
108 int ns = nfa_states[i];
109 int type = state_type[ns];
110 int ar = assoc_rule[ns];
112 if ( type == STATE_NORMAL || rule_type[ar] != RULE_VARIABLE )
113 { /* do nothing */
116 else if ( type == STATE_TRAILING_CONTEXT )
118 /* Potential trouble. Scan set of accepting numbers
119 * for the one marking the end of the "head". We
120 * assume that this looping will be fairly cheap
121 * since it's rare that an accepting number set
122 * is large.
124 for ( j = 1; j <= nacc; ++j )
125 if ( accset[j] & YY_TRAILING_HEAD_MASK )
127 line_warning(
128 _( "dangerous trailing context" ),
129 rule_linenum[ar] );
130 return;
137 /* dump_associated_rules - list the rules associated with a DFA state
139 * Goes through the set of NFA states associated with the DFA and
140 * extracts the first MAX_ASSOC_RULES unique rules, sorts them,
141 * and writes a report to the given file.
144 void dump_associated_rules(FILE *file, int ds)
146 int i, j;
147 int num_associated_rules = 0;
148 int rule_set[MAX_ASSOC_RULES + 1];
149 int *dset = dss[ds];
150 int size = dfasiz[ds];
152 for ( i = 1; i <= size; ++i )
154 int rule_num = rule_linenum[assoc_rule[dset[i]]];
156 for ( j = 1; j <= num_associated_rules; ++j )
157 if ( rule_num == rule_set[j] )
158 break;
160 if ( j > num_associated_rules )
161 { /* new rule */
162 if ( num_associated_rules < MAX_ASSOC_RULES )
163 rule_set[++num_associated_rules] = rule_num;
167 bubble( rule_set, num_associated_rules );
169 fprintf( file, _( " associated rule line numbers:" ) );
171 for ( i = 1; i <= num_associated_rules; ++i )
173 if ( i % 8 == 1 )
174 putc( '\n', file );
176 fprintf( file, "\t%d", rule_set[i] );
179 putc( '\n', file );
183 /* dump_transitions - list the transitions associated with a DFA state
185 * synopsis
186 * dump_transitions( FILE *file, int state[numecs] );
188 * Goes through the set of out-transitions and lists them in human-readable
189 * form (i.e., not as equivalence classes); also lists jam transitions
190 * (i.e., all those which are not out-transitions, plus EOF). The dump
191 * is done to the given file.
194 void dump_transitions(FILE *file, int *state)
196 int i, ec;
197 int out_char_set[CSIZE];
199 for ( i = 0; i < csize; ++i )
201 ec = ABS( ecgroup[i] );
202 out_char_set[i] = state[ec];
205 fprintf( file, _( " out-transitions: " ) );
207 list_character_set( file, out_char_set );
209 /* now invert the members of the set to get the jam transitions */
210 for ( i = 0; i < csize; ++i )
211 out_char_set[i] = ! out_char_set[i];
213 fprintf( file, _( "\n jam-transitions: EOF " ) );
215 list_character_set( file, out_char_set );
217 putc( '\n', file );
221 /* epsclosure - construct the epsilon closure of a set of ndfa states
223 * synopsis
224 * int *epsclosure( int t[num_states], int *numstates_addr,
225 * int accset[num_rules+1], int *nacc_addr,
226 * int *hashval_addr );
228 * NOTES
229 * The epsilon closure is the set of all states reachable by an arbitrary
230 * number of epsilon transitions, which themselves do not have epsilon
231 * transitions going out, unioned with the set of states which have non-null
232 * accepting numbers. t is an array of size numstates of nfa state numbers.
233 * Upon return, t holds the epsilon closure and *numstates_addr is updated.
234 * accset holds a list of the accepting numbers, and the size of accset is
235 * given by *nacc_addr. t may be subjected to reallocation if it is not
236 * large enough to hold the epsilon closure.
238 * hashval is the hash value for the dfa corresponding to the state set.
