Vge(4) is miibus(4) aware, so nuke the already commented out link state change
[dragonfly/vkernel-mp.git] / sys / dev / netif / vge / if_vge.c
blobb95079d63f86364f5103dd974fd6826a8ca1a12b
1 /*
2 * Copyright (c) 2004
3 * Bill Paul <wpaul@windriver.com>. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
32 * $FreeBSD: src/sys/dev/vge/if_vge.c,v 1.24 2006/02/14 12:44:56 glebius Exp $
33 * $DragonFly: src/sys/dev/netif/vge/if_vge.c,v 1.4 2007/03/24 08:42:42 sephe Exp $
37 * VIA Networking Technologies VT612x PCI gigabit ethernet NIC driver.
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
45 * The VIA Networking VT6122 is a 32bit, 33/66Mhz PCI device that
46 * combines a tri-speed ethernet MAC and PHY, with the following
47 * features:
49 * o Jumbo frame support up to 16K
50 * o Transmit and receive flow control
51 * o IPv4 checksum offload
52 * o VLAN tag insertion and stripping
53 * o TCP large send
54 * o 64-bit multicast hash table filter
55 * o 64 entry CAM filter
56 * o 16K RX FIFO and 48K TX FIFO memory
57 * o Interrupt moderation
59 * The VT6122 supports up to four transmit DMA queues. The descriptors
60 * in the transmit ring can address up to 7 data fragments; frames which
61 * span more than 7 data buffers must be coalesced, but in general the
62 * BSD TCP/IP stack rarely generates frames more than 2 or 3 fragments
63 * long. The receive descriptors address only a single buffer.
65 * There are two peculiar design issues with the VT6122. One is that
66 * receive data buffers must be aligned on a 32-bit boundary. This is
67 * not a problem where the VT6122 is used as a LOM device in x86-based
68 * systems, but on architectures that generate unaligned access traps, we
69 * have to do some copying.
71 * The other issue has to do with the way 64-bit addresses are handled.
72 * The DMA descriptors only allow you to specify 48 bits of addressing
73 * information. The remaining 16 bits are specified using one of the
74 * I/O registers. If you only have a 32-bit system, then this isn't
75 * an issue, but if you have a 64-bit system and more than 4GB of
76 * memory, you must have to make sure your network data buffers reside
77 * in the same 48-bit 'segment.'
79 * Special thanks to Ryan Fu at VIA Networking for providing documentation
80 * and sample NICs for testing.
83 #include "opt_polling.h"
85 #include <sys/param.h>
86 #include <sys/endian.h>
87 #include <sys/systm.h>
88 #include <sys/sockio.h>
89 #include <sys/mbuf.h>
90 #include <sys/malloc.h>
91 #include <sys/module.h>
92 #include <sys/kernel.h>
93 #include <sys/socket.h>
94 #include <sys/serialize.h>
95 #include <sys/proc.h>
96 #include <sys/bus.h>
97 #include <sys/rman.h>
99 #include <net/if.h>
100 #include <net/if_arp.h>
101 #include <net/ethernet.h>
102 #include <net/if_dl.h>
103 #include <net/if_media.h>
104 #include <net/ifq_var.h>
105 #include <net/if_types.h>
106 #include <net/vlan/if_vlan_var.h>
108 #include <net/bpf.h>
110 #include <dev/netif/mii_layer/mii.h>
111 #include <dev/netif/mii_layer/miivar.h>
113 #include <bus/pci/pcireg.h>
114 #include <bus/pci/pcivar.h>
115 #include <bus/pci/pcidevs.h>
117 #include "miibus_if.h"
119 #include <dev/netif/vge/if_vgereg.h>
120 #include <dev/netif/vge/if_vgevar.h>
122 #define VGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
125 * Various supported device vendors/types and their names.
127 static const struct vge_type vge_devs[] = {
128 { PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT612X,
129 "VIA Networking Gigabit Ethernet" },
130 { 0, 0, NULL }
133 static int vge_probe (device_t);
134 static int vge_attach (device_t);
135 static int vge_detach (device_t);
137 static int vge_encap (struct vge_softc *, struct mbuf *, int);
139 static void vge_dma_map_addr (void *, bus_dma_segment_t *, int, int);
140 static void vge_dma_map_rx_desc (void *, bus_dma_segment_t *, int,
141 bus_size_t, int);
142 static void vge_dma_map_tx_desc (void *, bus_dma_segment_t *, int,
143 bus_size_t, int);
144 static int vge_dma_alloc (device_t);
145 static void vge_dma_free (struct vge_softc *);
146 static int vge_newbuf (struct vge_softc *, int, struct mbuf *);
147 static int vge_rx_list_init (struct vge_softc *);
148 static int vge_tx_list_init (struct vge_softc *);
149 #ifdef VGE_FIXUP_RX
150 static __inline void vge_fixup_rx
151 (struct mbuf *);
152 #endif
153 static void vge_rxeof (struct vge_softc *, int);
154 static void vge_txeof (struct vge_softc *);
155 static void vge_intr (void *);
156 static void vge_tick (struct vge_softc *);
157 static void vge_start (struct ifnet *);
158 static int vge_ioctl (struct ifnet *, u_long, caddr_t,
159 struct ucred *);
160 static void vge_init (void *);
161 static void vge_stop (struct vge_softc *);
162 static void vge_watchdog (struct ifnet *);
163 static int vge_suspend (device_t);
164 static int vge_resume (device_t);
165 static void vge_shutdown (device_t);
166 static int vge_ifmedia_upd (struct ifnet *);
167 static void vge_ifmedia_sts (struct ifnet *, struct ifmediareq *);
169 #ifdef VGE_EEPROM
170 static void vge_eeprom_getword (struct vge_softc *, int, u_int16_t *);
171 #endif
172 static void vge_read_eeprom (struct vge_softc *, uint8_t *, int, int, int);
174 static void vge_miipoll_start (struct vge_softc *);
175 static void vge_miipoll_stop (struct vge_softc *);
176 static int vge_miibus_readreg (device_t, int, int);
177 static int vge_miibus_writereg (device_t, int, int, int);
178 static void vge_miibus_statchg (device_t);
180 static void vge_cam_clear (struct vge_softc *);
181 static int vge_cam_set (struct vge_softc *, uint8_t *);
182 static void vge_setmulti (struct vge_softc *);
183 static void vge_reset (struct vge_softc *);
185 #ifdef DEVICE_POLLING
186 static void vge_poll(struct ifnet *, enum poll_cmd, int);
187 static void vge_disable_intr(struct vge_softc *);
188 #endif
189 static void vge_enable_intr(struct vge_softc *, uint32_t);
191 #define VGE_PCI_LOIO 0x10
192 #define VGE_PCI_LOMEM 0x14
194 static device_method_t vge_methods[] = {
195 /* Device interface */
196 DEVMETHOD(device_probe, vge_probe),
197 DEVMETHOD(device_attach, vge_attach),
198 DEVMETHOD(device_detach, vge_detach),
199 DEVMETHOD(device_suspend, vge_suspend),
200 DEVMETHOD(device_resume, vge_resume),
201 DEVMETHOD(device_shutdown, vge_shutdown),
203 /* bus interface */
204 DEVMETHOD(bus_print_child, bus_generic_print_child),
205 DEVMETHOD(bus_driver_added, bus_generic_driver_added),
207 /* MII interface */
208 DEVMETHOD(miibus_readreg, vge_miibus_readreg),
209 DEVMETHOD(miibus_writereg, vge_miibus_writereg),
210 DEVMETHOD(miibus_statchg, vge_miibus_statchg),
212 { 0, 0 }
215 static driver_t vge_driver = {
216 "vge",
217 vge_methods,
218 sizeof(struct vge_softc)
221 static devclass_t vge_devclass;
223 DECLARE_DUMMY_MODULE(if_vge);
224 MODULE_DEPEND(if_vge, miibus, 1, 1, 1);
225 DRIVER_MODULE(if_vge, pci, vge_driver, vge_devclass, 0, 0);
226 DRIVER_MODULE(if_vge, cardbus, vge_driver, vge_devclass, 0, 0);
227 DRIVER_MODULE(miibus, vge, miibus_driver, miibus_devclass, 0, 0);
229 #ifdef VGE_EEPROM
231 * Read a word of data stored in the EEPROM at address 'addr.'
233 static void
234 vge_eeprom_getword(struct vge_softc *sc, int addr, uint16_t dest)
236 uint16_t word = 0;
237 int i;
240 * Enter EEPROM embedded programming mode. In order to
241 * access the EEPROM at all, we first have to set the
242 * EELOAD bit in the CHIPCFG2 register.
244 CSR_SETBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
245 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
247 /* Select the address of the word we want to read */
248 CSR_WRITE_1(sc, VGE_EEADDR, addr);
250 /* Issue read command */
251 CSR_SETBIT_1(sc, VGE_EECMD, VGE_EECMD_ERD);
253 /* Wait for the done bit to be set. */
254 for (i = 0; i < VGE_TIMEOUT; i++) {
255 if (CSR_READ_1(sc, VGE_EECMD) & VGE_EECMD_EDONE)
256 break;
258 if (i == VGE_TIMEOUT) {
259 device_printf(sc->vge_dev, "EEPROM read timed out\n");
260 *dest = 0;
261 return;
264 /* Read the result */
265 word = CSR_READ_2(sc, VGE_EERDDAT);
267 /* Turn off EEPROM access mode. */
268 CSR_CLRBIT_1(sc, VGE_EECSR, VGE_EECSR_EMBP/*|VGE_EECSR_ECS*/);
269 CSR_CLRBIT_1(sc, VGE_CHIPCFG2, VGE_CHIPCFG2_EELOAD);
271 *dest = word;
273 #endif
276 * Read a sequence of words from the EEPROM.
