- Initialize ti_jslot_serializer before it is used.
[dragonfly/vkernel-mp.git] / sys / dev / netif / ti / if_ti.c
blobeb09bec5d782d0dec85ce42252774305251788c5
1 /*
2 * Copyright (c) 1997, 1998, 1999
3 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
32 * $FreeBSD: src/sys/pci/if_ti.c,v 1.25.2.14 2002/02/15 04:20:20 silby Exp $
33 * $DragonFly: src/sys/dev/netif/ti/if_ti.c,v 1.46 2007/04/03 14:20:52 sephe Exp $
37 * Alteon Networks Tigon PCI gigabit ethernet driver for FreeBSD.
38 * Manuals, sample driver and firmware source kits are available
39 * from http://www.alteon.com/support/openkits.
41 * Written by Bill Paul <wpaul@ctr.columbia.edu>
42 * Electrical Engineering Department
43 * Columbia University, New York City
47 * The Alteon Networks Tigon chip contains an embedded R4000 CPU,
48 * gigabit MAC, dual DMA channels and a PCI interface unit. NICs
49 * using the Tigon may have anywhere from 512K to 2MB of SRAM. The
50 * Tigon supports hardware IP, TCP and UCP checksumming, multicast
51 * filtering and jumbo (9014 byte) frames. The hardware is largely
52 * controlled by firmware, which must be loaded into the NIC during
53 * initialization.
55 * The Tigon 2 contains 2 R4000 CPUs and requires a newer firmware
56 * revision, which supports new features such as extended commands,
57 * extended jumbo receive ring desciptors and a mini receive ring.
59 * Alteon Networks is to be commended for releasing such a vast amount
60 * of development material for the Tigon NIC without requiring an NDA
61 * (although they really should have done it a long time ago). With
62 * any luck, the other vendors will finally wise up and follow Alteon's
63 * stellar example.
65 * The firmware for the Tigon 1 and 2 NICs is compiled directly into
66 * this driver by #including it as a C header file. This bloats the
67 * driver somewhat, but it's the easiest method considering that the
68 * driver code and firmware code need to be kept in sync. The source
69 * for the firmware is not provided with the FreeBSD distribution since
70 * compiling it requires a GNU toolchain targeted for mips-sgi-irix5.3.
72 * The following people deserve special thanks:
73 * - Terry Murphy of 3Com, for providing a 3c985 Tigon 1 board
74 * for testing
75 * - Raymond Lee of Netgear, for providing a pair of Netgear
76 * GA620 Tigon 2 boards for testing
77 * - Ulf Zimmermann, for bringing the GA260 to my attention and
78 * convincing me to write this driver.
79 * - Andrew Gallatin for providing FreeBSD/Alpha support.
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/sockio.h>
85 #include <sys/mbuf.h>
86 #include <sys/malloc.h>
87 #include <sys/kernel.h>
88 #include <sys/socket.h>
89 #include <sys/queue.h>
90 #include <sys/serialize.h>
91 #include <sys/bus.h>
92 #include <sys/rman.h>
93 #include <sys/thread2.h>
95 #include <net/if.h>
96 #include <net/ifq_var.h>
97 #include <net/if_arp.h>
98 #include <net/ethernet.h>
99 #include <net/if_dl.h>
100 #include <net/if_media.h>
101 #include <net/if_types.h>
102 #include <net/vlan/if_vlan_var.h>
104 #include <net/bpf.h>
106 #include <netinet/in_systm.h>
107 #include <netinet/in.h>
108 #include <netinet/ip.h>
110 #include <vm/vm.h> /* for vtophys */
111 #include <vm/pmap.h> /* for vtophys */
113 #include <bus/pci/pcireg.h>
114 #include <bus/pci/pcivar.h>
116 #include "if_tireg.h"
117 #include "ti_fw.h"
118 #include "ti_fw2.h"
121 * Temporarily disable the checksum offload support for now.
122 * Tests with ftp.freesoftware.com show that after about 12 hours,
123 * the firmware will begin calculating completely bogus TX checksums
124 * and refuse to stop until the interface is reset. Unfortunately,
125 * there isn't enough time to fully debug this before the 4.1
126 * release, so this will need to stay off for now.
128 #ifdef notdef
129 #define TI_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP | CSUM_IP_FRAGS)
130 #else
131 #define TI_CSUM_FEATURES 0
132 #endif
135 * Various supported device vendors/types and their names.
138 static struct ti_type ti_devs[] = {
139 { ALT_VENDORID, ALT_DEVICEID_ACENIC,
140 "Alteon AceNIC 1000baseSX Gigabit Ethernet" },
141 { ALT_VENDORID, ALT_DEVICEID_ACENIC_COPPER,
142 "Alteon AceNIC 1000baseT Gigabit Ethernet" },
143 { TC_VENDORID, TC_DEVICEID_3C985,
144 "3Com 3c985-SX Gigabit Ethernet" },
145 { NG_VENDORID, NG_DEVICEID_GA620,
146 "Netgear GA620 1000baseSX Gigabit Ethernet" },
147 { NG_VENDORID, NG_DEVICEID_GA620T,
148 "Netgear GA620 1000baseT Gigabit Ethernet" },
149 { SGI_VENDORID, SGI_DEVICEID_TIGON,
150 "Silicon Graphics Gigabit Ethernet" },
151 { DEC_VENDORID, DEC_DEVICEID_FARALLON_PN9000SX,
152 "Farallon PN9000SX Gigabit Ethernet" },
153 { 0, 0, NULL }
156 static int ti_probe(device_t);
157 static int ti_attach(device_t);
158 static int ti_detach(device_t);
159 static void ti_txeof(struct ti_softc *);
160 static void ti_rxeof(struct ti_softc *);
162 static void ti_stats_update(struct ti_softc *);
163 static int ti_encap(struct ti_softc *, struct mbuf *, uint32_t *);
165 static void ti_intr(void *);
166 static void ti_start(struct ifnet *);
167 static int ti_ioctl(struct ifnet *, u_long, caddr_t, struct ucred *);
168 static void ti_init(void *);
169 static void ti_init2(struct ti_softc *);
170 static void ti_stop(struct ti_softc *);
171 static void ti_watchdog(struct ifnet *);
172 static void ti_shutdown(device_t);
173 static int ti_ifmedia_upd(struct ifnet *);
174 static void ti_ifmedia_sts(struct ifnet *, struct ifmediareq *);
176 static uint32_t ti_eeprom_putbyte(struct ti_softc *, int);
177 static uint8_t ti_eeprom_getbyte(struct ti_softc *, int, uint8_t *);
178 static int ti_read_eeprom(struct ti_softc *, caddr_t, int, int);
180 static void ti_add_mcast(struct ti_softc *, struct ether_addr *);
181 static void ti_del_mcast(struct ti_softc *, struct ether_addr *);
182 static void ti_setmulti(struct ti_softc *);
184 static void ti_mem(struct ti_softc *, uint32_t, uint32_t, caddr_t);
185 static void ti_loadfw(struct ti_softc *);
186 static void ti_cmd(struct ti_softc *, struct ti_cmd_desc *);
187 static void ti_cmd_ext(struct ti_softc *, struct ti_cmd_desc *,
188 caddr_t, int);
189 static void ti_handle_events(struct ti_softc *);
190 static int ti_alloc_jumbo_mem(struct ti_softc *);
191 static struct ti_jslot *
192 ti_jalloc(struct ti_softc *);
193 static void ti_jfree(void *);
194 static void ti_jref(void *);
195 static int ti_newbuf_std(struct ti_softc *, int, struct mbuf *);
196 static int ti_newbuf_mini(struct ti_softc *, int, struct mbuf *);
197 static int ti_newbuf_jumbo(struct ti_softc *, int, struct mbuf *);
198 static int ti_init_rx_ring_std(struct ti_softc *);
199 static void ti_free_rx_ring_std(struct ti_softc *);
200 static int ti_init_rx_ring_jumbo(struct ti_softc *);
201 static void ti_free_rx_ring_jumbo(struct ti_softc *);
202 static int ti_init_rx_ring_mini(struct ti_softc *);
203 static void ti_free_rx_ring_mini(struct ti_softc *);
204 static void ti_free_tx_ring(struct ti_softc *);
205 static int ti_init_tx_ring(struct ti_softc *);
207 static int ti_64bitslot_war(struct ti_softc *);
208 static int ti_chipinit(struct ti_softc *);
209 static int ti_gibinit(struct ti_softc *);
211 static device_method_t ti_methods[] = {
212 /* Device interface */
213 DEVMETHOD(device_probe, ti_probe),
214 DEVMETHOD(device_attach, ti_attach),
215 DEVMETHOD(device_detach, ti_detach),
216 DEVMETHOD(device_shutdown, ti_shutdown),
217 { 0, 0 }
221 static DEFINE_CLASS_0(ti, ti_driver, ti_methods, sizeof(struct ti_softc));
222 static devclass_t ti_devclass;
224 DECLARE_DUMMY_MODULE(if_ti);
225 DRIVER_MODULE(if_ti, pci, ti_driver, ti_devclass, 0, 0);
228 * Send an instruction or address to the EEPROM, check for ACK.
230 static uint32_t
231 ti_eeprom_putbyte(struct ti_softc *sc, int byte)
233 int ack = 0, i;
236 * Make sure we're in TX mode.
238 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
241 * Feed in each bit and stobe the clock.
243 for (i = 0x80; i; i >>= 1) {
244 if (byte & i)
245 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
246 else
247 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_DOUT);
248 DELAY(1);
249 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
250 DELAY(1);
251 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
255 * Turn off TX mode.
257 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
260 * Check for ack.
262 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
263 ack = CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN;
264 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
266 return(ack);
270 * Read a byte of data stored in the EEPROM at address 'addr.'
271 * We have to send two address bytes since the EEPROM can hold
272 * more than 256 bytes of data.
274 static uint8_t
275 ti_eeprom_getbyte(struct ti_softc *sc, int addr, uint8_t *dest)
277 struct ifnet *ifp = &sc->arpcom.ac_if;
278 int i;
279 uint8_t byte = 0;
281 EEPROM_START;
284 * Send write control code to EEPROM.
286 if (ti_eeprom_putbyte(sc, EEPROM_CTL_WRITE)) {
287 if_printf(ifp, "failed to send write command, status: %x\n",
288 CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
289 return(1);
293 * Send first byte of address of byte we want to read.
295 if (ti_eeprom_putbyte(sc, (addr >> 8) & 0xFF)) {
296 if_printf(ifp, "failed to send address, status: %x\n",
297 CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
298 return(1);
301 * Send second byte address of byte we want to read.
303 if (ti_eeprom_putbyte(sc, addr & 0xFF)) {
304 if_printf(ifp, "failed to send address, status: %x\n",
305 CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
306 return(1);
309 EEPROM_STOP;
310 EEPROM_START;
312 * Send read control code to EEPROM.