241 int *epsclosure(int *t, int *ns_addr, int *accset, int *nacc_addr, int *hv_addr)
243 int stkpos, ns, tsp;
244 int numstates = *ns_addr, nacc, hashval, transsym, nfaccnum;
245 int stkend, nstate;
246 static int did_stk_init = false, *stk;
248 #define MARK_STATE(state) \
249 trans1[state] = trans1[state] - MARKER_DIFFERENCE;
251 #define IS_MARKED(state) (trans1[state] < 0)
253 #define UNMARK_STATE(state) \
254 trans1[state] = trans1[state] + MARKER_DIFFERENCE;
256 #define CHECK_ACCEPT(state) \
258 nfaccnum = accptnum[state]; \
259 if ( nfaccnum != NIL ) \
260 accset[++nacc] = nfaccnum; \
263 #define DO_REALLOCATION \
265 current_max_dfa_size += MAX_DFA_SIZE_INCREMENT; \
266 ++num_reallocs; \
267 t = reallocate_integer_array( t, current_max_dfa_size ); \
268 stk = reallocate_integer_array( stk, current_max_dfa_size ); \
271 #define PUT_ON_STACK(state) \
273 if ( ++stkend >= current_max_dfa_size ) \
274 DO_REALLOCATION \
275 stk[stkend] = state; \
276 MARK_STATE(state) \
279 #define ADD_STATE(state) \
281 if ( ++numstates >= current_max_dfa_size ) \
282 DO_REALLOCATION \
283 t[numstates] = state; \
284 hashval += state; \
287 #define STACK_STATE(state) \
289 PUT_ON_STACK(state) \
290 CHECK_ACCEPT(state) \
291 if ( nfaccnum != NIL || transchar[state] != SYM_EPSILON ) \
292 ADD_STATE(state) \
296 if ( ! did_stk_init )
298 stk = allocate_integer_array( current_max_dfa_size );
299 did_stk_init = true;
302 nacc = stkend = hashval = 0;
304 for ( nstate = 1; nstate <= numstates; ++nstate )
306 ns = t[nstate];
308 /* The state could be marked if we've already pushed it onto
309 * the stack.
311 if ( ! IS_MARKED(ns) )
313 PUT_ON_STACK(ns)
314 CHECK_ACCEPT(ns)
315 hashval += ns;
319 for ( stkpos = 1; stkpos <= stkend; ++stkpos )
321 ns = stk[stkpos];
322 transsym = transchar[ns];
324 if ( transsym == SYM_EPSILON )
326 tsp = trans1[ns] + MARKER_DIFFERENCE;
328 if ( tsp != NO_TRANSITION )
330 if ( ! IS_MARKED(tsp) )
331 STACK_STATE(tsp)
333 tsp = trans2[ns];
335 if ( tsp != NO_TRANSITION && ! IS_MARKED(tsp) )
336 STACK_STATE(tsp)
341 /* Clear out "visit" markers. */
343 for ( stkpos = 1; stkpos <= stkend; ++stkpos )
345 if ( IS_MARKED(stk[stkpos]) )
346 UNMARK_STATE(stk[stkpos])
347 else
348 flexfatal(
349 _( "consistency check failed in epsclosure()" ) );
352 *ns_addr = numstates;
353 *hv_addr = hashval;
354 *nacc_addr = nacc;
356 return t;
360 /* increase_max_dfas - increase the maximum number of DFAs */
362 void increase_max_dfas(void)
364 current_max_dfas += MAX_DFAS_INCREMENT;
366 ++num_reallocs;
368 base = reallocate_integer_array( base, current_max_dfas );
369 def = reallocate_integer_array( def, current_max_dfas );
370 dfasiz = reallocate_integer_array( dfasiz, current_max_dfas );
371 accsiz = reallocate_integer_array( accsiz, current_max_dfas );
372 dhash = reallocate_integer_array( dhash, current_max_dfas );
373 dss = reallocate_int_ptr_array( dss, current_max_dfas );
374 dfaacc = reallocate_dfaacc_union( dfaacc, current_max_dfas );
376 if ( nultrans )
377 nultrans =
378 reallocate_integer_array( nultrans, current_max_dfas );
382 /* ntod - convert an ndfa to a dfa
384 * Creates the dfa corresponding to the ndfa we've constructed. The
385 * dfa starts out in state #1.
388 void ntod(void)
390 int *accset, ds, nacc, newds;
391 int sym, hashval, numstates, dsize;
392 int num_full_table_rows; /* used only for -f */
393 int *nset, *dset;
394 int targptr, totaltrans, i, comstate, comfreq, targ;
395 int symlist[CSIZE + 1];
396 int num_start_states;
397 int todo_head, todo_next;
399 /* Note that the following are indexed by *equivalence classes*
400 * and not by characters. Since equivalence classes are indexed
401 * beginning with 1, even if the scanner accepts NUL's, this
402 * means that (since every character is potentially in its own
403 * equivalence class) these arrays must have room for indices
404 * from 1 to CSIZE, so their size must be CSIZE + 1.
