Adapt 802.11 generic layer to support hardware crypto other than ath(4).
[dragonfly/vkernel-mp.git] / sys / netproto / 802_11 / wlan / ieee80211_crypto.c
blobd727391b006afc3ffd91f7c8edfba539500ff1e8
1 /*
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
4 * All rights reserved.
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
17 * Alternatively, this software may be distributed under the terms of the
18 * GNU General Public License ("GPL") version 2 as published by the Free
19 * Software Foundation.
21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
23 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
24 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
26 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
30 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32 * $FreeBSD: src/sys/net80211/ieee80211_crypto.c,v 1.10.2.2 2005/09/03 22:40:02 sam Exp $
33 * $DragonFly: src/sys/netproto/802_11/wlan/ieee80211_crypto.c,v 1.6 2007/05/07 14:12:16 sephe Exp $
37 * IEEE 802.11 generic crypto support.
39 #include <sys/param.h>
40 #include <sys/mbuf.h>
42 #include <sys/socket.h>
44 #include <net/if.h>
45 #include <net/if_arp.h>
46 #include <net/if_media.h>
47 #include <net/ethernet.h> /* XXX ETHER_HDR_LEN */
49 #include <netproto/802_11/ieee80211_var.h>
52 * Table of registered cipher modules.
54 static const struct ieee80211_cipher *ciphers[IEEE80211_CIPHER_MAX];
56 static int _ieee80211_crypto_delkey(struct ieee80211com *,
57 struct ieee80211_key *);
60 * Default "null" key management routines.
62 static int
63 null_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
64 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
66 if (!(&ic->ic_nw_keys[0] <= k &&
67 k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
69 * Not in the global key table, the driver should handle this
70 * by allocating a slot in the h/w key table/cache. In
71 * lieu of that return key slot 0 for any unicast key
72 * request. We disallow the request if this is a group key.
73 * This default policy does the right thing for legacy hardware
74 * with a 4 key table. It also handles devices that pass
75 * packets through untouched when marked with the WEP bit
76 * and key index 0.
78 if (k->wk_flags & IEEE80211_KEY_GROUP)
79 return 0;
80 *keyix = 0; /* NB: use key index 0 for ucast key */
81 } else {
82 *keyix = k - ic->ic_nw_keys;
84 *rxkeyix = IEEE80211_KEYIX_NONE; /* XXX maybe *keyix? */
85 return 1;
88 static int
89 null_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
91 return 1;
94 static int
95 null_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
96 const uint8_t mac[IEEE80211_ADDR_LEN])
98 return 1;
101 static void null_key_update(struct ieee80211com *ic)
106 * Write-arounds for common operations.
108 static __inline void
109 cipher_detach(struct ieee80211_key *key)
111 key->wk_cipher->ic_detach(key);
114 static __inline void *
115 cipher_attach(struct ieee80211com *ic, struct ieee80211_key *key)
117 return key->wk_cipher->ic_attach(ic, key);
121 * Wrappers for driver key management methods.
123 static __inline int
124 dev_key_alloc(struct ieee80211com *ic,
125 const struct ieee80211_key *key,
126 ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
128 return ic->ic_crypto.cs_key_alloc(ic, key, keyix, rxkeyix);
131 static __inline int
132 dev_key_delete(struct ieee80211com *ic,
133 const struct ieee80211_key *key)
135 return ic->ic_crypto.cs_key_delete(ic, key);
138 static __inline int
139 dev_key_set(struct ieee80211com *ic, const struct ieee80211_key *key,
140 const uint8_t mac[IEEE80211_ADDR_LEN])
142 return ic->ic_crypto.cs_key_set(ic, key, mac);
146 * Setup crypto support.
148 void
149 ieee80211_crypto_attach(struct ieee80211com *ic)
151 struct ieee80211_crypto_state *cs = &ic->ic_crypto;
152 int i;
154 /* NB: we assume everything is pre-zero'd */
155 cs->cs_def_txkey = IEEE80211_KEYIX_NONE;
156 cs->cs_max_keyix = IEEE80211_WEP_NKID;
157 ciphers[IEEE80211_CIPHER_NONE] = &ieee80211_cipher_none;
158 for (i = 0; i < IEEE80211_WEP_NKID; i++)
159 ieee80211_crypto_resetkey(ic, &cs->cs_nw_keys[i],
160 IEEE80211_KEYIX_NONE);
162 * Initialize the driver key support routines to noop entries.
163 * This is useful especially for the cipher test modules.