314 if (ti_eeprom_putbyte(sc, EEPROM_CTL_READ)) {
315 if_printf(ifp, "failed to send read command, status: %x\n",
316 CSR_READ_4(sc, TI_MISC_LOCAL_CTL));
317 return(1);
321 * Start reading bits from EEPROM.
323 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_TXEN);
324 for (i = 0x80; i; i >>= 1) {
325 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
326 DELAY(1);
327 if (CSR_READ_4(sc, TI_MISC_LOCAL_CTL) & TI_MLC_EE_DIN)
328 byte |= i;
329 TI_CLRBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_EE_CLK);
330 DELAY(1);
333 EEPROM_STOP;
336 * No ACK generated for read, so just return byte.
339 *dest = byte;
341 return(0);
345 * Read a sequence of bytes from the EEPROM.
347 static int
348 ti_read_eeprom(struct ti_softc *sc, caddr_t dest, int off, int cnt)
350 int err = 0, i;
351 uint8_t byte = 0;
353 for (i = 0; i < cnt; i++) {
354 err = ti_eeprom_getbyte(sc, off + i, &byte);
355 if (err)
356 break;
357 *(dest + i) = byte;
360 return(err ? 1 : 0);
364 * NIC memory access function. Can be used to either clear a section
365 * of NIC local memory or (if buf is non-NULL) copy data into it.
367 static void
368 ti_mem(struct ti_softc *sc, uint32_t addr, uint32_t len, caddr_t buf)
370 int cnt, segptr, segsize;
371 caddr_t ti_winbase, ptr;
373 segptr = addr;
374 cnt = len;
375 ti_winbase = (caddr_t)(sc->ti_vhandle + TI_WINDOW);
376 ptr = buf;
378 while(cnt) {
379 if (cnt < TI_WINLEN)
380 segsize = cnt;
381 else
382 segsize = TI_WINLEN - (segptr % TI_WINLEN);
383 CSR_WRITE_4(sc, TI_WINBASE, (segptr & ~(TI_WINLEN - 1)));
384 if (buf == NULL)
385 bzero((char *)ti_winbase + (segptr &
386 (TI_WINLEN - 1)), segsize);
387 else {
388 bcopy((char *)ptr, (char *)ti_winbase +
389 (segptr & (TI_WINLEN - 1)), segsize);
390 ptr += segsize;
392 segptr += segsize;
393 cnt -= segsize;
398 * Load firmware image into the NIC. Check that the firmware revision
399 * is acceptable and see if we want the firmware for the Tigon 1 or
400 * Tigon 2.
402 static void
403 ti_loadfw(struct ti_softc *sc)
405 struct ifnet *ifp = &sc->arpcom.ac_if;
407 switch(sc->ti_hwrev) {
408 case TI_HWREV_TIGON:
409 if (tigonFwReleaseMajor != TI_FIRMWARE_MAJOR ||
410 tigonFwReleaseMinor != TI_FIRMWARE_MINOR ||
411 tigonFwReleaseFix != TI_FIRMWARE_FIX) {
412 if_printf(ifp, "firmware revision mismatch; want "
413 "%d.%d.%d, got %d.%d.%d\n",
414 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
415 TI_FIRMWARE_FIX, tigonFwReleaseMajor,
416 tigonFwReleaseMinor, tigonFwReleaseFix);
417 return;
419 ti_mem(sc, tigonFwTextAddr, tigonFwTextLen,
420 (caddr_t)tigonFwText);
421 ti_mem(sc, tigonFwDataAddr, tigonFwDataLen,
422 (caddr_t)tigonFwData);
423 ti_mem(sc, tigonFwRodataAddr, tigonFwRodataLen,
424 (caddr_t)tigonFwRodata);
425 ti_mem(sc, tigonFwBssAddr, tigonFwBssLen, NULL);
426 ti_mem(sc, tigonFwSbssAddr, tigonFwSbssLen, NULL);
427 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigonFwStartAddr);
428 break;
429 case TI_HWREV_TIGON_II:
430 if (tigon2FwReleaseMajor != TI_FIRMWARE_MAJOR ||
431 tigon2FwReleaseMinor != TI_FIRMWARE_MINOR ||
432 tigon2FwReleaseFix != TI_FIRMWARE_FIX) {
433 if_printf(ifp, "firmware revision mismatch; want "
434 "%d.%d.%d, got %d.%d.%d\n",
435 TI_FIRMWARE_MAJOR, TI_FIRMWARE_MINOR,
436 TI_FIRMWARE_FIX, tigon2FwReleaseMajor,
437 tigon2FwReleaseMinor, tigon2FwReleaseFix);
438 return;
440 ti_mem(sc, tigon2FwTextAddr, tigon2FwTextLen,
441 (caddr_t)tigon2FwText);
442 ti_mem(sc, tigon2FwDataAddr, tigon2FwDataLen,
443 (caddr_t)tigon2FwData);
444 ti_mem(sc, tigon2FwRodataAddr, tigon2FwRodataLen,
445 (caddr_t)tigon2FwRodata);
446 ti_mem(sc, tigon2FwBssAddr, tigon2FwBssLen, NULL);
447 ti_mem(sc, tigon2FwSbssAddr, tigon2FwSbssLen, NULL);
448 CSR_WRITE_4(sc, TI_CPU_PROGRAM_COUNTER, tigon2FwStartAddr);
449 break;
450 default:
451 if_printf(ifp, "can't load firmware: unknown hardware rev\n");
452 break;
457 * Send the NIC a command via the command ring.
459 static void
460 ti_cmd(struct ti_softc *sc, struct ti_cmd_desc *cmd)
462 uint32_t index;
464 if (sc->ti_rdata->ti_cmd_ring == NULL)
465 return;
467 index = sc->ti_cmd_saved_prodidx;
468 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
469 TI_INC(index, TI_CMD_RING_CNT);
470 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
471 sc->ti_cmd_saved_prodidx = index;
475 * Send the NIC an extended command. The 'len' parameter specifies the
476 * number of command slots to include after the initial command.
478 static void
479 ti_cmd_ext(struct ti_softc *sc, struct ti_cmd_desc *cmd, caddr_t arg, int len)
481 uint32_t index;
482 int i;
484 if (sc->ti_rdata->ti_cmd_ring == NULL)
485 return;
487 index = sc->ti_cmd_saved_prodidx;
488 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4), *(uint32_t *)(cmd));
489 TI_INC(index, TI_CMD_RING_CNT);
490 for (i = 0; i < len; i++) {
491 CSR_WRITE_4(sc, TI_GCR_CMDRING + (index * 4),
492 *(uint32_t *)(&arg[i * 4]));
493 TI_INC(index, TI_CMD_RING_CNT);
495 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, index);
496 sc->ti_cmd_saved_prodidx = index;
500 * Handle events that have triggered interrupts.
502 static void
503 ti_handle_events(struct ti_softc *sc)
505 struct ifnet *ifp = &sc->arpcom.ac_if;
506 struct ti_event_desc *e;
508 if (sc->ti_rdata->ti_event_ring == NULL)
509 return;
511 while (sc->ti_ev_saved_considx != sc->ti_ev_prodidx.ti_idx) {
512 e = &sc->ti_rdata->ti_event_ring[sc->ti_ev_saved_considx];
513 switch(e->ti_event) {
514 case TI_EV_LINKSTAT_CHANGED:
515 sc->ti_linkstat = e->ti_code;
516 if (e->ti_code == TI_EV_CODE_LINK_UP) {
517 if_printf(ifp, "10/100 link up\n");
518 } else if (e->ti_code == TI_EV_CODE_GIG_LINK_UP) {
519 if_printf(ifp, "gigabit link up\n");
520 } else if (e->ti_code == TI_EV_CODE_LINK_DOWN) {
521 if_printf(ifp, "link down\n");
523 break;
524 case TI_EV_ERROR:
525 if (e->ti_code == TI_EV_CODE_ERR_INVAL_CMD) {
526 if_printf(ifp, "invalid command\n");
527 } else if (e->ti_code == TI_EV_CODE_ERR_UNIMP_CMD) {
528 if_printf(ifp, "unknown command\n");
529 } else if (e->ti_code == TI_EV_CODE_ERR_BADCFG) {
530 if_printf(ifp, "bad config data\n");
532 break;
533 case TI_EV_FIRMWARE_UP:
534 ti_init2(sc);
535 break;
536 case TI_EV_STATS_UPDATED:
537 ti_stats_update(sc);
538 break;
539 case TI_EV_RESET_JUMBO_RING:
540 case TI_EV_MCAST_UPDATED:
541 /* Who cares. */
542 break;
543 default:
544 if_printf(ifp, "unknown event: %d\n", e->ti_event);
545 break;
547 /* Advance the consumer index. */
548 TI_INC(sc->ti_ev_saved_considx, TI_EVENT_RING_CNT);
549 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, sc->ti_ev_saved_considx);
554 * Memory management for the jumbo receive ring is a pain in the
555 * butt. We need to allocate at least 9018 bytes of space per frame,
556 * _and_ it has to be contiguous (unless you use the extended
557 * jumbo descriptor format). Using malloc() all the time won't
558 * work: malloc() allocates memory in powers of two, which means we
559 * would end up wasting a considerable amount of space by allocating
560 * 9K chunks. We don't have a jumbo mbuf cluster pool. Thus, we have
561 * to do our own memory management.
563 * The driver needs to allocate a contiguous chunk of memory at boot
564 * time. We then chop this up ourselves into 9K pieces and use them
565 * as external mbuf storage.
567 * One issue here is how much memory to allocate. The jumbo ring has
568 * 256 slots in it, but at 9K per slot than can consume over 2MB of
569 * RAM. This is a bit much, especially considering we also need
570 * RAM for the standard ring and mini ring (on the Tigon 2). To
571 * save space, we only actually allocate enough memory for 64 slots
572 * by default, which works out to between 500 and 600K. This can
573 * be tuned by changing a #define in if_tireg.h.
576 static int
577 ti_alloc_jumbo_mem(struct ti_softc *sc)
579 struct ti_jslot *entry;
580 caddr_t ptr;
581 int i;
583 /* Grab a big chunk o' storage. */
584 sc->ti_cdata.ti_jumbo_buf = contigmalloc(TI_JMEM, M_DEVBUF,
585 M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
587 if (sc->ti_cdata.ti_jumbo_buf == NULL) {
588 if_printf(&sc->arpcom.ac_if, "no memory for jumbo buffers!\n");
589 return(ENOBUFS);
592 lwkt_serialize_init(&sc->ti_jslot_serializer);
593 SLIST_INIT(&sc->ti_jfree_listhead);
596 * Now divide it up into 9K pieces and save the addresses
597 * in an array. Note that we play an evil trick here by using
598 * the first few bytes in the buffer to hold the the address
599 * of the softc structure for this interface. This is because
600 * ti_jfree() needs it, but it is called by the mbuf management
601 * code which will not pass it to us explicitly.
