Implement vm_fault_object_page(). This function returns a held VM page
[dragonfly/vkernel-mp.git] / sys / vm / vm_fault.c
blob5c9590a9903d1103456717aabc1940ce645fc634
1 /*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 * Copyright (c) 1994 John S. Dyson
5 * All rights reserved.
6 * Copyright (c) 1994 David Greenman
7 * All rights reserved.
10 * This code is derived from software contributed to Berkeley by
11 * The Mach Operating System project at Carnegie-Mellon University.
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. All advertising materials mentioning features or use of this software
22 * must display the following acknowledgement:
23 * This product includes software developed by the University of
24 * California, Berkeley and its contributors.
25 * 4. Neither the name of the University nor the names of its contributors
26 * may be used to endorse or promote products derived from this software
27 * without specific prior written permission.
29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39 * SUCH DAMAGE.
41 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94
44 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
45 * All rights reserved.
47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
49 * Permission to use, copy, modify and distribute this software and
50 * its documentation is hereby granted, provided that both the copyright
51 * notice and this permission notice appear in all copies of the
52 * software, derivative works or modified versions, and any portions
53 * thereof, and that both notices appear in supporting documentation.
55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
59 * Carnegie Mellon requests users of this software to return to
61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
62 * School of Computer Science
63 * Carnegie Mellon University
64 * Pittsburgh PA 15213-3890
66 * any improvements or extensions that they make and grant Carnegie the
67 * rights to redistribute these changes.
69 * $FreeBSD: src/sys/vm/vm_fault.c,v 1.108.2.8 2002/02/26 05:49:27 silby Exp $
70 * $DragonFly: src/sys/vm/vm_fault.c,v 1.42 2007/06/07 23:00:39 dillon Exp $
74 * Page fault handling module.
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/kernel.h>
80 #include <sys/proc.h>
81 #include <sys/vnode.h>
82 #include <sys/resourcevar.h>
83 #include <sys/vmmeter.h>
84 #include <sys/vkernel.h>
85 #include <sys/sfbuf.h>
86 #include <sys/lock.h>
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_object.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/vm_extern.h>
100 #include <sys/thread2.h>
101 #include <vm/vm_page2.h>
103 #define VM_FAULT_READ_AHEAD 8
104 #define VM_FAULT_READ_BEHIND 7
105 #define VM_FAULT_READ (VM_FAULT_READ_AHEAD+VM_FAULT_READ_BEHIND+1)
107 struct faultstate {
108 vm_page_t m;
109 vm_object_t object;
110 vm_pindex_t pindex;
111 vm_prot_t prot;
112 vm_page_t first_m;
113 vm_object_t first_object;
114 vm_prot_t first_prot;
115 vm_map_t map;
116 vm_map_entry_t entry;
117 int lookup_still_valid;
118 int didlimit;
119 int hardfault;
120 int fault_flags;
121 int map_generation;
122 boolean_t wired;
123 struct vnode *vp;
126 static int vm_fault_object(struct faultstate *, vm_pindex_t, vm_prot_t);
127 static int vm_fault_vpagetable(struct faultstate *, vm_pindex_t *, vpte_t, int);
128 static int vm_fault_additional_pages (vm_page_t, int, int, vm_page_t *, int *);
129 static int vm_fault_ratelimit(struct vmspace *);
131 static __inline void
132 release_page(struct faultstate *fs)
134 vm_page_wakeup(fs->m);
135 vm_page_deactivate(fs->m);
136 fs->m = NULL;
139 static __inline void
140 unlock_map(struct faultstate *fs)
142 if (fs->lookup_still_valid && fs->map) {
143 vm_map_lookup_done(fs->map, fs->entry, 0);
144 fs->lookup_still_valid = FALSE;
149 * Clean up after a successful call to vm_fault_object() so another call
150 * to vm_fault_object() can be made.
152 static void
153 _cleanup_successful_fault(struct faultstate *fs, int relock)
155 if (fs->object != fs->first_object) {
156 vm_page_free(fs->first_m);
157 vm_object_pip_wakeup(fs->object);
158 fs->first_m = NULL;
160 fs->object = fs->first_object;
161 if (relock && fs->lookup_still_valid == FALSE) {
162 if (fs->map)
163 vm_map_lock_read(fs->map);
164 fs->lookup_still_valid = TRUE;
168 static void
169 _unlock_things(struct faultstate *fs, int dealloc)
171 vm_object_pip_wakeup(fs->first_object);
172 _cleanup_successful_fault(fs, 0);
173 if (dealloc) {
174 vm_object_deallocate(fs->first_object);
176 unlock_map(fs);
177 if (fs->vp != NULL) {
178 vput(fs->vp);
179 fs->vp = NULL;
183 #define unlock_things(fs) _unlock_things(fs, 0)
184 #define unlock_and_deallocate(fs) _unlock_things(fs, 1)
185 #define cleanup_successful_fault(fs) _cleanup_successful_fault(fs, 1)
188 * TRYPAGER
190 * Determine if the pager for the current object *might* contain the page.
192 * We only need to try the pager if this is not a default object (default
193 * objects are zero-fill and have no real pager), and if we are not taking
194 * a wiring fault or if the FS entry is wired.
196 #define TRYPAGER(fs) \
197 (fs->object->type != OBJT_DEFAULT && \
198 (((fs->fault_flags & VM_FAULT_WIRE_MASK) == 0) || fs->wired))
201 * vm_fault:
203 * Handle a page fault occuring at the given address, requiring the given
204 * permissions, in the map specified. If successful, the page is inserted
205 * into the associated physical map.
207 * NOTE: The given address should be truncated to the proper page address.
209 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
210 * a standard error specifying why the fault is fatal is returned.
212 * The map in question must be referenced, and remains so.
213 * The caller may hold no locks.
216 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, int fault_flags)
218 int result;
219 vm_pindex_t first_pindex;
220 struct faultstate fs;
222 mycpu->gd_cnt.v_vm_faults++;
224 fs.didlimit = 0;
225 fs.hardfault = 0;
226 fs.fault_flags = fault_flags;
228 RetryFault:
230 * Find the vm_map_entry representing the backing store and resolve
231 * the top level object and page index. This may have the side
232 * effect of executing a copy-on-write on the map entry and/or
233 * creating a shadow object, but will not COW any actual VM pages.
235 * On success fs.map is left read-locked and various other fields
236 * are initialized but not otherwise referenced or locked.
238 * NOTE! vm_map_lookup will try to upgrade the fault_type to
239 * VM_FAULT_WRITE if the map entry is a virtual page table and also
240 * writable, so we can set the 'A'accessed bit in the virtual page
241 * table entry.
243 fs.map = map;
244 result = vm_map_lookup(&fs.map, vaddr, fault_type,
245 &fs.entry, &fs.first_object,
246 &first_pindex, &fs.first_prot, &fs.wired);
249 * If the lookup failed or the map protections are incompatible,
250 * the fault generally fails. However, if the caller is trying
251 * to do a user wiring we have more work to do.