165 cs->cs_key_alloc = null_key_alloc;
166 cs->cs_key_set = null_key_set;
167 cs->cs_key_delete = null_key_delete;
168 cs->cs_key_update_begin = null_key_update;
169 cs->cs_key_update_end = null_key_update;
173 * Teardown crypto support.
175 void
176 ieee80211_crypto_detach(struct ieee80211com *ic)
178 ieee80211_crypto_delglobalkeys(ic);
182 * Register a crypto cipher module.
184 void
185 ieee80211_crypto_register(const struct ieee80211_cipher *cip)
187 if (cip->ic_cipher >= IEEE80211_CIPHER_MAX) {
188 kprintf("%s: cipher %s has an invalid cipher index %u\n",
189 __func__, cip->ic_name, cip->ic_cipher);
190 return;
192 if (ciphers[cip->ic_cipher] != NULL && ciphers[cip->ic_cipher] != cip) {
193 kprintf("%s: cipher %s registered with a different template\n",
194 __func__, cip->ic_name);
195 return;
197 ciphers[cip->ic_cipher] = cip;
201 * Unregister a crypto cipher module.
203 void
204 ieee80211_crypto_unregister(const struct ieee80211_cipher *cip)
206 if (cip->ic_cipher >= IEEE80211_CIPHER_MAX) {
207 kprintf("%s: cipher %s has an invalid cipher index %u\n",
208 __func__, cip->ic_name, cip->ic_cipher);
209 return;
211 if (ciphers[cip->ic_cipher] != NULL && ciphers[cip->ic_cipher] != cip) {
212 kprintf("%s: cipher %s registered with a different template\n",
213 __func__, cip->ic_name);
214 return;
216 /* NB: don't complain about not being registered */
217 /* XXX disallow if references */
218 ciphers[cip->ic_cipher] = NULL;
222 ieee80211_crypto_available(u_int cipher)
224 return cipher < IEEE80211_CIPHER_MAX && ciphers[cipher] != NULL;
227 const struct ieee80211_cipher *
228 ieee80211_crypto_cipher(u_int cipher)
230 return cipher < IEEE80211_CIPHER_MAX ? ciphers[cipher] : NULL;
234 * Reset key state to an unused state. The crypto
235 * key allocation mechanism insures other state (e.g.
236 * key data) is properly setup before a key is used.
238 void
239 ieee80211_crypto_resetkey(struct ieee80211com *ic,
240 struct ieee80211_key *k, ieee80211_keyix ix)
242 if (k < &ic->ic_nw_keys[IEEE80211_WEP_NKID] &&
243 k >= &ic->ic_nw_keys[0])
244 k->wk_keyid = k - ic->ic_nw_keys;
245 else
246 k->wk_keyid = 0;
248 k->wk_cipher = &ieee80211_cipher_none;
249 k->wk_private = k->wk_cipher->ic_attach(ic, k);
250 k->wk_keyix = k->wk_rxkeyix = ix;
251 k->wk_flags = IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV;
254 /* XXX well-known names! */
255 static const char *cipher_modnames[] = {
256 "wlan_wep", /* IEEE80211_CIPHER_WEP */
257 "wlan_tkip", /* IEEE80211_CIPHER_TKIP */
258 "wlan_aes_ocb", /* IEEE80211_CIPHER_AES_OCB */
259 "wlan_ccmp", /* IEEE80211_CIPHER_AES_CCM */
260 "wlan_ckip", /* IEEE80211_CIPHER_CKIP */
264 * Establish a relationship between the specified key and cipher
265 * and, if necessary, allocate a hardware index from the driver.
266 * Note that when a fixed key index is required it must be specified
267 * and we blindly assign it w/o consulting the driver (XXX).
269 * This must be the first call applied to a key; all the other key
270 * routines assume wk_cipher is setup.
272 * Locking must be handled by the caller using:
273 * ieee80211_key_update_begin(ic);
274 * ieee80211_key_update_end(ic);
277 ieee80211_crypto_newkey(struct ieee80211com *ic,
278 int cipher, int flags, struct ieee80211_key *key)
280 #define N(a) (sizeof(a) / sizeof(a[0]))
281 const struct ieee80211_cipher *cip;
282 ieee80211_keyix keyix, rxkeyix;
283 void *keyctx;
284 int oflags;
287 * Validate cipher and set reference to cipher routines.
289 if (cipher >= IEEE80211_CIPHER_MAX) {
290 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
291 "%s: invalid cipher %u\n", __func__, cipher);
292 ic->ic_stats.is_crypto_badcipher++;
293 return 0;
295 cip = ciphers[cipher];
296 if (cip == NULL) {
298 * Auto-load cipher module if we have a well-known name
299 * for it. It might be better to use string names rather
300 * than numbers and craft a module name based on the cipher
301 * name; e.g. wlan_cipher_<cipher-name>.