603 ptr = sc->ti_cdata.ti_jumbo_buf;
604 for (i = 0; i < TI_JSLOTS; i++) {
605 entry = &sc->ti_cdata.ti_jslots[i];
606 entry->ti_sc = sc;
607 entry->ti_buf = ptr;
608 entry->ti_inuse = 0;
609 entry->ti_slot = i;
610 SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jslot_link);
611 ptr += TI_JLEN;
614 return(0);
618 * Allocate a jumbo buffer.
620 static struct ti_jslot *
621 ti_jalloc(struct ti_softc *sc)
623 struct ti_jslot *entry;
625 lwkt_serialize_enter(&sc->ti_jslot_serializer);
626 entry = SLIST_FIRST(&sc->ti_jfree_listhead);
627 if (entry) {
628 SLIST_REMOVE_HEAD(&sc->ti_jfree_listhead, jslot_link);
629 entry->ti_inuse = 1;
630 } else {
631 if_printf(&sc->arpcom.ac_if, "no free jumbo buffers\n");
633 lwkt_serialize_exit(&sc->ti_jslot_serializer);
634 return(entry);
638 * Adjust usage count on a jumbo buffer. In general this doesn't
639 * get used much because our jumbo buffers don't get passed around
640 * too much, but it's implemented for correctness.
642 static void
643 ti_jref(void *arg)
645 struct ti_jslot *entry = (struct ti_jslot *)arg;
646 struct ti_softc *sc = entry->ti_sc;
648 if (sc == NULL)
649 panic("ti_jref: can't find softc pointer!");
651 if (&sc->ti_cdata.ti_jslots[entry->ti_slot] != entry)
652 panic("ti_jref: asked to reference buffer "
653 "that we don't manage!");
654 if (entry->ti_inuse == 0)
655 panic("ti_jref: buffer already free!");
656 atomic_add_int(&entry->ti_inuse, 1);
660 * Release a jumbo buffer.
662 static void
663 ti_jfree(void *arg)
665 struct ti_jslot *entry = (struct ti_jslot *)arg;
666 struct ti_softc *sc = entry->ti_sc;
668 if (sc == NULL)
669 panic("ti_jref: can't find softc pointer!");
671 if (&sc->ti_cdata.ti_jslots[entry->ti_slot] != entry)
672 panic("ti_jref: asked to reference buffer "
673 "that we don't manage!");
674 if (entry->ti_inuse == 0)
675 panic("ti_jref: buffer already free!");
676 lwkt_serialize_enter(&sc->ti_jslot_serializer);
677 atomic_subtract_int(&entry->ti_inuse, 1);
678 if (entry->ti_inuse == 0)
679 SLIST_INSERT_HEAD(&sc->ti_jfree_listhead, entry, jslot_link);
680 lwkt_serialize_exit(&sc->ti_jslot_serializer);
685 * Intialize a standard receive ring descriptor.
687 static int
688 ti_newbuf_std(struct ti_softc *sc, int i, struct mbuf *m)
690 struct mbuf *m_new;
691 struct ti_rx_desc *r;
693 if (m == NULL) {
694 m_new = m_getcl(MB_DONTWAIT, MT_DATA, M_PKTHDR);
695 if (m_new == NULL)
696 return (ENOBUFS);
697 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
698 } else {
699 m_new = m;
700 m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
701 m_new->m_data = m_new->m_ext.ext_buf;
705 m_adj(m_new, ETHER_ALIGN);
706 sc->ti_cdata.ti_rx_std_chain[i] = m_new;
707 r = &sc->ti_rdata->ti_rx_std_ring[i];
708 TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
709 r->ti_type = TI_BDTYPE_RECV_BD;
710 r->ti_flags = 0;
711 if (sc->arpcom.ac_if.if_hwassist)
712 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
713 r->ti_len = m_new->m_len;
714 r->ti_idx = i;
716 return(0);
720 * Intialize a mini receive ring descriptor. This only applies to
721 * the Tigon 2.
723 static int
724 ti_newbuf_mini(struct ti_softc *sc, int i, struct mbuf *m)
726 struct mbuf *m_new;
727 struct ti_rx_desc *r;
729 if (m == NULL) {
730 MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
731 if (m_new == NULL) {
732 return(ENOBUFS);
734 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
735 } else {
736 m_new = m;
737 m_new->m_data = m_new->m_pktdat;
738 m_new->m_len = m_new->m_pkthdr.len = MHLEN;
741 m_adj(m_new, ETHER_ALIGN);
742 r = &sc->ti_rdata->ti_rx_mini_ring[i];
743 sc->ti_cdata.ti_rx_mini_chain[i] = m_new;
744 TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
745 r->ti_type = TI_BDTYPE_RECV_BD;
746 r->ti_flags = TI_BDFLAG_MINI_RING;
747 if (sc->arpcom.ac_if.if_hwassist)
748 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
749 r->ti_len = m_new->m_len;
750 r->ti_idx = i;
752 return(0);
756 * Initialize a jumbo receive ring descriptor. This allocates
757 * a jumbo buffer from the pool managed internally by the driver.
759 static int
760 ti_newbuf_jumbo(struct ti_softc *sc, int i, struct mbuf *m)
762 struct mbuf *m_new;
763 struct ti_rx_desc *r;
764 struct ti_jslot *buf;
766 if (m == NULL) {
767 /* Allocate the mbuf. */
768 MGETHDR(m_new, MB_DONTWAIT, MT_DATA);
769 if (m_new == NULL) {
770 return(ENOBUFS);
773 /* Allocate the jumbo buffer */
774 buf = ti_jalloc(sc);
775 if (buf == NULL) {
776 m_freem(m_new);
777 if_printf(&sc->arpcom.ac_if, "jumbo allocation failed "
778 "-- packet dropped!\n");
779 return(ENOBUFS);
782 /* Attach the buffer to the mbuf. */
783 m_new->m_ext.ext_arg = buf;
784 m_new->m_ext.ext_buf = buf->ti_buf;
785 m_new->m_ext.ext_free = ti_jfree;
786 m_new->m_ext.ext_ref = ti_jref;
787 m_new->m_ext.ext_size = TI_JUMBO_FRAMELEN;
789 m_new->m_flags |= M_EXT;
790 } else {
792 * We're re-using a previously allocated mbuf;
793 * be sure to re-init pointers and lengths to
794 * default values.
796 KKASSERT(m->m_flags & M_EXT);
797 m_new = m;
799 m_new->m_data = m_new->m_ext.ext_buf;
800 m_new->m_len = m_new->m_pkthdr.len = m_new->m_ext.ext_size;
802 m_adj(m_new, ETHER_ALIGN);
803 /* Set up the descriptor. */
804 r = &sc->ti_rdata->ti_rx_jumbo_ring[i];
805 sc->ti_cdata.ti_rx_jumbo_chain[i] = m_new;
806 TI_HOSTADDR(r->ti_addr) = vtophys(mtod(m_new, caddr_t));
807 r->ti_type = TI_BDTYPE_RECV_JUMBO_BD;
808 r->ti_flags = TI_BDFLAG_JUMBO_RING;
809 if (sc->arpcom.ac_if.if_hwassist)
810 r->ti_flags |= TI_BDFLAG_TCP_UDP_CKSUM | TI_BDFLAG_IP_CKSUM;
811 r->ti_len = m_new->m_len;
812 r->ti_idx = i;
814 return(0);
818 * The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
819 * that's 1MB or memory, which is a lot. For now, we fill only the first
820 * 256 ring entries and hope that our CPU is fast enough to keep up with
821 * the NIC.
823 static int
824 ti_init_rx_ring_std(struct ti_softc *sc)
826 int i;
827 struct ti_cmd_desc cmd;
829 for (i = 0; i < TI_SSLOTS; i++) {
830 if (ti_newbuf_std(sc, i, NULL) == ENOBUFS)
831 return(ENOBUFS);
834 TI_UPDATE_STDPROD(sc, i - 1);
835 sc->ti_std = i - 1;
837 return(0);
840 static void
841 ti_free_rx_ring_std(struct ti_softc *sc)
843 int i;
845 for (i = 0; i < TI_STD_RX_RING_CNT; i++) {
846 if (sc->ti_cdata.ti_rx_std_chain[i] != NULL) {
847 m_freem(sc->ti_cdata.ti_rx_std_chain[i]);
848 sc->ti_cdata.ti_rx_std_chain[i] = NULL;
850 bzero(&sc->ti_rdata->ti_rx_std_ring[i],
851 sizeof(struct ti_rx_desc));
855 static int
856 ti_init_rx_ring_jumbo(struct ti_softc *sc)
858 int i;
859 struct ti_cmd_desc cmd;
861 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
862 if (ti_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
863 return(ENOBUFS);
866 TI_UPDATE_JUMBOPROD(sc, i - 1);
867 sc->ti_jumbo = i - 1;
869 return(0);
872 static void
873 ti_free_rx_ring_jumbo(struct ti_softc *sc)
875 int i;
877 for (i = 0; i < TI_JUMBO_RX_RING_CNT; i++) {
878 if (sc->ti_cdata.ti_rx_jumbo_chain[i] != NULL) {
879 m_freem(sc->ti_cdata.ti_rx_jumbo_chain[i]);
880 sc->ti_cdata.ti_rx_jumbo_chain[i] = NULL;
882 bzero(&sc->ti_rdata->ti_rx_jumbo_ring[i],
883 sizeof(struct ti_rx_desc));
887 static int
888 ti_init_rx_ring_mini(struct ti_softc *sc)
890 int i;
892 for (i = 0; i < TI_MSLOTS; i++) {
893 if (ti_newbuf_mini(sc, i, NULL) == ENOBUFS)
894 return(ENOBUFS);
897 TI_UPDATE_MINIPROD(sc, i - 1);
898 sc->ti_mini = i - 1;
900 return(0);
903 static void
904 ti_free_rx_ring_mini(struct ti_softc *sc)
906 int i;
908 for (i = 0; i < TI_MINI_RX_RING_CNT; i++) {
909 if (sc->ti_cdata.ti_rx_mini_chain[i] != NULL) {
910 m_freem(sc->ti_cdata.ti_rx_mini_chain[i]);
911 sc->ti_cdata.ti_rx_mini_chain[i] = NULL;
913 bzero(&sc->ti_rdata->ti_rx_mini_ring[i],
914 sizeof(struct ti_rx_desc));
918 static void
919 ti_free_tx_ring(struct ti_softc *sc)
921 int i;
923 if (sc->ti_rdata->ti_tx_ring == NULL)
924 return;
926 for (i = 0; i < TI_TX_RING_CNT; i++) {
927 if (sc->ti_cdata.ti_tx_chain[i] != NULL) {
928 m_freem(sc->ti_cdata.ti_tx_chain[i]);
929 sc->ti_cdata.ti_tx_chain[i] = NULL;
931 bzero(&sc->ti_rdata->ti_tx_ring[i],
932 sizeof(struct ti_tx_desc));
936 static int
937 ti_init_tx_ring(struct ti_softc *sc)
939 sc->ti_txcnt = 0;
940 sc->ti_tx_saved_considx = 0;
941 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, 0);
942 return(0);
946 * The Tigon 2 firmware has a new way to add/delete multicast addresses,
947 * but we have to support the old way too so that Tigon 1 cards will
948 * work.