406 int duplist[CSIZE + 1], state[CSIZE + 1];
407 int targfreq[CSIZE + 1], targstate[CSIZE + 1];
409 accset = allocate_integer_array( num_rules + 1 );
410 nset = allocate_integer_array( current_max_dfa_size );
412 /* The "todo" queue is represented by the head, which is the DFA
413 * state currently being processed, and the "next", which is the
414 * next DFA state number available (not in use). We depend on the
415 * fact that snstods() returns DFA's \in increasing order/, and thus
416 * need only know the bounds of the dfas to be processed.
418 todo_head = todo_next = 0;
420 for ( i = 0; i <= csize; ++i )
422 duplist[i] = NIL;
423 symlist[i] = false;
426 for ( i = 0; i <= num_rules; ++i )
427 accset[i] = NIL;
429 if ( trace )
431 dumpnfa( scset[1] );
432 fputs( _( "\n\nDFA Dump:\n\n" ), stderr );
435 inittbl();
437 /* Check to see whether we should build a separate table for
438 * transitions on NUL characters. We don't do this for full-speed
439 * (-F) scanners, since for them we don't have a simple state
440 * number lying around with which to index the table. We also
441 * don't bother doing it for scanners unless (1) NUL is in its own
442 * equivalence class (indicated by a positive value of
443 * ecgroup[NUL]), (2) NUL's equivalence class is the last
444 * equivalence class, and (3) the number of equivalence classes is
445 * the same as the number of characters. This latter case comes
446 * about when useecs is false or when it's true but every character
447 * still manages to land in its own class (unlikely, but it's
448 * cheap to check for). If all these things are true then the
449 * character code needed to represent NUL's equivalence class for
450 * indexing the tables is going to take one more bit than the
451 * number of characters, and therefore we won't be assured of
452 * being able to fit it into a YY_CHAR variable. This rules out
453 * storing the transitions in a compressed table, since the code
454 * for interpreting them uses a YY_CHAR variable (perhaps it
455 * should just use an integer, though; this is worth pondering ...
456 * ###).
458 * Finally, for full tables, we want the number of entries in the
459 * table to be a power of two so the array references go fast (it
460 * will just take a shift to compute the major index). If
461 * encoding NUL's transitions in the table will spoil this, we
462 * give it its own table (note that this will be the case if we're
463 * not using equivalence classes).
466 /* Note that the test for ecgroup[0] == numecs below accomplishes
467 * both (1) and (2) above
469 if ( ! fullspd && ecgroup[0] == numecs )
471 /* NUL is alone in its equivalence class, which is the
472 * last one.
474 int use_NUL_table = (numecs == csize);
476 if ( fulltbl && ! use_NUL_table )
478 /* We still may want to use the table if numecs
479 * is a power of 2.
481 int power_of_two;
483 for ( power_of_two = 1; power_of_two <= csize;
484 power_of_two *= 2 )
485 if ( numecs == power_of_two )
487 use_NUL_table = true;
488 break;
492 if ( use_NUL_table )
493 nultrans = allocate_integer_array( current_max_dfas );
495 /* From now on, nultrans != nil indicates that we're
496 * saving null transitions for later, separate encoding.
501 if ( fullspd )
503 for ( i = 0; i <= numecs; ++i )
504 state[i] = 0;
506 place_state( state, 0, 0 );
507 dfaacc[0].dfaacc_state = 0;
510 else if ( fulltbl )
512 if ( nultrans )
513 /* We won't be including NUL's transitions in the
514 * table, so build it for entries from 0 .. numecs - 1.
516 num_full_table_rows = numecs;
518 else
519 /* Take into account the fact that we'll be including
520 * the NUL entries in the transition table. Build it
521 * from 0 .. numecs.
523 num_full_table_rows = numecs + 1;
525 /* Unless -Ca, declare it "short" because it's a real
526 * long-shot that that won't be large enough.