278 static void
279 vge_read_eeprom(struct vge_softc *sc, uint8_t *dest, int off, int cnt, int swap)
281 int i;
282 #ifdef VGE_EEPROM
283 uint16_t word = 0, *ptr;
285 for (i = 0; i < cnt; i++) {
286 vge_eeprom_getword(sc, off + i, &word);
287 ptr = (uint16_t *)(dest + (i * 2));
288 if (swap)
289 *ptr = ntohs(word);
290 else
291 *ptr = word;
293 #else
294 for (i = 0; i < ETHER_ADDR_LEN; i++)
295 dest[i] = CSR_READ_1(sc, VGE_PAR0 + i);
296 #endif
299 static void
300 vge_miipoll_stop(struct vge_softc *sc)
302 int i;
304 CSR_WRITE_1(sc, VGE_MIICMD, 0);
306 for (i = 0; i < VGE_TIMEOUT; i++) {
307 DELAY(1);
308 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
309 break;
311 if (i == VGE_TIMEOUT)
312 if_printf(&sc->arpcom.ac_if, "failed to idle MII autopoll\n");
315 static void
316 vge_miipoll_start(struct vge_softc *sc)
318 int i;
320 /* First, make sure we're idle. */
321 CSR_WRITE_1(sc, VGE_MIICMD, 0);
322 CSR_WRITE_1(sc, VGE_MIIADDR, VGE_MIIADDR_SWMPL);
324 for (i = 0; i < VGE_TIMEOUT; i++) {
325 DELAY(1);
326 if (CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL)
327 break;
329 if (i == VGE_TIMEOUT) {
330 if_printf(&sc->arpcom.ac_if, "failed to idle MII autopoll\n");
331 return;
334 /* Now enable auto poll mode. */
335 CSR_WRITE_1(sc, VGE_MIICMD, VGE_MIICMD_MAUTO);
337 /* And make sure it started. */
338 for (i = 0; i < VGE_TIMEOUT; i++) {
339 DELAY(1);
340 if ((CSR_READ_1(sc, VGE_MIISTS) & VGE_MIISTS_IIDL) == 0)
341 break;
343 if (i == VGE_TIMEOUT)
344 if_printf(&sc->arpcom.ac_if, "failed to start MII autopoll\n");
347 static int
348 vge_miibus_readreg(device_t dev, int phy, int reg)
350 struct vge_softc *sc;
351 int i;
352 uint16_t rval = 0;
354 sc = device_get_softc(dev);
356 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
357 return(0);
359 vge_miipoll_stop(sc);
361 /* Specify the register we want to read. */
362 CSR_WRITE_1(sc, VGE_MIIADDR, reg);
364 /* Issue read command. */
365 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_RCMD);
367 /* Wait for the read command bit to self-clear. */
368 for (i = 0; i < VGE_TIMEOUT; i++) {
369 DELAY(1);
370 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_RCMD) == 0)
371 break;
373 if (i == VGE_TIMEOUT)
374 if_printf(&sc->arpcom.ac_if, "MII read timed out\n");
375 else
376 rval = CSR_READ_2(sc, VGE_MIIDATA);
378 vge_miipoll_start(sc);
380 return (rval);
383 static int
384 vge_miibus_writereg(device_t dev, int phy, int reg, int data)
386 struct vge_softc *sc;
387 int i, rval = 0;
389 sc = device_get_softc(dev);
391 if (phy != (CSR_READ_1(sc, VGE_MIICFG) & 0x1F))
392 return(0);
394 vge_miipoll_stop(sc);
396 /* Specify the register we want to write. */
397 CSR_WRITE_1(sc, VGE_MIIADDR, reg);
399 /* Specify the data we want to write. */
400 CSR_WRITE_2(sc, VGE_MIIDATA, data);
402 /* Issue write command. */
403 CSR_SETBIT_1(sc, VGE_MIICMD, VGE_MIICMD_WCMD);
405 /* Wait for the write command bit to self-clear. */
406 for (i = 0; i < VGE_TIMEOUT; i++) {
407 DELAY(1);
408 if ((CSR_READ_1(sc, VGE_MIICMD) & VGE_MIICMD_WCMD) == 0)
409 break;
411 if (i == VGE_TIMEOUT) {
412 if_printf(&sc->arpcom.ac_if, "MII write timed out\n");
413 rval = EIO;
416 vge_miipoll_start(sc);
418 return (rval);
421 static void
422 vge_cam_clear(struct vge_softc *sc)
424 int i;
427 * Turn off all the mask bits. This tells the chip
428 * that none of the entries in the CAM filter are valid.
429 * desired entries will be enabled as we fill the filter in.
431 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
432 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
433 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE);
434 for (i = 0; i < 8; i++)
435 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
437 /* Clear the VLAN filter too. */
438 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|VGE_CAMADDR_AVSEL|0);
439 for (i = 0; i < 8; i++)
440 CSR_WRITE_1(sc, VGE_CAM0 + i, 0);
442 CSR_WRITE_1(sc, VGE_CAMADDR, 0);
443 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
444 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
446 sc->vge_camidx = 0;
449 static int
450 vge_cam_set(struct vge_softc *sc, uint8_t *addr)
452 int i, error = 0;
454 if (sc->vge_camidx == VGE_CAM_MAXADDRS)
455 return(ENOSPC);
457 /* Select the CAM data page. */
458 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
459 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMDATA);
461 /* Set the filter entry we want to update and enable writing. */
462 CSR_WRITE_1(sc, VGE_CAMADDR, VGE_CAMADDR_ENABLE|sc->vge_camidx);
464 /* Write the address to the CAM registers */
465 for (i = 0; i < ETHER_ADDR_LEN; i++)
466 CSR_WRITE_1(sc, VGE_CAM0 + i, addr[i]);
468 /* Issue a write command. */
469 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_WRITE);
471 /* Wake for it to clear. */
472 for (i = 0; i < VGE_TIMEOUT; i++) {
473 DELAY(1);
474 if ((CSR_READ_1(sc, VGE_CAMCTL) & VGE_CAMCTL_WRITE) == 0)
475 break;
477 if (i == VGE_TIMEOUT) {
478 if_printf(&sc->arpcom.ac_if, "setting CAM filter failed\n");
479 error = EIO;
480 goto fail;
483 /* Select the CAM mask page. */
484 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
485 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_CAMMASK);
487 /* Set the mask bit that enables this filter. */
488 CSR_SETBIT_1(sc, VGE_CAM0 + (sc->vge_camidx/8),
489 1<<(sc->vge_camidx & 7));
491 sc->vge_camidx++;
493 fail:
494 /* Turn off access to CAM. */
495 CSR_WRITE_1(sc, VGE_CAMADDR, 0);
496 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
497 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
499 return (error);
503 * Program the multicast filter. We use the 64-entry CAM filter
504 * for perfect filtering. If there's more than 64 multicast addresses,
505 * we use the hash filter insted.
507 static void
508 vge_setmulti(struct vge_softc *sc)
510 struct ifnet *ifp = &sc->arpcom.ac_if;
511 int error = 0;
512 struct ifmultiaddr *ifma;
513 uint32_t h, hashes[2] = { 0, 0 };
515 /* First, zot all the multicast entries. */
516 vge_cam_clear(sc);
517 CSR_WRITE_4(sc, VGE_MAR0, 0);
518 CSR_WRITE_4(sc, VGE_MAR1, 0);
521 * If the user wants allmulti or promisc mode, enable reception
522 * of all multicast frames.
524 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
525 CSR_WRITE_4(sc, VGE_MAR0, 0xFFFFFFFF);
526 CSR_WRITE_4(sc, VGE_MAR1, 0xFFFFFFFF);
527 return;
530 /* Now program new ones */
531 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
532 if (ifma->ifma_addr->sa_family != AF_LINK)
533 continue;
534 error = vge_cam_set(sc,
535 LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
536 if (error)
537 break;
540 /* If there were too many addresses, use the hash filter. */
541 if (error) {
542 vge_cam_clear(sc);
544 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
545 if (ifma->ifma_addr->sa_family != AF_LINK)
546 continue;
547 h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
548 ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
549 if (h < 32)
550 hashes[0] |= (1 << h);
551 else
552 hashes[1] |= (1 << (h - 32));
555 CSR_WRITE_4(sc, VGE_MAR0, hashes[0]);
556 CSR_WRITE_4(sc, VGE_MAR1, hashes[1]);
560 static void
561 vge_reset(struct vge_softc *sc)
563 int i;
565 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_SOFTRESET);
567 for (i = 0; i < VGE_TIMEOUT; i++) {
568 DELAY(5);
569 if ((CSR_READ_1(sc, VGE_CRS1) & VGE_CR1_SOFTRESET) == 0)
570 break;
573 if (i == VGE_TIMEOUT) {
574 if_printf(&sc->arpcom.ac_if, "soft reset timed out");
575 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_STOP_FORCE);
576 DELAY(2000);
579 DELAY(5000);
581 CSR_SETBIT_1(sc, VGE_EECSR, VGE_EECSR_RELOAD);
583 for (i = 0; i < VGE_TIMEOUT; i++) {
584 DELAY(5);
585 if ((CSR_READ_1(sc, VGE_EECSR) & VGE_EECSR_RELOAD) == 0)
586 break;
588 if (i == VGE_TIMEOUT) {
589 if_printf(&sc->arpcom.ac_if, "EEPROM reload timed out\n");
590 return;
593 CSR_CLRBIT_1(sc, VGE_CHIPCFG0, VGE_CHIPCFG0_PACPI);
597 * Probe for a VIA gigabit chip. Check the PCI vendor and device
598 * IDs against our list and return a device name if we find a match.