950 static void
951 ti_add_mcast(struct ti_softc *sc, struct ether_addr *addr)
953 struct ti_cmd_desc cmd;
954 uint16_t *m;
955 uint32_t ext[2] = {0, 0};
957 m = (uint16_t *)&addr->octet[0];
959 switch(sc->ti_hwrev) {
960 case TI_HWREV_TIGON:
961 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
962 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
963 TI_DO_CMD(TI_CMD_ADD_MCAST_ADDR, 0, 0);
964 break;
965 case TI_HWREV_TIGON_II:
966 ext[0] = htons(m[0]);
967 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
968 TI_DO_CMD_EXT(TI_CMD_EXT_ADD_MCAST, 0, 0, (caddr_t)&ext, 2);
969 break;
970 default:
971 if_printf(&sc->arpcom.ac_if, "unknown hwrev\n");
972 break;
976 static void
977 ti_del_mcast(struct ti_softc *sc, struct ether_addr *addr)
979 struct ti_cmd_desc cmd;
980 uint16_t *m;
981 uint32_t ext[2] = {0, 0};
983 m = (uint16_t *)&addr->octet[0];
985 switch(sc->ti_hwrev) {
986 case TI_HWREV_TIGON:
987 CSR_WRITE_4(sc, TI_GCR_MAR0, htons(m[0]));
988 CSR_WRITE_4(sc, TI_GCR_MAR1, (htons(m[1]) << 16) | htons(m[2]));
989 TI_DO_CMD(TI_CMD_DEL_MCAST_ADDR, 0, 0);
990 break;
991 case TI_HWREV_TIGON_II:
992 ext[0] = htons(m[0]);
993 ext[1] = (htons(m[1]) << 16) | htons(m[2]);
994 TI_DO_CMD_EXT(TI_CMD_EXT_DEL_MCAST, 0, 0, (caddr_t)&ext, 2);
995 break;
996 default:
997 if_printf(&sc->arpcom.ac_if, "unknown hwrev\n");
998 break;
1003 * Configure the Tigon's multicast address filter.
1005 * The actual multicast table management is a bit of a pain, thanks to
1006 * slight brain damage on the part of both Alteon and us. With our
1007 * multicast code, we are only alerted when the multicast address table
1008 * changes and at that point we only have the current list of addresses:
1009 * we only know the current state, not the previous state, so we don't
1010 * actually know what addresses were removed or added. The firmware has
1011 * state, but we can't get our grubby mits on it, and there is no 'delete
1012 * all multicast addresses' command. Hence, we have to maintain our own
1013 * state so we know what addresses have been programmed into the NIC at
1014 * any given time.
1016 static void
1017 ti_setmulti(struct ti_softc *sc)
1019 struct ifnet *ifp = &sc->arpcom.ac_if;
1020 struct ifmultiaddr *ifma;
1021 struct ti_cmd_desc cmd;
1022 struct ti_mc_entry *mc;
1023 uint32_t intrs;
1025 if (ifp->if_flags & IFF_ALLMULTI) {
1026 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_ENB, 0);
1027 return;
1030 TI_DO_CMD(TI_CMD_SET_ALLMULTI, TI_CMD_CODE_ALLMULTI_DIS, 0);
1032 /* Disable interrupts. */
1033 intrs = CSR_READ_4(sc, TI_MB_HOSTINTR);
1034 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1036 /* First, zot all the existing filters. */
1037 while (sc->ti_mc_listhead.slh_first != NULL) {
1038 mc = sc->ti_mc_listhead.slh_first;
1039 ti_del_mcast(sc, &mc->mc_addr);
1040 SLIST_REMOVE_HEAD(&sc->ti_mc_listhead, mc_entries);
1041 kfree(mc, M_DEVBUF);
1044 /* Now program new ones. */
1045 LIST_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1046 if (ifma->ifma_addr->sa_family != AF_LINK)
1047 continue;
1048 mc = kmalloc(sizeof(struct ti_mc_entry), M_DEVBUF, M_INTWAIT);
1049 bcopy(LLADDR((struct sockaddr_dl *)ifma->ifma_addr),
1050 &mc->mc_addr, ETHER_ADDR_LEN);
1051 SLIST_INSERT_HEAD(&sc->ti_mc_listhead, mc, mc_entries);
1052 ti_add_mcast(sc, &mc->mc_addr);
1055 /* Re-enable interrupts. */
1056 CSR_WRITE_4(sc, TI_MB_HOSTINTR, intrs);
1060 * Check to see if the BIOS has configured us for a 64 bit slot when
1061 * we aren't actually in one. If we detect this condition, we can work
1062 * around it on the Tigon 2 by setting a bit in the PCI state register,
1063 * but for the Tigon 1 we must give up and abort the interface attach.
1065 static int
1066 ti_64bitslot_war(struct ti_softc *sc)
1068 if ((CSR_READ_4(sc, TI_PCI_STATE) & TI_PCISTATE_32BIT_BUS) == 0) {
1069 CSR_WRITE_4(sc, 0x600, 0);
1070 CSR_WRITE_4(sc, 0x604, 0);
1071 CSR_WRITE_4(sc, 0x600, 0x5555AAAA);
1072 if (CSR_READ_4(sc, 0x604) == 0x5555AAAA) {
1073 if (sc->ti_hwrev == TI_HWREV_TIGON)
1074 return(EINVAL);
1075 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_32BIT_BUS);
1076 return(0);
1080 return(0);
1084 * Do endian, PCI and DMA initialization. Also check the on-board ROM
1085 * self-test results.
1087 static int
1088 ti_chipinit(struct ti_softc *sc)
1090 struct ifnet *ifp = &sc->arpcom.ac_if;
1091 uint32_t cacheline;
1092 uint32_t pci_writemax = 0;
1094 /* Initialize link to down state. */
1095 sc->ti_linkstat = TI_EV_CODE_LINK_DOWN;
1097 if (ifp->if_capenable & IFCAP_HWCSUM)
1098 ifp->if_hwassist = TI_CSUM_FEATURES;
1099 else
1100 ifp->if_hwassist = 0;
1102 /* Set endianness before we access any non-PCI registers. */
1103 #if BYTE_ORDER == BIG_ENDIAN
1104 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1105 TI_MHC_BIGENDIAN_INIT | (TI_MHC_BIGENDIAN_INIT << 24));
1106 #else
1107 CSR_WRITE_4(sc, TI_MISC_HOST_CTL,
1108 TI_MHC_LITTLEENDIAN_INIT | (TI_MHC_LITTLEENDIAN_INIT << 24));
1109 #endif
1111 /* Check the ROM failed bit to see if self-tests passed. */
1112 if (CSR_READ_4(sc, TI_CPU_STATE) & TI_CPUSTATE_ROMFAIL) {
1113 if_printf(ifp, "board self-diagnostics failed!\n");
1114 return(ENODEV);
1117 /* Halt the CPU. */
1118 TI_SETBIT(sc, TI_CPU_STATE, TI_CPUSTATE_HALT);
1120 /* Figure out the hardware revision. */
1121 switch(CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_CHIP_REV_MASK) {
1122 case TI_REV_TIGON_I:
1123 sc->ti_hwrev = TI_HWREV_TIGON;
1124 break;
1125 case TI_REV_TIGON_II:
1126 sc->ti_hwrev = TI_HWREV_TIGON_II;
1127 break;
1128 default:
1129 if_printf(ifp, "unsupported chip revision\n");
1130 return(ENODEV);
1133 /* Do special setup for Tigon 2. */
1134 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1135 TI_SETBIT(sc, TI_CPU_CTL_B, TI_CPUSTATE_HALT);
1136 TI_SETBIT(sc, TI_MISC_LOCAL_CTL, TI_MLC_SRAM_BANK_512K);
1137 TI_SETBIT(sc, TI_MISC_CONF, TI_MCR_SRAM_SYNCHRONOUS);
1140 /* Set up the PCI state register. */
1141 CSR_WRITE_4(sc, TI_PCI_STATE, TI_PCI_READ_CMD|TI_PCI_WRITE_CMD);
1142 if (sc->ti_hwrev == TI_HWREV_TIGON_II) {
1143 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_USE_MEM_RD_MULT);
1146 /* Clear the read/write max DMA parameters. */
1147 TI_CLRBIT(sc, TI_PCI_STATE, (TI_PCISTATE_WRITE_MAXDMA|
1148 TI_PCISTATE_READ_MAXDMA));
1150 /* Get cache line size. */
1151 cacheline = CSR_READ_4(sc, TI_PCI_BIST) & 0xFF;
1154 * If the system has set enabled the PCI memory write
1155 * and invalidate command in the command register, set
1156 * the write max parameter accordingly. This is necessary
1157 * to use MWI with the Tigon 2.
1159 if (CSR_READ_4(sc, TI_PCI_CMDSTAT) & PCIM_CMD_MWIEN) {
1160 switch(cacheline) {
1161 case 1:
1162 case 4:
1163 case 8:
1164 case 16:
1165 case 32:
1166 case 64:
1167 break;
1168 default:
1169 /* Disable PCI memory write and invalidate. */
1170 if (bootverbose) {
1171 if_printf(ifp, "cache line size %d not "
1172 "supported; disabling PCI MWI\n",
1173 cacheline);
1175 CSR_WRITE_4(sc, TI_PCI_CMDSTAT, CSR_READ_4(sc,
1176 TI_PCI_CMDSTAT) & ~PCIM_CMD_MWIEN);
1177 break;
1181 TI_SETBIT(sc, TI_PCI_STATE, pci_writemax);
1183 /* This sets the min dma param all the way up (0xff). */
1184 TI_SETBIT(sc, TI_PCI_STATE, TI_PCISTATE_MINDMA);
1186 /* Configure DMA variables. */
1187 #if BYTE_ORDER == BIG_ENDIAN
1188 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_BD |
1189 TI_OPMODE_BYTESWAP_DATA | TI_OPMODE_WORDSWAP_BD |
1190 TI_OPMODE_WARN_ENB | TI_OPMODE_FATAL_ENB |
1191 TI_OPMODE_DONT_FRAG_JUMBO);
1192 #else
1193 CSR_WRITE_4(sc, TI_GCR_OPMODE, TI_OPMODE_BYTESWAP_DATA|
1194 TI_OPMODE_WORDSWAP_BD|TI_OPMODE_DONT_FRAG_JUMBO|
1195 TI_OPMODE_WARN_ENB|TI_OPMODE_FATAL_ENB);
1196 #endif
1199 * Only allow 1 DMA channel to be active at a time.
1200 * I don't think this is a good idea, but without it
1201 * the firmware racks up lots of nicDmaReadRingFull
1202 * errors. This is not compatible with hardware checksums.