528 out_str_dec( "static yyconst %s yy_nxt[][%d] =\n {\n",
529 /* '}' so vi doesn't get too confused */
530 long_align ? "long" : "short", num_full_table_rows );
532 outn( " {" );
534 /* Generate 0 entries for state #0. */
535 for ( i = 0; i < num_full_table_rows; ++i )
536 mk2data( 0 );
538 dataflush();
539 outn( " },\n" );
542 /* Create the first states. */
544 num_start_states = lastsc * 2;
546 for ( i = 1; i <= num_start_states; ++i )
548 numstates = 1;
550 /* For each start condition, make one state for the case when
551 * we're at the beginning of the line (the '^' operator) and
552 * one for the case when we're not.
554 if ( i % 2 == 1 )
555 nset[numstates] = scset[(i / 2) + 1];
556 else
557 nset[numstates] =
558 mkbranch( scbol[i / 2], scset[i / 2] );
560 nset = epsclosure( nset, &numstates, accset, &nacc, &hashval );
562 if ( snstods( nset, numstates, accset, nacc, hashval, &ds ) )
564 numas += nacc;
565 totnst += numstates;
566 ++todo_next;
568 if ( variable_trailing_context_rules && nacc > 0 )
569 check_trailing_context( nset, numstates,
570 accset, nacc );
574 if ( ! fullspd )
576 if ( ! snstods( nset, 0, accset, 0, 0, &end_of_buffer_state ) )
577 flexfatal(
578 _( "could not create unique end-of-buffer state" ) );
580 ++numas;
581 ++num_start_states;
582 ++todo_next;
585 while ( todo_head < todo_next )
587 targptr = 0;
588 totaltrans = 0;
590 for ( i = 1; i <= numecs; ++i )
591 state[i] = 0;
593 ds = ++todo_head;
595 dset = dss[ds];
596 dsize = dfasiz[ds];
598 if ( trace )
599 fprintf( stderr, _( "state # %d:\n" ), ds );
601 sympartition( dset, dsize, symlist, duplist );
603 for ( sym = 1; sym <= numecs; ++sym )
605 if ( symlist[sym] )
607 symlist[sym] = 0;
609 if ( duplist[sym] == NIL )
611 /* Symbol has unique out-transitions. */
612 numstates = symfollowset( dset, dsize,
613 sym, nset );
614 nset = epsclosure( nset, &numstates,
615 accset, &nacc, &hashval );
617 if ( snstods( nset, numstates, accset,
618 nacc, hashval, &newds ) )
620 totnst = totnst + numstates;
621 ++todo_next;
622 numas += nacc;
624 if (
625 variable_trailing_context_rules &&
626 nacc > 0 )
627 check_trailing_context(
628 nset, numstates,
629 accset, nacc );
632 state[sym] = newds;
634 if ( trace )
635 fprintf( stderr, "\t%d\t%d\n",
636 sym, newds );
638 targfreq[++targptr] = 1;
639 targstate[targptr] = newds;
640 ++numuniq;
643 else
645 /* sym's equivalence class has the same
646 * transitions as duplist(sym)'s
647 * equivalence class.
649 targ = state[duplist[sym]];
650 state[sym] = targ;
652 if ( trace )
653 fprintf( stderr, "\t%d\t%d\n",
654 sym, targ );
656 /* Update frequency count for
657 * destination state.
660 i = 0;
661 while ( targstate[++i] != targ )
664 ++targfreq[i];
665 ++numdup;
668 ++totaltrans;
669 duplist[sym] = NIL;
673 if ( caseins && ! useecs )
675 int j;
677 for ( i = 'A', j = 'a'; i <= 'Z'; ++i, ++j )
679 if ( state[i] == 0 && state[j] != 0 )
680 /* We're adding a transition. */
681 ++totaltrans;
683 else if ( state[i] != 0 && state[j] == 0 )
684 /* We're taking away a transition. */
685 --totaltrans;
687 state[i] = state[j];
691 numsnpairs += totaltrans;
693 if ( ds > num_start_states )
694 check_for_backing_up( ds, state );
696 if ( nultrans )
698 nultrans[ds] = state[NUL_ec];
699 state[NUL_ec] = 0; /* remove transition */
702 if ( fulltbl )
704 outn( " {" );
706 /* Supply array's 0-element. */
707 if ( ds == end_of_buffer_state )
708 mk2data( -end_of_buffer_state );
709 else
710 mk2data( end_of_buffer_state );
712 for ( i = 1; i < num_full_table_rows; ++i )
713 /* Jams are marked by negative of state
714 * number.