600 static int
601 vge_probe(device_t dev)
603 const struct vge_type *t;
604 uint16_t did, vid;
606 did = pci_get_device(dev);
607 vid = pci_get_vendor(dev);
608 for (t = vge_devs; t->vge_name != NULL; ++t) {
609 if (vid == t->vge_vid && did == t->vge_did) {
610 device_set_desc(dev, t->vge_name);
611 return 0;
614 return (ENXIO);
617 static void
618 vge_dma_map_rx_desc(void *arg, bus_dma_segment_t *segs, int nseg,
619 bus_size_t mapsize, int error)
622 struct vge_dmaload_arg *ctx;
623 struct vge_rx_desc *d = NULL;
625 if (error)
626 return;
628 ctx = arg;
630 /* Signal error to caller if there's too many segments */
631 if (nseg > ctx->vge_maxsegs) {
632 ctx->vge_maxsegs = 0;
633 return;
637 * Map the segment array into descriptors.
639 d = &ctx->sc->vge_ldata.vge_rx_list[ctx->vge_idx];
641 /* If this descriptor is still owned by the chip, bail. */
642 if (le32toh(d->vge_sts) & VGE_RDSTS_OWN) {
643 if_printf(&ctx->sc->arpcom.ac_if,
644 "tried to map busy descriptor\n");
645 ctx->vge_maxsegs = 0;
646 return;
649 d->vge_buflen = htole16(VGE_BUFLEN(segs[0].ds_len) | VGE_RXDESC_I);
650 d->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
651 d->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
652 d->vge_sts = 0;
653 d->vge_ctl = 0;
655 ctx->vge_maxsegs = 1;
658 static void
659 vge_dma_map_tx_desc(void *arg, bus_dma_segment_t *segs, int nseg,
660 bus_size_t mapsize, int error)
662 struct vge_dmaload_arg *ctx;
663 struct vge_tx_desc *d = NULL;
664 struct vge_tx_frag *f;
665 int i = 0;
667 if (error)
668 return;
670 ctx = arg;
672 /* Signal error to caller if there's too many segments */
673 if (nseg > ctx->vge_maxsegs) {
674 ctx->vge_maxsegs = 0;
675 return;
678 /* Map the segment array into descriptors. */
679 d = &ctx->sc->vge_ldata.vge_tx_list[ctx->vge_idx];
681 /* If this descriptor is still owned by the chip, bail. */
682 if (le32toh(d->vge_sts) & VGE_TDSTS_OWN) {
683 ctx->vge_maxsegs = 0;
684 return;
687 for (i = 0; i < nseg; i++) {
688 f = &d->vge_frag[i];
689 f->vge_buflen = htole16(VGE_BUFLEN(segs[i].ds_len));
690 f->vge_addrlo = htole32(VGE_ADDR_LO(segs[i].ds_addr));
691 f->vge_addrhi = htole16(VGE_ADDR_HI(segs[i].ds_addr) & 0xFFFF);
694 /* Argh. This chip does not autopad short frames */
695 if (ctx->vge_m0->m_pkthdr.len < VGE_MIN_FRAMELEN) {
696 f = &d->vge_frag[i];
697 f->vge_buflen = htole16(VGE_BUFLEN(VGE_MIN_FRAMELEN -
698 ctx->vge_m0->m_pkthdr.len));
699 f->vge_addrlo = htole32(VGE_ADDR_LO(segs[0].ds_addr));
700 f->vge_addrhi = htole16(VGE_ADDR_HI(segs[0].ds_addr) & 0xFFFF);
701 ctx->vge_m0->m_pkthdr.len = VGE_MIN_FRAMELEN;
702 i++;
706 * When telling the chip how many segments there are, we
707 * must use nsegs + 1 instead of just nsegs. Darned if I
708 * know why.
710 i++;
712 d->vge_sts = ctx->vge_m0->m_pkthdr.len << 16;
713 d->vge_ctl = ctx->vge_flags|(i << 28)|VGE_TD_LS_NORM;
715 if (ctx->vge_m0->m_pkthdr.len > ETHERMTU + ETHER_HDR_LEN)
716 d->vge_ctl |= VGE_TDCTL_JUMBO;
718 ctx->vge_maxsegs = nseg;
722 * Map a single buffer address.
725 static void
726 vge_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
728 if (error)
729 return;
731 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
732 *((bus_addr_t *)arg) = segs->ds_addr;
735 static int
736 vge_dma_alloc(device_t dev)
738 struct vge_softc *sc = device_get_softc(dev);
739 int error, nseg, i, tx_pos = 0, rx_pos = 0;
742 * Allocate the parent bus DMA tag appropriate for PCI.
744 #define VGE_NSEG_NEW 32
745 error = bus_dma_tag_create(NULL, /* parent */
746 1, 0, /* alignment, boundary */
747 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
748 BUS_SPACE_MAXADDR, /* highaddr */
749 NULL, NULL, /* filter, filterarg */
750 MAXBSIZE, VGE_NSEG_NEW, /* maxsize, nsegments */
751 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
752 BUS_DMA_ALLOCNOW, /* flags */
753 &sc->vge_parent_tag);
754 if (error) {
755 device_printf(dev, "can't create parent dma tag\n");
756 return error;
760 * Allocate map for RX mbufs.
762 nseg = 32;
763 error = bus_dma_tag_create(sc->vge_parent_tag, ETHER_ALIGN, 0,
764 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
765 NULL, NULL,
766 MCLBYTES * nseg, nseg, MCLBYTES,
767 BUS_DMA_ALLOCNOW, &sc->vge_ldata.vge_mtag);
768 if (error) {
769 device_printf(dev, "could not allocate mbuf dma tag\n");
770 return error;
774 * Allocate map for TX descriptor list.
776 error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN, 0,
777 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
778 NULL, NULL,
779 VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ,
780 BUS_DMA_ALLOCNOW,
781 &sc->vge_ldata.vge_tx_list_tag);
782 if (error) {
783 device_printf(dev, "could not allocate tx list dma tag\n");
784 return error;
787 /* Allocate DMA'able memory for the TX ring */
788 error = bus_dmamem_alloc(sc->vge_ldata.vge_tx_list_tag,
789 (void **)&sc->vge_ldata.vge_tx_list,
790 BUS_DMA_WAITOK | BUS_DMA_ZERO,
791 &sc->vge_ldata.vge_tx_list_map);
792 if (error) {
793 device_printf(dev, "could not allocate tx list dma memory\n");
794 return error;
797 /* Load the map for the TX ring. */
798 error = bus_dmamap_load(sc->vge_ldata.vge_tx_list_tag,
799 sc->vge_ldata.vge_tx_list_map,
800 sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ,
801 vge_dma_map_addr,
802 &sc->vge_ldata.vge_tx_list_addr,
803 BUS_DMA_WAITOK);
804 if (error) {
805 device_printf(dev, "could not load tx list\n");
806 bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
807 sc->vge_ldata.vge_tx_list,
808 sc->vge_ldata.vge_tx_list_map);
809 sc->vge_ldata.vge_tx_list = NULL;
810 return error;
813 /* Create DMA maps for TX buffers */
814 for (i = 0; i < VGE_TX_DESC_CNT; i++) {
815 error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
816 &sc->vge_ldata.vge_tx_dmamap[i]);
817 if (error) {
818 device_printf(dev, "can't create DMA map for TX\n");
819 tx_pos = i;
820 goto map_fail;
823 tx_pos = VGE_TX_DESC_CNT;
826 * Allocate map for RX descriptor list.