1204 if (ifp->if_hwassist == 0)
1205 TI_SETBIT(sc, TI_GCR_OPMODE, TI_OPMODE_1_DMA_ACTIVE);
1207 /* Recommended settings from Tigon manual. */
1208 CSR_WRITE_4(sc, TI_GCR_DMA_WRITECFG, TI_DMA_STATE_THRESH_8W);
1209 CSR_WRITE_4(sc, TI_GCR_DMA_READCFG, TI_DMA_STATE_THRESH_8W);
1211 if (ti_64bitslot_war(sc)) {
1212 if_printf(ifp, "bios thinks we're in a 64 bit slot, "
1213 "but we aren't");
1214 return(EINVAL);
1217 return(0);
1221 * Initialize the general information block and firmware, and
1222 * start the CPU(s) running.
1224 static int
1225 ti_gibinit(struct ti_softc *sc)
1227 struct ifnet *ifp = &sc->arpcom.ac_if;
1228 struct ti_rcb *rcb;
1229 int i;
1231 /* Disable interrupts for now. */
1232 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1234 /* Tell the chip where to find the general information block. */
1235 CSR_WRITE_4(sc, TI_GCR_GENINFO_HI, 0);
1236 CSR_WRITE_4(sc, TI_GCR_GENINFO_LO, vtophys(&sc->ti_rdata->ti_info));
1238 /* Load the firmware into SRAM. */
1239 ti_loadfw(sc);
1241 /* Set up the contents of the general info and ring control blocks. */
1243 /* Set up the event ring and producer pointer. */
1244 rcb = &sc->ti_rdata->ti_info.ti_ev_rcb;
1246 TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_event_ring);
1247 rcb->ti_flags = 0;
1248 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_ev_prodidx_ptr) =
1249 vtophys(&sc->ti_ev_prodidx);
1250 sc->ti_ev_prodidx.ti_idx = 0;
1251 CSR_WRITE_4(sc, TI_GCR_EVENTCONS_IDX, 0);
1252 sc->ti_ev_saved_considx = 0;
1254 /* Set up the command ring and producer mailbox. */
1255 rcb = &sc->ti_rdata->ti_info.ti_cmd_rcb;
1257 sc->ti_rdata->ti_cmd_ring =
1258 (struct ti_cmd_desc *)(sc->ti_vhandle + TI_GCR_CMDRING);
1259 TI_HOSTADDR(rcb->ti_hostaddr) = TI_GCR_NIC_ADDR(TI_GCR_CMDRING);
1260 rcb->ti_flags = 0;
1261 rcb->ti_max_len = 0;
1262 for (i = 0; i < TI_CMD_RING_CNT; i++)
1263 CSR_WRITE_4(sc, TI_GCR_CMDRING + (i * 4), 0);
1264 CSR_WRITE_4(sc, TI_GCR_CMDCONS_IDX, 0);
1265 CSR_WRITE_4(sc, TI_MB_CMDPROD_IDX, 0);
1266 sc->ti_cmd_saved_prodidx = 0;
1269 * Assign the address of the stats refresh buffer.
1270 * We re-use the current stats buffer for this to
1271 * conserve memory.
1273 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_refresh_stats_ptr) =
1274 vtophys(&sc->ti_rdata->ti_info.ti_stats);
1276 /* Set up the standard receive ring. */
1277 rcb = &sc->ti_rdata->ti_info.ti_std_rx_rcb;
1278 TI_HOSTADDR(rcb->ti_hostaddr) = vtophys(&sc->ti_rdata->ti_rx_std_ring);
1279 rcb->ti_max_len = TI_FRAMELEN;
1280 rcb->ti_flags = 0;
1281 if (ifp->if_hwassist)
1282 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1283 TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1284 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1286 /* Set up the jumbo receive ring. */
1287 rcb = &sc->ti_rdata->ti_info.ti_jumbo_rx_rcb;
1288 TI_HOSTADDR(rcb->ti_hostaddr) =
1289 vtophys(&sc->ti_rdata->ti_rx_jumbo_ring);
1290 rcb->ti_max_len = TI_JUMBO_FRAMELEN;
1291 rcb->ti_flags = 0;
1292 if (ifp->if_hwassist)
1293 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1294 TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1295 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1298 * Set up the mini ring. Only activated on the
1299 * Tigon 2 but the slot in the config block is
1300 * still there on the Tigon 1.
1302 rcb = &sc->ti_rdata->ti_info.ti_mini_rx_rcb;
1303 TI_HOSTADDR(rcb->ti_hostaddr) =
1304 vtophys(&sc->ti_rdata->ti_rx_mini_ring);
1305 rcb->ti_max_len = MHLEN - ETHER_ALIGN;
1306 if (sc->ti_hwrev == TI_HWREV_TIGON)
1307 rcb->ti_flags = TI_RCB_FLAG_RING_DISABLED;
1308 else
1309 rcb->ti_flags = 0;
1310 if (ifp->if_hwassist)
1311 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1312 TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1313 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1316 * Set up the receive return ring.
1318 rcb = &sc->ti_rdata->ti_info.ti_return_rcb;
1319 TI_HOSTADDR(rcb->ti_hostaddr) =
1320 vtophys(&sc->ti_rdata->ti_rx_return_ring);
1321 rcb->ti_flags = 0;
1322 rcb->ti_max_len = TI_RETURN_RING_CNT;
1323 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_return_prodidx_ptr) =
1324 vtophys(&sc->ti_return_prodidx);
1327 * Set up the tx ring. Note: for the Tigon 2, we have the option
1328 * of putting the transmit ring in the host's address space and
1329 * letting the chip DMA it instead of leaving the ring in the NIC's
1330 * memory and accessing it through the shared memory region. We
1331 * do this for the Tigon 2, but it doesn't work on the Tigon 1,
1332 * so we have to revert to the shared memory scheme if we detect
1333 * a Tigon 1 chip.
1335 CSR_WRITE_4(sc, TI_WINBASE, TI_TX_RING_BASE);
1336 if (sc->ti_hwrev == TI_HWREV_TIGON) {
1337 sc->ti_rdata->ti_tx_ring_nic =
1338 (struct ti_tx_desc *)(sc->ti_vhandle + TI_WINDOW);
1340 bzero(sc->ti_rdata->ti_tx_ring,
1341 TI_TX_RING_CNT * sizeof(struct ti_tx_desc));
1342 rcb = &sc->ti_rdata->ti_info.ti_tx_rcb;
1343 if (sc->ti_hwrev == TI_HWREV_TIGON)
1344 rcb->ti_flags = 0;
1345 else
1346 rcb->ti_flags = TI_RCB_FLAG_HOST_RING;
1347 rcb->ti_flags |= TI_RCB_FLAG_VLAN_ASSIST;
1348 if (ifp->if_hwassist)
1349 rcb->ti_flags |= TI_RCB_FLAG_TCP_UDP_CKSUM |
1350 TI_RCB_FLAG_IP_CKSUM | TI_RCB_FLAG_NO_PHDR_CKSUM;
1351 rcb->ti_max_len = TI_TX_RING_CNT;
1352 if (sc->ti_hwrev == TI_HWREV_TIGON)
1353 TI_HOSTADDR(rcb->ti_hostaddr) = TI_TX_RING_BASE;
1354 else
1355 TI_HOSTADDR(rcb->ti_hostaddr) =
1356 vtophys(&sc->ti_rdata->ti_tx_ring);
1357 TI_HOSTADDR(sc->ti_rdata->ti_info.ti_tx_considx_ptr) =
1358 vtophys(&sc->ti_tx_considx);
1360 /* Set up tuneables */
1361 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
1362 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS,
1363 (sc->ti_rx_coal_ticks / 10));
1364 else
1365 CSR_WRITE_4(sc, TI_GCR_RX_COAL_TICKS, sc->ti_rx_coal_ticks);
1366 CSR_WRITE_4(sc, TI_GCR_TX_COAL_TICKS, sc->ti_tx_coal_ticks);
1367 CSR_WRITE_4(sc, TI_GCR_STAT_TICKS, sc->ti_stat_ticks);
1368 CSR_WRITE_4(sc, TI_GCR_RX_MAX_COAL_BD, sc->ti_rx_max_coal_bds);
1369 CSR_WRITE_4(sc, TI_GCR_TX_MAX_COAL_BD, sc->ti_tx_max_coal_bds);
1370 CSR_WRITE_4(sc, TI_GCR_TX_BUFFER_RATIO, sc->ti_tx_buf_ratio);
1372 /* Turn interrupts on. */
1373 CSR_WRITE_4(sc, TI_GCR_MASK_INTRS, 0);
1374 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1376 /* Start CPU. */
1377 TI_CLRBIT(sc, TI_CPU_STATE, (TI_CPUSTATE_HALT|TI_CPUSTATE_STEP));
1379 return(0);
1383 * Probe for a Tigon chip. Check the PCI vendor and device IDs
1384 * against our list and return its name if we find a match.
1386 static int
1387 ti_probe(device_t dev)
1389 struct ti_type *t;
1390 uint16_t vendor, product;
1392 vendor = pci_get_vendor(dev);
1393 product = pci_get_device(dev);
1395 for (t = ti_devs; t->ti_name != NULL; t++) {
1396 if (vendor == t->ti_vid && product == t->ti_did) {
1397 device_set_desc(dev, t->ti_name);
1398 return(0);
1402 return(ENXIO);
1405 static int
1406 ti_attach(device_t dev)
1408 struct ti_softc *sc;
1409 struct ifnet *ifp;
1410 int error = 0, rid;
1411 uint8_t eaddr[ETHER_ADDR_LEN];
1413 sc = device_get_softc(dev);
1414 ifp = &sc->arpcom.ac_if;
1415 if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1416 ifp->if_capabilities = IFCAP_HWCSUM |
1417 IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU;
1418 ifp->if_capenable = ifp->if_capabilities;
1420 pci_enable_busmaster(dev);
1423 * Initialize media before any possible error may occur,
1424 * so we can destroy it unconditionally, if an error occurs later on.
1426 ifmedia_init(&sc->ifmedia, IFM_IMASK, ti_ifmedia_upd, ti_ifmedia_sts);
1428 rid = TI_PCI_LOMEM;
1429 sc->ti_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
1430 RF_ACTIVE);
1432 if (sc->ti_res == NULL) {
1433 device_printf(dev, "couldn't map memory\n");
1434 error = ENXIO;
1435 goto fail;
1438 sc->ti_btag = rman_get_bustag(sc->ti_res);
1439 sc->ti_bhandle = rman_get_bushandle(sc->ti_res);
1440 sc->ti_vhandle = (vm_offset_t)rman_get_virtual(sc->ti_res);
1442 /* Allocate interrupt */
1443 rid = 0;
1444 sc->ti_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1445 RF_SHAREABLE | RF_ACTIVE);
1446 if (sc->ti_irq == NULL) {
1447 device_printf(dev, "couldn't map interrupt\n");
1448 error = ENXIO;
1449 goto fail;
1452 if (ti_chipinit(sc)) {
1453 device_printf(dev, "chip initialization failed\n");
1454 error = ENXIO;
1455 goto fail;
1458 /* Zero out the NIC's on-board SRAM. */
1459 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
1461 /* Init again -- zeroing memory may have clobbered some registers. */
1462 if (ti_chipinit(sc)) {
1463 device_printf(dev, "chip initialization failed\n");
1464 error = ENXIO;
1465 goto fail;
1469 * Get station address from the EEPROM. Note: the manual states
1470 * that the MAC address is at offset 0x8c, however the data is
1471 * stored as two longwords (since that's how it's loaded into
1472 * the NIC). This means the MAC address is actually preceeded
1473 * by two zero bytes. We need to skip over those.