303 if (cipher < N(cipher_modnames)) {
304 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
305 "%s: unregistered cipher %u, load module %s\n",
306 __func__, cipher, cipher_modnames[cipher]);
307 ieee80211_load_module(cipher_modnames[cipher]);
309 * If cipher module loaded it should immediately
310 * call ieee80211_crypto_register which will fill
311 * in the entry in the ciphers array.
313 cip = ciphers[cipher];
315 if (cip == NULL) {
316 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
317 "%s: unable to load cipher %u, module %s\n",
318 __func__, cipher,
319 cipher < N(cipher_modnames) ?
320 cipher_modnames[cipher] : "<unknown>");
321 ic->ic_stats.is_crypto_nocipher++;
322 return 0;
326 oflags = key->wk_flags;
327 flags &= IEEE80211_KEY_COMMON;
329 * If the hardware does not support the cipher then
330 * fallback to a host-based implementation.
332 if ((ic->ic_caps & (1<<cipher)) == 0) {
333 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
334 "%s: no h/w support for cipher %s, falling back to s/w\n",
335 __func__, cip->ic_name);
336 flags |= IEEE80211_KEY_SWCRYPT;
337 } else if (ic->ic_caps_ext & IEEE80211_CEXT_CRYPTO_HDR) {
338 flags |= IEEE80211_KEY_NOHDR;
341 * Hardware TKIP with software MIC is an important
342 * combination; we handle it by flagging each key,
343 * the cipher modules honor it.
345 if (cipher == IEEE80211_CIPHER_TKIP &&
346 (ic->ic_caps & IEEE80211_C_TKIPMIC) == 0) {
347 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
348 "%s: no h/w support for TKIP MIC, falling back to s/w\n",
349 __func__);
350 flags |= IEEE80211_KEY_SWMIC;
351 } else if (ic->ic_caps_ext & IEEE80211_CEXT_STRIP_MIC) {
352 flags |= IEEE80211_KEY_NOMIC;
356 * Bind cipher to key instance. Note we do this
357 * after checking the device capabilities so the
358 * cipher module can optimize space usage based on
359 * whether or not it needs to do the cipher work.
361 if (key->wk_cipher != cip || key->wk_flags != flags) {
362 again:
364 * Fillin the flags so cipher modules can see s/w
365 * crypto requirements and potentially allocate
366 * different state and/or attach different method
367 * pointers.
369 * XXX this is not right when s/w crypto fallback
370 * fails and we try to restore previous state.
372 key->wk_flags = flags;
373 keyctx = cip->ic_attach(ic, key); /* attach new cipher */
374 if (keyctx == NULL) {
375 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
376 "%s: unable to attach cipher %s\n",
377 __func__, cip->ic_name);
378 key->wk_flags = oflags; /* restore old flags */
379 ic->ic_stats.is_crypto_attachfail++;
380 return 0;
382 cipher_detach(key); /* detach old cipher */
383 key->wk_cipher = cip; /* XXX refcnt? */
384 key->wk_private = keyctx;
387 * Commit to requested usage so driver can see the flags.
389 key->wk_flags = flags;
392 * Ask the driver for a key index if we don't have one.
393 * Note that entries in the global key table always have
394 * an index; this means it's safe to call this routine
395 * for these entries just to setup the reference to the
396 * cipher template. Note also that when using software
397 * crypto we also call the driver to give us a key index.
399 if (key->wk_keyix == IEEE80211_KEYIX_NONE) {
400 if (!dev_key_alloc(ic, key, &keyix, &rxkeyix)) {
402 * Driver has no room; fallback to doing crypto
403 * in the host. We change the flags and start the
404 * procedure over. If we get back here then there's
405 * no hope and we bail. Note that this can leave
406 * the key in a inconsistent state if the caller
407 * continues to use it.
409 if ((key->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
410 ic->ic_stats.is_crypto_swfallback++;
411 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
412 "%s: no h/w resources for cipher %s, "
413 "falling back to s/w\n", __func__,
414 cip->ic_name);
415 oflags = key->wk_flags;
416 flags &= IEEE80211_KEY_COMMON;
417 flags |= IEEE80211_KEY_SWCRYPT;
418 if (cipher == IEEE80211_CIPHER_TKIP)
419 flags |= IEEE80211_KEY_SWMIC;
420 goto again;
422 ic->ic_stats.is_crypto_keyfail++;
423 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
424 "%s: unable to setup cipher %s\n",
425 __func__, cip->ic_name);
426 return 0;
428 key->wk_keyix = keyix;
429 key->wk_rxkeyix = rxkeyix;
431 return 1;
432 #undef N
436 * Remove the key (no locking, for internal use).