828 error = bus_dma_tag_create(sc->vge_parent_tag, VGE_RING_ALIGN, 0,
829 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
830 NULL, NULL,
831 VGE_TX_LIST_SZ, 1, VGE_TX_LIST_SZ,
832 BUS_DMA_ALLOCNOW,
833 &sc->vge_ldata.vge_rx_list_tag);
834 if (error) {
835 device_printf(dev, "could not allocate rx list dma tag\n");
836 return error;
839 /* Allocate DMA'able memory for the RX ring */
840 error = bus_dmamem_alloc(sc->vge_ldata.vge_rx_list_tag,
841 (void **)&sc->vge_ldata.vge_rx_list,
842 BUS_DMA_WAITOK | BUS_DMA_ZERO,
843 &sc->vge_ldata.vge_rx_list_map);
844 if (error) {
845 device_printf(dev, "could not allocate rx list dma memory\n");
846 return error;
849 /* Load the map for the RX ring. */
850 error = bus_dmamap_load(sc->vge_ldata.vge_rx_list_tag,
851 sc->vge_ldata.vge_rx_list_map,
852 sc->vge_ldata.vge_rx_list, VGE_TX_LIST_SZ,
853 vge_dma_map_addr,
854 &sc->vge_ldata.vge_rx_list_addr,
855 BUS_DMA_WAITOK);
856 if (error) {
857 device_printf(dev, "could not load rx list\n");
858 bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
859 sc->vge_ldata.vge_rx_list,
860 sc->vge_ldata.vge_rx_list_map);
861 sc->vge_ldata.vge_rx_list = NULL;
862 return error;
865 /* Create DMA maps for RX buffers */
866 for (i = 0; i < VGE_RX_DESC_CNT; i++) {
867 error = bus_dmamap_create(sc->vge_ldata.vge_mtag, 0,
868 &sc->vge_ldata.vge_rx_dmamap[i]);
869 if (error) {
870 device_printf(dev, "can't create DMA map for RX\n");
871 rx_pos = i;
872 goto map_fail;
875 return (0);
877 map_fail:
878 for (i = 0; i < tx_pos; ++i) {
879 error = bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
880 sc->vge_ldata.vge_tx_dmamap[i]);
882 for (i = 0; i < rx_pos; ++i) {
883 error = bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
884 sc->vge_ldata.vge_rx_dmamap[i]);
886 bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
887 sc->vge_ldata.vge_mtag = NULL;
889 return error;
892 static void
893 vge_dma_free(struct vge_softc *sc)
895 /* Unload and free the RX DMA ring memory and map */
896 if (sc->vge_ldata.vge_rx_list_tag) {
897 bus_dmamap_unload(sc->vge_ldata.vge_rx_list_tag,
898 sc->vge_ldata.vge_rx_list_map);
899 bus_dmamem_free(sc->vge_ldata.vge_rx_list_tag,
900 sc->vge_ldata.vge_rx_list,
901 sc->vge_ldata.vge_rx_list_map);
904 if (sc->vge_ldata.vge_rx_list_tag)
905 bus_dma_tag_destroy(sc->vge_ldata.vge_rx_list_tag);
907 /* Unload and free the TX DMA ring memory and map */
908 if (sc->vge_ldata.vge_tx_list_tag) {
909 bus_dmamap_unload(sc->vge_ldata.vge_tx_list_tag,
910 sc->vge_ldata.vge_tx_list_map);
911 bus_dmamem_free(sc->vge_ldata.vge_tx_list_tag,
912 sc->vge_ldata.vge_tx_list,
913 sc->vge_ldata.vge_tx_list_map);
916 if (sc->vge_ldata.vge_tx_list_tag)
917 bus_dma_tag_destroy(sc->vge_ldata.vge_tx_list_tag);
919 /* Destroy all the RX and TX buffer maps */
920 if (sc->vge_ldata.vge_mtag) {
921 int i;
923 for (i = 0; i < VGE_TX_DESC_CNT; i++) {
924 bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
925 sc->vge_ldata.vge_tx_dmamap[i]);
927 for (i = 0; i < VGE_RX_DESC_CNT; i++) {
928 bus_dmamap_destroy(sc->vge_ldata.vge_mtag,
929 sc->vge_ldata.vge_rx_dmamap[i]);
931 bus_dma_tag_destroy(sc->vge_ldata.vge_mtag);
934 if (sc->vge_parent_tag)
935 bus_dma_tag_destroy(sc->vge_parent_tag);
939 * Attach the interface. Allocate softc structures, do ifmedia
940 * setup and ethernet/BPF attach.
942 static int
943 vge_attach(device_t dev)
945 uint8_t eaddr[ETHER_ADDR_LEN];
946 struct vge_softc *sc;
947 struct ifnet *ifp;
948 int error = 0;
950 sc = device_get_softc(dev);
951 ifp = &sc->arpcom.ac_if;
953 /* Initialize if_xname early, so if_printf() can be used */
954 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
957 * Map control/status registers.
959 pci_enable_busmaster(dev);
961 sc->vge_res_rid = VGE_PCI_LOMEM;
962 sc->vge_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
963 &sc->vge_res_rid, RF_ACTIVE);
964 if (sc->vge_res == NULL) {
965 device_printf(dev, "couldn't map ports/memory\n");
966 return ENXIO;
969 sc->vge_btag = rman_get_bustag(sc->vge_res);
970 sc->vge_bhandle = rman_get_bushandle(sc->vge_res);
972 /* Allocate interrupt */
973 sc->vge_irq_rid = 0;
974 sc->vge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->vge_irq_rid,
975 RF_SHAREABLE | RF_ACTIVE);
976 if (sc->vge_irq == NULL) {
977 device_printf(dev, "couldn't map interrupt\n");
978 error = ENXIO;
979 goto fail;
982 /* Reset the adapter. */
983 vge_reset(sc);
986 * Get station address from the EEPROM.
988 vge_read_eeprom(sc, eaddr, VGE_EE_EADDR, 3, 0);
990 /* Allocate DMA related stuffs */
991 error = vge_dma_alloc(dev);
992 if (error)
993 goto fail;
995 /* Do MII setup */
996 error = mii_phy_probe(dev, &sc->vge_miibus, vge_ifmedia_upd,
997 vge_ifmedia_sts);
998 if (error) {
999 device_printf(dev, "MII without any phy!\n");
1000 goto fail;
1003 ifp->if_softc = sc;
1004 ifp->if_mtu = ETHERMTU;
1005 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1006 ifp->if_init = vge_init;
1007 ifp->if_start = vge_start;
1008 ifp->if_watchdog = vge_watchdog;
1009 ifp->if_ioctl = vge_ioctl;
1010 #ifdef DEVICE_POLLING
1011 ifp->if_poll = vge_poll;
1012 #endif
1013 ifp->if_hwassist = VGE_CSUM_FEATURES;
1014 ifp->if_capabilities = IFCAP_VLAN_MTU |
1015 IFCAP_HWCSUM |
1016 IFCAP_VLAN_HWTAGGING;
1017 ifp->if_capenable = ifp->if_capabilities;
1018 ifq_set_maxlen(&ifp->if_snd, VGE_IFQ_MAXLEN);
1019 ifq_set_ready(&ifp->if_snd);
1022 * Call MI attach routine.
1024 ether_ifattach(ifp, eaddr, NULL);
1026 /* Hook interrupt last to avoid having to lock softc */
1027 error = bus_setup_intr(dev, sc->vge_irq, INTR_MPSAFE, vge_intr, sc,
1028 &sc->vge_intrhand, ifp->if_serializer);
1029 if (error) {
1030 device_printf(dev, "couldn't set up irq\n");
1031 ether_ifdetach(ifp);
1032 goto fail;
1035 return 0;
1036 fail:
1037 vge_detach(dev);
1038 return error;
1042 * Shutdown hardware and free up resources. This can be called any
1043 * time after the mutex has been initialized. It is called in both
1044 * the error case in attach and the normal detach case so it needs
1045 * to be careful about only freeing resources that have actually been
1046 * allocated.
1048 static int
1049 vge_detach(device_t dev)
1051 struct vge_softc *sc = device_get_softc(dev);
1052 struct ifnet *ifp = &sc->arpcom.ac_if;
1054 /* These should only be active if attach succeeded */
1055 if (device_is_attached(dev)) {
1056 lwkt_serialize_enter(ifp->if_serializer);
1058 vge_stop(sc);
1059 bus_teardown_intr(dev, sc->vge_irq, sc->vge_intrhand);
1061 * Force off the IFF_UP flag here, in case someone
1062 * still had a BPF descriptor attached to this
1063 * interface. If they do, ether_ifattach() will cause
1064 * the BPF code to try and clear the promisc mode
1065 * flag, which will bubble down to vge_ioctl(),
1066 * which will try to call vge_init() again. This will
1067 * turn the NIC back on and restart the MII ticker,
1068 * which will panic the system when the kernel tries
1069 * to invoke the vge_tick() function that isn't there
1070 * anymore.
1072 ifp->if_flags &= ~IFF_UP;
1074 lwkt_serialize_exit(ifp->if_serializer);
1076 ether_ifdetach(ifp);
1079 if (sc->vge_miibus)
1080 device_delete_child(dev, sc->vge_miibus);
1081 bus_generic_detach(dev);
1083 if (sc->vge_irq) {
1084 bus_release_resource(dev, SYS_RES_IRQ, sc->vge_irq_rid,
1085 sc->vge_irq);
1088 if (sc->vge_res) {
1089 bus_release_resource(dev, SYS_RES_MEMORY, sc->vge_res_rid,
1090 sc->vge_res);
1093 vge_dma_free(sc);
1094 return (0);
1097 static int
1098 vge_newbuf(struct vge_softc *sc, int idx, struct mbuf *m)
1100 struct vge_dmaload_arg arg;
1101 struct mbuf *n = NULL;
1102 int i, error;
1104 if (m == NULL) {
1105 n = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
1106 if (n == NULL)
1107 return (ENOBUFS);
1108 m = n;
1109 } else {
1110 m->m_data = m->m_ext.ext_buf;
1114 #ifdef VGE_FIXUP_RX
1116 * This is part of an evil trick to deal with non-x86 platforms.
1117 * The VIA chip requires RX buffers to be aligned on 32-bit
1118 * boundaries, but that will hose non-x86 machines. To get around
1119 * this, we leave some empty space at the start of each buffer
1120 * and for non-x86 hosts, we copy the buffer back two bytes
1121 * to achieve word alignment. This is slightly more efficient
1122 * than allocating a new buffer, copying the contents, and
1123 * discarding the old buffer.