1475 if (ti_read_eeprom(sc, eaddr, TI_EE_MAC_OFFSET + 2, ETHER_ADDR_LEN)) {
1476 device_printf(dev, "failed to read station address\n");
1477 error = ENXIO;
1478 goto fail;
1481 /* Allocate the general information block and ring buffers. */
1482 sc->ti_rdata = contigmalloc(sizeof(struct ti_ring_data), M_DEVBUF,
1483 M_WAITOK, 0, 0xffffffff, PAGE_SIZE, 0);
1485 if (sc->ti_rdata == NULL) {
1486 device_printf(dev, "no memory for list buffers!\n");
1487 error = ENXIO;
1488 goto fail;
1491 bzero(sc->ti_rdata, sizeof(struct ti_ring_data));
1493 /* Try to allocate memory for jumbo buffers. */
1494 if (ti_alloc_jumbo_mem(sc)) {
1495 device_printf(dev, "jumbo buffer allocation failed\n");
1496 error = ENXIO;
1497 goto fail;
1501 * We really need a better way to tell a 1000baseTX card
1502 * from a 1000baseSX one, since in theory there could be
1503 * OEMed 1000baseTX cards from lame vendors who aren't
1504 * clever enough to change the PCI ID. For the moment
1505 * though, the AceNIC is the only copper card available.
1507 if (pci_get_vendor(dev) == ALT_VENDORID &&
1508 pci_get_device(dev) == ALT_DEVICEID_ACENIC_COPPER)
1509 sc->ti_copper = 1;
1510 /* Ok, it's not the only copper card available. */
1511 if (pci_get_vendor(dev) == NG_VENDORID &&
1512 pci_get_device(dev) == NG_DEVICEID_GA620T)
1513 sc->ti_copper = 1;
1515 /* Set default tuneable values. */
1516 sc->ti_stat_ticks = 2 * TI_TICKS_PER_SEC;
1517 sc->ti_rx_coal_ticks = TI_TICKS_PER_SEC / 5000;
1518 sc->ti_tx_coal_ticks = TI_TICKS_PER_SEC / 500;
1519 sc->ti_rx_max_coal_bds = 64;
1520 sc->ti_tx_max_coal_bds = 128;
1521 sc->ti_tx_buf_ratio = 21;
1523 /* Set up ifnet structure */
1524 ifp->if_softc = sc;
1525 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1526 ifp->if_ioctl = ti_ioctl;
1527 ifp->if_start = ti_start;
1528 ifp->if_watchdog = ti_watchdog;
1529 ifp->if_init = ti_init;
1530 ifp->if_mtu = ETHERMTU;
1531 ifq_set_maxlen(&ifp->if_snd, TI_TX_RING_CNT - 1);
1532 ifq_set_ready(&ifp->if_snd);
1534 /* Set up ifmedia support. */
1535 if (sc->ti_copper) {
1537 * Copper cards allow manual 10/100 mode selection,
1538 * but not manual 1000baseTX mode selection. Why?
1539 * Becuase currently there's no way to specify the
1540 * master/slave setting through the firmware interface,
1541 * so Alteon decided to just bag it and handle it
1542 * via autonegotiation.
1544 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
1545 ifmedia_add(&sc->ifmedia,
1546 IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
1547 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
1548 ifmedia_add(&sc->ifmedia,
1549 IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
1550 ifmedia_add(&sc->ifmedia, IFM_ETHER | IFM_1000_T, 0, NULL);
1551 ifmedia_add(&sc->ifmedia,
1552 IFM_ETHER|IFM_1000_T | IFM_FDX, 0, NULL);
1553 } else {
1554 /* Fiber cards don't support 10/100 modes. */
1555 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_1000_SX, 0, NULL);
1556 ifmedia_add(&sc->ifmedia,
1557 IFM_ETHER|IFM_1000_SX|IFM_FDX, 0, NULL);
1559 ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
1560 ifmedia_set(&sc->ifmedia, IFM_ETHER|IFM_AUTO);
1563 * Call MI attach routine.
1565 ether_ifattach(ifp, eaddr, NULL);
1567 error = bus_setup_intr(dev, sc->ti_irq, INTR_NETSAFE,
1568 ti_intr, sc, &sc->ti_intrhand,
1569 ifp->if_serializer);
1570 if (error) {
1571 device_printf(dev, "couldn't set up irq\n");
1572 ether_ifdetach(ifp);
1573 goto fail;
1575 return 0;
1577 fail:
1578 ti_detach(dev);
1579 return(error);
1582 static int
1583 ti_detach(device_t dev)
1585 struct ti_softc *sc = device_get_softc(dev);
1586 struct ifnet *ifp = &sc->arpcom.ac_if;
1588 if (device_is_attached(dev)) {
1589 lwkt_serialize_enter(ifp->if_serializer);
1590 ti_stop(sc);
1591 bus_teardown_intr(dev, sc->ti_irq, sc->ti_intrhand);
1592 lwkt_serialize_exit(ifp->if_serializer);
1594 ether_ifdetach(ifp);
1597 if (sc->ti_irq != NULL)
1598 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->ti_irq);
1599 if (sc->ti_res != NULL) {
1600 bus_release_resource(dev, SYS_RES_MEMORY,
1601 TI_PCI_LOMEM, sc->ti_res);
1603 if (sc->ti_cdata.ti_jumbo_buf != NULL)
1604 contigfree(sc->ti_cdata.ti_jumbo_buf, TI_JMEM, M_DEVBUF);
1605 if (sc->ti_rdata != NULL)
1606 contigfree(sc->ti_rdata, sizeof(struct ti_ring_data), M_DEVBUF);
1607 ifmedia_removeall(&sc->ifmedia);
1610 return(0);
1614 * Frame reception handling. This is called if there's a frame
1615 * on the receive return list.
1617 * Note: we have to be able to handle three possibilities here:
1618 * 1) the frame is from the mini receive ring (can only happen)
1619 * on Tigon 2 boards)
1620 * 2) the frame is from the jumbo recieve ring
1621 * 3) the frame is from the standard receive ring
1623 static void
1624 ti_rxeof(struct ti_softc *sc)
1626 struct ifnet *ifp = &sc->arpcom.ac_if;
1627 struct ti_cmd_desc cmd;
1629 while(sc->ti_rx_saved_considx != sc->ti_return_prodidx.ti_idx) {
1630 struct ti_rx_desc *cur_rx;
1631 uint32_t rxidx;
1632 struct mbuf *m;
1633 uint16_t vlan_tag = 0;
1634 int have_tag = 0;
1636 cur_rx =
1637 &sc->ti_rdata->ti_rx_return_ring[sc->ti_rx_saved_considx];
1638 rxidx = cur_rx->ti_idx;
1639 TI_INC(sc->ti_rx_saved_considx, TI_RETURN_RING_CNT);
1641 if (cur_rx->ti_flags & TI_BDFLAG_VLAN_TAG) {
1642 have_tag = 1;
1643 vlan_tag = cur_rx->ti_vlan_tag & 0xfff;
1646 if (cur_rx->ti_flags & TI_BDFLAG_JUMBO_RING) {
1647 TI_INC(sc->ti_jumbo, TI_JUMBO_RX_RING_CNT);
1648 m = sc->ti_cdata.ti_rx_jumbo_chain[rxidx];
1649 sc->ti_cdata.ti_rx_jumbo_chain[rxidx] = NULL;
1650 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1651 ifp->if_ierrors++;
1652 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1653 continue;
1655 if (ti_newbuf_jumbo(sc, sc->ti_jumbo, NULL) == ENOBUFS) {
1656 ifp->if_ierrors++;
1657 ti_newbuf_jumbo(sc, sc->ti_jumbo, m);
1658 continue;
1660 } else if (cur_rx->ti_flags & TI_BDFLAG_MINI_RING) {
1661 TI_INC(sc->ti_mini, TI_MINI_RX_RING_CNT);
1662 m = sc->ti_cdata.ti_rx_mini_chain[rxidx];
1663 sc->ti_cdata.ti_rx_mini_chain[rxidx] = NULL;
1664 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1665 ifp->if_ierrors++;
1666 ti_newbuf_mini(sc, sc->ti_mini, m);
1667 continue;
1669 if (ti_newbuf_mini(sc, sc->ti_mini, NULL) == ENOBUFS) {
1670 ifp->if_ierrors++;
1671 ti_newbuf_mini(sc, sc->ti_mini, m);
1672 continue;
1674 } else {
1675 TI_INC(sc->ti_std, TI_STD_RX_RING_CNT);
1676 m = sc->ti_cdata.ti_rx_std_chain[rxidx];
1677 sc->ti_cdata.ti_rx_std_chain[rxidx] = NULL;
1678 if (cur_rx->ti_flags & TI_BDFLAG_ERROR) {
1679 ifp->if_ierrors++;
1680 ti_newbuf_std(sc, sc->ti_std, m);
1681 continue;
1683 if (ti_newbuf_std(sc, sc->ti_std, NULL) == ENOBUFS) {
1684 ifp->if_ierrors++;
1685 ti_newbuf_std(sc, sc->ti_std, m);
1686 continue;
1690 m->m_pkthdr.len = m->m_len = cur_rx->ti_len;
1691 ifp->if_ipackets++;
1692 m->m_pkthdr.rcvif = ifp;
1694 if (ifp->if_hwassist) {
1695 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
1696 CSUM_DATA_VALID;
1697 if ((cur_rx->ti_ip_cksum ^ 0xffff) == 0)
1698 m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1699 m->m_pkthdr.csum_data = cur_rx->ti_tcp_udp_cksum;
1703 * If we received a packet with a vlan tag, pass it
1704 * to vlan_input() instead of ether_input().
1706 if (have_tag)
1707 VLAN_INPUT_TAG(m, vlan_tag);
1708 else
1709 ifp->if_input(ifp, m);
1712 /* Only necessary on the Tigon 1. */
1713 if (sc->ti_hwrev == TI_HWREV_TIGON)
1714 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX,
1715 sc->ti_rx_saved_considx);
1717 TI_UPDATE_STDPROD(sc, sc->ti_std);
1718 TI_UPDATE_MINIPROD(sc, sc->ti_mini);
1719 TI_UPDATE_JUMBOPROD(sc, sc->ti_jumbo);
1722 static void
1723 ti_txeof(struct ti_softc *sc)
1725 struct ifnet *ifp = &sc->arpcom.ac_if;
1726 struct ti_tx_desc *cur_tx = NULL;
1729 * Go through our tx ring and free mbufs for those
1730 * frames that have been sent.