253 if (result != KERN_SUCCESS) {
254 if (result != KERN_PROTECTION_FAILURE)
255 return result;
256 if ((fs.fault_flags & VM_FAULT_WIRE_MASK) != VM_FAULT_USER_WIRE)
257 return result;
260 * If we are user-wiring a r/w segment, and it is COW, then
261 * we need to do the COW operation. Note that we don't
262 * currently COW RO sections now, because it is NOT desirable
263 * to COW .text. We simply keep .text from ever being COW'ed
264 * and take the heat that one cannot debug wired .text sections.
266 result = vm_map_lookup(&fs.map, vaddr,
267 VM_PROT_READ|VM_PROT_WRITE|
268 VM_PROT_OVERRIDE_WRITE,
269 &fs.entry, &fs.first_object,
270 &first_pindex, &fs.first_prot,
271 &fs.wired);
272 if (result != KERN_SUCCESS)
273 return result;
276 * If we don't COW now, on a user wire, the user will never
277 * be able to write to the mapping. If we don't make this
278 * restriction, the bookkeeping would be nearly impossible.
280 if ((fs.entry->protection & VM_PROT_WRITE) == 0)
281 fs.entry->max_protection &= ~VM_PROT_WRITE;
285 * fs.map is read-locked
287 * Misc checks. Save the map generation number to detect races.
289 fs.map_generation = fs.map->timestamp;
291 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
292 panic("vm_fault: fault on nofault entry, addr: %lx",
293 (u_long)vaddr);
297 * A system map entry may return a NULL object. No object means
298 * no pager means an unrecoverable kernel fault.
300 if (fs.first_object == NULL) {
301 panic("vm_fault: unrecoverable fault at %p in entry %p",
302 (void *)vaddr, fs.entry);
306 * Make a reference to this object to prevent its disposal while we
307 * are messing with it. Once we have the reference, the map is free
308 * to be diddled. Since objects reference their shadows (and copies),
309 * they will stay around as well.
311 * Bump the paging-in-progress count to prevent size changes (e.g.
312 * truncation operations) during I/O. This must be done after
313 * obtaining the vnode lock in order to avoid possible deadlocks.
315 vm_object_reference(fs.first_object);
316 fs.vp = vnode_pager_lock(fs.first_object);
317 vm_object_pip_add(fs.first_object, 1);
319 fs.lookup_still_valid = TRUE;
320 fs.first_m = NULL;
321 fs.object = fs.first_object; /* so unlock_and_deallocate works */
324 * If the entry is wired we cannot change the page protection.
326 if (fs.wired)
327 fault_type = fs.first_prot;
330 * The page we want is at (first_object, first_pindex), but if the
331 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
332 * page table to figure out the actual pindex.
334 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
335 * ONLY
337 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
338 result = vm_fault_vpagetable(&fs, &first_pindex,
339 fs.entry->aux.master_pde,
340 fault_type);
341 if (result == KERN_TRY_AGAIN)
342 goto RetryFault;
343 if (result != KERN_SUCCESS)
344 return (result);
348 * Now we have the actual (object, pindex), fault in the page. If
349 * vm_fault_object() fails it will unlock and deallocate the FS
350 * data. If it succeeds everything remains locked and fs->object
351 * will have an additinal PIP count if it is not equal to
352 * fs->first_object
354 * vm_fault_object will set fs->prot for the pmap operation. It is
355 * allowed to set VM_PROT_WRITE if fault_type == VM_PROT_READ if the
356 * page can be safely written. However, it will force a read-only
357 * mapping for a read fault if the memory is managed by a virtual
358 * page table.
360 result = vm_fault_object(&fs, first_pindex, fault_type);
362 if (result == KERN_TRY_AGAIN)
363 goto RetryFault;
364 if (result != KERN_SUCCESS)
365 return (result);
368 * On success vm_fault_object() does not unlock or deallocate, and fs.m
369 * will contain a busied page.
371 * Enter the page into the pmap and do pmap-related adjustments.
373 unlock_things(&fs);
374 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
376 if (((fs.fault_flags & VM_FAULT_WIRE_MASK) == 0) && (fs.wired == 0)) {
377 pmap_prefault(fs.map->pmap, vaddr, fs.entry);
380 vm_page_flag_clear(fs.m, PG_ZERO);
381 vm_page_flag_set(fs.m, PG_MAPPED|PG_REFERENCED);
384 * If the page is not wired down, then put it where the pageout daemon
385 * can find it.
387 if (fs.fault_flags & VM_FAULT_WIRE_MASK) {
388 if (fs.wired)
389 vm_page_wire(fs.m);
390 else
391 vm_page_unwire(fs.m, 1);
392 } else {
393 vm_page_activate(fs.m);
396 if (curthread->td_lwp) {
397 if (fs.hardfault) {
398 curthread->td_lwp->lwp_ru.ru_majflt++;
399 } else {
400 curthread->td_lwp->lwp_ru.ru_minflt++;
405 * Unlock everything, and return
407 vm_page_wakeup(fs.m);
408 vm_object_deallocate(fs.first_object);
410 return (KERN_SUCCESS);
414 * Fault in the specified virtual address in the current process map,
415 * returning a held VM page or NULL. See vm_fault_page() for more
416 * information.
418 vm_page_t
419 vm_fault_page_quick(vm_offset_t va, vm_prot_t fault_type, int *errorp)
421 vm_page_t m;
423 m = vm_fault_page(&curproc->p_vmspace->vm_map, va,
424 fault_type, VM_FAULT_NORMAL, errorp);
425 return(m);
429 * Fault in the specified virtual address in the specified map, doing all
430 * necessary manipulation of the object store and all necessary I/O. Return
431 * a held VM page or NULL, and set *errorp. The related pmap is not
432 * updated.
434 * The returned page will be properly dirtied if VM_PROT_WRITE was specified,
435 * and marked PG_REFERENCED as well.
437 vm_page_t
438 vm_fault_page(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
439 int fault_flags, int *errorp)
441 int result;
442 vm_pindex_t first_pindex;
443 struct faultstate fs;
445 mycpu->gd_cnt.v_vm_faults++;
447 fs.didlimit = 0;
448 fs.hardfault = 0;
449 fs.fault_flags = fault_flags;
450 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
452 RetryFault:
454 * Find the vm_map_entry representing the backing store and resolve
455 * the top level object and page index. This may have the side
456 * effect of executing a copy-on-write on the map entry and/or
457 * creating a shadow object, but will not COW any actual VM pages.
459 * On success fs.map is left read-locked and various other fields
460 * are initialized but not otherwise referenced or locked.
462 * NOTE! vm_map_lookup will upgrade the fault_type to VM_FAULT_WRITE
463 * if the map entry is a virtual page table and also writable,
464 * so we can set the 'A'accessed bit in the virtual page table entry.