1125 m->m_len = m->m_pkthdr.len = MCLBYTES - VGE_ETHER_ALIGN;
1126 m_adj(m, VGE_ETHER_ALIGN);
1127 #else
1128 m->m_len = m->m_pkthdr.len = MCLBYTES;
1129 #endif
1131 arg.sc = sc;
1132 arg.vge_idx = idx;
1133 arg.vge_maxsegs = 1;
1134 arg.vge_flags = 0;
1136 error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag,
1137 sc->vge_ldata.vge_rx_dmamap[idx], m,
1138 vge_dma_map_rx_desc, &arg, BUS_DMA_NOWAIT);
1139 if (error || arg.vge_maxsegs != 1) {
1140 if (n != NULL)
1141 m_freem(n);
1142 return (ENOMEM);
1146 * Note: the manual fails to document the fact that for
1147 * proper opration, the driver needs to replentish the RX
1148 * DMA ring 4 descriptors at a time (rather than one at a
1149 * time, like most chips). We can allocate the new buffers
1150 * but we should not set the OWN bits until we're ready
1151 * to hand back 4 of them in one shot.
1154 #define VGE_RXCHUNK 4
1155 sc->vge_rx_consumed++;
1156 if (sc->vge_rx_consumed == VGE_RXCHUNK) {
1157 for (i = idx; i != idx - sc->vge_rx_consumed; i--) {
1158 sc->vge_ldata.vge_rx_list[i].vge_sts |=
1159 htole32(VGE_RDSTS_OWN);
1161 sc->vge_rx_consumed = 0;
1164 sc->vge_ldata.vge_rx_mbuf[idx] = m;
1166 bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1167 sc->vge_ldata.vge_rx_dmamap[idx], BUS_DMASYNC_PREREAD);
1169 return (0);
1172 static int
1173 vge_tx_list_init(struct vge_softc *sc)
1175 bzero ((char *)sc->vge_ldata.vge_tx_list, VGE_TX_LIST_SZ);
1176 bzero ((char *)&sc->vge_ldata.vge_tx_mbuf,
1177 (VGE_TX_DESC_CNT * sizeof(struct mbuf *)));
1179 bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1180 sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_PREWRITE);
1181 sc->vge_ldata.vge_tx_prodidx = 0;
1182 sc->vge_ldata.vge_tx_considx = 0;
1183 sc->vge_ldata.vge_tx_free = VGE_TX_DESC_CNT;
1185 return (0);
1188 static int
1189 vge_rx_list_init(struct vge_softc *sc)
1191 int i;
1193 bzero(sc->vge_ldata.vge_rx_list, VGE_RX_LIST_SZ);
1194 bzero(&sc->vge_ldata.vge_rx_mbuf,
1195 VGE_RX_DESC_CNT * sizeof(struct mbuf *));
1197 sc->vge_rx_consumed = 0;
1199 for (i = 0; i < VGE_RX_DESC_CNT; i++) {
1200 if (vge_newbuf(sc, i, NULL) == ENOBUFS)
1201 return (ENOBUFS);
1204 /* Flush the RX descriptors */
1205 bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1206 sc->vge_ldata.vge_rx_list_map,
1207 BUS_DMASYNC_PREWRITE);
1209 sc->vge_ldata.vge_rx_prodidx = 0;
1210 sc->vge_rx_consumed = 0;
1211 sc->vge_head = sc->vge_tail = NULL;
1212 return (0);
1215 #ifdef VGE_FIXUP_RX
1216 static __inline void
1217 vge_fixup_rx(struct mbuf *m)
1219 uint16_t *src, *dst;
1220 int i;
1222 src = mtod(m, uint16_t *);
1223 dst = src - 1;
1225 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1226 *dst++ = *src++;
1228 m->m_data -= ETHER_ALIGN;
1230 #endif
1233 * RX handler. We support the reception of jumbo frames that have
1234 * been fragmented across multiple 2K mbuf cluster buffers.
1236 static void
1237 vge_rxeof(struct vge_softc *sc, int count)
1239 struct ifnet *ifp = &sc->arpcom.ac_if;
1240 struct mbuf *m;
1241 int i, total_len, lim = 0;
1242 struct vge_rx_desc *cur_rx;
1243 uint32_t rxstat, rxctl;
1245 ASSERT_SERIALIZED(ifp->if_serializer);
1247 i = sc->vge_ldata.vge_rx_prodidx;
1249 /* Invalidate the descriptor memory */
1251 bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1252 sc->vge_ldata.vge_rx_list_map, BUS_DMASYNC_POSTREAD);
1254 while (!VGE_OWN(&sc->vge_ldata.vge_rx_list[i])) {
1255 #ifdef DEVICE_POLLING
1256 if (count >= 0 && count-- == 0)
1257 break;
1258 #endif
1260 cur_rx = &sc->vge_ldata.vge_rx_list[i];
1261 m = sc->vge_ldata.vge_rx_mbuf[i];
1262 total_len = VGE_RXBYTES(cur_rx);
1263 rxstat = le32toh(cur_rx->vge_sts);
1264 rxctl = le32toh(cur_rx->vge_ctl);
1266 /* Invalidate the RX mbuf and unload its map */
1267 bus_dmamap_sync(sc->vge_ldata.vge_mtag,
1268 sc->vge_ldata.vge_rx_dmamap[i],
1269 BUS_DMASYNC_POSTWRITE);
1270 bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1271 sc->vge_ldata.vge_rx_dmamap[i]);
1274 * If the 'start of frame' bit is set, this indicates
1275 * either the first fragment in a multi-fragment receive,
1276 * or an intermediate fragment. Either way, we want to
1277 * accumulate the buffers.
1279 if (rxstat & VGE_RXPKT_SOF) {
1280 m->m_len = MCLBYTES - VGE_ETHER_ALIGN;
1281 if (sc->vge_head == NULL) {
1282 sc->vge_head = sc->vge_tail = m;
1283 } else {
1284 m->m_flags &= ~M_PKTHDR;
1285 sc->vge_tail->m_next = m;
1286 sc->vge_tail = m;
1288 vge_newbuf(sc, i, NULL);
1289 VGE_RX_DESC_INC(i);
1290 continue;
1294 * Bad/error frames will have the RXOK bit cleared.
1295 * However, there's one error case we want to allow:
1296 * if a VLAN tagged frame arrives and the chip can't
1297 * match it against the CAM filter, it considers this
1298 * a 'VLAN CAM filter miss' and clears the 'RXOK' bit.
1299 * We don't want to drop the frame though: our VLAN
1300 * filtering is done in software.
1302 if (!(rxstat & VGE_RDSTS_RXOK) && !(rxstat & VGE_RDSTS_VIDM) &&
1303 !(rxstat & VGE_RDSTS_CSUMERR)) {
1304 ifp->if_ierrors++;
1306 * If this is part of a multi-fragment packet,
1307 * discard all the pieces.
1309 if (sc->vge_head != NULL) {
1310 m_freem(sc->vge_head);
1311 sc->vge_head = sc->vge_tail = NULL;
1313 vge_newbuf(sc, i, m);
1314 VGE_RX_DESC_INC(i);
1315 continue;
1319 * If allocating a replacement mbuf fails,
1320 * reload the current one.
1322 if (vge_newbuf(sc, i, NULL)) {
1323 ifp->if_ierrors++;
1324 if (sc->vge_head != NULL) {
1325 m_freem(sc->vge_head);
1326 sc->vge_head = sc->vge_tail = NULL;
1328 vge_newbuf(sc, i, m);
1329 VGE_RX_DESC_INC(i);
1330 continue;
1333 VGE_RX_DESC_INC(i);
1335 if (sc->vge_head != NULL) {
1336 m->m_len = total_len % (MCLBYTES - VGE_ETHER_ALIGN);
1338 * Special case: if there's 4 bytes or less
1339 * in this buffer, the mbuf can be discarded:
1340 * the last 4 bytes is the CRC, which we don't
1341 * care about anyway.