1732 while (sc->ti_tx_saved_considx != sc->ti_tx_considx.ti_idx) {
1733 uint32_t idx = 0;
1735 idx = sc->ti_tx_saved_considx;
1736 if (sc->ti_hwrev == TI_HWREV_TIGON) {
1737 if (idx > 383)
1738 CSR_WRITE_4(sc, TI_WINBASE,
1739 TI_TX_RING_BASE + 6144);
1740 else if (idx > 255)
1741 CSR_WRITE_4(sc, TI_WINBASE,
1742 TI_TX_RING_BASE + 4096);
1743 else if (idx > 127)
1744 CSR_WRITE_4(sc, TI_WINBASE,
1745 TI_TX_RING_BASE + 2048);
1746 else
1747 CSR_WRITE_4(sc, TI_WINBASE,
1748 TI_TX_RING_BASE);
1749 cur_tx = &sc->ti_rdata->ti_tx_ring_nic[idx % 128];
1750 } else
1751 cur_tx = &sc->ti_rdata->ti_tx_ring[idx];
1752 if (cur_tx->ti_flags & TI_BDFLAG_END)
1753 ifp->if_opackets++;
1754 if (sc->ti_cdata.ti_tx_chain[idx] != NULL) {
1755 m_freem(sc->ti_cdata.ti_tx_chain[idx]);
1756 sc->ti_cdata.ti_tx_chain[idx] = NULL;
1758 sc->ti_txcnt--;
1759 TI_INC(sc->ti_tx_saved_considx, TI_TX_RING_CNT);
1760 ifp->if_timer = 0;
1763 if (cur_tx != NULL)
1764 ifp->if_flags &= ~IFF_OACTIVE;
1767 static void
1768 ti_intr(void *xsc)
1770 struct ti_softc *sc = xsc;
1771 struct ifnet *ifp = &sc->arpcom.ac_if;
1773 #ifdef notdef
1774 /* Avoid this for now -- checking this register is expensive. */
1775 /* Make sure this is really our interrupt. */
1776 if ((CSR_READ_4(sc, TI_MISC_HOST_CTL) & TI_MHC_INTSTATE) == 0)
1777 return;
1778 #endif
1780 /* Ack interrupt and stop others from occuring. */
1781 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
1783 if (ifp->if_flags & IFF_RUNNING) {
1784 /* Check RX return ring producer/consumer */
1785 ti_rxeof(sc);
1787 /* Check TX ring producer/consumer */
1788 ti_txeof(sc);
1791 ti_handle_events(sc);
1793 /* Re-enable interrupts. */
1794 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
1796 if ((ifp->if_flags & IFF_RUNNING) && !ifq_is_empty(&ifp->if_snd))
1797 ti_start(ifp);
1800 static void
1801 ti_stats_update(struct ti_softc *sc)
1803 struct ifnet *ifp = &sc->arpcom.ac_if;
1805 ifp->if_collisions +=
1806 (sc->ti_rdata->ti_info.ti_stats.dot3StatsSingleCollisionFrames +
1807 sc->ti_rdata->ti_info.ti_stats.dot3StatsMultipleCollisionFrames +
1808 sc->ti_rdata->ti_info.ti_stats.dot3StatsExcessiveCollisions +
1809 sc->ti_rdata->ti_info.ti_stats.dot3StatsLateCollisions) -
1810 ifp->if_collisions;
1814 * Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
1815 * pointers to descriptors.
1817 static int
1818 ti_encap(struct ti_softc *sc, struct mbuf *m_head, uint32_t *txidx)
1820 struct ti_tx_desc *f = NULL;
1821 struct mbuf *m;
1822 struct ifvlan *ifv = NULL;
1823 uint32_t cnt = 0, cur, frag;
1824 uint16_t csum_flags = 0;
1826 if ((m_head->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
1827 m_head->m_pkthdr.rcvif != NULL &&
1828 m_head->m_pkthdr.rcvif->if_type == IFT_L2VLAN)
1829 ifv = m_head->m_pkthdr.rcvif->if_softc;
1831 m = m_head;
1832 cur = frag = *txidx;
1834 if (m_head->m_pkthdr.csum_flags) {
1835 if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1836 csum_flags |= TI_BDFLAG_IP_CKSUM;
1837 if (m_head->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP))
1838 csum_flags |= TI_BDFLAG_TCP_UDP_CKSUM;
1839 if (m_head->m_flags & M_LASTFRAG)
1840 csum_flags |= TI_BDFLAG_IP_FRAG_END;
1841 else if (m_head->m_flags & M_FRAG)
1842 csum_flags |= TI_BDFLAG_IP_FRAG;
1845 * Start packing the mbufs in this chain into
1846 * the fragment pointers. Stop when we run out
1847 * of fragments or hit the end of the mbuf chain.
1849 for (m = m_head; m != NULL; m = m->m_next) {
1850 if (m->m_len != 0) {
1851 if (sc->ti_hwrev == TI_HWREV_TIGON) {
1852 if (frag > 383)
1853 CSR_WRITE_4(sc, TI_WINBASE,
1854 TI_TX_RING_BASE + 6144);
1855 else if (frag > 255)
1856 CSR_WRITE_4(sc, TI_WINBASE,
1857 TI_TX_RING_BASE + 4096);
1858 else if (frag > 127)
1859 CSR_WRITE_4(sc, TI_WINBASE,
1860 TI_TX_RING_BASE + 2048);
1861 else
1862 CSR_WRITE_4(sc, TI_WINBASE,
1863 TI_TX_RING_BASE);
1864 f = &sc->ti_rdata->ti_tx_ring_nic[frag % 128];
1865 } else
1866 f = &sc->ti_rdata->ti_tx_ring[frag];
1867 if (sc->ti_cdata.ti_tx_chain[frag] != NULL)
1868 break;
1869 TI_HOSTADDR(f->ti_addr) = vtophys(mtod(m, vm_offset_t));
1870 f->ti_len = m->m_len;
1871 f->ti_flags = csum_flags;
1873 if (ifv != NULL) {
1874 f->ti_flags |= TI_BDFLAG_VLAN_TAG;
1875 f->ti_vlan_tag = ifv->ifv_tag & 0xfff;
1876 } else {
1877 f->ti_vlan_tag = 0;
1881 * Sanity check: avoid coming within 16 descriptors
1882 * of the end of the ring.
1884 if ((TI_TX_RING_CNT - (sc->ti_txcnt + cnt)) < 16)
1885 return(ENOBUFS);
1886 cur = frag;
1887 TI_INC(frag, TI_TX_RING_CNT);
1888 cnt++;
1892 if (m != NULL)
1893 return(ENOBUFS);
1895 if (frag == sc->ti_tx_saved_considx)
1896 return(ENOBUFS);
1898 if (sc->ti_hwrev == TI_HWREV_TIGON)
1899 sc->ti_rdata->ti_tx_ring_nic[cur % 128].ti_flags |=
1900 TI_BDFLAG_END;
1901 else
1902 sc->ti_rdata->ti_tx_ring[cur].ti_flags |= TI_BDFLAG_END;
1903 sc->ti_cdata.ti_tx_chain[cur] = m_head;
1904 sc->ti_txcnt += cnt;
1906 *txidx = frag;
1908 return(0);
1912 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
1913 * to the mbuf data regions directly in the transmit descriptors.
1915 static void
1916 ti_start(struct ifnet *ifp)
1918 struct ti_softc *sc = ifp->if_softc;
1919 struct mbuf *m_head = NULL;
1920 uint32_t prodidx = 0;
1921 int need_trans;
1923 prodidx = CSR_READ_4(sc, TI_MB_SENDPROD_IDX);
1925 need_trans = 0;
1926 while(sc->ti_cdata.ti_tx_chain[prodidx] == NULL) {
1927 m_head = ifq_poll(&ifp->if_snd);
1928 if (m_head == NULL)
1929 break;
1932 * XXX
1933 * safety overkill. If this is a fragmented packet chain
1934 * with delayed TCP/UDP checksums, then only encapsulate
1935 * it if we have enough descriptors to handle the entire
1936 * chain at once.
1937 * (paranoia -- may not actually be needed)
1939 if (m_head->m_flags & M_FIRSTFRAG &&
1940 m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
1941 if ((TI_TX_RING_CNT - sc->ti_txcnt) <
1942 m_head->m_pkthdr.csum_data + 16) {
1943 ifp->if_flags |= IFF_OACTIVE;
1944 break;
1949 * Pack the data into the transmit ring. If we
1950 * don't have room, set the OACTIVE flag and wait
1951 * for the NIC to drain the ring.
1953 if (ti_encap(sc, m_head, &prodidx)) {
1954 ifp->if_flags |= IFF_OACTIVE;
1955 break;
1957 ifq_dequeue(&ifp->if_snd, m_head);
1958 need_trans = 1;
1960 BPF_MTAP(ifp, m_head);
1963 if (!need_trans)
1964 return;
1966 /* Transmit */
1967 CSR_WRITE_4(sc, TI_MB_SENDPROD_IDX, prodidx);
1970 * Set a timeout in case the chip goes out to lunch.
1972 ifp->if_timer = 5;
1975 static void
1976 ti_init(void *xsc)
1978 struct ti_softc *sc = xsc;
1980 /* Cancel pending I/O and flush buffers. */
1981 ti_stop(sc);
1983 /* Init the gen info block, ring control blocks and firmware. */
1984 if (ti_gibinit(sc)) {
1985 if_printf(&sc->arpcom.ac_if, "initialization failure\n");
1986 return;
1990 static void
1991 ti_init2(struct ti_softc *sc)
1993 struct ifnet *ifp = &sc->arpcom.ac_if;
1994 struct ti_cmd_desc cmd;
1995 uint16_t *m;
1996 struct ifmedia *ifm;
1997 int tmp;
1999 /* Specify MTU and interface index. */
2000 CSR_WRITE_4(sc, TI_GCR_IFINDEX, ifp->if_dunit);
2001 CSR_WRITE_4(sc, TI_GCR_IFMTU, ifp->if_mtu +
2002 ETHER_HDR_LEN + ETHER_CRC_LEN);
2003 TI_DO_CMD(TI_CMD_UPDATE_GENCOM, 0, 0);
2005 /* Load our MAC address. */
2006 m = (uint16_t *)&sc->arpcom.ac_enaddr[0];
2007 CSR_WRITE_4(sc, TI_GCR_PAR0, htons(m[0]));
2008 CSR_WRITE_4(sc, TI_GCR_PAR1, (htons(m[1]) << 16) | htons(m[2]));
2009 TI_DO_CMD(TI_CMD_SET_MAC_ADDR, 0, 0);
2011 /* Enable or disable promiscuous mode as needed. */
2012 if (ifp->if_flags & IFF_PROMISC)
2013 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_ENB, 0);
2014 else
2015 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE, TI_CMD_CODE_PROMISC_DIS, 0);
2017 /* Program multicast filter. */
2018 ti_setmulti(sc);
2021 * If this is a Tigon 1, we should tell the
2022 * firmware to use software packet filtering.