466 fs.map = map;
467 result = vm_map_lookup(&fs.map, vaddr, fault_type,
468 &fs.entry, &fs.first_object,
469 &first_pindex, &fs.first_prot, &fs.wired);
471 if (result != KERN_SUCCESS) {
472 *errorp = result;
473 return (NULL);
477 * fs.map is read-locked
479 * Misc checks. Save the map generation number to detect races.
481 fs.map_generation = fs.map->timestamp;
483 if (fs.entry->eflags & MAP_ENTRY_NOFAULT) {
484 panic("vm_fault: fault on nofault entry, addr: %lx",
485 (u_long)vaddr);
489 * A system map entry may return a NULL object. No object means
490 * no pager means an unrecoverable kernel fault.
492 if (fs.first_object == NULL) {
493 panic("vm_fault: unrecoverable fault at %p in entry %p",
494 (void *)vaddr, fs.entry);
498 * Make a reference to this object to prevent its disposal while we
499 * are messing with it. Once we have the reference, the map is free
500 * to be diddled. Since objects reference their shadows (and copies),
501 * they will stay around as well.
503 * Bump the paging-in-progress count to prevent size changes (e.g.
504 * truncation operations) during I/O. This must be done after
505 * obtaining the vnode lock in order to avoid possible deadlocks.
507 vm_object_reference(fs.first_object);
508 fs.vp = vnode_pager_lock(fs.first_object);
509 vm_object_pip_add(fs.first_object, 1);
511 fs.lookup_still_valid = TRUE;
512 fs.first_m = NULL;
513 fs.object = fs.first_object; /* so unlock_and_deallocate works */
516 * If the entry is wired we cannot change the page protection.
518 if (fs.wired)
519 fault_type = fs.first_prot;
522 * The page we want is at (first_object, first_pindex), but if the
523 * vm_map_entry is VM_MAPTYPE_VPAGETABLE we have to traverse the
524 * page table to figure out the actual pindex.
526 * NOTE! DEVELOPMENT IN PROGRESS, THIS IS AN INITIAL IMPLEMENTATION
527 * ONLY
529 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
530 result = vm_fault_vpagetable(&fs, &first_pindex,
531 fs.entry->aux.master_pde,
532 fault_type);
533 if (result == KERN_TRY_AGAIN)
534 goto RetryFault;
535 if (result != KERN_SUCCESS) {
536 *errorp = result;
537 return (NULL);
542 * Now we have the actual (object, pindex), fault in the page. If
543 * vm_fault_object() fails it will unlock and deallocate the FS
544 * data. If it succeeds everything remains locked and fs->object
545 * will have an additinal PIP count if it is not equal to
546 * fs->first_object
548 result = vm_fault_object(&fs, first_pindex, fault_type);
550 if (result == KERN_TRY_AGAIN)
551 goto RetryFault;
552 if (result != KERN_SUCCESS) {
553 *errorp = result;
554 return(NULL);
558 * On success vm_fault_object() does not unlock or deallocate, and fs.m
559 * will contain a busied page.
561 unlock_things(&fs);
564 * Return a held page. We are not doing any pmap manipulation so do
565 * not set PG_MAPPED. However, adjust the page flags according to
566 * the fault type because the caller may not use a managed pmapping
567 * (so we don't want to lose the fact that the page will be dirtied
568 * if a write fault was specified).
570 vm_page_hold(fs.m);
571 vm_page_flag_clear(fs.m, PG_ZERO);
572 if (fault_type & VM_PROT_WRITE)
573 vm_page_dirty(fs.m);
576 * Update the pmap. We really only have to do this if a COW
577 * occured to replace the read-only page with the new page. For
578 * now just do it unconditionally. XXX
580 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, fs.wired);
581 vm_page_flag_set(fs.m, PG_REFERENCED|PG_MAPPED);
584 * Unbusy the page by activating it. It remains held and will not
585 * be reclaimed.
587 vm_page_activate(fs.m);
589 if (curthread->td_lwp) {
590 if (fs.hardfault) {
591 curthread->td_lwp->lwp_ru.ru_majflt++;
592 } else {
593 curthread->td_lwp->lwp_ru.ru_minflt++;
598 * Unlock everything, and return the held page.
600 vm_page_wakeup(fs.m);
601 vm_object_deallocate(fs.first_object);
603 *errorp = 0;
604 return(fs.m);
608 * Fault in the specified
610 vm_page_t
611 vm_fault_object_page(vm_object_t object, vm_ooffset_t offset,
612 vm_prot_t fault_type, int fault_flags, int *errorp)
614 int result;
615 vm_pindex_t first_pindex;
616 struct faultstate fs;
617 struct vm_map_entry entry;
619 bzero(&entry, sizeof(entry));
620 entry.object.vm_object = object;
621 entry.maptype = VM_MAPTYPE_NORMAL;
622 entry.protection = entry.max_protection = fault_type;
624 fs.didlimit = 0;
625 fs.hardfault = 0;
626 fs.fault_flags = fault_flags;
627 fs.map = NULL;
628 KKASSERT((fault_flags & VM_FAULT_WIRE_MASK) == 0);
630 RetryFault:
632 fs.first_object = object;
633 first_pindex = OFF_TO_IDX(offset);
634 fs.entry = &entry;
635 fs.first_prot = fault_type;
636 fs.wired = 0;
637 /*fs.map_generation = 0; unused */
640 * Make a reference to this object to prevent its disposal while we
641 * are messing with it. Once we have the reference, the map is free
642 * to be diddled. Since objects reference their shadows (and copies),
643 * they will stay around as well.
645 * Bump the paging-in-progress count to prevent size changes (e.g.
646 * truncation operations) during I/O. This must be done after
647 * obtaining the vnode lock in order to avoid possible deadlocks.
649 vm_object_reference(fs.first_object);
650 fs.vp = vnode_pager_lock(fs.first_object);
651 vm_object_pip_add(fs.first_object, 1);
653 fs.lookup_still_valid = TRUE;
654 fs.first_m = NULL;
655 fs.object = fs.first_object; /* so unlock_and_deallocate works */
657 #if 0
658 /* XXX future - ability to operate on VM object using vpagetable */
659 if (fs.entry->maptype == VM_MAPTYPE_VPAGETABLE) {
660 result = vm_fault_vpagetable(&fs, &first_pindex,
661 fs.entry->aux.master_pde,
662 fault_type);
663 if (result == KERN_TRY_AGAIN)
664 goto RetryFault;
665 if (result != KERN_SUCCESS) {
666 *errorp = result;
667 return (NULL);
670 #endif
673 * Now we have the actual (object, pindex), fault in the page. If
674 * vm_fault_object() fails it will unlock and deallocate the FS
675 * data. If it succeeds everything remains locked and fs->object
676 * will have an additinal PIP count if it is not equal to
677 * fs->first_object
679 result = vm_fault_object(&fs, first_pindex, fault_type);
681 if (result == KERN_TRY_AGAIN)
682 goto RetryFault;
683 if (result != KERN_SUCCESS) {
684 *errorp = result;
685 return(NULL);
689 * On success vm_fault_object() does not unlock or deallocate, and fs.m
690 * will contain a busied page.