1343 if (m->m_len <= ETHER_CRC_LEN) {
1344 sc->vge_tail->m_len -=
1345 (ETHER_CRC_LEN - m->m_len);
1346 m_freem(m);
1347 } else {
1348 m->m_len -= ETHER_CRC_LEN;
1349 m->m_flags &= ~M_PKTHDR;
1350 sc->vge_tail->m_next = m;
1352 m = sc->vge_head;
1353 sc->vge_head = sc->vge_tail = NULL;
1354 m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1355 } else {
1356 m->m_pkthdr.len = m->m_len =
1357 (total_len - ETHER_CRC_LEN);
1360 #ifdef VGE_FIXUP_RX
1361 vge_fixup_rx(m);
1362 #endif
1363 ifp->if_ipackets++;
1364 m->m_pkthdr.rcvif = ifp;
1366 /* Do RX checksumming if enabled */
1367 if (ifp->if_capenable & IFCAP_RXCSUM) {
1368 /* Check IP header checksum */
1369 if (rxctl & VGE_RDCTL_IPPKT)
1370 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1371 if (rxctl & VGE_RDCTL_IPCSUMOK)
1372 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1374 /* Check TCP/UDP checksum */
1375 if (rxctl & (VGE_RDCTL_TCPPKT|VGE_RDCTL_UDPPKT) &&
1376 rxctl & VGE_RDCTL_PROTOCSUMOK) {
1377 m->m_pkthdr.csum_flags |=
1378 CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1379 m->m_pkthdr.csum_data = 0xffff;
1383 if (rxstat & VGE_RDSTS_VTAG)
1384 VLAN_INPUT_TAG(m, ntohs((rxctl & VGE_RDCTL_VLANID)));
1385 else
1386 ifp->if_input(ifp, m);
1388 lim++;
1389 if (lim == VGE_RX_DESC_CNT)
1390 break;
1393 /* Flush the RX DMA ring */
1394 bus_dmamap_sync(sc->vge_ldata.vge_rx_list_tag,
1395 sc->vge_ldata.vge_rx_list_map,
1396 BUS_DMASYNC_PREWRITE);
1398 sc->vge_ldata.vge_rx_prodidx = i;
1399 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, lim);
1402 static void
1403 vge_txeof(struct vge_softc *sc)
1405 struct ifnet *ifp = &sc->arpcom.ac_if;
1406 uint32_t txstat;
1407 int idx;
1409 idx = sc->vge_ldata.vge_tx_considx;
1411 /* Invalidate the TX descriptor list */
1413 bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1414 sc->vge_ldata.vge_tx_list_map, BUS_DMASYNC_POSTREAD);
1416 while (idx != sc->vge_ldata.vge_tx_prodidx) {
1418 txstat = le32toh(sc->vge_ldata.vge_tx_list[idx].vge_sts);
1419 if (txstat & VGE_TDSTS_OWN)
1420 break;
1422 m_freem(sc->vge_ldata.vge_tx_mbuf[idx]);
1423 sc->vge_ldata.vge_tx_mbuf[idx] = NULL;
1424 bus_dmamap_unload(sc->vge_ldata.vge_mtag,
1425 sc->vge_ldata.vge_tx_dmamap[idx]);
1426 if (txstat & (VGE_TDSTS_EXCESSCOLL|VGE_TDSTS_COLL))
1427 ifp->if_collisions++;
1428 if (txstat & VGE_TDSTS_TXERR)
1429 ifp->if_oerrors++;
1430 else
1431 ifp->if_opackets++;
1433 sc->vge_ldata.vge_tx_free++;
1434 VGE_TX_DESC_INC(idx);
1437 /* No changes made to the TX ring, so no flush needed */
1438 if (idx != sc->vge_ldata.vge_tx_considx) {
1439 sc->vge_ldata.vge_tx_considx = idx;
1440 ifp->if_flags &= ~IFF_OACTIVE;
1441 ifp->if_timer = 0;
1445 * If not all descriptors have been released reaped yet,
1446 * reload the timer so that we will eventually get another
1447 * interrupt that will cause us to re-enter this routine.
1448 * This is done in case the transmitter has gone idle.
1450 if (sc->vge_ldata.vge_tx_free != VGE_TX_DESC_CNT)
1451 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1454 static void
1455 vge_tick(struct vge_softc *sc)
1457 struct ifnet *ifp = &sc->arpcom.ac_if;
1458 struct mii_data *mii;
1460 mii = device_get_softc(sc->vge_miibus);
1462 mii_tick(mii);
1463 if (sc->vge_link) {
1464 if (!(mii->mii_media_status & IFM_ACTIVE))
1465 sc->vge_link = 0;
1466 } else {
1467 if (mii->mii_media_status & IFM_ACTIVE &&
1468 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1469 sc->vge_link = 1;
1470 if (!ifq_is_empty(&ifp->if_snd))
1471 ifp->if_start(ifp);
1476 #ifdef DEVICE_POLLING
1477 static void
1478 vge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1480 struct vge_softc *sc = ifp->if_softc;
1482 sc->rxcycles = count;
1484 switch (cmd) {
1485 case POLL_REGISTER:
1486 vge_disable_intr(sc);
1487 break;
1488 case POLL_DEREGISTER:
1489 vge_enable_intr(sc, 0xffffffff);
1490 break;
1491 case POLL_ONLY:
1492 case POLL_AND_CHECK_STATUS:
1493 vge_rxeof(sc, count);
1494 vge_txeof(sc);
1496 if (!ifq_is_empty(&ifp->if_snd))
1497 ifp->if_start(ifp);
1499 /* XXX copy & paste from vge_intr */
1500 if (cmd == POLL_AND_CHECK_STATUS) {
1501 uint32_t status = 0;
1503 status = CSR_READ_4(sc, VGE_ISR);
1504 if (status == 0xffffffff)
1505 break;
1507 if (status)
1508 CSR_WRITE_4(sc, VGE_ISR, status);
1510 if (status & (VGE_ISR_TXDMA_STALL |
1511 VGE_ISR_RXDMA_STALL))
1512 vge_init(sc);
1514 if (status & (VGE_ISR_RXOFLOW | VGE_ISR_RXNODESC)) {
1515 ifp->if_ierrors++;
1516 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1517 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1520 break;
1524 #endif /* DEVICE_POLLING */
1526 static void
1527 vge_intr(void *arg)
1529 struct vge_softc *sc = arg;
1530 struct ifnet *ifp = &sc->arpcom.ac_if;
1531 uint32_t status;
1533 if (sc->suspended || !(ifp->if_flags & IFF_UP))
1534 return;
1536 /* Disable interrupts */
1537 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
1539 for (;;) {
1540 status = CSR_READ_4(sc, VGE_ISR);
1541 /* If the card has gone away the read returns 0xffff. */
1542 if (status == 0xFFFFFFFF)
1543 break;
1545 if (status)
1546 CSR_WRITE_4(sc, VGE_ISR, status);
1548 if ((status & VGE_INTRS) == 0)
1549 break;
1551 if (status & (VGE_ISR_RXOK|VGE_ISR_RXOK_HIPRIO))
1552 vge_rxeof(sc, -1);
1554 if (status & (VGE_ISR_RXOFLOW|VGE_ISR_RXNODESC)) {
1555 vge_rxeof(sc, -1);
1556 ifp->if_ierrors++;
1557 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1558 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1561 if (status & (VGE_ISR_TXOK0|VGE_ISR_TIMER0))
1562 vge_txeof(sc);
1564 if (status & (VGE_ISR_TXDMA_STALL|VGE_ISR_RXDMA_STALL))
1565 vge_init(sc);
1567 if (status & VGE_ISR_LINKSTS)
1568 vge_tick(sc);
1571 /* Re-enable interrupts */
1572 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
1574 if (!ifq_is_empty(&ifp->if_snd))
1575 ifp->if_start(ifp);
1578 static int
1579 vge_encap(struct vge_softc *sc, struct mbuf *m_head, int idx)
1581 struct vge_dmaload_arg arg;
1582 bus_dmamap_t map;
1583 int error;
1585 arg.vge_flags = 0;
1587 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1588 arg.vge_flags |= VGE_TDCTL_IPCSUM;
1589 if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1590 arg.vge_flags |= VGE_TDCTL_TCPCSUM;
1591 if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1592 arg.vge_flags |= VGE_TDCTL_UDPCSUM;
1594 arg.sc = sc;
1595 arg.vge_idx = idx;
1596 arg.vge_m0 = m_head;
1597 arg.vge_maxsegs = VGE_TX_FRAGS;
1599 map = sc->vge_ldata.vge_tx_dmamap[idx];
1600 error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map, m_head,
1601 vge_dma_map_tx_desc, &arg, BUS_DMA_NOWAIT);
1602 if (error && error != EFBIG) {
1603 if_printf(&sc->arpcom.ac_if, "can't map mbuf (error %d)\n",
1604 error);
1605 goto fail;
1608 /* Too many segments to map, coalesce into a single mbuf */
1609 if (error || arg.vge_maxsegs == 0) {
1610 struct mbuf *m_new;
1612 m_new = m_defrag(m_head, MB_DONTWAIT);
1613 if (m_new == NULL) {
1614 error = ENOBUFS;
1615 goto fail;
1616 } else {
1617 m_head = m_new;
1620 arg.sc = sc;
1621 arg.vge_m0 = m_head;
1622 arg.vge_idx = idx;
1623 arg.vge_maxsegs = 1;
1625 error = bus_dmamap_load_mbuf(sc->vge_ldata.vge_mtag, map,
1626 m_head, vge_dma_map_tx_desc, &arg,
1627 BUS_DMA_NOWAIT);
1628 if (error) {
1629 if_printf(&sc->arpcom.ac_if,
1630 "can't map mbuf (error %d)\n", error);
1631 goto fail;
1635 sc->vge_ldata.vge_tx_mbuf[idx] = m_head;
1636 sc->vge_ldata.vge_tx_free--;
1639 * Set up hardware VLAN tagging.
1641 if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1642 m_head->m_pkthdr.rcvif != NULL &&
1643 m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN) {
1644 struct ifvlan *ifv = m_head->m_pkthdr.rcvif->if_softc;
1646 if (ifv != NULL) {
1647 sc->vge_ldata.vge_tx_list[idx].vge_ctl |=
1648 htole32(htons(ifv->ifv_tag) | VGE_TDCTL_VTAG);
1652 sc->vge_ldata.vge_tx_list[idx].vge_sts |= htole32(VGE_TDSTS_OWN);
1653 return (0);
1655 fail:
1656 m_freem(m_head);
1657 return error;
1661 * Main transmit routine.