2024 if (sc->ti_hwrev == TI_HWREV_TIGON)
2025 TI_DO_CMD(TI_CMD_FDR_FILTERING, TI_CMD_CODE_FILT_ENB, 0);
2027 /* Init RX ring. */
2028 ti_init_rx_ring_std(sc);
2030 /* Init jumbo RX ring. */
2031 if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
2032 ti_init_rx_ring_jumbo(sc);
2035 * If this is a Tigon 2, we can also configure the
2036 * mini ring.
2038 if (sc->ti_hwrev == TI_HWREV_TIGON_II)
2039 ti_init_rx_ring_mini(sc);
2041 CSR_WRITE_4(sc, TI_GCR_RXRETURNCONS_IDX, 0);
2042 sc->ti_rx_saved_considx = 0;
2044 /* Init TX ring. */
2045 ti_init_tx_ring(sc);
2047 /* Tell firmware we're alive. */
2048 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_UP, 0);
2050 /* Enable host interrupts. */
2051 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 0);
2053 ifp->if_flags |= IFF_RUNNING;
2054 ifp->if_flags &= ~IFF_OACTIVE;
2057 * Make sure to set media properly. We have to do this
2058 * here since we have to issue commands in order to set
2059 * the link negotiation and we can't issue commands until
2060 * the firmware is running.
2062 ifm = &sc->ifmedia;
2063 tmp = ifm->ifm_media;
2064 ifm->ifm_media = ifm->ifm_cur->ifm_media;
2065 ti_ifmedia_upd(ifp);
2066 ifm->ifm_media = tmp;
2070 * Set media options.
2072 static int
2073 ti_ifmedia_upd(struct ifnet *ifp)
2075 struct ti_softc *sc = ifp->if_softc;
2076 struct ifmedia *ifm = &sc->ifmedia;
2077 struct ti_cmd_desc cmd;
2079 if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
2080 return(EINVAL);
2082 switch(IFM_SUBTYPE(ifm->ifm_media)) {
2083 case IFM_AUTO:
2084 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF | TI_GLNK_1000MB |
2085 TI_GLNK_FULL_DUPLEX | TI_GLNK_RX_FLOWCTL_Y |
2086 TI_GLNK_AUTONEGENB | TI_GLNK_ENB);
2087 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_100MB | TI_LNK_10MB |
2088 TI_LNK_FULL_DUPLEX | TI_LNK_HALF_DUPLEX |
2089 TI_LNK_AUTONEGENB | TI_LNK_ENB);
2090 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2091 TI_CMD_CODE_NEGOTIATE_BOTH, 0);
2092 break;
2093 case IFM_1000_SX:
2094 case IFM_1000_T:
2095 CSR_WRITE_4(sc, TI_GCR_GLINK, TI_GLNK_PREF|TI_GLNK_1000MB |
2096 TI_GLNK_RX_FLOWCTL_Y | TI_GLNK_ENB);
2097 CSR_WRITE_4(sc, TI_GCR_LINK, 0);
2098 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2099 TI_SETBIT(sc, TI_GCR_GLINK, TI_GLNK_FULL_DUPLEX);
2100 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2101 TI_CMD_CODE_NEGOTIATE_GIGABIT, 0);
2102 break;
2103 case IFM_100_FX:
2104 case IFM_10_FL:
2105 case IFM_100_TX:
2106 case IFM_10_T:
2107 CSR_WRITE_4(sc, TI_GCR_GLINK, 0);
2108 CSR_WRITE_4(sc, TI_GCR_LINK, TI_LNK_ENB | TI_LNK_PREF);
2109 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX ||
2110 IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX)
2111 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_100MB);
2112 else
2113 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_10MB);
2114 if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
2115 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_FULL_DUPLEX);
2116 else
2117 TI_SETBIT(sc, TI_GCR_LINK, TI_LNK_HALF_DUPLEX);
2118 TI_DO_CMD(TI_CMD_LINK_NEGOTIATION,
2119 TI_CMD_CODE_NEGOTIATE_10_100, 0);
2120 break;
2123 return(0);
2127 * Report current media status.
2129 static void
2130 ti_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2132 struct ti_softc *sc = ifp->if_softc;
2133 uint32_t media = 0;
2135 ifmr->ifm_status = IFM_AVALID;
2136 ifmr->ifm_active = IFM_ETHER;
2138 if (sc->ti_linkstat == TI_EV_CODE_LINK_DOWN)
2139 return;
2141 ifmr->ifm_status |= IFM_ACTIVE;
2143 if (sc->ti_linkstat == TI_EV_CODE_GIG_LINK_UP) {
2144 media = CSR_READ_4(sc, TI_GCR_GLINK_STAT);
2145 if (sc->ti_copper)
2146 ifmr->ifm_active |= IFM_1000_T;
2147 else
2148 ifmr->ifm_active |= IFM_1000_SX;
2149 if (media & TI_GLNK_FULL_DUPLEX)
2150 ifmr->ifm_active |= IFM_FDX;
2151 else
2152 ifmr->ifm_active |= IFM_HDX;
2153 } else if (sc->ti_linkstat == TI_EV_CODE_LINK_UP) {
2154 media = CSR_READ_4(sc, TI_GCR_LINK_STAT);
2155 if (sc->ti_copper) {
2156 if (media & TI_LNK_100MB)
2157 ifmr->ifm_active |= IFM_100_TX;
2158 if (media & TI_LNK_10MB)
2159 ifmr->ifm_active |= IFM_10_T;
2160 } else {
2161 if (media & TI_LNK_100MB)
2162 ifmr->ifm_active |= IFM_100_FX;
2163 if (media & TI_LNK_10MB)
2164 ifmr->ifm_active |= IFM_10_FL;
2166 if (media & TI_LNK_FULL_DUPLEX)
2167 ifmr->ifm_active |= IFM_FDX;
2168 if (media & TI_LNK_HALF_DUPLEX)
2169 ifmr->ifm_active |= IFM_HDX;
2173 static int
2174 ti_ioctl(struct ifnet *ifp, u_long command, caddr_t data, struct ucred *cr)
2176 struct ti_softc *sc = ifp->if_softc;
2177 struct ifreq *ifr = (struct ifreq *) data;
2178 struct ti_cmd_desc cmd;
2179 int error = 0, mask;
2181 switch(command) {
2182 case SIOCSIFMTU:
2183 if (ifr->ifr_mtu > TI_JUMBO_MTU)
2184 error = EINVAL;
2185 else {
2186 ifp->if_mtu = ifr->ifr_mtu;
2187 ti_init(sc);
2189 break;
2190 case SIOCSIFFLAGS:
2191 if (ifp->if_flags & IFF_UP) {
2193 * If only the state of the PROMISC flag changed,
2194 * then just use the 'set promisc mode' command
2195 * instead of reinitializing the entire NIC. Doing
2196 * a full re-init means reloading the firmware and
2197 * waiting for it to start up, which may take a
2198 * second or two.
2200 if (ifp->if_flags & IFF_RUNNING &&
2201 ifp->if_flags & IFF_PROMISC &&
2202 !(sc->ti_if_flags & IFF_PROMISC)) {
2203 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2204 TI_CMD_CODE_PROMISC_ENB, 0);
2205 } else if (ifp->if_flags & IFF_RUNNING &&
2206 !(ifp->if_flags & IFF_PROMISC) &&
2207 sc->ti_if_flags & IFF_PROMISC) {
2208 TI_DO_CMD(TI_CMD_SET_PROMISC_MODE,
2209 TI_CMD_CODE_PROMISC_DIS, 0);
2210 } else
2211 ti_init(sc);
2212 } else if (ifp->if_flags & IFF_RUNNING) {
2213 ti_stop(sc);
2215 sc->ti_if_flags = ifp->if_flags;
2216 error = 0;
2217 break;
2218 case SIOCADDMULTI:
2219 case SIOCDELMULTI:
2220 if (ifp->if_flags & IFF_RUNNING) {
2221 ti_setmulti(sc);
2222 error = 0;
2224 break;
2225 case SIOCSIFMEDIA:
2226 case SIOCGIFMEDIA:
2227 error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
2228 break;
2229 case SIOCSIFCAP:
2230 mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2231 if (mask & IFCAP_HWCSUM) {
2232 if (IFCAP_HWCSUM & ifp->if_capenable)
2233 ifp->if_capenable &= ~IFCAP_HWCSUM;
2234 else
2235 ifp->if_capenable |= IFCAP_HWCSUM;
2236 if (ifp->if_flags & IFF_RUNNING)
2237 ti_init(sc);
2239 error = 0;
2240 break;
2241 default:
2242 error = ether_ioctl(ifp, command, data);
2243 break;
2245 return(error);
2248 static void
2249 ti_watchdog(struct ifnet *ifp)
2251 struct ti_softc *sc = ifp->if_softc;
2253 if_printf(ifp, "watchdog timeout -- resetting\n");
2254 ti_stop(sc);
2255 ti_init(sc);
2257 ifp->if_oerrors++;
2259 if (!ifq_is_empty(&ifp->if_snd))
2260 ifp->if_start(ifp);
2264 * Stop the adapter and free any mbufs allocated to the
2265 * RX and TX lists.
2267 static void
2268 ti_stop(struct ti_softc *sc)
2270 struct ifnet *ifp = &sc->arpcom.ac_if;
2271 struct ti_cmd_desc cmd;
2273 /* Disable host interrupts. */
2274 CSR_WRITE_4(sc, TI_MB_HOSTINTR, 1);
2276 * Tell firmware we're shutting down.
2278 TI_DO_CMD(TI_CMD_HOST_STATE, TI_CMD_CODE_STACK_DOWN, 0);
2280 /* Halt and reinitialize. */
2281 ti_chipinit(sc);
2282 ti_mem(sc, 0x2000, 0x100000 - 0x2000, NULL);
2283 ti_chipinit(sc);
2285 /* Free the RX lists. */
2286 ti_free_rx_ring_std(sc);
2288 /* Free jumbo RX list. */
2289 ti_free_rx_ring_jumbo(sc);
2291 /* Free mini RX list. */
2292 ti_free_rx_ring_mini(sc);
2294 /* Free TX buffers. */
2295 ti_free_tx_ring(sc);
2297 sc->ti_ev_prodidx.ti_idx = 0;
2298 sc->ti_return_prodidx.ti_idx = 0;
2299 sc->ti_tx_considx.ti_idx = 0;
2300 sc->ti_tx_saved_considx = TI_TXCONS_UNSET;
2302 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2306 * Stop all chip I/O so that the kernel's probe routines don't
2307 * get confused by errant DMAs when rebooting.
2309 static void
2310 ti_shutdown(device_t dev)
2312 struct ti_softc *sc = device_get_softc(dev);
2314 ti_chipinit(sc);