438 static int
439 _ieee80211_crypto_delkey(struct ieee80211com *ic, struct ieee80211_key *key)
441 ieee80211_keyix keyix;
443 KASSERT(key->wk_cipher != NULL, ("No cipher!"));
445 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
446 "%s: %s keyix %u flags 0x%x rsc %ju tsc %ju len %u\n",
447 __func__, key->wk_cipher->ic_name,
448 key->wk_keyix, key->wk_flags,
449 key->wk_keyrsc, key->wk_keytsc, key->wk_keylen);
451 keyix = key->wk_keyix;
452 if (keyix != IEEE80211_KEYIX_NONE) {
454 * Remove hardware entry.
456 /* XXX key cache */
457 if (!dev_key_delete(ic, key)) {
458 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
459 "%s: driver did not delete key index %u\n",
460 __func__, keyix);
461 ic->ic_stats.is_crypto_delkey++;
462 /* XXX recovery? */
465 cipher_detach(key);
466 memset(key, 0, sizeof(*key));
467 ieee80211_crypto_resetkey(ic, key, IEEE80211_KEYIX_NONE);
468 return 1;
472 * Remove the specified key.
475 ieee80211_crypto_delkey(struct ieee80211com *ic, struct ieee80211_key *key)
477 int status;
479 ieee80211_key_update_begin(ic);
480 status = _ieee80211_crypto_delkey(ic, key);
481 ieee80211_key_update_end(ic);
482 return status;
486 * Clear the global key table.
488 void
489 ieee80211_crypto_delglobalkeys(struct ieee80211com *ic)
491 int i;
493 ieee80211_key_update_begin(ic);
494 for (i = 0; i < IEEE80211_WEP_NKID; i++)
495 _ieee80211_crypto_delkey(ic, &ic->ic_nw_keys[i]);
496 ieee80211_key_update_end(ic);
500 * Set the contents of the specified key.
502 * Locking must be handled by the caller using:
503 * ieee80211_key_update_begin(ic);
504 * ieee80211_key_update_end(ic);
507 ieee80211_crypto_setkey(struct ieee80211com *ic, struct ieee80211_key *key,
508 const uint8_t macaddr[IEEE80211_ADDR_LEN])
510 const struct ieee80211_cipher *cip = key->wk_cipher;
512 KASSERT(cip != NULL, ("No cipher!"));
514 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
515 "%s: %s keyix %u flags 0x%x mac %6D rsc %ju tsc %ju len %u\n",
516 __func__, cip->ic_name, key->wk_keyix,
517 key->wk_flags, macaddr, ":",
518 key->wk_keyrsc, key->wk_keytsc, key->wk_keylen);
521 * Give cipher a chance to validate key contents.
522 * XXX should happen before modifying state.
524 if (!cip->ic_setkey(key)) {
525 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
526 "%s: cipher %s rejected key index %u len %u flags 0x%x\n",
527 __func__, cip->ic_name, key->wk_keyix,
528 key->wk_keylen, key->wk_flags);
529 ic->ic_stats.is_crypto_setkey_cipher++;
530 return 0;
532 if (key->wk_keyix == IEEE80211_KEYIX_NONE) {
533 /* XXX nothing allocated, should not happen */
534 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
535 "%s: no key index; should not happen!\n", __func__);
536 ic->ic_stats.is_crypto_setkey_nokey++;
537 return 0;
539 return dev_key_set(ic, key, macaddr);
543 * Add privacy headers appropriate for the specified key.
545 struct ieee80211_key *
546 ieee80211_crypto_encap(struct ieee80211com *ic,
547 struct ieee80211_node *ni, struct mbuf *m)
549 struct ieee80211_key *k;
551 k = ieee80211_crypto_findkey(ic, ni, m);
552 if (k != NULL)
553 k = ieee80211_crypto_encap_withkey(ic, m, k);
554 return k;
557 struct ieee80211_key *
558 ieee80211_crypto_findkey(struct ieee80211com *ic,
559 struct ieee80211_node *ni, struct mbuf *m)
561 struct ieee80211_frame *wh;
562 struct ieee80211_key *k;
565 * Multicast traffic always uses the multicast key.
566 * Otherwise if a unicast key is set we use that and
567 * it is always key index 0. When no unicast key is
568 * set we fall back to the default transmit key.