1664 static void
1665 vge_start(struct ifnet *ifp)
1667 struct vge_softc *sc = ifp->if_softc;
1668 struct mbuf *m_head = NULL;
1669 int idx, pidx = 0;
1671 ASSERT_SERIALIZED(ifp->if_serializer);
1673 if (!sc->vge_link || (ifp->if_flags & IFF_OACTIVE))
1674 return;
1676 if (ifq_is_empty(&ifp->if_snd))
1677 return;
1679 idx = sc->vge_ldata.vge_tx_prodidx;
1681 pidx = idx - 1;
1682 if (pidx < 0)
1683 pidx = VGE_TX_DESC_CNT - 1;
1685 while (sc->vge_ldata.vge_tx_mbuf[idx] == NULL) {
1686 m_head = ifq_poll(&ifp->if_snd);
1687 if (m_head == NULL)
1688 break;
1690 if (sc->vge_ldata.vge_tx_free <= 2) {
1691 ifp->if_flags |= IFF_OACTIVE;
1692 break;
1695 m_head = ifq_dequeue(&ifp->if_snd, m_head);
1697 if (vge_encap(sc, m_head, idx)) {
1698 /* If vge_encap() failed, it will free m_head for us */
1699 ifp->if_flags |= IFF_OACTIVE;
1700 break;
1703 sc->vge_ldata.vge_tx_list[pidx].vge_frag[0].vge_buflen |=
1704 htole16(VGE_TXDESC_Q);
1706 pidx = idx;
1707 VGE_TX_DESC_INC(idx);
1710 * If there's a BPF listener, bounce a copy of this frame
1711 * to him.
1713 BPF_MTAP(ifp, m_head);
1716 if (idx == sc->vge_ldata.vge_tx_prodidx)
1717 return;
1719 /* Flush the TX descriptors */
1720 bus_dmamap_sync(sc->vge_ldata.vge_tx_list_tag,
1721 sc->vge_ldata.vge_tx_list_map,
1722 BUS_DMASYNC_PREWRITE);
1724 /* Issue a transmit command. */
1725 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_WAK0);
1727 sc->vge_ldata.vge_tx_prodidx = idx;
1730 * Use the countdown timer for interrupt moderation.
1731 * 'TX done' interrupts are disabled. Instead, we reset the
1732 * countdown timer, which will begin counting until it hits
1733 * the value in the SSTIMER register, and then trigger an
1734 * interrupt. Each time we set the TIMER0_ENABLE bit, the
1735 * the timer count is reloaded. Only when the transmitter
1736 * is idle will the timer hit 0 and an interrupt fire.
1738 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_TIMER0_ENABLE);
1741 * Set a timeout in case the chip goes out to lunch.
1743 ifp->if_timer = 5;
1746 static void
1747 vge_init(void *xsc)
1749 struct vge_softc *sc = xsc;
1750 struct ifnet *ifp = &sc->arpcom.ac_if;
1751 struct mii_data *mii;
1752 int i;
1754 ASSERT_SERIALIZED(ifp->if_serializer);
1756 mii = device_get_softc(sc->vge_miibus);
1759 * Cancel pending I/O and free all RX/TX buffers.
1761 vge_stop(sc);
1762 vge_reset(sc);
1765 * Initialize the RX and TX descriptors and mbufs.
1767 vge_rx_list_init(sc);
1768 vge_tx_list_init(sc);
1770 /* Set our station address */
1771 for (i = 0; i < ETHER_ADDR_LEN; i++)
1772 CSR_WRITE_1(sc, VGE_PAR0 + i, IF_LLADDR(ifp)[i]);
1775 * Set receive FIFO threshold. Also allow transmission and
1776 * reception of VLAN tagged frames.
1778 CSR_CLRBIT_1(sc, VGE_RXCFG, VGE_RXCFG_FIFO_THR|VGE_RXCFG_VTAGOPT);
1779 CSR_SETBIT_1(sc, VGE_RXCFG, VGE_RXFIFOTHR_128BYTES|VGE_VTAG_OPT2);
1781 /* Set DMA burst length */
1782 CSR_CLRBIT_1(sc, VGE_DMACFG0, VGE_DMACFG0_BURSTLEN);
1783 CSR_SETBIT_1(sc, VGE_DMACFG0, VGE_DMABURST_128);
1785 CSR_SETBIT_1(sc, VGE_TXCFG, VGE_TXCFG_ARB_PRIO|VGE_TXCFG_NONBLK);
1787 /* Set collision backoff algorithm */
1788 CSR_CLRBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_CRANDOM|
1789 VGE_CHIPCFG1_CAP|VGE_CHIPCFG1_MBA|VGE_CHIPCFG1_BAKOPT);
1790 CSR_SETBIT_1(sc, VGE_CHIPCFG1, VGE_CHIPCFG1_OFSET);
1792 /* Disable LPSEL field in priority resolution */
1793 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_LPSEL_DIS);
1796 * Load the addresses of the DMA queues into the chip.
1797 * Note that we only use one transmit queue.
1799 CSR_WRITE_4(sc, VGE_TXDESC_ADDR_LO0,
1800 VGE_ADDR_LO(sc->vge_ldata.vge_tx_list_addr));
1801 CSR_WRITE_2(sc, VGE_TXDESCNUM, VGE_TX_DESC_CNT - 1);
1803 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO,
1804 VGE_ADDR_LO(sc->vge_ldata.vge_rx_list_addr));
1805 CSR_WRITE_2(sc, VGE_RXDESCNUM, VGE_RX_DESC_CNT - 1);
1806 CSR_WRITE_2(sc, VGE_RXDESC_RESIDUECNT, VGE_RX_DESC_CNT);
1808 /* Enable and wake up the RX descriptor queue */
1809 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_RUN);
1810 CSR_WRITE_1(sc, VGE_RXQCSRS, VGE_RXQCSR_WAK);
1812 /* Enable the TX descriptor queue */
1813 CSR_WRITE_2(sc, VGE_TXQCSRS, VGE_TXQCSR_RUN0);
1815 /* Set up the receive filter -- allow large frames for VLANs. */
1816 CSR_WRITE_1(sc, VGE_RXCTL, VGE_RXCTL_RX_UCAST|VGE_RXCTL_RX_GIANT);
1818 /* If we want promiscuous mode, set the allframes bit. */
1819 if (ifp->if_flags & IFF_PROMISC)
1820 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_PROMISC);
1822 /* Set capture broadcast bit to capture broadcast frames. */
1823 if (ifp->if_flags & IFF_BROADCAST)
1824 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_BCAST);
1826 /* Set multicast bit to capture multicast frames. */
1827 if (ifp->if_flags & IFF_MULTICAST)
1828 CSR_SETBIT_1(sc, VGE_RXCTL, VGE_RXCTL_RX_MCAST);
1830 /* Init the cam filter. */
1831 vge_cam_clear(sc);
1833 /* Init the multicast filter. */
1834 vge_setmulti(sc);
1836 /* Enable flow control */
1838 CSR_WRITE_1(sc, VGE_CRS2, 0x8B);
1840 /* Enable jumbo frame reception (if desired) */
1842 /* Start the MAC. */
1843 CSR_WRITE_1(sc, VGE_CRC0, VGE_CR0_STOP);
1844 CSR_WRITE_1(sc, VGE_CRS1, VGE_CR1_NOPOLL);
1845 CSR_WRITE_1(sc, VGE_CRS0,
1846 VGE_CR0_TX_ENABLE|VGE_CR0_RX_ENABLE|VGE_CR0_START);
1849 * Configure one-shot timer for microsecond
1850 * resulution and load it for 500 usecs.
1852 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_TIMER0_RES);
1853 CSR_WRITE_2(sc, VGE_SSTIMER, 400);
1856 * Configure interrupt moderation for receive. Enable
1857 * the holdoff counter and load it, and set the RX
1858 * suppression count to the number of descriptors we
1859 * want to allow before triggering an interrupt.
1860 * The holdoff timer is in units of 20 usecs.
1863 #ifdef notyet
1864 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_TXINTSUP_DISABLE);
1865 /* Select the interrupt holdoff timer page. */
1866 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1867 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_INTHLDOFF);
1868 CSR_WRITE_1(sc, VGE_INTHOLDOFF, 10); /* ~200 usecs */
1870 /* Enable use of the holdoff timer. */
1871 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_HOLDOFF);
1872 CSR_WRITE_1(sc, VGE_INTCTL1, VGE_INTCTL_SC_RELOAD);
1874 /* Select the RX suppression threshold page. */
1875 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1876 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_RXSUPPTHR);
1877 CSR_WRITE_1(sc, VGE_RXSUPPTHR, 64); /* interrupt after 64 packets */
1879 /* Restore the page select bits. */
1880 CSR_CLRBIT_1(sc, VGE_CAMCTL, VGE_CAMCTL_PAGESEL);
1881 CSR_SETBIT_1(sc, VGE_CAMCTL, VGE_PAGESEL_MAR);
1882 #endif
1884 #ifdef DEVICE_POLLING
1885 /* Disable intr if polling(4) is enabled */
1886 if (ifp->if_flags & IFF_POLLING)
1887 vge_disable_intr(sc);
1888 else
1889 #endif
1890 vge_enable_intr(sc, 0);
1892 mii_mediachg(mii);
1894 ifp->if_flags |= IFF_RUNNING;
1895 ifp->if_flags &= ~IFF_OACTIVE;
1897 sc->vge_if_flags = 0;
1898 sc->vge_link = 0;
1902 * Set media options.