692 unlock_things(&fs);
695 * Return a held page. We are not doing any pmap manipulation so do
696 * not set PG_MAPPED. However, adjust the page flags according to
697 * the fault type because the caller may not use a managed pmapping
698 * (so we don't want to lose the fact that the page will be dirtied
699 * if a write fault was specified).
701 vm_page_hold(fs.m);
702 vm_page_flag_clear(fs.m, PG_ZERO);
703 if (fault_type & VM_PROT_WRITE)
704 vm_page_dirty(fs.m);
707 * Indicate that the page was accessed.
709 vm_page_flag_set(fs.m, PG_REFERENCED);
712 * Unbusy the page by activating it. It remains held and will not
713 * be reclaimed.
715 vm_page_activate(fs.m);
717 if (curthread->td_lwp) {
718 if (fs.hardfault) {
719 mycpu->gd_cnt.v_vm_faults++;
720 curthread->td_lwp->lwp_ru.ru_majflt++;
721 } else {
722 curthread->td_lwp->lwp_ru.ru_minflt++;
727 * Unlock everything, and return the held page.
729 vm_page_wakeup(fs.m);
730 vm_object_deallocate(fs.first_object);
732 *errorp = 0;
733 return(fs.m);
737 * Translate the virtual page number (first_pindex) that is relative
738 * to the address space into a logical page number that is relative to the
739 * backing object. Use the virtual page table pointed to by (vpte).
741 * This implements an N-level page table. Any level can terminate the
742 * scan by setting VPTE_PS. A linear mapping is accomplished by setting
743 * VPTE_PS in the master page directory entry set via mcontrol(MADV_SETMAP).
745 static
747 vm_fault_vpagetable(struct faultstate *fs, vm_pindex_t *pindex,
748 vpte_t vpte, int fault_type)
750 struct sf_buf *sf;
751 int vshift = 32 - PAGE_SHIFT; /* page index bits remaining */
752 int result = KERN_SUCCESS;
753 vpte_t *ptep;
755 for (;;) {
757 * We cannot proceed if the vpte is not valid, not readable
758 * for a read fault, or not writable for a write fault.
760 if ((vpte & VPTE_V) == 0) {
761 unlock_and_deallocate(fs);
762 return (KERN_FAILURE);
764 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_R) == 0) {
765 unlock_and_deallocate(fs);
766 return (KERN_FAILURE);
768 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_W) == 0) {
769 unlock_and_deallocate(fs);
770 return (KERN_FAILURE);
772 if ((vpte & VPTE_PS) || vshift == 0)
773 break;
774 KKASSERT(vshift >= VPTE_PAGE_BITS);
777 * Get the page table page. Nominally we only read the page
778 * table, but since we are actively setting VPTE_M and VPTE_A,
779 * tell vm_fault_object() that we are writing it.
781 * There is currently no real need to optimize this.
783 result = vm_fault_object(fs, vpte >> PAGE_SHIFT,
784 VM_PROT_READ|VM_PROT_WRITE);
785 if (result != KERN_SUCCESS)
786 return (result);
789 * Process the returned fs.m and look up the page table
790 * entry in the page table page.
792 vshift -= VPTE_PAGE_BITS;
793 sf = sf_buf_alloc(fs->m, SFB_CPUPRIVATE);
794 ptep = ((vpte_t *)sf_buf_kva(sf) +
795 ((*pindex >> vshift) & VPTE_PAGE_MASK));
796 vpte = *ptep;
799 * Page table write-back. If the vpte is valid for the
800 * requested operation, do a write-back to the page table.
802 * XXX VPTE_M is not set properly for page directory pages.
803 * It doesn't get set in the page directory if the page table
804 * is modified during a read access.
806 if ((fault_type & VM_PROT_WRITE) && (vpte & VPTE_V) &&
807 (vpte & VPTE_W)) {
808 if ((vpte & (VPTE_M|VPTE_A)) != (VPTE_M|VPTE_A)) {
809 atomic_set_int(ptep, VPTE_M|VPTE_A);
810 vm_page_dirty(fs->m);
813 if ((fault_type & VM_PROT_READ) && (vpte & VPTE_V) &&
814 (vpte & VPTE_R)) {
815 if ((vpte & VPTE_A) == 0) {
816 atomic_set_int(ptep, VPTE_A);
817 vm_page_dirty(fs->m);
820 sf_buf_free(sf);
821 vm_page_flag_set(fs->m, PG_REFERENCED);
822 vm_page_activate(fs->m);
823 vm_page_wakeup(fs->m);
824 cleanup_successful_fault(fs);
827 * Combine remaining address bits with the vpte.
829 *pindex = (vpte >> PAGE_SHIFT) +
830 (*pindex & ((1 << vshift) - 1));
831 return (KERN_SUCCESS);
836 * Do all operations required to fault-in (fs.first_object, pindex). Run
837 * through the shadow chain as necessary and do required COW or virtual
838 * copy operations. The caller has already fully resolved the vm_map_entry
839 * and, if appropriate, has created a copy-on-write layer. All we need to
840 * do is iterate the object chain.
842 * On failure (fs) is unlocked and deallocated and the caller may return or
843 * retry depending on the failure code. On success (fs) is NOT unlocked or
844 * deallocated, fs.m will contained a resolved, busied page, and fs.object
845 * will have an additional PIP count if it is not equal to fs.first_object.
847 static
849 vm_fault_object(struct faultstate *fs,
850 vm_pindex_t first_pindex, vm_prot_t fault_type)
852 vm_object_t next_object;
853 vm_page_t marray[VM_FAULT_READ];
854 vm_pindex_t pindex;
855 int faultcount;
857 fs->prot = fs->first_prot;
858 fs->object = fs->first_object;
859 pindex = first_pindex;
862 * If a read fault occurs we try to make the page writable if
863 * possible. There are three cases where we cannot make the
864 * page mapping writable:
866 * (1) The mapping is read-only or the VM object is read-only,
867 * fs->prot above will simply not have VM_PROT_WRITE set.
869 * (2) If the mapping is a virtual page table we need to be able
870 * to detect writes so we can set VPTE_M in the virtual page
871 * table.
873 * (3) If the VM page is read-only or copy-on-write, upgrading would
874 * just result in an unnecessary COW fault.
876 * VM_PROT_VPAGED is set if faulting via a virtual page table and
877 * causes adjustments to the 'M'odify bit to also turn off write
878 * access to force a re-fault.