570 wh = mtod(m, struct ieee80211_frame *);
571 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
572 ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
573 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE) {
574 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
575 "[%6D] no default transmit key (%s) deftxkey %u\n",
576 wh->i_addr1, ":", __func__,
577 ic->ic_def_txkey);
578 ic->ic_stats.is_tx_nodefkey++;
579 return NULL;
581 k = &ic->ic_nw_keys[ic->ic_def_txkey];
582 KASSERT(k->wk_keyid == ic->ic_def_txkey,
583 ("keyid mismatch: wk_keyid %d, def_txkey %d\n",
584 k->wk_keyid, ic->ic_def_txkey));
585 } else {
586 k = &ni->ni_ucastkey;
587 KASSERT(k->wk_keyid == 0, ("unicast key keyid is not zero\n"));
589 return k;
592 struct ieee80211_key *
593 ieee80211_crypto_encap_withkey(struct ieee80211com *ic,
594 struct mbuf *m, struct ieee80211_key *k)
596 return (k->wk_cipher->ic_encap(k, m, k->wk_keyid << 6) ? k : NULL);
599 struct ieee80211_key *
600 ieee80211_crypto_getiv(struct ieee80211com *ic, struct ieee80211_crypto_iv *iv,
601 struct ieee80211_key *k)
603 memset(iv, 0, sizeof(*iv));
604 return (k->wk_cipher->ic_getiv(k, iv, k->wk_keyid << 6) ? k : NULL);
608 * Validate and strip privacy headers (and trailer) for a
609 * received frame that has the WEP/Privacy bit set.
611 struct ieee80211_key *
612 ieee80211_crypto_decap(struct ieee80211com *ic,
613 struct ieee80211_node *ni, struct mbuf *m, int hdrlen)
615 #define IEEE80211_WEP_HDRLEN (IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN)
616 #define IEEE80211_WEP_MINLEN \
617 (sizeof(struct ieee80211_frame) + \
618 IEEE80211_WEP_HDRLEN + IEEE80211_WEP_CRCLEN)
619 struct ieee80211_key *k;
620 struct ieee80211_frame *wh;
621 const struct ieee80211_cipher *cip;
622 const uint8_t *ivp;
623 uint8_t keyid;
625 /* NB: this minimum size data frame could be bigger */
626 if (m->m_pkthdr.len < IEEE80211_WEP_MINLEN) {
627 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY,
628 "%s: WEP data frame too short, len %u\n",
629 __func__, m->m_pkthdr.len);
630 ic->ic_stats.is_rx_tooshort++; /* XXX need unique stat? */
631 return NULL;
635 * Locate the key. If unicast and there is no unicast
636 * key then we fall back to the key id in the header.
637 * This assumes unicast keys are only configured when
638 * the key id in the header is meaningless (typically 0).
640 wh = mtod(m, struct ieee80211_frame *);
641 ivp = mtod(m, const uint8_t *) + hdrlen; /* XXX contig */
642 keyid = ivp[IEEE80211_WEP_IVLEN];
643 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
644 ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none)
645 k = &ic->ic_nw_keys[keyid >> 6];
646 else
647 k = &ni->ni_ucastkey;
650 * Insure crypto header is contiguous for all decap work.
652 cip = k->wk_cipher;
653 if (m->m_len < hdrlen + cip->ic_header &&
654 (m = m_pullup(m, hdrlen + cip->ic_header)) == NULL) {
655 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO,
656 "[%6D] unable to pullup %s header\n",
657 wh->i_addr2, ":", cip->ic_name);
658 ic->ic_stats.is_rx_wepfail++; /* XXX */
659 return 0;
662 return (cip->ic_decap(k, m, hdrlen) ? k : NULL);
663 #undef IEEE80211_WEP_MINLEN
664 #undef IEEE80211_WEP_HDRLEN
667 struct ieee80211_key *
668 ieee80211_crypto_update(struct ieee80211com *ic, struct ieee80211_node *ni,
669 const struct ieee80211_crypto_iv *iv, const struct ieee80211_frame *wh)
671 struct ieee80211_key *k;
674 * Locate the key. If unicast and there is no unicast
675 * key then we fall back to the key id in the header.
676 * This assumes unicast keys are only configured when
677 * the key id in the header is meaningless (typically 0).
679 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
680 ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
681 const uint8_t *ivp;
682 uint8_t keyid;
684 ivp = (const uint8_t *)iv;
685 keyid = ivp[IEEE80211_WEP_IVLEN];
686 k = &ic->ic_nw_keys[keyid >> 6];
687 } else {
688 k = &ni->ni_ucastkey;
690 return (k->wk_cipher->ic_update(k, iv, wh) ? k : NULL);