716 mk2data( state[i] ? state[i] : -ds );
718 dataflush();
719 outn( " },\n" );
722 else if ( fullspd )
723 place_state( state, ds, totaltrans );
725 else if ( ds == end_of_buffer_state )
726 /* Special case this state to make sure it does what
727 * it's supposed to, i.e., jam on end-of-buffer.
729 stack1( ds, 0, 0, JAMSTATE );
731 else /* normal, compressed state */
733 /* Determine which destination state is the most
734 * common, and how many transitions to it there are.
737 comfreq = 0;
738 comstate = 0;
740 for ( i = 1; i <= targptr; ++i )
741 if ( targfreq[i] > comfreq )
743 comfreq = targfreq[i];
744 comstate = targstate[i];
747 bldtbl( state, ds, totaltrans, comstate, comfreq );
751 if ( fulltbl )
752 dataend();
754 else if ( ! fullspd )
756 cmptmps(); /* create compressed template entries */
758 /* Create tables for all the states with only one
759 * out-transition.
761 while ( onesp > 0 )
763 mk1tbl( onestate[onesp], onesym[onesp], onenext[onesp],
764 onedef[onesp] );
765 --onesp;
768 mkdeftbl();
771 flex_free( (void *) accset );
772 flex_free( (void *) nset );
776 /* snstods - converts a set of ndfa states into a dfa state
778 * synopsis
779 * is_new_state = snstods( int sns[numstates], int numstates,
780 * int accset[num_rules+1], int nacc,
781 * int hashval, int *newds_addr );
783 * On return, the dfa state number is in newds.
786 int snstods(int *sns, int numstates, int *accset, int nacc, int hashval,
787 int *newds_addr)
789 int didsort = 0;
790 int i, j;
791 int newds, *oldsns;
793 for ( i = 1; i <= lastdfa; ++i )
794 if ( hashval == dhash[i] )
796 if ( numstates == dfasiz[i] )
798 oldsns = dss[i];
800 if ( ! didsort )
802 /* We sort the states in sns so we
803 * can compare it to oldsns quickly.
804 * We use bubble because there probably
805 * aren't very many states.
807 bubble( sns, numstates );
808 didsort = 1;
811 for ( j = 1; j <= numstates; ++j )
812 if ( sns[j] != oldsns[j] )
813 break;
815 if ( j > numstates )
817 ++dfaeql;
818 *newds_addr = i;
819 return 0;
822 ++hshcol;
825 else
826 ++hshsave;
829 /* Make a new dfa. */
831 if ( ++lastdfa >= current_max_dfas )
832 increase_max_dfas();
834 newds = lastdfa;
836 dss[newds] = allocate_integer_array( numstates + 1 );
838 /* If we haven't already sorted the states in sns, we do so now,
839 * so that future comparisons with it can be made quickly.
842 if ( ! didsort )
843 bubble( sns, numstates );
845 for ( i = 1; i <= numstates; ++i )
846 dss[newds][i] = sns[i];
848 dfasiz[newds] = numstates;
849 dhash[newds] = hashval;
851 if ( nacc == 0 )
853 if ( reject )
854 dfaacc[newds].dfaacc_set = (int *) 0;
855 else
856 dfaacc[newds].dfaacc_state = 0;
858 accsiz[newds] = 0;
861 else if ( reject )
863 /* We sort the accepting set in increasing order so the
864 * disambiguating rule that the first rule listed is considered
865 * match in the event of ties will work. We use a bubble
866 * sort since the list is probably quite small.
869 bubble( accset, nacc );
871 dfaacc[newds].dfaacc_set = allocate_integer_array( nacc + 1 );
873 /* Save the accepting set for later */
874 for ( i = 1; i <= nacc; ++i )
876 dfaacc[newds].dfaacc_set[i] = accset[i];
878 if ( accset[i] <= num_rules )
879 /* Who knows, perhaps a REJECT can yield
880 * this rule.
882 rule_useful[accset[i]] = true;
885 accsiz[newds] = nacc;
888 else
890 /* Find lowest numbered rule so the disambiguating rule
891 * will work.