880 if (fs->entry->maptype == VM_MAPTYPE_VPAGETABLE) {
881 if ((fault_type & VM_PROT_WRITE) == 0)
882 fs->prot &= ~VM_PROT_WRITE;
885 for (;;) {
887 * If the object is dead, we stop here
889 if (fs->object->flags & OBJ_DEAD) {
890 unlock_and_deallocate(fs);
891 return (KERN_PROTECTION_FAILURE);
895 * See if page is resident. spl protection is required
896 * to avoid an interrupt unbusy/free race against our
897 * lookup. We must hold the protection through a page
898 * allocation or busy.
900 crit_enter();
901 fs->m = vm_page_lookup(fs->object, pindex);
902 if (fs->m != NULL) {
903 int queue;
905 * Wait/Retry if the page is busy. We have to do this
906 * if the page is busy via either PG_BUSY or
907 * vm_page_t->busy because the vm_pager may be using
908 * vm_page_t->busy for pageouts ( and even pageins if
909 * it is the vnode pager ), and we could end up trying
910 * to pagein and pageout the same page simultaneously.
912 * We can theoretically allow the busy case on a read
913 * fault if the page is marked valid, but since such
914 * pages are typically already pmap'd, putting that
915 * special case in might be more effort then it is
916 * worth. We cannot under any circumstances mess
917 * around with a vm_page_t->busy page except, perhaps,
918 * to pmap it.
920 if ((fs->m->flags & PG_BUSY) || fs->m->busy) {
921 unlock_things(fs);
922 vm_page_sleep_busy(fs->m, TRUE, "vmpfw");
923 mycpu->gd_cnt.v_intrans++;
924 vm_object_deallocate(fs->first_object);
925 crit_exit();
926 return (KERN_TRY_AGAIN);
930 * If reactivating a page from PQ_CACHE we may have
931 * to rate-limit.
933 queue = fs->m->queue;
934 vm_page_unqueue_nowakeup(fs->m);
936 if ((queue - fs->m->pc) == PQ_CACHE &&
937 vm_page_count_severe()) {
938 vm_page_activate(fs->m);
939 unlock_and_deallocate(fs);
940 vm_waitpfault();
941 crit_exit();
942 return (KERN_TRY_AGAIN);
946 * Mark page busy for other processes, and the
947 * pagedaemon. If it still isn't completely valid
948 * (readable), jump to readrest, else we found the
949 * page and can return.
951 * We can release the spl once we have marked the
952 * page busy.
954 vm_page_busy(fs->m);
955 crit_exit();
957 if (((fs->m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) &&
958 fs->m->object != &kernel_object) {
959 goto readrest;
961 break; /* break to PAGE HAS BEEN FOUND */
965 * Page is not resident, If this is the search termination
966 * or the pager might contain the page, allocate a new page.
968 * NOTE: We are still in a critical section.
970 if (TRYPAGER(fs) || fs->object == fs->first_object) {
972 * If the page is beyond the object size we fail
974 if (pindex >= fs->object->size) {
975 crit_exit();
976 unlock_and_deallocate(fs);
977 return (KERN_PROTECTION_FAILURE);
981 * Ratelimit.
983 if (fs->didlimit == 0 && curproc != NULL) {
984 int limticks;
986 limticks = vm_fault_ratelimit(curproc->p_vmspace);
987 if (limticks) {
988 crit_exit();
989 unlock_and_deallocate(fs);
990 tsleep(curproc, 0, "vmrate", limticks);
991 fs->didlimit = 1;
992 return (KERN_TRY_AGAIN);
997 * Allocate a new page for this object/offset pair.
999 fs->m = NULL;
1000 if (!vm_page_count_severe()) {
1001 fs->m = vm_page_alloc(fs->object, pindex,
1002 (fs->vp || fs->object->backing_object) ? VM_ALLOC_NORMAL : VM_ALLOC_NORMAL | VM_ALLOC_ZERO);
1004 if (fs->m == NULL) {
1005 crit_exit();
1006 unlock_and_deallocate(fs);
1007 vm_waitpfault();
1008 return (KERN_TRY_AGAIN);
1011 crit_exit();
1013 readrest:
1015 * We have found a valid page or we have allocated a new page.
1016 * The page thus may not be valid or may not be entirely
1017 * valid.
1019 * Attempt to fault-in the page if there is a chance that the
1020 * pager has it, and potentially fault in additional pages
1021 * at the same time.
1023 * We are NOT in splvm here and if TRYPAGER is true then
1024 * fs.m will be non-NULL and will be PG_BUSY for us.
1027 if (TRYPAGER(fs)) {
1028 int rv;
1029 int reqpage;
1030 int ahead, behind;
1031 u_char behavior = vm_map_entry_behavior(fs->entry);
1033 if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
1034 ahead = 0;
1035 behind = 0;
1036 } else {
1037 behind = pindex;
1038 if (behind > VM_FAULT_READ_BEHIND)
1039 behind = VM_FAULT_READ_BEHIND;
1041 ahead = fs->object->size - pindex;
1042 if (ahead < 1)
1043 ahead = 1;
1044 if (ahead > VM_FAULT_READ_AHEAD)
1045 ahead = VM_FAULT_READ_AHEAD;
1048 if ((fs->first_object->type != OBJT_DEVICE) &&
1049 (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL ||
1050 (behavior != MAP_ENTRY_BEHAV_RANDOM &&
1051 pindex >= fs->entry->lastr &&
1052 pindex < fs->entry->lastr + VM_FAULT_READ))
1054 vm_pindex_t firstpindex, tmppindex;
1056 if (first_pindex < 2 * VM_FAULT_READ)
1057 firstpindex = 0;
1058 else
1059 firstpindex = first_pindex - 2 * VM_FAULT_READ;
1062 * note: partially valid pages cannot be
1063 * included in the lookahead - NFS piecemeal
1064 * writes will barf on it badly.
1066 * spl protection is required to avoid races
1067 * between the lookup and an interrupt
1068 * unbusy/free sequence occuring prior to
1069 * our busy check.
1071 crit_enter();
1072 for (tmppindex = first_pindex - 1;
1073 tmppindex >= firstpindex;
1074 --tmppindex
1076 vm_page_t mt;
1078 mt = vm_page_lookup(fs->first_object, tmppindex);
1079 if (mt == NULL || (mt->valid != VM_PAGE_BITS_ALL))
1080 break;
1081 if (mt->busy ||
1082 (mt->flags & (PG_BUSY | PG_FICTITIOUS | PG_UNMANAGED)) ||
1083 mt->hold_count ||
1084 mt->wire_count)
1085 continue;
1086 if (mt->dirty == 0)
1087 vm_page_test_dirty(mt);
1088 if (mt->dirty) {
1089 vm_page_protect(mt, VM_PROT_NONE);
1090 vm_page_deactivate(mt);
1091 } else {
1092 vm_page_cache(mt);
1095 crit_exit();
1097 ahead += behind;
1098 behind = 0;
1102 * now we find out if any other pages should be paged
1103 * in at this time this routine checks to see if the
1104 * pages surrounding this fault reside in the same
1105 * object as the page for this fault. If they do,
1106 * then they are faulted in also into the object. The
1107 * array "marray" returned contains an array of
1108 * vm_page_t structs where one of them is the
1109 * vm_page_t passed to the routine. The reqpage
1110 * return value is the index into the marray for the
1111 * vm_page_t passed to the routine.