1904 static int
1905 vge_ifmedia_upd(struct ifnet *ifp)
1907 struct vge_softc *sc = ifp->if_softc;
1908 struct mii_data *mii = device_get_softc(sc->vge_miibus);
1910 mii_mediachg(mii);
1912 return (0);
1916 * Report current media status.
1918 static void
1919 vge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1921 struct vge_softc *sc = ifp->if_softc;
1922 struct mii_data *mii = device_get_softc(sc->vge_miibus);
1924 mii_pollstat(mii);
1925 ifmr->ifm_active = mii->mii_media_active;
1926 ifmr->ifm_status = mii->mii_media_status;
1929 static void
1930 vge_miibus_statchg(device_t dev)
1932 struct vge_softc *sc;
1933 struct mii_data *mii;
1934 struct ifmedia_entry *ife;
1936 sc = device_get_softc(dev);
1937 mii = device_get_softc(sc->vge_miibus);
1938 ife = mii->mii_media.ifm_cur;
1941 * If the user manually selects a media mode, we need to turn
1942 * on the forced MAC mode bit in the DIAGCTL register. If the
1943 * user happens to choose a full duplex mode, we also need to
1944 * set the 'force full duplex' bit. This applies only to
1945 * 10Mbps and 100Mbps speeds. In autoselect mode, forced MAC
1946 * mode is disabled, and in 1000baseT mode, full duplex is
1947 * always implied, so we turn on the forced mode bit but leave
1948 * the FDX bit cleared.
1951 switch (IFM_SUBTYPE(ife->ifm_media)) {
1952 case IFM_AUTO:
1953 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1954 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1955 break;
1956 case IFM_1000_T:
1957 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1958 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1959 break;
1960 case IFM_100_TX:
1961 case IFM_10_T:
1962 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_MACFORCE);
1963 if ((ife->ifm_media & IFM_GMASK) == IFM_FDX)
1964 CSR_SETBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1965 else
1966 CSR_CLRBIT_1(sc, VGE_DIAGCTL, VGE_DIAGCTL_FDXFORCE);
1967 break;
1968 default:
1969 device_printf(dev, "unknown media type: %x\n",
1970 IFM_SUBTYPE(ife->ifm_media));
1971 break;
1975 static int
1976 vge_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
1978 struct vge_softc *sc = ifp->if_softc;
1979 struct ifreq *ifr = (struct ifreq *)data;
1980 struct mii_data *mii;
1981 int error = 0;
1983 switch (command) {
1984 case SIOCSIFMTU:
1985 if (ifr->ifr_mtu > VGE_JUMBO_MTU)
1986 error = EINVAL;
1987 ifp->if_mtu = ifr->ifr_mtu;
1988 break;
1989 case SIOCSIFFLAGS:
1990 if (ifp->if_flags & IFF_UP) {
1991 if ((ifp->if_flags & IFF_RUNNING) &&
1992 (ifp->if_flags & IFF_PROMISC) &&
1993 !(sc->vge_if_flags & IFF_PROMISC)) {
1994 CSR_SETBIT_1(sc, VGE_RXCTL,
1995 VGE_RXCTL_RX_PROMISC);
1996 vge_setmulti(sc);
1997 } else if ((ifp->if_flags & IFF_RUNNING) &&
1998 !(ifp->if_flags & IFF_PROMISC) &&
1999 (sc->vge_if_flags & IFF_PROMISC)) {
2000 CSR_CLRBIT_1(sc, VGE_RXCTL,
2001 VGE_RXCTL_RX_PROMISC);
2002 vge_setmulti(sc);
2003 } else {
2004 vge_init(sc);
2006 } else {
2007 if (ifp->if_flags & IFF_RUNNING)
2008 vge_stop(sc);
2010 sc->vge_if_flags = ifp->if_flags;
2011 break;
2012 case SIOCADDMULTI:
2013 case SIOCDELMULTI:
2014 vge_setmulti(sc);
2015 break;
2016 case SIOCGIFMEDIA:
2017 case SIOCSIFMEDIA:
2018 mii = device_get_softc(sc->vge_miibus);
2019 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2020 break;
2021 case SIOCSIFCAP:
2023 uint32_t mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2025 if (mask & IFCAP_HWCSUM) {
2026 ifp->if_capenable |= ifr->ifr_reqcap & (IFCAP_HWCSUM);
2027 if (ifp->if_capenable & IFCAP_TXCSUM)
2028 ifp->if_hwassist = VGE_CSUM_FEATURES;
2029 else
2030 ifp->if_hwassist = 0;
2031 if (ifp->if_flags & IFF_RUNNING)
2032 vge_init(sc);
2035 break;
2036 default:
2037 error = ether_ioctl(ifp, command, data);
2038 break;
2040 return (error);
2043 static void
2044 vge_watchdog(struct ifnet *ifp)
2046 struct vge_softc *sc = ifp->if_softc;
2048 if_printf(ifp, "watchdog timeout\n");
2049 ifp->if_oerrors++;
2051 vge_txeof(sc);
2052 vge_rxeof(sc, -1);
2054 vge_init(sc);
2058 * Stop the adapter and free any mbufs allocated to the
2059 * RX and TX lists.
2061 static void
2062 vge_stop(struct vge_softc *sc)
2064 struct ifnet *ifp = &sc->arpcom.ac_if;
2065 int i;
2067 ASSERT_SERIALIZED(ifp->if_serializer);
2069 ifp->if_timer = 0;
2071 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2073 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2074 CSR_WRITE_1(sc, VGE_CRS0, VGE_CR0_STOP);
2075 CSR_WRITE_4(sc, VGE_ISR, 0xFFFFFFFF);
2076 CSR_WRITE_2(sc, VGE_TXQCSRC, 0xFFFF);
2077 CSR_WRITE_1(sc, VGE_RXQCSRC, 0xFF);
2078 CSR_WRITE_4(sc, VGE_RXDESC_ADDR_LO, 0);
2080 if (sc->vge_head != NULL) {
2081 m_freem(sc->vge_head);
2082 sc->vge_head = sc->vge_tail = NULL;
2085 /* Free the TX list buffers. */
2086 for (i = 0; i < VGE_TX_DESC_CNT; i++) {
2087 if (sc->vge_ldata.vge_tx_mbuf[i] != NULL) {
2088 bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2089 sc->vge_ldata.vge_tx_dmamap[i]);
2090 m_freem(sc->vge_ldata.vge_tx_mbuf[i]);
2091 sc->vge_ldata.vge_tx_mbuf[i] = NULL;
2095 /* Free the RX list buffers. */
2096 for (i = 0; i < VGE_RX_DESC_CNT; i++) {
2097 if (sc->vge_ldata.vge_rx_mbuf[i] != NULL) {
2098 bus_dmamap_unload(sc->vge_ldata.vge_mtag,
2099 sc->vge_ldata.vge_rx_dmamap[i]);
2100 m_freem(sc->vge_ldata.vge_rx_mbuf[i]);
2101 sc->vge_ldata.vge_rx_mbuf[i] = NULL;
2107 * Device suspend routine. Stop the interface and save some PCI
2108 * settings in case the BIOS doesn't restore them properly on
2109 * resume.
2111 static int
2112 vge_suspend(device_t dev)
2114 struct vge_softc *sc = device_get_softc(dev);
2115 struct ifnet *ifp = &sc->arpcom.ac_if;
2117 lwkt_serialize_enter(ifp->if_serializer);
2118 vge_stop(sc);
2119 sc->suspended = 1;
2120 lwkt_serialize_exit(ifp->if_serializer);
2122 return (0);
2126 * Device resume routine. Restore some PCI settings in case the BIOS
2127 * doesn't, re-enable busmastering, and restart the interface if
2128 * appropriate.
2130 static int
2131 vge_resume(device_t dev)
2133 struct vge_softc *sc = device_get_softc(dev);
2134 struct ifnet *ifp = &sc->arpcom.ac_if;
2136 /* reenable busmastering */
2137 pci_enable_busmaster(dev);
2138 pci_enable_io(dev, SYS_RES_MEMORY);
2140 lwkt_serialize_enter(ifp->if_serializer);
2141 /* reinitialize interface if necessary */
2142 if (ifp->if_flags & IFF_UP)
2143 vge_init(sc);
2145 sc->suspended = 0;
2146 lwkt_serialize_exit(ifp->if_serializer);
2148 return (0);
2152 * Stop all chip I/O so that the kernel's probe routines don't
2153 * get confused by errant DMAs when rebooting.
2155 static void
2156 vge_shutdown(device_t dev)
2158 struct vge_softc *sc = device_get_softc(dev);
2159 struct ifnet *ifp = &sc->arpcom.ac_if;
2161 lwkt_serialize_enter(ifp->if_serializer);
2162 vge_stop(sc);
2163 lwkt_serialize_exit(ifp->if_serializer);
2166 static void
2167 vge_enable_intr(struct vge_softc *sc, uint32_t isr)
2169 CSR_WRITE_4(sc, VGE_IMR, VGE_INTRS);
2170 CSR_WRITE_4(sc, VGE_ISR, isr);
2171 CSR_WRITE_1(sc, VGE_CRS3, VGE_CR3_INT_GMSK);
2174 #ifdef DEVICE_POLLING
2175 static void
2176 vge_disable_intr(struct vge_softc *sc)
2178 CSR_WRITE_4(sc, VGE_IMR, 0);
2179 CSR_WRITE_1(sc, VGE_CRC3, VGE_CR3_INT_GMSK);
2181 #endif