893 j = num_rules + 1;
895 for ( i = 1; i <= nacc; ++i )
896 if ( accset[i] < j )
897 j = accset[i];
899 dfaacc[newds].dfaacc_state = j;
901 if ( j <= num_rules )
902 rule_useful[j] = true;
905 *newds_addr = newds;
907 return 1;
911 /* symfollowset - follow the symbol transitions one step
913 * synopsis
914 * numstates = symfollowset( int ds[current_max_dfa_size], int dsize,
915 * int transsym, int nset[current_max_dfa_size] );
918 int symfollowset(int *ds, int dsize, int transsym, int *nset)
920 int ns, tsp, sym, i, j, lenccl, ch, numstates, ccllist;
922 numstates = 0;
924 for ( i = 1; i <= dsize; ++i )
925 { /* for each nfa state ns in the state set of ds */
926 ns = ds[i];
927 sym = transchar[ns];
928 tsp = trans1[ns];
930 if ( sym < 0 )
931 { /* it's a character class */
932 sym = -sym;
933 ccllist = cclmap[sym];
934 lenccl = ccllen[sym];
936 if ( cclng[sym] )
938 for ( j = 0; j < lenccl; ++j )
940 /* Loop through negated character
941 * class.
943 ch = ccltbl[ccllist + j];
945 if ( ch == 0 )
946 ch = NUL_ec;
948 if ( ch > transsym )
949 /* Transsym isn't in negated
950 * ccl.
952 break;
954 else if ( ch == transsym )
955 /* next 2 */ goto bottom;
958 /* Didn't find transsym in ccl. */
959 nset[++numstates] = tsp;
962 else
963 for ( j = 0; j < lenccl; ++j )
965 ch = ccltbl[ccllist + j];
967 if ( ch == 0 )
968 ch = NUL_ec;
970 if ( ch > transsym )
971 break;
972 else if ( ch == transsym )
974 nset[++numstates] = tsp;
975 break;
980 else if ( sym >= 'A' && sym <= 'Z' && caseins )
981 flexfatal(
982 _( "consistency check failed in symfollowset" ) );
984 else if ( sym == SYM_EPSILON )
985 { /* do nothing */
988 else if ( ABS( ecgroup[sym] ) == transsym )
989 nset[++numstates] = tsp;
991 bottom: ;
994 return numstates;
998 /* sympartition - partition characters with same out-transitions
1000 * synopsis
1001 * sympartition( int ds[current_max_dfa_size], int numstates,
1002 * int symlist[numecs], int duplist[numecs] );
1005 void sympartition(int *ds, int numstates, int *symlist, int *duplist)
1007 int tch, i, j, k, ns, dupfwd[CSIZE + 1], lenccl, cclp, ich;
1009 /* Partitioning is done by creating equivalence classes for those
1010 * characters which have out-transitions from the given state. Thus
1011 * we are really creating equivalence classes of equivalence classes.
1014 for ( i = 1; i <= numecs; ++i )
1015 { /* initialize equivalence class list */
1016 duplist[i] = i - 1;
1017 dupfwd[i] = i + 1;
1020 duplist[1] = NIL;
1021 dupfwd[numecs] = NIL;
1023 for ( i = 1; i <= numstates; ++i )
1025 ns = ds[i];
1026 tch = transchar[ns];
1028 if ( tch != SYM_EPSILON )
1030 if ( tch < -lastccl || tch >= csize )
1032 flexfatal(
1033 _( "bad transition character detected in sympartition()" ) );
1036 if ( tch >= 0 )
1037 { /* character transition */
1038 int ec = ecgroup[tch];
1040 mkechar( ec, dupfwd, duplist );
1041 symlist[ec] = 1;
1044 else
1045 { /* character class */
1046 tch = -tch;
1048 lenccl = ccllen[tch];
1049 cclp = cclmap[tch];
1050 mkeccl( ccltbl + cclp, lenccl, dupfwd,
1051 duplist, numecs, NUL_ec );
1053 if ( cclng[tch] )
1055 j = 0;
1057 for ( k = 0; k < lenccl; ++k )
1059 ich = ccltbl[cclp + k];
1061 if ( ich == 0 )
1062 ich = NUL_ec;
1064 for ( ++j; j < ich; ++j )
1065 symlist[j] = 1;
1068 for ( ++j; j <= numecs; ++j )
1069 symlist[j] = 1;
1072 else
1073 for ( k = 0; k < lenccl; ++k )
1075 ich = ccltbl[cclp + k];
1077 if ( ich == 0 )
1078 ich = NUL_ec;
1080 symlist[ich] = 1;