1113 * fs.m plus the additional pages are PG_BUSY'd.
1115 faultcount = vm_fault_additional_pages(
1116 fs->m, behind, ahead, marray, &reqpage);
1119 * update lastr imperfectly (we do not know how much
1120 * getpages will actually read), but good enough.
1122 fs->entry->lastr = pindex + faultcount - behind;
1125 * Call the pager to retrieve the data, if any, after
1126 * releasing the lock on the map. We hold a ref on
1127 * fs.object and the pages are PG_BUSY'd.
1129 unlock_map(fs);
1131 if (faultcount) {
1132 rv = vm_pager_get_pages(fs->object, marray,
1133 faultcount, reqpage);
1134 } else {
1135 rv = VM_PAGER_FAIL;
1138 if (rv == VM_PAGER_OK) {
1140 * Found the page. Leave it busy while we play
1141 * with it.
1145 * Relookup in case pager changed page. Pager
1146 * is responsible for disposition of old page
1147 * if moved.
1149 * XXX other code segments do relookups too.
1150 * It's a bad abstraction that needs to be
1151 * fixed/removed.
1153 fs->m = vm_page_lookup(fs->object, pindex);
1154 if (fs->m == NULL) {
1155 unlock_and_deallocate(fs);
1156 return (KERN_TRY_AGAIN);
1159 ++fs->hardfault;
1160 break; /* break to PAGE HAS BEEN FOUND */
1164 * Remove the bogus page (which does not exist at this
1165 * object/offset); before doing so, we must get back
1166 * our object lock to preserve our invariant.
1168 * Also wake up any other process that may want to bring
1169 * in this page.
1171 * If this is the top-level object, we must leave the
1172 * busy page to prevent another process from rushing
1173 * past us, and inserting the page in that object at
1174 * the same time that we are.
1176 if (rv == VM_PAGER_ERROR) {
1177 if (curproc)
1178 kprintf("vm_fault: pager read error, pid %d (%s)\n", curproc->p_pid, curproc->p_comm);
1179 else
1180 kprintf("vm_fault: pager read error, thread %p (%s)\n", curthread, curproc->p_comm);
1183 * Data outside the range of the pager or an I/O error
1186 * XXX - the check for kernel_map is a kludge to work
1187 * around having the machine panic on a kernel space
1188 * fault w/ I/O error.
1190 if (((fs->map != &kernel_map) && (rv == VM_PAGER_ERROR)) ||
1191 (rv == VM_PAGER_BAD)) {
1192 vm_page_free(fs->m);
1193 fs->m = NULL;
1194 unlock_and_deallocate(fs);
1195 if (rv == VM_PAGER_ERROR)
1196 return (KERN_FAILURE);
1197 else
1198 return (KERN_PROTECTION_FAILURE);
1199 /* NOT REACHED */
1201 if (fs->object != fs->first_object) {
1202 vm_page_free(fs->m);
1203 fs->m = NULL;
1205 * XXX - we cannot just fall out at this
1206 * point, m has been freed and is invalid!
1212 * We get here if the object has a default pager (or unwiring)
1213 * or the pager doesn't have the page.
1215 if (fs->object == fs->first_object)
1216 fs->first_m = fs->m;
1219 * Move on to the next object. Lock the next object before
1220 * unlocking the current one.
1222 pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1223 next_object = fs->object->backing_object;
1224 if (next_object == NULL) {
1226 * If there's no object left, fill the page in the top
1227 * object with zeros.
1229 if (fs->object != fs->first_object) {
1230 vm_object_pip_wakeup(fs->object);
1232 fs->object = fs->first_object;
1233 pindex = first_pindex;
1234 fs->m = fs->first_m;
1236 fs->first_m = NULL;
1239 * Zero the page if necessary and mark it valid.
1241 if ((fs->m->flags & PG_ZERO) == 0) {
1242 vm_page_zero_fill(fs->m);
1243 } else {
1244 mycpu->gd_cnt.v_ozfod++;
1246 mycpu->gd_cnt.v_zfod++;
1247 fs->m->valid = VM_PAGE_BITS_ALL;
1248 break; /* break to PAGE HAS BEEN FOUND */
1249 } else {
1250 if (fs->object != fs->first_object) {
1251 vm_object_pip_wakeup(fs->object);
1253 KASSERT(fs->object != next_object, ("object loop %p", next_object));
1254 fs->object = next_object;
1255 vm_object_pip_add(fs->object, 1);
1259 KASSERT((fs->m->flags & PG_BUSY) != 0,
1260 ("vm_fault: not busy after main loop"));
1263 * PAGE HAS BEEN FOUND. [Loop invariant still holds -- the object lock
1264 * is held.]
1268 * If the page is being written, but isn't already owned by the
1269 * top-level object, we have to copy it into a new page owned by the
1270 * top-level object.
1272 if (fs->object != fs->first_object) {
1274 * We only really need to copy if we want to write it.
1276 if (fault_type & VM_PROT_WRITE) {
1278 * This allows pages to be virtually copied from a
1279 * backing_object into the first_object, where the
1280 * backing object has no other refs to it, and cannot
1281 * gain any more refs. Instead of a bcopy, we just
1282 * move the page from the backing object to the
1283 * first object. Note that we must mark the page
1284 * dirty in the first object so that it will go out
1285 * to swap when needed.
1287 if (
1289 * Map, if present, has not changed
1291 (fs->map == NULL ||
1292 fs->map_generation == fs->map->timestamp) &&
1294 * Only one shadow object
1296 (fs->object->shadow_count == 1) &&
1298 * No COW refs, except us
1300 (fs->object->ref_count == 1) &&
1302 * No one else can look this object up
1304 (fs->object->handle == NULL) &&
1306 * No other ways to look the object up
1308 ((fs->object->type == OBJT_DEFAULT) ||
1309 (fs->object->type == OBJT_SWAP)) &&
1311 * We don't chase down the shadow chain
1313 (fs->object == fs->first_object->backing_object) &&
1316 * grab the lock if we need to
1318 (fs->lookup_still_valid ||
1319 fs->map == NULL ||
1320 lockmgr(&fs->map->lock, LK_EXCLUSIVE|LK_NOWAIT) == 0)
1323 fs->lookup_still_valid = 1;
1325 * get rid of the unnecessary page
1327 vm_page_protect(fs->first_m, VM_PROT_NONE);
1328 vm_page_free(fs->first_m);
1329 fs->first_m = NULL;
1332 * grab the page and put it into the
1333 * process'es object. The page is
1334 * automatically made dirty.
1336 vm_page_rename(fs->m, fs->first_object, first_pindex);
1337 fs->first_m = fs->m;
1338 vm_page_busy(fs->first_m);
1339 fs->m = NULL;
1340 mycpu->gd_cnt.v_cow_optim++;
1341 } else {
1343 * Oh, well, lets copy it.
1345 vm_page_copy(fs->m, fs->first_m);
1348 if (fs->m) {
1350 * We no longer need the old page or object.
1352 release_page(fs);
1356 * fs->object != fs->first_object due to above
1357 * conditional
1359 vm_object_pip_wakeup(fs->object);
1362 * Only use the new page below...
1365 mycpu->gd_cnt.v_cow_faults++;
1366 fs->m = fs->first_m;
1367 fs->object = fs->first_object;
1368 pindex = first_pindex;
1369 } else {
1371 * If it wasn't a write fault avoid having to copy
1372 * the page by mapping it read-only.
1374 fs->prot &= ~VM_PROT_WRITE;
1379 * We may have had to unlock a map to do I/O. If we did then
1380 * lookup_still_valid will be FALSE. If the map generation count
1381 * also changed then all sorts of things could have happened while
1382 * we were doing the I/O and we need to retry.
1385 if (!fs->lookup_still_valid &&
1386 fs->map != NULL &&
1387 (fs->map->timestamp != fs->map_generation)) {
1388 release_page(fs);
1389 unlock_and_deallocate(fs);
1390 return (KERN_TRY_AGAIN);
1394 * Put this page into the physical map. We had to do the unlock above
1395 * because pmap_enter may cause other faults. We don't put the page
1396 * back on the active queue until later so that the page-out daemon
1397 * won't find us (yet).
1399 if (fs->prot & VM_PROT_WRITE) {
1400 vm_page_flag_set(fs->m, PG_WRITEABLE);
1401 vm_object_set_writeable_dirty(fs->m->object);
1404 * If the fault is a write, we know that this page is being
1405 * written NOW so dirty it explicitly to save on
1406 * pmap_is_modified() calls later.
1408 * If this is a NOSYNC mmap we do not want to set PG_NOSYNC
1409 * if the page is already dirty to prevent data written with
1410 * the expectation of being synced from not being synced.
1411 * Likewise if this entry does not request NOSYNC then make
1412 * sure the page isn't marked NOSYNC. Applications sharing
1413 * data should use the same flags to avoid ping ponging.
1415 * Also tell the backing pager, if any, that it should remove
1416 * any swap backing since the page is now dirty.
1418 if (fs->entry->eflags & MAP_ENTRY_NOSYNC) {
1419 if (fs->m->dirty == 0)
1420 vm_page_flag_set(fs->m, PG_NOSYNC);
1421 } else {
1422 vm_page_flag_clear(fs->m, PG_NOSYNC);
1424 if (fs->fault_flags & VM_FAULT_DIRTY) {
1425 crit_enter();
1426 vm_page_dirty(fs->m);
1427 vm_pager_page_unswapped(fs->m);
1428 crit_exit();
1433 * Page had better still be busy. We are still locked up and
1434 * fs->object will have another PIP reference if it is not equal
1435 * to fs->first_object.
1437 KASSERT(fs->m->flags & PG_BUSY,
1438 ("vm_fault: page %p not busy!", fs->m));
1441 * Sanity check: page must be completely valid or it is not fit to
1442 * map into user space. vm_pager_get_pages() ensures this.
1444 if (fs->m->valid != VM_PAGE_BITS_ALL) {
1445 vm_page_zero_invalid(fs->m, TRUE);
1446 kprintf("Warning: page %p partially invalid on fault\n", fs->m);
1449 return (KERN_SUCCESS);
1453 * Wire down a range of virtual addresses in a map. The entry in question
1454 * should be marked in-transition and the map must be locked. We must
1455 * release the map temporarily while faulting-in the page to avoid a
1456 * deadlock. Note that the entry may be clipped while we are blocked but
1457 * will never be freed.
1460 vm_fault_wire(vm_map_t map, vm_map_entry_t entry, boolean_t user_wire)
1462 boolean_t fictitious;
1463 vm_offset_t start;
1464 vm_offset_t end;
1465 vm_offset_t va;
1466 vm_paddr_t pa;
1467 pmap_t pmap;
1468 int rv;
1470 pmap = vm_map_pmap(map);
1471 start = entry->start;
1472 end = entry->end;
1473 fictitious = entry->object.vm_object &&
1474 (entry->object.vm_object->type == OBJT_DEVICE);
1476 vm_map_unlock(map);
1477 map->timestamp++;
1480 * We simulate a fault to get the page and enter it in the physical
1481 * map.
1483 for (va = start; va < end; va += PAGE_SIZE) {
1484 if (user_wire) {
1485 rv = vm_fault(map, va, VM_PROT_READ,
1486 VM_FAULT_USER_WIRE);
1487 } else {
1488 rv = vm_fault(map, va, VM_PROT_READ|VM_PROT_WRITE,
1489 VM_FAULT_CHANGE_WIRING);
1491 if (rv) {
1492 while (va > start) {
1493 va -= PAGE_SIZE;
1494 if ((pa = pmap_extract(pmap, va)) == 0)
1495 continue;
1496 pmap_change_wiring(pmap, va, FALSE);
1497 if (!fictitious)
1498 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1500 vm_map_lock(map);
1501 return (rv);
1504 vm_map_lock(map);
1505 return (KERN_SUCCESS);
1509 * Unwire a range of virtual addresses in a map. The map should be
1510 * locked.
1512 void
1513 vm_fault_unwire(vm_map_t map, vm_map_entry_t entry)
1515 boolean_t fictitious;
1516 vm_offset_t start;
1517 vm_offset_t end;
1518 vm_offset_t va;
1519 vm_paddr_t pa;
1520 pmap_t pmap;
1522 pmap = vm_map_pmap(map);
1523 start = entry->start;
1524 end = entry->end;
1525 fictitious = entry->object.vm_object &&
1526 (entry->object.vm_object->type == OBJT_DEVICE);
1529 * Since the pages are wired down, we must be able to get their
1530 * mappings from the physical map system.
1532 for (va = start; va < end; va += PAGE_SIZE) {
1533 pa = pmap_extract(pmap, va);
1534 if (pa != 0) {
1535 pmap_change_wiring(pmap, va, FALSE);
1536 if (!fictitious)
1537 vm_page_unwire(PHYS_TO_VM_PAGE(pa), 1);
1543 * Reduce the rate at which memory is allocated to a process based
1544 * on the perceived load on the VM system. As the load increases
1545 * the allocation burst rate goes down and the delay increases.
1547 * Rate limiting does not apply when faulting active or inactive
1548 * pages. When faulting 'cache' pages, rate limiting only applies
1549 * if the system currently has a severe page deficit.
1551 * XXX vm_pagesupply should be increased when a page is freed.
1553 * We sleep up to 1/10 of a second.
1555 static int
1556 vm_fault_ratelimit(struct vmspace *vmspace)
1558 if (vm_load_enable == 0)
1559 return(0);
1560 if (vmspace->vm_pagesupply > 0) {
1561 --vmspace->vm_pagesupply;
1562 return(0);
1564 #ifdef INVARIANTS
1565 if (vm_load_debug) {
1566 kprintf("load %-4d give %d pgs, wait %d, pid %-5d (%s)\n",
1567 vm_load,
1568 (1000 - vm_load ) / 10, vm_load * hz / 10000,
1569 curproc->p_pid, curproc->p_comm);
1571 #endif
1572 vmspace->vm_pagesupply = (1000 - vm_load) / 10;
1573 return(vm_load * hz / 10000);
1577 * Routine:
1578 * vm_fault_copy_entry
1579 * Function:
1580 * Copy all of the pages from a wired-down map entry to another.
1582 * In/out conditions:
1583 * The source and destination maps must be locked for write.
1584 * The source map entry must be wired down (or be a sharing map
1585 * entry corresponding to a main map entry that is wired down).
1588 void
1589 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1590 vm_map_entry_t dst_entry, vm_map_entry_t src_entry)
1592 vm_object_t dst_object;
1593 vm_object_t src_object;
1594 vm_ooffset_t dst_offset;
1595 vm_ooffset_t src_offset;
1596 vm_prot_t prot;
1597 vm_offset_t vaddr;
1598 vm_page_t dst_m;
1599 vm_page_t src_m;
1601 #ifdef lint
1602 src_map++;
1603 #endif /* lint */
1605 src_object = src_entry->object.vm_object;
1606 src_offset = src_entry->offset;
1609 * Create the top-level object for the destination entry. (Doesn't
1610 * actually shadow anything - we copy the pages directly.)
1612 vm_map_entry_allocate_object(dst_entry);
1613 dst_object = dst_entry->object.vm_object;
1615 prot = dst_entry->max_protection;
1618 * Loop through all of the pages in the entry's range, copying each
1619 * one from the source object (it should be there) to the destination
1620 * object.
1622 for (vaddr = dst_entry->start, dst_offset = 0;
1623 vaddr < dst_entry->end;
1624 vaddr += PAGE_SIZE, dst_offset += PAGE_SIZE) {
1627 * Allocate a page in the destination object
1629 do {
1630 dst_m = vm_page_alloc(dst_object,
1631 OFF_TO_IDX(dst_offset), VM_ALLOC_NORMAL);
1632 if (dst_m == NULL) {
1633 vm_wait();
1635 } while (dst_m == NULL);
1638 * Find the page in the source object, and copy it in.
1639 * (Because the source is wired down, the page will be in
1640 * memory.)
1642 src_m = vm_page_lookup(src_object,
1643 OFF_TO_IDX(dst_offset + src_offset));
1644 if (src_m == NULL)
1645 panic("vm_fault_copy_wired: page missing");
1647 vm_page_copy(src_m, dst_m);
1650 * Enter it in the pmap...
1653 vm_page_flag_clear(dst_m, PG_ZERO);
1654 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, FALSE);
1655 vm_page_flag_set(dst_m, PG_WRITEABLE|PG_MAPPED);
1658 * Mark it no longer busy, and put it on the active list.
1660 vm_page_activate(dst_m);
1661 vm_page_wakeup(dst_m);
1667 * This routine checks around the requested page for other pages that
1668 * might be able to be faulted in. This routine brackets the viable
1669 * pages for the pages to be paged in.
1671 * Inputs:
1672 * m, rbehind, rahead
1674 * Outputs:
1675 * marray (array of vm_page_t), reqpage (index of requested page)
1677 * Return value:
1678 * number of pages in marray
1680 static int
1681 vm_fault_additional_pages(vm_page_t m, int rbehind, int rahead,
1682 vm_page_t *marray, int *reqpage)
1684 int i,j;
1685 vm_object_t object;
1686 vm_pindex_t pindex, startpindex, endpindex, tpindex;
1687 vm_page_t rtm;
1688 int cbehind, cahead;
1690 object = m->object;
1691 pindex = m->pindex;
1694 * we don't fault-ahead for device pager
1696 if (object->type == OBJT_DEVICE) {
1697 *reqpage = 0;
1698 marray[0] = m;
1699 return 1;
1703 * if the requested page is not available, then give up now
1706 if (!vm_pager_has_page(object, pindex, &cbehind, &cahead)) {
1707 return 0;
1710 if ((cbehind == 0) && (cahead == 0)) {
1711 *reqpage = 0;
1712 marray[0] = m;
1713 return 1;
1716 if (rahead > cahead) {
1717 rahead = cahead;
1720 if (rbehind > cbehind) {
1721 rbehind = cbehind;
1725 * try to do any readahead that we might have free pages for.
1727 if ((rahead + rbehind) >
1728 ((vmstats.v_free_count + vmstats.v_cache_count) - vmstats.v_free_reserved)) {
1729 pagedaemon_wakeup();
1730 marray[0] = m;
1731 *reqpage = 0;
1732 return 1;
1736 * scan backward for the read behind pages -- in memory
1738 * Assume that if the page is not found an interrupt will not
1739 * create it. Theoretically interrupts can only remove (busy)
1740 * pages, not create new associations.
1742 if (pindex > 0) {
1743 if (rbehind > pindex) {
1744 rbehind = pindex;
1745 startpindex = 0;
1746 } else {
1747 startpindex = pindex - rbehind;
1750 crit_enter();
1751 for ( tpindex = pindex - 1; tpindex >= startpindex; tpindex -= 1) {
1752 if (vm_page_lookup( object, tpindex)) {
1753 startpindex = tpindex + 1;
1754 break;
1756 if (tpindex == 0)
1757 break;
1760 for(i = 0, tpindex = startpindex; tpindex < pindex; i++, tpindex++) {
1762 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1763 if (rtm == NULL) {
1764 crit_exit();
1765 for (j = 0; j < i; j++) {
1766 vm_page_free(marray[j]);
1768 marray[0] = m;
1769 *reqpage = 0;
1770 return 1;
1773 marray[i] = rtm;
1775 crit_exit();
1776 } else {
1777 startpindex = 0;
1778 i = 0;
1781 marray[i] = m;
1782 /* page offset of the required page */
1783 *reqpage = i;
1785 tpindex = pindex + 1;
1786 i++;
1789 * scan forward for the read ahead pages
1791 endpindex = tpindex + rahead;
1792 if (endpindex > object->size)
1793 endpindex = object->size;
1795 crit_enter();
1796 for( ; tpindex < endpindex; i++, tpindex++) {
1798 if (vm_page_lookup(object, tpindex)) {
1799 break;
1802 rtm = vm_page_alloc(object, tpindex, VM_ALLOC_NORMAL);
1803 if (rtm == NULL) {
1804 break;
1807 marray[i] = rtm;
1809 crit_exit();
1811 /* return number of bytes of pages */
1812 return i;